
DEVELOPMENT OF A NEW ADAPTIVE HARMONIC BALANCE METHOD 

AND ITS COMPARISON 

 

 

 

 

 

 

 

A THESIS SUBMITTED TO 

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES 

OF 

MIDDLE EAST TECHNICAL UNIVERSITY 

 

 

 

 

 

BY 

 

 

 

 

 

ONUR SERT 

 

 

 

 

 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 

FOR 

THE DEGREE OF MASTER OF SCIENCE 

IN 

MECHANICAL ENGINEERING 

 

 

 

 

 

 

 

FEBRUARY 2018 

 



 

 

  



Approval of the thesis: 

 

DEVELOPMENT OF A NEW ADAPTIVE HARMONIC BALANCE 

METHOD AND ITS COMPARISON 

 

 

 

submitted by ONUR SERT in partial fulfillment of the requirements for the degree 

of Master of Science in Mechanical Engineering Department, Middle East 

Technical University by,  
 

 

 

Prof. Dr. M. Gülbin Dural Ünver 

Dean, Graduate School of Natural and Applied Sciences 

 

Prof. Dr. M. A. Sahir Arıkan 

Head of Department, Mechanical Engineering 

 

Assoc. Prof. Dr. Ender Ciğeroğlu 

Supervisor, Mechanical Engineering Dept., METU 

 

 

 

 

Examining Committee Members: 

 

 

Assoc. Prof. Dr. Yiğit Yazıcıoğlu  

Mechanical Engineering Dept., METU 

 

Assoc. Prof. Dr. Ender Ciğeroğlu 

Mechanical Engineering Dept., METU 

 

Assist. Prof. Dr. Mehmet Bülent Özer 

Mechanical Engineering Dept., METU 

 

Assist. Prof. Dr. Kıvanç Azgın 

Mechanical Engineering Dept., METU   

 

Assoc. Prof. Dr. S. Çağlar Başlamışlı 

Mechanical Engineering Dept., Hacettepe University   

 

                                                 Date:                   02.02.2018 

 



iv 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I hereby declare that all information in this document has been obtained and 

presented in accordance with academic rules and ethical conduct. I also declare 

that, as required by these rules and conduct, I have full cited and referenced all 

material and results that are not original to this work. 

 

 

Name, Last name : Onur SERT 

                                                                             Signature     : 

 



v 

 

ABSTRACT 

 

 

 

DEVELOPMENT OF A NEW ADAPTIVE HARMONIC BALANCE 

METHOD AND ITS COMPARISON 

 

 

 

Sert, Onur 

M.Sc., Department of Mechanical Engineering 

 Supervisor: Assoc. Prof. Dr. Ender Ciğeroğlu 

February 2018, 208 pages 

 

 
 
Nonlinear systems are encountered in many areas of science. In order to study these 

systems on a theoretical level, many approaches regarding the solution of nonlinear 

equation systems have been developed.  

 

Harmonic Balance Method (HBM) is one of the most powerful and popular methods 

for solving nonlinear differential equations in frequency domain. The main idea of 

the method is representation of the time-periodic response and nonlinear internal 

forces in terms of Fourier series and balancing each harmonic term. In order to avoid 

solving an infinite system of equations, one needs to truncate this series at some 

point. The number of terms to be included in the series is a compromise between the 

computational effort and the required solution accuracy. In order to overcome this 

challenge, numerous adaptive algorithms for automatically selecting the harmonics 

to be included in the solution are developed. These methods are called Adaptive 

Harmonic Balance Methods (AHBMs).    

In this thesis, it is aimed to investigate and compare the effectiveness of AHBMs that 

are currently in use for mechanical vibration problems and to introduce new AHBMs 
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as an alternative to the existing ones. For this purpose, firstly the mathematical 

backgrounds of all the methods are investigated in detail. Then, using the scripts 

developed in MATLAB®, AHBMs and the classical HBM are employed in order to 

perform nonlinear response analysis of selected lumped parameter systems. Error 

analyses are done and comparisons of computational time requirements are obtained 

in order to show the differences between various methods and effectiveness of the 

newly proposed methods. 

 

Keywords: Harmonic balance method, adaptive harmonic balance method, harmonic 

selection, vibrations of nonlinear systems 
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ÖZ 

 

 

 

YENİ BİR ADAPTİF HARMONİK DENGELEME YÖNTEMİ 

GELİŞTİRİLMESİ VE KARŞILAŞTIRILMASI 

 

 

 

Sert, Onur 

Yüksek Lisans, Makina Mühendisliği Bölümü 

     Tez Yöneticisi: Doç. Dr. Ender Ciğeroğlu 

Şubat 2018, 208 sayfa 

 

 
Doğrusal davranış göstermeyen sistemler pek çok bilimsel disiplinde yer almaktadır. 

Bu sistemleri teorik düzeyde inceleyebilmek adına, doğrusal olmayan denklemlerin 

çözümü için birçok yöntem geliştirilmiştir.  

 

Harmonik Dengeleme Yöntemi (HDY) doğrusal olmayan denklemlerin frekans 

düzleminde çözümü için kullanılan en etkili ve popüler yöntemlerden biridir. 

Yöntemin ana fikri, periyodik davranışların Fourier serisi olarak ifade edilmesine 

dayanmaktadır. Sonsuz büyüklükte bir denklem sistemi çözmek zorunda kalmaktan 

kaçınmak için, bu serinin bir noktada sona erdirilmesi gerekmektedir. Bu noktanın 

seçimi, istenen çözümün hassasiyeti ve maliyeti arasında bir denge kurmayı 

gerektirmektedir. Bu güçlüğü aşmak ve çözüme dahil edilecek terimleri otomatik 

olarak belirlemek için çeşitli Adaptif Harmonik Dengeleme Yöntemleri 

geliştirilmiştir.  

 

Bu tezde, literatürde yer alan ve mekanik titreşimler alanında kullanılan Adaptif 

Harmonik Dengeleme Yöntemlerini araştırmak, bunların arasında bir karşılaştırma 
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yapmak ve yeni Adaptif Harmonik Dengeleme Yöntemleri önermek amaçlanmıştır. 

Bu amaç doğrultusunda, öncelikle var olan yöntemlerin ve önerilen yeni metodların 

matematiksel arka planları ayrıntılı olarak açıklanmıştır. MATLAB® programında 

hazırlanan kodlar kullanılarak, hem adaptif harmonik dengeleme yöntemleri hem de 

klasik harmonik dengeleme yöntemi ile örnek sistemlerin doğrusal olmayan titreşim 

cevapları hesaplanmıştır. Hata analizleri ve çözüm için harcanan süre 

karşılaştırmaları yapılarak yöntemlerin farklılıkları ve önerilen yeni yöntemlerin 

etkileri gösterilmiştir.    

 

Anahtar Kelimeler: Harmonik dengeleme yöntemi, adaptif harmonik dengeleme 

yöntemi, harmonik seçimi, doğrusal olmayan titreşimler 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To my family  

and to the memory of Arda Taylan 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



x 

 

ACKNOWLEDGEMENTS 

 

 

I am grateful to express my gratitude to my thesis supervisor Assoc. Prof. Dr. Ender 

Ciğeroğlu for his guidance, tolerance, support and helpful criticism throughout the 

progress of my thesis study.  

 

I want to thank my colleagues Taner Kalaycıoğlu, Güvenç Canbaloğlu and Yusuf 

Eldoğan for their technical support and helpful advice.  

 

I also wish to thank my friends Çağrı Tepe, Nabi Vefa Yavuztürk, Egemen Türel, 

Berkan Alanbay, Özgü Şenol, Müslüm Bolat, Hüseyin Anıl Salman, Fatih Bozkurt, 

Koray Atılgan, Burak Şahin, Doğancan Sağıroğlu, Melih Bekler and Mustafa 

Karakoç for their continuous moral support and humorous point of view, which kept 

me going during hard times.  

 

The special thanks go to my family for their never ending love, support, guidance 

and tolerance. 

 

 

 

 

 

 

 

 

 

 

 

 

 



xi 

 

 

TABLE OF CONTENTS 

 

 

 

ABSTRACT ................................................................................................................. v 

ÖZ .............................................................................................................................. vii 

ACKNOWLEDGEMENTS ......................................................................................... x 

TABLE OF CONTENTS ............................................................................................ xi 

LIST OF FIGURES ................................................................................................. xvii 

LIST OF SYMBOLS ............................................................................................... xxv 

CHAPTERS…………………………………………………………………………..1 

1 INTRODUCTION ................................................................................................ 1 

1.1 Motivation ..................................................................................................... 1 

1.2 Literature Survey ........................................................................................... 2 

1.2.1 Harmonic Balance Method in Nonlinear Dynamic Response Analysis 3 

1.2.2 Adaptive Harmonic Balance Methods in Literature .............................. 8 

1.3 Objective ..................................................................................................... 10 

1.4 Scope of the Thesis ...................................................................................... 11 

2 NONLINEAR VIBRATION ANALYSIS ......................................................... 13 

2.1 The Nonlinear Equation of Motion ............................................................. 13 

2.2 Harmonic Balance Method .......................................................................... 13 



xii 

 

2.3 Numerical Solution of Nonlinear Algebraic Equation Systems .................. 19 

2.3.1 Fixed Point Iteration ............................................................................. 20 

2.3.2 Newton’s Method ................................................................................. 21 

2.4 Path Following Methods .............................................................................. 23 

2.4.1 Generation of Initial Guess .................................................................. 25 

2.4.2 Correction Methods .............................................................................. 27 

2.5 Condensation Methods ................................................................................ 31 

2.5.1 Receptance Method .............................................................................. 32 

2.6 Nonlinearity Types ...................................................................................... 37 

2.6.1 Cubic Stiffness ..................................................................................... 37 

2.6.2 Piecewise Linear Stiffness ................................................................... 40 

2.6.3 Gap Nonlinearity .................................................................................. 43 

2.6.4 Dry Friction .......................................................................................... 45 

2.6.5 Case Studies ......................................................................................... 49 

2.6.6 Case Study 3 ......................................................................................... 59 

3 ADAPTIVE HARMONIC BALANCE METHODS ......................................... 61 

3.1 Introduction ................................................................................................. 61 

3.2 AHBM 1: Jaumouille´, Sinou and Petitjean’s Method ................................ 61 

3.2.1 Case Study 1: Application of AHBM 1 on a SDOF System ................ 65 

3.2.2 Case Study 2: Application of AHBM 1 on a MDOF System .............. 76 

3.3 AHBM 2: Grolet and Thouverez’s Method ................................................. 87 



xiii 

 

3.3.1 Preliminary Definitions ........................................................................ 87 

3.3.2 Selection of Harmonics ........................................................................ 90 

3.3.3 Case Study 3: Application of AHBM 2 on a SDOF System ............... 93 

3.3.4 Case Study 4: Application of AHBM 2 on a MDOF System .............. 99 

3.4 AHBM 3: Yümer’s Method ...................................................................... 108 

3.4.1 Case Study 5: Application of AHBM 3 on a SDOF System ............. 109 

3.4.2 Case Study 6: Application of AHBM 3 on a MDOF System ............ 116 

3.5 AHBM 4: The Newly Proposed Method - Pseudo-Response Based Adaptive 

Harmonic Balance Method ................................................................................... 125 

3.5.1 AHBM 5: An Extension of the Newly Proposed Method.................. 128 

3.5.2 Case Study 7: Application of AHBM 4 on a SDOF System ............. 129 

3.5.3 Case Study 8: Application of AHBM 4 on a MDOF System ............ 134 

3.5.4 Case Study 9: Application of AHBM 5 on a MDOF System ............ 145 

4 THE COMPARISON OF ADAPTIVE HARMONIC BALANCE METHODS

 ………………………………………………………………………………...153 

4.1 Introduction ............................................................................................... 153 

4.2 Methodology of the Study ......................................................................... 153 

4.3 Case Study 1 .............................................................................................. 155 

4.3.1 Results Obtained by AHBM 1: Jaumouille´, Sinou and Petitjean’s 

Method………………………………………………………………………...158 

4.3.2 Results Obtained By AHBM 2: Grolet and Thouverez’s Method ..... 164 



xiv 

 

4.3.3 Results Obtained by AHBM 4: Forcing Based Adaptive Harmonic 

Balance Method (FB-AHBM) .......................................................................... 172 

4.3.4 Results Obtained by AHBM 5: Pseudo-Response Based Adaptive 

Harmonic Balance Method (PRB-AHBM) ....................................................... 175 

4.3.5 Comparison ........................................................................................ 180 

4.4 Case Study 2 .............................................................................................. 183 

4.4.1 Results Obtained by AHBM 4: FB-AHBM ....................................... 187 

4.4.2 Results Obtained by AHBM 6: PRB-AHBM .................................... 191 

4.4.3 Comparison ........................................................................................ 194 

5 CONCLUSION ................................................................................................. 197 

5.1 Conclusions ............................................................................................... 197 

5.2 Future Recommendations .......................................................................... 199 

REFERENCES ......................................................................................................... 201 

 

 

  



xv 

 

LIST OF TABLES 

 

 

 

TABLES 

Table 2.1 Parameters for Case Study 1 ...................................................................... 50 

Table 2.2 Parameters for Case Study 2 ...................................................................... 53 

Table 2.3 Second Set of Parameters for Case Study 2 ............................................... 57 

Table 2.4 Parameters of the System, Case Study 3 .................................................... 59 

Table 3.1 Parameters for Case Study 1 ...................................................................... 66 

Table 3.2 Modified Parameters for Case Study 1 ...................................................... 72 

Table 3.3 Physical Parameters of the MDOF System ................................................ 78 

Table 3.4 Parameters of the Nonlinear Elements ....................................................... 78 

Table 3.5 Parameters Set 1 for Case Study 3 ............................................................. 93 

Table 3.6 Parameters for Case Study 3, Parameter Set 2 ........................................... 95 

Table 3.7 Parameter Set 3 for Case Study 3............................................................... 97 

Table 3.8 Control Parameters for Case Study 4, Parameter Set 1 ............................. 99 

Table 3.9 Control Parameters for Case Study 4, Parameter Set 2 ........................... 104 

Table 3.10 Parameters for Case Study 5, Parameter Set 1 ....................................... 110 

Table 3.11 Modified Parameters for Case Study 5, Parameter Set 2 ....................... 112 

Table 3.12 Modified parameters for Case Study 5, Parameter Set 3 ....................... 114 

Table 4.1 Parameters for the 2-DOF System ........................................................... 156 

Table 4.2 Parameters for Nonlinear Elements ......................................................... 156 

Table 4.3 Maximum Absolute Error Values for AHBM 1 ...................................... 159 

Table 4.4 Maximum Relative Error Values for AHBM 1 ....................................... 159 

Table 4.5 Integral Error Values for AHBM 1 .......................................................... 160 

Table 4.6 Reductions in computational time obtained by AHBM 1 ........................ 160 

Table 4.7 Maximum Absolute Error Values for AHBM 2 ...................................... 164 

Table 4.8 Maximum Relative Error Values for AHBM 2 ....................................... 165 

Table 4.9 Integral Error Values for AHBM 2 .......................................................... 166 



xvi 

 

Table 4.10 Reductions in computational time obtained by AHBM 2 ...................... 167 

Table 4.11 Maximum Absolute Error Values for AHBM 3 .................................... 168 

Table 4.12 Maximum Relative Error Values for AHBM 3 ...................................... 168 

Table 4.13 Integral Error Values for AHBM 3 ........................................................ 169 

Table 4.14 Reductions in computational time obtained by AHBM 3 ...................... 170 

Table 4.15 Maximum Absolute Error Values for AHBM 4 .................................... 172 

Table 4.16 Maximum Relative Error Values for AHBM 4 ...................................... 173 

Table 4.17 Integral Error Values for AHBM 4 ........................................................ 174 

Table 4.18 Reductions in computational time obtained by AHBM 4 ...................... 175 

Table 4.19 Maximum Absolute Error Values for AHBM 5 .................................... 176 

Table 4.20 Maximum Relative Error Values for AHBM 5 ...................................... 176 

Table 4.21 Integral Error Values for AHBM 5 ........................................................ 177 

Table 4.22 Reductions in computational time obtained by AHBM 5 ...................... 177 

Table 4.23 Maximum Absolute Error Values for AHBM 6 .................................... 178 

Table 4.24 Maximum Relative Error Values for AHBM 6 ...................................... 178 

Table 4.25 Integral Error Values for AHBM 6 ........................................................ 179 

Table 4.26 Reductions in computational time obtained by AHBM 6 ...................... 179 

Table 4.27 Parameters of the 2-DOF System ........................................................... 184 

Table 4.28 Parameters for Nonlinear Elements ....................................................... 185 

Table 4.29 Maximum Absolute Error Values for AHBM 4 .................................... 188 

Table 4.30 Maximum Relative Error Values for AHBM 4 ...................................... 188 

Table 4.31 Integral Error Values for AHBM 4 ........................................................ 189 

Table 4.32 Reductions in computational time obtained by AHBM 4 ...................... 190 

Table 4.33 Maximum Absolute Error Values for AHBM 4 .................................... 191 

Table 4.34 Maximum Relative Error Values for AHBM 6 ...................................... 192 

Table 4.35 Integral Error Values for AHBM 6 ........................................................ 193 

Table 4.36 Reductions in computational time obtained by AHBM 6 ...................... 193 

  



xvii 

 

LIST OF FIGURES 

 

 

 

FIGURES 

Figure 2.1 A Typical Response Curve for a Duffing Oscillator with Cubic Stiffness 

Nonlinearity [2] .......................................................................................................... 25 

Figure 2.2 A Graphical Representation of the Predictor Methods [2] ....................... 26 

Figure 2.3 Illustration of Arc Length Continuation [2].............................................. 28 

Figure 2.4 Cubic stiffness elements showing hardening (left) and softening (right) 

behavior ...................................................................................................................... 38 

Figure 2.5 Behavior of piecewise linear stiffness nonlinearity .................................. 40 

Figure 2.6 Special cases of piecewise linear stiffness [85] ........................................ 41 

Figure 2.7 The behavior of gap element .................................................................... 43 

Figure 2.8 The 1-D Dry friction model ...................................................................... 45 

Figure 2.9 The SDOF System Used in Case Study 1 ................................................. 50 

Figure 2.10 Total Nonlinear Response Graphs Obtained from Time Domain 

Integration and HBM ................................................................................................. 51 

Figure 2.11 A Cantilever Beam Model with a Dry Friction Damper and Gap 

Nonlinearity Located at the Tip ................................................................................. 53 

Figure 2.12 Linear and Nonlinear Total Response Curves for 7th  DOF ................... 54 

Figure 2.13 Amplitudes of harmonics for 7th  DOF ................................................... 55 

Figure 2.14 Amplitudes of harmonics around resonance for 7th  DOF ...................... 55 

Figure 2.15 Angle Plot for the First Harmonic of 7th  DOF ....................................... 56 

Figure 2.16 Total Response Curves for 7th  DOF ...................................................... 57 

Figure 2.17 Amplitudes of harmonics for 7th  DOF ................................................... 58 

Figure 2.18 Phase Angle Plot for the First Harmonic of 7th  DOF ............................ 58 

Figure 2.19 The 3-DOF System Used in Case Study 3 ............................................. 59 

Figure 2.20 Linear and Nonlinear Response Curves for the First DOF..................... 60 

Figure 2.21 Amplitudes of Harmonics for the First DOF .......................................... 60 



xviii 

 

Figure 3.1 Algorithm for the method presented by Jamouillé et. al [4] ..................... 65 

Figure 3.2 A SDOF System with Gap Nonlinearity ................................................... 65 

Figure 3.3 Total Nonlinear Response and Linear Response Curves for Case Study 1, 

threshold
=10-20 .............................................................................................................. 67 

Figure 3.4 Amplitudes of harmonics for Case Study 1 (only the first 10 harmonics 

are shown for clarity), threshold
=10-20.......................................................................... 67 

Figure 3.5 Number of Harmonics Used During Solution, threshold
=10-20................... 68 

Figure 3.6 Total Nonlinear Response and Linear Response Curves for Case Study 1, 

threshold
=10-12 .............................................................................................................. 69 

Figure 3.7 Amplitudes of harmonics for Case Study 1, threshold
 =10-12 ..................... 69 

Figure 3.8 Number of Harmonics Used During Solution, threshold
=10-12................... 70 

Figure 3.9 Total Nonlinear Response and Linear Response Curves for Case Study 1, 

threshold
=10-6 ............................................................................................................... 70 

Figure 3.10 Amplitudes of harmonics for Case Study 1, threshold
 =10-6..................... 71 

Figure 3.11 Number of Harmonics Used During Solution for Case Study 1, ............ 71 

Figure 3.12 Linear and nonlinear total response curves for Case Study 1, modified, 

threshold
=10-20 .............................................................................................................. 73 

Figure 3.13 Amplitudes of harmonics for Case Study 1, modified, threshold
=10-20 .... 73 

Figure 3.14 Number of Harmonics Used During Solution for Case Study 1, modified, 

threshold
=10-20 .............................................................................................................. 74 

Figure 3.15 Linear and nonlinear total response curves for Case Study 1, modified, 

threshold
=10-1 ............................................................................................................... 75 

Figure 3.16 Amplitudes of harmonics for Case Study 1, modified, threshold
=10-1 ..... 75 

Figure 3.17 Number of Harmonics Used During Solution for Case Study 1, modified, 

threshold
=10-1 ............................................................................................................... 76 

Figure 3.18 A MDOF System with piecewise linear stiffness nonlinearity ............... 77 



xix 

 

Figure 3.19 Total Response of the first DOF for Case Study 2, threshold
=10-20 ......... 79 

Figure 3.20 Harmonics of the first DOF for Case Study 2, threshold
=10-20 ................ 79 

Figure 3.21 Total Response of the second DOF for Case Study 2, threshold
=10-20 ..... 80 

Figure 3.22 Harmonics of the second DOF for Case Study 2, threshold
=10-20 ............ 80 

Figure 3.23 Total Response of the third DOF for Case Study 2, threshold
=10-20 ........ 81 

Figure 3.24 Harmonics of the third DOF for Case Study 2, threshold
=10-20 ............... 81 

Figure 3.25 Number of harmonics used for Case Study 2, threshold
=10-20 ................. 82 

Figure 3.26 Number of harmonics used at each frequency for Case Study 2, threshold

=10-20 .......................................................................................................................... 82 

Figure 3.27 Total Response of the first DOF for Case Study 2, threshold
=10-2 ........... 83 

Figure 3.28 Harmonics of the first DOF for Case Study 2, threshold
=10-2 .................. 83 

Figure 3.29 Total Response of the second DOF for Case Study 2, threshold
=10-2 ...... 84 

Figure 3.30 Harmonics of the second DOF for Case Study 2, threshold
=10-2 ............. 84 

Figure 3.31 Total Response of the third DOF for Case Study 2, threshold
=10-2 ......... 85 

Figure 3.32 Harmonics of the third DOF for Case Study 2, threshold
=10-2 ................. 85 

Figure 3.33 Number of harmonics used for Case Study 2, threshold
=10-2 ................... 86 

Figure 3.34 Number of harmonics used at each frequency for Case Study 2, threshold

=10-2 ........................................................................................................................... 86 

Figure 3.35 The Algorithm for Grolet and Thouverez’s Method [5] ......................... 93 

Figure 3.36 Linear and nonlinear total response curves for Case Study 3, Parameter 

Set 1 ............................................................................................................................ 94 

Figure 3.37 Amplitudes of Harmonics for Case Study 3, Parameter Set 1 ................ 94 

Figure 3.38 Number of Harmonics Used During Solution for Case Study 3, 

Parameter Set 1 .......................................................................................................... 95 



xx 

 

Figure 3.39 Linear and nonlinear total response curves for Case Study 3, Parameter 

Set 2 ............................................................................................................................ 96 

Figure 3.40 Amplitudes of Harmonics for Case Study 3, Parameter Set 2 ................ 96 

Figure 3.41 Number of Harmonics Used During Solution for Case Study 3, 

Parameter Set 2 ........................................................................................................... 97 

Figure 3.42 Linear and nonlinear total response curves for Case Study 3, Parameter 

Set 3 ............................................................................................................................ 98 

Figure 3.43 Amplitudes of Harmonics for Case Study 3, Parameter Set 3 ................ 98 

Figure 3.44 Number of Harmonics Used During Solution for Case Study 3, 

Parameter Set 3 ........................................................................................................... 99 

Figure 3.45 Total Response of the first DOF for Case Study 4, Parameter Set 1 .... 100 

Figure 3.46 Harmonics of the first DOF for Case Study 4, Parameter Set 1 ........... 100 

Figure 3.47 Total Response of the second DOF for Case Study 4, Parameter Set 1 101 

Figure 3.48 Harmonics of the second DOF for Case Study 4, Parameter Set 1 ...... 101 

Figure 3.49 Total Response of the third DOF for Case Study 4, Parameter Set 1 ... 102 

Figure 3.50 Harmonics of the third DOF for Case Study 4, Parameter Set 1 .......... 102 

Figure 3.51 Number of harmonics used for Case Study 4, Parameter Set 1 ............ 103 

Figure 3.52 Number of harmonics used at each frequency for Case Study 4, 

Parameter Set 1 ......................................................................................................... 103 

Figure 3.53 Total Response of the first DOF for Case Study 4, Parameter Set 2 .... 104 

Figure 3.54 Harmonics of the first DOF for Case Study 4, Parameter Set 2 ........... 105 

Figure 3.55 Total Response of the second DOF for Case Study 4, Parameter Set 2 105 

Figure 3.56 Harmonics of the second DOF for Case Study 4, Parameter Set 2 ...... 106 

Figure 3.57 Total Response of the third DOF for Case Study 4, Parameter Set 2 ... 106 

Figure 3.58 Harmonics of the third DOF for Case Study 4, Parameter Set 2 .......... 107 

Figure 3.59 Number of harmonics used for Case Study 4, Parameter Set 2 ............ 107 

Figure 3.60 Number of harmonics used at each frequency for Case Study 4, 

Parameter Set 2 ......................................................................................................... 108 

Figure 3.61 Linear and nonlinear total response curves for Case Study 5, Parameter 

Set 1 .......................................................................................................................... 110 



xxi 

 

Figure 3.62 Amplitudes of Harmonics for Case Study 5, Parameter Set 1 .............. 111 

Figure 3.63 Number of harmonics used for Case Study 5, Parameter Set 1 ............ 111 

Figure 3.64 Linear and nonlinear total response curves for Case Study 5, Parameter 

Set 2 .......................................................................................................................... 112 

Figure 3.65 Amplitudes of Harmonics for Case Study 5, Parameter Set 2 .............. 113 

Figure 3.66 Number of harmonics used for Case Study 5, Parameter Set 2 ............ 113 

Figure 3.67 Linear and nonlinear total response curves for Case Study 5, Parameter 

Set 3 .......................................................................................................................... 114 

Figure 3.68 Amplitudes of Harmonics for Case Study 5, Parameter Set 3 .............. 115 

Figure 3.69 Number of harmonics used for Case Study 5, Parameter Set 3 ............ 115 

Figure 3.70 Total Response of the first DOF for Case Study 6, Parameter Set 1 .... 116 

Figure 3.71 Harmonics of the first DOF for Case Study 6, Parameter Set 1 ........... 117 

