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ABSTRACT 

 

 

STRUCTURAL COUPLING OF TWO NONLINEAR STRUCTURES 

 

 

 

Tepe, Çağrı 

M.Sc., Department of Mechanical Engineering 

 Supervisor: Assoc. Prof. Dr. Ender Ciğeroğlu 

February 2018, 89 pages 

 

 
 

In mechanical design, modelling and analysis of a complex structure can be 

simplified with dividing the structure into substructures; therefore, any change in the 

structure can be addressed easily which is referred as “structural coupling”.  

Utilization of proper coupling techniques, it is possible to understand the 

behavior of the whole structure by considering the behavior of its substructures. For 

linear structures, coupling is a common technique; however, in most of the 

engineering structures, nonlinearities are also encountered; therefore, it is required to 

extend linear coupling methods to nonlinear systems. Although, studies on nonlinear 

coupling are available in literature, existing methods are limited to coupling of 

structures where one substructure is linear and the other is nonlinear or two linear 

substructures coupled with a nonlinear element.  

In this thesis, a structural coupling method is proposed to couple two-

nonlinear substructures. Similar to linear coupling methods, the proposed method 

considers the compatibility of internal forces at the connection degrees of freedom in 

addition to displacements. The proposed method is simulated with two different 

conditions which are coupling of identified substructures and coupling of identified 

substructure with neural network trained substructure. Since, the substructures are 

nonlinear, the resulting system of nonlinear differential equations are converted into 
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a set of nonlinear algebraic equations by using Describing Function Method, which 

are solved by using Newton’s method with arclength continuation.  

 

Keywords: Structural Coupling, Nonlinear Structural Coupling, Vibration of 

Nonlinear Structures 
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ÖZ 

 

 

DOĞRUSAL OLMAYAN İKİ SİSTEMİN YAPISAL BİRLEŞİMİ 

 

 

 

Tepe, Çağrı 

Yüksek Lisans, Makina Mühendisliği Bölümü 

     Tez Yöneticisi: Doç. Dr. Ender Ciğeroğlu 

Şubat 2018, 89 sayfa 

 

 
Mekanik tasarımda, karmaşık bir yapının modellenmesi ve analizi, bu yapıyı 

kendisini oluşturan altyapılara bölmekle daha kolay gerçekleştirilir. Bu sayede tüm 

sistem üzerinde meydana gelecek olan herhangi bir değişiklik altyapıların tekrar 

birleştirilmesiyle gözlemlenebilir. Bu olguya yapısal birleşme denilir. 

Uygun birleştirme yöntemleriyle, tüm sistemin davranışını onu oluşturan alt 

sistemlerin davranışını anlayarak çözmek mümkündür. Doğrusal yapılar için 

birleşme çok uygulanan bir yöntem iken doğrusal olmayan yapılar için bu yöntemin 

nasıl uygulanacağına dair çok örnek bulunmamaktadır. Günümüzde çoğu 

mühendislik yapılarında doğrusal olmayan sistemlerin de görüldüğünü düşünürsek, 

doğrusal birleştirme yöntemlerini, doğrusal olmayan yapılara taşımak gerekli hale 

gelmiştir. Literatürde doğrusal olmayan sistemleri içinde barındıran birleştirme 

yöntemleri bulunsa da, bu yöntemler, doğrusal yapıyı doğrusal olmayan yapı ile 

birleştirme ya da iki doğrusal yapıyı doğrusal olmayan elemanlarla birleştirme ile 

sınırlıdır.  

Bu tezde, iki doğrusal olmayan yapıyı birbirine birleştirme konusunda 

çalışılacaktır. Doğrusal olmayan yapıların birleşiminde doğrusal olan sistemlerin 

birleşimine benzer bir şekilde, iki yapının birleştiği sırada koruması gereken kuvvet 

ve yer değiştirme değerleri kullanılacaktır. Önerilen metodu doğrularken iki farklı 
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yöntem izlenecektir. Bu yöntemleri; özellikleri bilinen sistemlerin birbirleriyle 

birleşimi ve özellikleri bilinen sistemle sinirsel ağ ile tanımlanan sistemin 

birbirleriyle birleşimi olarak özetlemek mümkündür. Yapılar doğrusal olmadığı için 

çözülmesi gereken denklemler cebirsel doğrusal olmayan denklem setine 

dönüştürülecek ve bu denklem setleri sürdürülür yöntemlerle çözülecektir.    

 

Anahtar Kelimeler: Yapısal Birleşim, Doğrusal Olmayan Yapısal Birleşim, 

Doğrusal Olmayan Sistemlerin Titreşimi 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To My Beloved Love 

Mısra Ayşe ADSIZ 

 

To My Parents 

Şükran TEPE, Abdullah TEPE 

 

 

 

 

 

 

 

 

 

 



x 

 

ACKNOWLEDGEMENTS 

 

 

 

I would like to express my sincere gratitude to my supervisor Assoc. Prof. Dr. Ender 

CİĞEROĞLU for his excellent supervision and leading guidance from beginning to 

end of thesis work that made this study possible. 

 

I am grateful to my beloved love Mısra Ayşe ADSIZ for her endless love, support 

and patience to complete this study. 

 

I am thankful to my dear mother Şükran TEPE and my dear father Abdullah TEPE 

for their love throughout my life. 

 

And there are a lot of people that were with me in these three years. They defined 

me, they made me who I am, and they are true owners of this work. So, very special 

thanks to my close friends, Mr. Onur SERT, Mr. Nabi Vefa YAVUZTURK, Mr. 

Arda TAYLAN, Mr. Berkan ALANBAY and Mr. Alper YILDIRIM who have 

taught me real meaning of friendship lately. 

 

 

 

 

 

 

 

 

 

 

 

 

 



xi 

 

TABLE OF CONTENTS 

 

 

 

ABSTRACT ................................................................................................................. v 

ÖZ .............................................................................................................................. vii 

ACKNOWLEDGEMENTS ......................................................................................... x 

TABLE OF CONTENTS ............................................................................................ xi 

LIST OF TABLES .................................................................................................... xiv 

LIST OF FIGURES .................................................................................................. xvi 

LIST OF SYMBOLS .............................................................................................. xviii 

CHAPTERS ................................................................................................................. 1 

 1    INTRODUCTION .......................................................................................... 1 

 1.1    Introduction to the Problem .................................................................. 1 

 1.2    Literature Survey .................................................................................. 1 

 1.3    Objective .............................................................................................. 3 

 1.4    Scope of the Thesis ............................................................................... 4 

 2    THEORY ........................................................................................................ 7 

 2.1   Introduction ........................................................................................... 7 

 2.2    Structural Coupling of Linear Substructures ........................................ 7 

 2.3   Modelling of Nonlinear Structures ........................................................ 9 

 2.3.1    Describing Function Method...................................................... 9 



xii 

 

 2.3.2    Types of Nonlinearities Considered ......................................... 14 

 2.4    Solution of Nonlinear Algebraic Equations........................................ 17 

 2.4.1    Newton’s Method ..................................................................... 17 

 2.4.2    Arc-Length Continuation Method ............................................ 18 

 3    A NEW NONLINEAR STRUCTURAL COUPLING METHOD ............... 23 

 3.1    Introduction ........................................................................................ 23 

 3.2    Structural Coupling of Nonlinear Substructures ................................ 23 

 3.3    Nonlinear Structural Coupling Using Artificial Neural Networks ..... 26 

4    CASE STUDIES OF STRUCTURAL COUPLING METHOD TO   

NONLINEAR SYSTEMS .................................................................................. 33 

 4.1    Nonlinear Structural Coupling from a Single DOF ............................ 33 

4.1.1    Nonlinear Structural Coupling with Two Identified       

Substructures ........................................................................................ 33 

 4.1.2    Nonlinear Structural Coupling using Neural Networks ........... 42 

 4.1.3    Comparison of Computational Time Required ........................ 54 

 4.2    Nonlinear Structural Coupling from Multiple DOFs ......................... 57 

4.2.1    Nonlinear Structural Coupling with Two Identified    

Substructures ........................................................................................ 57 

 4.2.2    Nonlinear Structural Coupling with using Neural Networks ... 61 

 5    DISCUSSION AND CONCLUSION .......................................................... 67 

REFERENCES ........................................................................................................... 69 

APPENDICES ............................................................................................................ 75 



xiii 

 

    A    CONFERENCE PAPER ................................................................................. 75 

 

 

 

 

 

  



xiv 

 

LIST OF TABLES 

 

 

 

 

TABLES 

Table 4.1 Parameters of substructures A  and B  ....................................................... 34 

Table 4.2 Parameters of coupling elements ............................................................... 34 

Table 4.3 Nonlinear elements of substructures A  and B  in case study 1 ................. 35 

Table 4.4 Parameters of substructures A  and B  ....................................................... 38 

Table 4.5 Parameters of coupling elements ............................................................... 38 

Table 4.6 Nonlinear elements of substructures A  and B  in case study 2 ................. 38 

Table 4.7 Parameters of substructures A  and B  ....................................................... 40 

Table 4.8 Parameters of coupling elements ............................................................... 40 

Table 4.9 Nonlinear elements of substructures A  and B  in case study 3 ................. 41 

Table 4.10 Parameters of substructures A  and B  ..................................................... 43 

Table 4.11 Parameters of coupling elements ............................................................. 44 

Table 4.12 Nonlinear elements of substructures A  and B  in case study 4 ............... 44 

Table 4.13 Parameters of substructures A  and B  ..................................................... 48 

Table 4.14 Parameters of coupling elements ............................................................. 49 

Table 4.15 Nonlinear elements of substructures A  and B  in case study 5 ............... 49 

Table 4.16 Parameters of substructures A  and B  ..................................................... 52 

Table 4.17 Parameters of coupling elements ............................................................. 52 

Table 4.18 Nonlinear elements of substructures A  and B  in case study 6 ............... 52 

Table 4.19 Comparison of calculation times for different external forcing values .... 55 

Table 4.20 Comparison of calculation times for different coupled system sizes ....... 56 

Table 4.21 Parameters of substructures A  and B  ..................................................... 58 

Table 4.22 Parameters of coupling elements ............................................................. 58 

Table 4.23 Nonlinear elements of substructures A  and B  in case study 7 ............... 58 

Table 4.24 Parameters of substructures A  and B  ..................................................... 60 



xv 

 

Table 4.25 Parameters of coupling elements ............................................................. 60 

Table 4.26 Nonlinear elements of substructures A  and B  in case study 8............... 60 

Table 4.27 Parameters of substructures A  and B  ..................................................... 63 

Table 4.28 Parameters of coupling elements ............................................................. 63 

Table 4.29 Nonlinear elements of substructures A  and B  in case study 9............... 64 

 

 

 

 

 

 

 

  



xvi 

 

LIST OF FIGURES 

 

 

 

 

FIGURES 

Figure 2.1 Schematic view of structural coupling ........................................................ 7 

Figure 2.2 Characteristic of hardening and softening cubic stiffness elements [27] . 15 

Figure 2.3 (a) Schematic drawing, (b) corresponding hysteresis curve for dry friction 

nonlinearity  ................................................................................................................ 16 

Figure 3.1 Nonlinear Structural Coupling Algorithm ................................................ 26 

Figure 3.2 Simple neuron model ................................................................................ 27 

Figure 3.3 Classification of neural network ............................................................... 28 

Figure 3.4 Schematic view of structural coupling via neural networks ..................... 29 

Figure 3.5 Classification of neural network with dummy variable ............................ 30 

Figure 3.6 Nonlinear Structural Coupling Algorithm using Artificial Neural 

Networks .................................................................................................................... 31 

Figure 4.1 Schematic view of 8-DOF coupled system ............................................... 33 

Figure 4.2 Normalized response of the 1st DOF in case study 1 ................................ 35 

Figure 4.3 Normalized response of the 3rd DOF in case study 1 ............................... 36 

Figure 4.4 Normalized response of the 8th DOF in case study 1 ................................ 36 

