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ABSTRACT

CONTROLLER AREA NETWORK WITH OFFSET SCHEDULING:
IMPROVED OFFSET ASSIGNMENT ALGORITHMS AND
COMPUTATION OF RESPONSE TIME DISTRIBUTIONS

BATUR, Ahmet
M.S., Department of Electrical and Electronics Engineering

Supervisor : Assoc. Prof. Dr. Klaus Werner Schmidt

Co-Supervisor : Prof. Dr. Senan Ece Giiran Schmidt

February 2018, [86| pages

The Controller Area Network (CAN) is the most widely-used in-vehicle communica-
tion bus in the automotive industry. CAN enables the exchange of data among differ-
ent electronic control units (ECUs) of a vehicle via messages. The basic requirement
for the design of CAN is to guarantee that the worst-case response time (WCRT) of
each message is smaller than its specified deadline. Hereby, it is generally desired to
achieve small WCRTSs that leave sufficient slack to the message deadline. In addition,
it has to be noted that it might be very unlikely that a message experiences the WCRT
when being transmitted on CAN. That is, instead of only considering the message
WCRT for the design of CAN, it is beneficial to determine the actual response-time
distribution of each message, which indicates the probability of experiencing a certain

response time.

In order to achieve small WCRTS, the idea of offset scheduling has been introduced.
In this setting, messages on CAN are released with offsets in order to avoid message

bursts that lead to undesirably large response times. In order to use offset scheduling



efficiently, it is required to assign a suitable offset to each message. To this end, a
load distribution (LD) algorithm is proposed in the existing literature. The first con-
tribution of this thesis is the development of new algorithms for the offset assignment
on CAN. Evaluating different example scenarios, the thesis shows that the proposed
algorithms outperform the existing LD algorithm in most of the cases. As the second
contribution, the thesis studies the computation of response time distributions. First,
an algorithm for determining the exact response-time distribution of each message on
CAN is proposed. Since this algorithm comes with a high computational complexity,
it cannot be applied if there are too many messages on a CAN bus. Moreover, exper-
imental results show that the response time distribution depends mostly on the initial
phasing of the nodes. Therefore exact response time distribution as computed is not
observed in the measurements. In response to this observation, the thesis proposes
the computation of a local response time distribution and develops and implements a
weak synchronization method which bounds the phase shift between the nodes. The
resulting computed local response time distribution shows a very tight match with

measured response time distributions.

Keywords: Controller Area Network, Offset Scheduling, Worst Case Response Time,

Response Time Distribution, Weak Synchronization
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0z

CAN AGLARI iCiN OFSET CiZELGELEME: GELISTIRILMIS OFSET
ATAMA ALGORITMALARI VE TEPKi ZAMANI DAGILIMI
HESAPLAMALARI

BATUR, Ahmet
Yiiksek Lisans, Elektrik ve Elektronik Miihendisligi Boliimii
Tez Yoneticisi : Dog. Dr. Klaus Werner Schmidt
Ortak Tez Yoneticisi : Prof. Dr. Senan Ece Giiran Schmidt

Subat 2018 , [86]sayfa

Denetleyici Alan Ag1 (CAN), otomotiv endiistrisinde en yaygin kullanilan arag-ici ha-
berlesme veriyoludur. CAN, aracin farkli elektronik kontrol iiniteleri (EKU) arasinda
mesajlar araciligiyla veri transferi saglar. CAN tasariminin ana ihtiyaci her mesajin
tepki zamaninin belirtilen son gonderim zamanindan kisa olmasimi garantilemektir.
Genellikle, son gonderim zamanina yeterli serbestlik saglayan kisa tepki zamanlariin
elde edilmesi amaglanmaktadir. Buna ek olarak, mesajin CAN iizerinden iletilirken
en uzun tepki zamanini (worst-case response time-WCRT) deneyimlemesinin muh-
temel olmayabilecegine dikkat edilmelidir. Yani, CAN tasarimi i¢in mesajin WCRT
degerini dikkate almak yerine her mesajin belirli bir tepki zamanin1 deneyimleme

olasiligin1 gosteren gergek tepki zamani dagilimin belirlemek faydali olacaktir.

Kisa WCRT degerleri elde etmek i¢in ofset ¢izelgeleme yontemi ortaya ¢ikarilmasgtir.
Bu yontemle, istenmeyen uzun tepki zamanlarina yol acabilecek mesaj kiimelenme-
sini onlemek i¢cin CAN mesajlar1 ofsetlerle gonderilirler. Ofset ¢izelgeme yontemini

verimli bir sekilde kullanmak i¢in her mesaja uygun bir ofset atanmasi1 gerekmekte-
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dir. Bu amagcla, mevcut literatiirde bulussal bir yiik dagilimi1 (load distribution-LD)
algoritmas1 Onerilmistir. Bu tezin ilk katkis1t CAN iizerinde ofset atamasi i¢in yeni
algoritmalarin gelistirilmesidir. Farkli senaryo orneklerini degerlendiren bu tez calis-
masinda, bulgularin ¢cogunda onerilen algoritmalarin bagsarimlarinin halihazirdaki LD
algoritmasindan daha iyi oldugu gosterilmektedir. ikinci katki olarak tez, tepki za-
mani dagilimlarinin hesaplanmasini incelemektedir. ilk olarak, CAN iizerindeki her
bir mesajin gercek tepki zamani dagilimin belirlemek icin bir algoritma 6nerilmek-
tedir. Bu algoritma yiiksek bir hesaplama karmasikligina sahip oldugundan, bir CAN
veriyolunda ¢ok fazla mesaj olmasi1 durumunda uygulanamamaktadir. Ayrica, deney-
sel bulgular tepki zaman1 dagiliminin daha ¢ok diigtimler arasindaki faz farkinin ilk
degerine bagl oldugunu gostermektedir. Bu nedenle hesaplanan gergek tepki zamani
dagilimi dl¢iimlerde gozlenmemektedir. Buna ¢6ziim olarak bu tez, yerel tepki za-
man1 hesaplamasini 6nermekte ve diigiimler arasindaki faz farkini sinirlayan bir zayif
senkronizasyon metodu gelistirmekte ve uygulamaktadir. Sonucta hesaplanan yerel
tepki zamani dagilimlarinin dl¢iilen tepki zamani dagilimlariyla oldukga iyi eslestigi

goriilmektedir.

Anahtar Kelimeler: Denetleyici Alan Ag1 (CAN), Ofset Cizelgeleme, En K6tii Durum
Tepki Zamani, Tepki Zamani Dagilimi, Zayif Senkronizasyon
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CHAPTER 1

INTRODUCTION

General

The most commonly used communication network in current in-vehicle applications
is the controller area network (CAN) [[15) 17, 4, [14]. CAN is a priority-based non-
preemptive communication bus with a maximum data rate of 1 Mbit/s. Due to the
priority-based arbitration it is expected that low-priority CAN messages observe large

response times (RTs) [10]].

When designing the communication schedule on a CAN bus, deterministic and proba-
bilistic requirements are taken into account. Most of the existing literature focuses on
deterministic requirements, whereby the main aim is to ensure that the worst-case re-
sponse time (WCRT) of each message is smaller than the message deadline. Hereby,
the deadline specifies the longest allowable time between the message generation on
the transmitter node and the reception on the receiver node [16, 4]. In addition to
this basic requirement, it is desired in practical applications to obtain small response
times with a sufficient time difference (slack) to the message deadline [5, 16, [14]]. A
further desirable property is to achieve a balanced distribution of WCRTSs such that

messages with the same deadline also have similar WCRTs.

The study of the probabilistic properties of message response times is based on the
observation that, although it is possible that a message experiences its WCRT, this
case is highly unlikely [12, 20]. In particular CAN messages can experience very
different response times due to two factors that introduce nondeterminism. First,
the CAN protocol inserts stuff bits during the message transmission such that the

CAN message transmission time varies with its payload data. Second, the nodes on a



CAN bus are not synchronized such that the phases between nodes change over time.
Hence, it is important in practice to determine the probability of certain response
times, which are summarized in the so-called response time distribution. Then, the
most relevant probabilistic requirement is to compute this response time distribution

which allows determining the probability of exceeding each possible response time.

Several research works in the literature address the stated deterministic and proba-
bilistic requirements. Regarding the deterministic requirements, the idea of offset
scheduling has been introduced [[10, [11]. That is, in order to avoid messages bursts
from individual CAN nodes, the simultaneous release of messages from the same
CAN node is avoided. Instead, messages are released with an offset. In the setting of
offset scheduling, the existing literature provides algorithms for computing WCRTSs
for each message [8, [19, 3, [18], assuming that the offset for each message is pre-
assigned. Considering the offset assignment, [[10] presents a load distribution (LD)

heuristic that aims at minimizing the message WCRTs.

Regarding the probabilistic requirements, different problems are addressed. The work
in [[13, [12]] studies the probabilistic WCRT. Considering the variable bit stuffing only,
the probability of different response times in a worst-case message generation sce-
nario is determined. Although this work gives an indication about how likely it is
to observer the WCRT, it only considers a worst-case message generation scenario
and does not capture the idea of offset scheduling. The estimation of the response
time distribution for a target message that is generated by a target node is proposed in
[20]]. This work is based on the definition of a characteristic message that represents
the transmission characteristics of each remote node node (not the target node). The
response time distribution is then computed using the messages of the target node and
the characteristic messages of the remote nodes. A disadvantage of this work is that

optimistic estimates of the response time distribution might be obtained.

This thesis presents contributions for both the offset assignment and the response time
distribution computation. Regarding the offset assignment, the main contribution of
this thesis is the development of new algorithms for the offset assignment on CAN.
First, three algorithms that directly assign an offset to each CAN message are pre-

sented. These algorithms use additional information compared to the existing LD



algorithm without an observable increase in the computational run-time. Second an
algorithm that performs an iterative neighborhood search (NS) for better offset assign-
ments in order to improve the WCRT of each message is proposed. Since this algo-
rithm requires WCRT computations for each message, this algorithm has a longer (but
still practical) computational run-time than the other algorithms. In order to evaluate
the proposed algorithms, the thesis performs comprehensive computational experi-
ments. Our evaluation shows that the proposed NS algorithm provides the best offset
assignments according to the specified performance criteria in most of the cases. In
addition, it is observed that the remaining algorithms (including the existing LD al-
gorithm) can be used in most of the cases to obtain suitable offset assignments with

shorter computation times.

Regarding the probabilistic analysis, the thesis develops an original method for com-
puting the response time distribution for non-preemptive systems such as CAN. The
proposed method is based on the computation of a backlog distribution for the tar-
get message that is due to the interference of other messages and the execution time
of the target message. The method is first stated for given node phases. Then, av-
eraging over all node phases allows obtaining the overall response time distribution
for the given target message. Moreover, the thesis makes an additional observation
from practical measurements: although nodes on CAN are not synchronized, phases
between nodes remain nearly constant for a certain amount of time in the order of
several tens of minutes. The main consequence of this observation is that locally (for
a short period of time), the response time distribution of the current combination of
node phases is observed. This response time distribution then changes over time due
to the clock drift and is generally very different from the computed overall response
time distribution. As a novel contribution, this thesis proposes to evaluate the local
response time distribution and to enforce the validity of this local response time distri-
bution by a weak synchronization of all CAN nodes. As a result, it is possible to keep
the node phases within a small range and to perform a very exact computation of lo-
cal response time distribution that does not change over time. This is the first method
for the computation of response time distributions that can be evaluated computation-
ally and that shows good agreement with measured response time distributions. All

computational results in the thesis are supported by hardware measurements.



In summary, the main contributions of the thesis are listed as follows.

1. New offset assignment algorithms for CAN with low complexity are developed

and evaluated
2. Aneighborhood search algorithm for the offset assignment on CAN is proposed

3. An original algorithm for computing the response time distribution of a target

message is developed

4. The local response time distribution is defined and a tight range for node phases

is established using weak synchronization

The remainder of the thesis is organized as follows. Chapter [2] provides the necessary
background on offset scheduling on CAN and introduces the relevant performance
metrics. In addition, the existing LD algorithm is described and its potential limi-
tations are discussed. In Chapter [3] four new algorithms for the offset assignment
on CAN are proposed. The different offset assignment algorithms are compared by
means of comprehensive computation experiments. Moreover, Chapter 4] develops a
hardware measurement setup for CAN message response times and evaluates the pro-
posed algorithms. Algorithms for the computation of response time distributions for
CAN messages are developed and validated by measurements in Chapter [5] Chapter

[6] gives conclusions.



CHAPTER 2

CONTROLLER AREA NETWORKS: BACKGROUND

CAN is an asynchronous multi-master serial data bus that was designed by Robert
Bosch GmbH in 1983 and was standardized in 1993 [15]. The operation of CAN is
based on Carrier Sense Multiple Access/Collision Resolution (CSMA/CR) and the
maximum data rate of CAN is 1 Mbit/s. Fig. [2.1] depicts the layout of a standard
format CAN data frame. Each CAN frame has a frame header and contains up to
8 bytes of data. The frame header comprises a unique CAN identifier (ID) of length
11 bit or 29 bit. The ID of the message serves two purposes. First, it determines
the priority of the message among the messages contending for the bus. Second, it
identifies the message and thus receiver nodes can use a filter mechanism to discard

unnecessary messages.

P Bits exposed to bit-stuffing (34 control bits and 0-8 bytes of data -> 34-98 bits) R
P Arbitration field . _Control field, _Data field_ CRC field . P - o
s o - R[TT] DLC 4 -

° 11-bit identifier T1olo| bt 0-8 bytes 15 bit CRC /}y Ack| End of frame | Int
0 000 CRC delimiter bit 1011111111111
T Known bit-values (standard format data frame) |

Figure 2.1: Standard Format CAN Data Frame.

Together, the maximum frame duration for b data bytes is [4]
C' = (55 4 10b) 1 (11-bit); C' = (80 + 10b) 7,y (29-bit). 2.1

CAN nodes can start a message transmission whenever the bus is idle. If multiple
nodes start to transmit simultaneously, a non-destructive bit-wise arbitration is ap-
plied on the CAN IDs such that the CAN ID with the lowest binary value wins the
arbitration. A node loosing the arbitration retransmits its frame when the bus becomes

idle again.



2.1 Scheduling Model

We assume that a set M of CAN messages has to be transmitted on a CAN network
with data rate B bits/sec. The corresponding bit time is denoted as 7,;; = 1/B.
From the networking perspective, the relevant parameters of each message M € M
are given by the recurrence period T);, the message length L), in bit, the deadline
Dy and the node that generates the message N,;. Here, Ty, is considered as the
minimum inter-arrival time of message M, which denotes the message period for
periodic messages. D), is the longest allowable time from the message generation
to the end of its successful transmission. Assuming a time unit of 1 ms, 7, and D,
are measured in ms. We further write Mp = {M € M|D,; = D} for the set of
messages with deadline D. Each message M € M has a unique priority P, such
that messages with a smaller value of P, have a higher priority. The bus load on

CAN is defined as
L

bl = T—M

Mem "~ M

(2.2)

2.2 Scheduling with Offsets

The classical usage of CAN is such that whenever a message is generated by a task
running on an ECU, it is directly released to the respective CAN hardware buffer and
it enters the CAN arbitration. As a consequence, it is possible that bursts of messages
can be released by an ECU, leading to long response times for the messages of the
burst and, at the same time, blocking messages from other ECUs. The idea of offset
scheduling [10, [11] was introduced in order to circumvent this problem. On each
ECU, time windows (TWs) that repeat periodically are introduced. Then, instead of
allowing message releases at any time, each message M € M is assigned to specific
TWs starting from a base offset Oy;. In this thesis, we assume that TWs have a
duration of 1 ms. The base offset denotes the position of each message with respect
to the first TW and the number of TWs of a node N € N is given by its hyperperiod

H Py as the least common multiple of its message periods:

HPy = lem({py|M € M, Ny = N}). (2.3)
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Figure 2.2 shows an example for an offset schedule for two CAN nodes N; and N,
with the messages in Table 2.1l N, has HPy, = 10 TWs and N, has H Py, = 20
TWs. All occupied TWs are shown in gray.

