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ABSTRACT

PARALLEL RESAMPLING METHODS FOR PARTICLE FILTERS ON

GRAPHICS PROCESSING UNIT

Dülger, Özcan

Ph.D., Department of Computer Engineering

Supervisor : Prof. Dr. Halit Oğuztüzün

Co-Supervisor : Prof. Dr. Mübeccel Demirekler

December 2017, 140 pages

This thesis addresses the implementation of the resampling stage of the particle filter

on graphics processing unit (GPU). Some of the well-known sequential resampling

methods are the Multinomial, Stratified and Systematic resampling. They have depen-

dency in their loop structure which impedes their parallel implementation. Although

such impediments were overcome on their GPU implementation, these algorithms

suffer from numerical instability due to the accumulation of rounding errors when

single precision is used. Rounding errors arise in cumulative summation over the

weights of the particles when the weights differ widely or the number of particles is

large. There are resampling algorithms such as Metropolis and Rejection, which do

not suffer from numerical instability as they only calculate ratios of weights pairwise

rather than perform collective operations over the weights. They are more suitable

for the GPU implementation of the particle filter. However, they suffer from non-

v



coalesced global memory access patterns which cause their speed deteriorate rapidly

as the number of particles gets large. In the first part of this thesis, we offer solutions

for this problem of the Metropolis resampling. We introduce two implementation

techniques, designated Metropolis-C1 and Metropolis-C2, and compare them with

the original Metropolis resampling on NVIDIA Tesla K40 board. In the first scenario

where these two techniques achieve their fastest execution times, Metropolis-C1 is

faster than the others, but yields the worst results in quality. However, Metropolis-

C2 is closer to the Metropolis resampling in quality. In the second scenario where all

three algorithms yield similar quality, although Metropolis-C1 and Metropolis-C2 are

slower, they are still faster than the original Metropolis resampling. In the second part

of the thesis, we introduce a new resampling method, designated Uphill resampling,

which is free from numerical instability as it avoids the accumulation of rounding

errors. We make comparisons with the Systematic, Metropolis and Rejection resam-

pling methods with respect to quality and speed. We achieve similar results with the

Metropolis and Rejection resampling. Furthermore, we devise a coalesced version of

the Uphill resampling, designated Uphill-CA, which does not undergo non-coalesced

global memory access patterns. With Uphill-CA, we achieve faster results with qual-

ity similar to the original Uphill. Thus, the Uphill resampling provides the users of

particle filters with a spectrum of fast alternatives on the GPU that is comparable, in

terms of quality, with other methods.

Keywords: Graphics Processing Unit, Parallel Resampling, Particle Filter, Resam-

pling Methods
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ÖZ

PARÇACIK SÜZGEÇLERİ İÇİN GRAFİK İŞLEME BİRİMİNDE PARALEL

YENİDEN ÖRNEKLEME YÖNTEMLERİ

Dülger, Özcan

Doktora, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Halit Oğuztüzün

Ortak Tez Yöneticisi : Prof. Dr. Mübeccel Demirekler

Aralık 2017 , 140 sayfa

Bu tezde, parçacık süzgecinin yeniden örnekleme adımının grafik işleme biriminde

gerçeklenmesi ile ilgili konular ele alınmıştır. Sistematik, Katmanlı ve Çok-terimli

yeniden örnekleme yöntemleri literatürde çok tanınmış bazı yeniden örnekleme yön-

temleridir. Döngü çevrimleri arasındaki bağımlılık bu yeniden örnekleme yöntemle-

rinin paralel gerçeklenmesinde engel çıkarmaktadır. Bu engeller ortadan kaldırılmış

olsa da tek kesinliğe sahip kayan noktalı sayılar kullanıldığında, bu yöntemler biriken

yuvarlama hatalarından kaynaklanan sayısal kararsızlık problemiyle karşılaşmakta-

dırlar. Yuvarlama hataları ağırlıklar arası göreceli sapmanın yüksek yada parçacık sa-

yısının büyük olduğu durumlarda ağırlıklar üzerindeki birikimli toplam değerlerinden

kaynaklanmaktadır. Sayısal kararsızlık probleminden etkilenmeyen yöntemler vardır.

Metropolis ve Rejection yeniden örnekleme yöntemleri ağırlıkların tümünü kullan-
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mak yerine onları sadece bire bir orantısal hesaplamalarda kullandıklarından sayısal

kararsızlık probleminden etkilenmemektedir. Parçacık süzgecinin grafik işleme biri-

minde gerçeklenmesi için çok uygundurlar. Buna karşın, bu yöntemler dağınık ana

bellek erişim desenlerine sahip olduğundan parçacık sayısı arttıkça yavaşlamaktadır.

Bu tezin ilk kısmında, Metropolis yeniden örnekleme yöntemi için bu problemi çözen

iki yöntem önerdik. Metropolis-C1 ve Metropolis-C2 olarak isimlendirdiğimiz bu iki

yöntemi Metropolis yöntemi ile NVIDIA Tesla K40 ekran kartında karşılaştırdık. Her

iki yönteminde en hızlı sonuçları elde ettiği ilk senaryoda, Metropolis-C1 hepsinden

hızlı olurken, kalite olarak en kötü kaliteyi elde etmiştir. Buna karşın, Metropolis-C2

Metropolis’e göre kalite olarak yakın sonuçlar elde etmiştir. Üç yönteminde birbirine

yakın kalitede sonuçlar elde ettiği ikinci senaryoda ise, Metropolis-C1 ve Metropolis-

C2 yavaşlasa da Metropolis’ten hala hızlı olmaktadırlar. Tezin ikinci kısmında, Uphill

yeniden örnekleme isminde, yuvarlama hatalarından sakındığından dolayı sayısal ka-

rarsızlık problemi olmayan yeni bir yeniden örnekleme yöntemi önerdik. Sistematik,

Metropolis ve Rejection yöntemleri ile kalite ve hız açısından karşılaştırma yaptık.

Metropolis ve Rejection ile yakın sonuçlar elde ettik. Ek olarak, dağınık ana bellek

erişim desenlerine sahip olmayan Uphill yönteminin birleşik versiyonu olan Uphill-

CA yöntemini önerdik. Uphill-CA ile, Uphill yöntemi ile yakın kalitede daha hızlı

sonuçlar elde ettik. Böylelikle, Uphill yeniden örnekleme parçacık süzgeci kullanı-

cılarına grafik işleme biriminde kalite olarak diğer yöntemlerle karşılaştırılabilinen

hızlı bir alternatif sunmaktadır.

Anahtar Kelimeler: Grafik İşleme Birimi, Paralel Yeniden Örnekleme, Parçacık

Süzgeci, Yeniden Örnekleme Yöntemleri
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CHAPTER 1

INTRODUCTION

In this chapter, we put forward the purpose, scope and context of the thesis.

1.1 Motivation

Particle filter is a serial Monte-Carlo estimation method that is particularly suitable

when the system or measurement model is highly non-linear and uncertainties are

large. The main idea is to approximate the required posterior density function with

random samples (particles) that have associated weights. As time progresses, the

normalized weight of one particle becomes nearly one and the normalized weights of

the remaining particles become nearly zero. This is called degeneracy problem. One

of the effective solutions of the degeneracy problem is resampling. In resampling,

the particles with higher weights are replicated and those with lower weights are

eliminated [32].

Due to have many particles, the particle filter has high computational cost and this

makes the adoption of the particle filter for real-time applications prohibitive. Due

to the many cores in its architecture, graphics processing unit (GPU) offers promise

for fast parallel implementation of particle filters. We have an experiment in Sec-

tion 6.10 about the speed up of the GPU implementation of particle filter over the

CPU implementation of it. The execution times of resampling stage has a big im-

pact on the speed up. There are many resampling methods in the literature. Some of

the well-known methods are the Multinomial, Stratified and Systematic resampling.