Figure 4.5 Phase angle of the 1th DOF in case study 1 .............................................. 37 

Figure 4.6 Schematic view of 4-DOF coupled system ............................................... 37 

Figure 4.7 Normalized response of the 1st DOF in case study 2 ................................ 39 

Figure 4.8 Normalized response of the 3rd DOF in case study 2 ............................... 39 

Figure 4.9 Schematic view of 8-DOF coupled sytem ................................................ 40 

Figure 4.10 Normalized response of the 1st DOF in case study 3 .............................. 42 

Figure 4.11 Normalized response of the 1st DOF in case study 3 .............................. 42 

Figure 4.12 Schematic view of 4-DOF coupled system ............................................. 43 

Figure 4.13 Schematic view of neural network trained substructure ......................... 43 



xvii 

 

Figure 4.14 Normalized response of the 1st DOF in case study 4 .............................. 45 

Figure 4.15 Normalized response of the 2nd DOF in case study 4 ............................. 46 

Figure 4.16 Normalized response of the 1st DOF in case study 4 .............................. 47 

Figure 4.17 Phase angle of the 1th DOF in case study 4 ............................................ 47 

Figure 4.18 Schematic view of neural network trained substructure ......................... 48 

Figure 4.19 Normalized response of the 1st DOF in case study 5 .............................. 49 

Figure 4.20 Normalized response of the 2nd DOF in case study 5 ............................. 50 

Figure 4.21 Schematic view of neural network trained substructure ......................... 51 

Figure 4.22 Normalized response of the 1st DOF in case study 6 .............................. 53 

Figure 4.23 Normalized response of the 2nd DOF in case study 6 ............................. 54 

Figure 4.24 Comparison of computational time between proposed method with 

neural networks and entire system solution ............................................................... 56 

Figure 4.25 Schematic view of 4-DOF coupled system ............................................ 57 

Figure 4.26 Normalized response of the 1st DOF in case study 7 .............................. 59 

Figure 4.27 Schematic view of 4-DOF coupled system ............................................ 59 

Figure 4.28 Normalized response of the 1st DOF in case study 8 .............................. 61 

Figure 4.29 Phase angle of the 1th DOF in case study 8 ............................................ 61 

Figure 4.30 Schematic view of coupled system ......................................................... 62 

Figure 4.31 Schematic view of neural network trained substructure ......................... 63 

Figure 4.32 Normalized response of the 1st DOF in case study 9 .............................. 64 

 

 

 

 

 

 

 

 

 

 



xviii 

 

LIST OF SYMBOLS 

 

 

 

 x   :  Generalized displacement vector 

 f   :  Internal forcing vector 

 Z   :  Impedance matrix 

couplingD    :  Dynamic stiffness matrix of coupling elements 

 F   :  External forcing vector 

 M   :  Mass matrix 

 C   :  Viscous damping matrix 

 H   :  Structural damping matrix 

 K   :  Stiffness matrix 

 Nf   :  Nonlinear forcing vector 

n   :  Nonlinear restoring force 

y   :  Relative displacement 

 X   :  Complex amplitude vector of the displacement 

   :  Describing function 

 N   :  Complex amplitude vector of internal forces 

m   :  Number of harmonics 

    :  Nonlinearity matrix 

ck   :  Coefficient of cubic stiffness 

k   :  Contact stiffness between rubbing surfaces 

N   :  Constant normal force 

   :  Dry friction coefficient 

 J   :  Jacobian matrix 



xix 

 

 q   :  Vector of unknown in arc-length continuation method 

s   :  Arc-Length parameter 

 
0

x   :  Improved initial guess of displacement vector 

0   :  Improved initial guess of frequency 

NL

couplingD    :  Nonlinear dynamic stiffness matrix 

 w   :  Weight vector 

b   :  Bias term 

o   :  Output of the neuron 

RN   :  Number of elements in the input vector 

MSE  :  Mean squared error 

NN   :  Neural network transfer function 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xx 

 

 

 



1 

 

CHAPTER 1 

 

 

1 INTRODUCTION 

 

 

 

1.1 Introduction to the Problem 

 

In the design of mechanical systems, engineers should test and analyze each 

prototype created in order to provide a qualified and optimized design which has a 

wide range of requirements. Over the last 40 years, engineering structures are 

analyzed with the finite element method which is proven as reliable tool. In order 

finalize the design, whole structure has to be analyzed several times; therefore, an 

alternative approach is required in order to decrease the number of analyses and tests. 

In former years, this requirement is disposed with proper structural coupling 

techniques, and utilizing structural coupling, modeling and analysis of a complex 

structure can be simplified by dividing the structure into substructures and applying 

the required changes only on one or some of the substructures, where each 

substructure can be analyzed individually. In this way, complexity of whole structure 

may be avoided. 

 

Although, coupling is a common technique for linear structures, in most of the 

engineering structures, nonlinearities are also encountered with the increasing 

demand of high precision mechanical components; therefore, it is required to extend 

linear coupling methods to nonlinear systems. 

 

1.2 Literature Survey 

 

Substructure analysis of linear systems is a well-known subject dated back to 1960s 

by the works of Bishop and Johnson [1] on Receptance method and Hurty [2] on 
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Component Mode Synthesis which was a simplified version of the method developed 

by Craig and Bampton [3]. Many different substructure and coupling methods for 

linear structures are developed by Rubin [4], Przemieniecki [5], Urgueira [6], Ewins 

[7], Klosterman and Lemon [8] and Ren and Beards [9]. All of these methods are 

developed for linear systems and the methodology is based on the compatibility of 

internal forces at the connection degrees of freedom in addition to the compatibility 

of the displacements. However, extention of linear coupling methods to non-linear 

systems is essential; since many structures, which are considered as linear, are 

nonlinear in reality. 

 

Analysis of nonlinear systems is much more complicated compared to linear systems 

[10] due to their response dependent behavior. In this thesis, Describing Function 

Method (DFM) is used for the solution of nonlinear systems which was introduced 

by Krylov and Bogolyubov [11] in order to analyze nonlinear control problems based 

on an earlier work of Van der Pol [12]. Later, Taylor [13] replaced each nonlinear 

element with a quasilinear descriptor to define this approach. 

 

Solution of multi degree of freedom nonlinear system with symmetrical 

nonlinearities is introduced by Budak and Özgüven [14, 15], which utilizes a special 

algebra. Later, Tanrıkulu [16] and Tanrıkulu et. Al.[17] extended this formulation for 

any type of nonlinearity by replacing this special algebra with describing functions. 

Other studies, which may be shown as an example of vibration analysis of nonlinear 

structures, are made by Siller [18] and Abat [19]. 

 

Although, several studies on structural coupling of linear systems and modelling 

systems with nonlinearities are available in literature, the numbers of studies that 

consider nonlinear structural coupling are limited. Existing studies on nonlinear 

structural coupling are focused on coupling of structures where one substructure is 

linear and the other one is nonlinear or coupling of two linear substructures with a 

nonlinear coupling element. 
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Watanabe and Sato [10] suggested "Nonlinear Building Block" approach, for 

coupling of linear substructures with nonlinear coupling elements. 

 

Cömert and Özgüven [20] proposed a method for coupling of linear substructures 

with nonlinear connecting elements by using DFM, in which FRFs of the linear 

substructures are used. Kalaycıoğlu [21] suggested a modification/coupling 

technique that couple two linear structures with nonlinear elements. 

 

Murakami and Sato [22] suggested a method to predict the response of linear 

structures with non-linear joints using a describing function approach. Later, 

Wyckaert et. Al. [23] is extended the approach with cubic stiffness and friction 

damping type non-linearity. 

 

Ferreira and Ewins [24] introduced a new “Nonlinear Receptance Coupling 

Approach” and Ferreira [25] extended the approach with “Multi-Harmonic Nonlinear 

Receptance Coupling Approach”. Both approaches are capable of coupling a linear 

structure with a nonlinear structure with different types of joints.  

 

Chong and Imregün [26] managed coupling of nonlinear systems with linear systems 

with an iterative algorithm.  

 

1.3 Objective 

 

It has been thought that the main motivation behind the coupling procedure is 

computational efficiency because of fact that if the system is subdivided into two 

equal subsystems the solution time may be expected to be reduced by a factor of 4. 

[26]. However, avoiding the complexity of a whole system with dividing it into 

substructures is outweighs the computational efficiency by far [26]. With proper 

coupling techniques, each subsystem should be solved with preserving numerical 
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accuracy [26]. Most complex structures are consisted of assembled substructures 

which are designed by different engineering groups, at different times and in 

different locations [25]. So, proceeding designs and modifications as independently 

as possible is desired. Nevertheless, computational time may be decreased with 

proper methods such as domain decomposition method which is used parallel 

processing to solve each substructure.  

 

From an engineering viewpoint, there is a need to use proper coupling methods if 

complexity of the system is needed to be avoided. Also, extend  linear coupling 

methods to nonlinear systems is essential with the increasing demand for high 

precision, so if more accurate results with less time and cost is wanted, nonlinear 

structural coupling is required. 

 

In this thesis, an approach is going to be developed to dynamic reanalysis of 

nonlinear substructures. Different from the existing methods in literature, proposed 

method is going to be capable of coupling of two nonlinear substructures. Proposed 

method should solve the coupled system even any DOFs have nonlinearities. 

Moreover, with the proposed coupling method, in addition to linear coupling 

elements, nonlinear coupling elements can as well be used. Beside avoidance of 

complexity, proposed method should also be studied it is time efficient or not even if 

it is not the main objective.  

 

1.4 Scope of the Thesis 

 

The outline of the thesis is given as follows: 

 

In Chapter 2; firstly, brief information about linear structural coupling is given. After 

that, theory behind the nonlinear modelling is explained. DFM method, which is also 

used in this thesis, is introduced in detail and describing function of cubic stiffness 

and dry friction are given. Lastly, several numerical methods are introduced to solve 
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nonlinear system equations. Newton’s method and Newton’s method with arc-length 

continuation are described in detail. 

 

Chapter 3 reviews the proposed method which is used in coupling of two nonlinear 

structures. Firstly, brief introduction is made about the problem. Then, a new 

nonlinear structural coupling method is proposed to couple two nonlinear 

substructures. First part of this chapter is about couple two nonlinear substructures 

which are identified already. So, spatial model of substructures are used. After that, 

compliance of this method is shown such that identification of any substructure is not 

essential to proceeding the operation. This achievement is provided with the help of 

neural networks which are developed via MATLAB®. 

 

In Chapter 4; verification of the proposed method will be demonstrated in two groups 

of case studies which are also dividing into two. Main section of case studies is about 

coupled DOF, while subsections are departed usage of artificial neural networks or 

not. In first part of case studies, two substructures are coupled each other with one 

coupled DOF. In second part, two substructures are also coupled each other such that 

one of the substructures is trained with neural network already. Solution of trained 

data is used coupling procedure. In third and fourth part of case studies, same 

procedure is used for multiple coupled DOF. 

 

In Chapter 5, brief summary will be given about work done with discussions. The 

conclusion of thesis is given in this chapter. Finally, contributions to nonlinear 

structural coupling are summarized. 

 

Equation Chapter 2 Section 1
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CHAPTER 2 

 

 

2 THEORY 

 

 

 

2.1 Introduction 

 

In this chapter, the theory of nonlinear structural coupling method, which underlies 

the basis of this thesis, is proposed. In section 2.2, theory of structural coupling is 

introduced. In section 2.3, modeling of nonlinear structures is presented using 

describing function method. Later, in the same section the types of nonlinearities 

investigated in this study are explained in detail. In section 2.4, solution of nonlinear 

equation of motion is introduced.  

  

2.2 Structural Coupling of Linear Substructures 

 

Consider two substructures A  and B , shown in Figure 2.1, where internal DOFs are 

represented by subscripts, Ai  and Bi  respectively and the connection DOFs are 

represented by subscripts Ac  and Bc , respectively. 

