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ABSTRACT 

 

 

NONLINEAR DYNAMIC ANALYSIS OF A DRIVETRAIN COMPOSED 

OF CYLINDRICAL GEARS, STRAIGHT AND SPIRAL BEVEL GEARS 

 

 

 

Yavuz, Şiar Deniz 

Ph.D., Department of Mechanical Engineering 

Supervisor: Assoc. Prof. Dr. Ender Ciğeroğlu 

Co-Supervisor: Assoc. Prof. Dr. Zihni Burçay Sarıbay 

February 2018, 168 pages 

 

 

A nonlinear dynamic model of a drivetrain composed of spur, helical and spiral 

bevel gears is proposed. Gear shafts are modeled by using Timoshenko beam finite 

element method and mesh models of gear pairs are used to couple them. Dynamic 

model includes the flexibilities of bearings as well. Gear backlash and time variation 

of mesh stiffness are incorporated into the mesh model. Harmonic Balance Method 

(HBM) with multiple harmonics is applied on the system of nonlinear differential 

equations in order to obtain a system of nonlinear algebraic equations. Since finite 

element modelling results in large number of nonlinear equations, receptance 

method and modal superposition method are introduced to forced response analysis 

of geared systems with nonlinearities in order to reduce computational effort. This 

makes it possible to use finite element models for gear shafts. In the calculation of 

Fourier coefficients, continuous-time Fourier transform, as opposed to the gear 

dynamics studies that utilize discrete Fourier transform, is used. Thus, convergence 

problems that arise when the number of nonlinear DOFs is large are avoided. 
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Moreover, analytical integration is employed for the calculation of Fourier 

coefficients rather than numerical integration in order to further reduce the 

computational time required. Nonlinear algebraic equations obtained are solved by 

utilizing Newton’s method with arc-length continuation. The results obtained by 

HBM are verified by comparing them with those obtained by direct numerical 

integration, which are computationally demanding. Several parametric studies are 

performed and response of the system is investigated to demonstrate the effects of 

system parameters. 

 

Keywords: Nonlinear gear dynamics, spiral bevel gear, time-varying mesh 

stiffness, static transmission error, Harmonic Balance Method with multiple 

harmonics 
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ÖZ 

 

 

SİLİNDİRİK DİŞLİLER, DÜZ VE SPİRAL KONİK DİŞLİLERDEN 

OLUŞAN BİR DİŞLİ KUTUSUNUN DOĞRUSAL OLMAYAN DİNAMİK 

ANALİZİ 

 

 

 

Yavuz, Şiar Deniz 

Doktora, Makina Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. Ender Ciğeroğlu 

Ortak Tez Yöneticisi: Doç. Dr. Zihni Burçay Sarıbay 

Şubat 2018, 168 sayfa 

 

 

Düz, helis ve spiral konik dişlilerden oluşan bir dişli sisteminin doğrusal olmayan 

dinamik modeli önerilmektedir. Dişli şaftları Timoshenko kiriş sonlu elemanlar 

metodu kullanılarak modellenmiştir ve bunları birleştirmek için dişli çiftlerinin 

kavrama modelleri kullanılmıştır. Dinamik model rulman esnekliklerini de 

içermektedir. Dişli boşluğu ve kavrama sıkılığının zamanla değişimi kavrama 

modeline dahil edilmiştir. Doğrusal olmayan cebirsel denklem sistemini elde etmek 

için, doğrusal olmayan diferansiyel denklem sistemine çok harmonikli Harmonik 

Denge Yöntemi uygulanmıştır. Sonlu elemanlar modellemesi çok sayıda doğrusal 

olmayan denklemle sonuçlandığından, hesaplama çabasını azaltmak için doğrusal 

olmayan dişli sistemlerin zorlamalı yanıt analizlerine reseptans yöntemi ve modal 

süperpozisyon yöntemi getirilmiştir. Bu, dişli şaftları için sonlu elemanlar modelleri 

kullanmayı mümkün kılar. Fourier katsayılarının hesaplanmasında, kesikli Fourier 

dönüşümü kullanan dişli dinamiği çalışmalarının aksine sürekli-zamanlı Fourier 
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dönüşümü kullanılmıştır. Böylece, doğrusal olmayan serbestlik derecesi çok 

olduğunda ortaya çıkan yakınsama problemleri önlenir. Ayrıca, gereken hesaplama 

süresini daha da azaltmak için Fourier katsayılarının hesaplanmasında sayısal 

entegrasyon yerine analitik entegrasyon kullanılmıştır. Elde edilen doğrusal 

olmayan cebirsel denklemler yay uzunluğu sürekliliği ve Newton Yöntemi 

kullanılarak çözülmüştür. Harmonik Denge Yöntemi ile elde edilen sonuçlar, 

hesaplama açısından zorlu doğrudan sayısal entegrasyonla elde edilenlerle 

karşılaştırılarak doğrulanmıştır. Birçok parametrik çalışma yapılmıştır ve sistem 

parametrelerinin etkisini göstermek için sistemin yanıtı incelenmiştir. 

 

Keywords: Doğrusal olmayan dişli dinamiği, spiral konik dişli, zamanla değişen 

kavrama sıkılığı, statik aktarım hatası, çok harmonikli Harmonik Denge Yöntemi  
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CHAPTER 1  
 

 

INTRODUCTION 

 

 

 

1.1   Introduction 

Gears are used in numerous applications in order to transmit power between shafts. 

Therefore, extensive researches have been performed on conventional gears such as 

spur, helical and bevel gears. Spur and helical gears are classified as parallel axis 

gears, whereas bevel gears are called nonparallel axis gears. Teeth of spur gears are 

parallel to the rotation axis; therefore, they are the most common and simplest form 

of gears. Helical gears have teeth making an angle with the rotation axis, which 

provides a smoother operation with less noise. Furthermore, a helical gear pair can 

transmit a larger load compared to an equivalent spur gear. On the other hand, shafts 

are nonparallel in many applications and bevel gears are utilized for transmitting 

power between these shafts [1,2]. Bevel gears, which have teeth formed on conical 

surfaces, are classified by American Gear Manufacturers Association (AGMA) as 

follows [3]:  

 

• Straight bevel gears: These are the simplest form of bevel gears, which is 

shown in Fig. 1.1. They have straight and tapered teeth, whose inward 

extension intersect in a common point at the axis of the gear. Therefore, they 

are the bevel counterpart of the spur gears. Straight bevel gears are 

recommended for the applications with pitch-line velocities up to 5 m/s due 

to the noise [1–3]. 
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Fig. 1.1 Straight (left) and spiral (right) bevel gears [4] 

 

 

Fig. 1.2 Zerol bevel gear [5] 

 

 

Fig. 1.3 Hypoid gear [6] 



3 
 

• Spiral bevel gears: These are the most complex form of bevel gears, which 

is shown in Fig. 1.1. They have curved and oblique teeth and so they are the 

bevel counterpart of the helical gears. As a result of considerable amount of 

overlapping tooth action, i.e. high contact ratio, power transmission with 

spiral bevel gears is quieter and smoother than transmission with straight 

bevel or Zerol bevel gears. Consequently, spiral bevel gears are utilized in 

high speed applications, where noise is a significant concern. 

 

• Zerol bevel gears: These are special gears with curved teeth having a zero 

spiral angle, which is shown in Fig. 1.2. They can transmit more power with 

less noise compared to straight bevel gears. They produce the same thrust 

load on the bearings and have smooth operating characteristics. Moreover, 

manufacturing process of Zerol bevel gears is very similar to that of spiral 

bevel gears. They are widely used as accessory drives in high speed 

applications. 

 

• Hypoid gears: As shown in Fig. 1.3, the axis of pinion has an offset with the 

axis of wheel, which is appropriate for some applications such as automotive 

differential requiring nonintersecting shafts. The meshing process in hypoid 

gears include both sliding and rolling, which is similar to that of worm gears. 

The hypoid gears with larger offsets are sometimes referred to by the name 

“spiroid gears”. 

 

Among the all types, spiral bevel gears are mainly used in helicopter transmission 

system, which is illustrated in Fig. 1.4. In the shown stage of the transmission system 

of AW139 helicopters, the large diameter collector wheel combines the two input 

power supply branches, redirecting the drive about an almost vertical axis, 

coincident with the main rotor axis. Moreover, the tail rotor and accessory drives 

are connected to the collector wheel, which constitutes one of the main features of 
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the entire system [7]. Similarly, in Sikorsky CH-53K helicopter and Bell 525 

helicopter, the first reduction stages, which transmit power from the engines to the 

main gearboxes, are comprised of spiral bevel gears. These spiral bevel gears are 

the fastest rotating components in these gearboxes and they are critical from 

dynamics perspective. 

 

Gear vibration is an important consideration in drivetrain systems due to noise and 

durability problems. Dynamic mesh forces are much higher compared to static 

forces and these dynamic forces are transmitted to casing through bearings, which 

cause excessive noise. Moreover, alternating forces induced by vibration reduce 

fatigue lives of the driveline components. Therefore, a comprehensive investigation 

of gear dynamics is the key point in the design of a quiet and durable transmission 

system. 

 

Fig. 1.4 Collector stage of AW139 helicopter [7] 
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1.2   Literature Survey 

The literature about gears are categorized into many areas, such as gear tooth surface 

geometry, tooth contact, dynamics, stress and fracture, fatigue, wear, lubrication and 

tribology, manufacturing etc. However, the literature review performed in this 

dissertation is limited to gear dynamics related studies.  

 

There are a large number of studies about gear dynamics in the literature and in the 

vast majority of these studies, parallel axis gears are considered. Mathematical 

models used in spur gear dynamics are reviewed in [9]. The models are classified 

into 5 groups as follows: 

 

 

Fig. 1.5 Main gearbox of Sikorsky CH-53K helicopter [8] 
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1) Simple Dynamic Factor Models, which are used by most of early studies in 

order to obtain a dynamic factor for the calculation of gear root stress. 

2) Models with Tooth Stiffness, in which only the tooth stiffness is included 

by neglecting the flexibilities of shafts, bearings etc. 

3) Models for Gear Dynamics, in which the stiffness of the other components, 

i.e. torsional flexibilities of shafts and lateral flexibilities of bearings, in 

addition to tooth stiffness are included. 

4) Models for Geared Rotor Dynamics, in which transverse flexibilities of 

shafts are also considered. 

5) Models for Torsional Vibrations, which neglect gear tooth stiffness and 

include torsional flexibilities of shafts. This models may be considered as 

pure torsional vibration problems, rather than gear dynamics problems. 

 

A single degree-of-freedom (SDOF) nonlinear dynamic model of a spur gear pair is 

proposed in [10]. In that study, a computer program is developed in order to 

calculate the dynamic transmission error and dynamic mesh force by using loaded 

static transmission error. Time variation of mesh stiffness is also included in the 

model. Moreover, an SDOF nonlinear dynamic model with time invariant mesh 

stiffness for a spur gear pair is proposed in [11]. Two solution methods, i.e. direct 

time integration, and Harmonic Balance Method (HBM), are utilized in order to 

obtain the steady-state solutions, which are then compared to the experimental 

results. Nonlinear torsional dynamics of a spur gear pair are also analyzed in [12–

14]. 

A 3-DOF nonlinear dynamic model with time invariant mesh stiffness is developed 

in [15]. Clearance-type nonlinearities of bearings as well as nonlinearities associated 

with backlash are included in the model. Later on, fluctuation of mesh stiffness is 

incorporated into the model in [16].  
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Considering torsional flexibilities of shafts and transverse flexibilities of bearings, 

a 6-DOF nonlinear time-varying (NTV) dynamic model for a spur gear train is 

presented in [17]. 

 

A finite element model of a drivetrain including spur gears on flexible bearings is 

developed in [18] in order to study the effect of bearing flexibility on the dynamics 

of the drivetrain. The shafts are modeled by using finite elements with 5-DOFs at 

each node (excluding axial motion). The parametric excitations caused by 

fluctuating mesh stiffness are considered as well. Furthermore, a NTV dynamic 

model of a gear train including shafts and bearings is presented in [19], where FEM 

is used to model the shafts. Then, clearance-type nonlinearity in bearings is 

incorporated into the model in [20,21]. 

  

Effects of clearance-type nonlinearity and parametric excitations on a mechanical 

oscillator with a piecewise-linear clearance function are studied in [22] and HBM is 

used for the calculation of the response. In [23], the study is extended to the 

investigation of subharmonic resonances in the response of the same system. Then, 

experimental results about the nonlinear dynamic behavior of the same system are 

presented in [24]. Similarly, considering external and parametric excitations, 

dynamic behavior, i.e., period-one and subharmonic motions, of a mechanical 

oscillator with a piecewise-nonlinear clearance function is studied in [25,26].  

 

A 2-DOF NTV dynamic model of a two stage spur geared system composed of rigid 

shafts is presented in [27]. Furthermore, subharmonic motions of the same gear train 

are investigated in [28]. Then, the model is extended to consist of M shafts coupled 

by M-1 gear pairs and to include the torsional flexibilities of the shafts in [29]. 

Nonlinear dynamic models with fluctuating mesh stiffness are proposed in [30,31] 

for idler and counter-shaft arrangements of spur gears. A NTV dynamic model is 

proposed for a planetary gear set composed of spur gears in [32]. 
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In the literature, there are also studies including friction in dynamic model. An 

analytical model incorporating sliding friction into the dynamic equations of a spur 

gear pair is developed in [33,34]. In [33], a linear time-varying (LTV) dynamic 

model is considered, whereas both LTV and NTV models are utilized in [34]. A 6-

DOF NTV dynamic model of a spur gear pair, which includes a friction coefficient 

based on an elastohydrodynamic lubrication (EHL) formulation is proposed in [35] 

in order to study the influence of friction on dynamics. Influences of sliding friction 

on gear dynamics are also investigated in [36,37]. Moreover, a mathematical model 

is proposed in [38] for the calculation of frictional losses. 

 

Several investigations are also conducted for helical gears. Considering shaft and 

bearings flexibilities, a linear time-invariant (LTI) dynamic model of a helical gear 

pair is presented in [39]. Shaft and bearing flexibilities are included in a linear time-

invariant (LTI) dynamic model of a helical gear pair. A LTI dynamic model for a 

flexibly mounted drivetrain including three helical gears is proposed in [40] in order 

to examine the influence of mesh phasing on dynamics. Furthermore, a LTI dynamic 

model of a multi-mesh helical geared system is developed in [41], where FEM is 

used to model the shafts. A LTI dynamic model is proposed for a planetary gear set 

composed of helical gears in [42]. 

 

Even though there are many studies regarding the dynamics of parallel axis gears, 

research on bevel gear dynamics is limited. Initially, dynamics of a bevel geared 

system considering axial, torsional and transverse vibrations is investigated in 

[43,44], where mesh stiffness is not considered. An SDOF NTV dynamic model of 

a hypoid gear pair is developed in [45]. In that study, a new gear mesh model based 

on a tooth contact analysis by using Calyx commercial software is proposed. An 8-

DOF NTV dynamic model including asymmetric mesh stiffness for a spiral bevel 

gear is proposed in [46]. Furthermore, a 14-DOF NTV dynamic model of a bevel 

gear train including a bevel gear pair, a load and an engine is developed in [47]. 
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Moreover, time variation of bearing stiffness is incorporated into the same model in 

[48]. Then, FEM model of shafts is introduced in [49] for a LTI spiral bevel gear 

train in order to describe the shaft-bearing structural characteristics better. On the 

other hand, considering a friction coefficient based on EHL, a model is proposed in 

[50] in order to calculate the frictional losses. Moreover, the influence of friction on 

dynamics of hypoid and spiral bevel gears is investigated in [51]. 

 

 

1.3   Motivation, Scope and Objective 

Analytical evaluation of the dynamics of gear pairs and also full drive train system 

is required to design a more silent and durable transmission system. Therefore, there 

are numerous gear dynamics related studies in the literature. It is seen from the 

literature that a single cylindrical gear pair, i.e., spur and helical gear, is considered 

in the vast majority of these studies. The studies about dynamics of bevel gears are 

limited due to complexity of tooth geometry, kinematics and meshing process of 

these types of gears. These studies mainly focus on gear pair; hence, supporting 

structures such as shafts and bearings are modeled by employing lumped stiffness 

and damping elements. Therefore, dynamic characteristics of shaft-bearing 

structures are not studied extensively. Moreover, the studies on multi-mesh gear 

systems are fewer compared to the ones on single gear pair systems in spite of the 

widespread use of multi-stage, multi-mesh drivetrains. Even, there is no known 

study that addresses nonlinear dynamics of a multi-stage, multi-mesh drivetrain 

including a bevel gear. 

 

The main goal of this dissertation is to develop a nonlinear dynamic model of a 

multi-mesh, multi-stage drivetrain composed of both cylindrical gears and bevel 

gears. An accurate mesh model including both fluctuating mesh stiffness and 

backlash nonlinearity is aimed to be proposed. The dynamic model will combine the 
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Timoshenko beam FEM model of shaft-bearing structures with the mesh models of 

gear pairs. Therefore, dynamic characteristics of shaft-bearing structures will be 

studied as well.  

 

Due to finite element modeling of shafts, a large number of nonlinear equations is 

obtained. Since the iterative solution of these equations is computationally 

demanding and an inefficient process, some nonlinear solution methods such as 

receptance method and modal superposition method will be introduced to the 

dynamic analysis of geared systems with nonlinearities in order to decrease the 

computational time. In the receptance method, the total DOFs are grouped into linear 

and nonlinear DOFs and only the nonlinear equations obtained from the nonlinear 

DOFs need to be solved [52,53]. Since only the DOFs associated with the gears 

contain nonlinearity, receptance method can be utilized in the dynamic response 

analysis of a drivetrain. However, if drivetrain consists of multiple gear pairs, 

receptance method will also result in a large number of nonlinear equations and large 

matrices will be involved in the solution procedure. Therefore, modal superposition 

method is to be introduced to the dynamic response analysis of multi-stage, multi-

mesh gear systems. In modal superposition method, the response of the nonlinear 

system is estimated by modal superposition employing the mode shapes of the linear 

system. The number of resulting nonlinear equations depends on the number of 

modes utilized in the modal superposition; therefore, it is independent of the number 

of nonlinear DOFs, i.e., the number of gear meshes. 

 

Both time domain simulation and frequency domain simulation by utilizing 

Harmonic Balance Method (HBM) will be performed. In HBM, nonlinear forces are 

represented by Fourier series approximation and it is an extensively used method in 

the dynamic response analysis of geared systems. However, discrete Fourier 

transform utilized in HBM causes some convergence problems in the solutions of 

systems with large number of nonlinear equations. Therefore, it is aimed to develop 
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a computationally efficient solution method and as opposed to gear dynamics studies 

that utilize discrete Fourier transform [27,28,54,55], continuous-time Fourier 

transform will be employed. It is also aimed to decrease the computational time by 

employing analytical integration rather than numerical integration for the 

calculation of Fourier coefficients. Furthermore, the method to be developed will be 

applicable to single and multiple harmonic forced response analysis. Finally, several 

parametric studies will be accomplished in order to examine the effects of a large 

number of design parameters on dynamics of geared systems. In these parametric 

studies, effects of shaft lengths, gear hand configurations, orientation angles of 

gears, backlash amount, bearing stiffness coefficients, helix angle etc. will be 

investigated. 

 

 

1.4   Dissertation Overview 

In the first chapter of this dissertation, a brief introduction, literature survey and 

motivation, scope and objective of this research are provided. In Chapter 2, 

nonlinear time-varying dynamic analysis of a multi-mesh spur gear train is presented 

in order to gain insight of gear dynamics. The interactions between the gear meshes 

such as mesh phasing are investigated for different loading conditions such as idler 

and split-torque arrangements. The effects of asymmetric positioning of the gears 

around the middle gear on the dynamic response are also studied. Chapter 3 

describes the linear dynamic analysis of helical geared systems. The undamped 

natural frequencies of some drivetrain configurations, i.e., countershaft 

arrangement, split-torque and idler arrangements, obtained by Timoshenko beam 

finite element model (FEM) used in this study and by commercial gear analysis 

software MASTA are compared in order to verify the FEM developed in this study. 

In Chapter 4, considering both backlash nonlinearity and time-varying mesh 

stiffness, a nonlinear dynamic model of a spiral bevel gear train composed of two 
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flexible shafts is proposed. The mesh model of the gear pair is integrated into the 

Timoshenko beam FEM model of shaft-bearing structures. Furthermore, receptance 

method is introduced to the dynamic analysis of geared systems with nonlinearities 

in order to decrease the number of resulting nonlinear equations. Several case 

studies are performed and the effects of backlash amount and fluctuating mesh 

stiffness on dynamics are studied. In Chapter 5, a nonlinear time-varying dynamic 

model of a multi-stage, multi-mesh drivetrain composed of both cylindrical and 

bevel gears is presented. Since receptance method also results in a large number of 

nonlinear equations and large matrices are utilized in the solution, modal 

superposition method is employed. Thus, the number of nonlinear equations is 

proportional to the number of modes utilized in the modal superposition, rather than 

the number of DOFs associated with the nonlinear elements. Several parametric 

studies are accomplished in order to demonstrate the influences of a large number 

of design parameters on dynamics of multi-mesh, multi-stage geared system. 

 

  



13 
 

CHAPTER 2  
 

 

NONLINEAR TIME-VARYING DYNAMIC ANALYSIS OF A MULTI-

MESH SPUR GEAR TRAIN 

 

 

 

2.1   Introduction 

There are numerous gear dynamics related studies in the literature and in the vast 

majority of these studies, a single gear pair is considered. Numerous mathematical 

models are constructed and analytical and numerical solution methods are developed 

in those studies. The models including a spur gear pair are mostly nonlinear 

(piecewise-linear) due to backlash but differ in incorporating time variation of mesh 

stiffness. Some of these models are nonlinear time-invariant (NTI) [11], whereas the 

others are nonlinear time-varying (NTV) [13,16,22,23,35]. However, published 

experimental data [22–24] show that the dynamic behavior of a spur gear is 

nonlinear and time-varying. These single degree-of-freedom (DOF) models are 

extended to multiple DOFs nonlinear models of geared rotor-bearing systems 

[15,17,19,21]. Moreover, linear and time-invariant characteristics of helical gears 

are studied in [39–41].  

