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ABSTRACT

C3: CONFIGURABLE CAN FD CONTROLLER: DESIGN,
IMPLEMENTATION AND EVALUATION

AFŞİN, Mehmet Ertuğ

M.S., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Şenan Ece Güran Schmidt

Co-Supervisor : Assoc. Prof. Dr. Klaus Werner Schmidt

February 2018, 120 pages

CAN FD (Controller Area Network with Flexible Data Rate) is a new communica-

tion standard, compatible with CAN. Different from CAN, CAN FD switches to high

data rate during data transmission and allows payloads up to 64 bytes. In this thesis,

we propose C3: Configurable CAN FD Controller which features up to fully con-

figurable 96 TX and 96 RX buffers organized as mailboxes. Each RX buffer has

dedicated acceptance filters. The host MCU sees C3 as a memory mapped device and

interfaces with it via SPI protocol which is designed and developed in the scope of

this thesis. Different from existing CAN FD Controllers, C3 provides run time con-

figurable number of buffers and individual buffer sizes which makes it best use of a

single hardware for every application. Furthermore, it provides efficient and flexible

usage of a limited embedded memory. C3 is implemented on a Xilinx Virtex 5 FPGA

demo board as an IP Core and its functions are verified at 2 Mbps and the response

time measurements are performed to evaluate the timing performance.
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ÖZ

C3: AYARLANABİLİR CAN FD KONTROLCÜSÜ: TASARIM,
GERÇEKLEŞTİRİM VE DEĞERLENDİRME

AFŞİN, Mehmet Ertuğ

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Şenan Ece Güran Schmidt

Ortak Tez Yöneticisi : Doç. Dr. Klaus Werner Schmidt

Şubat 2018 , 120 sayfa

CAN FD, CAN ile uyumlu yeni bir haberleşme protokolüdür. CAN protokolünden

farklı olarak, CAN FD veri gönderim fazında yüksek hıza çıkmakta olup, 64 bayta

kadar faydalı yük taşıyabilmektedir. Bu tez kapsamında posta kutusu formatında ayar-

lanabilir boyutlarda 96 adede kadar gönderici ve 96 adede kadar alıcı ara belleğine

sahip C3: Ayarlanabilir CAN FD kontrolcüsü sunulmaktadır. Her bir alıcı arabel-

leği için mesaj tanımlama filtresi bulunmaktadır. Kullanıcı mikro denetleyici, C3’ü

hafıza haritalı bir cihaz olarak görmektedir ve SPI haberleşme protokolü ile C3’e

erişmektedir. Bu tez kapsamında mikro denetleyici ve C3 arasındaki SPI protokolü

de tasarlanmıştır. Mevcut CAN FD kontrolcülerinden farklı olarak C3 uygulama za-

manında ayarlanabilir sayıda arabellek ve ayarlanabilir boyutlarda arabellek yapısı

sunmaktadır. Bu esneklik sayesinde tek bir kontrolcü tüm uygulamalar için kullanı-

labilmektedir. Ayrıca kısıtlı olan gömülü hafızadan en verimli şekilde faydalanılmak-

tadır. C3, Xilinx firmasının Virtex 5 FPGA geliştirme kartında IP çekirdeği olarak

gerçeklenmiştir. C3’ün tüm özellikleri 2 Mbps hızda doğrulanmış olup tepki süreleri

de ölçülerek zamanlama performansı değerlendirilmiştir.

vii



Anahtar Kelimeler: CAN, CAN FD, CAN FD Kontrolcüsü, FPGA, Ara Bellek Orga-

nizasyonu

viii



To My Family

ix



ACKNOWLEDGMENTS

I would like to express my great appreciations to my supervisor Prof. Dr. Şenan Ece
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CHAPTER 1

INTRODUCTION

CAN (Controller Area Networks) is the most widely used communication standard in

vehicle networks. ECUs (Electronic Control Units) in the vehicles exchange signals

in the form of messages in a CAN network [35]. Due to CAN Bus network topology,

multiple ECUs are connected to each other on a single bus. The CAN Bus trans-

mission rates are up to 1 Mbps. However, the practical data rate is much lower than

1 Mbps. The data rate is limited by the arbitration and acknowledgment mechanisms.

During arbitration, for the simultaneous transmissions, each signal transmitted by the

nodes must reach to each other on time such that bit overwrite mechanism works.

During acknowledgment phase, the transmitter’s signal must propagate to the the re-

ceiving nodes and the nodes’ acknowledgment responses must reach to the transmitter

in time.

The number of ECUs in vehicles, the number of messages hence the amount of in-

formation carried on CAN BUS increase significantly day by day. CAN BUS is

becoming slow and inadequate. However due to wide usage of CAN BUS and au-

tomotive industry’s exacting reliability requirements, it is not easy to start using a

completely new communication protocol. For these reasons, Bosch came up with

CAN FD (CAN with Flexible Data Rate) protocol [28] in 2011. On the one hand,

CAN FD preserves the physical layer of CAN which determines the bus arbitration

signaling. On the other hand, CAN FD increases the data rate by simply switching to

a high transmission rate of up to 10 Mbps after the arbitration is over. Furthermore

it enables transmitting longer payloads of up to 64 Bytes instead of the 8 Byte CAN

payload.

Since CAN FD is a new protocol, ECU manufacturers’ plan to integrate CAN FD to
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their design is at initial stage. The CAN FD Controllers available on the market are

implemented as IP Cores [6, 1, 9, 18, 5, 10, 4, 8, 20, 7] and being developed since

2015. These IP cores are commercially sold and not available for academic evaluation

and analysis.

The worst-case response times (WCRTs) of messages on CAN/CAN FD are com-

puted assuming that the messages are stored in infinite priority queues. However,

in practice it is possible that higher priority messages that are released by the appli-

cation may get blocked due to the non-availability of transmission buffers in a CAN

controller [30]. Hence, the timing and the scheduling of CAN/CAN FD messages im-

prove if the transmit and the receive buffer numbers and sizes are compatible with the

messages. On the one hand, the number of messages, their sizes and their priorities

depend on the applications that run on the ECUs. The variation in the message sizes

is particularly significant for CAN FD with a maximum data size of 64 Bytes. On the

other hand, the CAN controllers are embedded devices with hardware resource con-

straints which do not allow implementing the buffer configurations for all possible

message sets.

The CAN FD IP cores currently present in the literature either offer completely fixed

size buffer arrangement without configuration capability or allow limited buffer con-

figuration with some constraints. Therefore, it is not possible to have a single buffer

configuration which fits to every application. Different buffer configurations for dif-

ferent message sets lead to inefficient memory usage for the controllers without mem-

ory configuration capability.

In this thesis, we present a novel CAN FD Controller denoted as C3 (Configurable

CAN FD Controller). It supports non-ISO CAN FD protocol specification. It is

implemented as an FPGA IP Core. The interface between the controller and the host

MCU is widely used communication protocol called SPI (Serial Peripheral Interface).

Different from existing CAN/CAN FD controllers, C3 enables the configuration of

the transmit and receive buffers via SPI during run time before the main applications

on the ECU start to run. Such configuration capability enables appropriate buffer con-

figurations on each ECU in the vehicle according to the messages of the applications

running that ECU. Furthermore, it makes it possible to reconfigure the buffers if new
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applications with new messages are added to the vehicle. The standard SPI interface

of C3 enables any micro controller to run the applications and use C3 without any

specific interface requirements.

C3 features up to 96 transmit and 96 receive buffers which can be configured via

SPI during the configuration phase before the main ECU application begins to run.

The buffers are organized as mailboxes. This configuration capability ensures that

controller’s memory is efficiently allocated for different message sets used for any

CAN network present in vehicles. Moreover, it is quite easy to add new messages to

the existing message set in a CAN network by reconfiguring the controller’s buffer

allocation. The mailboxes are allocated an average payload size of 16 bytes instead of

maximum payload size of 64 bytes. Because it is very unlikely that all the messages

in a message set of a network application will require 64 bytes payload size. This

yields 96x16 bytes memory consumption instead of 96x64 bytes hence less memory

usage and more memory utilization. The usage of SPI interface makes the integration

of the controller to the host MCUs easy since SPI is present in almost every MCU on

the market including the low cost ones.

The first main contribution of this thesis is the detailed design of C3. The design is

described in detail with functional blocks including the SPI block where a custom

communication protocol is designed over SPI. This custom protocol defines the com-

munication between the controller and the MCU. The signaling between the blocks

and how they exchange and process data are explained. The second main contribution

of this thesis is the transmit and receive response time analysis. The delay compo-

nents contributing the response time are measured individually and overall response

time is evaluated. C3 is implemented on Xilinx Virtex 5 ML507 demo board and the

commercial CAN FD transceivers are used for CAN FD physical layer implementa-

tion. The design is verified by performing functional tests by sending and receiving

CAN FD messages at 2 Mbps using a professional CAN FD analyzer hardware tool.

The thesis organization is as follows: CAN, CAN FD and CAN/CAN FD Controller

basics are covered in Chapter.2. Existing CAN/CAN FD Controllers are discussed in

Chapter 3. C3 hardware blocks are presented with details including the SPI commu-

nication protocol in Chapter 4. This chapter explains FPGA Implementation details

3



and the challenges faced. Furthermore, data phase, configuration phase and timing

analysis are covered. The experimental setup, hardware components used, testing

methods, functional verifications and the response time performance measurements

of C3 are provided in Chapter 5. Finally, this thesis is concluded and future work is

outlined in Chapter 6.
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CHAPTER 2

IN-VEHICLE NETWORKS

The contemporary vehicles contain a large number of electronic units which are ac-

tuators, sensors and microprocessor based Electronic Control Units (ECU)s. These

electronic components and the software running on the microprocessors enable im-

plementing complex functions that improve the safety, comfort and the efficiency of

the vehicle. To this end, electronic systems assist the driver to control the vehicle with

the functionality related to the steering, traction (i.e., control of the driving torque)

or braking including the anti lock braking system (ABS), electronic stability program

(ESP), electric power steering (EPS), active suspensions, or engine control. Further-

more employing the vehicle electronics enable the near future technologies such as

autonomous driving.

The ECUs run applications which rely on the information coming from the other

electronic components in the vehicle. Great majority of these applications are real-

time and require deadlines. In other words, in-vehicle networks connect the electronic

components together and provide the communication between them by meeting the

timing requirements.

The benefits of in vehicle networking can be listed as below:

• The size of the cabling is dramatically reduced and the number of input/output

pins required at ECUs is less since the point to point connection is replaced by

a bus structure

• Common information such as temperature sensors or speed data is shared with

every ECU on the bus.
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• It is easy to apply a modification by a software change without changing the

hardware. This gives great flexibility to the system designer. For a point to point

connections without any networking topology, any added data communication

function would introduce a new point to point connections and more input and

output pins.

The most frequently used in-vehicle network standard is Controller Area Network

(CAN). The focus of this thesis is CAN FD (CAN with Flexible Data Rate) net-

work which is based on CAN. Further in-vehicle network standards include FlexRay,

MOST and Ethernet [35].

2.1 CAN

CAN (Controller Area Network) is a serial asynchronous bus network. It connects

electronic devices, various sensors and actuators in a system or sub-system for various

applications. It is multi master communication protocol. The protocol is developed by

Robert Bosch GmbH in 1986. It was designed for automotive applications requiring

a reliable communication. The data rate is up to 1 Mbps. Apart from being used

in automotive industry, CAN is also used in embedded applications and industrial

control systems [16]. CAN (Controller Area Network) is a serial asynchronous bus

network. It connects electronic devices, various sensors and actuators in a system

or sub-system for various applications. It is multi master communication protocol.

The protocol is developed by Robert Bosch GmbH in 1986. It was designed for

automotive applications requiring a reliable communication. The data rate is up to

1 Mbps. Apart from being used in automotive industry, CAN is also used in embedded

applications and industrial control systems [16].

The CAN protocol defines the physical layer and data link layer specifications. It

defines how the frames are formed and how the arbitration mechanism works. CAN

is basically an event triggered protocol, there is no time slot mechanism where the

messages are supposed to be transmitted, instead, they are transmitted whenever the

bus is idle. If two nodes begin transmission at the same time, the one with the ID

having more priority takes over the bus and the other node stops transmitting and
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attempts to transmit its frame again when the current transmission is over. The priority

is determined by the bit values, 0 is a dominant bit whereas 1 is a recessive bit. 0

overwrites 1 when they are transmitted simultaneously. To this end, the message with

the smallest ID has the highest priority and always takes over the bus for simultaneous

message transmissions [22].

There are two types of IDs, which are base and extended IDs. Base ID data frame is

a CAN bus frame with 11 bit ID representation. On the other hand, extended ID data

frame is a CAN bus frame with 29 bit ID representation. CAN Bus data frame for

Base ID can be seen in Fig.2.1.

Error detection and management is very important for in vehicle networking. There is

an acknowledgment mechanism in a CAN frame. Cyclic Redundancy Check (CRC)

is performed at the end of the frame. CRC is computed beginning from the start bit of

the frame both by the transmitter and the receiver nodes. The CRC computation result

calculated by the receiving node must be the same as the one transmitter node places

in the frame for a successful communication, otherwise error condition occurs. The

nodes which receive a sent frame send a dominant acknowledgment bit to indicate

that the frame is received successfully after CRC operation. Bit stuffing provides an

additional bit when 5 consecutive same bits are transmitted. Additional bit value is

the complement of the value of the previous 5 bits. Bit stuffing is used to ensure

that bus does not stay at the same voltage level for a long time and node clocks can

synchronize to the bus to have accurate bit sampling point. Lastly, bus monitoring

is performed for any bit errors by the transmitter node to check if the transmitted bit

value is really on the bus. With all these mechanisms, it is easy to detect any errors

and have a very reliable and safe communication with CAN Bus.
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The worst case response time (WCRT) of a message is the maximum time between

the message is generated at the transmitter node application and it is received at the

receiver node application. WCRT depends on the priority levels of the other mes-

sages, hence, the messages with higher priority might make a given message m stay

in the buffer for a long time. [26, 38, 37] explains the analytical ways to compute

WCRT of the messages for transmission. These methods basically assign IDs such

that the message is received at its destination before the deadline. In other words, by

assigning IDs to the messages, they are given appropriate priority such that WCRT

of the messages are smaller than the deadline they are obligated to meet. It is also

possible that such WCRT analysis is not necessary for a lightly loaded network.

