C3: CONFIGURABLE CAN FD CONTROLLER: DESIGN, IMPLEMENTATION
AND EVALUATION

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

MEHMET ERTUG AFSIN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE
IN
ELECTRICAL AND ELECTRONICS ENGINEERING

FEBRUARY 2018

Approval of the thesis:

C?3: CONFIGURABLE CAN FD CONTROLLER: DESIGN, IMPLEMENTATION
AND EVALUATION

submitted by MEHMET ERTUG AFSIN in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Electronics Engineering De-
partment, Middle East Technical University by,

Prof. Dr. Giilbin Dural Unver
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Tolga Ciloglu
Head of Department, Electrical and Electronics Engineering

Prof. Dr. Senan Ece Giiran Schmidt
Supervisor, Electrical and Electronics Eng. Dept., METU

Assoc. Prof. Dr. Klaus Werner Schmidt
Co-supervisor, Electrical and Electronics Eng. Dept., METU

Examining Committee Members:

Prof. Dr. Gozde Bozdag1 Akar
Electrical and Electronics Engineering Department, METU

Prof. Dr. Senan Ece Giiran Schmidt
Electrical and Electronics Engineering Department, METU

Assoc. Prof. Dr. Ciineyt F. Bazlamacci
Electrical and Electronics Engineering Department, METU

Prof. Dr. ilkay Ulusoy
Electrical and Electronics Engineering Department, METU

Assoc. Prof. Dr. Orhan Gazi
Electronic and Communication Eng. Dept., Cankaya University

Date: February 7, 2018

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: MEHMET ERTUG AFSIN

Signature

v

ABSTRACT

C3: CONFIGURABLE CAN FD CONTROLLER: DESIGN,
IMPLEMENTATION AND EVALUATION

AFSIN, Mehmet Ertug
M.S., Department of Electrical and Electronics Engineering
Supervisor : Prof. Dr. Senan Ece Giiran Schmidt

Co-Supervisor : Assoc. Prof. Dr. Klaus Werner Schmidt

February 2018, [120|pages

CAN FD (Controller Area Network with Flexible Data Rate) is a new communica-
tion standard, compatible with CAN. Different from CAN, CAN FD switches to high
data rate during data transmission and allows payloads up to 64 bytes. In this thesis,
we propose C®: Configurable CAN FD Controller which features up to fully con-
figurable 96 TX and 96 RX buffers organized as mailboxes. Each RX buffer has
dedicated acceptance filters. The host MCU sees C® as a memory mapped device and
interfaces with it via SPI protocol which is designed and developed in the scope of
this thesis. Different from existing CAN FD Controllers, C* provides run time con-
figurable number of buffers and individual buffer sizes which makes it best use of a
single hardware for every application. Furthermore, it provides efficient and flexible
usage of a limited embedded memory. C? is implemented on a Xilinx Virtex 5 FPGA
demo board as an IP Core and its functions are verified at 2 Mbps and the response

time measurements are performed to evaluate the timing performance.

Keywords: CAN, CAN FD , CAN FD Controller, FPGA, Buffer Organization

vi

0z

C*: AYARLANABILIR CAN FD KONTROLCUSU: TASARIM,
GERCEKLESTIRIM VE DEGERLENDIRME

AFSIN, Mehmet Ertug
Yiiksek Lisans, Elektrik ve Elektronik Miihendisligi Bolimii
Tez Yoneticisi : Prof. Dr. Senan Ece Giiran Schmidt

Ortak Tez Yoneticisi : Dog. Dr. Klaus Werner Schmidt

Subat 2018, sayfa

CAN FD, CAN ile uyumlu yeni bir haberlesme protokoliidiir. CAN protokoliinden
farkli olarak, CAN FD veri gonderim fazinda yiiksek hiza ¢ikmakta olup, 64 bayta
kadar faydali yiik tasiyabilmektedir. Bu tez kapsaminda posta kutusu formatinda ayar-
lanabilir boyutlarda 96 adede kadar gonderici ve 96 adede kadar alici ara bellegine
sahip C?: Ayarlanabilir CAN FD kontrolciisii sunulmaktadir. Her bir alic1 arabel-
legi icin mesaj tanimlama filtresi bulunmaktadir. Kullanic1 mikro denetleyici, C®’ii
hafiza haritali bir cihaz olarak gormektedir ve SPI haberlesme protokolii ile C%’e
erismektedir. Bu tez kapsaminda mikro denetleyici ve C* arasindaki SPI protokolii
de tasarlanmgtir. Mevcut CAN FD kontrolciilerinden farkli olarak C® uygulama za-
maninda ayarlanabilir sayida arabellek ve ayarlanabilir boyutlarda arabellek yapisi
sunmaktadir. Bu esneklik sayesinde tek bir kontrolcii tiim uygulamalar i¢in kullani-
labilmektedir. Ayrica kisitli olan gomiilii hafizadan en verimli sekilde faydalanilmak-
tadir. C?, Xilinx firmasimin Virtex 5 FPGA gelistirme kartinda IP ¢ekirdegi olarak
gergeklenmistir. C*’iin tiim 6zellikleri 2 Mbps hizda dogrulanmig olup tepki siireleri

de dlciilerek zamanlama performansi degerlendirilmistir.

vii

Anahtar Kelimeler: CAN, CAN FD, CAN FD Kontrolciisii, FPGA, Ara Bellek Orga-

nizasyonu

viii

To My Family

X

ACKNOWLEDGMENTS

I would like to express my great appreciations to my supervisor Prof. Dr. Senan Ece
Giiran Schmidt and co-supervisor Assoc. Prof. Dr. Klaus Werner Schmidt for their
support and guidance throughout this thesis. I am thankful for their guidance, which

was very helpful in my research and writing of the thesis.

I wish to thank ASELSAN A.S. for giving me the opportunity of continuing my edu-
cation and providing financial support for my conference attendances. I wish to thank
my colleagues and seniors in the hardware design department. This thesis work was
supported by the Middle East Technical University as a Scientific Research Project
with contract number of BAP-03-01-2017-002. I would like to thank Empa Electron-

ics for their donated transceiver components.

I would like to express my special appreciation to Onur Aktop for his contributions
to improve my engineering skills. I would like to express special thanks to my fam-
ily. Finally, I would like to express my appreciation to my friend, Mehmet Ufuk
Biiyiiksahin. During thesis work, he helped me in every matter and he didn‘t leave

me alone.

TABLE OF CONTENTS

ABSTRACT]. v
OZ . . . vil
ACKNOWLEDGMENTS|.o oo oo X
TABLE OF CONTENTS| oo oo o oo Xi

LIST OF TABLES]

3 PREVIOUS WORK ON CAN/CAN FD CONTROLLERS

4 C?® (CONFIGURABLE CAN FD CONTROLLER) ARCHITECTURE, 23

4.1 Hardware Blocks: Memory Mapped Register Block| 25
4.2 Hardware Blocks: SPI Protocol Control Blockl 31
4.3 Hardware Blocks: Interrupt Control Block{ 35

xi

4> Hardware Blocks: Receiver Modulef. 42
4.6 Configuration Phase| 46
17 Data Phase and Timing] 47
4.8 FPGA Implementation Results| 52

15 EVALUATION OF C® (CONFIGURABLE CAN FD CONTROLLER)| 61

[5.1 Development and Test Environment. 61

[5.2 Host Simulator Implementation| 66

[5.3 Transmit Buffer Configuration and Transmission Tests|. . . . 74

[5.4 Receive Buffer Configuration and Reception Tests| 80

[5.5 Response Time Measurements| 85

[5.6 Interrupt and Error Tests|. 95

b.7 Arbitration and Other Tests| 101

6 CONCLUSION e e 113
REFERENCES| 117

xii

LIST OF TABLES

TABLES

Table3.1 CAN FD Controllers Comparison 1}. 19
Table(3.2 CAN FD Controllers Comparison2f. 20
Table 3.3 CAN ED Controllers Comparison 3|. 21
Table 4.1 Configuration Registers| 29
Table 4.2 SPI Commands and Responses| 34
Tablei4.3 Interrupt Register Setl 37
Table 4.4 TX Control RegisterSet|. 39
Table 4.5 RX Control Register Set|. 44
Tabled.6 TX(ID) RegisterSet 48
Table 4.7 RXUD) Register Set|. 49
Table4.8 FPGA Device Utilization Summary|. 53
Table 4.9 FPGA Project Status| 54
Table5.1 Xilinx Virtex 5 FPGA Familiy Comparison| 63

xiil

LIST OF FIGURES

FIGURES

Figure[2.1 CAN BaseFrame|.

Figure22 CANFDFrames|

Figure .1 C° Architecture]

Figure 4.2 'Top Level Architecture|f.

Figure 4.3 Memory Mapped Register Block (MMR)|

Figure 4.4 Example Memory organizations: (a) 88 buffers (b) 44 buffers| . . .

Figure 4.5 SPI Protocol Control Block|

Figure 4.6 SPI Timing Diagrams|

Figure 4.7 Interrupt Control Block|

Figure 4.8 TX Control Logic Block (TXCL)]

Figure 4.9 Binary Search Algorithm|.

Figure .10 CAN FD Transmitter Block (CANFDTX)|.

Figure #.TT RX Control Logic Block (RXCL)

Figure @.12 CAN FD Receiver-RX Block (CANFDRX)]

Figure 4.13 Message Filter Block (MF)

Figure4.14 FPGA Project Hierarchy|

X1V

Figure4.15 FPGA Implementation Options 1| 56

Figure4.16 FPGA Implementation Options 2| 57
Figure4.17 FPGA Implementation Options 3| 57
Figure4.18 FPGA Implementation Options 4| 58
Figure4.19 FPGA Implementation Options 5| 58
Figure[5.1 'Test Setup Block Diagram| 61
Figure[5.2 TestSetup| 62
Figure[5.3 Xilinx ML507 Demoboard|. 63
Figure[5.4 CANTFD Transceiver Internal[31] 64
Figure|5.5 'Tranceiver Signals| 65
Figure|5.6 CAN FD Transceiver Board 65
Figure[57 PCANUSBFD Hardware o o o oo 66
Figure[5.8 Xilinx Plattorm Cable| 67
Figure|5.9 FPGA Implementation Block Diagram| 67
Figure|5.10 Host Simulator Block Diagram| 69
Figure[5.11 SPI Read Operation| 70
Figure|5.12 SPI Burst Read Operation| 71

Figure|5.14 Initialization Block Ram Data Content for 32 Bit SPI Read Command| 72

Figure[5.15 Initialization Block Ram Data Content for Burst SPI Write Command| 73

Figure|5.16 Initialization Block Ram Data Content for Burst SPI Read Command| 74

XV

Figure[5.17 First 16 Buffers Configuration| 77

Figure[5.18 First 16 Buffers Transmission Data Content and Request 78
Figure|5.19 PCAN Data Logging for First 16 Transmissions| 79
Figure|5.20 Transmission Requests for Priority Test) 80
Figure[5.21 PCAN Message Reception for Transmission Priority Test| 81
Figure[5.22 Message Content for Buffer27, 84
Figure[5.23 Buffer 27 Read Operations 1| 86
Figure|5.24 Buffer 27 Read Operations 2| 87
Figure|5.25 TX Response Time Measurements 1f. 89
Figure|5.26 TX Response Time Measurements 2/. 90
Figure3.27FPGA Core Delay| 92
Figure[5.28ISRReadDelay] 93
Figure 329 3x RSRRead Delay] 93
Figure 3.30 Burst SPTRead Delay|] 93
Figure 3.3TRSR ClearDelay] 94
Figure[3.32TSRClear Delay| 94
Figure[5.33 Total Receive Response Time| 94
Figure|5.34 Interrupt Generation| 95
Figure|[5.35 ISR Read Operation| 96
Figure[5.36 PCAN Listen Only Mode Settings 1| 97
Figure[5.37 PCAN Listen Only Mode Settings 2| 97
Figure[5.38 TX Ack Error Register Content) 98

Xvi

Figure[5.40 Bit Error Register Content| 99
Figure 3.4ATPCANErrorLog| 100
Figure[5.42 RX Stuff Error Register Content 100
Figure 343 PCANEmorLog| 101
Figure[5.44 RX CRC Error Register Content| 102
Figure[5.45 Form Error Register Content 102
Figure[5.46 PCAN Form ErrorlLog|. 103
Figure[5.47 Arbitration Test Setup Block Diagram|. 104
Figure|5.48 Arbitration Loss| oo 106
Figure|5.49 Message Reception Orders|. 107
Figure[5.50 Arbitration Setup|o Lo 108
Figure[5.51 Overflow Register Content| 109
Figure[5.52 Overflow ISR Read Operation| 110

Xvii

LIST OF ABBREVIATIONS

SOF Start of Frame

RTR Remote Transmission Request

IDE Identifier Extension

DLC Data Length Code

ACK Acknowledgement

EOF End of Frame

EDL Extended Data Length

BRS Bit Rate Switch

ESI Error State Indicator

IFS Inter Frame Spacing

CAN Controller Area Network

CAN FD Controller Area Network Flexible Data
IP Core Intellectual Property Core

VHDL VHSIC Hardware Description Language

1D Identification

xXviii

CHAPTER 1

INTRODUCTION

CAN (Controller Area Networks) is the most widely used communication standard in
vehicle networks. ECUs (Electronic Control Units) in the vehicles exchange signals
in the form of messages in a CAN network [35]]. Due to CAN Bus network topology,
multiple ECUs are connected to each other on a single bus. The CAN Bus trans-
mission rates are up to 1 Mbps. However, the practical data rate is much lower than
1 Mbps. The data rate is limited by the arbitration and acknowledgment mechanisms.
During arbitration, for the simultaneous transmissions, each signal transmitted by the
nodes must reach to each other on time such that bit overwrite mechanism works.
During acknowledgment phase, the transmitter’s signal must propagate to the the re-
ceiving nodes and the nodes’ acknowledgment responses must reach to the transmitter

in time.

The number of ECUs in vehicles, the number of messages hence the amount of in-
formation carried on CAN BUS increase significantly day by day. CAN BUS is
becoming slow and inadequate. However due to wide usage of CAN BUS and au-
tomotive industry’s exacting reliability requirements, it is not easy to start using a
completely new communication protocol. For these reasons, Bosch came up with
CAN FD (CAN with Flexible Data Rate) protocol [28] in 2011. On the one hand,
CAN FD preserves the physical layer of CAN which determines the bus arbitration
signaling. On the other hand, CAN FD increases the data rate by simply switching to
a high transmission rate of up to 10 Mbps after the arbitration is over. Furthermore
it enables transmitting longer payloads of up to 64 Bytes instead of the 8 Byte CAN
payload.

Since CAN FD is a new protocol, ECU manufacturers’ plan to integrate CAN FD to

their design is at initial stage. The CAN FD Controllers available on the market are
implemented as IP Cores [6} (1} 9} [18, |5, 10, 4, 18, 20, [7]] and being developed since
2015. These IP cores are commercially sold and not available for academic evaluation

and analysis.

The worst-case response times (WCRTs) of messages on CAN/CAN FD are com-
puted assuming that the messages are stored in infinite priority queues. However,
in practice it is possible that higher priority messages that are released by the appli-
cation may get blocked due to the non-availability of transmission buffers in a CAN
controller [30]]. Hence, the timing and the scheduling of CAN/CAN FD messages im-
prove if the transmit and the receive buffer numbers and sizes are compatible with the
messages. On the one hand, the number of messages, their sizes and their priorities
depend on the applications that run on the ECUs. The variation in the message sizes
is particularly significant for CAN FD with a maximum data size of 64 Bytes. On the
other hand, the CAN controllers are embedded devices with hardware resource con-
straints which do not allow implementing the buffer configurations for all possible

message sets.

The CAN FD IP cores currently present in the literature either offer completely fixed
size buffer arrangement without configuration capability or allow limited buffer con-
figuration with some constraints. Therefore, it is not possible to have a single buffer
configuration which fits to every application. Different buffer configurations for dif-
ferent message sets lead to inefficient memory usage for the controllers without mem-

ory configuration capability.

In this thesis, we present a novel CAN FD Controller denoted as C* (Configurable
CAN FD Controller). It supports non-ISO CAN FD protocol specification. It is
implemented as an FPGA IP Core. The interface between the controller and the host

MCU is widely used communication protocol called SPI (Serial Peripheral Interface).

Different from existing CAN/CAN FD controllers, C* enables the configuration of
the transmit and receive buffers via SPI during run time before the main applications
on the ECU start to run. Such configuration capability enables appropriate buffer con-
figurations on each ECU in the vehicle according to the messages of the applications

running that ECU. Furthermore, it makes it possible to reconfigure the buffers if new

applications with new messages are added to the vehicle. The standard SPI interface
of C? enables any micro controller to run the applications and use C* without any

specific interface requirements.

C3 features up to 96 transmit and 96 receive buffers which can be configured via
SPI during the configuration phase before the main ECU application begins to run.
The buffers are organized as mailboxes. This configuration capability ensures that
controller’s memory is efficiently allocated for different message sets used for any
CAN network present in vehicles. Moreover, it is quite easy to add new messages to
the existing message set in a CAN network by reconfiguring the controller’s buffer
allocation. The mailboxes are allocated an average payload size of 16 bytes instead of
maximum payload size of 64 bytes. Because it is very unlikely that all the messages
in a message set of a network application will require 64 bytes payload size. This
yields 96x16 bytes memory consumption instead of 96x64 bytes hence less memory
usage and more memory utilization. The usage of SPI interface makes the integration
of the controller to the host MCUs easy since SPI is present in almost every MCU on

the market including the low cost ones.

The first main contribution of this thesis is the detailed design of C®. The design is
described in detail with functional blocks including the SPI block where a custom
communication protocol is designed over SPI. This custom protocol defines the com-
munication between the controller and the MCU. The signaling between the blocks
and how they exchange and process data are explained. The second main contribution
of this thesis is the transmit and receive response time analysis. The delay compo-
nents contributing the response time are measured individually and overall response
time is evaluated. C* is implemented on Xilinx Virtex 5 ML507 demo board and the
commercial CAN FD transceivers are used for CAN FD physical layer implementa-
tion. The design is verified by performing functional tests by sending and receiving

CAN FD messages at 2 Mbps using a professional CAN FD analyzer hardware tool.

The thesis organization is as follows: CAN, CAN FD and CAN/CAN FD Controller
basics are covered in Chapter[2] Existing CAN/CAN FD Controllers are discussed in
Chapter C? hardware blocks are presented with details including the SPI commu-
nication protocol in Chapter] This chapter explains FPGA Implementation details

and the challenges faced. Furthermore, data phase, configuration phase and timing
analysis are covered. The experimental setup, hardware components used, testing
methods, functional verifications and the response time performance measurements
of C® are provided in Chapter Finally, this thesis is concluded and future work is
outlined in Chapter 6]

CHAPTER 2

IN-VEHICLE NETWORKS

The contemporary vehicles contain a large number of electronic units which are ac-
tuators, sensors and microprocessor based Electronic Control Units (ECU)s. These
electronic components and the software running on the microprocessors enable im-
plementing complex functions that improve the safety, comfort and the efficiency of
the vehicle. To this end, electronic systems assist the driver to control the vehicle with
the functionality related to the steering, traction (i.e., control of the driving torque)
or braking including the anti lock braking system (ABS), electronic stability program
(ESP), electric power steering (EPS), active suspensions, or engine control. Further-
more employing the vehicle electronics enable the near future technologies such as

autonomous driving.

The ECUs run applications which rely on the information coming from the other
electronic components in the vehicle. Great majority of these applications are real-
time and require deadlines. In other words, in-vehicle networks connect the electronic
components together and provide the communication between them by meeting the

timing requirements.

The benefits of in vehicle networking can be listed as below:

e The size of the cabling is dramatically reduced and the number of input/output
pins required at ECUs is less since the point to point connection is replaced by

a bus structure

e Common information such as temperature sensors or speed data is shared with

every ECU on the bus.

e [t is easy to apply a modification by a software change without changing the
hardware. This gives great flexibility to the system designer. For a point to point
connections without any networking topology, any added data communication
function would introduce a new point to point connections and more input and

output pins.

The most frequently used in-vehicle network standard is Controller Area Network
(CAN). The focus of this thesis is CAN FD (CAN with Flexible Data Rate) net-
work which is based on CAN. Further in-vehicle network standards include FlexRay,

MOST and Ethernet [35]].

2.1 CAN

CAN (Controller Area Network) is a serial asynchronous bus network. It connects
electronic devices, various sensors and actuators in a system or sub-system for various
applications. It is multi master communication protocol. The protocol is developed by
Robert Bosch GmbH in 1986. It was designed for automotive applications requiring
a reliable communication. The data rate is up to 1 Mbps. Apart from being used
in automotive industry, CAN is also used in embedded applications and industrial
control systems [16]. CAN (Controller Area Network) is a serial asynchronous bus
network. It connects electronic devices, various sensors and actuators in a system
or sub-system for various applications. It is multi master communication protocol.
The protocol is developed by Robert Bosch GmbH in 1986. It was designed for
automotive applications requiring a reliable communication. The data rate is up to
1 Mbps. Apart from being used in automotive industry, CAN is also used in embedded

applications and industrial control systems [16].

The CAN protocol defines the physical layer and data link layer specifications. It
defines how the frames are formed and how the arbitration mechanism works. CAN
is basically an event triggered protocol, there is no time slot mechanism where the
messages are supposed to be transmitted, instead, they are transmitted whenever the
bus is idle. If two nodes begin transmission at the same time, the one with the ID

having more priority takes over the bus and the other node stops transmitting and

6

« Data frame >
Bus | S R|I D
- o Identifier T|p| r| DLC Data Field | Checksum| E EOF | ITM
Idle | F R |E L
1 11 Bits 1 1 4 Bits 0-8 Byte 15 Bits 1 1 1 7 Bits 3
Arbitration field Control field Data field Check field ACK field

Figure 2.1: CAN Base Frame

attempts to transmit its frame again when the current transmission is over. The priority
is determined by the bit values, 0 is a dominant bit whereas 1 is a recessive bit. 0
overwrites 1 when they are transmitted simultaneously. To this end, the message with
the smallest ID has the highest priority and always takes over the bus for simultaneous

message transmissions [22]].

There are two types of IDs, which are base and extended IDs. Base ID data frame is
a CAN bus frame with 11 bit ID representation. On the other hand, extended ID data
frame is a CAN bus frame with 29 bit ID representation. CAN Bus data frame for
Base ID can be seen in Fig[2.1]

Error detection and management is very important for in vehicle networking. There is
an acknowledgment mechanism in a CAN frame. Cyclic Redundancy Check (CRC)
is performed at the end of the frame. CRC is computed beginning from the start bit of
the frame both by the transmitter and the receiver nodes. The CRC computation result
calculated by the receiving node must be the same as the one transmitter node places
in the frame for a successful communication, otherwise error condition occurs. The
nodes which receive a sent frame send a dominant acknowledgment bit to indicate
that the frame is received successfully after CRC operation. Bit stuffing provides an
additional bit when 5 consecutive same bits are transmitted. Additional bit value is
the complement of the value of the previous 5 bits. Bit stuffing is used to ensure
that bus does not stay at the same voltage level for a long time and node clocks can
synchronize to the bus to have accurate bit sampling point. Lastly, bus monitoring
is performed for any bit errors by the transmitter node to check if the transmitted bit
value is really on the bus. With all these mechanisms, it is easy to detect any errors

and have a very reliable and safe communication with CAN Bus.

7

The worst case response time (WCRT) of a message is the maximum time between
the message is generated at the transmitter node application and it is received at the
receiver node application. WCRT depends on the priority levels of the other mes-
sages, hence, the messages with higher priority might make a given message m stay
in the buffer for a long time. [26} 138} 137] explains the analytical ways to compute
WCRT of the messages for transmission. These methods basically assign IDs such
that the message is received at its destination before the deadline. In other words, by
assigning IDs to the messages, they are given appropriate priority such that WCRT
of the messages are smaller than the deadline they are obligated to meet. It is also

possible that such WCRT analysis is not necessary for a lightly loaded network.

The data rate for a CAN bus is limited by the arbitration mechanism. During the
arbitration phase, the bits transmitted by a node must be received by the other nodes
in a single bit time. Therefore, during simultaneous transmissions, it is important that
bit overwrite is detected on time such that a node losing arbitration stops transmis-
sion. Although the specified maximum bit rate is 1 Mbps, the practical rates are up
to 500 kbps. 125 kbps is the mostly used bit rate. The payload of a CAN node is up
to 8 bytes. When the other parts of a CAN FD frame are considered, the overhead is
too much and it is about 50%. Due to low data rate, large number of messages, small
payload size, large overhead and increase in vehicle complexity, the bus load of the

networks is between 50% and 95% [33]].

22 CANFD

CAN Bus doesn’t meet the data rate requirements of the contemporary in vehicle
communication anymore. However, CAN is a trusted protocol being used for many
years in countless applications in the automotive industry. For these reasons, CAN
FD (CAN with Flexible Data Rate) which both offers much higher bandwidth than
CAN and backward compatibility with CAN is developed by Bosch [28, 6]

CAN FD operates at two different bit rates within a message frame. It has the same
bit rate and the arbitration method as CAN but it switches to a higher bit rate during

the data phase. CAN FD payload is up to 64 Bytes. Therefore at a given bus load,

8

the overhead of the frame decreases down to 15% [33]] and theoretical net bit rates
about 5 Mbps are possible [6]. Furthermore, the arbitration phase baud rate limits
the overall baud rate of the frame. For example, a frame with 64 bytes payload, 11
bit standard ID, 1 Mbps of arbitration phase baudrate, 8 Mbps of dataphase baud
rate has net bit rate about 5.9 Mbps [40]]. Furthermore, the increase of baud rate
is also beneficial for higher layer software protocols.[41] assesses the effectiveness
and performance of CAN FD with respect to CAN bus in agricultural systems using

higher layer protocols like J1939 and ISOBUS.

According to [3]], CAN FD data phase bit rates up to 2 Mbit/s will be used in the first
CAN FD systems. The network topology will be like star or hybrid. Later generation
CAN FD systems will increase the data rate up to 5 Mbit/s. CAN FD frames can be
divided into three parts, which are arbitration phase, data phase and arbitration phase
again as can be seen in Fig[2.2] The bit rate switches to higher rate only during data

phase and switches back to its old rate when the data phase is over.

Car manufacturers begin to adapt CAN FD in their system design. Toyota, Denso,
and Renesas cooperate for autonomous driving system developments. Renesas con-
tributes with micro controllers and System on Chip (SoC) devices featuring CAN FD
[17]. According to [[14], Mercedes considers introducing CAN FD in their S-class
series cars. There are some works to adopt CAN FD to real network systems and

CAN FD is considered to be used in the same network with CAN [23]], [24].

CAN FD frame format differs from CAN frame format in terms of payload length,
Data Length Code (DLC) and CRC computation method. Therefore, some hardware
changes are required in the controllers. If the payload size is kept as 8 Bytes as in
standard CAN messages, there is no need for any software changes [25]. CAN FD
supports payload size of up to 64 Bytes. In such implementations software changes
are required. The cost to implement CAN FD is very similar to CAN implementation

costs [28]].

The frames with the base ID have 11 bits ID representation while the frames with
the extended ID has 29 bits ID representation. Furthermore, some control bit values
in the frame change according to the ID type. CAN FD data frames for Base and
Extended ID can be seen in Fig[2.2a)and in Fig[2.2b]

— eccscccce R R R R R A Y XX R R Y

L clwl2l212loa 1 B4 B
aja 14 = =
3| 1dentifier = o] bLc Data CRC E Q E
k) T
(=) [a]
(@) X
Sl E:
1 11 111111 f1] 4 0..512 17/21 1111
\ A A J
Y Y Y
Arbitration Phase Data Phase Arbitration Phase
(standard bit rate) (optional high bit rate) (standard bit rate)
(a) CAN FD Base Frame
w o fw ol® 8 3
3| wentiier | 5]2] Extended &]¥] owc Data CRC £1=2]E
- © ©
Identifier [a) [a]
gl |3
] I K
1 11 K 18 111 4 0.512 17/21 1
el L bl
Y Y
Arbitration Phase Data Phase Arbitration Phase

(b) CAN FD Extended Frame

Figure 2.2: CAN FD Frames

Example use cases of CAN FD are listed below:

e Fast software downloads: Reprogramming of ECUs and performing their in ve-
hicle calibrations are typical cases requiring high data rates[27]. The footprint
of the software increases day by day. Most of the contemporary ECUs use CAN
Bus for software downloads, removing the necessity of additional communica-
tion interface like Ethernet, hence reducing the hardware costs. Since CAN FD
provides higher bandwidth with 64 byte payload support and increased bit rate
when compared to CAN, it is quite faster to download the software. According
to [27], CAN FD provides 1.4 to 14 times faster programming times. For exam-
ple, it takes 4.45 times longer to download 32 byte data via 500 kbit/s CAN bus
when compared with 2Mbit/s CAN FD as illustrated in the following example:

— Time to transmit 4 standard CAN messages with 8 data bytes and 15%
stuff bits takes 1021 us [32]].