Table2.1: Message Properties

(MM [ M| My M, | Ms |
Tu 2 5 4 2 20
Ly | 120 | 140 130 90 160
N | MM N, N, N,
O 0 0 0 i 10
TWs || 024,68 | 05 | 0,4,8,12,16 | 1,3,5,7,9,11,13,15,17,19 | 10

M;,M; M; M M, M M,
v v
LY (N N N I A I N
0 . . . 5 . . . 9
MzMy;  MsMsMy My Mz MgMsMyMsMy MgMsMy - My
R

Figure 2.2: Offset scheduling example.

From the practical perspective, it is important to note that offset scheduling is a
method that is exclusively applied to individual ECUs. That is, there is no synchro-
nization among ECUs such that TWs of different ECUs are not synchronized.

2.3 Performance Metrics

We introduce the worst-case response time (WCRT) W), of a message M € M as
the maximum possible time between the message generation on the transmitter node
and the message reception on the receiver node. Then, the essential requirement for

CAN scheduling is given by
Wy < Dy (2.4)

The exact WCRT time for CAN scheduling without offsets can be computed as pro-
posed in [4]. Differently, when considering offset scheduling, the exact computation
of Wy, for any M € M is a combinatorial problem in the number of messages. Ac-
cordingly, the literature offers several methods for computing an upper bound on Wy,

[8, 19,13, 18]. In this thesis, the methods in [8, 3] are employed.
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In addition to (2.4), there are further desirable properties of CAN schedules. First, it

is desired to minimize the maximum WCRT of any message
Wwma = Wy 2.5
R 22

Second, it is beneficial if there is a sufficient distance to a deadline violation. In this
thesis, we capture this performance metric by the average slack
Dy — Wiy
S = _— . 2.6
> D 2o
MeM

Both (2.5)) and (2.6) quantify the robustness of a CAN schedule to additional interfer-

ence such as bit errors [5, 16, 114].

As specified in Section 2.1}, CAN message sets M comprise subsets M p, of messages
with the same deadline. Since messages in each group should fulfill the same timing
requirements, it is desirable that such messages have similar WCRTs. To this end, we

consider the average delay for messages with a certain deadline D as

W
& — . 2.7
WE= 2 ) &7

MeMp

Using (2.7), it is possible to define the standard deviation of WCRTSs of messages

with the same deadline D as

Wav)
Wid — Z : (2.8)
MeMp ’MD |
W34 captures the WCRT variation of messages with the same deadline and should

hence be small.

2.4 Offset Assignment Problem Statement

When considering offset scheduling as described in Section [2.2] it is generally as-
sumed that the message priorities are fixed. Hence, it is desired to determine an offset
assignment for all messages on the CAN bus such that (2.4)) holds and the additional
performance metrics are addressed. Accordingly, the problem studied in this thesis is

as follows.



Problem 1. Assume a set of messages M is given with Ty, Ly, Dy, Ny, Py for

each M € M. Determine an offset assignment Oy for all M € M such that

and respecting the performance metrics that are defined in Section 2.3 0

It has to be noted that the offset assignment in Problem [I] is computed offline and
then implemented on electronic control units (ECUs) for each automotive applica-
tion. Finding a suitable offset assignment is a difficult problem since the number of

possible offset assignments is factorial in the number of messages on the CAN bus.

2.5 Offset Assignment using Load Distribution

The existing offset assignment algorithm in [[10] suggests to perform load distribution
(LD) in each node. We next describe this algorithm in a notation that agrees with
the presentation in this thesis and that is different from [[10]. We introduce the time
window usage Uy : {0, ..., HPy — 1} — N for each node N € N such that Uy (tw)
is the sum of message lengths occupying tw. For example, node N; in Fig. has
Un, (0) = Ly, + Ly, = 260, Un, (2) = Uy, (4) = Un, (6) = Un, (8) = Ly, = 120,
Un, (5) = Ly, = 140. and U, (1) = Un, (3) = Un, (7) = Up, (9) = 0. Then, the left
distance dny : {0,..., HPy—1} — Nandrightdistance dy, : {0,..., HPy—1} —
N is introduced for each TW tw such dy (tw) (dn,(tw)) denotes the number of
unoccupied TWs to the left (right) of tw including tw. Furthermore, dy ¢ = dn, = 0
if Uy(tw) > 0. For node Ny in Fig.2.2)dn, ¢(3) = dn,+(3) = 1 and d, ,(4) =
dn,:(4) =0.

Then, [10] proposes Algorithm[I]as a solution for Problem I}

Algorithm [I] processes each node separately since CAN nodes are not synchronized
and evolve independently in time (line[I). An offset is determined for each message
of the selected node (line [3]to [9). The first message processed obtains an arbitrary
offset (line[3). For the other messages, the function ComputeBestOffset in Algorithm
determines an offset value. After the offset selection, the time window usage Uy is

updated for all TWs that are occupied by the current message (line [9). The specific
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input : N, M, message properties
output: Offset assignment O, for all M € M
1 forall N € N do

2 Compute hyper-period H Py

3 for all M with N,; = N do

4 if M is the first message processed then

5 Assign Oy = (%W

6 else

7 Oy = ComputeBestOffset(N,M,M,H Py)
8 forh=0,..., HPy/T)y do

9 Set Uy(Op+h-Ty) =1

Algorithm 1: Existing load distribution (LD) algorithm.

offset selection in [[10] is formulated in the following algorithm.

1 Function O,; = ComputeBestOffset( N, M, M, H Py)
2 fortw=20,...,Tyy —1do

3 minDist = —1

4 Determine dy ¢(tw) and d ,(tw)

5 Set dist = min{dy(tw), dy,(tw)}

6 if dist > minDist then

7 SetminDist = dist

8 Set Oy = tw

9 return O,

Algorithm 2: Offset Assignment using Load Distribution.

Algorithm [2] considers that the possible offsets for message M are 0,..., Ty — 1.
Each value in this range is tried and the value with the largest minimum distance to
an occupied TW is computed (line [6]to[7). Then, the offset with the largest minimum

distance is assigned to the message (line[9).
As an illustration, consider the message set given in Table [2.2]
Assume that the algorithm has already assigned offset of message M as 0 and trying

10




Table2.2: Message Properties

LM | M, | M, |
Tw ] 5 | 10
Ou [ 0 | ?

to find the best offset for message Ms. For all possible offsets, it determines the
left and right distances. Then it assings the minimum of these two distances as the

distance of that specific offset value. An illustration for offset candidate 2 is shown
in Fig. 2.3]

left dist =2 right dist =3

—

me| [ | fm| [ [ [ |
o 1 |2/ 3 4 5 6 7 8 9

|

Distance for offset 2 is min(2, 3) =2

Figure 2.3: Distance Computation in LD

Eventually the offset value with the largest distance is assigned as offset to M5 which

is 2 in this example.

2.6 Discussion

Algorithm [I] tries to assign offsets such that the release of messages of each node to
the CAN bus is separated in time as much as possible. In our study, we observed three

potential improvements of this algorithm.

1. The distance computation in Algorithm[IJonly evaluates the distance of the first
TW tw € {0,..., Ty — 1} occupied by a message. However, later instances

tw + 1 - - - Ty of a message might observe a smaller distance.

2. The distance computation in Algorithm[TJonly considers if a TW is occupied or
not but omits the information about the number and size of messages occupying
a TW. In principle, a larger distance value should be found if a TW is occupied

by less/smaller messages.
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3. The offset assignment of different nodes is performed independently. That is,
the interference from other nodes is neglected when assigning offsets to each

node.

The first main contribution of this thesis is the development of algorithms taking into

account the above items in the subsequent section.
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CHAPTER 3

IMPROVED OFFSET ASSIGNMENT ALGORITHMS

This chapter develops new algorithms for the offset assignment on CAN. First, three
algorithms that directly assign an offset to each CAN message are presented in Sec-
tion to These algorithms use additional information compared to the
existing LD algorithm without an observable increase in the computational run-time.
Second an algorithm that performs an iterative neighborhood search (NS) for better
offset assignments in order to improve the WCRT of each message is proposed in
Section [3.1.4] Since this algorithm requires WCRT computations for each message,
this algorithm has a longer (but still practical) computational run-time than the other
algorithms. We note that the main results of this chapter are presented in the confer-

ence papers [2, [1]].

3.1 Algorithms

3.1.1 Maximum Neighbor Distance (MND)

In this section, we address item 1) in Section To this end, we modify the function
ComputeBestOffset in Algorithm([I] The function in Algorithm[3|now maximize

the minimum neighbor distance dy,(tw) and dy,(tw) for all instances of a message.

That is, instead of computing the minimum distance only for the first instance of
message M, we determine the minimum distance among all instances of message M

within the hyper-period H Py.
As an example, consider the message set shown in Table

13



1 Function O,; = ComputeBestOffset(N, M, M, H Py)
2 maxDist =0

3 foro=0,...,Tyy —1do

4 Setdist = o0

5 foralli=0,..., HPy/Ty do

6 Settw:=o0+1i-Ty

7 Compute dy(tw) and dy . (tw)

8 if min{dy,(tw),dy,(tw)} < dist then
9 | Setdist = min{d, d,}

10 if dist > maxDist then

11 maxDist = dist

12 Oy =o0
13 return O,

Algorithm 3: Offset Assignment using Maximum Neighbor Distance (MND).

Table3.1: Message Properties

LM [ My | M, | My |
T 4] 8| 4
Ouw| 0 67

Assume that messages M7 and M, have already been assigned the offsets 4 and 8,
respectively. The offset assignment for message M3 is compared for LD and MND

algorithms and shown in Fig.

As can be seen, the best offset for message M3 is 2 which is true for the first instance
of Ms. However, the second instance coincides with M5, which results in larger
response time. On the other hand, the proposed MND algorithm searches for all the

instances of M5 for the best offset, which is 1 in this case.

3.1.2 Maximum Bit Distance (MBD)

In this section, we also address item 2) in Section 2.6 To this end, we introduce the

left neighbor TW tw; and the right neighbor TW tw, for each TW tw. In Fig.
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Best offset 2" instance
according to LD coincides with M2

—

mi| [l [ [mi]| [m2] |
o 1 |2 3 4 5 6 7

2 jnstance
Best offset of M3

according to MND

vl [ [ [mi|  [m2] ]
o |1 2 3 4 5 6 7

Figure 3.1: LD and MND Offset Assignment Comparison

1y, = 0and 1, = 2 for TW tw = 1. Finally, we consider that the number of bits
per TW is Lrw = 1ms/7y. Then, we replace the function ComputeBestOffset in

Algorithm [I| by the function in Algorithm[{]to determine an offset for each message.

Algorithm @] follows the same outline as Algorithm 3] The main difference is between
line @] and [T0] Here, the left (right) neighbors are computed in line [§ and the mini-
mum distance is computed taking into account the number of free bits dy(tw) - Ltw
(dn,(tw) - Trw) and the number of occupied bits Uy (tw;) (Un(tw;)) in line @ That

is, Algorithm [4] always assigns the offset with the largest minimum distance (line [T1]

to[13).

As an example, consider the case shown in Fig@ As can be seen, there are two
messages occupying the TW TW tw = 0. However the LD algorithm does not take
this into account and computes the distance for offset 2 as 2, whereas the actual

distance is 1 as computed by the MBD algorithm.

3.1.3 Accumulated Bit Distance

We note that all previous algorithms only consider the largest minimum distance
among all message instances in one hyper-period. Differently, our next algorithm
records the accumulated minimum distance for all instances within a hyper-period.
To this end, the function ComputeBestOffset in Algorithm [I]is implemented as fol-

lows.
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1 Function O,; = ComputeBestOffset(N, M, M, H Py)

2

3

4

10

11

12

13

14

maxDist = —o0

foro=0,...,Tyy —1do

oldDist = 0

foralli =0,...,HPy /Ty do

Settw=o0+1-Ty

Determine dy,(tw) and dy . (tw)

Determine tw, and tw,

dist = min{dy,(tw) - Trw — Un(tw)), dn(tw) - Trw—Un(tw;) }
dist = min{dist,oldDist}

if dist > maxDist then

SetmaxDist = dist

SetOM =0

return O,

Algorithm 4: Offset Assignment with Maximum Bit Distance (MBD).

1 Function O,; = ComputeBestOffset( N, M, M, H Py)

2

3

4

10

11

12

13

minDist = o0
foro=0,...,Tyy —1do
dist =0
foralli=0,..., HPy/Ty do
Settw=o0+1-Ty
Determine dy,(tw) and dy . (tw)
Determine {w, and tw,
dist =
dist+min{dy,(tw)-Trw—Un(tw)), dn(tw) - Trw— Uy (tw;) }

if dist < minDist then
minDist = dist

OMZO

return O,

Algorithm 5: Offset Assignment with Minimum Accumulated Bit Distance.
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M2 | leftdist=2 right dist = 3 Distance for offset 2

M1 . according to LD is
‘ min(2, 3) =2

mi| [T T Ima] [ [ ]
o 1 |2 3 4 5 6 7 8 9

M2 | left dist = 1 right dist =3 Distance for offset 2
according to MBD is
M1 () min(1, 3) = 1
mi| ([ [ ] mi| | [ [ ]

0 1 2 3 4 5 6 7 8 9

Figure 3.2: Comparison of Distance Computation in LD and MBD

That is, the minimum distances in each TW for an offset candidate o are added up in
line Ol Then, the offset with the minimum accumulated distance is selected in line [9]
to

3.1.4 Neighborhood Search (NS)

The proposed algorithms in Section [3.1.1] to [3.1.3] compute an offset assignment for
each individual CAN node without taking into consideration the interference from
other nodes as pointed out in item 3) in Section 2.6 Our last algorithm attempts
to improve an given offset assignment by an iterative search. In each iteration, a
candidate offset assignment is selected, one of the performance metrics in (2.6)) to

(2.8) is evaluated and the offset candidate with the best result is selected.

The evaluation of the performance metrics in to requires the WCRT com-
putation for the candidate offset assignments. As is noted in Section [2.3] there are
different algorithms for finding upper bounds on W}, for each M € M. According
to our experiments, the algorithm in [3] generally provides tighter bounds on Wy,
but requires significantly longer computation times than the algorithm in [8]]. Since
the proposed Algorithm [6] requires a considerable number of WCRT computations,
we use the algorithm in [8] when evaluating candidate offset assignments. The final

WCRT result is then evaluated using the algorithm in [3].
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10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

input : NV, M, message properties, initial offset assignment Oy for all
M € Ma Amax
output: Offset assignment O, for all M € M

Evaluate the selected performance metric as P M

PMold — PMopt
A=11t=1
Set O := O, forall M € M

Compute hyperperiod H Py for each N € N

while it < nlt do

for all M € M do

F={O0y — A mod HPy,,,Op +A mod HPy,,}
Set Oy := 0% for all M € M

for allo € F' do

Owm =0

Evaluate the selected performance metric as PM

if PM improves PM° then

PM° .= PM
for all M € M do

L oW = Oum

Mo = M

if PMP' # PM°" then

A:=1

else if A < A,,.. then
A=A+1

else
Set Oy := O for all M € M

return

Set OS¢ := O for all M € M
Set PM°4 := P Mo
it =it + 1

Set Oy := O forall M € M

Algorithm 6: Offset Assignment with Neighborhood Search (NS).
18




Algorithm [6] starts from a given offset assignment that can be computed by any of the
previously described methods. For the given offset assignment, the selected perfor-
mance metric among (2.5) to (2.8) is evaluated and recorded (line|1|and [2)) as P M
(currently optimal value) and PM°" (value before the next iteration). Then, in each
of at most n/t iterations, different candidate offset values are selected (line [§) for
each message by increasing/decreasing the currently selected offset value by A (A
is initialized by 1 in line [3]). For each candidate offset assignment, the selected per-
formance metric is evaluated and the offset assignment with the best evaluation is
recorded (line[T0]to[I7). If there was an improvement in the current iteration, A is set
to 1 (line . If there was no improvement and A is below a maximum value A,
A is incremented (line 21)) in order to try different candidate offset assignments in the
next iteration. Otherwise, the algorithm terminates with the currently optimal assign-
ment (line and it is assumed that no better offset assignment could be found. At
the end of each iteration, the currently optimal offset assignment is recorded (line 25]

and [26) and the iteration count is incremented (line [27)).