The data rate for a CAN bus is limited by the arbitration mechanism. During the

arbitration phase, the bits transmitted by a node must be received by the other nodes

in a single bit time. Therefore, during simultaneous transmissions, it is important that

bit overwrite is detected on time such that a node losing arbitration stops transmis-

sion. Although the specified maximum bit rate is 1 Mbps, the practical rates are up

to 500 kbps. 125 kbps is the mostly used bit rate. The payload of a CAN node is up

to 8 bytes. When the other parts of a CAN FD frame are considered, the overhead is

too much and it is about 50%. Due to low data rate, large number of messages, small

payload size, large overhead and increase in vehicle complexity, the bus load of the

networks is between 50% and 95% [33].

2.2 CAN FD

CAN Bus doesn’t meet the data rate requirements of the contemporary in vehicle

communication anymore. However, CAN is a trusted protocol being used for many

years in countless applications in the automotive industry. For these reasons, CAN

FD (CAN with Flexible Data Rate) which both offers much higher bandwidth than

CAN and backward compatibility with CAN is developed by Bosch [28, 6].

CAN FD operates at two different bit rates within a message frame. It has the same

bit rate and the arbitration method as CAN but it switches to a higher bit rate during

the data phase. CAN FD payload is up to 64 Bytes. Therefore at a given bus load,
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the overhead of the frame decreases down to 15% [33] and theoretical net bit rates

about 5 Mbps are possible [6]. Furthermore, the arbitration phase baud rate limits

the overall baud rate of the frame. For example, a frame with 64 bytes payload, 11

bit standard ID, 1 Mbps of arbitration phase baudrate, 8 Mbps of dataphase baud

rate has net bit rate about 5.9 Mbps [40]. Furthermore, the increase of baud rate

is also beneficial for higher layer software protocols.[41] assesses the effectiveness

and performance of CAN FD with respect to CAN bus in agricultural systems using

higher layer protocols like J1939 and ISOBUS.

According to [3], CAN FD data phase bit rates up to 2 Mbit/s will be used in the first

CAN FD systems. The network topology will be like star or hybrid. Later generation

CAN FD systems will increase the data rate up to 5 Mbit/s. CAN FD frames can be

divided into three parts, which are arbitration phase, data phase and arbitration phase

again as can be seen in Fig.2.2. The bit rate switches to higher rate only during data

phase and switches back to its old rate when the data phase is over.

Car manufacturers begin to adapt CAN FD in their system design. Toyota, Denso,

and Renesas cooperate for autonomous driving system developments. Renesas con-

tributes with micro controllers and System on Chip (SoC) devices featuring CAN FD

[17]. According to [14], Mercedes considers introducing CAN FD in their S-class

series cars. There are some works to adopt CAN FD to real network systems and

CAN FD is considered to be used in the same network with CAN [23], [24].

CAN FD frame format differs from CAN frame format in terms of payload length,

Data Length Code (DLC) and CRC computation method. Therefore, some hardware

changes are required in the controllers. If the payload size is kept as 8 Bytes as in

standard CAN messages, there is no need for any software changes [25]. CAN FD

supports payload size of up to 64 Bytes. In such implementations software changes

are required. The cost to implement CAN FD is very similar to CAN implementation

costs [28].

The frames with the base ID have 11 bits ID representation while the frames with

the extended ID has 29 bits ID representation. Furthermore, some control bit values

in the frame change according to the ID type. CAN FD data frames for Base and

Extended ID can be seen in Fig.2.2a and in Fig.2.2b.
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Figure 2.2: CAN FD Frames

Example use cases of CAN FD are listed below:

• Fast software downloads: Reprogramming of ECUs and performing their in ve-

hicle calibrations are typical cases requiring high data rates[27]. The footprint

of the software increases day by day. Most of the contemporary ECUs use CAN

Bus for software downloads, removing the necessity of additional communica-

tion interface like Ethernet, hence reducing the hardware costs. Since CAN FD

provides higher bandwidth with 64 byte payload support and increased bit rate

when compared to CAN, it is quite faster to download the software. According

to [27], CAN FD provides 1.4 to 14 times faster programming times. For exam-

ple, it takes 4.45 times longer to download 32 byte data via 500 kbit/s CAN bus

when compared with 2Mbit/s CAN FD as illustrated in the following example:

– Time to transmit 4 standard CAN messages with 8 data bytes and 15%

stuff bits takes 1021 µs [32].

– Time to transmit 1 CAN FD message with 32 data bytes and 15% stuff

bits takes 229µs [32].

Furthermore, although CAN FD offers better software programming perfor-

mance when compared to CAN, it should be noted that Flexray and CAN FD
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has comparable performance. Under some conditions Flexray is faster and un-

der some other conditions CAN FD is faster according to[29].

• Avoiding split messages: Some information is represented with more than 8

bytes, in order to transmit such information multiple CAN frames are trans-

mitted. This increases the work load of the software. With CAN FD’s large

payload capability up to 64 bytes, the information does not need to be splitted

into several frames hence it is transmitted in a single message. Therefore, the

transport layer software management becomes easier.

• Faster Communication: As the features increase in automotive industry, the

data exchange between ECUs increases therefore CAN FD can handle the in-

creased traffic with its higher bandwidth.

• Less Bus Load: Due to increase in bandwidth, the bus loading greatly reduces.

• Bus Length: As the number of nodes and the length of the stubs increase, the

bit rate reduces. With the bus length of 40 meters, stub lengths of 3 meters and

30 nodes on the bus, SAE J1939-15 states 250 kbit/s bit rate for CAN Bus[32].

With CAN FD, data phase bit rate is independent of cable length therefore, with

250 kbit/s arbitration phase bit rate and 4 Mbit/s data phase bit rate, average bit

rate is 810 kbit/s[32]. Therefore, communication speed is accelerated with long

cables.

The CAN protocol is defined by the ISO 11898 standard. ISO 11898-1 specifies the

Data Link Layer. CAN FD requirements are currently integrated as ISO 11898-1:201.

Therefore, the first CAN FD version by Bosch [6] is called non-ISO CAN FD now.

Different than the non-ISO CAN FD protocol, ISO CAN FD has different failure

detection abilities. 3 bit stuff counter and an extra parity bit are added in the frame

and the CRC computation value is modified when compared to non-ISO CAN FD.

Therefore, non-ISO and ISO CAN FD protocols are incompatible with each other

[11].
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2.3 CAN/CAN FD Controllers

In order to participate in an in-vehicle network, an in-vehicle node needs to have

micro controller (MCU), a bus controller and a transceiver. The MCU is the unit

where the software application runs. The Controller implements the layer 2 protocol

of the bus and transmits the data received from the MCU on the bus by executing

necessary framing and arbitration. The transceiver connects the node to the physical

medium of the Bus. The C3 controller that we present in this thesis is a CAN FD

controller. However, we note that the architecture can be adopted for CAN controllers

as well. To this end, we present previous work on CAN/CAN FD controllers in

Chapter3.

The basic functions of the CAN/CAN FD Controllers are to convert the information

that comes from the application into CAN/CAN FD frames by following the protocol

specifications, extract the related information from the received frames and convey

this data to the application. For transmission, the controllers perform physical level bit

generation following the timing requirements, generate frames by implementing bit

stuffing, perform CRC computation and error detection. For reception, they perform

physical level bit sampling according to the timing requirements, apply ID based

filtering, perform buffering of the received frames, remove the stuffed bits from the

received bit sequence, check the CRC values and perform error detection.

The buffering is one of the most important features of CAN/CAN FD controllers.

There are two types of buffer organization, which are FIFO (First In First Out) and

mailbox. In FIFO organization, for transmission, what is written to FIFO first is taken

out and transmitted first. The disadvantage of this method is that it is not possible to

give priority to the messages which are required to be transmitted first. For the recep-

tion, the frame received first is written to FIFO first and is taken out by the application

first. Similarly, the application should process the messages previously in the FIFO

before it can finally reach the message with the high priority. This leads to undesir-

able delay for the high priority messages. Hardware cost of FIFO implementation is

low and the controller design is simple.

In mailbox organization, there is a dedicated buffer for each message. The mailbox
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buffers hold a single frame. For transmission, each mailbox has priorities assigned

and they are transmitted in the order such that the highest priority mailbox is vacated

first. Similarly for reception, the messages are placed in their corresponding mail-

boxes and the application reads the message with the highest importance first without

having to read the others like in the case of FIFO concept. RX buffer organization par-

ticularly becomes significant if the MCU is slow at processing the received messages

[36]. The hardware cost of the mailbox is higher since more memory is required, the

controller design becomes more complex and the timing performance is better when

compared to FIFO concept.

In order to reduce the MCU load, the receivers of the controllers have a filtering

feature. Only the messages which pass the filters are placed to the buffers. By doing

so, the unwanted messages are discarded by the controller so that MCU does not need

to process them.

The controllers interface with the transceivers with the digital receive and transmit

pins. Moreover, they communicate with the MCUs in two different ways. In the

first method, the controller is integrated inside the MCU chip. The communication

between the controller and the MCU processor core is the internal system bus which

is a shared bus with the other peripheral controllers like UART, SPI, I2C and Ethernet.

In the second method, the MCU does not contain the CAN/CAN FD controller inside

the chip, instead, the controller is external to the MCU. This is the case for the low

cost MCUs where the most of the peripherals already contained in higher cost MCUs

are excluded from the chip to reduce the cost and the footprint of the chip. Common

interfaces which can be used between the CAN/CAN FD Controller and the MCU are

listed and discussed below:

• UART: UART is a serial communication protocol with the most common baud

rate of 115.2 kbit/s There are some instances of UART which are used in high

performance MCUs with the baud rates of several Mbit/s. Since our case is for

the low cost MCUs, an interface with the bit rate of several hundred kbits is

not acceptable when the baud rate of CAN/CAN FD is considered. Interfaces

having baud rates lower than CAN/CAN FD baud rate would result in huge

response time, thus reducing the timing performance of the controller signifi-
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cantly.

• I2C: I2C is a serial communication protocol with the most common baud rate

up to 400 kbit/s. Due to the same reasons listed for UART, I2C is not a suitable

interface for CAN/CAN FD Controllers

• PCIe: PCIe is a serial communication protocol with bit rates in the range of

Gbit/s. Since low cost MCUs do not have PCIe interface, this protocol is not

suitable for standalone CAN/CAN FD controllers.

• SPI: SPI is a serial protocol with the most common baud rate of 10 Mbit/s. This

baud rate is higher than CAN/CAN FD baud rates. When high baud rates of

CAN FD like 4 Mbit/s is implemented, higher SPI baud rates would be used to

get better response time. Serial communication is better than parallel when the

I/O pin utilization of MCU is considered. Low cost MCUs have limited amount

of I/Os and any unused peripheral I/Os can be used for other purposes as there

is I/O multiplexing for unused pins. SPI seems to be the best communication

interface for CAN/CAN FD controllers.
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CHAPTER 3

PREVIOUS WORK ON CAN/CAN FD CONTROLLERS

[34] covers CAN Controllers and their features. It presents a controller which has

a maximum of 32 mailbox TX (Transmit) buffers. Regarding configurable CAN

Controllers,[12] is a CAN Controller IP Core. TX buffers are organized as one high

priority buffer and a FIFO with a configurable depth up to 64 message objects. RX

(Receive) buffers are organized as FIFO with a configurable depth up to 64 messages.

It features user configurable acceptance filters for the received messages, the number

of the filters can be up to 4. The communication interface with the MCU is PLB v4.6

bus standard. [13] is an external CAN controller with SPI interface, it features two

receive buffers with prioritized message storing. There are six 29 bit filters and two

29 bit masks for the received messages. It supports three transmit buffers with pri-

oritization. The communication interface with the MCU is SPI. Since it is an ASIC

(Application Specific Integrated Circuit), the depth of the buffers is fixed and not

configurable like the controllers which are realized as IP Cores.

This thesis focuses on CAN FD Controller implementation. Bosch, the company that

invented CAN and CAN FD protocols, has two CAN FD controllers which are real-

ized as FPGA IP Cores. The first one is C_CAN FD8. It supports CAN FD messages

with the payload up to 8 bytes. It contains 32 message objects and ID masks for each

of the objects. The message objects can also be programmed as FIFO and they are

used for both the transmitted and the received messages. The user interface is AMBA

APB bus for ARM processors and Avalon bus for ALTERA FPGAs. The purpose of

this IP core is to maintain the compatibility with the existing Bosch CAN controller

as CAN bus message payload is also up to 8 bytes. The second IP core by Bosch

is M_CAN, which supports both ISO 11898-1:2015 and non-ISO CAN FD imple-
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mentation [2] (2015). The payload of CAN FD frames supported is up to 64 bytes.

The memory where the buffers are located is not internal to the controller, instead it

uses the existing single or dual port memory inside the MCU. The interface to the

external memory is 32 bit generic master interface. It features two configurable Re-

ceive FIFOs with up to 64 message objects with filtering capability. Furthermore, it

supports 32 TX buffers whose message size can be configured. However, the config-

uration sizes for all of the buffers are the same, therefore, the buffer sizes should be

configured according to the longest message payload size. This leads to inefficient

memory allocation especially for heterogeneous message sizes. TX handler block in-

side the controller picks the message with the highest priority to transmit among all

the buffers. The controller interfaces with the MCU via its 8/16/32 bit generic slave

interface.

[1, 9, 18] are the CAN FD IP cores developed in 2015. [1] supports non-ISO CAN

FD implementation. Total buffer size is synthesis time configurable. Buffers are

organized as transmit buffer, high-priority transmit buffer and receive buffer whose

depths are individually configurable by the MCU. There are up to 16 acceptance

filters. The interface to the MCU is AHB-Lite slave interface. [9] supports both

non-ISO and ISO CAN FD implementation. It features synthesis time configurable

depths for receive and transmit FIFOs. It contains 256 message filters for the received

messages. It interfaces with the MCU with 8/16/32/64 bit system bus. [18] also

supports non-ISO and ISO CAN FD. The size of the transmit and the receive buffers

are configurable during synthesis time. The interface to the MCU is via the system

bus.

[5, 10, 4] are the CAN FD IP cores on the market since 2016. [5, 10, 4] support ISO

and non-ISO CAN FD formats. [5] features transmit buffers with up to 32 message

objects. Receive buffers support up to 48 message objects with ID filtering featuring.

The buffers can be configured as FIFO or mailbox. Transmit handler selects the high-

est priority message to begin transmitting. The number of the buffers is fixed and not

configurable. The MCU interface is AXI4-Lite bus. [10, 4] are IP Cores similar to

each other. [10] implements two types of transmit buffers. One is the high priority

primary transmit buffer, the other one is the lower priority secondary transmit buffer.