— Time to transmit 1 CAN FD message with 32 data bytes and 15% stuff
bits takes 229us [32].

Furthermore, although CAN FD offers better software programming perfor-
mance when compared to CAN, it should be noted that Flexray and CAN FD

10

has comparable performance. Under some conditions Flexray is faster and un-

der some other conditions CAN FD is faster according to[29].

Avoiding split messages: Some information is represented with more than 8
bytes, in order to transmit such information multiple CAN frames are trans-
mitted. This increases the work load of the software. With CAN FD’s large
payload capability up to 64 bytes, the information does not need to be splitted
into several frames hence it is transmitted in a single message. Therefore, the

transport layer software management becomes easier.

Faster Communication: As the features increase in automotive industry, the
data exchange between ECUs increases therefore CAN FD can handle the in-

creased traffic with its higher bandwidth.

Less Bus Load: Due to increase in bandwidth, the bus loading greatly reduces.

Bus Length: As the number of nodes and the length of the stubs increase, the
bit rate reduces. With the bus length of 40 meters, stub lengths of 3 meters and
30 nodes on the bus, SAE J1939-15 states 250 kbit/s bit rate for CAN Bus][|32].
With CAN FD, data phase bit rate is independent of cable length therefore, with
250 kbit/s arbitration phase bit rate and 4 Mbit/s data phase bit rate, average bit
rate 1s 810 kbit/s[32]. Therefore, communication speed is accelerated with long

cables.

The CAN protocol is defined by the ISO 11898 standard. ISO 11898-1 specifies the
Data Link Layer. CAN FD requirements are currently integrated as ISO 11898-1:201.
Therefore, the first CAN FD version by Bosch [6] is called non-ISO CAN FD now.
Different than the non-ISO CAN FD protocol, ISO CAN FD has different failure

detection abilities. 3 bit stuff counter and an extra parity bit are added in the frame

and the CRC computation value is modified when compared to non-ISO CAN FD.

Therefore, non-ISO and ISO CAN FD protocols are incompatible with each other

11

2.3 CAN/CAN FD Controllers

In order to participate in an in-vehicle network, an in-vehicle node needs to have
micro controller (MCU), a bus controller and a transceiver. The MCU is the unit
where the software application runs. The Controller implements the layer 2 protocol
of the bus and transmits the data received from the MCU on the bus by executing
necessary framing and arbitration. The transceiver connects the node to the physical
medium of the Bus. The C? controller that we present in this thesis is a CAN FD
controller. However, we note that the architecture can be adopted for CAN controllers

as well. To this end, we present previous work on CAN/CAN FD controllers in

Chapter3]

The basic functions of the CAN/CAN FD Controllers are to convert the information
that comes from the application into CAN/CAN FD frames by following the protocol
specifications, extract the related information from the received frames and convey
this data to the application. For transmission, the controllers perform physical level bit
generation following the timing requirements, generate frames by implementing bit
stuffing, perform CRC computation and error detection. For reception, they perform
physical level bit sampling according to the timing requirements, apply ID based
filtering, perform buffering of the received frames, remove the stuffed bits from the

received bit sequence, check the CRC values and perform error detection.

The buffering is one of the most important features of CAN/CAN FD controllers.
There are two types of buffer organization, which are FIFO (First In First Out) and
mailbox. In FIFO organization, for transmission, what is written to FIFO first is taken
out and transmitted first. The disadvantage of this method is that it is not possible to
give priority to the messages which are required to be transmitted first. For the recep-
tion, the frame received first is written to FIFO first and is taken out by the application
first. Similarly, the application should process the messages previously in the FIFO
before it can finally reach the message with the high priority. This leads to undesir-
able delay for the high priority messages. Hardware cost of FIFO implementation is

low and the controller design is simple.

In mailbox organization, there is a dedicated buffer for each message. The mailbox

12

buffers hold a single frame. For transmission, each mailbox has priorities assigned
and they are transmitted in the order such that the highest priority mailbox is vacated
first. Similarly for reception, the messages are placed in their corresponding mail-
boxes and the application reads the message with the highest importance first without
having to read the others like in the case of FIFO concept. RX buffer organization par-
ticularly becomes significant if the MCU is slow at processing the received messages
[36]]. The hardware cost of the mailbox is higher since more memory is required, the
controller design becomes more complex and the timing performance is better when

compared to FIFO concept.

In order to reduce the MCU load, the receivers of the controllers have a filtering
feature. Only the messages which pass the filters are placed to the buffers. By doing
so, the unwanted messages are discarded by the controller so that MCU does not need

to process them.

The controllers interface with the transceivers with the digital receive and transmit
pins. Moreover, they communicate with the MCUs in two different ways. In the
first method, the controller is integrated inside the MCU chip. The communication
between the controller and the MCU processor core is the internal system bus which
is a shared bus with the other peripheral controllers like UART, SPI, I2C and Ethernet.
In the second method, the MCU does not contain the CAN/CAN FD controller inside
the chip, instead, the controller is external to the MCU. This is the case for the low
cost MCUs where the most of the peripherals already contained in higher cost MCUs
are excluded from the chip to reduce the cost and the footprint of the chip. Common
interfaces which can be used between the CAN/CAN FD Controller and the MCU are

listed and discussed below:

e UART: UART is a serial communication protocol with the most common baud
rate of 115.2 kbit/s There are some instances of UART which are used in high
performance MCUs with the baud rates of several Mbit/s. Since our case is for
the low cost MCUs, an interface with the bit rate of several hundred kbits is
not acceptable when the baud rate of CAN/CAN FD is considered. Interfaces
having baud rates lower than CAN/CAN FD baud rate would result in huge

response time, thus reducing the timing performance of the controller signifi-

13

cantly.

I2C: 12C is a serial communication protocol with the most common baud rate
up to 400 kbit/s. Due to the same reasons listed for UART, 12C is not a suitable
interface for CAN/CAN FD Controllers

PCle: PCle is a serial communication protocol with bit rates in the range of
Gbit/s. Since low cost MCUs do not have PCle interface, this protocol is not
suitable for standalone CAN/CAN FD controllers.

SPI: SPI is a serial protocol with the most common baud rate of 10 Mbit/s. This
baud rate is higher than CAN/CAN FD baud rates. When high baud rates of
CAN FD like 4 Mbit/s is implemented, higher SPI baud rates would be used to
get better response time. Serial communication is better than parallel when the
I/O pin utilization of MCU is considered. Low cost MCUs have limited amount
of I/Os and any unused peripheral I/Os can be used for other purposes as there
is I/O multiplexing for unused pins. SPI seems to be the best communication

interface for CAN/CAN FD controllers.

14

CHAPTER 3

PREVIOUS WORK ON CAN/CAN FD CONTROLLERS

[34]] covers CAN Controllers and their features. It presents a controller which has
a maximum of 32 mailbox TX (Transmit) buffers. Regarding configurable CAN
Controllers,[[12] is a CAN Controller IP Core. TX buffers are organized as one high
priority buffer and a FIFO with a configurable depth up to 64 message objects. RX
(Receive) buffers are organized as FIFO with a configurable depth up to 64 messages.
It features user configurable acceptance filters for the received messages, the number
of the filters can be up to 4. The communication interface with the MCU is PLB v4.6
bus standard. [13]] is an external CAN controller with SPI interface, it features two
receive buffers with prioritized message storing. There are six 29 bit filters and two
29 bit masks for the received messages. It supports three transmit buffers with pri-
oritization. The communication interface with the MCU is SPI. Since it is an ASIC
(Application Specific Integrated Circuit), the depth of the buffers is fixed and not

configurable like the controllers which are realized as IP Cores.

This thesis focuses on CAN FD Controller implementation. Bosch, the company that
invented CAN and CAN FD protocols, has two CAN FD controllers which are real-
ized as FPGA IP Cores. The first one is C_CAN FDS. It supports CAN FD messages
with the payload up to 8 bytes. It contains 32 message objects and ID masks for each
of the objects. The message objects can also be programmed as FIFO and they are
used for both the transmitted and the received messages. The user interface is AMBA
APB bus for ARM processors and Avalon bus for ALTERA FPGAs. The purpose of
this IP core is to maintain the compatibility with the existing Bosch CAN controller
as CAN bus message payload is also up to 8 bytes. The second IP core by Bosch
is M_CAN, which supports both ISO 11898-1:2015 and non-ISO CAN FD imple-

15

mentation [2] (2015). The payload of CAN FD frames supported is up to 64 bytes.
The memory where the buffers are located is not internal to the controller, instead it
uses the existing single or dual port memory inside the MCU. The interface to the
external memory is 32 bit generic master interface. It features two configurable Re-
ceive FIFOs with up to 64 message objects with filtering capability. Furthermore, it
supports 32 TX buffers whose message size can be configured. However, the config-
uration sizes for all of the buffers are the same, therefore, the buffer sizes should be
configured according to the longest message payload size. This leads to inefficient
memory allocation especially for heterogeneous message sizes. TX handler block in-
side the controller picks the message with the highest priority to transmit among all
the buffers. The controller interfaces with the MCU via its 8/16/32 bit generic slave

interface.

[, 9, 18] are the CAN FD IP cores developed in 2015. [1] supports non-ISO CAN
FD implementation. Total buffer size is synthesis time configurable. Buffers are
organized as transmit buffer, high-priority transmit buffer and receive buffer whose
depths are individually configurable by the MCU. There are up to 16 acceptance
filters. The interface to the MCU is AHB-Lite slave interface. [9] supports both
non-ISO and ISO CAN FD implementation. It features synthesis time configurable
depths for receive and transmit FIFOs. It contains 256 message filters for the received
messages. It interfaces with the MCU with 8/16/32/64 bit system bus. [18] also
supports non-ISO and ISO CAN FD. The size of the transmit and the receive buffers
are configurable during synthesis time. The interface to the MCU is via the system

bus.

[5, 110, 4] are the CAN FD IP cores on the market since 2016. [5,[10, 4] support ISO
and non-ISO CAN FD formats. [5] features transmit buffers with up to 32 message
objects. Receive buffers support up to 48 message objects with ID filtering featuring.
The buffers can be configured as FIFO or mailbox. Transmit handler selects the high-
est priority message to begin transmitting. The number of the buffers is fixed and not
configurable. The MCU interface is AXI4-Lite bus. [10, 4] are IP Cores similar to
each other. [10] implements two types of transmit buffers. One is the high priority
primary transmit buffer, the other one is the lower priority secondary transmit buffer.

The high priority transmit buffer can store only one message. However, the depth of

16

the lower priority buffer is synthesis time configurable. The size of the receive FIFO
can be configured during the synthesis and there are up to 16 independently pro-
grammed filters for the received messages. The MCU interface options are generic
32-bit host controller interface, AHB, APB (32 bit), generic 8 or 16 bit. Similarly,
[4]offers one high priority transmit buffer and configurable number of low priority
buffers. Moreover it supports RX FIFO buffering with up to 29 bit acceptance filter-
ing. The configuration is done during synthesis. The interface to the host MCU is
generic 8 bit host controller, 8/16/32 bit AMBA-APB or 32 bit AHB-Lite.

[8, 20, [7] don’t have non-ISO CAN FD support. [8] has fixed size 128 byte receive
buffer and transmit buffer. It supports message filtering. The communication between
the controller and the MCU is 8/16/32-bit CPU slave interface. [20] offers synthesis
time configurable mailboxes. The mailboxes can be used for both the transmitting and
the receiving functions. Furthermore, there is a RX FIFO which can store 6 frames.
The MCU communication interface is on-chip system bus. [[7] CAN FD IP Core has
TX and RX FIFOs with synthesis time configurable sizes. There are user configurable
acceptance filters. MCU interface is AMBA-AXI4-Lite interface (32-bits) or standard

address/data configuration Interface.

[39] is a recent paper which presents CAN FD IP Core with SPI interface. There are
no details about the interface between the controller and the host MCU. The interface
is described very briefly. The buffers have no configuration capability. The design
is explained very coarsely with very little implementation detail. The design is only

verified by oscilloscope signal inspection.

To sum up, to the best of our knowledge C? is the first CAN FD IP core that offers very
flexible and efficient configuration capability to the software developer during appli-
cation run time (after synthesis), with a total number of 192 mailboxes. Mailboxes are
organized as 96 transmit and 96 receive buffers. The mailboxes are allocated an aver-
age payload size of 16 bytes instead of maximum payload size of 64 bytes. Because
it is very unlikely that all the messages in a message set of a network application
will require 64 bytes payload size. This yields 96x16 bytes memory consumption
instead of 96x64 bytes hence less memory usage and more memory utilization. It is

the first controller with SPI interface whose response time is measured, academically

17

evaluated, tested and analyzed. Different from other controllers, C* supports up to 96

filters for each RX buffer for the received messages.

The comparison of the CAN FD IP cores mentioned in this chapter can be seen in
Table[3.1], Table[3.2]and Table[3.3] We define the performance criteria for comparison

as follows:

e Year: Release year of the controllers

e Transmit Buffer Type: Buffer organization structure for the transmit messages,

either FIFO or mailbox
e Transmit Buffer Configuration: Configurability properties of the transmit buffers

e Receiver Buffer Type: Buffer organization structure for the received messages,

either FIFO or mailbox
e Receive Buffer Configuration: Configurability properties of the receive buffers

o Buffer Configuration Time: The time when the configuration takes place, either
synthesis time or application time. Synthesis time configuration is one time
configuration before the application runs and does not give the user the ability
to reconfigure the buffers during run time while application time configuration
gives the user the ability to reconfigure the buffers during run time for different

applications.

18

2Jel9lu|
ane|S 311T-gHY ‘@3e491U| NdD

90B}J21U| 9AE|S)]
-gHV 40 9dV ‘VaINV ‘©2epa1u] NdD

2284433U| NdD 1] TE/9T/8

sng 2117 p-IXY ‘99e4491Ul NdD

9JeJJ9lu| 1asn

9|qesn3iyuod
awy} uonedydde s| 9zis 0414 yoea
‘awl sISayluAs s 9zis Aslowaw |ejo)|

w1} SIS9YIUAS

w3 SISYIUAS

awi} SISAYIUAS

awi] uoneinsiyuo) Jayng

9|qesnsiyuod
S1 97IS |B10} ,SI9}NC SAIDIY

9|qesnsiyuod
S| 9zIS [B101 ,549)4NQ AAIIY

9|qesnsiyuod
S| 9zIS [B101 ,549}4NQ AAIDIY

9|gesnsiyuod
S| 9zIS [B101 ,549}4NC AAIDIY

uoneanSiyuo) Jajng dAIIY

[OL[E!

044

044

SJUBIBID 8 YUM XOg1ew 10 0414

adA] Jayng 19n1929Y

9|qe4nSiuod S| 9z|S |e10} S4944NQ
lHwsueuy Aepuodas an Asewld

9|qeJn8i4u09 S| JaNg Hwsues}
AJepuo2das 3y} Jo 3z|S |B10] "SIaHNQ
lwsueuy Aepuodas an Auewd

9|qeJ4n814u0d S| JayNng Jwsuesy
AJepuo2as ay3 Jo 3zIS |B10] "SIaNq
Jwsueuy Aiepuodas an Atewlid

9|qesnsiyuod
S| 9z|S |10} ,SJ9)4Nq HWsued |

uoneinsiuo) Jayng Hwisues |

04l4 044 0414 SIUBWIAID TE YUM XOg|iew Jo 0414 adA] Jayng ywsuea)
sT0T 910¢ 910¢ 910¢ Jeap
[1] [v] [oT] [z1]

1 uostredwo) s1a[jonuo) (04 NVD 1 €9I98L

19

9JBJJI9lUl 9AB|S
NdD U9-¥9/Z€/9T/8 ‘@IB}3IUI NdD

ERLITENI]
sN4g |esaydiiad ‘@deyaiul NdD

ERLIBEM T}
9Ae|S NdD HQ-ZE/9IT/8 ‘DIBHAUI NdD

2oeyIau| NdD MY ZE/9T/8

2JejI9lu| Josn

awiy sIsayluAs

umouun

awi SIsaYluAs

aw uojiedjddy

awi| uonensyuo) Jayng

9|gqen3iyuod
S1 9ZIS |e10} ,SI344N(BAIRIBY

paJn3iyuod
3Q ued SaX0q|lew Jo JIaquinu [e10|

9215 paxiy st 014 SA1999Y 91Ag 87T

X0g||lew Yoea Joj awes
9y3 99 03 aABY 3ZIS UONEJINSIJUOD BY)
1ng paJn31yuod aq ued saxoq|iew ||y

uoneinsiuo) J3jng AIIAY

O4l4

04l4 Jo xoq|leN

Odi4

SIUBWIID $9 YIM XOd|lew Jo 0414

adA] Jayng 1an1939y

9)qendiyuod
S1 9IS |10} ,SJ944NQ HWSues |

paJndiyuod
9Q Ued SaX0q|leW JO Jaquinu [e10|

zIS
paxiy sl 0414 Ja3Mwsuely 3Aq 8ZT

X0g||lew Yoea 1o} awes
3Y3 29 03} dABY 3ZIS UONEINSIHUOD BY)
1ng paJns1yuod aq ued saxoq|iew ||y

uoneinsyuo) J3yng Nwisues |

0dl4 xoq|lein (oE[E! SIUBWIBJD ZE YUM XOg|lew 1o O4l4 adA) Jayyng Hwisues)
ST0C 910 910 910C ELDIN
6] [oz] 8] [e]

7 uostredwo)) s19[[onuo) (0 NVD T €1qeL

20

1dS

90BJI91U| SNg W1SAS ‘@aepalul NdD

90BJI91U| SNg WB1SAS ‘@aepalul NdD

30BI31U| JBSN

9|geJn3iyuod
aw} uoyedrjdde aJe s8ui3as Jayio
3y} ||e ‘DwiIl sIsayuAs s| azis Alowaw |eyo]

Qw3 SISAYIUAS

w3 SIsaYluAs

awii] uoneinSiyuo) Jayng

96 01 dn paun3i4u0d aq
ued Saxog|lew ay3 JO Jaquinu ay3 pue azis
paJi1sap ay1 yum paundipuod ag ued xoqjlew
yoe3 'a|gesnsiuod s| AJowaw Jo 9zis [e10]

9|qen3iyuod
S1 9ZIS |B101 ,SJ94NQ SAIRIDY

9|geJn3iyuod
S1 9ZIS |B101 ,SJ9}4NQ SAIRIDY

uoneinsiyuo) Jayng anIIAY

xoq|ie

[OL[E!

[OE[E!

adA] 13jyng 191909y

96 031 dn paindiyuod
90 UBD S9X0(|IeW 3y} JO JaqWinu 3y} pue
92IS PaJISAP YHM paunsijuod ag ued xoq|lew
yoe3 ‘AJowaw jo azis |e30} 3|qedndipuo)

9|qeJndiyuod
S1 9215 |B101 ,SJ9)JNQ JWISUe. |

9|gqesndiyuod
S1 9215 |B101 ,SJ9)JNQ JWISue. |

uoneinsyuo) Jayng Hwsues]

xoq|lelN 0414 044 adAL 1ayng Nwsuesy
L10¢ 910z ST0T I3
43]]043u0D a4 NVD 3|qelnsyuod : [£] [81]

¢ uostredwo)) s1[[onuo) 4 NV € €2[qel,

21

22

CHAPTER 4

C3 (CONFIGURABLE CAN FD CONTROLLER) ARCHITECTURE

This chapter presents the hardware architecture of our proposed C?® Configurable
CAN FD Controller. A brief presentation for the implementation details, evaluation
and the response time measurements of C*: Configurable CAN FD Controller can be

found in [22], [21] which are presented in the Appendix of this thesis .

C:: Configurable CAN FD Controller

SENDER MODULE (SM)
SPI
CAl};Ilg(]:)kTX TX Control Logic Block Protocol MOST
" (CANFDTX) (el ~—| Control |_|_MISO
TX (Memory Block Con
RX Mapped (SPIC)
RECEIVER MODULE (RM) Pl
— CAN FD RX (11\3/[1;[0};)
el . Interrupt
(CANI;DRX) RX Cong:}l(Iécglc Block | | Control| |mnterrupt
Block
Message (I((j)lc?»)
Filter (MF)

Figure 4.1: C? Architecture

C3 implements the CAN FD Base & Extended Format Data Frame according to the
non-ISO specification [6] as we introduce in Section [2.2] Our proposed hardware ar-
chitecture features a TX Buffer memory and an RX Buffer memory each with a fixed
size. The MCU programmer can organize these memory areas into respective TX and
RX buffers with desired message size and message count. In our implementation, a
maximum of 96 TX buffers and 96 RX buffers can be configured in mailbox form.

C3 transmits the messages in the TX buffers according to the priority order. Each RX

23

buffer has an ID-Mask pair for message filtering. The interface between C® and the

host MCU is through SPI (Serial Peripheral Interface).

We present the C® FPGA IP Core block architecture together with the host MCU
and a transceiver in Figld.2] Transceiver is used to convert controller’s single ended
TTL/CMOS level signals to differential ended CAN BUS physical layer signals, CAN
High and CAN Low.

Host Device: MCU

CAN H MOSI —
=N T - MISO | ApPeanon
. Transceiver C:: Configurable CLK Driver Software

CAN_L RX CAN FD Controller CSn
e Software Application

Interrupt "1 Software

Figure 4.2: Top Level Architecture

The top level hardware blocks of C? are; Sender Module (SM), Receiver Module
(RM), and the user interface blocks which are the Memory Mapped Register Block
(MMR), SPI Control Block (SPIC) and Interrupt Control Block (ICB). The CAN
standard requires sending an acknowledgment after each message reception. To this
end, the SM and RM are both connected to the physical layer TX/RX lines on the
transceiver. The RX and TX buffers are realized on Prioritized Flexible TX Memory

Block (PFTM) and Flexible RX Memory Block (FRM) in MMR respectively as in

Figt3]

The hardware resources of C?3 are configured by writing the register array imple-
mented in the MMR. These registers are accessible by the C® Driver software using
the standard SPI protocol signals MISO (Master In Slave Out), MOSI (Master Out
Slave In), CSn, CLK and interrupt signal. After the configuration, the applica-
tion software starts to run on the host MCU which generates and consumes the data
carried in the CAN FD message payload. Host CPU sees the controller as a set of
registers which can be read and be written to according to the controller’s protocol
requirements. The application software sends and receives message data together
with their CAN IDs through the driver software. C?® runs at 100 MHz. We provide

implementation details in Section together with the evaluation results in Section

24

4.1 Hardware Blocks: Memory Mapped Register Block

The host MCU communicates with C® for configuration and data transmission using
a memory mapped architecture that is realized with a set of registers in MMR. The
addresses of these registers are known to the Driver Software. The host device reads

and writes these registers via our SPI protocol signals.
The block diagram of Memory Mapped Register Block (MMR) can be seen in Fig[4.3]

There are 96 sets of TX registers and 96 sets of RX registers to support up to 96 TX
and RX buffers respectively.

Each TX register set consists of

o TX ID Register
e TX DLC (Data Length Code) Register

e TX Data Register

Each RX register consists of

RX ID Register

RX Mask Register

RX DLC (Data Length Code) Register

RX Data Register

MMR also features the following registers: Transmit Control & Status Registers

e Transmission Request Register (TRR)

e Transmit Message Status register (TMSR)

Receive Control & Status Registers

25

(IININ) Mo01g J1s139y paddejn ATOw :¢'f 2an31q

1sonbay eIR(q Joug jsanbay]
QUM % peoy
) peay MO[JIAQ 108 ASH
OdId IdS 138 ¥SI QALY
asa)
(YA 1S3y (4ST) IoIsI5oY =By SIS (ISY) 1018159y
9[qeuq ydnuejuy sme)§ 1dnaejug Hoh.m — SNJL)S QAIOSY
: (ISNL) eeq
1sonbayy jsonbaoy 191139y Jouyg
(NVAS) ALIM (Ie9[D) AN peay (Iea[D) AIM PeId | smeig 93essoN Jrusuer],
Joo1g SS90V 2 peay 2% peay Jjruasuery,
1oxordnng OdIA
SSA2VY OAIH 1dS
1dS 1sonboy
3oy
vy 15onbay (19S) | (YAUL) 198t o ®
p uo(Jryuo) Nvee Tonboy
OdId 1dS . oo
uoneIO[[Y peay JIuIsuel],
(209 o
uonedIo[y Yoorqg Jnd — NSO %9
nyng uoneIn3yuo) 2 odAL I odA1 a1
—. loyng a1qeug ‘ar g V_OO_WM%EE “ar e
)
uog LM Sunoyy pesy
35uo) (TANIN) wa -
o0[g 21307 1918139y padden Arowan e e
(SO LR 29 odK 1, 29 odK 1,
1915139y SnielS ai‘di (NI a1 ‘dil
uonemSyuoy | MM peod Yoorq Arowdy BTN
stofng X X 9[qrxo[g
auo(Sryuo) e —_—
® adAL, (NLAd) B odiyL
AM SO0 ar‘ar Yoorg AIOWSA ar‘ar
P Aqu L 91qIX9[] peay
uonen3yuo) AIM I v_woNsc.o -
slopng X.L G

26

e Receive Status Register (RSR)

e Receive Error Status Register (RESR)

Interrupt Control & Status Registers

o Interrupt Enable Register (IER)

e Interrupt Status Register (ISR)

Buffer Configuration Control Registers

o RX Buffers Configuration Status Register (TCSR)
e RX Buffers Configuration Status Register (RCSR)
For the rest of the thesis we write TX(ID) and RX(ID) to indicate a specific register

set for a CAN ID. The content of the data register of TX(ID) is the payload of the
message with the specified CAN ID.

SPI FIFO Access Multiplexer Block (SFAM): As described in detail in Sec@ Host
MCU interfaces C® with SPI, and MMR communicates SPCB with FIFO accesses.
SFAMB multiplexes FIFO signals between MMR Logic Block (MMRL) and Buffer
Configuration Block (BCB). Due to the nature of hardware design, a signal cannot be
driven by two sources, therefore for situations where multiple drivers are required, a
multiplexing method is used. This multiplexer first gives access to BCB , after the

buffer allocation is done, access is given completely to MMRL.

Buffer Configuration Block (BCB): This Block manages the TX DLC (Data Length
Code) Register and RX DLC (Data Length Code) Register. DLC Registers must

be configured to arrange the size of the buffers. The content of a DLC Register can

be seen in Figl.6]and Fig4.7]

Host MCU has to configure the registers one by one in an ordered way. First TX
buffers then RX buffers configuration should be done. After TX buffer sizes are con-
figured, host should write TX Buffers Configuration Status Register (TCSR) to

indicate TX buffer configuration is finished so that RX buffer configuration can start.

27

Same process is also repeated for RX buffers. Finally, RX Buffers Configuration
Status Register (RCSR) is written by the host to indicate whole configuration pro-
cess is finished. As the configuration finishes, the buffer allocation information, the
address and size of each buffer in the Prioritized Flexible TX Memory Block (PFTM)
and Flexible RX Memory Block (FRM), is kept as registers and used by Sender Mod-
ule (SM) and Receiver Module (RM) and MMR Logic Block (MMRL). Furthermore,
after the whole buffer configuration process is complete, SFAM block is informed so
that SPI signals are routed to MMRL block. The content of TCSR and RCSR are
shown in Table 4.1l

Prioritized Flexible TX Memory Block (PFTM): The host MCU can partition PFTM

to implement up to 96 TX buffers in desired sizes. This block is designed as a 1920
bytes block RAM. However, the size of PFTM can be increased during synthesis.
There are 480 addressable locations each with a depth of 32 bits. We implement the
buffers in the mailbox architecture where each TX buffer is allocated for a specific
CAN ID and can store the payload for a single frame. The memory is organized with
an appropriate size to store 4 byte ID registers and an average of 16 bytes data for
each of the 96 buffers. (96x4 + 96x16) = 38441536 = 1920 bytes) Using payload
size average of 16 bytes per mailbox instead of allocating 64 bytes for each mailbox
yields less memory consumption and more memory utilization. Two example buffer

configurations that fully utilize 1536 bytes data area are depicted in Fig4.4|

The first buffer in the memory has the highest priority. This information is known
to host MCU and configuration is done with taking this information into account.
MMRL writes ID & Data to be transmitted to the related buffer location when a write
request comes from Host MCU. TX Control Logic Block (TXCL) has read access to

this memory block to get the ID and data to transmit.