 

 

Figure 2.1 Schematic view of structural coupling  

 

Coupling ElementsSubstructure A

 

Acx  

Bcx

 

Bcf
 

Acf
Substructure B
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The corresponding equilibrium of each substructure can be written as 

 
 

 

 

 
A AA A A A

A A A AA A

i ii i i c

c i c cc c

f xZ Z

Z Zf x

       
           

              

,  (2.1) 

 
 

 

 

 
B BB B B B

B B B BB B

i ii i i c

c i c cc c

f xZ Z

Z Zf x

       
           

              

, (2.2) 

 

where  
Ai

x  and  
Bi

x  are generalized displacement vectors for internal DOFs,  
Acx  

and  
Bcx  are generalized displacement vectors for coupled DOFs of substructures A  

and B , respectively.  
Ai

f  and  
Bi

f  are internal forcing vectors for internal DOFs, 

 
Acf  and  

Bcf  are coupled forcing vectors for internal DOFs of substructures A  

and B  , respectively. Lastly,  AZ  and  BZ  are the impedance matrices of 

substructures A  and B . Equilibrium of the forces between the connection DOFs can 

be written as 

 

      
A Bc c cf f f  , (2.3) 

 

where  cf  is the external force acting on the connection DOFs. Considering the 

compatibility of displacements of the substructures the following relation can be 

written 

 

       
A B Acoupling c c cD x x f     ,  (2.4) 

 

where 
couplingD    is dynamic stiffness matrix of coupling elements. Substituting 

compatibility and equilibrium equations, i.e. Eqs. (2.3) and (2.4), into Eqs. (2.1) and 

(2.2), the overall impedance of the assembled system can be written as  
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  

 

 

0

0

A A A A

B B B B

A A B B A A B B

i i i c

i i i c

c i c i c c c c

Z Z

Z Z Z

Z Z Z Z

    
    
         
                

. (2.5) 

 

2.3 Modelling of Nonlinear Structures 

 

2.3.1 Describing Function Method 

 

In nonlinear structure modelling, if the system may exhibit periodic oscillations, 

describing function method is frequently used. The describing function method 

linearizes the nonlinearity by defining the transfer function as the relation of the 

fundamental components of the input and the output to the nonlinearity. 

The equation of motion of nonlinear MDOF system excited with harmonic external 

forcing ( )f t , can be written as 

 

                ( ) ( ) ( ) ( ) ( ) ( )NM x t C x t i H x t K x t f t f t     , (2.6) 

 

where  M ,  C ,  H  and   K  are the mass, viscous damping, structural damping 

and stiffness matrices of the linear system.  ( )x t  is the generalized displacement 

vector and  ( )Nf t  is the nonlinear forcing vector. The thk  element of vector  ( )Nf t  

can be expressed as a series of the form, 

 

  
1

( )
N

N kjk
j

f t n


 , (2.7) 
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where  
kjn   denotes the nonlinear restoring force acting between the coordinates  k  

and  j  for  k j   and between ground and the coordinate  k  for  k j  and  N  is 

the number of elements of vector   ( )Nf t . Note that, 

 
kj jkn n . (2.8) 

 

The nonlinear restoring force  
kjn   is a function of relative displacement  

kjy   and its 

derivatives. 

 

 ( , , , )kj kj kj kj kjn n y y y , (2.9) 

 

where, 

 

 
  for 

         for 

kj k j

kj k

y x x k j

y x k j

  

 
. (2.10) 

 

If the external forcing   ( )f t   is periodic, then it can be expressed as, 

 

      
0

1

( ) Im i m

m
m

f t F F e 


 



 
   

 
 , (2.11) 

 

where   
m

F   is the amplitude vector of the  thm  harmonic. Then the response of the 

system,  ( )x t  can as well be assumed periodic which can be expressed as follows, 

 

      
0

1

( ) Im im

m
m

x t X X e 




 
   

 
 , (2.12) 
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where   
m

X   is the complex amplitude vector of the  thm   harmonic of the 

displacement. The intercoordinate displacement responses between arbitrary two 

coordinates  k   and  j  , 
kjy , can be written as: 

 

    
0

Im i m

kj kj m
m

y Y e 


 



 
  

 
 , (2.13) 

 

where, 

 

 
     

   

  for  

               for  

k j

k

kj m mm

kj mm

Y X X k j

Y X k j

  

 
. (2.14) 

 

Accordingly, a complex and periodic nonlinear function,  
kjn   can also be 

represented in the form of Fourier series as 

 

        
0

0 1

Imi m i m

kj kj kj kjm m
m m

n n e N N e 
 

   

 

 
     

 
  , (2.15) 

 

where, 

 

 

 

 

2

0

2

0

( , , , )    for  1, 2,3,

( , , , )             for  0
2

i m

kj kj kj kj kjm

kj kj kj kj kjm

i
N n y y y e d m

i
N n y y y d m












     

  





. (2.16) 

 

The describing function,  
kj   of order m  corresponding to   kjn  can be defined as 
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 
 m

kj m
kj

kj m

N

Y
  . (2.17) 

 

Inserting Eq. (2.16) into Eq. (2.17), the describing function,  
kj  can be written as, 

 

 

2

0

2

0

( , , , )    for  1,2,3,

( , , , )             for  0
2

m

m

m

m

i m

kj kj kj kj kj

kj

kj kj kj kj kj

kj

i
n y y y e d m

Y

i
n y y y d m

Y






 


 


     


  






. (2.18) 

 

The internal nonlinear forces,  
kjn  can be represented in terms of describing functions 

as, 

 

  
0 0

1

Im
m m

i m

kj kj kj kj kj

m

n Y Y e  


 



 
     

 
 . (2.19) 

 

Eq. (2.7) can also be written as, 

 

    
0

( ) i m

N m

m

f t N e 


 



  , (2.20) 

 

where,   mN  is the complex amplitude vector of internal forces for the  thm  

harmonic. Combining Eqs. (2.19) and (2.20),   mN  can be written as, 

 

  
1

m m

N

m kj kjk
j

N Y


  . (2.21) 
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Inserting the expressions used for the periodic excitation, periodic response and 

nonlinear forces in complex form into Eq. (2.6), the following equation set is 

obtained. 

 

              2( )
m m m

m M i m C i H K X N F                , (2.22) 

 

where,   mN  can be rewritten using describing functions, 

 

      
m mm

N X  , (2.23) 

 

where,     referred as “nonlinearity matrix”, is a function of the unknown 

displacement amplitude vector,  X . The elements of nonlinearity matrix are 

defined as 

 

 1

[ ]     for 

[ ]       for 

n

kj kj

j

kj kj

k j

k j







  

   


. (2.24) 

 

Substituting Eq. (2.23) into Eq. (2.22), equation of motion can be obtained as 

 

            2( ) [ ]
m m

m M i m C i H K X F                 . (2.25) 

 

In this thesis, describing function method is employed for the determination of the 

nonlinear algebraic equations by considering only the first harmonic term. Therefore, 

Eq. (2.25) can be reformed as 

 

            2 [ ]M i C i H K X F               . (2.26) 
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2.3.2 Types of Nonlinearities Considered 

 

In this thesis, cubic stiffness and hysteretic dry friction are used as nonlinear 

elements in the substructures. In this section, quasi-linearization of nonlinearity types 

is shown.  

 

 

 

 

2.3.2.1 Cubic Stiffness 

 

Cubic stiffness is the most common nonlinearity type used in structural dynamics. 

Nonlinear force in the case of cubic stiffness can be written as 

 

 3( ) cn x k x  , (2.27) 

 

where,  ck  is the coefficient of cubic stiffness nonlinearity. ck  can be either positive 

or negative. If  0ck   , cubic stiffness shows a hardening behavior, in other words, 

level of excitation increases the restoring force introduced is greater than a linear 

spring. On the other hand, if 0ck  , cubic stiffness shows a softening behavior, in 

other words, level of excitation increases the restoring force introduced is lower than 

a linear spring. Assuming for a single harmonic input, 

 

 sin( )x X  , (2.28) 

 

where  X  is the amplitude of the harmonic input  x  and    is the replacement term 

of the  t . According to Eq. (2.18), describing function of this nonlinear force can 

be written as 
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2

3

0
[ sin( )] i

c

i
k X e d

X


  



   
  . (2.29) 

 

Describing function of cubic stiffness can be written in a simple form as 

 

 23

4
ck X    . (2.30) 

 

 

 

Figure 2.2 Characteristic of hardening and softening cubic stiffness elements [27] 

 

Because of the characteristic of cubic stiffness nonlinearity, system response is 

bending around resonant frequency towards forward for hardening systems and 

towards backward for softening systems. 

 

2.3.2.2 Hysteretic Dry Friction 

 

 There exists several friction models in the literature and in this thesis; a one-

dimensional Coulomb friction model with constant normal load is used. One-

dimensional dry friction element and the corresponding hysteresis curve for a single 

harmonic input are given in Figure 2.3 [28]. 
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Figure 2.3 (a) Schematic drawing, (b) corresponding hysteresis curve for dry friction 

nonlinearity [28] 

 

Nonlinear force in the case of hysteretic dry friction nonlinearity can be written as 

 

 
1

1

( ) ( )   for  
2

3
( )                       for  

2

n x N k x

n x N


   


  

      

   

, (2.31) 

 

where,  k  is the contact stiffness between rubbing surfaces,  N  is the constant 

normal force,    is the dry friction coefficient and  1   

 

 
1

2
sin

k X N
a

k X


 

    
   

 
. (2.32) 

 

Describing function of this nonlinear force can be written as 

 

 
1

1

3 /2

/2

2
[ ( )] i ii

N k x e d N e d
X

 
 

 
     



   
          

   . (2.33) 

 

Describing function of hysteretic dry friction can be written in a simple form as 
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2

11 2 2
1    for | |

2

                                                                                      for | |

re

kN k X N k
k k X N

X k X

k k X N

 


  



                   
     

 


 

, (2.34) 

 

 
2

4
-   for | |

0                                         for | |

im

N N k X
k X N

k X

k X N

 


 



      
   

    


 

. (2.35) 

 

 

2.4 Solution of Nonlinear Algebraic Equations 

 

General numerical methods, used in solving nonlinear algebraic system of equations, 

are introduced and discussed in this section. Solution of the nonlinear equation set 

may give more than one result for a single frequency where jump phenomena occurs 

[29] so, using a path following method should be used to investigate all possible 

solutions. In this thesis, for this purpose, Newton's method with arc-length 

continuation is used. 

Nonlinear algebraic equation set which is to be solved can be expresses as follows 

 

    (( ), ) 0R x   . (2.36) 

 

Further, expanding the nonlinear residual vector,   (( ), )R x  , for Eq. (2.26), 

following equation may be written as 

 

    ([ ( )] [ ]) 0D X F      . (2.37) 

 

2.4.1 Newton’s Method 
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Newton’s method is one of the popular root-finding numerical solution techniques 

based on the first order Taylor series expansion. Using Newton's method, solution of 

a set of nonlinear algebraic equations can be obtained iteratively as follows [30, 31, 

32] 

 

      
new old

x x x   , (2.38) 

 

      
11

(( ) , ) (( ) , )
i i i ix x J x R x 


     , (2.39) 

where  i   is the iteration number,   
i

x   is the solution vector at the  thi   iteration and  

 ( , )J x    is the Jacobian matrix which can be written as 

 

  
 

 

( , )
( , )

R x
J x

x








. (2.40) 

 

2.4.2 Arc-Length Continuation Method 

 

Because of the nature of the some nonlinear systems, frequency response may curve 

turns back. So, whole solution may not be obtained properly with Newton's method 

due to increasing the frequency results in a jump up or down. Also, path following 

using Newton's method may encounter two main problems. First, Jacobian of the 

residual vector is close to singular at the turning points, second a good initial guess 

assumption is required around turning points. In the arc-length continuation method, 

a new parameter, s  , is added to the nonlinear equation set which makes the Jacobian 

matrix non-singular at the turning points. Moreover, the arc-length parameter is the 

path following parameter instead of frequency. Arc-length parameter s  is defined as 

the radius of a hypothetical sphere on which the next solution point is to be obtained 

[30, 31]. 
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For this new system, frequency,   , is an unknown in the nonlinear equation set with 

the addition of the arc-length parameter. So, the vector of unknowns may be written 

as 

 

  
 x

q


 
  
 

. (2.41) 

 

The required additional equation is the equation of the hypothetical sphere which has 

a radius  s  and centered at the previous solution point. 