Figure 3.72 Total Response of the second DOF for Case Study 6, Parameter Set 1 117 

Figure 3.73 Harmonics of the second DOF for Case Study 6, Parameter Set 1 ...... 118 

Figure 3.74 Response of the third DOF for Case Study 6, Parameter Set 1 ............ 118 

Figure 3.75 Harmonics of the third DOF for Case Study 6, Parameter Set 1 .......... 119 

Figure 3.76 Number of harmonics used for Case Study 6, Parameter Set 1 ............ 119 

Figure 3.77 Number of harmonics used at each frequency for Case Study 6, 

Parameter Set 1 ........................................................................................................ 120 

Figure 3.78 Response of the first DOF for Case Study 6, Parameter Set 2 ............. 121 

Figure 3.79 Harmonics of the first DOF for Case Study 6, Parameter Set 2 ........... 121 

Figure 3.80 Response of the second DOF for Case Study 6, Parameter Set 2 ........ 122 

Figure 3.81 Harmonics of the second DOF for Case Study 6, Parameter Set 2 ...... 122 

Figure 3.82 Response of the third DOF for Case Study 6, Parameter Set 2 ............ 123 

Figure 3.83 Harmonics of the third DOF for Case Study 6, Parameter Set 2 .......... 123 

Figure 3.84 Number of harmonics used for Case Study 6, Parameter Set 2 ............ 124 

Figure 3.85 Number of harmonics used at each frequency for Case Study 6, 

Parameter Set 2 ........................................................................................................ 124 

Figure 3.86 Linear and nonlinear total response curves for Case Study 7, Parameter 

Set 1 .......................................................................................................................... 130 



xxii 

 

Figure 3.87 Amplitudes of Harmonics for Case Study 7, Parameter Set 1 .............. 130 

Figure 3.88 Number of harmonics used at each frequency Case Study 7, Parameter 

Set 1 .......................................................................................................................... 131 

Figure 3.89 Number of harmonics used for Case Study 7, Parameter Set 1 ............ 131 

Figure 3.90 Linear and nonlinear total response curves for Case Study 7, Parameter 

Set 2 .......................................................................................................................... 132 

Figure 3.91 Amplitudes of Harmonics for Case Study 7, Parameter Set 2 .............. 133 

Figure 3.92 Number of harmonics used for Case Study 7, Parameter Set 2 ............ 133 

Figure 3.93 Number of harmonics used at each frequency Case Study 7, Parameter 

Set 2 .......................................................................................................................... 134 

Figure 3.94 Response of the first DOF for Case Study 8, Parameter Set 1 ............. 135 

Figure 3.95 Harmonics of the first DOF for Case Study 8, Parameter Set 1 ........... 135 

Figure 3.96 Response of the second DOF for Case Study 8, Parameter Set 1 ......... 136 

Figure 3.97 Harmonics of the second DOF for Case Study 8, Parameter Set 1 ...... 136 

Figure 3.98 Response of the third DOF for Case Study 8, Parameter Set 1 ............ 137 

Figure 3.99 Harmonics of the third DOF for Case Study 8, Parameter Set 1 .......... 137 

Figure 3.100 Number of harmonics used for Case Study 8, Parameter Set 1 .......... 138 

Figure 3.101 Number of harmonics used at each frequency for Case Study 8, 

Parameter Set 1 ......................................................................................................... 138 

Figure 3.102 The change in harmonics due to application of threshold criteria ...... 139 

Figure 3.103 The change in harmonics due to application of threshold criteria at each 

frequency .................................................................................................................. 139 

Figure 3.104 Response of the first DOF for Case Study 8, Parameter Set 2 ........... 140 

Figure 3.105 Harmonics of the first DOF for Case Study 8, Parameter Set 2 ......... 141 

Figure 3.106 Response of the second DOF for Case Study 8, Parameter Set 2 ....... 141 

Figure 3.107 Harmonics of the second DOF for Case Study 8, Parameter Set 2 .... 142 

Figure 3.108 Response of the third DOF for Case Study 8, Parameter Set 2 .......... 142 

Figure 3.109 Harmonics of the third DOF for Case Study 8, Parameter Set 2 ........ 143 

Figure 3.110 Number of harmonics used for Case Study 8, Parameter Set 2 .......... 143 



xxiii 

 

Figure 3.111 Number of harmonics used at each frequency for Case Study 8, 

Parameter Set 2 ........................................................................................................ 144 

Figure 3.112 The change in harmonics due to application of threshold criteria ...... 144 

Figure 3.113 The change in harmonics due to application of threshold criteria at each 

frequency .................................................................................................................. 145 

Figure 3.114 Response of the first DOF for Case Study 9, Parameter Set 1 ........... 146 

Figure 3.115 Harmonics of the first DOF for Case Study 9, Parameter Set 1 ......... 146 

Figure 3.116 Response of the second DOF for Case Study 9, Parameter Set 1....... 147 

Figure 3.117 Harmonics of the second DOF for Case Study 9, Parameter Set 1 .... 147 

Figure 3.118 Response of the third DOF for Case Study 9, Parameter Set 1 .......... 148 

Figure 3.119 Harmonics of the third DOF for Case Study 9, Parameter Set 1 ........ 148 

Figure 3.120 Number of harmonics used at each frequency for Case Study 9, 

Parameter Set 1 ........................................................................................................ 149 

Figure 3.121 Response of the first DOF for Case Study 9, Parameter Set 2 ........... 149 

Figure 3.122 Harmonics of the first DOF for Case Study 9, Parameter Set 2 ......... 150 

Figure 3.123 Response of the second DOF for Case Study 9, Parameter Set 2....... 150 

Figure 3.124 Harmonics of the second DOF for Case Study 9, Parameter Set 2 .... 151 

Figure 3.125 Response of the third DOF for Case Study 9, Parameter Set 2 .......... 151 

Figure 3.126 Harmonics of the third DOF for Case Study 9, Parameter Set 2 ........ 152 

Figure 3.127 Number of harmonics used at each frequency for Case Study 9, 

Parameter Set 2 ........................................................................................................ 152 

Figure 4.1 A 2-DOF system with gap nonlinearity .................................................. 155 

Figure 4.2 Total Response of the First DOF ............................................................ 157 

Figure 4.3 Amplitudes of harmonics for the first DOF ............................................ 157 

Figure 4.4 Regions defined for error analysis .......................................................... 158 

Figure 4.5 Number of Harmonics used by AHBM 1, Case Study 1 Selected Cases 161 

Figure 4.6 Error Plots for AHBM 1, Case Study 1 Selected Cases ......................... 161 

Figure 4.7 Number of Retained Harmonics for AHBM 1, Case Study 1 ................ 163 

Figure 4.8 Error Plots for AHBM 1, Case Study 1 Selected Cases ......................... 163 

Figure 4.9 Total Response Plots for AHBM 3, Case Study 1 Selected Cases ......... 171 



xxiv 

 

Figure 4.10 Error Plots for AHBM 3, Case Study 1 Selected Cases ....................... 171 

Figure 4.11 Computational Time vs Maximum Error in Region 1 .......................... 181 

Figure 4.12 Computational Time vs Maximum Error in Region 2 .......................... 181 

Figure 4.13 Computational Time vs Maximum Error in Region 3 .......................... 182 

Figure 4.14 Computational Time vs Maximum Relative Error in Region 2 ............ 182 

Figure 4.15 Computational Time vs Integral Error .................................................. 183 

Figure 4.16 A 2-DOF System with gap nonlinearity ............................................... 184 

Figure 4.17 Total Response of the First DOF .......................................................... 185 

Figure 4.18 Amplitudes of harmonics for the First DOF ......................................... 186 

Figure 4.19 Regions defined for error analysis ........................................................ 187 

Figure 4.20 Computational Time vs Maximum Error in Region 1 .......................... 195 

Figure 4.21 Computational Time vs Maximum Error in Region 2 .......................... 195 

Figure 4.22 Computational Time vs Maximum Relative Error in Region 1 ............ 196 

Figure 4.23 Computational Time vs Integral Error .................................................. 196 

  



xxv 

 

LIST OF SYMBOLS 

 

a   Control parameter for Yümer’s Method 

 A   Flexibility matrix 

 C   Viscous damping matrix 

 D   Generalized damping matrix  

d

rE   Total spectral energy ratio for Grolet’s Method 

  extF t  External forcing vector 

Nf   Nonlinear force 

  , ,Nf t q q  Nonlinear internal forcing vector 

h   Structural damping 

i   Unit imaginary number 

 H   Structural damping matrix 

 
d

H   Localized harmonic number matrix for Grolet’s Method 

 I   Identity matrix 

 
m

I   Index vector for Grolet’s method 

 J   Jacobian matrix 

J     Modified Jacobian matrix for arc length continuation 

 
d

J   Localized index vector for Grolet’s method 

k   Stiffness 

 K   Stiffness matrix 

m   Mass 

 M   Mass matrix 

mM   Maximum number of equations for Grolet’s Method 

N   Normal force 



xxvi 

 

iterN   Number of iterations 

optN   Optimum number of iterations for adaptive step size 

m

hN   Maximum number of harmonics 

 q   Vector of unknowns for arc length continuation 

  q t   Displacement vector 

  q t   Velocity vector 

  q t   Acceleration vector 

R   Family of algebraic equations to be solved 

R   Modified family of algebraic equations for arc length continuation 

s   Step size 

t   Time 

T   Period 

 T t    Matrix of harmonic response components 

 u t   Input motion for dry friction element 

 
d

u   Localized Fourier coefficient vector for Grolet’s Method 

 U t   Potential energy 

mU   Mean potential energy 

 w t   Slip motion for dry friction element 

x   Generalized displacement 

 x   Vector of unknowns for Newton’s method and fixed point iteration 

      Receptance matrix 

   Gap 

   Control parameter for Jaumoille’s Method 

d   Fraction of spectral energy for Grolet’s Method 

s   Step size modifier 



xxvii 

 

s   Modified step size modifier 

t   Control parameter for PRB-AHBM 

   Relaxation factor 

   Friction coefficient 

b   Backward control parameter for Grolet’s Method 

d   Fraction of residual energy for Grolet’s Method 

f   Forward control parameter for Grolet’s Method 

   Frequency 

 Z   Fourier coefficient vector for Jaumoille’s Method 

 

Subscripts and Indices 

0   Bias term 

c   Cosine component 

f   nonlinear forcing 

im   Imaginary part 

j   Equation or variable number 

k   Harmonic number 

L   Linear 

NL   Nonlinear 

pr   Pseudo-response 

r   Reduced 

re   Real part 

s   Sine component 

 

Superscripts 

i   Iteration number 

d   DOF number 

 



xxviii 

 

Abbreviations 

AFT  Alternating frequency time method 

AHBM Adaptive harmonic balance method  

DOF  Degree of freedom 

EHBM  Elliptic harmonic balance method  

EOM  Equation of motion 

FB-AHBM Forcing based adaptive harmonic balance method 

FFT  Fast Fourier Transform 

HBM  Harmonic balance method 

IHBM  Incremental harmonic balance method 

IFFT  Inverse fast Fourier transform 

MDOF  Multi degree of freedom 

ODE  Ordinary differential equation 

PRB-AHBM Pseudo-response based adaptive harmonic balance method 

SDOF  Single degree of freedom 

 

 

 

 

 

 

 

 

 

 



1 

 

CHAPTER 1 

 

1 INTRODUCTION 

 

 

 

1.1 Motivation 

All real engineering structures involve clearances, cracks, parts that rub or hit against 

each other etc. These phenomena make all real structures nonlinear by nature. For 

many engineering applications, the nonlinear effects inside the system in 

consideration are negligibly small. Therefore, linear mathematical models are able to 

approximate the behavior of the system with a high degree of accuracy. On the 

contrary, other applications involve nonlinearities that affect the dynamical behavior 

of the system greatly; therefore the use of nonlinear mathematical models becomes a 

must. In addition to these highly nonlinear systems, advancements in technology 

introduce new materials, smaller systems and new reasons for engineers to seek for 

better precision. Moreover, with the advances in computer technology better 

computational facilities come into the picture. Therefore, we can say that nowadays 

both the need and the means to employ nonlinear models in dynamic analyses seem 

to rise. 

 

Mathematical methods to solve nonlinear equations are vital in nonlinear vibrations 

research. The most common methods for solving the nonlinear differential equations 

are dependent on performing numerical integration over the time domain. These 

methods are generally named as time marching methods [1]. But time marching 

methods are known to require significant amount of computational effort and 

computational time [2]. In addition to this, for vibration problems, most of the time 

steady-state response is sought which is in the frequency domain rather than time 

domain response. In this case the time marching methods require even more 
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computational time to reach to the steady-state response. Hence, when one is after 

the steady-state response, computationally more “efficient” methods that can operate 

directly in the frequency domain are favorable. 

 

Harmonic Balance Method (HBM) is one of the methods that fit to the description 

given above. It can operate in the frequency domain and is highly advantageous 

when the frequency response of a time-periodic system is sought. By employing 

HBM, one can convert nonlinear ordinary differential equations (ODEs) into a set of 

nonlinear algebraic equations, which are much easier to solve. Therefore, method is 

computationally more economical than time marching methods and it turns out that it 

is capable of representing very strong nonlinearities with sufficient accuracy [3]. The 

mathematical basis of the method is to represent periodic phenomena as truncated 

Fourier series with finite number of harmonics. This makes it suitable for many kinds 

of nonlinear problems in many different areas of engineering. 

 

Despite its advantages, for large systems, even when HBM is used, one can end up 

with a significant number of equations to be solved simultaneously or extensive 

computational time spent in vain. In order to overcome this difficulty and increase 

the power of HBM even more, Adaptive Harmonic Balance Methods (AHBMs) 

come into picture, which can eliminate the use of unnecessary harmonics. Together 

with a condensation method [2, 4] , AHBMs have the potential to drastically 

decrease the computational time and the storage space required to solve a nonlinear 

system. For this purpose numerous AHBMs were introduced to the literature by 

different researchers in the recent years [4 – 9]. 

 

1.2 Literature Survey 

This section consists of two parts. The first part includes the HBM, its application 

areas and multiple variants of HBM. The second sub-section gives an overview of 

the AHBMs currently available in literature. The adaptive methods which are 
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developed for nonlinear response analysis of vibratory systems will be discussed in 

much more detail in the following chapters. 

 

1.2.1  Harmonic Balance Method in Nonlinear Dynamic Response Analysis  

HBM is one of the most well known means for analyzing  structures involving strong 

nonlinearities [10]; therefore, it has been used extensively in the analysis of nonlinear 

systems. HBM are used in several different areas including nonlinear circuit analysis 

[7, 11]; computational fluid dynamics [9, 12 – 15], nonlinear oscillators [16, 17]; 

rotor dynamics [18 – 21]; mathematical modeling of friction in bladed disks [22 – 

25]; gear dynamics [26, 27]; mathematical modeling of cracks [19, 20, 28], dynamic 

modeling of structural joints [4, 29]; nonlinear dynamic modeling of aircraft landing 

gears [30], passive vibration control [31, 32]; energy harvesting [33]; flutter 

phenomenon [34]; nonlinear identification [35]; vibrations of carbon nanotubes [36, 

37]; acoustics [38, 39] and even evaluation of periodic chemical processes [40]. In 

this thesis, applications of HBM in the field of nonlinear vibrations will be the focus 

of attention.  

 

HBM was first introduced by Nayfeh and Mook [10]. The basic definition and the 

formulation of HBM based on the general form of EOM for nonlinear vibrations, has 

been explained at an introductory level by numerous works [10,, 41]. In these works, 

the formulations generally include the harmonic and super harmonic components of 

the response only. Groll and Ewins [18] present a more general formulation which 

includes sub-harmonics. The book section presented by Sarrouy and Sinou gives an 

overview of the HBM formulation, together with condensation, path following and 

solution methods [2]. The method presented by Cameron and Griffin [42] can also be 

considered as an important contribution to the general HBM formulation. In their 

paper, Cameron and Griffin investigated Alternating Frequency Time (AFT) method, 

which is capable of calculating the Fourier coefficients of nonlinear forces by 

applying an Inverse Fast Fourier Transform (IFFT) – Fast Fourier Transform (FFT) 

procedure. Then, the coefficients calculated by AFT can be directly used in the HBM 
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equations. The method is applicable where the Fourier integrals for nonlinear forcing 

coefficients are too difficult or impossible to evaluate.  

 

One of the most important variants of the HBM is the so called Incremental 

Harmonic Balance Method (IHBM) introduced by Cheung and Lau [43]. The method 

is actually equivalent to applying Galerkin Procedure and Newton’s Method in 

consecutive order [44]. Once the vibration response of the system at a single 

frequency point is known, a small increment is added to the frequency and kept 

constant, so that the solution at the neighboring point can be found. After that, the 

incremental increase in the response that corresponds to the increase in frequency is 

calculated numerically by Newton’s Method. The same procedure can be followed 

by incrementing a component of the response and calculating the frequency values 

that correspond to it as well. It has later been shown by Ferri [45] that this method is 

actually equivalent to the so called Harmonic Balance Newton Raphson Method 

(HBNR). Later on, the IHBM has been studied extensively and further developed. 

Cheung et al. [46] applied this method to systems having cubic nonlinearity. A 

variant of the method was derived and used in the analysis of dry friction by Pierre et 

al. [47]. Lau and Zhang [48] came up with a generalized form of this method so as to 

study piecewise linear systems. Leung and Chui [49] modified the method and 

reversed the order of linearization and incrementization in order to locate 

bifurcations. Lau and Yuen [50] worked on Hopf bifurcation and limit cycle 

problems with the help of IHBM. Raghothama and Narayanan used IHBM to analyze 

a two dimensional airfoil with cubic pitching stiffness, undergoing plunge and 

pitching motions in incompressible flow [51], to study bifurcation and chaos in a 

geared rotor bearing system [52] and on an articulated loading platform [53]. 

Similarly, in 2002, Xu, Lu and Cao [54] studied bifurcation and chaos in a 

harmonically excited oscillator by IHBM. In 2004, Pušenjak and Oblak [55] 

extended the IHBM to include multiple time scales so that analysis of a system 

undergoing almost periodic oscillations, under the effect of excitations with 

incommensurable frequencies. The formulation includes sub-harmonics and the 
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method uses arc-length continuation to overcome bifurcations. Also, in the same 

paper they came up with a modification of the method that enables the analysis of 

autonomous systems as well. In 2005, Sze Chen and Huang [44] applied IHBM for 

the first time for axially moving beams. In the same year, Zhou and Zhang used 

IHBM for the response calculation of a wheel shimmy system having both Coulomb 

and quadratic damping [30]. In 2006, Fu, Wong and Wang [36] used IHBM in a 

carbon nanotube study. The extension of a method for nonlinear response analysis of 

spur gear pairs was derived by Shen, Yang and Liu [27]. Another extention for flutter 

analysis was presented by Cai, Liu and Li [33]. In 2012, Chen, Liu and Meng [56] 

used IHBM for a statistical study on flutter. In 2013, Lu et al. studied the nonlinear 

dynamics of a submerged floating structure with the IHBM [57]. They introduced an 

FFT procedure instead of Galerkin procedure into the method. 

 

Another variant of the HBM is the Elliptic Harmonic Balance Method (EHBM). It 

was originally introduced by Yuste [58]. The main idea of this method is to use 

Jacobi elliptic functions instead of circular trigonometric functions in the assumed 

solution. Yuste made case studies on nonlinear oscillator problems. Later on, the 

method has been studied by other researchers for studies on elementary systems 

showing strong nonlinear behavior. Margallo et al. [59] used the method for their 

study on van der Pol equations. Yuste and Bejarano [60] and Margallo and Bejarano 

[61] worked on various improvements on the method. Later on, by using EHBM, 

Alex [62] performed studies on the Duffing oscillator. Also Belhaq and Lakrad [63, 

64] employed the method for analyzing mixed parity oscillators and showed that the 

method is more suitable than the classical HBM for this analysis. In 2008, Cveticanin 

et al. [65] obtained the periodic solution for the generalized Rayleigh equation with 

EHBM. In 2009, Chen and Liu [66] extended EHBM for the first time to analyze a 2-

DOF oscillator.  

 

Variants of HBM developed by Kim and Noah [67], and Kim and Choi [3] are worth 

mentioning. In 1996, Kim and Noah [67] developed an alternative HBM for a 
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nonlinear Jeffcott rotor model. In the 2-DOF model they investigated, the cross-

coupling stiffness term caused frequencies which are not integer multiples of the 

excitation frequency to appear in the response. Therefore, in order to account for 

these frequencies and obtain the quasi-periodic responses correctly, they substituted 

double truncated Fourier series into the EOM. They also used the AFT approach for 

calculating the Fourier coefficients of the nonlinear forcing created by the cross-

coupling stiffness. In 1997, Kim and Choi [3] developed a generalized multiple 

HBM for the analysis of aperiodic, self excited oscillations of Jeffcott rotor having 

piecewise linear nonlinearity at the bearing support. Again in this paper, the rotor 

model undergoes self excited vibrations due to the cross-coupled stiffness. Therefore 

multiple excitations having incommensurable frequencies occur in the system. To 

formulate the HBM under this kind of an excitation, the authors used multiple 

Fourier series to express the response of each DOF. For the sake of convenience, 

they used multiple time scales and introduced the hyper-time concept. Their results 

show that the new method produces sufficiently accurate results when compared to 

the numerical integration results. In their literature review paper, using the concepts 

introduced by Kim and Choi, Sarrouy and Sinou [2] formulated a HBM in a 

generalized and compact way. Also Guskov et. al [21] did a similar work and 

presented a compact formulation with the name Generalized Harmonic Balance 

Method. They also performed case studies for rotor dynamics.      

 

In 2005 Kim, Rook and Singh [68] introduced a new HBM variant. Their method is 

especially derived for calculating super and sub harmonics, exposing both the stable 

and unstable responses of torsional systems having clearance type of nonlinearities. 

As a new development at that time, their method included arc-length continuation 

and stability analysis. Their results include case studies that verify the method as 

well as some results that were not seen in the literature before. In 2006, Dunne and 

Hayward [69] introduced the so called Split Frequency Harmonic Balance Method. 

In this method, a multi harmonic Fourier series is assumed as the solution. Then, the 

lower frequency terms and the higher frequency terms are grouped together, splitting 
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the series into two. The lower harmonics are calculated numerically as always 

whereas the higher frequencies are not solved directly but are updated. The overall 

error in the equation system is continuously reduced by including more and more 

harmonics in the lower frequency group, where case studies were presented on a 

SDOF oscillator. In 2009, Coudeyras, Sinou and Nacivet [70] developed an 

extension of the HBM, namely the Constrained HBM. This method was derived for 

systems having flutter instability and its main purpose is to constrain the HBM so 

that the unwanted solutions are suppressed. This way the so called stationary 

nonlinear vibrational response for self-exciting structured can be found. The case 

studies performed with a disc brake show that the method produces satisfactory 

results but the accuracy depends greatly on the number of harmonics. Again in 2009 

Bonello and Hai [71] introduced the Receptance HBM. Their method focused on 

nonlinear dynamic models of aero-engine assemblies with nonlinear bearings. The 

method requires the linear receptance matrix to be given as an input, in order to 

construct nonlinear equation of motion of the system Where the Finite Element 

Analysis (FEA) of the engine must be done as a priori. In 2009 LaBryer and Attar 

[72] presented the High Dimensional HBM for large-scale problems. Unlike all other 

HBM variants, this method actually performs in the time domain. By defining a 

Discrete Fourier Transform (DFT) operator, they were able to switch from frequency 

domain to the time domain easily. The authors claim that, working in the time 

domain makes the method possible to be integrated into an existing FEA program, 

thus enabling that program to be computationally more efficient and more accurate in 

nonlinear vibration analysis. Their case studies indicate that the method yields 

sufficient results and works faster than time marching methods. In 2011, Leung and 

Guo [73] introduced the Forward Residue Harmonic Balance Method for systems 

with fractional derivative damping. In the same year they presented the Residue 

Harmonic Balance Method for the solution of nonlinear jerk equations [74]. The 

results of their study showed that the new method yields better results than the 

previously known methods. In 2013, Xiao, Zheng and Cao [75] used Residue 

Harmonic Balance Method for their studies on the van der Pol oscillator. In 2013, 
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Didier, Sinou and Faverjon [76] introduced the Stochastic Harmonic Balance Method 

for the solution of nonlinear dynamic systems with non-regular nonlinearities and in 

the existence of uncertainties. The results of the newly proposed method and a 

known solution procedure combining Multi-Dimensional Harmonic Balance Method 

and Monte Carlo simulations are compared with each other, which validated the new 

method.  

 

1.2.2 Adaptive Harmonic Balance Methods in Literature 

The methods which are developed to select the harmonics that are dominant in the 

system, and to keep unnecessary harmonics out of the solution process will be 

summarized here. In these methods, unlike the ones described in the previous 

section, the total number of harmonics to be included in the assumed periodic 

solution is not constant. The number of harmonics is subject to change according to 

the criteria used. The main purpose in Adaptive Harmonic Balance Method (AHBM) 

is to increase the computational efficiency of the solution process, since unnecessary 

harmonics used in the solutions has a drastic effect in the increase of computational 

time.  

 

The first AHBM was developed by Gourary et al. [8], in which authors analyzed 

nonlinear electrical circuits. They transformed the equation set to be solved to a form 

such that the terms which correspond to the linear nodes (the nodes which do not 

have a nonlinear element attached to them) are zero and the terms which correspond 

to the nonlinear terms have almost zero higher harmonics. Therefore they proposed a 

new method that does not include linear harmonics in the equations to be solved and 

further reduces this equation set by decreasing the number of harmonics for weakly 

nonlinear nodes. In order to decide the degree of nonlinearity, they used the “nodal 

residual norm” concept. They calculated the norm of the vector which contains the 

Fourier coefficients for each node. They decreased the number of harmonics until the 

norm becomes less than a pre-determined threshold value. The harmonics to be 

excluded from the solution are selected by the contribution they make to the total 
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value of the norm whereas the ones with the minimal contribution are excluded from 

the solution.  

 

In 2004, Maple et al. introduced another AHBM method [9]. They worked on the 

nonlinear CFD analyses of a supersonic/subsonic diverging nozzle with unsteady 

periodic outflow conditions. The adaptive method they derived is based upon the 

concept of “spectral energy”. In this method, the energy level that corresponds to the 

last harmonic included in the solution is continuously calculated and monitored. This 

value is divided to the total energy. This calculation is done for each cell in the CFD 

mesh separately. If the ratio of the two energy levels at a specific cell turns out to be 

higher than an allowed value set by the user, this means that the last harmonic is 

considerably high. Therefore more harmonics need to be added to the solution. This 

process continues until the energy levels of last harmonics become lower than the 

threshold value. The method turned out to be very efficient, causing a decrease in the 

computational effort up to 86%.       

 

In 2005, Zhu and Christofferssen [7] developed an AHBM where they investigated 

the nonlinear behavior of a bipolar oscillator in an electric circuit. Similar to Maple 

et. al. [9], they monitored the amplitudes of each harmonic in order to force 

convergence on the system which allowed them to reach steady state solution earlier.   

