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ABSTRACT

SOLUTIONS OF NOVEL POTENTIAL-BASED FORMULATIONS USING
THE MULTILEVEL FAST MULTIPOLE ALGORITHM

Giir, Ugur Merig
M.S., Department of Electrical and Electronics Engineering

Supervisor : Assoc. Prof. Dr. Ozgiir Ergiil

February 2018, [79] pages

In this thesis, recently introduced potential-based formulations that are based on di-
rect usage of magnetic vector and electric scalar potentials, instead of the equivalent
field-based formulations, are investigated. These new potential-based formulations
can alleviate the well-known low-frequency breakdowns. Therefore, these formula-
tions can be useful in providing the solution of a plethora of problems in future and
emerging technologies that are difficult to analyze via standard solvers. The aim of
this thesis is to combine potential formulations with special low-frequency imple-
mentations of the multilevel fast multiple algorithm (MLFMA) to tackle with finely
discretized problems.

Thesis also includes the explanation of low-frequency breakdown mechanisms. In ad-
dition to the known breakdown of the electric-field integral equation, a hidden break-
down of the potential integral equations (PIEs) is shown. A remedy with the cost of
an additional integral equation is proposed. All explanations for the low-frequency
breakdown are supported with numerical results.

Among low-frequency stable implementations of MLFMA, two methods are imple-
mented for PIEs. One of them is MLFMA based on multipoles without diagonaliza-
tion. In this method, classical aggregation, translation, and disaggregation procedures
in MLFMA are realized without plane-wave expansion. The other one is recently pro-



posed MLFMA implementation with approximate diagonalization. In this method,
diagonalization is realized approximately with scaled spherical and plane waves. Ac-
curacy and efficiency of the implementations are shown with numerical results.

Keywords: Surface Integral Equations, Potential Formulations, Low-frequency Break-
down, Multilevel Fast Multipole Algorithm
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YENI POTANSIYEL-BAZLI FORMULASYONLARIN COK SEVIYELI
HIZLI COKKUTUP YONTEMIYLE COZUMLERI

Giir, Ugur Merig
Yiiksek Lisans, Elektrik ve Elektronik Miithendisligi Boliimii
Tez Yoneticisi : Dog. Dr. Ozgiir Ergiil

Subat 2018, [79|sayfa

Bu tezde standart ¢oziiciilerde kullanilan alan-bazli formiilasyonlar yerine manyetik
vektor ve elektrik skaler potansiyellerinin dogrudan kullanildig1 potansiyel-bazli for-
miilasyonlar incelenmistir. Bu yeni potansiyel-bazli formiilasyonlar ¢ok iyi bilinen
diisiik frekans bozulmalarin1 engellemektedir. Dolayisiyla, yeni potansiyel-bazl for-
miilasyonlarin, gelecek ve yeni teknolojilerde ¢coziimleri gereken ancak standart ¢6-
ziiciilerle ele alinamayan ¢esitli problemlerin ¢6ziimlerine olanak saglamasi beklen-
mektedir. Bu tezin amaci1 da, yeni potansiyel bazli formiilasyonlarin, detayli olarak
ayriklagtirilmig cisimlerin hassas ¢oziimleri i¢in ¢ok seviyeli hizli cokkutup yonte-
miyle (MLFMA) birlestirilmesidir.

Tez kapsaminda, diisiik frekans bozulmasi mekanizmalarinin tam agiklamalar1 da
mevcuttur. Elektrik alan integral denkleminin bilinen diisiik frekans bozulmasinin
yani sira, potansiyel integral denklemlerinin gizli kalmis bozulmasi da gosterilmis-
tir. Bu bozulmanin 6énlenmesi icin ek bir integral denkleminin kullanildig1 bir ¢6ziim
gelistirilmistir. Diislik frekans bozulmalariyla ilgili tiim aciklamalar sayisal sonuclarla
desteklenmistir.

Diisiik frekans MLFMA uygulamalar1 arasindan iki tanesi potansiyel integral denk-
lemleri i¢in programlanmugtir. Bunlardan ilki, kosegenlestirme yapmaksizin ¢okku-
tuplarin dogrudan kullanildigt MLFMA uygulamasidir. Bu metotta, MLFMA’da ger-
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ceklestirilen toplama, oteleme ve dagitma islemleri diizlem dalga yaklagimi olmaksi-
zin gerceklestirilmektedir. Digeri ise, yakin zamanda Onerilen, yaklasik kosegenlestir-
meli MLFMA uygulamasidir. Bu yontemde, kdsegenlestirme islemi dlceklendirilmig
kiiresel ve diizlem dalgalarla yaklasik olarak gerceklestirilmektedir. Sayisal sonuc-
larla, bu uygulamalarin dogrulugu ve verimliligi gosterilmistir.

Anahtar Kelimeler: Yiizey integral Denklemleri, Potansiyel Formiilasyonlari, Diisiik-
frekans Bozulmasi, Cok Seviyeli Hizli Cokkutup Yontemi
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CHAPTER 1

INTRODUCTION

To understand the electromagnetic behavior of an object, it is very important to model
and solve the corresponding electromagnetic problem [1]. When the problem involves
non-canonical objects, one may need to solve the problem numerically. In order to
design a system involving electromagnetic interactions, those numerical simulations
become fundamental tools to avoid wasting material, time, money, and energy. Using
a numerical simulation technique, designing a system becomes more efficient and less

expensive.

In order to maximize the advantage of simulations, the proposed and used techniques
should be accurate, fast and applicable in wide frequency bands. With standard inte-
gral equation techniques, such as the method of moments (MoM) [2], the applicability
for large and/or detailed problems can be limited due to excessive time and memory
requirements. Therefore, the fast multipole method (FMM) [3]] and its multi-level ver-
sion, namely, the multilevel fast multipole algorithm (MLFMA) [4], are introduced
in the literature. With these algorithms, while the accuracy of MoM is preserved, the

applicability can be increased enormously.

For the solution of electromagnetic problems in a computer environment, integral
equations are transformed into matrix equations with the discretization of objects and
numerical operators. To capture the electromagnetic variations accurately, as a rule
of thumb, an object should be discretized with at least one-tenth of the wavelength
when low-order discretizations are used. Therefore, as an object becomes larger, more
discretization elements are needed, and thus, the corresponding matrix to be solved

becomes larger. In order to solve a matrix equation, one of the fundamental problem



is to hold numbers, i.e., entries of the matrix, in memory. In MATLAB environment
for example, holding a single complex variable requires 16 bytes, which means that
an N x N matrix needs 16 N2 bytes for storage. Therefore, in a standard computer,
when the matrix size becomes a couple of tens of thousands, even storing the matrix
itself in memory becomes an issue. This limits the solvable problem size, unless spe-
cial techniques, such as FMM and MLFMA, are applied. Standard implementations
of MLFMA are very efficient for high frequencies, i.e., when the object becomes

electrically large.

While each method/equation have some domain, in which it works effective, re-
searchers try to find methods/equations that can operate as general as possible with
satisfactory accuracy and efficiency. Even though Maxwell’s equations are valid ev-
erywhere (except when quantum mechanics or other effects come into play), there
exists breakdowns and limitations, when they are discretized. In the context of inte-
gral equations, one of the most important limitation is the low-frequency breakdown.
Standard formulations derived with field quantities lead to complete or partial fail-
ures when the frequency of operation becomes low or the wavelength becomes long.
These issues are at the boundary between circuit physics and wave physics. As it is
said in [S]], “if one can transit smoothly from the world of wave physics to the world of
the circuit physics, the richness in the world of circuit physics will be revealed. This
is almost like the Alice in Wonderland story!” In order to unite these two different
but intertwined physics in the context of surface integral equations, potential-based

formulations are proposed, derived, and used.

In addition to stable formulations, fast, accurate, and efficient solution algorithms are
also needed for objects involving fine details (low-frequency problems). However,
when the size of the object becomes smaller than the wavelength, as the plane wave
expansion fails, ordinary MLFMA fails too. In other words, MLFMA (and simi-
lar fast solvers) has its own low-frequency breakdown. For these problems, special
MLFMA structures can be applied. In this thesis, multipole-based low-frequency
MLFMA (LF-MLFMA) and MLFMA with approximate diagonalization (AD-MLF-
MA) are implemented for solving low frequency problems formulated with potential

integral equations (PIEs).



In the rest of this chapter, derivations of field integral equations and their MoM solu-

tions, as well as brief descriptions of MLFMA and iterative solvers are given.