 

The studies on multi-mesh gear systems are fewer than the ones on single gear pair 

systems in spite of the widespread use of multi-stage, multi-mesh drivetrains. NTV 

dynamic models of multi-mesh spur geared systems are developed in [27–29]. In 

those studies, Harmonic Balance Method (HBM) with multiple harmonics and 

discrete Fourier transform (DFT) are utilized to obtain period-1 and subharmonic 

responses. NTV dynamic models of two-stage spur gear trains in idler and counter-
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shaft arrangements are presented in [30,31]. For planetary gear sets composed of 

spur and helical gears, NTV [32] and LTI [42] dynamic models are proposed, 

respectively. 

 

A nonlinear time-varying dynamic model of a multi-mesh spur gear train is proposed 

in this study. Both backlash nonlinearity and mesh stiffness fluctuation are included 

in the model, which consists of three spur gears with one of the gears in mesh with 

the other two as shown in Fig. 2.1. Both static transmission error excitation and 

parametric excitations due to fluctuating mesh stiffness are considered. The multi-

term HBM coupled with DFT and arc-length numerical continuation are employed 

to solve the equations of motion for periodic steady-state response. Direct numerical 

integration (NI), which is computationally demanding, is employed to validate the 

results obtained by HBM. Furthermore, the stability of the steady-state solutions is 

determined by utilizing Floquet theory. Dynamics of both split-torque and idler 

arrangements are studied. In the split-torque arrangement, the system is driven by 

the middle gear, whereas one of the end gears is the input and the other one is the 

output in the idler arrangement. The interaction between meshes such as phasing is 

investigated for each loading condition and the influence of mesh phasing on 

dynamics is discussed. The effects of asymmetric positioning of the gears around 

the middle gear on the dynamic response are also studied.  

 

 

2.2   Dynamic Model Formulation 

2.2.1   Physical System and Dynamic Model 

The drivetrain illustrated in Fig. 2.1 is composed of three spur gears with rigid gear 

blanks mounted on rigid shaft-bearing assembly. The gear in the middle, gear-2, 

meshes with the other two gears, gear-1 and gear-3. The mesh coupling between the 
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gears, which is illustrated in Fig. 2.2, includes gear backlash, time-varying mesh 

stiffness, which acts as parametric excitation, and time-invariant mesh damping. The 

static transmission errors, ( )1e t  and, ( )2e t , excite the gear train as well. Gear mesh 

damping elements are also assumed not to be subjected to gear backlash 

nonlinearity. 

 

In Fig. 2.2, torsional vibrations of each gear are considered where ir  denotes the 

base radius and iI  represents the polar mass moment of inertia of the thi  gear. 

Therefore, the system is modeled by a 3-DOFs semi-definite dynamic model with 

coordinates ( ), 1-3i iθ = . 

 

The equations of motion of the drivetrain are expressed as follows  

 

 ( ) ( ) ( ) ( ) ( )1 1 1 1 1 1 2 2 1 1 1 1 1( )I t r c r t r t e t r k t g t Tθ θ θ + + + + = 
  

 ,  (2.1) 

 

 

Fig. 2.1 Multi-mesh spur gear train considered in this study 

Bearing
Shaft

Gear-3
Gear-1

Gear-2
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2 2 1 1 1 2 2 1 2 1 1

2 2 2 2 3 3 2 2 2 2 2

( )

( )

I t r c r t r t e t r k t g t

r c r t r t e t r k t g t T

θ θ θ

θ θ

 + + + + 
 + + + + = 

  



 



,  (2.2) 

 

 ( ) ( ) ( ) ( ) ( )3 3 3 2 2 2 3 3 2 3 2 2 3( )I t r c r t r t e t r k t g t Tθ θ θ + + + + = 
  

 , (2.3) 

 

where 1g  and 2g  are nonlinear displacement functions defined mathematically as 

 

 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 1 2 2 1 1 1 1 2 2 1 1

1 1 1 2 2 1 1

1 1 2 2 1 1 1 1 2 2 1 1

,

0,

,

r t r t e t b r t r t e t b

g r t r t e t b

r t r t e t b r t r t e t b

θ θ θ θ

θ θ

θ θ θ θ

    + + − + + >   = + + ≤


   + + + + + < −   

,  (2.4) 

 

 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 2 3 3 2 2 2 2 3 3 2 2

2 2 2 3 3 2 2

2 2 3 3 2 2 2 2 3 3 2 2

,

0,

,

r t r t e t b r t r t e t b

g r t r t e t b

r t r t e t b r t r t e t b

θ θ θ θ

θ θ

θ θ θ θ

    + + − + + >   = + + ≤


   + + + + + < −   

. (2.5) 

 

 

Fig. 2.2 Dynamic model of the system 

2c1c

1( )k t 2 ( )k t

( )1e t

( )2e t

1θ 2θ 3θ

1r 2r 3r

1I 2I 3I

12b
22b
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The above 3-DOFs semi-definite system can be transformed to a 2-DOFs definite 

system by defining two new coordinates: 

 

 ( ) ( ) ( ) ( )1 1 1 2 2 1p t r t r t e tθ θ= + + ,  (2.6) 

 

 ( ) ( ) ( ) ( )2 2 2 3 3 2p t r t r t e tθ θ= + + .  (2.7) 

 

These new coordinates represent the relative mesh displacements, which are the 

combinations of the dynamic and static transmission errors. Using Eqs. (2.1)-(2.3), 

(2.6) and (2.7), the following new system of equations is obtained  

 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2 2 2 2 2
1 2 2 1 2

1 1 1 2 2 1 1
1 2 2 1 2

2
2 1 2

2 2 1 2 1
2 1 2

r r r r rp t c p t c p t k t g t
I I I I I

r r rk t g t T T e t
I I I

   
+ + + + +   

   

+ = + +

  



,  (2.8) 

 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

22 2 2
32 2 2

2 1 1 2 2 1 1
2 2 3 2

22
3 32 2

2 2 2 3 2
2 3 2 3

rr r rp t c p t c p t k t g t
I I I I

r rr rk t g t T T e t
I I I I

 
+ + + + 

 
 

+ + = + + 
 

  



.  (2.9) 

 

In order to obtain the dimensionless equations of motion, the following 

transformations are applied: 

 

 2 31 2 2
1 2 32 2 2 2 2

1 2 2 1 2 3 2 2 3

, , I II I Im m m
r I r I r r I r I

= = =
+ +

,  (2.10) 

 

 ( ) ( ) ( ) ( )1 2
1 2

1 2

,
m m

k t k t
k t k t

k k
= = ,  (2.11) 
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 2 2 2 21 2 1 2
11 12 21 22

1 2 2 3

, , ,m m m mk k k k
m m m m

ω ω ω ω= = = = ,  (2.12) 

 

 1 2 1 2
11 12 21 22

1 11 2 12 2 21 3 22

, , ,
2 2 2 2

c c c c
m m m m

ζ ζ ζ ζ
ω ω ω ω

= = = = ,  (2.13) 

 

where the mean components of the mesh stiffness functions, ( )1k t  and ( )2k t , are 

denoted by 1mk  and 2mk , respectively. Here, ( ), 1, 2ij i jζ =  defines the damping ratio 

and ( ), 1, 2ij i jω =  is the characteristic frequency. Moreover, ct t ω=  is the 

dimensionless time, where cω  is one of the characteristic frequencies. 

Dimensionless displacements are expressed as ( ) ( )i i cp t p t b= , ( ) ( )i i ce t e t b=  

and ( )1,2i i cb b b i= = , where cb  denotes the characteristic length. Using these 

dimensionless parameters and letting ( ), 1, 2ij ij c i jω ω ω= = , the dimensionless 

equations of motion can be written as 

 

 

( )
( )

( )
( )

( ) ( )
( ) ( )

( )
( )

( ) ( )
( ) ( )

1 111 11 12 12

2 221 21 22 22

12 2
1111 1 12 2

2 2 2
221 1 22 2 2

2

m

m

p t p t
p t p t

F e tg tk t k t
g tk t k t F e t

ζ ω ζ ω
ζ ω ζ ω

ω ω
ω ω

′′ ′       +    ′′ ′       
 ′′+      + =    

′′+      

,  (2.14) 

 

where  

 

 ( )
( ) ( )

( )
( ) ( )

,
0, , 1, 2

,

i i i i

i i i

i i i i

p t b p t b
g t p t b i

p t b p t b

 − >


= ≤ =
 + < −

,  (2.15) 
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 ( ) ( ) ( ) ( )1 2 31 2 2
1 2 2 32 2

1 2 2 3

1 1,m m
c c c c

rr r rF t T T F t T T
b I I b I Iω ω

  
= + = +  

   
.  (2.16) 

 

 

2.2.2   Period-one dynamics 

The multi-harmonics Harmonic Balance Method in conjunction with discrete 

Fourier transform, which has been successfully employed in [22,23,27,28], is 

utilized to solve the dimensionless equations of motion for ( )1,2ip i = . Since the 

static transmission errors and the time-varying parameters are assumed to be 

periodic, the solution can be expressed periodically as well [27]. This also implies 

that the nonlinear displacement functions ( ) ( )1,2ig t i =  can also be described 

periodically. The harmonic expressions for mesh stiffness and static transmission 

error are expressed as 

 

 ( ) ( ) ( ) ( ) ( ) ( )2 2 1
1

1 cos sin , 1,2
A

i i
i a a

a
k t a t a t iκ κ +

=

 = + Ω + Ω = ∑ ,  (2.17) 

 

 ( ) ( ) ( ) ( ) ( ) ( )2 2 1
1

cos sin , 1, 2
J

i i
i j j

j
e t j t j t iε ε +

=

 = Ω + Ω = ∑ .  (2.18) 

 

The mean values of the static transmission errors are set to zero since only the second 

order derivatives of them are incorporated into the equations of motion (2.14) as 

parts of the excitation terms on the right hand side of the equation.  

 

Given the periodic excitations of Eqs. (2.17)-(2.18), the steady-state solution is 

assumed as follows 
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 ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 2 1
1

cos sin , 1,2
R

i i i
i r r

r
p t u u r t u r t i+

=

 = + Ω + Ω = ∑ ,  (2.19) 

 

which is differentiated as 

 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 1
1

sin cos , 1,2
R

i i
i r r

r
p t r u r t r u r t i+

=

 ′ = − Ω Ω + Ω Ω = ∑ ,  (2.20) 

 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2
2 2 1

1
cos sin , 1,2

R
i i

i r r
r

p t r u r t r u r t i+
=

 ′′ = − Ω Ω + Ω Ω = ∑ .  (2.21) 

 

Sampling N points in a mesh cycle, the time series of nonlinear restoring forces can 

be calculated as follows 

 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2
1 1 1 2 2 2 , 1, 2 ,i

k n i n n i n nF t k t g t k t g t iω ω= + =   (2.22) 

 

where ( )0,1,2, 1nt n n Nρ= = − . Here, ( )2 Nρ π= Ω . 

 

In order to utilize multi-harmonics HBM, the nonlinear restoring forces are 

represented by Fourier series as 

 

 ( ) ( ) ( )
( )
( ) ( ) ( )

( ) ( ) ( )1 2 2 1
1

cos sin , 1,2
R

i i i i
k k k r k r

r
F t F F r t F r t i+

=

 = + Ω + Ω = ∑ ,  (2.23) 

 

where the coefficients are calculated by employing discrete Fourier transform as 

( )1,2,r R=    

 

 ( ) ( ) ( )
1

1
0

1 , 1, 2
N

i i
k k

n
F F i

N

−

=

= =∑ ,  (2.24) 
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 ( )
( ) ( ) ( )

1

2
0

2 2cos , 1,2
N

i i
kk r

n

rnF F i
N N

π−

=

 = = 
 

∑ ,  (2.25) 

 

 ( )
( ) ( ) ( )

1

2 1
0

2 2sin , 1,2
N

i i
kk r

n

rnF F i
N N

π−

+
=

 = = 
 

∑ .  (2.26) 

 

Substituting Eqs. (2.18), (2.20)-(2.21), and (2.23) into Eq. (2.14) and equating the 

coefficients of the like harmonic terms, a total of ( )4 2R +  nonlinear algebraic 

equations are obtained with ( )1,2i =  and ( )1,2,r R=   

 

 ( ) ( ) ( )
1 1 0i i i

k mS F F= − = ,  (2.27) 

 

 
( ) ( ) ( ) ( ) ( )

( ) ( )
( )
( ) ( ) ( )

2 1
2 2 1 1 2 1

22
2 2 2 1 22

2

2 0

i i
r r i i r

i i
i i r rk r

S r u r u

r u F r

ζ ω

ζ ω ε

+

+

= − Ω + Ω

+ Ω + + Ω =
,  (2.28) 

 

 
( ) ( ) ( ) ( ) ( )

( ) ( )
( )
( ) ( ) ( )

2 1
2 1 2 1 1 1 2

22
2 2 2 2 12 1

2

2 0

i i
r r i i r

i i
i i r rk r

S r u r u

r u F r

ζ ω

ζ ω ε

+ +

++

= − Ω − Ω

− Ω + + Ω =
.  (2.29) 

 

Finally, the solution vector ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 2 2 2 2
1 2 2 2 1 1 2 2 2 1, , , , , , ,

T

R R R Ru u u u u u u u+ +
 =  U    is 

determined by employing Newton’s Method. In order to follow the solution path 

even around turning points, where the Jacobian becomes singular, arc-length 

continuation is employed. Details are given in Chapter 4. 

 

The Floquet theory is used to determine the stability of the steady-state solutions 

( ), 1, 2ip i =  obtained above. This is done by investigating the stability of the 



22 
 

perturbed solution ( ), 1, 2i ip p i+ ∆ = . The variational equation for the perturbation 

( ), 1, 2ip i∆ =  is 

 

 

( )
( )

( )
( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )
( ) { }

1 111 11 12 12

2 221 21 22 22

2 2
111 1 1 12 2 2

2 2
221 1 1 22 2 2

2

0

p t p t
p t p t

p tk t t k t t
p tk t t k t t

ζ ω ζ ω
ζ ω ζ ω

ω φ ω φ
ω φ ω φ

′′ ′∆ ∆       +    ′′ ′∆ ∆       
  ∆  + =   ∆   

,  (2.30) 

 

where ( )i tφ  represents the discontinuous separation function 

 

 ( )
( )
( )

( )
1, 1

, 1,2
0, 1

i
i

i

p t
t i

p t
φ

 >= =
≤

.  (2.31) 

 

Eq. (2.30) is expressed in state-space form ( ) ( ) ( )t t t′ =P G P  where 

( ) [ ]1 2 1 2
Tt p p p p′ ′= ∆ ∆ ∆ ∆P  is the state vector and ( ) ( )t t T= +G G  is the 

periodic state matrix as 

 

 ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 2
11 1 1 12 2 2 11 11 12 12
2 2
21 1 1 22 2 2 21 21 22 22

0 0 1 0
0 0 0 1

2 2
2 2

t
k t t k t t
k t t k t t

ω φ ω φ ζ ω ζ ω
ω φ ω φ ζ ω ζ ω

 
 
 =
 − − − −
 − − − − 

G .  (2.32) 

 

Then, a homogenous matrix equation, ( ) ( ) ( )t t t′ =z G z , is obtained by employing 

Floquet theory and the solution of this homogenous matrix equation with the initial 

condition ( ) 40 =z I  results in the monodromy matrix, ( )T=M z . The stability of 
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the solution is determined by investigating the eigenvalues of this matrix. Here 4I  

is 4 4×  identity matrix [22]. 

 

M  can be computed with a method based on an assumed stepwise variation. ( )tG  

is estimated as a series of step functions nG  at N discrete time intervals nhτ =  as 

follows 

 

 ( )
( )

( )
1

1 , 1, 2,
nh

n n h
d n N

h
τ τ

−
= =∫G G  .  (2.33) 

 

If large number of time steps, N , is used, ( )tG can be considered constant between 

two consecutive time steps and the integration is not needed. Between these two 

time instants, the following relation, where the exponential term is the state 

transition matrix, can be written  

 

 1
nh

n ne+ = Gz z .  (2.34) 

 

Then, the monodromy matrix is computed as the product of the individual transition 

matrices [56]: 

 

 
1

0
0

n

N
h

N
n

e
−

=

= ∏ Gz z ,  (2.35) 

 

 
1

0

n

N
h

n

e
−

=

= ∏ GM .  (2.36) 

 

Using Pade approximation or thL  order truncated Taylor series approximation as in 

[22] to calculate the matrix exponentiation above, monodromy matrix M  is 
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calculated. The solution is unstable when the amplitude of any of the eigenvalues 

iλ  of M  is larger than unity; otherwise the solution is stable [22,56]. 

 

 

2.2.3   Loading Conditions and Mesh Phases 

Two different loading conditions as shown in Fig. 2.3 are considered here. In case-

I, the system is driven by the middle gear (gear-2) and gears at the ends, gear-1 and 

gear-3, are outputs. This is known as split-torque arrangement. On the other hand, 

in case-II, gear-3 (output) is driven by gear-1 (input) through gear-2 (idler), which 

is idler arrangement. Therefore, the dynamic model shown in Fig. 2.2 is actually for 

idler arrangement but the same equations of motion can be obtained for split-torque 

arrangement by defining the same coordinates ( )1p t  and ( )2p t  as given in Eqs. 

(2.6) and (2.7). The static transmission errors for the two meshes in the system are 

defined as 

 

 ( ) ( ) ( )1
1 1

1
sin

J

j j
j

e t E j t α
=

= Ω +∑ ,  (2.37) 

 

 ( ) ( )2
2 2

1
sin

J

j j
j

e t E j t jα
=

 = Ω + + Π ∑ ,  (2.38) 

 

where ( )i
jE  and ijα  are the thj  harmonic amplitude and phase angle of the thi  gear 

mesh, respectively. Assuming that the both gear meshes are subject to same flank 

modifications yields 1 2j jα α=  [40]. Therefore, the only phase difference between 

the meshes is Π , which is defined as 

 

 ( )2Z ψ γΠ = + ,  (2.39) 
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where 2Z  represents the number of teeth of gear-2 and ψ  denotes the angle between 

the lines connecting the centers of the gears forming the meshes, which is shown in 

Fig. 2.4. γ  is given as 

 

 
2

0, split-torque arrangement
, idler arrangementZ

γ
π


= 


.  (2.40) 

 

The same phase relationship is also valid for the mesh stiffness. In addition, tooth 

deflection is maximum when the mesh stiffness is minimum. Similarly, the 

minimum tooth deflection corresponds to the maximum mesh stiffness. Thus, there 

 

Fig. 2.3 Different loading conditions such as split-torque and idler arrangements 

Gear-1 Gear-2 Gear-3

TinTout Tout

Base Circle

Pitch Circle
Line of Action

Case-I: Split-Torque Arrangement

Case-II: Idler Arrangement

Gear-1 Gear-2 Gear-3

Tin Tout
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is an out-of-phase relationship between the mesh stiffness and the static transmission 

error of a gear mesh: 

 

 ( ) ( ) ( ) ( )1 1
1 0 1

1
sin

A

a j
a

k t K K a t α π
=

= + Ω + +∑ ,  (2.41) 

 

 ( ) ( ) ( ) ( )2 2
2 0 1

1
sin

A

a j
a

k t K K a t aα π
=

= + Ω + + + Π∑ .  (2.42) 

 

Definition of mesh stiffness ik  and static transmission error ie  can be converted to 

expressions that contain sine and cosine functions as in Eqs. (2.17) and (2.18). 

 

 

2.3   Results and Discussion 

A multi-mesh gear train composed of three identical spur gears with the parameters 

listed in Table 2.1 is considered as the example case. Only the first harmonics of the 

static transmission errors ( ) ( )1,2ie t i =  and the mesh stiffness functions 

 

Fig. 2.4 Definition of the angle ψ  

ψ
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( ) ( )1,2ik t i =  are considered in order to simplify the study. Furthermore, external 

torque values are taken as constant with no disturbances in the form of pulsations. 

 

Firstly, the period-1 motion solutions found by HBM and direct numerical 

integration are compared. Fig. 2.5 shows the rms values of the displacement 

response in the idler arrangement, whereas the corresponding mean components are 

illustrated in Fig. 2.6. In the HBM solution, three harmonics are utilized ( 3R =  in 

Eq. (2.19)). The number of teeth of the middle gear 2Z  is taken as even, which 

results in a phase difference of π between the two meshes.  

 

 

 

 

 

Table 2.1 Parameters of the drivetrain 

Parameter  Numerical value 

ir , [m] 0.0423 
Mass, [kg] 1.029 

iI , [kg m2] 0.00136 

1 2,m mk k  [N/m] 6(108) 

1 2,c c  [Ns/m] 3000 

1 2 3, ,T T T  in idler arrangement [Nm] 100, 0, -100 

1 2 3, ,T T T  in split-torque arrangement [Nm] 100, 200, 100 
( ) ( )1 2
1 1,K K  0.3 
( ) ( )1 2
1 1,E E  0.15 

ψ  180° 
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Fig. 2.5 rms values of the responses, ( )1p t  and ( )2p t  predicted by HBM and NI 
in the idler arrangement with even 2Z . ( ) Stable and ( ) unstable 

HBM solution, ( ) NI solutions, (a) ( )
1

rmsp (b) ( )
2
rmsp  

 

Fig. 2.6 Mean components of the responses, ( )1p t  and ( )2p t  predicted by 
HBM and NI in the idler arrangement with even 2Z . ( ) Stable and  

( ) unstable HBM solution, ( ) NI solutions, (a) ( )1
1u (b) ( )2

1u  
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20μmcb =  is used as the characteristic length, which implies that gears have a total 

of  backlash. 39667 rad/scω = , i.e. 11ω  given in Eq. (2.12), is considered as the 

characteristic frequency. With this characteristic frequency, the dimensionless 

undamped natural frequencies of the corresponding linear system are 1 0.71nω =  and 

2 1.25nω = . The rms values are calculated as 

 

 ( ) ( )
1 2

2

1

R
rms i

i r
r

p A
=

  =    
∑ ,  (2.43) 

 

where ( )i
rA is the amplitude of the thr  harmonic of ( )ip t that can be defined as 

 

 ( ) ( ) ( ){ }2 2

2 2 1
i i i

r r rA u u +
   = +    .  (2.44) 

 

In Fig. 2.5 and Fig. 2.6, stable and unstable HBM solutions are plotted with thick 

solid lines and thin dashed lines, respectively. It is observed that the solutions of the 

two methods are in very good agreement except around the unstable frequency 

ranges observed at [ ]1.13 1.33Ω = −  and [ ]1.73 1.93Ω = − . This shows the existence 

of subharmonic motions dictating these ranges, which corresponds to the parametric 

resonances due to the fluctuating mesh stiffness. While the NI solution can converge 

to these motions depending on the initial condition used, HBM cannot find these 

motions since the subharmonics are not included in the solutions assumed. 

