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ABSTRACT

STRUCTURAL COUPLING OF TWO NONLINEAR STRUCTURES

Tepe, Cagri
M.Sc., Department of Mechanical Engineering
Supervisor: Assoc. Prof. Dr. Ender Cigeroglu

February 2018, 89 pages

In mechanical design, modelling and analysis of a complex structure can be
simplified with dividing the structure into substructures; therefore, any change in the
structure can be addressed easily which is referred as “structural coupling”.

Utilization of proper coupling techniques, it is possible to understand the
behavior of the whole structure by considering the behavior of its substructures. For
linear structures, coupling is a common technique; however, in most of the
engineering structures, nonlinearities are also encountered; therefore, it is required to
extend linear coupling methods to nonlinear systems. Although, studies on nonlinear
coupling are available in literature, existing methods are limited to coupling of
structures where one substructure is linear and the other is nonlinear or two linear
substructures coupled with a nonlinear element.

In this thesis, a structural coupling method is proposed to couple two-
nonlinear substructures. Similar to linear coupling methods, the proposed method
considers the compatibility of internal forces at the connection degrees of freedom in
addition to displacements. The proposed method is simulated with two different
conditions which are coupling of identified substructures and coupling of identified
substructure with neural network trained substructure. Since, the substructures are

nonlinear, the resulting system of nonlinear differential equations are converted into

Vv



a set of nonlinear algebraic equations by using Describing Function Method, which

are solved by using Newton’s method with arclength continuation.

Keywords: Structural Coupling, Nonlinear Structural Coupling, Vibration of
Nonlinear Structures
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0z

DOGRUSAL OLMAYAN iKi SISTEMIN YAPISAL BiRLESIMi

Tepe, Cagri
Yiiksek Lisans, Makina Miihendisligi Boliimii
Tez Yoneticisi: Dog. Dr. Ender Cigeroglu
Subat 2018, 89 sayfa

Mekanik tasarimda, karmagik bir yapinin modellenmesi ve analizi, bu yapiy1
kendisini olugturan altyapilara bolmekle daha kolay gergeklestirilir. Bu sayede tiim
sistem lizerinde meydana gelecek olan herhangi bir degisiklik altyapilarin tekrar
birlestirilmesiyle gdzlemlenebilir. Bu olguya yapisal birlesme denilir.

Uygun birlestirme yontemleriyle, tiim sistemin davranisin1 onu olusturan alt
sistemlerin davranigini anlayarak ¢6zmek miimkiindiir. Dogrusal yapilar i¢in
birlesme ¢ok uygulanan bir yontem iken dogrusal olmayan yapilar i¢in bu yontemin
nasil uygulanacagma dair ¢ok Ornek bulunmamaktadir. Giiniimiizde ¢ogu
miihendislik yapilarinda dogrusal olmayan sistemlerin de goriildiiglinii diigiiniirsek,
dogrusal birlestirme yontemlerini, dogrusal olmayan yapilara tasimak gerekli hale
gelmistir. Literatiirde dogrusal olmayan sistemleri i¢inde barindiran birlestirme
yontemleri bulunsa da, bu yontemler, dogrusal yapiyr dogrusal olmayan yapi ile
birlestirme ya da iki dogrusal yapiyr dogrusal olmayan elemanlarla birlestirme ile
stnirhdir.

Bu tezde, iki dogrusal olmayan yapiyr birbirine birlestirme konusunda
caligilacaktir. Dogrusal olmayan yapilarin birlesiminde dogrusal olan sistemlerin
birlesimine benzer bir sekilde, iki yapinin birlestigi sirada korumasi gereken kuvvet

ve yer degistirme degerleri kullanilacaktir. Onerilen metodu dogrularken iki farkli
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yontem izlenecektir. Bu yontemleri; O6zellikleri bilinen sistemlerin birbirleriyle
birlesimi ve oOzellikleri bilinen sistemle sinirsel ag ile tanimlanan sistemin
birbirleriyle birlesimi olarak 6zetlemek miimkiindiir. Yapilar dogrusal olmadig1 i¢in
coziilmesi gereken denklemler cebirsel dogrusal olmayan denklem setine

doniistiiriilecek ve bu denklem setleri stirdiiriiliir yontemlerle ¢oziilecektir.

Anahtar Kelimeler: Yapisal Birlesim, Dogrusal Olmayan Yapisal Birlesim,

Dogrusal Olmayan Sistemlerin Titresimi
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CHAPTER 1

INTRODUCTION

1.1 Introduction to the Problem

In the design of mechanical systems, engineers should test and analyze each
prototype created in order to provide a qualified and optimized design which has a
wide range of requirements. Over the last 40 years, engineering structures are
analyzed with the finite element method which is proven as reliable tool. In order
finalize the design, whole structure has to be analyzed several times; therefore, an
alternative approach is required in order to decrease the number of analyses and tests.
In former years, this requirement is disposed with proper structural coupling
techniques, and utilizing structural coupling, modeling and analysis of a complex
structure can be simplified by dividing the structure into substructures and applying
the required changes only on one or some of the substructures, where each
substructure can be analyzed individually. In this way, complexity of whole structure

may be avoided.

Although, coupling is a common technique for linear structures, in most of the
engineering structures, nonlinearities are also encountered with the increasing
demand of high precision mechanical components; therefore, it is required to extend

linear coupling methods to nonlinear systems.

1.2 Literature Survey

Substructure analysis of linear systems is a well-known subject dated back to 1960s

by the works of Bishop and Johnson [1] on Receptance method and Hurty [2] on



Component Mode Synthesis which was a simplified version of the method developed
by Craig and Bampton [3]. Many different substructure and coupling methods for
linear structures are developed by Rubin [4], Przemieniecki [5], Urgueira [6], Ewins
[7], Klosterman and Lemon [8] and Ren and Beards [9]. All of these methods are
developed for linear systems and the methodology is based on the compatibility of
internal forces at the connection degrees of freedom in addition to the compatibility
of the displacements. However, extention of linear coupling methods to non-linear
systems is essential; since many structures, which are considered as linear, are

nonlinear in reality.

Analysis of nonlinear systems is much more complicated compared to linear systems
[10] due to their response dependent behavior. In this thesis, Describing Function
Method (DFM) is used for the solution of nonlinear systems which was introduced
by Krylov and Bogolyubov [11] in order to analyze nonlinear control problems based
on an earlier work of Van der Pol [12]. Later, Taylor [13] replaced each nonlinear

element with a quasilinear descriptor to define this approach.

Solution of multi degree of freedom nonlinear system with symmetrical
nonlinearities is introduced by Budak and Ozgiiven [14, 15], which utilizes a special
algebra. Later, Tanrikulu [16] and Tanrikulu et. Al.[17] extended this formulation for
any type of nonlinearity by replacing this special algebra with describing functions.
Other studies, which may be shown as an example of vibration analysis of nonlinear
structures, are made by Siller [18] and Abat [19].

Although, several studies on structural coupling of linear systems and modelling
systems with nonlinearities are available in literature, the numbers of studies that
consider nonlinear structural coupling are limited. Existing studies on nonlinear
structural coupling are focused on coupling of structures where one substructure is
linear and the other one is nonlinear or coupling of two linear substructures with a

nonlinear coupling element.



Watanabe and Sato [10] suggested "Nonlinear Building Block™ approach, for

coupling of linear substructures with nonlinear coupling elements.

Comert and Ozgiiven [20] proposed a method for coupling of linear substructures
with nonlinear connecting elements by using DFM, in which FRFs of the linear
substructures are used. Kalaycioglu [21] suggested a modification/coupling

technique that couple two linear structures with nonlinear elements.

Murakami and Sato [22] suggested a method to predict the response of linear
structures with non-linear joints using a describing function approach. Later,
Wyckaert et. Al. [23] is extended the approach with cubic stiffness and friction

damping type non-linearity.

Ferreira and Ewins [24] introduced a new “Nonlinear Receptance Coupling
Approach” and Ferreira [25] extended the approach with “Multi-Harmonic Nonlinear
Receptance Coupling Approach”. Both approaches are capable of coupling a linear

structure with a nonlinear structure with different types of joints.

Chong and Imregiin [26] managed coupling of nonlinear systems with linear systems

with an iterative algorithm.

1.3 Objective

It has been thought that the main motivation behind the coupling procedure is
computational efficiency because of fact that if the system is subdivided into two
equal subsystems the solution time may be expected to be reduced by a factor of 4.
[26]. However, avoiding the complexity of a whole system with dividing it into
substructures is outweighs the computational efficiency by far [26]. With proper

coupling techniques, each subsystem should be solved with preserving numerical



accuracy [26]. Most complex structures are consisted of assembled substructures
which are designed by different engineering groups, at different times and in
different locations [25]. So, proceeding designs and modifications as independently
as possible is desired. Nevertheless, computational time may be decreased with
proper methods such as domain decomposition method which is used parallel

processing to solve each substructure.

From an engineering viewpoint, there is a need to use proper coupling methods if
complexity of the system is needed to be avoided. Also, extend linear coupling
methods to nonlinear systems is essential with the increasing demand for high
precision, so if more accurate results with less time and cost is wanted, nonlinear

structural coupling is required.

In this thesis, an approach is going to be developed to dynamic reanalysis of
nonlinear substructures. Different from the existing methods in literature, proposed
method is going to be capable of coupling of two nonlinear substructures. Proposed
method should solve the coupled system even any DOFs have nonlinearities.
Moreover, with the proposed coupling method, in addition to linear coupling
elements, nonlinear coupling elements can as well be used. Beside avoidance of
complexity, proposed method should also be studied it is time efficient or not even if

it is not the main objective.

1.4 Scope of the Thesis

The outline of the thesis is given as follows:

In Chapter 2; firstly, brief information about linear structural coupling is given. After
that, theory behind the nonlinear modelling is explained. DFM method, which is also

used in this thesis, is introduced in detail and describing function of cubic stiffness

and dry friction are given. Lastly, several numerical methods are introduced to solve



nonlinear system equations. Newton’s method and Newton’s method with arc-length

continuation are described in detail.