We note that it is expected that Algorithm [6] has a considerably longer computation
time than the remaining algorithms due to the repeated evaluation of the selected

performance metric in line [12| which requires a WCRT computation.

3.2 Computational Evaluation

This section evaluates and compares the proposed offset assignment algorithms for
a large set of test cases and regarding the different performance metrics in Section
[2.3] First, Section [3.2.1] presents the general setting. Then, Section [3.2.2] comments
on the observed computation times and Section [3.2.3] to [3.2.6] present computational
results for different performance metrics and message sets. The obtained results are

discussed in Section[3.2.7]

3.2.1 Setting of the Computational Experiments

We perform offset assignment experiments for a CAN bus with a data rate of 125 kbit/s.

That is 7,y = S8 s and Ltw = 125 bit. We use message sets with periods and dead-
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lines T, Dy € {10, 20,50, 100,200, 1000} for a chassis network as in [10]. Since
offset scheduling is applied in order to reduce the WCRTs at high bus loads, we per-
form computations for bus loads of k - 125kbit/s with & = 0.5 (medium), k¥ = 0.7
(high) and £ = 0.9 (very high). In addition, we respect that CAN applications can
have different numbers of nodes. We consider the case of networks with 5, 15, 25
nodes. In all our experiments, we first apply the algorithms LD (Section [2.5), MND
(Section [3.1.1)), MBD (Section [3.1.2), ABD (Section [3.1.3). Then, the best solution
among these algorithms is used to initialize the algorithm NS (Section [3.1.4)), which

is used with the average slack in (2.6) as performance metric.

In the following, various parameter combinations of network type, bus load and num-
ber of nodes are investigated. For each parameter combination, 30 message sets are
generated randomly and the performance metrics in Section [2.3]are evaluated by tak-
ing the average over the 30 message sets. The number of messages generated for

different bus loads and network types is summarized in Table[3.2]

Table3.2: Number of Messages per Bus Load and Network Type.

] I chassis I body \

k 05107109 (05| 07] 09
Number of messages || 70 | 99 | 130 || 83 | 117 | 152

In addition to evaluating the performance metrics, we also define VY as the number
of times, a certain algorithm y € {NO,LD, MND,MBD, ABD, NS} achieves the
best solution regarding the performance metric z € {IWW™* S*}. Hereby, "NO"

represents the case where offset scheduling is not applied. Then,

py =

Y=o (3.1)

represents the percentage of best solutions achieved by each algorithm. Note that the
sum of these percentages may exceed 100% since multiple algorithms might obtain
the same best solution. Finally, we introduce 153 for the percentage of best solutions
among all the algorithms excluding NS in Section m We use 15;/ in order to

compare the algorithms with a short computation time.
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3.2.2 Computation Times

We first summarize our observations regarding the computations times of the different
algorithms. All algorithms were implemented using C++ and run on a desktop PC
with Intel(R)Core(TM)2 Duo CPU @ 2.93Ghz and 8 GB of RAM. The results for the
different combinations of (number of nodes,bus load) are summarized in Table [3.3]

It can be seen that the computation times for the algorithms LD, MND, MBD, ABD

Table3.3: Computation Times in Seconds

| [ LD [MND|[MBD[ABD | NS |
(5,0.5) | 0.002 ] 0.005 [ 0.015 | 0.03 [ 17.5
(5,0.7) || 00.031 | 0.002 | 0.015 | 0.003 | 531
(5,0.9) | 0. [0.003 [ 0.016 | 0.002 [ 1820
(15,0.5) [| 0.0I5 | 0.031 | 0.016 | 0.016 [ 156
(15.0.7) || 0.03 [ 0.016 | 0.031 | 0.016 | 900
(15.0.9) || 00.23 | 0.015 | 0.005 | 0.016 | 1800
(25.0.5) [ 00.031 | 0.015 | 0.016 | 0.031 [ 136
(25.0.7) || 0.005 | 0.031 | 0.031 | 0.016 | 480
(25,0.9) || 0.0I5 [ 0.031 | 0.016 | 0.015 [ 2100

are negligible in all cases. Increasing computations times depending on the number
of nodes and the bus load are observed for the algorithm NS. Considering that the
offset assignment is computed offline, it holds that these computation times are still

practicable.

3.2.3 Maximum WCRT Comparison

In this section, we compare the different algorithms regarding the maximum WCRT

in (2.5). The average results are shown in Table [3.4]to[3.6]

The general observation from Table[3.4]is that the maximum WCRTS in increase with
an increasing bus load and number of nodes. It is further observed that NS provides
the smallest values in almost all the cases. This is expected since NS starts with
the best solution among the other algorithms. Nevertheless, it has to be noted that
NS uses the WCRT algorithm in [[8] in order to achieve practical computation times.

Hence, deviations from the expected improved performance as for example seen for
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Table3.4: W™* Comparison

| [ NO [ LD | MND | MBD | ABD | NS |

(5,0.5) [ 87.20 [ 948 | 971 | 9.10 | 920 | 9.04

(5,0.7) [ 175.66 | 27.07 | 31.15 | 1825 | 19.08 | 16.93
(5,0.9) || 356.7 | 139.3 | 1646 | 654 | 764 | 643

(15,0.5) || 87.73 | 2636 | 26.81 | 25.62 | 25.58 | 25.31
(15,0.7) || 175.94 | 51.62 | 49.87 | 50.42 | 50.60 | 47.27
(15,0.9) || 384.23 | 156.74 | 162.49 | 166.24 | 160.57 | 143.27
(25,0.5) || 88.29 | 40.90 | 40.40 | 40.36 | 40.32 | 40.34
(25,0.7) [ 175.18 | 84.73 | 84.96 | 88.33 | 88.05 | 83.89
(25,0.9) || 376.58 | 218.12 | 215.06 | 218.16 | 218.21 | 211.71

the case (25, 0.5) are possible. Regarding the remaining algorithms, it can be seen

that the proposed MDB and ABD algorithms provide better results than the existing

LD algorithm especially for small numbers of nodes.

Table3.5: Pjjmx Comparison

[ NO [ LD | MND [ MBD | ABD | NS |

(5,0.5) || 0.0% | 46.7% | 43.3% | 60.% | 46.7% | 86.7%
(5,0.7) 11 0.0% | 3.3% | 0.0% | 23.3% | 16.7% | 76.7%
(5,0.9) |/ 0.0% | 0.0% | 0.0% | 33.3% | 13.3% | 60.0%
(15,0.5) || 0.0% | 33.3% | 16.7% | 16.7% | 30.0% | 63.3%
(15,0.7) || 0.0% | 3.3% | 16.7% | 13.3% | 6.7% | 70.0%
(15,0.9) || 0.0% | 26.7% | 13.3% | 10.0% | 10.0% | 53.3%
(25,0.5) || 0.0% | 63.3% | 56.7% | 63.3% | 70.0% | 70.0%
(25,0.7) || 0.0% | 46.7% | 33.3% | 3.3% | 10.0% | 60.0%
(25,0.9) || 0.0% | 26.7% | 43.3% | 3.3% | 6.7% | 60.0%

Table [3.5]suggests that NS always has the highest percentage of solutions. Regarding

the algorithms without search, there is not much difference for small bus

is expected since there is enough free space for assigning offsets. For bus

loads. This

loads above

k = 0.7, MBD and ABD provide better results if the number of nodes is small.

Conversely, LD and MND show better results in the case of many nodes.

In summary, NS proves to be the best algorithm when measuring W™, whereas

different algorithms among LD, MND, MBD, ABD are preferable depending on the

bus load and the number of nodes if it is desired to avoid a time-consuming search.
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Table3.6: P Comparison

NO | LD [ MND | MBD | ABD |

(5,0.5) || 0.0% | 63.3% | 46.7% | 80.0% | 63.3%
(5,0.7) || 0.0% | 10.0% | 3.3% | 50.0% | 63.3%
(5,0.9) |1 0.0% | 3.3% | 3.3% | 66.7% | 33.3%
(15,0.5) || 0.0% | 43.3% | 23.3% | 30.0% | 50.0%
(15,0.7) || 0.0% | 16.7% | 53.3% | 40.% | 26.7%
(15,0.9) || 0.0% | 36.7% | 40.0% | 16.7% | 20.0%
(25,0.5) || 0.0% | 63.3% | 56.7% | 63.3% | 70.0%
(25,0.7) || 0.0% | 63.3% | 50.0% | 3.3% | 10.0%
(25,0.9) || 0.0% | 26.7% | 50.0% | 10.0% | 16.7%

3.2.4 Slack Comparison

We next perform a comparison of the average slack values in (2.6)) for the different
algorithms. To this end, we show the slack improvement of each algorithm compared

to the case without offset in Table [3.7/to [3.8] It can be seen that the average slack

Table3.7: S* Comparison
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always increases when using offset scheduling. Hereby, the largest improvement is
achieved by the NS algorithm. This is expected since the average slack is used as

performance metric. This result is also confirmed by Table [3.8]

Regarding the algorithms without search, it can be observed from Table[3.9|that MBD
performs well for small numbers of nodes or small bus load, whereas MND obtains

better results for larger bus loads and numbers of nodes.
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Table3.8: Pg.

statistical evaluation.

in almost all cases.

3.2.5 Average WCRT Comparison
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[ NO [ LD [MND | MBD | ABD | NS |
(5,0.5) ]| 0.0% | 33.3% | 13.3% | 56.7% | 16.7% | 70.0%
(5,0.7) ||0.0% | 33% | 0.0% |23.3% | 16.7% | 76.7%
(5,0.9) [[0.0% | 33% | 6.1% | 26.7% | 16.1% | 50.0%
(15,0.5) [ 0.0% | 33.3% | 16.7% | 16.7% | 30.0% | 63.3%
(15,0.7) [ 0.0% | 0.0% | 0.0% | 0.0% | 6.7% | 96.7%
(15,0.9) || 0.0% | 30.0% | 10.0% | 3.3% | 0.0% | 60.0%
(25,0.5) || 0.0% | 46.7% | 20.0% | 53.3% | 56.7% | 60.0%
(25,0.7) |[0.0% | 16.7% | 23.3% | 13.3% | 23.3% | 76.1%
(25,0.9) |[0.0% | 133% | 20.0% | 3.3% | 6.7% | 80.00%

Table3.9: PY,
| [ NO | LD [ MND | BD | ABD |
(5,0.5) [[0.0% | 36.7% | 16.7% | 73.3% | 23.3%
(5,0.7) [|0.0% | 10.0% | 3.3% | 50.% | 63.3%
(5,0.9) [[0.0% | 33% | 6.1% | 70.% | 26.7%
(15,0.5) [ 0.0% | 43.3% | 23.3% | 30.0% | 50.0%
(15,0.7) || 0.0% | 6.7% | 43.3% | 20.0% | 33.3%
(15,0.9) || 0.0% | 33.3% | 33.3% | 16.1% | 26.7%
(25,0.5) [ 0.0% | 46.7% | 20.0% | 53.3% | 56.1%
(25,0.7) [[ 0.0% | 26.7% | 33.3% | 20.0% | 30.0%
(25,0.9) || 0.0% | 23.3% | 50.0% | 13.3% | 23.3%

This section investigates the performance metrics in (2.7)) and (2.8)) for messages with
a medium deadline of D); = 50 ms and a large deadline of D); = 1000 ms. Messages
with small deadlines are omitted from this study since only a small number of such

messages (usually 1) is in the generated message sets, which is not suitable for a

It can be seen from Table [3.10] for D), = 50ms that offset scheduling leads to an
improvement compared to the case without offset scheduling (NO) in all cases. In

addition, it holds that the NS and MBD algorithms achieve the smallest value of W)

Regarding the performance metric WY in (2.8) for messages with deadline Dy, =



Table3.10: WEj Comparison

[ NO [ LD [MND [AND [MBD [ ABD | NS |

(5,0.5) || 5.84 | 5.00 | 497 | 477 | 460 | 497 | 4.56
(5,0.7) 846 | 694 | 6.77 | 642 | 622 | 6.70 | 6.28
(5,0.9) || 1097 | 837 | 8.02 | 7.71 | 7.55 | 8.00 | 7.57
(15,0.5) || 579 | 543 | 543 | 534 | 524 | 543 | 527
(15,0.7) || 849 | 7.89 | 7.77 | 7.63 | 7.62 | 7.75 | 7.66
(15,0.9) || 1023 | 949 | 942 | 930 | 934 | 934 | 9.35
(25,0.5) || 5.83 | 5.76 | 576 | 5773 | 5.68 | 576 | 5.69
(25,0.7) || 841 | 8.00 | 794 | 7.89 | 7.88 | 7.93 | 7.90
(25,0.9) || 11.04 | 10.46 | 10.42 | 10.56 | 10.42 | 10.41 | 10.41

50 ms, it can be concluded from Table that the smallest value of W3l is generally
not obtained by the algorithm that minimizes Wjj;. That is, it is difficult to minimize

both performance metrics in (2.7)) and (2.8) simultaneously.

Table3.11: WEY Comparison

| [ NO [ LD [ MND [ AND [ MBD [ ABD [ NS |
(5,0.5) [[2.96 [0.76 | 0.72 [ 0.70 [ 0.73 | 0.68 [ 0.74
(5,0.7) 205 | 1.57 | 146 | 142 | 1.39 | 1.39 | 1.38
(5,0.9) [[3.14 [ 1.81 | 1.62 | 1.69 | 1.76 | 1.58 | 1.64
(15,0.5) [[ 142 [ 133 | 1.33 [ 1.36 | 1.31 | 1.33 [ 1.33
(15,0.7) [[2.18 [ 1.86 | 1.78 | 1.80 | 1.88 | 1.77 | 1.86
(15,0.9) [[3.03 [ 253 | 255 | 2.62 | 2.61 | 2.54 | 2.59
(25,0.5) [[ 142 [ 135 1.35 [ 137 | 1.34 [ 1.35 [ 1.33
(25,0.7) [[2.17 [ 1.96 | 1.94 | 1.96 | 1.99 | 1.94 | 1.97
(25,0.9) [[3.17 [ 271 | 2.68 | 2.76 | 2.73 | 2.67 | 2.68

Considering messages with deadline D), = 1000 ms, Table[3.12indicates that the NS
algorithm clearly improves W7,,. This effect is most visible for high bus loads. Re-
garding the algorithms without search, different algorithms are suitable for different

bus loads and numbers of nodes.