 

    
1 2 1 2 2( ) ( )

i i i ix x s 
     , (2.42) 

 

where  
i

x  is the response of the nonlinear system at the thi  frequency point, i . So, 

the iterative formula of the Newton's method can be written as [32, 33] 

 

           
1

1
, ,

i i i ii iq q J x R x 


    
 

, (2.43) 

where   ( , )
i iR x   is the new nonlinear algebraic equation set and   ( , )

i iJ x   is 

the new Jacobian matrix 

 

   
  

  

  
 

  

,
,

,
, ,

i i

i i

i i

i ii i

R x
J x

J x
h x h x

x







 



 
  
      

    
 

   

, (2.44) 

         2, 0
T

i i iih x q q s      , (2.45) 

 

  
     

1

1

i i i
i

i i i

x x x
q

  





         
     

        

, (2.46) 
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    
   
  

,
,

,

i i

i i

i i

R x
R x

h x






 
 

  
 
 

. (2.47) 

 

Using tangent predictor to determine the initial guess of the next step should give 

better results such that it increases the rate of convergence and decreases the 

computational time. Initial guess for   x  at the next solution point can be written 

according to tangent predictor as [31, 34]. 

 

       
  1 1

1
1 1 1

10 0

,
,

i i

i i i i

i

R x
x x J x






 


  



 
    
    
 

, (2.48) 

 

where   
0

i
x   is the improved initial guess for the next  thi  iteration,   

1

0

i
x


 is the 

solution at the previous solution point and 

 

   
  
 

1 1

1 1

1

,
,

i i

i i

i

R x
J x

x




 

 




  
  

, (2.49) 

 

Initial guess for frequency,  , can be written as [35] 

 

 

  
  

1

0 0
2

1 1
1

1 1

1

,
, 1

i i

i i

i i

i

s

R x
J x

 








 


 



 

 
    
   
 

 (2.50) 
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There are two solutions available for 
0

i . Therefore, correct sign is needed to be 

chosen in order to follow the path. Choosing correct sign according to the sign of 

determinant of Jacobian matrix works quite well for most of the cases [35]. 

Equation Chapter (Next) Section 1 
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CHAPTER 3 

 

 

3 A NEW NONLINEAR STRUCTURAL COUPLING METHOD 

 

 

 

 

3.1  Introduction 

 

In this chapter, a new nonlinear structural coupling method is developed to dynamic 

reanalysis of nonlinear substructures. Different from the existing methods in 

literature, proposed method is capable of coupling of two nonlinear substructures. 

Moreover, with the proposed coupling method, in addition to linear coupling 

elements, nonlinear coupling elements can as well be used.  The proposed method 

considers the compatibility of internal forces at the connection degrees of freedom in 

addition to displacements. Since, the substructures are nonlinear, the resulting system 

of nonlinear differential equations are converted into a set of nonlinear algebraic 

equations by using describing function method, which are solved by using Newton’s 

method with arc-length continuation. 

 

3.2 Structural Coupling of Nonlinear Substructures 

 

The equation of motion of the nonlinear substructures A  and B  excited with a 

harmonic external forcing ( )f t , can be written as 

 

 
               

               

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

A

B

A A A A A A A A N A

B B B B B B B B N B

M x t C x t i H x t K x t f t f t

M x t C x t i H x t K x t f t f t

    

    
, (3.1) 
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where  M ,  C ,  H  and  K  are the mass, viscous damping, structural damping 

and stiffness matrices of the linear system and  ( )Nf t  is the nonlinear forcing 

vector. Here subscripts A  and B  indicate the coupled substructures. Generalized 

displacement vectors   ( )Ax t  and   ( )Bx t  can be written as 

 

  
 

 
 

 

 
( ) ,  ( )

A B

A B

i i

A B

c c

X X
x t x t

X X

   
   

    
      

, (3.2) 

 

where  
Ai

X  and  
Bi

X  are generalized displacement vectors acting on internal 

DOFs and  
AcX  and  

BcX  are generalized displacement vectors acting on the 

coupled DOFs. External forcing vectors  ( )Af t  and  ( )Bf t  can be written as 

 

  
 

   
 

 

   
( ) ,  ( )

A B

A A B B

i i

A B

c c c c

F F
f t f t

F f F f

   
   

    
       

, (3.3) 

 

where  
Ai

F  and  
Bi

F  are external forcing vectors acting on internal DOFs and 

 
AcF  and  

BcF  are external force vectors acting on the coupled DOFs. If the 

external forcing,  ( )f t  is periodic, response of the system,  ( )x t , can as well be 

assumed periodic, which can be expressed as follows 

 

      
0

1

( ) Im im

m
m

f t F F e 




 
   

 
 , (3.4) 
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m
m
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

 
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 
 . (3.5) 
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Utilizing Describing Function Method (DFM) and substituting Eqs. (3.2) and (3.3) 

into Eq. (3.1) as the following result is obtained 

 

 

          
 
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   
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          
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, (3.6) 

where internal forcing vector   
Acf  can be written as 

 

       cou  
A A B

NL

c pling c cf D x x    , (3.7) 

 

where, cou

NL

plingD    is the nonlinear dynamic stiffness matrix of the connection 

elements; 

 

           2NL

coupling c c c c cD M i C i H K            . (3.8) 

 

Substituting Eqs. (2.3) and (3.7), into Eq. (3.6), equation of motion can be obtained 

as 
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.  (3.9) 

 

where, 

      
A Bc c cf f f  . (3.10) 
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Eq. (3.9) can be solved by a nonlinear equation solver and in this thesis; Newton’s 

method with arc-length continuation, which is explained in detail at section 2.4, is 

used. Algorithm of the proposed nonlinear coupling method is given in Figure 3.1. 

 

 

Figure 3.1 Nonlinear Structural Coupling Algorithm 

 

3.3 Nonlinear Structural Coupling Using Artificial Neural Networks 

 

Considering learning abilities of human brain; it is more complex compared with 

computers. Complexity of human brain is simulated with artificial neural networks 

which can be used with multi-input and multi-output systems for various 

applications. Neural networks can simulate very complex, highly nonlinear systems 
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consisting of artificial neurons that are interconnected. Fundamental element of a 

neural network is called as neuron. Mathematical model of a simple neuron is 

 

       
1

( )
RN

T

i i

i

o f w y b f w y b f n


 
      

 
 , (3.11) 

 

where y  is the input vector,  
T

w  is the weight vector, b  is the bias term, o  is the 

output of the neuron, n  is the net input, RN  is the number of elements in the input 

vector and f  is the transfer function used. 

 

 

 

Figure 3.2 Simple neuron model 

 

Neural networks consist of an input layer, an output layer and hidden layers between 

these two. These layers are made of neurons. Additional layers and multi neurons can 

be employed in neural network structures to increase capability of the network. In 

this thesis, a neural network, which has two layers and twenty neurons, is used. 
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Figure 3.3 Classification of neural network [36] 

 

Additional layer can be employed in neural network structures to increase capability 

of the network. It can be observed that output of each layer becomes the input of the 

next layer. 

 

Minimizing the error between target and output vectors is the main reason of neural 

network training. Performance of a network is quantified through mean squared error 

(MSE) between the network output vector,  o , and target vector,  t as: 

 

  
22

1 1

1 1N N

i i i
i i

MSE e o t
N N 

     (3.12) 

 

Minimizing MSE via tuning the elements of weight matrices and bias vectors is the 

main idea behind neural network theory. The tuning process is called as training, 

where weight matrices and bias vectors are updated according to “the training 

algorithm”.  

 

In this study, MATLAB Neural Network Toolbox is used for operating the proposed 

method. One of the substructures is trained via Neural Network Toolbox and so, a 

transfer function, which transforms internal forcing and frequency into 

displacements, is created. Schematic view of such operation is shown in Figure 3.4. 
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Figure 3.4 Schematic view of structural coupling via neural networks 

 

Then, Eq. (3.9) can be written as: 
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,  (3.13) 

 

where  NN  is the neural network transfer function which is created by training 

substructure B  via Neural Network Toolbox. Before starting to the training process, 

collected data is required to be divided into three subsets as: training, validation and 

test data sets. Weight matrices and bias vectors are updated based on the training data 

set. All the data subsets should represent the entire data set. Otherwise there might be 

large discrepancies between targets and outputs. Optimal division of training data set 

is one of the main concerns in neural network training. In this study, via several 

trials, 70% of samples are allocated as training data set, 15% of samples are allocated 

as the validation data set and the remaining 15% is used as the test data set. 

 

Training data set is created from frequency,  , and internal forcing vector,  f . 

However, there might be more than one response near a resonance frequency because 

of the nonlinearity present in the system, so, in these frequency points, neural 
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network does not expected to operate with only frequency and internal forcing vector 

inputs. In this study, to overcome this problem, a dummy variable is introduced to 

the system as a third input, so that, it is started with zero and increased if sign of  

  is changed. Classification of such neural network is shown in Figure 3.5. 

 

  

Figure 3.5 Classification of neural network with dummy variable [36] 

 

After a proper training is done, performance of the neural network should be checked 

via MSE graph and error histograms. If performance of neural network is sufficient, 

Eq. (3.12) can be solved by a nonlinear equation solver and in this thesis; Newton’s 

method, which is explained in detail at section 2.4, is used.  
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Figure 3.6 Nonlinear Structural Coupling Algorithm using Artificial Neural 

Networks  
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CHAPTER 4 

 

 

4 CASE STUDIES OF STRUCTURAL COUPLING METHOD TO 

NONLINEAR SYSTEMS 

 

 

 

In this chapter, the proposed coupling method is demonstrated on different models. 

In the first one, substructures are coupled from a single DOF whereas in the second 

one, they are coupled from multiple DOFs. In both models, two main works are done 

such that, proposed coupling method is used for coupling of one identified and one 

neural network trained substructures, and two identified substructures. The results 

obtained by proposed method will be compared with those obtained via solving the 

coupled system entirely.  

 

4.1 Nonlinear Structural Coupling from a Single DOF 

 

4.1.1 Nonlinear Structural Coupling with Two Identified Substructures 

 

In the first example, application of the proposed approach is presented on a 

simple 8-DOF system shown in Figure 4.1. Parameters of substructures A  and B  are 

given Table 4.1 and coupling elements at Table 4.2. The nonlinear elements used in 

the first case study, case study 1, are defined in Table 4.3. 

 

 

Figure 4.1 Schematic view of 8-DOF coupled system  
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Table 4.1 Parameters of substructures A  and B  

 

Substructure A  

1m  [kg] 2m  [kg] 3m  [kg] 4m  [kg] 

1 0,75 2 1 

1k  [N/m] 2k  [N/m] 3k  [N/m] 4k  [N/m] 

5000 2000 4000 6000 

1h  [N/m] 2h  [N/m] 3h  [N/m] 4h  [N/m] 

50 20 40 60 

 

Substructure B  

5m  [kg] 6m  [kg] 7m  [kg] 8m  [kg] 

0,75 1 1 2 

5k  [N/m] 6k  [N/m] 7k  [N/m] 8k  [N/m] 

3000 2000 5000 3000 

5h  [N/m] 6h  [N/m] 7h  [N/m] 8h  [N/m] 

30 20 50 30 

 

Table 4.2 Parameters of coupling elements 

 

ck  [N/m] ch  [N/m] 

4000 40 
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Table 4.3 Nonlinear elements of substructures A  and B  in case study 1 

 

Nonlinear Connection DOFs Nonlinearity Type 
Nonlinearity 

Coefficients 

1-Ground Cubic Stiffness [N/m3] -1x105 

1-2 Cubic Stiffness [N/m3] -2x105 

2-3 Cubic Stiffness [N/m3] -10x105 

3-4 Cubic Stiffness [N/m3] -1x105 

5-6 Cubic Stiffness [N/m3] -1x105 

6-7 Cubic Stiffness [N/m3] -3x105 

7-8 Cubic Stiffness [N/m3] -1x105 

8-Ground Cubic Stiffness [N/m3] -5x105 

 

Normalized responses of the 1st, 3rd, and the 8th DOFs obtained from the proposed 

nonlinear coupling method and by solving the entire system directly are given in 

Figure 4.2, Figure 4.3, and Figure 4.4. The response of the system is obtained for 

three different excitation amplitudes, 8N, 12N and 16N in order to observe the effect 

of cubic stiffness nonlinearity. 