Their computational costs are linear in the number of particles. There are bottlenecks
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in the cumulative summation of the weights and inside the while loop in the parallel

implementation of the Stratified and Systematic resampling methods. The cumula-

tive summation entails interactions between weights. The iterations of the while loop

are dependent on the previous iterations [32, 22]. Murray and co-workers found so-

lutions to remove bottlenecks for the Stratified and Systematic resampling methods

[22]. Gong and co-workers also found solutions for the same problem [10]. How-

ever, these methods suffer from the numerical instability problem for large number

of particles or large weight variance when single-precision units are used. Whenever

an algorithm ends up adding a large number with a very small number, the small

number may be lost in the machine precision of the operation [22]. In the context

of this thesis, an algorithm is numerically stable in the sense that the sequence of

arithmetic operations embodying the algorithm does not lead to a detrimental buildup

of rounding error [30]. In the Stratified and Systematic resampling algorithms, there

is an accumulation of rounding errors when using single-precision units. Further-

more, collective operations on the weights cause difficulty in parallelization of these

resampling methods. Murray and co-workers propose two resampling algorithms,

namely, Metropolis and Rejection resampling. These methods do not suffer from the

numerical instability problems as they do not need cumulative sum of the weights

of the particles. They are fast in theory, but in the parallel implementation of the

Metropolis and Rejection resampling on the GPU, non-coalesced global memory ac-

cess patterns occur [22]. In the GPU, the access to the global memory is performed

segment by segment. Due to the randomized access of Metropolis and Rejection

over the weight set, the access operations become serial. This serialization causes the

speed of Metropolis and Rejection deteriorate rapidly. Hence, they can not achieve

their target of being fast resampling method. We focus to overcome this problem

in the implementation of Metropolis on the GPU. We introduce two techniques that

eliminate the non-coalesced global memory access problem of the Metropolis resam-

pling without sacrificing quality much. Furthermore, we devise a new resampling

method which does not suffer from the numerical instability problem as it does not

require cumulative summation of the weights. It is simple to implement on the GPU

and completely parallelizable. The theoretical analyses and proofs are also clear and

revealing.
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1.2 Contributions of the Thesis

In this thesis, we first introduce two techniques, designated Metropolis-C1 (abbrevi-

ated C1) and Metropolis-C2 (abbreviated C2), to ameliorate the non-coalesced global

memory access problem of the Metropolis resampling (abbreviated M). We define

s-segment concept to achieve coalesced access of the particles. We force the adjacent

particles to access the contiguous region of the global memory of the GPU by map-

ping the regions to the physical segments of the GPU. Thus, the particles can read

their weights from the segments of global memory in a coalesced way. We compare

these two techniques with the original Metropolis resampling in terms of quality and

speed on the GPU. Metropolis-C1 achieves the fastest results (up to 9.6x speed up

over Metropolis) but worst in quality. Metropolis-C2 achieves faster results (up to

3.1x speed up over Metropolis) than Metropolis along with similar quality. We argue

that these two techniques enable users to adopt the Metropolis resampling, a numeri-

cally stable method, for their applications that demand speed, by reducing quality in

a controlled manner.

Furthermore, we propose a new resampling algorithm, called Uphill resampling,

which is suitable for the GPU. It only compares the weights of two particles and se-

lects the greater one as the candidate particle to replicate. It does this comparison B

times where B is the parameter in the Uphill resampling. Since it only compares the

weights of two particles, it does not suffer from the numerical instability problem that

plagues other methods and does not require cumulative sum among the weights. How-

ever, it suffers from the non-coalesced global memory access problem like Metropo-

lis. We propose a coalesced version of the Uphill resampling, called Uphill-CA, that

confines the non-coalesced global memory access problem on the GPU. Uphill-CA

achieves faster results (up to 7.2x speed up over Uphill) than Uphill. It is same with

Uphill in theory, but in practice it is closer to Uphill in quality with some variance.

We also introduce generic version of the Uphill resampling called Uphill-C1. It be-

haves like a local approach. The behavior of Uphill-C1 varies depending on the size

of s-segment. Uphill is a special case of Uphill-C1 when s-segment covers the whole

weight set. Uphill-C1 achieves the fastest results (up to 10.4x speed up over Uphill)

with worse quality compared to Uphill. The tracking performance of the proposed
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methods are very close to the performance of existing resampling methods. Hence,

we make contributions to the tracking applications by proposing fast and numerically

stable methods on the GPU.

1.3 Organization of the Thesis

The rest of this thesis is organized as follows. In Chapter 2, we describe the basis of

the particle filter. We mention some problems of particle filter and their solutions. We

give the stages of the most well-known sampling importance resampling particle filter.

And we give some background about CUDA and GPU architecture. Furthermore,

we give some basic concepts of target tracking. And we conclude the chapter by

describing our experimental environment, statistical measures and distributions we

use along with a non-linear equation in the literature which we use to measure the

performance of the resampling methods. In Chapter 3, we give the pseudo-code of the

well-known resampling methods in the literature such that the Systematic, Metropolis

and Rejection resampling. In Chapter 4, we discuss some of the studies about parallel

implementation of resampling on the GPU and on other architectures. In Chapter 5,

we describe our proposed methods Metropolis-C1 and Metropolis-C2 in detail. We

show how C1 and C2 solve the non-coalesced global memory access problem of the

Metropolis resampling. We compare them with Metropolis on the same benchmark

and discuss the experimental results. In Chapter 6, we describe our new resampling

method Uphill resampling in detail along with its coalesced version Uphill-CA and

its generic version Uphill-C1. And we discuss the experimental results of them. In

Chapter 7, we compare above-mentioned resampling methods on an aircraft tracking

problem with two different scenarios. We discuss the experimental results and show

how we benefit from the proposed resampling methods. Finally, Chapter 8 concludes

the thesis pointing out some future research directions. There is also appendix A

to show the details of the theoretical analysis of Uphill, Uphill-CA and Uphill-C1.

Furthermore, the source codes and data sets can be downloaded from https://

user.ceng.metu.edu.tr/~odulger/.
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CHAPTER 2

BACKGROUND

In this chapter, we give the theoretical basis of the particle filters in detail. We mention

some problems of particle filter and their solutions. We show how sampling impor-

tance resampling (SIR) particle filter is derived from sequential importance sampling

algorithm. And we give some basic concepts of CUDA and GPU architecture to in-

form the readers before we describe our proposed methods. Furthermore, we give

some basic concepts of target tracking. Finally, we describe our experimental envi-

ronment, statistical measures and distributions we use along with a simple end-to-end

application which we use to measure the estimation performance of the resampling

methods.

2.1 Particle Filter

Particle filter is a sequential Monte Carlo estimation method that represents probabil-

ity densities with particles. The main idea is to approximate the required posterior

density function with random samples (particles) that have associated weights. Esti-

mated state is calculated by using these random samples and their weights. As the

number of particles increases, this method will yield an equivalent representation of

posterior probability density function (pdf). And it will also become an optimal solu-

tion for the Bayesian estimation [32]. The theoretical aspects of the particle filters and

the design of efficient particle filters are discussed briefly in the following sections.
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2.1.1 Monte Carlo Integration

The basis of the sequential Monte Carlo methods is the Monte Carlo integration.

Suppose that we have the following multi-dimensional integration [32]:

I =

∫
g(x)dx (2.1)

where x ∈ Rnx . Monte Carlo methods factorize g(x) = f(x)π(x) where π(x) is

a probability density that satisfies π(x) ≥ 0 and
∫
π(x)dx = 1. The N distributed

samples xi; i = 1, . . . ., N can be drawn from π(x). The Monte Carlo estimation of

integral is [32]:

I =

∫
f(x)π(x)dx (2.2)

The sample mean is [32]:

IN =
1

N

N∑
i=1

f(xi) (2.3)

If the samples xi are independent, IN will be unbiased and converge to the I according

to the law of large numbers. The variance of f(x) is [32]:

σ2 =

∫
(f(x)− I)2π(x)dx (2.4)

If the variance is finite, then the estimation error converges to following distribution

according to the central limit theorem [32]:

lim
N→∞

√
N(IN − I) ∼ N(0, σ2) (2.5)

The error of the estimation, e = IN − I , is of order O(N−
1
2 ), which means the

convergence rate of the estimation is independent of the dimension of nx [32].
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The π(x) is the posterior density in the Bayesian estimation. However, it is not usually

possible to sample from this posterior density, because it is multivariate, non-standard

and cannot be observed in some systems when it is needed. One of the possible

solutions is the importance sampling method [32].