 

In 2010, during his research on nonlinear vibrations and mistuning identification of 

bladed disks, Yümer [6] introduced a new AHBM. Unlike the researchers before 

him, Yümer derived a so-called global method where the number of harmonics to be 

included in the solution is the same for every DOF in the system. In this method, the 

adaptiveness is achieved by monitoring the absolute values of the terms inside the 

nonlinear forcing vector. Yümer stated that his method works pretty well when the 

parameters are chosen wisely.  
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Again in 2010, in their study on nonlinear bolted joint models, Jaumoillé et. al. [4] 

introduced another AHBM, which,  is a global method similar to Yümer’s. The 

method is an incremental method, in which the response of system is calculated with 

a certain number of harmonics, then the number of harmonics is increased by one 

and the solution is performed again until a stopping criterion based on the 

approximate strain energy is reached. Authors demonstrated their method on a bolted 

joint model with two beams and two LuGre friction models. The results showed that 

their method works pretty well for the problems with friction nonlinearity.  

 

In 2012, Grolet and Thouverez developed a different AHBM [5]. In this method, 

similar to the method of Maple et. al. [9] adaptiveness is achieved by monitoring the 

spectral energy of each harmonic in the tangent predictor. It allows utilizing different 

number of harmonics at different DOFs. Moreover, different from the most of the 

methods described above, it is not an incremental method. 

 

The three AHBMs which are derived for structural dynamics problems will be 

discussed in more detail in Chapter 3. 

 

1.3 Objective 

In this study, it is aimed to introduce a new AHBM and compare it to the other 

methods available in the literature. This is accomplished by firstly describing the 

mathematical background of these methods in detail. Then, each of these methods 

will be employed for the response calculation of selected nonlinear systems. The 

results are then compared to each other in terms of computational time and accuracy. 

The systematic approach used for the error analysis is also explained in detail so that 

the objectiveness of the comparison can be demonstrated. In brief, the aim 

throughout the thesis is to introduce a new AHBM and demonstrate the contribution 

it makes to the current literature. 
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1.4 Scope of the Thesis 

The outline of the thesis is as follows:  

 

In Chapter 2, the nonlinear response analysis of dynamic structures is presented. 

Firstly, the general structure of a nonlinear EOM is described. Secondly, the means 

available for the solution of this nonlinear EOM are summarized. Later on, the 

continuation methods that give us the means to obtain the nonlinear response curves 

are mentioned. In addition, some of the nonlinearity types from the literature are 

presented. Finally, some explanatory case studies are given. 

 

In Chapter 3, the details of the AHBM methods developed for nonlinear vibration 

analyses are presented. Firstly, the methods from the literature are investigated and 

explanatory case studies are given. Then, similarly, the newly proposed methods are 

explained and are illustrated on examples.  

 

In Chapter 4, case studies performed for the comparison of AHBMs are presented. 

Firstly, the basics of the error analysis procedure derived for this comparison is 

explained. Then results found from detailed case studies are given. 

 

In Chapter 5, a brief summary of the work done, discussions, conclusions and 

possible future extensions of this work are given.  
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CHAPTER 2 

 

 

2 NONLINEAR VIBRATION ANALYSIS 

 

 

 

2.1 The Nonlinear Equation of Motion 

The most general form of the equation of motion for a nonlinear dynamic system can 

be written as follows  

 

            ( ) ( ) ( ) ( , , ) ( )N extM q t D q t K q t f t q q F t    , (2.1) 

   

where  ( )q t  is the displacement vector,  M  is the mass matrix,  D  is the 

damping matrix (including all the damping and gyroscopic effects in the system), 

 K  is the stiffness matrix which may include structural damping matrix, 

 ( , , )Nf t q q  is the nonlinear internal forcing vector and  ( )extF t  is the external 

forcing vector. Different from a linear system, a nonlinear internal forcing vector, 

due the forces that occur in the nonlinear elements is introduced. The existence of 

this term prevents the principle of superposition and principle of proportionality from 

being valid for nonlinear systems, thus making linear analysis techniques 

inapplicable for nonlinear systems [77]. 

 

2.2 Harmonic Balance Method 

As mentioned before, Harmonic Balance Method (HBM) is one of the most powerful 

and popular techniques to solve the nonlinear equation set defined by Equation (2.1) 

in frequency domain. The mathematical basis of this method has been investigated 

by García-Saldaña and Gasull [78]. Since investigation of a theoretical basis for 

HBM is well beyond the scope of this thesis, the mathematical background will not 
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be explained here. Only the application of this method to Equation (2.1) will be 

given.  

 

If the external forcing is periodic, it is expected to have a periodic response; hence, 

one can express both the external forcing and the response of the systems by using 

Fourier series as follows 

 

           0

1 1

( ) sin cosext sk ck

k k

F t F F k t F k t 
 

 

    , (2.2) 

           0

1 1

( ) sin cossk ck

k k

q t q q k t q k t 
 

 

    , (2.3) 

 

where  0F ,  skF  and  ckF  are ( 1)n  vectors containing the known time 

independent bias terms and thk  harmonic coefficients of the sine and cosine 

components of the external forcing, respectively. Similarly,  0q ,  skq  and  ckq  

are ( 1)n  displacement vectors for the bias component, and, sine and cosine 

components of the thk  harmonic, respectively. Since it is the dynamic response we 

are after, the elements of  0q ,  skq  and  ckq are the unknowns to be determined.  

 

Although the series expressions given in Equation (2.2) and Equation (2.3) are 

mathematically correct, they are not practically applicable for numerical 

computation. Therefore, these series must be truncated at some point. Utilizing m  

harmonics external forcing and displacement vectors can be written as 

 

           0

1 1

( ) sin cos
m m

ext sk ck

k k

F t F F k F k 
 

    , (2.4) 

           0

1 1

( ) sin cos
m m

sk ck

k k

q t q q k q k 
 

    . (2.5) 
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where, t   . Taking the time derivatives of the displacement vector, velocity and 

acceleration vectors are obtained as  

 

           
1 1

( ) cos sin
m m

sk ck

k k

q t k q k k q k   
 

   , (2.6) 

             
2 2

1 1

( ) sin cos
m m

sk ck

k k

q t k q k k q k   
 

    . (2.7) 

 

 Similarly, the nonlinear forcing vector can be expressed as follows 

 

       0

1 1

( , , ) sin( ) cos( )
m m

N N Nsk Nck

k k

f t q q f f k f k 
 

    , (2.8) 

 

where,  0Nf ,  Nskf  and  Nckf  are ( 1)n  vectors containing the bias component 

and sine and cosine component of the thk harmonic of the nonlinear internal forcing 

vector. Since the nonlinearities in a dynamic system are attached to the DOFs, the 

nonlinear internal forces are not only dependent on time but also the response and in 

some cases derivatives of the response as well. Therefore, the series expression for 

the nonlinear forces must be consistent with the response expression. In other words, 

 0Nf ,  Nskf  and  Nckf  must be found in terms of  0q ,  skq  and  ckq . 

 

The most commonly used method for achieving this is as follows: The Fourier series 

expressions for the response are inserted into the nonlinear forcing vector. Then, 

having found the nonlinear forces in time domain, one needs to “project” these forces 

onto the Fourier basis,     1,sin ,cosk k   where 1,2, ,k m . This projection 

can be done by evaluating the following inner products [2]: 

 



16 

 

 

 

 

2

0

0

2

0

2

0

1
( , , )

2

1
( , , )sin( )

1
( , , ) cos( )

N N

Nsk N

Nck N

f f t q q d

f f t q q k d

f f t q q k d










 


 














.  (2.9) 

 

If the integrals given in Equation (2.9) can be evaluated, an analytical expression for 

the Fourier series representation of  ( , , )Nf t q q  can be found. If the integrals cannot 

be evaluated analytically, they can be calculated numerically. However, if the 

nonlinear forces cannot be expressed in closed form, as mentioned in Chapter 1, the 

elements of the nonlinear forcing vector can be obtained by using the AFT method 

[2, 42].  

 

Assuming that all harmonics in the calculation of the nonlinear forcing are used, 

substituting Equations (2.4) - (2.8) into Equation (2.1) the following relation is 

obtained  

 

             

           

           

               

2 2

1 1

1 1

0

1 1

0 0

1 1 1

sin cos

cos sin

sin cos

sin cos sin

                               

m m

sk ck

k k

m m

sk ck

k k

m m

sk ck

k k

m m m

N Nsk Nck sk

k k k

M k q k k q k

D k q k k q k

K q q k q k

f f k f k F F k

   

   

 

  

 

 

 

  

 
  
 

 
  

 

 
   

 

    

 

 

 

  

   
1

                                                 cos
m

ck

k

F k




. (2.10) 

  

Combining the sine and cosine coefficients:  
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                

                

              

2

1

2

1

0 0 0

1 1

sin

cos

sin cos

m

sk ck sk Nsk

k

m

ck sk ck Nck

k

m m

N sk ck

k k

k k M q k D q K q f

k k M q k D q K q f

K q f F F k F k

  

  

 





 

    
 

     
 

    





 

. (2.11)  

 

Equation (2.11) can only be satisfied if the coefficients of bias terms and terms of 

 sin k  and  cos k  on both sides are balanced, resulting in  

 

0 0 0[ ]{ } { } { }NK q f F  ,  (2.12) 

               
2

sk ck Nsk skK k M q k D q f F     , (2.13) 

               
2

ck sk Nck ckK k M q k D q f F     . (2.14) 

 

Combining Equations (2.13) and (2.14) a matrix equation for the thk  harmonic can 

be obtained as 

 

        

        

 

 

 

 

 

 

2

2

sk Nsk sk

ck Nck ck

K k M k D q f F

q f Fk D K k M

 

 

             
        
              

. (2.15) 

 

Repeating Equation (2.15) for 1,2, ,k m  and combining all, system of nonlinear 

algebraic equations are obtained. 
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       
       

       

       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 0 0

1 1 1

1 1 1

2 2 2

2 2 2

0 0 0

0 0 0

0 0 2 0

0 0 0

N

s Ns s

c Nc c

s Ns s

c Nc c

sm Nsm sm

cm Ncm cm

q f F

q f F
K

q f F

q f F

q f F

m
q f F

q f F







     
     
     
     

        
               
     
     
             
    
    













, (2.16) 

 

where  

 

 
     

     

2

2

K M D

D K M

 


 

  
       

.  (2.17) 

 

As mentioned at the beginning of the previous section,  D  includes all the damping 

and gyroscopic effects in the system. This kind of a notation was preferred in order 

to keep the formulation general. For specific cases, Equation (2.16) can still be used 

by modifying Equation (2.17). For example, for a system which has both inherent 

structural damping and viscous damping but no gyroscopic effects, Equation (2.17) 

takes the following form:  

 

 
       

       

2

2

K M C H

C H K M

 


 

   
        

  (2.18) 

 

where  C  is the viscous damping matrix and  H  is the structural damping matrix.  

 

The n   nonlinear differential equations of motion in time domain are now converted 

to  2 1n m  algebraic equations with  2 1n m  unknowns and one free parameter, 

 . In order to obtain the response for a certain frequency spectrum, one needs to 



19 

 

solve this nonlinear equation system for different values of  . Matrix equation given 

by Equation (2.16) can be easily generated for any number harmonics due its simple 

structure.  

 

In the formulation given above, Fourier series approximations contain the bias term, 

the first harmonic and the super harmonics. It is also possible to include sub-

harmonics in the formulation by introducing an integer   [18]. 

 

       0

1 1

( ) sin cos
m m

sk ck

k k

k k
q t q q q 

  

   
     

   
  . (2.19) 

 

In this thesis, in order not to complicate the formulations further and since the sub-

harmonics are not the main area of interest, they will not be included in the 

equations. But they may be of importance in nonlinear vibration analyses where the 

systems in consideration exhibit self-excited vibrations [21, 70]. Furthermore, in 

these kinds of problems there may also be a need to use multiple Fourier series 

representations having more than one basic frequency as well as using multiple time 

scales [3]. Since the adaptive methods are investigated with simpler dynamic models 

in this thesis, these advanced formulations will not be included either; however, 

developed methods can be applied to the case of sub- and super-harmonics without 

any modification. 

 

2.3 Numerical Solution of Nonlinear Algebraic Equation Systems 

In the previous section, the conversion of nonlinear ordinary differential equations to 

nonlinear algebraic equations via HBM is described. In order to achieve the ultimate 

goal and obtain the dynamic response, the equation set given in Equation (2.16) must 

be solved. In this section, the numerical methods for solving more than one nonlinear 

equations simultaneously are briefly presented. The emphasis is on the most widely 

used methods in structural dynamics.  
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2.3.1  Fixed Point Iteration 

Assuming the equation system for which the solution is sought is of the form:  

 

    0R x  ,  (2.20) 

 

where  x  is the vector containing the variables to be solved and R   is the family of 

functions which are to be solved simultaneously.  

 

The fixed point iteration actually deals with finding the fixed points of a function. 

That is, solving for the  x  values satisfying such an equation:  

 

    x G x .  (2.21) 

 

If the equation system defined in Equation (2.20) can be rearranged into the form 

given in Equation (2.21), one can simply use fixed point iteration for root finding. In 

fact, many nonlinear problems are formulated as or can be converted into the fixed 

point problem. The conversion is mostly done by algebraic manipulation or by 

simply adding  x to both sides of the equation system.  

 

The recurrence formula for fixed point iteration is as follows:  

 

    1i i
x G x


 ,  (2.22) 

 

 where  
i

x  is the iterate from the previous solution step and  
1i

x


 is the iterate for 

the next step. When the error between two iterates become too small, the solution 

procedure ends.  
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One of the most important points in the application of this method is that, the rate of 

convergence of the method is greatly affected by the selection of G . Although they 

are the same equation systems written differently, different formulations for G  can 

cause the iterations to converge at a different speed or even to diverge. The criteria 

for G  ensuring linear convergence of the fixed point iteration have been explained 

by Kelley [79].  

 

Another factor that greatly affects the convergence is relaxation proposed by [23].  

 

      
1 1

1
i i i

new calc
x x x 

 
   .  (2.23) 

 

Here λ is a weighting factor which can takes a value between 0 and 2. 1{ }i

calcx   is the 

calculated value of the next iterate from Equation (2.22). By calculating a weighted 

sum of the last two iterates and using this sum instead of the one found from 

Equation (2.22) one can greatly enhance the method’s capability to converge. If 

0 1  , the modification is called underrelaxation and it can convert a divergent 

system into a convergent one. If 1 2  , overrelaxation takes place, improving the 

convergence rate of an already convergent system.  

 

2.3.2 Newton’s Method 

Newton’s Method is one of the most effective and widely used numerical methods 

for obtaining the roots of nonlinear equation systems. Its application to functions 

with a single variable has been known since the 17th century. Later on, its application 

for multi variables, nonlinear equations and its alternatives were introduced.   

 

Iterative solution formula by using Newton’s Method is as follows:  

 

         
1

1i i i i
x x J x R x


   

 
,  (2.24) 

 



22 

 

where  
i

x  and  
1i

x


 are the previous and current iterates, respectively. R  is the 

equation system given in Equation (2.20) and J  is the Jacobian matrix. Assuming 

we have n  equations and n  unknowns, denoting the thj  variable in vector  x  by 
jx  

and the thj  equation in  R  as 
jR , the Jacobian is defined as:  

 

1 1 1

1 2

2 2 2

1 2

1

n

n

n n n

n n

R R R

x x x

R R R

x x xJ

R R R

x x x

   
   
 
   
 
    

 
 
   

    

.  (2.25) 

 

The partial derivatives in Equation (2.25) can be very difficult or impossible to 

calculate analytically. In such cases it can be computed numerically. The 

computation is generally done by using forward difference formula [79, 80]. The 

formula is simply a way of perturbing the equation system in the direction of a single 

variable, finding the difference between the perturbed system and the initial point 

and finally performing a division to compute the gradient numerically. By following 

this procedure for every single variable, one can construct the Jacobian column by 

column.    

 

Provided that the initial guess is sufficiently close to the solution and the 

convergence criteria are satisfied, Newton’s method converges to the solution 

quadratically. The convergence criteria are explained in detail and mathematically 

proved by Kelley [80]. However, although Newton’s Method usually converges 

within a few iterations, it can be time consuming and computationally expensive. 

The main reason for this is the computation of the Jacobian matrix at every iteration. 

If an analytical Jacobian is not available and the numerical Jacobian is too costly, 

some alternative methods can be preferred.  
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One of these alternative methods is the Chord Method [77, 79]. In this method, the 

Jacobian is calculated for the first iteration only and the same Jacobian is used 

throughout the iterations. A similar method is the Shamanskii Method [77, 79]. In 

this method, the Jacobian is updated at every l  iterations. The usage of these 

methods generally increase the number of iterations required for convergence. But, if 

the calculation of the Jacobian is expensive, performing a few more iterations with 

an outdated Jacobian reduces the overall computational effort; hence, these methods 

become computationally economical. 

 

The quasi-Newton methods also provide alternatives to Newton’s Method. These 

methods are actually extensions of the secant method to multi variable problems. The 

most famous one of these methods is Broyden’s Method [81]. In this method, instead 

of calculating the Jacobian, an approximation to the Jacobian is calculated and then it 

is subjected to a rank-one update as the iterations go on. If the initial guess is close to 

the real solution, this method can perform very well [79]. 

 

In addition to the methods described above, the methods that belong to family of 

methods known as the Newton-Krylow methods are strong alternatives for the 

solution of computational physics problems [77, 79].   

 

For obtaining the nonlinear response of dynamic systems within the scope of this 

thesis, applying Newton’s method along with a path following scheme is the 

common application in the literature and it is known to give very good results [2, 5, 

77]. Therefore, for the studies mentioned in this thesis, Newton’s method with a path 

following scheme is used.   

 

2.4 Path Following Methods 

In order to obtain the frequency response, one needs to solve Equation (2.16) for 

different values of the free parameter, i.e. frequency,  .  
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Studying the nonlinear response curve given in Figure 2.1, one can see that the curve 

bends to the right. This is due to the existence of a hardening cubic stiffness. 

Between the turning points B and E, the unstable region is located. The existence of 

this region causes multiple solutions to coexist for a specific frequency interval.  

Without a proper path following method, the best results that could be obtained from 

the response calculations for this case are the curve segments from A  to B  and from 

C  to D  by performing a forward frequency sweep or segments from D  to E  and 

from F  to A  by performing a backward frequency sweep. Path following using 

Newton’s Method with   as the continuation parameter fails to follow the path in 

the case of turning points where multiple solutions exist. Moreover, the initial 

guesses for the Newton’s Method tend to perform poorly at the jump locations due to 

large differences in the previous and current solutions indicated by points B  and C  

or E  and F ; hence, the method usually diverges and cannot find a solution [77].   

 

Using a proper path following method provides the means to vary   systematically 

which makes it possible to find multiple solutions located at a single frequency 

value. This is achieved by following the path even it turns back or intersects itself by 

using an appropriate path following method. The application of a path following 

method consists of two parts:  

 

1. After a solution for the current frequency step i  is obtained, generation of 

initial guess for the next frequency step 1i   from the previous frequency 

steps, 

2. Correction of the initial guess until the iterations converge. 
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Figure 2.1 A Typical Response Curve for a Duffing Oscillator with Cubic Stiffness 

Nonlinearity [2] 

 

2.4.1 Generation of Initial Guess 

All the numerical methods that can be used for the solution of Equation (2.16) 

require an initial guess that is sufficiently close to the actual solution. However, 

finding this initial guess is not a simple task. A systematic approach that can 

automatically come up with accurate initial guesses for every single point on the 

curve is required in order to obtain the frequency response curves of a nonlinear 

system. Therefore the graphical methods used for locating the roots of a function 

with a single variable or trial and error procedures are not applicable in this situation. 

Using the solution of the linear part of Equation (2.16) as an initial guess is not 

applicable since the nonlinear effects may become more and more dominant where 

the nonlinear solution becomes significantly different than the linear solution. The 

predictors presented here overcome the mentioned difficulties. The main idea behind 

them is to predict the next point on a response curve by following the curve’s trend at 

the previous solution points.  

 

The first predictor to be mentioned is the secant predictor. It locates the initial guess 

for the next frequency step on the line that connects the two previous solution points. 
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It is a simple method and performs well when the curvature of the response curve is 

not very large [2]. A graphical representation is given in Figure 2.2.  

 

The second predictor to be mentioned is the tangent predictor. This predictor locates 

the initial guess for the next step on the tangent line passing from the previous 

solution point. In most of the cases, it performs very well. Therefore, this method is 

preferred for the studies in this thesis. A graphical representation is given in Figure 

2.2. More detailed formulation about this predictor is given in Section 2.4.2.1. 

 

 

 

 

Figure 2.2 A Graphical Representation of the Predictor Methods [2] 

 

 

 

The final predictor to be mentioned uses the previous 1d   solution points to form a 

Lagrange polynomial of degree d . Then, this polynomial can be extrapolated so that 

an initial guess can be calculated for the next frequency point. In order not to 

increase the computational cost, d  is generally kept around 2 or 3 [2]. A graphical 

representation is given in Figure 2.2.  

 

So far, determination of the direction for the initial guess by different predictors has 

been mentioned but the matter of how far these guesses will be located has not been 

explained yet. For this, the arc length s , in other words the distance between two 
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successive solution points, is used. Using the same notation as in Equation (2.16) arc 

length can be defined as  

 

           
21 1 1x x x x

T
i i i i i is  
       . (2.26) 

 

All the predictors locate the initial guess point, namely   1 1,
i ix 
 

 away from the 

previous solution point by a predetermined amount, s , set by the user.   

 

2.4.2 Correction Methods  

Having determined the location of the initial guess, the problem for obtaining the 

curves similar to the one given in Figure 2.1 is now reduced to making that initial 

guess converge on the actual solution curve. There are numerous correction methods 

available for this task, such as the Moore-Penrose pseudo inverse method or the 

pseudo arc length method [2]. But only the arc length continuation method will be 

explained in detail here. 

 

2.4.2.1 The Arc Length Continuation Method 

In the arc length continuation method, the arc length given in Equation (2.26) is 

introduced to Equation (2.16) as the new path following parameter. The frequency   

becomes an unknown to be solved, instead of a free parameter. Therefore Newton’s 

Method becomes capable of tracing solution path, which can turn back. Denoting the 

unknown Fourier coefficient vector by  x , the new unknown vector becomes  

 

 
 x

q


 
  
 

.  (2.27) 
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Since a new unknown is introduced to the equation system, a new equation must be 

introduced as well. This new equation is the equation of a hyper-sphere located at the 

previous solution point, having a radius of s.  

 

              
21 1 1 2, , 0

T
i i i i i ih x s x x x x s  
         . (2.28) 

 

In Section 2.4.1 the predictors which place an initial guess at a predetermined 

distance of s from the previous solution point were described. In fact such an initial 

guess is located on the surface of the hyper sphere defined by Equation (2.28). Now, 

adding Equation (2.28) into the equation system defined by Equation (2.16), the 

numerical solution scheme is actually being forced to converge onto the actual 

response curve by following the surface of the hyper-sphere. As a result, starting 

from the initial guess all the successive iteration points are to be located on the 

hyper-sphere, eventually converging onto the nonlinear response curve. This 

behavior is illustrated in Figure 2.3. This is the reason why the family of methods 

containing the arc length continuation is called correction methods [2]. They 

“correct” the initial guess.   

 

 

 

 

Figure 2.3 Illustration of Arc Length Continuation [2] 
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The arc length continuation method and HBM can be integrated into Newton’s 

Method as follows:  

 

First, writing Equation (2.16) in the residual form:  
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. (2.29) 

  

Then, the recursive formula for Newton’s Method given in Equation (2.24) can be 

written as:  

 

   
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   
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   

. (2.30) 

  

where the superscript i  denotes the thi  iteration and subscript k  denotes thk  

frequency point. R  and h  are given in Equation (2.29) and Equation (2.28), 

respectively.  

 

The tangent predictor for arc length continuation becomes:  

 

      
  1

1

,
,

k

k k k

R q s
q q J q s s

s






  
  

, (2.31) 
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where   ,
k

J q s 
 

 and   ,
k

R q s  are the new Jacobian matrix and the new 

residual vector obtained in addition of the arc-length equation, respectively. 

 

During the application of arc length continuation, if the radius of the hyper-sphere 

(also called the step size) defined in Equation (2.28) is too small, the solution scheme 

may compute too many points on the response curve unnecessarily. On the other 

hand if the step size is too large, the solution scheme may have difficulty in tracking 

the response curve around the turning points and sharp corners. In order to find an 

optimum solution between the computational time and accuracy, the step size can be 

adjusted automatically by an adaptive algorithm. One of the simplest and most 

effective ways to make the step size adaptive is to adjust the step size according to 

the number of iterations at the previous point. De Niet [82] proposed an approach, 

based on the following ratio  

 

opt

s

iter

N

N
  .  (2.32) 

 

In this approach, if   is greater than 1, it means that the number of iterations, iterN , 

is lower than the optimum number of iterations, 
optN . Therefore the numerical 

solution scheme is having no trouble in terms of convergence and the step size can be 

increased. If   is lower than 1, it means that the solution scheme performs more than 

necessary number of iterations to converge onto the desired curve. In order to 

decrease the amount of iterations, the step size should be decreased.  

 

Increasing or decreasing the step size rapidly may also cause problems in terms of 

convergence and accuracy. In order to slow down the increase or decrease rate, De 

Niet suggested the following normalization:  
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.  (2.33) 

 

To change the step size for the next step, the normalized ratio was multiplied with 

the previous step size value as 

 

1i s is s  .   (2.34) 

 

During the studies presented in the thesis, it was seen that under certain 

circumstances De Niet’s method also caused the step size to change rapidly. 

Therefore a modified version of this method is proposed  

 

0.5 0.5

0.5 1

1 1 2
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s

s s

s

s

s
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if
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
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
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


 
 

 
 

,  (2.35) 

 

1 3i i

ss s  .  (2.36) 

 

It can be seen from the formulation that the selection of optimum number of 

iterations affects the accuracy greatly. De Niet suggested that for Newton’s Method, 

optN  should be kept around 5. But for other numerical solution methods, this number 

needs to be altered. Since Newton’s Method is the selected numerical solution 

scheme for this thesis, 
optN  is taken as 5.  

 

2.5 Condensation Methods 

For a system with n DOFs, an application of multi harmonic HBM with m  

harmonics included in the solution yields Equation (2.16) which contains (2 1)n m  
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nonlinear algebraic equations. When the multi harmonic responses of systems with 

many DOFs are sought, this number can become very large. Dealing with many 

equations removes the computational time advantage of HBM compared to timed 

domain methods and may result in the failure of the solver as well. Therefore it is 

necessary to keep the number of equations to be solved to a minimum. For this 

purpose, two methods are used.  

 

2.5.1 Receptance Method 

Receptance method, which was originally proposed by Menq et. al. [83] for the 

analysis of bladed disk systems with dry friction dampers, basically isolates the 

equations related to the DOFs which have a nonlinear element connected to them 

from the rest of the equations. If all the DOFs in a system have at least one nonlinear 

element connected to them, then the isolated equations become no different than the 

original equation system. In this case, the computational advantage of the receptance 

method disappears.  