 

 

Figure 4.2 Normalized response of the 1st DOF in case study 1 
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Figure 4.3 Normalized response of the 3rd DOF in case study 1 

 

 

Figure 4.4 Normalized response of the 8th DOF in case study 1 

 

It can be seen from the Figure 4.2, Figure 4.3, and Figure 4.4 that, natural frequency 

is shifted due to cubic stiffness nonlinearity. Furthermore, more importantly the 

proposed method is in exact agreement with the ones obtained from entire system 

solution, even in unstable regions where the path turns back or intersects itself.  

 

Phase angle of imaginary and reel part of the 1th DOF in case study 1 is shown in 

Figure 4.5. 
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Figure 4.5 Phase angle of the 1th DOF in case study 1 

 

In the second case study, case study 2, 4-DOF system is obtained from the coupling 

of a two 2-DOF systems as shown in Figure 4.6. Parameters of substructures A  and

B , and coupling elements are given in Table 4.4 and Table 4.5, respectively. The 

nonlinear elements present in the system are defined in Table 4.6. 

 

 

Figure 4.6 Schematic view of 4-DOF coupled system  
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Table 4.4 Parameters of substructures A  and B  

 

Substructure A   Substructure B  

1m  [kg] 2m  [kg] 
 3m  [kg] 4m  [kg] 

1 0,75 
 

0,75 1 

1k  [N/m] 2k  [N/m] 
 3k  [N/m] 4k  [N/m] 

5000 4000 
 

3000 5000 

1h  [N/m] 2h  [N/m] 
 3h  [N/m] 4h  [N/m] 

50 40 
 

30 50 

 

Table 4.5 Parameters of coupling elements 

 

ck  [N/m] ch  [N/m] 

5000 50 

 

Table 4.6 Nonlinear elements of substructures A  and B  in case study 2 

 

Nonlinear Connection DOFs Nonlinearity Type 
Nonlinearity 

Coefficients 

1-Ground Dry Friction [N] N  

1-2 Dry Friction [N] N  

3-4 Dry Friction [N] N  

4-Ground Dry Friction [N] N  

 

Normalized responses of the 1st and 3rd DOFs obtained from the proposed nonlinear 

coupling method and by solving the entire system directly are given in Figure 4.7, 

and Figure 4.8. Responses of the coupled structure are given for an external forcing 

of 30NF  and for different slip loads. Perfect agreement between the results 

obtained from the proposed nonlinear coupling method and the entire system solution 

is observed which verifies the developed coupling method. 
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Figure 4.7 Normalized response of the 1st DOF in case study 2 

 

 

 

Figure 4.8 Normalized response of the 3rd DOF in case study 2 

 

In the third case study, case study 3, 8-DOF system is obtained from the coupling of 

a 6-DOF, 2-DOF systems as shown in Figure 4.9. Parameters of substructures A  and 

B , and coupling elements are given in Table 4.7 and Table 4.8, respectively. The 

nonlinear elements present in the system are defined in Table 4.9. 
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Figure 4.9 Schematic view of 8-DOF coupled sytem 

 

Table 4.7 Parameters of substructures A  and B  

 

Substructure A   

1m  [kg] 2m  [kg] 3m  [kg] 4m  [kg] 5m  [kg] 6m  [kg] 
 

0,75 2 1 1 2 0,75 
 

1k  [N/m] 2k  [N/m] 3k  [N/m] 4k  [N/m] 5k  [N/m] 6k  [N/m] 
 

3000 5000 4000 6000 6000 5000 
 

1h  [N/m] 2h  [N/m] 3h  [N/m] 4h  [N/m] 5h  [N/m] 6h  [N/m] 
 

60 100 80 120 120 100 
 

 

Substructure B  

7m  [kg] 8m  [kg] 

2 2 

7k  [N/m] 8k  [N/m] 

3000 5000 

7h  [N/m] 8h  [N/m] 

60 100 

 

Table 4.8 Parameters of coupling elements 

 

ck  [N/m] ch  [N/m] 

2000 40 
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Table 4.9 Nonlinear elements of substructures A  and B  in case study 3 

 

Nonlinear Connection DOFs Nonlinearity Type 
Nonlinearity 

Coefficients 

1-Ground Cubic Stiffness [N/m3] 1x105 

1-2 Cubic Stiffness [N/m3] 2x105 

2-3 Cubic Stiffness [N/m3] 1x105 

3-4 Dry Friction [N] ,  2000 N/mN k   

5-6 Cubic Stiffness [N/m3] 1x105 

6-7 Cubic Stiffness [N/m3] 3x105 

7-8 Cubic Stiffness [N/m3] 1x105 

8-Ground Dry Friction [N] ,  2000 N/mN k   

 

 

Corresponding response plots of the coupled structure obtained from the proposed 

nonlinear coupling method and by solving the entire system directly are compared in 

Figure 4.10 and Figure 4.11 for the 1st DOF. In Figure 4.10, the response of the 

coupled system is obtained for 12N, 24N and 36N excitation force amplitudes, while 

the slip load of dry friction nonlinearities are kept constant as 100NN  . In Figure 

4.11, responses of the coupled structure are given for an external forcing of 12NF 

and for different slip loads. Perfect agreement between the results obtained from the 

proposed nonlinear coupling method and the entire system solution is observed 

which verifies the developed coupling method. 
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Figure 4.10 Normalized response of the 1st DOF in case study 3 

 

 

 

Figure 4.11 Normalized response of the 1st DOF in case study 3 

 

4.1.2 Nonlinear Structural Coupling using Neural Networks 

 

In the fourth case study, case study 4, 4-DOF system is obtained from the coupling of 

a two 2-DOF systems as shown in Figure 4.12. As it can be seen from Figure 4.12 

substructure A  is chosen as identified substructure, while substructure B is chosen 

as neural network trained substructure. Although substructure B  is added to 
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coupling equations as a black box, schematic view of it can be seen from figure 4.13. 

Parameters of substructures A  and B , and coupling elements are given in Table 4.10 

and Table 4.11, respectively. It should be noted that coupling elements are not linear 

and there exists friction damping nonlinearity in the coupling elements. The 

nonlinear elements present in the system are defined in Table 4.12. 

 

 

Figure 4.12 Schematic view of 4-DOF coupled system  

 

Figure 4.13 Schematic view of neural network trained substructure  

 

Table 4.10 Parameters of substructures A  and B  

 

Substructure A   Substructure B  

1m  [kg] 2m  [kg] 
 3m  [kg] 4m  [kg] 

1 2 
 

0,75 0,75 

1k  [N/m] 2k  [N/m] 
 3k  [N/m] 4k  [N/m] 

5000 4000 
 

3000 5000 

1h  [N/m] 2h  [N/m] 
 3h  [N/m] 4h  [N/m] 

50 40 
 

30 50 
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Table 4.11 Parameters of coupling elements 

 

ck  [N/m] ch  [N/m] c   

5000 50 ,  2000 N/mcN k   

 

Table 4.12 Nonlinear elements of substructures A  and B  in case study 4 

 

Nonlinear Connection DOFs Nonlinearity Type 
Nonlinearity 

Coefficients 

1-Ground Dry Friction [N] ,  2000 N/mN k   

1-2 Dry Friction [N] ,  2000 N/mN k   

3-4 Dry Friction [N] ,  2000 N/mN k   

4-Ground Dry Friction [N] ,  2000 N/mN k   

 

Normalized responses of the 1st, and the 2nd DOFs obtained from the proposed 

nonlinear coupling method with using neural network and by solving the entire 

system directly are given in Figure 4.14, and Figure 4.15. While, lin-lin scale is used 

in “(a)”, log-lin scale is used “(b)”.  Responses of the coupled structure are given for 

an external forcing of 25NF  . In first part of case study 4, slip load between 

coupled elements, cN , and slip loads between internal elements, N , are same. 

Perfect agreement between the results obtained from the proposed nonlinear coupling 

method with using neural network and the entire system solution is observed which 

verifies the developed coupling method.  
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Figure 4.14 (a) Normalized response of the 1st DOF in case study 4 

 

 

Figure 4.14 (b) Normalized response of the 1st DOF in case study 4 

 

 



46 

 

 

Figure 4.15 (a) Normalized response of the 2nd DOF in case study 4 

 

 

Figure 4.15 (b) Normalized response of the 2nd DOF in case study 4 

 

In second part of case study 4, slip loads between internal elements are chosen as 

1NN   while slip load of the coupling element, cN  is varied. Normalized 

responses of the 1st DOFs obtained from the proposed nonlinear coupling method 

with using neural network and by solving the entire system directly are given in 

Figure 4.16. Responses of the coupled structure are given for an external forcing of 

25NF  . Perfect agreement between the results obtained from the proposed 

nonlinear coupling method with using neural network and the entire system solution 

is observed which verifies the developed coupling method. 
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Phase angle of imaginary and reel part of the 1th DOF in case study 4 is shown in 

Figure 4.17. 

 

 

 

Figure 4.16 Normalized response of the 1st DOF in case study 4 

 

 

 

Figure 4.17 Phase angle of the 1th DOF in case study 4 

 

In the fifth case study, case study 5, 6-DOF system is obtained from the coupling of a 

2-DOF, 4-DOF systems. Different from case study 4, in case study 5, a 4-DOF 

system is used as substructure B , shown in Figure 4.18. Parameters of substructures 
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A  and B , and coupling elements are given in Table 4.13 and Table 4.14, 

respectively. The nonlinear elements present in the system are defined in Table 4.15. 

 

 

 

Figure 4.18 Schematic view of neural network trained substructure  

 

Table 4.13 Parameters of substructures A  and B  

 

Substructure A  

1m  [kg] 2m  [kg] 

0,8 0,5 

1k  [N/m] 2k  [N/m] 

7000 4000 

1h  [N/m] 2h  [N/m] 

70 40 

 

 Substructure B  

 
3m  [kg] 4m  [kg] 5m  [kg] 6m  [kg] 

 
1 0,8 0,75 1 

 
3k  [N/m] 4k  [N/m] 5k  [N/m] 6k  [N/m] 

 
3000 4000 5000 3000 

 
3h  [N/m] 4h  [N/m] 5h  [N/m] 6h  [N/m] 

 
30 40 50 30 
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Table 4.14 Parameters of coupling elements 

 

ck  [N/m] ch  [N/m] 

4000 40 

 

Table 4.15 Nonlinear elements of substructures A  and B  in case study 5 

 

Nonlinear Connection DOFs Nonlinearity Type 
Nonlinearity 

Coefficients 

1-Ground Dry Friction [N] ,  1500 N/mN k   

1-2 Dry Friction [N] ,  1500 N/mN k   

3-4 Dry Friction [N] ,  1500 N/mN k   

4-5 Dry Friction [N] ,  1500 N/mN k   

5-6 Dry Friction [N] ,  1500 N/mN k   

6-Ground Dry Friction [N] ,  1500 N/mN k   

 

 

Normalized responses of the 1st, and the 2nd DOFs obtained from the proposed 

nonlinear coupling method with using neural network and by solving the entire 

system directly are given in Figure 4.19, and Figure 4.20. While, lin-lin scale is used 

in “(a)”, log-lin scale is used “(b)”. Responses of the coupled structure are given for 

an external forcing of 25NF  and for different slip loads. 