2.1.1.1 Importance Sampling

Generating samples from π(x) is the ideal sampling operation. But it is not usually

possible to obtain π(x) before the sampling. We can use a density q(x), which is

similar to π(x), to generate samples. With a correct weighting of the samples, it still

makes the Monte Carlo estimation similar to estimation with the π(x). The pdf q(x)

is called as the importance or proposal density. The similarity between the π(x) and

q(x) is given by the following condition [32]:

π(x) > 0⇒ q(x) > 0 for all x ∈ Rnx (2.6)

If the condition is valid, the estimation of the integral can be written as [32]:

I =

∫
f(x)π(x)dx =

∫
f(x)

π(x)

q(x)
q(x)dx (2.7)

The estimation of I is computed by the N independent samples xi; i = 1, . . . ., N

which are distributed based on q(x) and the weighted sum is formed as below [32]:

IN =
1

N

N∑
i=1

f(xi)w̃(xi) (2.8)

where w̃(xi) is the importance weight of the ith sample and is defined as below[32]:

w̃(xi) =
π(xi)

q(xi)
(2.9)

If the normalization factor of π(x) is unknown, we need to make normalizations.
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Then the weighted sum becomes [32]:

IN =
1
N

∑N
i=1 f(xi)w̃(xi)

1
N

∑N
j=1 w̃(xj)

=
N∑
i=1

f(xi)w(xi) (2.10)

where w(xi) is the normalized importance weight of the ith sample and is calculated

as below [32]:

w(xi) =
w̃(xi)∑N
j=1 w̃(xj)

(2.11)

2.1.2 Sequential Importance Sampling

Sequential importance sampling (SIS) algorithm is a basis for the particle filters. The

main idea is to approximate the required posterior density function with random sam-

ples (particles) that have associated weights. Estimated state is calculated by using

these random samples and their weights. As the number of particles increases, this

method will yield an equivalent representation of the posterior pdf [32].

Suppose the joint posterior density at time k is given as p(Xk|Zk) where Xk is all the

targets states up to time k and Zk is all the measurements up to time k. Its marginal

is denoted as p(xk|Zk). This joint posterior density can be approximated at time k as

follows [32]:

p(Xk|Zk) ≈
N∑
i=1

wi
kδ(Xk −X i

k) (2.12)

where X i
k, i = 1, . . . ., N is the set of particles with associated normalized weights

wi
k, i = 1, . . . .., N . If these samples are drawn from an importance density q(Xk|Zk),

then the normalized weight of the ith particle is calculated according to (2.9)[32]:

wi
k ∝

p(X i
k|Zk)

q(X i
k|Zk)

(2.13)

Suppose the joint posterior density at time k − 1 is p(Xk−1|Zk−1) and we try to
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approximate the joint posterior density at time k, with the received measurement zk

and the new set of samples X i
k, i = 1, . . . ., N . If we factorize the importance density

q(Xk|Zk) such that [32]:

q(Xk|Zk) , q(xk|Xk−1, Zk)q(Xk−1|Zk−1) (2.14)

we can draw samples X i
k ∼ q(Xk|Zk) by augmenting X i

k−1 with xik where X i
k−1 ∼

q(Xk−1|Zk−1) and xik ∼ q(xk|Xk−1, Zk). To obtain the equation for the normalized

weight update, the pdf p(Xk|Zk) is first expressed as [32]:

p(Xk|Zk) ∝ p(zk|xk)p(xk|xk−1)p(Xk−1|Zk−1) (2.15)

and then, after substitution (2.14) and (2.15) into (2.13), the normalized weight update

equation is expressed such that [32]:

wi
k ∝

p(zk|xik)p(xik|xik−1)p(X i
k−1|Zk−1)

q(xik|X i
k−1, Zk)q(X i

k−1|Zk−1)
(2.16)

wi
k = wi

k−1
p(zk|xik)p(xik|xik−1)
q(xik|X i

k−1, Zk)
(2.17)

If q(xk|Xk−1, Zk) = q(xk|xk−1, zk) , then the importance density will be dependent

only to xk−1 and zk. Thus, we do not need to store all the particles from time 0 to

time k − 1 and all the measurements from time 0 to time k − 1. This is useful when

we need only the filtered estimate of the posterior density p(xk|Zk) at each time step.

Then the normalized weight update equation becomes [32]:

wi
k ∝ wi

k−1
p(zk|xik)p(xik|xik−1)
q(xik|xik−1, zk)

(2.18)

and the posterior filtered density p(xk|Zk) becomes [32]:

p(xk|Zk) ≈
N∑
i=1

wi
kδ(xk − xik) (2.19)
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As N → ∞ this approximation gets close to the true posterior density p(xk|Zk).

In the SIS algorithm the normalized importance weights {wi
k}Ni=1 and the samples

{xik}Ni=1 are propagated recursively as each measurement is received sequentially.

The pseudo-code of SIS algorithm is shown in Algorithm 2.1. This algorithm is

considered as the basis of particle filters. The choice of importance density function

is important for the performance of particle filters [32]. This topic will be discussed

in Section 2.1.4.

Algorithm 2.1 SIS particle filter[32]
procedure [{xik, wi

k}Ni=1] = SIS({xik−1, wi
k−1}Ni=1, zk)

1: for i = 1 : N

xik ∼ q(xk|xik−1, zk): prediction

w̃i
k = wi

k−1
p(zk|xi

k)p(x
i
k|x

i
k−1)

q(xi
k|x

i
k−1,zk)

: weight update

end for

2: s_w̃ = SUM [{w̃i
k}Ni=1]

3: for i = 1 : N

wi
k = s_w̃−1 ∗ w̃i

k

end for

2.1.2.1 Degeneracy Problem

After many iterations, the increase in the relative variance of importance weights

leads to a common problem known as the degeneracy problem in SIS particle filter.

This means after a number of steps, the normalized weight of one particle becomes

close to one and the normalized weights of others become close to zero. And the

update of the particles whose normalized weights are close to zero leads to wasted

computational effort. One of the measures of degeneracy is the effective sample size

Neff which is calculated as [32]:

Neff =
1∑N

i=1(w
i
k)2

(2.20)

where 1 ≤ Neff ≤ N . When the normalized weight of each particle is 1/N then

Neff = N . When only one particle has a normalized weight with value of one and
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the others’ normalized weights are zero, then Neff = 1. This shows that when Neff

gets smaller, the degeneracy becomes more pronounced. The most common solution

for the degeneracy problem is resampling [32].

2.1.3 Resampling

In the SIS filter, when there is a significant degeneracy, resampling is required. This

step eliminates the particles that have small weights and replicates the particles that

have large weights. At the end of resampling, the normalized weights of all particles

become equal to 1/N . There are resampling algorithms that run in O(N) time com-

plexity such as Systematic resampling, Stratified resampling and Residual resampling

[32].

We have mentioned the importance density function, weight update and the resam-

pling algorithm. A generic prototype for particle filter (PF) which consists of these

components is shown in Algorithm 2.2. In this algorithm, Nthr is a threshold for

the number of effective particles. If the effective sample size is smaller than this

threshold, resampling operation is done [32].