1.1 Field Integral Equations

In this section, field integral equations for perfect electric conductors (PEC) are de-

rived. For this purpose, Maxwell’s equations can be written as

_0B(r.1)

V x E(r,t) = 5 (1.1)
V x H(r,t) = J(r,t)+ % (1.2)
V- D(r,t) = p(r,t) (1.3)
V- B(r,t) = 0. (1.4)

In the above, is Faraday’s law of induction, is Ampere’s law with the
Maxwell’s addition of time derivative of the electric flux density, @ 1s Gauss’ law,
and finally, (I.4)) represents the non-existence of magnetic charges. Combining (I.2))
and leads us to the continuity equation as

Op(r,t)

V-J(rt)=— T

(1.5)

Considering ™™ time convention for time-harmonic waves, where w is the angular

frequency, (L.1)), (I.2)), and (I.5)) reduce into

V x E(r) =iwB(r) (1.6)
Vx H(r)=J(r)—iwD(r) (1.7)
V- J(r) =iwp(r). (1.8)

Assuming simple (linear, homogeneous, isotropic) medium, the main equations be-

come
V x E(r) = iwuH (r) (1.9)
VxH(r)=J(r)—iveE(r) (1.10)

V-E(r)=p(r)/e (1.11)

V-H(r)=0 (1.12)



According to (I.4), the magnetic flux density B is a solenoidal vector field. There-

fore, using the null identity, one can define
V x A(r) = B(r), (1.13)
in which A(r) is the magnetic vector potential. Inserting into , we obtain
V x (E(r) —iwA(r)) = 0. (1.14)

Therefore, E(r) — iwA(r) is an irrotational vector field, and it can be defined as the

gradient of a scalar field in connected spaces (—V ¢(7)). Thus, we have
E(r) =iwA(r) — Vo(r), (1.15)
in which ¢ is the electric scalar potential.
For the wave equation, taking curl of both sides in (I.13]), we obtain
V xV xA(r)=uV x H(r). (1.16)

Then, using (1.10) and the vector identity (A x B) x C = B(A-C) — C(A - B),

we obtain
V(V-A(r)) — V?A(r) = pJ(r) — iwpeE(r). (1.17)
Using (I.15)) and rearranging the terms, we reach
V2A(P) + K*A(r) = —pJ (r) + V(V - A(r) — iwped(r)), (1.18)
where k = w,/ue€ is the wavenumber. According to Helmholtz theorem, a vector field

can only be specified when both irrotational and solenoidal components are defined.

In (I.13)), we define the curl of the magnetic vector potential. For its divergence,
V- A(r) =iwpep(r) (1.19)

can be set, which is called Lorentz Gauge. Then, Helmholtz equation for the magnetic

vector potential is found as

V2A(r) + K A(r) = —pd (7). (1.20)



For the derivation of field quantities, solution of (I.20)) is given further as (when the

observation point is not on the source)

A(r) = u/dr'J(’r’)g(’r,r’), (1.21)
where
, oikR
g(r,r') = s (1.22)

is the free-space Green’s function with R = |r — r’|. In the above, primed coordinate
variables represent sources and unprimed coordinate variables represent observation
points. Similarly, Helmholtz equation for the electric scalar potential and its solution
for the derivation of field quantities (when the observation point is not on the source)

can be written as

V2o(r) + K20(r) = —<p(r) (123

o(r) = 1/d7"p('r’)g(r,'r"). (1.24)

€

Combining (1.13)) with (L.21)), (I.24)), and (I.8)) leads to

E(r) = iwu/dr’J(r’)g(r,’r’) - L/dr'V' ~J(r\Vg(r,r"). (1.25)

e

Similarly, combining (1.13]) and (I.21)) gives

H(r)=V x /dr’g(r,r’)J(r’). (1.26)
Using the vector identity
V x [g(r,r")J(r")] = g(r, ")V x J(r') + Vg(r,r") x J(r'),

and noting that the first term vanishes since surface current density uses primed coor-

dinates, (I.26)) can be written as
H(r)= /dr'J(r’) x V'g(r,r"). (1.27)
(T.25) and (1.27) can be written in operator notation as

E(r)=nT{J}(r) (1.28)
H(r) = K{J}(r), (1.29)



where 7 = \/pu/€ is the intrinsic impedance. Finally, using the boundary conditions
for the continuity of the tangential component of the electric field intensity and the

discontinuity of the tangential component of the magnetic field intensity, i.e.,

f x E(r) = n x [E*“(r) + E™(r)] =0 (1.30)
i x H(r)

A x [H*(r) + H"™(r)] = J(r), (1.31)

we arrive at the electric-field integral equation (EFIE) and the magnetic-field integral

equation (MFIE) for PEC objects as

—f x E™(r) = ni x T{J}(r) (1.32)
—f x H™(r) = ~Z{J}(r) + 1 x IK{J }(r), (1.33)

where Z{J }(r) = J(r) is the identity operator.

EFIE and MFIE suffer from an issue called internal resonance, which occurs due to
non-zero null spaces of the corresponding impedance matrices. While the null-space
solutions of MFIE have radiating nature, which can be seen in the far-zone scattered
fields, null-space solutions of EFIE do not radiate. On the other hand, they can be
visible with abrupt jumps in the conditioning of the impedance matrices. As the null
spaces of EFIE and MFIE do not intersect, their linear combination is free of internal

resonance and is called the combined-field integral equation (CFIE) [6].

1.2 Method of Moments

For the solution of electromagnetic problems involving arbitrarily shaped geome-
tries, objects and operators can be discretized with the Rao-Wilton-Glisson (RWG)
functions [7]. Figure [I.1} shows an RWG function spatially, and its mathematical

definition is given as

4 ln
A (r—mrn), 7€ Su
l
by (r) = —21: ) (Prn2 —7), T E Sp (1.34)
\ 0, r¢&5,,

where [,, represents the length of the main edge, and A,,; and A,,» are the areas of the

first (S,,1) and the second (S,2) triangles associated with the edge, respectively. Its
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Figure 1.1: RWG functions are defined on pairs of triangles [_8].

divergence is finite everywhere, i.e.,

Anl, r e Sy
VbRV (r) = _fi_n’ re S, (1.35)
n2
0, ¢S,

Using the RWG functions needs the triangulation of surfaces. A sample triangulation

(discretization) of a cubic surface can be seen in Figure[1.2]

Expanding the unknown electric current density in (1.32) using the RWG functions,

we obtain

N
J(r)~ > ab(r) (1.36)
Ty
—E"(r) =1 _a, T{bI}(r). (1.37)
n=1

In order to get NV equations for N unknown coefficients, using a Galerkin approach,

(1.377)) is tested with the RWG functions as

N

—/ drt®(r) . E™(r) = T)Zan/ drt®™C(r) - T{V Y (r).  (1.38)

m n=1 m
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Figure 1.2: A cubic surface discretized with the RWG functions. For the discretiza-

tion, 3600 RWG functions and 2700 triangles are used.

In this manner, a matrix equation Z x = y is obtained, where

2 = [ arto) 760 r)
Sm

J/,EFIE

n = Qn

yElFIE — _/ d’l"tEPLWG(T) . Einc(,r,)

m

for EFIE. Similarly, for MFIE, we have

2 = [ arto) - [ST) )+ x KB )

MFIE _

Ty,

an

yMFIE — / drtfO(r) - x H"(r).

m

(1.39)

(1.40)

(1.41)

(1.42)

(1.43)

(1.44)

Integrals on the triangular domains can be calculated numerically using Gaussian

quadratures [9]], except when the observation and source points are close to each

other where the singularity of the Green’s function dominates. For this reason, sin-

gularity extraction methods can be used, where the singular integrals are calculated

analytically [10].



1.3 Multilevel Fast Multipole Algorithm

In order to capture the electromagnetic behavior of an object using low-order dis-
cretizations, the discretization should be at least one-tenth of the wavelength. When
the object becomes electrically large or it has small details that require very fine dis-
cretization elements, the classical MoM and the related solution of the matrix equa-
tion require a lot of computer memory. Although, supercomputers may handle such
large problems, time requirements also make direct solutions infeasible. To deal with
large problem in terms of the number of unknowns, FMM [3], and its multilevel ex-

tension, MLFMA [4]], are introduced in the literature.

In MoM, all interactions between discretization functions are calculated and stored in
memory. However, in MLFMA, by categorizing interactions according to distances
between discretization elements (see (1.45])) as near-field and far-field interactions
(e.g., using one-box-buffer scheme [8]]), only the near-field interactions are stored
while the far-field interactions are generated during matrix-vector multiplications on-
the-fly. Those far-interactions are calculated in a group-by-group manner, reducing
the complexity to O(NlogN) [1] from O(N?). This categorization can be shown as

matrix-vector multiplications as

Z.x=[Z"+2"" x=y, (1.45)

= = . . .
where Z " and Z™" represent matrices that include far-field and near-field interac-

tions, respectively.

In MLFMA, the geometry is fit in a cubic box, and the box is divided into subboxes, as
shown in Figure for a spherical body. Using recursive clustering, a tree structure
is constructed. The interactions between basis and test functions can be calculated as
follows: All radiated fields from basis functions inside each lowest level (smallest)
box are shifted to the center of that box and summed. If multilevel, radiated fields
are shifted to higher-level box centers and summed. Then, the radiated field at the
center of each box is translated into incoming fields at the centers of far-zone boxes
at the same level. If multilevel, incoming fields are shifted to box centers at the lower

levels, and finally shifted on to testing functions at the lowest level.
In other words, there are three main stages in MLFMA: Shift the radiated fields of

9
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Figure 1.3: A clustering of a spherical body. Empty boxes are directly omitted in

MLFMA interactions.

basis functions to box centers, and if multilevel, from lower-level boxes to their par-

ents (aggregation); translate radiated fields to incoming fields (translation); and shift

incoming fields (from higher-level boxes to their children, if multilevel) from box

centers on to testing functions (disaggregation).