Chapter 3 reviews the proposed method which is used in coupling of two nonlinear
structures. Firstly, brief introduction is made about the problem. Then, a new
nonlinear structural coupling method is proposed to couple two nonlinear
substructures. First part of this chapter is about couple two nonlinear substructures
which are identified already. So, spatial model of substructures are used. After that,
compliance of this method is shown such that identification of any substructure is not
essential to proceeding the operation. This achievement is provided with the help of

neural networks which are developed via MATLAB®.

In Chapter 4; verification of the proposed method will be demonstrated in two groups
of case studies which are also dividing into two. Main section of case studies is about
coupled DOF, while subsections are departed usage of artificial neural networks or
not. In first part of case studies, two substructures are coupled each other with one
coupled DOF. In second part, two substructures are also coupled each other such that
one of the substructures is trained with neural network already. Solution of trained
data is used coupling procedure. In third and fourth part of case studies, same

procedure is used for multiple coupled DOF.

In Chapter 5, brief summary will be given about work done with discussions. The
conclusion of thesis is given in this chapter. Finally, contributions to nonlinear

structural coupling are summarized.






CHAPTER 2

THEORY

2.1 Introduction

In this chapter, the theory of nonlinear structural coupling method, which underlies
the basis of this thesis, is proposed. In section 2.2, theory of structural coupling is
introduced. In section 2.3, modeling of nonlinear structures is presented using
describing function method. Later, in the same section the types of nonlinearities
investigated in this study are explained in detail. In section 2.4, solution of nonlinear

equation of motion is introduced.

2.2 Structural Coupling of Linear Substructures

Consider two substructures A and B, shown in Figure 2.1, where internal DOFs are

represented by subscripts, i, and i, respectively and the connection DOFs are

represented by subscripts ¢, and ¢, respectively.

Substructure A je———— Coupling Elements

Substructure B

Ca

Figure 2.1 Schematic view of structural coupling



The corresponding equilibrium of each substructure can be written as

f Tz 1 [z T1[{x

{ 'A} —| b [ won {X'A} , (2.1)
{ch} L cAiA_ L TCaca | | {XCA}

f Tz 1 [z Tl{x

{ 'B} =| b Pl bR {X'B} , (2.2)
{fcs} __ZcBiB_ L chB__ {XCB}

Uy

where {x } and {xiB} are generalized displacement vectors for internal DOFs, {XCA}
and {xCB} are generalized displacement vectors for coupled DOFs of substructures A
and B, respectively. {fiA} and {fiB} are internal forcing vectors for internal DOFs,
{f,} and {f_} are coupled forcing vectors for internal DOFs of substructures A

and B , respectively. Lastly, [Z,] and [Z,] are the impedance matrices of

substructures A and B . Equilibrium of the forces between the connection DOFs can

be written as

(fy={f.}+{f.} (23)

where {fc} is the external force acting on the connection DOFs. Considering the

compatibility of displacements of the substructures the following relation can be

written

[ D J({% 1% }) =1 1o (2.4)

where | D, | is dynamic stiffness matrix of coupling elements. Substituting

coupling
compatibility and equilibrium equations, i.e. Egs. (2.3) and (2.4), into Egs. (2.1) and
(2.2), the overall impedance of the assembled system can be written as



(z.,] [0 [Z.]
21=] 1] (2] [Z]
[Zen] (2] [Zoa J#[ 20 ]

(2.5)

2.3 Modelling of Nonlinear Structures
2.3.1 Describing Function Method

In nonlinear structure modelling, if the system may exhibit periodic oscillations,
describing function method is frequently used. The describing function method
linearizes the nonlinearity by defining the transfer function as the relation of the
fundamental components of the input and the output to the nonlinearity.

The equation of motion of nonlinear MDOF system excited with harmonic external

forcing{ f (t)}, can be written as

[M]{%(O)} +[CxO) +i[H](xOL+[K]xO}+ {F.OL =L F O, 26)

where [M], [C], [H] and [K] are the mass, viscous damping, structural damping
and stiffness matrices of the linear system. {x(t)} is the generalized displacement

vector and { f, (t)} is the nonlinear forcing vector. The k™ element of vector { f, (t)}

can be expressed as a series of the form,

N

{fu®}, =2 Ny, 2.7)

j=1



where n,; denotes the nonlinear restoring force acting between the coordinates k
and j for k= j and between ground and the coordinate k for k=j and N is
the number of elements of vector { f (t)}. Note that,

Ng =Ny - (2.8)

J

The nonlinear restoring force n,; is a function of relative displacement 'y, and its

derivatives.
Mg =Ny (ykj ) ij , ykj vee) s (2.9)
where,

=X, —X. fork = j
Yo =K% o (2.10)
Vi = X fork = j

If the external forcing { f(t)} is periodic, then it can be expressed as,

(1O} =(F},+m| S(F)_ e | e

m=1

where {F} is the amplitude vector of the m™ harmonic. Then the response of the

system, {x(t)} can as well be assumed periodic which can be expressed as follows,

(X} =X, +|mL§ } (2.12)
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where {X}m is the complex amplitude vector of the m™ harmonic of the

displacement. The intercoordinate displacement responses between arbitrary two

coordinates k and j , y,, can be written as:

0

m=0

V)= 'm{ e} -e"""'”}, (2.13)

where,

Yl =X}, —{x]}, fork=]
| | ' 2.14
Yo, = X1, for k= | (2.14)

Accordingly, a complex and periodic nonlinear function, n,; can also be

represented in the form of Fourier series as

m=0

g} = i{nkj}m € =Ny + lm[i{NKj}m -e""‘"/’] (2.15)

where,

i 27 . .o —i-m-
{Nkj} :_J N (Yigr Yigr Yigo--) €77 -dy for m=1,23,...
m T 0
(2.16)

i 2 -
{Nki}ngj‘ N (Vg Yigs Yigo---) - dw for m=0

0

The describing function, v,; of order m corresponding to {nkj} can be defined as

11



2.17)

Inserting Eq. (2.16) into Eq. (2.17), the describing function, v,; can be written as,

i 27 . . —i-m-
Vi, :WL Ny (Yig Yigr Vigr--)-€ 7 -dy for m=1,2.3,...
i . (2.18)

I 27 S
ijm :27Z'—YJ. nkj(ykj!ykj!ykja)dl// fOI’ m:O

Kim

The internal nonlinear forces, ny; can be represented in terms of describing functions

as,

{nkj}=vkjo ijo+lm{2vkj o } (2.19)

Eqg. (2.7) can also be written as,

() =N, (2.20)

m=0

where, {N_} is the complex amplitude vector of internal forces for the m™"

harmonic. Combining Egs. (2.19) and (2.20), {N,} can be written as,

N
=D Vi, Vi, - (2.21)
1

12



Inserting the expressions used for the periodic excitation, periodic response and
nonlinear forces in complex form into Eg. (2.6), the following equation set is

obtained.
[-(m-@)* [M]+i-m-e-[C]+i-[H]+[K]]-{X}, +{N} ={F} . (222
where, {Nm} can be rewritten using describing functions,

N}, =[], 1%}, (2.23)

where, [A] referred as “nonlinearity matrix”, is a function of the unknown

displacement amplitude vector, {X} . The elements of nonlinearity matrix are

defined as

[Aly =D vy fork=]j
-1 .

[Aly=-v, fork=]j

(2.24)

Substituting Eq. (2.23) into Eg. (2.22), equation of motion can be obtained as
[-(M-@)* [M]+i-m-e-[C]+i-[H]+[K]+[A]]- {X}, ={F}, . (2.25)

In this thesis, describing function method is employed for the determination of the
nonlinear algebraic equations by considering only the first harmonic term. Therefore,
Eq. (2.25) can be reformed as

[ -0 [M]+i-0-[C]+i-[H]+[K]+[A]]-{X} = {F}. (2.26)

13



2.3.2  Types of Nonlinearities Considered

In this thesis, cubic stiffness and hysteretic dry friction are used as nonlinear
elements in the substructures. In this section, quasi-linearization of nonlinearity types

is shown.

2.3.2.1 Cubic Stiffness

Cubic stiffness is the most common nonlinearity type used in structural dynamics.

Nonlinear force in the case of cubic stiffness can be written as

n(x) =k, -x°, (2.27)

where, k. is the coefficient of cubic stiffness nonlinearity. k. can be either positive

or negative. If k. >0 , cubic stiffness shows a hardening behavior, in other words,
level of excitation increases the restoring force introduced is greater than a linear
spring. On the other hand, if k., <0, cubic stiffness shows a softening behavior, in

other words, level of excitation increases the restoring force introduced is lower than

a linear spring. Assuming for a single harmonic input,
X = Xsin(y), (2.28)
where X is the amplitude of the harmonic input x and  is the replacement term

of the wt. According to Eq. (2.18), describing function of this nonlinear force can

be written as

14



v=— [T IXsing ¢ dy 229)

Describing function of cubic stiffness can be written in a simple form as

3
v=z-kc-X2- (2.30)

W 1

2 2

k=] i o

i / i o

/...f"f Displacement Displacement
Hardening Softening

Figure 2.2 Characteristic of hardening and softening cubic stiffness elements [27]

Because of the characteristic of cubic stiffness nonlinearity, system response is
bending around resonant frequency towards forward for hardening systems and

towards backward for softening systems.
2.3.2.2 Hysteretic Dry Friction

There exists several friction models in the literature and in this thesis; a one-
dimensional Coulomb friction model with constant normal load is used. One-

dimensional dry friction element and the corresponding hysteresis curve for a single

harmonic input are given in Figure 2.3 [28].

