
INVESTIGATING THE PERFORMANCE OF SEGMENTATION METHODS
WITH DEEP LEARNING MODELS FOR SENTIMENT ANALYSIS ON

TURKISH INFORMAL TEXTS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF INFORMATICS

OF
MIDDLE EAST TECHNICAL UNIVERSITY

FAT�H KURT

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE
OF MASTER OF SCIENCE

IN
INFORMATION SYSTEMS

JANUARY 2018

Approval of the thesis:

INVESTIGATING THE PERFORMANCE OF SEGMENTATION
METHODS WITH DEEP LEARNING MODELS FOR SENTIMENT

ANALYSIS ON TURKISH INFORMAL TEXTS

submitted by FAT�H KURT in partial ful�llment of the requirements for the degree
of Master of Science in Information Systems Department, Middle East
Technical University by,

Prof. Dr. Deniz Zeyrek Boz³ahin
Dean, Graduate School of Informatics

Prof. Dr. Yasemin Yard�mc� Çetin
Head of Department, Information Systems

Prof. Dr. P�nar Karagöz
Supervisor, Computer Engineering, METU

Examining Committee Members:

Assoc. Prof. Dr. Tu§ba Ta³kaya Temizel
Information Systems, METU

Prof. Dr. P�nar Karagöz
Computer Engineering, METU

Assoc. Prof. Dr. Sinan Kalkan
Computer Engineering, METU

Assoc. Prof. Dr. Altan Koçyi§it
Information Systems, METU

Assist. Prof. Dr. Gönenç Ercan
Information Systems, Hacettepe University

Date:

I hereby declare that all information in this document has been obtained
and presented in accordance with academic rules and ethical conduct. I
also declare that, as required by these rules and conduct, I have fully cited
and referenced all material and results that are not original to this work.

Name, Last Name: FAT�H KURT

Signature :

v

ABSTRACT

INVESTIGATING THE PERFORMANCE OF SEGMENTATION METHODS
WITH DEEP LEARNING MODELS FOR SENTIMENT ANALYSIS ON

TURKISH INFORMAL TEXTS

Kurt, Fatih

M.S., Department of Information Systems

Supervisor : Prof. Dr. P�nar Karagöz

January 2018, 65 pages

This work investigates segmentation approaches for informal short texts in morpho-
logically rich languages in order to e�ectively classify the sentiment. The two building
blocks of the proposed work in this thesis are segmentation and deep neural network
model building. Segmentation focuses on preprocessing of text with di�erent method-
ologies. These methodologies are grouped under four distinct approaches; namely,
morphological, sub-word, tokenization, and hybrid approaches. There is mostly mul-
tiple numbers of variants for each of these four methods provided in this work. The
second stage focuses on e�ective model building for classifying text. Performances of
each method are evaluated by utilizing a model built by a Convolutional Neural Net-
work (CNN) and Recurrent Neural Network (RNN) model proposed in the literature
for text classi�cation.

Keywords: Sentiment Analysis, Deep Learning, Neural Networks, NLP for User-
generated Content, Word Segmentation

vi

ÖZ

SEGMENTASYON YÖNTEMLER�N�N INFORMAL TÜRKÇE MET�NLERDE
DUYGUSAL ANAL�Z �Ç�N DER�N Ö�RENME MODELLER� �LE

KULLANIMINDA PERFORMANS ANAL�Z�

Kurt, Fatih

Yüksek Lisans, Bili³im Sistemleri Bölümü

Tez Yöneticisi : Prof. Dr. P�nar Karagöz

Ocak 2018 , 65 sayfa

Bu çal�³ma morfolojik olarak zengin dillerde k�sa informal metinlerde etkili bir ³e-
kilde duygu analizi yap�lmas�n� incelemektedir. Bu tezde önerilen çal�³man�n temel
yap� ta³lar�n� metin segmentasyonu ve yapay sinir a§� modeli yarat�lmas� olu³turmak-
tad�r. Segmentasyon farkl� metodolojilerle metinlerin ön-i³lemden geçirilmesini sa§lar.
Bu çal�³mada kullan�lan metodolojiler dört farkl� ana groupta kümelenmi³tir. Bun-
lar, morfolojik, kelime-alt� sözcük, dizgeleme ve hibrit metodlar�ndan olu³maktad�r.
Ço§unlukla bu ana gruplar�n alt�nda birden fazla farkl� metod kullan�lm�³t�r. �kinci
a³ama metinlerin s�n��and�r�lmas� için etkili model yaratmaya odaklanmadtad�r. �lk
a³amada olu³turulan herbir segmentasyon yöntemi için Konvolüsyonel Sinir A§� (KSA
ya da CNN) ve Tekrarlayan Sinir A§� (TSA ya da RNN) modellerinin litaratürde iyi
bilinen parametreleri kullan�larak performans testleri yap�lmaktad�r.

Anahtar Kelimeler: Duygu Analizi, Derin Ö§renme, Sinir A§lar�, Kullan�c� içerikleri

için Do§al Dil �³leme, Kelime Segmentasyonu

vii

To my family and valuable friends

viii

ACKNOWLEDGMENTS

I would like to thank my supervisor Prof. Dr. P�nar Karagöz for her constant support,
guidance, and friendship. It was a great honour to work with her for the last two years
and our cooperation in�uenced my academical and world-view highly.

A lot of people in�uenced and supported this work scienti�cally and their contributions
were most valuable for me. Dilek Önal personally pushed for the very idea of the
thesis and provided further interesting and valuable ideas on how to do follow-up work
regarding the thesis. She also supplied a lot of important material for the real kick o�
of this work. Her ideas and support made it possible that in a short time I was able
to build the frame of this work.

I would also like to thank all people around me that contributed in providing valuable
information and taking part in discussions that eventually made this work better.

And there are a lot of people that were with me in these years. They de�ned me, they
made me who I am, they are true owners of this work. It is not possible to write down
why each of them is important to me and this work because it will take more space
than the work itself.

Very special thanks to a group of people who've taught me real meaning of friendship
lately. I would like to extend my deepest gratitude to Arda Ta³c�, Deniz Çelik, and
Fatih Haf�zo§lu for their constant support during this thesis and in my life in general.

Special thanks to all good people around me, for being good friends and showing their
support any time in my life. I would like to thank Arda güçlü, Bar�³ Ercan, Burçak
Gündo§du, O§uz Kerem �engöz, Onur Y�lmaz, and many others that I could not list
here.

Many thanks to my company Arçelik A.�., my team leader Deniz Kaya, and my other
managers in the company not only for making the postgraduate education possible
during work but also for actively encouraging it and providing much-needed assistance
and �exibility.

And �nally, I would like to thank my family for their life-long support, for being with
me all the time, and for making me what I am today. There can be no other group
of people that contributes to one's life, its meaning and meritorious values more than
one's family. There is no adequate word that can describe my love and gratitude for
them.

ix

TABLE OF CONTENTS

ABSTRACT . vi
ÖZ . vii
ACKNOWLEDGMENTS . ix
TABLE OF CONTENTS . x
LIST OF TABLES . xii
LIST OF FIGURES . xiv
LIST OF ABBREVIATIONS . xvi

CHAPTERS

1 INTRODUCTION 1
2 RELATED WORK 5

2.1 Neural networks for Sentiment Analysis 5

2.2 Sentiment Analysis for Turkish . 6

3 SENTIMENT ANALYSIS WITH VARIOUS SEGMENTATION
METHODS AND DEEP LEARNING MODELS 9

3.1 Segmentation Methods . 9

3.1.1 Word-based Analysis . 10

3.1.2 Morphology-based Analysis . 10

3.1.3 Sub-word Analysis . 12

3.1.4 Hybrid Analysis . 15

3.2 Deep Neural Networks . 16

3.2.1 Convolutional Neural Networks 16

3.2.2 CNN-rand . 16

3.2.3 CNN-rand Simpli�ed . 19

3.2.4 Long-Short Term Memory (Neural Network) 21

3.2.5 Proposed LSTM Model . 22

3.2.6 Hyper-parameter Optimizations 23

3.2.7 Model Training Callbacks . 25

3.3 Limitations . 26

4 EXPERIMENTS 29

4.1 Data Sets . 29

x

4.2 Data Pre-processing . 30

4.2.1 Review Sentence Break-down 32

4.2.2 Forced Review Break-down . 33

4.2.3 Sentiment Loss with Review Break-down and Majority Voting . 34

4.2.4 Segmentation . 34

4.2.5 Token Identi�cation . 34

4.2.6 Sentence-Level Review Modeling for Train-Test Split 36

4.3 Deep Neural Networks . 38

4.4 Baseline Methods . 39

4.5 Experiment Results and Discussion . 40

4.5.1 CNN-rand Results . 41

4.5.2 Simpli�ed CNN-rand Results 41

4.5.3 LSTM Results . 43

4.5.4 Results in Comparison to Baseline Scores 43

4.6 Performance Evaluation . 46

4.6.1 Distribution of Polarity Predictions and Majority Voting 47

4.6.2 Performance Comparison on Sample Cases 49

4.6.3 Cross-parameter Comparison 51

4.6.4 Computational Performance . 52

4.7 Summary . 55

5 CONCLUSION AND FUTURE WORK 57

xi

LIST OF TABLES

Table 1.1 Turkish words w/ and w/o negation 2

Table 3.1 Running examples for Word-based segmentation methods 10

Table 3.2 Running examples for Morphology-based segmentation methods . 11

Table 3.3 Running examples for Sub-word segmentation methods 14

Table 3.4 Running examples for Hybrid segmentation methods 15

Table 4.1 Movie Reviews initial statistics 29

Table 4.2 Product Reviews initial statistics 30

Table 4.3 Vocabulary sizes and other basic statistics for Movie Reviews and
Product Reviews datasets. 30

Table 4.4 Movie Reviews and Product Reviews post-split stats 32

Table 4.5 Movie Reviews and Product Reviews maximum sentence size after
forced split . 34

Table 4.6 Compiled Vocabulary sizes and Id counts for each segmentation
methods . 35

Table 4.7 Number of sentences in each sample after training/validation/test
dataset split. 37

Table 4.8 Baseline Scores on the Movie Reviews data set 39

Table 4.9 Baseline Scores on the Product Reviews data set 40

Table 4.10 CNN-rand Accuracy Results w/o Majority Voting 41

Table 4.11 CNN-rand Accuracy Results w/ Majority Voting 42

Table 4.12 Simpli�ed CNN-rand Accuracy Results w/o Majority Voting . . 42

Table 4.13 Simpli�ed CNN-rand Accuracy Results w/ Majority Voting . . . 43

Table 4.14 LSTM Accuracy Results w/o Majority Voting 44

Table 4.15 LSTM Accuracy Results w/ Majority Voting 44

Table 4.16 Accuracy Scores on the Movie Reviews data set 45

Table 4.17 Accuracy Scores on the Product Reviews data set 46

Table 4.18 Margin between best baseline scores and our results on Movie

Reviews, and Product Reviews data sets 46

xii

Table 4.19 Sample Predictions for a review compiled from LSTM @ BPE-5k

and LSTM @ Lemma+Su�x . 50

Table 4.20 Sample Predictions for a review compiled from CNN @ BPE-5k

and CNN @ Lemma+Su�x . 51

Table 4.21 List of parameters collected during experiments with pre-precessing
and neural model building. 52

xiii

LIST OF FIGURES

Figure 3.1 Figure showing a potential utilization Convolutional Neural Net-
works for text classi�cation job (Kim, 2014) 17

Figure 3.2 CNN-rand network described in Kim (2014) with layer shapes
produced for Word-Token segmentation on Movie Reviews dataset . . 17

Figure 3.3 Simpli�ed CNN-rand network proposed by alexander-rakhlin
with layer shapes produced for Word-Token segmentation on Movie Re-
views dataset . 20

Figure 3.4 An LSTM cell detailed in Graves et al. (2013) with input, output,
and forget gates. 21

Figure 3.5 A simple LSTM network with layer shapes produced for Word-

Token segmentation on Movie Reviews dataset 22

Figure 3.6 Filter sizes used for Grid Search 24

Figure 3.7 Accuracy graph for Dropout broken down by Filters. Color shows
Accuracy. Shape shows details about L2 Regularization. 25

Figure 4.1 Histogram showing the distribution of review length for datasets. 31

Figure 4.2 Histogram showing the distribution of review length for datasets
after review-sentence-split. 33

Figure 4.3 Word-token frequency distribution over percentile. Y-axis is lim-
ited to 10 in order to show lower frequencies better. 36

Figure 4.4 CNN-rand: Progress of accuracy and loss for validation and
training data on Movie dataset w/ BPE-5k segmentation. The green
vertical line shows the position of best model save, while orange one
shows patience count-down for EarlyStopping. 38

Figure 4.5 Predicted polarity distribution of test sample data for an LSTM
networks trained with BPE-5k segmentation output. Distribution is
Sentence-level. 47

Figure 4.6 Predicted polarity distribution of test sample data for an LSTM
networks trained with BPE-5k segmentation output. Distribution is
Review-level . 48

xiv

Figure 4.7 Predicted polarity distribution of test sample data for a CNN
networks trained with BPE-5k segmentation output. Distribution is
Sentence-level . 49

Figure 4.8 Predicted polarity distribution of test sample data for a CNN
networks trained with BPE-5k segmentation output. Distribution is
Review-level . 50

Figure 4.9 Scatter plot showing relation between vocabulary size and accu-
racy among all results acquired with CNN. Review length and Segmen-
tation are added as details. 53

Figure 4.10 Bar chart showing average memory size, average test data pre-
diction duration, and model memory for a CNN network. 55

xv

LIST OF ABBREVIATIONS

BPE Byte-pair encoding

BPE-1k Byte-pair encoding with 1k vocabulary

BPE-5k Byte-pair encoding with 5k vocabulary

BPE-30k Byte-pair encoding with 30k vocabulary

CNN or ConvNet Convolutional Neural Network

CNN-rand A special implementation of CNN with random initial embed-
ding

DCNN Dynamic Convolutional Neural Network

DNN Deep Neural Network

GPU Graphics Processing Unit

IMDB Internet Movie Database: Online Movie Review Web-site

K-means A machine learning clustering model

LSTM Long-Short Term Memory (Neural Network) - A special type
of RNN

ML Machine Learning

MV-RNN Matrix-Vector Model for RNN

NB Naive Bayes

NER Named Entity Recognition

NLP Natural Language Processing

n-gram An n-gram is a contiguous sequence of n items from a given
sample of text or speech

RNN Recurrent or Recursive Neural Network

SVM Support Vector Machine

Word-net Lexical database for the English language

xvi

CHAPTER 1

INTRODUCTION

Sentiment analysis, being a text classi�cation task, has been a popular topic in natural
language processing related academic works, which has been studied by a high number
of researchers. As also mentioned by Giachanou in Giachanou and Crestani (2016)
social media data created by a huge number of individual users is very dynamic and
varies to a great extent both in terms of size and type. The direct interaction of
users with di�erent products, organizations, current events, and people urges involved
actors to create means to automate the understanding of user sentiment on a particular
topic. Sentiment analysis being more or less about understanding author feeling, it
largely focuses on positive or negative sentiment directed at an actor or an event.
Earlier techniques on sentiment extraction have focused on the lexicon and rule-based
solutions; however, studies recently started to employ Neural Networks. Even though
latest studies show promising results, (Yin et al., 2017) they largely focus on English
and lack in-depth investigation for other languages.

There are two major challenges with most languages. First is that they mostly lack
well-known and useful resources such as Word-net, and there are few types of research
on them. The other is that some of the languages are morphologically very rich, which
leads to a di�erent set of problems.

Lack of NLP resources such as WordNet, (Miller, 1995) SentiWordNet (Esuli and
Sebastiani, 2006; Baccianella et al., 2010), and SenticNet (Cambria et al., 2014) is
a problem in case of lexicon or rule-based approaches being used. However, usage
of neural network approaches based on embeddings and representation learning can
eliminate this e�ect to a great extent. Resources such as WordNet helps neural net-
works in terms of providing initial vector representations for each token that will be
processed by the network. However, neural networks are capable of building their em-
bedding layer with the gradually built-up vector representations during the training
period. Starting neural network with random embeddings instead of with preset vector
representations will only extend the train duration assuming the dataset used is rich
enough.

One has to mention that the scheme explained in the previous paragraph about network
building its own embedding is proved to be e�ective in English but not in Turkish,
where the morphologically rich structure brings the large vocabulary problem. A
large vocabulary will e�ectively diminish neural networks e�ectiveness in extracting
proper vector representations for words and building the corresponding embedding
later. This is partly due to large vocabulary having the majority of tokens with

1

Table 1.1: Turkish words w/ and w/o negation

Turkish Translation

Seviyorum I like
Sevmiyorum I don't like
Konu³maktay�z We are (in the act of) talking
Konu³may�z We don't talk

very small frequencies within the text, and partly due to di�erent variations of words
particular a�xes being used in certain contexts.

In addition to the large vocabulary problem emanating from the morphological struc-
ture of Turkish, the informal texts also contribute to the problem with the introduction
of free usage of language with slang, typographical errors, abbreviations, and the local
usage of language in di�erent areas. Several prominent approaches that can tackle
these problems are presented in this work. Morphological analysis, sub-word segmen-
tation are some of these approaches that can deal with large vocabulary problem and
unstructured usage of the language.

In this study, it is aimed to address challenges explained above with plausible ap-
proaches.