Looking at W5, in Table 3.13| it turns out that MBD, ABD, NS are advantageous if
the number of nodes is small, whereas LD and NS are preferable for larger bus loads

and number of nodes.
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Table3.12: Wy,

| [ NO | LD | MND | AND | MBD | ABD | NS |
(5,0.5) 59.50 8.69 8.86 8.85 8.53 8.63 8.46
(5,0.7) 112.99 | 17.22 18.46 17.44 14.14 14.79 14.38
(5,0.9) || 204.95 | 64.15 74.87 86.00 | 43.32 | 41.19 37.53
(15,0.5) 59.85 22.67 22.82 | 22.62 | 22.58 2242 | 22.24
(15,0.7) || 113.13 | 43.21 41.92 | 42.99 | 42.40 | 42.35 39.78
(15,0.9) || 216.48 | 89.62 | 94.27 | 108.47 | 97.80 | 95.90 87.26
(25,0.5) || 60.20 | 33.39 | 33.40 | 33.33 | 33.25 | 33.24 | 33.25
(25,0.7) || 112.57 | 62.31 62.03 63.36 | 62.87 | 62.61 60.47
(25,0.9) || 210.75 | 132.43 | 132.31 | 138.35 | 136.48 | 135.31 | 128.34
Table3.13: W3k
| [ NO | LD | MND | AND | MBD | ABD | NS |
(5,0.5) 18.13 | 0.58 0.56 0.51 0.47 0.43 0.46
(5,0.7) || 40.57 | 4.54 5.56 4.28 2.12 2.34 1.81
(5,0.9) 88.97 | 3094 | 35.59 | 30.31 | 11.45 | 13.79 | 11.5
(15,0.5) || 18.18 | 241 | 2.60 | 233 | 224 | 2.26 | 2.08
(15,0.7) [ 40.59 | 5.19 | 5.09 | 647 | 6.16 | 628 | 5.16
(15,0.0) | 94.85 [ 27.66 | 32.91 | 43.95 | 35.29 | 34.76 | 29.10
(25,0.5) || 1829 | 589 | 599 | 6.03 | 6.04 | 6.03 | 6.03
(25,0.7) || 40.49 | 1578 | 16.58 | 17.88 | 17.58 | 17.47 | 16.15
(25,0.9) || 91.61 | 46.26 | 47.47 | 51.31 | 49.30 | 49.46 | 46.64

3.2.6 Example WCRT Result

Fig. 3.3 shows the WCRTs of all messages on an example chassis network with 15
nodes and a bus load with £ = 0.7. In this example, NS and MND mostly achieve
smaller WCRTS than the existing LD algorithm. However, for this particular example,

MBD is not suitable.

3.2.7 Discussion

In summary, our results suggest that the proposed algorithms allow finding offsets
for reducing the WCRTSs of messages on CAN in most of the cases. Hereby, three

important observations have to be emphasized:
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Figure 3.3: WCRT Comparison for LD, MND, MBD, NS using 15 Nodes and k =
0.7.

1. In the majority of the cases, the proposed algorithms outperform the existing

LD algorithm.

2. There is no unique algorithm that always achieves the best result. It is clearly
observed from Table [3.5]and [3.§] that any of the studied algorithms has the po-
tential to improve the respective performance metric depending on the specific

test case (message set).

3. The algorithms LD, MND, MBD, ABD have very small computation times in
the order of milliseconds. Only the NS algorithm requires longer computation

times in the order of 30 min for high bus loads.

Considering the stated points, we suggest to apply all of the presented algorithms and
select the best result when determining offset assignments for a specific message set

M.
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CHAPTER 4

EXPERIMENTAL TESTS

In order to verify the theoretical results in real hardware, a test setup is constructed
and a response time measurement method is developed. CAN is an asynchronous bus
where each node has its own clock. In order to measure the response time of CAN
messages, a global clock that is synchronous among all of the nodes is required. This
is achieved using the FlexRay protocol. The hardware used in the experiments is

selected accordingly.

4.1 Development and Test Environment

To have a better understanding about how the experiments are held and how the
projects are developed, the hardware and the tools used during the studies will be

explained briefly in the following sections.

4.1.1 Fujitsu SK-91465X-100PMC Evaluation Board

The SK-91465X-100PMC is the main building block of the experiments. It is a multi-
functional evaluation board developed by Fujitsu for the 32-bit FR60 Flash microcon-
troller series MB91F465XA which is tailored for automotive applications. The board
includes both CAN and FlexRay interfaces which makes it suitable for response time
measurement experiments. Besides the CAN and FlexRay support, the evaluation
board also has LIN and UART channels. As a whole, the board has 2 FlexRay, 2
CAN, 2 LIN/UART and a dedicated UART interfaces. In addition to the communica-

tion interfaces, it also includes 8 user LEDs and 6 user push buttons.
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The two FlexRay channels (namely Channel A and Channel B) are redundant. The
physical layer of these channels is implemented by AMS8221B transceiver. Dif-
ferent from the CAN, data is not directly transmitted by the microcontroller to the
transceiver. Instead, the transceiver is directly connected to the MB88121 series
Standalone Communication Controller and the CPU controls and configures this con-

troller.

The physical layer of CAN channels is implemented by TLE620GV33 high speed

transceivers.

The SK-91465X-100PMC multifunctional evaluation board is shown in Fig. @.1]

Figure 4.1: SK-91465X-100MPC Evaluation Board

4.1.2 Softune Workbench Software Development Environment

Softune Workbench is developed by Fujitsu as the development environment for the
FR family microcontrollers. It has all the necessary interfaces for creating, editing,
building and debugging the projects. All the projects used in the experiments are
developed in C programming language by the V60LO0S8 version of the Softune Work-
bench. After the build process Softune Workbench creates a *.mhx file as the out-
put which can be directly downloaded to the flash memory of the microcontroller

MBOI1F465XA. Softune Workbench has the ability to combine and save multiple
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projects in a single workspace which is useful for working with multiple projects

at the same time. A view of the Softune Workbench can be seen in Fig. #.2]

99 SOFTUNE Workbench - Exp4 - o X
File Edit View Project Debug Setup FLASHMemory Window Help

[Blele]o] Bl #lolF| 2|2|0)0)| &1alr— -1 % 4 4] 5|
Node?_ffid =] [STANDALONE - =) D[ | »[5@ & B e mE
B4 Workspace'Expd ~
bs - "Node1_ffrd.prj" [STANDALONE] = =HiC]
o
ncaN
|
1917 if(id == 0xAA)]
192]>  °  IFIMCTRO_TXIE = 1; /% <<< ©: disable / 1: enable Tx-Interrupt x/|
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194~ IFIMCTRO_TXIE = 0; /% <<< ©: disable / 1: enable Tx-Interrupt x/|
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&) 196" IFIMCTRO_RmtEn = 0; /% <<< ©: disable / 1: enable Remote x/.
B 197|"  IFIMCTRO_TxRgst = O; /% Not set Transmission Request here x/
B 198|" IF1MCTRO_EoB = 1; /% <<< 0: Buffer is part of FiFo / 1: Buffer is sin
E 1551 IFIMCTRO_DLC = Len = dlc;” ~ °  /x Set number of Data to be transmitted x/|
200/
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& (@ Dep |
- (@ Debug
= @2 Node2. 191:1
=&
@@ Nens hd
= 3 can [ MANT [0 MANT T MAN]

MB91F465X

Figure 4.2: FR Family SOFTUNE Workbench V60L08

4.1.3 FME FR Flash Programmer

FME FR Flash Programmer is developed by Fujitsu and is used to download the
projects into the flash memory of the microcontroller. FR Flash Programmer is capa-
ble of downloading the code with RS-232 serial interface, eliminating the need for an
emulator. Besides having many additional features, it has an automatic mode which
automatically connects to the microcontroller, erases the necesseray flash sectors and
programs the flash with the machine code located in the *.mhx file with a single but-
ton. Throughout the experiments, the FME FR Flash Programmer V4.0.2.1 is used to
program the boards. Fig. f.3|shows a view from the FME FR Flash Programmer.

4.1.4 FlexRay Communication Controller Driver

As stated in section .1.1] FlexRay message handling and communication tasks are
not performed by the CPU in the SK-91465X-100PMC evaluation board. These tasks
are handled by a specific communication controller located on the board which is

Bosch ERay series Standalone Communication Controller.
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" Dump Flashloader
Automatic Mode
Start Flashloader
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Program flash and verify

Call application at address

THIS SOFTWARE IS PROVIDED AS IS AND IS SUBJECT TO ALTERATIONS.
FUJITSU MICROELECTRONICS ACCEETS NO RESPONSIBILITY OR LIABILITY
FOR ANY ERRORS OR ELIGIBILITY FOR ANY PURPOSES.

(C) Fujitsu Microelectronics Europe GmbH

ready

@ ‘ Quit

Figure 4.3: FME FR Flash Programmer V4.0.2.1

The task of the microcontroller is to configure and manage this controller. For this
purpose, Fujitsu offers a library named Fujitsu Communication Controller Driver
which implements all the necessary functions and structures for communication be-
tween the MCU and the communication controller. This library is included in all of

the projects where FlexRay communication is needed.

4.1.5 FlexCard Cyclone II SE

The FlexCard Cyclone II SE is a network analyzer hardware developed by Eberspacher
Electronics. It is a CardBus card which is connected to a personal computer through

PCMCIA slot. FlexCard Cyclone II SE supports two FlexRay and two high speed

CAN channels which makes it suitable to monitor and analyze both FlexRay and

CAN network at the same time with a single hardware interface. FlexCard Cyclone

IT SE is also able to send messages to both FlexRay and CAN networks connected to

it. The FlexCard Cyclone II SE hardware is shown in Fig. [4.4]
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Figure 4.4: FlexCard Cyclone II SE

4.1.6 FlexAlyzer

FlexAlyzer is the software tool developed by Eberspacher Electronics and works in
accordance with the FlexCard Cyclone II SE. It is used to monitor and analyze the

message traffic in CAN and FlexRay networks which the FlexCard is connected.

The FlexAlyzer has many useful features such as displaying the data in decimal or
hexadecimal format, filtering the content to show in the monitoring window according
to various criteria. It also has an important feature of showing in the monitoring
window the local time stamp for the receive time, ID, payload and other features
of both FlexRay and CAN messages. In addition, FlexAlyzer is able to take log
of the network traffic including all of the message contents and save as a *.txt file
without any time limitation. This feature is also very important for time measurement
experiments since the *.txt log file is parsed offline for all of the timing analysis. Fig.

A.5]shows a view form the FlexAlyzer user interface.

4.2 Experiment Setup

The experiment setup consists of SK-91465X-100PMC evaluation boards which are
used as individual nodes composing the network, FlexCard Cyclone II SE network
analyzer card and a PC with a PCMCIA slot. In order to construct the FlexRay and
CAN networks, two PCBs busses are used. Each PCB bus have 9 D-Sub-9 male
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Figure 4.5: FlexAlyzer User Interface

connectors mounted on it where all 9 pins of these connectors are connected to each
other within the PCB. These PCBs therefore enable up to 9 distinct nodes to connect
and communicate with each other. A view of the PCB busses used in the experiments
is shown in Fig. .6

Figure 4.6: The PCB Bus Used for CAN Bus and FlexRay

The CAN bus and the FlexRay bus is constructed as a similar manner with the only
difference that there are termination resistors on the CAN bus. The SK-91465X-
100MPC boards can communicate through CAN bus up to 100 kbps data rate without

termination. The FlexCard, however, is not able to communicate via CAN bus with-
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out termination even for data rates smaller than 100 kbps. Therefore, to properly
establish the CAN communication for all bit rates, two 120 ohm termination resistors
are welded on the two end connectors of the PCB bus between the live pins, which

are CANH and CANL. A photograph of the setup can be seen in Fig. [4.7]

CAN Node 3 ; =

: - LC nﬁ i ﬁ
e 4| time mea
S~ -

== A= S = —_—

Figure 4.7: Experiment Setup Photograph

In order to connect the PCB busses with the SK-91465X-100MPC evaluation boards,

cables which have 1-to-1 D-Sub-9 female connectors at both end are used.

FlexCard Cyclone II SE is used as a CAN node or a FlexRay node or both at the same
time depending on the experiment. In the experiments, FlexCard is used as a silent
node which does not send any message but receives and monitors the message traffic

on the CAN and the FlexRay networks.

The last component of the experiment setup is a PC. FlexCard is connected to the
PC through the PCMCIA slot and the FlexAlayzer is run on the PC for monitoring
and logging the message traffic. The logged data is parsed offline for evaluation via
various parsing programs we wrote in the PC. Lastly, the PC is also used to program

the boards by using FME FR Flash Programmer described in Section [4.1.3]
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4.3 Response Time Measurement Method

The verification of analytical results with the practical results requires correct time
measurements. As stated in the preceding sections, a global clock is needed that is
synchronous among all of the nodes in the network and this global clock is achieved
using the FlexRay protocol. After all of the nodes are synchronized according to the
FlexRay clock, the exchanged CAN messages can be time stamped properly. Lastly
these time stamps can be used safely for evaluation purposes. The setup used for time

measurement experiments is illustrated in Fig. {.8]

Generation time as payload
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Figure 4.8: Experiment Setup Illustration

As shown in Fig. [4.8] the timestamp CANTX which represents the generation time of
the message is obtained just before loading the payload to the output message buffer
of the CAN controller. The timestamp is obtained via two different time service
functions of the FlexRay Software driver. These functions return the network time
in terms of the fundamental time units of the FlexRay network, namely the cycle
number and the macrotick count. Since the cycle number is 8-bits and the macrotick
count is 16-bits, each timestamp engraved in the packets is 3 bytes long. Therefore

the minimum data size of the CAN messages used in the experiments is 3 bytes.

In order to calculate the response time of a message, we also have to know the recep-

tion time of the message. However, obtaining the reception time is not as straightfor-
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ward as the generation time. To illustrate the situation, a view from the log file of an

experiment exported by the FlexAlyzer software is given in Fig. #.9]

Timestamp ID.Cycle Ch Lengt Data Flags HeaderCrc =

244,302329 9.57 FR1& 10 Rux: Sfb1 0000 0000 0000 0000 0000 0000 0000 ... WF Sync SU 0x23c

244,302707 23, CAML 8 Rx: 38 0a c9 00 00 00 00 0O

244,303603 4.- CaML 7 Rx: 38 0b 87 00 00 00 00

244.304531 2. CAMN1 3 Rx: 3907 a0

244,305065 3.58 FR1A 10 Rux: FeaS 0000 0000 0000 0000 0000 D000 0000 ... WF Sync SU 0x5fb

244.305197 6.58 FR1 & 10 Rx: 43b0 0000 0000 0000 OO0 0000 0000 0000... WF Sync SU 0x3da

244,305329 9.58 | R D !x: 61b1 0000 D000 0000 0000 0000 0000 0000... WF Sync SU 0x23c

© FR rx time o PR tx: 39 Da bf 00 00 00

S FR_cycle 'x: 3a 03¢5

244305064 3.59 Pl M U rx: FdaS 0000 00( CAN_TX_cycle 100000000 ... ¥F Sync SU 0x5fb

244.3¥8196 6.59 FR1 & 10 Rx: 45b0 0000 00 and 10000 0000... WF Sync SU 0x3da
(959) FR1A 10  Rx:62b1000000 CAN_TX_MT 300000000.. WF SyncSU 0x23c

244,308386 25,- CAML 3 Rx: 3a 0b 08

244309538  3.- CANL 3 Rx: 3b03c3

1- CANI 4  Rx

244311064 »60  FR1A 10  Rx:TFa5 0000 0000 0000 0000 0000 00000000 ... F SyncSU 0xSfb

244311196 6,60 FRIA 10  Rx:46b0 0000 0000 0000 0000 0000 0000 0000... YF Sync SU Ox3da

244,311328 CAN_ rx_time Rux: 64b1 0000 0000 000D 0000 0000 0000 0000... ¥F Sync SU 0x23c

244312338 ... Tree w Rx:3c0302

244313233 4. CANL 7 Rx:3c03ch 00000000

244.313969 9. CAMI 4  Rx:3c092e00

244,314064 361  FR1A 10  Rx: 00a6 0000 0000 0000 0000 000D 000D 0000... YF Sync SU 0x5fb

244314196 661  FRIA 10  Rx:48b0 0000 0000 0000 0000 0000 0000 0000... YF Sync SU Ox3da

244,314328 961  FR1A 10  Rx:65bi 0000 0000 0000 0000 0000 0000 0000... WF Sync SU 0x23c

244.314568 2 CAMI 3 Ro:3cObSc

244315160 17 CANI 3 Rx:3c094e

244.316080 6. CAM1 7 Rux:3d 030400000000

244317072 7- CAM1 &  Rux:3d 07 bd 000000 00 00

244317063 362  FRIA 10  Rx:02a6 0000 0000 0000 0000 0000 0000 0000... YF Sync SU 0xSfb

244317195  6.62  FR1A 10  Rx: 49b0 0000 0000 0000 0000 0000 0000 0000... WF SyncSU Ox3da

244317327 962  FRIA 10  Rx:67bl 0000 0000 0000 0000 0000 0000 0000... WF Sync SU 0x23c |

24]4.317672 16.- CAMI 3 Rx:3d07db o ~
|4 »

Figure 4.9: A View of the Log File

As can be seen from the Fig. [4.9] the timestamp that the FlexAlyzer includes in the
beginning of every line in the log file (the leftmost colomn) is the local time of the
FlexCard which indicates the amount of time that has passed since the beginning of
the logging. Therefore, this local time is not useful alone. In order to make this in-
formation useful, a connection between the synchronous clock, which is the FlexRay
clock, and the local FlexAlyzer clock has to be established. This is achieved as fol-

lows.