The high priority transmit buffer can store only one message. However, the depth of
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the lower priority buffer is synthesis time configurable. The size of the receive FIFO

can be configured during the synthesis and there are up to 16 independently pro-

grammed filters for the received messages. The MCU interface options are generic

32-bit host controller interface, AHB, APB (32 bit), generic 8 or 16 bit. Similarly,

[4]offers one high priority transmit buffer and configurable number of low priority

buffers. Moreover it supports RX FIFO buffering with up to 29 bit acceptance filter-

ing. The configuration is done during synthesis. The interface to the host MCU is

generic 8 bit host controller, 8/16/32 bit AMBA-APB or 32 bit AHB-Lite.

[8, 20, 7] don’t have non-ISO CAN FD support. [8] has fixed size 128 byte receive

buffer and transmit buffer. It supports message filtering. The communication between

the controller and the MCU is 8/16/32-bit CPU slave interface. [20] offers synthesis

time configurable mailboxes. The mailboxes can be used for both the transmitting and

the receiving functions. Furthermore, there is a RX FIFO which can store 6 frames.

The MCU communication interface is on-chip system bus. [7] CAN FD IP Core has

TX and RX FIFOs with synthesis time configurable sizes. There are user configurable

acceptance filters. MCU interface is AMBA-AXI4-Lite interface (32-bits) or standard

address/data configuration Interface.

[39] is a recent paper which presents CAN FD IP Core with SPI interface. There are

no details about the interface between the controller and the host MCU. The interface

is described very briefly. The buffers have no configuration capability. The design

is explained very coarsely with very little implementation detail. The design is only

verified by oscilloscope signal inspection.

To sum up, to the best of our knowledgeC3 is the first CAN FD IP core that offers very

flexible and efficient configuration capability to the software developer during appli-

cation run time (after synthesis), with a total number of 192 mailboxes. Mailboxes are

organized as 96 transmit and 96 receive buffers. The mailboxes are allocated an aver-

age payload size of 16 bytes instead of maximum payload size of 64 bytes. Because

it is very unlikely that all the messages in a message set of a network application

will require 64 bytes payload size. This yields 96x16 bytes memory consumption

instead of 96x64 bytes hence less memory usage and more memory utilization. It is

the first controller with SPI interface whose response time is measured, academically
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evaluated, tested and analyzed. Different from other controllers, C3 supports up to 96

filters for each RX buffer for the received messages.

The comparison of the CAN FD IP cores mentioned in this chapter can be seen in

Table 3.1 , Table 3.2 and Table 3.3. We define the performance criteria for comparison

as follows:

• Year: Release year of the controllers

• Transmit Buffer Type: Buffer organization structure for the transmit messages,

either FIFO or mailbox

• Transmit Buffer Configuration: Configurability properties of the transmit buffers

• Receiver Buffer Type: Buffer organization structure for the received messages,

either FIFO or mailbox

• Receive Buffer Configuration: Configurability properties of the receive buffers

• Buffer Configuration Time: The time when the configuration takes place, either

synthesis time or application time. Synthesis time configuration is one time

configuration before the application runs and does not give the user the ability

to reconfigure the buffers during run time while application time configuration

gives the user the ability to reconfigure the buffers during run time for different

applications.
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CHAPTER 4

C3 (CONFIGURABLE CAN FD CONTROLLER) ARCHITECTURE

This chapter presents the hardware architecture of our proposed C3 Configurable

CAN FD Controller. A brief presentation for the implementation details, evaluation

and the response time measurements of C3: Configurable CAN FD Controller can be

found in [22], [21] which are presented in the Appendix of this thesis .

C3: Configurable 
CAN FD Controller 
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C3: Configurable CAN FD Controller 
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Block
(ICB)

Figure 4.1: C3 Architecture

C3 implements the CAN FD Base & Extended Format Data Frame according to the

non-ISO specification [6] as we introduce in Section 2.2. Our proposed hardware ar-

chitecture features a TX Buffer memory and an RX Buffer memory each with a fixed

size. The MCU programmer can organize these memory areas into respective TX and

RX buffers with desired message size and message count. In our implementation, a

maximum of 96 TX buffers and 96 RX buffers can be configured in mailbox form.

C3 transmits the messages in the TX buffers according to the priority order. Each RX
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buffer has an ID-Mask pair for message filtering. The interface between C3 and the

host MCU is through SPI (Serial Peripheral Interface).

We present the C3 FPGA IP Core block architecture together with the host MCU

and a transceiver in Fig.4.2. Transceiver is used to convert controller’s single ended

TTL/CMOS level signals to differential ended CAN BUS physical layer signals, CAN

High and CAN Low.

C3: Configurable 
CAN FD Controller 
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C3: Configurable CAN FD Controller 
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Control 
Block
(ICB)

Figure 4.2: Top Level Architecture

The top level hardware blocks of C3 are; Sender Module (SM), Receiver Module

(RM), and the user interface blocks which are the Memory Mapped Register Block

(MMR), SPI Control Block (SPIC) and Interrupt Control Block (ICB). The CAN

standard requires sending an acknowledgment after each message reception. To this

end, the SM and RM are both connected to the physical layer TX/RX lines on the

transceiver. The RX and TX buffers are realized on Prioritized Flexible TX Memory

Block (PFTM) and Flexible RX Memory Block (FRM) in MMR respectively as in

Fig.4.3.

The hardware resources of C3 are configured by writing the register array imple-

mented in the MMR. These registers are accessible by the C3 Driver software using

the standard SPI protocol signals MISO (Master In Slave Out), MOSI (Master Out

Slave In), CSn, CLK and interrupt signal. After the configuration, the applica-

tion software starts to run on the host MCU which generates and consumes the data

carried in the CAN FD message payload. Host CPU sees the controller as a set of

registers which can be read and be written to according to the controller’s protocol

requirements. The application software sends and receives message data together

with their CAN IDs through the driver software. C3 runs at 100 MHz. We provide

implementation details in Section 4.8 together with the evaluation results in Section
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5.

4.1 Hardware Blocks: Memory Mapped Register Block

The host MCU communicates with C3 for configuration and data transmission using

a memory mapped architecture that is realized with a set of registers in MMR. The

addresses of these registers are known to the Driver Software. The host device reads

and writes these registers via our SPI protocol signals.

The block diagram of Memory Mapped Register Block (MMR) can be seen in Fig.4.3.

There are 96 sets of TX registers and 96 sets of RX registers to support up to 96 TX

and RX buffers respectively.

Each TX register set consists of

• TX ID Register

• TX DLC (Data Length Code) Register

• TX Data Register

Each RX register consists of

• RX ID Register

• RX Mask Register

• RX DLC (Data Length Code) Register

• RX Data Register

MMR also features the following registers: Transmit Control & Status Registers

• Transmission Request Register (TRR)

• Transmit Message Status register (TMSR)

Receive Control & Status Registers
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• Receive Status Register (RSR)

• Receive Error Status Register (RESR)

Interrupt Control & Status Registers

• Interrupt Enable Register (IER)

• Interrupt Status Register (ISR)

Buffer Configuration Control Registers

• RX Buffers Configuration Status Register (TCSR)

• RX Buffers Configuration Status Register (RCSR)

For the rest of the thesis we write TX(ID) and RX(ID) to indicate a specific register

set for a CAN ID. The content of the data register of TX(ID) is the payload of the

message with the specified CAN ID.

SPI FIFO Access Multiplexer Block (SFAM): As described in detail in Sec.4.2, Host

MCU interfaces C3 with SPI, and MMR communicates SPCB with FIFO accesses.

SFAMB multiplexes FIFO signals between MMR Logic Block (MMRL) and Buffer

Configuration Block (BCB). Due to the nature of hardware design, a signal cannot be

driven by two sources, therefore for situations where multiple drivers are required, a

multiplexing method is used. This multiplexer first gives access to BCB , after the

buffer allocation is done, access is given completely to MMRL.

Buffer Configuration Block (BCB): This Block manages the TX DLC (Data Length

Code) Register and RX DLC (Data Length Code) Register. DLC Registers must

be configured to arrange the size of the buffers. The content of a DLC Register can

be seen in Fig.4.6 and Fig.4.7

Host MCU has to configure the registers one by one in an ordered way. First TX

buffers then RX buffers configuration should be done. After TX buffer sizes are con-

figured, host should write TX Buffers Configuration Status Register (TCSR) to

indicate TX buffer configuration is finished so that RX buffer configuration can start.
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Same process is also repeated for RX buffers. Finally, RX Buffers Configuration

Status Register (RCSR) is written by the host to indicate whole configuration pro-

cess is finished. As the configuration finishes, the buffer allocation information, the

address and size of each buffer in the Prioritized Flexible TX Memory Block (PFTM)

and Flexible RX Memory Block (FRM), is kept as registers and used by Sender Mod-

ule (SM) and Receiver Module (RM) and MMR Logic Block (MMRL). Furthermore,

after the whole buffer configuration process is complete, SFAM block is informed so

that SPI signals are routed to MMRL block. The content of TCSR and RCSR are

shown in Table 4.1.

Prioritized Flexible TX Memory Block (PFTM): The host MCU can partition PFTM

to implement up to 96 TX buffers in desired sizes. This block is designed as a 1920

bytes block RAM. However, the size of PFTM can be increased during synthesis.

There are 480 addressable locations each with a depth of 32 bits. We implement the

buffers in the mailbox architecture where each TX buffer is allocated for a specific

CAN ID and can store the payload for a single frame. The memory is organized with

an appropriate size to store 4 byte ID registers and an average of 16 bytes data for

each of the 96 buffers. (96x4 + 96x16) = 384+1536 = 1920 bytes) Using payload

size average of 16 bytes per mailbox instead of allocating 64 bytes for each mailbox

yields less memory consumption and more memory utilization. Two example buffer

configurations that fully utilize 1536 bytes data area are depicted in Fig.4.4

The first buffer in the memory has the highest priority. This information is known

to host MCU and configuration is done with taking this information into account.

MMRL writes ID & Data to be transmitted to the related buffer location when a write

request comes from Host MCU. TX Control Logic Block (TXCL) has read access to

this memory block to get the ID and data to transmit.

Flexible RX Memory Block (FRM): This block is designed as a 1920 bytes block

ram. There are 480 addressable locations each with a 32 bit depth. Memory is orga-

nized as large as it can store 4 byte ID registers and 16 bytes data for each 96 buffers.

(96x (4 + 16 ) = 1920 bytes). Using payload size average of 16 bytes per mailbox

instead of allocating 64 bytes for each mailbox yields less memory consumption and

more memory utilization. RX Control Logic Block (RXCL) has write access to this
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Figure 4.4: Example Memory organizations: (a) 88 buffers (b) 44 buffers

memory block to put the ID and data of the received frames in the related location. As

read request comes from the Host MCU, MMRL reads the related information from

the related buffer address and responds to the request.

Filtering Memory Block (FMB): The Memory consists of 32 bits of ID & Mask pairs

for each 96 buffers. There are 192 locations with depth of 32 bits. During configu-

ration, Host MCU programs ID & Mask pair for each buffer to be used. MMRL has

write access to this memory block, it writes ID & Mask pairs as requested by the Host

MCU. Message Filter (MF) reads from this memory during filtering process.

MMR Logic Block (MMRL): After buffer allocation is done, this block takes over

the SPI FIFO access from BCB. All of the CPU’s write and read requests are han-

dled here. This logic block has control for all of the registers except the ones with

buffer size configuration (TX DLC (Data Length Code) Register, RX DLC (Data

Length Code) Register, TX Buffers Configuration Status Register (TCSR) and

RX Buffers Configuration Status Register (TCSR)). The state machine here polls

the SPI instruction FIFO to see if there are any pending requests. The machine has

two different state sets, one for write requests and one for read requests. The write

state set gets the address of the register from the address FIFO in SPCB, gets the burst
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data size from burst data FIFO in SPCB and finally gets the data part from RX Data

FIFO in SPCB. The amount of data to be read from the RX data FIFO depends on

the instruction type and burst data size. For the write requests, either a related mem-

ory address is written or related register is written. The addresses read from Address

FIFO is mapped to PFTM, FMB memory addresses and directly to some registers as

seen in the Fig.4.3.

Similarly, the read state set gets the address of the register from the address FIFO in

SPCB, gets the burst data size from burst data FIFO in SPCB. The addresses read from

Address FIFO are mapped to FRM memory addresses and directly to some registers

as seen in the Fig.4.3. Since the read requests are non posted requests, MMRL gets

the data from the related mapped address or from a register and writes the data to

the TX Data FIFO quickly such that when SPB reads the data to respond, the data is

present in the FIFO.

The mechanism of each register accessed by MMRL will be described in the related

block descriptions.

4.2 Hardware Blocks: SPI Protocol Control Block

Address 
FIFO

Instruction 
FIFO

Burst Size 
FIFO

RX Data 
FIFO

TX Data 
FIFO

SPI Protocol Block
(SPB)

Write

Write

Write

Write

Read

Address

Instruction

Burst Size

Received 
Data

Transmit
Data

Read

Read

Read

Read

Write

SPI Protocol Control Block (SPCB)

MOSI MISO CLK CSn

Figure 4.5: SPI Protocol Control Block

We develop and implement the SPI (Serial Peripheral Interface) control block in the
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scope of this thesis work. The block diagram of SPI Protocol Control Block (SPCB)

can be seen in Fig.4.5. The SPI standard defines the physical layer of the interface,

timing of the signals and the roles of the master and the slave devices. The SPI

physical layer signals going out of the controller are as follows:

• CSn (Chip Select)

• CLK (Clock)

• MOSI (Master Out Slave In)

• MISO (Master In Slave Out)

Master device has the following tasks:

• It controls CSn , MOSI, CLK signals

• It asserts CSn along with the CLK and data on MOSI line

• It deasserts CSn to indicate that the communication is over

Slave device has the following tasks:

• When CSn is asserted by the host, it starts to sample data at the rising edges of

the clock.