Mathematically, MLFMA is based on a factorization, namely, Gegenbauer’s addition

theorem, which can be written as

(1.46)

),

“Tirgj

)(kT[J)_Pt//('f'IJ

(1
t//

o0

S (=) @8 + 1) jun (kriss;)h

ik

g(ri7rj) =

where j;~ is the spherical Bessel function of the first kind, hg,l,) is the spherical Hankel

function of the first kind, and P, is the Legendre polynomial. The coordinate points

are defined as follows: 7; is the source point (on basis function), 7 ; is the point where

we aggregate (box center), r; is the location to translate (box center), and 7; is the

observation point (on testing function). Hence, in the above, we have

T, — Ty

Tir

rgTrrJg

rr—ry=

TrJ

=Ty, —T;

’l"Jj
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Tirg; =T +Ty5 = TirgiTirg;-

With plane-wave expansion of spherical functions, i.e.,

o (k) = (_ﬁtu / ke Pk - 7), (1.47)
where r = 7r, aggregation/disaggragation/translation stages are diagonalized as
g(ri,r;) = %/d%ﬁ(k,r””)a(k,ru), (1.48)
where
Blk,r) = f:it(Qt + 1)y (kr) P (k - 7) = 7 (1.49)
t=0
alk,r) = iit(% + DAY (kr) P (k - 7). (1.50)

t

Il
o

Note that, in (T.49), expression is simplified to complex exponentials using spherical
wave expansion. In (I.50), the infinite summation should be truncated for practical

applications.

1.4 Iterative Solutions

Discretized integral equations can be solved efficiently via iterative techniques. Non-
stationary iterative methods that are based on Cayley-Hamilton theorem and Krylov
subspace are more efficient than stationary methods based on matrix splitting. Among
non-stationary methods, generalized minimal residual (GMRES) method [11]] is mostly
used in the electromagnetics community due to its high efficiency and convergence

performance. GMRES method is used in the results of this thesis, too.

At each iteration, vector generated by the iterative solver is directly used by MLFMA
for a matrix-vector multiplication and the resulting vector is given back to the iterative

solver to generate new vectors.

1.5 Post Proccessing

Solution of a linear system (matrix equation) gives coefficients for the unknown func-

tion that is the current density in standard formulations. Radiating the current density,

11



far-zone and near-zone electric and magnetic fields can further be found. As it is used

in the derivation of the field formulations, near-zone scattered (secondary) fields can

be found as
E*“(r) = iwu/dr’J(r’)g(r, r') — i /dr’V’ ~J(r")Vyg(r,r") (1.51)
H*(r) = /dr'J(r') x V'g(r,r"). (1.52)
In the far-zone, these expressions become
E*°(0, ¢) ~ z‘ki;n(fgxg — PP) - / dr' J (r')e " (1.53)
H*(0, ¢) ~ zk:Z:Tr X / dr' J (r') e~ (1.54)

where I3, is a unit dyad.

1.6 Motivation

The field integral equations derived in section [I.1] are based on fields. While these
formulations are widely used and robust in many problems, they also suffer from
numerical issues. For example, EFIE has a low-frequency breakdown, i.e., the for-
mulation cannot capture the correct physical behavior as the frequency becomes low
or the discretization becomes dense. In addition, MFIE fails for the solution of open-
surface problems, such as waveguides, patch antennas, and microstrip circuits, where

zero-thickness models are preferred.

Recently, PIEs are proposed for stable and accurate formulations of electromagnetic
problems [12,/13]. These equations overcome the low-frequency breakdown, while
they are also applicable to open surfaces. In this thesis, PIEs, which are based on
magnetic vector and electric scalar potentials, are investigated. Advantages and draw-
backs of PIEs are discussed. An accuracy analysis on PIEs and EFIE is given with
a complete explanation of low-frequency breakdown. Accurate charge densities and
near-zone electric fields obtained with EFIE at low frequencies are explained and in-
troduced along with a hidden low-frequency breakdown of PIEs and its remedy. In
addition, as the main purpose of this thesis, stable and fast solution techniques for
PIEs are implemented. This way, PIEs are applied to challenging problems involving

both dense discretizations and large numbers of unknowns.

12



The organization of the rest of the thesis is as follows:

Chapter [2| presents PIEs, including the derivation of the equations, discretization of
PIEs, and how to use potentials as excitation. Results obtained with EFIE and PIEs are
compared in terms of scattered fields and current densities for different excitations.

Frequency-dependent accuracy characteristics are demonstrated.

In Chapter 3] a detailed discussion on how low-frequency breakdown occurs in EFIE
and PIEs are given. In addition, a remedy for the hidden low-frequency breakdown of
PIEs is proposed and used. As numerical results on canonical objects, surface current
densities, far-zone scattered fields, electric charge densities, near-zone electric fields,
magnetic fields and power densities are analyzed in detail with the explanations on
their accuracy. Also, the accuracy of PIE-GSP (gradient of the scalar potential) is

clearly demonstrated.

Chapter [] presents low-frequency MLFMA methods used for PIEs. Two methods
are considered; multipole-based MLFMA and AD-MLFMA. Starting from tests on
Green’s function, FMM and MLFMA (using multipoles and AD) results are shown.

Accuracy and stability analysis are also presented.

Chapter [5| contains conclusions and future works.
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CHAPTER 2

POTENTIAL INTEGRAL EQUATIONS

PIEs are new formulations [[12,|13]] that are based on potentials, as opposed to the
conventional integral equations, namely EFIE and MFIE (or CFIE), that use fields.
The first advantage of using potentials directly in the formulation is that the derived
integral equations are resistant to low-frequency breakdowns. The second advantage
is in quantum mechanics, i.e., the interaction created by the quantization of the elec-
tromagnetism is directly affected by the potentials, even when field quantities are
zero [14]. This phenomenon is called Aharonov-Bohm effect. And the third advan-
tage is, unlike MFIE, there is no assumption that limits the applicability of PIEs to

open surfaces. That is, PIEs can be used for arbitrary geometries.

In this chapter, derivation and discretization of PIEs are given along with a scaling-
based preconditioning technique. Real-life-applicable excitations created by using
magnetic vector and electric scalar potentials are given. Finally, numerical results

showing the accuracy of a MoM implementation for PIEs are presented.

2.1 Derivation of Potential Integral Equations

Combination of and lead to
VxV xA(r)=pd(r)—iwvucE(r). (2.1)
Then, with (I.15]), we obtain
VxVxAr)=pd(r)+EA(r) —iwueVe. (2.2)
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And using (I.19), we get
VxVxA(r)—V(V-Ar) — kA (r)=pd(r). (2.3)

PIEs can be obtained by using dyadic Green’s theorem for Region 1 in Figure
with (2.3) [10,[12], i.e.,

Region 1
Tﬁ Vlr Al; ¢1 \]
S
Region 2
VZJAZJ ¢2

Figure 2.1: Configuration for the derivation of PIEs. Region 1 is bounded between
surface S and infinity.

VxVxA(r)-V(V-A(r) — kA (r) = pJ(r) (2.4)
VxVxGir,r)-V(V-G(r,r)) = G (r,7)=I5(r —7'). (2.5)

In (2.4), A;(r) is the total magnetic vector potential for Region 1. In addition, re-
placing right-hand side with a Dirac-delta function (point source) leads to (2.5)), in

which G| (r, 7') is the kernel function for Region 1.

Dot-multiplying the first equation with G';(r,7') - a from right and second equation

with A;(7) from left and with a from right, where a is an arbitrary vector, we obtain

VxVxA(r) Gr,r)-a—VV-A(r) Gi(r,7) a
— KA (r)-Gi(r, 7)) -a=pJ(r) Gi(r,7)-a (2.6)
Ai(r) - VxVxGi(r,7")-a— Ai(r)-VV-Gi(r,7) - a

—K*Ai(r)-Gi(r,7)-a=A(r)-IT-ad(r—7'). (2.7)
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Subtracting (2.7) from (2.6) leads to

VxVxA(r) Gir,r)-a—Ai(r)-VxVxGir,7) a
+ Ai(r)-VV-Gi(r,7")-a—VV-Ai(r) -Gi(r,7) - a
=uJ(r) - Gi(r,7)-a— Ai(r)-ad(r —7'). (2.8)

To proceed, Green’s vector identities are given as

P (VxVxQ)—-Q-(VxVxP)=
P-V(V-Q) -Q-V(V-P)

(Q@XVXxP-PxVxQ) (29)

V.
V- (PV-Q—-QV-P) (2.10)

for arbitrary vector fields P and Q. Using these identities with P = G (r,7') - a
and Q = A;(r), we reach

VxVxA(r) Gir,r)-a—Ai(r)-VxVxGir,7) a
=V [VxAi(r) x Gi(r,7') - a
LV [(Ar) X V % (Gi(r,r) @) @11
A(r)-V(V-Gy(r,7)-a) = VV - Ay(r) - Ga(r,7') - a
=V -[-V-Ai(r)Gi(r,7)-a]
+ V- [A(r)V-Gi(r,7) - a]. (2.12)