If we look at the log file we see that the FlexAlyzer logs the FlexRay messages includ-
ing the ID of the message and the cycle number in which the message is transmitted.
Since each message is allocated a slot in a cycle, the ID and the cycle number can
be used to obtain the reception time of any FlexRay message in terms of the FlexRay

network time units.

Secondly, we know that the reception time of each message is displayed by the Flex-
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Alyzer in terms of its local clock. Therefore, the reception time of a CAN message
can be obtained by choosing a reference FlexRay message and adding the local times-
tamp difference to the reception time of this reference FlexRay message. This method

1s formulated as

[(RefFR.Cycle — CANT X.Cycle)CycleLength + (Ref FR.ID — 1)SS Length
+ ActionOf fset — CANTX.MT)| + [CAN.raztime — Ref F R.ratime]

+ [Ref F R.transmissiontime]

4.1

where

CANTX.Cycle and CANTX.MT are the timestamps indicating the generation time of
the CAN message in terms of FlexRay cycle number and macrotick count, respec-

tively.

RefFR.Cycle and RefFR.ID are the cycle number and frame ID of the reference FlexRay
message as logged by the FlexAlyzer.

CycleLength, SSLength and ActionOffset are the macrotick correspondences of the
FlexRay network parameters the Cycle Length, the Static Slot Length and the Action
Offset Length, respectively.

CAN.rxtime and RefFR.rxtime are the local receive times of the CAN message and

the reference FlexRay message tagged by the FlexAlyzer.

RefFR.transmissiontime is the transmission time of the reference FlexRay message.
Since the bus speed and the FlexRay message length is known, this value can be

determined.

The visual illustration of the measurement method as a timeline is provided in Fig.

4.10!

In Fig. .10, SS-n shows the static slot number in a FlexRay communication cycle.
The FlexRay is configured such that the static slot length is 40 macroticks and the

cycle length is 3000 macroticks. The duration of a macrotick is 1 us. Since the cycle
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Figure 4.10: A View of the Log File

number can go up to 64, response times up to 64 x 3 ms = 192 ms can be measured

with a precision of 1 yus.

It can be seen on Fig. [4.10] that the overall response time (from CAN message gen-
eration time to CAN message reception time) is divided into three periods for better

understanding, namely T1, T2, and T3. These three periods have four border times.

CAN message generation time is the time obtained in terms of FlexRay cycle num-
ber (CANTX.Cycle) and the macrotick count (CANTX.MT) just before queuing the
CAN message in the buffer.

FlexRay message generation time is obtained using the frame ID (RefFR.ID) and cy-
cle (RefFR.Cycle) values of the reference message as logged by the FlexAlyzer. The
frame ID of the message gives information about the static slot number in which the
message is generated. Together with the action offset and the cycle number, the exact
generation time of the reference message is easily determined in terms of FlexRay

cycle number and macrotick count.

FlexRay message reception time is the local time logged by the FlexAlyzer software
(RefFR.rxtime) indicating the time when the reference FlexRay message is received

by the FlexCard.

CAN message reception time is the local time logged by the FlexAlyzer software

(CAN.rxtime) indicating the time when the CAN message is received by the FlexCard.
The correspondance of the three periods with (4.1) is as follows.
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T1 =(RefFR.Cycle — CANT X.Cycle)CycleLength
+ (RefFR.ID — 1)SSLength + ActionOf fset — CANTX.MT
T2 =RefF R.transmissiontime

T3 =CAN.ratime — Ref F R.rxtime

4.4 Hardware Measurements

In order to verify the theoretical results for the WCRT analysis by hardware experi-
ments, a realistic message set is constructed. In the experiments, three CAN nodes

are used with a data rate of 125 kbit/s. The message set used for the experiment can

be seen in Table 4.1l

For this message set, offset assignment is done according to two different offset
scheduling algorithms: the existing LD algorithm and the proposed MBD algorithm.

The tests performed for this message set are;

e Offset scheduling using LD
e Offset scheduling using MBD

e Without offsets

The first aim of these tests is to show that offset scheduling decreases the WCRT of the
messages considerably. The second aim is to verify that the proposed MBD algorithm
outperform the existing LD algorithm in consistence with the computational results

obtained in Section [3.2]

Each test is run for 20 minutes and the log file obtained for each test is parsed offline

using a parsing program written in C.

Before the experiments are held, the computational WCRT values are computed ac-
cording to the methods existing in the literature both for offset scheduling and with-
out scheduling. These methods were referenced in Section [2.3] The computational

WCRT values for the three different offset cases is shown in Fig.
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60 ~ | —©&— computation LD —
—— computation MBD
computation no offset

WCRT [ms]

Message ID

Figure 4.11: Comparison of Computational WCRT

As can be seen in Fig. .11} the proposed MBD algorithm results in smaller WCRTSs
compared to the existing LD algorithm. Moreover, it is obvious that WCRT values
with offset scheduling are much smaller compared to the case with no offsets. The

test results obtained for the same cases are shown in Fig. {.12]

40 T T T T T T T

35 7| —&—test LD
—— test MBD
30 test no offset 4

WCRT [ms]
N N
o ol

=
(&)

10

Message ID

Figure 4.12: Comparison of WCRT Measurements

The results in Fig. .12 validate that offset scheduling improves the response time
considerably. Moreover, it can also be seen that the WCRT values for offset schedul-

ing by MBD algorithm are smaller than those obtained by LD algorithm, which veri-
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fies the computational results.

The comparisons of computational results with the measurements are provided for

each offset scheduling case in Fig. {.13] Fig. 4.14] and Fig. .15

70 T T T T T T T

60 || —©— computation no offset —
—— test no offset

50 [~

Lao .
E K
S0 .
20 - .
10 .
0 | | | | | | |
0 5 10 15 20 25 30 35 40
Message ID
Figure 4.13: WCRT Comparison for No Offset
35 T T T T T T T
30 - | —©— computation LD |
—>——test LD
25
‘2 20
[
S
=15
10
5

Message 1D

Figure 4.14: WCRT Comparison for Offset Scheduling by LD

For all three cases it is observed that the measured WCRTSs are considerably smaller
than the computational ones. The computations are based on the so-called "criti-
cal instant" worst case scenario where phasings between the nodes are such that the

interference from the other nodes is maximum. However, these computations are
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Figure 4.15: WCRT Comparison for Offset Scheduling by MBD

very restrictive, as they result in very high calculated WCRTSs which could occur in
theory, but with little probability in practice. In fact, the probability of missing a
deadline could be as small as the probability of hardware failure [7]. However, there
are many applications which are not time-critical and can tolerate a certain failure
rate. Therefore a probabilistic response time analysis should be used along with the

WCRT analysis, which leads us to the second contribution of the thesis.
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Table4.1: Message Properties

[ M [Nu [ Pu]| Tu [ L | Ou(LD) [ On(MBD) |

My | Ny | 1 | 10ms |3B 4 4
My, | Ny | 2 | 20ms |[5B 9 9
My | Ny | 3 | 20ms | 3B 14 19
My, | Ny | 4 | 20ms | 6B 9 9
M, | Ns | 5 | 50ms | 4B 9 9
Mg | Ny | 6 | 50ms | 6B 21 4
M; | Ny | 7 | 50ms | 7B 41 14
Mg | Ny 8 50ms | 6B 4 24
My | Ny | 9 | 50ms | 7B 19 19
Mio| Ny | 10 | 50ms | 5B 19 4
M;, | N3 | 11 [ 50ms | 8B 29 29
My | N3 | 12 [ 50ms | 6B 39 39
M| Ny | 13 | 50ms | 8B 25 34
My | Ny | 14 | S0ms | 5B 45 45
Mis| Ny, | 15 50ms | 6B 39 14
Mig| N3 | 16 | 100ms | 5B 49 49
M| Ny | 17 | 100ms | 4B 59 39
Mg | N, | 18 | 100ms | 3B 79 79
Mg | N3 19 | 100ms | 7B 97 99
Msyy | N3 | 20 | 100ms | 3B 1 2
M21 N2 21 100ms | 3B 95 97
Moo N3 22 100ms | 5B 6 6
My | Ny | 23 | 100ms | 7B | 11 W
My | N, | 24 [ 100ms | 3B 4 o
My | Ns | 25 | 100ms | 8B | 16 16
My | Ny | 26 | 100ms | 4B 61 1
My, | Ny | 27 | 100ms | 8B | 21 2
Msg | N3 | 28 | 100ms | 7B 26 26
M29 N1 29 100ms | 7B 82 17
Msy | Ny | 30 | 100ms |4B | 65 21
M31 N 31 100ms | 7B 17 37
My | Ny | 32 | 100ms | 3B 14 34
Mz | Ny | 33 | 100ms | 4B 37 41
Msy | Ny | 34 | 100ms | 6B 57 57
Mss | Ny | 35 [ 100ms | 3B 78 61
Mss | N3 | 36 | 100ms | 8 B 31 32
Msz; | Ny | 37 [ 100ms | 5B 85 77
Mg | Ny | 38 [ 100ms | 8 B 36 36
Msy | Ny | 39 | 100ms | 7B 24 44
My | N3 | 40 | 100ms | 4B 41 42
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CHAPTER 5

RESPONSE TIME DISTRIBUTION

The experimental findings in the preceding chapter revealed that the computational
WCRT is not likely to happen in practice. For applications where hard deadline con-
straints exist, the network design can be implemented according to the theoretical
WCRT values. However most of the applications do not have strict deadlines and
scheduling the messages based on the WCRT values results in degraded utilization
of the network. In such cases, knowing the probability that a message experiences a
certain response time plays a crucial role. Moreover, the response time distribution is
also useful for applications with hard deadline constraints where a certain failure rate
is acceptable. In such applications the probabilistic response time analysis allows the

designer to make a trade-off between reliability and timeliness [[12], [20].

5.1 Definition

In order to obtain the probabilistic response time distribution, the aspects that affect
the response time and cause variations have to be analyzed. For a given message set,
there are two factors which are not constant during the run-time of the network and

thus affect the response time of a CAN message:

e The message length is not constant since stuff-bits are inserted depending on

the message content

e The phases between nodes change because CAN nodes are not synchronized
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5.1.1 Stuff-Bits

Stuff-bits are additional bits added to the message by the CAN protocol. As six
consecutive bits of the same polarity (111111 of 000000) are used to signal errors,
the CAN protocol has a built in mechanism that removes these forbidden bit-patterns

by inserting stuff-bits at specific positions. The worst-case scenario for bit stuffing is

depicted in Fig.[5.1]

before stuffing — 111110000111100001111...

stuffed bits \L \L \L \L J,

after stuffing —> 11111000001111100000111110...
Figure 5.1: Worst-Case Bit Stuffing Scenario

This mechanism results in a variation in the length and thus the duration of a CAN
message. The WCRT is computed by assuming the worst-case bit-stuffing condition.
However, when evaluating the probabilistic response time distribution it is necessary
to use the message duration distributions depending on bit-stuffing instead of the

worst-case stuffed frame duration [[13], [[12].

The maximum duration of a CAN frame after bit-stuffing is given by [4]

g+8b—1

C=(9+8+13+[—

D7wie (6.1
where g = 34 for standard format (11-bit identifier) and g = 54 for the extended
format (29-bit identifier). b is the number of data bytes in the payload. The part of the
function that uses the floor operator determines the number of worst-case stuff bits

depending on the message payload.

The probability distribution of a certain number of stuff bits can be calculated by
assuming equal probability of bit-value 0 and 1 among the bits that are exposed to
bit-stuffing in a CAN frame [13]]. However, this is an exhaustive work and is not in
the scope of this thesis. In the computational analysis, we use the data provided in

[[13] which gives the probabilities for different frame sizes (number of bits).
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5.1.2 Node Phases

As stated in the preceding sections, CAN is an asycnhronous bus, where there is
no global clock mechanism. Each node has its own clock and queues its messages
according to this clock. As a consequence, the contention among messages from
different nodes is not deterministic. This results in response time variations in CAN
messages since the relative generation times of messages vary. Fig. illustrates
the impact of different phases between two nodes. Here, node N; and N, generate

messages M, and M, respectively.

Ny [My ] [ M ]

N2 [M, | [ M, |
Bus _ [My] [ | [M ] [ M ]
Ny [My | [ M |

N2 [ M, | [ M, |

Bus M. | M, [M [ M, |

Figure 5.2: Impact of Phasing between Two Nodes

In the first case shown at the top of Fig.[5.2] the messages from the two nodes do not
interfere with each other such that each message has immediate acces to the CAN
bus. In the second case shown at the bottom, message M, from node N, is blocked

by message M; from [V, leading to a larger response time for M.

The WCRT is computed according to a so-called critical instant where the phases
between all nodes are such that the interference of messages from other nodes on
the target message is maximum. It is important to note that a single critical instant
(worst-case node phases) that produces the WCRT can be computed with a straight-
forward recurrence relation [4]. This computation does not need any information

about potentially shorter response times obtained for different node phases.

The main objective of this chapter is computing the response time distribution for
all messages. To this end, we will first compute the response time distribution for
each phasing scenario depending on bit stuffing. Finally, we will obtain the overall
response time distribution by averaging over all phasing scenarios by assuming that

each scenario occurs with equal probability.
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For a single phasing scenario, the computation of the response time distribution for a

given target message is accomplished by the following steps:

e Transforming the message streams from different nodes into a single stream of

messages

e Obtaining the message set that interferes with the target message and thus con-

tributes to the response time distribution of the target message

e Computing the backlog distribution that is generated by the interfering message

set

e Computing the response time distribution using the backlog distribution and the

transmission time distribution of the target message

Note that the most important point of these steps is the computation of the backlog
computation which is one of the main contributions of the thesis and has not been

considered in the existing literature.

5.2 Analytical Evaluation of the Response Time Distribution

This section formalizes the described concept of the response time distribution for

CAN messages and develops an original method for its computation.

5.2.1 System Model and Notation

We first introduce the required notation and the system model. As in Chapter [3]
each message M, is characterized by its period 7}, priority F;, deadline D;, offset O;
and transmitting node ;. Differently, the execution time of M, is now a discrete
random variable denoted as C; with a known probability mass function (pmf) f¢, :
N — [0,1]. fe,(c) defines the probability of an execution time c. Defining C; yin 1=
min.{ fe,(c) # 0} and C; max := max{ fc,(c) # 0}, a non-zero probability is obtained

for each value ¢ € [C; min, Ci max)-
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Note that since the message execution time and node phase shift variation granular-
ity is 7, all probability distributions including execution times, response times and

backlogs are expressed as discrete-time values that are multiples of 7y;.

For each periodic activation of message M; of some node N, we consider a message
instance where the j-th instance of message M; is denoted as M; ; with release time

or start time expressed as S; ; = O; + (j — 1) - T; relative to the clock of V.

For each node N, we define its hyperperiod Hy, as the least common multiple of the

periods of its messages.