15



W, friction coefficient

(a) (b)

Figure 2.3 (a) Schematic drawing, (b) corresponding hysteresis curve for dry friction
nonlinearity [28]

Nonlinear force in the case of hysteretic dry friction nonlinearity can be written as

n(x) =—uN +k-(x+5) for %sws%

: (2.31)
3z
n(x)=—uN for z//1£z//£7

where, k is the contact stiffness between rubbing surfaces, N is the constant

normal force, 4 isthe dry friction coefficientand v,

v, = ﬂ—asin(k'xk_.#j. (2.32)

Describing function of this nonlinear force can be written as
2-1 wm y 3712 y
V=—'I [-uN +k~(X+5)]‘e""’-dl//J. —uN-e™ -dy . (2.33)
T X 7l2 7]

Describing function of hysteretic dry friction can be written in a simple form as

16



2
i(k—z'“"\'j 1—(k'x_2"“"Nj K K o kX s N
v, =17 X k-X z 2 (2.34)

k for | k- X |< uN

4-p-N(p-N-k-X)
r-k-X?
0 for | k- X |< uN

for |k-X N
} | > u | (2.35)

2.4 Solution of Nonlinear Algebraic Equations

General numerical methods, used in solving nonlinear algebraic system of equations,
are introduced and discussed in this section. Solution of the nonlinear equation set
may give more than one result for a single frequency where jump phenomena occurs
[29] so, using a path following method should be used to investigate all possible
solutions. In this thesis, for this purpose, Newton's method with arc-length
continuation is used.

Nonlinear algebraic equation set which is to be solved can be expresses as follows
{R((x), w)} ={0}. (2.36)

Further, expanding the nonlinear residual vector, {R((x), a))} , for Eq. (2.26),

following equation may be written as
([D(@)]+[A]D-{X}-{F}=0. (2.37)

2.4.1 Newton’s Method

17



Newton’s method is one of the popular root-finding numerical solution techniques
based on the first order Taylor series expansion. Using Newton's method, solution of
a set of nonlinear algebraic equations can be obtained iteratively as follows [30, 31,
32]

{X}new :{X}old +{AX}’ (2.38)

007 =" -0 @] {RE) @)} (2.39)
where i is the iteration number, {x}i is the solution vector at the i iteration and

[J(x,@)] is the Jacobian matrix which can be written as

O{R(x, »)}

[J (X,a))] = G{X}

(2.40)

2.4.2  Arc-Length Continuation Method

Because of the nature of the some nonlinear systems, frequency response may curve
turns back. So, whole solution may not be obtained properly with Newton's method
due to increasing the frequency results in a jump up or down. Also, path following
using Newton's method may encounter two main problems. First, Jacobian of the
residual vector is close to singular at the turning points, second a good initial guess
assumption is required around turning points. In the arc-length continuation method,
a new parameter, s , is added to the nonlinear equation set which makes the Jacobian
matrix non-singular at the turning points. Moreover, the arc-length parameter is the
path following parameter instead of frequency. Arc-length parameter s is defined as
the radius of a hypothetical sphere on which the next solution point is to be obtained
[30, 31].
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For this new system, frequency, @ , is an unknown in the nonlinear equation set with
the addition of the arc-length parameter. So, the vector of unknowns may be written
as

{q) ={{X}}. (2.41)

The required additional equation is the equation of the hypothetical sphere which has

aradius s and centered at the previous solution point.
({x}i —{x}i*l)2 +(0' -0 ) =57, (2.42)
where {x}i is the response of the nonlinear system at the i" frequency point, @,. So,

the iterative formula of the Newton's method can be written as [32, 33]

-1

o) " ={ay - 3(0" ) | - {R(1 @) (2.43)
where ﬁ({x}i ,@') is the new nonlinear algebraic equation set and 3({x}i @) is

the new Jacobian matrix

T AV ow
(7)) oh({x}' ) an({x)".e') | 249
IS 0w |
h({x)'.o') = ({aa)' ) {aq) ~s?=0, (2.45)
{Aq}' = {{AA;}ii}: {{ixa}): :{AA(;}T} , (2.46)



R(1 o)} = | : . (2.47)

Using tangent predictor to determine the initial guess of the next step should give

better results such that it increases the rate of convergence and decreases the

computational time. Initial guess for {x} at the next solution point can be written

according to tangent predictor as [31, 34].

T YTy o il A | ™

where {x!' isthe improved initial guess for the next i iteration, {x!'" isthe
0 0

solution at the previous solution point and

(3 0)]- iy (2.49)

o =@t t > (2.50)

2

E ({X}il,wi’l)Jl'aR({x}. %) +1

aa)lfl
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There are two solutions available for «). Therefore, correct sign is needed to be

chosen in order to follow the path. Choosing correct sign according to the sign of
determinant of Jacobian matrix works quite well for most of the cases [35].
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CHAPTER 3

A NEW NONLINEAR STRUCTURAL COUPLING METHOD

3.1 Introduction

In this chapter, a new nonlinear structural coupling method is developed to dynamic
reanalysis of nonlinear substructures. Different from the existing methods in
literature, proposed method is capable of coupling of two nonlinear substructures.
Moreover, with the proposed coupling method, in addition to linear coupling
elements, nonlinear coupling elements can as well be used. The proposed method
considers the compatibility of internal forces at the connection degrees of freedom in
addition to displacements. Since, the substructures are nonlinear, the resulting system
of nonlinear differential equations are converted into a set of nonlinear algebraic
equations by using describing function method, which are solved by using Newton’s

method with arc-length continuation.

3.2 Structural Coupling of Nonlinear Substructures

The equation of motion of the nonlinear substructures A and B excited with a

harmonic external forcing { f (t)}, can be written as

(M, (%O +[Ca]{% O} +i[H ] {x, 0} +[K, ] {x. 0} +{ fi,, O} = { f. )} o

[Mg]{%e (1)} +[Co ]{Xe (O} +1[Hg ]{X (1)} +[ K¢ ]{Xs (0} +1{ iy, ©)} = { fo )}
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where [M], [C], [H] and [K] are the mass, viscous damping, structural damping

and stiffness matrices of the linear system and {fN (t)} is the nonlinear forcing

vector. Here subscripts A and B indicate the coupled substructures. Generalized

displacement vectors {X,(t)} and {x(t)} can be written as

{xA(t)}—ﬁiiAi}, {xB(t)}—{éi‘Bi}, (32)

Ca Cs

where {XiA} and {XiB} are generalized displacement vectors acting on internal

DOFs and {XCA} and {XCB} are generalized displacement vectors acting on the

coupled DOFs. External forcing vectors { f,(t)} and { f;(t)} can be written as

{f.0)} = { {FCA{;’*{} fCA}}' {fa )} = { {FCB{}FE {} . }}, (3.3)

where {F } and {F } are external forcing vectors acting on internal DOFs and

{F.} and {F._} are external force vectors acting on the coupled DOFs. If the

external forcing, { f(t)} is periodic, response of the system, {x(t)}, can as well be

assumed periodic, which can be expressed as follows

s

(10} =(F),+m| S (F), e . 4

3
Il
UN

(X} e™ |, (35)

s

X}

{X}O+Im{

3
]
4N
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Utilizing Describing Function Method (DFM) and substituting Egs. (3.2) and (3.3)

into Eq. (3.1) as the following result is obtained

2 : H {xiA} {FiA}
—" (M, |+1-0|C, |+ H, |+ | Ky [+[A, =
U G AR CA RN I S T N
o [Mg]+i-o[Cy]+i[Hg |+[Kg]+[As Slt= ?
LR G AR L MR S TR

where internal forcing vector {f } can be written as

Ca

(o) =[Dlns J({%:,} =1 }) - (3.7

where, [Dl,

mg] is the nonlinear dynamic stiffness matrix of the connection

elements;
[Dc“;tp"ng]:(_wz [M,]+i -a)[CC]+i[HC]+[KC]+[AC]). (3.8)

Substituting Egs. (2.3) and (3.7), into Eq. (3.6), equation of motion can be obtained
as

(a)z[MA]+i-a)[CA]+i[HA]+[KA]+[AA]){

(< [Ma]+i-0[Cq J+i[Ho ] +[Ko ] +[4s ){ ) H 7l }
X HR [0l (X X))
(3.9)

where,
{fy={f.}+{f.}- (3.10)



Eq. (3.9) can be solved by a nonlinear equation solver and in this thesis; Newton’s
method with arc-length continuation, which is explained in detail at section 2.4, is

used. Algorithm of the proposed nonlinear coupling method is given in Figure 3.1.

Initial
Guess

!

X

Ca

Solve Substructure B

X X Until (x,, )i+1 —(x,, )i <10®

Solve Substructure A

Figure 3.1 Nonlinear Structural Coupling Algorithm

3.3 Nonlinear Structural Coupling Using Artificial Neural Networks

Considering learning abilities of human brain; it is more complex compared with
computers. Complexity of human brain is simulated with artificial neural networks
which can be used with multi-input and multi-output systems for various

applications. Neural networks can simulate very complex, highly nonlinear systems
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consisting of artificial neurons that are interconnected. Fundamental element of a

neural network is called as neuron. Mathematical model of a simple neuron is

0= f[i[wi-yﬁb]]: f({w) {y}+b)=f(m), (3.12)

i=1

where y is the input vector, {w}T is the weight vector, b is the bias term, o is the

output of the neuron, n is the net input, N is the number of elements in the input

vector and f is the transfer function used.

Vi —w, net input

Y2 —w, i

y3 —W3 f 0]

W Transfer Activation output
inputs  weights Function Function

Figure 3.2 Simple neuron model

Neural networks consist of an input layer, an output layer and hidden layers between
these two. These layers are made of neurons. Additional layers and multi neurons can
be employed in neural network structures to increase capability of the network. In

this thesis, a neural network, which has two layers and twenty neurons, is used.
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Hidden Qutput

Input

Figure 3.3 Classification of neural network [36]

Additional layer can be employed in neural network structures to increase capability
of the network. It can be observed that output of each layer becomes the input of the

next layer.

Minimizing the error between target and output vectors is the main reason of neural

network training. Performance of a network is quantified through mean squared error

(MSE) between the network output vector, {0}, and target vector, {t} as:

MSE==["e? =" (0,-t,)’ (3.12)

Minimizing MSE via tuning the elements of weight matrices and bias vectors is the
main idea behind neural network theory. The tuning process is called as training,
where weight matrices and bias vectors are updated according to “the training

algorithm”.