In morphologically rich languages, token derivation depends heavily on grammar rules
and a�xes. This has two major consequences that bring additional challenges for sen-
timent extraction task. Firstly, the language has a very large vocabulary that causes
sparsity and a high level of dimensionality when a bag of words representations are
used. A large vocabulary is a problem for the neural models as the size of word em-
bedding matrix increases. This causes neural network learn slower and less e�cient.
Secondly, an a�x can determine the entire sentiment of a sentence, thereby increasing
the importance of correctly identifying sub-word elements that incorporate such sen-
timents. Table 1.1 shows good examples of simple su�xes having a major sentimental
e�ect.

As already mentioned before, most languages mostly lack advanced resources such as
Word-net and studies that mostly depend on frameworks that are still in the making
or already abandoned. One such development is Zemberek, (Ahmet Afsin Akin, 2007)
which is originally developed by Ahmet Afsin Akin with further improvements until
20101. The project was discontinued or seen a low level of development tra�c for
a while; however, it was still being widely used due to lack of resources to utilize
otherwise. The project was re-adopted with a new code base2 starting in late 2013
with further improvements to the date.

In this work, we primarily focus on Turkish. This is because Turkish su�ers both from
large vocabulary due to its morphology and from lack of resources such as Word-net.
Sentiment analysis for Turkish has been addressed using lexicon (Erogul, 2009; Vural

1 github.com/ahmetaa/zemberek
2 github.com/ahmetaa/zemberek-nlp

2

github.com/ahmetaa/zemberek
github.com/ahmetaa/zemberek-nlp

et al., 2012; Kokciyan et al., 2013; Yildirimm et al., 2015) or rule-based (Boynukalin,
2012; Firat Akba and Sever, 2014; Coban et al., 2015) methods.

To the best of our knowledge, this is the �rst work that reports an empirical evalua-
tion of a neural network based approach to sentiment analysis for Turkish. Kisa and
Karagoz (2015); Demir and Özgür (2014); Kuru et al. (2016) are examples of successful
use of word embeddings and neural nets for Named Entity Recognition (NER). Kuru
et al. (2016) propose a character-level LSTM for the NER task.

The main contribution of this work is investigating the e�ect of various segmenta-
tion models, including word-based, character-based, as well as morphological analysis
based segmentation for sentiment classi�cation. For the sake of completeness to the
investigation, several di�erent neural network models are also incorporated into the
text classi�cation pipe-lining. Together with the challenges of working with a morpho-
logically rich language, another challenge is the use of social media resources, which
enforces no formal grammar or language controls over the accuracy of the input texts.
We evaluate each segmentation method with a CNN and an RNN model, which, to-
gether are two states of the art neural network models for sentiment analysis. (Yin
et al., 2017)

In this work, it is planned to demonstrate literature research, various proposals, and
related experiments in order to present valuable results that will contribute in the ways
listed below.

• This work will enable to evaluate e�ects of di�erent segmentation methods on
performance in terms of accuracy and computational e�ectiveness.

• It will also enable to compare di�erent deep neural networks.

• To the best of our knowledge, it will be the �rst sentiment analysis experiment
which applies Neural Network on Turkish data sets.

• Finally, it will also be a novel approach both in terms of comparing di�erent
segmentation methods and neural networks models for Turkish.

In this work, we will cover a full investigation into research, planning, and experiments
for sentiment analysis in Turkish using Deep Neural Networks. We will present state
of the art researches and explain experiments exerted for Sentiment Analysis using
di�erent approaches each. We will also discuss di�erent technologies and methodologies
used for text segmentation and classi�cation. We will propose a complete methodology
to identify performances for di�erent segmentation methods and neural networks in
terms of sentiment extraction accuracy and computational e�ectiveness. We will also
present datasets to be used for this work and the source for these datasets. We will
also present baseline scores for these datasets by investigating the original works and
methodologies exerted in order to acquire these baseline scores.

The organization of this thesis will be as follows.

Previous Work: In this part, we will present state of the art Sentiment analysis
researches and experiments both for Turkish and other languages.

3

Sentiment Analysis with Various Segmentation Methods and Deep Learn-
ing Models: In this part, we will present various text segmentation methods
and deep learning models, and propose a methodology for Turkish Sentiment
Analysis.

Experiments and Results: In this part, we will present our work�ow in order to
execute processes involved in proposed methodology.

Conclusion and Future Work: Finally, we will evaluate our results and conclude
with potential future extensions to this work.

4

CHAPTER 2

RELATED WORK

2.1 Neural networks for Sentiment Analysis

In recent years, neural network models that can encode the sentiment of a text into
a distributed representation have been studied intensively. Besides, studies that rely
on pre-trained word embeddings such as the Bag of Semantic Concepts, (Lebret and
Collobert, 2014), recursive neural networks (Socher et al., 2012, 2013; Irsoy and Cardie,
2014a,b) and CNNs (Kalchbrenner et al., 2014) have been utilized as neural semantic
compositionality models for sentiment. Yin et al. (2017) compare CNN and RNN and
their usages in NLP related studies.

In their work, Lebret and Collobert (2014) use bag of words approach by extracting
n-gram representations from words. The main motivation for breaking down indi-
vidual words into smaller sub-components manifested as a way of dealing with large
vocabulary size. They also use K-means clustering to further deduct vector size for
word representation. By doing so only each cluster will have a vector, which will re-
duce resource constraints signi�cantly. Throughout work, for n-grams, and K-means
n = {1}, {2}, {3}, {1, 2}, {1, 2, 3}, and K = 100, 200, 300 settings are used for IMDB
movie dataset, Pang and Lee (2004), and Maas et al. (2011) datasets. On the former
dataset, 84.0% accuracy is achieved with 1+2-grams for both 200-means and 300-
means. On the latter dataset, 88.55% accuracy is achieved with 1+2+3-grams and for
300-means.

Irsoy and Cardie (2014a) propose using a positional directed acyclic graph with a
Recursive Neural Network. (Socher et al., 2011) Since word vectors are built into
recursive binary trees, a Recursive Neural Networks are very good at handling them.
In this method, a weight for a sentiment is calculated by extracting a weight for each
token also using their binary tree and relation to lower nodes with back-propagating
their weights.

Another example of using Deep Neural networks for sentiment and opinion extraction
is provided by Irsoy and Cardie (2014b). In this work, they propose using an Elman-
type Recurrent Neural Network (Elman, 1990) with improved features such as adding
neural depth by stacking Elman hidden layers (Hermans and Schrauwen, 2013) and
utilizing bi-directionality with Bidirectional RNN architecture proposed by Schuster
and Paliwal (1997).

5

A major problem with word-vectors mentioned by many types of research is the lim-
itation on vector space de�nitions. (Lebret and Collobert, 2014; Turney and Pantel,
2010) Socher et al. (2012) propose using a Recursive Matrix-Vector Model (MV-RNN)
to achieve compositionality. The model enables to learn compositional vector represen-
tations for phrases and sentences that constitute various types and lengths. The model
achieves this by assigning a vector and a vector matrix to every node in the parse tree.
The MV-RNN starts with building multi-word vectors by building multiples of single
word vector representations using vectors from constituting words.

Li et al. (2015) compare RNN and recursive neural models on the tasks of sentiment
classi�cation of sentences and syntactic phrases, question answering, discourse parsing,
and semantic relations. They report that RNN models have an equal or superior
performance to recursive models except for the semantic relations between nominals
task.

Kalchbrenner et al. propose Dynamic Convolutional Neural Network (DCNN) model
(Kalchbrenner et al., 2014) in order to model semantic compositionality of sentences.
The DCNN model is compared against recursive neural networks on Stanford Sen-
timent Tree-bank. (Socher et al., 2013) The DCNN model is shown to outperform
the recursive neural network model of Socher et al. (2013) on binary and multi-class
sentiment classi�cation. It is important to note that, in their work, DCNN model is
not compared with RNN models.

CNN models proposed by Kim (2014) for sentiment analysis on sentences outperform
DCNN on 2/3 datasets. CNN-rand is one of those CNN model variants that does not
use word2vec, which has lower scores than other 3 word2vec-powered variants to some
extent.

2.2 Sentiment Analysis for Turkish

A survey on Turkish sentiment analysis by Dehkharghani et al. (2016b) provides a
thorough analysis of sentiment analysis, and propose a system of methods to analyze
Turkish in this context. They propose an approach to process Turkish texts at di�erent
granularity levels. levels are proposed as Word-level, Phrase-level, Sentence-level, and
Document-level. This work also maps several linguistic issues such as negation, inten-
si�cation, conditional sentences, rhetorical questions, sarcastic phrases, and idiomatic
uses. In addition, it also maps some of the other issues such as emoticons, conjunctions,
domain-speci�c indicative keywords, and background knowledge. The work, however,
does not provide solutions to all these issues. Some of them such as sarcastic phrases,
and idiomatic uses, domain-speci�c indicative keywords, and background knowledge
are left out as they need further research or language-speci�c tool-sets to extract re-
lated information regarding the related issues. The solution provided largely depend
on SentiTurkNet (Dehkharghani et al., 2016a) framework, which is also developed by
the same team.

One of the oldest researches on sentiment analysis in Turkish goes back to a thesis
published by Erogul in 2009 where he applies a set of sentiment analysis processes to
extract features from Movie Reviews dataset. In this work, he selects di�erent sets
of features based on frequencies, the root of words, part-of-speech and n-grams. He

6

investigates performances of each method using di�erent values.

In Vural et al. (2012), by using SentiStrength1, Vural applied sentence-binary, sentence-
max/min, and word-sum to acquire accuracy results on the same dataset. Sen-
tiStrength is a lexicon-based sentiment analysis library developed by Thelwall et al.
(2010). This framework utilizes a pre-compiled list of positive/negative weights scored
by humans for each word in di�erent groups. Sentimental word list, booster word list,
idiom list, negation word list, and �nally emoticon list have di�erent scores of their
own. The framework then combines min and max scores within the text to determine
a sentiment score for overall text. Vural is able to adapt the framework to Turkish
and compile a result set for the same data set in Erogul (2009)'s work.

Firat Akba and Sever (2014) improved Vural et al. (2012)'s accuracy results on Movie
Reviews signi�cantly by employing Support Vector Machine(SVM) and Naive Bayes
Classi�er(NB) and also by including a feature selection step. They employed two main
methods for feature selection stage. Results are presented by training an SVM and an
NB classi�er with features selected by both Chi-Square and Information Gain.

Demirtas and Pechenizkiy (2013) proposed and evaluated a model for sentiment anal-
ysis by machine-translating Turkish texts in Product Reviews data set. Demirtas and
Pechenizkiy build this dataset for their this work. They both collect movie reviews
from BeyazPerde2 having the same size with benchmark English movie review dataset.
They also collect smaller datasets from multidomain product reviews from a Turkish
online retailer3 website. In this work, it is aimed to translate datasets into English with
machine learning(ML) and classify texts using di�erent ML algorithms after transla-
tion. The benchmark dataset, which is originally in English, is also translated into
Turkish and then back to English in order to measure e�ects of machine translation
on accuracy results. Results are presented in three di�erent ML algorithms; namely,
Naive Bayes, Support Vector Machine, and Maximum Entropy classi�cations.

In this work, we both used Movie Reviews and Product Reviews data sets. Results
acquired in these works are presented as our baseline scores in experiments section.

1 http://sentistrength.wlv.ac.uk/
2 http://www.beyazperde.com/
3 http://www.hepsiburada.com/

7

http://sentistrength.wlv.ac.uk/
http://www.beyazperde.com/
http://www.hepsiburada.com/

8

CHAPTER 3

SENTIMENT ANALYSIS WITH VARIOUS
SEGMENTATION METHODS AND DEEP LEARNING

MODELS

In this thesis, it is aimed to investigate the e�ectiveness of various segmentation meth-
ods alongside well-known deep neural networks. Historically, Recurrent Neural Net-
works (RNNs) have been seen as the primary candidate for text classi�cation (Socher
et al., 2012, 2013; Turney and Pantel, 2010) due to various reasons. However, lately,
further tests with Convolutional Neural Networks (CNNs) also provided at least as
good results as RNNs. Both RNNs and CNNs have shown promising results (Yin
et al., 2017) for English sentences. In this work, it is aimed to investigate and compare
the performance of CNN and RNN for morphologically rich languages. In addition, we
analyze the e�ect of segmentation method on the sentiment analysis performance for
morphologically rich languages. We experimented with 4 major segmentation methods
that yield vocabularies with di�erent size and characteristics. We present the details of
the segmentation methods, the CNN-rand (Kim, 2014) and the LSTM neural models
in what follows.

3.1 Segmentation Methods

Segmentation helps divide each review into tokens. We primarily focused on 4 ma-
jor approaches for segmenting raw text into tokens; namely, Word-based , Sub-word ,
Morphology-based , and Hybrid methods.

Word-based segmentation yields largest vocabulary; whereas, the vocabulary is the
set of characters with the character based segmentation method. Besides, the vo-
cabulary size, the length of input sequences increase as the token granularity is shifted
from words to characters. In principle, Word-based model yields the largest vocab-
ulary with shortest sequences. The trend is towards smaller vocabulary and longer
sequences while moving from this point to Hybrid, Morphology-based and �nally Sub-
word respectively. We will provide more extensive statistics regarding vocabulary size
and sequence length for each model applied in experiments.

We will be showcasing each segmentation method with following running examples.

Sentence 1: �lm bastan sona duygu somurusu ama anlayan nerde!

9

English: the movie exploits(typo) emotion from start to �nish but who would
care!

Sentence 2: geçen hafta elimize ula³t�, kullan�m� kolay bula³�klar� p�r�l p�r�l y�k�yor.

English: we got it delivered last week, it's easy to use and it washes dishes very
well.

3.1.1 Word-based Analysis

The Word-based approach is the most widely used model in recent studies. This is
both due to its ease of use and its success being very reasonable for non-additive
languages such as English. This is the case due to the fact that tokens in non-additive
languages are mostly the same as word roots. However, this does not hold in case
of additive languages such as Turkish. A root word could be converted to hundreds
of distinct tokens just by using di�erent su�xes. This might extend vocabulary to
large numbers. Nevertheless, we also used this approach in this work to compare
results to other approaches. In this work, we only deal with Word-Token model in our
experiments.

Table 3.1: Running examples for Word-based segmentation methods

Segmentation Output

Word-Token �lm bastan sona duygu somurusu ama anlayan nerde !

Word-Token
geçen hafta elimize ula³t� , kullan�m� kolay bula³�klar� p�r�l
p�r�l y�k�yor .

For Word-based segmentation, Word-Token can be obtained by simply using the tok-
enized text directly. Table 3.1 shows Word-Token output for running examples.

3.1.2 Morphology-based Analysis

The Morphology-based analysis focuses on fragmenting each token into its building
blocks by means of grammar rules for the language input text is written in. One chal-
lenge with the Morphology-based analysis is developing, �nding and using morphologic
tools in an e�cient and correct manner. However, another challenge is to decide which
information to keep and which to ignore. In this work, we used Zemberek (Ahmet
Afsin Akin, 2007) for all morphological analysis related segmentations. We extracted
embedded morphological information using several di�erent approaches.

The full list of Morphology-based analysis variants is listed below:

• In Lemma approach, we extract lemma for each word. Rest of the word and
su�xes are discarded.

10

Table 3.2: Running examples for Morphology-based segmentation methods

Segmentation Output

Lemma �lm bas So duygu somurusu âmâ anlamak Ner !

Lemma
geçen hafta el ula³mak , kullan�m kolay bula³�k p�r�l p�r�l
y�kamak .

Lemma+Su�x/Meta

Noun A3sg Pnon Nom Noun A3sg Pnon Abl Noun A3sg P2sg
Dat Noun A3sg Pnon Nom Unk Adj Adj PresPart Noun A3sg
Pnon Loc Punc

Lemma+Su�x/Meta

Adj Adv Noun A3sg P1pl Dat Verb Pos Past A3sg Punc
Noun A3sg Pnon Acc Adj Noun A3pl P3pl Nom Dup Dup
Verb Pos Prog A3sg Punc

Lemma+Su�x

�lm A3sg Pnon Nom bas A3sg Pnon >dAn So A3sg In +yA
duygu A3sg Pnon Nom somurusu âmâ anlamak +yAn Ner
A3sg Pnon >dA !

Lemma+Su�x

geçen hafta el A3sg ImIz +yA ula³mak Pos >dI A3sg , kul-
lan�m A3sg Pnon +yI kolay bula³�k lAr I Nom p�r�l p�r�l
y�kamak Pos Iyor A3sg .

Stem �lm bas so duygu somurusu ama anla ner !

Stem geçen hafta el ula³ , kullan�m kolay bula³�k p�r�l p�r�l y�k .

Stem+Su�x/Meta

Noun A3sg Pnon Nom Noun A3sg Pnon Abl Noun A3sg P2sg
Dat Noun A3sg Pnon Nom Unk Adj Adj PresPart Noun A3sg
Pnon Loc Punc

Stem+Su�x/Meta

Adj Adv Noun A3sg P1pl Dat Verb Pos Past A3sg Punc
Noun A3sg Pnon Acc Adj Noun A3pl P3pl Nom Dup Dup
Verb Pos Prog A3sg Punc

Stem+Su�x

�lm A3sg Pnon Nom bas A3sg Pnon >dAn so A3sg In +yA
duygu A3sg Pnon Nom somurusu ama anla +yAn ner A3sg
Pnon >dA !