Combination of (2.11)) and (2.12)) with (2.§), leads to

pd () - Gi(r,r') -a — Ay(r) - ad(r—r') = V- [V x As(r) x Gy(r,7') - a]
V- [(Al(r) x V x (Gi(r,7') - a)]
V- [=V-A(r)Gi(r,7) - a]
[A1 )WV -Gi(r,7')-al. (2.13)

Then, taking volume integrals over V7, using the divergence theorem, and noting the
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radiation condition and direction of normal vector for Region 1, we have
—u/v drJ(r)-Gi(r,7') - a —|—/V drA(r)-ad(r —r')
= /Sd'r'ﬁ,- [V x Ai(r) x Gi(r,7’") - a
+/Sdrﬁ,- [Al(r) x V x Gy(r,r') - a}
B /Sdrﬁ, [ V-Ai(r)Gi(r,7) - a
+/Sdrﬁ- [Ai(r)V - Gi(r,7) - al. (2.14)
Manipulating equations by using the identity A - (B x C) = (A x B) - C leads to
—/L/V drJ(r) - Gi(r,7)-a+ Ai(r) a= /Sdr'fb x (Vx Ai(r)) - Gyi(r,7) - a
+/Sdr(ﬁ < A1)V x Gy(r.1) - @
_ /Sdrﬁ V- Ar)Gi(r,r) - d]
+ /Sdr'h [Ai(r)V - Gy (r,7") - a]. (2.15)
We further note that

u/ drJ(r) - Gi(r,7') = ,u/ drGi(r',r) - J(r) = A"(r") (2.16)
V1 Vl

with reciprocity G (r, r') = G (r',r), where ‘t’ represents transpose operation and
A" is the incident magnetic vector potential. Therefore, we have

—A"(r) a4+ A7) - a :/SdTﬁ x (Vx Ai(r))-Gi(r,7) - a

o [t ) <G ) -0

- /Sd’l“’fb [V Ay(r)Gi(r, 1) - a]

+ / driv- [Ai(r)V - Gy(r,7') - a]. (2.17)

S
At this stage, we once again use the reciprocity of the Green’s dyadic and replace 7’
with 7, followed by inserting G, (r, ') = g(r,7')I and extracting the a vector from
both sides. In addition, we impose the boundary conditions on PEC surfaces as [12]

i x A(r) =0, ¢(r) = 0,and V - A(r) = 0. Consequently, the second and third
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terms are eliminated in (2.17). Using V x A(r) = pH(r) and 1 x H(r) = J(r),

the equation becomes

Ai(r) = A™(r) + u/

dr'J(r")g(r,r") +/dr’ﬁ’ A(PYVg(r,r')  (2.18)
s

s
for Region 1. Note that, in Region 2, the left-hand side of the above equation becomes

zero as sources are defined only in Region 1. Therefore, we simply have

A*(r) = u/ dr'J(r)g(r,r") + / dr'n’ - A(r"\V'g(r,r") (2.19)
s s

as a main equation for PIEs. Taking the divergence of both sides in (2.19), we obtain

VA () = [ A [T )

— /Sd’r’ﬂ’ APV (Vg(r,r")). (2.20)
We note that
V- [J@)g(r, )] = glr,v)V-J(') + Vg(r,r) - J(r)
= Vy(r,r')- J(r')
= —Viy(r, ) - J(r)
==V [glr,7)J ()] + g(r, v )V - J(r). (2.21)
V' (Vig(r,r') = —Ppeg(r, ') (2.22)
In addition, when plugged into (2.20), the first term in (2.21)) vanishes using the di-

vergence theorem. Therefore, using (I.19), we get

1
»*C(r) = — / dr'N'" - J(r"g(r,r') —iw / dr'n’ - A(r')g(r,r').  (2.23)
WeE Jg S

Using the boundary condition (I.30) and (I.15), we note that
i X E(r) =iwn x A(r) —n x Vo(r) = 0. (2.24)

Setting electric scalar potential on the surface to zero leads to
iwn x A(r)=n x Vo(r) =0 (2.25)
i x A%(r) = —n x A™(r). (2.26)

Combining (2.26) and (2.19), the first PIE can be obtained as

—f x A"(r) =f x u/ dr' J(r)g(r,r")
s

+ 7 X /dr’ﬁ’ AP )Vg(r, 7). (2.27)
s
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Similarly, using (2.23) with ¢™¢ = —¢** on the surface, the second PIE can be

obtained as

—iweg™e(r) = /Sdr'V' ~J(r)g(r,r') + wQE/Sdr"h’ ~A(Pg(r, 7). (2.28)

In the following, we consider the solutions of the coupled equations (2.27]) and (2.28)),

which we simply call PIEs.

2.2 Discretization of Potential Integral Equations

PIEs given in and (2.28)) can be solved together via MoM. Unknowns are the
surface current density J (') and the normal component of the magnetic vector po-
tential, 7’ - A(r"). When expanding the unknowns, the RWG functions are used for
the surface current density and pulse functions are used for 2’ - A(7’). Pulse functions

are defined on triangles as

1, res
OPES (1) = . (2.29)
0, ¢S5,
With the RWG and pulse functions, unknowns are expanded as
N
= Z 2, bRVC () (2.30)
A - A(r Z ypbS (1), (2.31)

where N is the number of the RWG functions (edges) and P is the number of triangles

on the discretized surface. Discrete forms can be inserted into (2.27) and (2.28)),

leading to
N
—f X A™(r) =) wap / dr'g(r,v)i x bBRVO (¢)

n=1 Sn
P

+) / dr'iu x V'g(r, 7)o (r') (2.32)
p=1 Sp

N

—iwedy.(r) = ZZBn/ dr'g(r, v )V - BRVG (o)

n=1 Sn
P

+ ZyprE/S dr'g(r, v )boS(r'). (2.33)
p=1 P
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We test (2.32)) with the rotational form of the RWG functions and (2.33)) with pulse

functions to get

—/ drt®VO(r) - A (r) = an,u/ drt®VG (1) / dr'g(r, v )bRVG (1)
m n=1 Sm Sn
P
+Zyp/ drtﬁWG(r)-/ dr'V’g(r,r’)bgLS(r’) (2.34)
p=1 m Sp

N
—iwe/s drtZLS(T)Q)mC(T) = an/s d’rth)LS('r)/S dr'g(r, v )V - bBXVO ()
n=1 q n

P
+Zypw26/ drthLS(r)/ dr'g(r, )05 (r'). (2.35)
p=1 Sq

Sp

This way, a matrix equation can be obtained with 2 by 2 blocks as

le Zl2 T wRHS
z" z7 . N RHS | (2.36)
Yy w,
where the matrix elements can be found as
Zit = [ art¥o(w) [ ar'glr. )b 237)
Z ey = / O (r) - / dr'~'g(r, 7)o, () (2.38)
Sim Sp
Za = /S drt}S(r) /S dr'g(r, v )V - BVO (o) (2.39)
zZy :(ﬁg/ d'rth)Ls(r)/S dr'g(r, v )00 (r'). (2.40)
We further note that
Z}fp——/ drt};lWG(r)~/ dr'Vg(r,r')bgLS(r') (2.41)
Sm Sp
—_/ drV - [tﬁWG(T)[g dr’g(’r,r’)bg]‘s(r’)]
—I—/ drV-tEIWG(r)/ dr'g(r, 7" )b) (1) (2.42)
:/ drV~t}§1WG(r)/ dr'g(r, v )bES(r'). (2.43)
m SP

=12 =21 ) o
Therefore, Z = and Z™ are the transpose of each other. Finally, excitation vectors
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can be written as

wsll—ls _ / drtTRnWG(r) - Aipe(r) (2.44)
ngS = —z’we/ drtgLs('r)gzﬁinc(r). (2.45)
Sq

2.3 Excitation

In the field integral equations, the excitation is directly vector fields, such as the elec-
tric field intensity for EFIE and the magnetic field intensity for MFIE. However, for
PIEs, the excitations must be incident potentials. Therefore, there is a need to define

incoming potentials that are equivalent to field excitations.

2.3.1 Plane Wave

Field intensities of an incoming plane wave can be written as

E™(r) =E,*" (2.46)
H™(r) == x E™(r), (2.47)
U

where k = k /k is the direction of propagation and E, is the polarization vector.
Using the magnetic vector potential A(r), a plane-wave incidence can be written

as [[13]]
A" (r) = —k(r - E,)\/uee™ . (2.48)

Then, with the help of the Lorentz Gauge in (1.19), the corresponding electric scalar

potential can be found as
¢"e(r) = —1r - E e (2.49)

It can be shown that V x A™(r) = pH"(r) is satisfied.
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2.3.2 Hertzian Dipole

Hertzian dipole excitation can simply be written as

A™(r) = uIpg(r,rp) (2.50)
¢ (r) = 0, (2.51)

where I p is the dipole moment and 7, is the location of the dipole.