Flexible RX Memory Block (FRM): This block is designed as a 1920 bytes block

ram. There are 480 addressable locations each with a 32 bit depth. Memory is orga-
nized as large as it can store 4 byte ID registers and 16 bytes data for each 96 buffers.
(96x (4 + 16) = 1920 bytes). Using payload size average of 16 bytes per mailbox
instead of allocating 64 bytes for each mailbox yields less memory consumption and

more memory utilization. RX Control Logic Block (RXCL) has write access to this

28

pazel|1Hul 3Je £ 01 T SJ94NQ sueaw €7 <= '§'d
‘pa19|dw o9 S| uollezl|elliu| ASOYM SI21Ng JSAIRIY JO # <= [T:/]4915189Yy
pa19|dwod 10U S| UOIIBZ||BI}U| SI9NG DAIDIRY <= O <= [0]4915139Y

(4sDY) 4215189y Ssnieis

M 14
pa13|dwod si uoiezijeliu| siajng aAI9I8Y <= T <= [0]4215!39Y uoleingiyuo) sisyng Xy
pa13|dwo2 si uoIIeINSIJUOD BY] 3JUO J33SIS3J SIY3 03 DUIM P|NOYS 1SOH
196 49315139y
pazel|i3lul aJe €7 03 T SJ944Nq sueaw ¢ <= '8'3 snyexs Syuon
‘pa13]dW0d S| UOI1EZI[BINIU| BSOYM SIa)Ng HWsuel] JO # <= [T:/]4915189Y)
pa19|dwod jou S| Uollez||eNU| SIayNg Hwisuel| <= 0 <= [0]421s183Y M (¥SHL) 4935183y snieis 0
3
pa13|dwod si uoiiezijei}iu| siayng Nwsueld] <= T <= [0]491s18aY HOREINSLUOT S19HNE X1
pa13]dwo? s| uoileanNSIHUOI dY} 3JUO J33SISaJ SIY3 03 dUIM PNOYS ISOH
(M) @3am
uonduasag : awep 49315189y X0) SS34ppy
/(4) peay e

S19)S139Y uoneIn3yuo)) | $9[qeL

29

| 64 bytesx
8 buffers 64 bytes x
| 32 bytesx
12 buffers
] [-
64 buffers 16 buffers

(a) (b)

Figure 4.4: Example Memory organizations: (a) 88 buffers (b) 44 buffers

memory block to put the ID and data of the received frames in the related location. As
read request comes from the Host MCU, MMRL reads the related information from

the related buffer address and responds to the request.

Filtering Memory Block (FMB): The Memory consists of 32 bits of ID & Mask pairs

for each 96 buffers. There are 192 locations with depth of 32 bits. During configu-
ration, Host MCU programs ID & Mask pair for each buffer to be used. MMRL has
write access to this memory block, it writes ID & Mask pairs as requested by the Host

MCU. Message Filter (MF) reads from this memory during filtering process.

MMR Logic Block (MMRL): After buffer allocation is done, this block takes over
the SPI FIFO access from BCB. All of the CPU’s write and read requests are han-

dled here. This logic block has control for all of the registers except the ones with
buffer size configuration (TX DLC (Data Length Code) Register, RX DLC (Data
Length Code) Register, TX Buffers Configuration Status Register (TCSR) and
RX Buffers Configuration Status Register (TCSR)). The state machine here polls
the SPI instruction FIFO to see if there are any pending requests. The machine has
two different state sets, one for write requests and one for read requests. The write

state set gets the address of the register from the address FIFO in SPCB, gets the burst

30

data size from burst data FIFO in SPCB and finally gets the data part from RX Data
FIFO in SPCB. The amount of data to be read from the RX data FIFO depends on
the instruction type and burst data size. For the write requests, either a related mem-
ory address is written or related register is written. The addresses read from Address
FIFO is mapped to PFTM, FMB memory addresses and directly to some registers as
seen in the Fig.3]

Similarly, the read state set gets the address of the register from the address FIFO in
SPCB, gets the burst data size from burst data FIFO in SPCB. The addresses read from
Address FIFO are mapped to FRM memory addresses and directly to some registers
as seen in the Figl4.3] Since the read requests are non posted requests, MMRL gets
the data from the related mapped address or from a register and writes the data to
the TX Data FIFO quickly such that when SPB reads the data to respond, the data is
present in the FIFO.

The mechanism of each register accessed by MMRL will be described in the related

block descriptions.

4.2 Hardware Blocks: SPI Protocol Control Block

Read Address Write
FIFO Address
Write | RX Data Read
Received | FIFO
Data
Read Instruction| Write SPI Protocol Block
FIFO Instruction (SPB)
Read | TX Data Write
Transmit| FIFO
Read Burst Size | Write Data
FIFO Burst Size

MOSI MISO CLK CSn

Figure 4.5: SPI Protocol Control Block

We develop and implement the SPI (Serial Peripheral Interface) control block in the

31

scope of this thesis work. The block diagram of SPI Protocol Control Block (SPCB)
can be seen in Figl.5] The SPI standard defines the physical layer of the interface,
timing of the signals and the roles of the master and the slave devices. The SPI
physical layer signals going out of the controller are as follows:

e CSn (Chip Select)

e CLK (Clock)

e MOSTI (Master Out Slave In)

e MISO (Master In Slave Out)

Master device has the following tasks:

e [t controls CSn , MOSTI, CLK signals
e [t asserts CSn along with the CLK and data on MOST line

e [t deasserts CSn to indicate that the communication is over

Slave device has the following tasks:

e When CSn is asserted by the host, it starts to sample data at the rising edges of
the clock.

e It gets the data on MOST line and responds on MISO line if a response is re-

quired. If not, it just gets the data until the CSn is deasserted

The SPI protocol only defines the mechanisms listed above. The custom protocols
using SPI define the data amount and data content which the master device sends on
MOST line and the data content to which slave needs to send a response, the content
and the amount of the data slave puts on MISO line, the time when the slave begins
to respond when the slave response is required. Accordingly, we designed and im-
plemented our own communication protocol with SPI. Our communication protocol

over SPI between the host MCU and C? is described in Table

32

con \ /

CLK

~4— instruction———— ;& address L
H

MOST 00000 00O

don’t care
MISO

(a) Burst SPI Write

SN /

CLK

~4— instruction———® <——— address——»
|

H 4— data size————
MOSI AO 00 0O 0 O 1 XaisXAl4, - - Xar X a0

57K S6 K - 9.8 s1 X so

<4—— data out—————
don’t care
MISO

Dn-IXDn- - X D1 X D0

(b) Burst SPI Read

o\ /

| — instruction——— 14— address———— P 1———— data out——————
:

MOST 0 0000 0/ 1\0AnsXaX - XX X XX Ao XshpoK - Ko X X XX

MISO don’t care

(c) 32 Bit SPI Write

con \ /

| <— instruction-———» | <——— address——————

MOST 00000 0/1 1 YasXaX XXX XuXx) don’t care

, 14— data out—————P=
don’t care '

MTSO XX X OXOOEX)

(d) 32 Bit SPI Read

Figure 4.6: SPI Timing Diagrams

33

Table4.2: SPI Commands and Responses

Access | Host Request Host c3
Type Inst. Code Data Response
Burst Address (16 bits) -
SPI 0x00 + Data size (8 bits)
Write + Burst data
Burst Address (16 bits)
SPI Read 0x01 + Data size (8 bits) Burst data
32 bit 0x02 Address (16 bits) -
SPI Write + Data (32 bits)
32 bit))
SPI Read 0x03 Address (16 bits) Data (32 bits)

The host requests are on the MOST line and the C? response is on the MISO line. The
request types are defined with the instruction codes of 8 bits. After the instruction,
regardless of its type, master device puts the 16 bit address of the register on MOST.
Depending on the instruction type, host might go on transmitting data or slave re-
sponds to the request. During Burst Read or Write instructions, the amount of data is
also provided to the slave with 8 bits of burst data size. The burst data transfers are in
multiples of 4 bytes. Fig[4.6|depicts the signaling of our protocol for the 32 bit and

burst instructions.
Our implementation is a high-speed SPI with 10 MHz clock frequency.

During master write operations, SPI Protocol Block (SPB) samples the bits at the
rising edges of the clock when the CSn signal is low. It first gets 8 bit instruction
and writes this data to the Instruction FIFO, then gets 16 bit address and writes the
address into the Address FIFO. Depending on the instruction type, it either gets 8 bits
of burst data size and writes it to the burst size FIFO or just skips to the data part. In
the data phase, the data is written to RX Data FIFO in multiples of 32 bits. If it’s a 32
bit SPI Write, only 32 bit data is written to the FIFO, otherwise the quantity of data
to be written to the FIFO is determined according to the amount of data contained in
the burst data size field. During master read operation, 8 bit instruction and 16 bit
address is fetched by the SPB and written to the respective FIFOs. If the instruction
is 32 bit SPI Read, SPB gets the data from TX Data FIFO and responds to the master
on MISO line. Otherwise, SPB fetches burst data size and writes this information to

Burst Size FIFO and gets as much as data as indicated in burst data size from TX

34

Data FIFO and responds to the master on MISO line. In summary, SPCB decodes
the received frames and extracts the fields and puts the data contained in the fields to
the related FIFOs and during read operations where response is required, it gets the
data from the FIFO and responds. Memory Mapped Register Block (MMR) in C*®
interfaces SPCB with FIFO control signals therefore, SPCB is interpreted as a black
box. SPCB provides read access for the Address, Instruction, Burst Size and RX Data
FIFOs and write access for the TX Data FIFO for MMR.

4.3 Hardware Blocks: Interrupt Control Block

Interrupt Control Block (ICB): The block diagram of this block can be seen in Fig@

There are four types of interrupt sources, which are

IER

ISR Set

Receive
Request

Error Data

Transmit
Error Data . Interrupt Control Logic

Interrupt
Overflow >

RSR Set
Request

Figure 4.7: Interrupt Control Block

Transmit Error

Receive Error

Receive Buffer Overflow

Message Reception Event

35

Any of the interrupt sources can be enabled by writing to the Interrupt Enable Reg-
ister (IER) shown in Table

The block gets IER from MMR. Receive Error Data & Transmit Error data is ob-
tained from CANFDRX and CANFDTX blocks which are polled for any error occur-
rences and if enabled, an interrupt is generated. Furthermore, overflow information is
received from RSR management and if enabled, an overflow interrupt is generated.
Similarly, when a message is received and placed in a buffer then RSR is requested

to be set. When this signal is received, an interrupt is generated if enabled.
The interrupt is generated as an active low pulse for a duration of 1 ms.

For the Host MCU to learn the source of the interrupt, the source information of the
interrupt is put in the Interrupt Status Register (ISR) after the processing the data
obtained from other blocks for a host to read. Even if the the interrupt is not enabled
for a source, related ISR bit is set if it occurs but an interrupt is not generated. When
the host MCU reads ISR, it may also get additional interrupt information, which can

be discarded if any action is not needed.

4.4 Hardware Blocks: Transmitter Module

TX Control Logic Block (TXCL):

TXCL block diagram can be seen in Figid.8] This block determines the message to
be transmitted. Transmit Request Register shown in Table #.4] holds the information
of the pending transmission requests. When host MCU wants to transmit frames,
it makes a request by writing to TRR. There are 3 TRR each holding 32 buffer

transmission requests.

TXCL finds the buffer with the highest priority to transmit among the buffers wait-
ing for transmission by using binary search algorithm. The algorithm is depicted in
Figld.9] Each step in the Fig[4.9 takes a single clock cycle. Any pending request
is held as logic 1 in TRR. The algorithm first checks if any one of the three of the
TRR (3 x 32 buffers) is not equal to all 0s. In the first step, it determines the TRR

which is not all Os, if more than one TRR satisfies the condition, the one having the

36

JUDAS MO|JIIA0 BY3 JO X3pul Jajng <= [#:0T]49315139Y
1915189y Sh1els aA1923Y
40 Suipeads wuogad ‘9jqeu] 1dniiaiu| uoirdadas adessan <= [€]49315139Y
1dNnuI33U| MOJJIDAQ J944Ng SAIRIY <= [¢]4915189Y
S|1e39p 40} 493S139Y Sniels
93essa|\ aA1929Y J0 SuipeaJ wJioyiad 10443 9AI19I9Y <= [T]49315139Y

S[1e39p J0} 49315139Y Sniels M/Y 1915189y shiels 1dnauaju| oY4
98essa|A Hwsued] Jo Suipeas wiopad ‘Josug Hwsued] <= [0]491s189Y
92JN0S X WOJj pa3etauasd jou si 3dnJiaiul sa3edIpul <= Q = [X]4935139Y
924N0S X WoJ) palesauad si ydnaualul sayedipul <= T = [x]49315139Y
19151334 S1Y3 Jo 195 4335139y
1dnauiaqu|
S}g paie[aJd Je3|d 03 S}H(pPale|a4 03,0, MM 4915189y Ssniels 1dnausiu|
panJasay <= [f:TE]49315189Y
9|qeud 1dnuialu| panaladal 93essa|N <= [g]4915139Y
9|qeu3 3dnJialu] MOJJIBAQ J34Ng SAI9IDY <= [¢]49315139Y
S|1e3ap 4oy 43315139y
SIS FESSOU N2 PED) DI4EL3 Lou3 2y < [T owIERY m | msseyogezinmn | s
sniels 93essalA Hwsued] pead ‘Sjqeud Josu3 Hwsued] <= [p]49315139Y
pajgesip si 1dnuusiu| <= Q = [x]4915189Y
pajgeus si ydnaualu| <= T = [x]49315139Yy
1915183y |043u0) 3|qeud 1dniiaiu|
uonduasag A\\Mpv.m”w“,b awey 4915189y (x0) ssaJ1ppy

198 1918139y 1dnIIdu] ¢ Ho[qeL

37

Message 1D,

ID & ID ID Type,
Type Size & Data
TX Message From PFTM
Size
TX Control Logic Block (TXCL) Buffer
TX Message Allocation
Data
Tx Done
Highest Priority
Buffer #
)) TRR
Binary Search Algorithm

Figure 4.8: TX Control Logic Block (TXCL)

takes 6 clock cycles. The algorithm is depicted in Fig[4.9]

38

lower indexes is chosen. In the next step, algorithm divides the 32 bit TRR in two
and checks if any of the partitions is not all 0s. If more than one partition satisfies the
condition, the one with the lower indexes is chosen. The algorithm proceeds as we

describe until the last step and the buffer number is determined. The whole process

Determining the buffer number means, storing the address and size of the buffer in
PFTM because buffer allocation information is shared with TXCL. Therefore, TXCL
gets the ID and data from the related part of PFTM. It writes the data to the TX Data
FIFO of CANFDTX and the size to the TX Size FIFO. It loads the ID to CANFDTX.
When the transmission is successful, CANFDTX indicates that TX is done and TXCL

begins searching for a new pending transmission request if there is any. If it finds a

panIasay <=, 1T, <= [0:T]421s!39Y
Jodug oy <= ,0T,, <= [0:T]481s5189Y
Jou3 ug <=,10,, <= [0:T]421s159Y

JoJg oN <=,,00,, <= [0:T]4o3s188Y y 1915189y -
snie1s uoldadal 1se| ay3 Jo P02 1q 7 <= [0:T]49315189Y Sniels 28esSa Uwsuel]
dl papuaIxd <= T ‘Q| dseg <= 0 ‘Dwed} a3y} Jo adA] q| <= [¢]49315139Y
196 49315189y
uolssiwsuel} 38| 3yl JO dl Mg 6T <= [€:TE] 4915139y |oJuo)
3sanbay uoissiwsuel] T xapu| Aliold <= [g]491s189Y € Hwsuel
...... 1915139y 1sanbay 1wsuel| ot
...... 7 S
1sonbay uoissiwsued] TE xapu| Aluold <= [0€]49315139Y M/Y 19315189y 1sanbay Hwsued]
1s9nbay uoissiwsued] g€ xapu| Ajlaold <= [T€]49315139Y .
AJIn4ssadons paia|dwod s| uoissiwsuedy ayi 1915199y 159nbay NWsuel | 8
U3YM SIE3|D D40 ‘UOISSIWISUBI] d)BIHUI O} P|21} P14 01 SDUIM ISOH
(M) @21
uonduasaqg : awey 4335189y XQ) SS2Ippy
/(4) peay {xo) s=2.pp

198 1918139y [0NU0D) XL 1+ #I9e8L

39

Buffer with the lowest priority Buffer with the highest priority
(L] [[[[I [3xTRR]| I
STEP 1 3 x 32 Buffers
L] TRR3 | LIl 1] TRR2]] | TRR 1 |
STEP 2
LI 11 | [T | 2x 16 Buffers
STEP 3 J
[F [] 2x8Buffers
[]: Buffers waiting for STEP4 [] 2 x 4 Buffers
transmission STEP 5
N [] 2 x 2 Buffers
[] : Buffers not waiting STEP 6 Dﬁ
for transmission [J[[=— Found 2 x 1 Buffers

Figure 4.9: Binary Search Algorithm

pending request, it repeats the whole process described here.

CAN FD Transmitter Block (CANFDTX):

This block creates properly formatted CAN FD frames according to CAN FD proto-
col specification. Its block diagram can be seen in Figil.10l, CANFDTX polls TX
Size FIFO, if the FIFO is not empty, it reads the size of the message and starts trans-
mitting. CANFDTX gets the payload from TX Data FIFO. It inserts CAN ID and
other control information such as DLC at the beginning of the frame. It computes
the CRC by communicating CRC Calculator Block (CCB), it inserts it at the end of
the frame and performs the necessary bit stuffing of the constructed frame as defined
in the standard. CANFDTX executes the CAN arbitration when the frame is ready
to transmit and switches to the high CAN FD bit rate when the frame successfully
completes the arbitration phase. Data and Size FIFOs do not hold more than 1 frame
information. CRC Calculator Block calculates either 17 bit or 21 bit CRC depending

on the message payload size as defined in the standard.

When the frame is transmitted successfully, TRR Clear Block requests to clean the
related bit in TRR. Furthermore, after TRR is cleared, CANFDTX indicates that the

transmission is done and it is ready for a new transmission.

40

Tx Done
ID & ID
Type
TRR
Write | TRR Clear Block | ——iear
Request
% CAN FD TX Protocol Block X
(CANFDTXP) Read TX Size FIFO Mgssage
RX 1ze
TX
Read TX Data FIFO Message
Data
. TX Error
Writ
e Detection Block]IE)r;:);
(TXED)
CRC Data CRC
Result Type

line than what is transmitted. In that case, CANFDTX attempts to send the frame
again when the bus becomes idle until it is successfully transmitted. If an error oc-

curs during transmission, data FIFO is reset so that the FIFO becomes empty for a

cated as over. Since the related TRR bit is not cleared, TXCL will attempt to transmit

CRC Calculator Block (CCB)

Figure 4.10: CAN FD Transmitter Block (CANFDTX)

The controller detects that an arbitration is lost if a different bit received is on the

fresh transmission, the current transmission is abandoned and transmission is indi-

the frame again when Binary Search Algorithm decides. TX Error Detection Block

(TXED) provides error data to TMSR. If no error occurred, TMSR is also updated

41

to indicate no error occurred. TXED checks for errors such as bit error and ack error

and ID information is attached to the error type to form the TMSR. TMSR content

can be seen in Figl4.4]

4.5 Hardware Blocks: Receiver Module

Most functionality of the Receiver Module sub-blocks are either analogous or revers-

ing the actions taken by the corresponding blocks of the Transmitter Module.

RX Control Logic Block (RXCL):

Message ID,
Fram.e ID Type,
Reception »> Size & Data
Done To FRM
Matched
Buffer #
Received RSR Set
ID & ID R RX Control Logic Block (RXCL) Request
Type
RX Message
Size Buffer
RX Message Allocation
Data

Figure 4.11: RX Control Logic Block (RXCL)

When a message is received successfully, RXCL gets frame reception done informa-
tion with the buffer number information which comes from MF. Having the buffer
number information means knowing the address of the related buffer in FRM where
the data will be written. RXCL reads the ID and ID type from CANFDRX, payload
size and data from FIFOs of CANFDRX. This data is written to the related address of
FRM. Furthermore, Receive Status Register (RSR) is requested to be set. If the bit
of RSR where it is requested to be set is already set, overflow condition occurs. New
data is over written hence the buffer holds the new frame data and overflow interrupt
is generated if enabled. There are total of 3 RSR for 96 RX buffers. RSR has the
information of the buffer numbers which hold the received messages. This is an indi-
cation for the Host MCU to learn the buffers with the received frames. When the host

reads the messages from the related buffers, it requests to clear RSR. The content of

42

RSR is shown in Table .5| The block diagram of RXCL can be seen in Figl4.T1]

CAN FD Receiver-RX Block (CANFDRX)

The block diagram of CANFDRX can be seen in Figlf.12] CANFDRX receives
the frames that are formatted according to CAN FD standard. It performs the CRC
control and other checks on the received CAN FD frames. When a message is suc-
cessfully received and matches any one of the filters, the size of the payload is written
to RX Size FIFO and the payload is written to RX Data FIFO. Frame reception done
information is provided to indicate that a message is received and ready to be read
from the FIFOs. If an ID match not found signal is received, after the whole frame is
received, the FIFOs are reset and the frame reception done is not provided. In other

words, the received frame is discarded.

CRC Calculator Block calculates either 17 bit or 21 bit CRC depending on the mes-
sage payload size as defined in the standard. If an error occurs during reception,
current reception is abandoned, the data and size FIFOs are reset so that the FIFOs
become empty for a fresh reception, and the bus is waited to be idle for a new re-
ception. RX Error Detection Block (RXED) provides error data to Receive Message
Status Register (RMSR). If no error occurs, RMSR is also updated to indicate no
error occurred. RXED checks for errors such as bit error, stuff error, CRC error and
form error and the ID information is attached to the error type to form RMSR. RMSR

content can be seen in Fig[4.5]

Furthermore, this block has an interface with the physical layer CAN FD signals,
namely, TX and RX. The block diagram of CANFDRX can be seen in Figld.12] Since
CAN FD has to send an acknowledgment bit during reception, it has an access to TX

physical layer signal as well.

Message Filter Block (MF):

MF block diagram is shown in Figld.13] MF gets the ID and ID type (either base or
extended) along with the ID ready information. Filter Control block inside MF gets
programmed ID and Mask pairs of each RX buffers from FMB and feeds this data to
Comparator block one by one. Comparator block compares the mask applied received

message ID with the mask applied ID data that come from FMB for each of the 96

43

Joug wiod <=, 11, <= [0:T]4915139Y
10413 DY) <= ,0T,, <= [0:T]4915139Y
o3 Yns <=, 10,, <= [0:T]4915139Y

Joasg oN <=,,00,, <= [0:T]4915139Y " 1915180y vz
sn1e1s uol3dadal 1se| ay3 Jo 9p0d g g <= [0:T]4915189Y SNIEIS 1015 SAISI9Y
al papuaixd <= T ‘Q| dseg <= 0 ‘Dwedy ay3 Jo adA] | <= [¢]4915189Yy
uondadal 3se| 9yY3 Jo | Mg 6T <= [€:T€] 4915189y 196 4915189y
snie3s uoindadas adessaw T Jayng <= [0]4915180Y jouo)
€ 1915189y sn1eis aAI03Y 0¢c EVNEREN]
sniels uolydasau adessaw T J49jhg <= [0g]49315139Y
7 1915189y snieis aAI09y o)
sniels uolldadas adessaw g€ Jayng <= [TE]49315139Y
11q JsJ paie|aJ Sulea|d 240439 /¥
peaJ Jayjoue wJoiad Juoq ‘@HdM e e pases|d 3q p|noys g auo Ajup
Jes[3 031 1q paie|al 3yl T 4915189y Sn1eis anIedaYy 8T
03} T 9MJM p|noys } ‘43jng Aue wou) a3essaw e spead 1oy 3yl Uaymm
T Se 31q pa3ie|aJ ay3 salepdn 2400 ‘paAISIaJ S| 98essaw e Uy
(M) 23am
uonduasaqg : awep 4935183y XQ) SSa4ppV
/(4) peay (o) s=2.pp

10§ 1938139y [0nuo) XY S HoIqeL

44

Received ID & ID Type
ID Ready
Frame Reception Done
ID Match Found/Not Found
x CAN FD RX Protocol ‘ v RX
(CANFDRXP) Write RX Size FIFO cosage
RX Size
RX
Write Message
RX Data FIFO
Data
Write RX Error Detection Error
Block (TXED) Data
Result| Data CRC Type
CRC Calculator Block
(CCB)

Figure 4.12: CAN FD Receiver-RX Block (CANFDRX)

RX buffers’ programmed ID & Mask pair. If it finds a match, it indicates that ID
match is found and provides the buffer number whose filtering is passed. If a match is
not found for any one of the 96 RX buffers, it is indicated that ID match is not found.
This means that the received frame does not pass the filtering. The messages that do
not pass any of the RX filters are discarded. Messages may pass more than one filter,
for this case, the first filter is taken into account and the buffer number is provided
accordingly. The filtering process begins when ID ready information is received from
CANFDRX, that is, during the reception process, MF does not wait for whole frame
to be received, instead, only receiving the ID part of the frame is enough to perform
the filtering operation. Therefore, by the time the frame is received, filtering process
is already finished. For the worst case (a match is found at 96th buffer or no match is
found after 96 steps), the filtering takes 496 clock cycles, which is approximately 5
us. For 2 Mbit/s bit rate, this time corresponds to 10 bits time for a CAN FD frame.

45

Filter 1D, ID
Type & Mask

From FMB > Filter Control

Received
ID & ID Type

Y

ID Ready

ID Match
Found/Not
Found

Comparator

Matched
Buffer #

Figure 4.13: Message Filter Block (MF)

4.6 Configuration Phase

The C3 driver software that should run on the MCU executes the configuration pro-
cess of the controller before the main application of the host MCU starts. The registers
requiring configuration on MMR are programmed by the C® driver software. For this
purpose, for each TX buffer, the size of the payload in the DL.C Registers are config-
ured over SPI. Accordingly, BCB in MMR allocates and assigns the required memory
for the payload of each transmitted CAN FD message on PFTM. Similarly for each
RX buffer, DLC Registers are configured by the driver over SPI. To this end, BCB
in MMR allocates and assigns the required memory space on FRM according to the
payload of each CAN FD message to be received. After both of the buffers are con-
figured, BCB state machine stays in a dead state and reprogramming of the buffers
is not possible. In other words, when the Host MCU application begins running, the

buffers can not be configured again. ID Registers in TX Register sets are configured

46

for the buffers which are going to be used. Similarly, RX ID and RX Mask Registers

are programmed. This process is also called the initialization of the controller.

TX(ID) and RX(ID) register sets can be seen in Table[4.6|and Table An example

configuration can be seen below:

TX ID Register: For 29 bit extended ID of 03A66A30 for TX Buffer 1,
0x1D335184 is written to this register at 0x0100 address

o TX DLC Register: For 64 Byte payload configuration for TX Buffer 1, 0x00000040

is written to this register at 0x0104 address

e RX ID Register: For 11 bit Base ID of 081 for RX Buffer 1, 0x10200000 is

written to this register at 0x1000 address

o RX DLC Register: For 32 Byte payload configuration for RX Buffer 1, 0x00000020

is written to this register at 0x1004 address

o RX Mask Register: To filter out the messages which do not have the same first
most significant 9 bit ID bits for RX Buffer 1, 0xFF800000 is written to this
register at 0x1008 address

4.7 Data Phase and Timing

The Data Phase consists of message transmit and receive actions for the applications
that run on the host MCU. Here we note that the clock cycle for C? is denoted as

ccs = 10nsec while the SPI clock cycle is denoted as cgp; = 100 nsec [22].