Stem+Su�x

geçen hafta el A3sg ImIz +yA ula³ Pos >dI A3sg , kullan�m
A3sg Pnon +yI kolay bula³�k lAr I Nom p�r�l p�r�l y�k Pos
Iyor A3sg .

Token-Meta Noun Noun Noun Noun Unk Adj Adj Noun Punc

Token-Meta
Adj Adv Noun Verb Punc Noun Adj Noun Dup Dup Verb
Punc

• In Lemma+Su�x approach, we also extract su�xes and concatenate them onto
lemma as separate tokens. For su�xes lacking lexicon representation, the su�x
class itself is used.

• In Lemma+Su�x/Meta approach, we extract lemma positional attribute. In

11

addition to it, we also extract su�x classes for all su�xes. This model is a
variant and we only added this to see whether word and su�x positional states
hold signi�cant information for sentimental content.

• In Stem approach, we extract stem for each word. Rest of the word and su�xes
are discarded.

• In Stem+Su�x approach, we also extract su�xes and concatenate them onto
stem as separate tokens. For su�xes lacking lexicon representation, the su�x
class itself is used.

• In Stem+Su�x/Meta approach, we extract lemma positional attribute. In addi-
tion to it, we also extract su�x classes for all su�xes. This model is a variant
and we only added this to see whether word and su�x positional states hold
signi�cant information for sentimental content.

It is important to note that in Lemma and Stem approaches, the negation is also
discarded since the negation is a su�x. However, if the word root itself intrinsically
holds negation, the meaning is not discarded.

For Morphology-based segmentations, we �rst extracted a dictionary containing all to-
kenized words used in datasets. Later on, a consumer processes the dictionary �le
to extract translation of each token into di�erent representations for each of Lemma,
Lemma+Su�x , Lemma+Su�x/Meta, Stem, Stem+Su�x , Stem+Su�x/Meta, Token-
Meta models. Having this dictionary with the representation of each word integrated
for each Morphology-based model, we can now traverse sentences in each review and
encode tokens inside each sentence into corresponding token sets. Table 3.2 shows
Lemma, Lemma+Su�x , Lemma+Su�x/Meta, Stem, Stem+Su�x , Stem+Su�x/Meta,
Token-Meta outputs for running examples.

3.1.3 Sub-word Analysis

The Sub-word analysis is an approach to break down each word into its building
blocks without thinking much about the meaning of the underlying morphology. By
breaking down words, the vocabulary is shrunk by a considerable amount depending
on the approach or the parameters used. In this section, we will deal with three
major approaches. The �rst is Byte-pair encoding, which uses frequently used sub-
word occurrences. The second one is n-gram, which we will be using 1-gram variant.
Finally, the last one is syllable based segmentation.

Byte-pair Encoding (BPE) has been shown to be an e�ective way of dealing with
large vocabularies in neural machine translation. Sennrich et al. (2015) propose to
use sub-word units such as morphemes and phonemes for neural machine translation.
These sub-word units are proposed to be extracted using BPE due to its robustness in
automatically determining the morphemes and phonemes using the language corpora.

The BPE method �rst builds a vocabulary from a corpus iteratively by merging the
frequently co-occurring token pairs. The number of iterations is de�ned in advance
and determines the size of vocabulary. In a second step, segmentation is done by

12

splitting the words into the tokens using the vocabulary built in the �rst step. The
parts of words that can be reconstructed by the vocabulary tokens are retained as
an individual token. The infrequent substrings in the text are broken down until
they match a known toke. If not possible, they are discarded. This ensures that the
vocabulary size of output text remains within desired limits. Note that, in BPE, there
is no limitation on the length of vocabulary tokens and the tokens are not required to
be meaningful on their own.

Since BPE requires a limit on vocabulary size for segmenting input text, we decided
to work with di�erent vocabulary sizes. 1000, 5000 and 3000 vocabulary sizes are used
for BPE-1k , BPE-5k , BPE-30k approaches respectively.

N-gram Character Segmentation is an approach where text can be broken down into
sub-word elements with a maximum size of n characters. For this work, we only used
1-gram, which can also automatically translated into character-based segmentation. It
simply breaks downs words into single characters.

In Lee et al. (2016) authors used a character-based methodology where sentences are
simply divided into characters. Character segmentation is a similar approach and
basically a speci�c model of n-gram; namely, 1-gram. Each character will be a distinct
token. The motivation behind this model largely comes from studies focusing on far-
eastern languages such as Mandarin and Japanese. The alphabet for the majority of
far eastern languages is made of self-identifying characters where each character has a
distinct meaning. What's motivates us to use this model in case of Turkish is the fact
that it is a member of Altaic language family. Therefore it might have deeply rooted
morphological similarities to far-eastern languages.

The third sub-word text segmentation method stressed in this work is syllabi�cation
or hyphenation of text. Syllables can be automatically inferred from words in Turk-
ish. (A³l�yan and Günel, 2007) They are a core part of Turkish language and they
are widely used (Çöltekin, 2014; A³l�yan and Günel, 2007; Çoltekin et al., 2007) for
Turkish NLP tasks. They also follow distinct patterns with a set of di�erent forms due
to deterministic nature of Turkish pronunciation, where each character almost exclu-
sively represents the same sound or phoneme. Even though there are several di�erent
implementations of syllabi�cation of Turkish texts, we decided to implement our own.

In order to implement an e�cient way to encode words into their syllables we �rst
identi�ed syllable forms in Turkish. The regular syllable forms provided in A³l�yan
and Günel (2007) are as follows. We also identi�ed a set of

Where V denotes vowels and C denotes consonants, regular and irregular syllable
forms along with character sets are as follows.

Vowels (V): a, e, �, i, o, ö, u, ü

Consonants (C): b, c, ç, d ,f, g ,§, h, j, k, l, m, n, p, r, s ,³ ,t ,v, y ,z

Regular Syllable Forms: V, VC, CV, CVC, VCC, CCV, CVCC, CCVC

Regular Syllable Examples: e, ev, ve, ver, erk, bre, mart

Irregular Syllable Forms: CC+V, CC+VC, VCC+, CVCC+, CC+VCC+

13

Irregular Syllable Examples: brre, trren, ü�f, oturr, krrakkk (typos, foreign words
or representation of sounds)

Along with syllable forms, we also wanted to identify word forms below. however, the
list of possible word forms could be too large. Hence, we decided to only list cases
where the order of syllable forms is not allowed.

V: V-CCVC (a-yran), CCVC-V (kral-a), CVCC-V (mart-�), VC-V (at-a), CVC-V
(ver-i), V-CCV (a-tk�)

CV: CV-CCVC (ka-lkan), CV-CCV (ko-lpa),

VC: CVCC-VC (türk-an), VC-VC (at-ak), VCC-VC (ary-an)

VCC: CVCC VCC

CCV: CCV CCVC (kra-ldan)

We decided to decode non-characters as distinct syllables. We also used a charac-
ter normalizer which re�ects special forms of vowels and consonants to their English
counterpart. (i.e. [�, �, î, Î] �> i)

Table 3.3: Running examples for Sub-word segmentation methods

Segmentation Output

BPE-1k
�lm ba st an sona du y g u s o m ur u su ama anla ya n
nerde !

BPE-1k
geçen hafta el im iz e ul a³ t� , ku ll an� m� kolay b ul a³ �k
lar� p �r �l p �r �l y� k� yor .

BPE-5k �lm bastan sona duygu so mu ru su ama anlayan nerde !

BPE-5k
geçen hafta eli miz e ula³t� , kullan�m� kolay bul a³� klar� p�
r�l p� r�l y�k�yor .

BPE-30k �lm bastan sona duygu so mur usu ama anlayan nerde !

BPE-30k
geçen hafta elimize ula³t� , kullan�m� kolay bula³�klar� p�r�l
p�r�l y�k�yor .

Character
f i l m b a s t a n s o n a d u y g u s o m u r u s u a m a a n
l a y a n n e r d e !

Character
g e ç e n h a f t a e l i m i z e u l a ³ t � , k u l l a n � m � k o
l a y b u l a ³ � k l a r � p � r � l p � r � l y � k � y o r .

Syllable
�lm bas tan so na duy gu so mu ru su a ma an la yan ner de
!

Syllable
ge çen haf ta e li mi ze u la³ t� , kul la n� m� ko lay bu la ³�k
la r� p� r�l p� r�l y� k� yor .

For Sub-word segmentations, we used three di�erent methods.

14

• Character model can be easily extracted by splitting each token inside each
review into its building characters. Each character is then used as separate
tokens.

• For BPE-1k , BPE-5k , BPE-30k models, an encoder developed by Stuart Axel-
brooke1 is used. In order to use this encoder, it be should �rst �t into dataset
corpus. Therefore, we �rst extracted a corpus by compiling entire content from
all datasets. Since we are going to use di�erent vocabulary sizes for BPE seg-
mentations, we created 3 separate encoders with vocabulary sizes of 1k, 5k, and
30k respectively. After encoders are trained with the corpus, they are ready to
be used. BPE encoders both encode the words and returns identi�cations for
each token extracted from input sentence. Therefore, for BPE segmentations no
further identi�cation method will be applied.

• For Syllable segmentation method we implemented and used publicly available
python-syllable2 package. The package is able to tokenize, transform, inverse-
transform input into and out of syllables. It is also able to apply basic �lters
based on syllable frequencies extracted from a publicly available Turkish news3

dataset. The package is also able to extract new syllable vectors by �tting new
datasets.

Table 3.3 shows Character , BPE-1k , BPE-5k , BPE-30k , Syllable outputs for running
examples.

3.1.4 Hybrid Analysis

Dual Decomposition (Wang et al., 2014) models segmentation as an optimization prob-
lem for selecting whole-words or underlying characters as base tokens. This model is
proposed to overcome the challenges faced by Chinese. We adopt and modify this ap-
proach as aWord-Character Hybrid model for Turkish such that we use characters-
based segmentation of unknown words. The words which are not recognized by Zem-
berek (Ahmet Afsin Akin, 2007) are being broken down to its characters while the rest
is kept as whole words.

Table 3.4: Running examples for Hybrid segmentation methods

Segmentation Output

Hybrid �lm bastan sona duygu s o m u r u s u ama anlayan nerde !

Hybrid
geçen hafta elimize ula³t� , kullan�m� kolay bula³�klar� p�r�l
p�r�l y�k�yor .

For Hybrid segmentation, the dictionary created for Morphology-based analysis is
reused. Representation provided by Token-Meta hold information about the type

1 github.com/soaxelbrooke/python-bpe
2 github.com/ftkurt/python-syllable
3 kaggle.com/ahmetax/hury-dataset

15

github.com/soaxelbrooke/python-bpe

of the token. When the token is not recognized by our morphological analyzer Zem-
berek, Token-Meta will have the value of Unk. Since for Hybrid model, dual decompo-
sition requires using Character based segmentation and Word-Token for known words,
Hybrid is simply extracted by compiling these two by also checking the value of Token-
Meta for each token. Table 3.4 shows Hybrid output for running examples.

3.2 Deep Neural Networks

For classi�cation job, we decided to use deep neural networks instead of well-known
machine learning such as Support Vector Machine (SVM) or Naive Bayes (NB) clas-
si�ers. This is both due to earlier works extensively using these classi�ers and the
fact that there is no work that actually uses Deep Learning models for classi�cation
in Turkish.

CNNs and RNNs are very well known for text classi�cation jobs. Therefore we decided
to utilize both of them in our work. For CNN we decided to use a special variant CNN-
rand proposed by Kim (2014). For RNN, we decided to use a special form of RNN
which is called Long-Short Term Memory (LSTM) network.

For our investigation for e�cient text classi�cation approaches be complete, we should
also show the extent of deep neural networks' usage on text classi�cation task. In
part 2 we already listed some prominent earlier work on both text classi�cation in
general and on Turkish sentiment analysis. The earlier work shows that there is a
wide area of research and on topic and various di�erent approaches in this regard. In
pre-processing part, we already went through a wide range of segmentation methods.
In this part, we will also focus on di�erent deep neural network methods used for the
task. We will focus on a special implementation of Convolutional Neural Network
CNN-rand (Kim, 2014) and also another widely used special Deep Neural Network
implementation LSTM.

3.2.1 Convolutional Neural Networks

Convolutional Neural networks or ConvNets are Deep Learning models designed to
minimize the need for data pre-processing. They use a set of di�erent multilayer
perceptrons to achieve various types of non-linearity for modeling input layers to the
next stages. CNNs are also known to be shift invariant, which means they tend to be
behaving the same wherever the focal point for the occurrence of a feature of interest
is. Figure 3.1 shows an illustration for convolutional neural networks.

3.2.2 CNN-rand

We used one of CNN model variations described in Kim (2014) for our neural network.
(See �gure 3.2) This variation initiates embedding with random values, while the rest
depend on an external word2vec. CNN-rand does not use word2vec; hence, it learns the
embedding from scratch. We opted this model variation to minimize our dependence
on a language corpus, in addition to the fact that it is frequently reported that the

16

Figure 3.1: Figure showing a potential utilization Convolutional Neural Networks for
text classi�cation job (Kim, 2014)

Figure 3.2: CNN-rand network described in Kim (2014) with layer shapes produced
for Word-Token segmentation on Movie Reviews dataset

initial embeddings contribute very little to the network success in earlier research. We
extended source code cnn-text-classi�cation-tf4 implementation.

In this approach, data is �rst converted to a digital representation by extracting nu-
merical identi�cation for each token. To �t resulting output to a vectorial space of
equal sized batches, each review is then padded with special <PAD> tokens until it
matches the longest entry.

4 github.com/dennybritz/cnn-text-classification-tf

17

github.com/dennybritz/cnn-text-classification-tf

Key layers introduced in this model (Figure 3.2) are described below.

Input Layer: This layer receives the input data both during training and evaluation.
This layer has an input shape of (None, 38) which indicates that every input
sequence introduced has to have a length of 38, which is the maximum length
for movie reviews dataset when processed with Word-Token segmentation. The
None part indicates the batch size �exibility, which can be any number.

Embedding Layer: This layer keeps the vector representation of each token, in this
case, words. The embedding size is introduced as 50, therefore the input shape
attached by a depth of 50 at the output of the layer, which represents the vector
size for tokens.

Dropout Layer: Dropout layer is a layer which helps network learn seemingly in-
signi�cant patterns within data by randomly dropping a proportion of connec-
tions to the next layer. A dropout value of 0.5 is used for this layer. Therefore,
it means that every time a data is introduced 50% of connections from upper
Embedding layer will be discarded and will not be passed onto lower layers.

Filtering Layers: This layer groups introduces a system �ltering mechanisms to look
deeper into phrases and groups of words inside input sequence. Paths are pro-
vided for �lter sizes of 3, 4, and 5. Each path represents a �ltering mechanism
and has following sub-layers.

Convolution Layer: This is the main convolution layer which introduces CNN
part of the neural network. Convolutions are basically a smaller sized patch
convolving over an input layer and passing the measured weights onto next
layers. Next layers usually have smaller width and length and larger depth.
Therefore, the convolutional layer translates spatial information into depth,
which could be considered as a temporal output. For each of convolution
layers in these �lters, the patch sizes are selected as the size of �lters.
Therefore, the convolutions will be looking for �lter-sized frames or in other
words phrases. This setting helps to extract sentiment which is held by a
group of words as opposed to the singular entries. Since the stride size is
the �lter size, the output layer is smaller by a factor of stride − 1, i.e. an
input size of 38 is converted to the output size of 36 for �lter size 3.

Max Pooling Layer: This layer translates the input layer into smaller repre-
sentations using Max pooling. In this case, the output is half the size of
the input layer, which means each output parameter is obtained from the
maximum value of corresponding 2 input parameters.

Flatten Layer: This layer converts multi-dimensional parameter setting into
single dimension. This is needed for concatenation layer at the end of
�ltering stages. In case of �lter size of 3, an input layer of (None, 18,
100) is converted to (None, 1800), e�ectively reshaping input while keeping
all parameters.

Concatenation Layer: This layer concatenates inputs from di�erent layers and out-
put them in a single shape. The output shape is simply a shape with a summation
of input layers with no parameter being lost. In this case, input shapes of 1800,
1700, and 1700 are converted into an output shape of 5200.

18

Dense Layer: This layer gradually reduces the number of parameters in order to
achieve the prediction size. Sigmoid activation is used for this dense layer. In
this case, the layer converts an input size of 5200 into an output of size 50.

Dense Layer for Prediction: This is the second dense layer which translates an
input size of 50 into a single parameter which is needed for a binary sentiment
analysis task as in our case.

Key parameters for CNN models indicated by Kim (2014) are word embedding dimen-
sion, dropout, �lter size and a number of �lters.

The word embedding represents the vectorial space for each vocabulary within input
text. Dropout is a quite radical idea implemented in deep neural networks to let
network better understand building blocks of the meaning the network is trying to
extract from the input. Dropout is the ratio of connections between two layers being
randomly dropped during training. This lets network learn lower weight connections
explaining input. Filter sizes indicate the number of tokens to convolve over during
training, and �lters variable de�nes a number of �lters for each �lter size.

3.2.3 CNN-rand Simpli�ed

Simpli�ed CNN-rand (Figure 3.3) is a smaller network version of the original CNN-
rand network. It eliminates some of the �lters and reduces sizes to a great extent. The
simpli�cation is proposed by alexander-rakhlin5 due to several listed reasons.