Algorithm 2.2 A generic prototype for particle filters[32]
procedure [{xik, wi

k}Ni=1] = PF({xik−1, wi
k−1}Ni=1, zk)

1: [{xik, wi
k}Ni=1] = SIS({xik−1, wi

k−1}Ni=1, zk)

2: Neff = 1∑N
i=1(w

i
k)

2

3: if Neff < Nthr

[{xik, wi
k}Ni=1] = RESAMPLE [{xik, wi

k}Ni=1]

end if

Although resampling operation solves the degeneracy problem, it causes other prac-

tical problems. One of the problems is limiting the opportunity of parallel imple-

mentation because all the particles must be combined. Another problem is sample

impoverishment. This happens because the particles with large weights are selected

many times, leading to a loss of diversity among the particles [32].
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2.1.4 Selection of Importance Density

The importance density q(xk|xik−1, zk) is a critical part of designing the particle filter.

The optimal choice of the importance density is [32]:

q(xk|xik−1, zk) = p(xk|xik−1, zk) (2.21)

q(xk|xik−1, zk) =
p(zk|xk, xik−1)p(xk|xik−1)

p(zk|xik−1)
(2.22)

And by substituting (2.22) into (2.18), the normalized weight update of the ith parti-

cle becomes [32]:

wi
k ∝ wi

k−1p(zk|xik−1) (2.23)

This equation shows that the weights of the particles at time k can be calculated at

time k − 1. In general, choosing the optimal importance density and evaluating the

likelihood p(zk|xik−1) are not possible. But there are some special cases where these

operations are possible. The first case is that the model has a finite set of member xk.

The second case is that the model has importance density p(xk|xik−1, zk) that is Gaus-

sian. For other cases that differ from these special cases use suboptimal importance

density function [32].

The well-known sub-optimal density function is the transitional prior which is defined

as [32]:

q(xk|xik−1, zk) = p(xk|xik−1) (2.24)

If the process noise of the system is Gaussian with zero mean and covariance Q, then

the transitional prior becomes [32]:

p(xk|xik−1) = N(xk; fk−1(x
i
k−1), Qk−1) (2.25)
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And by substituting (2.24) into (2.18), the normalized weight update of the ith parti-

cle becomes as [32]:

wi
k ∝ wi

k−1p(zk|xik) (2.26)

2.1.5 Sampling Importance Resampling (SIR) Particle Filter

SIR algorithm is derived from SIS filter by choosing the importance density function

as transitional prior p(xk|xik−1) and by using resample algorithm at each time step.

The assumptions for using the SIR particle filter are: (1) the dynamics of the state

and the measurement function are known; (2) to sample from the prior with the dis-

tribution of process noise is possible. Furthermore, the likelihood function p(zk|xik)

should be available. Since the resampling operation is done at each step, the normal-

ized weight of each particle is equal to 1
N

at the end of the step. Therefore, we do not

need to pass the weights of the particles to the next time step. The normalized weight

update operation of the ith particle becomes as follows [32]:

wi
k ∝ p(zk|xik) (2.27)

The stages of the SIR particle filter algorithm are shown below [32]:

Algorithm 2.3 SIR Particle Filter ([32])
procedure [{xik}Ni=1] = SIR({xik−1}Ni=1, zk)

1: for i = 1 : N

xik ∼ p(xk|xik−1): prediction

w̃i
k = p(zk|xik): weight update

end for

2: s_w̃ = SUM [{w̃i
k}Ni=1]

3: for i = 1 : N

wi
k = s_w̃−1 ∗ w̃i

k

end for

4: [{xik}Ni=1] = RESAMPLE [{xik, wi
k}Ni=1]
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In this pseudo-code, N is the number of particles; i is the index of the particle; k

is the index of the time step; xik represents the state of the ith particle; w̃i
k is the

weight of the ith particle; wi
k is the normalized weight of the ith particle; s_w̃ is

the sum of the weights of all particles; xk represents the true state of the track; zk is

the measurement; p(xk|xik−1) is the transitional prior and p(zk|xik) is the likelihood

function. We omit the time step variable k on the following equations and algorithms

for simplicity.

In the first stage, predicted states of the particles are calculated and the weights of

the particles are updated based on their predicted states and the measurement data. In

stage 2, the sum of the weights which is to be used in stage 3 are calculated. In stage

3, weights are normalized, and, in stage 4, resampling is performed.

2.2 CUDA Programming Concepts and GPU Hardware

In this section, we provide an overview of some basic concepts of CUDA program-

ming. In CUDA, an application consists of one or more kernels. Kernel is a function

that runs on the GPU. A thread is an execution unit on the GPU with its own pro-

gram counter, register and unique id in its block. A block consists of concurrently

running threads. The threads in a block can cooperate with each other through barrier

synchronization and shared memory. The threads across the blocks cannot cooper-

ate with each other. A grid consists of thread blocks which execute the same kernel.

Programmer’s view of CUDA is given in Figure 2.1 [18].

There are mainly three types of memory region on the GPU. These are registers,

shared memory and global memory. Registers and shared memory are on-chip mem-

ory and are the fastest memory regions on the hardware. Global memory is off-chip

and slowest memory region on the hardware. Registers are private for each thread and

can only be accessible by their own thread. Shared memory is private for each block

and is accessible by all threads in a block. The threads in different blocks cannot

access to the shared memory of the other blocks. The global memory is not private

and can be accessible by all the blocks in the grid [8].

A GPU hardware consists of many streaming multiprocessors. An illustration of
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Figure 2.1: Programmer’s view of CUDA [18].

streaming multiprocessor (SMX) in Kepler architecture is given in Figure 2.2 [24].

The blocks are scheduled to the different streaming multiprocessors. The threads

execute on CUDA cores in a warp by warp basis. Warp is an execution unit which

consists of 32 threads. The threads in a warp are physically related to each other. This

means all the threads in a warp execute the same instruction at a time [8].

2.3 Target Tracking

Target tracking can be viewed as an application area at the intersection of control

theory and signal processing. A target is any object that we want to track by using

dynamic state estimation methods. Target tracking uses filter to perform recursive

state estimation. The filter consists of kinematic equation of the target, measure-

ment equation and the measurements obtained from the sensors. The most common

tracking filters are alpha-beta filter, Kalman filter, extended Kalman filter and particle

filter. The measurement consists of kinematic values such as position, velocity, accel-

15



Figure 2.2: A streaming multiprocessor (SMX) in Kepler architecture [24].
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eration, range, and bearing or attributes such as signal strength, intensity, aspect ratio.

A measurement can belong to an existing target or it can belong to a new target or it

can be false alarm. A track is sequence of measurements decided by the tracker to

come from a single source. Instead of holding all data, it is enough to keep sufficient

statistics. These are mean and covariance in Kalman filter, and particles and their

weights in particle filter. A track can be in three different life stages [32]:

• Tentative: Track is in the initiation process. We are not sure whether it is a

target or not.

• Confirmed: Track is a valid target inside the area.

• Deleted: Track is false alarm.

To identify each measurement and determine which measurements belong to which

target, gating and association processes are performed. The measurements inside the

gate of the target are candidate measurements to be assigned as a valid measurement

for the target. If there are more than one measurement inside the gate or if a measure-

ment is inside the gates of more than one target, we need a mechanism to associate

the measurements. Nearest neighbor (NN), probabilistic data association (PDA) for

single target tracking applications and global nearest neighbor (GNN), joint prob-

abilistic data association (JPDA), multi-hypotheses tracker (MHT) for multi target

tracking applications are the common algorithms for measurement association. M/N

logic is one of the most common algorithm for switching the life stages of the track.

For deletion of tentative tracks, if a track is not updated for the first M consecutive

scans or is not updated at least M of N following scans, it is deleted. Otherwise, it

is confirmed. For deletion of confirmed track, if a track is not updated for the first M

consecutive scans and is not updated at least M of N following scans, it is deleted. A

maneuver is a sudden change in the motion of the target. And the target assumes other

model than the filter uses. There are different kinematic models. These are constant

velocity model, constant acceleration model and coordinated turn model. The first

model is used in non-maneuvering case, the second and the third models are gener-

ally used in maneuvering case [32]. In our experiments, we assume there is a single

target and all measurements belong to this target.
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Table 2.1: GPU configuration employed in experiments.