In this study, MATLAB Neural Network Toolbox is used for operating the proposed
method. One of the substructures is trained via Neural Network Toolbox and so, a
transfer function, which transforms internal forcing and frequency into

displacements, is created. Schematic view of such operation is shown in Figure 3.4.
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XC
A
— —

Substructure A jeip Coupling Elements == Neural Network Trained Data

Ca

Figure 3.4 Schematic view of structural coupling via neural networks

Then, Eq. (3.9) can be written as:

(.} {F.}
X)) R+ [P J({Xe (X4 )
X, | {NN(a), f, )}

, (3.13)

(- [M,]+i-0[C,)+i[H,]+[K,]+[A,])

—_——

where {NN} is the neural network transfer function which is created by training

substructure B via Neural Network Toolbox. Before starting to the training process,
collected data is required to be divided into three subsets as: training, validation and
test data sets. Weight matrices and bias vectors are updated based on the training data
set. All the data subsets should represent the entire data set. Otherwise there might be
large discrepancies between targets and outputs. Optimal division of training data set
is one of the main concerns in neural network training. In this study, via several
trials, 70% of samples are allocated as training data set, 15% of samples are allocated

as the validation data set and the remaining 15% is used as the test data set.

Training data set is created from frequency, @, and internal forcing vector, {f}

However, there might be more than one response near a resonance frequency because

of the nonlinearity present in the system, so, in these frequency points, neural
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network does not expected to operate with only frequency and internal forcing vector
inputs. In this study, to overcome this problem, a dummy variable is introduced to
the system as a third input, so that, it is started with zero and increased if sign of

Aw is changed. Classification of such neural network is shown in Figure 3.5.

Hidden Layer Output Layer

dummy

variable

Figure 3.5 Classification of neural network with dummy variable [36]

After a proper training is done, performance of the neural network should be checked
via MSE graph and error histograms. If performance of neural network is sufficient,
Eq. (3.12) can be solved by a nonlinear equation solver and in this thesis; Newton’s
method, which is explained in detail at section 2.4, is used.
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Initial
Guess

I

until ({X,, }-{x"})<10°

Equilibrium
Condition

f

CA

Solve Substructure A

Ca

°B

Neural Network
Solution

Cs

Compatibility
Condition

X

Ca

Figure 3.6 Nonlinear Structural Coupling Algorithm using Artificial Neural

Networks
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CHAPTER 4

CASE STUDIES OF STRUCTURAL COUPLING METHOD TO
NONLINEAR SYSTEMS

In this chapter, the proposed coupling method is demonstrated on different models.
In the first one, substructures are coupled from a single DOF whereas in the second
one, they are coupled from multiple DOFs. In both models, two main works are done
such that, proposed coupling method is used for coupling of one identified and one
neural network trained substructures, and two identified substructures. The results
obtained by proposed method will be compared with those obtained via solving the

coupled system entirely.
4.1 Nonlinear Structural Coupling from a Single DOF
4.1.1 Nonlinear Structural Coupling with Two Identified Substructures
In the first example, application of the proposed approach is presented on a
simple 8-DOF system shown in Figure 4.1. Parameters of substructures A and B are

given Table 4.1 and coupling elements at Table 4.2. The nonlinear elements used in

the first case study, case study 1, are defined in Table 4.3.

f(t) = F *sin (wt)

Figure 4.1 Schematic view of 8-DOF coupled system
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Table 4.1 Parameters of substructures A and B

Substructure A

m [kg]l | m, [kg] | mg[kg] | m, [k]
1 0,75 2 1
k, [N/m] |k, [N/m] | k, [N/m] | k, [N/m]
5000 2000 4000 6000
h, [N/m] | h, [N/m] | hy [N/m] | h, [N/m]
50 20 40 60
Substructure B
m; [kg] | Me [kal | m, [kg] | m; [kg]
0,75 1 1 2
ke [N/m] | kg [N/m] | k, [N/m] | kg [N/m]
3000 2000 5000 3000
hy [N/m] | hy [N/m] | h, [N/m] | hg [N/m]
30 20 50 30

Table 4.2 Parameters of coupling elements

k. [N/m]

h, [N/m]

4000

40
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Table 4.3 Nonlinear elements of substructures A and B

in case study 1

Nonlinear Connection DOFs Nonlinearity Type 'gggllc:c?;aerr:g
1-Ground Cubic Stiffness [N/m®] -1x10°
1-2 Cubic Stiffness [N/m3] -2x10°
2-3 Cubic Stiffness [N/m3] -10x10°
3-4 Cubic Stiffness [N/m3] -1x10°
5-6 Cubic Stiffness [N/m®] -1x10°
6-7 Cubic Stiffness [N/m3] -3x10°
7-8 Cubic Stiffness [N/m®] -1x10°
8-Ground Cubic Stiffness [N/m?] -5x10°

Normalized responses of the 1%, 3™ and the 8" DOFs obtained from the proposed

nonlinear coupling method and by solving the entire system

Figure 4.2, Figure 4.3, and Figure 4.4. The response of the system is obtained for
three different excitation amplitudes, 8N, 12N and 16N in order to observe the effect

of cubic stiffness nonlinearity.

x107°

—Linear System Solution
||— Solution of Entire System
- - -Solution of Proposed Method F=8N

N
)

n
T

F=12N

F=16N

Normalized Response (X/F) [m/N]
2

0 = | 1 |

directly are given in

|
2.4 25 2.6 2.7 2.8 2.9 3
Frequency (Hz)

3.1

Figure 4.2 Normalized response of the 1% DOF in case study 1
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Figure 4.3 Normalized response of the 3" DOF in case study 1
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2
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Figure 4.4 Normalized response of the 8" DOF in case study 1

It can be seen from the Figure 4.2, Figure 4.3, and Figure 4.4 that, natural frequency
is shifted due to cubic stiffness nonlinearity. Furthermore, more importantly the
proposed method is in exact agreement with the ones obtained from entire system

solution, even in unstable regions where the path turns back or intersects itself.

Phase angle of imaginary and reel part of the 1" DOF in case study 1 is shown in
Figure 4.5.
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Figure 4.5 Phase angle of the 1" DOF in case study 1

In the second case study, case study 2, 4-DOF system is obtained from the coupling
of a two 2-DOF systems as shown in Figure 4.6. Parameters of substructures A and
B, and coupling elements are given in Table 4.4 and Table 4.5, respectively. The

nonlinear elements present in the system are defined in Table 4.6.

Z o d o
il Zon L
BV ey BV ey 0 VL
my BI ms g ms B m,

L>f(t) = F *sin (wt)

Figure 4.6 Schematic view of 4-DOF coupled system
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Table 4.4 Parameters of substructures A and B

Substructure A Substructure B
m, [ka] | m, [kq] m, [kg] | m, [ka]
1 0,75 0,75 1
k, [N/m] | k, [N/m] k, [N/m] | k, [N/m]
5000 4000 3000 5000
h, [N/m] | h, [N/m] h, [N/m] | h, [N/m]
50 40 30 50

Table 4.5 Parameters of coupling elements

k, [N/m] | h, [N/m]
5000 50

Table 4.6 Nonlinear elements of substructures A and B in case study 2

Nonlinear Connection DOFs Nonlinearity Type 282#?;@::3
1-Ground Dry Friction [N] uN
1-2 Dry Friction [N] uN
3-4 Dry Friction [N] uN
4-Ground Dry Friction [N] uN

Normalized responses of the 1% and 3" DOFs obtained from the proposed nonlinear
coupling method and by solving the entire system directly are given in Figure 4.7,
and Figure 4.8. Responses of the coupled structure are given for an external forcing
of F=30N and for different slip loads. Perfect agreement between the results
obtained from the proposed nonlinear coupling method and the entire system solution

is observed which verifies the developed coupling method.
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Figure 4.7 Normalized response of the 1% DOF in case study 2
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Figure 4.8 Normalized response of the 3" DOF in case study 2

In the third case study, case study 3, 8-DOF system is obtained from the coupling of
a 6-DOF, 2-DOF systems as shown in Figure 4.9. Parameters of substructures A and
B, and coupling elements are given in Table 4.7 and Table 4.8, respectively. The

nonlinear elements present in the system are defined in Table 4.9.
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(t) = F *sin (wt)

Table 4.7 Parameters of substructures A and B

Figure 4.9 Schematic view of 8-DOF coupled sytem

Substructure A

m [kg] | m, [kg] | m, [kg] | m, [kg] | m, [kg] | m, [kq]
0,75 2 1 1 2 0,75
k [N/m] | &, [N/m] | k [N/m] | k, [N/m] | k [N/m] | K, [N/m]
3000 5000 4000 6000 6000 5000
h [N/m] | b, [N/m] | b, [N/m] [ b, [N/m] | b [N/m] | h, [N/m]
60 100 80 120 120 100

Table 4.8 Parameters of coupling elements

Substructure B

m, [kg] | m, [kg]
2 2
k, [N/m] | & [N/m]
3000 5000
h, [N/m] | h, [N/m]
60 100

k. [N/m]

h, [N/m]

2000

40
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Table 4.9 Nonlinear elements of substructures A and B in case study 3

Nonlinear Connection DOFs Nonlinearity Type I(\Ijgzil‘:‘?sizrr:g

1-Ground Cubic Stiffness [N/m®] 1x10°

1-2 Cubic Stiffness [N/mq] 2x10°

2-3 Cubic Stiffness [N/mq] 1x10°

3-4 Dry Friction [N] 4N, k=2000 N/m

5-6 Cubic Stiffness [N/m®] 1x10°

6-7 Cubic Stiffness [N/mq] 3x10°

7-8 Cubic Stiffness [N/m®] 1x10°
8-Ground Dry Friction [N] 4N, k=2000 N/m

Corresponding response plots of the coupled structure obtained from the proposed
nonlinear coupling method and by solving the entire system directly are compared in
Figure 4.10 and Figure 4.11 for the 1% DOF. In Figure 4.10, the response of the
coupled system is obtained for 12N, 24N and 36N excitation force amplitudes, while

the slip load of dry friction nonlinearities are kept constant as #N =100N . In Figure

4.11, responses of the coupled structure are given for an external forcing of F =12N

and for different slip loads. Perfect agreement between the results obtained from the
proposed nonlinear coupling method and the entire system solution is observed

which verifies the developed coupling method.
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Figure 4.10 Normalized response of the 1% DOF in case study 3
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Figure 4.11 Normalized response of the 1%t DOF in case study 3

Nonlinear Structural Coupling using Neural Networks

In the fourth case study, case study 4, 4-DOF system is obtained from the coupling of
a two 2-DOF systems as shown in Figure 4.12. As it can be seen from Figure 4.12
substructure A is chosen as identified substructure, while substructure B is chosen

as neural network trained substructure. Although substructure B is added to
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coupling equations as a black box, schematic view of it can be seen from figure 4.13.
Parameters of substructures A and B, and coupling elements are given in Table 4.10
and Table 4.11, respectively. It should be noted that coupling elements are not linear
and there exists friction damping nonlinearity in the coupling elements. The
nonlinear elements present in the system are defined in Table 4.12.