The changes introduced in this simpli�ed version of CNN-rand are listed below.

• Smaller embedding dimension is used : 20 instead of 300

• Fewer �lter size is used : 2 �lter sizes instead of 3

• Fewer �lters are used for each size. Proposes experiments showing that fewer is
enough: 3-10 �lter size instead of 100

• Proposes random embedding initialization is no worse than word2vec init on
IMDB corpus: CNN-rand is preferred (as we already did)

• Network slides over Max Pooling instead of original Global Pooling.

Key layer changes introduced in this model (Figure 3.3) are described below.

Input Layer: This layer is kept the same as the original.

Embedding Layer: The embedding size for vector representations is reduced to 20
in this model.

Dropout Layer: This layer is kept the same as the original.

5 github.com/alexander-rakhlin/CNN-for-Sentence-Classification-in-Keras

19

github.com/alexander-rakhlin/CNN-for-Sentence-Classification-in-Keras

Figure 3.3: Simpli�ed CNN-rand network proposed by alexander-rakhlin with layer
shapes produced for Word-Token segmentation on Movie Reviews dataset

Filtering Layers: Filter sizes are changed in this model. Filter sizes of 3, and 8 are
used instead of the original sizes of 3, 4, and 5. Sub-layers for �lters are used as
in the original model.

Concatenation Layer: This layer is kept the same as the original.

Dropout Layer: A new dropout layer is introduced with a dropout value of 0.8 be-
tween concatenation layer and the dense later.

Dense Layer: This layer is kept the same as the original.

Dense Layer for Prediction: This layer is kept the same as the original.

We will run our experiments on this network alongside the original CNN-rand. We

20

will validate if above changes and justi�cation hold the truth about being harmless to
the performance.

3.2.4 Long-Short Term Memory (Neural Network)

Long-Short Term Memory network is a special type of Recurrent Neural Network. In
this RNN variant, a memory cell is incorporated into RNN cell which accumulates
information throughout input propagation. This ensures that network can recognize
input patterns over long intervals. LSTM was �rst proposed by Gers et al. (1999). The
model was later investigated and improved by Hochreiter and Schmidhuber (1997).

An LSTM cell consists of 4 main components; a cell, an input gate, an output gate
and a forget gate. The mathematical formulation of these components is detailed as
follows.

Let xt ∈ Rd (input vector to the LSTM block), ft ∈ Rh (forget gate's activation
vector), it ∈ Rh (input gate's activation vector), ot ∈ Rh (output gate's activation
vector), ht ∈ Rh (output vector of the LSTM block), ct ∈ Rh (cell state vector), and
W ∈ Rh×d , U ∈ Rh×h and b ∈ Rh (weight matrices and bias vector parameters which
need to be learned during training), following formulas (Graves et al., 2013) determine
the runtime activity of an LSTM cell:

ft = σg(Wfxt + Ufht−1 + bf) (3.1)

it = σg(Wixt + Uiht−1 + bi) (3.2)

ot = σg(Woxt + Uoht−1 + bo) (3.3)

ct = ft ◦ ct−1 + it ◦ σc(Wcxt + Ucht−1 + bc) (3.4)

ht = ot ◦ σh(ct) (3.5)

Figure 3.4: An LSTM cell detailed in Graves et al. (2013) with input, output, and
forget gates.

21

3.2.5 Proposed LSTM Model

Long-Short Term Memory (LSTM) cells are widely used in time series. In most cases,
spoken language is seen as a similar problem to the time series problem, since the order
of spoken words shows similarities to the time series data since both are sequential and
temporal as opposed to the image visual analysis. LSTM cell is speci�cally designed
for temporal data processing. Each cell holds information about earlier tokens inside
an entry and outputs a value based on current value and earlier tokens.

Figure 3.5: A simple LSTM network with layer shapes produced for Word-Token

segmentation on Movie Reviews dataset

Key layers introduced in this model (Figure 3.5) are described below.

Input Layer: This layer receives the input data both during training and evaluation.
The layer attributes are the same as attributes described for CNN models.

Embedding Layer: For this layer, the embedding size of 32 is introduced, therefore
the input shape is attached by a depth of 32 at the output of the layer, which
represents the vector size for tokens.

Dropout Layer: A dropout value of 0.2 is used for this layer. Therefore, it means

22

that every time a data is introduced 20% of connections from upper Embedding
layer will be discarded and will not be passed onto lower layers.

LSTM Blocks: This layer introduces LSTM blocks for sequence processing. Further
details for LSTMs is provided in section 3.2.4. This layer helps to extract sen-
timent using memory, processing, forgetting mechanisms built into the LSTM
cells.

Dropout Layer 2: Another dropout layer is introduced after LSTM blocks for this
model, and a dropout value of 0.2 is used.

Dense Layer for Prediction: This layer translates an input size of 100 into a single
parameter which is needed for a binary sentiment analysis task as in our case.

We also tested our datasets with a neural network utilizing LTSM cell blocks. We
extended our code from MachineLearningMastery6. Figure 3.5 shows the network
components.

A very important feature of LSTM networks is their capability to process data with
multiple layers. This enables to process data in di�erent ways to extract various data
in various forms, and process all extracted data in di�erent layers. One possible ap-
plication would be using di�erent segmentation methods as di�erent layers. However,
this work aims to compare performances of di�erent segmentation methods. Therefore,
we decided not to use multiple layers for our LSTM network. On a side note, using
multiple layers could also make a �nal comparison between CNN and LSTM results a
bit unfair as CNN network that we use does not support multiple layers.

3.2.6 Hyper-parameter Optimizations

Deep learning hyper-parameters are neural network controls that provide �ne tuning
capabilities. They can be used to �ne-tune a model in order to produce best results
for di�erent goals and datasets.

Zhang and Wallace (2015) indicate that they already used a grid search for hyper-
parameter tuning and that selected parameters are identi�ed as being the most ef-
fective. In the article, it is also mentioned that L2 has little e�ect on results. We
decided to run a grid search for hyper-parameters to validate the e�ectiveness of the
chosen parameters in Zhang and Wallace (2015) on the face of changing dataset and
segmentation methods.

To test the e�ectiveness of the selected parameters and also to validate earlier remarks
about L2 regularization, we decided to run a grid search. The grid-search is executed
with following hyper-parameters and corresponding value sets.

Filter Sizes: (3,4,5), (10,16,22), (16,22,27), (22,27,33)

Dropout: 0.4, 0.5, 0.6

L2 Regularization: 0.0, 0.001, 0.01, 0.1

23

Figure 3.6: Filter sizes used for Grid Search

Filter sizes are determined using character number statistics on our combined datasets.
The number of tokens per each word is highest for Character segmentation method.
Therefore, we decided to use statistics with this segmentation method. The average
number of characters in words is 5.49. Therefore, we decided to use a linear space
between original �lter sizes (3,4,5) to around 5.5 times these values. However, after
�rst �lter size set, we also limited the di�erence between concurrent �lter sizes to make
sure the model does not lose any information with phrases with the length in between.
Figure 3.6 shows the �nal distribution of �lter sizes for all sets used for grid search.

We trained a CNN-rand model with Character segmentation output for book reviews
dataset with varying values of hyper-parameters provided earlier. Filter sizes used
in test case are derived from the average number of characters in each word within
the dataset. We thought this selection criterion for �lter sizes would be convenient
because the core justi�cation for �lters is provided in the original paper such that
they will encompass varying number or words within each sentence in order to capture
the sentiment held by these groups of preceding words. However, our pre-processing
methods divide each tokenized word into multiple numbers of tokens depending on the
segmentation method provided. The reason for Character selection for the job is the
fact that this divide is the most signi�cant in Character based segmentation.

Figure 3.7 indicates that 0.5 dropout value and 3,4,5 �lter size set, which is the default
parameter set for original work, derive the best results. It also shows that L2 adds no
positive e�ect to the performance. As a result, for the experiments, we set dropout
parameter to 0.5 and �lter sizes to 3, 4, 5. We did not use any L2 regularization and
left it at the default value of 0. We also used recommended default levels for other

6 machinelearningmastery.com/sequence-classification-lstm-recurrent-neural-networks-python-keras/

24

machinelearningmastery.com/sequence-classification-lstm-recurrent-neural-networks-python-keras/

Figure 3.7: Accuracy graph for Dropout broken down by Filters. Color shows Accuracy.
Shape shows details about L2 Regularization.

parameters.

3.2.7 Model Training Callbacks

For deep learning model building, we used Keras7 with a Tensor�ow8 back-end. In
order to build a neural network, the training data is presented to the model repetitively.
This lets model better grasp training data and learn new things after model decides
to do something di�erent during an earlier repetition. This is a common practice and
each iteration is called an Epoch. At the end of each epoch, deep learning framework
(Tensor�ow) and the interface (Keras) provide access to run a set of functions before
deciding if it is desired to continue with more epochs. These functions are called
Callbacks.

There are also common practices in terms of functions called during between epochs.
One of the de�nitive Callbacks is running the model on Validation data and mea-
suring Loss, Accuracy and etc. Other frequently used callbacks are BestModelSave,
EarlyStopping, LearningRateDecay and progress plotters.

During our model building, we used following callbacks.

BestModelSave: This callback tracks some parameters and saves model when the
best value so far is encountered. The variables to be tracked in order to save
model is indicated when the callback is created.

7 github.com/fchollet/keras
8 github.com/tensorflow/tensorflow

25

github.com/fchollet/keras
github.com/tensorflow/tensorflow

EarlyStopping: When model training starts a constant epoch number should be pro-
vided. However, we cannot know for sure how many epochs will be su�cient for
the model to learn training data. Therefore, as a rule of thumb, we provide a
relatively high number of Epochs in order to make sure we trained the model
su�ciently. However, if not interrupted, the model will most de�nitely over-�t
to the data. Over-�tting is as bad as under-�tting; therefore, it is generally a
good idea to stop training before that happens. Early stopping tracks variables
of choice to stop training when con�gured monitors indicate that over-�tting
started. EarlyStopping needs monitoring parameter, minimum delta, and pa-
tience. Callback monitors the monitoring variable and constantly expects this
parameter getting better. When it does not get better beyond minimum delta
value it deducts from patience value. If the patience value reaches 0, training is
interrupted. Every time a better result for monitoring variable is encountered,
the patience value is reset.

Progress Monitor: These monitors mostly plot progress with training, epochs, ac-
curacy, loss and expected remaining time.

We used Validation Accuracy as BestModelSave monitor. Therefore, whenever the
model achieves the highest accuracy on Validation data so far this callback saves the
model.

For all models, we used validation loss as EarlyStopping monitoring parameter, and
0.001 as minimum delta. Due to underlying di�erences between LSTM and CNN
networks, we used 2, and 20 as patience value respectively. LSTM networks need few
epochs (1-3) to fully train model. We used 200, and 5 as the number of Epochs for
CNN, and LSTM networks respectively.

We developed our own Progress Monitor for tracking training of our models. It plots
the progress of accuracy and loss for validation and training data. It also indicates
the position of BestModelSave and EarlyStopping patience count-down. It also saves
progress visualization at the end of training cycle.

3.3 Limitations

This work aims to demonstrate e�ective ways of dealing with sentiment extraction task
for informal Turkish text with the least possible interference on input data. Therefore,
this work does not utilize advanced Natural Language Processing (NLP) tools. Hence,
operations listed below are not covered within this work, and they are proposed as an
extension to this work in the conclusion and future work (Chapter 5) section.

Typo Checker: This work does not perform typographical error checking and cor-
rection. The work aims to analyze the performance of di�erent segmentation
methods on informal texts. Utilizing such tools could have clouded our results
from fully understanding the e�ects of studied segmentation methods and utilized
neural networks.

Normalization: Datasets include a fair amount of information encoded in di�er-
ent representations such as numbers, emoticons, shapes, images and etc. Even

26

though handling these issues are shown to contribute to the results positively,
we decided to use the raw form of input texts and propose this as future work.

Disambiguation: Another shortcoming of morphological analysis demonstrated in
this work is its inability to extract the correct form of each word and use the
accurate roots and su�xes. However, this requires a deep understanding of
language structures and grammar. It also requires the implementation of such
advanced tools. This work does not rely on availability of such advanced tools,
using them would increase the processing complexity.

Sentence Modelling: It is also possible to model sentence structures and use this
information to train more e�ective models for sentiment analysis. However, this
will also add another layer of complexity to this work.

Global Word Vectors: In this work, a set of di�erent segmentation methods are
utilized, and experiments for these methods are conducted on di�erent datasets.
Therefore, following shortcomings can be emphasized for this decision.

• Global word vectors de�nes vectors for whole words, but this work focuses
on breaking down words into sub-word elements by various segmentation
methods. The resulting tokens will not have any representation within
these ready to use vector de�nitions. The available ones are very likely to
be pointing to the incorrect vectors. For example, in a case where kamu-
�aj (camou�age) is broken down to kamu (public) + �aj (no meaning) the
resulting vector for kamu will point out to the inaccurate vector represen-
tation.

• Being a morphologically rich language creates scarcity for a very large num-
ber of rarely used word-su�x sets in Turkish. Hence, scarce tokens even if
available within the WordVec library might have inaccurate representation
due to lack of suitable sample text to train the vectors in a correct way.

• The baseline scores indicate results achieved by running respective experi-
ments on cited datasets. Using a global corpus for all datasets or training
model using data form all datasets will decrease accuracy of the models,
since it will be forcing model to learn much more than the original baseline
experiments. This will lead to an unfair comparison between results in this
work and the baseline scores.

27

28

CHAPTER 4

EXPERIMENTS

4.1 Data Sets

In the experiments, we used two benchmark datasets. Movie Reviews is a collection
of movie reviews from the Turkish movie platform Beyazperde1. The dataset contains
54K annotated paragraph length reviews originally used in Erogul (2009). The dataset
is collected from Turkish movie review site Beyazperde from various movies at random.
Beyazperde users can rate movies on the scale of [0.5-5]. The dataset entries are labeled
as follows. Reviews rated as 4.0-5.0 are accepted as positive, 2.5-3.5 as neutral and
0.5-2.0 as negative reviews. Movie Reviews data set size info is as shown in Table 4.1.

Table 4.1: Movie Reviews initial statistics

Dataset Negative Positive

Reviews 27.000 27.000

The Product Reviews �rst used by Demirtas and Pechenizkiy (2013) is compiled from
online retailer websites. It consists of 5 di�erent datasets. In Demirtas and Pechenizkiy
(2013) authors aim to achieve plausible results in text classi�cation task for Turkish
text by using machine translation. Therefore they collect reviews from BeyazPerde by
the same amount as their benchmark IMDB review dataset, which is in English. In
addition to this movie reviews dataset, they also compile smaller datasets by collect-
ing reviews for various products from online retailer Hepsiburada.com. The reviews
are compiled for four di�erent product categories, namely electronics, DVDs, kitchen
products, and books in addition to the movie review dataset. For simplicity, we will
be calling the full set of these 5 datasets as Product Reviews.

During dataset compilation, each review is labeled based on the rating user provided
for the product upon review. Since the majority of the votes are 3+ on a scale from
1 to 5, classi�cation is exerted as 1− 3 rates being negative and 4− 5 being positive.
Product Reviews dataset size info is as shown in Table 4.2.

In text classi�cation task, particularly when working with machine learning method-
ologies, vocabulary size and data geometry are very important. Therefore, we also
obtained basic statistics on datasets. Vocabulary size, average sentence length and

1 www.beyazperde.com

29

www.beyazperde.com

Table 4.2: Product Reviews initial statistics

Dataset Negative Positive

Movie 5.331 5.331
Book 700 700
Electronics 700 700
Kitchen 700 700
DVD 700 700

maximum word count per review is provided in Table 4.3 for both Movie Reviews and
Product Reviews.

Table 4.3: Vocabulary sizes and other basic statistics for Movie Reviews and Product

Reviews datasets.

Avg. Sentence Length Max Review Size Vocabulary

beyaz_perde.neg 3.76 801 108,682
beyaz_perde.pos 3.73 1,717 112,566

book.neg 3.69 235 7,367
book.pos 3.51 126 5,634
dvd.neg 3.41 293 7,553
dvd.pos 3.30 289 6,564
electronics.neg 3.91 281 7,791
electronics.pos 3.58 245 5,904
kitchen.neg 3.58 130 6,475
kitchen.pos 3.44 210 5,457
movie.neg 2.36 59 19,481
movie.pos 2.41 59 17,825

On the other hand, the distribution of review length in terms of words seem to be
varying to a great extent for various datasets. Figure 4.1 shows di�erences in the
distribution of sentences among di�erent datasets.

4.2 Data Pre-processing

In this part, we will thoroughly discuss data preparation phases and the justi�ca-
tions for each process. These processes compile into our preprocessing stage. In data
pre-processing, we are �rst breaking each review into its sentence components using
sentence detection functions provided by Zemberek, (Ahmet Afsin Akin, 2007) and
sentences are tagged as their parent(review the sentence is extracted from) reviews.
In the second phase, each sentence is processed with di�erent segmentation methods
discussed in chapter 3. The main motivation behind this is the fact that neural net-
works are known to perform better with single sentence entries, due to the fact that

30

Figure 4.1: Histogram showing the distribution of review length for datasets.

a sentence mostly contains one distinct sentiment. Whereas, multiple sentences, even
if they are in the same review, could contain di�erent sentiments. Use of sentence,
in this regard, is a common practice for Deep Learning model training for sentiment
analysis in English.