 

Considering the equation of motion given in Equation (2.1), with the matrix  D  

replaced with combined structural and viscous damping for harmonic motion can be 

written as follows : 

 

              ( ) ( ) { ( )} ( , , ) ( )N extM q t C q t K i H q t f t q q F t     . (2.37) 

 

For the case where a multi harmonic solution is sought for the equation of motion, 

we can write the following complex matrix equation for the thk  harmonic [77] as: 

 

             2( ) ( ) k Nk kK k M i H i k C q f F      , (2.38) 

 

where  kq ,  Nkf  and  kF  are 1n  vectors containing the complex Fourier 

coefficients of the response, nonlinear forcing and the external forcing. Multiplying 
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both sides of Equation (2.38) with the receptance matrix,  k    , the following 

relation is obtained 

 

         k Nk kq k f k F           ,  (2.39) 

 

where  

 

         
1

2 M i C i H K   


          . (2.40)  

    

As mentioned in the beginning of this section, the DOFs in a dynamic system can be 

divided into two groups; one being the nonlinear DOFs and the other one being the 

linear DOFs. The nonlinear DOFs are the ones which have at least one nonlinear 

element connected to them. The aim here is to isolate the equations belonging to the 

nonlinear DOFs, from those belonging to the linear DOFs. For this purpose, 

reordering DOFs as linear and nonlinear DOFs and partitioning the matrices, 

Equation (2.39) can be written as  
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, (2.41) 

 

where the subscript L  denotes the linear DOFs and the subscript NL  denotes the 

nonlinear DOFs. Note that the vector containing the Fourier coefficients for the 

nonlinear forcing has zeros on the first line. This is because the linear DOFs have no 

connection to the nonlinear elements; therefore they have no nonlinear internal force 

applied on them. Expanding the second row of Equation (2.41), the equations related 

to the nonlinear DOFs can be isolated as follows 

 

             k NN Nk NL k NN kNL NL L NL
q k f k F k F                  . (2.42) 
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The desired equation system is obtained but it is still in complex form. In order to 

solve this equation system with the methods described in the previous sections, one 

needs a real equation system rather than a complex one. Separating real and 

imaginary parts and arranging the equations the following result for the thk  harmonic 

is obtained 
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or, in a more compact form: 
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, (2.44) 

 

where 
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, (2.44)  

 

where subscript re  indicates the real part, subscript im  indicates the imaginary part, 

subscript s  indicates sine and subscript c  indicates cosine terms. For the bias terms, 

present in non-symmetric nonlinearities, Equation (2.44) takes the following form:  
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where A  is the inverse of the stiffness matrix. Writing Equation (2.44) for all the 

harmonics and including Equation (2.45), one can obtain the following generalized 

expression for m  harmonics:  
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where 
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   

. (2.47) 

  

The set of equations given in Equation (2.46) needs to be solved by a numerical 

continuation scheme. If Newton’s Method is to be used together with arc length 

continuation, one needs replace the right hand side of Equation (2.29) with the left 
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hand side of Equation (2.46) and use the new R  inside the expressions given in 

Equation (2.30) and Equation (2.31).  

For the linear DOFs, Expanding the first row of Equation (2.41): 

 

     
 

   
k L

k LL LNL
k NkNL NL
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q k k
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              

. (2.48) 

 

Following a similar procedure as done for the nonlinear DOFs, one can obtain the 

following equation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0 0

1

0
1 1

1
1

1
1 1

0

0

{ }
0

{ }
( )

{ }
0

{ }

0

L

NNL NL

s L

L
s NsNL NL

s L
c L

c L
c N cL NL NL

sm L

sm L
cm L

sm NsmNL NL

cm L

cm NcmNL NL

F

F f

F
q

F f
q

F
q

F fB

q
F

q
F f

F

F f



   
   
   
   
    
    
    
        

      
    
    
    
    

  
  
  
     

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

, (2.49)  

 

where  
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and 
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After solving Equation (2.46), solutions of Equation (2.48), i.e. linear DOFs, can be 

obtained by performing the matrix multiplication given in Equation (2.49). As a 

result, the receptance method leaves the equations regarding the linear DOFs out of 

the numerical solution process, hence causing a considerable decrease in the total 

number of equations to be solved for the case size of the nonlinear DOFs is 

significantly smaller than the total DOFs of the system. Even though receptance 

method decreases the number of nonlinear equations to be solved significantly 

compared to the total DOFs of the system, the resulting number of equation may still 

be very high. For such cases or for the cases where the nonlinearities are distributed 

though out the system, modal superposition approach introduced by Cigeroglu et. al 

[84] provides an alternative to the receptance method. 

 

2.6 Nonlinearity Types 

In this section the nonlinear elements that are used in this thesis are introduced and 

mathematical formulations required for the calculation of the Fourier coefficients are 

given, which are used in the HBM.  

 

2.6.1 Cubic Stiffness  

Cubic stiffness is one of the most widely used nonlinearity in nonlinear structural 

dynamics [85]. It is actually a massless spring that does not obey Hooke’s law. 

Instead, the force exerted by the spring is proportional to the cube of the 

displacement which is:  

 

3( )N cf x k x ,  (2.52) 

 

where ck  is the stiffness of the nonlinear element in N/m3. This term can take 

negative values as well as positive values. If it is negative, the nonlinear element is 



38 

 

said to have softening behavior; whereas if it is positive, the element is said to have 

hardening behavior. These phenomena are illustrated in Figure 2.4.  

 

Fourier coefficients for the nonlinear force exerted by a cubic stiffness element can 

be obtained by assuming a multi harmonic response as follows  

 

 0

1

( ) sin( ) cos( )
m

sk ck

k

x x x k x k  


   .  (2.53) 

 

Here, ( )x   represents the relative displacement between the ends of the cubic 

stiffness element. In case the cubic stiffness element is connected between the 

ground and a DOF, this relative displacement reduces to the displacement of that 

DOF.  

 

 

 

 

Figure 2.4 Cubic stiffness elements showing hardening (left) and softening (right) 

behavior  

 

 

 

Using the expressions given in Equation (2.9) the Fourier coefficients for the bias 

term and the thk  harmonic term can be obtained as:  
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The integrals given in Equation (2.54) can be calculated analytically and the resulting 

expressions can be embedded into a computer code. However if the number of 

harmonics included in the solution is large, the analytic approach requires 

considerable amount of algebraic manipulation due to the cubic term. Senjarovic and 

Fan [86] have proposed a useful formulation that can be used in these integrals. 

However, in this thesis, the integrals given in Equation (2.54) are calculated 

numerically.  

 

Finally, it should be noted that the cubic stiffness nonlinearity is an odd symmetric 

nonlinearity. If a dynamic system includes only odd symmetric nonlinearities and 

excited by an external forcing with only odd numbered harmonics, the multi 

harmonic response can be represented by a Fourier series having only the odd 

harmonics as 

 

 
1,3,5...

( ) sin( ) cos( )
m

sk ck

k

x x k x k  


  .  (2.55) 

 

In this case, bias forcing term,  0Nf , in Equation (2.54) is equal to zero and  Nskf  

and  Nckf  terms are nonzero only for the odd values of k . Therefore the bias term 

and the even numbered harmonics of the nonlinear forcing do not need to be 

considered.  
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2.6.2 Piecewise Linear Stiffness  

The relation between force and displacement for this element is described as follows:  

 

2 1 2

1

2 1 2

( )

( )

( )

N

k x k k if x

f x k x if x

k x k k if x

 

 

 

  


   
    

  (2.56) 

 

Special cases occur when 
1k  or 

2k  is zero. 
1 0k  case is known as the saturation 

nonlinearity, whereas 2 0k  case is known as the backlash nonlinearity. These 

nonlinearities can be observed around pre-loaded bearing locations and external store 

mounting structures in aircrafts [85]. Graphical representations of these 

nonlinearities are given in Figure 2.6.  

 

 

 

 

Figure 2.5 Behavior of piecewise linear stiffness nonlinearity 
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Figure 2.6 Special cases of piecewise linear stiffness [85] 

 

 

 

When using the multi harmonic HBM for nonlinear response analysis, the Fourier 

coefficients for nonlinear force exerted by a piecewise linear stiffness element can be 

determined as follows:   

 

Assuming a multi harmonic relative displacement between the ends of the piecewise 

linear stiffness nonlinearity as defined in Equation (2.53), and substituting this into 

Equation (2.56), Fourier coefficients of the nonlinear force can be obtained as   
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  (2.57) 

 

In order to evaluate these integrals, the points where the definition of the integrand 

changes, i.e. transition angles, must be located. These points correspond to the roots 

of the following equations, in the interval [0, 2π]:  
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( ) 0

( ) 0

x

x

 
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 

 
.  (2.58) 

  

When the number of harmonics included in in the solution is more than 1, solution of 

Equation (2.58) cannot be obtained analytically; hence, numerical methods should be 

used. In order to locate all the roots in the interval  0,2 , an incremental search can 

be performed. Chapra [87] presented a very useful incremental search algorithm 

together with a MATLAB® script. After the determination of the transition angles 

and their corresponding states, one can partition the integrals given in Equation 

(2.57) into a sum of sub-integrals where the roots become the integral boundaries. 

Then, each sub integral simply reduces to  
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,  (2.59) 

 

where the integrand is determined by the behavior of ( )x   in the interval 

1j j     . For example if  x      for 
1j j     , 

1jk k  and 0c  . In 

this way, every integral and therefore every Fourier coefficient can be calculated 

analytically and can be embedded inside a computer code.  

 

As for the cubic stiffness nonlinearity, the piecewise linear stiffness nonlinearity is 

odd symmetric. If a dynamic system contains only odd symmetric nonlinearities and 

an external forcing with odd harmonics only, the multi harmonic response can be 

represented by a Fourier series having only odd harmonics. In this case the Fourier 

series representation of the nonlinear force exerted by a piecewise linear stiffness 

element contains only odd harmonics. 
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2.6.3 Gap Nonlinearity 

The expression of the nonlinear force for this element is defined as: 

 

 
( )

0

g

N

k x if x
f x

if x

 



 
 


.  (2.60) 

 
 

Figure 2.7 The behavior of gap element 

 

 

This element can be used for modeling special types of clearances and cracks. When 

gk becomes too large, the element starts to show almost rigid behavior. In this case, 

the dynamic model may be used for investigating impact effects. Such systems tend 

to show very interesting and complex behavior [85].  

 

Assuming a multi harmonic relative displacement between the ends of the gap 

nonlinearity as defined in Equation (2.53), and substituting this into Equation (2.60), 

Fourier coefficients of the nonlinear force can be obtained as follows 
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As described in the previous section, in order to evaluate the integrals given in 

Equation (2.61), one needs to determine the regions where ( )x   becomes equal to δ. 

Therefore, all the roots of the following equation should be determined in the interval 

 0,2 : 

 

( ) 0x    .  (2.62) 

  

The locations of the roots can be found by following an incremental search 

procedure. After the roots are determined, the integrals given in Equation (2.61) can 

be calculated. These integrals can be evaluated more easily than the ones for a 

piecewise linear stiffness element because at the regions where ( )x   is less than δ, 

the integrals will be automatically zero. For the remaining regions, the sub-integrals 

reduce to:  
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,  (2.63) 

  

which can be evaluated analytically. Unlike the nonlinear elements discussed before, 

the gap nonlinearity is not an odd symmetric nonlinearity. Therefore if a gap element 
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exists in the system, one must include the bias term, even numbered harmonics in 

addition to the odd numbered harmonics in representation of the nonlinear forcing.  

 

2.6.4 Dry Friction 

There are numerous friction models in the literature. For the studies in this thesis, a 

1-D Coulomb friction model with constant normal load is used. The graphical 

representation of the model can be seen in Figure 2.8. 

 

 

 

 

Figure 2.8 The 1-D Dry friction model  

 

 

 

In the model, ( )u t  is the relative input motion. k  is the contact stiffness between the 

rubbing surfaces, N  is the constant normal force,   is the dry friction coefficient 

and ( )w t  is the slip motion.  

 

The force on the spring is given as:  

 

 sf k u w  .  (2.64) 

 

From Newton’s second law of motion, the force on the spring is equal to the friction 

force.  
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Details about the physics of the model are explained by Ciğeroğlu [77]. As explained 

by Ciğeroğlu, the stick state occurs whenever the input motion ( )u t  changes its 

direction. That is, it’s time derivative, ( )u t  changes its sign. Therefore, at the instant 

of this sign change, ( )u t  must become zero.  

 

0u  .  (2.65) 

 

Since the systems in consideration are vibratory systems, this direction change in 

( )u t  is bound to happen. This can be proved from a mathematical point of view by 

using the periodicity of the response and the Mean Value Theorem.  

 

As a result, the element always sticks at some time t . After sticking, the element 

may or may not begin to slip. If the force in the spring becomes equal to N , which 

is the limiting value of friction force, positive slip begins and after this point the 

friction force stays constant until the transition from positive slip to stick occurs.  

 

Therefore, 

 

 sf k u w N   ,  (2.66) 

 

is valid throughout positive slip.  

 

The same phenomenon occurs after sticking if the force in the spring becomes equal 

to N , initiating negative slip. After negative slip begins, the friction force stays 

constant until transition from negative slip to stick occurs. 

 

Therefore, the expression  

 

 sf k u w N      (2.67) 
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is valid throughout negative slip.  

   

When transition from positive slip to stick occurs, the input motion changes its 

direction from positive to negative. At the instant of transition, both Equation (2.65) 

and Equation (2.66) are satisfied. Starting from this first instant ( )w t  takes a value 

0w  and stays constant throughout the stick phase. Denoting the value of ( )u t  at the 

same instant as 0u , we can write Equation (2.66) for the start of stick as:  

 

 0 0k u w N  .  (2.68) 

 

Slip motion ( )w t  is unknown; therefore the nonlinear force expressions must not 

have ( )w t  or 0w  in them. By using Equation (2.68), we can eliminate 0w  from the 

force expression given in Equation (2.64) and obtain the force expression for this 

particular stick state which occurs after transition from positive slip as:  

 

0( )sf k u u N     (2.69) 

 

This stick state continues until negative slip starts. At the first instant of negative 

slip, both Equation (2.67) and the stick condition 0( )w t w  are satisfied. Therefore, 

at this instant Equation (2.67) becomes:  

 

 0k u w N   .  (2.70) 

 

Equating the two 0w  expressions from Equation (2.68) and Equation (2.70), one can 

obtain the condition for transition from stick to negative slip as:  

 

 0 2 0k u u N   .  (2.71) 
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By following a similar procedure, the condition for transition from stick to positive 

slip can be obtained as: 

   

 '

0 2 0k u u N   ,  (2.72) 

 

where '

0u  is the value of ( )u t  at the end of negative slip, beginning of stick phase. In 

addition, the force expression for the stick state which occurs after transition from 

negative slip to stick can be obtained as:  

 

'

0( )sf k u u N     (2.73) 

 

If the force in the spring never becomes equal to N , the element always stays in 

the stick state. For this case, there is no transition from stick to slip; therefore ( )w t  is 

always constant and the element behaves completely like a linear spring with 

stiffness k .  

 

After all, the force exerted by this nonlinear element can be expressed as: 

 

 

 

 
 

0

' '

0 0

'

0

0 0

0 2 0

( ) 0 2 0

0 2 0

( ) 0 2 0

_

n

N if u and k u u N

k u u N if u and k u u N

f N if u and k u u N

k u u N if u and k u u N

ku if no slip

 

 

 

 
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
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

    


     



 (2.74) 

 

For the evaluation of the conditions given in Equation (2.74) one needs to obtain all 

the roots of Equation (2.65), Equation (2.71) and Equation (2.72), i.e. transition 

angles, in the interval [0,2π] and order them in order to identify where stick, positive 

slip or negative slip cases are valid. If slip never occurs, i.e. no roots for Equations 

(2.71) and (2.72) are identified, the last line given in Equation (2.74) must be used.  
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The locations of the roots can be found by following an incremental search 

procedure. After the roots in the interval  0,2  are found, one can arrange the 

integrands and integral boundaries of the following integral expressions according to 

the obtained roots. 
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  (2.75) 

   

Then, analytical integrations can be performed for every value of p in order to 

calculate the Fourier coefficients for nonlinear forcing. The whole procedure can be 

embedded inside a computer code.  

  

2.6.5 Case Studies 

Three case studies will be presented in this section to exemplify the HBM, arc length 

continuation method and different types of nonlinearities.  

2.6.5.1 Case Study 1: Comparison of Time Integration and HBM 

In this case study, the solution of a simple nonlinear problem by in time integration 

and HBM is presented and the results are compared.  

 

For this study a simple system with a gap nonlinearity is used. The system and its 

parameters are given in Figure 2.9 and Table 2.1 respectively. The excitation force 

on the mass is taken as  50sinF t   N.  
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Table 2.1 Parameters for Case Study 1 

M  (kg) k  (N/m) h  (N/m)    (m) gk (N/m) 

1 100 1 5 400 

 

 

 

 

Figure 2.9 The SDOF System Used in Case Study 1 

 

 

 

The natural frequency of this system can easily be calculated as 10 rad/s. In order to 

obtain a satisfactory frequency response plot, response of the system is obtained 

between 5 and 15 rad/s.  

 

For the time domain solution, ode45 solver of MATLAB® is used. The frequency 

range of interest is divided into 200 segments. For each frequency step, time 

response of the system is calculated in ode45 for 200 seconds. It is observed that 200 

seconds is long enough for the system to reach steady state. After the solutions are 

obtained for each frequency, the steady state vibration amplitudes are computed and 

corresponding frequency values are stored in two different arrays. The frequency 

response graph is obtained by plotting these stored amplitude and frequency values 

against each other.  
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For the frequency domain solution, HBM with 10 harmonics is used, and the 

resulting nonlinear system of equations is solved with a Newton’s Method-arc length 

continuation scheme. The frequency response obtained from both methods are 

presented in Figure 2.10. 

 

 

 

 

Figure 2.10 Total Nonlinear Response Graphs Obtained from Time Domain 

Integration and HBM 

 

 

 

It can be seen from Figure 2.10 that, the periodic response assumption for the HBM 

is valid for such problems. Therefore, the method can obtain the steady state 

response for nonlinear vibration problems with a satisfactory accuracy.  

 

It can also be seen from Figure 2.10 that when multiple solutions coexist for a single 

frequency, time integration is not able to find all of them. Also, even for one degree 

of freedom simple system, it requires significant amount of computational time. For 

example, for the problem presented here, using the default error tolerance and time 
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span options of ode45, the solution time is about 3 minutes and 7 seconds. On the 

other hand, together with arc length continuation and adaptive step size, HBM is able 

to obtain the frequency response in only 35 seconds, although the response obtained 

from HBM is computed at 334 points instead of 201. Therefore, if similar number of 

points are used (334 points) time response will approximately require 4.5 to 5 

minutes. It should be noted that in order to get the complete frequency response time 

integration should be repeated in the reverse direction, i.e. high to low frequency 

sweep, which will increase the computational time of the time integration. Moreover, 

this computational time difference will increase exponentially, if the degrees of 

freedom of the system under consideration increases. Furthermore, in the unstable 

region, HBM combined with arc length continuation is able to obtain multiple 

solutions whereas time integration cannot. As stated before, if the nonlinear 

frequency response is sought, using a frequency domain method seems much more 

advantageous.  

 

2.6.5.2 Case Study 2: Application of HBM on a Nonlinear Vibration Problem 

For this sub-section, the system in consideration is a cantilever beam model, taken 

from Cigeroglu [77]. The mass and stiffness matrices of the beam are obtained via 

the Finite Element Method. The beam is modeled by four 2D beam elements and the 

resulting mass and stiffness matrices are 8x8; hence, the resulting dynamic model 

becomes an 8-DOF model.  

 

As the nonlinear elements, a dry friction damper and a gap element is added between 

the ground and the eighth DOF. The resulting system is illustrated in Figure 2.11. 

The parameters for the nonlinearities are given in Table 2.2.  
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Table 2.2 Parameters for Case Study 2 

  (m) N  (N) 
contactk  (N/m) F  (N) gk  (N/m) mL  (kg) 

3

EI

L
(N/m) 

2 3 1 1 3 1 1 

 

 

 

 

Figure 2.11 A Cantilever Beam Model with a Dry Friction Damper and Gap 

Nonlinearity Located at the Tip  

 

 

For the parameter set given, the response calculations are carried out by using 10 

harmonics. The frequency response for the eighth DOF around the first natural 

frequency is given in Figure 2.12, Figure 2.13 and Figure 2.14. The change in the 

phase angle of the first harmonic of the response throughout the frequency range of 

interest can be seen in Figure 2.15. 

 

It can be seen from the graphs that the first harmonic is sufficient to represent the 

total response in most of the frequency region of interest. In these regions, higher 

harmonics are calculated but eventually they turned out to be zero. Therefore, their 
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logarithms are undefined. Conversely, near the resonance higher harmonics increase 

in magnitude. The reason for this is the increase in response amplitude around the 

resonance region. At some point, it becomes equal to or greater than the gap. After 

that, the beam starts to hit the discrete spring. This impact excites higher harmonics, 

an expected behavior of gap nonlinearity. In addition, in the same resonance region, 

when the displacement is around 3.5 m the force stored in the contact stiffness 

becomes large enough to overcome friction and the friction element starts to slip. 

However, away from the resonance, the friction element sticks and the element 

behaves like a linear spring. In the end, one obtains a nonlinear response curve, 

which contains a shifted resonance peak, decreased in magnitude and bent to the 

right, a combination of two types of nonlinearities.  

 

 

 

 

Figure 2.12 Linear and Nonlinear Total Response Curves for 7th  DOF 
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Figure 2.13 Amplitudes of harmonics for 7th  DOF 

 

 

 

 

Figure 2.14 Amplitudes of harmonics around resonance for 7th  DOF 
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Figure 2.15 Angle Plot for the First Harmonic of 7th  DOF 

 

 

 

For the second part of this study, parameters given in Table 2.3 are used where 2N

and 2contactk  belongs to a second dry friction damper, added between the DOFs 5 and 

7. For this case, the results can be seen in Figure 2.16 and Figure 2.17.  

 

It can be seen from Figure 2.17 that since 2N  is as small as 0.2 N, slip occurs easily 

at the corresponding damper. Correspondingly, slip-stick behavior begins at 

relatively low displacement values around 3.5 rad/s and odd-numbered harmonics are 

excited. As in the previous example, impact starts at the gap element around the 

resonance and slip begins at the first damper, therefore all 10 harmonics are excited 

at the same time. As the displacement starts to decrease, effect of the gap element 

wears out. Around 4.75 rad/s the slip-stick behavior stops at the second damper and 

only the first harmonic maintains its magnitude.  
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The change in the phase angle of the first harmonic of the response throughout the 

frequency spectrum of interest can be seen in Figure 2.18. 

   

 

Table 2.3 Second Set of Parameters for Case Study 2 

  (m) N  (N) contactk  (N/m) F  (N) gk (N/m) 
2N  (N) 

2contactk  (N/m) 

2 2 1 1 3 0.2 1 

 

 

 

 

 

Figure 2.16 Total Response Curves for 7th  DOF 
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Figure 2.17 Amplitudes of harmonics for 7th  DOF 

 

 

 

 

Figure 2.18 Phase Angle Plot for the First Harmonic of 7th  DOF 
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2.6.6 Case Study 3 

Another case study involving cubic stiffness nonlinearity is presented in this section. 

The system of interest is shown in Figure 2.19 and the corresponding parameters of 

the system are given in Table 2.4.  

 

A 5-harmonic solution is performed for the given system. The frequency response 

and phase angle graphs of the first DOF is are given in Figure 2.20, Figure 2.21 .  

 

 

 

Figure 2.19 The 3-DOF System Used in Case Study 3 

 

 

Table 2.4 Parameters of the System, Case Study 3 

1 3,M M

 (kg) 

2M  

(kg) 

1 2 3 3, , ,k k k k

 (N/m) 

1 2 3 4, , ,h h h h

 (N/m) 
F (N) 

1 0.75 1000 10    30sin 30sin 2 30sin(3 )     
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Figure 2.20 Linear and Nonlinear Response Curves for the First DOF 

 

 

 

 

 

Figure 2.21 Amplitudes of Harmonics for the First DOF 
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CHAPTER 3 

 

 

3 ADAPTIVE HARMONIC BALANCE METHODS 

 

 

 

3.1  Introduction 

In Chapter 2, it is indicated that application of the classical HBM approach yields 

(2 1)n m  algebraic equations, where n  is the DOF of the system in consideration 

and m  is the number of harmonics retained in the solution. In addition, in the same 

chapter reduction methods are introduced. The purpose of these methods is to 

decrease the number of equations to be solved. But both of the reduction methods 

presented, perform this reduction without changing the number of harmonics, m . In 

fact, a further reduction can be obtained by neglecting the harmonics which do not 

contribute significantly to the total solution; therefore, the computational efficiency 

of the HBM can be enhanced. The basis of adaptive harmonic balance methods 

(AHBMs) depends on this idea. In this chapter, the AHBMs available in the field of 

structural dynamics are discussed and a new adaptive harmonic balance method is 

presented.   

 

3.2 AHBM 1: Jaumouille´, Sinou and Petitjean’s Method 

In 2010, Jaumouille´, Sinou and Petitjean [4] introduced an AHBM which is 

originally intended to be used in analyzing nonlinear bolted joint models. As 

mentioned in Chapter 1, in order to identify the harmonics that should be used, the 

method uses the concept of approximate strain energy. It is basically equal to the 

potential energy stored in the linear springs during the vibratory motion of the 

system. Potential energy stored in the springs is defined as:  

 

      
1

( ) ( )
2

T
U t q t K q t .  (3.1) 
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Using the notation followed by the authors, one can express  ( )q t , i.e. the 

displacement vector, as:  

 

            

                   

           

0

1 1

0 1 1

sin( ) cos( )

( ) sin cos sin cos

m m

sk ck

k k

T

s c sm cm

q t q q k q k T t Z

T t I I I I m I m

Z q q q q q

 

   

 

      

   

   

 

, (3.2)  

 

where I  is n n  identity matrix. Furthermore, it can be shown that:  

 

     

   
   

   
   

0

(2 1) (2 1)

2 0 0

0 01
( ) ( )

0 0

T
T

n m n m

I

I
T t T t dt L

T

I
  

 
 
  
 
 
  

 , (3.3)  

 

where T  indicates one period and superscript T indicates matrix transpose. In order 

to suppress the time dependency in Equation (3.1) one can find the mean value of the 

potential energy for one period as  

 

       
0

1 1
( ) ( )

2

T
TT

mU Z T t K T t Z dt
T

 
  

 
 . (3.4)  

 

In order to make use of Equation (3.3) inside Equation (3.4), authors introduce a new 

identity. For an n n  matrix  W  and an  2 1 1n m   vector  Y : 

 

       ( ) ( ) WW T t Y T t N Y ,  (3.5) 

 

where 

 



63 

 

     
     

     

0 0

0 0

0 0

W

W

W
N

W

 
 
 
 
 
  

.  (3.6) 

 

By using the identity given in Equation (3.5), the approximate strain energy 

expression can be reduced to a matrix multiplication :  

 

     
1

2

T

m KU Z L N Z .  (3.7) 

 

The authors also derived a variant of this formula where the approximate strain 

energy can be found from the Fourier coefficients of nonlinear DOFs only as  

 

1

1

2
T

qq qp pp pq

T

m q q q
K K K K

U Z L N Z
              

              
, (3.8)  

 

where 
qZ    is the matrix containing the Fourier coefficients of the nonlinear DOFs 

only; 
qL    is a (2 1) (2 1)q m q m    identity matrix, where q  is the number of 

nonlinear DOFs. 
1T

qq qp pp pqK K K K


                is a modified stiffness matrix that acts 

as the stiffness matrix on the nonlinear DOFs. The details about the derivation of this 

term can be found in reference [4]. It should be noted that the expression for the 

approximate strain energy given in Equation (3.8) is valid when a reduction method 

which decouples the equations of different linear and nonlinear DOFs, such as 

receptance method is used. Also, the expression is based on the assumption that there 

are no external forces acting on linear DOFs. Therefore, in case there exist many 

nonlinear DOFs and/or external forces acting on the linear DOFs, it is necessary to 

use the basic formula given in Equation (3.7).  
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The harmonic selection process of this method is relatively simple. Firstly, at every 

frequency point, the Fourier coefficients for the response are calculated with k  

harmonics. Then, at the same point, the number of harmonics is increased by 1 and 

the resulting equation set is solved one more time. This process continues until the 

relative approximate strain energy difference ratio given below becomes less than a 

certain threshold value:  

 

1k k

m m

k

m

U U

U


 
 ,  (3.9) 

   

where k

mU  is the approximate strain energy calculated from the response containing 

k  harmonics. When   becomes less than the threshold value, it means that the 

contribution from the last added harmonic is small enough. In such a case, the 

increase of harmonics is stopped and the initial guess for the next frequency step is 

computed. The starting value of k  is set to 1. The whole process is summarized in 

Figure 3.1.   