 

It is known from past studies [11,22,23] that spur gears can exhibit both single-sided 

(SSI) and double-sided (DSI) tooth impacts depending on the system parameters. 

Similar behaviors are also seen here in the results of both HBM and NI. Focusing 

on Fig. 2.5, the responses of the gear pairs are linear with no tooth impact in the low 

frequency range. As the frequency increases, ( )
1

rmsp and ( )
2
rmsp forced response curves 
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exhibit SSI, which is a softening-type nonlinear behavior due to tooth separation 

occurring near the primary resonance frequency, 1nωΩ = . However, DSI, which is 

a hardening-type nonlinear behavior due to the additional impact with the preceding 

tooth, is not observed in the responses, since the amplitudes of the responses are 

smaller than the total amount of static deflection and backlash.  

 

There is also a super-harmonic resonance peak at 10.5 0.35nωΩ ≈ =  due to the 

parametric excitation in Fig. 2.5. This peak can only be observed if sufficient 

number of harmonics is used in HBM. The nonlinear behavior is also obvious in 

Fig. 2.6. Mean amplitudes of ( )1p t  and ( )2p t  remain nearly constant in the case of 

no tooth separation. However, the values of ( )1
1u  and ( )2

1u  vary significantly in the 

case of tooth separation. 

 

In Fig. 2.7, the response ( )1p t  of the split-torque arrangement obtained by HBM 

and NI is compared. Again, the number of teeth of gear-2 is even; hence, the two 

meshes are in phase. Due to the symmetry, the responses ( )1p t  and ( )2p t  are 

exactly the same; therefore, only ( )1p t  is shown here. The gear train in the split-

torque arrangement exhibits nonlinear behavior as single-sided impact near the 

primary resonance frequency at 2nωΩ = . Contrary to the idler arrangement, anti-

resonance occurs near the primary resonance frequency at 1nωΩ =  in the split-

torque case. It is also clear in Fig. 2.7 that HBM and NI solutions again match very 

well. In this case, there are no frequency ranges which are dictated by subharmonic 

motions. 

 

The influence of the out-of-phase relationship between the static transmission error 

and the mesh stiffness in the gear train with even 2Z  is shown in Fig. 2.8. Here, the 

combined response due to the static transmission error and parametric excitations is 
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compared with the responses of the system, where only one of the excitation sources 

exists. Split-torque arrangement is considered in Fig. 2.8(a) while Fig. 2.8(b) 

demonstrates the effect in idler case. Focusing on Fig. 2.8(a), each excitation alone 

forms a response peak at the same resonance frequency 2nωΩ = . However, the out-

of-phase relationship results in a decrease in the combined response at the resonance 

frequencies. It is also noted in Fig. 2.8(a) that the super-harmonic resonance peak at 

20.5 0.62nωΩ ≈ =  observed in the response curve of the only parametric excitation 

vanishes in the combined response. On the other hand, in the idler arrangement, the 

peak due to each excitation alone appears at different resonance frequency; hence, 

they do not affect each other significantly. 

 

Fig. 2.9 compares the dynamic responses of four different loading conditions: (i) 

idler arrangement, 2Z even= , (ii) idler arrangement, 2Z odd= , (iii) split-torque 

 

Fig. 2.7 Comparison of rms value and mean component of the response ( )1p t  
predicted by HBM and NI in the split-torque arrangement with even 2Z .  
( ) Stable and ( ) unstable HBM solution, ( ) NI solutions,  
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arrangement, 2Z even , (iv) split-torque arrangement, 2Z odd . As seen from Fig. 

2.9, the split-torque arrangement excites the second mode shape at 2n   when 

2Z even  and the first mode shape at 1n   when 2Z odd . Therefore, a shift in 

the frequency occurs due to the change of the excited mode shape. On the other 

hand, the idler arrangement has always two peaks at both resonance frequencies 

independent from the number of teeth of gear-2. The amplitudes of the peaks are 

affected significantly depending on the interaction between the static transmission 

errors and the mesh stiffness in terms of phasing. 

 

Influence of the orientation angles of the end gears around the middle gear is 

illustrated in Fig. 2.10 for the split-torque arrangement with 2 30Z  . The phase 

difference between the meshes are found as 0°, 90° and 180° by using Eq. (2.39) 

corresponding to the orientation angles of 180°, 135° and 90°, respectively. In the 

Fig. 2.8 Effect of the out-of-phase relationship between the static transmission 
error and mesh stiffness. 2Z  is even. ( ) Response of the only parametric 

excitation ( ) Response of the only static transmission error excitation  
( ) Combined response  
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configuration with 180   , the peaks in the response curves of both meshes occur 

at the resonance frequency 2n  , while configuration with 90    triggers the 

first mode shape at 1n  . For 135   , two distinct peaks exist in both  
1

rms
p  

and  
2
rms

p . This agrees with the results of the linear time-invariant model of multi-

mesh helical gear train studied in [40]. 

 

 

2.4   Conclusion 

A nonlinear time-varying dynamic model for a multi-mesh spur gear train consisting 

of three gears and three shafts is formulated in this study. Harmonic balance method 

is employed in order to solve the resulting dimensionless equations of motion for 

steady-state response. Fourier coefficients are calculated by utilizing discrete 

Fig. 2.9 Effect of loading conditions on dynamic response. ( ) idler 
arrangement with even 2Z  ( ) idler arrangement with odd 2Z  ( ) 

split-torque arrangement with even 2Z  ( ) split-torque arrangement with 

odd 2Z  (a)  
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rms
p  (b)  
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Fourier transform. Direct numerical integration (NI), which is computationally 

demanding, is employed to validate the results obtained by HBM. Furthermore, the 

stability of the solutions is determined by utilizing Floquet theory. It is seen from 

the results that the multi-mesh gear train exhibits nonlinear behavior as single-sided 

impact with the given system parameters. Double-sided tooth impacts including 

both tooth separations and back collisions are not observed. NI solutions also show 

the existence of the subharmonic motions near the frequencies corresponding to the 

parametric resonances. 

 

The interaction between the static transmission error and parametric excitations is 

analyzed by considering the phasing between them. It is shown that the number of 

teeth of gear-2 has a significant effect on the dynamic response since it directly 

determines the phase angle between the meshes. Dynamic response is also 

influenced greatly by the positions of the end gears. Therefore, optimization of these 

parameters in the design may reduce vibration and noise.  

Fig. 2.10 Effect of orientation angle on dynamic response of the split-torque 
arrangement with 2 30Z  . ( ) 180    ( ) 135     
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CHAPTER 3  
 

 

LINEAR DYNAMIC ANALYSIS OF A HELICAL GEARED SYSTEM 

 

 

 

3.1   Dynamic Model Formulation 

3.1.1   Physical System and Dynamic Model 

Gears can lose contact due to backlash if dynamic mesh force exceeds static force 

transmitted. This cause tooth separations and back collisions of gears with a strongly 

nonlinear dynamic behavior. However, such nonlinear behaviors are not observed 

for moderately and heavily loaded helical geared systems, while gear backlash has 

significant influence on dynamics of spur gears. Furthermore, in contrast with spur 

gears, parametric resonances due to fluctuating mesh stiffness are not observed in 

dynamics of high contact ratio helical gears [39–41]. Therefore, in this research, a 

linear time-invariant (LTI) dynamic model of helical gears is developed. The gear 

shafts are modeled by using finite element formulation. Here, Timoshenko beam 

formulation is employed since shear deformations and rotary inertia are expected to 

be significant due to the use of stub shafts. The mass and stiffness effects of gear 

blanks are included in the shaft sections by using beam elements rather than lumping 

at a node. The bearings supporting the gear shafts are represented by linear and 

torsional springs. Clearance nonlinearity of bearings is neglected, which is a valid 

assumption for preloaded rolling element bearings [57]. Moreover, stiffness 

fluctuations of bearings are disregarded. 
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The mass matrix, snM , and stiffness matrix, snK , of each shaft ( )1, 2, ,n n N=   

are calculated by assembling the mass and stiffness matrices of Timoshenko beam 

elements. Complete mass matrix and shaft stiffness matrix of the drivetrain are then 

assembled as [ ]1 2, , ,s s s sNDiag=M M M M  and [ ]1 2, , ,s s s sNDiag=K K K K , 

respectively. Considering that each node has 6 DOFs and the shaft n  is modeled by 

using a total of nm  beam elements, the dimension of both matrices is q  where 

( )1
6 1N

nn
q m

=
= ⋅ +∑  is the total number of DOFs of the gear train.  

 

Similarly, the complete bearing stiffness matrix of a gear train including a total of 

bn  bearings is assembled as 1 2 bbb b bnDiag  =  K K KK     , where 

( ), , , , , 1 to
x y zbi bxi byi bzi b i b i b i bDiag k k k k k k i nθ θ θ

 = = K  is the stiffness matrix of the thi  

bearing and bxik  to 
zb ik θ  are the stiffness values in the indicated directions. In the 

overall bearing stiffness matrix, bK , each individual bearing stiffness is located 

according to the node number where the bearing is attached. The remaining elements 

in bK  are zero.  

 

Fig. 3.1 illustrates a three-dimensional mesh model of a helical gear pair. The gears 

are connected to each other by a time-invariant mesh stiffness extending in the 

direction of tooth normal, i.e. along the line of action (LOA), which is determined 

by the helix angle, ψ . Static transmission error in the mesh coupling, which is 

connected in series to the mesh spring, excites the system. These parameters, i.e., 

mesh stiffness, static transmission error and LOA, are assumed to remain unchanged 

under dynamic conditions and a single point mesh model consisting of an effective 

mesh point and a constant LOA vector for a single spring element is used. 
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Since the mesh node of each gear has 3 translational and 3 rotational DOFs as 

illustrated in Fig. 3.1, each mesh coupling between the shafts are defined by a total 

of 12 DOFs. Since some shafts have multiple gears forming multiple mesh couplings 

with the other shafts, the generalized coordinates are expressed relative to the local 

reference frames of gear shafts,  ,siS i p g  rather than those of gears,  ,iS i p g

. Thus, the displacement vectors of the mesh nodes are expressed as 

   ,
T

si si si si xsi ysi zsix y z i p g   x . 

 

The dynamic transmission error is defined along the LOA as  

 

 
T T

d p sp g sg  h x h x ,  (3.1) 

 

where  ,i i p gh  is the transformation vector, consisting of the directional cosines 

and directional rotation radii between the LOA and generalized coordinates, i.e., the 

 

Fig. 3.1 Mesh model of a helical gear pair 
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respective coordinates of pinion or gear shaft. Transformation vectors can be 

expressed as  

 

 ( ) ( ),
T

i ix iy iz ix iy izn n n i p gλ λ λ= =h .  (3.2) 

 

The directional rotation radii, λ , can be written as  

 

 ( ) ( ),ix i xi i i p gλ = ⋅ × =n u r ,  (3.3) 

 

 ( ) ( ),iy i yi i i p gλ = ⋅ × =n u r ,  (3.4) 

 

 ( ) ( ),iz i zi i i p gλ = ⋅ × =n u r ,  (3.5) 

 

where ( )T

i ix iy izn n n=n  is the directional cosine vector of LOA and 

( )T
i im im imx y z=r  represents the position vector of the effective mesh point. 

Moreover, ( )1 0 0 T
xi =u , ( )0 1 0 T

yi =u  and ( )0 0 1 T
zi =u  are the trio of 

unit vectors for coordinate system ( ),siS i p g= . In all the above equations, subscript 

,i p g=  indicates that the quantity is expressed in the local reference frame of the 

pinion or gear shaft, respectively. In this study, the effective mesh point is assumed 

to be the point of tangency of two pitch circles, i.e., pitch point, at the middle of the 

facewidth as shown in Fig. 3.2. Thus, the position vector of the effective mesh point 

is written as ( )0 0
Tp

p pmr=r  and ( )0 0
Tg

g pmr= −r  in the local reference 

frames of the pinion, pS , and gear, gS , respectively, where ( ),i
pmr i p g=  is the pitch 

radius. Furthermore, in  and ( ),i i p g=r  can be expressed in ( ),siS i p g=  with a 

series of coordinate transformation as follows 
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 ( ) ( ) ( ) ( ) ( )
0
1 ,
0

i x di z oi z t x i p gθ θ φ ψ
 
 = − = 
 
 

n T T T T , (3.6) 

 

 ( ) ( ) ( )0 ,
0

i
pm

i x di z oi

r
i p gθ θ

 
 = = 
 
 

r T T , (3.7) 

 

where ( ), ,x y zσ σ =T  denotes the transformation matrix about coordinate σ . Here, 

tφ  and ψ  are the transverse pressure angle and helix angle of the gear pair, 

respectively. Moreover, based on the hand and the rotation direction of the driver 

gear (pinion), tφ , and ψ  are defined as follows 

 

 

Fig. 3.2 Effective mesh point and LOA vector in a configuration where pinion 
rotates CCW and has left hand teeth 
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( )
( )

, if pinion rotates counterclockwise 

, if pinion rotates clockwise 

t p

t

t p

z

z

φ
φ

π φ

 += 
− −

,  (3.8) 

 

 

, if pinion rotates CCW and has left hand teeth
, if pinion rotates CCW and has right hand teeth
, if pinion rotates CW and has left hand teeth
, if pinion rotates CW and has right hand teeth

ψ
ψ

ψ
ψ
ψ


−= −


.  (3.9) 

 

Two more angles, namely oiθ  and ( ),di i p gθ = , are defined to transform the LOA 

vector from the local reference frames of gears, ( ),iS i p g= , to the local reference 

frames of gear shafts, ( ),siS i p g= . oiθ  represents the angle between the x axes of 

iS  and siS , whereas diθ  denotes the angle between the z axes of iS  and siS .  

 

The dynamic mesh force, mF , along the LOA is written as  

 

 ( ) ( ) ( )( )m m d mF t k t e tδ= − .  (3.10) 

 

The equation of motion of the whole geared system can be expressed as 

 

 ( ) ( ) ( ) ( )t t t t+ + =Mx Cx Kx F  ,  (3.11) 

 

where ( )tx  is the displacement vector and ( )tF  is the overall external forcing 

vector including the external torques and static transmission error excitations as 

follows  

 

 ( ) ( )m at t= +F F F .  (3.12) 
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Here, mF  and ( )a tF  are the mean and alternating components of the forcing vector, 

which can be calculated as follows 

 

 ( ) ( )
Input Gear Node Output Gear Node

0 0 0 0 0 0 0 0 0 0in out

T

m T T
 
 =
 

−
 

F
 

   ,  (3.13) 

 

 ( ) ( ) ( )
1

mN

a qm q m q
q

t k e
=

= ∑F p .  (3.14) 

 

In the mean component of the external force vector, mF , the input and output torque 

values are located according to the node numbers associated with the input and 

output gears, respectively. The only nonzero elements of this vector are the ones 

related to rotation of input and output gears about z axis. The remaining elements in 

mF  are zero. Assuming that the torque values are constant, only internal vibratory 

excitation, i.e., static transmission error, is considered.  

 

The stiffness matrix of the whole geared system, K , is calculated as 

s b m= + +K K K K  where the mesh stiffness matrix, mK , is calculated as follows 

 

 ( )
T

1

mN

m q qm q
q

k
=

= ∑K p p ,  (3.15) 

 

where ( )m qk  denotes the mesh stiffness of the qth gear mesh and qp  represents the 

extended coordinate transformation vector for the qth gear mesh obtained by locating 

the individual transformation vectors, ( ),i i p g=h , in a null vector, whose length is 

equal to the number of total DOFs, according to the node numbers of pinion and 

gear forming the mesh: 
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 ( )T TT
p g−=p h h   . (3.16) 

 

Furthermore, a set of damping ratio sζ  is used for the shaft-bearing assembly in this 

study. 

 

There are phase differences between gear meshes in multi-mesh, multi-stage geared 

systems. The static transmission error at qth mesh in the system can be defined 

periodically as 

 

 ( ) ( ) ( ) ( )
1

sin
R

r r
q q qm q m q

r
e t E r t rω α

=

= + + Π∑ , (3.17) 

 

where ( )
r
m qE  and r

qα  are the rth harmonic amplitude and phase angle of the static 

transmission error at the qth mesh, respectively. qω  denotes the gear mesh frequency 

of the qth mesh. Assuming that all the gear meshes are subject to same flank 

modifications yields 1 2
r r r

qα α α= = = . The other phase angle qΠ  represents the 

phase difference between ( ) ( )m qe t  and ( ) ( )1me t  where 1 0Π = . Therefore, 

( )2 toq mq NΠ =  can be defined as  

 

 
2

q

q j
j=

Π = Π∑ ,  (3.18) 

 

where jΠ  denotes the phase difference between ( ) ( )m je t  and the previous static 

transmission error ( ) ( )1m je t−  and it can be calculated as 

 

 ( )j j jZ ϕ β πΠ = − + ,  (3.19) 



43 
 

where Z  is the number of teeth of the driver gear in the jth mesh and jϕ  denotes the 

angle between the vectors directed to the effective mesh points of jth and (j-1)th 

meshes (see Fig. 3.3). jβ  represents the angle between the reference teeth of the 

gears mounted on the same shaft, which is shown in Fig. 3.3. On the other hand, for 

systems that consist of three gears forming two meshes, i.e., idler and split-torque 

arrangements; 

 

 
0, idler arrangement

, split-torque arrangementj Z
β

π


= 


.  (3.20) 

 

 

3.1.2   Solution Method 

Natural frequencies sω  and mode shapes sφ  are obtained by the solution of the 

eigenvalue problem corresponding to (3.11), i.e., 2ω=KΦ MΦ , where s is the 

modal index. The system response to the force vector defined by (3.12) is the sum 

of the mean, mx , and alternating components, ( )a tx , of the response. The 

alternating component is calculated by utilizing Modal Summation Technique. 

 

 ( ) ( )m at t= +x x x , (3.21) 

 

 ( )
( ) ( ) ( )

2 2 2

1 1 1

2

sin

m

T
s s

N R S
s q s s qa

q r s r r
q q q qm q m q

r it
k E r t r

ω ω ζ ω ω

ω α
= = =

 
  − +=  
  × + + Π   

∑∑∑x
p

φ φ

, (3.22) 

 

 1
m m

−=x K F , (3.23) 
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where i  denotes the unit imaginary number. Then, the dynamic response of the gear 

nodes,  ,si i p gx , are extracted from the total displacement vector,  tx  for the 

calculations of the dynamic transmission error and dynamic mesh force along the 

LOA given by (3.1) and (3.10), respectively. 

 

 

3.2   Results and Discussion 

Three case studies are accomplished to compare the natural frequencies and mode 

shapes obtained by Timoshenko beam FEM model developed in this study and by 

gear analysis software MASTA [58]. In the 1st case study, a drivetrain composed of 

helical gears in a countershaft arrangement as illustrated in Fig. 3.4 is considered. 

The parameters of the drivetrain are given in Table 3.1 and the undamped natural 

frequencies are listed in Table 3.2. It can be concluded that the finite element 

 

Fig. 3.3 Angle between the reference teeth of the gears mounted on the same 

shaft, j , and angle between the vectors directed to the effective mesh points,   

βj
φj

(j-1)th gear 

mesh
jth gear 

mesh



45 
 

modeling of shaft-bearing assembly including the gear blanks and the mesh 

couplings is accomplished in very good agreement with MASTA. 

 

As the 2nd and 3rd case studies, three gears forming two meshes are used in idler and 

split-torque arrangements, respectively, which are illustrated in Fig. 3.5. The system 

parameters are given in Table 3.3. In split-torque arrangement, the gear train is 

driven by the middle gear (gear 2) and gears at the ends, gear 1 and gear 3, are 

outputs. On the other hand, the gear 3 (output gear) is driven by gear 1 (input gear) 

through gear 2 (idler gear) in idler arrangement. The natural frequencies of the 

drivetrain in idler and split-torque arrangements are listed in Table 3.4 and Table 

3.5, respectively. The results obtained by Timoshenko beam FEM used in this study 

and by MASTA agree very well with each other. 