In this work, we are planning to use Deep Neural Network models for extracting
sentiment analysis. DNN models work better and more e�ciently with smaller input
shapes and single-sentence inputs. However, our datasets consist of reviews, most of
which constitutes several sentences. In order to tackle this problem, we are planning
to model our reviews into sentences and smaller parts. In this part, we will also discuss
approaches and processes involved in the sentence-level review modeling.

The third stage is identi�cation phase. In this stage, each token from segmentation
method output for each dataset is identi�ed and an ID is assigned. This phase is needed
due to neural networks need numerical IDs rather than textual entries. The deep
learning models provide identi�cation methods, but we stuck to our custom identi�ers
for two reasons. The �rst is that some Turkish characters might be misidenti�ed with
those methods, the other is that we also wanted to identify each token with their
respective frequency. Our identi�ers will assign smaller ID numbers for more frequent
tokens. This ensures that a smaller dataset will lack high-valued IDs and thereby have
a smaller vocabulary size.

In the last stage, we split datasets into Test, Validation, and Training subsets.

31

4.2.1 Review Sentence Break-down

Most of the methodologies discussed in related work and our baseline researches use
machine learning models such as Support Vector Machine and Naive Bayes. These
models work pretty well with smaller datasets. However, deep learning methods work
better with larger datasets. In fact, when the dataset is smaller than intended, the
network is at high risk of over-�tting. Over-�tting happens when network memorizes
the dataset itself and abandons understanding underlying patterns inside the dataset.
When larger datasets are provided, the network is forced to learn these patterns.
Datasets in Product Reviews with the exception of movie reviews have 700 negative
and 700 positive reviews for each. A 1400-reviews-large dataset is very small to train a
neural network. Not to mention, a substantial amount of reviews in these datasets will
be used for validation and test splits. The original work also mentions this shortcoming
and they decide to enhance dataset by machine-translating an English dataset with
similar product reviews. (Demirtas and Pechenizkiy, 2013)

On the other hand, the neural networks we decided to use and the majority of others
accept training data only when each entry has the same size. This means that each
review which will be fed into the neural network will have the size of review with the
maximum size. Reviews smaller than the largest review in terms of lengths/number
of tokens will be padded with special PAD tokens.

When input dimensions are large, the convolution layers will be larger in a sense that
there will be a need convolve over a wider length. Therefore, the network will consume
much higher memory and computational power. The network will also need more
training to learn connections for all new input cells appended to convolution layers.

It is also important to note that LSTMs are known to perform poorly with longer sen-
tences due to their inability to compensate the distance between tokens and establish
states corresponding to relationships between far-apart words in order to extract the
sentiment. These issues are discussed in Ra�el and Ellis (2015), and in response an
Attention layer is proposed and employed by many types of research in various �elds.
(Larochelle and Hinton, 2010; Bahdanau et al., 2014; Luong et al., 2015)

Table 4.4: Movie Reviews and Product Reviews post-split stats

Dataset Negative Positive

Beyaz Perde 101.643 100.667

Book 2.582 2.455
Movie 12.572 12.837
Electronics 2.739 2.504
Kitchen 2.507 2.406
DVD 2.387 2.309

To eliminate all these problems, we decided to break reviews into sentences. And we
will also label each sentence as parent review. Sentence-based dataset statistics are
as shown in Table 4.4. As seen in the table, the dataset sizes after review-split are
signi�cantly larger than the original 1400. With this process, we have datasets with

32

minimum sizes around 5k entries.

Figure 4.2: Histogram showing the distribution of review length for datasets after
review-sentence-split.

Figure 4.1 shows the di�erences in the distribution of sentences among di�erent datasets
after sentence-level review split. This �gure shows that our sentence length distribution
is much more whole than the initial distributions.

However, we can still see some datasets with too long entries. By manual inspection
of the dataset, we noticed that some reviews are too long with few or no sentence
stops. They mostly skip punctuation altogether. This ensures that our issue with long
reviews persists even after sentence-level review split.

4.2.2 Forced Review Break-down

In order to address the issue with too long sentences, we decided to forcefully break
these entries down into smaller entries. We �rst investigated the distribution of sen-
tence sizes. We noticed that sentences with larger word counts tend to be a very small
minority. Therefore, we decided that we can easily solve the issue without causing
much damage. We decided to apply a �lter with percentile = 99.5. This will ensure
that only sentences within longest 0.5% of entries will be broken down.

Table 4.5 shows new maximum size and old values for each dataset. We can see that,
all datasets are now in similar geometries.

33

Table 4.5: Movie Reviews and Product Reviews maximum sentence size after forced
split

New Size Old Size

Beyaz Perde 55 309

Book 44 94
Movie 38 51
Electronics 54 121
Kitchen 48 99
DVD 48 91

4.2.3 Sentiment Loss with Review Break-down and Majority Voting

In this work, we are investigating the e�cient ways to classify a sentence which might
have a negative or positive sentiment. In doing so, we assume that each review in-
trinsically has a sentiment communicated by the author. However, the sentiment will
not be possibly grouped into binary clusters in which a review will have an absolute
positive or negative sentiment. The author might have simply chosen to communicate
a sentiment which is in between. In this case, we will have several sentences some
of which might contain negative sentiment while other hold positive sentiment at the
same time. However, when we break-down reviews into sentences and blindly label
them as their parent reviews, we are introducing a bias which will a�ect our results.
In order to compensate the loss of sentiment at review level, we decided to apply a
post-processing stage which will evaluate accuracies at review level by incorporating
results for each sentence from each review into a single score by the means of Majority
Voting.

In order to achieve majority voting, in a correct manner, we must also take ownership
of sentences while splitting data into Test, Validation, and Training subsets. We must
ensure that all sentences from a single review end up in the same split. Since the test
data is the split which will determine accuracy results, this is particularly important
for Test split.

4.2.4 Segmentation

In segmentation stage, we created global corpus by compiling all dataset contents.
This corpus is then used to create, build and use various encoders for di�erent seg-
mentation methods. These segmentation methods and involved processes are detailed
in section 3.1.

4.2.5 Token Identi�cation

Token identi�cation is a stage where we enumerate di�erent tokens in each segmenta-
tion model. The identi�er will distribute identities assigning a respective count number

34

to each token based on their position within overall dataset or corpus. However, the
identities distributed at this stage are temporary. During this �rst stage frequency of
all tokens are also calculated. At the end of this process, each token will have a tem-
porary ID and the calculated frequency. Using these frequencies, new and permanent
identities are generated by sorting tokens in descending frequency values.

Table 4.6: Compiled Vocabulary sizes and Id counts
for each segmentation methods

Segmentation Vocabulary / ID Count

BPE-1k 957
BPE-30k 28.676
BPE-5k 4.822

Character 112
Hybrid 117.294
Lemma 99.872

Lemma+Su�x/Meta 96
Lemma+Su�x 99.972

Stem 99.766
Stem+Su�x/Meta 96

Stem+Su�x 99.863
Word-Token 198.262
Token-Meta 15

During the identi�cation, identities are generated for the aggregated corpus, and there-
fore will not depend on a single dataset. However, the identi�cation corpus will be
compiled for each segmentation method separately. Knowing this, sorting identities
by descending token frequencies, we ensure that a smaller dataset will most probably
have tokens with lowest identity numbers. This will a�ect network size in a positive
way.

Table 4.6 shows vocabulary sizes for each segmentation method. However, it seems
the vocabulary size is still exceptionally large for some of the segmentation methods.
This is particularly true in case of Word-Token which has a vocabulary size of 198k.

In order to overcome this large vocabulary problem and possibly reduce the vocabulary
size further, we did further investigation. Figure 4.3 shows that 60% of all word-tokens
occurs only once within the entire text. Around 80% of them occur less than 3 times.
Scarce words are very problematic in training an e�cient model. Having too many of
these will in�ate the network embedding. On the other hand, network will not able to
learn anything signi�cant from them due to their scarcity. On the contrary, the weights
could be allocated in a way that they can determine the sentiment of the sentence in
a very wrong way when those words occur. Therefore, we decided to remove these
scarce words by using a frequency limit of 3. Hence, a word that occurs less than 3
times does not have the chance to be in Train, Validation and Test data samples at
the same time.

35

Figure 4.3: Word-token frequency distribution over percentile. Y-axis is limited to 10
in order to show lower frequencies better.

4.2.6 Sentence-Level Review Modeling for Train-Test Split

Machine learning models need a training stage where they can extract a pattern from
a dataset in order to use them in future for unsupervised classi�cation. A common
practice is dividing a labeled dataset into test and training samples. In this way, model
training and testing can be done with di�erent samples. This will ensure that the score
calculated for the model will be based on data that network never encountered so far.
This is crucial in determining the true success of model and also to see if the model is
over-�tted to the training data.

First of all, in case of lack of this split, the network will be already familiar with the
data and will tend to know better what to do with the test data. The model will
have far more optimistic results than the actual performance. Secondly, performance
analysis will be completely blind to over-�tting problems. With familiar data, no
matter how far over-�tting goes, the results will get better and not worse.

To overcome these challenges, training-test data split is introduced. However, in our
work, we went to one step further to include also a validation sample.

The justi�cation for validation data is not much di�erent from that for the training-
test split; however, this time it is due to di�erent reasons. During network building
and hyper-parameter tuning, some information is secretly moved from validation data
into the model itself over time. This happens through multiple iterations on model
building and testing. After every iteration, we tend to change some of the parameters
in order to achieve better scores on validation data. This also means we tune the
model to get better results with validation data, which mean information intrinsic to

36

the validation data is moved over to the model.

Using separate samples for validation and testing ensures that no information is moved
from Test set into the model building stage. Thereby, it makes �nal performance
analysis much more reliable.

Apart from the problem of splitting data into three separate samples, we also in-
troduced another complexity parameter into the process during sentence-level review
break-down Part 4.2.1. The Majority Voting process adds a requirement such that
each sentence should be traceable back to the parent review. Creating an interface to
enable tracking each sentence to its parent review will enable us to calculate Majority
Voting scores in the post-processing stage. However, we should also use this interface
while splitting data into training, validation and test samples. We need to do this split
by keeping sentences from the same reviews in the same sample.

Under these circumstances, in order to split data accurately, we �rst identi�ed each
review in each dataset and assigned a unique ID to each. Datasets are then split into
sentences while holding sentences with their parent label and parent identity. Train,
Validation, and Test split is performed at review level rather than sentence level.
Sentences inside each review are then extracted for each sample in order to compile
the actual sample.

This process introduces two consequences,

• The number of reviews in each sample will be equal to the training/validation/test
ratio rather than the number of sentences, which was originally intended.

• The number of sentences in each sample might deviate from the intended ratio
due to di�erent reviews having a di�erent number of sentences.

These two items will cause no problem, as long as the eventual ratio of these samples
does not deviate much from the intended ratio.

Table 4.7: Number of sentences in each sample after training/validation/test dataset
split.

Dataset Train Test Validation

Beyaz Perde 162.561 20.393 20.467

Book 4.001 515 548
Movie 20.473 2.530 2.520
Electronics 4.278 466 528
Kitchen 3.961 493 485
DVD 3.789 463 468

During experiments, we used review-level training/validation/test split with ratios of
0.8, 0.1, and 0.1 respectively. Table 4.7 shows the distribution of sentences into samples
for each dataset. The table shows that the ratios of training/validation/test data do
not deviate signi�cantly from original ratios intended. Therefore, we don't expect any
problem in terms of asymmetry.

37

4.3 Deep Neural Networks

For our sentiment extraction job, we used a set of di�erent Deep Neural Network tools.
The primary Deep Learning candidates for the job were Convolutional and Recurrent
Neural Networks. For CNNs, we used CNN-rand and Simpli�ed CNN-rand detailed in
subsection 3.2.2 and subsection 3.2.3. For RNNs, we used Long-Short Term Memory
Neural Network detailed in subsection 3.2.5. We also a set of model training monitors
detailed in subsection 3.2.7 in order to increase e�ciency and accuracy of the trained
model.

Figure 4.4: CNN-rand: Progress of accuracy and loss for validation and training data
on Movie dataset w/ BPE-5k segmentation. The green vertical line shows the position
of best model save, while orange one shows patience count-down for EarlyStopping.

Figure 4.4 shows output created by our custom progress monitor detailed in subsec-
tion 3.2.7. The �gure shows that model is able to learn new things until 5th epoch
where the minimum loss value of validation data is achieved. EarlyStopping counts
down patience from this point on. 20 epochs later, at the end of Epoch 25, the training
is interrupted due to lack of progress in monitoring variable, Validation Loss. Note
that the loss is deteriorating while training data loss and accuracy gets better. This
means that model is over-�tting. On the other hand, the vertical dashed green line
shows the position of the best model when the highest accuracy on validation data is
achieved. Model is saved on disc at this point. After training ends at epoch 25, the
best model is reloaded from the disc in order to predict test data.

38

4.4 Baseline Methods

In this work, we used baseline scores for Movie Reviews and Product Reviews datasets
from earlier text classi�cation researches for which these datasets were used. ForMovie
Reviews data set we have 5 di�erent scores from 2 di�erent types of research which be-
long to Vural et al. (2012); Firat Akba and Sever (2014). For Product Reviews, we have
4 di�erent scores from the same research that belongs to Demirtas and Pechenizkiy
(2013).

Movie Reviews data set is �rst compiled by Erogul (2009) for his thesis where he applied
a set of sentiment analysis processes to extract features from the data set. In this work,
he selects di�erent sets of features based on frequencies, the root of words, part-of-
speech and n-grams. He investigates performances of each method using di�erent
values.

Later on, Vural et al. (2012) uses SentiStrength2 on the same dataset. He applies
sentence-binary, sentence-max/min and word-sum to acquire accuracy results onMovie
Reviews data set. The results acquired by Vural et al. (2012) by adapting the frame-
work to Turkish is also listed in our baseline scores for Movie Reviews data set.

Table 4.8: Baseline Scores on the Movie Reviews data set

Model Author Acc.

Sentence-binary Vural et al. (2012) 70.39
Sentence-max/min Vural et al. (2012) 74.83
Word-sum Vural et al. (2012) 75.90
Chi-Square Firat Akba and Sever (2014) 83.90
Information Gain Firat Akba and Sever (2014) 83.90

Firat Akba and Sever (2014) improves Vural et al. (2012)'s accuracy results on Movie
Reviews by employing Support Vector Machine(SVM) and Naive Bayes Classi�er(NB)
and also by including a feature selection step. They employ two main methods for
feature selection stage. Results they acquire by training an SVM and an NB classi�er
with features selected by both Chi-Square and Information Gain are also listed in our
baseline scores for Movie Reviews data set.

Baseline scores for Movie Reviews dataset are listed in Table 4.8.

For Product Reviews dataset, scores from Demirtas and Pechenizkiy (2013) are used as
baseline scores. In their work, it is aimed to translate datasets into English with ma-
chine learning(ML) and classify texts using di�erent ML algorithms after translation.
They have results for three di�erent ML algorithms; namely, Naive Bayes, Support
Vector Machine, and Maximum Entropy classi�cations. Table 4.9 shows their scores
on these datasets.

We also looked into choices made for training and test data splits for literature work
2 http://sentistrength.wlv.ac.uk/

39

http://sentistrength.wlv.ac.uk/

Table 4.9: Baseline Scores on the Product Reviews data set

Model Movie Book DVD Electronics Kitchen

Naive Bayes1 69.50 72.40 76.00 73.00 75.90
Naive Bayes MT1 70.00 71.70 74.90 64.40 69.60
Linear SVC1 66.00 66.60 70.30 72.40 70.00
Linear SVC MT1 66.50 66.90 67.60 64.40 67.30

1Demirtas and Pechenizkiy (2013)

experimenting on our chosen datasets. However, none of the works mentioned (Vural
et al., 2012; Firat Akba and Sever, 2014; Demirtas and Pechenizkiy, 2013) reports
this information. A common approach is keeping test and validation sets minimal
while keeping training data large enough to train the neural network. Therefore we
decided to use 10% for testing and validation sets. The remaining 80% is used for
training. More info is provided in part ch:exp:review-modeling. The resulting set sizes
for di�erent datasets are also provided in table 4.7.

4.5 Experiment Results and Discussion

Segmentation methods presented in Part 3 gives the chance to execute a lot of ex-
periments. During experiments, we built data output for 13 di�erent segmentation
methods for 6 di�erent datasets. We �nally executed classi�cation modeling on 3 dif-
ferent deep learning models. In total, we executed CPU and GPU intensive 234 deep
learning model building jobs.

In this part, we will present our results for CNN-rand, Simpli�ed CNN-rand, and
LSTM. However, because of reasons we listed in part 4.2.1, raw results will not re�ect
the true performances of segmentation methods and Deep Learning models. This is
because some sentences inside a review may not have the same sentiment as the overall
review. In such a case, even if the classi�er classi�es the sentence accurately, we will
count it as wrong due to its parent review having the opposite label. To make our
results comparable we should calculate review-level accuracy. Therefore, we created a
post-processing step which will also calculate Majority Voting results. In each section,
we will present both raw results and scores after Majority Voting.

In this results section, we will present our scores for both Movie Reviews, and Product
Reviews in the same table. Our core segmentation methodologies (see list below) will
be listed at the top in each results table. Other methodologies will be listed at the
bottom.

Base models and others mentioned above are as follows.