When the application has data to send, the driver locates the corresponding TX(ID)
register, the address of the register. Then, the driver writes the payload data on the

Data Register of TX(ID) using the Burst SPI Write command which takes
8416 +8+ B -8 cspr = 3.2+ 0.8 - B us for B byte payload.
The Data Register of the first TX buffer can be seen in Fig[4.6|

47

4944ng Hwsued] d4-NVI 40 p[al4 eied

1235139y ereq X1

80T

(¥9
03 T) S91AQ JO swudl ul ‘Dwedd g4 NVD J0 yiduaq ereq <= [0:9]4915189Y

panJasay <= [£:Tg]4915189Y

49151894 J1a X1

01

paniasay <= [0:T]4215183Y

Ja1j13uap| 98essalN pJepuels saiedlpul <= Q

J31J1Uap| 98eSSAIN PapPUIIXT SAILDIPUI <= T

awiedd @4 NVD Jo p|aly Se|4 uoisusix3 Jaynuap) ‘3q| <= [¢] 491si8ay

saweds g4 NV papuaixa Ajuo Joy pijeA ‘Dweld
a4 NV Jo p|3i4 [0:£T]al "al 98essaIN papuaix3 <= [g:0¢] 191518y

Qwelq g4
NVD 40 p[ay [81:8z]Al ‘Al 98essaN plepuels uq 1T <= [TZ:TE] 493518y

J215189y @I X1

oot

(anxt
196 4915189y
T 1ayng
Hwsuea)

uondusaq

(M) a3m
/(4) peay

awep 49315189y

(x0) ssa4ppv

108 191SI3Y (ADX.L :9'#2Iq8L

48

Jayyng an19day a4-NVD 40 pI3!d eleq Y 1335189y eIeQ XY 2001
(¥9
01 T) $91AQ Jo swua) ul ‘Dweld g4 NV Jo YyiduaT eleq <= [0:9]431s189y
3|qed||ddy 30N <=0
awel4 g4 NV o aseyd ejep ul sdqiAl Z 03 PaYdUMs s| 3ed Jig <=T
dweld a4 NVD JO P34 YOUMS 31eY Mg ‘Syg <= [£]491s18aY M 13351824 370 XY 800T
|qedl|ddy JoN <=0
1ew.0) swedy g4 NyD ul sl aweld<=T
aweJ4 @4 NV 40 pJal y1dua ereq papusixi “1a3 <= [gl4a3s18ay
paniasay <= [6:TE]4915189Y
paniasay <= [0:T] 4915189y
\T, SI)l pue panasay <= [¢] 1915130y
9Jed uop <= 0 ‘Aldwod 3snw <=1 ummawm_-wu_wwz
Q| 9seg 404 0 UIA ‘SDWel) 04 NYD PIpUaIxa 104 pljeA ‘Dweld M 1335199y YSeI Xy 00T T 1ayng
a4 NV 4o pja1y [0:£T]al “{selN Al 98essaA papuaix3 <= [€:0g] 4915182y SNy
9Jed uop <= 0 ‘Aldwod 3snw <=1
“seln swely a4 NVD
Jo pl2y [81:8Z]Al “IseIN I 93essal pJepuels 3q 1T <= [TZ:T€] 4235182y
paniasay <= [0:T] 4915189y
J31J13Uap| 98eSSIIN PJEPUR)S SIIRDIPUI <= O
J31j13uap| 98eSSAN PApPUIIX] S21EJIPUl <= T
Ajuo peay "9°| ‘sa8essaw panladad ay3 4oy Ajuo si 3iq SIy3
‘dweld a4 NV J0 p|ay Se|4 uolsualx3 Jalyauap| ‘3@l <= [¢] 493s18ay M/ 1235189y Al XY 000T
@l 9seq 40} 2J4ed Ju0Q ‘sawely 04 NV PapuaiIxa Ajuo 4oy pijea ‘Dwel
a4 NV jo pjay [0:£T]al "l 98essaN papuaix3 <= [€:0¢] 4915180y
Qwesd4 a4
NV Jo p|2y [81:8Z]al ‘al @3essa|N piepuels 1q TT <= [TZ:TE] J93s13ay
uonduasaqg A\\”_yg ”Mwﬁ awep 13315189y (x0) ssaippy

108 191SI30Y (ADXY :L+R1q8L

49

When the data write is complete, the MCU asserts bit(s) in the Transmit Request
Register (TRR) enabling the indicated TX Buffers for transmission, which takes

(8 + 16 + 32) Cspr

There are two methods for transmission

e Host MCU can write the payload of a frame to data register of a single buffer
first then set only one bit of TRR then repeat this process for each of the buffers

that are desired to be transmitted.

e Host MCU can write the payload of the frames to data registers of multiple
buffers first, then set multiple bits of TRR at a single write.

The host MCU may program the Interrupt Enable register (IER) to get notified
when a transmit error occurs. If an interrupt is received, the host MCU reads the
Interrupt Status Register (ISR) to determine the source of the interrupt. It then
reads the Transmit Message Status Register (TMSR) for the error source and the ID
of the message. Finally, the MCU clears the ISR after handling the interrupt. C* polls
TRR for pending transmission requests. If there are any bits set in TRR, C? selects
the message with the highest priority and begins transmitting. It takes 6-ccs = 60 nsec
to determine the message with the highest priority, which is implemented as binary
search algorithm. If no errors occur during the transmission, the C® clears the related
bit of the TRR. In case of an error, C* determines the cause of the error and updates
the TMSR with the ID of the message and the error type. C® retransmits the message

if the previous attempt has error [22].

Total transmission delays can be formulated as below [22]. In the formula below, z
denotes the FPGA core delay and it is approximately 1 us for B = 64. This value
completely depends on the implementation and it is not possible to estimate the value
theoretically instead practical value obtained from real hardware implementation is

used. More information can be found in Sec[5.3]
TTX(B) =xr+32+4+08- B,us + 64 cspr ~ (42 +0.8-B+64- CSPI) US.

In our implementation, the significant C* core transmit delays add up to less than

625 using the formula above and taking B = 64. This time is very small compared

50

to expected application delays and jitters on the MCU which should be bounded by
the message periods. Here we note that the lowest message periods in vehicle appli-

cations is close to 5 ms [22].

Regarding the reception, the host MCU polls the Receive Status Register (RSR) or
enables the interrupt. If there is a new message, the corresponding bit to the buffer ID
is set in one of the three RSRs. The MCU reads all of the three RSR and determines
the buffer holding the received message. The corresponding RX(ID) data register is
read using the Burst SPI Read command. The MCU is notified with an interrupt with
the source of error indicated in the ISR if an error occurs. After successful reception
or after an error, the related bit of RSR which corresponds to the read message is

cleared. Messages with an error are discarded [22]].

A frame with CAN FD ID is first fully received by the CANFDRX and then placed in
the RX(ID). Hence, C* and the host MCU have to finish processing the frame and the
MCU has to complete reception before the following frame is ready at CANFDRX.
In our current implementation, the MCU and C® Driver software is emulated with a
hardware block on the FPGA for evaluation purposes. To this end, we estimate the
receive processing time of C® without driver and MCU overhead. Furthermore, we
assume that all CAN FD frames with a given ID have the same payload length of B
Bytes. We also assume that the CRC sequence is 21 bits for all frame sizes, whereas
it is 17 bits for frames with payload less than 20 bytes. The transmission at standard

CAN rate is 1 Mbps, CAN FD Data rate is 2 Mbps [22].

We denote the shortest time between two consecutive CAN FD transmissions for a
CAN FD frame with B byte payload by 1'z,,() Which consists of the time to transmit
a frame and the inter-frame gap of 3us. During frame transmission, SOF and arbitra-
tion fields (BASE ID + SRR + IDE +EXTENDED ID + rl1 + EDL+ r0: 29 + 6 = 35
bits) at the beginning of the frame and ACK+EOF (3 + 7 = 10 bits) at the end of the
frame are transmitted at 1 Mbps. Control Field (BRS+ESI + DLC: 6 bits), Payload
Data (B - 8 bits), CRC + CRC delimiter (21 + 1 =22 bits) are transmitted at 2 Mbps.
Hence, Tgyus(p) = (59 + B -4+ 3) us = (B - 4 4 62) us [22].

We next compute Trx(p) Which denotes the estimated time for the host MCU to

receive a frame with B bytes payload from C®. The SPI cycle times are computed

51

according to Table [4.2] Reception of the frame starts by writing B bytes in FRM.
Then ISR is updated and an interrupt is generated for the host MCU which takes
y. The host MCU gets the interrupt and reads the ISR with the 32bit SPI Read
operation (56 - cspy). Then, the host MCU reads 3 RSR, where each register has
32 bits to represent 96 RX buffers (3 - 56 - cgpr). The host reads the Data Register
of RX(ID) with Burst SPI Read (32 + B - 8 - c¢gpy) and clears ISR with a 32 bit SPI
Write (56 - cgpy). Finally the operation is completed by clearing RSR with a 32 bit
SPI Write (56 - cspr) [22]].

Accordingly, Trx(p) =y-+(368 + B -8) - cspr = (y+36.8+ B-0.8) us ~ (B - 0.8 +
38.2) us where y is approximated as 1.4 u for B = 64. Theoretical estimation of y is
not possible because it depends on the hardware implementation hence the practical

value from the real hardware is used here. More information can be found in Sec5.31

Hence, under our assumptions, Trx (p) is significantly smaller than Tz, p). That is,
C? and the host MCU indeed complete processing each frame before the next frame

can be transmitted[22]].

4.8 FPGA Implementation Results

Xilinx Virtex 5 FPGA is used for the implementation. More information about the
FPGA is provided in Sec[5.1]FPGA device utilization and project status are depicted
in Table 4.8 and Table 4.9 FPGA code includes both the application and CAN FD
Controller. The application acts like a host MCU simulator. More details are given in
Secl5.2] Clock frequency is 100 MHz.

SPI Data is sampled at the rising edge and put on the line at falling edge of SPI CLK
signal. Therefore, effective SPI clock frequency seen by the FPGA is 20 MHz. 100
MHz FPGA clock frequency is suitable enough to handle effective 20 MHz SPI clock

frequency.

Xilinx FIFO, Block Memory Generator and PLL IP Cores are used. All other modules
including CAN FD protocol and SPI protocol are written in VHDL manually and

implemented.

52

Table4.8: FPGA Device Utilization Summary

Device Utilization Summary -1
Slice Logic Utilization Used Available |Utilization |Note(s)
Mumber of Slice Registers 5,029 44,800 11%
Mumber used as Flip Flops 5,029
Mumber of Slice LUTs 11,541 44,800 25%
Mumber used as logic 11,331 44,800 25%
Mumber using 06 output anly 9,088
Mumber using 05 output only 354
Mumber using Q5 and 06 1,389
Mumber used as exdusive route-thru 210
Mumber of route-thrus 1,098
Mumber using 06 output only 1,064
Mumber using 05 output anly 34
Mumber of occupied Slices 4,522 11,200 40%
Mumber of LUT Flip Flop pairs used 13,250
Mumber with an unused Flip Flop 8,221 13,250 62%
Mumber with an unused LUT 1,709 13,250 12%
Mumber of fully used LUT-FF pairs 3,320 13,250 25%
Mumber of unique control sets 494
Mumber of slice register sites lost 857 44,300 1%
to control set restrictions
Mumber of bonded I0Bs [640 1%
Mumber of LOCed I0Bs & & 100%:
Mumber of BlodkRaMFIFO 14 148 9%
Mumber using BlockRAM anly 14
Mumber of 38k BlockRAM used &
Mumber of 18k BlockRAM used 10
Total Memory used (KB) 396 5,328 7%
Mumber of BUFG/BUFGCTRLS 32 5%
Mumber used as BUFGs 2
Mumber of FLL_ADVs 1 & 16%
Average Fanout of Mon-Clock Nets 4,28

53

Table4.9: FPGA Project Status

TopModule Project Status (11/11/2017 - 12:02:21)
Project File: CAMN_FD. xise Parser Errors: Mo Errors
Module Name: TopModule Implementation State: Placed and Routed
Target Device: xcSvhxF0t-1fF1136 » Errors:
Product Version: ISE 14.7 + Warnings:
Design Goak: Balanced * Routing Results: All Signals Completely Routed
Design Strategy: ¥ilinx Default (unlocked) * Timing Constraints: All Constraints Met
Environment: System Settings » Final Timing Score: 0 (Timing Report)

Design module hierarchy is in Figl4.14] The functions of each file is listed below:

e CANFD_Controller.vhd: module includes Memory Mapped Register Block
(MMR), RX Control Logic (RXCL), Message Filter (MF), TX Control Logic
(TXCL) and Interrupt Control Blocks

e CANFD_Receiver.vhd: Module includes CAN FD RX Block (CANFDRX)

e CANFD_Transmitter.vhd: Module includes CAN FD TX Block (CANFDTX)

e CRC_17.vhd: 17 bit CRC Calculator Block (CCB)

e Crc_gen_21bit.vhd: 21 bit CRC Calculator Block (CCB)

e SPI Controller.vhd: Module includes SPI Protocol Control Block (SPCB)

e Host_Application.vhd: Module includes Host Simulator

e SPI_Master_Controller.vhd: Module includes Master SPI Control Block (MSPIC)

e TopModule.vhd: Provides connection between CAN FD Controller and host

simulator.
e Debouncer.vhd: Provides debouncer for button press on FPGA demoboard.
e CANFD_Constraints.ucf: Includes the timing and pin location constraints

e PLL.xav: 100MHz clock is put into PLL to generate a clock with less jitter and

more stability.

54

|Design 08 X

View: @ Eﬂ}lmplementaﬁon) M Simulation

Hierarchy

= £ xcSvhd0t-1FF1136

= ;ﬁ; TopMedule - Behavioral (TopModule.vhd)

= Application - Host_Application - Behavioral (Host_Application.vhd)

=J =5 SPI_Caontroller - SPI_Master_Controller - Behavioral (SPI_Master_Controllervhd)
. LT T Data_Fifo - SPI_Master_Data_Fifo (SPI Master Data_Fifoxca)
. 4.7 R¥ Data_Fifo - SPI Master_Data_Fifo (SPI Master Data_Fifo.xco)
----- y Size_Fifo - SPI_Master_Size_Fifo (5PI_Master_Size Fifo.xca)
o Y Initialization_Bram - INIT_BRAM (INIT_BRAM .xco)
----- Button_Debouncer - debouncer - Behavioral (Debouncervhd)
= t_uﬂ CAMN_FD_COMNTROLLER. - CANFD_COMTROLLER - Behavioral (CAMFD_Controllervhd]
i T¥_BRAM - Block_Ram (Block_Ram.xco)
~ 4.0 RX_BRAM - Block_Ram (Block_Ram.xco)
- 4.7 FILTERING_BRAM - FILTER_BRAM (FILTER_BRAM.xco)
- ﬁ; CAMFD_RX_Module - CAMFD_Receiver - Behavioral (CANFD_Receivervhd)
¥ n¢_data_fifo - data_fifo (data_fifo.ucco)

|§|:| |@@D

B B

[=}
4 ni_size_fifo - size_fifo (size_fifo.xco)

- ['ng] CRC_17 - crc_gen_ 17 - behave (CRC_17.vhd)

----- " CRC_21 - cre_gen_21 - behave (crc_gen_21.whd)

= E CANFD_TX_Module - CANMFD Transmitter - Behavioral (CANFD_Transmittervhd]
. LF tu_data_fifo - data_fifo (data_fifo.xco)

-~ 4 ti_size_fifo - size_fifo (size_fifo.xco)

- [y CRC_17 - cre_gen_ 17 - behave (CRC_17.vhd)
'y CRC_21 - cre_gen_21 - behave (crc_gen_21.whd)

= t—uﬂ SPI_Controller_Module - SPI_Controller - Behavioral (SPI_Controllervhd)

i ADDRESS_FIFO - FIFO_16:16 (FIFO_16:16.xco)

lii_ INSTRUCTIOMN_FIFO - FIFO_8x8bit (FIFO_8x8bit.xco)

1{ BURST_SIZE_FIFO - FIFO_&xfbit (FIFO_BxEhit.xco)
§

SPI_RX_FIFO - SPT_FIFO (SPI_FIFOxcao)
SPLTX_FIFO - SPT_FIFO (SPI_FIFOxco)
~ 2 Inst_PLL - PLL (PLL.xaw)
----- B CAMNFD_Constraints.ucf

Figure 4.14: FPGA Project Hierarchy

55

3 Process Properties - Synthesis Options —)
Category Switch Name Property Name Value
“opt.made Optimization Goal Speed =
HDL Options
il Specific Options _opt_level Optimization Effort High =
~power Power Reduction 0
-iuc Use Synthesis Constraints File]
-uc Synthesis Constraints File [)
-Iso Library Search Order
~keep_hierarchy Keep Hierarchy No [~
-netlist_hierarchy Metlist Hierarchy Rebuilt [~
~glob_opt Global Optimization Goal AllClockNets =
~rthview Generate RTL Schematic Ves [+
-read_cores Read Cores]
-sd Cores Search Directories =
-write_timing_constraints Write Timing Constraints]
-cross_clock_analysis Cross Clock Analysis]
~hierarchy._separator Hierarchy Separator / [+]
~bus_delimiter Bus Delimiter <> [+]
—slice_utilization_ratic LUT-FF Pairs Utilization Ratio 100 =
-bram_utilization_ratio BRAM Utilization Ratio 100 2
-dsp_utilization_ratio DSP Utilization Ratio 100 2
~case Case Maintain [~
Work Directory Di\Tez\CAN-FDVCAN_FD_VHDL\ACAN_FD_PLL3\xst (-]
set -xsthdpini HOL INI File (]
~verilog2001 Verilog 2001 il
~vigincdir Verilog Include Directories L]
~generics Generics, Parameters
~define Verilag Macros
Other XST Command Line Options
Property display level: | Advanced [=] 7] Display switch names
I tovl

Figure 4.15: FPGA Implementation Options 1

One of the biggest challenges of the implementation was to meet the timing. Since
there are so many registers and internal signals for 96 RX and 96 TX buffers, the
design didn’t meet the timing at the first trial. It is not possible to reduce 100 MHz
FPGA clock frequency due to effective 20 MHz SPI Clock frequency. Therefore, to

improve timing two strategies have been developed:

There are many synthesis, HDL, Xilinx Specific, Map, Place & Route options. By

changing the options, its possible to have better timing performance. For this pur-

pose, the following settings in Fig[4.15] Figl4.16] Figl.17] Fig[4.18 and Fig[4.19)are
applied.

The other strategy is to increase the steps to perform the memory mapping operation.
Since the number of the registers is high for 96 TX and RX buffers. There are also
much more signals related to the buffers than the buffers’ own registers, hence huge
cascaded multiplexers have to be used during implementation. Cascaded structures
are the enemies of timing since the signals are serialized and serialized operation
must be completed in a single clock cycle. For this purpose, configuration mapping is
done in 12 steps, SPI writes are done in 15 steps and SPI reads are done in 12 steps.

Since SPI reads require quick response, steps to perform register read requests must

56

[Process Properties - HDL Cptions] 1 — =
Category Switch Name Property Name Value
Synthesis “’“‘ ~fsm_extract, -fsm_encoding FSM Encoding Algorithm Auto
Xilinx Specific Options -safe Safe Ves
~vidcase CaseImplementation Style | Parallel
fsm_style FSM Style LT =
-ram_extract RAM Extraction
i -ram_style RAM Style [+]
i -rom_extract ROM Extraction
: ~rom_style ROM Style [~]
-auto_bram_packing Automatic BRAM Packing
-mux_edract Mux Extraction E|
-mus_style Mux Style B
| -decoder_extract Decoder Extraction
-priority_extract Priority Encoder Extraction [+
-shreg_extract Shift Register Extraction
“Shift_exract Logical Shifter Extraction
-xor_collapse XOR Collapsing
resource_sharing Resource Sharing
-use_dspd8 Use DSP Block Auto [~
~async_to_sync Asynchronous To Synchronous ||
I
Property display level: [Advanced [~] [7] Display switch names
| Apply
L
Figure 4.16: FPGA Implementation Options 2
=13 Process Properties - Map Properties { : -—— =)
EEE Switch Name Property Name Value
i Placer Effort Level Fiigh =
Place & Routs Properties e Placer Extra Effort Normal -
Post-Map Static TlmingrREpm Pr |-t Starting Placer Cost Table (1-100) 1 o
::’::;;Zﬁﬁ:‘gif;‘;l’;“'“g logic_opt Combinatorial Logic Optimization
-register_duplication Register Duplication On
| -global_opt Global Optimization Speed [~
! -equivalent_register_removal Equivalent Register Removal]
i - Tgnone User Timing Constraints]
I -ntd Timing Mode Performance Evaluation
-u Trim Unconnected Signals
_ignore keep_hierarchy Allow Logic Optimization Across Hierarchy
| e Optimization Strategy (Cover Mode) Speed =
~detail Generate Detailed MAP Report]
-ir Use RLOC Constraints Ves [~]
-pr Pack /O Registers/Latches into I0Bs off =
< Maximum Compression]
-l LUT Combining Off [~
-bp Map Slice Logic into Unused Block RAMs ||
“power Power Reduction]
-activityfile Power Activity File
-mt Enable Multi-Threading 2 [~]
| Other Map Command Line Options
Fl—T— r Property display level: |Advanced E Display gwitch names
I 2oy

Figure 4.17: FPGA Implementation Options 3

57

B Process Properties - Xilinx Specific Options] ; - — [E)
Category Switch Name Property Name Value
Synthesis Options “iobuf Add /0 Buffers
HDL Options
Kilinx Specific Options -max fanout Max Fanout 10000 =
-bufg Number of Clack Buffers 32 +
register_duplication Register Duplication
-equivalent_register_removal Equivalent Register Removal [
register_balancing Register Balancing [+
i -move first_stage Move First Flip-Flop Stage
-move_last_stage Move Last Flip-Flop Stage
-iob Pack I/0 Registers into 10Bs. Auto -
-l LUT Combining No
-reduce_control_sets Reduce Control Sets No -
I ~slice_packing Slice Packing n
use clock enable Use Clock Enablel Auto [
-use_sync_set Use Synchronous Set Auto
-use_sync_reset Use Synchrenous Reset Ves
-optimize_primitives Optimize Instantiated Primitives
I
Property display level: |Advanced [] [¥] Display gwitch names
- = P
Figure 4.18: FPGA Implementation Options 4
13 Process Properties - Place & Route Properties 1 — =)
Category Switch Name Property Name Value
SR T 5 Place And Route Mode Route Only [-]
Place & Route Properties -ol Place & Route Effort Level (Overall) High =
Post-Map Static TiMng.RERDTF Py |-xe Extra Effort (Highest PAR level only) Normal s
zr:;r;:i:'i&g::‘t;?::t:t;mng -x Ignore User Timing Constraints |}
-ntd Timing Mode Performance Evaluation
N Generate Asynchroneus Delay Report |l
Generate Clock Region Repart]
I Generate Post-Place & Route Simulation Model [|
Generate Post-Place & Route Power Report ()
-power Power Reduction ()
-activityfile Power Activity File .
il -mt Enable Multi-Threading 4 [+]

Other Place & Route Command Line Options

4 . »

Property display level: [Advanced [v] (7] Display gwitch names

Figure 4.19: FPGA Implementation Options 5

58

be completed fast. 12 steps are quick enough for CAN FD Controller to perform the
mapping and put the required data on MI SO line on time. By increasing the mapping
steps, cascaded multiplexers are divided into smaller cascaded units hence being able

to complete the operation on time.

By these two adjustments, timing score was improved greatly and could be pulled
down to 0 and timing is met. Furthermore, besides the general VHDL coding tech-

niques, following strategies are followed for more optimized implementation.

Using Case Statements Instead of Nested If Else Statements: Case statements have
been used for all of the state machines and most of the conditional logic having more
than two conditions. Use of case statement yields faster implementation. Nested if
else structure uses priority encoders for implementation therefore more combinational

logic is used hence the hardware becomes slower.
Arithmetic Operations: Instead of using multipliers or dividers for some arithmetic

operations, following strategies are used:

e For multiplying with 2, shifting the logic vectors one bit left

e For dividing by 2, shifting the logic vectors one bit right

Therefore, by using simple shift registers, usage of complex multipliers or dividers

are avoided. This yields lower resource consumption.

Furthermore, grouping arithmetic statements gives great timing advantage. For exam-
ple, the first statement below is implemented as 4 serialized adders while the second
statement below is implemented as 2 parallel adders. The latter one gives better tim-

ing performance.

e C<=Cl1+C2+C3+C4

e C<=(Cl+C2)+(C3+C4)

Using Constants: Use of constant statement instead of vector or integer variables

provides more optimized implementation.

59

Avoiding Latches: Latches are created when incomplete if-else statement is used. In
other words, “if”” part of the condition is specified but “else” part is not specified. If
the target FPGA does not have latch units, latches are created from multiplexers and
some other logic elements hence increasing resource consumption and hence reducing

timing performance.

Using Synchronous Reset: Most FPGAs have logic elements with synchronous reset
therefore when asynchronous reset is used, some extra logic elements are used to
implement asynchronous structure. To minimize resource consumption, a reset signal

synchronous to the clock signal is used throughout whole design.

Using Distributed or Block Memory: Instead of using huge number of registers for
memory purposes, it is good practice to use embedded memory. Because embedded
memory only uses the existing memory block inside the FPGA. Using embedded

memory makes the design quite simple and more efficient.

State Machine Implementation Types: State machine implementations are catego-
rized in several ways. Some of them require encoding/decoding while some does
not require. For example, the sequential state machine implementation type performs
binary encoding for state mapping. It uses less logic resource but since it requires
encoding/decoding, it is slow and the timing performance is bad. On the other hand,
one hot encoding requires no encoding/decoding since each state is represented by a
single flip flop. Therefore one hot encoding consumes more resources but it is fast
and yields better timing performance. For this design, the choice is left to the program

automatically but it might also have been forced to one hot encoding for good timing.

Using Synchronous Processes: Using synchronous processes and avoiding combi-
national logic as much as possible yields better timing performance. Combinational
logic is the enemy of the timing. For this implementation, mostly synchronous logic

is used as much as possible.

60

CHAPTER 5

EVALUATION OF C?® (CONFIGURABLE CAN FD CONTROLLER)

In this chapter, the development environment, the Host Simulator implementation
details, response time measurements and functional tests are covered in detail. The

purpose is to verify the design functions and measure the response time performance

of the CAN FD Controller.

5.1 Development and Test Environment

5V
. 33V CAN H
Pﬁltlfl;‘r"m T | Xilinx onDp | |TCAN1042[-~ PCAN
Cable ML507 Evaluation = USB FD
Demoboard IX Module | CAN GND | Analyzer
USB 11 —
RX
USB USB
XILINX .
Chipscope Pro COMPUTER PCAN View
Software
Software

Figure 5.1: Test Setup Block Diagram

The test setup block diagram is depicted in Fig We implement our C* CAN
FD Controller and a host simulator on the FPGA demo board. CAN FD transceiver
module is connected to FPGA demo board to meet the physical layer requirements of

CAN FD protocol. The transceiver module connects C3 CAN FD Controller to CAN

61

FD Bus. PCAN analyzer is connected to CAN FD Bus to send CAN FD frames to

the controller and monitor the bus for the frames that the controller sends.

Xilinx Platform Cable USB II is connected to FPGA demo board via USB for two
purposes. One is to program the FPGA. The other is to monitor the FPGA signals to

verify the functions.

Xilinx ISE 14.7 development platform is used for FPGA hardware design. Code is
written in VHDL. Synthesizing and hardware implementation of the design is done
with this platform. Synthesizing and hardware implementation of VHDL code is

dependent on the FPGA used. Therefore, Xilinx ISE platform is used.
Chipscope Pro software tool is used to debug and verify the design.

The test setup can be seen in Fig[5.2]

C’ (FPGA EVALUATION BOARD)
A

ANALYZER
COMPUTER USB
CONNECTION

Figure 5.2: Test Setup

FPGA Demoboard: CAN FD Controller is implemented in VHDL and realized in

62

Xilinx Virtex5 ML507 demo board [15]]. The pictures of the board can be seen in

GPIO &
Power Supply
Header

|) Virtex 5 FPGA Push Buttons

Figure 5.3: Xilinx ML507 Demoboard

Virtex 5 FPGA with the part number of XC5VFX70T-1FFG1136 has the following
logic, memory and interface capacities which can be seen in Fig/5.1] The comparison
of the FPGA used with the other FPGAs belonging to Virtex-5 family is shown also
in Table 5,11

Table5.1: Xilinx Virtex 5 FPGA Familiy Comparison

Configurable Logic Blocks (CLBs) Block RAM Blocks
DSP48E
Device Max
Array | Virtex-5 Slices(? 3) Max
(Row x Col) | Slices(?) | G2etrEuted 18 K36 Kb (i)
XC5VFX30T 80 x 38 5,120 380 64 136 68 | 2,448

XC5VFX70T | 160x38 | 11,200 820 128 296 | 148 | 5,328
XC5VFX100T | 160 x 56 | 16,000 1,240 256 456 | 228 | 8,208
XC5VFX130T | 200 x 56 | 20,480 1,580 320 596 | 298 10,728

Some important features of the demo board is as follows:

63

Two Xilinx XCF32P Platform Flash PROMs (32 Mb each) for storing large

device configuration

100 MHz oscillator

General purpose LEDs, pushbuttons

Expansion header with 32 single-ended I/0, 16 LVDS-capable differential pairs,
14 spare 1/Os shared with buttons and LEDs, power, JTAG chain expansion ca-
pability, and I2C bus expansion

CAN FD Transceiver: The signals named as TXD and RXD shown in Fig[5.4]are the
TTL level single ended signals connected to CAN FD Controller. CANH and CANL

are the differential ended signals connected to CAN FD bus.

Vee Vcel2

T d E_H%

&

RXD()_W

Figure 5.4: CAN FD Transceiver Internal[31]]

Yyy

) CANH
TXD (=== Driver
() CANL

y W 4

Transceivers contain both the transmitter and the receiver in a single chip. There
are open-drain output transistors with internal pull-up resistors connected to half the
power supply voltage (VCC/2 +10 %) to generate a differential signal at CANH and
CANL.

When a dominant bit is required to be transmitted, both the open drain transistors
conduct resulting in VCC - 0.9V at CANH and 1.5V at CANL. The resulting voltage

is a logic low hence a dominant bit.

When a recessive bit is required to be transmitted, both of the open drain transistors
are put in High-Z state. By the help of pull up resistors VCC/2 voltage is applied
hence both CANH and CANL are at logic high, hence a recessive bit [31].