 

Fig. 3.4 Countershaft arrangement used in the 1st case study 
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Table 3.1 Parameters of the helical gear system in countershaft arrangement 
shown in Fig. 3.4 

Shaft Parameters 
 Shaft 1 Shaft 2 Shaft 3 

Segment OD ID L OD ID L OD ID L 
1 40 0 30 60 10 30 55 18 75 
2 75 0 30 60 20 70 65 18 30 
3 75 10 15 75 20 140 49 18 30 
4 40 10 190 60 20 30 49 3 30 
5 23 10 50 60 0 60 68 3 45 
6 45 10 135 40 0 40 51 3 140 

Gear Parameters 
 Gear 1 Gear 2 Gear 3 Gear 4 

Number of teeth 30 57 33 45 
Helix angle (°) 30 30 25 25 
Normal pressure angle (°) 17.5 17.5 20 20 
Pitch diameter (mm) 90.07 171.13 101.95 139.03 
Face width (mm) 30 30 30 30 
Hand Left Right Left Right 
Locations (mm)a 170 125 290 90 
T  (Nm) 250 0 0 -647.73 

Bearing Parameters 
 Shaft 1 Shaft 2 Shaft 3 
 B1 B2 B1 B2 B1 B2 

Locations (mm)a  15 430 10 355 20 330 

bk  (N/m, Nm/rad)  
Gear Mesh Parameters 

 Mesh 1 Mesh 2 

( )m qk  (N/m) 540.2e6 524.3e6 

( )
1
m qE  (µm) 0.5 0.5 

 

a Distance from the rear end of the corresponding shaft 
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Table 3.2 Comparison of the natural frequencies of the countershaft 
arrangement (Fig. 3.4) 

Undamped Natural Frequencies 

n 
Timoshenko 
beam FEM 

(Hz) 

MASTA 
Solution 

(Hz) 
Difference (%) 

1 0.0 0.0 0.0 
2 487.6 491.1 -0.70 
3 604.1 607.4 -0.54 
4 689.8 693.6 -0.56 
5 710.1 714.6 -0.62 
6 746.7 750.1 -0.46 
7 770.0 771.1 -0.15 
8 889.0 893.8 -0.53 
9 954.4 956.1 -0.17 

10 1096.6 1099.8 -0.30 
11 1298.8 1303.0 -0.32 
12 1380.8 1384.0 -0.23 
13 1464.9 1467.1 -0.15 
14 1532.1 1537.6 -0.35 
15 1574.5 1581.9 -0.47 
16 1636.3 1644.7 -0.51 

 

 

Fig. 3.5 Idler and split-torque arrangements used in the 2nd and 3rd case studies 
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Table 3.3 Parameters of the helical gear system in idler and split-torque 
arrangements shown in Fig. 3.5 

Shaft Parameters 

 Shaft 1 Shaft 2 Shaft 3 
Segment OD ID L OD ID L OD ID L 
1 40 0 30 60 10 30 55 18 75 
2 75 0 30 60 20 70 65 18 30 
3 75 10 15 75 20 140 49 18 30 
4 40 10 190 60 20 30 49 3 30 
5 23 10 50 60 0 60 68 3 45 
6 45 10 135 40 0 40 51 3 140 

Gear Parameters 
 Gear 1 Gear 2 Gear 3 

Number of teeth 30 57 37 
Helix angle (°) 30 30 30 
Normal pressure angle (°) 17.5 17.5 17.5 
Pitch diameter (mm) 90.07 171.13 111.08 
Face width (mm) 30 30 30 
Hand Left Right Left 
Locations (mm)a 170 125 90 
T  in idler arrangement (Nm) 200 0 -246.7 
T  in split-torque arrangement (Nm) -52.5 200 -65.1 

Bearing Parameters 
 Shaft 1 Shaft 2 Shaft 3 
 B1 B2 B1 B2 B1 B2 

Locations (mm)a  15 430 10 355 20 330 

bk  (N/m, Nm/rad) ( ) ( ) ( ) ( ) ( )8 8 8 6 62.7 10 , 2 10 , 1.7 10 , 0.788 10 , 1.272 10 , 0Diag     

Gear Mesh Parameters 
 Mesh 1 Mesh 2 

( )m qk  (N/m) 540.7e6 472.6e6 

( )
1
m qE  (µm) 0.5 0.5 

 

a Distance from the rear end of the corresponding shaft 



49 
 

The forced response of a helical geared system shown in Fig. 3.6 is plotted in Fig. 

3.7 and Fig. 3.8. The parameters of the system are taken from [40] and given in 

Table 3.6. In Fig. 3.7, the root-mean-square (rms) values of the displacements of 

gear 1 and gear 2 in split-torque arrangement is shown, whereas Fig. 3.8 illustrates 

the effect of loading condition on dynamics. In Fig. 3.7, the responses of gear 1 and 

gear 3 are identical since the system in split-torque arrangement is symmetric. 

Similarly, the displacement, 2y , is zero due to the symmetry. However, this 

behavior changes significantly when the idler arrangement is considered.  

Table 3.4 Comparison of the natural frequencies of the idler arrangement (Fig. 3.5) 

Undamped Natural Frequencies 

n 
Timoshenko 
beam FEM 

(Hz) 

MASTA 
Solution 

(Hz) 
Difference (%) 

1 0.0 0.0 0.0 
2 487.4 495.1 -1.57 
3 629.1 632.5 -0.54 
4 691.3 700.9 -1.36 
5 745.0 751.3 -0.84 
6 780.5 780.8 -0.04 
7 832.3 830.9 0.17 
8 987.8 979.8 0.82 
9 1025.3 1031.4 -0.59 

10 1097.2 1098.9 -0.15 
11 1379.8 1379.5 0.02 
12 1460.0 1452.4 0.52 
13 1529.6 1527.4 0.14 
14 1549.3 1560.1 -0.69 
15 1642.6 1655.2 -0.76 
16 1732.7 1759.7 -1.53 
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Table 3.5 Comparison of the natural frequencies of the split-torque arrangement 
(Fig. 3.5) 

Undamped Natural Frequencies 

n 
Timoshenko 
beam FEM 

(Hz) 

MASTA 
Solution 

(Hz) 
Difference (%) 

1 0.0 0.0 0.0 
2 487.3 483.1 -0.07 
3 628.5 628.1 -0.65 
4 697.5 697.2 0.26 
5 748.5 748.0 -1.20 
6 774.0 773.3 -0.33 
7 833.3 829.5 0.12 
8 987.8 987.4 0.80 
9 1025.3 1025.9 -0.60 

10 1094.3 1095.2 -0.58 
11 1371.0 1378.2 -0.91 
12 1445.9 1430.7 -1.21 
13 1523.0 1518.8 -0.80 
14 1548.4 1534.5 -0.58 
15 1647.2 1683.6 0.09 
16 1745.1 1746.0 -0.19 

 

 

Fig. 3.6 Idler and split-torque arrangements used in the 4th case study 



51 
 

 

Fig. 3.8 compares the dynamic responses of four different conditions: (i) idler 

arrangement, 2Z even= , (ii) idler arrangement, 2Z odd= , (iii) split-torque 

arrangement, , (iv) split-torque arrangement, 2Z odd= . Depending on the loading 

condition and the number of teeth of the middle gear (gear 2), the phase angle 

between the gear meshes changes. In the cases of (i) and (iv), the phase difference 

between the meshes is π  and 11φ  ( 11 2100ω ≅ Hz) is excited, whereas the phase 

difference between the meshes is 0 and 12φ  ( 12 2600ω ≅ Hz) is excited in the cases 

of (ii) and (iii). Therefore, a shift in the frequency response occurs due to the change 

of the excited mode shape. The results obtained are very similar to those of [40]. 

Table 3.6 Parameters of the helical gear system in idler and split-torque 
arrangements shown in Fig. 3.6 

Gear Parameters 
 Gear 1 Gear 2 Gear 3 

Mass (kg) 30 30 30 
J, Polar mass moment of inertia (kgm2) 0.0116 0.0116 0.0116 
I, Mass moment of inertia (kgm2) 0.0058 0.0058 0.0058 
Base radius (mm) 75 75 75 
Helix angle (°) 30 30 30 
Normal pressure angle (°) 17.5 17.5 17.5 
Face width (mm) 30 30 30 
Hand Left Right Left 

Bearing Parameters 

bk  (N/m, Nm/rad) ( ) ( ) ( ) ( ) ( )8 8 8 6 62.7 10 , 2 10 , 1.7 10 , 0.788 10 , 1.272 10 , 0Diag     

Gear Mesh Parameters 
 Mesh 1 Mesh 2 

( )m qk  (N/m) 200e6 200e6 

( )
1
m qE  (µm) 1 1 

Damping ratio ζ   0.03 
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Fig. 3.7 Forced responses of Gear 1 and Gear 2 in split-torque arrangement, 2Z  

is even 

Fig. 3.8 Effect of loading conditions on dynamic mesh forces 
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CHAPTER 4  
 

 

NONLINEAR TIME-VARYING DYNAMIC ANALYSIS OF A SPIRAL 

BEVEL GEARED SYSTEM 

 

 

 

4.1   Introduction 

Dynamics of cylindrical gears are extensively studied in the literature. A large 

number of mathematical models are proposed, and both numerical and analytical 

methods of solution are presented in these studies. Most of the dynamic models 

available in literature for a spur gear pair include clearance-type nonlinearity due to 

gear backlash; however, the fluctuating stiffness of gear mesh is considered 

differently. These models can be classified in two groups as nonlinear time-varying 

(NTV) [13,16,22,23,35], and nonlinear time-invariant (NTI) [11]. Furthermore, 

nonlinear multi-degree-of-freedom (MDOFs) models of geared rotor-bearing 

systems are studied in [15,17,19,21]. Linear time-invariant (LTI) dynamic models 

for helical gears are proposed in [39–41]. NTV dynamics of two-stage spur gear 

systems are studied in [27,28,55], in which the responses are obtained by utilizing 

Harmonic Balance Method (HBM) with multiple harmonics by using discrete 

Fourier transform (DFT). NTV dynamic models of two-stage spur geared systems 

in idler and counter-shaft arrangements are presented in [30,31]. Moreover, NTV 

[32] and LTI [42] dynamic models are developed for planetary gears formed by spur 

and helical gears, respectively. 

 

Although dynamics of cylindrical gears has been studied extensively, limited 

publications on dynamics of bevel gears can be found in the literature due to their 
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complex tooth geometry and meshing process. A mesh model is proposed in [59] 

based on the tooth geometry of a spiral bevel gear. Nonlinear dynamics of bevel and 

hypoid gear systems are studied in [45,54] and the influences of time-varying 

parameters on dynamics are investigated. Furthermore, a MDOF dynamic model of 

a spiral bevel gear system is proposed in [60] and authors investigate the influences 

of the system parameters on dynamics. Since the lumped parameter models used 

cannot accurately represent the structural characteristics of shaft-bearing assembly, 

an enhanced equivalent lumped parameter synthesis and a finite element model are 

proposed in [49] for a LTI spiral bevel gear train. Moreover, considering the 

flexibilities of shafts and bearings, a NTI dynamic model of a spiral bevel gear 

system is proposed in [61]. 

 

Most of the previous studies about spiral bevel gear systems include linear time-

invariant dynamic models. Therefore, a nonlinear time-varying dynamic model of a 

drivetrain composed of a spiral bevel gear pair including shafts and bearings is 

developed in this study. A three-dimensional discrete mesh model of a spiral bevel 

gear pair is integrated into the finite element (FE) model of shafts and bearings as 

shown in Fig. 4.1. Both parametric excitation caused by fluctuation of gear mesh 

stiffness and excitation due to static transmission error are considered. Since the 

resulting nonlinear system has many DOFs, receptance method [52,53,62] is 

employed which decreases the number of nonlinear equations. Utilizing receptance 

method, it is possible to model gear shafts by using finite element method without 

increasing the number of nonlinear equations, which reduces the computational time 

drastically, and hence, the shaft-bearing dynamic characteristics can be easily taken 

into account. Utilizing HBM with multiple harmonics, the system of nonlinear 

differential equations of the gear train are transformed to a system of nonlinear 

algebraic equations. In order to determine Fourier coefficients required in the HBM, 

continuous-time Fourier transform is used, as opposed to the gear dynamics studies 

[22,23,27,28,54,55,61] that utilize discrete Fourier transform. Thus, the 
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convergence problems encountered when the number of nonlinear DOFs is large are 

avoided. Moreover, analytical integration rather than numerical integration is 

employed for the calculation of Fourier coefficients which decreases the 

computational time further. Obtained nonlinear algebraic equations of the gear train 

are solved by Newton’s method with arc-length continuation. Direct numerical 

integration (NI), which is computationally demanding, is employed to verify the 

results obtained by HBM. In direct numerical integration, computational cost 

increases significantly as the size of the system increases. Frequency domain 

methods are preferred for the determination of steady state response due to their 

significant computational savings. This computational efficiency with respect to 

time domain methods increases as the size of the system gets larger; therefore, HBM 

is used in this study. Dynamic bearing forces are also calculated to demonstrate that 

gear backlash nonlinearity affects the bearing forces, which are important in the 

selection of bearings. Several case studies are performed and the effects of backlash 

amount, fluctuation of gear mesh stiffness and variation of bearing stiffness on 

system response are investigated. Comparison of dynamic responses of coupled gear 

system model and gear torsional model shows that gear torsional model is 

inadequate for the analysis of dynamic response of a spiral bevel gear system and 

coupling has significant effect on dynamic response when stiffness of shafts and 

bearings are comparable to mesh stiffness. 

 

 

4.2   Dynamic Model Formulation 

4.2.1   Physical System and Dynamic Model 

The drivetrain considered in this study is composed of a spiral bevel gear pair 

including gear shafts and bearings on the shafts as shown in Fig. 4.1. A finite 

element (FE) formulation is utilized to model the gear shafts. Since the shafts used 
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in bevel geared systems are stub, Timoshenko beam formulation is employed. The 

mass and stiffness effects of gear blanks are included in the shaft sections by using 

beam elements rather than lumping at a node. In other words, the outer diameter of 

the shaft beam element follows the gear cone as shown in Fig. 4.1. Linear and 

torsional springs are used in order to represent the bearings supporting the gear 

shafts. Clearance nonlinearity of bearings is neglected, since preloaded rolling 

element bearings [57] are considered in this study. Furthermore, time variation of 

bearing stiffness is disregarded. 

 

Element mass and stiffness matrices are assembled to calculate the mass matrix, 

snM , and stiffness matrix, snK , of the thn  shaft ( )1, 2n = . Complete mass and 

stiffness matrices of the drivetrain shafts are then assembled as 

[ ]1 2,s s sDiag=M M M  and [ ]1 2,s s sDiag=K K K , respectively. The size of these 

symmetric matrices is q q× , where q  is the total number of DOFs of the system. It 

can be calculated as ( )2

1
6 1nn

q m
=

= ⋅ +∑ , where nm  is the number of beam elements 

used in modeling the thn shaft. It should be noted that tapering effects of the gear 

cones are considered by using multiple nodes associated with the gear blanks in the 

Timoshenko beam finite element model as shown in Fig. 4.1. Rigid links are used 

to connect the effective mesh nodes, which are coincident for pinion and gear, to the 

cone nodes of the gear and pinion. 

 

The total bearing stiffness matrix of a drivetrain including a total of bn  bearings is 

assembled as 1 bb b b bnDiag  =  K K K K


    , where 

( ), , , , , 1 to
x y zb bx by bz b b b bDiag k k k k k k nθ θ θ

 = = K
      

  and bxk


 to 
zbk θ   are the 

stiffness of the th
  bearing in the indicated directions. In the overall bearing stiffness 

matrix, bK , each individual bearing stiffness is located according to the node 
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number where the bearing is attached. The remaining elements in bK  are zero. Thus, 

the stiffness matrix of the whole FE model can be expressed as s b K K K . 

Furthermore, Rayleigh damping is assumed for the shaft-bearing assembly for 

simplicity; hence, the damping matrix is expressed as C K  where   represents 

the Rayleigh damping coefficient. 

 

Fig. 4.1 Schematic of gear mesh model and finite element model for the spiral 

bevel gear train considered in this study 

xg

zp

xp

yp

zg

yg

Bearing A Bearing B

Bearing D Bearing C

Pinion

Gear

mc

( )mk t

( )me t
2b

Rigid Link

Rigid Link

Coincident Effective 

Mesh Node

Coincident Effective 

Mesh Node

Gear Cone 

Nodes

Pinion 

Cone 

Nodes

Infinitesimal Mesh Model



58 
 

A three-dimensional dynamic model of a spiral bevel gear pair is given in Fig. 4.2. 

The mesh coupling between the pinion and the gear consists of fluctuating mesh 

stiffness resulting in parametric type of excitation, viscous mesh damping and gear 

backlash extending along the direction of tooth normal, i.e., line of action (LOA). 

Unlike parallel axis gears, mesh stiffness, mesh point and direction of LOA, which 

are the parameters characterizing a gear mesh, change considerably for a spiral bevel 

gear pair in a meshing cycle. However, time variation of mesh stiffness has much 

more significant influence on bevel gear dynamics compared to that of mesh vector 

[47]. Moreover, the system model is large and the study focuses not only on the 

gears but also on the shaft-bearing assembly. Therefore, a mesh model composed of 

a time-varying mesh stiffness, an effective mesh point and a constant LOA vector is 

used. The mesh parameters are also assumed to be constant under dynamic 

conditions. Furthermore, static transmission error in the gear mesh coupling shown 

in Fig. 4.2 is the other excitation source for the drivetrain. It should be noted that 

backlash nonlinearity is assumed to be ineffective on mesh damping element. 

 

As shown in Fig. 4.2, the pinion and gear have both translational and rotational 

degrees of freedom. Considering that the mesh node of each gear has 6 DOFs, the 

mesh coupling between the shafts is defined by a total of 12 DOFs. The 

displacement vectors of the gears are defined as ( )T

i i i i xi yi zix y z θ θ θ=x  

in each local reference frame iS  located at the centroid of pinion or gear and 

,i p g=  represents pinion and gear, respectively. 

 

The dynamic transmission error is defined as follows  

 

 T T
d p p g gδ = −h x h x ,  (4.1) 
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where ih  denotes the transformation vector between the line of action and local 

reference frames of pinion or gear, which can be written as  

 

  
T

i ix iy iz ix iy izn n n   h .  (4.2) 

 

Here,  
T

i ix iy izn n nn represents the directional cosine vector of line of action 

and  
T

ix iy iz  λ  is the directional rotation radii, which can be expressed as 

 

  ix i xi i   n u r ,  (4.3) 

 

 

Fig. 4.2 Gear mesh model for a spiral bevel gear pair 
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 ( )iy i yi iλ = ⋅ ×n u r ,  (4.4) 

 

 ( )iz i zi iλ = ⋅ ×n u r ,  (4.5) 

 

where ( )T
i im im imx y z=r  represents the position vector of the mesh point, and 

( )1 0 0 T
xi =u , ( )0 1 0 T

yi =u  and ( )0 0 1 T
zi =u  are the trio of unit vectors 

for the coordinate system iS . In all the above equations, subscript ,i p g=  

designates that the parameter is expressed in the coordinate system of the pinion or 

the gear, respectively. In this study, the effective mesh point is assumed to be on the 

intersection line of the pitch cones of the pinion and gear at mean cone distance from 

the apex as shown in Fig. 4.3. Therefore, the effective mesh point is on the pitch 

radius at mean cone distance, pmr , and the corresponding position vectors can be 

expressed as ( )0 0
Tp

p pmr=r  and ( )0 0
Tg

g pmr= −r , respectively, in the local 

coordinate systems of the pinion, pS , and the gear, gS . Moreover, ( ),i i p g=n  can 

be calculated with a series of coordinate transformation as follows 

 

 ( ) ( ) ( )
0
1
0

i y i z t xγ φ ψ
 
 = −  
 
 

n T T T , (4.6) 

 

where xT , yT  and zT  are the transformation matrices about x , y  and z  axes, 

respectively. Here, tφ  and ψ  are the transverse pressure angle and spiral angle of 

the gear pair, respectively. Based on the hand and rotation direction of the pinion, 

these angles are modified as follows: 
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Fig. 4.3 Effective mesh point and LOA vector 
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( )
( )

, if pinion rotates counterclockwise 

, if pinion rotates clockwise 

t p

t

t p

z

z

φ
φ

π φ

 += 
− −

, (4.7) 

 

 

, if pinion rotates CCW and has left hand teeth
, if pinion rotates CCW and has right hand teeth
, if pinion rotates CW and has left hand teeth
, if pinion rotates CW and has right hand teeth

ψ
ψ

ψ
ψ
ψ


−= −


. (4.8) 

 

Moreover, pγ  represents the pitch angle of the pinion, whereas gγ  is the negative 

of the pitch angle of the gear. 

 

It is noted that ( ),iS i p g′ =  is an intermediate coordinate system used in the 

transformation of directional cosine vector of LOA and it is also shown in Fig. 4.3 

for clarity. 

 

Considering backlash nonlinearity, dynamic mesh force, mF , along the line of action 

can be written as  

 

 ( ) ( ) ( ) ( )( ) ( ) ( )( )m m n d m m d mF t k t f t e t c t e tδ δ= − + −

 .  (4.9) 

 

Here ( ) ( )( )n d mf t e tδ −  is the nonlinear displacement function which is defined as  

 

 ( ) ( )( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

,
0,

,

d m d m

n d m d m

d m d m

t e t b t e t b
f t e t t e t b

t e t b t e t b

δ δ
δ δ

δ δ

 − − − >


− = − ≤
 − + − < −

,  (4.10) 
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where 2b  is the total gear backlash. Reordering displacement vector x  such that the 

nonlinear DOFs, i.e. DOFs associated with mesh nodes, are located at the bottom, 

the equation of motion of the complete drivetrain is expressed as follows 

 

 ( ) ( ) ( ) ( ) ( )Nlt t t t t+ + + =Mx Cx Kx F F  ,  (4.11) 

 

 l

n

 
=   

 

x
x x ,  (4.12) 

 

 Nl
N

 
=   

 

0
F F ,  (4.13) 

 

where nx  is the nonlinear DOFs which correspond to mesh nodes in this study and 

lx  corresponds to all other nodes. Here, ( )tF  denotes the external forcing vector 

consisting of the torques pT  and gT  acting on the pinion and gear as follows  

 

 
( )

( ) ( )( )0 0 0 0 00 00 0 0 0 0p g

T
T

t

T

=

= −

F F



.  (4.14) 

 

Torque values are assumed to be constant in this study; therefore, only static 

transmission error excitation is taken into account. Consequently, the only nonzero 

components in the forcing vector are the components associated with rotations of 

the pinion and the gear about z  axis. The overall nonlinear restoring force vector, 

NlF , has nonzero elements only for the mesh nodes. Due to nonlinearity, the mesh 

coupling parameters mk  and mc  are not included in the overall stiffness and damping 
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matrices of the drivetrain. Instead, they are included in the nonlinear restoring force 

vector, ( )N tF , through the dynamic mesh force given by Eq. (4.9) as follows  

 

 ( ) ( )N mt F t=F p ,  (4.15) 

 

where p  is the combined form of the coordinate transformation vectors as 

 

 ( )g

TT T
p −= hp h . (4.16) 

 

 

4.2.2   Solution Method 

4.2.2.1   Receptance Method 

For systems with many DOFs, the large number of nonlinear equations causes 

several numerical difficulties and significant increase in computational time. For 

systems where the number of nonlinear DOFs is much less than the total number of 

DOFs, receptance method, details of which are given in [52,53], can be used For the 

spiral bevel gear system defined by Eq. (4.11), only the DOFs associated with bevel 

gears, i.e. mesh nodes, contain nonlinearity. If these DOFs are grouped, the equation 

of motion in case of multi-harmonic solution can be written as  

 

 ( ) ( )
2

r r
l l

rr r
N nn n

r irω ω
          − + + =               

0x F
K M C F xx F

,  (4.17) 
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where the linear and nonlinear DOFs are designated by subscripts l  and n , 

respectively. Here, i represents the unit imaginary number and 0,1, 2, , Nhr =   is 

the harmonic index. 