Property Value Property Value Property Value
Architecture Kepler Global Memory 11520 MBytes Warp Size 32
Clock Rate 745 MHz Shared Memory 49152 bytes Segment Size 128 bytes
CUDA Core 2880 Register Count 65536 SMX Count 15

2.4 Experimental Environment

All the experiments are performed on NVIDIA Tesla K40 GPU board. Single pre-

cision is used in all implementations. We compile the source codes on CUDA 7.5

compiler with the -arch sm_35 compiler flag to target the architecture of Tesla K40.

The specifications of the board are given in Table 2.1 [23, 24, 26].

We set the block size appropriately by trying to distribute the blocks to the SMXs

evenly. Block size must be a power of 2 and the maximum we set is 512. Below is

the block size for the different number of particles.

BlockSize =



512, N ∈ [213, 222]

256, N ∈ 212

128, N ∈ 211

64, N ∈ 210

32, N ∈ [25, 29]

16, N ∈ 24

(2.28)

We use XORWOW PRNG in the CURAND library to obtain random numbers. In the

implementation of the pseudo-random number generator (PRNG), there is a trade-

off between speed and bias. We choose the robust, but slower implementation. To

overcome this expense, we initialize the PRNGs at the beginning and save their states

to the global memory. We load their states from the global memory in a coalesced way

when we want to generate a random number inside the kernel. We save the updated

states to the global memory before exiting the kernel [25]. In speed measurements we

include the load and save times but we exclude the initialization time of the PRNGs.
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2.5 Statistical Measures and Distributions

To assess the quality of the resampling algorithms, we compare the sequences before

and after resampling [19]. We use the information oi in the new offspring sequence,

which is the number of times the ith particle is replicated. To measure the difference

between the two weight sequences we use mean squared error (MSE). The squared

error (SE) of a sequence ol is defined as follows [22]:

SE(ol) =
N∑
i=1

(
oil −

Nw̃i

s_w̃

)2

(2.29)

The MSE is the sample mean of the squared errors and is defined as follows:

MSE(o) =
1

K

K∑
l=1

SE(ol) (2.30)

where K is the number of samples (or offspring sequences) for a particular weight

sequence. MSE can be written as combination of two components, bias and variance

[22]:

MSE(o) = V ar(o) + ‖Bias(o)‖2 (2.31)

where

V ar(o) =
N∑
i=1

V ar(oi), ‖Bias(o)‖2 =
N∑
i=1

(
ôi − Nw̃i

s_w̃

)2

(2.32)

where ôi is the sample mean of the ith component of o across the K offspring se-

quences. V ar(oi) is the sample variance of the ith component of o across the K

offspring sequences. To assess the bias result of the resampling algorithms, we use

the contribution of the squared bias to the mean squared error, ‖Bias(o)‖2 /MSE(o).

In the MSE results, MSE is normalized by the number of particles, MSE(o)/N [22].

We obtain the weight sequences for our trials from gamma distribution. We choose

gamma distribution because it is in fact a family of distributions with two parame-
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Figure 2.3: An illustration of each gamma distribution with N = 4, 194, 304. X-axis

represents the bins of the histograms and y-axis represents the number of data in the

bins. Shape and scale are the parameters of the gamma distribution.

ters, namely, shape and scale, which allow us to obtain a variety of distributions to

generate random weight sequences [5]. We create five distributions by varying the

shape and scale parameters. The histograms of a sample weight sequence of each

gamma distribution with 4, 194, 304 particles are given in Figure 2.3. In addition,

we use other distributions to show the performance of resampling algorithms as the

relative variance in the weight sequence increases. These distributions are generated

as follows [22]:

w̃i =
1√
2π

exp

(
−1

2
(x̃i − y)2

)
(2.33)

where x̃ ∼ N(0, 1) and y ∼ N(x̃, 1) (drawn from normal distribution). The relative

variance in weights increases as y increases. We create five different distributions by

taking the values of y as integers from 0 to 4.
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2.6 A Simple End-to-End Application

To show the relative significance of the resampling stage in the SIR particle filter

in terms of time cost, we use a well-known highly non-linear example found in the

literature [10, 2]. The equations for this system are as follows:

xk+1 =
xk
2

+
25xk

1 + x2k
+ 8cos(1.2k) + vk (2.34)

zk =
x2k
20

+ nk (2.35)

where vk and nk are zero mean Gaussian random variables with variance σ2
v = 10 and

σ2
n = 1, respectively. We use the first equation in prediction and the second equation

in weight update. The particles are initialized as N (0, 2). The pseudo-code of this

example is given in Algorithm 2.4.

Algorithm 2.4 Example SIR Particle Filter
procedure [{xik}Ni=1] = SIR ({xik−1}Ni=1, zk)

1: for i = 1 : N

xik ∼ p(xk|xik−1): prediction

w̃i
k = p(zk|xik): weight update

end for

2: s_w̃ = SUM [{w̃i
k}Ni=1]

3: for i = 1 : N

wi
k = s_w̃−1 ∗ w̃i

k

end for

x̂k = SUM [{xik ∗ wi
k}Ni=1]

4: [{xik}Ni=1] = RESAMPLE [{xik, w̃i
k or w

i
k}Ni=1]

Algorithm 2.4 is a slight adaptation of Algorithm 2.3 for this application. Specif-

ically, in stage 3, we calculate the estimation results of the filter after normalization

process.
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CHAPTER 3

RESAMPLING METHODS

In this chapter, we present the pseudo-code of the resampling methods we use in the

experiments. And we mention their strength and weakness when implemented on the

GPU.

3.1 Resampling

In resampling, the aim is to replicate the particles according to their weights. The

expected number of replication of a particle i after resampling is related to its current

weight as shown below [22]:

ER(i) =
Nw̃i

s_w̃
(3.1)

Satisfying (3.1) for each particle ensures unbiased resampling results as well as un-

biased estimation of the marginal likelihood of the measurement data. In practice,

however, it is not possible to obtain unbiased resampling results due to imperfect

random number selections and numerical issues [22].

3.2 Systematic Resampling

The cumulative summation of the weights in the Multinomial, Stratified and System-

atic resampling algorithms involves interactions among the weights. Global commu-

nication between the threads in the GPU makes the parallelization of the cumulative
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summation of the weights difficult. There are some solutions with logarithmic time

complexity in the number of particles. Furthermore, cumulative summation of the

weights leads to the numerical instability problem for large number of particles or

large weight variance when single precision floating point numbers are used [22].

The output of the resampling for the next time step, for each particle, can either be

the number of replications of the particle or the ancestor of the particle. Stratified

and Systematic adopt the former approach, whereas Multinomial, Metropolis and

Rejection the latter [22]. We select the Systematic resampling in our experiments. It

is better than Multinomial and Stratified in quality and speed [22]. The pseudo-code

for the Systematic resampling algorithm is given in Algorithm 3.1.

Algorithm 3.1 Systematic Resampling [22]
1: procedure [{Oi}Ni=1] = SYSTEMATIC({w̃i}Ni=1)

2: u ∼ v[0 1)

3: C = INCLUSIVE-PREFIX-SUM(w̃)

4: foreach i = 1 : N

5: ri = N∗Ci

CN

6: Oi = min(N, bri + uc)
7: end foreach

The output of this algorithm is the cumulative sum of the number of replications of the

particles which is called as cumulative offspring and denoted O. C is the cumulative

sum of the weights; u is a real random number between 0 and 1, excluding 1, drawn

from a uniform distribution; r is a real variable.

The ‘foreach’ loop can be executed in parallel among the threads where a dedicated

thread runs for each particle. Each thread calculates the cumulative offspring of the

particle it represents. We need to convert O to an ancestor vector in order to assign

the states of the ancestor of the particle. An algorithm which is suitable for the GPU

implementation is given in Algorithm 3.2.