We denote @, ; as the phase shift of node NV}, relative to a remote node /V;. We assume
that all nodes boot up at arbitrary times. Hence the probability function of ®;; is
uniformly distributed within the system hyperperiod with a granularity of 7;; (bit

time).

We further denote release times of message M, belonging to the node Ny, relative to

the clock of a remote node NN, as

Nj =P +0,+ (1 —1)-T;. (5.2)

The response time for message M/; is a random variable denoted as R, with pmf
fr;(r) = P{R; = r} and hence describes the probability that message )/; has the

response time 7.

5.2.2 Backlog Explanation

Definition: We define the backlog for message M; as the sum of all execution times

not yet serviced and hence causing a delay for the message M.

The components of the backlog are higher priority messages that are queued before
or at the same time as )/; and interfere with ;. Since CAN is a non-preemptive bus,
when a low priority message starts transmission it cannot be interrupted by a higher
priority message. Therefore, a blocking lower priority message can also contribute to
the backlog. The backlog for message )M, is a random variable B; with pmf fz,(b) =
P{B; = b}.
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As an example, consider the message set given in Table[5.1]

Table5.1: Message Properties

| Mi [N | P T | O] fe |
M [N, | 1]25]0 |[56,7,8 —[0.2,03,0.3,0.2]
M, | Ny | 2 [ 2511 [4,5,6] — [0.2,0.4,0.4]

M; [Ny |3 [25]0 [4,5,6] — [0.2,0.5,0.3]

Assume that the phase shift of node N, relative to the node V; is ®5; = 3. In this
case the queuing times of messages are \; = 0, A, = 11, and A3 = 3. Since the
periods of the messages are equal to the hyperperiod H = 25, only one instance from
each message is queued within a hyperperiod H. The positioning of the messages for

a single hyperperiod is shown in Fig. [5.3]

M;
M
M; y 2
| 10
LT [
0 3 11 25

Figure 5.3: Initial View of the System

In Fig. [5.3] the gray boxes represent the variable part of the message with each box
denoting a single stuff-bit. Assume that we want to compute the response time pmjf
for the message M for this case. First we need to compute the backlog pmf for M.
It is obvious that messages M, and M3 starts transmission before Ms. In order to find
out whether these messages interfere with 1/, and affect the response time of M,, we
first look at the worst case where M, and M3 have the largest execution times. From
Table @ Cimax = 8 and Cs max = 6. In the worst case, M; and M3 will finish their
execution at time t = 0 + 8 + 6 = 14, which is after the release time of M,;. We
conclude that these two messages create a probabilistic backlog for M5 which needs

to be calculated in order to obtain the response time pmf of M.

In order to find the backlog resulting from M; and Mj;, we use the discrete-time

convolution of two pmfs f and g as follows:

conv(f,g) Z f(@)g(x —1i). (5.3)

1=—00
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where conv() denotes the discrete-time convolution operator.

Proposition: When a new message )M is to be added to an existing backlog and if
the release time of the message is less than or equal to the minimum end time of the
backlog, the resulting backlog pmf f5_ is the discrete-time convolution of the existing

backlog pmf f5, and the execution time pmf  fc, of the message M;:

fg, = conv(fs,, fe,) (5.4)

Therefore, the backlog pmf resulting from M, and M3 is
I8, = conv(fe,, fe,) = [9,10,11,12,13,14] — [0.04,0.14, 0.26,0.28, 0.2, 0.08]

The view of the system with the computed backlog is depicted in Fig. [5.4]

M,
\
backlog
| LT
0 9 11 14 25

Figure 5.4: View of the System with the Computed Backlog

Since there are no more messages that will be added to the backlog, the response time
pmf of the target message M, can be calculated. However, as can be seen from Fig.
@ the backlog starts from ¢ = 0, whereas the release time of M, is ¢ = 11. In order

to calculate the backlog at ¢ = 11, we use the shrinking operation [[7]].

Proposition: Given a backlog pmf starting from ¢, the backlog pmf at a later time ¢’
can be calculated by shifting the pmf to the left by ¢’ — ¢ time units and accumulating
all the values for b < 0 at the origin (zero backlog) after the shift. This manipulation is
called the shrinking operation and it represents progression in time. The idea behind
accumulating the negative values in the origin is that all negative backlog values are

seen as zero backlog. Formally, it holds that
0, forb < 0
shrink(fs(b),t') = { 201 f5(i),  forb=0 (5.5
b+t —t), forb>0

where shrink() denotes the shrinking operator.
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Using the shrinking operator, the backlog for M, at ¢ = 11 is then calculated by
[z, = shrink(fs,,11) = [0,1,2,3] — [0.44,0.28,0.2,0.08].
Fig. [5.5|depicts the situation after shrinking.

M2 MZ

Shrinking at t=11
\ \

backlog —

backlog
| [[TT]

0 911 14 25 0 11 14 25

Figure 5.5: View of the System after Shrinking

As soon as the backlog at the message release instant is computed, the response time

pmf can easily be calculated using the convolution operation as

fRi - COHV(fBi?fCi) (56)

Using (5.6)), the response time pmf of M, is calculated as
fr, = conv(fs,, fe,) = [4,5,6,7,8,9] — [0.088,0.232, 0.328, 0.208, 0.112, 0.032].

That is, in this example and with the given node phases, message )/, has a minimum
response time of 4 with a probability of 0.088 and a maximum response time of 9
with a probability of 0.032. Note that the distribution in this case only depends on the
execution time distributions of the messages. Using an analogous computation, the

response time distributions for M, can be computed for all possible node phases.

5.2.3 Backlog Computation

As stated previously, backlog computation is the most important task for determining
the response time pmf. If the backlog distribution pmf is obtained, the response time
distribution pmf can be computed using (5.6)). In this section, the steps required to
compute the backlog pmf for a target message M; will be described. We assume
that the message stream that iteratively generates the backlog for the message M, is
already given. This message stream will be denoted as S. It contains information

about the successive release times J; ; of all messages M;.
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The backlog distribution computation is an iterative process which starts with the
first message (message with the highest priority at the smallest release time) in S
and progresses with addition of the highest priority message of the messages that are
queued just before the backlog ends. This process iterates until there are no more
messages to add, or the target message is the message that gains access to the bus. In

this case the backlog computation terminates.

In the example in the previous section, we show that when adding a new message
to an existing backlog, the resultant backlog pmyf is obtained by using convolution.
However, this is only valid if the release time of the new message is less than or
equal to the minimum end time of the existing backlog. The other condition leads to

different cases which need to be evaluated separately.

As an illustration, consider the message queuing case shown in Fig. [5.6| with execu-

tion time pmf's in Table

M,
Y
M
M, Y M,
Y il Y
L [
0 6 8 14

Figure 5.6: Example Message Queuing

Table5.2: Message Properties

| M | B | fe |
M, | 1] 45,6,7,8,9 —[0.1,02,02,0.2,0.2,0.1]
M, | 2 [4,5] = [0.5,0.5]
M; | 3 [4,5] — [0.4,0.6]
M, | 4 [4,5] — [0.7,0.3]

Suppose that we want to compute the backlog for the message Mj3. Since the stream
starts with M, the initial value of the backlog is the execution time pmf of M,. Later,
M, and M, will join the backlog. However, as can be seen, messages M, and M, are
released at the variable portion of the message M;. Due to the priority-based non-
preemptive nature of CAN, the transmission order of the messages varies depending

on the possible end times of the backlog. For instance, if the message M finishes its
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execution earlier than t = 8, M, will be transmitted after M;. However if M, finishes

at or later than ¢ = 8, the higher priority message M- will be transmitted before M.

In order to handle such different conditions, we divide the backlog into sub-portions
where each part ends before the next critical instant when at least one message is
queued. We treat each portion as a separate backlog and make the computations for

all possible backlog portions. The pmf of the resultant backlogs is defined as:

Definition: We define the partial backlog fg[bs, be| as the part of the backlog f5 that
only takes the values between b, and b.. Formally the pmf of the partial backlog pmf
is expressed as,

fBa fOI‘bSSbSbe
[5lbs, be] = (5.7)
0, otherwise

Consider f5 : [5,6,7,8] — [0.2,0.3,0,3,0,2]. Then, f5[6,7] = [6,7] — [0.3,0.3].

There are two critical instants ¢ = 6 and ¢ = 8 in the variable portion of the backlog
caused by M;. This leads to three possible partial backlogs as shown in Fig.
with pmfs fz1 = [4,5] — [0.1,0.2], fg2 = [6,7] — [0.2,0.2] and fp3 = [8,9] —
[0.2,0.1].

M, M, M,
M T M T M T
fas ' M fae ' M; fos ¥ Ms
\ | LI \i Y LI y Y LI \
[ [
0 6 8 14 0 6 8 14 0 6 8 14

Figure 5.7: Partial Backlogs of the Backlog due to M,

The backlog is computed progressively starting from each partial backlog and adding
a new message to the backlog which is the highest priority of the messages released
between the beginning and ending times of the backlog. If we look at the first partial
backlog in Fig. [5.7] we see that there is no such message. Thus, this partial back-
log is observed as zero backlog to the next message Ms3. Therefore this probability
information should be transferred to the beginning of the next partial backlog which
is t = 6 which is also observed as zero backlog by M3. At this time we need a new

definition.
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Definition: We define the partially-accumulated backlog accumn(fz[bs, be], be + 1)
as the modified backlog where the probability at b, + 1 is replaced by the sum of
probability values of pmf fz from b = b, to b = b, + 1. The resulting pmf is expressed

as,
0 forb < b, + 1
accum(fgbs, be], be + 1)(b) = Zzbfl;sl f(i) forb=10be+1 (5.8)
f5(b) otherwise

Consider f5 : [5,6,7,8] — [0.2,0.3,0,3,0,2]. Then, accum(f3[5,6],7) = [5,6,7, 8]
[0,0,0.8,0.2].

The partially-accumulated backlog is used for portions of the backlog that result in
an empty bus. This is the case for the first partial backlog in Fig. Since no
new message is generated before time 6, a backlog of 6 is observed with probability

fa(4) + f5(5) + f5(6) = accum(fz[4,5],6)(6) = 0.1+ 0.2+ 0.2 = 0.5.

We are now ready to state our original algorithm for the computation of the backlog

distribution in Algorithm

The algorithm is a recursive algorithm that calls itself as long as a new message is
added to the backlog stream. Its arguments are the overall sum of backlog distribu-
tions fz which accumulates the resultant backlogs at each condition, the local back-
log distribution before division into partial backlogs fj, the start time of the current
backlog t,, the message stream S, a priority queue of waiting messages W (message
generation time is greater than or equal to ¢y and less than or equal to the current
backlog end time) and a done list of processed messages D. In each function call, the
highest-priority message in W becomes the current message, is removed from W and
added to ID. Then, the convolution of the current backlog fj; and the message execu-
tion time is performed to obtain the new backlog (line 3) with its minimum time #,,
and maximum time ¢, (line 4). As discussed in Fig. different situations need to
be considered regarding the resulting backlog and the backlog needs to be separated
into portions. These portions depend on the respective next message generation times.
That is, the generation time of the next message is determined and the next portion is
defined as the time between t,;, and the next generation time or the end of the current

backlog t.x (line 6). Then, each portion of the backlog is considered in the while
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1 Function fz = ComputeBacklog(fg, fz, to,S, W,D)

2

3

4

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

M =W.pop()and D = D U {M}
fg = conv(fs, fc,,)
tmin = to + miny{ f5(b) # 0} and tyax = to + maxy{ fz(b) # 0}
next 1S NEXt message generation time after ¢, (use t,exc = 00 if there is no
more message generation after ¢,,;,)
ts = tmin and te = min{tpexe — 1, tmax 1> bs = ts — to and b, = t. — 1
while ¢, < ¢,,,, do
Add all messages with generation times < t. to W, W = W\ D
if W £ () then
M = W .peek()
if M is the target message then
| fa= fa+ falbe b
else

L fg = ComputeBacklog(fs, fg,to,S, W, D)

else

if £, # ... then

fz = accum(fglbs, be], be + 1)

else

Add all messages with generation times = tex; to W

M = W .peek()

if M is the target message then

fs=/s+ g

else
to = tnext and fz = shrink(fz[bs, be], text)
[ = ComputeBacklog(fs, fz,to,S, W, D)

if t, == t,,.. then

return fz

Lnext 1S NEXt message generation time after ¢,

ts = t. + 1 and te = min{tpexs — 1, tmax 1> bs = ts — to and be = t. — ¢

Algorithm 7: Backlog Distribution Computation.
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loop starting from line 7. First, the list of waiting messages is updated (line 8). Then,
different cases are possible. If at least one message is waiting (line 9 to 14), the wait-
ing highest-priority message M is determined (line 10). If this message is the target
message, it means that the target message will be transmitted after the current por-
tion of the backlog, therefore this partial backlog is added to the total backlog (here,
addition is not convolution but one-to-one addition such that fz(i) = fz(i) + fz(7))
(line 11,12). Otherwise, the function is called recursively to determine the backlog
for the current portion. If no message is waiting (line 16 to 29), it is checked if the
last portion is reached. If no (line 17), the partial backlog is accumulated to the be-
ginning of the next portion since no message is waiting (line 18). If yes this means
that the backlog discontinues here. In this case, the list of messages released at the
next generation time is obtained (line 20). Then the highest priority M is determined
(line 21). If this message is the target message, this means the backlog terminates,
therefore this partial backlog is added to the total backlog (again, this addition is not
convolution but one-to-one addition) (line 22,23). Otherwise, the backlog computa-
tion continues with the next message. The starting time is updated as t,.x and the
partial backlog is shrinked at the new starting time ¢,y (line 25). Then the function
is called recursively to determine the backlog for this portion (line 26). If the end of
the current backlog is reached, (line 30), the function terminates by returning the sum
of the computed backlogs fz. Otherwise, the next portion of the backlog is prepared

and the while loop continues.

The complexity of the algorithm is O (k™) where k is the maximum number of stuff-
bits in the considered message set and m is the number of messages. The complexity
is expressed according to the worst-case number of calls of the recursive function.
Supposing each call is invoked by each partial backlog, in the worst-case there will
be one generated message at each stuff-bit and this will lead to £ partial backlogs.
Also assuming that all of the messages are added to the backlog, this leads to an
iteration of depth m leading to k™ calls for the recursive function. This can be seen
as a high complexity but in reality the number of calls will be much smaller than this
value. In fact, in computations performed for a message set composed of 9 CAN
messages and 10 stuff-bits, the average number of calls for the function revealed to

be 12 which is incomparable to the worst-case assumption 10°.
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We next illustrate Algorithm [7|by the previous example given in Fig. [5.6] In the first
call of the function ComputeBacklog, the local backlog is computed by convolv-
ing the starting backlog f;(0) = 1 with the execution time pmf of the first message
M. Recall that backlog due to M, had three partial backlogs as shown in Fig. [5.§]

M;
Y
D
B11 Y M;
Y | l Y
Tl - Tl
0 6 8 14
Mz MZ
Y \ ]
M, —|—| M, —|—|
B, Y M B2 Y M
\i | l Y Y | l \
LI L |
0 6 8 14 0 6 8 14
M,
Y
T
Bis \ Ms
Y i Y
| L
0 6 8 14

Figure 5.8: Partial Backlogs of the Backlog due to M,

In order to track the flow of the algorithm easily, local backlog found by each ad-
ditional message is denoted by B;; (corresponding to fj in the algorithm) where ¢
denotes the number of calls of the function ComputeBacklog and ;7 denotes the

partial backlog number of B5;.

For the first partial backlog B; ;, the algorithm ends in line-18 since this backlog ends
with an empty bus. In this case the partial backlog is accumulated to the beginning of

the next partial backlog by accum operator.