 

Multiplying both sides of Eq. (4.17) by the receptance matrix of the linear system, 

i.e. ( ) ( )
12r r irω ω ω

−
 = − + α K M C , the following result is obtained  

 

 
( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( )

( )0,1,2, , N

r r
ll ln ll lnl l

rr r
N nnl nn nl nnn n

h

r r r r
r r r r

r

ω ω ω ω
ω ω ω ω

            + −        
              

= =

0α α α αx F
F xα α α αx F

0 

.  (4.18) 

 

Partitioning Eq. (4.18), the following nonlinear and linear equation sets are obtained 

 

 
( ) ( ) ( ) ( )

( )0,1,2, , N

r r r r
n nn N n nl l nn n

h

r r r

r

ω ω ω+ − − =

=

x α F x α F α F 0



,  (4.19) 

 

 ( ) ( ) ( )( ) ( )0,1,2, , Nr r r r
l ll l ln n N n hr r rω ω= + − =x α F α F F x  .  (4.20) 

 

Only unknowns in Eq. (4.19) are the nonlinear DOFs; hence, it can be solved 

iteratively to obtain ( )n tx , which decreases the computational time significantly 

due to the considerable decrease in the number of nonlinear equations. After 

determining ( )n tx , dynamic transmission error ( )d tδ , dynamic mesh force ( )mF t  

and nonlinear restoring force ( )N tF  can be calculated by using Eqs. (4.1), (4.9) and 

(4.15), respectively. Using the known value of ( )N nF x , response of linear DOFs lx  

can be obtained by solving Eq. (4.20). 
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Therefore, with the use of receptance method, it is possible to model gear shafts by 

using finite element method without increasing the number of nonlinear equations 

and effects of shaft and bearing parameters can be easily studied. 

 

 

4.2.2.2   Multi-harmonics Harmonic Balance Method with Continuous-Time 

Fourier Transform 

The multi-term Harmonic Balance Method is utilized in this study in order to obtain 

the system of nonlinear algebraic equations given by Eq (4.19). Continuous-time 

Fourier transform is employed to obtain the Fourier coefficients required in the 

HBM. Since static transmission error excitation and time-varying mesh stiffness are 

assumed to be periodic, the solution of the nonlinear system can as also be expressed 

periodically [27]. As a result of this, the nonlinear displacement function, 

( ) ( )( )n d mf t e tδ − , is also periodic. Therefore, the mesh stiffness ( )mk t , static 

transmission error ( )me t  and its time derivative ( )me t  are represented in Fourier 

series as  

 

 ( ) ( ) ( )0
1

cos sin
A

m ca sa
a

k t a t a tκ κ ω κ ω
=

= + +  ∑ ,  (4.21) 

 

 ( ) ( ) ( )
1

cos sin
J

m cj sj
j

e t j t j tε ω ε ω
=

 = + ∑ , (4.22) 

 

 ( ) ( ) ( ) ( ) ( )
1

sin cos
J

m cj sj
j

e t j j t j j tω ε ω ω ε ω
=

 = − + ∑ . (4.23) 

 

Displacement and velocity of the drivetrain can be expressed periodically as 
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 ( ) ( ) ( )0
1

cos sin
hN

n cr sr
r

t r t r tω ω
=

= + +  ∑x u u u , (4.24) 

 

 ( ) ( ) ( ) ( ) ( )
1

sin cos
hN

n cr sr
r

t r r t r r tω ω ω ω
=

= − +  ∑x u u . (4.25) 

 

Furthermore, dynamic mesh force, ( )mF t , given by Eq. (4.9) can be expressed 

periodically as 

 

 ( ) ( ) ( )0

1
cos sin

hN
cr sr

m m m m
r

F t F F r t F r tω ω
=

 = + + ∑ .  (4.26) 

 

In the above expressions, subscript or superscript c  and s  represent the Fourier 

coefficients corresponding to cosine and sine terms, respectively. In literature on 

gear dynamics [22,23,27,28,54,55], discrete Fourier transform is used in order to 

calculate Fourier coefficients of dynamic mesh force, ( )mF t . Since the nonlinear 

displacement function is a discontinuous function, the exact time of discontinuities 

must be determined to calculate the nonlinear forces and the corresponding Fourier 

integrals accurately. The error in the integral calculations changes depending on the 

time step used in the discretization. When the time point is away from the actual 

discontinuity, the nonlinear solver considers this as an error in the solution and tries 

to correct it. This results in no convergence or, at best, increases the number of 

iterations to converge. In order to prevent this issue, very small time steps can be 

used in discrete Fourier transform, which improves the accuracy slightly, but 

increases the computational effort drastically. Therefore, continuous-time Fourier 

transform is used in this study instead of DFT. Fourier coefficients required can be 

calculated as follows ( )1,2, , hr N=   
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 ( )
2

0

02m mF F t dt
π ωω

π
= ∫ , (4.27) 

 

 ( ) ( )
2

0

coscr
m mF F t r t dt

π ωω ω
π

= ∫ , (4.28) 

 

 ( ) ( )
2

0

sinsr
m mF F t r t dt

π ωω ω
π

= ∫ . (4.29) 

 

Moreover, the above integrals are computed analytically, rather than numerically, 

which decreases the computational time significantly.  

 

Fourier coefficients of the nonlinear restoring force, ( )N tF , are determined by using 

the combined coordinate transformation vector p  given by Eq. (4.16) as 

 

 ( ) ( ) ( )0

1
cos sin

hN
cr sr

N N N N
r

t r t r tω ω
=

 = + + ∑F F F F ,  (4.30) 

where, 

 

 0 0 , ,cr cr sr sr
N m N m N NF F F= = =F p F p F p .  (4.31) 

 

Substituting Eqs. (4.24) and (4.30) into Eq. (4.19) and balancing the harmonic terms, 

the following system of nonlinear algebraic equations is obtained 

 

 ( ) ( ) ( ) ( )
0

0
0 0 00 0 0 l

nn N nl nn
n

 
= + −     

 

F
R u u α F α α

F
,  (4.32) 
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( ) ( ) ( )( )

( ) ( )

sr cr
r sr cr nn N N

sr cr
l l

nl nn sr cr
n n

i r i

i
r r

i

ω

ω ω

= + + +

 +
−      + 

R u u u α F F

F F
α α

F F

,  (4.33) 

 

for 1, 2, , hr N=  . Eq. (4.32) is a set of real equations obtained by balancing of bias 

terms, whereas Eq. (4.33) is a set of complex equations where the real and imaginary 

parts represent the sine component and the cosine component of the rth harmonic, 

respectively. Consequently, response of the system can be calculated by solving a 

total of 12 (2 1)hN× +  real nonlinear equations. 

 

The nonlinear equation set given by Eqs. (4.32) and (4.33) is solved by Newton’s 

Method for the unknown displacement vector 

( )0 1 1 2 2 h h

T

c s c s cN sN=u u u u u u u u . However, convergence problems 

arise around the turning points, where the solution path reverses its direction, since 

the Jacobian matrix becomes singular. This problem is solved by using a new 

continuation parameter, i.e. replacing frequency with arc-length, which also makes 

it possible to trace the solution path when it changes its direction. However, as a 

result of this change, the vector of unknowns is expanded to ( )TT ω=v u . The new 

continuation parameter, s, is defined as the radius of a hypothetical n-dimensional 

sphere having its center located at the previous converged solution. Therefore, the 

solution of the new system of nonlinear equations is located on the surface of this 

n-dimensional sphere, defined by 2 T
k ks = ∆ × ∆v v , by introducing the following 

residual equation [63–65] 

 

 ( ) 2 0T
k k kh s= ∆ × ∆ − =v v v ,  (4.34) 

 

 1k k k −∆ = −v v v .  (4.35) 
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Here 1k −v  is the last converged solution and kv  is the thk , current, solution point. 

Adding this new residual equation given by Eq. (4.34) to ( )R u , the new system of 

nonlinear algebraic equations is obtained as ( ) ( ) ( )( )TT h=S v R u v . Therefore, a 

single step of Newton’s iteration is obtained as follows 

  

 ( ) ( ) ( )( ) ( )( )11 1 1m m m m
k k k k

−− − −= −v v J v S v ,  (4.36) 

 

where ( )m
kv  is the thm  iterative solution based on the ( )th1m −  iteration and 

( )( )1m
k

−J v  represents the Jacobian matrix of S  calculated at the ( )th1m − iteration 

for the thk  solution point. Newton’s iteration defined in Eq. (4.36) is repeated until 

the norm of vector ( )( )mS v  falls below a specified error tolerance. The solution of 

the corresponding linear system is used as the initial guess for the first solution point; 

whereas, for other solution points, since the Jacobian at the previous solution point 

is available, tangent predictor is used to estimate the initial guess. 

 

 

4.3   Results and Discussion 

Parameters of the example spiral bevel gear train considered in this study is given 

in Table 4.1. Since the static transmission error ( )me t  depends on the micro 

geometry and manufacturing, it can be adjusted by tooth profile modifications. 

Furthermore, one of the main objectives of a gear design is to obtain a static 

transmission error having a form of sinusoidal-like. Therefore, the first harmonic is 

always dominant and it can be used to represent the total static transmission error. 

However, the harmonic content of the mesh stiffness, ( )mk t , is mainly affected by 
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the operating contact ratio. Similarly, the first harmonic is again dominant especially 

for medium-to-heavy load range in spiral bevel gear systems. Consequently, the first 

harmonics of the static transmission error, ( )me t , and mesh stiffness, ( )mk t , are 

considered in this study. Moreover, external torques applied are considered to be 

constant. 

Table 4.1 Parameters of the example system 

Shaft Parameters 
 Pinion Gear 

Outer diameter (mm) 55 70 
Inner diameter (mm) 40 50 
Length (mm) 202 234 
β  3(10-6) 3(10-6) 

Gear Parameters 
 Pinion Gear 

Number of teeth 31 39 
Spiral angle (°) 30 30 
Normal pressure angle (°) 20 20 
Pitch angle (°) 38.48 51.52 
Pitch radius (mm) 65.1 81.9 
Face width (mm) 34 34 
Hand Left Right 
Locations (mm)a 172 209 
T  (Nm) 200 251.61 

Bearing Parameters 
 Pinion Gear 
 Bearing A Bearing B Bearing C Bearing D 

Locations (mm)a 42 127 74 144 

bk  (N/m, Nm/rad) ( ) ( ) ( ) ( ) ( )9 9 9 6 62 10 , 2 10 , 1 10 , 1 10 , 1 10 , 0Diag     

Gear Mesh Parameters 

0 1 1, ,c sκ κ κ  (N/m) 3(108), 0, -0.9(108) 
mc  (Ns/m) 1500 

1 1,c sε ε  (µm) 0, 10 
b  (µm) 20 

 

a Distance from the rear end of the corresponding shaft 
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Firstly, the undamped natural frequencies of the linear time-invariant gear train 

obtained by using the Timoshenko beam finite element model (FEM) given in this 

study and by commercial FE software ANSYS® [66] are given in Table 4.2. It is 

seen from the table that the results agree with each other very well. Therefore, the 

FE modeling of the shaft-bearing assembly with the mesh coupling and including 

the gear blanks is accomplished in agreement with the FE software. 

Table 4.2 Comparison of natural frequencies of linear-time invariant system 

Undamped Natural Frequencies 

n 
Timoshenko 
beam FEM 

(Hz) 

ANSYS® 
Solution 

(Hz) 

Difference 
(%) Mode Shape 

1 0.0 0.0 0.00 Rigid Body, ,zp zgθ θ  

2 1133.8 1135.9 -0.19 

Coupled mode including torsional motion, ,zp zgθ θ , 
bending of pinion shaft in px  and py  directions, 

bending of gear shaft in gx  and gy  directions 

3 1492.5 1524.8 -2.12 Bending of gear shaft in gx  and gy  directions 

4 1744.4 1779.6 -1.98 

Coupled mode including torsional motion, ,zp zgθ θ , 
bending of pinion shaft in px  and py  directions, 

bending of gear shaft in gx  and gy  directions 

5 1953.7 1999.0 -2.26 Bending of pinion shaft in px  and py  directions 

6 2950.5 2947.4 0.10 
Translation of gear shaft in gz  direction 

Torsional motion of pinion shaft, zpθ  

7 3056.8 3085.4 -0.93 

Coupled mode including torsional motion, ,zp zgθ θ , 
translation of pinion shaft in pz  direction, bending 
of pinion shaft in px  and py  directions, bending 

of gear shaft in gx  and gy  directions 

8 3700.9 3650.2 1.39 Bending of gear shaft in gx  and gy  directions 

9 3704.7 3650.8 1.48 
Translation of pinion shaft in pz  direction, 

bending of gear shaft in gx  and gy  directions 

10 3933.2 3928.2 0.13 

Coupled mode including torsional motion, ,zp zgθ θ , 
translation of pinion shaft in pz  direction, bending 
of pinion shaft in px  and py  directions, bending 

of gear shaft in gx  and gy  directions 
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Comparison of the steady state solutions obtained by HBM utilizing three harmonics 

( 3R  ) and direct numerical integration (NI) are given in Fig. 4.4. The root-mean-

square (rms) of the dynamic mesh force is calculated as follows: 

 

 

Fig. 4.4 Comparison of rms values of the responses predicted by HBM and NI 
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 ( )
1 22

1 2

R
rms r

m
r

AF
=

   =   
   

∑ ,  (4.37) 

 

where rA  is the amplitude of the rth harmonic of ( )mF t  that can be defined as 

 

 ( ) ( )2 2cr sr
r m mA F F= + .  (4.38) 

 

The rms of the dynamic transmission error is calculated similarly. Linear response 

of the drivetrain is given in Fig. 4.4 as well. The resonance peaks observed at 

1134ω = Hz, 1743ω = Hz, 3059ω = Hz and 3984ω = Hz for the linear response 

occur when the gear mesh frequency is equal to the 2nd, the 4th, the 7th and the 10th 

natural frequencies of the linear gear train, respectively. The gear pair exhibits 

coupled axial-transverse-rotational motions in all of these natural frequencies as 

indicated by the definition of mode shapes given in Table 4.2. 

 

It can be seen from Fig. 4.4 that solutions obtained by HBM agree well with direct 

NI solutions except around the resonance peaks observed at 3160ω ≅ Hz and 

3950ω ≅ Hz (shown by vertical dashed lines). This indicates the existence of 

subharmonic motions around these resonance frequencies as illustrated in Fig. 4.5, 

which shows the time history and frequency spectrum of the steady-state portion of 

the response at 3968ω = Hz obtained by NI. In addition to the fundamental 

harmonic, for this frequency, it is observed that the subharmonics having the 

frequencies of 1 4  and 3 4  of the mesh frequency dominates the response. NI can 

predict subharmonic motions; whereas, since the assumed solution does not include 

subharmonics, HBM cannot predict them. 
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The subharmonic contents of the responses in the form of both dynamic mesh force 

and dynamic transmission error obtained by NI are investigated in Fig. 4.6, which 

shows the normalized amplitudes of the subharmonics with respect to the amplitude 

of the fundamental harmonic at 1 4 , 1 3  and 3 4  frequencies. The existence 

of subharmonics are obvious in the vicinity of excitation frequencies of 1500 

Hz, 3300  Hz and 4000  Hz (shown by vertical dashed lines). The 

subharmonic motion around 24 3 1500   Hz are characterized by the 

subharmonic component with the frequency 3 4  and around this frequency, the 

amplitudes of the subharmonics in the dynamic mesh force are larger compared to 

the amplitudes of the subharmonics in the dynamic transmission error. However, it 

can be concluded from Fig. 4.4 that, since the amplitudes of the responses in the 

vicinity of 1500  Hz are small, the subharmonics in NI solutions do not cause an 

inconsistency with the solutions of HBM.  

 

Fig. 4.5 (a) Time history and (b) frequency spectrum of  mF t  at 3968  Hz 

obtained by NI 
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On the other hand, subharmonic content of the response is more significant around 

3300  Hz and 4000  Hz, since these frequency ranges coincide with other 

resonance peaks at the natural frequencies of 7  and 10  (see Fig. 4.4). This is the 

main cause of the inconsistency between NI and HBM solutions in these frequency 

ranges. It is also noted that contrary to the case in the vicinity of 1500  Hz, the 

amplitudes of the subharmonics in the dynamic transmission error are larger than 

the amplitudes of the subharmonics in the dynamic mesh force in later two 

frequency ranges. The spectral content of the response in the vicinity of 

23 3300   Hz is clearly dominated by the subharmonic component with the 

frequency 1 3 , whereas two distinct subharmonic components with the 

frequencies of 1 4  and 3 4  are dominant in the spectral content of the response 

around 2 74 4 3 4000     Hz. In general, a subharmonic motion observed at 

1 2 nr r   is governed by the subharmonic component with the frequency of 

 

Fig. 4.6 Normalized amplitudes of the subharmonics with 1 4 , 1 3  and 

3 4  for both dynamic transmission error d  and dynamic mesh force mF  
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( )2 1r r  of the excitation frequency or in this case mesh frequency. Furthermore, the 

examples of different nonlinear behaviors, i.e. period-1 motion, period-3 

subharmonic motion, long-period subharmonic motion and chaotic motion, are 

illustrated in Fig. 4.7, which shows the frequency spectra and corresponding phase 

plane plots including Poincare map points of dynamic transmission error dδ  at 

different mesh frequencies. Poincare map points are the displacement-velocity 

points calculated at time instants with intervals of 1T. In the phase plane plots of 

period-1 motion and period-3 subharmonic motion, there are 1 and 3 Poincare map 

points, respectively, indicating that these are 1T and 3T motions. On the other hand, 

the number of Poincare map points are much more in the cases of long-period 

subharmonic motion and chaotic motion. The frequency spectrum of chaotic motion 

also has a broadband content. 

It is known from past studies [45,54,59,60], that spiral bevel gears exhibit nonlinear 

behaviors such as single-sided tooth impact (SSI) and double-sided tooth impact 

(DSI). These nonlinear behaviors can also be observed here in the NI and HBM 

solutions. It is obvious in Fig. 4.8 that the response of the gear pair is linear at the 

frequencies around 900ω =  Hz. As the frequency increases to 1075ω = Hz, SSI 

begins to emerge. Due to softening effect of tooth separation, the forced response 

curve takes a sharp turn towards left with decreasing frequency and advances along 

the same path as the frequency decreases from 1075ω = Hz to 1030ω = Hz. At this 

point, the gear pair begins to exhibit DSI, in which impact with the preceding tooth 

occurs following the tooth separation. Because of the hardening behavior of DSI 

compared to SSI, the response veers right towards the higher frequency and begins 

to increase in amplitude. The response reaches the peak amplitude at 1104ω = Hz 

and then the amplitude begins to decrease as DSI type nonlinear behavior continues. 

Then, the response changes back to SSI and subsequently becomes linear as the 

frequency increases further. Similar SSI and DSI type nonlinear behaviors are also 

seen in the vicinity of the resonance peak observed at 2750ω ≅ Hz (see Fig. 4.4). 
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Fig. 4.7 Frequency spectra, phase plane plots and Poincare map points (o) of 

dynamic transmission error d  obtained by NI (a-b) period-1 motion at 1064 

Hz (c-d) period-3 subharmonic motion at 3281  Hz (e-f) long-period 

subharmonic motion at 3978  Hz (g-h) chaotic motion at 4071  Hz 
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Studying Fig. 4.4 further, the gear pair exhibits SSI type nonlinear behavior around 

the resonance peaks observed at 3160  Hz and 3950  Hz. However, the 

response amplitudes in the vicinity of these peaks are less than the total amount of 

backlash and static deflection; hence, impact with the preceding tooth, i.e. DSI, 

cannot occur. Furthermore, it is clear in Fig. 4.4 that the amplitude of the resonance 

peak observed at 1743  Hz is small compared to the static mesh force (dashed 

horizontal line in Fig. 4.4); hence, the gear pair behaves linearly around this peak. 

Moreover, there are super-harmonic resonance peaks at 21 2 567   Hz and 

71 2 1528   Hz. A very small super-harmonic peak is also evident at 

21 3 378   Hz. These peaks can only be obtained by utilizing adequate number 

of harmonics in HBM. Fourier spectrums of the dynamic mesh force at 

21 2 567   Hz and 21 3 378   Hz obtained from NI are shown in Fig. 

4.9. In general, a super-harmonic resonance peak observed at 1 nr   is governed 

by the rth harmonic of the response. 

 

Fig. 4.8 Nonlinear characteristics of the spiral bevel gear train 
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The effect of the number of harmonics retained in HBM on the dynamic mesh force 

is presented in Fig. 4.10. It can be seen that the results obtained by utilizing two or 

three harmonics in the solution agree well with each other. On the other hand, the 

results obtained by using single-harmonic deviates from the multi-harmonic 

solutions significantly in the frequency ranges where separation occurs, since the 

nonlinear characteristics cannot be captured accurately by a single-harmonic 

solution. Moreover, single-harmonic solution cannot predict any of the super-

harmonic resonance peaks observed at 21 2 567   Hz, 71 2 1528   Hz 

and 101 2 1967   Hz (shown by vertical dashed lines), since these resonance 

peaks are governed by the 2nd harmonic of the response. 

 

Fig. 4.11 shows the influence of parametric excitation caused by fluctuating stiffness 

of gear mesh and static transmission error excitation. The combined response, where 

both excitations exist, is compared to the responses due to each individual excitation. 