2.3.3 Delta-Gap Excitation

Using (1.15)) and with the definition of delta-gap function [8]], we can use
ad(r,ry,)

inc _In-
A = o

(2.52)

where [,, represents the feed strength, 4 is the unit vector normal to the RWG edge,

and r,, represents locations on the edge.

2.4 Preconditioner

In order to obtain better-conditioned matrix equations from PIEs, the block matrices

can be scaled as

IiQZH Iizlg 33//1 I€’UJ51HS
B _ : = , (2.53)
VAT AY Yy ’wl;HS

where x is a frequency dependent scaling coefficient that can be optimized for a prob-
lem. For example, k = f/10 can be used for a uniformly discretized sphere of radius
0.3 m. By this scaling, the condition number of the corresponding impedance matrix

can be reduced significantly.

Table [2.1] presents condition numbers for impedance matrices obtained from PIEs
with and without the scaling. A sphere of radius 0.3 m discretized with 10 cm tri-
angles is considered. The number of unknowns is 850. The values listed in Table
[2.1] show that there is a significant decrease in condition numbers at high frequen-

cies. However, it can be seen that, for very low frequencies, condition numbers are
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Table2.1: Condition numbers of matrices obtained by the discretization of a PEC
sphere at different frequencies. The number of unknowns is 850.

Frequency (Hz) | Original PIEs | Scaled PIEs
1e9 7.7e15 6.3el
le8 8.5e13 3.6el
le7 9.1ell 8.9¢l
le6 9.1e9 8.2e2
le5 9.3e7 8.1e3
le4 7.1€7 8.1e4
le3 7.1e7 8.1e5
le2 7.1e7 8.1e6
lel 8.1e7 8.1e7
1e0 8.1e9 8.1e8

still large. Therefore, one may need more powerful techniques similar to constraint

preconditioner proposed in [15] for very low frequencies.

2.5 Numerical Results

In this section, we present some numerical results on the MoM solutions of PIEs.
First, we consider a scattering problem involving a PEC sphere with radius 0.3 m. The
sphere, which is discretized with 4080 RWG functions and 2720 triangular patches,
is illuminated by plane waves at different frequencies, propagating in the z direction
with polarization direction of x, as depicted in Figure[2.2] Total magnetic vector and
electric scalar potentials are calculated in the vicinity of the sphere. As depicted in
Figures [2.3|and [2.4] we obtain zero potentials inside the sphere at 1 MHz [12]]. Far-
zone scattered electric field results at two different frequencies can be found in Figure
[2.5] Itis seen that PIE results match with analytical (Mie series) solutions [[16] at both
1 GHz and 1 Hz. However, EFIE gives incorrect results for the latter. In Figure 2.6
the surface current density induced on the sphere is shown, again at two different
frequencies. The breakdown of EFIE can be seen again in the 1-Hz results. More

details on the low-frequency breakdown are given in Chapter 3]
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Figure 2.2: Excitation configuration for the sphere problems.

Next, a PEC cube having edges of 0.6 m is discretized with 4050 RWG functions
and 2700 triangular patches. Similar to the sphere case, z-directed x-polarized plane
waves are used for excitations as shown in Figure [2.7] In Figure [2.8] and Figure 2.9]
far-zone scattered fields and surface current densities are shown for 100 MHz and
1 Hz. Again, at low frequencies, EFIE results become incorrect, while PIE gives

accurate results.

In Figures [2.10]and [2.11] a delta-gap excited cage-dipole antenna is analyzed by
using EFIE and PIEs. We note that the operation frequency is far away from the low-
frequency breakdown region of EFIE (see Chapter [3)); thus both EFIE and PIE work
well and provide consistent results at the given frequencies, showing the applicability

of delta-gap excitations via potentials.
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Figure 2.3: Total magnetic vector potential in the vicinity of a PEC sphere. Equation
(2:19) is used for the calculation of the scattered magnetic vector potential.
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Figure 2.4: Total electric scalar potential in the vicinity of a PEC sphere. Equation
(2:23) is used for the calculation of the scattered electric scalar potential.

1 GHz, Diameter 2\

1 Hz, Diameter \/5e8

0 -300
St -350 ©
-10 -
-400 |
-15 ¢ =
3 7 Faso
2 ol @ -450
i) i)
(] (0]
i -25¢ ir -500
Q Q
S 30t ©
30 550 |
w w
-35¢
-600
40 F —MIE
/ ——EFIE
-- =PIE -650
a5 | i 650
|
-50 ‘ : : -700 : . ‘
0 45 90 135 180 0 45 90 135 180
Bistatic Angle, Degree Bistatic Angle, Degree

Figure 2.5: Far-zone electric field scattered from a conducting sphere of 0.3 m radius
at 1 GHz and 1 Hz.
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Figure 2.6: Electric current density induced on a conducting sphere at two different
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Figure 2.7: Excitation configuration for the cube problems.
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Figure 2.8: Far-zone electric field scattered from a conducting cube with 0.6 m edges
at 100 MHz and 1 Hz.
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Figure 2.10: Input reflection coefficient values at different frequencies of a cage-
dipole antenna excited via delta-gap [17].
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CHAPTER 3

LOW-FREQUENCY BREAKDOWN

Even though there are a lot of studies on the low-frequency breakdown [18]], there is
no study that demonstrates a clear picture with a complete description of breakdown
mechanisms when standard RWG functions are employed for surface integral equa-
tions. In this chapter, a detailed description of the low-frequency breakdown is given
with an accuracy analysis of sources and fields for both EFIE and PIEs. In addition,
a remedy for the hidden low-frequency breakdown of PIEs is proposed. Explanations
on the characteristics of the low-frequency breakdown of EFIE and PIEs are analyzed

and supported by numerical results.

As Helmholtz theorem states, a vector field can be decomposed into irrotational and

solenoidal parts. For example, for the electric current density, one can write
J(r) = Tie(r) + T (7). 3.1)
In this decomposition, the irrotational part is curl-free and the solenoidal part is
divergence-free. Therefore, we have
Vo J(r) =V Ji(r) (3.2)
V x J(r) =V x Ju(r). (3.3)

At low-frequencies J 4, () dominates J;,.,.(7), i.e., J 501 (7) > J (7).

Investigating (I.5T)) at low frequencies, it is seen that near-zone electric field intensity
involves V - J,..(r), or considering the continuity equation, the electric charge p(r).
Equation (1.52) implies that near-zone magnetic field intensity consists of the overall
current density J (), which is dominated naturally by J, (7). Equation fur-

ther points out that the far-zone electric field intensity is, again, created by the overall
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current density J (), which is dominated naturally by J, (7). Therefore, in order to
get a complete set of accurate solutions by using an integral equation, both J (1)

and J;,..(r) should be captured well.

In the literature, expanding the current density using special discretization functions,
such as dual functions [19]], separating the current density into solenoidal and non-
solenoidal components using loop-star decomposition [20], and expanding charge
density as a separate quantity [21,22] as done in augmented-EFIE (A-EFIE) are used
in order to avoid the low-frequency breakdown. PIEs, on the other hand, do not need

special discretizations and an explicit expansion of the charge density.

3.1 Breakdown in EFIE

As derived in Chapter I EFIE for a PEC object can be written as

_EinC(,r) _ iwu/dr’J(r’)g(r,r') _ ‘L/dr/v/ . J(r’)Vg(T‘,r’) (3.4

wwe

that consists of a vector potential and a scalar potential term as

—Ei”C(r) = EVP(’I") + ESP(T‘>,

where
Eyp(r) = iwu/dr’J(r’)g(r,r') (3.5)
1
Egsp(r) = - dr'V' - J(r\Vyg(r,r"). (3.6)

As the frequency drops, the scalar potential term that scales with 1/w dominates the
vector potential term that scales with w. We call this field imbalance that coexists
with the ill-conditioning of the impedance matrix. At low-frequencies, EFIE turns
into
‘ 1
—E"(r)~ Egp(r) = —— [ dr'V' - J(v')Vg(r,r"). (3.7)
twe

In (3.7), it can be seen that, the only part of the current represented in EFIE is the

irrotational part J;,..(7), while the solenoidal part J,(r) is completely lost. Con-

sidering the continuity equation (1.8), V - J..(7) can be interpreted as the electric
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charge p(r). Therefore at low frequencies, EFIE includes J;,..(r) and p(r), while it

excludes J g, (7).

Unless all the precision is consumed by the ill-conditioning, since can capture
J (1), EFIE can provide correct J;..(r), V + J;.-(7) or p(r), and thus near-zone
electric field intensity at low frequencies. However, since the dominant part of the
current J ;. (7) is lost, overall current J(7), far-zone electric fields, and near-zone

magnetic fields become inaccurate.

3.2 Breakdown in PIEs

Even though, the main point of using PIEs is to get rid of the low-frequency break-
down, a detailed analysis reveals that PIEs have a hidden low-frequency breakdown
[23]. As the frequency becomes lower, J, () dominates over J;..(r). That cre-
ates an imbalance in the sources, which we call source imbalance. At extremely low
frequencies, due to finite numerical precision, J;..(7) is completely lost. Therefore
PIEs, as the electric charge (or irrotational current) is not expanded directly unlike

A-EFIE, suffer from source imbalance (J () and 72 - A(r) are expanded in PIEs).