• It gets the data on MOSI line and responds on MISO line if a response is re-

quired. If not, it just gets the data until the CSn is deasserted

The SPI protocol only defines the mechanisms listed above. The custom protocols

using SPI define the data amount and data content which the master device sends on

MOSI line and the data content to which slave needs to send a response, the content

and the amount of the data slave puts on MISO line, the time when the slave begins

to respond when the slave response is required. Accordingly, we designed and im-

plemented our own communication protocol with SPI. Our communication protocol

over SPI between the host MCU and C3 is described in Table 4.2.
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Figure 4.6: SPI Timing Diagrams
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Table4.2: SPI Commands and Responses

Access Host Request Host C3

Type Inst. Code Data Response
Burst
SPI

Write
0x00

Address (16 bits) –
+ Data size (8 bits)
+ Burst data

Burst 0x01 Address (16 bits) Burst dataSPI Read + Data size (8 bits)
32 bit 0x02 Address (16 bits) –

SPI Write + Data (32 bits)
32 bit 0x03 Address (16 bits) Data (32 bits)SPI Read

The host requests are on the MOSI line and the C3 response is on the MISO line. The

request types are defined with the instruction codes of 8 bits. After the instruction,

regardless of its type, master device puts the 16 bit address of the register on MOSI.

Depending on the instruction type, host might go on transmitting data or slave re-

sponds to the request. During Burst Read or Write instructions, the amount of data is

also provided to the slave with 8 bits of burst data size. The burst data transfers are in

multiples of 4 bytes. Fig.4.6 depicts the signaling of our protocol for the 32 bit and

burst instructions.

Our implementation is a high-speed SPI with 10 MHz clock frequency.

During master write operations, SPI Protocol Block (SPB) samples the bits at the

rising edges of the clock when the CSn signal is low. It first gets 8 bit instruction

and writes this data to the Instruction FIFO, then gets 16 bit address and writes the

address into the Address FIFO. Depending on the instruction type, it either gets 8 bits

of burst data size and writes it to the burst size FIFO or just skips to the data part. In

the data phase, the data is written to RX Data FIFO in multiples of 32 bits. If it’s a 32

bit SPI Write, only 32 bit data is written to the FIFO, otherwise the quantity of data

to be written to the FIFO is determined according to the amount of data contained in

the burst data size field. During master read operation, 8 bit instruction and 16 bit

address is fetched by the SPB and written to the respective FIFOs. If the instruction

is 32 bit SPI Read, SPB gets the data from TX Data FIFO and responds to the master

on MISO line. Otherwise, SPB fetches burst data size and writes this information to

Burst Size FIFO and gets as much as data as indicated in burst data size from TX
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Data FIFO and responds to the master on MISO line. In summary, SPCB decodes

the received frames and extracts the fields and puts the data contained in the fields to

the related FIFOs and during read operations where response is required, it gets the

data from the FIFO and responds. Memory Mapped Register Block (MMR) in C3

interfaces SPCB with FIFO control signals therefore, SPCB is interpreted as a black

box. SPCB provides read access for the Address, Instruction, Burst Size and RX Data

FIFOs and write access for the TX Data FIFO for MMR.

4.3 Hardware Blocks: Interrupt Control Block

Interrupt Control Block (ICB): The block diagram of this block can be seen in Fig.4.7.

There are four types of interrupt sources, which are

C3: Configurable 
CAN FD Controller 

MOSI

MISO

CLK

CSn

Interrupt

Application Software
C3

Driver
Software

Host Device: MCU

Application Software

Transceiver
TX

RX

CAN_H

CAN_GND

CAN_L

CAN FD RX Block 
(CANFDRX)

Message Filter (MF)

RX Control Logic Block (RXCL)

CAN FD TX Block 
(CANFDTX)

TX Control Logic Block (TXCL)
SPI 

Protocol 
Control 
Block
(SPIC)

Memory 
Mapped 
Control 
Block

(MMC)

SENDER MODULE (SM)

RECEIVER MODULE (RM)

 

.

C3: Configurable CAN FD Controller 
 TX

RX

MOSI

MISO

CLK

CSn

Interrupt

Interrupt 
Control 
Block
(ICB)

Interrupt Control Logic

IER

ISR Set 
Request

Interrupt

RSR Set 
Request

Receive
Error Data

Transmit
Error Data

Overflow

Interrupt Control Block (ICB)

Figure 4.7: Interrupt Control Block

• Transmit Error

• Receive Error

• Receive Buffer Overflow

• Message Reception Event
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Any of the interrupt sources can be enabled by writing to the Interrupt Enable Reg-

ister (IER) shown in Table 4.3.

The block gets IER from MMR. Receive Error Data & Transmit Error data is ob-

tained from CANFDRX and CANFDTX blocks which are polled for any error occur-

rences and if enabled, an interrupt is generated. Furthermore, overflow information is

received from RSR management and if enabled, an overflow interrupt is generated.

Similarly, when a message is received and placed in a buffer then RSR is requested

to be set. When this signal is received, an interrupt is generated if enabled.

The interrupt is generated as an active low pulse for a duration of 1 ms.

For the Host MCU to learn the source of the interrupt, the source information of the

interrupt is put in the Interrupt Status Register (ISR) after the processing the data

obtained from other blocks for a host to read. Even if the the interrupt is not enabled

for a source, related ISR bit is set if it occurs but an interrupt is not generated. When

the host MCU reads ISR, it may also get additional interrupt information, which can

be discarded if any action is not needed.

4.4 Hardware Blocks: Transmitter Module

TX Control Logic Block (TXCL):

TXCL block diagram can be seen in Fig.4.8. This block determines the message to

be transmitted. Transmit Request Register shown in Table 4.4, holds the information

of the pending transmission requests. When host MCU wants to transmit frames,

it makes a request by writing to TRR. There are 3 TRR each holding 32 buffer

transmission requests.

TXCL finds the buffer with the highest priority to transmit among the buffers wait-

ing for transmission by using binary search algorithm. The algorithm is depicted in

Fig.4.9. Each step in the Fig.4.9 takes a single clock cycle. Any pending request

is held as logic 1 in TRR. The algorithm first checks if any one of the three of the

TRR (3 x 32 buffers) is not equal to all 0s. In the first step, it determines the TRR

which is not all 0s, if more than one TRR satisfies the condition, the one having the
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CAN FD TX Block (CANFDTX)

CAN FD TX Protocol Block
(CANFDTXP)
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Figure 4.8: TX Control Logic Block (TXCL)

lower indexes is chosen. In the next step, algorithm divides the 32 bit TRR in two

and checks if any of the partitions is not all 0s. If more than one partition satisfies the

condition, the one with the lower indexes is chosen. The algorithm proceeds as we

describe until the last step and the buffer number is determined. The whole process

takes 6 clock cycles. The algorithm is depicted in Fig.4.9.

Determining the buffer number means, storing the address and size of the buffer in

PFTM because buffer allocation information is shared with TXCL. Therefore, TXCL

gets the ID and data from the related part of PFTM. It writes the data to the TX Data

FIFO of CANFDTX and the size to the TX Size FIFO. It loads the ID to CANFDTX.

When the transmission is successful, CANFDTX indicates that TX is done and TXCL

begins searching for a new pending transmission request if there is any. If it finds a
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Figure 4.9: Binary Search Algorithm

pending request, it repeats the whole process described here.

CAN FD Transmitter Block (CANFDTX):

This block creates properly formatted CAN FD frames according to CAN FD proto-

col specification. Its block diagram can be seen in Fig.4.10. CANFDTX polls TX

Size FIFO, if the FIFO is not empty, it reads the size of the message and starts trans-

mitting. CANFDTX gets the payload from TX Data FIFO. It inserts CAN ID and

other control information such as DLC at the beginning of the frame. It computes

the CRC by communicating CRC Calculator Block (CCB), it inserts it at the end of

the frame and performs the necessary bit stuffing of the constructed frame as defined

in the standard. CANFDTX executes the CAN arbitration when the frame is ready

to transmit and switches to the high CAN FD bit rate when the frame successfully

completes the arbitration phase. Data and Size FIFOs do not hold more than 1 frame

information. CRC Calculator Block calculates either 17 bit or 21 bit CRC depending

on the message payload size as defined in the standard.

When the frame is transmitted successfully, TRR Clear Block requests to clean the

related bit in TRR. Furthermore, after TRR is cleared, CANFDTX indicates that the

transmission is done and it is ready for a new transmission.
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CAN FD TX Protocol Block
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Figure 4.10: CAN FD Transmitter Block (CANFDTX)

The controller detects that an arbitration is lost if a different bit received is on the

line than what is transmitted. In that case, CANFDTX attempts to send the frame

again when the bus becomes idle until it is successfully transmitted. If an error oc-

curs during transmission, data FIFO is reset so that the FIFO becomes empty for a

fresh transmission, the current transmission is abandoned and transmission is indi-

cated as over. Since the related TRR bit is not cleared, TXCL will attempt to transmit

the frame again when Binary Search Algorithm decides. TX Error Detection Block

(TXED) provides error data to TMSR. If no error occurred, TMSR is also updated

to indicate no error occurred. TXED checks for errors such as bit error and ack error

and ID information is attached to the error type to form the TMSR. TMSR content
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can be seen in Fig.4.4.

4.5 Hardware Blocks: Receiver Module

Most functionality of the Receiver Module sub-blocks are either analogous or revers-

ing the actions taken by the corresponding blocks of the Transmitter Module.

RX Control Logic Block (RXCL):

CAN FD RX Block (CANFDRX)

CAN FD RX Protocol
(CANFDRXP)

CRC Calculator Block (CCB)

CRC Result CRC TypeData

RX Error Detection Block (TXED)

RX Size FIFO

RX Data FIFO

Write
Error 
Data

RX Message 
Size

TX

RX

RX Message 
Data

Write

Write

Frame 
Reception 

Done

ID Match 
Found/Not 
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ID Ready

Message Filter (MF)

Filter Control 
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Buffer #
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Type & Mask
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Frame 
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Done
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Figure 4.11: RX Control Logic Block (RXCL)

When a message is received successfully, RXCL gets frame reception done informa-

tion with the buffer number information which comes from MF. Having the buffer

number information means knowing the address of the related buffer in FRM where

the data will be written. RXCL reads the ID and ID type from CANFDRX, payload

size and data from FIFOs of CANFDRX. This data is written to the related address of

FRM. Furthermore, Receive Status Register (RSR) is requested to be set. If the bit

of RSR where it is requested to be set is already set, overflow condition occurs. New

data is over written hence the buffer holds the new frame data and overflow interrupt

is generated if enabled. There are total of 3 RSR for 96 RX buffers. RSR has the

information of the buffer numbers which hold the received messages. This is an indi-

cation for the Host MCU to learn the buffers with the received frames. When the host

reads the messages from the related buffers, it requests to clear RSR. The content of
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RSR is shown in Table 4.5 The block diagram of RXCL can be seen in Fig.4.11

CAN FD Receiver-RX Block (CANFDRX)

The block diagram of CANFDRX can be seen in Fig.4.12. CANFDRX receives

the frames that are formatted according to CAN FD standard. It performs the CRC

control and other checks on the received CAN FD frames. When a message is suc-

cessfully received and matches any one of the filters, the size of the payload is written

to RX Size FIFO and the payload is written to RX Data FIFO. Frame reception done

information is provided to indicate that a message is received and ready to be read

from the FIFOs. If an ID match not found signal is received, after the whole frame is

received, the FIFOs are reset and the frame reception done is not provided. In other

words, the received frame is discarded.

CRC Calculator Block calculates either 17 bit or 21 bit CRC depending on the mes-

sage payload size as defined in the standard. If an error occurs during reception,

current reception is abandoned, the data and size FIFOs are reset so that the FIFOs

become empty for a fresh reception, and the bus is waited to be idle for a new re-

ception. RX Error Detection Block (RXED) provides error data to Receive Message

Status Register (RMSR). If no error occurs, RMSR is also updated to indicate no

error occurred. RXED checks for errors such as bit error, stuff error, CRC error and

form error and the ID information is attached to the error type to form RMSR. RMSR

content can be seen in Fig.4.5.

Furthermore, this block has an interface with the physical layer CAN FD signals,

namely, TX and RX. The block diagram of CANFDRX can be seen in Fig.4.12. Since

CAN FD has to send an acknowledgment bit during reception, it has an access to TX

physical layer signal as well.

Message Filter Block (MF):

MF block diagram is shown in Fig.4.13. MF gets the ID and ID type (either base or

extended) along with the ID ready information. Filter Control block inside MF gets

programmed ID and Mask pairs of each RX buffers from FMB and feeds this data to

Comparator block one by one. Comparator block compares the mask applied received

message ID with the mask applied ID data that come from FMB for each of the 96
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Figure 4.12: CAN FD Receiver-RX Block (CANFDRX)

RX buffers’ programmed ID & Mask pair. If it finds a match, it indicates that ID

match is found and provides the buffer number whose filtering is passed. If a match is

not found for any one of the 96 RX buffers, it is indicated that ID match is not found.

This means that the received frame does not pass the filtering. The messages that do

not pass any of the RX filters are discarded. Messages may pass more than one filter,

for this case, the first filter is taken into account and the buffer number is provided

accordingly. The filtering process begins when ID ready information is received from

CANFDRX, that is, during the reception process, MF does not wait for whole frame

to be received, instead, only receiving the ID part of the frame is enough to perform

the filtering operation. Therefore, by the time the frame is received, filtering process

is already finished. For the worst case (a match is found at 96th buffer or no match is

found after 96 steps), the filtering takes 496 clock cycles, which is approximately 5

µs. For 2 Mbit/s bit rate, this time corresponds to 10 bits time for a CAN FD frame.
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Figure 4.13: Message Filter Block (MF)

4.6 Configuration Phase

The C3 driver software that should run on the MCU executes the configuration pro-

cess of the controller before the main application of the host MCU starts. The registers

requiring configuration on MMR are programmed by the C3 driver software. For this

purpose, for each TX buffer, the size of the payload in the DLC Registers are config-

ured over SPI. Accordingly, BCB in MMR allocates and assigns the required memory

for the payload of each transmitted CAN FD message on PFTM. Similarly for each

RX buffer, DLC Registers are configured by the driver over SPI. To this end, BCB

in MMR allocates and assigns the required memory space on FRM according to the

payload of each CAN FD message to be received. After both of the buffers are con-

figured, BCB state machine stays in a dead state and reprogramming of the buffers

is not possible. In other words, when the Host MCU application begins running, the

buffers can not be configured again. ID Registers in TX Register sets are configured
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for the buffers which are going to be used. Similarly, RX ID and RX Mask Registers

are programmed. This process is also called the initialization of the controller.