X .4
’7 k2! h :‘ ’7 1
—AN—] AN— x, °
my m, Neural Network Trained Data
|->f(t) = F *sin (wt) Ke, e

Figure 4.12 Schematic view of 4-DOF coupled system

X .4
] e s
m, m;
o X —<H
Ks,hy Ky, h s

Figure 4.13 Schematic view of neural network trained substructure

Table 4.10 Parameters of substructures A and B

Substructure A Substructure B
m, [kg] | m, [kq] m, [kg] | m, [kq]
1 2 0,75 0,75
k, [N/m] | k, [N/m] k, [N/m] | k, [N/m]
5000 4000 3000 5000
h, [N/m] | h, [N/m] h, [N/m] | h, [N/m]
50 40 30 50
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Table 4.11 Parameters of coupling elements

k. [N/m]

h, [N/m] A,

5000

50 uN_, k =2000 N/m

Table 4.12 Nonlinear elements of substructures A and B in case study 4

Nonlinear Connection DOFs Nonlinearity Type gggz?fiaeﬂg
1-Ground Dry Friction [N] 4N, k=2000 N/m
1-2 Dry Friction [N] 4N, k=2000 N/m
3-4 Dry Friction [N] 4N, k=2000 N/m
4-Ground Dry Friction [N] 4N, k=2000 N/m

Normalized responses of the 1%, and the 2" DOFs obtained from the proposed

nonlinear coupling method with using neural network and by solving the entire
system directly are given in Figure 4.14, and Figure 4.15. While, lin-lin scale is used
in “(a)”, log-lin scale is used “(b)”. Responses of the coupled structure are given for
an external forcing of F =25N. In first part of case study 4, slip load between

coupled elements, uN., and slip loads between internal elements, 4N , are same.

Perfect agreement between the results obtained from the proposed nonlinear coupling

method with using neural network and the entire system solution is observed which

verifies the developed coupling m

ethod.
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Figure 4.14 (a) Normalized response of the 1% DOF in case study 4
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Figure 4.14 (b) Normalized response of the 1% DOF in case study 4
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Figure 4.15 (b) Normalized response of the 2" DOF in case study 4

In second part of case study 4, slip loads between internal elements are chosen as

uN =1N

responses of the 1% DOFs obtained from the proposed nonlinear coupling method

with using neural network and by solving the entire system directly are given in

Figure 4.
F =25N

nonlinear coupling method with using neural network and the entire system solution

while slip load of the coupling element, uN, is varied. Normalized

16. Responses of the coupled structure are given for an external forcing of

. Perfect agreement between the results obtained from the proposed

is observed which verifies the developed coupling method.
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Phase angle of imaginary and reel part of the 1" DOF in case study 4 is shown in
Figure 4.17.
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Figure 4.17 Phase angle of the 1" DOF in case study 4

In the fifth case study, case study 5, 6-DOF system is obtained from the coupling of a
2-DOF, 4-DOF systems. Different from case study 4, in case study 5, a 4-DOF

system is used as substructure B, shown in Figure 4.18. Parameters of substructures
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A and B, and coupling elements are given in Table 4.13 and Table 4.14,

respectively. The nonlinear elements present in the system are defined in Table 4.15.

A A X
{sgrond B il I il B el
B e A =
% Mg ms m, mg
R B - = B

Figure 4.18 Schematic view of neural network trained substructure

Table 4.13 Parameters of substructures A and B

Substructure A
m, [kg] m, [kg]
0,8 0,5
k, [N/m] k, [N/m]
7000 4000
h, [N/m] h, [N/m]
70 40
Substructure B
m, [kg] | m, [kg] m, [kg] | m, [kg]
1 0,8 0,75 1
k, [N/m] | k, [N/m] k; [N/m] | k, [N/m]
3000 4000 5000 3000
h, [N/m] | h, [N/m] h, [N/m] | h, [N/m]
30 40 50 30
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Table 4.14 Parameters of coupling elements

k. [N/m] | h, [N/m]
4000 40

Table 4.15 Nonlinear elements of substructures A and B in case study 5

Nonlinear Connection DOFs Nonlinearity Type 'El;ggllc'f?fiaeﬂg
1-Ground Dry Friction [N] 4N, k=1500 N/m
1-2 Dry Friction [N] 4N, k=1500 N/m
3-4 Dry Friction [N] 4N, k=1500 N/m
4-5 Dry Friction [N] 4N, k=1500 N/m
5-6 Dry Friction [N] 4N, k=1500 N/m
6-Ground Dry Friction [N] 4N, k=1500 N/m

Normalized responses of the 1%, and the 2" DOFs obtained from the proposed
nonlinear coupling method with using neural network and by solving the entire
system directly are given in Figure 4.19, and Figure 4.20. While, lin-lin scale is used
in “(a)”, log-lin scale is used “(b)”. Responses of the coupled structure are given for

an external forcing of F =25Nand for different slip loads.
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Figure 4.19 (a) Normalized response of the 1% DOF in case study 5
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Figure 4.19 (b) Normalized response of the 1% DOF in case study 5
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Figure 4.20 (a) Normalized response of the 2" DOF in case study 5
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Figure 4.20 (b) Normalized response of the 2"Y DOF in case study 5

The proposed method with using neural network is in exact agreement with the ones
obtained from entire system solution, even in unstable regions where the path turns
back or intersects itself.

In the sixth case study, case study 6, 8-DOF system is obtained from the coupling of
a 2-DOF, 6-DOF systems. Different from case study 4 and 5, in case study 6, a 6-
DOF system is used as substructure B, shown in Figure 4.21. Parameters of
substructures A and B, and coupling elements are given in Table 4.16 and Table

4.17, respectively. The nonlinear elements present in the system are defined in Table
4.18.

A A

\‘ ’_’k7,h7\‘ ke,he\‘ ks,hs

me [ me [ me [ me g me s

Figure 4.21 Schematic view of neural network trained substructure
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Table 4.16 Parameters of substructures A and B

Substructure A

m, [kg] m, [kd]
1 1,5

k [N/'m] | k, [N/m]
7000 4000

h [Nm] | h, [N/m]
70 40

Substructure B

m, [kg] | m, [kg] | ms [kg] m, [kg] m, [kg] m, [kg]
06 1 08 1 0,75 1,2

k [N/m] | k [N/m]| k [N/m] | Kk [N/m] | & [N/m] | & [N/m]
3000 4000 5000 3000 4000 5000

h, [N/m] | b, [N/m] | n [N/m] | b [N/m] | h [N/m] | h [N/m]
30 40 50 30 40 50

Table 4.17 Parameters of coupling elements

k. [N/m]

h, [N/m]

4000

40

Table 4.18 Nonlinear elements of substructures A and B in case study 6

Nonlinear Connection DOFs Nonlinearity Type gggg?siaerr:g
1-Ground Dry Friction [N] 4N, k=2500 N/m
1-2 Dry Friction [N] 4N, k=2500 N/m
3-4 Dry Friction [N] 4N, k=2500 N/m
4-5 Dry Friction [N] 4N, k=2500 N/m
5-6 Dry Friction [N] 4N, k=2500 N/m
6-7 Dry Friction [N] 4N, k=2500 N/m
7-8 Dry Friction [N] 4N, k=2500 N/m
8-Ground Dry Friction [N] 4N, k=2500 N/m
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Normalized responses of the 1%, and the 2" DOFs obtained from the proposed
nonlinear coupling method with using neural network and by solving the entire
system directly are given in Figure 4.22, and Figure 4.23. While, lin-lin scale is used
in “(a)”, log-lin scale is used “(b)”. Responses of the coupled structure are given for
an external forcing of F =25N and for different slip loads. Perfect agreement
between the results obtained from the proposed nonlinear coupling method with
using neural network and the entire system solution is observed which verifies the

developed coupling method.
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Figure 4.22 (a) Normalized response of the 1% DOF in case study 6
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Figure 4.22 (b) Normalized response of the 1% DOF in case study 6
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Figure 4.23 (a) Normalized response of the 2" DOF in case study 6
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4.1.3 Comparison of Computational Time Required

In this section, developed nonlinear structural coupling approach is compared with
entire system solution. For this comparison two main parts are considered. In the first
part, time requirement for solution is compared for coupling of two identified
substructure, while in the second part, it is done for one identified and neural

network trained substructure. In the first part, time requirement is compared for

54



different forces and different substructure sizes. In the second part, neural network

trained substructure size, so, size of the coupled system is different.

The calculations are done on a computer having a processor Intel Core i7-Q720 CPU
@ 1.60 GHz with 4,00 GB of RAM.

In the first part, computational time requirement is compared for a simple 8-DOF
system shown in Figure 4.1. The response of the system is obtained for three
different excitation amplitudes, 8N, 12N and 16N in order to observe the effect of
external forcing in computational time. From the results in Table 4.19, it can be
observed that time requirement in proposed method is more than entire system
solution for all external forcings. However, usage of parallel processing to solve each
substructure may increase efficiency of proposed method. Although, it is a
reasonable assumption, it is not achieved via MATLAB parallel processing tool. It is
thought that it should be managed with more proper programs which are directed to

this topic.