In this algorithm, the ‘foreach’ loop can be executed in parallel among the threads

where each thread runs for a particular particle. Each thread finds the children whose

ancestors are the particle it represents.
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Algorithm 3.2 Cumulative Offspring to Ancestors [22]
1: procedure [{xinew}Ni=1] = CO TO ANCESTORS ({xi, Oi}Ni=1)

2: foreach i = 1 : N

3: if i == 1 then start = 0

4: else then start = Oi−1

5: end if

6: oi = Oi − start
7: for j = 1 : oi

8: xstart+j
new = xi

9: end for

10: end foreach

3.3 Metropolis and Rejection Resampling

Murray and co-workers offer two alternative resampling methods, namely, Metropolis

and Rejection. These methods do not suffer from the numerical instability problem

since they do not need cumulative summation of the weights [22].

The Metropolis resampling algorithm uses only the ratio of the weights rather than

any collective operations across the weights. It has the B parameter which represents

a trade-off between bias and speed. Smaller B means faster results but with a larger

bias. The pseudo-code for the Metropolis resampling is given in Algorithm 3.3.

Algorithm 3.3 Metropolis Resampling [22]
1: procedure [{xinew}Ni=1] = METROPOLIS({xi, w̃i}Ni=1, B)

2: foreach i = 1 : N

3: t = i

4: for m = 1 : B

5: u ∼ v[0 1]

6: j ∼ v{1, .., N}
7: if u ≤ w̃j/w̃t then t = j end if

8: end for

9: xinew = xt

10: end foreach
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In this pseudo-code, B is the trade-off parameter which serves as the number of it-

erations of the inner loop; u is a real random number between 0 and 1 drawn from a

uniform distribution; j is a random integer between 1 and N drawn from a uniform

distribution; t is the index of the particle selected as the ancestor of the ith particle

for the next time step; xinew is the new state of ith particle for the next time step. The

other parameters are as in Algorithm 2.3.

The ‘foreach’ loop can be executed in parallel among the threads where each thread

represents a particle whereas the ‘for’ loop must execute sequentially. Each thread se-

lects an ancestor for the particle it represents. The Metropolis resampling algorithm

can run with a single CUDA kernel. The weights are stored on the global memory

of the GPU. The read/write operations on the global memory are performed segment

by segment. All the threads in the same warp are physically related to each other.

This means the warp completes an instruction only when all the threads in the warp

complete the same instruction. So it is important to read the weights from the same

segment to avoid serialization in memory transaction [8]. But, due to the random-

ization in the Metropolis resampling, non-coalesced global memory access patterns

occur causing the speed of the resampling deteriorates rapidly as the number of par-

ticles increases [22].

The Rejection resampling also does not suffer from numerical instability as it does not

require collective operations across the weights. Furthermore, unlike the Metropolis

resampling, it is unbiased. The pseudo-code for the Rejection algorithm is given in

Algorithm 3.4.

In this algorithm, w̃max is the maximum weight and the other parameters are as in

Algorithm 2.3 and Algorithm 3.3. Like the Metropolis resampling, the ‘foreach’

loop of the Rejection resampling can be executed in parallel among the threads where

a dedicated thread runs for each particle. And each thread selects an ancestor for

the particle it represents. The Rejection resampling also undergoes non-coalesced

global memory access patterns. Furthermore, it suffers from warp divergence since

the number of iterations of the ‘while’ loop is not equal in all threads of the warp.
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Algorithm 3.4 Rejection Resampling [22]
1: procedure [{xinew}Ni=1] = REJECTION({xi, w̃i}Ni=1)

2: foreach i = 1 : N

3: j = i

4: u ∼ v[0 1]

5: while u > w̃j/w̃max

6: j ∼ v{1, .., N}
7: u ∼ v[0 1]

8: end while

9: xinew = xj

10: end foreach
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CHAPTER 4

RELATED WORK

In this chapter, we discuss the related studies about resampling in the literature. There

are studies about the parallel implementation of the Systematic resampling. But there

are some practical challenges in the parallel implementation of the Systematic resam-

pling. The cumulative summation of the weights are less-readily parallelized because

of the interactions among the weights of the particles. In some of these studies, the

authors focus to the efficient implementation of the cumulative summation of the

weights. Another challenge is the dependency inside the loop of the selection of the

particles which are propagated for the next time step. In other studies, the authors

focus on the eliminating this dependency and achieving fully parallel implementa-

tion of the Systematic resampling. There are some other studies which aim to reduce

the global operations among the weights in resampling by introducing distributed

structures. Some researchers point out the importance of coalesced implementation

of resampling on the GPU [1, 17]. Li and co-workers present classification, imple-

mentation and strategies of different resampling methods on a variety of architectures.

They categorize resampling methods as sequential and parallel algorithms. Sequential

implementation consists of three categories: single distribution sampling; compound-

sampling; special strategies. Parallel implementation also consists of three categories:

mapping to specific hardware platforms; distributed resampling; normalization-free

resampling. They present the resampling algorithms according to these categories in

detail [20].
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4.1 Studies on Systematic Resampling

There are works that aim to propose efficient algorithms for the parallel implementa-

tion of the Systematic resampling.

Hendeby and his co-workers focus to the resampling stage of the particle filter. They

implement the particle filter in parallel on the GPU. They note that there was no

complete solution for the parallel implementation of particle filter on the GPU at

the time they did this work. In their paper, they mention general purpose computing

on GPU (GPGPU). As a programming language they use OpenGL Shading Language

(GLSL). In the GPU based particle filter implementation, they focus to the resampling

and weight normalization stages of the particle filter since all the particles interact

with each other in these stages. Cumulative summation of the weights, selection

and redistribution of particles are a challenge in the parallel implementation of them.

They propose multi-pass scheme for the cumulative summation of the weights. In this

scheme, an adder tree runs forward to obtain the summation of all weights and then

runs backward to calculate cumulative summation of each particle by using the sum

obtained in forward pass. The selection of particles for the next time step performs

by using cumulative sum of the weights. They use a constant velocity tracking model

to test the algorithms. They compare the results of the GPU implementation with the

results of the CPU implementation of parallel particle filter. They state that the GPU

implementation is faster than the CPU implementation with the same accuracy [12].

Hendeby and his co-workers use the same technique in another work. They claim

that the GPU filter in their study is the first particle filter published in the literature

that is completely parallelized on the GPU. They use a minimal sensor network with

bearing only sensors to compare the performance of the algorithms. They report

that they achieve faster results with the GPU implementation compared to the CPU

implementation with the same accuracy [13].

Gong and his co-workers focus to the parallel implementation of the Systematic re-

sampling. They propose the shared memory systematic resampling (SMSR) algo-

rithm which is suitable for shared memory architectures. They eliminate the de-

pendency inside the while loop of the Systematic resampling. They define left and

right boundaries to write the selected particles between these boundaries to the global
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memory. They implement all stages of PF in parallel on the GPU. Random numbers

are generated in parallel. Parallel reduction technique is used for computing the sum

of the weights. Parallel scan is used for the cumulative summation of the weights.

They use a highly non-linear model to measure the performance of their algorithms.

They compare serial implementation of PF, GPU implementation of PF except resam-

pling stage and GPU implementation of PF with SMSR. They achieve 30+x speed up

over the serial PF [10].

Hwang and Sung propose a solution to the load imbalance problem in the implemen-

tation of the Systematic resampling on the GPU. This problem occurs because of the

variances of the weights. As the variance increases, imbalanced workload occurs in

writing the selected particles to the global memory. They propose a solution called

load balanced particle replication (LBPR) algorithm for the Systematic resampling.

They modify the particle selection and replication index generation stages of resam-

pling. They generate minimal replication index array to reduce the imbalanced work-

load among the threads instead of complete replication index. Then they recover the

complete ones from minimal replication index array in particle selection index. They

achieve almost constant execution time and outperform the conventional systematic

resampling in worst case computation time [15].