TX(ID) and RX(ID) register sets can be seen in Table 4.6 and Table 4.7. An example

configuration can be seen below:

• TX ID Register: For 29 bit extended ID of 03A66A30 for TX Buffer 1,

0x1D335184 is written to this register at 0x0100 address

• TX DLC Register: For 64 Byte payload configuration for TX Buffer 1, 0x00000040

is written to this register at 0x0104 address

• RX ID Register: For 11 bit Base ID of 081 for RX Buffer 1, 0x10200000 is

written to this register at 0x1000 address

• RX DLC Register: For 32 Byte payload configuration for RX Buffer 1, 0x00000020

is written to this register at 0x1004 address

• RX Mask Register: To filter out the messages which do not have the same first

most significant 9 bit ID bits for RX Buffer 1, 0xFF800000 is written to this

register at 0x1008 address

4.7 Data Phase and Timing

The Data Phase consists of message transmit and receive actions for the applications

that run on the host MCU. Here we note that the clock cycle for C3 is denoted as

cC3 = 10 nsec while the SPI clock cycle is denoted as cSPI = 100 nsec [22].

When the application has data to send, the driver locates the corresponding TX(ID)

register, the address of the register. Then, the driver writes the payload data on the

Data Register of TX(ID) using the Burst SPI Write command which takes

8 + 16 + 8 +B · 8 cSPI = 3.2 + 0.8 ·B µs for B byte payload.

The Data Register of the first TX buffer can be seen in Fig.4.6
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When the data write is complete, the MCU asserts bit(s) in the Transmit Request

Register (TRR) enabling the indicated TX Buffers for transmission, which takes

(8 + 16 + 32) cSPI

There are two methods for transmission

• Host MCU can write the payload of a frame to data register of a single buffer

first then set only one bit of TRR then repeat this process for each of the buffers

that are desired to be transmitted.

• Host MCU can write the payload of the frames to data registers of multiple

buffers first, then set multiple bits of TRR at a single write.

The host MCU may program the Interrupt Enable register (IER) to get notified

when a transmit error occurs. If an interrupt is received, the host MCU reads the

Interrupt Status Register (ISR) to determine the source of the interrupt. It then

reads the Transmit Message Status Register (TMSR) for the error source and the ID

of the message. Finally, the MCU clears the ISR after handling the interrupt. C3 polls

TRR for pending transmission requests. If there are any bits set in TRR, C3 selects

the message with the highest priority and begins transmitting. It takes 6·cC3 = 60 nsec

to determine the message with the highest priority, which is implemented as binary

search algorithm. If no errors occur during the transmission, the C3 clears the related

bit of the TRR. In case of an error, C3 determines the cause of the error and updates

the TMSR with the ID of the message and the error type. C3 retransmits the message

if the previous attempt has error [22].

Total transmission delays can be formulated as below [22]. In the formula below, x

denotes the FPGA core delay and it is approximately 1 µs for B = 64. This value

completely depends on the implementation and it is not possible to estimate the value

theoretically instead practical value obtained from real hardware implementation is

used. More information can be found in Sec.5.5.

TTX(B) = x+ 3.2 + 0.8 ·Bµs + 64 cSPI ≈ (4.2 + 0.8 ·B + 64 · cSPI)µs.

In our implementation, the significant C3 core transmit delays add up to less than

62µs using the formula above and taking B = 64. This time is very small compared
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to expected application delays and jitters on the MCU which should be bounded by

the message periods. Here we note that the lowest message periods in vehicle appli-

cations is close to 5 ms [22].

Regarding the reception, the host MCU polls the Receive Status Register (RSR) or

enables the interrupt. If there is a new message, the corresponding bit to the buffer ID

is set in one of the three RSRs. The MCU reads all of the three RSR and determines

the buffer holding the received message. The corresponding RX(ID) data register is

read using the Burst SPI Read command. The MCU is notified with an interrupt with

the source of error indicated in the ISR if an error occurs. After successful reception

or after an error, the related bit of RSR which corresponds to the read message is

cleared. Messages with an error are discarded [22].

A frame with CAN FD ID is first fully received by the CANFDRX and then placed in

the RX(ID). Hence, C3 and the host MCU have to finish processing the frame and the

MCU has to complete reception before the following frame is ready at CANFDRX.

In our current implementation, the MCU and C3 Driver software is emulated with a

hardware block on the FPGA for evaluation purposes. To this end, we estimate the

receive processing time of C3 without driver and MCU overhead. Furthermore, we

assume that all CAN FD frames with a given ID have the same payload length of B

Bytes. We also assume that the CRC sequence is 21 bits for all frame sizes, whereas

it is 17 bits for frames with payload less than 20 bytes. The transmission at standard

CAN rate is 1 Mbps, CAN FD Data rate is 2 Mbps [22].

We denote the shortest time between two consecutive CAN FD transmissions for a

CAN FD frame withB byte payload by TBus(B) which consists of the time to transmit

a frame and the inter-frame gap of 3µs. During frame transmission, SOF and arbitra-

tion fields (BASE ID + SRR + IDE +EXTENDED ID + r1 + EDL+ r0: 29 + 6 = 35

bits) at the beginning of the frame and ACK+EOF (3 + 7 = 10 bits) at the end of the

frame are transmitted at 1 Mbps. Control Field (BRS+ESI + DLC: 6 bits), Payload

Data (B · 8 bits), CRC + CRC delimiter (21 + 1 =22 bits) are transmitted at 2 Mbps.

Hence, TBus(B) = (59 +B · 4 + 3)µs = (B · 4 + 62)µs [22].

We next compute TRX(B) which denotes the estimated time for the host MCU to

receive a frame with B bytes payload from C3. The SPI cycle times are computed
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according to Table 4.2. Reception of the frame starts by writing B bytes in FRM.

Then ISR is updated and an interrupt is generated for the host MCU which takes

y. The host MCU gets the interrupt and reads the ISR with the 32 bit SPI Read

operation (56 · cSPI ). Then, the host MCU reads 3 RSR, where each register has

32 bits to represent 96 RX buffers (3 · 56 · cSPI). The host reads the Data Register

of RX(ID) with Burst SPI Read (32 + B · 8 · cSPI) and clears ISR with a 32 bit SPI

Write (56 · cSPI). Finally the operation is completed by clearing RSR with a 32 bit

SPI Write (56 · cSPI) [22].

Accordingly, TRX(B) =y+(368 +B · 8) · cSPI = (y+36.8 +B · 0.8)µs ≈ (B · 0.8 +
38.2)µs where y is approximated as 1.4 µ for B = 64. Theoretical estimation of y is

not possible because it depends on the hardware implementation hence the practical

value from the real hardware is used here. More information can be found in Sec.5.5.

Hence, under our assumptions, TRX(B) is significantly smaller than TBus(B). That is,

C3 and the host MCU indeed complete processing each frame before the next frame

can be transmitted[22].

4.8 FPGA Implementation Results

Xilinx Virtex 5 FPGA is used for the implementation. More information about the

FPGA is provided in Sec.5.1 FPGA device utilization and project status are depicted

in Table 4.8 and Table 4.9. FPGA code includes both the application and CAN FD

Controller. The application acts like a host MCU simulator. More details are given in

Sec.5.2. Clock frequency is 100 MHz.

SPI Data is sampled at the rising edge and put on the line at falling edge of SPI CLK

signal. Therefore, effective SPI clock frequency seen by the FPGA is 20 MHz. 100

MHz FPGA clock frequency is suitable enough to handle effective 20 MHz SPI clock

frequency.

Xilinx FIFO, Block Memory Generator and PLL IP Cores are used. All other modules

including CAN FD protocol and SPI protocol are written in VHDL manually and

implemented.
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Table4.8: FPGA Device Utilization Summary
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Table4.9: FPGA Project Status

Design module hierarchy is in Fig.4.14. The functions of each file is listed below:

• CANFD_Controller.vhd: module includes Memory Mapped Register Block

(MMR), RX Control Logic (RXCL), Message Filter (MF), TX Control Logic

(TXCL) and Interrupt Control Blocks

• CANFD_Receiver.vhd: Module includes CAN FD RX Block (CANFDRX)

• CANFD_Transmitter.vhd: Module includes CAN FD TX Block (CANFDTX)

• CRC_17.vhd: 17 bit CRC Calculator Block (CCB)

• Crc_gen_21bit.vhd: 21 bit CRC Calculator Block (CCB)

• SPI Controller.vhd: Module includes SPI Protocol Control Block (SPCB)

• Host_Application.vhd: Module includes Host Simulator

• SPI_Master_Controller.vhd: Module includes Master SPI Control Block (MSPIC)

• TopModule.vhd: Provides connection between CAN FD Controller and host

simulator.

• Debouncer.vhd: Provides debouncer for button press on FPGA demoboard.

• CANFD_Constraints.ucf: Includes the timing and pin location constraints

• PLL.xav: 100MHz clock is put into PLL to generate a clock with less jitter and

more stability.
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Figure 4.14: FPGA Project Hierarchy
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Figure 4.15: FPGA Implementation Options 1

One of the biggest challenges of the implementation was to meet the timing. Since

there are so many registers and internal signals for 96 RX and 96 TX buffers, the

design didn’t meet the timing at the first trial. It is not possible to reduce 100 MHz

FPGA clock frequency due to effective 20 MHz SPI Clock frequency. Therefore, to

improve timing two strategies have been developed:

There are many synthesis, HDL, Xilinx Specific, Map, Place & Route options. By

changing the options, its possible to have better timing performance. For this pur-

pose, the following settings in Fig.4.15, Fig.4.16, Fig.4.17, Fig.4.18 and Fig.4.19 are

applied.

The other strategy is to increase the steps to perform the memory mapping operation.

Since the number of the registers is high for 96 TX and RX buffers. There are also

much more signals related to the buffers than the buffers’ own registers, hence huge

cascaded multiplexers have to be used during implementation. Cascaded structures

are the enemies of timing since the signals are serialized and serialized operation

must be completed in a single clock cycle. For this purpose, configuration mapping is

done in 12 steps, SPI writes are done in 15 steps and SPI reads are done in 12 steps.

Since SPI reads require quick response, steps to perform register read requests must
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Figure 4.16: FPGA Implementation Options 2

Figure 4.17: FPGA Implementation Options 3
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Figure 4.18: FPGA Implementation Options 4

Figure 4.19: FPGA Implementation Options 5
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be completed fast. 12 steps are quick enough for CAN FD Controller to perform the

mapping and put the required data on MISO line on time. By increasing the mapping

steps, cascaded multiplexers are divided into smaller cascaded units hence being able

to complete the operation on time.

By these two adjustments, timing score was improved greatly and could be pulled

down to 0 and timing is met. Furthermore, besides the general VHDL coding tech-

niques, following strategies are followed for more optimized implementation.

Using Case Statements Instead of Nested If Else Statements: Case statements have

been used for all of the state machines and most of the conditional logic having more

than two conditions. Use of case statement yields faster implementation. Nested if

else structure uses priority encoders for implementation therefore more combinational

logic is used hence the hardware becomes slower.

Arithmetic Operations: Instead of using multipliers or dividers for some arithmetic

operations, following strategies are used:

• For multiplying with 2, shifting the logic vectors one bit left

• For dividing by 2, shifting the logic vectors one bit right

Therefore, by using simple shift registers, usage of complex multipliers or dividers

are avoided. This yields lower resource consumption.

Furthermore, grouping arithmetic statements gives great timing advantage. For exam-

ple, the first statement below is implemented as 4 serialized adders while the second

statement below is implemented as 2 parallel adders. The latter one gives better tim-

ing performance.

• C <= C1 + C2 + C3 + C4

• C <= (C1 + C2) + (C3 + C4)

Using Constants: Use of constant statement instead of vector or integer variables

provides more optimized implementation.
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Avoiding Latches: Latches are created when incomplete if-else statement is used. In

other words, “if” part of the condition is specified but “else” part is not specified. If

the target FPGA does not have latch units, latches are created from multiplexers and

some other logic elements hence increasing resource consumption and hence reducing

timing performance.

Using Synchronous Reset: Most FPGAs have logic elements with synchronous reset

therefore when asynchronous reset is used, some extra logic elements are used to

implement asynchronous structure. To minimize resource consumption, a reset signal

synchronous to the clock signal is used throughout whole design.

Using Distributed or Block Memory: Instead of using huge number of registers for

memory purposes, it is good practice to use embedded memory. Because embedded

memory only uses the existing memory block inside the FPGA. Using embedded

memory makes the design quite simple and more efficient.

State Machine Implementation Types: State machine implementations are catego-

rized in several ways. Some of them require encoding/decoding while some does

not require. For example, the sequential state machine implementation type performs

binary encoding for state mapping. It uses less logic resource but since it requires

encoding/decoding, it is slow and the timing performance is bad. On the other hand,

one hot encoding requires no encoding/decoding since each state is represented by a

single flip flop. Therefore one hot encoding consumes more resources but it is fast

and yields better timing performance. For this design, the choice is left to the program

automatically but it might also have been forced to one hot encoding for good timing.

Using Synchronous Processes: Using synchronous processes and avoiding combi-

national logic as much as possible yields better timing performance. Combinational

logic is the enemy of the timing. For this implementation, mostly synchronous logic

is used as much as possible.
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CHAPTER 5

EVALUATION OF C3 (CONFIGURABLE CAN FD CONTROLLER)

In this chapter, the development environment, the Host Simulator implementation

details, response time measurements and functional tests are covered in detail. The

purpose is to verify the design functions and measure the response time performance

of the CAN FD Controller.

5.1 Development and Test Environment

Xilinx 
ML507 

Demoboard

PCAN 
USB FD 
Analyzer

TCAN1042 
Evaluation 

Module

Xilinx 
Platform 

Cable 
USB II

COMPUTER

JTAG

3.3V
5V

GND

TX

RX

CAN_H

CAN_L

CAN_GND

PCAN View
Software

XILINX 
Chipscope Pro

Software

USB USB

TEST 
SETUP

Figure 5.1: Test Setup Block Diagram

The test setup block diagram is depicted in Fig.5.1. We implement our C3 CAN

FD Controller and a host simulator on the FPGA demo board. CAN FD transceiver

module is connected to FPGA demo board to meet the physical layer requirements of

CAN FD protocol. The transceiver module connects C3 CAN FD Controller to CAN
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FD Bus. PCAN analyzer is connected to CAN FD Bus to send CAN FD frames to

the controller and monitor the bus for the frames that the controller sends.

Xilinx Platform Cable USB II is connected to FPGA demo board via USB for two

purposes. One is to program the FPGA. The other is to monitor the FPGA signals to

verify the functions.

Xilinx ISE 14.7 development platform is used for FPGA hardware design. Code is

written in VHDL. Synthesizing and hardware implementation of the design is done

with this platform. Synthesizing and hardware implementation of VHDL code is

dependent on the FPGA used. Therefore, Xilinx ISE platform is used.