Table 4.19 Comparison of calculation times for different external forcing values

External Proposed | Entire System
Forcing [N] | Method [s] | Solution [s]
8 21.44 15.20
12 30.8 22.05
16 39.52 30.40

Although, application of proposed method in two identified system is not observed as
time efficient, it can be said that it is important to show validation of proposed
method. Furthermore, benefit of the proposed method in computational time is going

to be shown in the following part.

In the second part, computation time is compared between entire system solution and

proposed method with using neural networks. In all of case studies, substructure A is
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a 2-DOF system, while neural network trained substructure B is varying between a
2-DOF, 4-DOF, 6-DOF, Therefore, comparison which can be seen from Table 4.20
is managed for different size of coupled system. For an effective comparison external
forcing is chosen same in all of case studies as F = 25N.

Table 4.20 Comparison of calculation times for different coupled system sizes

# of DOF of Proposed Method with Entire System
Coupled . ]
s using Neural Networks [s] Solution [s]
ystem
4-DOF 658,6 22,18
6-DOF 667,4 41,08
8-DOF 673,6 73,98

It can be observed from Table 4.20 that time requirement for entire system solution is
increased with increasing of number of DOF of coupled system while computational
time of the proposed method remains nearly the same. It is a reasonable result, since
neural network trained substructure is not solved again for coupling procedure;
therefore, time requirement of the proposed method remains nearly constant. In
Figure 4.24, computation time requirement of the entire system solution and the
proposed method with neural networks is shown. It can be concluded that the

proposed method is more efficient than solving the entire system for large systems.
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Figure 4.24 Comparison of computational time between proposed method with
neural networks and entire system solution
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4.2 Nonlinear Structural Coupling from Multiple DOFs

421

In the seventh example, application of the proposed approach is presented on a
simple 4-DOF system shown in Figure 4.25. Different from section 4.1 structural
coupling is done from multiple DOFs. Parameters of substructures A and B are

given Table 4.21 and coupling elements at Table 4.22. The nonlinear elements used

in the seventh case study, case study 7, are defined in Table 4.23.

f(t) = F *sin (wt)
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Figure 4.25 Schematic view of 4-DOF coupled system
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Table 4.21 Parameters of substructures A and B

Substructure A Substructure B
m, [ka] | m, [kq] m, [kg] | m, [ka]
1 0,75 0,75 1
k, [N/m] | k, [N/m] k, [N/m] | k, [N/m]
3000 4000 3000 5000
h, [N/m] | h, [N/m] h, [N/m] | h, [N/m]
30 40 30 50

Table 4.22 Parameters of coupling elements

Kk, [N/m]

h, [N/m]

k., [N/m]

h., [N/m]

5000

50

4000

40

Table 4.23 Nonlinear elements of substructures A and B in case study 7

Nonlinear Connection DOFs Nonlinearity Type 'gggllc:c?;aerr:g
1-Ground Cubic Stiffness [N/m3] -0.5x10°
1-2 Cubic Stiffness [N/m®] -1x10°
3-4 Cubic Stiffness [N/m®] -2x10°
4-Ground Cubic Stiffness [N/m®] -1x10°

Normalized response of the 1% DOF obtained from the proposed nonlinear coupling
method and by solving the entire system directly is given in Figure 4.26. The
response of the system is obtained for three different excitation amplitudes, 5N, 8N
and 10N. The proposed method is in exact agreement with the ones obtained from

entire system solution, even in unstable regions where the path turns back or

intersects itself.
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Figure 4.26 Normalized response of the 1% DOF in case study 7

In the eigthth case study, application of the proposed approach is obtained from the
coupling of a 4-DOF, 2-DOF systems as shown in Figure 4.27. Different from
section 4.1 structural coupling is done from multiple DOFs. Parameters of
substructures A and B are given Table 4.24 and coupling elements at Table 4.25.

The nonlinear elements used in the eighth case study are defined in Table 4.26.

- —>f(t)=F*sin;(rwt) . Y
kllhl k2;h2 k3,h3\! _k4,h4\!
§ m; m, m3 my
® —X —< — X<
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LXJ ]
kSth kG!h6

Figure 4.27 Schematic view of 4-DOF coupled system
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Table 4.24 Parameters of substructures A and B

Substructure A Substructure B
m [kal | m, [kal | my[ka] | m, [kq] m; [kg] | mg [ka]
1 0,75 2 1 0,75 1
k, [IN/m] | k, [N/m] | k; [N/m] | k, [N/m] kg [N/m] | k¢ [N/m]
5000 4000 3000 4000 3000 5000
h, [N/m] | h, [N/m] | hy [N/m] | h, [N/m] hy [N/m] | hy [N/m]
25 20 15 20 15 25

Table 4.25 Parameters of coupling elements

Kk, [N/m]

h, [N/m]

k., [N/m]

h., [N/m]

5000

25

3000

15

Table 4.26 Nonlinear elements of substructures A and B in case study 8

Nonlinear (_:onnection Nonlinearity Type Nonlipe.arity
Coordinates Coefficients
1-Ground Cubic Stiffness [N/m3] 1x10°
1-2 Cubic Stiffness [N/m®] 2x10°
2-3 Cubic Stiffness [N/m®] 1x10°
3-4 Cubic Stiffness [N/m®] 2x10°
5-6 Cubic Stiffness [N/m®] 1x10°
6-Ground Cubic Stiffness [N/m®] 2x10°

Normalized response of the 1% DOF obtained from the proposed nonlinear coupling
method and by solving the entire system directly is given in Figure 4.28. The
response of the system is obtained for three different excitation amplitudes, 6N, 9N
and 12N. It is observed that the results obtained from the proposed nonlinear

coupling method and the entire system solution are in perfect agreement, for this case

as well.
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Phase angle of imaginary and reel part of the 1" DOF in case study 10 is shown in
Figure 4.29.
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Figure 4.28 Normalized response of the 1% DOF in case study 8
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Figure 4.29 Phase angle of the 1" DOF in case study 8

4.2.2  Nonlinear Structural Coupling with using Neural Networks

In the ninth case study, application of the proposed approach is obtained from the

coupling of two 2-DOF systems as shown in Figure 4.30. As it can be seen from
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Figure 4.30 substructure A is chosen as identified substructure, while substructure
B is chosen as neural network trained substructure. Schematic view of substructure
B is shown at Figure 4.31. Parameters of substructures A and B are given Table

4.27 and coupling elements at Table 4.28. The nonlinear elements used in the ninth
case study are defined in Table 4.29.

< f(t) = F *sin (W)
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Figure 4.30 Schematic view of coupled system
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Figure 4.31 Schematic view of neural network trained substructure

Table 4.27 Parameters of substructures A and B

Substructure A

Substructure B

m, [kg] | m, [kg] m, [kg] | m, [kg]
1,2 2 0,7 0,75
k, [N/m] | k, [N/m] k, [N/m] | k, [N/m]
4000 4000 3000 7000
h, [N/m] | h, [N/m] h, [N/m] | h, [N/m]
40 40 30 70

Table 4.28 Parameters of coupling elements

K, [N/m]

h, [N/m]

k., [N/m]

h., [N/m]

300

3

200

2
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Table 4.29 Nonlinear elements of substructures A and B in case study 9

Nonlinear Connection DOFs Nonlinearity Type gggg?siaerr:g
1-Ground Dry Friction [N] 4N, k=1500 N/m
1-2 Dry Friction [N] 4N, k=1500 N/m
3-4 Dry Friction [N] 4N, k=1500 N/m
4-Ground Dry Friction [N] 4N, k=1500 N/m

Normalized response of the 1% DOF obtained from the proposed nonlinear coupling
method with using neural network and by solving the entire system directly is given
in Figure 4.32. While, lin-lin scale is used in “(a)”, log-lin scale is used “(b)”.
Responses of the coupled structure are given for an external forcing of F =25Nand
for different slip loads. It is observed that the results obtained from the proposed

nonlinear coupling method with using neural network and the entire system solution

are in perfect agreement.
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Figure 4.32 (a) Normalized response of the 1% DOF in case study 9
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Figure 4.32 (b) Normalized response of the 1% DOF in case study 9
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CHAPTER 5

DISCUSSION AND CONCLUSION

In this study, a new structural coupling method is introduced which is capable of
coupling of two nonlinear substructures, where the connection elements can be

nonlinear as well.

A nonlinear solution method utilizing describing function method with a single
harmonic is used to obtain solution of substructures, which are employed in the
solution of the coupled system and training of the substructures with using neural
networks. Cubic stiffness and hysteretic dry friction are used as nonlinear elements in
the substructures, so brief information is given about these nonlinearities. Numerical
solution techniques are introduced to solve nonlinear algebraic equations obtained by

using describing function method.

Compatibility and equilibrium equations, which are derived from existing linear
coupling methodology, are added to nonlinear equations of motions in order to model
coupled system. Model of coupled system consists of two ways, that coupling of two
identified substructures or coupling of one identified and one neural network trained
substructures. The resulting nonlinear equations of motion of the coupled system are

solved by using Newton’s method with arc-length continuation.

Applications of the proposed nonlinear coupling approach are demonstrated by
numerical case studies. Two main parts, which has two subsections, are considered in
the case studies. In the first one two substructures are coupled from a single DOF;
whereas, in the second example, two substructures are coupled from two DOFs. In

the subsections difference between two identified substructure coupling and
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identified and neural network trained substructure coupling is studied. Normalized
responses of the selected DOFs obtained from the proposed nonlinear coupling
method and by solving the entire system directly are compared in order to verify the
proposed method for different nonlinear systems. The results obtained from the
proposed method and the ones obtained by directly solving the entire system agree
perfectly with each other, which verifies the developed nonlinear coupling method.
Also time requirement in selected case studies is studied. Time requirement to solve

coupled system with neural networks is seen more efficient for large systems.