 

Since this method assigns the same number of harmonics for all DOFs, it is referred 

as a global method [5]. Also, since the method increases the number of harmonics 

one by one, it is referred as an incremental [5] method. In some cases where the 

strain energy convergence rate is not smooth, the incremental behavior of the method 

can cause the algorithm to stop before saturation occurs [4]. In addition, for the 

regions where higher harmonics gain importance, the incremental behavior requires 

the response to be computed over and over again at the same solution point. Hence, 

this can increase the computational time considerably. In addition, since the 

maximum number of harmonics to be retained is not defined in this method, the 

algorithm may end up calculating excessively many harmonics at certain solution 

points, which can be unnecessary.  
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Figure 3.1 Algorithm for the method presented by Jamouillé et. al [4] 

 

 

 

3.2.1 Case Study 1: Application of AHBM 1 on a SDOF System 

The one DOF system with a gap nonlinearity is given in Figure 3.2.  

 

 

 

 

Figure 3.2 A SDOF System with Gap Nonlinearity 
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External forcing acting on the mass is taken as  50sinF t   N. The parameters 

of the system are given in Table 3.1. The responses of the system obtained are given 

in Figure 3.3 to Figure 3.5. In Figure 3.5, the change in the number of harmonics is 

shown on the vertical axis, whereas on the horizontal axis, arc length is given. Arc 

length is basically the length of the response curve. As the numerical solution 

procedure continues, new frequency points are added to the response curve and the 

length of the curve increases. One can easily relate the number of harmonics used at 

a single point with the length of the curve up to that point and obtain a plot such as 

the one given in Figure 3.5. 

  

It can be seen from the figures that the resonance peak on the linear curve shifted to 

the right if the displacement amplitude is large enough to close the gap. Furthermore, 

a second peak formed around 6 rad/s due to the impact effect created by the gap 

nonlinearity. For the most of the nonlinear response curve, the response is 

represented by 7 harmonics. But this number increases considerably around the 

resonances.  

 

Table 3.1 Parameters for Case Study 1 

M  (kg) k  (N/m) h  (N/m)   (m) gk  (N/m) 
threshold  

1 100 1 0.4 400 10-20 
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Figure 3.3 Total Nonlinear Response and Linear Response Curves for Case Study 1, 

threshold
=10-20 

 

 

 

Figure 3.4 Amplitudes of harmonics for Case Study 1 (only the first 10 harmonics 

are shown for clarity), threshold
=10-20 



68 

 

 

Figure 3.5 Number of Harmonics Used During Solution, threshold
=10-20 

 

 

 

From the given algorithm of the method, it is expected that setting threshold  to a 

higher value would cause less harmonics to be used in the solution. This effect must 

become evident especially for systems which have a smooth increase in the 

amplitudes of higher harmonics. To see this effect, the analysis is repeated by 

increasing threshold  to 10-12. The results are given from Figure 3.6 to Figure 3.8.  It 

can be seen from these figures that the number of harmonics retained in the solution 

decreased to some amount. 

 

 

 

 



69 

 

 

Figure 3.6 Total Nonlinear Response and Linear Response Curves for Case Study 1, 

threshold
=10-12 

 

 

 

 

Figure 3.7 Amplitudes of harmonics for Case Study 1, threshold
 =10-12 
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Figure 3.8 Number of Harmonics Used During Solution, threshold
=10-12 

 

 

 

In the next step, in order to observe the rejection of more harmonics, threshold  is 

further increased to 10-6. The results are given in Figure 3.9 to Figure 3.101. It can be 

seen from Figure 3.11 that increasing the threshold value decreased the number of 

harmonics used as expected.  

  

 

 

 

Figure 3.9 Total Nonlinear Response and Linear Response Curves for Case Study 1, 

threshold
=10-6 
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Figure 3.10 Amplitudes of harmonics for Case Study 1, threshold
 =10-6 

 

 

 

 

Figure 3.11 Number of Harmonics Used During Solution for Case Study 1,  

threshold
=10-6 
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To enhance the study, the parameters of the system are modified as given in Table 

3.2. The results obtained for this modified problem are given in Figure 3.12 to Figure 

3.14.  

 

It can be seen from Figure 3.12 and Figure 3.13 that increasing the gap causes the 

system to behave like a linear system until the frequency is closer to the resonance 

frequency where the vibration amplitude becomes as large as the gap. In the original 

example, the gap is considerably small and due to the existence of the peak around 6 

rad/s this phenomenon is not observable. In addition to that, decreasing the severity 

of the nonlinearity caused the AHBM to use fewer harmonics throughout the curve. 

However, it can be seen in Figure 3.14 that around the resonance, the number of 

harmonics included in the solution increased considerably. 

 

Table 3.2 Modified Parameters for Case Study 1 

M  (kg) k  (N/m) h  (N/m)    (m) gk (N/m) 
threshold  

1 100 1 5 100 10-20 
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Figure 3.12 Linear and nonlinear total response curves for Case Study 1, modified, 

threshold
=10-20 

 

 

 

 

Figure 3.13 Amplitudes of harmonics for Case Study 1, modified, threshold
=10-20 
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Figure 3.14 Number of Harmonics Used During Solution for Case Study 1, 

modified, threshold
=10-20 

 

 

 

Similar to the previous example, increasing threshold  to 10-1 causes less harmonics to 

be retained in the solution. The results obtained for this case are given in Figure 3.15 

to Figure 3.17. 
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Figure 3.15 Linear and nonlinear total response curves for Case Study 1, modified, 

threshold
=10-1 

 

 

 

 

Figure 3.16 Amplitudes of harmonics for Case Study 1, modified, threshold
=10-1 
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Figure 3.17 Number of Harmonics Used During Solution for Case Study 1, 

modified, threshold
=10-1 

 

 

 

3.2.2 Case Study 2: Application of AHBM 1 on a MDOF System 

In this section, application of AHBM 1 on a MDOF system with two piecewise linear 

stiffness elements and under the excitation of a multi-harmonic forcing is 

demonstrated. The studied system is illustrated in Figure 3.18. Parameters of the 

system and parameters of the piecewise linear stiffness elements are given in Table 

3.3 and Table 3.4, respectively. 
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Figure 3.18 A MDOF System with piecewise linear stiffness nonlinearity 

 

 

For the first analysis, threshold  is taken as 10-20. The results around the first natural 

frequency are given in Figure 3.19 - Figure 3.26. In Figure 3.25 and Figure 3.26 the 

change in the number of harmonics used is given. Figure 3.26 shows how many 

harmonics are used at each frequency. At the locations where multiple solutions 

exist, the graph shows more than one harmonic number located at the same 

frequency. In Figure 3.25, arc length is used instead of frequency. As mentioned 

before, arc length is basically the length of the response curve and since the response 

curve gets only longer as the solution goes on, only one harmonic number 

corresponds to each arc length value. Hence, the curve given in Figure 3.25 does not 

turn back. These two types of graphs are given in the following examples of this 

chapter. 

 

In the results, it is observed from the results obtained that addition of two different 

piecewise linear stiffness elements to the first and third DOFs increased the overall 

stiffness in the system, eventually decreasing the overall vibration amplitude. Also 

the locations of the peaks are shifted due to this increase in stiffness. Due to the 

hardening behavior of the nonlinear elements shown in Figure 2.5, the response 
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graph bends to the right. It is also important to note that the 2  component in the 

excitation causes the response to have even harmonics in addition to the odd ones.  

 

In Figure 3.20, Figure 3.22 and Figure 3.24 only the first 10 harmonics are shown for 

brevity. However, it can be seen from Figure 3.25 and Figure 3.26 that the number of 

harmonics retained in the solution increases up to 35 at certain solution points. 

 

Table 3.3 Physical Parameters of the MDOF System 

1 3,M M   (kg) 2M  (kg) 
1 2 3 4, , ,k k k k  

(N/m) 

1 2 3 4, , ,h h h h  

(N/m) 
F  (N) 

1 0.75 1000 10    30sin 30sin 2   

 

 

 

Table 3.4 Parameters of the Nonlinear Elements 

   (m) 1k  (N/m) 2k  (N/m) 

Piecewise Linear 

Stiffness 1 
0.1 1000 2000 

Piecewise Linear 

Stiffness 2 
0.05 500 1000 
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Figure 3.19 Total Response of the first DOF for Case Study 2, threshold
=10-20 

 

 

 

 

Figure 3.20 Harmonics of the first DOF for Case Study 2, threshold
=10-20 
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Figure 3.21 Total Response of the second DOF for Case Study 2, threshold
=10-20 

 

 

 

 

Figure 3.22 Harmonics of the second DOF for Case Study 2, threshold
=10-20 
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Figure 3.23 Total Response of the third DOF for Case Study 2, threshold
=10-20 

 

 

 

 

 

Figure 3.24 Harmonics of the third DOF for Case Study 2, threshold
=10-20 
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Figure 3.25 Number of harmonics used for Case Study 2, threshold
=10-20 

 

 

 

Figure 3.26 Number of harmonics used at each frequency for Case Study 2, threshold

=10-20 

 

 

 

For the next analysis, the threshold value is increased to 10-2 so that the higher 

harmonics with very small effect on the total response can be eliminated. The results 

are given in Figure 3.27 to Figure 3.34. It can be seen from the results that a 3-

harmonic Fourier series representation is sufficient for obtaining a good 

approximation to the total response.  



83 

 

 

Figure 3.27 Total Response of the first DOF for Case Study 2, threshold
=10-2 

 

 

 

 

 

Figure 3.28 Harmonics of the first DOF for Case Study 2, threshold
=10-2 
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Figure 3.29 Total Response of the second DOF for Case Study 2, threshold
=10-2 

 

 

 

 

Figure 3.30 Harmonics of the second DOF for Case Study 2, threshold
=10-2 
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Figure 3.31 Total Response of the third DOF for Case Study 2, threshold
=10-2 

 

 

 

 

 

Figure 3.32 Harmonics of the third DOF for Case Study 2, threshold
=10-2 
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Figure 3.33 Number of harmonics used for Case Study 2, threshold
=10-2 

 

 

 

 

Figure 3.34 Number of harmonics used at each frequency for Case Study 2, threshold

=10-2 
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3.3 AHBM 2: Grolet and Thouverez’s Method 

In 2012, Grolet and Thouverez proposed a new AHBM [5]. Unlike the method 

described in the previous section; this method is local, that is, the number of 

harmonics is arranged seperately for each DOF and in addition, the method is not 

incremental. The number of harmonics for each DOF is not increased one by one in 

order. Instead, the spectral energies for a predetermined number of harmonics are 

determined. Then, the ones with relatively high energy are retained in the solution.  

 

3.3.1 Preliminary Definitions 

In this method, the harmonic selection process begins by assigning the maximum 

number of harmonics, m

hN , that should be included in the response. In case, m

hN  

harmonics are used for all DOFs in the system, the nonlinear equation set contains 

 2 1m

hn N   equations and unknowns. Using the notation in Chapter 2, this equation 

set can be denoted as:  

 

       , 0R x R q   .  (3.10) 

 

During the application of Grolet and Thouverez’s method, each equation in this 

equation set and therefore each unknown in the unknown vector  q  are numbered 

with the help of an index vector,    1 2
T

mm
I M  where  2 1m

m hM n N  . 

For the case where the algorithm decides to reduce the equation system and neglect 

some of the unknowns, another index vector  
r

I  is defined.  
r

I  is a subset of 

 
m

I  and it includes only the equation numbers of the retained unknowns, i.e. the 

harmonic coefficients. It helps to keep track of which equations and unknowns are 

present in the solution scheme at the current solution step. The reduced equation 

system can be denoted as:  

 

    , 0r r
R x   ,  (3.11) 
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where the subscript r  stands for reduced. In order to apply the threshold criterion 

and arrange the harmonic numbers for each DOF separately, the algorithm needs to 

isolate the Fourier coefficients of different DOFs. For this reason, following vectors 

are defined for 1 d n  :  

 

  0 1 1 m m
h h

T
d d d d d d

s c sN cN
u q q q q q 

 
  (3.12) 

  

  0 m m
r r

T
d d d d

r sN cN
u q q q 

 
,  (3.13) 

 

where  
d

u  is the Fourier coefficient vector of DOF d , including all harmonics. 

 
d

r
u  is the reduced Fourier coefficient vector of DOF d . m

r

d

sN
q  and m

r

d

cN
q  are the sine 

and cosine components of the last retained harmonic.   

 

In addition to the global index vectors described above, their local counterparts are 

defined for each DOF. For 1 d n  , the vector  
d

r
I  is defined. It contains the index 

numbers, which are taken from  
r

I  and are related to DOF d only. From here, it 

can be concluded that one can easily obtain  
d

r
u  by taking the terms with index 

numbers stored in the vector  
d

r
I  from the global unknown matrix  q . With a 

similar approach, the index vector  
d

r
J  is defined for 1 d n  which operates on 

vector  
d

u .  
d

r
u  is obtained by extracting the terms with the index numbers stored 

in  
d

r
J  from  

d
u . Finally, the row matrix  

d

r
H  is defined in order to store the 

retained harmonic numbers for each DOF.  
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In order to make the concepts described above more clear, a simple example will be 

demonstrated here. Assuming that a two DOF nonlinear system is being analyzed, no 

condensation method is used, m

hN  is equal to 4, indicating that if all harmonics are 

retained, there exists a total of 18 unknowns, 9 for each DOF including the bias 

terms. Assuming  at the thi  solution point, the  
d

r
H  row matrices, which contain the 

harmonics to be retained for each DOF, turned out to be  

 

       
1 2

0 1 3 , 0 2 4
r r

H H  ,  (3.14) 

 

where 0 indicates the bias term. In this case,  
d

r
J  index vectors, which contain the 

index numbers of Fourier coefficients to be taken from  
d

u  and stored in  
d

r
u  

vectors, would be:  

 

       
1 2

1 2 3 6 7 , 1 4 5 8 9
T T

r r
J J  . (3.15) 

 

The first DOF has 2 harmonics and a bias term. From the local coefficient vector 

 
1

u , the terms which belong to the bias term, the first harmonic and the third 

harmonic are located on the lines with indices 1; 2 and 3; 6 and 7, respectively. 

Similarly, one can find that in the vector  
2

u , terms that belong to the bias term, 

second harmonic and the fourth harmonic are located on the lines with indices 1; 4 

and 5; 8 and 9, respectively. 

 

Returning back to the global equation system, assuming that the equation system 

follows the order given in Equation (2.16) and equations that belong to DOF 1 are 

always written before DOF 2, one can find that the lines that belong to the bias term, 

first harmonic and third harmonic of DOF 1 are located on the lines with indices 1; 3 
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and 5; 11 and 13, respectively. By using a similar approach, one can find that the 

indices of DOF 2 are to be 2, 8, 10, 16 and 18. Therefore, the  
d

r
I  vectors become 

 

       
1 2

1 3 5 11 13 , 2 8 10 16 18
T T

r r
I I  . (3.16) 

 

Finally the global index vector, which is the combination of the vectors given in 

Equation (3.16) becomes 

 

   1 2 3 5 8 10 11 13 16 18
T

rI  . (3.17)  

   

3.3.2 Selection of Harmonics 

The harmonic selection process of the method is based on the tangent predictor 

presented in Section 2.4.1.  

 

Assume that the response has been computed at the solution point i . Due to the 

nature of AHBM, some harmonics are neglected and the resulting Fourier coefficient 

vector  
i

r
q  has less than mM  elements. In order to apply the selection process, it is 

assumed that the neglected harmonics at the current solution step are equal to zero. 

An 1mM   vector  
i

q  is formed by adding zeros into  
i

r
q . From this newly 

constructed coefficient vector, by using the tangent predictor, an initial guess, 
p

q , 

having m

hN  harmonics is computed for the next solution point. After that, as 

described in the previous section,  
p

q  is divided into n  sub-vectors with 2 1m

hN 

elements, each of which belonging to a different DOF. The harmonic selection is 

performed through these vectors.  
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Consider the initial guess sub-vector of DOF d ,  
d

p
u . The fraction of spectral 

energy for the 
thk  harmonic of DOF d  is defined as:  

 

   
 

2 2

sk ck

d d

p pd

k d

p

u u

u



 .  (3.18) 

 

where . denotes the Euclidean norm and 
sk

d

pu  and 
ck

d

pu  are the sine and cosine 

components of the 
thk  harmonic in  

d

p
u . With the help of the index vector  

d

r
J  and 

the harmonic vector  
d

r
H , the total spectral energy ratio of the harmonics that were 

retained at the 
thi  solution point can be calculated as: 

 

d
r

d d

r k

k H

E 


  .  (3.19) 

 

Equation (3.18) and Equation (3.19) imply that if  
d

r
H  includes all the possible 

harmonics, d

rE becomes 1. This leads to the definition of the fraction of residual 

energy:  

 

1 d

d rE   .  (3.20) 

  

During the harmonic selection procedure, d  is compared to two threshold values 

f and b  which satisfy the condition 0 1b f    . If d  turns out to be greater 

than 
f , it means that the amount of energy contained in the neglected harmonics 

becomes very large. Therefore the neglected harmonics with maximum spectral 

energy values are included one by one into  
d

r
H  until d  falls below 

f . This 
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process is named as the forward procedure. If d  turns out to be less than b  this 

means that the error committed is much smaller than the allowable error. Therefore 

the retained harmonics with the minimum spectral energy values are excluded one by 

one from d

rH  until d  becomes larger than b . This process is named as the 

backward procedure. If d  lies between two threshold values, the solution scheme 

continues with the current harmonics. This process is repeated for every DOF. In the 

end, from the newly formed  
d

r
H  matrices, the index vectors are updated for the next 

step and the numerical solution of the response for the next point begins. The whole 

procedure is illustrated in Figure 3.35. 

 

Selection of values for b  and 
f  is the major factor that effects the accuracy of the 

solution. Since the method assumes that the neglected harmonics are zero, it is 

important to assign sufficiently small values for b  and 
f . Otherwise the method 

may end up neglecting harmonics with significant importance, and thus obtaining a 

rough estimation for the response [5].  

 

It should also be noted that in the calculation of spectral energy fractions and the 

steps that followed, the bias term was not included in the formulation. Most of the 

time, the bias term turns out to be greater than higher harmonics and this can 

introduce rounding errors and neglecting of important harmonics. For convenience, it 

is useful to keep the bias term always included in  
d

r
H  and not taking it into account 

for spectral energy calculations [5].  
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Figure 3.35 The Algorithm for Grolet and Thouverez’s Method [5] 

 

 

 

3.3.3 Case Study 3: Application of AHBM 2 on a SDOF System 

The same system used in Case Study 1 and given in Figure 3.2 is used in Case Study 

3 with 3 different parameter sets. The first parameter set is given in Table 3.5.  

 

For this parameter set, the response of the system around the resonance can be found 

in Figure 3.36, Figure 3.37 and Figure 3.38. From the results it can be seen that, 

since the control parameters are chosen very small, the method calculated all 10 

harmonics throughout the frequency spectrum.   

  

Table 3.5 Parameters Set 1 for Case Study 3   

M  (kg) k  (N/m) h  (N/m)   (m) gk  (N/m) 
b  f  m

hN  

1 100 1 0.4 400 10-14 10-12 10 
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Figure 3.36 Linear and nonlinear total response curves for Case Study 3, Parameter 

Set 1 

 

 

 

Figure 3.37 Amplitudes of Harmonics for Case Study 3, Parameter Set 1 
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Figure 3.38 Number of Harmonics Used During Solution for Case Study 3, 

Parameter Set 1 

 

 

 

For the next analysis, the parameters are changed as given in Table 3.6. The results 

obtained for this case are given in Figure 3.39, Figure 3.40 and Figure 3.41. The 

results show that the number of retained harmonics is decreased for certain parts of 

the frequency spectrum. 

 

Table 3.6 Parameters for Case Study 3, Parameter Set 2 

M (kg) k  (N/m) h  (N/m)   (m) gk  (N/m) 
b  f  m

hN  

1 100 1 0.4 400 10-12 10-8 10 
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Figure 3.39 Linear and nonlinear total response curves for Case Study 3, Parameter 

Set 2 

 

 

 

Figure 3.40 Amplitudes of Harmonics for Case Study 3, Parameter Set 2 
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Figure 3.41 Number of Harmonics Used During Solution for Case Study 3, 

Parameter Set 2 

 

 

 

For the final part of the study, the parameter set is changed as given in Table 3.7. The 

results obtained for this case are given in Figure 3.42, Figure 3.43 and Figure 3.44. It 

can be seen from these results that the number of retained harmonics decreased 

without a noticeable change in the total response.  

 

 

Table 3.7 Parameter Set 3 for Case Study 3  

M  (kg) k  (N/m) h  (N/m)   (m) gk  (N/m) 
b  f  m

hN  

1 100 1 0.4 400 10-8 10-4 10 
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Figure 3.42 Linear and nonlinear total response curves for Case Study 3, Parameter 

Set 3 

 

 

 

Figure 3.43 Amplitudes of Harmonics for Case Study 3, Parameter Set 3 
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Figure 3.44 Number of Harmonics Used During Solution for Case Study 3, 

Parameter Set 3 

 

 

 

3.3.4 Case Study 4: Application of AHBM 2 on a MDOF System 

The same system described in Section 3.2.2 is used for this study. For the first case, 

control parameters are taken as given in Table 3.8. Under the effect of these 

parameters, the response graphs are given in Figure 3.45 to Figure 3.52. The results 

show that, the control parameters do not let the algorithm to drop the number of used 

harmonics under 10 around the resonances.  

 

Table 3.8 Control Parameters for Case Study 4, Parameter Set 1 

b  f  m

hN  

10-14 10-12 10 
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Figure 3.45 Total Response of the first DOF for Case Study 4, Parameter Set 1 

 

 

 

Figure 3.46 Harmonics of the first DOF for Case Study 4, Parameter Set 1 
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Figure 3.47 Total Response of the second DOF for Case Study 4, Parameter Set 1 

 

 

 

 

Figure 3.48 Harmonics of the second DOF for Case Study 4, Parameter Set 1 
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Figure 3.49 Total Response of the third DOF for Case Study 4, Parameter Set 1 

 

 

 

 

Figure 3.50 Harmonics of the third DOF for Case Study 4, Parameter Set 1 
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Figure 3.51 Number of harmonics used for Case Study 4, Parameter Set 1 

 

 

 

 

Figure 3.52 Number of harmonics used at each frequency for Case Study 4, 

Parameter Set 1 
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For the next analysis, the parameters are changed as given in Table 3.9. The results 

obtained for this case are given in Figure 3.53 to Figure 3.60. The results show that 

the number of retained harmonics is decreased significantly for certain parts of the 

frequency spectrum. 

 

Table 3.9 Control Parameters for Case Study 4, Parameter Set 2 

b  f  m

hN  

10-10 10-8 10 

 

 

 

 

 

 

Figure 3.53 Total Response of the first DOF for Case Study 4, Parameter Set 2 
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Figure 3.54 Harmonics of the first DOF for Case Study 4, Parameter Set 2 

 

 

 

 

Figure 3.55 Total Response of the second DOF for Case Study 4, Parameter Set 2 
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Figure 3.56 Harmonics of the second DOF for Case Study 4, Parameter Set 2 

 

 

 

 

 

Figure 3.57 Total Response of the third DOF for Case Study 4, Parameter Set 2 
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Figure 3.58 Harmonics of the third DOF for Case Study 4, Parameter Set 2 

 

 

 

 

 

Figure 3.59 Number of harmonics used for Case Study 4, Parameter Set 2 
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Figure 3.60 Number of harmonics used at each frequency for Case Study 4, 

Parameter Set 2 

 

 

 

3.4 AHBM 3: Yümer’s Method 

In 2010, Yümer [6] presented an AHBM, which is initially intended to be used in 

vibration analysis of bladed disks. Like the method presented by Jaumoillé et. al, it is 

a global and an incremental method. But since the threshold criterion does not 

require the computation of system response in order to decide which harmonics to be 

used, the method is still computationally economical. 

 

In order to achieve adaptiveness, the method traces the nonlinear forcing vector. At 

the end of each solution step, a test is performed with the following criterion:  

  

 0 1 1 ( 1) ( 1) m m
h h

s c sk ck s k c k sN cN
f f f f f a f f f f           , (3.21)  

 

where the subscripts 0 , s and c  indicate the bias term, sine and cosine components, 

of the nonlinear forcing, respectively. Subscript k  stands for the harmonic number, 
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m

hN  is the maximum number of harmonics allowed in the solution, a  is an accuracy 

parameter set by the user. When the test starts, k  is set to 1. Then, k  is increased one 

by one until the criterion given in Equation (3.21) is satisfied. It can be seen from the 

equation that, increasing a  also increases the accuracy of the solution, whereas the 

opposite leads to a more coarse solution. 

 

In order to evaluate the criterion given in Equation (3.21), one needs to calculate a 

forcing vector having m

hN  harmonics even when the response is represented with less 

harmonics. This can be achieved by evaluating the following integrals for 

1,2,3 m

hj N .   

 

   

   

2

0

2

0

1
, , sin( )

1
, , cos( )

Nsj N

Ncj N

f f q q j d

f f q q j d





  


  










 . (3.22) 

 

Even when the response does not contain m

hN  harmonics, these integrals are able to 

give an idea about the harmonic content required by the nonlinear elements in the 

system.  

 

As with the method presented by Jaumoillé et al. the incremental behavior of this 

method may sometimes cause the algorithm to reach saturation too early when the 

increase in the nonlinear forcing components is not smooth.   