For the second partial backlog B >, the only pending message is My, therefore the
algorithm ends in line-14 and calls itself recursively. The partial backlog B s is

transferred as the current backlog to the next call. In the next call, the new local
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backlog B, is computed by convolving the current backlog B; » with the execution

time pmf of M,. This operation is depicted in Fig. [5.9

M, M
M, Y Y
— . —
Blvz Y Ms B2 M;
JV | | \ \ JV
| [11 l
0 6 8 14 0 8 14

Figure 5.9: Obtaining the Local Backlog B,

Since there are no messages released in the variable portion of Bs, no partial backlog
is produced. The only pending message is M5, therefore the algorithm ends in line-14
and calls itself recursively. The backlog Bs is transferred as the current backlog to
the next call. In the next call, the new local backlog Bs is computed by convolving

the current backlog B, with the execution time pmf of M. This operation is depicted

in Fig.

M,
v Ms;
:D — \ |
B, Ma Bs T
Y Y Y
L1 [
0 8 14 0 14

Figure 5.10: Obtaining the Local Backlog Bs

Since there are no messages released in the variable portion of B3, no partial back-
log is produced. The only pending message is the target message M3, therefore the
algorithm ends in line-12 and stores the partial backlog (the entire backlog B3 in this
case) to By (corresponding to f in the algorithm). Since there are no more partial
backlogs for this local backlog, the function returns to the previous recursive call with
the last updated B;.q;. Returning back to B,, since there are no more partial back-
logs also for Bs, the function returns to the first call of ComputeBacklog ending

up with the local backlog B;.

The next partial backlog for B is B;3. There are two messages released before

the backlog ends: M, and M,. These messages are added to the priority queue and
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the function calls itself recursively in line-14. In the new call, the highest priority
message is popped from the priority queue, which is M. Then the local backlog B,
is computed by convolving the current backlog B, 3 with the execution time pmf of

M. The resulting backlog is depicted in Fig. [5.11]

M,
Y
Ve T M M
Bis Y M, —» B Jv Y
Y il Y Y i il
| L] ]
0 6 8 14 0 6 14

Figure 5.11: Obtaining the Local Backlog B,

At this time, there are two partial backlogs because the target message M3 is released
just at the end time of the local backlog B,. The partial backlogs are depicted in Fig.
5.12

M, Ms

Bas Y Y
| A —

M, M, [
B. { { 0 6 14
| I 1

| | M, M

0 6 14 Ba> \i \i
| A —

0 6 14

Figure 5.12: Partial Backlogs of the Local Backlog B,

For the first partial backlog B, 1, the only pending message is M4, therefore the algo-
rithm ends in line-14 and calls itself recursively. Here, the new local backlog Bj is
computed by convolving the current backlog B, ; and the execution time pmf of M.

The resulting backlog is depicted in Fig. [5.13]

In Bs, there are no partial backlogs and the only pending message is the target mes-
sage. Therefore, the function ends in line-18 storing the current backlog B5 to Biia;

and returns with the stored By, value to Bj.
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Figure 5.13: Obtaining the Local Backlog B,

In the second partial backlog B, -, the pending messages are M4 and M3. Since the
highest priority message is the target message, the function ends in line-12, storing
the partial backlog B, > to Bioei. Then the function returns to the first call B;. Since
there are no more partial backlogs in By, the function returns for the last time with

the B4 that stores the sum off all computed backlogs.

In this example, the function ComputeBacklog is called 5 times.

5.2.4 Response Time Distribution Computation for Given Node Phases

As stated before, the computation of the backlog distribution is the main contribution
towards the computation of the response time distribution of a given target message.
We next use the computed backlog distribution in Section [5.2.3]in order to determine

the response time distribution in two steps given a message stream S.

First, we identify the part of the message stream that interferes with the transmission
of the target message. To this end, we first note that such interference can be deter-
mined using the longest execution time of each message since a non-zero interference
probability is already given if all messages before the generation of the target mes-
sage assume there longest execution time. To illustrate this fact, consider the example

message queuing shown in Fig. [5.14]

Suppose that we want to find the message set interfering with message Ms. The
backlog resulting from the best-case and the worst-case execution times for the earlier

messages M, M, and M, is shown in Fig.

As can be seen, adding the shortest execution times, the total execution finishes at
t = 14, before the release time of the target message )3 causing no interference on

Ms3. On the other hand, adding the longest execution times, the total execution finishes
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Figure 5.14: Example Message Queuing

Ms M
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Figure 5.15: Best-Case and Worst-Case Execution Time Scenarios

att = 21, after the release time of the target message M3 causing interference on M3.

We conclude that potential interference is obvious from the longest execution times.

Accordingly, the messages in S interfering with the target messages are computed

with the following Algorithm 3]

In this algorithm, the message set which accumulates and interferes with the target
message My is determined. Starting from the first starting time ¢y = 0, the maximum
size of the next message is added to the variable t;,,, which accumulates the observed
interference (line 10). In case, the interference does not extend to the next waiting
message (line 11), a new starting time for the interference is defined (line 12). The
algorithm terminates if the target message is the next message to gain access to the
bus. The time ¢, obtained at the end of the algorithm is the time from where the

response time distribution computation starts.

Using Algorithm[§]and (7] it is now possible to compute the response time distribution

of a given target message M.

Algorithm [9] first determines the generation time ¢, of the first message interfering
with the target message Mp. Then, the backlog distribution is computed starting
from ¢, and the resulting backlog is convolved with the execution time distribution of

message M.
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1 Function ¢ty = ComputeStartTime(S, Mr))

2

3

4

10

11

12

13

14

15

16

17

to =0, tiner =0, D =0

M is the highest-priority message at %

tiner = Cyp, D =D U { M}

tr 1s the generation time of the target message

while End of S is not reached do

M is highest-priority message waiting in message stream after ¢, with
M¢ED

ty; is set as generation time of M

if M is not the target message then

if ;yer > t; then

tinter = tinter + Cyy and D = D U { M}

else

to =ty and tiyer = Cjyand D =D U {M}

if No more message is waiting in S then

return ¢

else

return ¢,

Algorithm 8: Determining the interfering messages.

10

Function R ), = ComputeRTD(S, Mr))

to = ComputeStartTime(S, Mr)

J5=0
fg=10] = [1]
W=D=10

Add all messages with generation times = ¢y to W
fs = ComputeBacklog(fs, fz,to,S, W, D)

fs = shrink(fs, tr)

Ry = conv(fs,Cuy)

return R,

Algorithm 9: Response Time Distribution Computation.
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As an illustration, consider the example in Fig. [5.3| where the backlog was found as
I8, =19,10,11,12,13,14] — [0.04,0.14, 0.26,0.28, 0.2, 0.08]

which is the return value of ComputeBacklog function. The response time pmf of

M, is then calculated by Algorithm [9]as
f5, = shrink(fs,,11) = [0,1,2,3] — [0.44,0.28,0.2,0.08].
fr, = conv(fg,, fe,) = [4,5,6,7,8,9] — [0.088,0.232,0.328,0.208,0.112, 0.032].

The computation of the response time distribution is repeated for all instances My ;
of the target message My generated within the hyperperiod Hj of node N, which
generates the target message. Starting from the first instance, the response time dis-
tribution Ry, ; is computed for the j-th instance with generation time evaluated by

(5.2). Then the average response time distribution of M7 is obtained as

Hy /Ty,

1
Ryy = ———- R .- 5.9
Mr Hy /Ty, Zl M 62

5.2.5 General Response Time Computation

The computation of the response time distribution in Section [5.2.4] is based on the
assumption of a given message stream S. Given an offset assignment for messages of
each node, the composition of this message stream depends on the node phases. That
is, for each combination of node phases, a different message stream with different

generation times of messages is obtained based on the evaluation of (5.2)).

Considering a CAN bus with n nodes and a hyperperiod Hj, for eachnode 1 < k < n,
there are )

11

k=1
combinations of node phases. Here, node n was considered as the reference node. It is
further the case that each of the described combinations potentially leads to a different

response time distribution since the message stream is different. In the literature, it is

considered that each of the node phases is equally likely such that the overall response
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time distribution of a target message M is obtained by averaging over the response
time distributions for the different node phases [20]. Let IP be the set of all possible
node phases and denote the response time distribution for certain node phases p € P

as Rﬁh. Then, the overall response time distribution for message My is

1
Ry = ik > R, (5.10)

peP

The complexity of the overall response time distribution computation can be ex-

pressed as O(H™ - k™), where H denotes a bound on the hyperperiods of all nodes.

As an illustration, consider the previous example message queuing case shown in Fig.

[5.6] such that messages M, to M, have the properties given by Table

Table5.3: Message Properties

[ M; [Ny [P [T, ] O ] Je. |
My [N, [ 1[30] 0 |[4,56,7,8,9 —[0.1,0.2,0.2,0.2,0.2,0.1]
M, | Ny | 2|30 2 4,5/ — [0.5,0.5
M, [N, | 3]30]14 4,5 — [0.4,0.6
M, [N, | 4300 [4,5] — [0.7,0.3]

Since all messages have a period of 30, the hyperperiod of each node is 30. This leads
to 30 possible phasing scenarios to compute. One of these scenarios is depicted in

Fig.[5.16/for ®,; = 6 which is exactly the queuing case shown in Fig. [5.6]

M,
M;, ¥
y L1
N, L
02 30
Ml M3
Y \
Ny LT L
0 6 8 14 30

Figure 5.16: Message Queuing Scenario for 5 ; = 6

The overall response time distribution for the message M3 in terms of cumulative
distribution function (cdf) is shown in Fig. [5.17] The response time cdf for two

specific phases ®5; = 13 and ®5; = 28 is also given in the same figure.
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Figure 5.17: Response Time cdf's of M3

5.3 Hardware Measurements and Discussion

We performed response time distribution experiments for a CAN bus with 3 nodes
with a data rate of 125 kbit/s using the same test setup as in Chapter 4] In addition,
we implemented the response time distribution computation algorithm in MATLAB

and compared the experimental results with the computational ones.

The response time measurement experiments are run for 10 minutes resulting in trans-
mission of approximately 60000 instances of each message. For each experiment, the
response time is measured as described in Section[4.3] Then the response time cdf is

obtained by using a parsing script for the CAN bus log file.

The main observation of these initial experiments was that the computed response
time distribution was not observed in the measurement. An example of the observed
mismatch for an experiment with 3 nodes and 9 messages is given in Fig. [5.18§ with
message properties as in Table In this case message Mg was chosen as the target

message.

As can be seen, the computational cdf has three steps where the response time differs

much. However in the measured cdf the middle step is not observed.

At this point, it could be argued that the proposed response time distribution compu-
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Table5.4: Message Properties

[ M [Ny | Par | T | Ly | Ou |

My | N I |10ms | 8B | O
My | Ny 4 [ 10ms [ 8B | O
M; | N 7 [ 10ms [ 8B | O
M2 N2 2 10ms | 8B 0
Ms | No S |10ms | 8B | O
Mg | No 8 | 10ms |8B | O
Ms | Nj 3 |10ms | 8B | O
Mﬁ N3 6 10ms | 8B 0
My | Nj 9 | 10ms | 8B | O
1.2 T T T T T T
1F : -
computation

— — — ~measurement |

0.8 -

0.6 -

Probability (cdf)

0.4

0.2

0 200 400 600 800 1000 1200 1400
Response Time [bit time]

Figure 5.18: Response Time cdf Comparison for My

tation is incorrect. Nevertheless, a more detailed analysis of the stated assumptions
reveals that one of the assumptions for the response time distribution computation is
not valid in practice: the phases between nodes do not change arbitrarily but depend-
ing on the drift between the clocks of different nodes. That is, locally (for a long
enough period of time in the order of tens of minutes) phases remain similar. As a
result, the response time distribution changes over time according to the changes in

the node phases.

We first illustrate this situation and then propose a simple modification of the response
time distribution computation that allows a close match between computation and

measurements. We choose the message set given in Table[5.5] Then we identify two
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extreme phasing scenarios for the target message. Then the nodes are forced to start
with the chosen phasing scenarios. The target message is chosen as the lowest priority

message which is M.

Table5.5: Message Properties

| M [Ny | P | T | Ly | Oy |

My | M I | 1I0ms | 8B | O
M, N, | 4 [10ms|8B | 1
M; | Ny | 7 | 10ms | 8B | 2
My | No| 2 | 10ms | 8B | O
Ms| No | S | 10ms 8B | 1
Mg | No | 8 | 10ms | 8B | 2
Ms| N3 | 3 | 10ms |8B | 1
Mg | N3 | 6 | 10ms | 8B | 2
Mg N3 9 10ms | 8B 0

The first scenario is a "bad case" for message Mg in which the phasings of the nodes

are arranged such that M is blocked by all other messsages in the bus as shown in

Fig.5.19

M1 M4 M7
Y Y Y
N: [ [ 1 T [ [ [ ]
0 . 5 9
M, Ms Mg
Y Y Y
N, [ [ 1 [ [ T [ ]
0 . 5 9
Mg M3 Me
Y Y Y
\ [ [ 1 T [ [ [ ]
0 . 5 9

Figure 5.19: Bad Phasing Scenario for My

The second scenario is a "good case" for message My in which the phasings of the
nodes are arranged such that My is not blocked by any message on the bus. This
scenario is depicted in Fig.

The response time measurement experiments are run for 10 minutes starting from
the phase arrangements shown in Fig. [5.19]and Fig. [5.20] For each experiment, the
response time for My is measured as described in Section[4.3] Then the response time
cdf 1s obtained by using a parsing script for the CAN bus log file. The measurement

results for both bad and good cases along with the exact computation result is shown
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Figure 5.21: Response Time cdf Comparison for My

As can be seen, the computed cdf stays right in the middle of the two cdfs obtained
from the measurements. In the bad phasing scenario, the probability that My expe-
riences large response times is higher compared to the computational results. This
is an expected result since the nodes are forced to start with the worst-case phasing
scenario for Mjy. The phase shift due to clock drift among the nodes results in smaller
response times for My. However, this drift is so slow and particular that even for a
time period of 10 minutes, a very specific response time cdf that is far away from
the computational cdf is obtained. This is also true for the good phasing scenario in
which again a specific distribution is obtained with higher probabilities for smaller

response times compared to the computational results. In general, it holds for any
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phasing scenario that each starting situation will result in a specific cdf that lies be-

tween the cdfs obtained in the bad and good cases.

5.4 Local Response Time Distribution

5.4.1 Local Response Time Distribution

In the previous section, it was identified from hardware measurements that the node
phases do not change arbitrarily. As a result, the computed response time distribution
does not agree well with the measured response times. This section proposes the new

idea of a local response time distribution as a remedy for the observed issue.

5.4.2 Local Response Time Distribution Computation

in Section evaluates the response time distribution which is averaged
over all possible node phases. According to the observation in the previous section,
we now suggest to only consider node phases that are close to the initial node phase at
system startup. As explained before, this modification captures the fact that the node
clocks drift slowly and gradually. Consider that the initial node phases are given by
@2’1 for a reference node NV, and the remaining nodes [ # k. Then, we define a range
A that captures the possible deviation of each node phase from the initial value and
consider only node phases between ®;,; — A® and &}, ; + AP for each node [. Writing
LL for the set of local node phase combinations, the local response time distribution is

computed as

1
R, = o > R, (5.11)

p€eLL

5.4.3 Evaluation

In order to evaluate the modified algorithm, we consider the same example as in
Section[5.3] The comparison of a local response time cdf computation with the mea-
surement is given in Fig. [5.22] and Fig. [5.23|for the bad and good cases, respectively.

In computations, node N3 is selected as the reference node and the window of phases
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for nodes N; and N is considered as AP = 3007,;, for both sides relative to N3. In
comparison, the hyperperiod contains 10ms/8us = 12507, since the hyperperiod

duration H = 10ms and 7,y = 8us at 125 kbit/s data rate.
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Figure 5.22: Comparison of Local Response Time cdf Computation and Measure-
ment in Bad Case
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Figure 5.23: Comparison of Local Response Time cdf Computation and Measure-
ment in Good Case

It can be seen that computations with bounded phase shift centered at the initial phase

scenario results in computational results that are very close to the measurements.
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5.4.4 Discussion of the Local Response Time Distribution

In the previous section we have shown that the local response time distribution very
closely captures the actual response time distribution from measurements. This means
that it is possible to computationally evaluate response time distributions on CAN
for a certain time interval if the initial node phases are known. Although this is a
very positive result that was not known in the existing literature, it has two major

disadvantageous practical implications.