The accuracy of PIEs for the far-zone scattered fields is well-known in the literature
[24]. That accuracy comes from J, (7). As J,(7) is captured well, and since
J s01(7) is the dominant contributor in currents at low frequencies, the overall current
J(r), as well as far-zone electric fields and near-zone magnetic fields obtained by
using PIEs are accurate. However, since J;,..(7) is lost at extremely low-frequencies,

V - J i (7) or p(r) and near-zone electric fields can be inaccurate.

3.2.1 Remedy for the Low-Frequency Breakdown of PIEs

In order to get accurate charges and near-zone electric fields using PIEs, one can
solve an additional integral equation. The boundary condition for the electric charge

density can be written in terms of the potentials (I.15]) as
p(r') =en' - E(r') =iwen' - A(r") —en - V'o(r'), (3.8)
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Table3.1: Summary for the accuracies obtained with EFIE, PIEs, and PIE-GSP.

EFIE PIEs PIE-GSP
Breakdown Field Imbalance | Source Imbalance -
Conditioning Bad Better -
Jirr Accurate Vanishes Eventually -
J ool Inaccurate Accurate -
Electric Charge Accurate Inaccurate Accurate
Electric Current Inaccurate Accurate -
Near-zone Electric Field Accurate Inaccurate Accurate
Near-zone Magnetic Field Inaccurate Accurate -
Far-zone Field Inaccurate Accurate -

which can be combined with (2.28)) to get

—¢*(r) = /d'r'ﬁ' -V'o(rg(r,r). (3.9)

Then, using the boundary condition for scalar potentials, i.e., ¢*“(7) + ¢™“(r) = 0

on PEC surfaces, we obtain

¢™(r) = /dr'ﬁ,’ -V'o(r)g(r,r'). (3.10)

In this equation, A’ - V'¢(7’) is the unknown function that can be expanded with pulse
basis functions. Then, the equation can be tested with pulse functions to get a new
linear system of equations. Finally, the solution of the system can be combined with
the output of PIEs, namely V - J;,.(), to get accurate charges via (3.8). We call this
method PIE with gradient of the scalar potential (PIE-GSP).

A summary for the accuracies for EFIE, PIEs, and PIE-GSP is given in Table[3.1]

3.3 Numerical Results

In Figures 3.2] B3] 3.4} and [3.5] we consider scattering problems involving a
sphere with radius 0.3 m illuminated by a plane wave with z polarization propagating

in the z direction. First, in Figure[3.1] it can be seen that, when the diameter becomes

smaller than A\/500, the electric current density induced on the surface of the sphere
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starts to deviate for EFIE and PIE solutions. Inaccurate J 4, (7) is the reason for the
breakdown of EFIE. The PIE implementation gives accurate results for all sizes of the
sphere, from 2\ to A/500000000 since the dominant current J 4, (7) is represented
well in PIEs. Similarly, as depicted in Figure[3.2] we obtain a perfect match between
analytical solutions and PIEs, while there is an obvious breakdown for EFIE due to

inaccurate J ;o (7).

As shown in Figure since J;,..(r) is well represented in EFIE, charge density
distributions are accurately found by using this formulation. However, using PIEs, at
extremely low frequencies, inaccuracy can be seen as noisy data. With the method

PIE-GSP, electric charges are captured accurately, similar to EFIE.

Figure [3.4] shows near-zone electric and magnetic fields in the vicinity of the PEC
sphere, again at different frequencies. For near-zone electric fields, similar to elec-
tric charges, EFIE is accurate, the PIE implementation is inaccurate, and PIE-GSP is
accurate. For near-zone magnetic fields, as the dominating term is J 4, (7), EFIE is in-
accurate, while the PIE implementation is accurate. We note that near-zone magnetic

fields converge into the excitation term as the frequency goes down for EFIE.

Figure[3.5|presents an interesting set of results, where the power density in the vicinity
of the PEC sphere is shown. At low frequencies, EFIE fails because of inaccurate
near-zone magnetic fields. The PIE implementation also fails due to inaccuracy in
the near-zone electric fields. However, using PIE-GSP, the results are accurate in the

entire spectrum.

Similar to the results for a PEC sphere, we present results for a PEC cube with edges
of 0.6 m. We have electric current density distributions in Figure [3.6] far-zone scat-
tered electric fields in Figure electric charge density distributions in Figure [3.§]

near-zone electric and magnetic fields in Figure [3.9] and power density distributions

in Figure[3.10]

Furthermore, as shown in Figure in order to obtain quantitative results, we take
samples near the boundary of the PEC sphere as R € [0.28, 0.295], § € [0, 7], and
¢ € [0, 27). Then, we calculate the near-zone electric field intensity at the sampling

points. Root-mean-square values, which correspond to relative errors, are plotted
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from 1 MHz to 1 Hz in Figure[3.12] As can be seen in the figure, the relative error of
the PIE implementation increases below 100 kHz, while PIE-GSP and EFIE results

remain at the same error levels.
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Nearfield Sample Points
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Figure 3.11: Near-field samples for Figure m
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CHAPTER 4

LOW-FREQUENCY MLFMA

Ordinary MLFMA has its own low-frequency breakdown. Plane-wave expansion
used in the diagonalization of the Green’s function fails when the box sizes become
small compared to wavelength. In order to use MLFMA for low-frequency prob-
lems, there are several solutions in the literature, such as using multipoles directly
without diagonalization [25]], approximate diagonalization [26,27]], deforming angu-
lar integration by introducing evanescent waves into plane-wave expansion [28,29],

and increasing the precision to ‘postpone’ the breakdown [30].

In this chapter, two different low-frequency MLFMA strategies are analyzed and im-
plemented for PIEs [31,32]]. One of them is based on multipoles and the other is based
on approximate diagonalization. Numerical results show the accuracy, stability, and

efficiency of the implementations.

4.1 MLFMA Using Multipoles Directly

MLFMA using multipoles is based on the factorization of the Green’s function with-

out diagonalization. Green’s function can be factorized as [8]]

. 00 t1 0 t2
g(’l‘, TI) :g Z Z Z Z ﬁ0,0,thul (k7 r— TC)OCtLul,tQ,ug(ka TCC/)

t1=0ui=—t1 ta=0 us=—to

/Btz,uz,o,o(k7 ro — r,)7 (4'1)

where (004, u, (k, 7 — r¢) is the multipole-to-monopole shift function, av, v, ¢y us

(k, rcer) is the multipole-to-multipole translation function, and 5, 4, 0.0(k, 7 — 7')
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is the monopole-to-multipole shift function. The coordinate variables 7', r¢/, 7o, 7
represent source location, aggregation location, translation location, and observation
location, respectively. Basically, the factorization states that an interaction between
a source and an observation point can be modeled as a series of operations involv-
ing monopole-to-multipole shift (aggregation) from 7’ to 7/, multipole-to-multipole
translation from 7 to r¢, and multipole-to-monopole shift (disaggregation) from

ro tor.

While (4.1)) can be directly used in an FMM implementation, MLFMA implementa-

tions require additional multipole-to-multipole shift functions, i.e.,

O‘t17u1,t2,u2 k TCC’ E § E E 5t1,u17t37u3 k TCD)at3 u37t47u4(k TDD’)

t3=0 us=—t3 t4=0 ug=—1t4

Bt4,U4,t27U2(k7 TD’C’)' (42)

In other words, multipole-to-multipole translation between 7 and r is equivalent
to multipole-to-multipole shift (aggregation) from 7 to r p/, multipole-to-multipole
translation from 7 to r p, and multipole-to-multipole shift (disaggregation) from r p

to ¢, combined.

Without diagonalization, these multipole-to-multipole shift and translation functions
are dense matrices. Therefore, factorization of the Green’s function involves dense
matrix multiplications in the implementation. Multipole-to-multipole translation func-

tion is defined as
t3

E E ‘t1+t3—t
at1,u1,t2,ug (k TDD’ - 47T ? e Q‘Ilt:), us3 (k TDD’)GtQ,’LLQ7t1,U1,t3,u37 (4 3)

t3=0 uz=—ts

where

Wy, s (k7 opr) = WD (k1D Yig s (0017, $010) (4.4)

are wave functions, in which

(2t3 + ]_)(tg — Ug)
47T(t3 + Ug)'

Yisus (00D, d0D7) = \/ P (cosOppr)e "s$pp! 4.5)

are spherical harmonics and P;.*(cos 0pp) is the associated Legendre function, and
o s
Gt2:u2,t17ul,t3,u3 = / d katz,uz (GDD’v (bDD’)}/;T,ul (QDDU ¢DD’)

Yy ws(@pprs 9DD1) (4.6)
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are the Gaunt coefficients. As most of the coefficients are zero, recursive relations to
efficiently obtain these coefficients can be found in [8]]. Multipole-to-multipole shift

function is defined as

() ta
ﬁt1,u1,t3,u;; (k‘, TCD) =4 Z Z Z‘t1+t4_t3§R{‘I’t4,U4(kja TCD)}

ta=0 ug=—t4

Gt3,U3,t17U1,t4,U4 (47)
in which
R{Y, i (k,rep)} = ju(krep)Yi, w(Oep, ¢cp)- (4.8)

Finally, multipole-to-monopole and monopole-to-multipole shift functions are

Boo,tru (k1) = VAT, (k1) Yey 00 (6, 0) (4.9)
Bryamo0(k, ) = VAm(=1)242 5, (kr)Yi, ., (0, ¢). (4.10)

The factorization obtained in the above equations are exact, however, they include
infinite summations. Summations should be truncated for practical usage, while the
truncation numbers specify the accuracy of the implementation (controllable accu-

racy).