Wu and his co-workers propose the iterated importance density function (IIDF) to

solve the degeneracy problem. They employ this technique to the sampling stage of

the particle filter and obtain iterated particle filter (IPF). They also propose parallel

resampling (PR) and use it in the resampling stage of the IPF. The main idea of PR is

same with the main idea of the Systematic resampling with some differences. In PR,

first the particles are sorted according to their weights in descending order. Then the

particles are divided into two subsets. The first one consists of the particles whose

normalized weight is greater than 1/N . The second one consists of the remaining

particles. The particles in the first subset replicate themselves according to the ratio

of their weights to the sum of all weights while some of the particles are eliminated

from the second subset. When comparing the differences between PR and System-

atic resampling, it is easier to implement PR in parallel; some particles are replicated

one less than those in the Systematic resampling because of the floor operation; only

the particles with the smallest weight are eliminated. But in the Systematic resam-
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pling a better one may be eliminated. They implement IPF in parallel on the GPU by

using PR in the resampling stage. They also introduce improved version of the par-

allel cumulative sum algorithm to calculate the cumulative sum of the weights more

efficiently. They measure the performance of PR on an one-dimensional numerical

simulation and a target tracking with passive radar application. They state that PR

achieves comparable estimation results with the results of the Systematic resampling.

Furthermore, they argue that PR is more convenient for parallel implementation of

resampling [37].

The authors of the studies cited in this section focus on the efficient implementation

of the cumulative summation of the weights in Systematic resampling. They offer

parallel scan algorithms whose time complexity is O(logN). They also focus to the

bottleneck in the selection of particles. Although they eliminate the bottleneck, there

still exists some problems. One of them is the numerical instability problem caused by

the cumulative summation of the weights and the randomly generated numbers in the

algorithm. Another problem is the load imbalance problem of the threads in a warp

when they write the selected particles to the global memory of the GPU. Hwang and

Sung propose a solution for the load imbalance problem and achieve almost constant

execution time. In this thesis, we point out the numerical instability problem of the

Systematic resampling and the efficient calculation of the cumulative summation of

the weights. Furthermore, the resampling methods we devise do not suffer from the

numerical instability problem as they do not require cumulative summation of the

weights. In addition, the workloads among the threads in a warp are very close to

each other.

4.2 Studies on Distributed Resampling

There are studies that aim to reduce the global operations over the weights by dividing

the particles into subsets and performing local resampling.

Bolic and his co-workers propose an efficient algorithm for the distributed particle

filters on FPGA [4]. They propose resampling with proportional allocation (RPA)

particle filter and resampling with non-proportional allocation (RNA) particle filter
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algorithms. The distributed architecture has four processing elements (PEs) and one

central unit (CU) with interconnection network. Particle generation and calculation

of weights are fully parallel in PEs, because there is no data dependency in these op-

erations. But the resampling performs partially or fully in CU. In full resampling, CU

gets the particles and their weights from each PE and performs sequential resampling.

In partial resampling, resampling is distributed to each PE and CU is responsible only

small portion of resampling. There are particle routings between PEs to balance par-

ticles on each PE. Their target is to reduce the communication in interconnection

network and make resampling deterministic. They test the performance of the algo-

rithms on a bearing only tracking application. They state that the performance of

centralized resampling and RPA are same with the sequential PF. On the other hand,

they achieve speed improvement with RNA and offer it as a good choice when speed

is important.

Balasingam and his co-workers also propose similar distributed architecture as in [4].

They distribute the resampling to the PEs. The objective of distributed resampling

is to reduce the communication among the PEs. They note that there is no study

that optimizes the particle exchange among the PEs at that time. They propose an

optimization algorithm for the particle exchange. They claim that they achieve im-

provement with the proposed algorithms [3].

Hong and his co-workers design a parallel system with four PEs and one CU. They use

RPA and RNA algorithms described in [4] in the resampling stage. Each PE performs

particle generation and weight update operations in parallel. They compute local sum

of the weights and send it to the CU. Then CU computes the total sum of the weights.

Weight normalization is done locally on each PE. Then each PE performs resampling

locally. CU is also responsible for particle exchange after resampling. They describe

7 different configurations based on the particle exchange and weight normalization

operations. The configurations are classified in terms of the architectures of PEs and

resampling algorithms. They test their algorithms on a bearing only tracking problem.

They state that they reduce the execution time of the resampling stage by a factor of

the number of PEs [14].

Chao and his co-workers claim that there was no study in the literature which aim to
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explore the utilization of CUDA in terms of data locality, execution model and mem-

ory hierarchy at the time they did their work [6]. They propose a technique, namely

finite redraw importance maximizing (FRIM) prior editing, for the importance sam-

pling stage of the particle filter. They discuss prior editing technique in the literature.

In prior editing, each particle is subjected to an acceptance test. They are re-drawn

unless they pass the acceptance test. The condition in the test is based on the likeli-

hood p(yk|xk). The authors state that there are two drawbacks in this technique. The

first one is about execution time of the technique. It is unbounded and unsure. The

second one is about warp divergence in the acceptance test. It causes some threads

to be idle in the warp which leads to inefficient process of the sampling instructions.

In their proposed technique, they define constant limit for the acceptance test. They

draw particles Nrdw times to choose the best one as the results of importance sam-

pling stage. They also introduce localized resampling. They distribute particles to

Npart subsets evenly and each performs local resampling. Although the quality of

resampling degrades, using localized resampling with FRIM lessens this degrada-

tion. This is occurred by the more particles with closer weights which are obtained

in FRIM stage. They compare their approach with the standard particle filter on a

bearing only tracking application. They state that they achieve similar quality with

less number of particles when compared with the standard particle filter. They also

state that setting Nrdw and Npart is a trade-off between quality and speed.

Shabany develops hardware efficient architectures for the sequential Monte Carlo

(SMC) receiver algorithm. It consists of three blocks such that SMC core, weight

calculator and resampler. The main contribution of his study is related to resampling

stage. The execution time of his resampling algorithm does not depend on the distri-

butions of the weights. In distributed implementation of resampling, they distribute

the job evenly in two stages. In the first stage, replication factors are calculated.

He claims this operation can perform in parallel efficiently. The second stage is the

sample routing. He claims that it is hard to parallelize sample routing efficiently. He

proposes a scheme where it has small number of PEs and a central control unit to han-

dle the sample routing. This scheme is fixed and its execution time does not depend

on the distribution of the weights in the PEs. Thus, resampling stage of the current

time step and sampling stage of the next time step can be pipelined, which leads short
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execution time [34].

Chitchian and his co-workers introduce local sub-filters. Each thread block repre-

sents a local sub-filter. Most of the stages of the particle filter are performed locally

in these sub-filters including resampling with some limited communication with the

other sub-filters. They propose a distributed resampling mechanism. Each sub-filter

sends its t best particles to its neighbors and performs local resampling withm+Ni∗t
particles where m is the number of particles in a sub-filter and Ni is the number of

neighbors of a sub-filter. They define a graph topology to show the neighbor relation-

ship of the sub-filters and they explore different topologies. They note that t and the

topology are user-defined parameters. They achieve comparable accuracy with the

sequential particle filter along with 10x to 100x speed up. They state that they surpass

the existing distributed implementations in the literature [7].

Pan and his co-workers propose a hierarchical resampling (HR) method for the dis-

tributed particle filters. It decomposes the resampling stage into two hierarchies,

namely, intermediate resampling (IR) and unitary resampling (UR). Assume N is

the number of particles and K is the number of PEs. In the first hierarchy IR, each PE

performs sampling and weight calculation for a single particle in parallel. Then the

summation of the weights of K particles is calculated and resampling is performed

for these K particles. Resampled particles are sent back to the PEs. The above op-

erations repeat N/K times. Then second hierarchy UR resamples N/K particles on

each PE. The summation of the weights which is calculated in the first hierarchy is

used in resampling. In order to improve the UR stage, they use residual cumulative

resampling (RCR) to pipeline and accelerate UR. HR achieves same accuracy with

the standard distributed resampling algorithms in the literature. It also eliminates the

particle redistribution stage along with some advantages such as fast execution time

and efficient memory usage [31].