64

Figure 5.5: Tranceiver Signals

Voltage levels of TXD and the corresponding CANH and CANL signals can be seen
in Figl5.5

For the experiments Texas Instrument’s TCAN Evaluation module is used. On the
module board, there is a TCAN1042-Q1 Automotive Fault Protected CAN Transceiver
with CAN FD.[19]. The picture of the transceiver board can be seen in Fig[5.6] FPGA
demo board interfaces this board with TXD and RXD signals. Furthermore, 5V, 3.3V
and GND signals are also provided by the FPGA board. These signals are available
at the connector on the left side of the board in Fig/5.6] The connections are made
between FPGA and transceiver board through this connector. Furthermore, on the
right side of the board, CAN FD bus signals are available on the connector. In order
for the voltage be formed properly on CANH and CANL, 120 ohm resistor should
be connected between CANH and CANL lines. For this purpose, there is 120 ohm

resistor available on the board.

CAN FD
FPGA BusSide
Demoboard | | Signals
Side - U ¢
Signals i
o

I§ TEXAS o
INSTRNTS

Figure 5.6: CAN FD Transceiver Board

65

CAN FD Analyzer: CAN FD Analyzer provides connection between CAN FD bus

and the computer. Computer connection is done with USB interface. A computer
Graphical User Interface called PCAN View is used to generate the desired CAN FD
messages, monitor CAN FD bus and generate error. This adapter is used to debug and
verify the functionality of the CAN FD Controller developed. Analyzer hardware can
be seen in Fig[5.7]

Figure 5.7: PCAN USB FD Hardware

Platform Cable USB II: Platform Cable USB II provides both the hardware and the

software to provide high- performance, reliable and easy to perform configuration of
Xilinx devices. Platform Cable USB II connects to user hardware for the purpose of
configuring Xilinx FPGAs, programming Xilinx PROMs and CPLDs. In addition, the
cable is also used for indirectly programming of Platform Flash, third party SPI flash
devices, and third-party parallel NOR flash devices via JTAG interface. Furthermore,
Platform Cable USB 1II is a tool for debugging the embedded devices when used in
conjuction with the tools such as Xilinx Embedded Development Kit and ChipScope
Pro Analyzer. The platform cable can be seen in Fig/5.§]

5.2 Host Simulator Implementation

CAN FD Controller and Host Simulator have been implemented in the FPGA. The
interface between the CAN FD Controller and the Host Simulator is SP1. SPI signals

between these two are connected inside the FPGA as can be seen in Fig[5.9]

66

TX

Figure 5.8: Xilinx Platform Cable

XILINX Virtex 5 FPGA

RX

C:: Configurable

CAN FD Controller

MOST

MISO

CLK

CSn

Interrupt

HOST Simulator

Figure 5.9: FPGA Implementation Block Diagram

Host simulator configures the controller, requests transmissions and reads received
frames. In other words, it acts like a MCU. MCU includes a driver written special
to the controllers and software application is abstracted from the controller’s register
sets. Driver handles all of the register management. It knows the addresses of the
registers and maps the requests coming from the application to the corresponding
register addresses in the controller and performs register read and write operations.
Host simulator is implemented in an FPGA and since there is no MCU is involved,
driver concept mentioned here makes no sense. Instead, different practical approach
which is going to be described in this section is designed to make the Host Simulator

act like a MCU. The block diagram of the Host Simulator is in Fig[5.10

Master SPI Control Block (MSPIC): Host needs an SPI interface to communicate

with the controller. As already mentioned in Seci4.2] CAN FD Controller has a
SPI slave implementation. Host has SPI master role. For this purpose, SPI master

protocol is designed and implemented.

This block gets frame size in terms of bytes from TX Size FIFO, then gets as much
data as read from TX Size FIFO from the TX Data FIFO and begins transmitting SPI
frames. As already mentioned in Sec4.2] MOST line is used by the master and MISO
line is used by the slave. While transmitting data on MOST line, SPIC block records
all of the data and puts it in the RX Data FIFO.

For Burst SPI Write and 32 bit SPI write, the data in the RX Data FIFO makes no
sense since no response is required from the slave. To illustrate this, discarded data

on MISO line is shown in Figl5.T1|for 32 bit SPI write command.

For Burst SPI Read and 32 bit SPI read operations, only some portion of the data
makes sense, rest is discarded. To illustrate this, discarded data on MISO line is
shown in Fig[5.12|for 32 bit SPI read command. For the portion of the frame where
the slave responds, do not care part on MOST line in Figl5.12] as many OxFF bytes as
the amount of the response from the slave are transmitted to hold the MOST line logic

1 and hold the CSn signal asserted for the whole duration of the frame.

To illustrate an example SPI frame transmission operation, the steps below are fol-

lowed by SPIC:

68

weider Yoo[g Joje[nuwiis ISOH Q]S 2In3Lj

INVY
P01d

P01d
o130
[onuo)

71§ eie(q
eled OdId jiasuel],
jisuel, 9ZIS X.L peoy
AIM
eie(q eI
JiIsue.L], OdId JIuISueL],
AMIM vIe X1 peay
elR(q eleq
PIATOY OdId PoAIdY
peay eled Xy MM

uo33ng

(4dSIN)

1dnIIsj3ur

Yoo[g 090101 [dS IISBIN

usod

1D

OSIN

(DIdSIN) o01d [01U0)) [dS 19ISBIN

ISON

69

Csn \ /

: <— jnstruction—» ;<4—— address———»<+—— data out———»

MOSI A0 00 0 0 0/ 1\0AuKnH - X X X XAXaoioXomX - X X X XKoo

MISO don’t care

Discarded Data

Figure 5.11: SPI Read Operation

e SPIC reads 8 from TX Size FIFO

e Then it reads 8 bytes from the RX data FIFO and forms a frame from this 8

bytes information and begins transmitting.

e While transmitting it records 8 bytes on MISO line and puts them into the RX
Data FIFO byte by byte.

Control Logic Block: This block is connected to a block ram. The block ram holds

the information in the following format.
Frame Size in terms of bytes + Bytes to be transmitted

Block RAM IP Core has the option to have initialization values when FPGA powers
up. An initialization file is presented to the IP Core to define the initial content of
each memory location. When the core is generated to be used in project, this file is
loaded to block RAM through the block memory generator GUI. Every time this file
is modified, whole FPGA code must be resynthesized and implemented to have the
changes take effect. For each of four SPI commands, block ram data content is shown

below:

32 bit SPI write operation to set TX buffer 1 DLC (Data Length Code) Register to
64 byte (0x.. represents hex format):

70

CSn \ /

;- instruction— j—— address—h

MOST 000000/ @@'QQQ@@ don’t care

'4— data 0ut—>-

don’t care
MISO oo @QGGQ@@

Discarded Data Meaningful Data

Figure 5.12: SPI Burst Read Operation

Mj BRAM_IMIT_20170723_18_33.txt - Notepad

| File Edit Format View Help

; sample initialization file for a
; 8-bit wide by 8192 deep RAM

memory_initialization radix = 16;
_initialization_vector =
E— —

: set tx buffer 1 dlc=64

o7, 02, 01, 04, 00, 00, 00, 40,
: set tx buffer 2 dlc=48

o7, 02, 01, 10, 00, 00, 0O, 20,

: set tx buffer 3 dlc=32

07, 02, 01, 1c, 00, 00, 00, 20,

Figure 5.13: Initialization Block Ram Data Content for 32 Bit SPI Write Command

e Instruction Code (1 byte): 0x02

e Register Address (2 bytes): 0x0104

e Data (32 bit-4 bytes): 0x00000040

e Frame Size in terms of bytes=1+2+4=7

e When all of this information is put in the block ram, following content is

formed: 0x07, 0x02, 0x01, 0x04, 0x00, 0x00, 0x00, 0x40
e The data content of this SPI frame in block ram can be seen in Fig[5.13]

32 bit SPI read operation to read RSR 1 (Receive Status Register 1) at address

0x0018 (0x.. represents hex format):

71

-

j BRAM_INIT -20170802_10_45.txt - Notepad

File Edit Format View Help

;c1ear RSR 12
o7, 02, 00, 18, 00, 00, OB, 00,

;Read RSR 1
o7, 03, 00, 18, FF, FF, FF, FF,

;Read ID 13
or, 03, 13, 90, FF, FF, FF, FF,

;Read Received Data 13
24, 01, 13, 9c, 20, FF, FF, FF, FF, FF,

;c1ear RSR 13
07, 02, 00, 18, 00, 00, 10, 00,

Figure 5.14: Initialization Block Ram Data Content for 32 Bit SPI Read Command

Instruction Code (1 byte): 0x03

Register Address (2 bytes): 0x0018

Data (32 bit-4 bytes): OxXFFFFFFFF

Frame Size in terms of bytes=1+2+4 =7

When all of this information is put in the block ram, following content is

formed: 0x07, 0x03, 0x00, 0x18, OxFF, OxFF, OxFF, OxFF

For the 32 bit SPI read, the slave responds to this request with 4 bytes (32 bit)
of data, for this purpose, the data part of the frame is transmitted as 4 times
OxFF bytes to keep CSn signal asserted hence the slave is given enough time
to provide the required 4 bytes of data. The data content of this SPI frame in
block ram can be seen in Fig[5.14]

Burst SPI write to Buffer 1 TX Data Register (0x.. represents hex format):

Instruction Code (1 byte): 0x00

Register Address (2 bytes): 0x0108

Burst Size (1 byte): 0x40

Data (64 bytes): 0x01, 0x02, 0x03... 0x63, 0x64

Frame Size in terms of bytes=1+2 + 1 + 64 = 68 = 0x44

72

-

M_wl BRAM_INIT -20170802_10 45.txt - Nntepadj,
File Edit Format VYiew Help

; Tx Buffer 1 Data write 64x
44, 00, 01, 08, 40,

o1, 02, 03, 04, 05, 06, 07, 08,
g9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24,
25, 26, 27, 28, 29, 30, 31, 32,
33, 34, 35, 36, 37, 38, 39, 40,
41, 42, 43, 44, 45, 46, 47, 48,
49, 50, 51, 52, 53, 54, 55, 56,
57, 58, 59, 60, 61, 62, 63, 64,

; TX Buffer 2 Data Write 48x
34, 00, 01, 14, 30,

oo, 02, 04, 06, 08, 10, 12, 14,
16, 18, 20, 22, 24, 26, 28, 30,
32, 34, 36, 38, 40, 42, 44, 46,
48, 50, 52, 54, 56, 58, 60, 62,
64, 66, 68, 70, 72, 74, 76, 78,
80, 82, 84, 86, 88, 90, 92, 94,

Figure 5.15: Initialization Block Ram Data Content for Burst SPI Write Command

e When all of this information is put in the block ram, following content is

formed: 0x44, 0x00, 0x01, 0x08, 0x40, 0x01, 0x02, 0x03 ... 0x64

e The data content of this SPI frame in block ram can be seen in Fig[5.15]
32 bytes Burst SPI read from Buffer 11 RX Data Register (Ox.. represents hex
format):

e Instruction Code (1 byte): 0x01

e Register Address (2 bytes): 0x1304

e Burst Size (1 byte): 0x20

e Data (64 bytes): OxFF, OxFF, OxFF ... OxFF

e Frame Size in terms of bytes =1 +2 + 1 + 32 =38 = (0x24

e When all of this information is put in the block ram, following content is

formed: 0x24, 0x01, 0x13, 0x04, 0x20, OxFF, OxFF, OxFF ... OxFF

e For 32 byte Burst SPI read, the slave responds to this request with 32 bytes of
data, for this purpose data part of the frame is transmitted as 32 times OxFF

73

j BRAM_INIT -20170802_10 _45.txt - Notepad l"‘:' =]

File Edit Format View Help
07, 03, 12, AC, FF, FF, FF, FF,

ERead rReceived Data 10
34, 01, 12, BE8, 30, FF, FF, FF,

;c1ear RSR 10
o7, 02, 00, 1&, 00, 0O, 02, 00,

;Read RSR 1
07, 03, 00, 18, FF, FF, FF, FF,

;Read ip 11
D?I 03: 12: FB; FF, FF, FF, FF,

;Read Received Data 11

24, 01, 13, 04, 20, FF, FF, FF,
FF, FF, FF, FF, FF, FF, FF, FF,
FF, FF, FF, FF, FF, FF, FF, FF,
FF, FF, FF, FF, FF, FF, FF, FF,
FF, FF, FF, FF, FF,

;Clear RSR 11
o7, 02, 00, 1&, 00, OO, 04, 00,

Figure 5.16: Initialization Block Ram Data Content for Burst SPI Read Command

bytes to keep CSn signal asserted hence slave is given enough time to provide
the requested 32 bytes of data. The data content of this SPI frame in block ram
can be seen in Fig[5.16

The control logic block gets the frames one by one from the initialized block ram.
It writes the frame size to the Size FIFO and the data to the Data FIFO of SPIC and
waits for the transmission to be completed. For a new frame to be transmitted, it either
waits for a trig (button press or an interrupt) or begins transmitting the new frame
without waiting until a determined number of frame transmissions is reached. This
depends on the application. For each application developed for CAN FD Controller
verification, the content of Block RAM initialization file and the control logic block

application code is modified.

5.3 Transmit Buffer Configuration and Transmission Tests

The purpose of this test is to verify the transmission functionality of CAN FD Con-

troller. By doing this test, following functions are verified:

74

96 x Transmit Register Set functionality

TRR functionality

Each of 96 x Buffers functionality

Buffer memory configurability

Buffer priority functionality

e Transmission of the frames according to CAN FD protocol specification

Test setup in Figl5.2)is used. Host Simulator’s block ram initialization file is modified
such that:

e TX buffers are configured such that the following number of messages with
indicated payload size is stored. Total of 96 buffers are used and the total size

of the buffers is 1392 bytes.

— 64 bytes x 4 buffers
— 48 bytes x 6 buffers

32 bytes x 6 buffers
— 24 bytes x 6 buffers
— 20 bytes x 6 buffers
— 16 bytes x 6 buffers
— 12 bytes x 6 buffers
— 8 bytes x 6 buffers
— 7 bytes x 6 buffers
— 6 bytes x 6 buffers
— 5 bytes x 6 buffers
— 4 bytes x 6 buffers
— 3 bytes x 6 buffers
— 2 bytes x 6 buffers

1 byte x 14 buffers

75

e ID of the TX mailboxes are configured

e Data and TRR (Transmit Request Register) writes have been performed one

by one to transmit the messages in an ordered way. For example:

— The message content has been written to CAN FD Controller first mailbox

buffer and

— 0x00000001 was written to TRR1 to initiate the transmission of the first

message.

e Similarly 96 other mailboxes are requested to transmit their frames one by one
following the procedure above. The messages are transmitted each time the
push button is pressed. The message data content and the IDs of the messages
received by the CAN FD analyzer are checked and compared with the ones on

the FPGA side. The contents of the messages are verified to be correct.

o All of the data is written one by one to the mailboxes. Then 3 consecutive TRR
(TRR 1, TRR 2, TRR 3) writes in order to request all of the messages to be
transmitted at once have been performed. The messages have been transmitted
in correct priority order and the message data content and ID of the messages
received by the CAN FD analyzer is checked and compared with the ones on
the FPGA side. The content of the messages are verified to be correct. The

time gap between SPI frames is 1 second in the host application.
First 16 buffers configuration, ID assignment can be seen in Fig[5.17]
First 16 buffers’ data content and transmission requests can be seen in Fig[5.18]

The message content (ID, data, message size and timestamp) received at CAN

FD Analyzer can be seen in Fig[5.19] First 16 buffers are put in a red rectangle.

e Another experiment regarding the priority verification is done by using the
same host application block memory initialization file as in the previous test.
However, the order of the three TRR writes has been changed as in Fig[5.20]
Furthermore, the time gap between SPI frames in the host application is re-
duced to 10 ps. By doing this, we expect to see that the frame in the buffer

number 33 is received first since it is requested first by TRR 2 write. Then

76

; Sample initialization file for a
; B-bit wide by 256 deep RAM
memory_initialization_radix = 16;
memory_initialization_vector =

; set tx buffer
07, 02, 01, 04,

; set tx buffer
o7, 02, 01, 10,

E set tx buffer
o7, 02, 01, 1c,
; set tx buffer
o7, 02, 01, 28,
; set tx buffer
07, 02, 01, 34,

; set tx buffer
07, 02, 01, 40,

; set tx buffer
07, 02, 01, 4c,

; set tx buffer
o7, 02, 01, 58,

; set tx buffer
o7, 02, 01, 64,

E set tx buffer
o7, 02, 01, 70,

; set tx buffer
o7, 02, 01, 7C,

; set tx buffer
07, 02, 01, 88,

; set tx buffer
07, 02, 01, 94,

; set tx buffer
07, 02, 01, AO,

; set tx buffer
07, 02, 01, AcC,

; set tx buffer
o7, 02, 01, B8,

1 dlc=64
00, 00, 00, 40,

2 dlc=48
00, 00, 00, 30,

3 dle=32
00, 00, 00, 20,

4 dlc=24
00, 00, 00, 18,

5 dlc=20
00, 00, 00, 14,

6 dlc=16
00, 00, 00, 10,

7 dlc=12
00, 00, 00, OC,

8 dlc=8
00, 00, 00, 08,

9 dlc=7
oo, 00, 00, 07,

10 dlc=6
00, 00, 00, 06,

11 dlc=5
00, 00, 00, 05,

12 dlc=4
00, 00, 00, 04,

13 dlc=3
00, 00, 00, 03,

14 dlc=2
00, 00, 00, 02,

15 dlc=1
0o, 00, 00, 01,

16 dlc=1
00, 00, 00, 01,

Figure 5.17

; write TX Buffers Configuration status Register

07, 02, 00, 00,

; set rx buffer
07, 02, 10, 08,

; set rx buffer
o7, 02, 10, 54,

; set rx buffer
o7, 02, 10, A0,

; set rx buffer
o7, 02, 10, EC,

; write RX Buffers Configuration Status Register

07, 02, 00, 04,

: set TX Buffer
07, 02, 01, 00,
; set TX Buffer
07, 02, 01, OC,
; set TX Buffer
o7, 02, 01, 18,
; set TX Buffer
o7, 02, 01, 24,
; set TX Buffer
o7, 02, 01, 30,
; set TX Buffer
07, 02, 01, 3c,
; set TX Buffer
07, 02, 01, 48,
; set TX Buffer
07, 02, 01, 54,
; set TX eBuffer
07, 02, 01, 60,

; set TX Buffer
o7, 02, 01, ecC,
; set TX Buffer
o7, 02, 01, 78,
; set TX Buffer
07, 02, 01, 84,
; set TX Buffer
07, 02, 01, 90,
; set TX Buffer
07, 02, 01, 9cC,
; set TX Buffer
07, 02, 01, AS,
; set TX eBuffer
07, 02, 01, B4,

7T

00, 00, 00, 09,

1 dlc=64
00, 00, 00, 40,

2 dle=12
00, 00, 00, OC,

3 dle=7
00, 00, 00, 07,

4 dlc=1
00, 00, 00, 01,

00, 00, 00, 09,

1 ID Register BASE
6D, EO, 00, 00,

2 ID Register BASE
6E, 00, 00, 00,

3 ID Register BASE
6e, 20, 00, 00,

4 ID Register BASE
6E, 40, 00, 00,

5 ID Register BASE
6E, 60, 00, 00,

6 ID Register BASE
6E, 80, 00, 00,

7 ID Register BASE
G6E, a0, 00, 00,

8 ID Register BASE
6E, €O, 00, 00,

9 ID Register BASE
6E, EO, 00, 00,

10 ID Register BASE
6F, 00, 00, 00,

11 ID Register BASE
6F, 20, 00, 00,

12 ID Register BASE
6F, 40, 00, 00,

13 ID Register BASE
6F, 60, 00, 00,

14 ID Register BASE
6F, 80, 00, 00,

15 ID Register BASE
6F, a0, 00, 00,

16 ID Register BASE
6F, c0, 00, 00,

: First 16 Buffers Configuration

i : ;
; TX Buffer 1 Data write 64x : H
H

44, 00, 01, 08, 40, ; TX Buffer 5 Data write 20x ; TX Buffer 12 pata write 4x
01, 02, 03, 04, 05, 06, 07, 08, 18, 00, 01, 38, 14, 08, 00, 01, 8c, 04,

09, 10, 11, 12, 13, 14, 15, 16, 0o, 05, 10, 15, 20, 25, 30, 35, 00, 12, 24, 36,

17, 18, 19, 20, 21, 22, 23, 24, 40, 45, 50, 55, 60, 65, 70, 75, ;

25, 26, 27, 28, 29, 30, 31, 32, 80, 85, 90, 95, :

33, 34, 35, 36, 37, 38, 39, 40, ; :)

41, 42, 43, 44, 45, 46, 47, 48, H ---- ; T Buffer 13 Data write 3x
49, 50, 51, 52, 53, 54, 55, 56, ; N Eufrer 6 Data Write dox gg, gg, g%, gg, 04,

57, 58, 59, 60, 61, 62, 63, 64, ; , 13, 26, 00,

: 14, 00, 01, 44, 10, ;

: 00, 06, 12, 18, 24, 30, 36, 42,

: 48, 54, 60, 66, 72, 78, 84, 92, :

: TX Buffer 2 Data write 48x ; ; TX Buffer 14 Data write 2x
34, 00, 01, 14, 30, i ---- 08, 00, 01, A4, 04,

00, 02, 04, 06, 08, 10, 12, 14, ; : 00, 14, 00, 00,

16, 18, 20, 22, 24, 26, 28, 30, ; TX Buffer 7 Data write 12x =

32, 34, 36, 38, 40, 42, 44, 46, 10, 00, 01, 50, OC, :

48, 50, 52, 54, 56, 58, 60, 62, 00, 07, 14, 21, 28, 35, 42, 49, ;)

64, 66, 68, 70, 72, 74, 76, T8, 56, 63, 70, 77, ; TX Buffer 15 Data write 1x
80, 82, 84, 86, 88, 90, 92, 94, ; 08, 00, 01, BO, 04,

; : ---- 00, 00, 00, 00,

é ; TX Buffer 8 Data Write B8x E

; Tx Buffer 3 Data write 32x oc, 00, 01, 5c, 08, :)

24, 00, 01, 20, 20, 00, 08, 16, 24, 32, 40, 48, 54, ; Tx Buffer 16 Data write 24x
0o, 03, 06, 09, 12, 15, 18, 21, i 08, 00, 01, BC, 04,

24, 27, 30, 33, 36, 39, 42, 45, ; ---- FF,00, 00, 00,

48, 51, 54, 57, 60, 63, 66, 69, ; . =

72, 75, 78, &1, 84, 87, 90, 93, ; TX Buffer 9 Data write 7x 2

0c, 00, 01, &8, 08,

; TX Buffer 4 Data wWrite 24x ;

0o, 09, 18, 27, 36, 45, 54, 00, :
= ; TRR 1 tx request all
———_ 0OF, 02, 0D, 08B, FF, FF, FF, FF,

01, 2C, 18,

: i : 2 tx request all
00, 04, 08, 12, 16, 20, 24, 28, ; TX Buffer 10 Data write 6x ; _TRR
32, 36, 40, 44, 48, 52, 36, 60, oc, 00, 01, 74, 08, 07, 02, 00, OC, FF, FF, FF, FF,
64, 68, 72, 76, 80, B4, 88, 92, 90, 10, 20, 30, 40, 50, 00, 00, ; TRR 3 tx request all
: - ____ o7, 0z, 00, 10, FF, FF, FF, FF,
é TX Buffer 5 Data write 20x E Tx Buffer 11 Data write 5x
18, 00, 01, 38, 14, oc, oo, o1, 80, 08,
00, 05, 10, 15, 20, 25, 30, 35, 00, 11, 22, 33, 44, 00, 00, 00,
40, 45, 50, 55, 60, 63, 70, 75, ;
85, 90, 95, : S

Figure 5.18: First 16 Buffers Transmission Data Content and Request

after the transmission is over, Buffer 1 takes over the transmission priority. Be-
cause by the time TRR 1 is written, Buffer 33 is the buffer with the highest
priority. Therefore, after the buffer 33 frame transmission, we expect to see

buffer 1 transmission, buffer 2 transmission, buffer 3 transmission and so on.

The messages are received in the expected order as can be seen in Fig[5.2T]and

the priority of the buffers is verified.

Both of the frame types, which are with the base and the extended ID are ver-
ified. PCAN shows the 29 bit and 11 bit representation of the IDs while the
memory initialization file shows the 32 bit representation of the IDs as de-
scribed in ID register. Therefore, when 32 bit ID in the initialization file is
converted to 11 bit Base or 29 bit Extended ID format, it is verified that the
same ID number is seen at the PCAN analyzer as the FPGA side.

Buffer sizes are arranged such that they include every possible message size
CAN FD protocol defines therefore different message sizes and two types of

CRC calculation methods depending on the message size are verified.

78

SUOISSTWISURI], 9 1SI1] J0J 3uIS30T vleq NVOd :61°'S 2In31g

EEl 1 153 ‘568 ‘04 xy yase TZ55'5E

EE| z 153 ‘568 ‘04 xy yoee 1Z55'%E

JHET 3 € 153 ‘568 ‘04 xy ygee 1Z55'CE

SHHZ T 4 + 153 'sud ‘o4 xy ywee 72585'TE

HECTZTIT 5 153 ‘sua ‘04 x (5= TZ55'TE

2 O 0 0F 0T 4] 153 ‘568 ‘04 xy yges 0zs5'08

= 5t 9E 4T 8T 60 2 L 153 ‘568 ‘04 xy yree 1255'62

- 8 Ot € #2 9T 20 2 g 153 ‘568 ‘04 xy s 1755'82

44 0L £9 95 6 Tk SE 82 TZ #T L0 2 zr 153 'sud ‘o4 xy ysee 125602

bR B TL9909FE BP TH OE0E T BT TI 9044 ST 153 ‘568 ‘04 bt UrEE 1755'5%

440658085 0L 590955 0SS P SEOESZOZST OTS04d OF 153 ‘568 ‘04 xy yees 1255'52

4 S PR 08 OL TL BOFI 0995 TS B b (b QEZE ST HZ O OT TT 80H0 34 #T 153 ‘sud ‘04 xy uzes 7T88'FT

JH06LBPR TSRS TL 6999 ET 005+ TS OGP TP EEOEEE OE LT HE TZ BT ST ZT 60O0E0 44 ZE 153 ‘sud ‘04 xy ures 1Z55'c2

JHTE 06 BR OB bR TR 0B B O/ b/ T4 0 B9 90 FO T 0985 S bS5 05 SF bbb T O O O PECE O BT STHZZC O BT ST HTZTOT 8090+0Z044 8 153 'sua ‘'ad wy yoes £755'72
9 £9 79 19 09 65 85 £§ 85 55 b5 £5 75 15 05 6t 8 £+ 9 St b £ Tk Tt Ob 6 8 ££ 9E GE bE CE TE TE 0E 67 8T LT ST ST HC EC ZZ 1T OC 61 BT AT ST STHTETZ1 1T 0T 60 B0L09050H0E0Z0T0 +9 153 ‘Sud ‘04 Xy Y/e £T55'TT
o+ 1 153 ‘568 ‘04 xy e 615502

00 1 153 ‘568 ‘04 xy yace 615561

¥ 00 z 153 ‘568 ‘04 xy yoLe 615581

9z £1 00 € 153 ‘sua ‘04 xy yare 0285'LT

9E +T 2T 00 3 153 ‘568 ‘04 xy ywe BIS5'ST

¥ EETZTT OO 5 153 ‘568 ‘04 xy YBLE 0Z85'ST

05 O 0 OF 0T 00] 153 ‘568 ‘04 xy ys/e 0285 'FT

#5 St 9E £ 8T 60 00 L 153 ‘568 ‘04 xy YiE 0ZSS'ET

¥5 Bb Ob ZE &2 9T 80 00] 153 ‘sua ‘04 oy yore 0Z55°ZT

LLOLESSS BRERSESCTZFTLO00 TT 153 ‘568 ‘04 oy Ys/e 0Z85'TT

TEPERLTL 00 09FS S TFOC OSHZ T ZT 9000 9T 153 ‘568 ‘04 xy ULE 1Z55'01

560658 0854 0L 590955 05 6 0P SE0ESZ 0T ST OT G000 0T 153 ‘sud ‘04 xy YeLE 1255'6

TEOEFE 0RO/ TL E9FO 0995 TS bbb Ob QEZE BT T OZ ST TT BOF0 00 T 153 ‘sud ‘o4 xy YELE 1255°8

CE0B/EFRTRE/ G/ T/ 6009E0 095 b5 TS Br Sk TP BEOEEE OE LT HT T QI GTZT 60S0E0 00 ZE 153 ‘544 ‘04 x UTLE TZ55°L

PETE 0GB SB PR TR 0B 8L B bL TL 0L B9 99 S TS 09 BS 95 bS TS 05 BF Shbb Tk Ob BESEPECE OESC ST HECC O ST ST T CT OT BOSOFOZO00 & 153 ‘sud ‘a4 bt yoLe TZ55'9
999 1909 65 85 £5 95 55 +5 £6 25 15 05 6 8 £+ W St b+ T T TH O 6 8C LE 9E SEPECEZE TEOE 67 ST LT ST STHEEC ZC TZOZ 6T BT LT ST STHIETZT TT OT 60 S0 LOS0GOHOE0Z0OTO +9 153 ‘sud ‘04 xy (=1 7255°s
geq pbua adhl xUfxy ar-NvD Em

051003 : a6 :X _ JAYNg Jesur] w— _

103BI3U3C) 10413 4 peolsng BB

2o nl

dpH =0m1] maip

@4 8SN-NVId

% 0T'0

sebTy'bzr|

ywisues) f

130 P &S|

ywisuel]

Hp3

NVD 314

m3p-NyId

79

: TRR 2 tx request all
oF,; 02, 00, OC, FF; FF, FF; FF,

: TRE 1 tx request all
u?l ﬂzl ﬂu- ﬂ ¥ FF1 FF. FF, FF.