 

3.4.1 Case Study 5: Application of AHBM 3 on a SDOF System 

The same system described in Section 3.2.1 is used for this study. For the first case, 

the control parameters are taken as given in Table 3.10. Under the effect of these 

parameters, the response graphs come out as given in figures between Figure 3.61 

and Figure 3.62. The results show that, the control parameters do not let the 
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algorithm to drop the number of used harmonics under 10 almost throughout the 

frequency range. The number of harmonics drops only at a few points.   

 

Table 3.10 Parameters for Case Study 5, Parameter Set 1 

M  (kg) k  (N/m) h  (N/m)    (m) gk  (N/m) a  
m

hN  

1 100 1 0.4 400 103 10 

  

 

 

 

 

Figure 3.61 Linear and nonlinear total response curves for Case Study 5, Parameter 

Set 1 
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Figure 3.62 Amplitudes of Harmonics for Case Study 5, Parameter Set 1 

 

 

 

 

Figure 3.63 Number of harmonics used for Case Study 5, Parameter Set 1 
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For the next analysis, the parameters are changed as given in Table 3.11 The results 

obtained for this parameter set are given in Figure 3.64 to Figure 3.66.  

 

The results show that the number of retained harmonics decreases considerably while 

no detectable change occurs in the total response. At most seven harmonics are used, 

especially around the first resonance peak (super-harmonic peak around 6 rad/s), 

which decreases to 4 around the fundamental resonance.  

 

Table 3.11 Modified Parameters for Case Study 5, Parameter Set 2 

M  (kg) k  (N/m) h  (N/m)    (m) gk  (N/m) a  
m

hN  

1 100 1 0.4 400 101 10 

 

 

 

Figure 3.64 Linear and nonlinear total response curves for Case Study 5, Parameter 

Set 2 
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Figure 3.65 Amplitudes of Harmonics for Case Study 5, Parameter Set 2 

 

 

 

Figure 3.66 Number of harmonics used for Case Study 5, Parameter Set 2 
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For the final part of the study analysis, the parameters are changed as given in Table 

3.12. The results obtained for this parameter set are given in Figure 3.67 to Figure 

3.69. For this case, the harmonics retained in the solution decrease even further as 

expected, reaching to a minimum of 2.  

 

 

 

Table 3.12 Modified parameters for Case Study 5, Parameter Set 3 

M  (kg) k  (N/m) h  (N/m)    (m) gk  (N/m) a  
m

hN  

1 100 1 0.4 400 2 10 

 

 

 

 

 

 

Figure 3.67 Linear and nonlinear total response curves for Case Study 5, Parameter 

Set 3 
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Figure 3.68 Amplitudes of Harmonics for Case Study 5, Parameter Set 3 

 

 

 

 

 

Figure 3.69 Number of harmonics used for Case Study 5, Parameter Set 3 
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3.4.2 Case Study 6: Application of AHBM 3 on a MDOF System 

The same system described in Section 3.2.2 is used for this study. In the first 

parameter set, the control parameter and the maximum number of harmonics are 

taken as 810a   and 10m

hN  . The obtained results are given in Figure 3.70 to 

Figure 3.77.  The figures indicate that the results are similar to those obtained by 

AHBM 2. The algorithm retained all the available harmonics in the solution except 

for the regions between the resonances where the system behaves almost as a 

hardened linear system.  

 

 

 

 

 

Figure 3.70 Total Response of the first DOF for Case Study 6, Parameter Set 1 
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Figure 3.71 Harmonics of the first DOF for Case Study 6, Parameter Set 1 

 

 

 

Figure 3.72 Total Response of the second DOF for Case Study 6, Parameter Set 1 
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Figure 3.73 Harmonics of the second DOF for Case Study 6, Parameter Set 1 

 

 

 

 

Figure 3.74 Response of the third DOF for Case Study 6, Parameter Set 1 
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Figure 3.75 Harmonics of the third DOF for Case Study 6, Parameter Set 1 

 

 

 

 

Figure 3.76 Number of harmonics used for Case Study 6, Parameter Set 1 
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Figure 3.77 Number of harmonics used at each frequency for Case Study 6, 

Parameter Set 1 

 

 

 

For the second part of the study, the  control parameter and the maximum number of 

harmonics are taken as 100a   and 10m

hN  , respectively. The obtained results are 

given in Figure 3.78 to Figure 3.85. The results show that for this case, the number of 

retained harmonics changed considerably, reaching up to 10m

hN   only in certain 

parts of the nonlinear frequency response curve.  
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Figure 3.78 Response of the first DOF for Case Study 6, Parameter Set 2 

 

 

 

 

Figure 3.79 Harmonics of the first DOF for Case Study 6, Parameter Set 2 
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Figure 3.80 Response of the second DOF for Case Study 6, Parameter Set 2 

 

 

 

 

 

Figure 3.81 Harmonics of the second DOF for Case Study 6, Parameter Set 2 
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Figure 3.82 Response of the third DOF for Case Study 6, Parameter Set 2 

 

 

 

 

Figure 3.83 Harmonics of the third DOF for Case Study 6, Parameter Set 2 
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Figure 3.84 Number of harmonics used for Case Study 6, Parameter Set 2 

 

 

 

 

 

 

Figure 3.85 Number of harmonics used at each frequency for Case Study 6, 

Parameter Set 2 
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3.5 AHBM 4: The Newly Proposed Method - Pseudo-Response Based 

Adaptive Harmonic Balance Method 

A new AHBM is presented in this section. This new method is actually an extension 

of AHBM 3. Although being global like AHBM 3, it is not an incremental method. 

Therefore it may be useful for the cases where the decrease in magnitude in higher 

harmonics does not follow an order. Due to its dependence of the newly introduced 

pseudo-response concept, the method is named as Pseudo-Response Based Adaptive 

Harmonic Balance Method (PRB-AHBM). 

 

Similar to Grolet and Thouverez’s Method and Yümer’s Method, the new algorithm 

requires the user to assign a maximum number of harmonics r , and a threshold value 

t  to be used in the solution. Assume that a solution for the Fourier coefficients of 

the response is calculated by using a certain solution point i . From this solution, 

using the expressions given in Equation (3.22) one can construct a new nonlinear 

forcing vector even if the response does not have r  harmonics. Then, by using the 

newly constructed nonlinear forcing vector the first criterion, given by the following 

relation is evaluated for 1 k r   and 1 d n  : 

 

2 2

,
2 2

1 1

d d

Nsk Nckd

f k
d d

Ns Nc

f f

f f






,  (3.23) 

 

where ,

d

f k  stands for the ratio of forcing magnitudes for the thk  harmonic of DOF d

, d

Nskf  and d

Nskf  stand for the sine and cosine components of the thk harmonic of DOF 

d , respectively. ,

d

f k  represents a simple magnitude comparison between the 

fundamental harmonic and higher harmonics. During the evaluation of the criterion 

given in Equation (3.23), one obtains r ,

d

f k  values for each DOF. Since the method 

is global, different numbers of harmonics for different DOFs is not required. 

However, as can be seen from the given criterion, the proposed method can be 
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readily used as a local method as well. In order to suppress the dependence on DOFs, 

the following ratio is  defined:  

 

 1 2

, , , ,max , , n

f k f k f k f k    .  (3.24) 

 

Then 
,f k  values obtained for each harmonics are compared to the threshold value 

t . Higher harmonics with 
k

f  less than t  are excluded from the solution. However, 

the bias term and the first harmonic are always included. All the remaining harmonic 

numbers are stored in a row matrix  retH . For example, when the bias term, the first 

and third harmonics are retained,    0 1 3retH  .  

 

After the evaluation of the first criterion, the excluded harmonics are removed from 

the nonlinear forcing matrix and the external forcing matrix. Treating the nonlinear 

forces as linear, i.e. calculating them by using the nonlinear response obtained at the 

previous frequency point, one can calculate a pseudo-response as follows which does 

not require any iterations. 
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, (3.25) 

 

mh  represents  
(1, )ret m

H  and the square matrix on the right hand side is the same as 

the block diagonal matrix defined in Equation (2.16) and Equation (2.17), evaluated 
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for the selected harmonics. This matrix can be replaced by the block diagonal matrix 

given in Equation (2.47) and Equation (2.44) which contains receptance matrices 

calculated for the retained harmonics. Using this pseudo-response vector given on 

the left hand side of Equation (3.25), the second criterion is evaluated for k reth H : 

 

2 2

,
2 2

1 1

k k

k

d d

sh chd

pr h
d d

s c

q q

q q






.  (3.26) 

 

Similarly, the following ratio is defined in order to have a global method:  

 

 1 2

, , , ,max , ,
k k k k

d

pr h pr h pr h pr h    . (3.27)  

 

, kpr h  values obtained for each harmonic are compared to the threshold value t .The 

harmonics with 
, kpr h  ratio smaller than t  are excluded from the solution. If more 

flexibility is required by the user, a threshold value other than t  can be defined for 

pseudo-response. By this second criterion, a further reduction on the harmonics can 

be obtained, based on a response-like reference. It should be noted that all the 

AHBMs available does not consider the response of the structure. However, structure 

itself may as well behave like a filter; hence, it may filter out the forcing at particular 

frequencies. The proposed PRB-AHBM considers this fact and performs a second 

reduction which removes unnecessary harmonics from the response calculation. 

Moreover, since pseudo-based response calculation used, the computational time 

required by the proposed method is kept at minimum. After all, the main motivation 

of the AHBMs is to decrease the computational time required by retaining the 

accuracy of the solution. The remaining harmonics are included in the numerical 

solution scheme for the current solution point.  
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In the end, a global and a non-incremental method is presented with two threshold 

criteria, which are fairly easy for a computer to evaluate. Also, compared to other 

methods, the physical meanings of the threshold criteria are simpler, so it is easy for 

the user to come up with a t  ratio and obtain the required accuracy with fewer trials. 

Since the first harmonic is generally the largest harmonic in magnitude, one can 

easily identify that t  must take a value between 0 and 1. Making t  closer to 0 

forces the algorithm to include more harmonics in the solution.  

 

3.5.1 AHBM 5: An Extension of the Newly Proposed Method 

In the nonlinear vibration response of a dynamic system, for some special cases, the 

first harmonic may not necessarily be the largest in amplitude. For these cases, 

applying PRB-AHBM as it is described in Section 3.5 can prevent the solution 

scheme from excluding some unnecessary harmonics having relatively small 

amplitudes, compared to the dominant harmonic which has the maximum amplitude. 

In this case, the computational efficiency would drop. This shortcoming can be 

overcome by making a small modification in the criteria used.  

 

Instead of using Equation (3.24) and Equation (3.26) as they are defined in Section 

3.5, one can change the definitions of  and 
, k

d

pr h  as: 

 

2 2

,

max

d d

d Nsk Nck

f k

f f

f



 ,  (3.28) 

 

where 

 

 2 2 2 2 2 2

max 1 1 2 2max d d d d d d

Ns Nc Ns Nc Nsr Ncrf f f f f f f    , (3.29) 

  

and 



129 

 

 

2 2

,

max

k k

k

d d

sh chd

pr h

q q

q



 ,  (3.30) 

 

where 

 

 2 2 2 2 2 2

max 1 1 2 2max d d d d d d

s c s c sr crq q q q q q q    . (3.31)  

 

By making these changes, it is guaranteed that the method compares the amplitudes 

of harmonics with the maximum harmonic and applies the harmonic selection criteria 

accordingly. In return, the method is more likely to exclude harmonics that do not 

make a significant contribution to the total response.  

 

3.5.2 Case Study 7: Application of AHBM 4 on a SDOF System 

The same system given in Section 3.2.1 was investigated with AHBM 4 under the 

effect of following parameters: 610t
  and 10m

hN  . The results for this parameter 

set are given in Figure 3.86 to Figure 3.89. The results indicate that the method does 

not allow the number of harmonics to decrease under 9 except for one point in this 

case. 
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Figure 3.86 Linear and nonlinear total response curves for Case Study 7, Parameter 

Set 1 

 

 

 

 

Figure 3.87 Amplitudes of Harmonics for Case Study 7, Parameter Set 1 
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Figure 3.88 Number of harmonics used at each frequency Case Study 7, Parameter 

Set 1 

 

 

 

 

Figure 3.89 Number of harmonics used for Case Study 7, Parameter Set 1 
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For the second part of the study, control parameter is changed as 210t
 . Results 

obtained with this parameter set are given in Figure 3.90 to Figure 3.93. From the 

results it can be seen that, compared to the first set of results, the retained number of 

harmonics decreased as expected. However the change in the total response is 

marginal.  

 

 

 

 

Figure 3.90 Linear and nonlinear total response curves for Case Study 7, Parameter 

Set 2 
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Figure 3.91 Amplitudes of Harmonics for Case Study 7, Parameter Set 2 

 

 

 

 

 

Figure 3.92 Number of harmonics used for Case Study 7, Parameter Set 2 
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Figure 3.93 Number of harmonics used at each frequency Case Study 7, Parameter 

Set 2 

 

 

 

3.5.3 Case Study 8: Application of AHBM 4 on a MDOF System 

The same system described in Section 3.2.2 is used for this study. For the first part of 

the study, the control  parameter is taken as 1010t
  and the maximum number of 

harmonics is taken as 10m

hN  . The results obtained are given in Figure 3.94 to 

Figure 3.101. The results show similarity with those obtained with AHBM 2 and 

AHBM 3. The algorithm retained all the available harmonics in the solution except 

for the regions where the system behaves almost linear. In Figure 3.102 and Figure 

3.103 the effect of each threshold criterion on the number of harmonics can be found. 

Since the control parameter is chosen very small, the second criterion does not have a 

visible effect on the number of harmonics. 
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Figure 3.94 Response of the first DOF for Case Study 8, Parameter Set 1 

 

 

 

 

 

 

Figure 3.95 Harmonics of the first DOF for Case Study 8, Parameter Set 1 
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Figure 3.96 Response of the second DOF for Case Study 8, Parameter Set 1 

 

 

 

 

 

Figure 3.97 Harmonics of the second DOF for Case Study 8, Parameter Set 1 
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Figure 3.98 Response of the third DOF for Case Study 8, Parameter Set 1 

 

 

 

 

 

Figure 3.99 Harmonics of the third DOF for Case Study 8, Parameter Set 1 

 



138 

 

 

Figure 3.100 Number of harmonics used for Case Study 8, Parameter Set 1 

 

 

 

 

 

 

Figure 3.101 Number of harmonics used at each frequency for Case Study 8, 

Parameter Set 1 
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Figure 3.102 The change in harmonics due to application of threshold criteria 

 

 

 

 

 

 

Figure 3.103 The change in harmonics due to application of threshold criteria at 

each frequency 
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For the second part of the study, the parameters are altered as 210t
  and 10m

hN  . 

Results for this set of parameters are given in Figure 3.104 to Figure 3.113. As 

expected, the number of retained harmonics decreased considerably for this case. The 

computational time decreased as well; whereas, there is no considerable change in 

the total response. In Figure 3.112 and Figure 3.113 the effect of each threshold 

criterion on the number of harmonics can be seen clearly. The second criterion 

proves to be effective. 

 

 

 

 

 

Figure 3.104 Response of the first DOF for Case Study 8, Parameter Set 2 
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Figure 3.105 Harmonics of the first DOF for Case Study 8, Parameter Set 2 

 

 

 

 

 

 

Figure 3.106 Response of the second DOF for Case Study 8, Parameter Set 2 
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Figure 3.107 Harmonics of the second DOF for Case Study 8, Parameter Set 2 

 

 

 

 

 

 

Figure 3.108 Response of the third DOF for Case Study 8, Parameter Set 2 
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Figure 3.109 Harmonics of the third DOF for Case Study 8, Parameter Set 2 

 

 

 

 

 

Figure 3.110 Number of harmonics used for Case Study 8, Parameter Set 2 
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Figure 3.111 Number of harmonics used at each frequency for Case Study 8, 

Parameter Set 2 

 

 

 

 

 

Figure 3.112 The change in harmonics due to application of threshold criteria 
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Figure 3.113 The change in harmonics due to application of threshold criteria at 

each frequency 

 

 

 

3.5.4 Case Study 9: Application of AHBM 5 on a MDOF System 

The aim of this case study is to demonstrate the difference between AHBM 4 and 

AHBM 5. The same system described in Section 3.2.2 is used for this study. For the 

first case, the control parameter is taken as 1010t
  and the maximum number of 

harmonics is 10m

hN  . The results are given in Figure 3.114 to Figure 3.120. The 

results indicate that, in this first part of the study, the results are not different from 

those obtained with AHBM 4. This is because the threshold parameter is chosen too 

low. 
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Figure 3.114 Response of the first DOF for Case Study 9, Parameter Set 1 

 

 

 

 

 

 

Figure 3.115 Harmonics of the first DOF for Case Study 9, Parameter Set 1 
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Figure 3.116 Response of the second DOF for Case Study 9, Parameter Set 1 

 

 

 

 

 

 

Figure 3.117 Harmonics of the second DOF for Case Study 9, Parameter Set 1 
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Figure 3.118 Response of the third DOF for Case Study 9, Parameter Set 1 

 

 

 

 

 

Figure 3.119 Harmonics of the third DOF for Case Study 9, Parameter Set 1 
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Figure 3.120 Number of harmonics used at each frequency for Case Study 9, 

Parameter Set 1 

 

 

 

For the second part of the study the threshold parameter is set to 210t
 . The 

results obtained are given in Figure 3.121 to Figure 3.127. It can be clearly seen from 

the results that, due to its algorithm AHBM 5 tends to exclude more harmonics from 

the solution scheme, eventually reducing the computational time, as expected. 

 

 

 

 

 

Figure 3.121 Response of the first DOF for Case Study 9, Parameter Set 2 
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Figure 3.122 Harmonics of the first DOF for Case Study 9, Parameter Set 2 

 

 

 

 

 

 

Figure 3.123 Response of the second DOF for Case Study 9, Parameter Set 2 
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Figure 3.124 Harmonics of the second DOF for Case Study 9, Parameter Set 2 

 

 

 

 

 

Figure 3.125 Response of the third DOF for Case Study 9, Parameter Set 2 

 



152 

 

 

Figure 3.126 Harmonics of the third DOF for Case Study 9, Parameter Set 2 

 

 

 

 

 

Figure 3.127 Number of harmonics used at each frequency for Case Study 9, 

Parameter Set 2 
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CHAPTER 4 

 

 

4 THE COMPARISON OF ADAPTIVE HARMONIC BALANCE METHODS 

 

 

 

4.1 Introduction 

In Chapter 3, existing AHBMs from literature were presented, a new AHBM is 

introduced and a variant of this method is derived. In Chapter 4, the aim is to 

compare these methods in terms of their effectiveness and efficiency. For this 

purpose, in Section 4.2 the methodology of the comparison and metrics used for 

evaluation are explained. In the following sections, two case studies, which are 

conducted in the manner described in Section 4.2 are given. Results of the case 

studies are presented and explained in detail.  

 

4.2 Methodology of the Study 

As stated before, the aim of this chapter is to compare the presented AHBMs in 

terms of accuracy of their solutions and computational time required. With the 

purpose of making a fair comparison, the methods which obtain the same order of 

accuracy using the shortest time are pointed out as the most effective ones.   

 

In the field of structural dynamics, the main concern is the magnitude of oscillations 

throughout a certain frequency spectrum. Therefore, in the case of a nonlinear 

frequency response obtained by HBM, it is natural for one to be interested in the total 

response and the contribution made to the total response by each harmonic, rather 

than the harmonics themselves. For this reason, in the methodology which will be 

described in the remaining of this section, the error in total response is used as a 

measure of solution accuracy.  

 



154 

 

In the case studies, after the discrete nonlinear dynamic system to be analyzed is 

chosen with the intention of forming an absolute reference from which the AHBMs 

are to be evaluated, a 10-harmonic classical HBM solution is performed at the first 

step. After the amplitudes of each harmonic are examined, it is decided that a 10 

harmonic solution is sufficient to express the response to an acceptable degree. 

Therefore, the total response curve obtained from this solution, i.e. with 10 

harmonics, is assumed to be correct. Then, analyses are performed for the same 

dynamic system by using the AHBMs. With the purpose of forming a data repository 

for each adaptive method, the analyses are repeated for various sets of control 

parameters. Accuracies of the total response curves obtained from AHBMs are 

evaluated by calculating how much these curves deviate from the total response 

obtained from the 10 harmonic solution, i.e. the error they make, at the chosen 

frequencies. Since it is very difficult to measure the distance between points inside 

the unstable region and also it is difficult to observe the unstable region in a real-life 

experiment, the frequency points inside that part are excluded from the error 

calculations. 

 

When comparing two different total response values, one obtained from the classical 

solution and the other from an AHBM solution, one must guarantee that these points 

correspond to the same frequency. Otherwise, the comparison loses its physical 

meaning. In order to make the frequencies correspond, the step size is taken as 

constant in the arc length continuation scheme. When the frequencies failed to 

overlap, even with the constant step size, linear interpolation is performed. To 

prevent the interpolation from making inaccurate estimations, the step size is chosen 

as a small value; hence the distance between two neighboring solution points is 

significantly decreased. After the error values are obtained for all of the chosen 

frequency points, integral error and relative error values are computed for each case. 

For computing the integral error, the trapz function of MATLAB® is used. Since the 

step size is chosen as a small value, it is considered that the number of partitions to 
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be used in the trapezoidal rule and the accuracy obtained sufficient to give an idea 

about the order of integral error.   

 

The amounts of time spent during solution are measured by the tic-toc function of 

MATLAB®. To make the comparison fair, all of the analyses are performed on the 

same Dell XPS 15-L502X laptop computer having a 2.0 GHz Intel Core i7-2630 

(quad core) processor and 4 GB of 667 MHz DDR3 RAM.  

 

4.3 Case Study 1 

In this section, the 2-DOF system, which is used in the error analysis, is presented. In 

the following sub-sections, Section 4.3.1 to Section 4.3.3, the results obtained from 

the analyses performed on this 2-DOF system are demonstrated and in Section 4.3.4, 

the results are compared with each other.  

 

The studied system is illustrated in Figure 3.18. Parameters of the system and 

parameters of the piecewise linear stiffness elements are given in Table 3.3 and 

Table 3.4, respectively. The system, parameters of which are given in Table 4.1, is 

illustrated in Figure 4.1. 

 

 

Figure 4.1 A 2-DOF system with gap nonlinearity 
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Table 4.1 Parameters for the 2-DOF System 

1M  (kg) 2M  (kg) 
1 2,k k  

(N/m) 

1 2,h h  

(N/m) 
F (N) 

1 0.75 5000 50      30sin 30sin 2 30sin 3     

 

Studying the linear part of the system, one can find the natural frequencies as 48.21 

rad/s and 119.76 rad/s. The frequency range in consideration is selected between 35 

rad/s and 65 rad/s which covers the first resonance frequency. Since a 3-harmonic 

excitation is applied to the first DOF, in the frequency response plot one can expect 

to see two super-harmonic resonances located at 39.92 rad/s and 59.88 rad/s, the 

points where 2  and 3  are equal to the second natural frequency. In addition, one 

more peak should appear at 48.21 rad/s, at the first natural frequency. 

  

Parameters of the nonlinear elements used the model are given in Table 4.2. Gap 

nonlinearity is chosen for this study, since, as it is shown in the previous chapters, it 

excites higher harmonics in certain frequency intervals, whereas outside these 

intervals, the system acts like a linear structure. Therefore the adaptive algorithms 

are forced to change the number of retained harmonics frequently.  The results 

obtained from the 10-harmonic classical solution are given in Figure 4.2 and Figure 

4.3.  

 

Table 4.2 Parameters for Nonlinear Elements 

   (m) gk (N/m) 

Gap 1 0.05 500 

Gap 2 0.1 500 
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Figure 4.2 Total Response of the First DOF 

 

 

 

 

Figure 4.3 Amplitudes of harmonics for the first DOF 

 

 

 

For the error analysis, the frequency response curve is studied in 3 parts, as shown in 

Figure 4.4. As explained in the previous section, the unstable region is excluded from 

the error analysis.  

 

For comparison, the following parameters are used:  
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1. Maximum error around the first peak (Region 1) 

2. Maximum error around the primary resonance (Region 2) 

3. Maximum error around the third peak (Region 3) 

4. Maximum relative error around primary resonance (Region 2) 

5. Integral error (all regions combined) 

 

 

 

 

 

Figure 4.4 Regions defined for error analysis 

 

 

 

4.3.1 Results Obtained by AHBM 1: Jaumouille´, Sinou and Petitjean’s 

Method  

As explained in Chapter 3, this method uses a threshold value,  , to adjust the 

number of harmonics retained. Due to its definition,   must be greater than 0 and 

less than 1. Making   smaller forces the algorithm to retain more harmonics.  

 

For this study, analyses are carried out for   values ranging between 10-2 and 10-30. 

The resulting maximum absolute error, maximum relative error, integral error values 
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and amounts of time spent for computation are given in Table 4.3, Table 4.4 and 

Table 4.5. The percentages of reduction obtained in computational time with respect 

to the 10-harmonic classical HBM solution are given in Table 4.6.   

 

Table 4.3 Maximum Absolute Error Values for AHBM 1   

  Time (sec) Max. Err 1 Max. Err  2 Max. Err 3 

1.00E-02 654.3 1.45E-04 1.21E-04 3.80E-05 

1.00E-04 776.6 1.45E-04 1.21E-04 3.69E-05 

1.00E-06 976.1 1.13E-04 7.71E-05 3.50E-05 

1.00E-08 1293.9 1.12E-04 7.71E-05 3.37E-05 

1.00E-10 1934.8 1.12E-04 7.71E-05 3.37E-05 

1.00E-12 2228.0 1.12E-04 7.71E-05 3.37E-05 

1.00E-14 2569.6 1.12E-04 7.71E-05 3.37E-05 

1.00E-16 2894.4 1.12E-04 7.71E-05 3.37E-05 

1.00E-20 3061.5 1.12E-04 7.71E-05 3.37E-05 

1.00E-25 3082.2 1.12E-04 6.73E-05 3.07E-05 

1.00E-30 3069.6 1.12E-04 6.73E-05 3.07E-05 

 

Table 4.4 Maximum Relative Error Values for AHBM 1   

  Time (sec) 
Max. Err 1 

(Rel) 

Max. Err 2 

(Rel) 

Max. Err 3 

(Rel) 

1.00E-02 654.3 1.192E-03 3.02E-04 3.02E-04 

1.00E-04 776.6 1.192E-03 3.02E-04 2.77E-04 

1.00E-06 976.1 9.26E-04 2.64E-04 2.67E-04 

1.00E-08 1293.9 9.26E-04 2.64E-04 2.67E-04 

1.00E-10 1934.8 9.26E-04 2.64E-04 2.67E-04 

1.00E-12 2228.0 9.26E-04 2.64E-04 2.67E-04 

1.00E-14 2569.6 9.26E-04 2.64E-04 2.67E-04 

1.00E-16 2894.4 9.26E-04 2.64E-04 2.67E-04 

1.00E-20 3061.5 9.26E-04 2.64E-04 2.67E-04 

1.00E-25 3082.2 9.28E-04 2.65E-04 2.81E-04 

1.00E-30 3069.6 9.28E-04 2.65E-04 2.81E-04 
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Table 4.5 Integral Error Values for AHBM 1   

  Time (sec) 
Total Integral 

Error 

1.00E-02 654.3 2.14E-04 

1.00E-04 776.6 2.04E-04 

1.00E-06 976.1 1.45E-04 

1.00E-08 1293.9 1.43E-04 

1.00E-10 1934.8 1.43E-04 

1.00E-12 2228 1.43E-04 

1.00E-14 2569.6 1.43E-04 

1.00E-16 2894.4 1.43E-04 

1.00E-20 3061.5 1.43E-04 

1.00E-25 3082.2 1.40E-04 

1.00E-30 3069.6 1.40E-04 

 

Table 4.6 Reductions in computational time obtained by AHBM 1  

  
Reduction 

in Time (%) 

1.00E-02 84.3 

1.00E-04 81.4 

1.00E-06 76.6 

1.00E-08 69.0 

1.00E-10 53.7 

1.00E-12 46.6 

1.00E-14 38.5 

1.00E-16 30.7 

1.00E-20 26.7 

1.00E-25 26.2 

1.00E-30 26.5 

 

It can be seen from the results that, as the control parameter gets smaller, the solution 

time increases considerably. However there is no considerable change in the error. 