Proposed method is capable of solving the coupled system with nonlinearities at any
DOFs. This is especially important, since location of the nonlinearities is not
important to solve the coupled system. It should be noted that in large systems time

efficiency can be seen clearly.

In this study, coupling of nonlinear systems is achieved successfully using the
proposed method. However, there are some aspects needed to be studied. First of all,
training data generation is one of the most crucial parts of the second part of the
method. There may be practical limits to generate training data as the number of
possible nonlinear systems increases. Moreover, proposed method is seen less time
efficient in small systems. The method may be improved such that instead of neural
network toolbox, same work which is done by neural network toolbox may be done
with a user defined code.
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ABSTRACT

In mechanical design, modeling and analysis of a complex structure can be simplified with
dividing the structure into substructures; therefore, any change in the structure can be addressed easily
which is referred as “structural coupling”. Utilization of proper coupling techniques, it is possible to
understand the behavior of the whole structure by considering the behavior of its substructures. For
linear structures, coupling is a common technique; however, in most of the engineering structures,
nonlinearities are also encountered; therefore, it is required to extend linear coupling methods to
nonlinear systems. Although, there exists studies on nonlinear coupling, existing methods are limited
to coupling of structures where one substructure is linear and the other is nonlinear or two linear
substructures coupled with a nonlinear element. In this paper, a structural coupling method is
proposed to couple two-nonlinear substructures. Similar to linear coupling methods, the proposed
method considers the compatibility of internal forces at the connection degrees of freedom in addition
to displacements. Since, the substructures are nonlinear, the resulting system of nonlinear differential
equations are converted into a set of nonlinear algebraic equations by using Describing Function
Method, which are solved by using Newton’s method with arc-length continuation.

Keywords: Structural Coupling, Nonlinear Structural Coupling, Vibration of Nonlinear Structures

1. INTRODUCTION

In the design of mechanical systems, engineers should test and analyze each prototype created
in order to provide a qualified and optimized design which has a wide range of requirements. Over the
last 40 years, engineering structures are analyzed by the finite element method which is proven to be a
reliable tool. However, in order finalize the design, whole structure has to be analyzed several times;
therefore, an alternative approach is required in order to decrease the number of analyses and tests.
Utilizing structural coupling, modeling and analysis of a complex structure can be simplified by
dividing the structure into substructures and applying the required changes only on one or some of the
substructures, where each substructure can be analyzed individually.

Substructure analysis of linear systems is a well-known subject dated back to 1960s by the
works of Bishop and Johnson [1] on Receptance method and Hurty [2] on Component Mode

75



Synthesis which was a simplified version of the method developed by Craig and Bampton [3]. Many
different substructure and coupling methods for linear structures are developed by Rubin [4],
Przemieniecki [5], Urgueira [6], Ewins [7], Klosterman and Lemon [8] and Ren and Beards [9]. All of
these methods are developed for linear systems and the methodology is based on the compatibility of
internal forces at the connection degrees of freedom in addition to the compatibility of the
displacements. However, there is a need to extend linear coupling methods to non-linear systems;
since many structures, which are considered as linear, are nonlinear in reality.

Analysis of nonlinear systems is much more complicated compared to linear systems [10] due
to their response dependent behavior. In this paper, Describing Function Method (DFM) is used for
the solution of nonlinear systems which was introduced by Krylov and Bogolyubov [11] in order to
analyze nonlinear control problems based on an earlier work of VVan der Pol [12]. Later, Taylor [13]
replaced each nonlinear element with a quasilinear descriptor to define this approach.

Solution of multi degree of freedom nonlinear system with symmetrical nonlinearities is
introduced by Budak and Ozgiiven [14, 15], which utilizes a special algebra. Later, Tanrikulu [16] and
Tanrikulu et. AL[17] extended this formulation for any type of nonlinearity by replacing this special
algebra with describing functions.

Although, several studies on structural coupling of linear systems and modelling systems with
nonlinearities are available in literature, the numbers of studies that consider nonlinear structural
coupling are limited. Existing studies on nonlinear structural coupling are focused on coupling of
structures where one substructure is linear and the other one is nonlinear or coupling of two linear
substructures with a nonlinear coupling element. Watanabe and Sato [10] suggested "Nonlinear
Building Block" approach, for coupling of linear substructures with nonlinear coupling elements.
Comert and Ozgiiven [18] developed a method for coupling of linear substructures with nonlinear
connecting elements by using DFM, in which FRFs of the linear substructures are used. Ferreira and
Ewins [19] proposed a new Nonlinear Receptance Coupling Approach and Ferraira [20] extended the
approach with Multi-Harmonic Nonlinear Receptance Coupling Approach. Both approaches are
capable of coupling a linear structure with a nonlinear structure with different types of joints. Chong
and Imregiin [21] suggested an iterative algorithm for the coupling of nonlinear structures with linear
ones.

In this paper, an approach is developed to dynamic reanalysis of nonlinear substructures.
Different from the existing methods in literature, proposed method is capable of coupling of two
nonlinear substructures. Moreover, with the proposed coupling method, in addition to linear coupling
elements, nonlinear coupling elements can as well be used. The proposed method considers the
compatibility of internal forces at the connection degrees of freedom in addition to the displacements,
and uses both of these equations to couple nonlinear substructures. Since, the substructures are
nonlinear, the resulting system of nonlinear differential equations are converted into a set of nonlinear
algebraic equations by using Describing Function Method, which are solved by using Newton’s
method with arc-length continuation.

2. THEORY

2.1. Structural Coupling of Linear Substructures

Consider two substructures A and B, shown in Fig. 1, where internal DOFs are represented
by subscripts, i, and iz respectively and the connection DOFs are represented by subscripts ¢, and

Cg , respectively.
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Substructure A je———— Coupling Elements Substructure B

Ca

Fig. 1 Schematic view of structural coupling

The corresponding equilibrium of each substructure can be written as

g
A

where {x, } and {x, | are generalized displacement vectors for internal DOFs, {x, } and {x, } are

Ca

(RE—
Il

generalized displacement vectors for coupled DOFs of substructures A and B, respectively. {fiA}
and {f, } are internal forcing vectors for internal DOFs, {f, } and {f, } are coupled forcing vectors

for internal DOFs of substructures A and B , respectively. Lastly, [Z A] and [ZB] are the impedance

matrices of substructures A and B . Equilibrium of the forces between the connection DOFs can be
written as

(fy={f}+{f.} 3)

where { f_} is the external force acting on the connection DOFs. Considering the compatibility of
displacements of the substructures the following relation can be written

[ J(De } = 1) = {1} ()

where [D is dynamic stiffness matrix of coupling elements. Substituting compatibility and

coupling]
equilibrium equations, i.e. Egs. (3) and (4), into Egs. (1) and (2), the overall impedance of the
assembled system can be written as

(2] [0 2]
[z]=] [0] [z, ] 12, ] : (5)
[Ze0] [Za] [Zee J#[ 20 ]
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2.2. Structural Coupling of Two Nonlinear Substructures

The equation of motion of the nonlinear substructures A and B excited with a harmonic
external forcing { f (t)}, can be written as

[MLJ{% O} +[Cal {0 @)+ [H (X O + [KaT{xa O} +{ fy, O} = { £, )}

, 6
[Mg ]{%s (0} +[Co ]{%s ()} +i[Hg ]{Xs )} +[ Ky [ {x0 O} +{ fy, O} = { o ()} ©

where [M], [C], [H] and [K] are the mass, viscous damping, structural damping and stiffness
matrices of the linear system and {fN (t)} is the nonlinear forcing vector. Generalized displacement

vectors {X,(t)} and {X;(t)} can be written as

X0} = {g: i} X ) = {fii} , 7

Ca

and external forcing vectors { f,(t)} and {f;(t)} can be written as

50 a0 o) K

where {F, | and {F, } are external forcing vectors acting on internal DOFs and {F, }| and {F, | are
external force vectors acting on the coupled DOFs. If the external forcing, {f(t)} is periodic,

response of the system, {x(t)} , can as well be assumed periodic, which can be expressed as follows

{f(t)}={F}0+Im{
{x(t)}={X}0+Im{

(7, |, ©)
(x). ~e““”’} . (10)

DM 20

1

3
I

Utilizing Describing Function Method (DFM) [14, 22] and substituting Egs. (7) and (8) into Eq. (6) as

the following result is obtained
M{}{} }}
e

){{2} {{a

where, [A] is the “nonlinearity matrix”, which is function of the displacement vector. The elements of
nonlinearity matrix are defined as

X.

Ia

X

(—coz[M]+i-a)[C]+i[H]+[K]+[A]){§
{ (11)
[K]+[4]

(—a)z[M]+i~a)[C]+i[H]+
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A]kJ :kai k=]
j=1

[A]kj =Y k# ]

, (12)

where v,; is describing function of the nonlinearity between the k™ and the j™ degrees of freedom,

which is a quantity complex in general. For k = j nonlinearity is between the k™ degrees of freedom
and the ground. Details of DFM can be found in [14, 22].
Internal forcing vector {ch} can be written as

(1, ) =[Ol J(Xe. )~ (X ) = (- M+ 0[CT+i [T+ KT [A])({X., )~ {X..}) (23)

where, [DNL

coupling

] is the nonlinear dynamic stiffness matrix of the connection elements. Substituting
Egs. (3) and (13), into Eq. (11), equation of motion can be obtained as

X,

{ }} { {F.} }
X ) R [Pl (X ) (X4 ) . (14)
X }} { {F. ) }
) R+ =[P (X (X))

Eq. (14) can be solved by a nonlinear equation solver and in this paper; Newton’s method with arc-
length continuation [23] is used. Algorithm of the proposed nonlinear coupling method is given in Fig.
2.