; TRR 3 tx reguest all
o7, 02, 00, 10, FF, FF, FF, FF,

Figure 5.20: Transmission Requests for Priority Test

5.4 Receive Buffer Configuration and Reception Tests

The purpose of this test is to verify the reception functionality of the CAN FD Con-

troller. By doing this test, following functions are verified:

e RX buffers are configured such that the following number of messages with the
indicated payload are stored. Total of 96 buffers are used and the total size of

the buffers is 1392 bytes.

— 64 bytes x 4 buffers

48 bytes x 6 buffers

32 bytes x 6 buffers

24 bytes x 6 buffers

20 bytes x 6 buffers

16 bytes x 6 buffers

12 bytes x 6 buffers

8 bytes x 6 buffers

7 bytes x 6 buffers

6 bytes x 6 buffers
— 5 bytes x 6 buffers
— 4 bytes x 6 buffers
— 3 bytes x 6 buffers
— 2 bytes x 6 buffers

80

1S9, AjuIoLg uorssruusuel], 10§ uondaoay a3essoN NVOd :12°S 231

OF O£+ 91 ¢ 9033 4 153 ‘sua ‘a4 xy Uree LBl

T¥ SEOEPT 8T CT 9033 g 153 ‘sHa ‘' xy yses i 3

99095 8Y TP SEOELPE I CIS0TA TT 153 ‘sua ‘' xy yses SrL'E

J3LERLTL9900FS SHTHOE0SEE ST ZI S0 9T 153 ‘sua ‘o< Xy 68 SHL'E

30658085/ 0/ 590955 0SSE 0P SE0ESTOZST 0T S033 02 153 ‘sua ‘o xy UeeE SL'E

33884808 9£ 2L 89F0 0995 TS B bH O SECE QCHZ 02 ST 21 204033 t2 153 ‘sua ‘o< xy i THL'E

306 /8HR 120/ G/ 7460 99C000 /S HE TS B SHEF 6E OECE 0E/ZHZ TE QT ST 2T 60906033 2€ 153 ‘su3 ‘o< Xy uyres THL'E

€ ¥344Nng B Iod oHd] TooE, BETL T
ze ¥3dd4ng | X S = 16 ZoilE
& 1 153 ‘sua ‘o< xy yase oeHL's

9044 z 153 “sHa ‘04 xy yose 9EpL'E

TTs0d £ 153 ‘sHa ‘' xy ygss SERL'E

9121 50 34 2 153 ‘s ‘oo xy yvee SERL'E

H2 8T 7T 90 44 5 153 ‘sua ‘a4 xy yeee PEBLE

0 b2 81 27 90 4 9 153 ‘sHa ‘' xy ysss £EPLE

OF O£ £Z 8T 21 90 24 L 153 ‘s ‘oo xy wee SERL'E

T 9 0F &€ 81 2T 90 344 2 153 ‘sua ‘a4 xy yoge TEBL'E

9909FS 8P TR OEOEFZ BT CI S0 TT 153 ‘sHa ‘' xy uysss TepL'E

HEEOLZL9900FC SFTHOE0EFE ST TI 00 9T 153 ‘s ‘oo xy 4et oesL's

4406580856 0500955 0SSEOF SE0ESZOZ ST OT S04 02 153 ‘sua ‘o< Xy yees 62THL'E

24884808 9L TL89Y0 0995 TS B br Ob SETE QT HZ OE ST 21 804034 +2 153 ‘sua ‘o< xy uzes ezrL's

HO06/8bR T8 8L G4 T4 63 99690945 b5 TS O S b GECEEE 0ELZHC TC QT STET 6090€034 € 153 ‘sua ‘o< xy yree SevL's

276068202 +ETO 0L 9L H/ 24 0L 89 90+ Z0 09 85 OC +C 25 05 BF OF ++ TH OF 2 OEHEZE 0E Q2 SZHZ 22 OZ ST OT +T 2T 0T 20 90+02044 & 153 ‘sua ‘o< Xy yoes STHL'E

SHE979TS 09 65 85 /5 95 55 &5 £5 75 15 05 6+ S £+ S+ St 4+ £ Th 15 Ob 65 BE /E 95 SEPE EE ZE TE 0E 62 82 LT ST ST HT ST TTTZ 02 61 BT LT ST STHTETZI TT 0T 60800905040 E0Z04 +9 153 ‘sua ‘o xy ye TEL's
00 1 153 ‘sua ‘' xy Ee 6IFL'E

00 1 153 ‘sua ‘o< xy yas EIHL'E

S0 00 z 153 “sHa ‘04 xy yore SIHL'E

TT 5000 £ 153 ‘sHa ‘' xy yare 8TEL'E

1 21 50 00 2 153 ‘s ‘oo xy yvse LS

&2 8T TT 90 00 5 153 ‘sua ‘a4 xy YeLe oTHL'E

0F bZ 81 2T 90 00 9 153 ‘sHa ‘' xy ysis STEL'E

SF 0F £Z 8T 21 50 00 L 153 ‘s ‘oo xy yie STEL'E

T 9F 0 &€ 81 CT 90 00 2 153 ‘sua ‘a4 xy ysLe PIbLE

9909FS B8P TFOEOEFZ BT CI 9000 TT 153 ‘sHa ‘' xy usis ¥IvL'E

Z6H0 O/ ZL 990945 BFZFOC 0EEZ T 2T 9000 OT 153 ‘s ‘oo xy WiE £TRL'E

S6 0658085/ 0500955 0SSEOF SE0ESZOZST 0T S000 02 153 ‘sua ‘o< Xy uyeie TIHL'E

T688+2 08 9L TL 89Y2 0995 TS B bH Ob SECE QT HZ 0Z ST 21 204000 +2 153 ‘sua ‘o< xy uzie oreL's

£606/8bR 18 8L S/ T 6399690945 b5 TS O SHTh GEOEEE 0ELZHC T T STET 6090E000 2€ 153 ‘sua ‘o< xy yrie 60vL'E

| ¥344n8 626 06 82 92 +2 78 08 9/ 9/ +/ 74 04 89 99 +8 7 09 85 95 € 75 05 8 Or ++ 7+ O- 25 OE +E ZE 0E 92 G2 +2 22 0Z ST OT +1 21 01 2090+02000 St 153 ‘su3 ‘o< L0bL'E

FOE9 9 TS 0965 85 /S 9SSS PGS ES TS IS 0S b B /b S Skt Eb T TP Ob 6E BE/E QE SEPECEEE TE OE B B /ESESTFC EC CC ICOE 6T BT AT ST ST HI ET Z1 IT OT 60 2040 20S0+0 £0Z0T0 153 'sHa ‘0d

HEO 2o TS 0965 85 5 95 S5 PSES ¢S TS 0S 6k 8 2 OF Sk b Cr Cb TH O 6E BE JE QL SEPEEL CETEDEGC BC /S SCbCEC CC TC 02 BT BT ZT ST ST +T ET €1 TT OF 60 8020 90 50+0 £0 20 35 153 'sud "0d

0 :si013 0 0 96| ;Ryngieaun k- | % 01’0
3 § | peoisng Q4950-NvDd e QERDIMNcell ywsuei] /3nEd3y

COmIG CEEYYAEE

deH =] M| Jwsuell WP3 NYD 24
main-Nydd §

81

— 1 byte x 14 buffers
ID and Mask Registers are configured

For each buffer, a frame with the ID that can pass the buffer’s filter and a frame
with an ID that can’t pass the buffer’s filter are prepared. Therefore, 96x2 =
192 frames are going to be transmitted via CAN FD Analyzer’s PCAN View to
CAN FD Controller.

The frames that are in the passing group can only pass one buffer’s filter.
The data content of the frames that can’t pass the filter is filled with all OxFFs.
These 192 message frames are transmitted by the analyzer.

CAN FD Controller receives them all and should place the frames that pass the
filter into the related buffers in FRM and ID and data content should be the
same as the ones on the PCAN View transmitted. Furthermore, data content

should not be all OxFFs.

Since all of the 96 RX buffers are filled with the received data, the content of
RSR is expected to be all logic 1.

Host performs read operations and puts the received data to its RX Data FIFO
as already explained in Sec4.5] ChipScope is used to monitor the FIFO sig-
nals. Chipscope is like an oscilloscope inside the FPGA. It monitors the real
time data and shows this information to the user for debugging, verification and
testing purposes. It has to be given a trigger so that the desired data is cap-
tured when the trigger condition occurs. It is possible to have as many trigger
occurrences as desired in a single capture. In order to observe the read data
from SPI, trigger condition is set to rising edge of rx_data_fifo_wr_en
signal. This signal is the FIFO write enable strobe. SPIC pulses this FIFO
Write Enable signal along with the received byte to put the received byte in
RX Data FIFO. Each time this signal is pulsed, the new data is written to the
FIFO. Therefore, by setting the trigger condition to rising edge of this signal
and trigger occurrence count to 96, it is possible to monitor all of the read data

from CAN FD Controller. Even for the frame with 64 byte payload 96 trigger

82

occurrences are enough to capture every single received byte from CAN FD

Controller signals.

e An application is designed for this test such that whenever the button on the
demo board is pressed, a new SPI read or write request from Host simulator to

CAN FD Controller takes place.

e Before the button is pressed, ChipScope is commanded to wait for trigger.

When the button is pressed, data is captured.
e The following procedure is repeated by 96 times, starting from the Buffer 1.

— One of the three RSR is read by Host Simulator to learn the message
mailbox number holding the message to verify that the message passes

the filter correctly and its stored in the correct mailbox.

— ID of the message received is read by Host Simulator and compared with

PCAN View data so that the received message ID is verified

— The message content of the received frame is read by Host Simulator and
the payload of the received frame is verified by comparing with the data

on PCAN View
— Related RSR bit is cleared by the Host Simulator by performing RSR
write
e By performing this test,
— Both of the frame types, which are with the base and the extended ID are
verified.
— 96 x RX buffer functionality is verified

— The message reception according to CAN FD protocol specification is

verified

— All possible message sizes and CRC calculation according to the message

size are tested and verified
— RSR functionality is verified

— Buffer configurability is verified

83

e The reception procedure described here is illustrated as follows and Buffer 27

is chosen as a sample.

— PCAN messages to be transmitted by PCAN with matching and non-
matching IDs for Buffer 27 can be seen in Fig[5.22]

[PCAN-View
File CAMN Edit Transmit View Trace Help

re-HE @ee 02 ¥ @ L2]

Er—
01| CAN-ID ’ Type Length Data
g <Empty>
2 Filter Matching Frame for
Q Buffer 27
22
|
O CAN-ID Type Length Data Cycle Time Count
2A1h [Foers] 20 76 74 72 70 68 66 64 62 60 58 56 54 52 50 48J46 44 42 4038 [|100 0
2A2h EEE 20 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF|FF FF FF FFFF [(]100 0
2A5h EEE 20 14 16 18 20 22 24 26 28 30 32 34 36 38 40 4244 46 48 50 52 [|100 0
246h 2 FF FF FFFF FEFE FF FF FF FF FF FF FEFE FRVEF FFFFFEEE (1100 0
249h 2 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 58 56 54 52 50 [|100 0
[2AAn 20 FEFFFFFEFFFF FFFFFFFF FFFFFFFF FEFEFEFFFEFE | 1100 0
2ADh EEA 20 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 3‘35 34 []100 0
2AEh EEA 20 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FRFF FF [(]100 0
2B1h EEE 16 010203 04 0506 07 08 09 101112131415 16 [[1100 0
2B2h EEE 16 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF [[1100 0
2B5h EEE 16 00 03 06 09 12 15 18 21 24 27 30 33 36 30 42 45 [7]100 0
2B6h EEE 16 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF []100 0
2B9h EEE 16 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 []100 0
2BAh EEE 16 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF [T]100 0
2BDh EEE 16 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 [[1100 0
2BEh EEA 16 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF [[1100 0
481k EEE 16 01 02 01 99 96 93 90 87 84 81 78 75 72 69 66 63 [[1100 0
482h EEE 16 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF [[1100 0
485h EEE 16 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 [7]100 0
486h EEE 16 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF [71100 0
489h EEE 12 01 02 03 04 05 06 07 08 09 10 11 12 . []100 0
4840 EEE 12 FF FF FF FF FF FF FF FF FF FF FF FF Filter Not []100 0
48Dh EE3 12 020406 08101214 16 18 20 22 24 Matching Frame [J 100 0
+ 48Eh EEA 12 FF FF FF FF FF FF FF FF FF FF FF FF [[]1100 0
£ 61h @ E3 12 4948 47 46 45 44 43 42 41 40 39 38 for Buffer 27 [[1100 0
2 692h EEE 12 FF FF FF FF FF FF FF FF FF FF FF FF [[1100 0
© 695h EEE 12 98 96 94 92 90 88 86 84 82 80 78 76 [7]100 0
F 696k EEE 12 FF FF FF FF FF FF FF FF FF FF FF FF [7]100 0

Figure 5.22: Message Content for Buffer 27

— RSR1 is read as 0xFC000000 and can be seen in Fig[5.234]
RSR1[31:0] = 0xFC000000 means:
* RSR1[25:0] -> All logic 0s
x RSR1[31:26]-> All logic 1s.

Since Buffers are read one by one and the related bits of RSR are cleared.
26 other RSR bits are already cleared. And remaining 6 bits of RSR 1 are

logic 1 and will be cleared in the remaining part of the test.

84

— ID of the message read as in Fig[5.23b] 0x55200000 -> 2A%h
— The payload of the message is as in Figl5.244]
— RSR 1 after related buffer 27 bit is cleared is read as 0xF8000000 and can

be seen in Fig[5.24b]
* RSR 1[31:0] = 0xF8000000 means:
- RSR 1[26:0] -> All logic 0s
- RSR 1[31:27]-> All logic 1s.
* Buffers are read one by one and related bits of RSR are cleared. 26th
RSR 1 bit is cleared with this operation hence total of 27 bits of RSR

1 are cleared by now.

5.5 Response Time Measurements

Response time measurements are carried out for transmission and reception seper-

ately.

Transmission Response Time: Host writes data through SPI to the related mailbox

and writes to TRR register to initiate transmission. Host Simulator is arranged to
fulfill this purpose. FPGA Core polls TRR to detect any pending request, determines
the number of the pending buffer having the highest priority by binary search algo-
rithm. Core reads the data from the mailbox and writes this data to CAN FD TX Data
FIFO and message size is already known by the controller and it is also written CAN
FD TX Size FIFO and the transmission begins. Response time consists of all of these

processes. The response time delay components are as follows:

e FPGA Core Delay:

— Binary search to determine the highest priority message to transmit
— Memory read operation to get the transmit data from the related mailbox

— Memory write operation to the CAN FD Transmitter FIFOs

The measurement is done between SPI frame is received completely (the time
when SPI CSn signal is deasserted) and CAN FD frame begins transmission
(start bit of canfd_tx_int signal)

85

Lejeq
painyded

£6uy

I suoneradQ peay Lz Jopng :€7°S 2In31

uoneradQ peay 1ISI5Y A1 Fyng WL ()

| ejeq
painyden

92o.nos By osje pue
painydes aq o} ejeq

Sqeie e

1L Buy
ai sa¥g v

painjded aq o3 ejeq

[00 00 | | wrpostsTeren xa/20t1023u05 Tas /u0TsROTTARY

I
=
el

LL [t [v | wasosmsmeaerxasastronavosras /morawortade

-
=

o|x reubis/sng

(V1) OV 1AW 0:LINN (102X4ASOX) 3o1a0AN ¥:A30 - Wiojonem gy
—

S T h 65 B i 4[] anus) soonoms ms

uonesadQ peay 1YSY (v)

| ejeq
painyded
A
2@o.nos B osje pue
painydes aq o} ejleq

Sqvee

L Buy
LuSy saka v

paimded aq o} ejeq

0 00 |00 | | wrp ostsTeren xa/2011023u05 Tas/uoTIROTIARY o

© | usTasoztseawp xa/zeTT03u05 148 /o TR TTAY/

-
et
-

-
= Mot
-

I R o (x reubis/sng

(7 0V VAN 0-LINN (10.XIASOX) ¥o9IRoGAI viA30 - wiojonenn &)

—
e &b &S S|l m «|[a]__eius] sponunyscsur | @

dioF MOPUIT WIOSIEM, dnias JAOOUT @IMST URUD OVIF MO Bl

86

7 suonerddQ peay Lz opng ¢S I3

Surres[) 1oy uonerddQ peay 1YSY (9)

| ejleq
painyded

A

I

@ainos By osje pue
paimydes aq 0} ejeq
L BuL
LSy saihg v

A paimden aq 0} ejeq

00 |00 UTP 0JTI BIED X1/1TT043U0) [dS/UOTIRITTARY/ -

Ll |f |v | == osts eaer wa/aa 11092000 L8 /voTazoTTdGY/

& & 8 & g & g D |o|x feubis /sng

K A (%10 OWTIAI 0:LINN (LOZXASIX) $32IRa0KI $:N30 - uuioganem I |4
=

—
E O TS 5 DI L m 4[] i) wwonoms et | @

digF mopulfl Wio)eAEM dmesieBOML eaned UIBUD OVIT Mel alid

uonerad(peay 191139y eiR(q Iopyng YLz (B)

@ o

@ounos by
os|e pue painjdeo aq 0} ejeq

peojed sweid a4 NV 0 sa¥hq 0z ejeq papiessig
A A painydes aq o} ejeq

[[75 9% 5 [i[] [4] 79 9 59 07 73 23 El 7 [} [[z} 9 [[} [} [} 00| oo [oo UTP 0JT) B3RP Xa/2BTT023U0D 1dS/UOTIEDTTARY/

L v [t | ueTaWosrsTeaepTxasaatrozau0 1ds/UoTaROT Y/

Jeubis/sng

s s s s s s s s s s s] s s s s s s s s s s s s o x
K H.e 7 (v OV 011NN (LOZXIASDX) ¥@01noQk 1in3a - wtojenemn I [

—
&GS GO 5|l W I[A] sbus) sonunyaoon | @

dpF MOPUITT ULOBAEM dnesJaB0UT 99ned UPEUD OVLT Meli | ald

87

Chipscope Result: 113 FPGA clock cycles = 1,13 s as can be seen in Fig[5.25a]

e SPI Burst write to the mailbox frame data can be seen in Fig[5.25b]

Theoretical Result: (8 + 16 + 8 4+ B - 8) - ¢gps , For B = 64, the delay is 54,4
ps as already explained in Sec/4.7]

Chipscope Result: 54,51 us

The difference between the theoretical result and the practical result is due to
the fact that CSn signal is kept asserted for some additional clock cycles before

and after the signals are active.

e SPI write to TRR can be seen in Figl5.264]

Theoretical Result: (84 16+ 32) - cspy, the delay is 5,4 us as already explained
in Sec4.7

Chipscope Result: 5,72 pus

The difference between the theoretical result and the practical result is due to
the fact that CSn signal is kept asserted for some additional clock cycles before

and after the signals are active.

e Over all response time measurement can be seen in Fig[5.26b]
Theoretical Result: 54,4 us+ 5.4 pus = 59,8 us as explained in Sec[4.7]

Chipscope Result: 61,48 s

Reception Response Time: CAN FD message is received by the controller. An in-

terrupt is generated to notify the Host Simulator. When the Host Simulator gets the
interrupt it begins reading ISR (Interrupt Status Register) to learn the source of the
interrupt. Then after learning message reception event, it reads three RSR namely
RSR1, RSR2, RSR3 to identify the buffer number holding the received message.
Then it reads data register of the related buffer. It clears ISR and RSR. Response
time consists of all of these processes. The response time delay components are as

follows:

e FPGA Core Delay:
— FPGA writing the received data to related buffer memory

88

[SIUQWIAINSEIJA dWIL], suodsay XL, :S7°S 2In31

Kepo oI 1sIng 1dS (Q)

_Gz se-xv [«]r]o o [4[rfisis

PS87L0 £10¢ NBY Tl pRinded wiojney

ry

[[¥]

:

$919A9 %9019 VOd4 LSS

aweld ajM ejed 33Aq ¥9 IdS

20T 200 Y15 TdE /TBTT0IIU0T 145 /UOTIEITTANY/

aur Teow 1ds /7311037u03 145 /u0TaoTIddY/

| o |t U uso TdE /731T07U0T 145 /UOTIRDTTALY/
T |t AUT %2 P3UR0/3TNPOR KT (INVD/MITIONINOS 0 HeD/
[|t v | swrsend ze1resaues 1de /2211033000 a5/ WoTaRTIAN/

T T T T) T
0J00 DSED OE09 0LS OBES 0205

052t

{173

5
Ol 06/ 0/ve 0SlE OBz O1Sz Olz 028) 0%Sh occk e oes oz os O | X feubsrsna

(570 OWTIAIN 0:LINN (L02X4ASDX) $39IA3QAN +:A30 - ULIoJoRB 5]

Ke[a(2100 VDA (8)

759740 102 NBY T1. PRIIED Wiojnem

[er- Jowv [Dlss o [(Pleros
ry

¥ [F A [A] ¥

f

$919AD %9010 VOd4 €41

89

319 Mejs e ypm suibaq uoissiwsuel) aweld g4 NV
A

pajiasseap ugo IdS
4

sweld M UYL IdS swel S)LM ejed 2344 ¥9 IdS

IUT 3N ATS 14E/31 1011007 T35 /UOTIRATIATE/

[T T TWT A AT T LT W LA W VUL UV Wy T L v e ey 1 e e auETe0u3ds/ 291 Tozam0) 135 /uOTIEOTIANY/
: T |T 2uT wsd TdE/J3T103IWG) [dS/UOTIEOTTAdY/
o |t 2UT %27 PIUED/3TNPOW XI QANYD/¥ITIONINGD QF N2/
| [[o [0 |suwrssndzsrrosauosras/zat 1083005 1as uoravar1ady/
T T
o|Xx eubis /sng
05|

02090

0sco

0£09

0s

06ES

0205

s

OEkb DILF OBJE OJWC OSIE OEBZ OISZ OGl2 081 OSSL OEZL

0s

065

02

(71 OV I 0:LINN (102X3ASDX) $301aaAN 2130 - unojanesn 5§

Ke[o(uorssrwisuel], [e1oL, (q)

7 SIUQWAINSBIJA] dWIL], suodsay XL :97°S 2In31

| RN ¥S9:20 LL0ZNGVL PaINIdED WiojoneM
T % T i il MO 0|
$919AD %2010 VOd4 8719
uolIasse usd yym suibag uolssiwsuel)
11g 1els e yym suibaqg uoissiwsues aweld a4 NVO
aureld d1LM BIea 9144 9 1dS
A
| INRNAMRRARRRANR AR AR NN NN AR AR RN RN NN ARA AN NN AR RRR AR AN RRR AN NNR NN ARR AR RRANNNN ¢ | 3u¥3n0 A9 T6/39T 033003145 /u0TaRITIAY/
N e T R L T L LA T T TU W T e e aurFeou1ds /281 oau03 145/ worasITIAdY/
T I e lo B RS S ——
— T [T 2UTX3TPFURD/ATOPON X1 QINYD/YATIONINGD Qi WD/
1 I Mo [t | surfena zerroxau0s~sds /201 Torau05 145 /u0Taw0 T TddY/
T olx Jeubis/sng
E9 G919 G009 S¥BS GB9S G265 SUES SOZG SPOS S8BY SZi¥ GOSP SOWY SYZv S80Y SZGE S9LE GO9E SYPE GBZE SZLE S96Z S08Z SYOZ SBYC SZEZ S9LZ SOOZ SvBL GBI GZGL S9EL GOZL SPOL G88 G2l G9G SOF S¥Z S8
G

(1) OV 1AW 0 LINN (L02X4ASOX) $991A0GAI :A30 - Utiojonem

Kefoq MM WAL (®)

_NE. (007 [(slecos o [([ploss

$S0p L0 £L0Z MY ZL PRIMAED LIOISAE

Yy e[F[r[] T
$819AD 30010 VOd4 2.5
auwely BIIM HHL IdS
T |1 3uT ano X712 1de/3eTTe3au0) 145/uoTaeatTddy/
[T IO L ALV OO AT LA AL L L U LU U T T L i e e im L e e aur 60w 1ds/39TT039u00 145 /w0TawaT TddY/
T |1 aut uso 1de/3eTT03au0) 145/uoTaeaTTddy/
[e | Tt 2UT X3 PFURD/RTNROR XI CINYD/HITIONINOD Qi Wi/
|1 |0 | aut Aeng zs1rozaucs 1ds/zs1107au0) 145/woTaraT1ddy/
T T T Tl T T T T T T T T T T T T T T T T o ['x reuis/sng
0299 0se9 0co9 0k25 06ES 005 oSy (1153 (1233 062€ 0LrE 05LE 0cee oSz 0642 08k 0SS (%43 016 065 0Lz (o]

(v71) 0V AN 0:LINN (102X4AGIX) ¥aIneahi 7:N3a - uojenem 5
=

90

— FPGA updating RSR and generating interrupt

The time between the CAN FD frame is received and the interrupt is generated

is measured in Fig5.27|
Chipscope Result: 1,41 us as can be seen in Fig[5.27]

SPI Read from ISR by the host to determine the source of the interrupt can be
seen in Fig[5.2§]

Theoretical Result: (8+ 16+ 32) - cspy, the delay is 5,4 us as already explained
in Sec4.7

Chipscope Result: 5,72 us

3x SPI Read from RSR (RSR 1, RSR 2 and RSR 3) can be seen in Fig[5.29]

Theoretical Result: 3 x (8 + 16 4+ 32) - cspy, the delay is 16,2 us as already
explained in Sec[4.7]

Chipscope Result: 3 x 5,72 us = 17,46 us

Burst SPI Read of the payload of the frame can be seen in Fig[5.30]

Theoretical Result: (8 + 16 + 8 + B - 8) - c¢sps , For B = 64, the delay is 54,4
us as already explained in Sec4.7]

Chipscope Result: 54,52 us

SPI Write to clear the related RSR can be seen in Fig[5.31]

Theoretical Result: (8+ 16 4 32) - cspy, the delay is 5,4 us as already explained
in Seci4.7l

Chipscope Result: 5,72 us

SPI Write to clear ISR can be seen in Fig[5.32]

Theoretical Result: (8+ 16 4 32) - cspy, the delay is 5,4 us as already explained
in Seci4.7l

Chipscope Result: 5,72 us

Overall response time measurement be seen in Fig[5.33]
Theoretical Result: 89,4 s as explained in Sec4.7]

Chipscope Result: 91,26 us

91

Ke[o 210D VDA :L7°S 2m31g

| i Hlo-0v [«]v[T [0 [«]+]o B |

2571290 210GV 71 Paimded Wiojarei

QKD

KD

[

[*]

s919A9 %2010 VOdd LYl

pajesauan si jdnaisju|

A

auoq uondasay abessa
A

dB 25T /MITIONLDD (3 HYD/ -

uTp 0JTI BIEP X1/I5TTOIIUOY Id§/U0TIROTTAdY/ -
u3 IM OITI BIBP XI/ITTOIIUOD IJ5/ucTieoTtddy/
ISOH 1dS/
OSTH 145/
ug) 145/
¥12 1ds/