Normally, it is expected that, lowering the control parameter would cause more 

harmonics to be retained, therefore increase the accuracy. The reasons for this 

unusual behavior are explained in the remaining of this section. 
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In Figure 4.5 and Figure 4.6, absolute error and retained harmonics plots are given 

for the cases where ε is taken as 10-8 and 10-20.  

 

 

 

 

Figure 4.5 Number of Harmonics used by AHBM 1, Case Study 1 Selected Cases 

 

 

 

Figure 4.6 Error Plots for AHBM 1, Case Study 1 Selected Cases 
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From Figure 4.5 , it can be seen that changing   causes a significant change in the 

number of harmonics only in the neighborhood of the resonances. In other regions, 

the numbers of retained harmonics are close. Also in Figure 4.5 near 40 rad/s one can 

see that the algorithm increases the number of harmonics first. Then a drop occurs 

until the number of harmonics starts to increase again. The same phenomenon can 

also be spotted around other resonances. When the drop occurs, the error increases 

rapidly and reaches to a maximum. Since the algorithm forms this drop for every 

value of  , the maximum error values do not change significantly. For the case 

where ε=10-20, the number of harmonics reach up to 50 at 3 points  however, as 

shown in Figure 4.6, since this number is unnecessarily high for the current case 

study, it does not make a very large impact on the accuracy. 

 

In Table 4.3, Table 4.4 and Table 4.5, a small increase in the error values can be 

spotted for higher values of  . The reason for this can be seen in Figure 4.7 and 

Figure 4.8. As   decreases, the algorithm changes the number of harmonics more 

rapidly. This causes the error to drop faster after making a peak. Also, another drop 

in the error occurs in a small region between 45 rad/s and 50 rad/s. However, these 

differences hardly make a noticeable difference as   gets smaller than 10-6. 
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Figure 4.7 Number of Retained Harmonics for AHBM 1, Case Study 1 

 

 

 

Figure 4.8 Error Plots for AHBM 1, Case Study 1 Selected Cases 
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4.3.2 Results Obtained By AHBM 2: Grolet and Thouverez’s Method 

As explained in Chapter 3, this method uses two threshold values, 
f  and b , to 

adjust the number of harmonics retained. Due to their definitions, 
f  must be 

smaller than b  and both must lie in between 0 and 1. Choosing 
f  and b  smaller 

and close to each other forces the algorithm to include more harmonics in the 

solution. To prevent the algorithm from using too many harmonics a maximum 

number of harmonics must be defined. For this study, it is selected as 10.  

 

In this study, analyses are carried out with 
f  values ranging between 10-20 and 10-9, 

b  values ranging between 10-15 and 10-2. Values lower than 10-20 and 10-15 are not 

be included in the study, since they resulted in numerical instability. The resulting 

maximum absolute error, maximum relative error, integral error values and amounts 

of time spent for computation can be seen in Table 4.7, Table 4.8 and Table 4.9. The 

percentages of reduction obtained in computational time with respect to the 10-

harmonic classical HBM solution are given in Table 4.10.    

 

It can be seen from the results that error values change significantly around the 

primary resonance. However, around super-harmonic resonances, i.e. region 1 and 

region 3, there is no significant difference. The algorithm uses similar number of 

harmonics in these parts of the response curve. 

 

Table 4.7 Maximum Absolute Error Values for AHBM 2   

f  
b  Time (sec) Max. Err 1 Max. Err 2 Max. Err 3 

1.00E-20 1.00E-15 3187.5 2.11E-03 4E-05 2.26E-03 

1.00E-20 1.00E-12 2811.5 2.11E-03 3.9E-05 2.33E-03 

1.00E-20 1.00E-10 2350.0 2.11E-03 7.3E-05 2.33E-03 

1.00E-20 1.00E-08 2326.1 2.14E-03 5.1E-04 2.47E-03 

1.00E-20 1.00E-06 2086.0 2.14E-03 8.5E-04 2.5E-03 

1.00E-18 1.00E-15 3006.9 2.11E-03 4E-05 2.26E-03 
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Table 4.7 (continued) Maximum Absolute Error Values for AHBM 2 

f  
b  Time (sec) Max. Err 1 Max. Err 2 Max. Err 3 

1.00E-18 1.00E-12 2827.2 2.11E-03 3.9E-05 2.33E-03 

1.00E-18 1.00E-10 2366.5 2.11E-03 7.3E-05 2.23E-03 

1.00E-18 1.00E-08 2319.2 2.11E-03 5.1E-04 2.47E-03 

1.00E-18 1.00E-06 2251.3 2.14E-03 5.1E-04 2.47E-03 

1.00E-15 1.00E-12 2937.3 2.09E-03 4E-05 1.8E-03 

1.00E-15 1.00E-10 2309.2 2.09E-03 7.1E-05 1.82E-03 

1.00E-15 1.00E-08 2128.4 2.14E-03 5.1E-04 2.47E-03 

1.00E-15 1.00E-06 2092.7 2.14E-03 5.1E-04 2.47E-03 

1.00E-15 1.00E-02 2061.7 2.14E-03 5.1E-04 2.47E-03 

1.00E-12 1.00E-10 2164.0 2.09E-03 9.8E-05 1.65E-03 

1.00E-12 1.00E-09 1875.2 2.09E-03 1.9E-04 2.5E-03 

1.00E-12 1.00E-08 1776.8 2.14E-03 2.4E-04 2.47E-03 

1.00E-12 1.00E-06 1690.0. 2.14E-03 2.4E-04 2.47E-03 

1.00E-10 1.00E-06 1384.8 2.14E-03 1.953E-02 8.54E-03 

1.00E-09 1.00E-02 1353.0 2.14E-03 1.953E-02 1.89E-02 

 

Table 4.8 Maximum Relative Error Values for AHBM 2   

f  
b  Time (sec) 

Max. Err 1 

(Rel) 

Max. Err 2 

(Rel) 

Max. Err 3 

(Rel) 

1.00E-20 1.00E-15 3187.5 1.56E-01 8.12E-04 5.19E-02 

1.00E-20 1.00E-12 2811.5 1.56E-01 7.88E-04 5.21E-02 

1.00E-20 1.00E-10 2350.0 1.56E-01 8.13E-04 5.39E-02 

1.00E-20 1.00E-08 2326.1 1.59E-01 6.50E-03 5.85E-02 

1.00E-20 1.00E-06 2086.0 1.59E-01 8.00E-03 5.85E-02 

1.00E-18 1.00E-15 3006.9 1.56E-01 8.12E-04 5.19E-02 

1.00E-18 1.00E-12 2827.2 1.56E-01 7.88E-04 5.21E-02 

1.00E-18 1.00E-10 2366.5 1.56E-01 8.13E-04 5.39E-02 

1.00E-18 1.00E-08 2319.2 1.59E-01 6.50E-03 5.85E-02 

1.00E-18 1.00E-06 2251.3 1.59E-01 6.50E-03 5.85E-02 

1.00E-15 1.00E-12 2937.3 1.55E-01 7.94E-04 3.72E-02 

1.00E-15 1.00E-10 2309.2 1.55E-01 7.94E-04 4.07E-02 
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Table 4.8 (continued) Maximum Relative Error Values for AHBM 2 

f  
b  Time (sec) 

Max. Err 1 

(Rel) 

Max. Err 2 

(Rel) 

Max. Err 3 

(Rel) 

1.00E-15 1.00E-08 2128.4 1.59E-01 6.50E-03 5.85E-02 

1.00E-15 1.00E-06 2092.7 1.59E-01 6.50E-03 5.85E-02 

1.00E-15 1.00E-02 2061.7 1.59E-01 6.50E-03 5.85E-02 

1.00E-12 1.00E-10 2164.0 1.55E-01 1.38E-03 4.26E-02 

1.00E-12 1.00E-09 1875.2 1.55E-01 1.61E-03 5.77E-02 

1.00E-12 1.00E-08 1776.8 1.59E-01 3.00E-03 5.85E-02 

1.00E-12 1.00E-06 1690.0 1.59E-01 3.00E-03 5.85E-02 

1.00E-10 1.00E-06 1384.8 1.59E-01 4.45E-02 4.10E-01 

1.00E-09 1.00E-02 1353.0 1.59E-01 5.15E-02 6.85E-01 

 

Table 4.9 Integral Error Values for AHBM 2   

f  
b  Time (sec) 

Total Integral 

Error 

1.00E-20 1.00E-15 3187.5 0.00634 

1.00E-20 1.00E-12 2811.5 0.00644 

1.00E-20 1.00E-10 2350.0 0.00651 

1.00E-20 1.00E-08 2326.1 0.01432 

1.00E-20 1.00E-06 2086.0 0.01745 

1.00E-18 1.00E-15 3006.9 0.00634 

1.00E-18 1.00E-12 2827.2 0.00644 

1.00E-18 1.00E-10 2366.5 0.00651 

1.00E-18 1.00E-08 2319.2 0.01432 

1.00E-18 1.00E-06 2251.3 0.01676 

1.00E-15 1.00E-12 2937.3 0.00773 

1.00E-15 1.00E-10 2309.2 0.00788 

1.00E-15 1.00E-08 2128.4 0.01458 

1.00E-15 1.00E-06 2092.7 0.01676 

1.00E-15 1.00E-02 2061.7 0.01677 

1.00E-12 1.00E-10 2164.0 0.00789 

1.00E-12 1.00E-09 1875.2 0.01057 

1.00E-12 1.00E-08 1776.8 0.0146 

1.00E-12 1.00E-06 1690.0 0.01678 

1.00E-10 1.00E-06 1384.8 0.06979 

1.00E-09 1.00E-02 1353.0 0.09511 
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Table 4.10 Reductions in computational time obtained by AHBM 2 

f  
b  

Reduction 

in Time 

(%) 

1.00E-20 1.00E-15 23.7 

1.00E-20 1.00E-12 32.7 

1.00E-20 1.00E-10 43.7 

1.00E-20 1.00E-08 44.3 

1.00E-20 1.00E-06 50.0 

1.00E-18 1.00E-15 28.0 

1.00E-18 1.00E-12 32.3 

1.00E-18 1.00E-10 43.3 

1.00E-18 1.00E-08 44.5 

1.00E-18 1.00E-06 46.1 

1.00E-15 1.00E-12 29.7 

1.00E-15 1.00E-10 44.7 

1.00E-15 1.00E-08 49.0 

1.00E-15 1.00E-06 49.9 

1.00E-15 1.00E-02 50.6 

1.00E-12 1.00E-10 48.2 

1.00E-12 1.00E-09 55.1 

1.00E-12 1.00E-08 57.4 

1.00E-12 1.00E-06 59.5 

1.00E-10 1.00E-06 66.8 

1.00E-09 1.00E-02 67.6 

 

4.3.2.1 Results Obtained by AHBM 3: Yümer’s Method 

As explained in Chapter 3, this method uses a threshold ratio, a , to adjust the 

number of harmonics retained. Due its definition, a  must be chosen greater than 1. 

Choosing the parameter a  larger, forces the algorithm to include more harmonics in 

the solution. To prevent the algorithm from using too many harmonics, a maximum 

number of harmonics is defined, which is chosen as 10, for this study. The results are 

given in Table 4.11, Table 4.12 and Table 4.13. The percentages of reduction 

obtained in computational time with respect to the 10-harmonic classical HBM 

solution are given in Table 4.14. 
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Table 4.11 Maximum Absolute Error Values for AHBM 3   

a  Time (sec) Max. Err1 Max. Err 2 Max. Err 3 

2 233.5 1.30E-01 1.32E-02 1.31E-01 

5 291.6 1.30E-01 1.32E-02 1.31E-01 

10 335.1 1.30E-01 1.32E-02 1.31E-01 

20 431.5 1.30E-01 1.32E-02 1.31E-01 

30 456.6 1.30E-01 1.32E-02 1.31E-01 

40 521.6 1.30E-01 1.32E-02 1.31E-01 

50 519.4 1.30E-01 1.32E-02 1.31E-01 

60 540.3 1.30E-01 1.32E-02 1.31E-01 

70 576.0 1.30E-01 1.32E-02 1.31E-01 

80 612.2 1.30E-01 1.32E-02 1.31E-01 

90 607.7 1.30E-01 1.32E-02 1.31E-01 

100 614.7 1.30E-01 1.32E-02 1.31E-01 

200 616.2 1.30E-01 1.32E-02 1.31E-01 

400 645.2 1.30E-01 1.32E-02 1.31E-01 

600 650.2 1.30E-01 1.32E-02 1.31E-01 

800 630.2 1.30E-01 1.32E-02 1.31E-01 

1000 685.8 1.30E-01 1.32E-02 1.31E-01 

2000 681.6 1.30E-01 1.32E-02 1.31E-01 

10000 688.6 1.30E-01 1.32E-02 1.31E-01 

100000 674.8 1.30E-01 1.32E-02 1.31E-01 

1000000 627.5 1.30E-01 1.32E-02 1.31E-01 

 

Table 4.12 Maximum Relative Error Values for AHBM 3   

a  
Time 

(sec) 

Max. Err 1 

(Rel) 

Max. Err 2 

(Rel) 

Max. Err 3 

(Rel) 

2 233.5 0.8871064 0.38671 0.95172 

5 291.6 0.8871064 0.38671 0.95172 

10 335.1 0.8871064 0.38671 0.95172 

20 431.5 0.8871064 0.38671 0.95172 

30 456.6 0.8871064 0.38671 0.95172 

40 521.6 0.8871064 0.38671 0.95172 

50 519.4 0.8871064 0.38671 0.95172 

60 540.3 0.8871064 0.38671 0.95172 

70 576.0 0.8871064 0.38671 0.95172 

80 612.2 0.8871064 0.38671 0.95172 
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Table 4.12 (continued) Maximum Relative Error Values for AHBM 3 

a  
Time 

(sec) 

Max. Err 1 

(Rel) 

Max. Err 2 

(Rel) 

Max. Err 3 

(Rel) 

90 607.7 0.8871064 0.38671 0.95172 

100 614.7 0.8871064 0.38671 0.95172 

200 616.2 0.8871064 0.38671 0.95172 

400 645.2 0.8871064 0.38671 0.95172 

600 650.2 0.8871064 0.38671 0.95172 

800 630.2 0.8871064 0.38671 0.95172 

1000 685.8 0.8871064 0.38671 0.95172 

2000 681.6 0.8871064 0.38671 0.95172 

10000 688.6 0.8871064 0.38671 0.95172 

100000 674.8 0.8871064 0.38671 0.95172 

1000000 627.5 0.8871064 0.38671 0.95172 

 

Table 4.13 Integral Error Values for AHBM 3   

a  
Time 

(sec) 

Total Integral 

Error 

2 233.5 0.469949 

5 291.6 0.465767 

10 335.1 0.464304 

20 431.5 0.464199 

30 456.6 0.464197 

40 521.6 0.464191 

50 519.4 0.464191 

60 540.3 0.46419 

70 576.0 0.464189 

80 612.2 0.464187 

90 607.7 0.464184 

100 614.7 0.464304 

200 616.2 0.464183 

400 645.2 0.464126 

600 650.2 0.464126 

800 630.2 0.464125 

1000 685.8 0.464125 

2000 681.6 0.464125 

10000 688.6 0.464125 

100000 674.8 0.464125 

1000000 627.5 0.464125 
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Table 4.14 Reductions in computational time obtained by AHBM 3 

a  

Reduction 

in Time 

(%) 

2 94.4 

5 93.0 

10 92.0 

20 89.7 

30 89.1 

40 87.5 

50 87.6 

60 87.1 

70 86.2 

80 85.3 

90 85.4 

100 85.3 

200 85.2 

400 84.5 

600 84.4 

800 84.9 

1000 83.6 

2000 83.7 

10000 83.5 

100000 83.8 

1000000 85.0 

 

 

The results given in Table 4.11, Table 4.12 and Table 4.13 indicate that the 

computational times are relatively low, as desired. However the error values are 

significantly high and they tend to stay constant, although the control parameter 

changes.  

 

The reasons for such results are investigated and it is observed that the algorithm 

failed to increase the harmonics used near the secondary (super-harmonic) 

resonances located at 39.92 and 59.88 rad/s. Therefore, the accuracy around those 

regions is poor, although it is quite high near the primary resonance. However, since 

region 2 starts from 42 rad/s, the error values belonging to region 2 turn out to be 
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high as well. Another important point is that, as the value of a  increases, the 

algorithm increases the number of retained harmonics around the primary resonance 

only. Around the secondary resonances, a single harmonic representation is used and 

the same amount of error is introduced, regardless of parameter a . This phenomenon 

is illustrated in the overlapping response and absolute error curves shown in Figure 

4.9 and Figure 4.10.  

 

 

 

Figure 4.9 Total Response Plots for AHBM 3, Case Study 1 Selected Cases 

 

 

 

Figure 4.10 Error Plots for AHBM 3, Case Study 1 Selected Cases 
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4.3.3 Results Obtained by AHBM 4: Forcing Based Adaptive Harmonic 

Balance Method (FB-AHBM) 

Since Yümer’s Method generated error values that are very high, a modified version 

of Yümer’s Method is studied. The main idea of the modification is to make the 

algorithm always retain the harmonics of external forcing inside the response 

representation, so that when the external forcing contains more than one harmonic 

component, causing super-harmonic resonances to occur in the frequency response, 

high accuracy can be achieved. The modification naturally increases the 

computational time, however since the computational time employed by Yümer’s 

Method is very low, a reasonable increase is tolerable. The modified method is 

named as Forcing Based Adaptive Harmonic Balance Method (FB-AHBM).  

 

The results obtained by FB-AHBM are summarized in Table 4.15, Table 4.16 and 

Table 4.17. The data presented in the tables clearly show that the modified method 

has much more accuracy at the expense of an acceptable increase in the 

computational time. The percentages of reduction obtained in computational time 

with respect to the 10-harmonic classical HBM solution are given in Table 4.18. 

 

Table 4.15 Maximum Absolute Error Values for AHBM 4   

a  
Time 

(sec) 
Max. Err 1 Max. Err 2 Max. Err 3  

2 510.09 1.10E-04 7.74E-04 3.39E-05 

5 591.4 4.79E-05 7.74E-04 3.30E-05 

10 673.3 3.54E-05 7.74E-04 5.63E-05 

20 798.6 2.76E-07 6.48E-05 3.89E-05 

30 872.2 2.76E-07 6.48E-05 3.96E-06 

40 907.3 2.76E-07 8.69E-06 2.80E-06 

50 940.0 2.76E-07 8.69E-06 2.61E-06 

60 949 2.76E-07 8.69E-06 1.24E-06 

70 973.6 2.76E-07 8.72E-06 1.03E-06 

80 992.6 2.76E-07 8.72E-06 8.88E-07 

90 1011.6 2.76E-07 8.71E-06 8.47E-07 

100 1053.5 2.76E-07 3.29E-06 8.43E-07 



173 

 

Table 4.15 (continued) Maximum Absolute Error Values for AHBM 4 

a  
Time 

(sec) 
Max. Err 1 Max. Err 2 Max. Err 3  

200 1068.5 2.76E-07 6.41E-07 8.27E-07 

300 1069.3 2.76E-07 4.50E-07 8.31E-07 

400 1097.3 2.76E-07 4.07E-07 8.31E-07 

500 1101.8 2.76E-07 4.08E-07 8.31E-07 

600 1093.5 2.76E-07 4.07E-07 8.31E-07 

700 1096.2 2.76E-07 4.08E-07 8.31E-07 

800 1110.6 2.76E-07 4.07E-07 8.31E-07 

1000 1106.6 2.76E-07 4.07E-07 8.31E-07 

2000 1123.2 2.76E-07 4.07E-07 8.31E-07 

10000 1124.5 2.76E-07 4.07E-07 8.31E-07 

100000 1119.2 2.76E-07 4.07E-07 8.31E-07 

1000000 1131.0 2.76E-07 4.07E-07 8.31E-07 

 

Table 4.16 Maximum Relative Error Values for AHBM 4   

a  Time (sec) 
Max. Err 1 

(Rel) 

Max. Err 2 

(Rel) 

Max. Err 3 

(Rel) 

2 510.9 9.27E-04 1.93E-03 3.22E-04 

5 591.4 3.92E-04 1.93E-03 2.75E-04 

10 673.3 2.71E-04 1.93E-03 7.74E-06 

20 798.6 5.41E-06 1.61E-04 5.34E-06 

30 872.2 5.41E-06 1.62E-04 3.11E-05 

40 907.3 5.41E-06 2.06E-05 2.42E-05 

50 940.0 5.41E-06 2.06E-05 2.30E-05 

60 949.0 5.41E-06 2.06E-05 1.24E-05 

70 973.6 5.41E-06 2.10E-05 1.05E-05 

80 992.6 5.41E-06 2.10E-05 9.24E-06 

90 1011.6 5.41E-06 2.09E-05 8.59E-06 

100 1053.5 5.41E-06 1.35E-05 7.93E-06 

200 1068.5 5.41E-06 1.60E-06 6.02E-06 

300 1069.3 5.41E-06 1.11E-06 6.05E-06 

400 1097.3 5.41E-06 1.02E-06 6.05E-06 

500 1101.8 5.41E-06 1.02E-06 6.05E-06 

600 1093.5 5.41E-06 1.02E-06 6.05E-06 

700 1096.2 5.41E-06 1.02E-06 6.05E-06 

800 1110.6 5.41E-06 1.02E-06 6.05E-06 

1000 1106.6 5.41E-06 1.02E-06 6.05E-06 
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Table 4.16 (continued) Maximum Relative Error Values for AHBM 4 

a  Time (sec) 
Max. Err 1 

(Rel) 

Max. Err 2 

(Rel) 

Max. Err 3 

(Rel) 

2000 1123.2 5.41E-06 1.02E-06 6.05E-06 

10000 1124.5 5.41E-06 1.02E-06 6.05E-06 

100000 1119.2 5.41E-06 1.02E-06 6.05E-06 

1000000 1131.0 5.41E-06 1.02E-06 6.05E-06 

 

 

Table 4.17 Integral Error Values for AHBM 4   

a  Time (sec) 
Total Integral 

Error 

2 510.9 2.01E-04 

5 591.4 1.58E-04 

10 673.3 1.27E-04 

20 798.6 2.03E-05 

30 872.2 1.62E-05 

40 907.3 9.86E-06 

50 940.0 9.22E-06 

60 949.0 8.16E-06 

70 973.6 6.91E-06 

80 992.6 5.09E-06 

90 1011.6 2.07E-06 

100 1053.5 9.62E-07 

200 1068.5 2.63E-07 

300 1069.3 1.87E-07 

400 1097.3 1.67E-07 

500 1101.8 1.65E-07 

600 1093.5 1.65E-07 

700 1096.2 1.65E-07 

800 1110.6 1.65E-07 

1000 1106.6 1.64E-07 

2000 1123.2 1.65E-07 

10000 1124.5 1.64E-07 

100000 1119.2 1.64E-07 

1000000 1131.0 1.64E-07 
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Table 4.18 Reductions in computational time obtained by AHBM 4 

a  

Reduction 

in Time 

(%) 

2 87.8 

5 85.8 

10 83.9 

20 80.9 

30 79.1 

40 78.3 

50 77.5 

60 77.3 

70 76.7 

80 76.2 

90 75.8 

100 74.8 

200 74.4 

300 74.4 

400 73.7 

500 73.6 

600 73.8 

700 73.7 

800 73.4 

1000 73.5 

2000 73.1 

10000 73.1 

100000 73.2 

1000000 72.9 

 

4.3.4 Results Obtained by AHBM 5: Pseudo-Response Based Adaptive 

Harmonic Balance Method (PRB-AHBM) 

As explained in Section 3.5, this method uses a threshold ratio, t , to adjust the 

number of harmonics retained. Due its definition, t  must be chosen between 0 and 

1. Choosing the parameter t  smaller forces the algorithm to include more harmonics 

in the response representation. To prevent the algorithm from using too many 

harmonics, a maximum number of harmonics is defined, which is selected as 10. At 

this part of the study the first version of this method, presented in Section 3.5 is used, 
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i.e. harmonic selection based on the comparison to the first harmonic. Results are 

given in Table 4.19, Table 4.20 and Table 4.21. The percentages of reduction 

obtained in computational time with respect to the 10-harmonic classical HBM 

solution are given in Table 4.22.  

 

Table 4.19 Maximum Absolute Error Values for AHBM 5   

t  
Time 

(sec) 
Max. Err 1 Max. Err 2 Max. Err 3 

5.00E-02 403.6 1.41E-04 1.95E-02 2.92E-03 

2.00E-02 407.9 1.41E-04 1.95E-02 8.60E-05 

1.00E-02 447.8 1.41E-04 5.649E-03 5.05E-05 

5.00E-03 456.2 1.06E-04 7.74E-04 3.38E-05 

1.00E-03 505.7 2.68E-05 7.74E-04 1.38E-05 

5.00E-04 545.0 1.32E-05 7.74E-04 1.38E-05 

1.00E-04 713.2 2.64E-06 6.48E-05 5.96E-06 

5.00E-05 793.0 1.68E-06 1.62E-05 3.30E-06 

1.00E-05 1028.7 2.76E-07 2.14E-06 8.53E-07 

5.00E-06 1066.5 2.76E-07 4.16E-07 8.47E-07 

1.00E-06 1041.6 2.76E-07 4.07E-07 8.31E-07 

5.00E-07 1080.5 2.76E-07 4.07E-07 8.31E-07 

1.00E-10 1033.0 2.76E-07 4.07E-07 8.31E-07 

 

Table 4.20 Maximum Relative Error Values for AHBM 5 

t  
Time 

(sec) 

Max. Err 1 

(Rel) 

Max. Err 2 

(Rel) 

Max. Err 3 

(Rel) 

5.00E-02 403.6 1.18E-03 4.45E-02 5.31E-02 

2.00E-02 407.9 1.18E-03 4.44E-02 8.54E-04 

1.00E-02 447.8 1.20E-03 1.40E-02 6.44E-04 

5.00E-03 456.2 1.14E-03 1.93E-03 4.14E-04 

1.00E-03 505.7 4.24E-04 1.93E-03 2.41E-04 

5.00E-04 545.0 2.34E-04 1.93E-03 2.41E-04 

1.00E-04 713.2 4.99E-05 1.61E-04 1.11E-04 

5.00E-05 793.0 3.23E-05 6.60E-05 6.47E-05 

1.00E-05 1028.7 5.41E-06 1.46E-05 1.28E-05 

5.00E-06 1066.5 5.41E-06 8.23E-06 6.27E-06 

1.00E-06 1041.6 5.41E-06 1.89E-06 6.05E-06 

5.00E-07 1080.5 5.41E-06 1.68E-06 6.05E-06 

1.00E-10 1033.0 5.41E-06 1.02E-06 6.05E-06 
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Table 4.21 Integral Error Values for AHBM 5   

t  
Time 

(sec) 

Total Int. 