Chipscope Pro software tool is used to debug and verify the design.

The test setup can be seen in Fig.5.2.

CAN FD 

ANALYZER 

ANALYZER 

COMPUTER USB 

CONNECTION

C
3 
(FPGA EVALUATION BOARD)

TRANSCEIVER 

CARD

 

Figure 5.2: Test Setup

FPGA Demoboard: CAN FD Controller is implemented in VHDL and realized in
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Xilinx Virtex5 ML507 demo board [15]. The pictures of the board can be seen in

Fig.5.3

GPIO & 

Power Supply 

Header

Push ButtonsVirtex 5 FPGA

Figure 5.3: Xilinx ML507 Demoboard

Virtex 5 FPGA with the part number of XC5VFX70T-1FFG1136 has the following

logic, memory and interface capacities which can be seen in Fig.5.1.The comparison

of the FPGA used with the other FPGAs belonging to Virtex-5 family is shown also

in Table 5.1.

Table5.1: Xilinx Virtex 5 FPGA Familiy Comparison

Some important features of the demo board is as follows:
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• Two Xilinx XCF32P Platform Flash PROMs (32 Mb each) for storing large

device configuration

• 100 MHz oscillator

• General purpose LEDs, pushbuttons

• Expansion header with 32 single-ended I/O, 16 LVDS-capable differential pairs,

14 spare I/Os shared with buttons and LEDs, power, JTAG chain expansion ca-

pability, and I2C bus expansion

CAN FD Transceiver: The signals named as TXD and RXD shown in Fig.5.4 are the

TTL level single ended signals connected to CAN FD Controller. CANH and CANL

are the differential ended signals connected to CAN FD bus.

Figure 5.4: CAN FD Transceiver Internal[31]

Transceivers contain both the transmitter and the receiver in a single chip. There

are open-drain output transistors with internal pull-up resistors connected to half the

power supply voltage (VCC/2 ±10%) to generate a differential signal at CANH and

CANL.

When a dominant bit is required to be transmitted, both the open drain transistors

conduct resulting in VCC - 0.9V at CANH and 1.5V at CANL. The resulting voltage

is a logic low hence a dominant bit.

When a recessive bit is required to be transmitted, both of the open drain transistors

are put in High-Z state. By the help of pull up resistors VCC/2 voltage is applied

hence both CANH and CANL are at logic high, hence a recessive bit [31].
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Figure 5.5: Tranceiver Signals

Voltage levels of TXD and the corresponding CANH and CANL signals can be seen

in Fig.5.5.

For the experiments Texas Instrument’s TCAN Evaluation module is used. On the

module board, there is a TCAN1042-Q1 Automotive Fault Protected CAN Transceiver

with CAN FD.[19]. The picture of the transceiver board can be seen in Fig.5.6. FPGA

demo board interfaces this board with TXD and RXD signals. Furthermore, 5V, 3.3V

and GND signals are also provided by the FPGA board. These signals are available

at the connector on the left side of the board in Fig.5.6. The connections are made

between FPGA and transceiver board through this connector. Furthermore, on the

right side of the board, CAN FD bus signals are available on the connector. In order

for the voltage be formed properly on CANH and CANL, 120 ohm resistor should

be connected between CANH and CANL lines. For this purpose, there is 120 ohm

resistor available on the board.

FPGA 
Demoboard 

Side 
Signals

CAN FD 
BusSide 
Signals

Figure 5.6: CAN FD Transceiver Board
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CAN FD Analyzer: CAN FD Analyzer provides connection between CAN FD bus

and the computer. Computer connection is done with USB interface. A computer

Graphical User Interface called PCAN View is used to generate the desired CAN FD

messages, monitor CAN FD bus and generate error. This adapter is used to debug and

verify the functionality of the CAN FD Controller developed. Analyzer hardware can

be seen in Fig.5.7.

Figure 5.7: PCAN USB FD Hardware

Platform Cable USB II: Platform Cable USB II provides both the hardware and the

software to provide high- performance, reliable and easy to perform configuration of

Xilinx devices. Platform Cable USB II connects to user hardware for the purpose of

configuring Xilinx FPGAs, programming Xilinx PROMs and CPLDs. In addition, the

cable is also used for indirectly programming of Platform Flash, third party SPI flash

devices, and third-party parallel NOR flash devices via JTAG interface. Furthermore,

Platform Cable USB II is a tool for debugging the embedded devices when used in

conjuction with the tools such as Xilinx Embedded Development Kit and ChipScope

Pro Analyzer. The platform cable can be seen in Fig.5.8.

5.2 Host Simulator Implementation

CAN FD Controller and Host Simulator have been implemented in the FPGA. The

interface between the CAN FD Controller and the Host Simulator is SPI. SPI signals

between these two are connected inside the FPGA as can be seen in Fig.5.9.
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Figure 5.8: Xilinx Platform Cable

RX Data 
FIFO

TX Data 
FIFO

Master SPI Protocol Block
(MSPB)

Write

Read

Received 
Data

Transmit
Data

Read
Received 

Data

Write 
Transmit

Data

Master SPI Control Block (MSPIC)

Button

MOSI

MISO

CLK

CSn

Interrupt

Block
RAM

TX Size 
FIFO

Read
Transmit

Data

Control
Logic
Block

HOST Simulator

Write 
Transmit

Data
Size

C3: Configurable 
CAN FD Controller 

HOST Simulator

TX

RX

MOSI

MISO

CLK

CSn

Interrupt

XILINX Virtex 5 FPGA

Figure 5.9: FPGA Implementation Block Diagram
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Host simulator configures the controller, requests transmissions and reads received

frames. In other words, it acts like a MCU. MCU includes a driver written special

to the controllers and software application is abstracted from the controller’s register

sets. Driver handles all of the register management. It knows the addresses of the

registers and maps the requests coming from the application to the corresponding

register addresses in the controller and performs register read and write operations.

Host simulator is implemented in an FPGA and since there is no MCU is involved,

driver concept mentioned here makes no sense. Instead, different practical approach

which is going to be described in this section is designed to make the Host Simulator

act like a MCU. The block diagram of the Host Simulator is in Fig.5.10.

Master SPI Control Block (MSPIC): Host needs an SPI interface to communicate

with the controller. As already mentioned in Sec.4.2, CAN FD Controller has a

SPI slave implementation. Host has SPI master role. For this purpose, SPI master

protocol is designed and implemented.

This block gets frame size in terms of bytes from TX Size FIFO, then gets as much

data as read from TX Size FIFO from the TX Data FIFO and begins transmitting SPI

frames. As already mentioned in Sec.4.2. MOSI line is used by the master and MISO

line is used by the slave. While transmitting data on MOSI line, SPIC block records

all of the data and puts it in the RX Data FIFO.

For Burst SPI Write and 32 bit SPI write, the data in the RX Data FIFO makes no

sense since no response is required from the slave. To illustrate this, discarded data

on MISO line is shown in Fig.5.11 for 32 bit SPI write command.

For Burst SPI Read and 32 bit SPI read operations, only some portion of the data

makes sense, rest is discarded. To illustrate this, discarded data on MISO line is

shown in Fig.5.12 for 32 bit SPI read command. For the portion of the frame where

the slave responds, do not care part on MOSI line in Fig.5.12, as many 0xFF bytes as

the amount of the response from the slave are transmitted to hold the MOSI line logic

1 and hold the CSn signal asserted for the whole duration of the frame.

To illustrate an example SPI frame transmission operation, the steps below are fol-

lowed by SPIC:
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 instruction  address  data out
1 0 A15 A14 A1 A0... ... ... ... D31 D30 ... ... ... ... D1 D0

don t care

0 0 0 0 0 0

CLK

MOSI

MISO

CSn

Discarded Data

CLK

MOSI

MISO

CSn

 instruction  address 

 data out

1 1 A15 A14 A1 A0... ... ... ...

D31 D30 ... ... ... ... D1 D0
don t care

don t care0 0 0 0 0 0

Discarded Data Meaningful Data

Figure 5.11: SPI Read Operation

• SPIC reads 8 from TX Size FIFO

• Then it reads 8 bytes from the RX data FIFO and forms a frame from this 8

bytes information and begins transmitting.

• While transmitting it records 8 bytes on MISO line and puts them into the RX

Data FIFO byte by byte.

Control Logic Block: This block is connected to a block ram. The block ram holds

the information in the following format.

Frame Size in terms of bytes + Bytes to be transmitted

Block RAM IP Core has the option to have initialization values when FPGA powers

up. An initialization file is presented to the IP Core to define the initial content of

each memory location. When the core is generated to be used in project, this file is

loaded to block RAM through the block memory generator GUI. Every time this file

is modified, whole FPGA code must be resynthesized and implemented to have the

changes take effect. For each of four SPI commands, block ram data content is shown

below:

32 bit SPI write operation to set TX buffer 1 DLC (Data Length Code) Register to

64 byte (0x.. represents hex format):
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 instruction  address  data out
1 0 A15 A14 A1 A0... ... ... ... D31 D30 ... ... ... ... D1 D0

don t care

0 0 0 0 0 0

CLK

MOSI

MISO

CSn

Discarded Data

CLK

MOSI

MISO

CSn

 instruction  address 

 data out

1 1 A15 A14 A1 A0... ... ... ...

D31 D30 ... ... ... ... D1 D0
don t care

don t care0 0 0 0 0 0

Discarded Data Meaningful Data

Figure 5.12: SPI Burst Read Operation

Figure 5.13: Initialization Block Ram Data Content for 32 Bit SPI Write Command

• Instruction Code (1 byte): 0x02

• Register Address (2 bytes): 0x0104

• Data (32 bit-4 bytes): 0x00000040

• Frame Size in terms of bytes = 1 + 2 + 4 = 7

• When all of this information is put in the block ram, following content is

formed: 0x07, 0x02, 0x01, 0x04, 0x00, 0x00, 0x00, 0x40

• The data content of this SPI frame in block ram can be seen in Fig.5.13.

32 bit SPI read operation to read RSR 1 (Receive Status Register 1) at address

0x0018 (0x.. represents hex format):
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Figure 5.14: Initialization Block Ram Data Content for 32 Bit SPI Read Command

• Instruction Code (1 byte): 0x03

• Register Address (2 bytes): 0x0018

• Data (32 bit-4 bytes): 0xFFFFFFFF

• Frame Size in terms of bytes = 1 + 2 + 4 = 7

• When all of this information is put in the block ram, following content is

formed: 0x07, 0x03, 0x00, 0x18, 0xFF, 0xFF, 0xFF, 0xFF

• For the 32 bit SPI read, the slave responds to this request with 4 bytes (32 bit)

of data, for this purpose, the data part of the frame is transmitted as 4 times

0xFF bytes to keep CSn signal asserted hence the slave is given enough time

to provide the required 4 bytes of data. The data content of this SPI frame in

block ram can be seen in Fig.5.14.

Burst SPI write to Buffer 1 TX Data Register (0x.. represents hex format):

• Instruction Code (1 byte): 0x00

• Register Address (2 bytes): 0x0108

• Burst Size (1 byte): 0x40

• Data (64 bytes): 0x01, 0x02, 0x03... 0x63, 0x64

• Frame Size in terms of bytes = 1 + 2 + 1 + 64 = 68 = 0x44
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Figure 5.15: Initialization Block Ram Data Content for Burst SPI Write Command

• When all of this information is put in the block ram, following content is

formed: 0x44, 0x00, 0x01, 0x08, 0x40, 0x01, 0x02, 0x03 ... 0x64

• The data content of this SPI frame in block ram can be seen in Fig.5.15.

32 bytes Burst SPI read from Buffer 11 RX Data Register (0x.. represents hex

format):

• Instruction Code (1 byte): 0x01

• Register Address (2 bytes): 0x1304

• Burst Size (1 byte): 0x20

• Data (64 bytes): 0xFF, 0xFF, 0xFF ... 0xFF

• Frame Size in terms of bytes = 1 + 2 + 1 + 32 = 38 = 0x24

• When all of this information is put in the block ram, following content is

formed: 0x24, 0x01, 0x13, 0x04, 0x20, 0xFF, 0xFF, 0xFF ... 0xFF

• For 32 byte Burst SPI read, the slave responds to this request with 32 bytes of

data, for this purpose data part of the frame is transmitted as 32 times 0xFF
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Figure 5.16: Initialization Block Ram Data Content for Burst SPI Read Command

bytes to keep CSn signal asserted hence slave is given enough time to provide

the requested 32 bytes of data. The data content of this SPI frame in block ram

can be seen in Fig.5.16.

The control logic block gets the frames one by one from the initialized block ram.

It writes the frame size to the Size FIFO and the data to the Data FIFO of SPIC and

waits for the transmission to be completed. For a new frame to be transmitted, it either

waits for a trig (button press or an interrupt) or begins transmitting the new frame

without waiting until a determined number of frame transmissions is reached. This

depends on the application. For each application developed for CAN FD Controller

verification, the content of Block RAM initialization file and the control logic block

application code is modified.

5.3 Transmit Buffer Configuration and Transmission Tests

The purpose of this test is to verify the transmission functionality of CAN FD Con-

troller. By doing this test, following functions are verified:
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• 96 x Transmit Register Set functionality

• TRR functionality

• Each of 96 x Buffers functionality

• Buffer memory configurability

• Buffer priority functionality

• Transmission of the frames according to CAN FD protocol specification

Test setup in Fig.5.2 is used. Host Simulator’s block ram initialization file is modified

such that:

• TX buffers are configured such that the following number of messages with

indicated payload size is stored. Total of 96 buffers are used and the total size

of the buffers is 1392 bytes.

– 64 bytes x 4 buffers

– 48 bytes x 6 buffers

– 32 bytes x 6 buffers

– 24 bytes x 6 buffers

– 20 bytes x 6 buffers

– 16 bytes x 6 buffers

– 12 bytes x 6 buffers

– 8 bytes x 6 buffers

– 7 bytes x 6 buffers

– 6 bytes x 6 buffers

– 5 bytes x 6 buffers

– 4 bytes x 6 buffers

– 3 bytes x 6 buffers

– 2 bytes x 6 buffers

– 1 byte x 14 buffers
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• ID of the TX mailboxes are configured

• Data and TRR (Transmit Request Register) writes have been performed one

by one to transmit the messages in an ordered way. For example:

– The message content has been written to CAN FD Controller first mailbox

buffer and

– 0x00000001 was written to TRR1 to initiate the transmission of the first

message.