• Base Models: Word-Token, Character , BPE-1k , BPE-5k , BPE-30k , Syllable,
Hybrid , Lemma, Lemma+Su�x , Stem, and Stem+Su�x

40

• Other Models: Lemma+Su�x/Meta, Stem+Su�x/Meta, and Token-Meta

The best score for each dataset will be highlighted on the table. Tables will also have a
calculated column for average scores for segmentation methods over all datasets. The
maximum average score will also be highlighted.

4.5.1 CNN-rand Results

Table 4.10: CNN-rand Accuracy Results w/o Majority Voting

Movie Book DVD Electr. Kitchen Beyaz Perde Avg

Word-Token 82.29 68.54 65.23 74.03 68.36 74.07 72.09
Hybrid 82.17 68.35 64.15 73.39 66.73 73.31 71.35
Lemma 81.78 67.77 62.42 72.75 70.18 72.72 71.27
Lemma+Su�x 83.16 69.32 64.36 69.10 67.95 73.60 71.25
BPE-5k 82.06 66.41 64.79 73.39 66.73 72.57 70.99
Syllable 77.83 69.32 62.63 72.96 69.57 72.43 70.79
Stem 82.29 69.51 63.28 68.88 67.75 72.76 70.75
BPE-30k 83.32 69.32 61.77 72.75 61.05 74.02 70.37
BPE-1k 78.46 65.05 68.03 66.09 60.45 71.82 68.32
Stem+Su�x 82.65 68.74 64.15 46.78 68.97 73.18 67.41
Character 74.70 65.05 57.24 63.73 60.85 68.49 65.01

Lemma+Su�x/Meta 60.40 60.39 57.88 60.94 58.01 59.32 59.49
Stem+Su�x/Meta 62.65 55.15 60.04 59.66 58.62 59.49 59.27
Token-Meta 58.62 57.28 55.51 54.94 52.33 54.31 55.50

We present our raw CNN-rand results in Table 4.10. This table shows accuracy results
for sentence-level classi�cation. Score table shows that Word-Token holds the highest
average score of 72.09%. It is followed by Hybrid , Lemma, and Lemma+Su�x with
similar scores respectively.

We also present our majority voting CNN-rand results in Table 4.11. This table shows
accuracy results for review-level classi�cation. Score table shows that Word-Token
holds the highest average score of 80.81%. It is followed by BPE-5k , and Hybrid with
similar scores respectively.

4.5.2 Simpli�ed CNN-rand Results

We present our raw CNN-rand results in Table 4.12. This table shows accuracy re-
sults for sentence-level classi�cation. Score table shows that Lemma+Su�x holds the
highest average score of 72.65%. It is followed by BPE-5k , BPE-30k , and Stem with
similar scores respectively.

We also present our majority voting CNN-rand results in Table 4.13. This table shows

41

Table 4.11: CNN-rand Accuracy Results w/ Majority Voting

Movie Book DVD Electr. Kitchen Beyaz Perde Avg

Word-Token 90.52 76.43 74.29 79.29 76.43 87.91 80.81
BPE-5k 90.14 80.00 73.57 75.71 78.57 86.11 80.68
Hybrid 90.80 77.14 72.86 77.86 76.43 86.91 80.33
Lemma 89.11 75.00 72.14 78.57 78.57 85.98 79.90
Lemma+Su�x 90.61 77.86 75.71 71.43 72.14 87.19 79.16
Syllable 86.10 80.71 68.57 75.71 77.14 86.17 79.07
BPE-30k 90.42 76.43 74.29 75.00 68.57 87.81 78.75
Stem 89.30 79.29 70.00 65.00 75.00 86.70 77.55
BPE-1k 88.26 77.86 73.57 71.43 67.14 86.37 77.44
Stem+Su�x 90.14 75.71 75.71 45.71 74.29 86.76 74.72
Character 81.41 73.57 62.14 68.57 67.86 82.24 72.63

Lemma+Su�x/Meta 66.20 67.14 62.14 67.86 62.14 67.85 65.56
Stem+Su�x/Meta 66.01 47.86 63.57 62.14 58.57 67.76 60.99
Token-Meta 62.72 59.29 55.71 57.86 48.57 58.04 57.03

Table 4.12: Simpli�ed CNN-rand Accuracy Results w/o Majority Voting

Movie Book DVD Electr. Kitchen Beyaz Perde Avg

Lemma+Su�x 82.85 72.62 65.44 72.10 69.78 73.08 72.65
BPE-5k 83.04 68.54 66.31 71.89 70.99 72.80 72.26
BPE-30k 82.92 69.13 66.09 74.46 66.73 73.72 72.18
Stem 81.62 69.51 63.93 72.53 67.95 71.72 71.21
Lemma 82.29 68.54 64.58 70.39 68.97 71.76 71.09
Stem+Su�x 82.57 70.29 62.42 72.10 66.33 72.80 71.09
Hybrid 79.49 67.57 63.93 72.75 67.14 72.97 70.64
Word-Token 82.92 69.51 62.20 67.81 66.94 73.44 70.47
Syllable 80.36 67.57 60.91 72.75 68.15 70.79 70.09
BPE-1k 78.81 68.54 62.85 69.31 67.55 70.50 69.59
Character 73.95 64.27 57.24 65.67 58.82 65.93 64.31

Stem+Su�x/Meta 60.95 63.69 56.59 61.16 63.08 58.24 60.62
Lemma+Su�x/Meta 61.15 63.88 57.45 58.37 58.82 58.16 59.64
Token-Meta 55.85 57.67 55.29 53.43 48.68 53.82 54.12

accuracy results for review-level classi�cation. Score table shows that Lemma+Su�x
holds the highest average score of 81.27%. It is followed by BPE-5k , Hybrid , and Stem
with similar scores respectively.

When we compare results for CNN-rand and Simpli�ed CNN-rand neural network
models, we can see that there is no signi�cant di�erence between performances of
each. In fact, Simpli�ed CNN-rand scores a bit higher than original CNN-rand imple-

42

Table 4.13: Simpli�ed CNN-rand Accuracy Results w/ Majority Voting

Movie Book DVD Electr. Kitchen Beyaz Perde Avg

Lemma+Su�x 90.61 81.43 76.43 77.86 75.00 86.30 81.27
BPE-5k 90.61 75.71 76.43 75.00 80.00 86.46 80.70
Hybrid 89.01 75.71 75.00 80.71 77.14 85.96 80.59
Stem 88.92 81.43 76.43 77.14 73.57 84.67 80.36
Word-Token 91.08 77.14 75.00 73.57 77.14 86.81 80.13
BPE-30k 89.95 73.57 77.14 76.43 76.43 87.04 80.09
Stem+Su�x 88.83 77.86 74.29 80.00 72.14 85.83 79.82
Syllable 87.79 79.29 70.71 77.86 78.57 84.67 79.81
Lemma 88.92 76.43 74.29 73.57 73.57 85.09 78.64
BPE-1k 89.11 75.00 71.43 76.43 72.86 84.17 78.16
Character 83.76 69.29 60.71 71.43 62.14 79.78 71.18

Lemma+Su�x/Meta 67.23 72.14 64.29 57.86 59.29 66.87 64.61
Stem+Su�x/Meta 66.20 72.14 61.43 54.29 62.14 65.74 63.66
Token-Meta 58.69 59.29 58.57 50.00 49.29 57.83 55.61

mentation. Average of all scores measured by the original CNN-rand implementation
is 74.61%, while the same average is 75.33% for Simpli�ed CNN-rand implementation.

In the light of this information, we will completely discard scores acquired by the
Original CNN-rand implementation. In following parts and chapters, we will only take
scores measured for Simpli�ed CNN-rand and we will simply refer Simpli�ed CNN-rand
scores as CNN-rand scores.

4.5.3 LSTM Results

We present our raw CNN-rand results in Table 4.14. This table shows accuracy results
for sentence-level classi�cation. Score table shows that Word-Token holds the highest
average score of 72.05%. It is followed by Stem, Lemma, BPE-5k , and Lemma+Su�x
with similar scores respectively.

We also present our majority voting CNN-rand results in Table 4.15. This table shows
accuracy results for review-level classi�cation. Score table shows that Word-Token
holds the highest average score of 81.36%. It is followed by BPE-5k , and Lemma with
similar scores respectively.

4.5.4 Results in Comparison to Baseline Scores

In this section, we will compare our results with baseline scores. We will present
comparisons of Movie Reviews and Product Reviews separately. Since we have too
many segmentation methods and multiple numbers of classi�ers, we will only present
our results with highest average scores for each classi�er. In order to stay consis-

43

Table 4.14: LSTM Accuracy Results w/o Majority Voting

Movie Book DVD Electr. Kitchen Beyaz Perde Avg

Word-Token 83.16 67.57 67.60 73.39 66.73 73.86 72.05
Stem 81.54 69.51 66.09 72.75 69.37 72.63 71.98
Lemma 82.17 69.71 65.66 69.74 69.98 72.97 71.70
BPE-5k 80.95 67.77 67.60 72.96 66.13 73.93 71.56
Stem+Su�x 82.25 69.51 64.36 71.24 67.34 73.54 71.38
BPE-30k 82.81 67.57 66.09 68.24 66.94 74.44 71.01
Lemma+Su�x 82.25 69.90 66.52 70.39 62.27 73.81 70.86
Hybrid 79.17 67.57 61.12 71.46 66.53 72.78 69.77
Syllable 78.93 69.51 60.69 71.89 65.52 71.97 69.75
BPE-1k 76.68 66.21 64.36 70.17 62.07 70.99 68.41
Character 65.42 60.00 55.72 58.37 55.38 67.13 60.33

Stem+Su�x/Meta 59.25 61.17 57.24 60.30 54.77 58.87 58.60
Lemma+Su�x/Meta 58.77 60.97 56.59 58.15 53.75 58.40 57.77
Token-Meta 55.57 57.48 55.94 46.35 53.75 54.55 53.94

Table 4.15: LSTM Accuracy Results w/ Majority Voting

Movie Book DVD Electr. Kitchen Beyaz Perde Avg

Word-Token 90.80 77.86 76.43 80.71 75.00 87.39 81.36
BPE-5k 89.86 75.71 75.71 79.29 75.00 87.91 80.58
Lemma 89.20 80.00 77.86 75.00 75.00 86.20 80.54
BPE-30k 89.30 72.14 79.29 74.29 77.14 88.56 80.12
Stem 89.39 78.57 78.57 78.57 68.57 86.28 79.99
Hybrid 89.48 75.00 73.57 80.00 74.29 86.67 79.83
Stem+Su�x 90.05 80.71 74.29 76.43 70.71 86.80 79.83
Lemma+Su�x 90.33 77.86 79.29 77.14 65.71 87.06 79.56
Syllable 87.23 82.14 70.71 75.00 75.00 85.61 79.28
BPE-1k 86.48 70.00 72.14 73.57 67.14 85.43 75.79
Character 72.58 60.71 55.00 64.29 60.00 81.37 65.66

Stem+Su�x/Meta 65.26 65.71 64.29 65.00 57.86 67.43 64.26
Lemma+Su�x/Meta 64.23 68.57 58.57 62.86 61.43 66.00 63.61
Token-Meta 57.37 58.57 64.29 45.71 52.86 57.94 56.12

tent throughout the comparison, we will make segmentation method selection based
on overall average scores and not individual scores for datasets we are making the
comparison.

Following segmentation methods achieve top 3 highest average scores among classi�ers.

44

• CNN : Based on Table 4.13

� Lemma+Su�x : Avg 81.27%

� BPE-5k : Avg 80.70%

� Hybrid : Avg 80.59%

• LSTM : Based on Table 4.15

� Word-Token : Avg 81.36%

� BPE-5k : Avg 80.58%

� Lemma : Avg 80.54%

We will present our result sets in the form of < model > @ < segmentation > for
simplicity. Each of these sets will be called a classi�er, since a segmentation alongside
a neural network model constitutes a classi�er for Turkish text input.

In Table 4.16, we present our results on Movie Reviews in comparison to two previous
studies in the literature, SentiStrength in Vural et al. (2012) and Feature Selection in
Firat Akba and Sever (2014). The table shows that both our selected CNN and LSTM
results outperform the best results in baseline scores, which belong to Firat Akba and
Sever (2014). On average our scores are +3 points higher than results in Firat Akba
and Sever (2014). Our best score, LSTM @ BPE-5k , outperforms it by a large +4
point margin.

We also present our results on Product Reviews in Table 4.17 in comparison to earlier
scores derived from the dataset by Demirtas and Pechenizkiy (2013). Our results
outperform baseline scores in all categories. In average, the margin between our results
and best baseline scores is 6.7.

Table 4.16: Accuracy Scores on the Movie Reviews data set

Model Author Acc.

Sentence-binary Vural et al. (2012) 70.39
Sentence-max/min Vural et al. (2012) 74.83
Word-sum Vural et al. (2012) 75.90
Chi Square Firat Akba and Sever (2014) 83.90
Information Gain Firat Akba and Sever (2014) 83.90

CNN @ Lemma+Su�x 86.30
CNN @ BPE-5k 86.46
CNN @ Hybrid 85.96
LSTM @ Word-Token 87.39
LSTM @ BPE-5k 87.91
LSTM @ Lemma 86.20

45

In fact, we have a single classi�er that outperforms all baseline scores alone, which is
CNN @ BPE-5k . This classi�er actually holds another impressive achievement. It gets
to be at top 3 selected result set in both CNN and LSTM models, holding the second
position in both. In Table 4.18 we present overall margins between our results and best
baseline scores. The table shows that CNN @ BPE-5k classi�er outperforms baseline
scores on an average of +5.5 points. Consolidated results from selected classi�ers
outperform baseline scores on an average of +7.92 points and Overall results on an
average of +8.21 points.

The motivation behind our work originally did not get higher results than baseline
scores. It rather was to compare and measure performances of di�erent segmentation
methods and neural network models. However, accomplishing something like this is
also worth mentioning.

4.6 Performance Evaluation

In this part, we will evaluate performances of segmentation methods, and neural net-
works and investigate into what they do good and what they could do better.

Table 4.17: Accuracy Scores on the Product Reviews data set

Model Movie Book DVD Electronics Kitchen

Naive Bayes1 69.50 72.40 76.00 73.00 75.90
Naive Bayes MT1 70.00 71.70 74.90 64.40 69.60
Linear SVC1 66.00 66.60 70.30 72.40 70.00
Linear SVC MT1 66.50 66.90 67.60 64.40 67.30

CNN @ Lemma+Su�x 90.61 81.43 76.43 77.86 75.00
CNN @ BPE-5k 90.61 75.71 76.43 75.00 80.00
CNN @ Hybrid 89.01 75.71 75.00 80.71 77.14
LSTM @ Word-Token 90.80 77.86 76.43 80.71 75.00
LSTM @ BPE-5k 89.86 75.71 75.71 79.29 75.00
LSTM @ Lemma 89.20 80.00 77.86 75.00 75.00

1Demirtas and Pechenizkiy (2013)

Table 4.18: Margin between best baseline scores and our results on Movie Reviews,
and Product Reviews data sets

Movie Book DVD Electr. Kitchen Beyaz Perde Avg

Overall +21.1 +9.8 +3.3 +7.7 +4.1 +4.0 +8.3
Selected Models +20.8 +9.0 +1.9 +7.7 +4.1 +4.0 +7.9
CNN @ BPE-5k +20.6 +3.3 +0.4 +2.0 +4.1 +2.6 +5.5

46

4.6.1 Distribution of Polarity Predictions and Majority Voting

Text classi�cation is a binary problem. Therefore, neural networks are trained to
output a value between 0-1 according to how certain the model is about the polarity
of the input text. As a rule of thumb, values near 0.5 are those uncertain and they are
very likely to be neutral. Similarly, a prediction near 1 or 0 is one the model is pretty
sure that it is negative or positive. For instance, a prediction value 0.96 will indicate
that model thinks the input text is almost certainly positive.

In order to evaluate performances of models, we will �rst compile entire predictions
into one single prediction �le. From there, we can extract distribution of a particular
neural network with a particular segmentation method. Since only BPE-5k was able
to take its place among selected segmentation methods both for CNN and LSTM,
and also because CNN @ BPE-5k literally outperforms any baseline score, we will use
BPE-5k as our benchmark segmentation model. However, we will occasionally switch
from CNN to LSTM when needed.

Figure 4.5: Predicted polarity distribution of test sample data for an LSTM networks
trained with BPE-5k segmentation output. Distribution is Sentence-level.

Figure 4.5 shows the distribution of polarity prediction by our LSTM network trained
by BPE-5k segmentation output. Orange area shows the distribution of prediction for
sentences labeled as Negative, and blue area shows the distribution of sentences labeled
as Positive. One important aspect in this �gure is that it is similar to a Chi-squared
distribution with k = 2. However, there are too many values in between, possibly due
to data not being clean enough. Hence, this is overall an expected distribution. Our
model is speci�cally trained to output binary values for classi�cation.

The overlapping areas constitute samples classi�ed incorrectly. From average accuracy
score of BPE-5k , we can deduct the ratio of the overlapping area. Table 4.14 indicates

47

that the average score for BPE-5k is 71.56, which means that the overlapping area
constitutes 100− 71.56 = 28.44% of overall distribution.

Figure 4.6: Predicted polarity distribution of test sample data for an LSTM networks
trained with BPE-5k segmentation output. Distribution is Review-level

In Figure 4.6 we can see the distribution of review-level polarity prediction frequency
distribution. In this case, the distribution is normal in comparison to the initial dis-
tribution. This is also an expected behavior if we take into account how the majority
voting process works.