When the only excitation source is the static transmission error  me t , the system is 

 

Fig. 4.9 Fourier spectrum of  mF t  at super-harmonic resonance peaks obtained 

by NI, (a) 21 2 567   Hz (b) 21 3 378    Hz 
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nonlinear time-invariant. However, the combined response represents a nonlinear 

time-varying system. In Fig. 4.11, it can be seen that the super-harmonic resonance 

peaks observed at 21 2 567   Hz and 71 2 1528   Hz (shown by vertical 

dashed lines) in the combined response are due to the parametric excitation. 

Moreover, the parametric excitation increases the response amplitude of the 

corresponding NTI system in the entire frequency range. The single-sided impact 

type nonlinear behavior observed at 2750  Hz in the response curve of the 

corresponding NTI system changes to double-sided impact type in the combined 

response. 

 

The effect of backlash amount is given in Fig. 4.12. Since both SSI and DSI are 

observed in the vicinity of the first resonance peak when 200T  Nm, the response 

around this peak is addressed in the figure. As the backlash is increased from 

20 μmb   to 40 μmb  , SSI range increases while the DSI range decreases. A 

 

Fig. 4.10 Effect of number of harmonics employed in HBM 
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further increase in backlash from 40 μmb   to 60 μmb   cause DSI to disappear, 

since the response amplitude becomes smaller compared to the total amount of 

backlash and static deflection; hence, SSI dominates the nonlinear response. A 

further increase in backlash does not affect the nonlinear response any more since 

DSI cannot occur. 

 

The components of the dynamic bearing forces 
 rms

bF  for the first bearing of the 

pinion shaft (Bearing A in Fig. 4.1) are given in Fig. 4.13. Here, each force 

component can be calculated by the multiplication of the corresponding component 

of the bearing stiffness and the amplitude of the response of the bearing location in 

the corresponding direction. It is seen from the figure that gear backlash causes 

similar nonlinear behaviors in the bearing forces. It should be noted that after 

2400  Hz, the axial component of the bearing force increases significantly 

compared to the radial components which decreases the bearing lives considerably. 

This is because the 7th, the 9th and the 10th modes occurring in this high frequency 

 

Fig. 4.11 Effect of static transmission error and parametric excitations 
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range are more associated with the axial motion of the pinion shaft compared to the 

radial motions as indicated by the definition of mode shapes given in Table 4.2. 

 

In order to investigate the effect of bearing stiffness, the bending stiffness 

coefficients of all bearings in the system, 
x yb bk k  , are changed equally. Fig. 4.14 

shows the change in the dynamic mesh force as a function of 
x yb bk k  . It is seen 

from the figure that resonance peaks shift to the right when 
x yb bk k   is increased. 

Moreover, the amplitudes of the peaks are affected in different way; that is, some 

peak amplitudes increase while the others decrease with increasing bending stiffness 

coefficients of the bearings. The change in peak amplitude affects the nonlinearity 

of the response as well. As the stiffness coefficient is increased to 71 10
x yb bk k   

Nm/rad, DSI disappears in the vicinity of the resonance peak at 3200  Hz and 

the gear pair exhibits only SSI. Therefore, if the operating frequency range of the 

bevel gear system is above 1600Hz, increased bearing stiffness decreases the 

dynamic mesh force and gives better results compared to other cases. 

 

Fig. 4.12 Dynamic mesh force for 200T  Nm and different backlash amounts 
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Fig. 4.13 Dynamic bearing forces 
 rms

bF  for the first bearing of the pinion shaft 

(Bearing A in Fig. 4.1) 

 

Fig. 4.14 Effect of bearing stiffness coefficient, 
x yb bk k  , on the dynamic gear 

mesh force 
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In Fig. 4.15, the dynamic response of the coupled gear system considered in this 

study is compared with that of gear torsional model in order to investigate the effect 

of coupling on system dynamics. The gear torsional model is generated from the 

coupled dynamic model developed in this study by considering the shafts and 

bearings as rigid. The resulting torsional model is a two DOFs semi-definite system 

with a rigid body mode. The second mode of this system is the 

contraction/expansion of the mesh spring by the rotational motions of the gears, 

 ,zi i p g   and the corresponding linear system exhibit this mode at a natural 

frequency of 2430n  Hz, which is verified by ANSYS® as well. Both SSI and 

DSI type nonlinear behaviors are observed around the corresponding resonance peak 

observed at 2200n  Hz. Moreover, there are super-harmonic resonance peaks in 

the response of the gear torsional model at 1 2 1215n   Hz and 

1 3 810n   Hz. It is evident in the figure that the dynamic responses of the two 

 

Fig. 4.15 Comparison of coupled gear system model with torsional model 
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models are totally different, which shows the significant influence of the coupling 

on dynamic response. Consequently, gear torsional model is inadequate for the 

investigation of the dynamics of a spiral bevel gear system when the stiffness of 

shaft-bearing structures is comparable to mesh stiffness. 

 

 

4.4   Conclusion 

In this study, a nonlinear time-varying dynamic model of a spiral bevel gear system 

is developed. The mesh model of the gear pair is integrated into the Timoshenko 

beam finite element (FE) model of shafts supported by bearings. Natural frequencies 

of the linear system obtained by the developed Timoshenko beam FE model and 

commercial FE software, ANSYS® agree well with each other, which ensures the 

quality of the FEM used in the study. FE shaft models obtained are coupled with 

each other by the nonlinear backlash elements including mesh stiffness. The 

resulting number of nonlinear equations, which is very large due to the finite element 

modelling of the shafts, is considerably reduced by the use of receptance method. 

Therefore, solving only the equations related to the DOFs associated with the gear 

pair, where the nonlinear elements are attached, are sufficient for the shaft-bearing 

dynamic characteristics to be taken into account.  

 

Applying HBM with multiple harmonics on the nonlinear differential equations of 

the gear train a system of nonlinear algebraic equations is obtained.  Continuous-

time Fourier transform is used in the calculation of Fourier coefficients, as opposed 

to gear dynamics studies that utilize discrete Fourier transform. Utilizing 

continuous-time Fourier transform, the possible convergence problems for the large 

nonlinear systems can be avoided. Furthermore, in order to decrease the 

computational time, analytical integration is employed for the calculation of Fourier 

coefficients. Obtained system of nonlinear algebraic equations is solved by 
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Newton’s method utilizing arc-length continuation. Moreover, solution of the 

nonlinear differential equations is also obtained by direct numerical integration. 

Solutions obtained by HBM and NI agree well with each other except around some 

resonance peaks, where the spectral content of the response is dominated by 

subharmonics, which are not included in the HBM solution.  

 

Several case studies are performed and it is observed from the results that both 

single-sided and double-sided tooth impact type nonlinear behaviors emerge for the 

gear pair under investigation. Furthermore, NI solutions indicate the existence of 

subharmonic motions at 1 2 nr rω ω≈ , whose spectral content is dominated by the 

subharmonic component with the frequency of ( )2 1r r  of the excitation frequency. 

The influence of parametric excitation is as well studied in the study. The parametric 

excitation causes super-harmonic resonance peaks governed by the rth harmonic of 

the response at frequencies n rω ω≈ . Furthermore, the response level of a NTV 

system is larger compared to the response level of the corresponding NTI system. 

Therefore, the parametric excitation due to fluctuating stiffness of the gear mesh 

increases the severity of the nonlinearity. The effect of backlash amount is also 

investigated. It is observed that tooth separations and tooth impacts are possible, 

especially for lightly-loaded cases, for which the amount of backlash is critical. 

Moreover, dynamic bearing forces are calculated to demonstrate that gear backlash 

nonlinearity also affects the bearing forces which are important in the selection of 

bearings and determination of lives of the bearings used. It is also observed that 

bearing stiffness affects the amplitudes and frequencies of the resonance peaks 

considerably. The change in the response amplitude cause the nonlinear behavior of 

the gear pair to change as well. It is observed that increased bearing stiffness is 

useful in decreasing dynamic mesh force for an operating frequency greater than 

1600Hz for the case study considered. Finally, the responses of the coupled gear 

system model and torsional model are compared and the result shows that the 
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coupling has a significant influence on the response of a spiral bevel gear system 

which needs to be considered in modeling.  
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CHAPTER 5  
 

 

NONLINEAR DYNAMIC ANALYSIS OF A DRIVETRAIN INCLUDING 

SPUR, HELICAL AND SPIRAL BEVEL GEARS 

 

 

 

5.1   Introduction 

The vast majority of studies about gear dynamics in the literature focus on single 

gear pairs and several dynamic models and corresponding solution methods are 

proposed in these studies. On the other hand, studies on multi-stage, multi-mesh 

drive trains are limited in spite of their widespread use. Dynamics of two stage spur 

geared systems are studied in [27,28,55], where authors develop dynamic models 

including fluctuating mesh stiffness and backlash nonlinearity and employ 

Harmonic Balance Method (HBM) with discrete Fourier transform (DFT) to solve 

the resulting equations of motion for period-1 and subharmonic responses. Similar 

nonlinear dynamic models with fluctuating mesh stiffness are proposed in [30,31] 

for idler and counter-shaft arrangements of spur gears. Considering linear dynamic 

models with time-invariant mesh stiffness, idler and split-torque arrangements for 

multi-mesh helical gear trains are studied in [40], whereas counter-shaft 

arrangement is investigated in [41]. 

 

There are a few published studies on dynamics of bevel gears and they are all limited 

to a single gear pair. Using a mesh model in accordance with the gear tooth 

geometry, dynamics of bevel and hypoid gear systems are studied in [59]. Then, 

time-varying mesh parameters and backlash nonlinearity are included in the 

dynamic model and authors employ HBM [54] and direct numerical integration [45] 
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to obtain dynamic responses. In addition, a multi-degree-of-freedom (MDOF) 

lumped parameters dynamic model of a hypoid gear train developed in [60] is solved 

by employing direct numerical integration. A linear dynamic model of a spiral bevel 

gear train with time-invariant mesh stiffness is presented in [49], where finite 

element modeling is employed to describe the shaft-bearing structural 

characteristics better. More recently, Yavuz et al. [61] propose an MDOF nonlinear 

dynamic model of a spiral bevel gear train, which combines the Timoshenko beam 

FEM model of shaft-bearing assembly with the mesh model of the gear pair. 

 

Since there is no known study that addresses a nonlinear dynamic model of a multi-

stage, multi-mesh drivetrain including a bevel gear, a nonlinear dynamic model of a 

drivetrain composed of both cylindrical gears and bevel gears (Fig. 5.1) are proposed 

in this study. In the dynamic model, FEM models of shafts are coupled with each 

other by the mesh models of gear pairs, which include backlash nonlinearity and 

fluctuating mesh stiffness. Parametric excitation caused by fluctuating mesh 

stiffness is considered as well as static transmission error. Since the resulting 

nonlinear system has many degrees of freedom (DOFs), the forced response analysis 

is performed in modal domain where the resulting differential equations of motion 

are transformed to a set of nonlinear algebraic equations by using multi-harmonics 

HBM in conjunction with continuous-time Fourier transform and modal 

superposition. Hence, the number of nonlinear equations is proportional to the 

number of modes utilized in the modal superposition, rather than the number of 

DOFs associated with the nonlinearity. Consequently, this approach can be 

employed to obtain the dynamic responses of multi-mesh geared systems without 

increasing the number of nonlinear equations, which drastically decreases the 

computational time, and thus it is possible to model gear shafts by using finite 

element method for shaft-bearing dynamic characteristics to be easily taken into 

account. In contrast with gear dynamics studies that utilize discrete Fourier 

transform [27,28,54,55,61], using continuous-time Fourier transform, the 
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convergence problems encountered in the solution of systems with large number of 

nonlinear equations are avoided. Furthermore, the computational time is decreased 

further by employing analytical integration rather than numerical integration for the 

calculation of Fourier coefficients. The resulting system of nonlinear algebraic 

equations is solved by utilizing Newton’s method with arc-length continuation. A 

much more computationally demanding method, i.e. direct numerical integration, is 

utilized to validate the solutions obtained by HBM. Since computational cost in time 

domain methods such as direct numerical integration increases considerably as the 

number of nonlinear equations increases, a frequency domain method, i.e. HBM, is 

utilized in this study. Several parametric studies are accomplished in order to 

examine the influences of a large number of design parameters on dynamics of 

multi-mesh, multi-stage geared system. 

 

 

5.2   Dynamic Model Formulation 

5.2.1   Physical System and Dynamic Model 

The gear train shown in Fig. 5.1 and Fig. 5.2 is comprised of spur, helical and spiral 

bevel gears with shafts supported by bearings. Timoshenko beam finite element 

method (FEM) is used to model the gear shafts. The outer diameters of the gear 

shafts follow the gear blanks in order to incorporate them into the FEM model; thus, 

the stiffness and mass effects of the gear blanks are considered as well. Multiple 

nodes are used to model the spiral bevel gear cones in order to consider the tapering 

effects of them. The bearing stiffnesses, which are assumed to be time-invariant, are 

also included in the FEM model. Clearance-type nonlinearity is disregarded in the 

bearings, which is reasonable for preloaded bearings [57]. 
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The mass matrix, snM , and stiffness matrix, snK , of each shaft ( )1, 2, ,n n N=   

are calculated by assembling the mass and stiffness matrices of Timoshenko beam 

elements. Then, complete mass and shaft stiffness matrices of the gear train are 

obtained as [ ]1 2, , ,s s s sNDiag=M M M M  and [ ]1 2, , ,s s s sNDiag=K K K K , 

respectively. Considering that each node has 6 DOFs and the shaft n  is modeled by 

using a total of nm  beam elements, the dimension of both matrices is q q×  where 

( )1
6 1N

nn
q m

=
= ⋅ +∑  is the total number of DOFs of the gear train.  

 

Fig. 5.1 The drivetrain considered in this study 
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For a drivetrain supported by a total of bn  bearings, the complete bearing stiffness 

matrix is assembled as 
1 2 bbb b bnDiag    K K KK , where 

 , , , , , 1 to
x y zbi bxi byi bzi b i b i b i bDiag k k k k k k i n  

  
 

K  is the stiffness matrix of the thi  

bearing and bxik  to 
zb ik   are the stiffness values in the designated directions. The 

stiffness matrix of each individual bearing is located in the complete bearing 

stiffness matrix, bK , in accordance with the node number to which the 

corresponding bearing is attached and the remaining elements of bK  are zero. 

 

Fig. 5.2 Numbering of the components in the drivetrain 
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Consequently, the overall stiffness matrix of whole FEM model is obtained as 

s b= +K K K . Furthermore, a set of damping ratio sζ  is used for the shaft-bearing 

assembly.  

 

A generic mesh model, which is applicable to all types of gears in the drivetrain 

considered in this study, i.e., spur, helical and spiral bevel gears, is formulated. The 

mesh model is illustrated in Fig. 5.3, which shows a three-dimensional dynamic 

model of a spiral bevel gear pair. The gears are connected to each other by a time-

varying mesh stiffness and a time-invariant mesh damping in the direction of tooth 

normal, i.e., along the line of action (LOA). Moreover, a displacement excitation in 

the form of static transmission error is connected in series with the stiffness and 

damping elements in the same direction. There is also backlash between the gears, 

which causes nonlinearity in the dynamics of the system. Since time variation of 

mesh vector parameters, i.e., LOA vector and the position of mesh point, is much 

smaller compared to time variation of mesh stiffness [47], a constant LOA vector 

with an effective mesh point is utilized. The mesh couplings for spur and helical 

gears are exactly the same as the one for spiral bevel gear shown in the figure. The 

effective mesh nodes in the three-dimensional discrete mesh model, which are 

coincident for pinion and gear, are connected to the Timoshenko beam finite element 

model of shaft-bearing structures by using rigid links as shown in Fig. 5.4. 

 

Since the mesh node of each gear has 3 translational and 3 rotational DOFs as 

illustrated in Fig. 5.3, a total of 12 DOFs defines the mesh coupling. Since some 

shafts have multiple gears forming multiple mesh couplings with the other shafts, 

the generalized coordinates are expressed relative to the local reference frames of 

the gear shafts, ( ),siS i p g=  rather than the local reference frames of the gears,

( ),iS i p g= . Thus, the displacement vectors of the mesh nodes can be written as 

( ) ( ),
T

si si si si xsi ysi zsix y z i p gθ θ θ= =x . 
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Transforming the displacement vectors of the mesh nodes to the LOA direction by 

using the coordinate transformation vectors,  ,i i p gh , the relative dynamic 

displacement along the LOA, i.e. the dynamic transmission error, is expressed as 

follows 

 

 
T T

d p sp g sg  h x h x .  (5.1) 

 

The transformation vectors composed of the directional rotation radii and the 

directional cosines between the generalized coordinates and LOA can be written as 

 

    ,
T

i ix iy iz ix iy izn n n i p g   h .  (5.2) 

 

Fig. 5.3  A generic mesh model that is applicable to all types of gears 
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The directional rotation radii,  , can be written as  

 

    ,ix i xi i i p g    n u r ,  (5.3) 

 

 

Fig. 5.4  Schematic of gear mesh model and finite element model  

Bearing Bearing

Bearing Bearing

Pinion

Gear

mc

( )mk t

( )me t
2b

Rigid Link

Rigid Link

Coincident Effective 

Mesh Node

Coincident Effective 

Mesh Node

Gear Cone 

Nodes

Pinion 

Cone 

Nodes

Infinitesimal Mesh Model



97 
 

 ( ) ( ),iy i yi i i p gλ = ⋅ × =n u r ,  (5.4) 

 

 ( ) ( ),iz i zi i i p gλ = ⋅ × =n u r ,  (5.5) 

 

where ( )T

i ix iy izn n n=n  represents the directional cosine vector of LOA and 

( )T
i im im imx y z=r  denotes the position vector of the effective mesh point. 

Moreover, ( )1 0 0 T
xi =u , ( )0 1 0 T

yi =u  and ( )0 0 1 T
zi =u  are the unit 

vectors for coordinate system ( ),siS i p g= . The effective mesh point of a bevel gear 

pair is considered to be the intersection point of the pitch cones of the pinion and 

the gear at mean cone distance from the apex as shown in Fig. 4.3. Thus, the position 

vector of the effective mesh point is written as ( )0 0
Tp

p pmr=r  and 

( )0 0
Tg

g pmr= −r  in the local reference frames of the pinion, pS , and the gear, 

gS , respectively, where ( ),i
pmr i p g=  is the pitch radius at mean cone distance. 

Similarly, the effective mesh point of a cylindrical gear pair is assumed to be the 

point of tangency of two pitch circles, i.e., pitch point, at the middle of the facewidth 

as illustrated in Fig. 3.2. Furthermore, in  and ( ),i i p g=r  can be expressed in 

( ),siS i p g=  with a series of coordinate transformation as follows 

 

 ( ) ( ) ( ) ( ) ( ) ( )
0
1 ,
0

i x di z oi y i z t x i p gθ θ γ φ ψ
 
 = − = 
 
 

n T T T T T , (5.6) 

 

 ( ) ( ) ( )0 ,
0

i
pm

i x di z oi

r
i p gθ θ

 
 = = 
 
 

r T T , (5.7) 
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where ( ), ,x y zσ σ =T  denotes the transformation matrix about coordinate σ . 

Spiral/helix angle, ψ , and transverse pressure angle, tφ , of the gear pair can be 

defined depending on the hand and rotation direction of the pinion as follows: 

 

 

, if pinion rotates CCW and has left hand teeth
, if pinion rotates CCW and has right hand teeth
, if pinion rotates CW and has left hand teeth
, if pinion rotates CW and has right hand teeth

ψ
ψ

ψ
ψ
ψ


−= −


, (5.8) 

 

 
( )
( )

, if pinion rotates counterclockwise 

, if pinion rotates clockwise 

t p

t

t p

z

z

φ
φ

π φ

 += 
− −

. (5.9) 

 

In Eq. (5.6), pγ  denotes the pitch angle of the pinion, whereas gγ  represents the 

negative of the pitch angle of the gear. 

 

Moreover, two more angles, namely oiθ  and ( ),di i p gθ = , are defined to transform 

the LOA vector from the local reference frames of gears, ( ),iS i p g= , to the local 

reference frames of gear shafts, ( ),siS i p g= . oiθ  is the angle between the x axes of 

iS  and siS , whereas diθ  denotes the angle between the z axes of iS  and siS . It should 

be noted that pitch angle, γ , and spiral/helix angle, ψ , are 0 for a cylindrical gear 

and a spur gear, respectively. 

 

Considering backlash nonlinearity, the dynamic mesh force, mF , along the LOA can 

be written as  

 

 ( ) ( ) ( ) ( )( ) ( ) ( )( )m m n d m m d mF t k t f t e t c t e tδ δ= − + −

 ,  (5.10) 
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where the nonlinear displacement function, ( ) ( )( )n d mf t e tδ − , is defined as  

 

 ( ) ( )( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

,
0,

,

d m d m

n d m d m

d m d m

t e t b t e t b
f t e t t e t b

t e t b t e t b

δ δ
δ δ

δ δ

 − − − >


− = − ≤
 − + − < −

.  (5.11) 

 

Here, b  is the half of the gear backlash. The equation of motion of the whole gear 

train can be expressed as 

 

 ( ) ( ) ( ) ( ) ( )Nt t t t t+ + + =Mx Cx Kx F F  ,  (5.12) 

 

where ( )tF  represents the external force vector consisting of the external torques 

as follows 

 

( )

( ) ( )
Input Gear Node Output Gear Node

0 0 0 0 0 0 0 0 0 0in ou

T

tT T

t =

 
 =
 
 

−

F F

 

  

.  (5.13) 

In the external force vector, ( )tF , the input and output torque values, which are 

assumed to be constant, are located according to the node numbers related with the 

input and output gears, respectively, and only the vector elements associated with 

the rotation of input and output gears about z axis are nonzero. The complete 

damping and stiffness matrices of the system does not include the mesh damping 

mc  and mesh stiffness mk , respectively, due to the backlash nonlinearity. These 

mesh parameters are included in the equations of motion through the nonlinear 

restoring force vector, ( )N tF , which is obtained from the dynamic mesh force as 

follows 
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 ( ) ( ) ( )
1

mN

N qm q
q

t F t
=

= ∑F p ,  (5.14) 

 

where mN  represents the number of gear meshes in the drivetrain, ( ) ( )m qF t  is the 

dynamic mesh force corresponding to the qth gear mesh and qp  is the extended 

coordinate transformation vector for the qth gear mesh obtained by locating the 

individual transformation vectors, ( ),i i p g=h , in a null vector, whose length is 

equal to the number of total DOFs, according to the node numbers of pinion and 

gear forming the mesh:  

 

 ( )T TT
p g−=p h h   . (5.15) 

 

 

5.2.2   Solution Method 

5.2.2.1   Multi-term Harmonic Balance Method with Continuous-Time Fourier 

Transform 

Harmonic Balance Method with multiple harmonics is employed to solve the 

equation of motion given by Eq. (5.12). Time-varying parameters such as static 

transmission error and mesh stiffness in a single gear pair system are assumed to be 

periodic with the mesh frequency, which can be calculated by the multiplication of 

the rotational speed of a gear in the mesh with the number of teeth of the same gear. 