• Similarly 96 other mailboxes are requested to transmit their frames one by one

following the procedure above. The messages are transmitted each time the

push button is pressed. The message data content and the IDs of the messages

received by the CAN FD analyzer are checked and compared with the ones on

the FPGA side. The contents of the messages are verified to be correct.

• All of the data is written one by one to the mailboxes. Then 3 consecutive TRR

(TRR 1, TRR 2, TRR 3) writes in order to request all of the messages to be

transmitted at once have been performed. The messages have been transmitted

in correct priority order and the message data content and ID of the messages

received by the CAN FD analyzer is checked and compared with the ones on

the FPGA side. The content of the messages are verified to be correct. The

time gap between SPI frames is 1 second in the host application.

First 16 buffers configuration, ID assignment can be seen in Fig.5.17.

First 16 buffers’ data content and transmission requests can be seen in Fig.5.18.

The message content (ID, data, message size and timestamp) received at CAN

FD Analyzer can be seen in Fig.5.19. First 16 buffers are put in a red rectangle.

• Another experiment regarding the priority verification is done by using the

same host application block memory initialization file as in the previous test.

However, the order of the three TRR writes has been changed as in Fig.5.20.

Furthermore, the time gap between SPI frames in the host application is re-

duced to 10 µs. By doing this, we expect to see that the frame in the buffer

number 33 is received first since it is requested first by TRR 2 write. Then
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Figure 5.17: First 16 Buffers Configuration
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Figure 5.18: First 16 Buffers Transmission Data Content and Request

after the transmission is over, Buffer 1 takes over the transmission priority. Be-

cause by the time TRR 1 is written, Buffer 33 is the buffer with the highest

priority. Therefore, after the buffer 33 frame transmission, we expect to see

buffer 1 transmission, buffer 2 transmission, buffer 3 transmission and so on.

The messages are received in the expected order as can be seen in Fig.5.21 and

the priority of the buffers is verified.

• Both of the frame types, which are with the base and the extended ID are ver-

ified. PCAN shows the 29 bit and 11 bit representation of the IDs while the

memory initialization file shows the 32 bit representation of the IDs as de-

scribed in ID register. Therefore, when 32 bit ID in the initialization file is

converted to 11 bit Base or 29 bit Extended ID format, it is verified that the

same ID number is seen at the PCAN analyzer as the FPGA side.

• Buffer sizes are arranged such that they include every possible message size

CAN FD protocol defines therefore different message sizes and two types of

CRC calculation methods depending on the message size are verified.
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Figure 5.20: Transmission Requests for Priority Test

5.4 Receive Buffer Configuration and Reception Tests

The purpose of this test is to verify the reception functionality of the CAN FD Con-

troller. By doing this test, following functions are verified:

• RX buffers are configured such that the following number of messages with the

indicated payload are stored. Total of 96 buffers are used and the total size of

the buffers is 1392 bytes.

– 64 bytes x 4 buffers

– 48 bytes x 6 buffers

– 32 bytes x 6 buffers

– 24 bytes x 6 buffers

– 20 bytes x 6 buffers

– 16 bytes x 6 buffers

– 12 bytes x 6 buffers

– 8 bytes x 6 buffers

– 7 bytes x 6 buffers

– 6 bytes x 6 buffers

– 5 bytes x 6 buffers

– 4 bytes x 6 buffers

– 3 bytes x 6 buffers

– 2 bytes x 6 buffers
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– 1 byte x 14 buffers

• ID and Mask Registers are configured

• For each buffer, a frame with the ID that can pass the buffer’s filter and a frame

with an ID that can’t pass the buffer’s filter are prepared. Therefore, 96x2 =

192 frames are going to be transmitted via CAN FD Analyzer’s PCAN View to

CAN FD Controller.

• The frames that are in the passing group can only pass one buffer’s filter.

• The data content of the frames that can’t pass the filter is filled with all 0xFFs.

• These 192 message frames are transmitted by the analyzer.

• CAN FD Controller receives them all and should place the frames that pass the

filter into the related buffers in FRM and ID and data content should be the

same as the ones on the PCAN View transmitted. Furthermore, data content

should not be all 0xFFs.

• Since all of the 96 RX buffers are filled with the received data, the content of

RSR is expected to be all logic 1.

• Host performs read operations and puts the received data to its RX Data FIFO

as already explained in Sec.4.5. ChipScope is used to monitor the FIFO sig-

nals. Chipscope is like an oscilloscope inside the FPGA. It monitors the real

time data and shows this information to the user for debugging, verification and

testing purposes. It has to be given a trigger so that the desired data is cap-

tured when the trigger condition occurs. It is possible to have as many trigger

occurrences as desired in a single capture. In order to observe the read data

from SPI, trigger condition is set to rising edge of rx_data_fifo_wr_en

signal. This signal is the FIFO write enable strobe. SPIC pulses this FIFO

Write Enable signal along with the received byte to put the received byte in

RX Data FIFO. Each time this signal is pulsed, the new data is written to the

FIFO. Therefore, by setting the trigger condition to rising edge of this signal

and trigger occurrence count to 96, it is possible to monitor all of the read data

from CAN FD Controller. Even for the frame with 64 byte payload 96 trigger
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occurrences are enough to capture every single received byte from CAN FD

Controller signals.

• An application is designed for this test such that whenever the button on the

demo board is pressed, a new SPI read or write request from Host simulator to

CAN FD Controller takes place.

• Before the button is pressed, ChipScope is commanded to wait for trigger.

When the button is pressed, data is captured.

• The following procedure is repeated by 96 times, starting from the Buffer 1.

– One of the three RSR is read by Host Simulator to learn the message

mailbox number holding the message to verify that the message passes

the filter correctly and its stored in the correct mailbox.

– ID of the message received is read by Host Simulator and compared with

PCAN View data so that the received message ID is verified

– The message content of the received frame is read by Host Simulator and

the payload of the received frame is verified by comparing with the data

on PCAN View

– Related RSR bit is cleared by the Host Simulator by performing RSR

write

• By performing this test,

– Both of the frame types, which are with the base and the extended ID are

verified.

– 96 x RX buffer functionality is verified

– The message reception according to CAN FD protocol specification is

verified

– All possible message sizes and CRC calculation according to the message

size are tested and verified

– RSR functionality is verified

– Buffer configurability is verified
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• The reception procedure described here is illustrated as follows and Buffer 27

is chosen as a sample.

– PCAN messages to be transmitted by PCAN with matching and non-

matching IDs for Buffer 27 can be seen in Fig.5.22.

Filter Matching Frame for 

Buffer 27

Filter Not 

Matching Frame 

for Buffer 27

Figure 5.22: Message Content for Buffer 27

– RSR1 is read as 0xFC000000 and can be seen in Fig.5.23a

RSR1[31:0] = 0xFC000000 means:

∗ RSR1[25:0] -> All logic 0s

∗ RSR1[31:26]-> All logic 1s.

Since Buffers are read one by one and the related bits of RSR are cleared.

26 other RSR bits are already cleared. And remaining 6 bits of RSR 1 are

logic 1 and will be cleared in the remaining part of the test.
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– ID of the message read as in Fig.5.23b. 0x55200000 -> 2A9h

– The payload of the message is as in Fig.5.24a.

– RSR 1 after related buffer 27 bit is cleared is read as 0xF8000000 and can

be seen in Fig.5.24b.

∗ RSR 1[31:0] = 0xF8000000 means:

· RSR 1[26:0] -> All logic 0s

· RSR 1[31:27]-> All logic 1s.

∗ Buffers are read one by one and related bits of RSR are cleared. 26th

RSR 1 bit is cleared with this operation hence total of 27 bits of RSR

1 are cleared by now.

5.5 Response Time Measurements

Response time measurements are carried out for transmission and reception seper-

ately.

Transmission Response Time: Host writes data through SPI to the related mailbox

and writes to TRR register to initiate transmission. Host Simulator is arranged to

fulfill this purpose. FPGA Core polls TRR to detect any pending request, determines

the number of the pending buffer having the highest priority by binary search algo-

rithm. Core reads the data from the mailbox and writes this data to CAN FD TX Data

FIFO and message size is already known by the controller and it is also written CAN

FD TX Size FIFO and the transmission begins. Response time consists of all of these

processes. The response time delay components are as follows:

• FPGA Core Delay:

– Binary search to determine the highest priority message to transmit

– Memory read operation to get the transmit data from the related mailbox

– Memory write operation to the CAN FD Transmitter FIFOs

The measurement is done between SPI frame is received completely (the time

when SPI CSn signal is deasserted) and CAN FD frame begins transmission

(start bit of canfd_tx_int signal)
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Chipscope Result: 113 FPGA clock cycles = 1,13 µs as can be seen in Fig.5.25a.

• SPI Burst write to the mailbox frame data can be seen in Fig.5.25b.

Theoretical Result: (8 + 16 + 8 + B · 8) · cSPI , For B = 64, the delay is 54,4

µs as already explained in Sec.4.7.

Chipscope Result: 54,51 µs

The difference between the theoretical result and the practical result is due to

the fact that CSn signal is kept asserted for some additional clock cycles before

and after the signals are active.

• SPI write to TRR can be seen in Fig.5.26a.

Theoretical Result: (8+16+32) ·cSPI , the delay is 5,4 µs as already explained

in Sec.4.7.

Chipscope Result: 5,72 µs

The difference between the theoretical result and the practical result is due to

the fact that CSn signal is kept asserted for some additional clock cycles before

and after the signals are active.

• Over all response time measurement can be seen in Fig.5.26b.

Theoretical Result: 54,4 µs+ 5,4 µs = 59,8 µs as explained in Sec.4.7.

Chipscope Result: 61,48 µs

Reception Response Time: CAN FD message is received by the controller. An in-

terrupt is generated to notify the Host Simulator. When the Host Simulator gets the

interrupt it begins reading ISR (Interrupt Status Register) to learn the source of the

interrupt. Then after learning message reception event, it reads three RSR namely

RSR1, RSR2, RSR3 to identify the buffer number holding the received message.

Then it reads data register of the related buffer. It clears ISR and RSR. Response

time consists of all of these processes. The response time delay components are as

follows:

• FPGA Core Delay:

– FPGA writing the received data to related buffer memory

88



S
P

I 
C

S
n

 d
e

a
s

s
e

rt
e

d

C
A

N
 F

D
 F

ra
m

e
 t

ra
n

s
m

is
s

io
n

 b
e

g
in

s
 w

it
h

 a
 s

ta
rt

 b
it

S
P

I 
T

R
R

 W
ri

te
 F

ra
m

e
S

P
I 
6

4
 b

y
te

 D
a

ta
 W

ri
te

 F
ra

m
e

1
1

3
 F

P
G

A
 C

lo
c

k
 C

y
c

le
s

S
P

I 
6

4
 b

y
te

 D
a

ta
 W

ri
te

 F
ra

m
e

5
4

5
1

 F
P

G
A

 C
lo

c
k

 C
y

c
le

s

(a
)F

PG
A

C
or

e
D

el
ay

S
P

I 
C

S
n

 d
e

a
s

s
e

rt
e

d

C
A

N
 F

D
 F

ra
m

e
 t

ra
n

s
m

is
s

io
n

 b
e

g
in

s
 w

it
h

 a
 s

ta
rt

 b
it

S
P

I 
T

R
R

 W
ri

te
 F

ra
m

e
S

P
I 
6

4
 b

y
te

 D
a

ta
 W

ri
te

 F
ra

m
e

1
1

3
 F

P
G

A
 C

lo
c

k
 C

y
c

le
s

S
P

I 
6

4
 b

y
te

 D
a

ta
 W

ri
te

 F
ra

m
e

5
4

5
1

 F
P

G
A

 C
lo

c
k

 C
y

c
le

s

(b
)S

PI
B

ur
st

W
ri

te
D

el
ay

Fi
gu

re
5.

25
:T

X
R

es
po

ns
e

Ti
m

e
M

ea
su

re
m

en
ts

1

89



5
7
2
 F

P
G

A
 C

lo
c
k

 C
y
c
le

s

S
P

I 
T

R
R

 W
ri

te
 F

ra
m

e

C
A

N
 F

D
 F

ra
m

e
 t

ra
n

s
m

is
s
io

n
 b

e
g

in
s
 w

it
h

 a
 s

ta
rt

 b
it

S
P

I 
6
4
 b

y
te

 D
a
ta

 W
ri

te
 F

ra
m

e
 

T
ra

n
s
m

is
s
io

n
 B

e
g

in
s
 w

it
h

 C
S

n
 a

s
s
e
rt

io
n

6
1
4
8
 F

P
G

A
 C

lo
c
k

 C
y
c
le

s

(a
)T

R
R

W
ri

te
D

el
ay

5
7
2
 F

P
G

A
 C

lo
c
k

 C
y
c
le

s

S
P

I 
T

R
R

 W
ri

te
 F

ra
m

e

C
A

N
 F

D
 F

ra
m

e
 t

ra
n

s
m

is
s
io

n
 b

e
g

in
s
 w

it
h

 a
 s

ta
rt

 b
it

S
P

I 
6
4
 b

y
te

 D
a
ta

 W
ri

te
 F

ra
m

e
 

T
ra

n
s
m

is
s
io

n
 B

e
g

in
s
 w

it
h

 C
S

n
 a

s
s
e
rt

io
n

6
1
4
8
 F

P
G

A
 C

lo
c
k

 C
y
c
le

s

(b
)T

ot
al

Tr
an

sm
is

si
on

D
el

ay

Fi
gu

re
5.

26
:T

X
R

es
po

ns
e

Ti
m

e
M

ea
su

re
m

en
ts

2

90



– FPGA updating RSR and generating interrupt

The time between the CAN FD frame is received and the interrupt is generated

is measured in Fig5.27.

Chipscope Result: 1,41 µs as can be seen in Fig.5.27.

• SPI Read from ISR by the host to determine the source of the interrupt can be

seen in Fig.5.28.

Theoretical Result: (8+16+32) ·cSPI , the delay is 5,4 µs as already explained

in Sec.4.7.

Chipscope Result: 5,72 µs

• 3x SPI Read from RSR (RSR 1, RSR 2 and RSR 3) can be seen in Fig.5.29

Theoretical Result: 3 x (8 + 16 + 32) · cSPI , the delay is 16,2 µs as already

explained in Sec.4.7.

Chipscope Result: 3 x 5,72 µs = 17,46 µs

• Burst SPI Read of the payload of the frame can be seen in Fig.5.30.