As derived in (2.37), (2.43), (2.39), and (2.40), matrix elements derived in PIEs can

be written as

Zun[m,n] = p / drt"0 (r)- / dr'g(r,r")bRC ()
S’UL

n

Z 15[m, pl :/ drV-tanG(r)/S dr'g(r, v )b)S (r')

P

Zonlg.n] = / drtPS(r) / dr'g(r,7) V" - BRYO ()

q n

Zola,p] = e / drt?S (r) / dr' g, 7 YELS ().

q SP
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Using (4.1)), matrix elements can be re-written (if they are far-zone interactions) as

Zfdr lkluz Z Z Z Fmt1 u1 TC>k)&tlvulvt%“?(k’rcol)

t1=0u1=—t1 to=0 us=—to

SH (’I"‘C/ k‘) (411)

n,to,u2
t1

far Zk 12
E E § : E : Fmt1 u1 er )O‘t17U1,t27U2(k7TCC’)

t1 Oui=—t1 to=0 us=—to

Sy (e, k) 4.12)

t1

—far Zk 21
21 q? § E , § E th1 w1 lr'Cv )O‘t17u1,t2,u2(/€7’rcc’>

t1 Our=—t1 to=0 ug=—to

Sz (rc/ k) (4.13)

n,to,u2

22
22 q> E E E , E : th1 w1 ’l‘c, )atl,umz,w(k?rcc’)

t1 Oui=—t1 to=0 us=—to

5332 w (e k), (4.14)

where S and F' (both vector and scalar) represent radiation and receiving patterns,

respectively, and they can be obtained as

S, (Ter k) = / dr'68VS (r) B1y wn0.0(k, Tor — 1) (4.15)
FU\ L (k) = /S RV (1) B o o (7 — 1) .16)
S;th w(Tcr, k) :/ dr’bgLS(r’)ﬁt27u2707o(k,rcz — 7' (4.17)
F2  (re,k) = /S AV (1) By o o (ko — 1) .18)

S’rzlltg u2 (’I"CH k) = / dr,v/ : bEWG(T/)ﬁtQ,UQ,O,O(k7 re — 7'/) (419)

2 (re,k) = / ATt (1) Bo o,y (K, 7 — 1) (4.20)
Sgiz w (T k) = /S dr’bgLS(r’)ﬂtz,%O,o(k,rcz — 7' 4.21)
ijl w(resk) = / drt}q)LS(r)ﬁoﬁo,tl,ul(k,r —70). (4.22)

m

In order to calculate far-field interactions in a group-by-group manner, as described in
Chapter[l] aggregation-translation-disaggregation procedures should be implemented.

For that purpose, we first need to aggregate all radiated fields inside the lowest level
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boxes to the box centers as

[sc sV s0 lanws = Y a[n][s) ) Vsl g v (4.23)
neC
[s]anx1 = Y _ [N + ][] ar <1 (4.24)
peC
[stanx1 = Y a[n][s2' i <1 (4.25)
neC
[s& a1 = [N +pl[s2 a1, (4.26)
peC

where x is a coefficient vector containing N + P elements provided by the iterative
solver, sl and s2! are vectors containing the radiation patterns of the nth RWG func-
tion, and s)* and s;” are vectors containing the radiation patterns of the pth pulse
function. In the above, C' represents a lowest level box and M, represents the number

of multipoles at the lowest level.

For a multilevel implementation, we have

[Sé'l’xslc’LySlCl’z]MP@ = Z [BC’C]MLXMZA ’ [Slc}”ggslc’l”yslc}”z]]\/flﬂ x3 (4.27)
c'eC
12 _ 2 X 12 4 28
[SC]MDG - Z[/BC’C]MZXMZ—l [SC”]M171><1 (4.28)
Cc’eC
oy 3 2! 4.29
[SC]MPG - Z[/BC’C]MLXMZ—l [SC’]M14><1 (4.29)
Cc’eC
[S%?]de = Z [BC’C]MLXMZ—I ’ [S%%]leﬁdv (430)
Cc’eC

where [Bic]an <, is a dense multipole-to-multipole shift matrix from the center
of box C’ to the center of box C' and a truncation converter (up) from M;_; to M;. In

this case, C' is a parent box of C".

We translate the aggregated radiation patterns into incoming patterns as

90790790 s = Y (@l - (86786786 s (431)
creF(C)
[glC?]MlX]. = Z [aC/C]Mlle : [Slc%]Mle (4'32)
C'eF{C}
92 101 = Z (@] - (88 (4.33)
creF(C)
98 a1 = Z (e axa, - S8 M x1s (4.34)
creF(C)
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where [&cro]a«ar, 1S @ square matrix containing the multipole-to-multipole transla-
tions from the center of box C” to the center of box C, and F{C'} represents far-zone

boxes for box C.

After the translation process, we disaggregate the incoming fields to the lower level

boxes. If the implementation is multilevel, we have

+11,2 _+11,y +11,2 11,z 11,y 11,z
l9c "9¢ 90 Clmixs =19¢79¢ 790 I mixs

+ [ﬁC'C]MlXMH»l [glc’l/ wglc’l/ ygll/z]Ml+1X3 (435)

[lez]szl :[gg]szl + [BC’C]MZXMZ+1 ’ [glcg’]MHle (4.36)
[ggQI]MzXl :[9201]1\/11>d + [BC’C]MIXMz-H : [g%’l’]MH-le (437)
95 a1 =[98 xa + Borclmixany - (98 <1, (438)

where [Bic]a <, ., 1s a dense multipole-to-multipole shift matrix from the center

of box C’ to the center of box C' and a truncation (down) converter from M, to M;.

Finally, at the lowest level, we complete the matrix-vector multiplication cycle as

S ‘fdr Zkﬂ 1,z +11,z
Zlemn n| ~ = [ lixan - lge " Tanxa
+ oo - 96 Y Tanxa
+[fii’z]1xM1 195" a1 b (4.39)
P
> Zm.plz (N +p) ~{[F 2 - 198 } (4.40)
=1
p N B
> Zylg.nlzin] ~{[F vn - 198 b (4.41)
B n=1
S Zogla, PlxIN + ) ~{ 1P 0an - 198w} (4.42)

3
Il
—

where f.! and f!? are vectors containing the receiving patterns of the mth RWG
. . 21 29 .. ..
function, while f," and f” are vectors containing the receiving patterns of the gth

pulse function. In the above, we note that meC' and geC.
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4.2 Approximate Diagonalization MLFMA

One of the main reasons that we cannot use the standard diagonalization in MLFMA
at low frequencies is that the plane-wave expansion that is the core of the diagonal-
ization is not valid when the box size becomes small compared to the wavelength. In
AD-MLFMA, scaled spherical and plane waves are used for stable diagonalization
of the Green’s function. In low-frequency regime, shift operators are converted into
scaled complex exponentials, reducing the computational cost just as in the high fre-
quency regime (ordinary MLFMA). However, in this method, there are contradictory

requirements that makes the accuracy limited. In this context, (1.49) and (1.50) can

be written as

o0

B (k,r) = (2t + 1)ji(kr)s™ Pu(k - 7) (4.43)
t=0

o (k) = (is)' (2t + 1) (kr) P (ke - 7). (4.44)
t=0
where F,» represents Legendre polynomials and s represents the scaling factor. When

kr < sand kr < 1, (4.43) can be written as

B (k,r) = (2t + 1)ju(kr/s)Po(k - 7) = e*7/°. (4.45)
=0
Therefore, (1.48) becomes
g(ry,r;) = —ik /dQIAceik’ri’Jj/sas(k rrJ)- (4.46)
y 7] (47T)2 9

For an accurate factorization, translation vector should be much larger than the shift
vector, i.e. krgirr << S & Kryans, Which limits the accuracy of the approximate di-
agonalization. However, approximate diagonalization is a stable method and it can
be applied to arbitrarily low-frequency problems, while it is easy to implement using

existing MLFMA solvers.

4.3 Numerical Results

First, in order to show the effect of truncation number on the accuracy of the multipole-

based factorization of the Green’s function, possible shift and translation scenarios
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for different-sized objects are considered. In Figure 4.1} one-level interactions that
involve monopole-to-multipole aggregation, multipole-to-multipole translation, and
multipole-to-monopole disaggregation, are compared with the Green’s function it-
self. For each translation size, different shift sizes are considered in order to simulate
possible interactions in a real problem. In the figures, the diagonal line represents the
limit case, i.e., results above this line are disregarded because they never occur. The

relative error is calculated as

|gfactorized — Yanal tica1|
RE = Y

9

| g analytical |

where gpacorizea 18 Obtained by using (@.1I) for different truncation numbers, i.e., 3,
5, and 7. As the truncation number increases, the accuracy improves, showing the
controllable-accuracy of the method. Note that, as the translation vector size and the

shift vector size become close to each other, the relative error increases, as expected.