Therefore, the response is as well periodic with the mesh frequency. However, since 

the drivetrain considered in this study includes multiple gear meshes with distinct 

mesh frequencies, the response is usually expected to be periodic with the common 

period of all the mesh excitations. For a drivetrain including a total of mN  gear 
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meshes, the common period can be defined as an integer multiple of all the mesh 

periods, according to ( )1,2, ,j j mT z T j N= =  . Moreover, the number of 

harmonics employed in the response should not be less than ( )1 2max , , ,
mNz z z  

[31]. On the other hand, since the excitations that are periodic with different mesh 

frequencies emerge at different mesh locations of the drivetrain, dynamic response 

of any region in the drivetrain is mainly governed by one of these excitations while 

another region is dominated by another excitation. Therefore, all the excitations can 

be considered separately and the response can be expressed in such a Fourier series 

that it includes the fundamental and super-harmonic terms of each mesh frequency, 

( )1,2, ,j mj Nω =  , as follows 

 

 ( )
,

1 0
Im

h jm
j

NN
ir tr

j
j r

t e ω

= =

 
=   

 
∑∑x X , (5.16) 

 

where i  denotes the unit imaginary number and Im  represents the imaginary part. 

The response consists of the bias terms 0
jX , fundamental harmonic and super-

harmonic terms, ( ),1, 2, , & 1,2, ,r
j m h jj N r N= =X   . Here, r

jX  is the complex 

amplitude vector of the harmonic with the frequency jrω  and ,h jN  denotes the 

number of harmonics with the frequencies of integer multiples of the jth gear mesh 

frequency. Moreover, based on the assumption that the response and so the nonlinear 

displacement function ( ) ( )( )n d mf t e tδ −  is periodic, the dynamic mesh force 

( ) ( ) ( )1,2, , mm qF t q N=   at the qth mesh can be described periodically as follows 

 

 ( ) ( ) ( )

,

,
1 0

Im
h jm

j

NN
ir tr

m q m q j
j r

F t F e ω

= =

 
=   

 
∑∑ .  (5.17) 
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For the nonlinear displacement function given by Eq. (5.11), it is required to 

determine the exact time of discontinuities for the accurate calculation of Fourier 

coefficients. A time point that is not very close to the actual discontinuity makes the 

nonlinear solver not to converge or, at best, to perform more iterations for 

convergence. This problem is tried to be avoided by using a very small time step in 

discrete Fourier transform, which provides only a slight improvement in accuracy, 

but increases the computational time considerably. For this reason, continuous-time 

Fourier transform is preferred rather than DFT in this study in order to calculate the 

Fourier coefficients. Accordingly, Fourier coefficients of the dynamic mesh force 

are calculated as follows ( ) ( )( ),1, 2, , , 1, 2, ,m h jj N r N= =   

 

 ( ) ( ) ( )0
,

0

1 T

m q j m qF F t dt
T

= ∫ , (5.18) 

 

 ( ) ( ) ( ),
0

2 j

T
ir tr

m q j m q
iF F t e dt

T
ω−= ∫ . (5.19) 

 

It should be noted that the period, T , in Eqs. (5.18) and (5.19) is the common period 

for all gear meshes in the system according to ( )1,2, ,j j mT z T j N= =  . 

Furthermore, the above integrals are computed analytically, rather than numerically, 

which decreases the computational time significantly. 

 

Utilizing the extended coordinate transformation vector p  given in Eq. (5.15), 

Fourier coefficients of the nonlinear restoring force vector, ( )N tF , can be calculated 

as follow 

 

 ( )
,

,
1 0

Im
h jm

j

NN
ir tr

N N j
j r

t e ω

= =

 
=   

 
∑∑F F ,  (5.20) 
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where, 

 

 ( ) ( ), ,,
1

1, 2, , & 0,1,2, ,
mN

r r
N j q m h jm q j

q
F j N r N

=

= = =∑F p   .  (5.21) 

 

Substituting Eqs. (5.16) and (5.20) into Eq. (5.12) and balancing the harmonic terms, 

the following set of nonlinear algebraic equations is obtained for 1, 2, , mj N=   and 

,0,1, 2, , h jr N=   

 

 ( ) ( )2

,
r r r

j j j N j jr i rω ω − + + + =  
M C K X F F .  (5.22) 

 

 

5.2.2.2   Modal Superposition Method 

In the dynamic analysis of systems with many DOFs, the large number of nonlinear 

equations causes several numerical difficulties and significant increase in 

computational time. For systems where the number of nonlinear DOFs is much 

smaller than the total number of DOFs, receptance method, details of which are 

given in [52,62], can be employed. Using receptance method, the number of 

nonlinear equations can be decreased to the number of nonlinear DOFs multiplied 

by the number of harmonics. For geared systems, only the DOFs associated with 

gears, i.e., mesh nodes, contain nonlinearity. However, if the drivetrain consists of 

multiple gear pairs, which is the case in this study, receptance method will also result 

in a large number of nonlinear equations and large matrices will be involved in the 

solution procedure. Therefore, it is not convenient to use receptance method for 

dynamic response analysis of multi-stage, multi-mesh gear trains. 
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On the other hand, Kuran and Özgüven [67] studied on the calculation of the 

dynamic response of some MDOF nonlinear structures by employing modal 

superposition method. Later, Cigeroglu et al. [68] developed a modal superposition 

method for the dynamic analysis of bladed-disk systems and they [53] also extended 

the work to include multi-harmonic solution. In this study, modal superposition 

method is introduced to the dynamic analysis of multi-mesh drivetrains. In this 

approach, the response of the nonlinear system is estimated by modal superposition 

using the modes of the linear system. The number of resulting nonlinear equations 

depends on the number of modes utilized in the modal superposition; therefore, it is 

independent of the number of nonlinear DOFs, i.e., the number of gear meshes. 

Consequently, the modal superposition method is more appropriate for the dynamic 

analysis of multi-mesh drivetrains. 

 

In order to transform the system of nonlinear algebraic equations given by Eq. (5.22) 

to modal coordinates, the following coordinate transformation is defined 

 

 ( ) ( ) ( )1 1n n m m× × ×=X Φ η , (5.23) 

 

where η  denotes the modal coefficient vector and Φ  represents the mass 

normalized undamped modal matrix obtained by the solution of the eigenvalue 

problem, i.e., 2ω=KΦ MΦ . Here, m and n represent the number of modes 

employed and the number of DOFs, respectively. It is noted that the number of 

modes, m, should be selected accordingly by considering the frequency range where 

the solution is searched. Consequently, using the orthogonality of mode shapes, the 

coordinate transformation yields the following set of nonlinear algebraic equations 

for 1, 2, , mj N=   and ,0,1, 2, , h jr N=   

 

 ( ) ( )2

,
r r r

j j j N j jr i rω ω − + + + =  
I C Ω η F F ,  (5.24) 
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where Ω  represents the diagonal matrix including the squares of natural 

frequencies, I  denotes the identity matrix and T=C Φ CΦ  represents the modal 

viscous damping matrix, which is diagonal in the case of proportional damping. 

Moreover, T
N N=F Φ F  and T=F Φ F  are the modal nonlinear restoring force and 

the modal forcing vector, respectively. 

 

A residual vector for all harmonics including the bias term can be written as follows 

( ),1, 2, , & 1, 2, ,m h jj N r N= =   

 

 ( )0 0 0 0 0N= + − =R η Ω η F F ,  (5.25) 

 

 ( ) ( ) ( )2

, 0r r r r
j j j j N j jr i rω ω = − + + + − =  

R η I C Ω η F F .  (5.26) 

 

Eq. (5.25) is a real equation set including the bias terms, whereas Eq. (5.26) is a set 

of complex equations regarding the rth harmonic of the jth gear mesh frequency. 

Therefore, a total of ( )( ),1
2 1mN

h jj
m N

=
× × +∑  real nonlinear equations are solved in 

order to determine the dynamic response of the drivetrain under investigation. 

 

The system of nonlinear equations is solved by using Newton’s Method for the 

unkown modal coefficient vector, 

( ),N,1 ,20 1 1 1
1 1 2 2

hh h m

m m

TNN N
N N=η η η η η η η η    . Furthermore, arc-

length continuation is employed in order to trace the solution path even it changes 

its direction. Details of Newton’s method with arc-length continuation can be found 

in [63–65]. The initial guess for the first solution point is obtained from the solution 

of the corresponding linear drivetrain. Then, the initial guess for the subsequent 



106 
 

solution points are estimated by using tangent predictor since the Jacobian at the 

previous solution point is available. 

 

There are phase differences between gear meshes in multi-mesh, multi-stage geared 

systems. The static transmission error at the qth mesh in the system can be defined 

in Fourier series form as 

 

 ( ) ( ) ( ) ( )
1

sin
L

l l
q q qm q m q

l
e t E l t lω α

=

= + + Π∑ , (5.27) 

 

where ( )
l
m qE  and l

qα  represent the lth harmonic amplitude and phase angle of the 

static transmission error at the qth mesh, respectively. qω  denotes the gear mesh 

frequency of the qth mesh. Considering that all the gear meshes have the same tooth 

profile modifications results in 1 2
l l l

qα α α= = = . The other phase angle qΠ  

represents the phase difference between ( ) ( )m qe t  and ( ) ( )1me t  where 1 0Π = . 

( )2 toq mq NΠ =  can be defined as  

  

 
2

q

q j
j=

Π = Π∑ ,  (5.28) 

 

where qΠ  is the phase difference between ( ) ( )m qe t  and the previous excitation 

( ) ( )1m qe t−  and it can be calculated as 

 

 ( )j j jZ ϕ β πΠ = − + ,  (5.29) 
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where Z  represents the number of teeth of the driver gear in the jth mesh and jϕ  is 

the angle between the vectors directed to the effective mesh points of jth and (j-1)th 

meshes (see Fig. 5.5 and Fig. 5.6). jβ  represents the angle between the reference 

teeth of the gears mounted on the same shaft, which is shown in Fig. 5.6.  

 

The mesh stiffness functions of the gear meshes have the same phase relationship 

with each other. Furthermore, the mesh stiffness and static transmission error of 

each individual gear mesh are considered to be out-of-phase. The mesh stiffness at 

the qth mesh in the system is written in Fourier series form as follows 

 

 ( ) ( ) ( ) ( ) ( )0

1
sin

H
h h

q q qm q m q m q
h

k t K K h t hω α π
=

= + + + Π +∑ ,  (5.30) 

 

where ( )
0
m qK  and ( )

h
m qK  are the mean value and hth harmonic amplitude of the mesh 

stiffness of the qth mesh, respectively. 

 

5.3   Results and Discussion 

A drivetrain composed of spur, helical and spiral bevel gears having the parameters 

given in Table 5.1 is considered as the example case. Since intentional modifications 

of tooth profiles make it possible to adjust the static transmission error, only the first 

harmonics of the static transmission error functions for all gear meshes are 

considered in this study. The spectral content of the mesh stiffness mainly depends 

on the operating contact ratio and the first harmonic is usually dominant especially 

for medium-to-heavy load range. Therefore, the mesh stiffness functions for all gear 

meshes are assumed to consist of only the first harmonics in this study. The mesh 

stiffness and static transmission errors for the gear meshes are shown in Fig. 5.7. 

Moreover, external torque values are assumed to be constant.  
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Fig. 5.5 Orientation of the input spur pinion,
input  , and angle between the vectors 

directed to the effective mesh points,   

 

 

Fig. 5.6 Angle between the reference teeth of the gears mounted on the same 

shaft, j , and angle between the vectors directed to the effective mesh points,   

βj
φj

(j-1)th gear 

mesh
jth gear 

mesh
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Table 5.1 Parameters of the example drivetrain 

Shaft Parameters 

 Shaft 1 Shaft 2 Shaft 3 Shaft 4 
Segment OD ID L OD ID L OD ID L OD ID L 
1 30 22 70 40 30 135 75 58 234 150 80 95 
2          120 80 150 
3          100 80 200 
Damping ratio ζ   0.04 

Gear Parameters 

 Spur 
Pinion 

Spur 
Gear 

Bevel 
Pinion 

Bevel 
Gear 

Helical 
Pinion 

Helical 
Gear 

Number of teeth 22 35 21 51 17 52 
Helix/Spiral angle (°) 0 0 27 27 20 20 
Normal pressure angle (°) 20 20 20 20 20 20 
Pitch angle (°) 0 0 22.38 67.62 0 0 
Pitch diameter (mm) 66 105 84 204 112.55 344.26 
Face width (mm) 22 22 30 30 50 50 
Hand - - Left Right Right Left 
Locations (mm)a 44 24 100 50 169 25 
T  (Nm) 70 0 0 0 0 -827.27 

Bearing Parameters 
 Shaft 1 Shaft 2 Shaft 3 Shaft 4 
 B1 B2 B1 B2 B1 B2 B1 B2 

Locations (mm)a  25 62 64 124 18 214 70 200 

bk  (N/m, Nm/rad) ( ) ( ) ( ) ( ) ( )9 9 9 6 62 10 , 2 10 , 1 10 , 1 10 , 1 10 , 0Diag     

Gear Mesh Parameters 
 Mesh 1 Mesh 2 Mesh 3 

( ) ( )
0 1,m q m qK K  (N/m) 290e6, 91e6 310e6, 44e6 750e6, 35e6 

mc  (Ns/m) 2900 3100 7500 

( )
1
m qE  (µm) 15 9 3 

b  (µm) 40 40 40 
 

a  Distance from the end of shaft in the positive z direction of local shaft coordinate system (Fig. 
5.2) 
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Fig. 5.7 Mesh stiffness and static transmission error, (a-b) 1st mesh (spur gear) 
[58], (c-d) 2nd mesh (spiral bevel gear) [69], (e-f) 3rd mesh (helical gear) [58] 
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The interactions between the two gear meshes depend on the ratio of the mesh 

frequencies. An integer mesh frequency ratio results in significant mesh 

interactions, whereas there are minimal mesh interactions in the case of a mesh 

frequency ratio that is not an integer [31]. Accordingly, the number of teeth of the 

gears in this study are determined so that the mesh frequencies, 1 2 3, andω ω ω , are 

proportional to 5, 3 and 1, respectively, in order to have strong interactions between 

the meshes. With the number of teeth determined and ( )0 2,3j jβ = = , the phase 

differences between the meshes are calculated as 0 so that all the meshes are in 

phase.  

 

Firstly, the undamped natural frequencies of the corresponding linear time-invariant 

system obtained by the Timoshenko beam FEM model used in this study are 

compared with those obtained by commercial FEM software ANSYS® [66] in Table 

5.2. The results demonstrates that the finite element modeling of shaft-bearing 

assembly including the gear blanks and the mesh couplings is achieved in very good 

agreement with the finite element software. 

 

The steady-state solutions obtained by HBM utilizing two harmonics for each mesh 

frequency ( ), 2, 1, 2,3h jN j= =  are then compared with the solutions obtained by 

direct numerical integration (NI). Considering that the minimum gear mesh 

frequency, 3ω , is the reference frequency, ω , a total of six harmonics with the 

frequencies , 2 ,3 ,5 ,6 and 10ω ω ω ω ω ω  are utilized in HBM. Fig. 5.8 gives the 

comparison of the root-mean-square (rms) values of the responses in the form of 

dynamic mesh force, which are calculated as follows: 
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 ( )
( ) ( ) ( )

,

1 22

,

1 1
, 1, 2,3

2

h jm
rNN

m q jrms
m q

j r

F
F q

= =

   =   =     
∑∑ ,  (5.31) 

 

where ( ),
r

m q jF  is the amplitude of the harmonic of the dynamic mesh force, ( ) ( )m qF t , 

at the qth gear mesh with the frequency jrω  given by Eq. (5.19). 

 

Table 5.2 Comparison of natural frequencies of linear-time invariant system 

Undamped Natural Frequencies 

n 
Timoshenko 
beam FEM 

(Hz) 

ANSYS® 
Solution 

(Hz) 
Difference (%) 

1 0.0 0.0 0.0 
2 551.0 554.3 -0.59 
3 611.0 619.6 -1.39 
4 763.4 761.6 0.23 
5 994.3 994.4 0.00 
6 1141.4 1162.1 -1.78 
7 1147.8 1167.4 -1.68 
8 1615.2 1602.8 0.77 
9 1744.2 1742.6 0.09 

10 1779.7 1778.1 0.09 
11 1817.4 1827.0 -0.52 
12 1904.2 1900.6 0.19 
13 2506.3 2521.4 -0.60 
14 2561.9 2566.0 -0.16 
15 2776.9 2793.2 -0.58 
16 2923.3 2923.3 0.00 
17 3802.8 3780.8 0.58 
18 3860.0 3828.1 0.83 
19 3875.3 3844.1 0.81 
20 4002 3999 0.09 
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The linear response of the geared system is also plotted in Fig. 5.8. The resonance 

peaks observed at 1500input  rpm, 2100input  rpm and 4375input  rpm 

(shown by vertical dashed lines) in the linear response occur when the gear mesh 

 

Fig. 5.8 Comparison of rms values of the responses predicted by HBM and NI, 

(a) dynamic mesh force at 1st mesh, 
 
 
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frequency of the 1st mesh, 1mω , is equal to the 2nd, the 4th and the 8th natural 

frequencies of the corresponding linear system, respectively. Furthermore, the 2nd 

gear mesh excites the 2nd, the 4th, the 7th, the 8th, the 9th and the 12th mode shapes of 

the corresponding linear system around the resonance peaks observed at 

2500inputΩ = rpm, 3500inputΩ = rpm, 5350inputΩ = rpm, 7250inputΩ = rpm, 

7900inputΩ = rpm and 8750inputΩ = rpm, respectively. Finally, the 4th natural 

frequency of the linear drivetrain is excited by the 3rd gear mesh around the 

resonance peak observed at 10500inputΩ = rpm occur.  

 

It can be observed from Fig. 5.8 that HBM and NI solutions are in very good 

agreement except the input speed range between 9000 rpm and 12000 rpm. In this 

speed range, although dynamic mesh force results at the 2nd and the 3rd gear meshes 

obtained by HBM and NI agree well, there is a discrepancy between the solutions 

of two methods for the dynamic mesh force at the 1st gear mesh. This indicates the 

lack of some harmonics that should be included in the HBM solutions assumed. It 

is illustrated in Fig. 5.9, which shows the time trace and frequency spectrum of the 

steady-state portion of the dynamic mesh force at the 1st gear mesh, ( ) ( )1mF t , at 

10000inputΩ = rpm obtained by NI. The spectral content of the response contains 

some other harmonics, i.e., 7th, 8th and 15th harmonics, with enough amplitudes to 

cause discrepancy. Since these harmonics are not included in the assumed solutions, 

HBM solutions deviate from the solutions obtained by NI.  

 

It is known from past studies that spur [10,11,22,55] and spiral bevel gears 

[45,54,59–61] can exhibit both single-sided tooth impact (SSI) and double-sided 

tooth impact (DSI) type nonlinear behaviors depending on the system parameters. 

On the other hand, dynamic behavior of moderately and heavily loaded helical gears 

are linear since the static transmission error and parametric excitations due to mesh 

stiffness fluctuations are relatively small for helical gears [40,41]. However, since 
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there is no known study that propose a dynamic model of a multi-mesh, multi-stage 

drivetrain consisting of spur, helical and spiral bevel gears, the effect of interactions 

between different types of gear meshes on dynamic behavior is an unknown. In this 

study, similar nonlinear responses are seen in both HBM and NI solutions even at 

the helical gear mesh, which shows the strong interaction between the gear meshes.  

Focusing on Fig. 5.10, the responses of all the gear pairs are linear with no tooth 

impacts in the low frequency range. As the input speed increases to 3358input 

rpm, 3rd gear mesh (helical gear pair) begins to exhibit SSI. Tooth separation causes 

a softening effect in this nonlinear behavior; hence, all the response curves veer left 

towards the lower frequency range and follow the same path as the speed decreases 

to 3299input  rpm. Just before this input speed, tooth separation begins to occur 

at the 2nd gear mesh (spiral bevel gear pair), too. Then, the response curves take 

sharp turns towards the right and SSI type nonlinear behaviors at the 2nd and 3rd gear 

meshes continue. As the input speed increases further, firstly the response at the 2nd 

 

Fig. 5.9 (a) Time trace and (b) frequency spectrum of    1m
F t  at 10000input 

rpm predicted by NI 
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gear mesh (at 3543input  rpm) and then the response at the 3rd gear mesh becomes 

linear (at 3884input  rpm). On the other hand, DSI, which includes both tooth 

separation and impact with the preceding tooth, does not emerge since the backlash 

amount used in the analysis is large enough to avoid back collision. It should also 

   3m
F t be noted in Fig. 5.10 that tooth separations or back collisions do not occur 

at the 1st gear mesh (spur gear pair). 

 

The strong interaction between the gear meshes is illustrated in Fig. 5.11, which 

shows the amplitudes of the harmonics of dynamic mesh force, , at the helical gear 

mesh (3rd stage) obtained by HBM. It is obvious from the figure that the tooth 

separations at the helical gear pair in this speed range are mainly due to the vibration 

induced by the larger static transmission error and parametric excitations consisting 

of the harmonic with the frequency of 3  at the spiral bevel gear pair. 