During pre-processing we divided reviews into sentences only to be compiled into the
same review after polarity predictions are derived from neural network classi�er. The
compilation works in a way that a small sample of sentences is taken from sentence
sample and the combined average predicted value is calculated for the review. The
procedure we are describing here is the one that Central Limit Theorem (CLT) adheres
to explain. CLT indicates that, when a sample size of n is drawn repeatedly from a
distribution, the distribution of means of these samples will have a standard deviation
(σ) value of square root times the σ of the original distribution. On the other hand,
It will still have the same mean value ofµ. See Equation 4.1 for reference.

σn =
σ0√
n

(4.1)

This means that the new distribution will be converging to a normal distribution with
smaller standard deviation around the same mean. Majority voting creates a new
distribution in the same way, and therefore, expected to have a normal distribution
around mean value of the original distribution.

Figure 4.7 shows the distribution of polarity prediction by our CNN network trained

48

Figure 4.7: Predicted polarity distribution of test sample data for a CNN networks
trained with BPE-5k segmentation output. Distribution is Sentence-level

by BPE-5k segmentation output. This distribution is quite di�erent than the LSTM
sentence-level distribution. What is quite surprising about it is the fact that distri-
bution is a normal distribution with an excess accumulation at the outer edges. This
is strange because in a way it means the CNN network is not very certain about the
polarity of the majority of test entries fed into the model. The overlapping area is
also accumulated around the neutral region. This area is more spread-out in LSTM
distribution.

In Figure 4.8 we can see the distribution of review-level polarity prediction frequency
distribution for CNN network. Due to the same reasons that we listed for LSTM
review-level distribution, the new sample space will have a more accumulated normal
distribution thanks to Central Limit Theorem.

4.6.2 Performance Comparison on Sample Cases

Table 4.19 shows a sample prediction for a random review extracted from predictions
derived from LSTM @ BPE-5k and LSTM @ Lemma+Su�x . The review constitutes
4 di�erent sentences. The LSTM @ BPE-5k classi�er provided 0.36, 0.23, 0.76, and
0.78 scores respectively for each sentence. The mean value is 0.53, and larger than 0.5.
Therefore, we can conclude that the review is classi�ed correctly by a small margin.
The LSTM @ Lemma+Su�x classi�er, however, provides much better scores than the
former. It derives 0.83, 0.79, 0.88, and 0.21 scores for sentences respectively. The
average is 0.67, and unlike BPE-5k the review is classi�ed as positive by a larger
margin.

49

Figure 4.8: Predicted polarity distribution of test sample data for a CNN networks
trained with BPE-5k segmentation output. Distribution is Review-level

Table 4.19: Sample Predictions for a review compiled from LSTM @ BPE-5k and
LSTM @ Lemma+Su�x

Sentence Label C11 C22

elif ³afak�n imzal� kitab�n� hepsiburadan temin etmek çok
güzel .
(being able to acquire elif ³afak's[typo] signed book from
hepsiburada[typo] is very nice .)

1.0 0.36 0.83

bu f�rsat kaç�r�lmamal� .
(this opportunity shouldn't be missed .)

1.0 0.23 0.79

hediye olarak çok güzel bir kitap .
(this is a very good book for a present .)

1.0 0.77 0.88

konudan bahsetmeyece§im , elif ³afak� tan�yanlar bilir ...
(i won't talk about the theme , those that know elif
³afak(typo) will know ...)

1.0 0.78 0.21

1LSTM @ BPE-5k
2LSTM @ Lemma+Su�x

From a manual inspection, we can conclude that the review is clearly positive, and
the author or review is praising the author of the book s/he is reviewing. The dis-
tinction is important in a way it can distinguish what a morphological analysis such
as Lemma+Su�x can achieve better than a sub-word model such as BPE-5k. How-

50

ever, we also know that BPE-5k has a better overall performance than Lemma+Su�x.
Therefore we can conclude that there are many factors at play, and the overall schema
opts for the BPE-5k.

Table 4.20: Sample Predictions for a review compiled from CNN @ BPE-5k and
CNN @ Lemma+Su�x

Sentence Label C11 C22

quantin tarantino iyi bir yönetmen ama ben bu kadar kötü
bir �lm beklemezdim .
(quantin tarantino is a good director, but i wouldn't expect
a movie this bad .)

0.0 0.23 0.24

�lm çok s�k�c� ba³lad� inatla sonuna kadar izledim acaba
de§i³ir mi diye ama hüsran .
(movie started dull, i resisted to the end hoping it would
change, but disappointment .)

0.0 0.11 0.04

bana göre gerçekten kötü bir �lm
(to me it is a really bad movie)

0.0 0.29 0.15

1CNN @ BPE-5k
2CNN @ Lemma+Su�x

Table 4.20 shows sentiment predictions by CNN with BPE-5k and Lemma+Su�x
segmentations models for a sample review. Table shows that the negative review has an
average sentiment score of 0.21 and 0.14 for BPE-5k and Lemma+Su�x respectively.
We can once again conclude that even if BPE-5k can be more robust than most
other candidates in terms of accuracy, the sentiment prediction is more certain with
Lemma+Su�x , and thereby with morphological approaches.

4.6.3 Cross-parameter Comparison

In order to understand the relationship between di�erent parameters and their e�ect
on accuracy results, we compiled various parameters for performance evaluation during
model training.

During our experiments, we collected a wide range of measurements on preprocessing,
training, and evaluation. These results are available both for CNN and LSTM exper-
iments. The parameters measured and collected are shown in Table 4.21 with their
descriptions.

In Figure 4.9 we can see the relationship between majority voting accuracy, and vocab-
ulary. The details Segmentation and Review length parameters add further insight.
We can see that there is a clear correlation between vocabulary size and accuracy.
However, the relation is possibly non-linear, and the accuracy will start to deterio-
rate after a vocabulary size. In fact, our most promising segmentation BPE-5k has
a vocabulary size of 5k. This �gure itself also hints at deteriorating nature of this

51

Table 4.21: List of parameters collected during experiments with pre-precessing and
neural model building.

Parameter Description

No The order in which the experiment is executed.

Dataset Name of dataset

Segmentation Segmentation method used during preprocessing

Train Size of training sample

Validation Size of validation sample

Test Size of test sample

Batch Size Batch size used model training∗

Vocabulary Vocabulary size

Max Review Length Size of longest review in dataset after pre-processing

Pre-processing Duration Pre-processing duration in seconds

Train Duration Model training duration in seconds

Evaluation Duration Test data prediction duration

Score Sentence-level raw score

MV Score Review-level score after Majority Voting

Epoch Count Number of epochs run until early stopping kicks in

Save Epoch
The epoch number the best model is encountered and
saved

∗ Batch size is calculated after preprocessing. The �nal batch size depends on vocabulary

and maximum review length.

correlation around 20k vocabulary size. However, further research will be needed to
prove this claim. We will not go into further detail.

4.6.4 Computational Performance

In this part, we will address three fundamental performance metrics. These metrics are
of a high value in order to express a de�nitive way of dealing with sentiment analysis
task in Turkish texts on a service level. An e�cient way of dealing with this task is
creating the most value with the least investment. Therefore, we will be investigating
the performance of each classi�er alongside the resources these uses during sentiment
extraction.

In order to determine the resources model use, we identi�ed a set of metrics, and

52

Figure 4.9: Scatter plot showing relation between vocabulary size and accuracy among
all results acquired with CNN. Review length and Segmentation are added as details.

kept measurements regarding these metrics. In order to measure memory allocation,
we calculated the total memory neural network needs in order to run. Since neural
networks built by Keras running on Tensor�ow back-end are able to use Graphics
Processing Unit (GPU) the memory allocation here will represent GPU memory used
for the neural network. On the other hand, we also determined the parameters a�ecting
the total memory neural networks allocate to run. Formulas 4.2 and 4.3 show how to
calculate total memory a CNN or an LSTM network allocate based on parameters
such as vocabulary and maximum input size.

On the other hand, in order to calculate processing power allocated to the classi�ers we
identi�ed the duration of calculations as the candidate. Our implementation uses there
processing steps in conjunction with each other in order to pre-process data, train a
model based on this, and test the model with test subset. The code designed to do this
also keeps track of durations all these steps take. The �rst time-stamp (t0) is recorded
during the initialization, where the dataset is to be pushed into data pre-processing
unit. The second time-stamp (t1) is recorded when the pre-processing is complete. The
di�erence between the two (t1− t0) provides pre-processing duration. After this point,
model building and training starts. The third time-stamp (t2) is recorded after training
stage is complete. The di�erence between third and second time-stamps (t2− t1) gives
the model training duration. Finally, test data subset is fed into the trained model for
sentiment predictions. When prediction stage is complete, the last time-stamp (t3) is
recorded. The di�erence between the last and third time-stamps (t3 − t2) gives the
evaluation duration.

The �rst and the most important metric is the accuracy, which we covered throughout

53

the report. Without a plausible accuracy rate, a faster classi�er with a smaller footprint
will be just as meaningless. We must �rst explore and discover an e�cient way of
achieving a good accuracy in order to go on with computational performance related
issues.

The second one is how much resources it takes up during training and evaluation.
This is also crucial if we are going to deploy the implementation and neural modal for
regular usage. The resources could be considered in two main groups, memory and
computation.

The third one is how fast it is with extracting sentiment from a sample input text.

The First performance metric is heavily addressed in earlier parts, therefore, we will
only add it to discussions as part of investigation detail. Resource consumptions and
Prediction speed will be primary topics. We will use data described in Table 4.21 for
performance evaluations in this part.

Not all parameters we need exists within our data, some of them will be calculated
based on available parameters. We will create parameters for memory consumed by
CNN and LSTM networks, and training duration until the best model is encountered.

The new parameters can be de�ned as follows.

MCNN = 50 ∗ v + 500 ∗ l + 3121 (4.2)

MLSTM = 32 ∗ v + 0 ∗ l + 53301 (4.3)

tatd = ttraining ∗ (1− (EC − SE)/EC) (4.4)

tte = tpp + teval (4.5)

Where;

v denotes Vocabulary size for preprocessed dataset,

l denotes Max Review Length for neural network model input,

MCNN denotes Amount of Memory the CNN model uses,

MLSTM denotes Amount of memory the LSTM model uses,

ttraining denotes The duration needed to train the network,

EC denotes Total amount of Epochs until the training is �nalized,

SE denotes The epoch on which the best results encountered during training,

tatd denotes Actual Train Duration: Calculated training duration until best results are
encountered,

tpp denotes Pre-processing Duration: The time it takes to process raw input into the
shape the network can process,

teval denotes Evaluation Duration: The time it takes to evaluate a preprocessed input,

54

tte denotes Total Evaluation Duration: Total amount of time it take to pre-process raw
data and evaluate it.

Figure 4.10: Bar chart showing average memory size, average test data prediction
duration, and model memory for a CNN network.

We extracted the new parameters by using formulas provided in 4.2, 4.3, 4.4, and
4.5. Using new parameters we plotted the relationships in column charts both for
Evaluation Duration and Training Duration. Figure 4.10 shows the distribution of
these two parameters among di�erent segmentation methods. The columns are sorted
by ascending average evaluation duration.

From the �gure we can deduct that Syllable, BPE-1k , BPE-5k , BPE-30k methods
provide shortest total evaluation durations. Note that Total Evaluation Duration is
the sum of test data pre-processing, and prediction durations. On the other hand,
they also hold some of highest scores for accuracies. BPE-5k seems to be an obvious
candidate for the most e�cient model in terms of accuracy, training duration, and
memory.

4.7 Summary

The results we acquired during experiments show that there is substantial support
for nominating BPE-5k segmentation method as the most e�cient one combining our
metrics both for accuracy and computational performance. However, one important
thing to point out is the fact that the accuracy results among prominent segmentation

55

methods are not signi�cant. There is also strong evidence that the performances of
CNN and LSTM networks seem to be similar.

The following points can be deducted from results presented in this work.

• BPE-5k Seems to be performing good both in terms of accuracy and computa-
tional performance.

• CNN and LSTM networks perform similarly.

• Widely used Word-Token segmentation method performs as good as other ones
with similar scores in terms of accuracy.

• Unlike accuracy, performance evaluation results for computational metrics vary
to a great extent for di�erent segmentation methods. There is strong evidence
that this di�erence should be taken into consideration in model selection.

• The positional attributes of words in sentences without word themselves keeps
a substantial amount of info by which these models achieved accuracy results
around 65%. This also means that this information could be used as an additional
layer in future.

56

CHAPTER 5

CONCLUSION AND FUTURE WORK

Our results clearly show that neural network models are more successful as carefully
engineered lexicon and rule-based methods, mostly by a large margin. We selected the
best performing classi�ers among CNN and LSTM networks. Lemma+Su�x, BPE-5k,
Hybrid, Word-Token, and Lemma proven to be the best ones. Our selected models
outperformed best scores in baselines by an average +7.92 points. (Tables 4.17, 4.18,
and 4.16)

We also noted BPE-5k model for its performance with being among top 3 for results
acquired by using both CNN and LSTM based classi�ers. It also achieves better scores
than any baseline score alone. This model outperformed best scores in baselines by an
average +5.5 points along all datasets. (Table 4.18)

Our prediction distributions showed that LSTM networks seem to be more certain
about their predictions with a Chi-squared distribution. (Figure 4.5) Whereas, CNN
distribution is normal near neutral region. (Figure 4.7)

We also observed Central Limit Theorem being at play with our Majority Voting
process. We also validated the e�ect with CLT formulas. (Equation 4.1)

We reviewed some sample outputs and their predictions by di�erent segmentation
methods. We observed that even if they predict the same output, they do it for
seemingly quite di�erent reasons, which showed that there are very complex factors
being at play for di�erent segmentation methods. (Table 4.19)

We also investigated the relationships between model scores, segmentation methods
and review lengths. We observed that the networks performed better until a certain
vocabulary size. (Figure 4.9)

We evaluated computational performances of models and segmentation methods. We
derived new parameters and created various plots to observe di�erences between per-
formances in terms of memory usage, average training duration, and average input
evaluation duration. We concluded once again that BPE-5k performs very well for
all metrics. We indicated this model as the �nal candidate for text classi�cation in
Turkish. (Figure 4.10)

This work did not focus on advanced natural language processing techniques such as
phrase and idiom extraction, and sentence attention detection. On the other hand, it
does not try to extract sentence forms and types. We believe that, by employing such

57

methods, scores acquired in this work could be improved. In addition, by inspecting
the predictions which provide poor accuracy the more important features could be
determined. Thus, it could be possible prioritize these advanced methods.

In this work, we also did not try to check and correct typographical errors within the
text. Informal texts are known to be hosting too many errors of this type. By em-
ploying spell-checking and advanced error correction mechanisms vocabulary could be
reduced and accuracies could be improved. In addition, text can be normalized where
information is formulated or represented in other forms such as numbers. Normaliza-
tion might both reduce vocabulary size and increase accuracy. We think that using
typo checkers and text normalization can add further improvement to our models and
accuracy scores.

We also did not intend to use advanced disambiguation for words while extraction
positional attributes and su�xes. Turkish has too many seemingly similar or the same
but structurally di�erent words due to its rich morphology. Developing and utilizing
a tool capable of understanding the context of the sentence and determining the most
appropriate variant of these words could improve accuracy performances our models
further. For instance, the word kara (dark; land; into snow) is used with di�erent
meanings in following phrases.

• Kara bulutlar gökleri doldurdu. (Dark clouds �lled the skies.)

• Ada Marmarada'ki ufak bir kara parças�ndan olu³maktad�r. (The island is a
small land in Marmara.)

• Kara batan ayaklar�n� h�zl�ca çekti. (He quickly pulled his legs which were
sinking into snow.)

As already mentioned in Sentiment Analysis with Various Segmentation Methods and
Deep Learning Models chapter (Part 3.2.5) LSTM networks are capable of processing
multiple layers of data. This means data processed in di�erent ways can be used to
create data in di�erent forms each of which represents di�erent attributes of the data.
These di�erent sets of attributes could be used as di�erent layers. This means various
segmentation methods presented in this work could be assigned as di�erent layers to
a new multi-layered LSTM network. We believe such an arrangement could improve
the performance of the sentiment analysis task.

Finally, we did not use WordVec libraries in order to build embeddings for neural
network models we used due to several reasons pointed out in introduction chapter.
The most important of these reasons was the fact that our segmentation methods
divide each word into sub-word fragments which by themselves mostly do not have a
meaning or a meaning related to the word used. However, it is still possible to build
a WordVec for each segmentation method by calculating weights for each of these
fragments by building a model that will calculate the ratio of each fragment in various
words. The eventual weights could be calculated with basic arithmetic formulas.

58

Bibliography

Mehmet Dundar Akin Ahmet Afsin Akin. Zemberek, an open source nlp framework
for turkic languages. 2007. doi: 10.1.1.556.69.

R�fat A³l�yan and Korhan Günel. Design and implementation for extracting turkish
syllables and analyzing turkish syllables. 10 2007.

Stefano Baccianella, Andrea Esuli, and Fabrizio Sebastiani. Sentiwordnet 3.0: An
enhanced lexical resource for sentiment analysis and opinion mining. In in Proc. of
LREC, 2010.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation
by jointly learning to align and translate. CoRR, abs/1409.0473, 2014. URL http:

//arxiv.org/abs/1409.0473.