   

 

Figure 4.19 (a) Normalized response of the 1st DOF in case study 5 
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Figure 4.19 (b) Normalized response of the 1st DOF in case study 5 

 

 

 

 

Figure 4.20 (a) Normalized response of the 2nd DOF in case study 5 
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Figure 4.20 (b) Normalized response of the 2nd DOF in case study 5 

 

The proposed method with using neural network is in exact agreement with the ones 

obtained from entire system solution, even in unstable regions where the path turns 

back or intersects itself. 

 

In the sixth case study, case study 6, 8-DOF system is obtained from the coupling of 

a 2-DOF, 6-DOF systems. Different from case study 4 and 5, in case study 6, a 6-

DOF system is used as substructure B , shown in Figure 4.21. Parameters of 

substructures A  and B , and coupling elements are given in Table 4.16 and Table 

4.17, respectively. The nonlinear elements present in the system are defined in Table 

4.18. 

 

Figure 4.21 Schematic view of neural network trained substructure  
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Table 4.16 Parameters of substructures A  and B  

Substructure A  

1m  [kg] 2m  [kg] 

1 1,5 

1k  [N/m] 2k  [N/m] 

7000 4000 

1h  [N/m] 2h  [N/m] 

70 40 

 

 Substructure B  

 3m  [kg] 4m  [kg] 5m  [kg] 6m  [kg] 7m  [kg] 8m  [kg] 

 
0,6 1 0,8 1 0,75 1,2 

 3k  [N/m] 4k  [N/m] 5k  [N/m] 6k  [N/m] 7k  [N/m] 8k  [N/m] 

 
3000 4000 5000 3000 4000 5000 

 3h  [N/m] 4h  [N/m] 5h  [N/m] 6h  [N/m] 7h  [N/m] 8h  [N/m] 

 
30 40 50 30 40 50 

 

Table 4.17 Parameters of coupling elements 

 

ck  [N/m] ch  [N/m] 

4000 40 

 

Table 4.18 Nonlinear elements of substructures A  and B  in case study 6 

 

Nonlinear Connection DOFs Nonlinearity Type 
Nonlinearity 

Coefficients 

1-Ground Dry Friction [N] ,  2500 N/mN k   

1-2 Dry Friction [N] ,  2500 N/mN k   

3-4 Dry Friction [N] ,  2500 N/mN k   

4-5 Dry Friction [N] ,  2500 N/mN k   

5-6 Dry Friction [N] ,  2500 N/mN k   

6-7 Dry Friction [N] ,  2500 N/mN k   

7-8 Dry Friction [N] ,  2500 N/mN k   

8-Ground Dry Friction [N] ,  2500 N/mN k   
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Normalized responses of the 1st, and the 2nd DOFs obtained from the proposed 

nonlinear coupling method with using neural network and by solving the entire 

system directly are given in Figure 4.22, and Figure 4.23. While, lin-lin scale is used 

in “(a)”, log-lin scale is used “(b)”. Responses of the coupled structure are given for 

an external forcing of 25NF  and for different slip loads. Perfect agreement 

between the results obtained from the proposed nonlinear coupling method with 

using neural network and the entire system solution is observed which verifies the 

developed coupling method. 

 

 

Figure 4.22 (a) Normalized response of the 1st DOF in case study 6 

 

 

Figure 4.22 (b) Normalized response of the 1st DOF in case study 6 
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Figure 4.23 (a) Normalized response of the 2nd DOF in case study 6 

 

 

Figure 4.23 (b) Normalized response of the 2nd DOF in case study 6 

 

 

4.1.3 Comparison of Computational Time Required 

 

In this section, developed nonlinear structural coupling approach is compared with 

entire system solution. For this comparison two main parts are considered. In the first 

part, time requirement for solution is compared for coupling of two identified 

substructure, while in the second part, it is done for one identified and neural 

network trained substructure. In the first part, time requirement is compared for 



55 

 

different forces and different substructure sizes. In the second part, neural network 

trained substructure size, so, size of the coupled system is different.   

 

The calculations are done on a computer having a processor Intel Core i7-Q720 CPU 

@ 1.60 GHz with 4,00 GB of RAM. 

 

In the first part, computational time requirement is compared for a simple 8-DOF 

system shown in Figure 4.1. The response of the system is obtained for three 

different excitation amplitudes, 8N, 12N and 16N in order to observe the effect of 

external forcing in computational time. From the results in Table 4.19, it can be 

observed that time requirement in proposed method is more than entire system 

solution for all external forcings. However, usage of parallel processing to solve each 

substructure may increase efficiency of proposed method. Although, it is a 

reasonable assumption, it is not achieved via MATLAB parallel processing tool. It is 

thought that it should be managed with more proper programs which are directed to 

this topic. 

 

Table 4.19 Comparison of calculation times for different external forcing values 

 

External 

Forcing [N] 

Proposed 

Method [s] 

Entire System 

Solution [s] 

8 21.44 15.20 

12 30.8 22.05 

16 39.52 30.40 

 

Although, application of proposed method in two identified system is not observed as 

time efficient, it can be said that it is important to show validation of proposed 

method. Furthermore, benefit of the proposed method in computational time is going 

to be shown in the following part. 

 

In the second part, computation time is compared between entire system solution and 

proposed method with using neural networks. In all of case studies, substructure A  is 
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a 2-DOF system, while neural network trained substructure  B   is varying between a 

2-DOF, 4-DOF, 6-DOF, Therefore, comparison which can be seen from Table 4.20 

is managed for different size of coupled system. For an effective comparison external 

forcing is chosen same in all of case studies as 25NF  . 

Table 4.20 Comparison of calculation times for different coupled system sizes 

 

# of DOF of 

Coupled 

System 

Proposed Method with 

using Neural Networks [s] 

Entire System 

Solution [s] 

4-DOF 658,6 22,18 

6-DOF 667,4 41,08 

8-DOF 673,6 73,98 

 

It can be observed from Table 4.20 that time requirement for entire system solution is 

increased with increasing of number of DOF of coupled system while computational 

time of the proposed method remains nearly the same. It is a reasonable result, since 

neural network trained substructure is not solved again for coupling procedure; 

therefore, time requirement of the proposed method remains nearly constant. In 

Figure 4.24, computation time requirement of the entire system solution and the 

proposed method with neural networks is shown. It can be concluded that the 

proposed method is more efficient than solving the entire system for large systems.   

 

Figure 4.24 Comparison of computational time between proposed method with 

neural networks and entire system solution 
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4.2 Nonlinear Structural Coupling from Multiple DOFs 

 

4.2.1 Nonlinear Structural Coupling with Two Identified Substructures 

 

In the seventh example, application of the proposed approach is presented on a 

simple 4-DOF system shown in Figure 4.25. Different from section 4.1 structural 

coupling is done from multiple DOFs. Parameters of substructures A  and B  are 

given Table 4.21 and coupling elements at Table 4.22. The nonlinear elements used 

in the seventh case study, case study 7, are defined in Table 4.23. 

 

 

 

Figure 4.25 Schematic view of 4-DOF coupled system  
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Table 4.21 Parameters of substructures A  and B  

 

Substructure A   Substructure B  

1m  [kg] 2m  [kg] 
 3m  [kg] 4m  [kg] 

1 0,75 
 

0,75 1 

1k  [N/m] 2k  [N/m] 
 3k  [N/m] 4k  [N/m] 

3000 4000 
 

3000 5000 

1h  [N/m] 2h  [N/m] 
 3h  [N/m] 4h  [N/m] 

30 40 
 

30 50 

 

Table 4.22 Parameters of coupling elements 

 

1ck  [N/m] 1ch  [N/m] 2ck  [N/m] 2ch  [N/m] 

5000 50 4000 40 

 

Table 4.23 Nonlinear elements of substructures A  and B  in case study 7 

 

Nonlinear Connection DOFs Nonlinearity Type 
Nonlinearity 

Coefficients 

1-Ground Cubic Stiffness [N/m3] -0.5x105 

1-2 Cubic Stiffness [N/m3] -1x105 

3-4 Cubic Stiffness [N/m3] -2x105 

4-Ground Cubic Stiffness [N/m3] -1x105 

 

Normalized response of the 1st DOF obtained from the proposed nonlinear coupling 

method and by solving the entire system directly is given in Figure 4.26. The 

response of the system is obtained for three different excitation amplitudes, 5N, 8N 

and 10N. The proposed method is in exact agreement with the ones obtained from 

entire system solution, even in unstable regions where the path turns back or 

intersects itself. 
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Figure 4.26 Normalized response of the 1st DOF in case study 7 

 

In the eigthth case study, application of the proposed approach is obtained from the 

coupling of a 4-DOF, 2-DOF systems as shown in Figure 4.27.  Different from 

section 4.1 structural coupling is done from multiple DOFs. Parameters of 

substructures A  and B  are given Table 4.24 and coupling elements at Table 4.25. 

The nonlinear elements used in the eighth case study are defined in Table 4.26. 

 

 

Figure 4.27 Schematic view of 4-DOF coupled system  
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Table 4.24 Parameters of substructures A  and B  

 

Substructure A   Substructure B  

1m  [kg] 2m  [kg] 3m  [kg] 4m  [kg] 
 5m  [kg] 6m  [kg] 

1 0,75 2 1 
 

0,75 1 

1k  [N/m] 2k  [N/m] 3k  [N/m] 4k  [N/m] 
 5k  [N/m] 6k  [N/m] 

5000 4000 3000 4000 
 

3000 5000 

1h  [N/m] 2h  [N/m] 3h  [N/m] 4h  [N/m] 
 5h  [N/m] 6h  [N/m] 

25 20 15 20 
 

15 25 

 

Table 4.25 Parameters of coupling elements 

 

1ck  [N/m] 1ch  [N/m] 2ck  [N/m] 2ch  [N/m] 

5000 25 3000 15 

 

Table 4.26 Nonlinear elements of substructures A  and B  in case study 8 

 

Nonlinear Connection 

Coordinates 
Nonlinearity Type 

Nonlinearity 

Coefficients 

1-Ground Cubic Stiffness [N/m3] 1x105 

1-2 Cubic Stiffness [N/m3] 2x105 

2-3 Cubic Stiffness [N/m3] 1x105 

3-4 Cubic Stiffness [N/m3] 2x105 

5-6 Cubic Stiffness [N/m3] 1x105 

6-Ground Cubic Stiffness [N/m3] 2x105 

 

Normalized response of the 1st DOF obtained from the proposed nonlinear coupling 

method and by solving the entire system directly is given in Figure 4.28. The 

response of the system is obtained for three different excitation amplitudes, 6N, 9N 

and 12N. It is observed that the results obtained from the proposed nonlinear 

coupling method and the entire system solution are in perfect agreement, for this case 

as well. 
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Phase angle of imaginary and reel part of the 1th DOF in case study 10 is shown in 

Figure 4.29. 

 

 

 

Figure 4.28 Normalized response of the 1st DOF in case study 8 

 

 

Figure 4.29 Phase angle of the 1th DOF in case study 8 

 

4.2.2 Nonlinear Structural Coupling with using Neural Networks 

 

In the ninth case study, application of the proposed approach is obtained from the 

coupling of two 2-DOF systems as shown in Figure 4.30.  As it can be seen from 
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Figure 4.30 substructure A  is chosen as identified substructure, while substructure 

B  is chosen as neural network trained substructure. Schematic view of substructure 

B  is shown at Figure 4.31. Parameters of substructures A  and B  are given Table 

4.27 and coupling elements at Table 4.28. The nonlinear elements used in the ninth 

case study are defined in Table 4.29. 