 

Fig. 5.10 Nonlinear behavior of the drivetrain 
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Investigating Fig. 5.8 further, SSI also emerges in the vicinity of the other resonance 

peaks observed at 7250input  rpm, 8750input  rpm and 10500input  rpm 

(shown by vertical dashed lines). Furthermore, after 8500input  rpm, the response 

curve obtained by HBM for the 1st gear mesh begins to deviate significantly from 

the linear response curve. In this high speed range, the dynamic mesh force at the 

1st gear mesh exceeds the static mesh force transmitted; hence, tooth separations 

occur there. It is also seen from Fig. 5.8 that the responses around the resonance 

peaks observed at 1500input  rpm, 2100input  rpm, 2500input  rpm, 

4375input  rpm and 5350input  rpm are completely linear since static mesh 

forces at all the gear meshes are larger compared to the corresponding dynamic mesh 

forces. Moreover, there are so many resonance peaks in the responses caused by the 

 

Fig. 5.11 Amplitudes of the harmonics of dynamic mesh force,    3m
F t , at the 

helical gear mesh (3rd stage) obtained by HBM 
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excitations at the gear meshes that super-harmonic resonance peaks, which are 

common in parametrically excited systems, are not clearly observed here. 

 

The effect of number of mode shapes utilized in the modal superposition method is 

given in Fig. 5.12. It can be concluded from the figure that the number of modes 

required in the forced response analysis mainly depends on the frequency range 

 

Fig. 5.12 Effect of number of mode shapes utilized in modal superposition 
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where the solution is searched. In the low input speed range, i.e., 0-4000 rpm, the 

responses obtained by utilizing first 20 modes and 50 modes of the corresponding 

linear system are nearly same; hence, it can be concluded that 20 modes are 

sufficient to predict the responses quite accurately in this speed range. On the other 

hand, in the medium speed range, i.e., 4000-8000 rpm, the results obtained by 

employing the first 35 modes agree well with the results obtained by including the 

first 50 modes of the linear system. Finally, in the high speed range, i.e., 8000-12000 

rpm, the responses at the 2nd and 3rd gear meshes can be accurately predicted by 

utilizing the first 35 modes, whereas minimum 40 modes are required to obtain the 

exact response at the 1st gear mesh. Consequently, in this study, the responses are 

obtained in both HBM and NI by utilizing the first 20, 35 and 40 modes of the linear 

system in the low, medium and high speed ranges, respectively. Thus, computational 

time is improved significantly compared to the case in which 40 modes are utilized 

for the all speed ranges. 

The influence of set of harmonics employed in HBM on the response is shown in 

Fig. 5.13, which compares four different sets of harmonics: (i) five harmonics with 

the fundamental frequency of ω , (ii) fundamental harmonics of the mesh 

frequencies, (iii) two harmonics for each mesh frequency, (iv) three harmonics for 

each mesh frequency. The first case represents the common period rule, according 

to which the response is periodic with the common period of all the mesh 

excitations. The common period in this study is 2π ω  where ω  is the minimum 

frequency that satisfies ( )1,2,3j jz jω ω= =  and jω  is the mesh frequency of jth 

mesh, and the number of harmonics used in the response should not be less than 

( )1 2 3max , , 5z z z = . The other three cases are associated with the mesh frequencies 

and their super-harmonics. It is observed from the figure that the results obtained by 

using two or three harmonics for each mesh frequency agree well with the results 

obtained by NI. However, the results obtained by using only fundamental harmonics 

of the mesh frequencies in the solution deviates from multi-harmonic solutions 
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significantly in the frequency ranges where separation occurs, since the nonlinear 

characteristics cannot be captured accurately using single-harmonic. Similarly, there 

are some inconsistencies in the nonlinear response ranges between the results 

obtained by utilizing five harmonics with the fundamental frequency of   and NI 

compared to the results of the other three cases. Especially, in the vicinity of the 

resonance peak observed at 10500input  rpm, some complex nonlinear behaviors, 

which NI does not predict, begin to emerge in the solution of the first case. 

 

Fig. 5.13 Effect of harmonics employed in HBM (a) 
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Fig. 5.14 shows the influence of the length of the third shaft, which carries the bevel 

gear and helical pinion, on dynamic gear mesh force. The length of the shaft is 

changed incrementally from 234 mm to 360 mm by increasing the length of each 

shaft segment proportionally. It is evident in the figure that the increase in 3L  causes 

the resonance peaks to shift to the left, demonstrating that the corresponding natural 

frequencies decrease. Furthermore, the amplitudes of some peaks increase while 

those of the others decreases with increasing 3L . Depending on the change in the 

peak amplitude, the effect of the nonlinearity around the corresponding peak 

changes as well. The same effects are observed on the responses of the other gear 

meshes, 
 
 

1

rms

m
F  and 

 
 

2

rms

m
F , which are shown in Fig. 5.15 and Fig. 5.16, respectively. 

 

Fig. 5.14 Effect of the length of the third shaft on the dynamic gear mesh force, 
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Fig. 5.15 Effect of the length of the third shaft on the dynamic gear mesh force, 

 
 

1

rms

m
F , at the spur gear mesh (1st stage) 

 

Fig. 5.16 Effect of the length of the third shaft on the dynamic gear mesh force, 
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The effect of the hand of the helical gears on the dynamic bearing forces, 
 rms

bF , are 

illustrated in Fig. 5.17. Here, each force component is calculated by the 

multiplication of the corresponding component of the bearing stiffness and the 

amplitude of the response of the bearing location in the corresponding direction. The 

hands of the helical gears considered here are RL and LR. For instance, RL denotes 

a right-hand helical pinion and left-hand helical gear. In Fig. 5.17, the effect of the 

gear hand on the resonance peak amplitudes of bxF , byF  and bzF  of the bearing 3B 

is quite significant. Furthermore, the alteration in the gear hand configurations cause 

some changes in the natural frequencies of the drivetrain. Similarly, the amplitudes 

of the bending moments, 
xbF   and 

ybF  , of the same bearing is affected significantly 

by the hand of the gears as well. Moreover, the dynamic forces of the bearings 3A, 

4A and 4B is very sensitive to the gear hand configurations, whereas the dynamic 

forces of the other bearings is not affected considerably. For brevity, the results of 

 

Fig. 5.17 Effect of gear hand configurations of helical gears on dynamic bearing 

forces, 
 rms

bF , of bearing 3B (shown in Fig. 5.2) 
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the other bearings are not given here. It is also noted that the hand of the spiral bevel 

gears are held as LR in this analysis since the concave flank of the spiral bevel pinion 

is the drive side in a normal operation. An alteration in the gear hand configurations 

of the spiral bevel gears requires the rotation directions of the gears to be reversed. 

It is observed that the response of the geared system having RL and LR 

configurations for the spiral bevel and helical gears, respectively, is exactly the same 

as that of the geared system with LR and RL configurations for the bevel and helical 

gears, whose rotation directions are reversed. This is also not shown here for brevity. 

 

Fig. 5.18 illustrates the change in the dynamic bearing force, ( )rms
byF , of the bearing 

2A as a function of the orientation of the input spur pinion, inputα  (see Fig. 5.5). Here, 

inputα  is varied from -51.43 to 102.86 degrees incrementally. The particular inputα  

values are chosen such that the phase angles between the gear meshes are not 

influenced by inputα  according to Eq. (5.28). It is observed from the figure that the 

resonance peak amplitudes of byF  of the bearing 2A change significantly, whereas 

the natural frequencies change slightly. byF  reaches its maximum when 0inputα =

deg and its minimum when 102.86inputα = deg. Similarly, bxF  is also influenced 

significantly. On the other hand, bzF  is not affected considerably by inputα , which is 

shown in Fig. 5.19. The similar effects are also observed at the bearings 1A, 1B and 

2B while the remaining bearings are influenced very slightly by the orientation of 

the input spur pinion. These observations are not shown here for brevity. 
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Fig. 5.18 Effect of orientation of input spur pinion, 
input , on dynamic bearing 

force, 
 rms

byF , of bearing 2A (shown in Fig. 5.2) 

 

Fig. 5.19 Effect of orientation of input spur pinion, input , on dynamic bearing 

force, 
 rms

bzF , of bearing 2A (shown in Fig. 5.2) 
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Fig. 5.20 shows the change in the dynamic mesh force at the 3rd mesh, 
 
 

3

rms

m
F , when 

the bending stiffness coefficients of all bearings in the system, 
x yb bk k  , are 

changed equally. It can be noticed that the increase in 
x yb bk k   causes the 

resonance frequencies to shift to the right. Moreover, the peak amplitudes are 

influenced differently; that is, some peak amplitudes decrease, whereas the others 

increase with increasing 
x yb bk k  . The nonlinearity of the response are affected by 

the change in the peak amplitude as well. The same effects are also observed on the 

dynamic responses of the other gear meshes, 
 
 

1

rms

m
F  and 

 
 

2

rms

m
F , which are shown in 

Fig. 5.21 and Fig. 5.22, respectively. On the other hand, while the amplitudes of the 

dynamic bearing forces in the axial and radial directions are not very sensitive to the 

value of 
x yb bk k  , the amplitudes of the dynamic bending moments at the bearings, 

xbx b bxM k    and 
yby b byM k    are affected drastically. The dynamic bearing forces 

are not shown here for brevity. 

 

 

Fig. 5.20 Effect of bearing stiffness coefficients, 
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Fig. 5.21 Effect of bearing stiffness coefficients, 
x yb bk k  , on the dynamic gear 

mesh force, 
 
 

1

rms

m
F  

 

Fig. 5.22 Effect of bearing stiffness coefficients, 
x yb bk k  , on the dynamic gear 
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Fig. 5.23 compares the dynamic mesh forces for the cases when the input pinion is 

a spur gear or a helical gear with increasing helix angle. Static transmission error 

and fluctuation of mesh stiffness for a helical gear are smaller compared to the ones 

for a spur gear of the same size. As helix angle is increased, these mesh parameters 

decrease more. Accordingly, the alternating components of the mesh stiffness 

 

Fig. 5.23 Effect of helix angle of input pinion (a)
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parameters are 91e6, 56e6 and 18e6 N/m (31%, 19% and 6% of the mean values of 

the corresponding mesh stiffness parameters) for the input spur pinion, helical 

pinion with 15ψ = deg and helical pinion with 20ψ = deg, respectively. The 

respective static transmission errors are 15, 8 and 5 μm for the three cases. 

Consequently, as the helix angle of the input pinion is increased from 0 (spur pinion) 

to 20 deg., the amplitudes of the resonance peaks observed at 1500inputΩ = rpm, 

2100inputΩ = rpm and 4375inputΩ = rpm (shown by vertical dashed lines) decrease 

since the static transmission error and parametric excitations at the 1st gear mesh, 

which cause these peaks, decrease. The other resonance peaks of ( )
( )

2
rms

mF  and ( )
( )

3
rms

mF  

are affected very slightly. Furthermore, the dynamic mesh force at the 1st gear mesh, 

( )
( )

1
rms

mF  decreases significantly after 5500inputΩ = rpm. 

 

 

5.4   Conclusion 

A nonlinear time-varying dynamic model of a multi-stage, multi-mesh drivetrain 

composed of spur, helical and spiral bevel gears is formulated in this study. 

Flexibilities of shafts and bearings are included in the dynamic model by the use of 

finite element modeling. FEM model of shafts are coupled with each other by the 

mesh model of gear pairs including backlash nonlinearity and fluctuating mesh 

stiffness. Natural frequencies of the corresponding linear time-invariant system 

obtained by the developed Timoshenko beam finite element model and commercial 

finite element software, ANSYS®, are in very good agreement, which ensures the 

quality of the FEM utilized in this study. The resulting nonlinear differential 

equations of motion are transformed to a set of nonlinear algebraic equations by 

utilizing Harmonic Balance Method (HBM) with multiple harmonics. In contrast 

with gear dynamics studies using discrete Fourier transform, continuous-time 

Fourier transform is employed in this study to calculate the Fourier coefficients 
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required in the HBM. Thus, the convergence problems that arise when the number 

of nonlinear equations is large are avoided. Furthermore, in order to decrease the 

computational time, analytical integration is employed rather than numerical 

integration for the calculation of Fourier coefficients. Since the resulting number of 

nonlinear algebraic equations is very large due to the finite element modeling of the 

shafts, these equations are transformed to modal coordinates by using model 

superposition method. Thus, the number of nonlinear equations is proportional to 

the number of modes utilized in the modal superposition, rather than the number of 

DOFs associated with the nonlinear elements. Consequently, the proposed method 

decreases the computational time significantly in the dynamic analysis of multi-

stage, multi-mesh drivetrains and makes it possible to model gear shafts by using 

FEM. The resulting nonlinear algebraic equations are solved by the use of Newton’s 

method with arc-length continuation. Direct numerical integration (NI), i.e. a much 

more computationally demanding method, is used to validate the solutions obtained 

by HBM and the comparison shows that the solutions obtained by the two methods 

agree well with each other. It is observed from the results that single-sided tooth 

impacts occur in the multi-mesh drivetrain under investigation, whereas double-

sided tooth impacts do not emerge since the backlash amount used in the analysis is 

large enough to avoid back collision. 

 

The results show that the strong interactions between the gear meshes cause tooth 

separations even at the helical gear pair, even though the previous gear dynamics 

studies claim that the dynamic behavior of helical gears are linear. Moreover, it is 

observed that the number of modes required in the modal superposition mainly 

depends on the frequency range where the solution is searched. It is also observed 

that the results obtained by employing two or three harmonics for each mesh 

frequency in HBM agree better with the results obtained by NI compared to the 

results obtained by utilizing the harmonics of the minimum frequency which 

corresponds to the common period of all the mesh excitations. Several parametric 



131 
 

studies are as well performed and the results in the form of dynamic mesh forces 

and dynamic bearing forces indicate that a large number of design parameters affects 

the dynamic behavior of multi-mesh, multi-stage geared system in different levels 

and ways. 
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CHAPTER 6  
 

 

CONCLUSION AND FUTURE WORK 

 

 

 

6.1   Conclusion 

Vibration and noise are important concerns in drivetrain systems since they are the 

main cause of fatigue failures of the driveline components. Therefore, analytical 

evaluation of the dynamics of gear pairs and also full drive train system is vital to 

design a more silent and durable transmission system. The main goal of this 

dissertation is to develop a nonlinear dynamic model of a multi-mesh, multi-stage 

drivetrain composed of both cylindrical gears and bevel gears and to help 

transmission product design by studying the effect of system parameters on 

dynamics. In order to achieve this, the following dynamic models are developed: 

 

• Nonlinear time-varying dynamic model of a multi-mesh spur gear train, 

• Linear time-invariant dynamic model of a helical geared system, 

• Nonlinear time-varying dynamic model of a spiral bevel geared system, 

• Nonlinear time-varying dynamic model of a complete drivetrain composed 

of a spur gear, a helical gear and a spiral bevel gear. 

 

At the first stage of this research, a nonlinear time-varying dynamic model for a 

multi-mesh spur gear train consisting of three gears and three shafts is formulated. 

The three DOFs semi-definite system is converted to a two DOFs definite system 

by defining the relative gear mesh displacements as generalized coordinates. The 

equations of motion are transformed to dimensionless form. The resulting 
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dimensionless equations of motion are converted to a set of nonlinear algebraic 

equations by using multi-term Harmonic Balance Method (HBM) in conjunction 

with discrete Fourier transform. Then, this set of nonlinear algebraic equations is 

solved by Newton’s method with arc-length continuation. A much more 

computationally demanding method, i.e. direct numerical integration (NI), is 

utilized to validate the solutions obtained by HBM. Floquet theory is employed in 

order to determine the stability of steady-state solutions. It is observed from the 

results that the multi-mesh gear train exhibits single-sided tooth impact, which is a 

softening-type nonlinear behavior due to tooth separation. Subharmonic motions are 

also observed near the frequencies corresponding to the parametric resonances. It is 

also noted that the number of teeth of the middle gear has a significant effect on 

dynamic response since it directly determines the phase angle between the gear 

meshes. Similarly, positions of end gears affect dynamic response considerably. 

 

Tooth separation and back collisions of gears with a strongly nonlinear dynamic 

behavior are not observed for moderately and heavily loaded helical geared systems. 

Similarly, mesh stiffness fluctuations of helical gears are much smaller compared to 

those of spur gears Therefore, a linear, time-invariant dynamic model of helical 

gears are presented in Chapter 3. Shaft-bearing structures are modeled by employing 

Timoshenko beam finite elements and they are coupled with a three-dimensional 

discrete mesh model. The undamped natural frequencies of some drivetrain 

configurations, i.e., countershaft arrangement, split-torque and idler arrangements, 

obtained by Timoshenko beam finite element model (FEM) developed in this study 

are compared with those obtained by commercial gear analysis software MASTA in 

order to validate the FEM used. The forced response of an example multi-mesh 

helical geared system is also obtained and the effect of loading condition on dynamic 

response is investigated. A shift in the frequency response is observed depending on 

the phase angle between the gear meshes. The finite element model developed is 

used in the subsequent chapters. 
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Considering both backlash nonlinearity and time-varying mesh stiffness, a nonlinear 

dynamic model of a spiral bevel geared system is considered in Chapter 4. The mesh 

model of the gear pair is integrated into the Timoshenko beam FEM model of shafts. 

Both static transmission error excitation and parametric excitations due to 

fluctuating mesh stiffness are considered. Natural frequencies of the linear system 

obtained from the developed Timoshenko beam finite element model and 

commercial finite element software, ANSYS®, are compared and a good agreement 

is observed, which ensures the quality of the FEM used in the study. Since the 

number of resulting nonlinear equations is very large due to the finite element 

modeling of the shafts, receptance method is introduced to the forced response 

analysis of geared systems with nonlinearities. In the receptance method, the total 

DOFs are divided into linear and nonlinear DOFs and only the nonlinear equations 

related to the DOFs associated with the gear pair, where the nonlinear elements are 

attached, need to be solved. Thus, it is possible to model gear shafts by using finite 

element method without increasing the number of nonlinear equations, which 

drastically decreases the computational time required, and the shaft-bearing 

dynamic characteristics can be easily taken into account. The resulting nonlinear 

differential equations are transformed to a nonlinear system of algebraic equations 

by using multi-term HBM coupled with continuous-time Fourier transform, as 

opposed to the gear dynamics studies [22,23,27,28,54,55] that utilize discrete 

Fourier transform. Utilizing continuous-time Fourier transform, the possible 

convergence problems for the large nonlinear systems can be avoided. Moreover, 

analytical integration rather than numerical integration is employed for the 

calculation of Fourier coefficients in order to decrease the computational time. Then, 

the resulting nonlinear system of algebraic equations is solved by utilizing Newton’s 

method with arc-length continuation.  
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The results of HBM are verified by comparing them with the results of NI. It is 

obvious from the results that the solutions obtained by both methods are in good 

agreement. Several case studies performed show that spiral bevel gear pairs exhibit 

nonlinear behavior as single-sided and double-sided tooth impacts depending on the 

system parameters. Subharmonic motions are observed in the solutions obtained by 

NI. It is also clear in the results that parametric excitations due to fluctuating mesh 

stiffness increase the response level of the system and severity of nonlinearity. Some 

super-harmonic resonance peaks due to the parametric excitation are also observed. 

The effect of backlash amount is studied and it should be noted that there is a 

potential of loss of contact and tooth impact for lightly loaded cases, for which the 

gear backlash is the critical factor. It is also clear from the dynamic bearing force 

results that backlash nonlinearity also affects the bearing forces which are important 

in the selection of bearings and determination of lives of the bearings used. 

 

Finally, a nonlinear time-varying dynamic model of a multi-mesh, multi-stage 

drivetrain composed of both cylindrical gears and bevel gears are proposed in 

Chapter 5. Again, Timoshenko beam finite element modeling is used for shaft-

bearing structures. Since the drivetrain consists of multiple gear pairs, receptance 

method results in a large number of nonlinear equations and large matrices are 

involved in the solution procedure. Therefore, modal superposition method is 

introduced to the forced response analysis of multi-stage, multi-mesh gear systems. 

In this approach, the response of the nonlinear system is approximated by modal 

superposition using the mode shapes of the linear system. The number of resulting 

nonlinear equations depends on the number of mode shapes utilized; therefore, it is 

independent of the number of nonlinear DOFs, i.e., the number of gear meshes. 

Using multi-term Harmonic Balance Method coupled with continuous-time Fourier 

transform, the resulting differential equations of motion are transformed to a 

nonlinear system of algebraic equations. Again, the computational time is decreased 

considerably by employing analytical integration rather than numerical integration 
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for the calculation of Fourier coefficients. The resulting nonlinear system of 

algebraic equations is solved by utilizing Newton’s method with arc-length 

continuation. The results obtained by HBM are compared with those obtained by 

direct numerical integration and they agree well with each other. Similar nonlinear 

behaviors are observed in the multi-mesh geared system. The results show that the 

strong interactions between the gear meshes cause tooth separations even at the 

helical gear pair, even though the previous gear dynamics studies claim that the 

dynamic behavior of helical gears are linear. The number of mode shapes required 

in the modal expansion mainly depends on the frequency range where the solution 

is searched. It is also noted that the results obtained by employing two or three 

harmonics for each mesh frequency in HBM agree better with the results obtained 

by NI compared to the results obtained by utilizing the harmonics of the minimum 

frequency which corresponds to the common period of all the mesh excitations. 

Several parametric studies are as well performed and the results in the form of 

dynamic mesh forces and dynamic bearing forces indicate that a large number of 

design parameters affects the dynamic behavior of multi-mesh, multi-stage geared 

system in different levels and ways. 

 

 

6.2   Future Work 

As a future work, based on exact gear geometry, mesh parameters such as mesh 

stiffness and static transmission error can be generated especially for spiral bevel 

gear. This reduces the dependency on commercial software. Furthermore, fatigue 

evaluations of gears based on the output of this research can be developed. The mesh 

model used in this study can also be extended to include friction based on an 

elastohydrodynamic lubrication (EHL) formulation in order to study the influence 

of friction on system dynamics. Moreover, mesh damping model can be improved 

further and the effect of mesh damping on system dynamics can be investigated.   
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