Similarly, in Figure .2] two-level interactions are analyzed. These interactions in-
volve, monopole-to-multipole aggregation, multipole-to-multipole aggregation, mul-
tipole-to-multipole translation, multipole-to-multipole disaggregation, and multipole-
to-monopole disaggregation. Again, it can be seen that the accuracy is controllable
by using the truncation number, and the overall accuracy is high, even for the cases

where the truncation number is only three.

In Figure 4.3] we present solutions of a scattering problem involving a PEC sphere
discretized by using different mesh sizes. The problem is solved via MLFMA using
multipoles with six levels, and the results are compared with analytical solutions. As
the zoomed figure shows, the accuracy is very good. The relative errors in the far-
zone scattered field values while analytical solution taken as a reference, are 1.54%,

1.27%, and 1.14% for 20 mm, 15 mm, and 10 mm mesh sizes, respectively.

Figure 4.4] shows surface current densities induced on a PEC sphere discretized with
4080 RWG functions and 2720 triangle patches. Solutions are obtained by using
MoM, AD-FMM, and LF-FMM (multipole based) at different frequencies. All solu-
tions use PIEs for formulation. Taking MoM as a reference, FMM results are accurate
and consistent with each other. Figure [4.5|shows far-zone scattered electric fields, in-
cluding Mie series solutions, obtained for different discretization sizes. In order to see

the differences clearly, Figure 4.6] presents the same results with a smaller dynamic
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range. In the plots, mesh convergence can be seen clearly.

Figures and show results for a cube with 0.6 m edges. In Figure 4.7
4050 RWG functions and 2700 triangular patches are used for the discretization. So-
lutions are obtained by using MoM, AD-FMM, and LF-FMM formulated with PIEs
at different frequencies. Consistency among different methods is clearly seen in sur-
face current densities. Figure [4.8|shows far-zone scattered electric fields for different
mesh sizes. In addition, Figure 4.9] presents the mesh convergence to demonstrate the

stability.

As mentioned in Chapter [I[J MFIE fails when the problem involves open surfaces,
while one of the main advantages of PIEs is their applicability to open-surface prob-

lems. For that purpose, Figures .10} .11 and [4.12] present a scattering problem

involving a square patch with 0.6 m edges. Figure .10 presents surface current den-
sities induced on the patch obtained by using MoM, AD-FMM, and LF-FMM formu-
lated with PIEs. Patch is discretized by using triangles with 5 cm edges. At different
frequencies, all methods provide consistent results. Figure .11 shows the far-zone
electric field intensity scattered from the patch, while Figure4.12{shows zoomed plots

to demonstrate mesh convergence.

Figure [4.13] includes far-zone scattered electric field results for a PEC patch excited
with plane waves at two different frequencies. The scattering problems are solved
with AD-MLFMA using different number of levels in order to show the capability
of the implementation. It can be seen that increasing the number of levels, hence the

efficiency, does not deteriorate the accuracy significantly.

In Figure sphere problems involving different mesh sizes are solved by using
PIEs and six-level AD-MLFMA. The radius of the sphere is again 0.3 m, while the
frequency is fixed to 100 MHz. Mesh sizes vary from 20 mm to 6 mm (A/150 to
A/500) and the number of unknowns changes from 6276+9414 to 71264+106896
(triangles+RWGs). At this fixed frequency, the diameter of the sphere is \/5. All

results are consistent with the Mie series solution.

Figure {.15] shows scattering results for the PEC sphere of radius 0.3 m using AD-
MLEFMA with different numbers of levels. The frequency is now 1 MHz. While the
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accuracy is preserved, the efficiency of the solver can be improved by increasing the

number of levels.

For the same sphere problem, Figure 4.16] presents results obtained with MoM and
four-level AD-MLFMA using different formulations. Relative errors with respect to
the Mie series solutions show that the accuracy of the combination of PIEs and AD-

MLFMA is the best. The errors can be listed as follows:

EFIE MoM 4.71%

CFIE MoM 1.03%

MFIE AD-MLFMA 2.13%

PIE AD-MLFMA 0.46%

Finally, Figures and[4.18|show the processing times and the numbers of GMRES
iterations (tolerance of 10~3) for the same sphere at 100 MHz discretized with differ-
ent numbers of unknowns. When the number of levels is fixed in AD-MLFMA, it can
be seen that the processing time fits into an O(N) curve. In addition, although the
number of unknowns is nearly 12 times increased, the required number of iterations
remains almost constant. This clearly shows the effectiveness and the stability of the

implementation based on PIEs and AD-MLFMA.
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Sphere Problems
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Figure 4.3: Far-zone electric field intensity scattered from a PEC sphere. Solutions
via six-level MLFMA by using multipoles for different mesh sizes are shown. PIEs

are used for the formulation.
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Figure 4.13: Far-zone electric field intensity scattered from a PEC patch with 0.6 m
edges at 1 MHz and 100 MHz. The solutions are performed with AD-MLFMA using
different numbers of levels.
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Figure 4.14: Far-zone electric field intensity scattered from a sphere of radius 0.3 m
at 100 MHz. The solutions are performed with six-level AD-MLFMA for different
mesh sizes, in comparison to Mie series.
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Figure 4.15: Far-zone electric field intensity scattered from a PEC sphere of radius
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solutions are performed with AD-MLFMA using different numbers of levels, and via
Mie series [@]
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Figure 4.16: Far-zone electric field intensity scattered from a PEC sphere of radius
0.3 m involving 25,058 triangle patches and 37,587 RWG functions at 1 MHz. The
solutions are performed with MoM and four-level AD-MLFMA using different for-
mulations, and by using Mie series .
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Sphere Problems (100 MHz)
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Figure 4.17: Solution times for a scattering problem involving a sphere of radius 0.3m
at 100 MHz. AD-MLFMA implementations with a fixed number of levels and with
changing numbers of levels are used with different discretizations.
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Figure 4.18: Number of iterations required for the solutions shown in Figure m
Six-level AD-MLFMA is used with different discretizations.
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CHAPTER 5

CONCLUSIONS

In this thesis, novel PIEs for accurate and stable solutions of low-frequency problems
involving arbitrary shaped objects are studied. Low-frequency breakdown is inves-
tigated for both conventional integral equations and PIEs. As a major contribution,
PIEs are solved by using low-frequency implementations of MLFMA for dense dis-

cretizations with respect to wavelength.

Starting from Maxwell’s equations, both field integral equations and PIEs are derived.
While field integral equations use potentials as auxiliary components to reach the field
quantities, PIEs directly use magnetic vector and electric scalar potentials. Derived
equations are discretized and solved with MoM. Comparisons with analytical solu-
tions show that EFIE has accuracy issues for low-frequency problems when far-zone

scattered electric fields are investigated, while PIEs provide accurate results.

Low-frequency breakdown is explained with two main mechanisms. First, field im-
balance is described as an imbalance in the terms of the integral equation. This kind
of an imbalance can be seen in EFIE. When the frequency drops down, that imbalance
causes a term to disappear from the equation. We show that, even though the over-
all current density seems inaccurate, it also carries some accurate information such
as irrotational current density. Therefore, ‘broken’ EFIE may give accurate electric
charge and near-zone electric field results. Second, as the solenoidal current naturally
dominates over the irrotational current at low frequencies, the irrotational part may
disappear due to finite precision, which we define as source imbalance. This kind of
an imbalance is the major problem in PIEs at low frequencies. In the context of PIEs,

this issue can be solved with an additional integral equation. By solving the equation
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as a post processing, accurate electric charge densities and near-zone electric fields

can be obtained.

Ordinary MLFMA cannot be used for low-frequency problems as it is based on the
diagonalization with plane waves that is not valid for short distances. Therefore, low-
frequency compatible versions of MLFMA are implemented for stable solutions of
PIEs. First, recently introduced AD-MLFMA based on approximate diagonalization
of the Green’s function is implemented. In this method aggregation and disaggrega-
tions are approximated as scaled complex exponentials. Although AD-MLFMA has
limited accuracy, the method provides stability at arbitrarily low frequencies. Sec-
ond, multipole-based MLFMA (LF-MLFMA) which does not use diagonalization is
applied. This method provides controllable accuracy and high stability; but it involves
dense matrix multiplications for aggregation, translation, and disaggregation phases,
leading to less efficient solutions. Accuracy, stability, and efficiency of the two im-

plementations (AD-MLFMA and LF-MLFMA) are shown on canonical problems.

This thesis is a starting point towards stable and accurate solutions of low-frequency
problems involving large numbers of unknowns. Future works may include hybrid in-
tegral equations involving PIEs and mixed-form MLFMA to obtain efficient solutions
of multiscale problems, such as complex circuits on large platforms, in broadband ap-

plications.
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