 

 

 

Figure 4.30 Schematic view of coupled system  
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Figure 4.31 Schematic view of neural network trained substructure  

 

Table 4.27 Parameters of substructures A  and B  

 

Substructure A   Substructure B  

1m  [kg] 2m  [kg] 
 3m  [kg] 4m  [kg] 

1,2 2 
 

0,7 0,75 

1k  [N/m] 2k  [N/m] 
 3k  [N/m] 4k  [N/m] 

4000 4000 
 

3000 7000 

1h  [N/m] 2h  [N/m] 
 3h  [N/m] 4h  [N/m] 

40 40 
 

30 70 

 

Table 4.28 Parameters of coupling elements 

 

1ck  [N/m] 1ch  [N/m] 2ck  [N/m] 2ch  [N/m] 

300 3 200 2 
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Table 4.29 Nonlinear elements of substructures A  and B  in case study 9 

 

Nonlinear Connection DOFs Nonlinearity Type 
Nonlinearity 

Coefficients 

1-Ground Dry Friction [N] ,  1500 N/mN k   

1-2 Dry Friction [N] ,  1500 N/mN k   

3-4 Dry Friction [N] ,  1500 N/mN k   

4-Ground Dry Friction [N] ,  1500 N/mN k   

 

Normalized response of the 1st DOF obtained from the proposed nonlinear coupling 

method with using neural network and by solving the entire system directly is given 

in Figure 4.32. While, lin-lin scale is used in “(a)”, log-lin scale is used “(b)”. 

Responses of the coupled structure are given for an external forcing of 25NF  and 

for different slip loads. It is observed that the results obtained from the proposed 

nonlinear coupling method with using neural network and the entire system solution 

are in perfect agreement. 

 

 

Figure 4.32 (a) Normalized response of the 1st DOF in case study 9 
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Figure 4.32 (b) Normalized response of the 1st DOF in case study 9 
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CHAPTER 5 

 

 

5 DISCUSSION AND CONCLUSION 

 

 

 

In this study, a new structural coupling method is introduced which is capable of 

coupling of two nonlinear substructures, where the connection elements can be 

nonlinear as well.  

 

A nonlinear solution method utilizing describing function method with a single 

harmonic is used to obtain solution of substructures, which are employed in the 

solution of the coupled system and training of the substructures with using neural 

networks. Cubic stiffness and hysteretic dry friction are used as nonlinear elements in 

the substructures, so brief information is given about these nonlinearities. Numerical 

solution techniques are introduced to solve nonlinear algebraic equations obtained by 

using describing function method. 

 

Compatibility and equilibrium equations, which are derived from existing linear 

coupling methodology, are added to nonlinear equations of motions in order to model 

coupled system. Model of coupled system consists of two ways, that coupling of two 

identified substructures or coupling of one identified and one neural network trained 

substructures. The resulting nonlinear equations of motion of the coupled system are 

solved by using Newton’s method with arc-length continuation.  

 

Applications of the proposed nonlinear coupling approach are demonstrated by 

numerical case studies. Two main parts, which has two subsections, are considered in 

the case studies. In the first one two substructures are coupled from a single DOF; 

whereas, in the second example, two substructures are coupled from two DOFs. In 

the subsections difference between two identified substructure coupling and 
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identified and neural network trained substructure coupling is studied. Normalized 

responses of the selected DOFs obtained from the proposed nonlinear coupling 

method and by solving the entire system directly are compared in order to verify the 

proposed method for different nonlinear systems. The results obtained from the 

proposed method and the ones obtained by directly solving the entire system agree 

perfectly with each other, which verifies the developed nonlinear coupling method. 

Also time requirement in selected case studies is studied. Time requirement to solve 

coupled system with neural networks is seen more efficient for large systems.  

 

Proposed method is capable of solving the coupled system with nonlinearities at any 

DOFs. This is especially important, since location of the nonlinearities is not 

important to solve the coupled system. It should be noted that in large systems time 

efficiency can be seen clearly. 

 

In this study, coupling of nonlinear systems is achieved successfully using the 

proposed method. However, there are some aspects needed to be studied. First of all, 

training data generation is one of the most crucial parts of the second part of the 

method. There may be practical limits to generate training data as the number of 

possible nonlinear systems increases. Moreover, proposed method is seen less time 

efficient in small systems. The method may be improved such that instead of neural 

network toolbox, same work which is done by neural network toolbox may be done 

with a user defined code. 
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ABSTRACT 

 
In mechanical design, modeling and analysis of a complex structure can be simplified with 

dividing the structure into substructures; therefore, any change in the structure can be addressed easily 

which is referred as “structural coupling”. Utilization of proper coupling techniques, it is possible to 

understand the behavior of the whole structure by considering the behavior of its substructures. For 

linear structures, coupling is a common technique; however, in most of the engineering structures, 

nonlinearities are also encountered; therefore, it is required to extend linear coupling methods to 

nonlinear systems. Although, there exists studies on nonlinear coupling, existing methods are limited 

to coupling of structures where one substructure is linear and the other is nonlinear or two linear 

substructures coupled with a nonlinear element. In this paper, a structural coupling method is 

proposed to couple two-nonlinear substructures. Similar to linear coupling methods, the proposed 

method considers the compatibility of internal forces at the connection degrees of freedom in addition 

to displacements. Since, the substructures are nonlinear, the resulting system of nonlinear differential 

equations are converted into a set of nonlinear algebraic equations by using Describing Function 

Method, which are solved by using Newton’s method with arc-length continuation. 

 
Keywords: Structural Coupling, Nonlinear Structural Coupling, Vibration of Nonlinear Structures 

 

1. INTRODUCTION 

 
In the design of mechanical systems, engineers should test and analyze each prototype created 

in order to provide a qualified and optimized design which has a wide range of requirements. Over the 

last 40 years, engineering structures are analyzed by the finite element method which is proven to be a 

reliable tool. However, in order finalize the design, whole structure has to be analyzed several times; 

therefore, an alternative approach is required in order to decrease the number of analyses and tests. 

Utilizing structural coupling, modeling and analysis of a complex structure can be simplified by 

dividing the structure into substructures and applying the required changes only on one or some of the 

substructures, where each substructure can be analyzed individually. 

Substructure analysis of linear systems is a well-known subject dated back to 1960s by the 

works of Bishop and Johnson [1] on Receptance method and Hurty [2] on Component Mode 
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Synthesis which was a simplified version of the method developed by Craig and Bampton [3].  Many 

different substructure and coupling methods for linear structures are developed by Rubin [4], 

Przemieniecki [5], Urgueira [6], Ewins [7], Klosterman and Lemon [8] and Ren and Beards [9]. All of 

these methods are developed for linear systems and the methodology is based on the compatibility of 

internal forces at the connection degrees of freedom in addition to the compatibility of the 

displacements. However, there is a need to extend linear coupling methods to non-linear systems; 

since many structures, which are considered as linear, are nonlinear in reality. 

Analysis of nonlinear systems is much more complicated compared to linear systems [10] due 

to their response dependent behavior. In this paper, Describing Function Method (DFM) is used for 

the solution of nonlinear systems which was introduced by Krylov and Bogolyubov [11] in order to 

analyze nonlinear control problems based on an earlier work of Van der Pol [12]. Later, Taylor [13] 

replaced each nonlinear element with a quasilinear descriptor to define this approach. 

Solution of multi degree of freedom nonlinear system with symmetrical nonlinearities is 

introduced by Budak and Özgüven [14, 15], which utilizes a special algebra. Later, Tanrıkulu [16] and 

Tanrıkulu et. Al.[17] extended this formulation for any type of nonlinearity by replacing this special 

algebra with describing functions.  

Although, several studies on structural coupling of linear systems and modelling systems with 

nonlinearities are available in literature, the numbers of studies that consider nonlinear structural 

coupling are limited. Existing studies on nonlinear structural coupling are focused on coupling of 

structures where one substructure is linear and the other one is nonlinear or coupling of two linear 

substructures with a nonlinear coupling element. Watanabe and Sato [10] suggested "Nonlinear 

Building Block" approach, for coupling of linear substructures with nonlinear coupling elements. 

Cömert and Özgüven [18] developed a method for coupling of linear substructures with nonlinear 

connecting elements by using DFM, in which FRFs of the linear substructures are used. Ferreira and 

Ewins [19] proposed a new Nonlinear Receptance Coupling Approach and Ferraira [20] extended the 

approach with Multi-Harmonic Nonlinear Receptance Coupling Approach. Both approaches are 

capable of coupling a linear structure with a nonlinear structure with different types of joints. Chong 

and Imregün [21] suggested an iterative algorithm for the coupling of nonlinear structures with linear 

ones.  

In this paper, an approach is developed to dynamic reanalysis of nonlinear substructures. 

Different from the existing methods in literature, proposed method is capable of coupling of two 

nonlinear substructures. Moreover, with the proposed coupling method, in addition to linear coupling 

elements, nonlinear coupling elements can as well be used. The proposed method considers the 

compatibility of internal forces at the connection degrees of freedom in addition to the displacements, 

and uses both of these equations to couple nonlinear substructures. Since, the substructures are 

nonlinear, the resulting system of nonlinear differential equations are converted into a set of nonlinear 

algebraic equations by using Describing Function Method, which are solved by using Newton’s 

method with arc-length continuation. 

 

2. THEORY 

 
2.1.   Structural Coupling of Linear Substructures  

 

Consider two substructures A  and B , shown in Fig. 1, where internal DOFs are represented 

by subscripts, Ai  and Bi  respectively and the connection DOFs are represented by subscripts Ac  and 

Bc , respectively. 
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Fig. 1 Schematic view of structural coupling 

 

The corresponding equilibrium of each substructure can be written as 

 

  

 
 

 

 

 
A AA A A A

A A A AA A

i ii i i c

c i c cc c

f xZ Z

Z Zf x

       
           

              

, (1) 

 
 

 

 

 
B BB B B B

B B B BB B

i ii i i c

c i c cc c

f xZ Z

Z Zf x

       
           

              

, (2) 

 

where  
Ai

x  and  
Bi

x  are generalized displacement vectors for internal DOFs,  
Acx  and  

Bcx  are 

generalized displacement vectors for coupled DOFs of substructures A  and B , respectively.  
Ai

f  

and  
Bi

f  are internal forcing vectors for internal DOFs,  
Acf  and  

Bcf  are coupled forcing vectors 

for internal DOFs of substructures A  and B  , respectively. Lastly,  AZ  and  BZ  are the impedance 

matrices of substructures A  and B . Equilibrium of the forces between the connection DOFs can be 

written as 

 

      
A Bc c cf f f  , (3) 

 

where  cf  is the external force acting on the connection DOFs. Considering the compatibility of 

displacements of the substructures the following relation can be written 

 

       
A B Acoupling c c cD x x f     , (4) 

 

where 
couplingD    is dynamic stiffness matrix of coupling elements. Substituting compatibility and 

equilibrium equations, i.e. Eqs. (3) and (4), into Eqs. (1) and (2), the overall impedance of the 

assembled system can be written as  

  

 

 

0

0

A A A A

B B B B

A A B B A A B B

i i i c

i i i c

c i c i c c c c

Z Z

Z Z Z

Z Z Z Z
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    
         
                

. (5) 
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2.2.   Structural Coupling of Two Nonlinear Substructures 

 
The equation of motion of the nonlinear substructures A  and B  excited with a harmonic 

external forcing ( )f t , can be written as 

 

 
               

               

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

A

B

A A A A A A A A N A

B B B B B B B A N B

M x t C x t i H x t K x t f t f t

M x t C x t i H x t K x t f t f t

    

    
, (6) 

 

where  M ,  C ,  H  and   K  are the mass, viscous damping, structural damping and stiffness 

matrices of the linear system and  ( )Nf t  is the nonlinear forcing vector. Generalized displacement 

vectors  ( )Ax t  and  ( )Bx t  can be written as 

 

  
 

 
 

 

 
( ) ,  ( )

A B

A B

i i

A B

c c

X X
x t x t

X X

   
   

    
      

, (7) 

 

and external forcing vectors  ( )Af t  and  ( )Bf t  can be written as 

 

  
 

   
 

 
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F F
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   
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    
       

, (8) 

 

where  
Ai

F  and  
Bi

F  are external forcing vectors acting on internal DOFs and  
AcF  and  

BcF  are 

external force vectors acting on the coupled DOFs. If the external forcing,  ( )f t  is periodic, 

response of the system, ( )x t , can as well be assumed periodic, which can be expressed as follows 

 

      
0

1

( ) Im im

m
m

f t F F e 




 
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 
 , (9) 
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0

1

( ) Im im

m
m

x t X X e




 
   

 
  . (10) 

 
Utilizing Describing Function Method (DFM) [14, 22] and substituting Eqs. (7) and (8) into Eq. (6) as 

the following result is obtained 
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, (11) 

 

where,    is the “nonlinearity matrix”, which is function of the displacement vector. The elements of 

nonlinearity matrix are defined as 
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 

 

1

      

        

n

kjkj
j

kjkj

k j

k j







  
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
, (12) 

 

where 
kj  is describing function of the nonlinearity between the thk  and the thj  degrees of freedom, 

which is a quantity complex in general. For k j  nonlinearity is between the thk  degrees of freedom 

and the ground. Details of DFM can be found in [14, 22].  