(-0’ [M]+i-0[C]+i[H]+ K]+[A]){

>

X

Cs

(—a)z[M]+i-w[C]+i[H] [K]+ [A]){
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Initial
Guess

l

X

lA

Solve Substructure B

Until (XCA )Hl—(XCA )i <10°®

Solve Substructure A

X X

Ia Ca

Fig. 2 Algorithm of the proposed method
2.3. Describing Functions of the Nonlinear Elements Used

In this paper, cubic stiffness and hysteretic dry friction are used as nonlinear elements in the
substructures. The nonlinear forcing in a cubic stiffness element can be given as

o=k, %, (15)
where K, is the coefficient of the cubic stiffness nonlinearity. Describing function of the cubic
stiffness nonlinearity is given as

v=%-kc-X2, (16)

where X is the amplitude of the relative displacemetn between the two ends of the cubic stiffness
element.

There exists several friction models in the literature and in this paper, a one-dimensional
Coulomb friction model with constant normal load is used. One-dimensional dry friction element and
the corresponding hysteresis curve for a single harmonic input are given in Fig. 3.
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N/u

- o :‘>

U, friction coefficient

(a) (b)

Fig. 3 (a) Schematic drawing, (b) corresponding hysteresis curve for dry friction nonlinearity [22]
Describing function of the hysteresis curve given in Fig. 3(a) can be written as [22, 24]

Cu- X—-2.4-NY k- 4-u-N(u-N—=k-X
ll(k—z /;( Nj\/l—Kk X =24 N] X ‘/’1—5]—{ KN (p ) for Ik-X [> uN
V=

k-X Vs 2 kX2
k for | k- X |< uN
(17)

where, k is the contact stiffness between rubbing surfaces, N is the constant normal force, 4 is the
dry friction coefficient and vy,

v =;r—asin(k'xk__#j. (18)

3. CASE STUDIES

In this section, the proposed coupling method is demonstrated on different model. In the first one,
substructures are coupled from a single DOF whereas in the second one, they are coupled from two
DOFs.

3.1. Example 1: Coupling from a Single DOF

In the first example, application of the proposed approach is presented on a simple 8-DOF
system shown in Fig. 4. Parameters of substructures A and B are given Table 1 and coupling
elements at Table 2. The nonlinear elements used in the first case study, case study 1, are defined in
Table 3.

f(t) = F *sin (wt)

Fig. 4 Schematic view of 8-DOF coupled system
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Table 1 Parameters of substructures A and B

Substructure A Substructure B
m, [kg] | m, [kg] | m, [ka] | m, [ka] | ms [kg] | mg [kg] | m; [kg] | m, [ka]
1 0,75 2 1 0,75 1 1 2

k, [N/m] | k, [N/m] | k; [N/m] | k, [N/m] | kg [N/m] | Ky [N/m] | Kk, [N/m] | kg [N/m]
5000 2000 4000 6000 3000 2000 5000 3000
h [N/m] | h, [N/m] | hy [N/m] | h, [N/m] | hy [N/m] | hy [N/m] | h, [N/m] | hy [N/m]
50 20 40 60 30 20 50 30

Table 2 Parameters of coupling elements

k, [N/m] | h, [N/m]
4000 40

Table 3 Nonlinear elements of substructures A and B in case study 1

Nonlinear Connection DOFs Nonlinearity Type 222;}?;2%3
1-Ground Cubic Stiffness [N/m?] -1x10°
1-2 Cubic Stiffness [N/m?] -2x10°
2-3 Cubic Stiffness [N/m?] -10x10°
3-4 Cubic Stiffness [N/m?] -1x10°
5-6 Cubic Stiffness [N/m?] -1x10°
6-7 Cubic Stiffness [N/m?] -3x10°
7-8 Cubic Stiffness [N/m?] -1x10°
8-Ground Cubic Stiffness [N/m?] -5x10°

Normalized response of the 1% and the 8" DOFs obtained from the proposed nonlinear coupling
method and by solving the entire system directly are given in Fig. 5 and Fig. 6. The response of the
system is obtained for three different excitation amplitudes, 8N, 12N and 16N in order to observe the
effect of cubic stiffness nonlinearity.
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Fig. 5 Normalized response of the 1% DOF in case study 1
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Fig. 6 Normalized response of the 8" DOF in case study 1

It can be seen from the Fig. 5 and Fig. 6 that, natural frequency is shifted due to cubic stiffness
nonlinearity. Furthermore, more importantly the proposed method is in exact agreement with the ones
obtained from entire system solution, even in unstable regions where the path turns back or intersects
itself.

In the second case study, case study 2. 8-DOF system is obtained from the coupling of a 6-DOF,
2-DOF systems as shown in Fig. 7. Parameters of substructures A and B, and coupling elements are
given in Table 4 and Table 5, respectively. The nonlinear elements present in the system are defined
in Table 6.

() = F *sin (wt) orlle

Fig. 7 Schematic view of 8-DOF coupled system
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Table 4 Parameters of substructures A and B

Nonlinear Connection Coordinates

Nonlinearity Type

Substructure A Substructure B
m [kg] | m, [kg] | m; [kg] | m, [ka] | ms [ka] | mg [kg] | m; [kg] | m, [kq]
0,75 2 1 1 2 0,75 2 2
k, [N/m] | k, [N/m] | k; [N/m] | k, [N/m] | kg [N/m] | k¢ [N/m] | Kk, [N/m] | kg [N/m]
3000 5000 4000 6000 6000 5000 3000 5000
h [N/m] | h, [N/m] | hy [N/m] | h, [N/m] | hy [N/m] | hy [N/m] | h, [N/m] | hy [N/m]
60 100 80 120 120 100 60 100
Table 5 Parameters of coupling elements
k. [N/m] | h, [N/m]
2000 40
Table 6 Nonlinear elements of substructures A and B in case study 2
Nonlinearity

Coefficients

1-Ground Cubic Stiffness [N/m?] 1x10°
1-2 Cubic Stiffness [N/m?] 2x10°
2-3 Cubic Stiffness [N/m?] 1x10°
3-4 Dry Friction [N] uN
4-5 Cubic Stiffness [N/m?] 1x10°
5-6 Cubic Stiffness [N/m?] 3x10°
7-8 Cubic Stiffness [N/m?] 1x10°

8-Ground Dry Friction [N] uN

Corresponding response plots are plotted in Fig.8 and Fig.9 for the 15t DOF. Normalized responses of
the coupled structure obtained from the proposed nonlinear coupling method and by solving the entire
system directly are compared in Fig. 8 and Fig. 9. In Fig. 8, the response of the coupled system is
obtained for 12N, 24N and 36N excitation force amplitudes, while the slip load of dry friction
nonlinearities are kept constant as #N =100N . In Fig.9, responses of the coupled structure are given

for an external forcing of F =12N and for different slip loads. Perfect agreement between the results
obtained from the proposed nonlinear coupling method and the entire system solution is observed

which verifies the developed coupling method.
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Fig. 9 Normalized response of the 1" DOF in case study 2
3.2. Example 2: Coupling from Multiple DOFs
In this section, a 6-DOF system is used as a case study as shown in Fig. 10. Parameters of

substructures A and B, and coupling elements are given in Table 7 and Table 8. The nonlinear
elements used in the third case study, case study 3, are defined in Table 9.
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f(t) = F *sin (wt)
A

k21h;‘

SN
——

Fig. 10 Schematic view of 6-DOF coupled system

Table 7 Parameters of substructures A and B

Substructure A
m [kg] | m, [ka] | my [kg] | m, [kg]
1 0,75 2 1
k, [N/m] | k, [N/m] | k; [N/m] | k, [N/m]
5000 4000 3000 4000
h [N/m] | h, [N/m] | hy [N/m] | h, [N/m]
25 20 15 20

v a
k3,h3\‘ | k4!h4\‘
AN— _ AA—
m, m,
kc17hcl kc2yhc2
—AN— _/V\,
m5 mG
— X X
| 5
kSth k6!h6

Substructure B
m; [kgl | ms [kg]
0,75 1
ks [N/m] | ks [N/m]
3000 5000
hy [N/m] | hy [N/m]
15 25

Table 8 Parameters of coupling elements

k, [N/m]

h, [N/m]

k, [N/m]

h, [N/m]

5000

25

3000

15
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Table 9 Nonlinear elements of substructures A and B in case study 3

Nonlinear Connection Coordinates Nonlinearity Type 2822?;?;2
1-Ground Cubic Stiffness [N/m?] 1x10°
1-2 Cubic Stiffness [N/m?] 2x10°
2-3 Cubic Stiffness [N/m?] 1x10°
34 Cubic Stiffness [N/m?] 2x10°
5-6 Cubic Stiffness [N/m?] 1x10°
6-Ground Cubic Stiffness [N/m?] 2x10°

Normalized response of the 1%t DOF obtained from the proposed nonlinear coupling method and by
solving the entire system directly is given in Fig. 11. The response of the system is obtained for three
different excitation amplitudes, 6N, 9N and 12N. It is observed that the results obtained from the
proposed nonlinear coupling method and the entire system solution are in perfect agreement, for this
case as well.

——— Linear System Solution
—— Solution of Entire System
- = = Solution of Proposed Method

Normalized Response (X/F) [m/N]

4.6 4.7 48 49 5 5.1 5.2 5.3
Frequency (Hz)

Fig. 11 Normalized response of the 1" DOF in case study 3

4. DISCUSSION AND CONCLUSION

In this paper, a new structural coupling method is introduced which is capable of coupling of two
nonlinear substructures, where the connection elements can be nonlinear as well. Compatibility and
equilibrium equations, which are derived from existing linear coupling methodology, are added to
nonlinear equations of motions in order to model coupled system. The resulting nonlinear equations
of motion of the coupled system are solved by using Newton’s method with arc-length continuation.
Cubic stiffness and hysteretic dry friction are used as nonlinear elements in the substructures.
Applications of the proposed nonlinear coupling approach are demonstrated by numerical case
studies. Two examples are considered in the case studies. In the first one two substructures are
coupled from a single DOF; whereas, in the second example, two substructures are coupled from two
DOFs. Normalized responses of the selected DOFs obtained from the proposed nonlinear coupling
method and by solving the entire system directly are compared in order to verify the proposed method
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for different nonlinear systems. The results obtained from the proposed method and the ones obtained
by directly solving the entire system agree perfectly with each other, which verifies the developed
nonlinear coupling method.
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