AUT 3UCP U0TAA303T SwedI/3TNPOR X QINYD/¥ITIONINOD G N¥d/

pa3e3nbad 396 163 /HATTOUINOGD 04 HYd/
3dnIx39uT 33233uShHATIONINGD Qd WD/

auT adnazaaut/

feubis/sng

7 (w0 oW TIAW 0:LINN (102X4ASDX) $32IASAAN #:A30 - WLI0JIARM T3

92

@ Waveform - DEV:4 MyDeviced (XC5VFX70T) UNIT:0 MylLAO (ILA)
BusiSignal X o 1‘ﬂﬂ ﬁ‘ﬂ ZZ‘H :ﬂ?ﬂ 51‘m Bﬁ‘ﬂ 1ﬂ‘2ﬂ 11‘Bﬂ 13‘4ﬂ 15‘ﬂﬂ 1ﬁ‘ﬁﬂ 1E‘ZH 13‘Bﬂ 21‘4ﬂ Zﬂ‘ﬂﬂ 24‘ﬁﬂ Zﬁ‘Zﬂ 27‘B[I ZE‘W 31‘ﬂﬂ JZIﬁﬂ 34‘2ﬂ JS‘BH 37‘4ﬂ Jﬂ‘ﬂﬂ 4[I‘ﬁﬂ 42‘2[I
/inverrupt_int of o
/CAN_FD_CONTROLLER/generate_interrupt of o
/CAN_FD_CONTROLLER/rsz_set_requested of o
/CAN_FD_CONTROLLER/ CANFD_BX Module/frame_reception done int | 0| 0
/SPI_CSn 1T R N
/5P1_CIK | TR A AE ARV RVY TR ARVETRVRRERLALENTY
/5P1 150 of 1 1 I S I 1 1 . WA T Ty T
/5P1 0T £ I R B |] LU L
/Bpplication/SEI_Contzoller/xx_date_fifo_wr_en of o N e A v v B B I
o /Application/SPI_Controller/rx data fifo_din os| | FF 0008 0 T, A ()5 06 T (5 530,001 R0,) 15 1 (K 2 A 0,430). T 5 5 5 T)0,
o /CAN_FD_CONTROLLER/iex_gp ol o 5
Y
Host Finishes ISR
Y
Host Begins ISR
Read
572 FPGA Clock Cycles
[DD DT 1 y
Waveform captured 14 Agu.2017 06:14:57 [x| afp] of us[p] s s
Figure 5.28: ISR Read Delay
@3 wavetorm - DEV:4 MyDeviced (XCSVFXTOT) UNIT:0 MyILAO (ILA) i i i : : 2 B B 2 2 2 5 5 2 : Z
BusiSignal IR '5::0 e T mn;v MO 1100 M) WA B0 0 W0 A0 220 2500 !zscw 270200
& JCAN_FD_CONTROLLER/ier_gp 8 g)
/intercups_int of of [1 |
/CAN_FD_CONTROLLER/CANED_RX Module/frame_reception_done_tnt [of 0|
/CAN_FD_CONTROLLER/gene rate_intezzupt o o | |
/CAN_FD_CONTROLLER/rax_set_requested of o 1
/SP1_CSn EY I | | N Nl
/SPL_CLK E I I (T e i e
/SPI_MISO o o [1 L 1 |
/SPI_MOST 1| L
/Application/SFY_Controller/rz_data_fifo_wr_en o o T T T T o O T
© /Application/SPI_Controller/rx_data_fifo_din 02| 00 FF 00 ‘us 00 00 Yot
\
Host Begins Host Finishes
Reading RSR1 Reading RSR3
1746 FPGA Clock Cycles
(! KDDL T
Waveform captured 19.A3u2017 10:2028 | = o ausla]o] aw-or -1nag |

Figure 5.29: 3x RSR Read Delay

{8 Waveform - DEV:4 MyDevice4 (XCSVFX70T) UNIT:0 MylLAO (ILA)

susisignal foo M0 S G {1500 {00 340 2460 2760 SO0 S0 ST4D OGO AT 4700 020 S0 S SWGD GRNO GG2D GBID 7250 75 7900 €20 BSHG
/interrupt_int of o 7]
/CAN_FD_CONTROLLER/generate_interrupt of o |
J/CAN_FD_CONTROLLER/rsr_set_requested of o |
/CAN_FD_CONTROLLER/CANFD,_RX_Module/frane_reception_done_int | 0| 0
/sPI_Csn i o1 T | |
/SP1_c1x 1 1
/se1_vost | UL LT AL
/Rpplication/SPI_Controller/rx_data fifowr_en o o LU L L L L L T L LD
o /Application/SPI_Controller/rs_data fifo din 01| s FF 'S G 00000000000 00000000G0000000000000000000000000000000C!
- /CAN_FD_CONTROLLER/1er_gp g g B
A
Host Begins Reading Host Finishes Reading
Data Register Data Register
5452 FPGA Clock Cycles
[T DDA AT i L

Waveform captured 14.A9u.2017 06:14:57

]
1523«p] o e1s[«p] a0

=]

Figure 5.30: Burst SPI Read Delay

93

B}l Waveform - DEV:4 MyDeviced (XCSVEX70T) UNIT:0 MyILAO (ILA)

Busi/Signal X o 85‘75 55‘15 55‘55 55‘95 57‘35 57‘75 58‘15 88‘55 SBISE 59‘35 59‘75 7I‘l‘15 7ﬂ‘55 7ﬂ‘95 71‘35 71I75 72‘15 72‘55 72‘95 73‘35u3‘75 "‘15 7“55 70‘95 75‘35 75‘75 75‘15 75‘55 75‘95 77‘35 77‘75 78‘15 78‘55
/interrupe_ine of o
/CAN_FD_CONTROLLER/generate_interrupt. of o
/CAN_FD_CONTROLLER/rsr_set_requested of o
/CAN_FD_CONTROLLER/CANFD_RX_Module/frame_reception_done_int o o
/8P1_C8n 1 m 1
/381 c1x 2 < AR LA A A A AR AR AR AR A RRA AN
/se1_y1so of o MLl UL
/5P1_Mos1 1| g I — iy
/Application/SPI_Controller/rx_data_fifo_wr_en o o | | | | | | | 1 1 1 1
o /Application/SPI_Controller/rx_data_fifo_din 00| €4| 61 62 63 [(i)
© /CAN_ED_CONTROLLER/iet_op el ¢ 5
A
Host Begins Host Finishes
Writing to RSR Writing to RSR
572 FPGA Clock Cycles
[DD T
Waveform captured 14AGu.2017 06:14:57 [=] sel o] of ersold] a-0: 7]

(] Waveform - DEV:4 MyDeviced (XC5VFX70T) UNIT:0 MyILAO (ILA)

Figure 5.31: RSR Clear Delay

BusiSignal X o ﬁﬂ‘ﬁﬁ ﬁglﬂﬁ 59‘65 59‘55 7ﬂ‘25 7[I‘55 71‘ﬂ5 71‘65 71‘55 72‘25 72‘55 73‘ﬂ5 7]‘65 £ ‘55 76‘25 70‘55 75‘ﬂ5 75‘65 75‘55 75‘25 75‘55 77‘[I5 77‘65 77‘55 75‘25 73‘55 79‘ﬂ5 7915 79I85 Eﬂ‘Zﬁ Hﬂ‘ﬁﬁ H1‘ﬂ5
/inverrupt_ine o o
/CAN_FD_CONTROLLER/generate_interrupt o o
/CAN_FD_CONTROLLER/rsx_set_requested o o
/CAN_FD_CONTROLLER/CANFD_RX_Module/£rane_reception done_int [0| 0
/SPI_CSn 1 1 I
/5P1_CIK 1 UL A LA L LA LL [A I A AL AU LA UL L L ALY
/5P1_MISO o o
/se1_osT 1| o] ml 1 il nr n
/AppLication/SPT_Controller/rx_data_fifo_vr_en of o | 1 1 1 1 1 1
o /Application/SPT_Controller/rx_data_fifo_din 00| 00 [
© /CAN_FD_CONTEOLLER/ier_gp o e 5
A
Host Begins Host Finishes
Writing to ISR Writing to ISR
572 FPGA Clock Cycles
[« DD <D T

{5 waveform - DEV:4 MyDeviced (XC5VFX7OT) UNIT:0 MyILAO (ILA)

Waveform captured 14.A3u.2017 06:14:57

Figure 5.32: ISR Clear Delay

<) el coor)

BusiSignal X o 16‘ﬂ H‘m 10‘2ﬂ 2ﬂ‘ﬁ[l 27‘[Iﬂ Jﬁ‘dﬂ JE‘ZH 52‘ﬁﬂ ﬁi‘t‘lﬂ 71‘ﬂﬂ 7ﬂ‘2ﬂ Wlﬁﬂ 9100 97‘6ﬂ 1HC]IBH 11ﬂ‘2[l 11ﬁ‘ﬁﬂ 12:]1““ 129‘1

e ————— o e i

/interrupe_in i ool T

T e s—— |

/CAN_FD_CONTROLLER/generate_interrupt of o |

/CAN_FD_CONTROLLER/rsr_set_requested of o |

/SPI_Csn il 1 T 1 | 1 | | 1 |

s551_yost P R 1 T [l Tl m \

e —— o o LU L L O O T
© /Application/SPI_Controller/rx data fifo_din r| 0o F DYETR T [T} [}

\

CAN FD message is received

ISR is cleared

9126 FPGA Clock Cycles

[T I

DRI

\

Waveform captured 19.A5u.2017 10:20:28

2(x-0)7

==

Figure 5.33: Total Receive Response Time

94

] Waveform - DEV:4 MyDeviced (XCSVEXTOT) UNIT:0 MyILAO (ILA) 7 = = =

Bus/Signal x| ok '9‘5 '7‘5 '5‘5 '3|5 —1|5 5‘ 2|5 4|5 ﬁlﬁ B‘ﬁ 1||]5 1z|)5 11‘15

/2pplication/SPI_Controller/rx data fifo wr en

/api_interrupt

/CAN_FD_CONTROLLER/generate_interrupt

o o e o
o o r o

/CAN_FD_CONTROLLER/rsr set requested

o /application/SPI_Controller/rx data fifo_din FE[FF FF

© /CAN _FD_CONTROLLER/ier gp 8 =8 F]

Interrupt generated,
falling edge of interrupt signal

Figure 5.34: Interrupt Generation

5.6 Interrupt and Error Tests

Interrupt Test: When a message is received and it passes the filter, an interrupt is
generated successfully and ISR is set accordingly. Interrupt is generated as active

low pulse, it is verified as in Fig[5.34 with spi_interrupt signal.

ISR is read and its verified that ISR includes the information that a new message is

received, in other words 3th bit of ISR is logic 1 as in Fig

Transmission Error Tests

e Ack Error: PEAK Analyzer is set to listen only mode. In this mode, the an-
alyzer only listens to the bus and does not send responses such as acknowl-
edgment to the received messages. In other words, it acts like a passive node.
Listen only setting can be seen in Fig[5.36]and Fig[5.37] When FPGA transmits
amessage and does not get an acknowledgment, error condition occurs. For this
case, TMSR (Transmit Message Status Register) last two bits are read 10’
and ISR last 4 bits are read as *0001” as can be seen in Fig[5.38] These values
indicate that ack error condition is detected and related registers are correctly

modified.

e Bit Error: PEAK Analyzer has a feature called Error Generator. Analyzer puts
6 dominant bits at the indicated position selected in GUI as in Fig[5.39] Trans-
mitter detects the error when its recessive bit is overwritten by a dominant bit.

This might take up to 6 bit time. Error generator is set to destroy 40th bit of

95

uonerdd(peay YSI :SE°S I3

ejeq ys| sayg ¢

96

{ g s db 1ST/MITICULNDD ad WD/ o
{ &0 [if]] [iI] EE] EE] EE] 13 |13 UTP 0JTJ B1EP Xi/13TTOA3U0D I4S/UCTIRTTAdY/ -
o |0 pa3ganbad 138 163 /MITICUINOD Q3 MY/
0 0 1dn1I37uT 37273Uab/HITIOHINGD Q4 WY/
T T adnazaqur TdE/
= T T us 2 0JTF 21BP X1/IATTOIIUCT I4S/uoTaeaTrddy/
o o e Ow o s Sw o e Sw o e Sw o o Sw w e Do o e & ° X reuisrong

(711} OV IHAIN 0:LINN {LOLXANS DX ¥enaQAIN #:N3Q - uLiojenenn Tz

Avzilable PCAN hardware:

{#% PCAN-USB FD: Device D6AAFh

)

CANFD
Clock Frequency: Nominal Bit rate: [¥] Data Bit rate:
(80 MHz - | [1 mBits - [2 mBit/s ~
Filter settings
OStandard £ 00000000 (Hex) To: LFFFFFFF | (Hex)
@ Extended

I IMLis’ten-onlymode I [oK H Cancel Ho Help] I

Figure 5.36: PCAN Listen Only Mode Settings 1

CAN Edit View Trace

M-HlPRee07] %

B Receive / Transmit & PCAN-USB FD

0O CAN-D Type Length Data
36Fh EHER 64

Transmit Help

9 Trace

Bus Load

Receive

01020304050607080910111213
1415161718 19 20 21 22 23 24 25 26
27 28 29 30 31 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 48 49 50 51 52
53 54 55 56 57 58 59 60 61 62 63 64

A Error Generator

Cycle Time

Transmi

Fo]s| 64
Listen Only Mode

% Connected to hardware PCAN-USB FD g m

Cycle Time
[] 100

=

(=R TV
=
=
=1

[= = TV o
=

=}
nn = W R

(=}
ohoLn & LR
W &= bnoh = 08

o n = W
(=

=3

FF FF FF FF
FF FF FF FF FF FF
FF FF FF FF FF FF
FF FF FF FF FF FF
FF FF FF FF FF FF
FF FF FF FF FF FF

Bit rate: 1 MBit/'s / 2 MBit/s

Listen-only mode

FF FF FF
FF FF FF
FF FF FF
FF FF FF
FF FF FF
FF FF FF

Status: OK

Count

0

Trigger

Figure 5.37: PCAN Listen Only Mode Settings 2

97

Comment

Overruns: 0

QXmtFu

Waveform - DEV:4 MyDeviced (XC5VFX70T) UNIT:0 MylLAO {ILA) i

Bus/Signal

CONTROLLER/CANFD_TX_Modul

OLLER/CANFD_TX_Modul/

OLLER/CANFD_RX_Modul

ONTROLLER/CANFD_RX_Module/cr

/CAN_FD_CONTROLLER/CANFD_EX_Modul:

& /Application/SPI_Controller/rx data fifo_din

r_status_register_int

FF

00000000

- /CAN_FD_CONTROLLER/CANFD_RX Module/receiver_erro

o /CAN_FD_CONTROLLER/CANFD_TX Module/transmitter error_status register int |

00000000

BDE0000Z |
——

& /CAN FD CONTROLLER/overflow buffer number

o /CAN_FD_CONTROLLER/interrupt_status_register

00

—

0

| I |

Internal ack error

\
TMSR last 2 bits = ‘10’

detection pulse
ISR last 4 bits = ‘0001’ = hex ‘1’

Figure 5.38: TX Ack Error Register Content

the frame. By doing this, bit error is introduced. TMSR last 2 bits are set as
’01’ and ISR last four bits are set as 0001’ for bit error event as can be seen in
Fig[5.40] These values indicate that bit error condition is detected and related
registers are correctly modified. Bit error is only for transmission, for the case
where 6 dominant bit is intruded by the error generator, it is interpreted as stuff
error at the PEAK Analyzer data logger as can be seen in Fig[5.41] because
after 5 consecutive dominant bit, 1 recessive bit must be driven. In other words
bit error at transmitter side (FPGA) corresponds to stuff error at the receiver

side (PEAK Analyzer) due to error generation algorithm of the analyzer.

RECEIVE ERROR TESTS

o Stuff Error: Error Generator of PCAN Analyzer is set to generate error starting
from 40th bit and driving 6 consecutive dominant bits hence causing stuff error.
For this error case, last two bits of RESR (Receive Error Status Register) are
set as *01” last two bits of ISR are set as *10” as can be seen in Fig[5.42] These
values indicate that stuff error condition is detected and related registers are
correctly modified. Furthermore, stuff error is logged at PCAN’s data logger as
can be seen in Fig[5.43]

CRC Error: With trial and error, the bit which the error generator will destroy
to obtain CRC Error is determined as 550th bit and CRC error is generated.
For this error case, last two bits of RESR are set as 10’ last two bits of ISR

are set as *10” as can be seen in Fig[5.44] These values indicate that stuff error

98

File CAMN Edit Transmit View Trace Help

B Receive/ Transmit = @8 Trace #g PCAN-USE FD Bus Load 1. Error Generator

Destroy Single Frame Destroy Multiple Frames

Bit Position: ﬂﬂ = CAN-ID: 000h

Bit Position: 1

Number of Frames to ignore: 0

Number of Frames to destroy: 0

Apply ” Disable

& Connected to hardware PCAN-USB FD #§» | Bit rate: 1 MBit/s / 2 MBit/s | Status: OK Overruns: 0 | QXmtFull: 0,

Figure 5.39: PCAN Error Generator

{25 waveform - DEV:4 NyDeviced (XCSVFX7OT) UNIT:0 MyILAO (ILA)

Bussinal x[o| ® M s s W @ s oW w® W
/CAN_FD_CONTROLLER/CANFD_TX Module/bit_error 0 0 M
/CAN_FD_CONTROLLER/CRNFD_TX Module/ack_error 0 0
JCAN_FI TROLLER/CANFD_RX_Module/crc_error 0 0
/CAN_FD_CONTROLLER/CANFD_RX_Module/form_error 0 0
/Application/SPI_Contreller/rx data_fifo_wr_en 0 0
o /Application/SPI Controller/rx_data fifo_din FE| FE FF
& /CAN_FD_CONTROLLER/CANFD RX Module/receiver_error status register_int 00000000
©= /CAN_FD CONTROLLER/CANFD TX Module/transmitter error status register int 00000000 BDENODOT I
1D ¢ T2 _error_s 5 £
- /CAN_FD_CONTROLLER/overflow buffer number oo 00 [il]
r——
o /CAN FD_CONTROLLER/interrupt status register 0 0 0 [| [|
S S, S =
\ J
Internal bit error TMSR last 2 bits = ‘01’
detection pulse \
ISR last 4 bits = ‘0001’ = hex ‘1’

Figure 5.40: Bit Error Register Content

99

File CAM Edit Transmit View Trace

Help

e nme

l Errors: 1 Other: 0

CAN-ID

Rx/Tx

Type

Length Data

44,1063

Rx

Error

| 5tuff Error, Rx, Data field, RxErr=2, TxErr=0 ||

" Connected to hardware PCAN-US Bit rate: 1 M Status: Overruns: 0 | Q

FD o

Figure 5.41: PCAN Error Log

Waveform - DEV:4 MyDevice4 (XCSVEXTOT) UNIT:0 MyILAO (ILA)
p— « | o |00 0 20 60 100 140 180 220 260 300 340 380 420 460 500 540
! [B N B D DO TN R T I DO T
/CAN_ED_CONTROLLER/ CANFD_TX_Module/bit_ezzoz o o
/CAN_ED_CONTROLLER/ CANFD_TX_Module/ack_ezzoz o o
LLzcaur_Fo_cowroLLER/CanFD R Module/stust error | o o =——pp |nternal stuff error
/CAN_ED_CONTROLLER/CANFD_RX_Module/crc_error of o detection pulse
/CAN_FD_CONTROLLER/ CANFD_RX_Module/ form_error of o
/#pplication/SPI_Controller/zx_data_fifo wr_en o o
/CAN_FD_CONTROLLER/rx_error_isr_set of o
/CAN_FD_CONTROLLER/rx_erzor_isr_clear o o
/CRN_ED_CONTROLLER/ remove_isrl_protection of o
/CRN_ED_CONTROLLER/remove_isrl_protection smart of o
/CRN_ED_CONTROLLER/ remove_isr0_protection of o
/CRN_FD_CONTROLLER/ remove_iSr0_protection _smart of o
/CRN_ED_CONTROLLER/ remove_isr2_protection of o
/CRN_FD_CONTROLLER/ remove_isr2_protection_smart of o
/CAN_ED_CONTROLLER/ remove_isz3_protection o o
/CAN_ED_CONTROLLER/ remove_isz3_protection_smart o o
/CAN_ED_CONTROLLER/ 1520_overwritten o o
/CRN_FD_CONTROLLER/ 71 _overwritten o o
/CAN_FD_CONTROLLER/ 1372_overwritten of o
/CAN_FD_CONTROLLER/ 1373 _overwritten o o
/CAN_FD_CONTROLLER/1ax0_protection of o
/CAN_FD_CONTROLLER/1sr1_protection o o
/CRN_ED_CONTROLLER/18r2_protection of o
/CAN_FD_CONTROLLER/1isr3_protection of o
o /Application/SPI_Controller/rx_data_fifo_din FE| FF FF
(>~ /CAN_FD_CONTROLLER/CANFD RX Module/receiver error status register int 1020(1020| [_10200000 RMSR Tast Z bits =0T P-{ 0200001 |
9= /CAN_FD_CONTROLLER/CANED_TX_Module/transuitter_error_status register_int 6DE0|6DED BDEDOD0D
©- /CAN_FD_CONTROLLER/overflow _buffer_number 00| 00 00
o /CAN_ED_CONTROLLER/rest_2bit_dl o o i 1
= /CAN ED CONTROLLER/interrupt status register PN ISR Tast 4 bits = “1010° —FE—
= hex ‘A’

Figure 5.42:

RX Stuff Error Register Content

100

File CAM Edit Transmit View Trace Help

& & ee [

Receive / Transmit eI MRt o2 PCAN-USE FD Busload =\ Error Generator

Recording... |44'5',4?l§-ls |0,01 %% | — Linear Buffer |Rx: 0 X 2 Errors: 2

Time Type

7,08586 FD, BRS 01020304050607080910111213141516171819202122232...
7,0862 Error Form Error, Tx, CRC sequence, RxErr=0, TxErr=75
7,0865 Error Counter RxErr=0, TxErr=74
48,4705 FD, BRS o4 010203 040506070809 10111213141516171819202122232...

E 445 4709 Error i
448,4712 Error Counter RxErr=0, TxErr=81

& Connected to hardware PCAN-USB FD #& | Bit rate: 1 MBit/s / 2 MBit/s | Status: OK Overruns: 0

Figure 5.43: PCAN Error Log

condition is detected and related registers are correctly modified.

e Form Error: With trial and error, the bit which the error generator will de-
stroy to obtain form error is determined and form error is generated such that
acknowledgment delimiter is destroyed. For this error case, last two bits of
RESR are set as 11’ last two bits of ISR are set as 10’ as can be seen in
Fig[5.45] These values indicate that stuff error condition is detected and related
registers are correctly modified. Furthermore, CRC error is logged at PCAN’s

data logger as can be seen in Fig[5.46

5.7 Arbitration and Other Tests

Arbitration Test:

The setup whose block diagram shown in Fig[5.47]is set.

e 2 x FPGA CAN FD Controllers + Applications are implemented in the FPGA.

101

Waveform - DEV:4 MyDeviced (XCSVFX70T) UNIT:0 MyILAO (ILA)

e X | o 100 ,ﬁ‘n rz‘u z‘u ﬁ:] u‘m 1n‘m 1=‘zn ZTn zn‘m 3[‘||] 3Tn euin 42‘0 M‘iI] 5[‘|u
/CRN_FD_CONTROLLER/CANFD_TX Module/bit_error o o
/CRN_FD_CONTROLLER/CANFD TX Module/ack error o o
/CRN_FD_CONTROLLER/CANFD_RX Module/stuf o o
{/c_FD_CONTROLLER/CANFD_RX Module/crc_error ol o | == Internal crc error
/CRN_FD_CONTROLLER/CANFD_RX_Module/form_error of o detection pulse
/Rpplication/SPI_Controller/rx_data fifo_wr_en o o
/CRN_FD_CONTROLLER/rx_error_isr_set o o
/CEN_FD_CONTROLLER/rx_error_isr_clear o o
/CRN_FD_CONTROLLER/remove isrl protection o o
/CRN_FD_CONTROLLER/remove isrl protection smart o o
/CRN_FD_CONTROLLER/remove_isrd_protection o o
/CRN_FD_CONTROLLER/remove_isr(_protection_smart o o
/CRN_FD_CONTROLLER/remove_isrZ_protection o o
/CEN_FD_CONTROLLER/remove isrZ protection smart o o
/CRN_FD_CONTROLLER/remove_isrd protection o o
/CRN_FD_CONTROLLER/remove isrd protection smart o o
/CRN_FD_CONTROLLER/isr_overwritten o o
/CRN_FD_CONTROLLER/1Srl_overwritten o o
/CRN_FD_CONTROLLER/1SrZ_overwritten o o
/CRN_FD_CONTROLLER/isr3 overwritten o o
/CRN_FD_CONTROLLER/isrQ_protection o o
/CAN_FD_CONTROLLER/isrl_provection o o
/CIN_FD_CONTROLLER/isr2 protection o o
/CEN_FD_CONTROLLER/1sr3_protection of o
o /Application/SPI Controller/rx data fifo_din FE| FE FF
[/CAll FD CONTROLLER/CANFD RX lModule/receiver error status register int | oooo|ocoa| [_ooooooon RMSR Iast 2 bits = ‘10 :Z' 10200002 |
© /CAN_FD_CONTROLLER/CANED_TX Module/transmitter error status_register_int 6DEO|6DEQ 6DEO0D0D
& JCAN_FD_CONTROLLER/overflow buffer_mumber oo| 00 i
o /CAN_FD_CONTROLLER/resr_2bit_dl o o i 2
—
- /CAN FD CONTROLLER/interrupt status register | o o i ISR Iast 4 bits = ‘0010’ _?._2!
=hex ¢

Figure 5.44: RX CRC Error Register Content

{8} waveform - DEV:4 MyDeviced (XCSVFX70T) UNIT:0 MyILAO (ILA)

5§ 10 15 20 25 30 35 40 45 50 55 60

BusiSignal x|lo PSRN TV VU OO O TOURN OO POV PO POV VT OO

/CAN_FD_CONTROLLER/CANED_TX_Module/bit_error o o

J/CAN_FD_CONTROLLER/CANFD_TX_Module /ack_error o o

/CAN_FD_CONTROLLER/CANFD_RX_Module/stuff_error o o

J/CAN_FD_CONTROLLER/CANFD_RK_Module /crc_error o o

[cax_ro_conTROLLER/CANED_RX Module/form error | o o = Internal form error

/Bpplication/SEI_Controller/rx_data_fifo_wr_en o o detection pulse

/CAN_FD_CONTROLLER/T_error_isr_set of o il

J/CAN_FD_CONTROLLER/rx_error_isr_clear o o

/CAN_FD_CONTROLLER/Temove_isrl protection of o

/CAN_FD_CONTROLLER/remove_isrl_protection_swart o o

/CAN_FD_CONTROLLER/Temove_isr0_protection of o

/CAN_FD_CONTROLLER/remove_isz0_protection_swart o o

/CAN_FD_CONTROLLER/Temove_isr2 protection of o

/CAN_FD_CONTROLLER/remove_isr2_protection_smart of o

/CAN_FD_CONTROLLER/remove_isr3 protection of o

/CAN_FD_CONTROLLER/remove_isr3_protection_smart of o

/CBN_FD_CONTROLLER/1sr0_overwritten of o

/CAN_FD_CONTROLLER/isrl_overwritten of o il

/CaN_FD_CONTROLLER/isr2_overwritten of o

/CAN_FD_CONTROLLER/isr3_overwritten of o

/CaN_ED_CONTROLLER/1sr0_protection of o

/CAN_FD_CONTROLLER/isr]_protection o o RMSR last 2 bits = ‘11’

/CaN_ED_CONTROLLER/isr2_protection of o

/CAN_FD_CONTROLLER/isr3_protection of o
o /Application/SPI_Controller/rx_data fifo din | Erl FF
{/CA_FD_CONTROLLER/CANED_RX Module/receiver orror status register imt | |1020(1020 10200000 | 10200003 I
- /CAN_FD_CONTROLLER/CANED_TX Module/transmitter error_status_register int |6DEQ|&DEQ GDE0DOND
©- /CAN_FD_CONTROLLER/overflow buffer_mmber o1f o1 01
& /CAN_FD_CONTROLLER/Tesr_2bit _dl of o q 3
{/CAN_FD_CONTROLLER/interrupt_status_register | E| g

ISR last 4 bits = “1110’ = hex ‘E’

[T Iolaln][«l»]a]]

Figure 5.45: Form Error Register Content

102

File CAN Edit Transmit View Trace Help

& & o€ [

B Receive / Transmit e RrEtaSl o2&+ PCAN-LUSE FD Bus Load A Error Generator

Recording... |3,55415 |0,00 % | —# Linear Buffer |F'.}a:: a 0 |Errors: 1

Time

3,5540

Type Length Data

£3 5538

FD, BRS 64 01020304050607080910111213141516171819202122232...

Error I Form ErrorITx, Acknowledge delimiter, RxErr=0, TxErr=99 l

3,5538
3,5541

Status = BUSWARNIMG
Error Counter RxErr=0, TxErr=92

Connected to hardware PCAN-USE FD %+ | Bit rate: 1 MBit/s / 2 MBit/s | Statusm OK Warning Overruns: 0 | QXmtFull: 0,

Figure 5.46: PCAN Form Error Log

Each node is connected to a CAN FD Transceiver. These two transceivers and

also CAN FD Analyzer are connected to the CAN FD bus.

A button on the FPGA demo board is configured such that when it is pressed
each application will start transmitting messages with 36F and 36E ID respec-

tively such that there is 100 ns time between the transmissions.
Host Simulators’ Initialization files are configured accordingly for this purpose.
Node 1 has ID 36F and Node 2 has ID 36E.

The cases where the message with the ID 36E is transmitted first and the mes-
sage with the ID 36F is transmitted first are tested. For both of these two cases,

the time between the first message and the second message is 100 ns.

It is observed that the message with the ID 36E is received first on the ana-
lyzer side and, the message with the ID 36F loses arbitration and is transmitted
with the next attempt and is received after the message with the ID 36E at the

analyzer.