Zeynep Boynukalin. Emotion analysis of turkish texts by using machine learning meth-
ods. Master's thesis, Middle East Technical University, 2012.

Erik Cambria, Daniel Olsher, and Dheeraj Rajagopal. Senticnet 3: A common and
common-sense knowledge base for cognition-driven sentiment analysis. In Proceed-
ings of the Twenty-Eighth AAAI Conference on Arti�cial Intelligence, AAAI'14,
pages 1515�1521. AAAI Press, 2014. URL http://dl.acm.org/citation.cfm?id=

2892753.2892763.

Onder Coban, Baris Ozyer, and Gulsah Tumuklu Ozyer. Sentiment analysis for turkish
twitter feeds. In 2015 23nd Signal Processing and Communications Applications
Conference (SIU). Institute of Electrical and Electronics Engineers (IEEE), may
2015. doi: 10.1109/siu.2015.7130362.

Ça Çoltekin, Cem Boz³ahin, et al. Syllables, morphemes and bayesian computational
models of acquiring a word grammar. In Proceedings of the Annual Meeting of the
Cognitive Science Society, volume 29, 2007.

Ça§r� Çöltekin. A set of open source tools for turkish natural language processing.
In Proceedings of the Ninth International Conference on Language Resources and
Evaluation (LREC-2014). European Language Resources Association (ELRA), 2014.
URL http://www.aclweb.org/anthology/L14-1375.

Rahim Dehkharghani, Yucel Saygin, Berrin Yanikoglu, and Kemal O�azer. Senti-
turknet: a turkish polarity lexicon for sentiment analysis. Language Resources and
Evaluation, 50(3):667�685, 2016a.

Rahim Dehkharghani, BERRIN YANIKOGLU, YUCEL SAYGIN, and Kemal O�azer.
Sentiment analysis in turkish at di�erent granularity levels. Natural Language En-
gineering, pages 1�25, 2016b.

59

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
http://dl.acm.org/citation.cfm?id=2892753.2892763
http://dl.acm.org/citation.cfm?id=2892753.2892763
http://www.aclweb.org/anthology/L14-1375

Hakan Demir and Arzucan Özgür. Improving named entity recognition for morpholog-
ically rich languages using word embeddings. In Machine Learning and Applications
(ICMLA), 2014 13th International Conference on, pages 117�122. IEEE, 2014.

Erkin Demirtas and Mykola Pechenizkiy. Cross-lingual polarity detection with ma-
chine translation. In Proceedings of the Second International Workshop on Issues
of Sentiment Discovery and Opinion Mining - WISDOM13. Association for Com-
puting Machinery, 2013. doi: 10.1145/2502069.2502078. URL http://sentic.net/

wisdom2013pechenizkiy.pdf.

Je�rey L. Elman. Finding structure in time. Cognitive Science, 14(2):179�211, 1990.
ISSN 1551-6709. doi: 10.1207/s15516709cog1402_1. URL http://dx.doi.org/10.

1207/s15516709cog1402_1.

Umut Erogul. Sentiment analysis in turkish. Master's thesis, Middle East Technical
University, 2009.

Andrea Esuli and Fabrizio Sebastiani. Sentiwordnet: A publicly available lexical re-
source for opinion mining. In In Proceedings of the 5th Conference on Language
Resources and Evaluation (LREC-06, pages 417�422, 2006.

Ebru Akcapinar Sezer Firat Akba, Alaettin Ucan and Hayri Sever. Assesment of
feature selection metrics for sentiment analysis: Turkish movie reviews. 2014.

Felix A. Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to forget: Continual
prediction with lstm. NEURAL COMPUTATION, 12:2451�2471, 1999.

Anastasia Giachanou and Fabio Crestani. Like it or not: A survey of twitter sentiment
analysis methods. ACM Comput. Surv., 49(2):28:1�28:41, June 2016. ISSN 0360-
0300. doi: 10.1145/2938640. URL http://doi.acm.org/10.1145/2938640.

Alex Graves, Abdel-rahman Mohamed, and Geo�rey E. Hinton. Speech recognition
with deep recurrent neural networks. CoRR, abs/1303.5778, 2013. URL http:

//arxiv.org/abs/1303.5778.

Michiel Hermans and Benjamin Schrauwen. Training and analysing deep recurrent
neural networks. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani,
and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems
26, pages 190�198. Curran Associates, Inc., 2013. URL http://papers.nips.cc/

paper/5166-training-and-analysing-deep-recurrent-neural-networks.pdf.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Com-
putation, 9(8):1735�1780, 1997. doi: 10.1162/neco.1997.9.8.1735. URL https:

//doi.org/10.1162/neco.1997.9.8.1735.

Ozan Irsoy and Claire Cardie. Deep recursive neural networks for composi-
tionality in language. In Zoubin Ghahramani, Max Welling, Corinna Cortes,
Neil D. Lawrence, and Kilian Q. Weinberger, editors, Advances in Neu-
ral Information Processing Systems 27: Annual Conference on Neural In-
formation Processing Systems 2014, December 8-13 2014, Montreal, Que-
bec, Canada, pages 2096�2104, 2014a. URL http://papers.nips.cc/paper/

5551-deep-recursive-neural-networks-for-compositionality-in-language.

60

http://sentic.net/wisdom2013pechenizkiy.pdf
http://sentic.net/wisdom2013pechenizkiy.pdf
http://dx.doi.org/10.1207/s15516709cog1402_1
http://dx.doi.org/10.1207/s15516709cog1402_1
http://doi.acm.org/10.1145/2938640
http://arxiv.org/abs/1303.5778
http://arxiv.org/abs/1303.5778
http://papers.nips.cc/paper/5166-training-and-analysing-deep-recurrent-neural-networks.pdf
http://papers.nips.cc/paper/5166-training-and-analysing-deep-recurrent-neural-networks.pdf
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
http://papers.nips.cc/paper/5551-deep-recursive-neural-networks-for-compositionality-in-language
http://papers.nips.cc/paper/5551-deep-recursive-neural-networks-for-compositionality-in-language

Ozan Irsoy and Claire Cardie. Opinion mining with deep recurrent neural networks. In
Alessandro Moschitti, Bo Pang, and Walter Daelemans, editors, Proceedings of the
2014 Conference on Empirical Methods in Natural Language Processing, EMNLP
2014, October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest
Group of the ACL, pages 720�728. ACL, 2014b. ISBN 978-1-937284-96-1. URL
http://aclweb.org/anthology/D/D14/D14-1080.pdf.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. A convolutional neural
network for modelling sentences. Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics, June 2014.

Yoon Kim. Convolutional neural networks for sentence classi�cation. In Proceed-
ings of the 2014 Conference on Empirical Methods in Natural Language Pro-
cessing (EMNLP). Association for Computational Linguistics (ACL), 2014. doi:
10.3115/v1/d14-1181.

Kezban Dilek Kisa and Pinar Karagoz. Named entity recognition from scratch on social
media. In Proceedings of the 6th International Workshop on Mining Ubiquitous and
Social Environments (MUSE 2015) co-located with the 26th European Conference on
Machine Learning / 19th European Conference on Principles and Practice of Knowl-
edge Discovery in Databases (ECML PKDD 2015), Porto, Portugal, September 7,
2015., pages 2�17, 2015. URL http://ceur-ws.org/Vol-1521/paper2.pdf.

Nadin Kokciyan, Arda Celebi, Arzucan Ozgur, and Suzan Uskudarli. Bounce: Senti-
ment classi�cation in twitter using rich feature sets. Citeseer, 2013.

Onur Kuru, Ozan Arkan Can, and Deniz Yuret. Charner: Character-level named entity
recognition. In COLING 2016, 26th International Conference on Computational
Linguistics, Proceedings of the Conference: Technical Papers, December 11-16, 2016,
Osaka, Japan, pages 911�921, 2016.

Hugo Larochelle and Geo�rey E Hinton. Learning to combine foveal glimpses
with a third-order boltzmann machine. In J. D. La�erty, C. K. I.
Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta, editors, Ad-
vances in Neural Information Processing Systems 23, pages 1243�1251.
Curran Associates, Inc., 2010. URL http://papers.nips.cc/paper/

4089-learning-to-combine-foveal-glimpses-with-a-third-order-boltzmann-machine.

pdf.

Rémi Lebret and Ronan Collobert. N-gram-based low-dimensional representation for
document classi�cation. CoRR, abs/1412.6277, 2014. URL http://arxiv.org/

abs/1412.6277.

Jason Lee, Kyunghyun Cho, and Thomas Hofmann. Fully character-level neural ma-
chine translation without explicit segmentation. CoRR, abs/1610.03017, 2016. URL
http://arxiv.org/abs/1610.03017.

Jiwei Li, Dan Jurafsky, and Eduard H. Hovy. When are tree structures necessary
for deep learning of representations? CoRR, abs/1503.00185, 2015. URL http:

//arxiv.org/abs/1503.00185.

Minh-Thang Luong, Hieu Pham, and Christopher D. Manning. E�ective approaches
to attention-based neural machine translation. CoRR, abs/1508.04025, 2015. URL
http://arxiv.org/abs/1508.04025.

61

http://aclweb.org/anthology/D/D14/D14-1080.pdf
http://ceur-ws.org/Vol-1521/paper2.pdf
http://papers.nips.cc/paper/4089-learning-to-combine-foveal-glimpses-with-a-third-order-boltzmann-machine.pdf
http://papers.nips.cc/paper/4089-learning-to-combine-foveal-glimpses-with-a-third-order-boltzmann-machine.pdf
http://papers.nips.cc/paper/4089-learning-to-combine-foveal-glimpses-with-a-third-order-boltzmann-machine.pdf
http://arxiv.org/abs/1412.6277
http://arxiv.org/abs/1412.6277
http://arxiv.org/abs/1610.03017
http://arxiv.org/abs/1503.00185
http://arxiv.org/abs/1503.00185
http://arxiv.org/abs/1508.04025

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and
Christopher Potts. Learning word vectors for sentiment analysis. In Proceedings of
the 49th Annual Meeting of the Association for Computational Linguistics: Human
Language Technologies - Volume 1, HLT '11, pages 142�150, Stroudsburg, PA, USA,
2011. Association for Computational Linguistics. ISBN 978-1-932432-87-9. URL
http://dl.acm.org/citation.cfm?id=2002472.2002491.

George A. Miller. Wordnet: A lexical database for english. Commun. ACM, 38(11):
39�41, November 1995. ISSN 0001-0782. doi: 10.1145/219717.219748. URL http:

//doi.acm.org/10.1145/219717.219748.

B. Pang and L. Lee. A Sentimental Education: Sentiment Analysis Using Subjectivity
Summarization Based on Minimum Cuts. eprint arXiv:cs/0409058, September 2004.

Colin Ra�el and Daniel P. W. Ellis. Feed-forward networks with attention can solve
some long-term memory problems. CoRR, abs/1512.08756, 2015. URL http://

arxiv.org/abs/1512.08756.

M. Schuster and K.K. Paliwal. Bidirectional recurrent neural networks. Trans. Sig.
Proc., 45(11):2673�2681, November 1997. ISSN 1053-587X. doi: 10.1109/78.650093.
URL http://dx.doi.org/10.1109/78.650093.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of
rare words with subword units. CoRR, abs/1508.07909, 2015. URL http://arxiv.

org/abs/1508.07909.

Richard Socher, Cli� C. Lin, Andrew Y. Ng, and Christopher D. Manning. Parsing
Natural Scenes and Natural Language with Recursive Neural Networks. In Proceed-
ings of the 26th International Conference on Machine Learning (ICML), 2011.

Richard Socher, Brody Huval, Christopher D Manning, and Andrew Y Ng. Seman-
tic compositionality through recursive matrix-vector spaces. In Proceedings of the
2012 Joint Conference on Empirical Methods in Natural Language Processing and
Computational Natural Language Learning, pages 1201�1211. Association for Com-
putational Linguistics, 2012.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning,
Andrew Ng, and Christopher Potts. Recursive deep models for semantic com-
positionality over a sentiment treebank. In Proceedings of the 2013 Conference
on Empirical Methods in Natural Language Processing, pages 1631�1642, Seattle,
Washington, USA, October 2013. Association for Computational Linguistics. URL
http://www.aclweb.org/anthology/D13-1170.

Mike Thelwall, Kevan Buckley, Georgios Paltoglou, Di Cai, and Arvid Kappas. Senti-
ment strength detection in short informal text. Journal of the American Society for
Information Science and Technology, 61(12):2544�2558, 2010. ISSN 1532-2890. doi:
10.1002/asi.21416. URL http://dx.doi.org/10.1002/asi.21416.

Peter D. Turney and Patrick Pantel. From frequency to meaning: Vector space models
of semantics. CoRR, abs/1003.1141, 2010. URL http://arxiv.org/abs/1003.

1141.

62

http://dl.acm.org/citation.cfm?id=2002472.2002491
http://doi.acm.org/10.1145/219717.219748
http://doi.acm.org/10.1145/219717.219748
http://arxiv.org/abs/1512.08756
http://arxiv.org/abs/1512.08756
http://dx.doi.org/10.1109/78.650093
http://arxiv.org/abs/1508.07909
http://arxiv.org/abs/1508.07909
http://www.aclweb.org/anthology/D13-1170
http://dx.doi.org/10.1002/asi.21416
http://arxiv.org/abs/1003.1141
http://arxiv.org/abs/1003.1141

A. Gural Vural, B. Barla Cambazoglu, Pinar Senkul, and Z. Ozge Tokgoz. A framework
for sentiment analysis in turkish: Application to polarity detection of movie reviews
in turkish. In Computer and Information Sciences III, pages 437�445. Springer
Nature, oct 2012. doi: 10.1007/978-1-4471-4594-3_45.

Mengqiu Wang, Rob Voigt, and Christopher D. Manning. Two knives cut better
than one: Chinese word segmentation with dual decomposition. In Proceedings of
the 52nd Annual Meeting of the Association for Computational Linguistics (Volume
2: Short Papers). Association for Computational Linguistics (ACL), 2014. doi:
10.3115/v1/p14-2032.

Ezgi Yildirimm, Fatih Samet Cetin, Gulsen Eryigit, and Tanel Temel. The impact
of nlp on turkish sentiment analysis. Turkiye Bilisim Vak� Bilgisayar Bilimleri ve
Muhendisligi Dergisi, 7(1 (Basili 8), 2015.

Wenpeng Yin, Katharina Kann, Mo Yu, and Hinrich Schütze. Comparative study of
CNN and RNN for natural language processing. CoRR, abs/1702.01923, 2017. URL
http://arxiv.org/abs/1702.01923.

Ye Zhang and Byron C. Wallace. A sensitivity analysis of (and practitioners' guide to)
convolutional neural networks for sentence classi�cation. CoRR, abs/1510.03820,
2015. URL http://arxiv.org/abs/1510.03820.

63

http://arxiv.org/abs/1702.01923
http://arxiv.org/abs/1510.03820

64

RB-SA01/F01 Rev:0 26.10.2011

TEZ FOTOKOPİ İZİN FORMU

ENSTİTÜ

Fen Bilimleri Enstitüsü

Sosyal Bilimler Enstitüsü

Uygulamalı Matematik Enstitüsü

Enformatik Enstitüsü

Deniz Bilimleri Enstitüsü

YAZARIN

Soyadı : ...
Adı : ...
Bölümü : ...

TEZİN ADI (İngilizce) : ...
..
..
..
..

TEZİN TÜRÜ : Yüksek Lisans Doktora

1. Tezimin tamamı dünya çapında erişime açılsın ve kaynak gösterilmek şartıyla tezimin bir
kısmı veya tamamının fotokopisi alınsın.

2. Tezimin tamamı yalnızca Orta Doğu Teknik Üniversitesi kullancılarının erişimine açılsın. (Bu

seçenekle tezinizin fotokopisi ya da elektronik kopyası Kütüphane aracılığı ile ODTÜ dışına
dağıtılmayacaktır.)

3. Tezim bir (1) yıl süreyle erişime kapalı olsun. (Bu seçenekle tezinizin fotokopisi ya da

elektronik kopyası Kütüphane aracılığı ile ODTÜ dışına dağıtılmayacaktır.)

Yazarın imzası Tarih

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Related Work
	Neural networks for Sentiment Analysis
	Sentiment Analysis for Turkish

	Sentiment Analysis with Various Segmentation Methods and Deep Learning Models
	Segmentation Methods
	Word-based Analysis
	Morphology-based Analysis
	Sub-word Analysis
	Hybrid Analysis

	Deep Neural Networks
	Convolutional Neural Networks
	CNN-rand
	CNN-rand Simplified
	Long-Short Term Memory (Neural Network)
	Proposed LSTM Model
	Hyper-parameter Optimizations
	Model Training Callbacks

	Limitations

	Experiments
	Data Sets
	Data Pre-processing
	Review Sentence Break-down
	Forced Review Break-down
	Sentiment Loss with Review Break-down and Majority Voting
	Segmentation
	Token Identification
	Sentence-Level Review Modeling for Train-Test Split

	Deep Neural Networks
	Baseline Methods
	Experiment Results and Discussion
	CNN-rand Results
	Simplified CNN-rand Results
	LSTM Results
	Results in Comparison to Baseline Scores

	Performance Evaluation
	Distribution of Polarity Predictions and Majority Voting
	Performance Comparison on Sample Cases
	Cross-parameter Comparison
	Computational Performance

	Summary

	Conclusion and Future Work