Internal forcing vector  
Acf  can be written as 
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couA A B A B

NL

c pling c c c cf D X X M i C i H K X X              , (13) 

 

where, cou

NL

plingD    is the nonlinear dynamic stiffness matrix of the connection elements. Substituting 

Eqs. (3) and (13), into Eq. (11), equation of motion can be obtained as 
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.  (14) 

 
 

Eq. (14) can be solved by a nonlinear equation solver and in this paper; Newton’s method with arc-

length continuation [23] is used. Algorithm of the proposed nonlinear coupling method is given in Fig. 

2. 
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Fig. 2 Algorithm of the proposed method 

 

2.3.   Describing Functions of the Nonlinear Elements Used 

 

 In this paper,  cubic stiffness and  hysteretic dry friction are used as nonlinear elements in the 

substructures. The nonlinear forcing in a cubic stiffness element can be given as 

 

 3

N cF k x  , (15) 

where ck  is the coefficient of the cubic stiffness nonlinearity. Describing function of the cubic 

stiffness nonlinearity is given as 

 

 23

4
ck X    , (16) 

 

where X  is the amplitude of the relative displacemetn between the two ends of the cubic stiffness 

element. 

 There exists several friction models in the literature and in this paper, a one-dimensional 

Coulomb friction model with constant normal load is used. One-dimensional dry friction element and 

the corresponding hysteresis curve for a single harmonic input are given in Fig. 3. 
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Fig. 3 (a) Schematic drawing, (b) corresponding hysteresis curve for dry friction nonlinearity [22] 

Describing function of the hysteresis curve given in Fig. 3(a) can be written as [22, 24] 

 

 2
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,  (17) 
 

where, k  is the contact stiffness between rubbing surfaces, N  is the constant normal force,   is the 

dry friction coefficient and 1   

 

 
1

2
sin

k X N
a

k X


 

    
   

 
. (18) 

 
3. CASE STUDIES 

 

In this section, the proposed coupling method is demonstrated on different model. In the first one, 

substructures are coupled from a single DOF whereas in the second one, they are coupled from two 

DOFs. 

 

3.1.   Example 1: Coupling from a Single DOF 

 

In the first example, application of the proposed approach is presented on a simple 8-DOF 

system shown in Fig. 4. Parameters of substructures A  and B  are given Table 1 and coupling 

elements at Table 2. The nonlinear elements used in the first case study, case study 1, are defined in 

Table 3. 

 

 
 

Fig. 4 Schematic view of 8-DOF coupled system 
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Table 1 Parameters of substructures A  and B  

 

Substructure A  Substructure B  

1m  [kg] 2m  [kg] 3m  [kg] 4m  [kg] 5m  [kg] 6m  [kg] 7m  [kg] 8m  [kg] 

1 0,75 2 1 0,75 1 1 2 

1k  [N/m] 2k  [N/m] 3k  [N/m] 4k  [N/m] 5k  [N/m] 6k  [N/m] 7k  [N/m] 8k  [N/m] 

5000 2000 4000 6000 3000 2000 5000 3000 

1h  [N/m] 2h  [N/m] 3h  [N/m] 4h  [N/m] 5h  [N/m] 6h  [N/m] 7h  [N/m] 8h  [N/m] 

50 20 40 60 30 20 50 30 

 

Table 2 Parameters of coupling elements 

 

ck  [N/m] ch  [N/m] 

4000 40 

 

Table 3 Nonlinear elements of substructures A  and B  in case study 1 

 

Nonlinear Connection DOFs Nonlinearity Type 
Nonlinearity 

Coefficients 

1-Ground Cubic Stiffness [N/m3] -1x105 

1-2 Cubic Stiffness [N/m3] -2x105 

2-3 Cubic Stiffness [N/m3] -10x105 

3-4 Cubic Stiffness [N/m3] -1x105 

5-6 Cubic Stiffness [N/m3] -1x105 

6-7 Cubic Stiffness [N/m3] -3x105 

7-8 Cubic Stiffness [N/m3] -1x105 

8-Ground Cubic Stiffness [N/m3] -5x105 

 

Normalized response of the 1st and the 8th DOFs obtained from the proposed nonlinear coupling 

method and by solving the entire system directly are given in Fig. 5 and Fig. 6. The response of the 

system is obtained for three different excitation amplitudes, 8N, 12N and 16N in order to observe the 

effect of cubic stiffness nonlinearity. 
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Fig. 5 Normalized response of the 1st DOF in case study 1 

 
Fig. 6 Normalized response of the 8th DOF in case study 1 

 

It can be seen from the Fig. 5 and Fig. 6 that, natural frequency is shifted due to cubic stiffness 

nonlinearity. Furthermore, more importantly the proposed method is in exact agreement with the ones 

obtained from entire system solution, even in unstable regions where the path turns back or intersects 

itself.  

 

In the second case study, case study 2. 8-DOF system is obtained from the coupling of a 6-DOF, 

2-DOF systems as shown in Fig. 7. Parameters of substructures A  and B , and coupling elements are 

given in Table 4 and Table 5, respectively. The nonlinear elements present in the system are defined 

in Table 6. 

 

 
Fig. 7 Schematic view of 8-DOF coupled system 
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Table 4 Parameters of substructures A  and B  

 

Substructure A  Substructure B  

1m  [kg] 2m  [kg] 3m  [kg] 4m  [kg] 5m  [kg] 6m  [kg] 7m  [kg] 8m  [kg] 

0,75 2 1 1 2 0,75 2 2 

1k  [N/m] 2k  [N/m] 3k  [N/m] 4k  [N/m] 5k  [N/m] 6k  [N/m] 7k  [N/m] 8k  [N/m] 

3000 5000 4000 6000 6000 5000 3000 5000 

1h  [N/m] 2h  [N/m] 3h  [N/m] 4h  [N/m] 5h  [N/m] 6h  [N/m] 7h  [N/m] 8h  [N/m] 

60 100 80 120 120 100 60 100 

 

Table 5 Parameters of coupling elements 

 

ck  [N/m] ch  [N/m] 

2000 40 

 

Table 6 Nonlinear elements of substructures A  and B  in case study 2 

 

Nonlinear Connection Coordinates Nonlinearity Type 
Nonlinearity 

Coefficients 

1-Ground Cubic Stiffness [N/m3] 1x105 

1-2 Cubic Stiffness [N/m3] 2x105 

2-3 Cubic Stiffness [N/m3] 1x105 

3-4 Dry Friction [N] N 

4-5 Cubic Stiffness [N/m3] 1x105 

5-6 Cubic Stiffness [N/m3] 3x105 

7-8 Cubic Stiffness [N/m3] 1x105 

8-Ground Dry Friction [N] N 

 

Corresponding response plots are plotted in Fig.8 and Fig.9 for the 1st DOF. Normalized responses of 

the coupled structure obtained from the proposed nonlinear coupling method and by solving the entire 

system directly are compared in Fig. 8 and Fig. 9. In Fig. 8, the response of the coupled system is 

obtained for 12N, 24N and 36N excitation force amplitudes, while the slip load of dry friction 

nonlinearities are kept constant as 100NN  . In Fig.9, responses of the coupled structure are given 

for an external forcing of 12NF  and for different slip loads. Perfect agreement between the results 

obtained from the proposed nonlinear coupling method and the entire system solution is observed 

which verifies the developed coupling method. 
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Fig. 8 Normalized response of the 1th DOF in case study 2 

 

 

 
 

Fig. 9 Normalized response of the 1th DOF in case study 2 

 

3.2.   Example 2: Coupling from Multiple DOFs  

 

In this section, a 6-DOF system is used as a case study as shown in Fig. 10. Parameters of 

substructures A  and B , and coupling elements are given in Table 7 and Table 8. The nonlinear 

elements used in the third case study, case study 3, are defined in Table 9. 
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Fig. 10 Schematic view of 6-DOF coupled system 

 

Table 7 Parameters of substructures A  and B  

 

Substructure A   Substructure B  

1m  [kg] 2m  [kg] 3m  [kg] 4m  [kg] 
 5m  [kg] 6m  [kg] 

1 0,75 2 1 
 

0,75 1 

1k  [N/m] 2k  [N/m] 3k  [N/m] 4k  [N/m] 
 5k  [N/m] 6k  [N/m] 

5000 4000 3000 4000 
 

3000 5000 

1h  [N/m] 2h  [N/m] 3h  [N/m] 4h  [N/m] 
 5h  [N/m] 6h  [N/m] 

25 20 15 20 
 

15 25 

 

Table 8 Parameters of coupling elements 

 

1c
k  [N/m] 

1c
h  [N/m] 

2ck  [N/m] 
2ch  [N/m] 

5000 25 3000 15 
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 m 5  m 6 

 k 1 , h  1 
 k 2 , h  2 

 k 5 , h  5  k 6 , h  6 

 k c1 , h  c1 

f(t) = F *sin (wt)

 k c2 , h  c2 

 m 3  m 4 

 k 3 , h  3 
 k 4 , h  4 
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Table 9 Nonlinear elements of substructures A  and B  in case study 3 

 

Nonlinear Connection Coordinates Nonlinearity Type 
Nonlinearity 

Coefficients 

1-Ground Cubic Stiffness [N/m3] 1x105 

1-2 Cubic Stiffness [N/m3] 2x105 

2-3 Cubic Stiffness [N/m3] 1x105 

3-4 Cubic Stiffness [N/m3] 2x105 

5-6 Cubic Stiffness [N/m3] 1x105 

6-Ground Cubic Stiffness [N/m3] 2x105 

 

Normalized response of the 1st DOF obtained from the proposed nonlinear coupling method and by 

solving the entire system directly is given in Fig. 11. The response of the system is obtained for three 

different excitation amplitudes, 6N, 9N and 12N. It is observed that the results obtained from the 

proposed nonlinear coupling method and the entire system solution are in perfect agreement, for this 

case as well. 

 

 

 
Fig. 11 Normalized response of the 1th DOF in case study 3 

 

 

4. DISCUSSION AND CONCLUSION 

 

In this paper, a new structural coupling method is introduced which is capable of coupling of two 

nonlinear substructures, where the connection elements can be nonlinear as well. Compatibility and 

equilibrium equations, which are derived from existing linear coupling methodology, are added to 

nonlinear equations of motions in order to model coupled system.  The resulting nonlinear equations 

of motion of the coupled system are solved by using Newton’s method with arc-length continuation. 

Cubic stiffness and hysteretic dry friction are used as nonlinear elements in the substructures. 

Applications of the proposed nonlinear coupling approach are demonstrated by numerical case 

studies. Two examples are considered in the case studies. In the first one two substructures are 

coupled from a single DOF; whereas, in the second example, two substructures are coupled from two 

DOFs. Normalized responses of the selected DOFs obtained from the proposed nonlinear coupling 

method and by solving the entire system directly are compared in order to verify the proposed method 
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for different nonlinear systems. The results obtained from the proposed method and the ones obtained 

by directly solving the entire system agree perfectly with each other, which verifies the developed 

nonlinear coupling method.  
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