Error 

5.00E-02 403.6 1.50E-02 

2.00E-02 407.9 3.43E-03 

1.00E-02 447.8 1.48E-03 

5.00E-03 456.2 2.26E-04 

1.00E-03 505.7 1.54E-04 

5.00E-04 545.0 1.47E-04 

1.00E-04 713.2 2.50E-05 

5.00E-05 793.0 1.67E-05 

1.00E-05 1028.7 5.94E-07 

5.00E-06 1066.5 2.50E-07 

1.00E-06 1041.6 1.67E-07 

5.00E-07 1080.5 1.65E-07 

1.00E-10 1033.0 1.64E-07 

 

Table 4.22 Reductions in computational time obtained by AHBM 5 

t  
Reduction 

in Time 

(%) 

5.00E-02 90.3 

2.00E-02 90.2 

1.00E-02 89.3 

5.00E-03 89.1 

1.00E-03 87.9 

5.00E-04 86.9 

1.00E-04 82.9 

5.00E-05 81.0 

1.00E-05 75.4 

5.00E-06 74.5 

1.00E-06 75.1 

5.00E-07 74.1 

1.00E-10 75.3 

 

For the second part of this study, the second variant of PRB-AHBM, explained in 

Section 3.5.1 is employed, i.e. harmonic selection based on the comparison to the 
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harmonic with maximum amplitude. Results are presented in Table 4.23, Table 4.24 

and Table 4.25. The percentages of reduction obtained in computational time with 

respect to the 10-harmonic classical HBM solution are given in Table 4.26. 

 

From the tables, it can be seen that the second variant of PRB-AHBM is better, since 

it achieves shorter computational times at the expense of a small decrease in 

accuracy, compared to the first variant. This is an expected result since the algorithm 

is more prone to excluding harmonics.  

 

Table 4.23 Maximum Absolute Error Values for AHBM 6   

t  Time (sec) Max. Err 1 Max. Err 2 Max. Err 3 

5.00E-02 403.4 1.41E-04 1.95E-02 2.92E-03 

2.00E-02 404.5 1.41E-04 1.95E-02 7.84E-04 

1.00E-02 425.8 1.41E-04 5.65E-03 9.49E-05 

5.00E-03 435.4 1.41E-04 7.74E-04 9.47E-05 

1.00E-03 449.3 1.06E-04 7.74E-04 5.86E-05 

5.00E-04 502.8 7.76E-05 7.74E-04 3.39E-05 

1.00E-04 628.0 8.03E-06 6.48E-05 8.94E-06 

5.00E-05 729.3 4.39E-06 1.62E-05 6.35E-06 

1.00E-05 1074.4 6.59E-07 2.14E-06 1.28E-06 

5.00E-06 1030.3 6.73E-07 4.16E-07 8.47E-07 

1.00E-06 1091.7 2.76E-07 4.07E-07 8.31E-07 

5.00E-07 1124.9 2.76E-07 4.07E-07 8.31E-07 

1.00E-10 1043.4 2.76E-07 4.07E-07 8.31E-07 

 

Table 4.24 Maximum Relative Error Values for AHBM 6   

t  
Time 

(sec) 

Max. Err 1 

(Rel) 

Max. Err 2 

(Rel) 

Max. Err 3 

(Rel) 

5.00E-02 403.4 1.18E-03 4.45E-02 5.31E-02 

2.00E-02 404.5 1.18E-03 4.45E-02 1.05E-02 

1.00E-02 425.8 1.18E-03 1.40E-02 8.65E-04 

5.00E-03 435.4 1.18E-03 1.93E-03 8.68E-04 

1.00E-03 449.3 1.14E-03 1.93E-03 7.14E-04 

5.00E-04 502.8 7.82E-04 1.93E-03 4.14E-04 

1.00E-04 628.0 1.42E-04 1.61E-04 1.52E-04 

5.00E-05 729.3 8.13E-05 6.60E-05 7.69E-05 
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Table 4.24 (continued) Maximum Relative Error Values for AHBM 6 

t  
Time 

(sec) 

Max. Err 1 

(Rel) 

Max. Err 2 

(Rel) 

Max. Err 3 

(Rel) 

1.00E-05 1074.4 1.27E-05 1.46E-05 1.57E-05 

5.00E-06 1030.3 1.31E-05 8.23E-06 8.10E-06 

1.00E-06 1091.7 5.41E-06 1.89E-06 6.05E-06 

5.00E-07 1124.9 5.41E-06 1.68E-06 6.05E-06 

1.00E-10 1043.4 5.41E-06 1.02E-06 6.05E-06 

 

Table 4.25 Integral Error Values for AHBM 6   

t  Time (sec) 
Total Int. 

Error 

5.00E-02 403.4 1.69E-02 

2.00E-02 404.5 3.78E-03 

1.00E-02 425.8 1.48E-03 

5.00E-03 435.4 2.26E-04 

1.00E-03 449.3 2.30E-04 

5.00E-04 502.8 2.25E-04 

1.00E-04 628.0 3.17E-05 

5.00E-05 729.3 2.10E-05 

1.00E-05 1074.4 8.82E-07 

5.00E-06 1030.3 3.13E-07 

1.00E-06 1091.7 1.69E-07 

5.00E-07 1124.9 1.66E-07 

1.00E-10 1043.4 1.64E-07 

 

Table 4.26 Reductions in computational time obtained by AHBM 6 

t  
Reduction 

in Time 

(%) 

5.00E-02 90.3 

2.00E-02 90.3 

1.00E-02 89.8 

5.00E-03 89.6 

1.00E-03 89.2 

5.00E-04 88.0 

1.00E-04 85.0 

5.00E-05 82.5 

1.00E-05 74.3 
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Table 4.26 (continued) Reductions in computational time obtained by AHBM 6 

t  
Reduction 

in Time 

(%) 

5.00E-06 75.3 

1.00E-06 73.9 

5.00E-07 73.1 

1.00E-10 75.0 

 

 

4.3.5 Comparison 

In this section, an overall comparison of the tabulated data given in the previous 

sections is presented. As explained in Section 4.3, 5 criteria are used for evaluation, 

which are presented in graphical form. In these plots, the horizontal axis is the 

computational time, and the vertical axis is the error. Therefore, the method for 

which the curves lie closest to the lower left corner are more favorable methods since 

they manage to achieve greater accuracy in a shorter time. Results are given in 

Figure 4.11 to Figure 4.15. From the figures, one can see that the methods which 

make lesser error in shorter time are the newly proposed FB-AHBM, the first variant 

of PRB-AHBM and the second variant of PRB-AHBM.  
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Figure 4.11 Computational Time vs Maximum Error in Region 1 

 

 

 

 

 

Figure 4.12 Computational Time vs Maximum Error in Region 2 
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Figure 4.13 Computational Time vs Maximum Error in Region 3 

 

 

 

 

Figure 4.14 Computational Time vs Maximum Relative Error in Region 2 
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Figure 4.15 Computational Time vs Integral Error 

 

 

 

4.4 Case Study 2  

This study is carried out in order to present a comparison between the two PRB-

AHBMs and FB-AHBM, which are proposed in this study, since these methods 

performed better than the other methods considered here. This section aims to 

emphasize the differences between them. 

The system to be analyzed is illustrated in Figure 4.16. The parameters of the system 

are given in Table 4.27.   
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Figure 4.16 A 2-DOF System with gap nonlinearity 

 

 

 

Table 4.27 Parameters of the 2-DOF System 

1M  (kg) 2M  (kg) 
1 2,k k  

(N/m) 

1 2,h h  

(N/m) 
F  (N) 

0.1 2 
2000, 

10000 
40, 200 

     

   

30sin 1sin 2 1sin 3 ...

1sin 4 1sin 5

  

 

  

 
 

 

 

The natural frequencies of the system are located at 28.37 rad/s and 252.41 rad/s. The 

frequency range in consideration is between 24 rad/s and 32 rad/s. These parameters 

are selected intentionally, so that the natural frequencies are far away from each 

other and there are no superharmonic peaks located inside the frequency range of 

interest. Parameters for the nonlinear elements are given in Table 4.28. 

 

The plots obtained from the 10-harmonic classical solution are given in Figure 4.17 

and Figure 4.18.  
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Table 4.28 Parameters for Nonlinear Elements 

   (m) gk  (N/m) 

Gap 1 0.05 500 

Gap 2 0.1 500 

 

 

 

 

 

Figure 4.17 Total Response of the First DOF 
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Figure 4.18 Amplitudes of harmonics for the First DOF 

 

 

For the error analysis, the frequency response curve is studied in 2 parts as shown in 

Figure 4.19. The unstable region is excluded as in the previous comparisons.  

The evaluation criteria are defined as follows:  

1. Maximum error around the resonance (Region 1) 

2. Maximum error in linear region (Region 2) 

3. Maximum relative error around resonance (Region 1) 

4. Integral error (all regions combined) 

 

In addition to the solution time measured by the processor, total number of 

harmonics used throughout the solution is also included as a measure of 

computational effort spent.  
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Figure 4.19 Regions defined for error analysis 

 

 

4.4.1 Results Obtained by AHBM 4: FB-AHBM 

As explained in Chapter 3, this method uses a threshold ratio, a  to adjust the number 

of harmonics retained. Due its definition, a  must be chosen greater than 1. Selecting 

parameter a  larger forces the algorithm to include more harmonics in the solution. 

To prevent the algorithm from using too many harmonics, a maximum number of 

harmonics, i.e. 10 harmonics for this study, is defined. The results are given in Table 

4.29, Table 4.30 and Table 4.31. The percentages of reduction obtained in 

computational time with respect to the 10-harmonic classical HBM solution are 

given in Table 4.32. 

 

It can be seen from the tables that, since the method always retains the forcing 

harmonics in the solution, the time spent for solution and the total number of 

harmonics used do not drop below a certain margin. For this case study, the 

algorithm is forced to retain a minimum of 5 harmonics at each solution step, even 

though the higher harmonics in the forcing are relatively small, compared to the first 
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harmonic. Therefore, in the end, even the crudest solution includes 5822 harmonics; 

as result of which, the accuracy always stays above a certain value. 

 

Table 4.29 Maximum Absolute Error Values for AHBM 4   

a  
Time 

(sec) 
Max. Err 1 Max. Err 2 

Total # of 

harmonics 

2 169.9 3.58E-04 6.25E-05 5822 

5 191.5 3.58E-04 5.56E-05 5884 

10 196.6 3.58E-04 4.29E-05 5991 

20 231.0 3.58E-04 2.29E-05 6589 

30 267.0 2.55E-04 1.77E-05 7175 

40 294.6 2.12E-04 1.76E-05 7546 

50 314.9 2.12E-04 1.45E-05 7922 

60 326.6 2.12E-04 1.45E-05 8091 

70 322.2 2.12E-04 1.45E-05 8189 

80 335.2 2.12E-04 1.45E-05 8303 

90 306.3 2.12E-04 1.88E-06 8383 

100 358.4 2.12E-04 1.65E-06 8476 

200 353.2 2.70E-06 2.01E-06 8979 

400 400.7 5.51E-07 9.46E-07 9100 

600 400.1 5.51E-07 9.46E-07 9103 

800 378.7 5.51E-07 1.71E-07 9106 

1000 372.2 5.51E-07 1.71E-07 9106 

2000 389.2 5.51E-07 1.71E-07 9109 

10000 392.6 5.51E-07 1.71E-07 9110 

100000 405.5 5.51E-07 1.71E-07 9110 

1000000 419.3 5.51E-07 1.71E-07 9110 

 

Table 4.30 Maximum Relative Error Values for AHBM 4   

a  
Time 

(sec) 

Max. 

Err1 

(Rel) 

Max. Err6 

(Rel) 

Total # of 

harmonics 

2 169.9 7.09E-04 5.87E-04 5822 

5 191.5 7.09E-04 5.21E-04 5884 

10 196.6 7.09E-04 3.86E-04 5991 

20 231.0 6.13E-04 2.15E-04 6589 
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Table 4.30 (continued) Maximum Relative Error Values for AHBM 4 

a  
Time 

(sec) 

Max. 

Err1 

(Rel) 

Max. Err6 

(Rel) 

Total # of 

harmonics 

30 267.0 5.23E-04 1.62E-04 7175 

40 294.6 5.23E-04 1.62E-04 7546 

50 314.9 5.39E-04 1.32E-04 7922 

60 326.6 5.39E-04 1.31E-04 8091 

70 322.2 5.36E-04 1.31E-04 8189 

80 335.2 3.47E-04 1.31E-04 8303 

90 306.3 3.47E-04 1.74E-05 8383 

100 358.4 3.47E-04 1.51E-05 8476 

200 353.2 7.00E-06 1.85E-05 8979 

400 400.7 5.50E-06 8.60E-06 9100 

600 400.1 5.50E-06 8.60E-06 9103 

800 378.7 5.50E-06 1.71E-06 9106 

1000 372.2 5.50E-06 1.71E-06 9106 

2000 389.2 5.50E-06 1.71E-06 9109 

10000 392.6 5.50E-06 1.71E-06 9110 

100000 405.5 5.50E-06 1.71E-06 9110 

1000000 419.3 5.50E-06 1.71E-06 9110 

 

Table 4.31 Integral Error Values for AHBM 4   

a  Time (sec) 

Total 

Integral 

Error 

Total # of 

harmonics 

2 169.9 3.95E-04 5822 

5 191.5 3.92E-04 5884 

10 196.6 3.87E-04 5991 

20 231.0 3.46E-04 6589 

30 267.0 3.56E-04 7175 

40 294.6 2.65E-04 7546 

50 314.9 2.56E-04 7922 

60 326.6 2.07E-04 8091 

70 322.2 1.51E-04 8189 

80 335.2 1.03E-04 8303 

90 306.3 7.69E-05 8383 

100 358.4 4.74E-05 8476 

200 353.2 5.84E-07 8979 
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Table 4.31 (continued) Integral Error Values for AHBM 4 

a  Time (sec) 

Total 

Integral 

Error 

Total # of 

harmonics 

400 400.7 7.35E-08 9100 

600 400.1 6.86E-08 9103 

800 378.7 5.55E-08 9106 

1000 372.2 5.55E-08 9106 

2000 389.2 5.07E-08 9109 

10000 392.6 4.98E-08 9110 

100000 405.5 4.98E-08 9110 

1000000 419.3 4.98E-08 9110 

 

Table 4.32 Reductions in computational time obtained by AHBM 4 

a  

Reduction 

in Time 

(%) 

2 79.6 

5 77.0 

10 76.4 

20 72.2 

30 67.9 

40 64.6 

50 62.2 

60 60.8 

70 61.3 

80 59.7 

90 63.2 

100 56.9 

200 57.6 

400 51.9 

600 51.9 

800 54.5 

1000 55.3 

2000 53.2 

10000 52.8 

100000 51.3 

1000000 49.6 
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4.4.2 Results Obtained by AHBM 6: PRB-AHBM 

As explained in Section 3.5, this method uses a threshold ratio, t , to adjust the 

number of harmonics retained. Due to its definition, t  must be chosen between 0 

and 1. Selecting parameter t  smaller forces the algorithm to include more 

harmonics in the response representation. To prevent the algorithm from using too 

many harmonics a maximum number of harmonics is defined, which is chosen as 10. 

At this part of the study, the second version of this method, presented in Section 

3.5.1 is used. Results can be found in Table 4.33, Table 4.34 and Table 4.35. The 

percentages of reduction obtained in computational time with respect to the 10-

harmonic classical HBM solution are given in Table 4.36. 

 

It can be seen from the tables that, this method is more flexible in terms of 

computational time and accuracy. The number of harmonics and computational time 

could be reduced up to only 595 and 23.7 seconds, respectively. The method is 

suitable for obtaining the most precise solutions that can be obtained by FB-AHBM 

as well as much more crude ones. It is easier to find an optimum between 

computational time and accuracy by simply changing the control parameter t . 

 

Table 4.33 Maximum Absolute Error Values for AHBM 4   

t  
Time 

(sec) 
Max. Err 1 Max. Err 2 

Total # of 

harmonics 

5.00E-02 23.8 1.44E-02 4.87E-03 595 

2.00E-02 29.9 2.72E-03 6.53E-03 770 

1.00E-02 56.7 2.20E-03 2.00E-04 1690 

9.00E-03 57.9 2.20E-03 2.05E-04 1702 

8.00E-03 58.3 2.20E-03 4.06E-04 1711 

7.00E-03 55.5 2.20E-03 2.05E-04 1725 

6.00E-03 55.2 2.20E-03 2.05E-04 1737 

5.00E-03 56.3 2.20E-03 2.05E-04 1759 

4.00E-03 64.8 2.20E-03 2.04E-04 2040 

3.00E-03 73.7 3.05E-04 1.99E-04 2435 

2.00E-03 84.5 3.05E-04 1.99E-04 2732 
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Table 4.33 (continued) Maximum Absolute Error Values for AHBM 4   

t  
Time 

(sec) 
Max. Err 1 Max. Err 2 

Total # of 

harmonics 

1.00E-03 102.5 3.05E-04 1.84E-04 3717 

9.00E-04 111.9 3.05E-04 1.15E-04 4014 

8.00E-04 127.1 3.16E-04 6.69E-05 4506 

7.00E-04 137.9 2.70E-04 5.19E-05 4851 

6.00E-04 154.7 5.58E-04 5.18E-05 5287 

5.00E-04 197.1 1.88E-04 5.14E-05 6286 

1.00E-04 330.0 4.76E-05 1.06E-05 8682 

5.00E-05 350.6 1.95E-05 1.85E-06 8976 

1.00E-05 357.0 2.56E-06 1.93E-07 9096 

5.00E-06 357.6 2.56E-06 1.71E-07 9100 

1.00E-06 356.8 5.51E-07 1.71E-07 9110 

 

Table 4.34 Maximum Relative Error Values for AHBM 6   

t  
Time 

(sec) 

Max. Err 1 

(Rel) 

Max. Err 2 

(Rel) 

Total # of 

harmonics 

5.00E-02 23.8 2.70E-02 4.37E-02 595 

2.00E-02 29.9 1.24E-02 5.87E-02 770 

1.00E-02 56.7 4.94E-03 1.80E-03 1690 

9.00E-03 57.9 4.36E-03 1.84E-03 1702 

8.00E-03 58.3 3.84E-03 3.65E-03 1711 

7.00E-03 55.5 3.76E-03 1.84E-03 1725 

6.00E-03 55.2 3.76E-03 1.84E-03 1737 

5.00E-03 56.3 3.76E-03 1.84E-03 1759 

4.00E-03 64.8 3.76E-03 1.84E-03 2040 

3.00E-03 73.7 1.22E-03 1.79E-03 2435 

2.00E-03 84.5 1.22E-03 1.79E-03 2732 

1.00E-03 102.5 9.00E-04 1.71E-03 3717 

9.00E-04 111.9 7.78E-04 1.10E-03 4014 

8.00E-04 127.1 7.74E-04 7.25E-04 4506 

7.00E-04 137.9 7.74E-04 5.79E-04 4851 

6.00E-04 154.7 9.24E-04 4.65E-04 5287 

5.00E-04 197.1 7.66E-04 4.62E-04 6286 

1.00E-04 330.0 1.64E-04 9.56E-05 8682 

5.00E-05 350.6 7.43E-05 1.84E-05 8976 

1.00E-05 357.0 2.54E-05 1.74E-06 9096 

5.00E-06 357.6 2.54E-05 1.71E-06 9100 

1.00E-06 356.8 5.50E-06 1.71E-06 9110 
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Table 4.35 Integral Error Values for AHBM 6   

t  
Time 

(sec) 

Total Integral 

Error 

Total # of 

harmonics 

5.00E-02 23.8 1.65E-02 595 

2.00E-02 29.9 3.15E-03 770 

1.00E-02 56.7 1.22E-03 1690 

9.00E-03 57.9 1.15E-03 1702 

8.00E-03 58.3 1.10E-03 1711 

7.00E-03 55.5 1.05E-03 1725 

6.00E-03 55.2 1.02E-03 1737 

5.00E-03 56.3 9.93E-04 1759 

4.00E-03 64.8 7.49E-04 2040 

3.00E-03 73.7 4.92E-04 2435 

2.00E-03 84.5 5.06E-04 2732 

1.00E-03 102.5 4.05E-04 3717 

9.00E-04 111.9 3.76E-04 4014 

8.00E-04 127.1 3.32E-04 4506 

7.00E-04 137.9 2.93E-04 4851 

6.00E-04 154.7 2.80E-04 5287 

5.00E-04 197.1 2.50E-04 6286 

1.00E-04 330.0 1.41E-05 8682 

5.00E-05 350.6 2.37E-06 8976 

1.00E-05 357.0 1.10E-07 9096 

5.00E-06 357.6 1.07E-07 9100 

1.00E-06 356.8 4.98E-08 9110 

 

Table 4.36 Reductions in computational time obtained by AHBM 6 

t  
Reduction 

in Time 

(%) 

5.00E-02 97.1 

2.00E-02 96.4 

1.00E-02 93.2 

9.00E-03 93.0 

8.00E-03 93.0 

7.00E-03 93.3 

6.00E-03 93.4 

5.00E-03 93.2 

4.00E-03 92.2 
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Table 4.36 (continued) Reductions in computational time obtained by AHBM 6 

t  
Reduction 

in Time 

(%) 

3.00E-03 91.2 

2.00E-03 89.8 

1.00E-03 87.7 

9.00E-04 86.6 

8.00E-04 84.7 

7.00E-04 83.4 

6.00E-04 81.4 

5.00E-04 76.3 

1.00E-04 60.4 

5.00E-05 57.9 

1.00E-05 57.1 

5.00E-06 57.1 

1.00E-06 57.1 

 

 

4.4.3 Comparison 

In this section, an overall comparison of the tabulated data given in the previous 

sections is presented. As explained in Section 4.4, four criteria are used for 

evaluation, each one of which is presented in a graphical form. As explained before, 

methods having plots closer to the lower left hand corner are more favorable, since 

greater accuracy is obtained with less computational time. Results are given in Figure 

4.20 to Figure 4.23.  

 

The results presented in the graphs indicate that using PRB-AHBM, it is more 

possible and easy to obtain a wide range of accuracies and with less or similar 

computational times. A desired precision can be obtained in relatively shorter time, 

especially when an average precision is required.  
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Figure 4.20 Computational Time vs Maximum Error in Region 1 

 

 

 

 

Figure 4.21 Computational Time vs Maximum Error in Region 2 
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Figure 4.22 Computational Time vs Maximum Relative Error in Region 1 

 

 

 

 

 

Figure 4.23 Computational Time vs Integral Error 
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CHAPTER 5 

 

 

5 CONCLUSION 

 

 

 

5.1 Conclusions 

The main objective of this thesis is to investigate and compare the effectiveness of 

Adaptive Harmonic Balance Methods (AHBMs) that are currently in use for in 

structural dynamics and to introduce new Adaptive Harmonic Balance methods, 

which address the deficiencies of the existing ones.  

 

In this thesis, first of all the theoretical background of the application of the 

Harmonic Balance Method (HBM) in nonlinear vibrations is explained in detail, 

together with the solution and path following methods. At the end of Chapter 2, case 

studies are given in order to demonstrate the classical HBM. In Chapter 3, AHBMs 

currently available in literature and used in the field of structural dynamics are 

presented. Furthermore, a new AHBM, namely PRB-AHBM, with two alternatives is 

developed and a new method based on the modification of Yümer’s method, namely 

FB-AHBM, is proposed. Chapter 4 deals with the comparison of the mentioned 

AHBMs through two case studies. For all the studies presented, the same MATLAB 

codes that are written for each method are used.  

 

The conclusions made from this study can be summarized as follows: 

 

1. AHBM 1, created by Jaumoille, Sinou and Petitjean, is a favorable method 

for lightly nonlinear systems. However, there are cases where it can fail to 

increase the number of harmonics when needed. The method increases the 

number of harmonics starting from 1 at every solution step. When the number 

of harmonics needs to be increased, forming the tangent predictor by adding 
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zeros may end up with a very rough prediction and may cause convergence 

problems. Even when the solutions converge, the results may end up 

inaccurate.  

 

2. In the case studies presented in this thesis, highly nonlinear small scale 

systems are analyzed. Also, in many of the examples, nonlinearities are 

distributed over every DOF. In a large scale system with local nonlinearities 

AHBM 2, created by Grolet et al., could prove to be more effective for the 

case where it is combined with a condensation method, such as the receptance 

method. Reducing the system by using condensation and then applying a 

second reduction by altering the harmonic number seperately for each DOF 

may work effectively. However, writing the code for this complex algorithm 

can be difficult and time consuming.   

 

3. There are cases where Yümer’s Method fails to include necessary harmonics 

inside the response representation and produces inaccurate results. In this 

thesis, a system with a multi-harmonic forcing and a gap nonlinearity caused 

inaccuracy. However, for a system with piecewise linear stiffness, this was 

not the case.  

 

4. The newly introduced Forcing Based Adaptive Harmonic Balance Method 

(FB-AHBM) turned out to be a suitable method for analyzing small scale 

systems. However, it tends to work inefficiently when the harmonic content 

of the external forcing and the response of the analyzed system are not similar 

to each other. Therefore, it requires the user to have an insight about the 

system to be analyzed, which is a setback. 

 

5. Unlike FB-AHBM, the newly proposed Pseudo-Response Based Adaptive 

Harmonic Balance Method (PRB-AHBM) does not require the user to have 
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any prior knowledge about the harmonic content of the analyzed system. Its 

threshold criteria solely depend on the ratio of response and forcing 

amplitudes and it does not require significant mathematical manipulations. 

Also, in the case studies presented, it has been seen that PRB-AHBM 

performs efficiently and accurately for the case studies considered in this 

study.  

 

5.2 Future Recommendations 

For future work, the following items can be considered:  

 

 PRB-AHBM is a global method, i.e., it assigns the same number of 

harmonics for each DOF. A local version of the method may be introduced, 

so that the method performs more efficiently on large scale nonlinear 

systems. It should be developed method is a local method if the final part, 

which determines the maximum number of harmonics, is removed and the 

number of harmonics obtained for each DOF is stored. 

 

 In this thesis, Newton’s Method is used for solving the nonlinear algebraic 

equations. For the purpose of forming initial guesses, the tangent predictor is 

utilized. Quasi-Newton methods and other predictors may be tested, in order 

to accelerate the numerical solution process.  
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