First, the obtained result shows that computing the overall response time distribution
can lead to highly optimistic results. Just consider the example in Fig. [5.21] Ac-
cording to the figure, the exact response time distribution computation suggests that
the response time is below 800 7, with a probability of 90%. It is then possible that
a system designer assumes that this probability is sufficient for safety such that the
example CAN network is deemed safe. Nevertheless, looking at the "bad case", it is
possible for some time (locally) that message response times are larger than 800 7
with a probability of more than 30%. That is, a CAN network that is considered safe

might be unsafe locally.

Second, although the computation of the local response time distribution would solve
the described problem, this computation is based on the knowledge of the current
node phases. Since there is no synchronization among CAN nodes, the node phases
are actually unknown such that it is not possible to effectively compute the local

response time distribution during system run-time.

In the next section, we propose to apply the ides of weak synchronization between

CAN nodes in order to be able to apply the idea of the local response time distribution.

5.5 Weak Synchronization

5.5.1 Main Idea and Motivation

As was discussed in the previous section, it is necessary to obtain knowledge about the

initial phase shift and the boundaries in which the phases between the nodes vary. As
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a solution to this problem, we implement weak synchronization between the nodes,
where all nodes on the CAN bus are synchronized with a weak precision. The advan-
tage of the suggested method is that both the identified issues are addressed and only

a single CAN message that is sent infrequently is added to the CAN bus.

5.5.2 Description of the Method

The implemented weak synchronization method is the one proposed by Gergeleit and
Streich (1994) [9] since it has minimal additional load on the bus. The method is
based on a master-slave concept where one of the nodes in the system is designated
as the master and all other nodes as slaves. The synchronization among the nodes is
achieved by a single synchronization (sync) message that is sent periodically by the
master node as shown in Fig. [5.24 where each gray arrow represents the transmission

of a sync message.

L round (k-1) 1 round (K) ]
) T ’
Master TX |'II| mestamp TX |'|Iimestamp _
Clock o
Tt Tk Local Time
MSync,k-l IVISyn K
Slave Rx _ﬁi mestamp Rx _ﬁimestamp _
Clock Tska Tsx Local Time

Figure 5.24: Clock Synchronization Method

From Fig. [5.24] it can be seen that local clock timestamp is taken on the master node
when a sync message is transmitted and on the slave nodes when a sync message is
received. Successful transmission of a message in CAN is synchronous to the recep-
tion of the message on the receiving nodes. Using this property, it is assured that the
timestamps are taken at the same instant on the master and the slaves. The timestamp
taken on the master is sent by the next sync message as a reference time to the slaves.
For instance, in round £ in Fig. the master broadcasts a sync message Mynck
containing its timestamp taken at 7}, ,.; when the previous sync message Mync k-1 Was
transmitted to the slaves. Then, every slave in the network receives this message at

151 and takes a timestamp right after the reception. Then each slave adjusts its local
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clock using the difference between the timestamps 7.y and T, 1.

5.5.3 Algorithm

We implement the weak synchronization method described in the previous section on
the Fujitsu SK-91465X-100PMC Evaluation Boards used as both master and slave

nodes. The global clock is expressed as two time units called tick and cycle as shown

in Fig. [5.25]

Tiick = 0.125 us
—
Tick: 1 2 8000
Msync Msync
\] \J
Cycle: 0 1 2 999 0 1
— >
Teyere=1ms

Tsyne=1s

Figure 5.25: Global Clock Time Units

The ticks are generated by the microcontroller’s own clock and have a duration of
T = 0.125us. Each cycle is composed of 8000 ticks with a duration of Tty = 1
ms. The update of cycle number is triggered by a timer interrupt routine when the
value set to the timer period register is elapsed, which is 8000 in our case. The cycle
counter is a rolling counter which increments the cycle number at each timer interrupt
call and rolls back to 0 after 999. This roll back creates the rounds for sending sync
messages with a period of Ty, = 1s such that when the cycle counter value is 0, a

sync message transmission is invoked on the master.

The flow chart of the algorithm running in the master node is shown in Fig. [5.26
As can be seen, the master stays in an idle waiting loop until an interrupt is invoked
either by the timer or the transmission of a sync message. In this case the master
executes the related interrupt routine and returns to the idle loop. The timer period
in the master node is constant during run-time as T¢yq. = 8000 ticks resulting in an

interrupt event at every 1 ms. When this period elapses, the CPU triggers a timer
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interrupt and executes the interrupt routine given in Algorithm [I0] Here, the master
updates its rolling cycle counter ngyce. As stated, when neyqe = 0 (line 5) a sync mes-
sage is generated containing the timestamp which is a tuple { Neyere, Viiek - When the
generated sync message is successfully transmitted, the CAN transmission interrupt
is invoked by the CPU and the routine given by Algorithm [T1]is executed. In this
routine, the master’s only task is to take the timestamp { Neycie, NViick }- Note that Ny
is obtained from the timer counter register of the microcontroller which counts and

rolls independently.

Idle loop
Timer period SYNC message

elapsed)/’ ‘\iransmitted

Timer Interrupt Routine

e Update cycle counter CAN TX Interrupt Routine
e Send SYNC message e Update timestamp
at cycle =0

Figure 5.26: Flow Chart for the Master Node

1 Function TimerInterrupt()
2 increment ngycie

3 if 7y == 1000 then

4 reset Neycle
5 CANSendMessage(Msync, { Neyele, Niick })
6 return

Algorithm 10: Timer Interrupt Routine for the Master Node.

1 Function CANTxInterrupt()
2 {N cycles N, tick} = {ncycle> ntick}

3 return

Algorithm 11: CAN Tx Interrupt Routine for the Master Node.

The flow chart of the algorithm running in a slave node is shown in Fig. Sim-
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ilar to the master, the slave stays in an idle waiting loop until an interrupt is invoked
either by the timer or the reception of a sync message. In this case the slave executes
the related interrupt routine and returns to the idle loop. When a sync message is
successfully received, the CAN reception interrupt is invoked by the CPU and the
routine given by Algorithm [I2]is executed. Here, the slave node stores its own times-
tamp taken at the previous call to {N°4 N 1 to be used in the calculation of

cycle,s? * "tick,s

the clock drift (line 2). Then it takes the current timestamp { Ng. i» Vices ) (line 3).
Later, it gets the master timestamp { Neyciem, Nickm } by reading the payload of the
received sync message (line 4). Finally it computes the clock difference relative to

the master node in terms of the number of ticks as:

Atk = (Nyeies — Neyetem) - 8000 + N ¢ — Nickm (5.12)
This value is used as the clock correction term in the slave node as follows. Different
from the master, the timer period in the slave node is not constant during run-time.
At start-up, it is initialized as T¢yee = 8000. Depending on the clock drift Ay value,
the timer period value is changed in the timer interrupt routine given in Algorithm
[[3] If Aye is greater than 1000 ticks (line 5), this means that the slave clock is
1000 ticks ahead from the master clock. Therefore the timer period is adjusted as
Teyee = 8001 (line 6) such that the cycle counter is slowed down by 1 tick for the
entire round resulting in slow-down of 1000 ticks at the end of the round to catch
the master clock. Similarly if A is smaller than —1000 ticks (line 7), this means
that slave clock is 1000 ticks behind the master clock. Therefore the timer period
is adjusted as Tyee = 7999 (line 8) such that the cycle counter is speeded up by 1
tick for the entire round resulting in speed-up of 1000 ticks at the end of the round to
catch the master clock. Lastly, if Ay is between 1000 and —1000, the slave clock is
considered in the synchronous range and no speed-up or slow-down action is applied.

In this case, the timer period value is set as the usual value T¢yq. = 8000.

Note that since nodes can boot-up at arbitrary times, in order to minimize the initial

drift, the timer of each slave is started with the first received sync message.

To sum up, the algorithm tries to keep the clock drift of the slave clock in [—1000, 1000]
ticks range relative to the master clock. This results in (1000) - (0.125) = 125us drift

time for either side. Therefore, the overall drift between any two nodes in the network
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1 Function CANRxInterrupt()

2| {NGhes Nicks s = {Neyetes: Vit }
3| {NGdes Nickst = {neyetes Tier }
4 {Neyelems Niickm } = CANReadMessage()
5 Ak = ComputeDeltaTick({nylgle’S, Nt?iﬁ,s}a {Neyetems Niickm})
6 return
Algorithm 12: CAN Rx Interrupt Routine for a Slave Node.
1 Function TimerInterrupt()
2 increment 7cycie
3 if ¢y == 1000 then
4 reset Neycle
5 if A,;ix > 1000 then
6 Teyere = 8001
7 else if A,;x < —1000 then
8 Teyele = 7999
9 else
10 Teyele = 8000
1 return

Algorithm 13: Timer Interrupt Routine for a Slave Node.
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Idle loop

Timer period SYNC message
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CAN TX Interrupt Routine

e Gettimestamp
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difference

Timer Interrupt Routine
e Update cycle counter
e Update timer period

Figure 5.27: Flow Chart for a Slave Node

is assured to be less than (2) - (125) = 250us.

5.5.4 Hardware Measurements

We performed weak synchronization experiments for a CAN bus with 3 nodes, one
master node and two slave nodes, with a data rate of 125 kbit/s using the same test
setup as in Chapter ] In order to measure the quality of the synchronization, the
time drift Ay is transmitted by a diagnostic CAN message on each slave node as a
4-byte data. We started the nodes at arbitrary times (first the master node) and run the
setup for 1 hour. Later parsed the resultant log file to obtain the results. The variation
of clock drift between the slave clock and the master clock is given in Fig. for
slave-1 and in Fig. [5.29]for slave-2.

As can be seen, the overall time swing is less than 250us in both of the slaves. Also
it is observed that this drift stays in the expected region even for long run-times as
much as 1 hour. In order to see the benefit of the weak synchronization, we disabled
the clock correction parts in the slave nodes and repeated the same experiment. The
variation of the time difference when weak synchronization is disabled can be seen in

Fig. [5.30|both for slave-1 and slave-2 for a test run of 20 minutes.

As can be seen, even when the slave clocks start synchronous to the master clock
with the reception of the first sync message, the time drift increases dramatically

since clock correction is disabled. The clock drift increases to the values over 10 ms
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Figure 5.28: Variation of the Time Difference between Slave-1 and Master Clock
under Weak Synchronization

in slave-1 and over 10 ms in slave-2 after 20 minutes. Also it is observed that slave-
2 drifts faster compared to slave-1, which shows that prediction of the phase shift
boundaries for a node without weak synchronization is not possible. By using weak
synchronization, it is known that the phase shift boundaries are 125us away from the

initial phase shift.

5.5.5 Local Response Time Distribution Experiments under Weak Synchro-

nization

In order to evaluate the response time distribution under weak synchronization, we
consider the same example as in Section [5.3] The nodes are synchronized with weak
synchronization where node /N; is used as the master node and the other two nodes
as the slaves. In computations, the master node /V; is selected as the reference node
and the window of phases for N, and N3 is considered as A® = 125us/8us & 157,
for both sides relative to node /N; where 1255 is the clock synchronization precision

and 7, = Sus at 125 kbit/s data rate.

The comparison of a local response time cdf computation with the measurement un-
der weak synchronization is given in Fig. [5.3T] and Fig. [5.32] for the bad and good

scenarios, respectively. In both cases, it can be seen that the resulting computed local
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Figure 5.29: Variation of the Time Difference between Slave-2 and Master Clock
under Weak Synchronization

response time distribution shows a very tight match with measured response time dis-
tributions. This is an expected result since the computations are made for phase shift
boundaries which are the same as the node synchronization boundaries. Using weak
synchronization, it is assured that the nodes do not drift from the initial phase scenario

by more than the clock synchronization precision which is 125us in this case.

The resulting computed local response time distribution shows a very tight match

with measured response time distributions.

5.5.6 Discussion of Local Response Time Distribution and Weak Synchroniza-

tion

In this section, we saw that weak synchronization provides a global clock that is syn-
chronized with a weak precision which makes is possible to predict the phase shift
boundaries between the nodes. Knowing the phase variation boundaries allows to
compute local response time distributions that match the actual response time distri-

butions.

Another important benefit of weak synchronization is that making response time dis-
tribution computations based on a bounded phase shift rather than computing over the

entire period reduces the computational complexity and hence the computation times
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Figure 5.30: Variation of the Time Difference between Slave and Master Clock when
Weak Synchronization is Disabled

considerably. In this case the complexity reduces from O(H" - k™) to O(A" - k™)
since the computation is done covering 2A® phase shifts rather than the entire hyper-
period. For instance, in the example considered in Section there are 1250% node
phasing scenarios leading to 1250? computations without synchronization whereas

under weak synchronization this reduces to (2A®)% = 3072

This also makes the
computational complexity independent of the hyperperiod. As a result, the variable

hyperperiod term is replaced by a constant and much smaller value.

In Chapter [3] we saw that offset scheduling is performed exclusively to each node
since nodes are not synchronized. The existence of a global clock that is synchronized
with a weak precision is expected to enable offset scheduling with smaller response

times for the entire network which is left as a future work.
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Figure 5.31: Comparison of Local Response Time cdf Computation and Measure-

ment in Bad Case under Weak Synchronization
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CHAPTER 6

CONCLUSION

The subject of this thesis is the offset scheduling on the controller area network
(CAN), which is the most popular in-vehicle network. The first aim of the thesis is the
improvement of performance metrics such as worst-case response times (WCRTSs),
message slacks and the differences of WCRTSs of messages with the same deadline,
compared to an existing load distribution (LD) algorithm. The second aim of the
thesis is the computation of the probabilistic response time distribution for messages
transmitted on CAN. The response time distribution shows the variation of the mes-
sage response time due to non-deterministic factors such as the message length and

the changing phase difference between nodes due to clock drifts.

Regarding the first aim, the thesis proposes four new algorithms for the offset assign-
ment on CAN. Three of the algorithms merely use information of individual network
nodes and hence have computation times in the order of milliseconds. The fourth al-
gorithm uses a neighborhood search method and leads to computation times of at most
30 min for realistic messages sets. Since offset assignments for CAN are computed
offline, all algorithms are suitable for practical applications. The proposed algorithms
are compared to the existing LD algorithm in comprehensive computational experi-
ments using CAN networks with different numbers of nodes and bus loads. These
experiment highlight that, although the existing LD algorithm already achieves good

results, the proposed algorithms outperform this algorithm in most of the test cases.

Regarding the second aim, the thesis develops an original method for computing the
response time distribution for non-preemptive systems such as CAN. The proposed
method is based on the computation of a backlog distribution for the target message

that is due to the interference of other messages and the execution time of the target
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message. Moreover, the thesis shows that the response time distribution has a local
nature in the sense that it remains approximately constant for a short period of time
(in the order of tens of minutes) but gradually changes due to clock drifts. As a novel
contribution, the thesis defines the computation of a local response time distribution
and shows that it matches well with hardware measurements. In addition, the thesis
develops the new idea of enforcing a desired local response time distribution by weak
synchronization of all CAN nodes. As the main result of this thesis, it is possible to
keep the node phases within a small range and to perform a very exact computation

of local response time distribution that does not change over time.

It has to be noted that the presented results regarding offset assignment are currently
restricted to the consideration of the (deterministic) WCRT and are hence not directly
applicable to probabilistic response time distributions. In turn, the results for the
computation of the response time distribution assume a given offset assignment and
choice of suitable node phases. In future work, a combination of the presented results
is suggested. In particular, the final aim of this work is the computation of offset
assignments and node phases in order to guarantee small message response times

with a high probability.
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