103

5V
33V CAN H
oD TCAN1042 MBO Ohm CAN 1L PCAN
Evaluation = USB FD
X Module CAN GND Analyzer
RX
XILINX XILINX
Platform JTAG
ML507
Cable Demoboard
USB 11
5V
3.3V
TCAN1042
GND
Evaluation USB
TX Module WHMO Ohm
USB RX
XILINX .
Chipscope Pro COMPUTER wMWMSMHé
Software

Figure 5.47:

Arbitration Test Setup Block Diagram

104

e Node 1 always loses arbitration as can be seen in Figl5.48]

e No matter which one is sent first, the message with the ID of 36E is received
first at the analyzer and the message with the ID of 36F is received later. Two
cases are shown in Fig[5.49a) and Fig[5.49b] Furthermore, these messages have

different data content.

e Arbitration mechanism is tried with both the short cable and 40m cable. The

mechanism is verified for both of the cable types.

e Arbitration test Setup with a 40 meters CAN FD Bus cable can be seen in

Fig[5.50]

Buffer Overflow Test: A messages which will be placed to Buffer 1 is transmitted

twice and overflow condition is generated. ISR last 8 bit is read as 0x1C, which
means a message is received, an overflow condition occurred and the number of the
buffer where overflow occurred is the buffer number 1. The content of ISR during

overflow event and the content of ISR being read by the host simulator can be seen

in Fig[5.5Tand Figl5.52]respectively.

Bus Length Test: CAN FD specification indicates that with 1 Mbit arbitration phase

baud rate, bus length can be up to 40 meters. There are some factors which affect
bus speed. First of all, CAN arbitration mechanism limits the bus length because
during the acknowledgment bit or at the beginning of the arbitration phase where the
nodes compete with each other to take over the bus, the bit transmitted by a node
should propagate to every other node in the network system and the response of the
nodes must propagate back to the transmitter node in a single bit time. Furthermore,
every node in a CAN FD network introduces a stub which causes signal reflection
and reducing the signal integrity. The number of the nodes and their stub length also
affect the baud rate of the CAN FD bus. Moreover, CAN FD data phase baud rate is
independent from the bus length since the communication is one way and no response
is required from the other nodes like in the arbitration phase. But the arbitration phase

baud rate depends on the factors explained here.

In order to verify this bus length requirement, test setup with a 40 meters cable is

used. Successful transmissions and receptions as well as arbitration mechanism tests

105

sasiy [eubig }s07 uonesIqly

A

SSOT UONENIQIY :8f°'C IS

[D |

b 1000

[41]

L0

Z0

X
X

X X XX X XXX 1000
A

.
[

il

17117]

[l
_

1000
10
1000
10

TO0OD
o
000
0

a3e1s ¥3/9TNPOH Xl QANVD/HTTTONLNDD 44 WYD/TE0N QINYD/ —o
aseud ¥3/9TNROH XL CINYD/ETTTONLNODD 43 HYD/ZHO0N QINYD/ -
23e1s ¥3/9TNPOH Xl GANVD/HTTTONLNOD 44 NvD/TH00N QINYD/ —
aseyd ¥3/5TNPoH XL QINVD/MTTI0ELNDD 4I HvD/THAON QIWYD/ -
TP X3 PIURD/3TNPON XI (ANYD/HITIOHINGD ad NYD/ZIAON TANYD/
TP XI PIURD/3TNPOH XI (JANYD/MITIONINOGD 4d N¥D/TICON TANTD/
X3 pIUED/3TNPOW ¥d QANYD/93TTIONINOD a1 WD/ TIAON QANYD/
XI PIULD/ITNPOH XI UANVD/IITIOWINOD Od NVD/ZITON QINYD/
UT X1 PIUED/3TNPOH XI QANYD/WITIOEINOD 0 WYD/ZICON QANYD/
UT ¥1 PIURD/STNPOH XI QANYD/HITIONINOD 0 WyD/TIAON OANYD/

3507 UOTIBIFTqIR/ITNPOH XI UANYD/ AATIOEINOD 04 NYD/ZIUON QINYD/

—
180T UOTARIATQIR/STNPON XI QNI HITICEINOD Id NY2/TIAON TINYD/ —

IR

or 0¥ 08 08~ 0¥<- 00F- 09%

[I[#g

0F0L- 00ZL- 09EL- 0ESL- 089L- OF8L-

000¢

o}

leubis/sng

(w11} OV TIAIN 0:LINN (LO2X4ASDX) ¥ QAN $:A30 - unioganeny fi)

106

SIOpIO uondadoay 93esSOIN (61°S 2In31q

7 9se)) 10J 19p10 uondaday a3essolN (q)

AW T3 g | & G4 85N-NYDd 2iempizy 03 papauuo) @

0Ny | psunusag N0 snEls

9 EI TS TS 09 65 85 £5 95 55 b5 £5 25 15 05 6t 8 Lb 9 St b+ £F Tk Tb Ob 6 8F £E OF S bE £€ 7€ TE OF 62 8T LT 9T ST bT £C TC T2 07 6F ST LT 9T ST bT £7 2T 1T 0T 60 80£0 90500 £020T0 1S3 'Su8 ‘a4 xy ug9E esea't [
66 66 29 TS 09 65 B5 £5 55 S5 +5 £5 25 15 05 6% BF £k O St ++ £+ Tk Tk O 6 BE /E OF SE+E 66 66 TE OF 62 8 £Z 92 5T 2 £7 72 T2 07 61 8T £T OT ST T ET 2T TT 0T 6080090500 E0 6666 153 548 ‘ad xy L39E 95857
=eq adhl xufxy [uglie] Swip

== == sayyng o | =

soeruap jou3 W | peoisng | Q4 SSN-NYDd e

romie| _ P S

dpH el mAlA Jwsuell 3pI NYD 314

MAN-NYId B

X 1 i

[9seD) 10} 1op1) uondaday adesso (B)

@I T=1e1 g | & 04 85N-NYDd 21empiey 0} papauuo) &

9929 19 09 65 85 £5 95 S§ 5 £5 25 TS 05 6b 8 £+ Ob Sb ¥+ £ Th T O 66 B L€ OF SE bE £F 26 1€ 0F 6 82 £2 92 S ¥C £€ 22 12 0Z 67 ST £1 9T ST 1 £1 2T 17 0T 6080 £090S0+0E0Z0T0 1S3 548 Q4 xy
66 6629 19 09 65 85 £5 95 56 ¥6 £5 25 15 05 6b 8 Lt O S ++ £+ 2 Tk Ob 68 BE L€ OF SE +€ 66 66 1€ OF 67 82 4T 97 52 +€ £2 22 12 0Z 61 81 £1 9T ST T €1 Z1 1T 01 6080 £0 90 504006666 153 'sua ‘a4 xy
ejeg adAl xufxy QENYD
0:2y10 | 0810453 | 0 smess | 0:x | zoxy| yngeaun - | % 00'0] segze'ss|

soseuanuony W | peoisng M@ | add 20l gy

tomne| (A3 P £

dpH =Rl mEA ywsuell WPI NYD 3
MIAN-NYId S

s |

107

dmeg uoneniqry (S ¢ aIn3Ly

‘_ IozAeUy
8&%<A| . dad dsn
I9MOod - NVOd
HCL)
wioneld =
XNITIX

dqeD
SI9)oW

JOATOOSURL], | JOATQOSURI],
pIeog owa(J 7 9PON I 9pON
LOSTIN XNI'TIX g4 NVD dd NVD

108

JUAIUOD) IAISISAY MOPIAQ :[G'C T

@

(@

(i

[ii]

1]

EE]

EE]

2
0
10

0303
0z0T
EEs

0
0

a93sThed sn3e3s 3dnAIBIUT/HITIOULNDD ad WYD/ -

TP 3TAZ 3592/4FTI0ULN0D Q3 WD/

ZoquNU 193 I0G KOTIIRA0/FTTTOULNDD A WD/ o

* 2933 TUSURIL/STNPOR Yl QINYD/STTTONLNDD a3 WD/ o
**J8 18ATE08I/BTNPOH XY QINVD/EETIONINDD I NYD/ -o

_ UTP 03T BYEP Xa/IST[0AIUCD I4S/U0T3E0TTddY/ o

£03T3 13632/3TNPOK X¥ (IN¥D/¥ITIOHINOD O N2/

- -de0ad sweiz/3TNPON X4 QANYD/SITTIONINOD G N¥D/
STPT £nA/3TNPOK Xd QIN¥D/SITIONINOD QI N¥D/
**803TI 13831/3TNPOK X CANED/SITIONINOY a3 N¥D/
U0T393303d £IET/EATIONINOD G Nud/

u0T203202d ZAET/EITTONINOD O N¥D/

u0T103202d TIET/EITTONINOD A3 N¥D/

u0T323303d QIFT/HITIONINGD QI Y2/
UBIITIMIBAC £IST/FITIONINOD QI MN¥D/
USIITINIBA0 ZIST/EITIOUINGD O HTED/

U311TINIBA0 TIET/YITIOUINOD O WD/
UI1ATINIBA0 0IET/HITIOUINOD 4 WD/

23ews uoT302303d £IET SACWSI ATITIONINGD QI WYD/
uoT302203d £IET SACWSI/ITIOWINGD QI NYD/
a3ewe u0T193103d ZIST SAOWSIFITIOWINGD I N2/
uoT393103d ZIET SAOWSI/YITTONINGD O N¥D/

23ews uoT103103d DAST SAOWSZ/YITIOUINOD QI NWD/
uoT322203d 0IET SAOWSI/ITTONINGD QI N¥D/

leubis/sng

(1) OV TIAN 0:LINN (LOLXIASIX) #3d1Ma0A #°N\30 - ULIojaAe @
—

109

@ Waveform - DEV:4 MyDevice4 (XCSVFX70T) UNIT:0 MyILAO (ILA)

Bus/Signal

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560 600 6

/CAN_FD_CONTROLLER/CANFD_TX_Module/bit_error
JCRN_FD CONTROLLER/CANFD TX Module/ack error
SCRN_FD CONTROLLER/CANFD BX Mcdule/crc error
/CAN_FD CONTROLLER/CANFD RX Module/form error
/Rpplication/SPI_Controller/rx data fifo wr_en

o= /Application/SPI_Controller/rx data fifo din

o= JCAN_FD_CONTROLLER/CANFD RX Module/receiver error_status register int

©= /CAN_FD CONTROLLER/CANFD TX Module/transmitter error status register int

o \GBZIWUIBZ.H.NDFEN\ overfl oilvc £ mmwlsc.svmﬂ

6DEQ

01

GDED!

FF

10200000

GOEQOOOO

01

¢ /CAN_FD CONTROLLER/interrupt status register
JCRN_FD_CONTROLLER/interrupt_status_register<0>
J/CRN_FD_CONTROLLER/interrupt_status_register<l>
SCIN_FD CONTROLLER/interrupt Status_register<i>

/CEN FD CONTROLLEE/interrupt status register<3>

o

Figure 5.52: Overflow ISR Read Operation

110

are successfully done. Both of the bus ends should have 120 ohm termination resistors

for the bus to function properly.

111

112

CHAPTER 6

CONCLUSION

This thesis presents the design, implementation and evaluation of C*: Configurable
CAN FD Controller. C? features a total of 192 buffers which are organized as fully
configurable 96 TX and 96 RX buffers. The buffers are organized as mailboxes and
the sizes of the mailboxes can be up to 64 bytes. Application time configurable size
for each mailbox gives the user great flexibility and convenience during the software
development for a CAN FD network. Furthermore, total size of the memory can also
be modified during synthesis. Therefore, it can easily be said that the buffers are fully
configurable in every way. The mailbox structure used in C® instead of FIFO helps
the response time to be lower since the higher priority buffers can always be accessed
first. This is critical for tightly scheduled networks. Each RX buffer has a dedicated
message acceptance filter to reduce the work load of the host MCU. C? implements
CAN FD frames with both the base and the extended ID according to non-ISO CAN
FD protocol specification. The CAN FD baud rate is 2 Mbps.

C3 is configured and controlled through a defined register set by the host MCU. A
communication protocol is developed over SPI for any MCU to be able interface with
C3 easily. To be able to perform the functional verification and timing performance
tests of the designed controller hardware, a host MCU is required. For this purpose
a simulator which acts like a host MCU is developed in the FPGA platform. Host
simulator design includes a SPI master protocol block implementation and a block
memory which includes SPI frames data content to configure, control and command
C3. The block memory cells are initialized with the predefined data. For each test
performed, the number of SPI frames in block memory and the SPI frame data content

change.

113

The host simulator gets the data from the block memory and transmits SPI frames
according to the designed SPI protocol. The host application varies according to
the block memory content. FPGA implementation includes C® along with the host
simulator. FPGA clock frequency is 100 MHz. Number of slice registers used is 5029
(11% utilization). The number of slice LUTs is 11541 (utilization is 25%) and the
number of LUT flip flops is 3320 (utilization is 25%). Overall resource utilization can
be considered 25%. Resource consumption is low however due to clock frequency
being high, 100 MHz, some timing problems have been encountered during the design
phase. With the strategies explained in Sec4.8] timing problems have been solved and

the design is implemented successfully.

The tests are performed to verify the functionality of the controller. The buffer con-
figurability for different CAN FD message sizes, transmission and reception of the
messages according to non-ISO CAN FD specification are verified. Furthermore, the
host MCU simulator successfully configures the ID and the message size registers for
each TX/RX mailbox and the ID & mask register pairs of accepting filters for RX
mailboxes. It successfully requests message transmissions, reads the received mes-
sages from the desired mailboxes when an interrupt is received. For the performed
tests, a professional CAN FD analyzer is used to transmit messages to C or monitor
the messages C® transmits. Error conditions implemented in C? are tested by gener-
ating errors via CAN FD analyzer’s error generation function. Arbitration mechanism

is tested by implementing one more CAN FD controller in the FPGA.

The response time measurements are performed to evaluate the timing performance
of the designed controller. Detailed measurements are provided and compared with
the theoretical results. Measured transmit response time is 61,48 s, which is much
smaller than the MCU application delays, jitters and message periods. Furthermore,
the lowest message periods in vehicle applications is close to 5 ms as descrbied in
Sec Measured receive response time is 91,26 us, which is quite smaller than the
message duration that is 318 ps. This indicates that the received message is taken
from C® more than quickly enough before the next message comes. Overall response

times for both the receive and transmit cases provide excellent timing performance.

C3: Configurable CAN FD Controller is based on Bosch non-ISO CAN FD protocol

114

specification. Current development is only for academic purposes. C? is an open
hardware platform and it can be used with any MCU having an SPI interface. SPI
interface is the communication protocol which defines the register read and write
operations between C® and the host MCU. The host simulator hardware is also de-
signed in the scope of this thesis. Our next step is to develop a driver for C* and begin
software development using this driver to perform the scheduling and frame packing

algorithms for this brand new CAN FD protocol.

115

116

[1]

(2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

REFERENCES

ARASAN CAN FD Controller IP Core. https://www.arasan.com/
products/can—fd/. Accessed on 2016.

BOSCHCAN IP Core. http://www.bosch-semiconductors.com/
en/automotive_electronics/ip_modules/can_ip_modules/
in vehicle communication.html. Accessed on 2016.

CAN 2020: The future of CAN technology. https:
//wWww.can—-cla.org/news/cia—in—action/view/
can-2020-the—future-of-can—-technology/2016/3/21/.
Accessed on 2017.

CAN-CTRL CAN 2.0 CAN FD Bus Controller Core. http://www.
cast—-inc.com/ip-cores/interfaces/can-ctrl/index.htmll
Accessed on 2017.

CAN FD v1.0 LogiCORE IP Product Guide. https://www.xilinx.
com/support/documentation/ip_documentation/canfd/v1_
0/pg223-canfd.pdf. Accessed on 2017.

CAN with Flexible Data-Rate Specification version v1.0, Robert Bosch GmbH.
https://can-newsletter.org/assets/files/ttmedia/raw/
e5740b7b5781b8960f55efcc2b93edf8.pdf. Accessed on 2016.

CAN/CAN FD 1IP CORE. http://www.kuantek.com.tr/
ipcekirdek/KNTK-IP-CANFD-100-PB.pdf. Accessed on 2016.

DCAN FD. https://www.dcd.pl/ipcore/131/dcan—-fd/. Ac-
cessed on 2017.

IFI CAN FD IP Core. http://www.ifi-pld.de/IP/CANFD/body_
canfd.html. Accessed on 2017.

IPMS CAN ISO CAN FD, CAN 2.0B CONTROLLER CORE.
https://www.ipms.fraunhofer.de/content/dam/ipms/
common/products/WMS/canfd—e.pdf. Accessed on 2017.

ISO CAN FD OR NON ISO CAN FD. https://
can—-newsletter.org/engineering/standardization/
141209 _iso-can—-fd-or—-non-iso-can-fd. Accessed on 2017.

[12] LogiCORE IP XPS Controller Area Network (CAN) (v3.01a).

https://www.xilinx.com/support/documentation/ip_
documentation/xps_can.pdfl Accessed on 2015.

[13] MCP2515). http://www.microchip.com/wwwproducts/en/

en010406. Accessed on 2015.

117

https://www.arasan.com/products/can-fd/
https://www.arasan.com/products/can-fd/
http://www.bosch-semiconductors.com/en/automotive_electronics/ip_modules/can_ip_modules/in_vehicle_communication.html
http://www.bosch-semiconductors.com/en/automotive_electronics/ip_modules/can_ip_modules/in_vehicle_communication.html
http://www.bosch-semiconductors.com/en/automotive_electronics/ip_modules/can_ip_modules/in_vehicle_communication.html
https://www.can-cia.org/news/cia-in-action/view/can-2020-the-future-of-can-technology/2016/3/21/
https://www.can-cia.org/news/cia-in-action/view/can-2020-the-future-of-can-technology/2016/3/21/
https://www.can-cia.org/news/cia-in-action/view/can-2020-the-future-of-can-technology/2016/3/21/
http://www.cast-inc.com/ip-cores/interfaces/can-ctrl/index.html
http://www.cast-inc.com/ip-cores/interfaces/can-ctrl/index.html
https://www.xilinx.com/support/documentation/ip_documentation/canfd/v1_0/pg223-canfd.pdf
https://www.xilinx.com/support/documentation/ip_documentation/canfd/v1_0/pg223-canfd.pdf
https://www.xilinx.com/support/documentation/ip_documentation/canfd/v1_0/pg223-canfd.pdf
https://can-newsletter.org/assets/files/ttmedia/raw/e5740b7b5781b8960f55efcc2b93edf8.pdf
https://can-newsletter.org/assets/files/ttmedia/raw/e5740b7b5781b8960f55efcc2b93edf8.pdf
http://www.kuantek.com.tr/ipcekirdek/KNTK-IP-CANFD-100-PB.pdf
http://www.kuantek.com.tr/ipcekirdek/KNTK-IP-CANFD-100-PB.pdf
https://www.dcd.pl/ipcore/131/dcan-fd/
http://www.ifi-pld.de/IP/CANFD/body_canfd.html
http://www.ifi-pld.de/IP/CANFD/body_canfd.html
https://www.ipms.fraunhofer.de/content/dam/ipms/common/products/WMS/canfd-e.pdf
https://www.ipms.fraunhofer.de/content/dam/ipms/common/products/WMS/canfd-e.pdf
https://can-newsletter.org/engineering/standardization/141209_iso-can-fd-or-non-iso-can-fd
https://can-newsletter.org/engineering/standardization/141209_iso-can-fd-or-non-iso-can-fd
https://can-newsletter.org/engineering/standardization/141209_iso-can-fd-or-non-iso-can-fd
https://www.xilinx.com/support/documentation/ip_documentation/xps_can.pdf
https://www.xilinx.com/support/documentation/ip_documentation/xps_can.pdf
http://www.microchip.com/wwwproducts/en/en010406
http://www.microchip.com/wwwproducts/en/en010406

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Mercedes W140: First car with CAN. https://
can—-newsletter.org/engineering/applications/160322_
2bth—-anniversary-mercedes-wl40-first-car-with-can.

Accessed on 2017.

ML505/ML506/ML507 Evaluation Platform User Guide. https:
//www.x1linx.com/support/documentation/boards_and__
kits/ug347.pdf. Accessed on 2017.

NXP In Vehicle Networking. https://www.nxp.com/docs/en/
brochure/BRINVEHICLENET.pdf. Accessed on 2017.

Renesas provides chips for Toyota. https://can—newsletter.
org/engineering/applications/171114_17-4_
renesas-provides—-chip-for-toytas-self-driving-cars_
renesas. Accessed on 2017.

Synective Labs IP for CAN and CAN FD. http://www.synective.se/
index.php/solutions/ip-for—-can—and-can—-fd/. Accessed on
2017.

TCAN1042 Evaluation Module. http://www.ti.com/tool/
tcanl042devm. Accessed on 2017.

The FlexCAN with CAN-FD. https://www.silvaco.com/
products/IP/flexcan_with_can_fd/index.htmll Accessed
on 2017.

M. E. Afsin, K. W. Schmidt, and E. G. Schmidt. A Configurable CAN FD

Controller: Architecture and Implementation. In 2017 25th Signal Processing
and Communications Applications Conference (SIU), pages 1-4, May 2017.

M. E. Afsin, K. W. Schmidt, and E. G. Schmidt. C3: Configurable CAN FD
Controller: Architecture, Design and Hardware Implementation. In 2017 12th

IEEE International Symposium on Industrial Embedded Systems (SIES), pages
1-9, June 2017.

H. S. An and J. W. Jeon. Analysis of CAN FD to CAN message routing method
for CAN FD and CAN gateway. In 2017 17th International Conference on
Control, Automation and Systems (ICCAS), pages 528533, Oct 2017.

G. Cena, L. C. Bertolotti, T. Hu, and A. Valenzano. Improving compatibility
between CAN FD and legacy CAN devices. In 2015 IEEE Ist International
Forum on Research and Technologies for Society and Industry Leveraging a
better tomorrow (RTSI), pages 419-426, Sept 2015.

B. Cheon and J. W. Jeon. The CAN FD network performance analysis using the
CANoe. In IEEE ISR 2013, pages 1-5, Oct 2013.

R. Davis, A. Burns, R. Bril, and J. Lukkien. Controller area network (CAN)
schedulability analysis: Refuted, revisited and revised. Real-Time Syst.,
35(3):239-272, April 2007.

118

https://can-newsletter.org/engineering/applications/160322_25th-anniversary-mercedes-w140-first-car-with-can
https://can-newsletter.org/engineering/applications/160322_25th-anniversary-mercedes-w140-first-car-with-can
https://can-newsletter.org/engineering/applications/160322_25th-anniversary-mercedes-w140-first-car-with-can
https://www.xilinx.com/support/documentation/boards_and_kits/ug347.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/ug347.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/ug347.pdf
https://www.nxp.com/docs/en/brochure/BRINVEHICLENET.pdf
https://www.nxp.com/docs/en/brochure/BRINVEHICLENET.pdf
https://can-newsletter.org/engineering/applications/171114_17-4_renesas-provides-chip-for-toytas-self-driving-cars_renesas
https://can-newsletter.org/engineering/applications/171114_17-4_renesas-provides-chip-for-toytas-self-driving-cars_renesas
https://can-newsletter.org/engineering/applications/171114_17-4_renesas-provides-chip-for-toytas-self-driving-cars_renesas
https://can-newsletter.org/engineering/applications/171114_17-4_renesas-provides-chip-for-toytas-self-driving-cars_renesas
http://www.synective.se/index.php/solutions/ip-for-can-and-can-fd/
http://www.synective.se/index.php/solutions/ip-for-can-and-can-fd/
http://www.ti.com/tool/tcan1042devm
http://www.ti.com/tool/tcan1042devm
https://www.silvaco.com/products/IP/flexcan_with_can_fd/index.html
https://www.silvaco.com/products/IP/flexcan_with_can_fd/index.html

[27]1 A. Happel. High-Speed Reprogramming and Calibration with CAN FD:
A Case Study. https://can-cia.org/fileadmin/resources/
documents/proceedings/2013_decker.pdf. Accessed on 2017.

[28] F. Hartwich. CAN with Flexible Data Rate. In The international CAN Confer-
ence (iCC), 2012.

[29] S.J.Jang and J. W. Jeon. Software reprogramming performance analysis of can
fd and flexray protocols. In 2015 IEEE International Conference on Information
and Automation, pages 2535-2540, Aug 2015.

[30] D. A. Khan, R. J. Bril, and N. Navet. Integrating hardware limitations in can
schedulability analysis. In 2010 IEEE International Workshop on Factory Com-
munication Systems Proceedings, pages 207-210, May 2010.

[31] T. Kugelstadt. Isolated CAN Transceiver Assures Robust Field-
bus Design. https://www.ecnmag.com/article/2009/10/
isolated-can-transceiver—-assures—robust-fieldbus—-design.
Accessed on 2017.

[32] T. Lindenkreuz. CAN FD - CAN with Flexible Data Rate, Vector
Kongress 2012. https://vector.com/portal/medien/cmc/
events/commercial_events/VectorCongress 2012/VeCol2_

8_NewBusSystems_3_Lindenkreuz_Lecture.pdf. Accessed on
2017.

[33] R. Lotoczky. CAN-FD Flexible Data Rate CAN An Abbreviated primer.
https://vector.com/portal/medien/vector_cantech/
Congress2013/1_9_CAN%20FD_Update.pdf. Accessed on 2016.

[34] Marco Di Natale, Haibo Zeng, Paolo Giusto, Arkadeb Ghosal. Understanding
and Using the Controller Area Network Communication Protocol. Springer-
Verlag New York, 1 edition, 2012.

[35] N. Navet, Y. Song, F. Simonot-Lion, and C. Wilwert. Trends in automotive com-
munication systems. Proceedings of the IEEE, 93(6):1204—1223, June 2005.

[36] O. Pfeiffer, A. Ayre, and C. Keydel. Embedded Networking with CAN and
CANopen. Copperhill Media Corporation, rev. 1. ed edition, 2008.

[37] K. Schmidt, B. Alkan, E. G. Schmidt, D. C. Karani, and U.Karakaya. Controller
area network (CAN) with priority queues and fifo queues: Improved schedu-

lability analysis and message set extension. [International Journal of Vehicle
Design, 71(1/2/3/4), 2015.

[38] K. W. Schmidt. Robust priority assignments for extending existing con-
troller area network applications. IEEE Transactions on Industrial Informatics,
10(1):578-585, Feb 2014.

[39] J. W. Shin, J. H. Oh, S. M. Lee, and S. E. Lee. Live demonstration: CAN FD
controller for in-vehicle network. In 2016 IEEE Asia Pacific Conference on
Circuits and Systems (APCCAS), pages 748-749, Oct 2016.

119

https://can-cia.org/fileadmin/resources/documents/proceedings/2013_decker.pdf
https://can-cia.org/fileadmin/resources/documents/proceedings/2013_decker.pdf
https://www.ecnmag.com/article/2009/10/isolated-can-transceiver-assures-robust-fieldbus-design
https://www.ecnmag.com/article/2009/10/isolated-can-transceiver-assures-robust-fieldbus-design
https://vector.com/portal/medien/cmc/events/commercial_events/VectorCongress_2012/VeCo12_8_NewBusSystems_3_Lindenkreuz_Lecture.pdf
https://vector.com/portal/medien/cmc/events/commercial_events/VectorCongress_2012/VeCo12_8_NewBusSystems_3_Lindenkreuz_Lecture.pdf
https://vector.com/portal/medien/cmc/events/commercial_events/VectorCongress_2012/VeCo12_8_NewBusSystems_3_Lindenkreuz_Lecture.pdf
https://vector.com/portal/medien/vector_cantech/Congress2013/1_9_CAN%20FD_Update.pdf
https://vector.com/portal/medien/vector_cantech/Congress2013/1_9_CAN%20FD_Update.pdf

[40] A. K. Sinha and S. Saurabh. CAN FD: Performance reality. In 2017 3rd Inter-
national Conference on Computational Intelligence Communication Technology
(CICT), pages 1-6, Feb 2017.

[41] G. M. Zago and E. P. de Freitas. A Quantitative Performance Study on CAN
and CAN FD Vehicular Networks. IEEE Transactions on Industrial Electronics,
65(5):4413-4422, May 2018.

120

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	In-Vehicle Networks
	CAN
	CAN FD
	CAN/CAN FD Controllers

	Previous Work on CAN/CAN FD Controllers
	C3 (CONFIGURABLE CAN FD CONTROLLER) ARCHITECTURE
	Hardware Blocks: Memory Mapped Register Block
	Hardware Blocks: SPI Protocol Control Block
	Hardware Blocks: Interrupt Control Block
	Hardware Blocks: Transmitter Module
	Hardware Blocks: Receiver Module
	Configuration Phase
	Data Phase and Timing
	FPGA Implementation Results

	Evaluation of C3 (CONFIGURABLE CAN FD CONTROLLER)
	Development and Test Environment
	Host Simulator Implementation
	Transmit Buffer Configuration and Transmission Tests
	Receive Buffer Configuration and Reception Tests
	Response Time Measurements
	Interrupt and Error Tests
	Arbitration and Other Tests

	Conclusion
	REFERENCES