Theoretical Result: (8 + 16 + 8 + B · 8) · cSPI , For B = 64, the delay is 54,4

µs as already explained in Sec.4.7.

Chipscope Result: 54,52 µs

• SPI Write to clear the related RSR can be seen in Fig.5.31.

Theoretical Result: (8+16+32) ·cSPI , the delay is 5,4 µs as already explained

in Sec.4.7.

Chipscope Result: 5,72 µs

• SPI Write to clear ISR can be seen in Fig.5.32.

Theoretical Result: (8+16+32) ·cSPI , the delay is 5,4 µs as already explained

in Sec.4.7.

Chipscope Result: 5,72 µs

• Overall response time measurement be seen in Fig.5.33

Theoretical Result: 89,4 µs as explained in Sec.4.7.

Chipscope Result: 91,26 µs
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Interrupt is GeneratedMessage Reception Done

141 FPGA Clock Cycles

572 FPGA Clock Cycles

Host Finishes ISR

Host Begins ISR 

Read

Figure 5.28: ISR Read Delay

1746 FPGA Clock Cycles

Host Begins 

Reading RSR1

Host Finishes 

Reading RSR3

5452 FPGA Clock Cycles

Host Begins Reading 

Data Register

Host Finishes Reading 

Data Register

Figure 5.29: 3x RSR Read Delay 1746 FPGA Clock Cycles

Host Begins 

Reading RSR1

Host Finishes 

Reading RSR3

5452 FPGA Clock Cycles

Host Begins Reading 

Data Register

Host Finishes Reading 

Data Register

Figure 5.30: Burst SPI Read Delay

93



572 FPGA Clock Cycles

Host Begins 

Writing to RSR

Host Finishes 

Writing to RSR

572 FPGA Clock Cycles

Host Begins 

Writing to ISR

Host Finishes 

Writing to ISR

Figure 5.31: RSR Clear Delay 572 FPGA Clock Cycles

Host Begins 

Writing to RSR

Host Finishes 

Writing to RSR

572 FPGA Clock Cycles

Host Begins 

Writing to ISR

Host Finishes 

Writing to ISR

Figure 5.32: ISR Clear Delay

9126 FPGA Clock Cycles

CAN FD message is received ISR is cleared

Figure 5.33: Total Receive Response Time
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4 Bytes ISR Data

Interrupt generated, 

falling edge of interrupt signal

Figure 5.34: Interrupt Generation

5.6 Interrupt and Error Tests

Interrupt Test: When a message is received and it passes the filter, an interrupt is

generated successfully and ISR is set accordingly. Interrupt is generated as active

low pulse, it is verified as in Fig.5.34 with spi_interrupt signal.

ISR is read and its verified that ISR includes the information that a new message is

received, in other words 3th bit of ISR is logic 1 as in Fig.5.35

Transmission Error Tests

• Ack Error: PEAK Analyzer is set to listen only mode. In this mode, the an-

alyzer only listens to the bus and does not send responses such as acknowl-

edgment to the received messages. In other words, it acts like a passive node.

Listen only setting can be seen in Fig.5.36 and Fig.5.37. When FPGA transmits

a message and does not get an acknowledgment, error condition occurs. For this

case, TMSR (Transmit Message Status Register) last two bits are read ’10’

and ISR last 4 bits are read as ’0001’ as can be seen in Fig.5.38. These values

indicate that ack error condition is detected and related registers are correctly

modified.

• Bit Error: PEAK Analyzer has a feature called Error Generator. Analyzer puts

6 dominant bits at the indicated position selected in GUI as in Fig.5.39. Trans-

mitter detects the error when its recessive bit is overwritten by a dominant bit.

This might take up to 6 bit time. Error generator is set to destroy 40th bit of
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TMSR last 2 bits = ‘10’

ISR last 4 bits = ‘0001’ = hex ‘1’

Internal ack error 

detection pulse

Listen Only Mode

Figure 5.36: PCAN Listen Only Mode Settings 1

TMSR last 2 bits = ‘10’

ISR last 4 bits = ‘0001’ = hex ‘1’

Internal ack error 

detection pulse

Listen Only Mode

Figure 5.37: PCAN Listen Only Mode Settings 2
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TMSR last 2 bits = ‘10’

ISR last 4 bits = ‘0001’ = hex ‘1’

Internal ack error 

detection pulse

Listen Only Mode

Figure 5.38: TX Ack Error Register Content

the frame. By doing this, bit error is introduced. TMSR last 2 bits are set as

’01’ and ISR last four bits are set as ’0001’ for bit error event as can be seen in

Fig.5.40. These values indicate that bit error condition is detected and related

registers are correctly modified. Bit error is only for transmission, for the case

where 6 dominant bit is intruded by the error generator, it is interpreted as stuff

error at the PEAK Analyzer data logger as can be seen in Fig.5.41, because

after 5 consecutive dominant bit, 1 recessive bit must be driven. In other words

bit error at transmitter side (FPGA) corresponds to stuff error at the receiver

side (PEAK Analyzer) due to error generation algorithm of the analyzer.

RECEIVE ERROR TESTS

• Stuff Error: Error Generator of PCAN Analyzer is set to generate error starting

from 40th bit and driving 6 consecutive dominant bits hence causing stuff error.

For this error case, last two bits of RESR (Receive Error Status Register) are

set as ’01’ last two bits of ISR are set as ’10’ as can be seen in Fig.5.42. These

values indicate that stuff error condition is detected and related registers are

correctly modified. Furthermore, stuff error is logged at PCAN’s data logger as

can be seen in Fig.5.43.

• CRC Error: With trial and error, the bit which the error generator will destroy

to obtain CRC Error is determined as 550th bit and CRC error is generated.

For this error case, last two bits of RESR are set as ’10’ last two bits of ISR

are set as ’10’ as can be seen in Fig.5.44. These values indicate that stuff error
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TMSR last 2 bits = ‘01’

ISR last 4 bits = ‘0001’ = hex ‘1’

Internal bit error 

detection pulse

Figure 5.39: PCAN Error Generator

TMSR last 2 bits = ‘01’

ISR last 4 bits = ‘0001’ = hex ‘1’

Internal bit error 

detection pulse

Figure 5.40: Bit Error Register Content
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TMSR last 2 bits = ‘01’

ISR last 4 bits = ‘0001’ = hex ‘1’

Internal bit error 

detection pulse

Figure 5.41: PCAN Error Log

RMSR last 2 bits = ‘01’

ISR last 4 bits = ‘1010’ 

= hex ‘A’

Internal stuff error 

detection pulse

Figure 5.42: RX Stuff Error Register Content
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RMSR last 2 bits = ‘01’

ISR last 4 bits = ‘1010’ 

= hex ‘A’

Internal stuff error 

detection pulse

Figure 5.43: PCAN Error Log

condition is detected and related registers are correctly modified.

• Form Error: With trial and error, the bit which the error generator will de-

stroy to obtain form error is determined and form error is generated such that

acknowledgment delimiter is destroyed. For this error case, last two bits of

RESR are set as ’11’ last two bits of ISR are set as ’10’ as can be seen in

Fig.5.45. These values indicate that stuff error condition is detected and related

registers are correctly modified. Furthermore, CRC error is logged at PCAN’s

data logger as can be seen in Fig.5.46.

5.7 Arbitration and Other Tests

Arbitration Test:

The setup whose block diagram shown in Fig.5.47 is set.

• 2 x FPGA CAN FD Controllers + Applications are implemented in the FPGA.
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RMSR last 2 bits = ‘10’

ISR last 4 bits = ‘0010’ 

= hex ‘2’

Internal crc error 

detection pulse

Figure 5.44: RX CRC Error Register Content

RMSR last 2 bits = ‘11’

ISR last 4 bits = ‘1110’ = hex ‘E’

Internal form error 

detection pulse

Figure 5.45: Form Error Register Content
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RMSR last 2 bits = ‘11’

ISR last 4 bits = ‘1110’ = hex ‘E’

Internal form error 

detection pulse

Figure 5.46: PCAN Form Error Log

Each node is connected to a CAN FD Transceiver. These two transceivers and

also CAN FD Analyzer are connected to the CAN FD bus.

• A button on the FPGA demo board is configured such that when it is pressed

each application will start transmitting messages with 36F and 36E ID respec-

tively such that there is 100 ns time between the transmissions.

• Host Simulators’ Initialization files are configured accordingly for this purpose.

• Node 1 has ID 36F and Node 2 has ID 36E.

• The cases where the message with the ID 36E is transmitted first and the mes-

sage with the ID 36F is transmitted first are tested. For both of these two cases,

the time between the first message and the second message is 100 ns.

• It is observed that the message with the ID 36E is received first on the ana-

lyzer side and, the message with the ID 36F loses arbitration and is transmitted

with the next attempt and is received after the message with the ID 36E at the

analyzer.
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• Node 1 always loses arbitration as can be seen in Fig.5.48.

• No matter which one is sent first, the message with the ID of 36E is received

first at the analyzer and the message with the ID of 36F is received later. Two

cases are shown in Fig.5.49a and Fig.5.49b. Furthermore, these messages have

different data content.

• Arbitration mechanism is tried with both the short cable and 40m cable. The

mechanism is verified for both of the cable types.

• Arbitration test Setup with a 40 meters CAN FD Bus cable can be seen in

Fig.5.50.

Buffer Overflow Test: A messages which will be placed to Buffer 1 is transmitted

twice and overflow condition is generated. ISR last 8 bit is read as 0x1C, which

means a message is received, an overflow condition occurred and the number of the

buffer where overflow occurred is the buffer number 1. The content of ISR during

overflow event and the content of ISR being read by the host simulator can be seen

in Fig.5.51 and Fig.5.52 respectively.

Bus Length Test: CAN FD specification indicates that with 1 Mbit arbitration phase

baud rate, bus length can be up to 40 meters. There are some factors which affect

bus speed. First of all, CAN arbitration mechanism limits the bus length because

during the acknowledgment bit or at the beginning of the arbitration phase where the

nodes compete with each other to take over the bus, the bit transmitted by a node

should propagate to every other node in the network system and the response of the

nodes must propagate back to the transmitter node in a single bit time. Furthermore,

every node in a CAN FD network introduces a stub which causes signal reflection

and reducing the signal integrity. The number of the nodes and their stub length also

affect the baud rate of the CAN FD bus. Moreover, CAN FD data phase baud rate is

independent from the bus length since the communication is one way and no response

is required from the other nodes like in the arbitration phase. But the arbitration phase

baud rate depends on the factors explained here.

In order to verify this bus length requirement, test setup with a 40 meters cable is

used. Successful transmissions and receptions as well as arbitration mechanism tests
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are successfully done. Both of the bus ends should have 120 ohm termination resistors

for the bus to function properly.
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CHAPTER 6

CONCLUSION

This thesis presents the design, implementation and evaluation of C3: Configurable

CAN FD Controller. C3 features a total of 192 buffers which are organized as fully

configurable 96 TX and 96 RX buffers. The buffers are organized as mailboxes and

the sizes of the mailboxes can be up to 64 bytes. Application time configurable size

for each mailbox gives the user great flexibility and convenience during the software

development for a CAN FD network. Furthermore, total size of the memory can also

be modified during synthesis. Therefore, it can easily be said that the buffers are fully

configurable in every way. The mailbox structure used in C3 instead of FIFO helps

the response time to be lower since the higher priority buffers can always be accessed

first. This is critical for tightly scheduled networks. Each RX buffer has a dedicated

message acceptance filter to reduce the work load of the host MCU. C3 implements

CAN FD frames with both the base and the extended ID according to non-ISO CAN

FD protocol specification. The CAN FD baud rate is 2 Mbps.

C3 is configured and controlled through a defined register set by the host MCU. A

communication protocol is developed over SPI for any MCU to be able interface with

C3 easily. To be able to perform the functional verification and timing performance

tests of the designed controller hardware, a host MCU is required. For this purpose

a simulator which acts like a host MCU is developed in the FPGA platform. Host

simulator design includes a SPI master protocol block implementation and a block

memory which includes SPI frames data content to configure, control and command

C3. The block memory cells are initialized with the predefined data. For each test

performed, the number of SPI frames in block memory and the SPI frame data content

change.
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The host simulator gets the data from the block memory and transmits SPI frames

according to the designed SPI protocol. The host application varies according to

the block memory content. FPGA implementation includes C3 along with the host

simulator. FPGA clock frequency is 100 MHz. Number of slice registers used is 5029

(11% utilization). The number of slice LUTs is 11541 (utilization is 25%) and the

number of LUT flip flops is 3320 (utilization is 25%). Overall resource utilization can

be considered 25%. Resource consumption is low however due to clock frequency

being high, 100 MHz, some timing problems have been encountered during the design

phase. With the strategies explained in Sec.4.8, timing problems have been solved and

the design is implemented successfully.

The tests are performed to verify the functionality of the controller. The buffer con-

figurability for different CAN FD message sizes, transmission and reception of the

messages according to non-ISO CAN FD specification are verified. Furthermore, the

host MCU simulator successfully configures the ID and the message size registers for

each TX/RX mailbox and the ID & mask register pairs of accepting filters for RX

mailboxes. It successfully requests message transmissions, reads the received mes-

sages from the desired mailboxes when an interrupt is received. For the performed

tests, a professional CAN FD analyzer is used to transmit messages to C3 or monitor

the messages C3 transmits. Error conditions implemented in C3 are tested by gener-

ating errors via CAN FD analyzer’s error generation function. Arbitration mechanism

is tested by implementing one more CAN FD controller in the FPGA.

The response time measurements are performed to evaluate the timing performance

of the designed controller. Detailed measurements are provided and compared with

the theoretical results. Measured transmit response time is 61,48 µs, which is much

smaller than the MCU application delays, jitters and message periods. Furthermore,

the lowest message periods in vehicle applications is close to 5 ms as descrbied in

Sec.4.7. Measured receive response time is 91,26 µs, which is quite smaller than the

message duration that is 318 µs. This indicates that the received message is taken

from C3 more than quickly enough before the next message comes. Overall response

times for both the receive and transmit cases provide excellent timing performance.

C3: Configurable CAN FD Controller is based on Bosch non-ISO CAN FD protocol
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specification. Current development is only for academic purposes. C3 is an open

hardware platform and it can be used with any MCU having an SPI interface. SPI

interface is the communication protocol which defines the register read and write

operations between C3 and the host MCU. The host simulator hardware is also de-

signed in the scope of this thesis. Our next step is to develop a driver for C3 and begin

software development using this driver to perform the scheduling and frame packing

algorithms for this brand new CAN FD protocol.
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