Tian and his co-workers propose a resampling tree scheme (RTS) for the resam-

pling stage of their proposed distributed particle filter algorithm with resampling tree

(DART). The resampling stage consists of two parts, branch resampling (BR) and

root resampling (RR). In the tree structure, the weights are stored in the leaves of the

tree initially. First, BR algorithm performs resampling by starting from the leaves to
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the root. Then RR performs the remaining job. They state that their proposed method

DART achieves speed up which surpasses linear boundary and outperforms state of

art approaches [35].

Some of the authors of the studies cited in this section distribute the particles to the

PEs and each PE performs local resampling. CU operates the particle routing be-

tween the PEs to balance the particles on each PE. Balasingam and his co-workers

also optimize the particle routing. Chao and his co-workers offer a technique for the

importance sampling stage of the particle filter to improve the quality of the local

resampling. Shabany also offers a scheme to make the execution time of the particle

routing not to depend on the distribution of the weights. There are also hierarchical or

tree resampling schemes for the resampling stage of the distributed particle filter. In

our proposed method Uphill resampling, each thread runs for each particle and per-

forms local computations except the read/write operations of the weights in the global

memory. There occurs non-coalesced global memory access pattern when reading the

weights. We offer coalesced version of the Uphill resampling. It eliminates most of

the access problem but still some non-coalesced access pattern occurs. We also devise

another version of it. In this version, each warp selects some portion of the weight

set randomly and performs resampling within this portion of data set. It behaves as

local approach and eliminates the non-coalesced access problem. Differently from

the studies above, we distribute the portion of the weights to the warps randomly. We

can adjust the number of data in a portion of the weights which enables us to achieve

a trade-off between speed and quality. Small size of weight portion means faster exe-

cution time but a limited portion of the weight set. Large size of weight portion means

slower execution time caused by the non-coalesced access problem but better quality.

4.3 Studies on Metropolis Resampling

Liu and his coworkers devise parallel implementations of the Metropolis, Rejection

and Systematic resampling methods on FPGAs. They note that this is the first work

that implements these resampling methods on FPGA and they compare them with the

GPU implementations of them. They offer memory access strategies for Metropolis

and Rejection to improve their randomized access to the global memory. They modify
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the Systematic resampling to save resources and achieve speed up. They compare the

performance of them with the performance of their implementations on the GPU.

They achieve significant speed up between 1.7x-49x over the GPU implementations

of these methods. They point out that the Metropolis and Rejection resampling suffer

from “warp divergence” on the GPU. They also note that with the number of particles

around one million, the usage of off-chip FPGA memory will be necessary, which

can limit the performance of FPGA in transferring time of the weights [21].

Liu and his co-workers also mention the drawbacks of the Systematic, Metropolis

and Rejection resampling. These are numerical instability problem and parallel im-

plementation of the cumulative summation of the weights for Systematic; randomized

access to the global memory and warp divergence for Metropolis and Rejection; bi-

ased results for Metropolis. They state that FPGA based solutions overcome most of

these problems. They distribute the particles into M parallel processing blocks. They

define a simplified random permutation generator (RPG) which connects the mem-

ory to the parallel processing blocks so that each processing blocks can access the

weights in the memory randomly. However, this randomized access to the memory

causes non-coalesced global memory access patterns on the GPU. We overcome this

problem by redirecting the threads in a warp to access the contiguous location of the

global memory. We do not need to define any additional structures. We achieve faster

results by sacrificing quality in a controllable manner.
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CHAPTER 5

MEMORY COALESCING VARIANTS OF METROPOLIS

RESAMPLING

In this chapter, we introduce memory coalescing variants of the Metropolis resam-

pling named Metropolis-C1 and Metropolis-C2. We show how we solve the non-

coalesced global memory access problem of Metropolis in detail. We compare M, C1

and C2 in terms of bias, MSE and execution time. We also compare C1 and C2 with

M by reducing B parameter of M in two scenarios. In the first scenario, we match

the MSE results of C1 and C2 with M by reducing B. In the second scenario, we

match the execution time of C1 and C2 with M by reducing B. Furthermore, we also

compare three resampling algorithms on a highly non-linear example. At the end, we

discuss L1 cache usage of three resampling algorithms. A big part of the material

presented in this chapter has appeared in [9].

5.1 Metropolis-C1 and Metropolis-C2 Resampling

We devise two solutions for the non-coalesced global memory access problem of the

Metropolis resampling. The access pattern of Metropolis is given in Figure 5.1. The

threads in the same warp access to the different segments of the global memory. We

try to force them to access the same segment. We define an s-segment as a set of

a fixed number of contiguous segments. Thus, the smallest s-segment is a single

segment, and the largest s-segment is the set of all segments that spans the weight

array. The set of all s-segments forms an equal-sized partitioning of the weight array.

An illustration about s-segment is given in Figure 5.2.
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Figure 5.1: The global memory access pattern of Metropolis.

Figure 5.2: The smallest and largest s-segment.
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The stages of Metropolis-C1 are given in Algorithm 5.1. In this technique, each warp

selects a random s-segment. All the threads in the warp select random weights within

this s-segment.

Algorithm 5.1 Metropolis-C1 Resampling
1: procedure [{xinew}Ni=1] = METROPOLIS-C1({xi, w̃i}Ni=1, B, SC,DC)

2: foreach i = 1 : N

3: t = i

4: s ∼ v{1, .., SC}
5: for m = 1 : B

6: u ∼ v[0 1]

7: j ∼ v{(s− 1) ∗DC + 1, . . . , s ∗DC}
8: if u ≤ w̃j/w̃t then t = j end if

9: end for

10: xinew = xt

11: end foreach

In Algorithm 5.1, SS is the size of an s-segment in bytes; SC is the number of s-

segments; its value is 4N/SS. The value of N must be a power of 2. The DC is

the number of weights in an s-segment; its value is SS/4. The j is a random integer

between the indexes of the first and the last element of the s-segment drawn from a

uniform distribution; s is the index of the selected s-segment for a warp, drawn from

a uniform distribution. All the threads in a warp must have the same value of s. This

can be ensured by using the index of the warp as the sequence of the random number

generator. The constant 4 is the size of the single-precision floating-point number in

bytes.

The stages of Metropolis-C2 are given in Algorithm 5.2. The parameters of this

algorithm are as in the Algorithm 5.1. The only difference from C1 is the selection

of an s-segment. In C2, each warp selects a random s-segment at each iteration of

the inner-loop. The selection of s for the threads in a warp can be done as in C1.

Note that as the s-segment size, SS, is selected larger both algorithms become more

similar to the original Metropolis algorithm, and for the limiting case of SS = 4N

both become behaviorally the same as Metropolis.
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Algorithm 5.2 Metropolis-C2 Resampling
1: procedure [{xinew}Ni=1] = METROPOLIS-C2({xi, w̃i}Ni=1, B, SC,DC)

2: foreach i = 1 : N

3: t = i

4: for m = 1 : B

5: u ∼ v[0 1]

6: s ∼ v{1, .., SC}
7: j ∼ v{(s− 1) ∗DC + 1, . . . , s ∗DC}
8: if u ≤ w̃j/w̃t then t = j end if

9: end for

10: xinew = xt

11: end foreach

To assess the quality of the resampling algorithms, we use the metrics and distribu-

tions given in Section 2.5. We create 16 weight sequences from each distribution. We

draw 256 offspring sequences from each weight sequence. The experimental results

of the distribution are the average of the results of these 16 weight sequences. We

execute each one of the three resampling algorithms in this framework. We consider

the number of particles from 24 to 222. When the s-segment size is greater than 4N ,

we set its value to 4N . We choose the number of repetitions of each run, that is K, as

256. The output of the algorithms is the ancestor array (rather than the states of the

particles). We estimate the confidence interval (CI) of each run with a level of 99% to

see how close the sample mean is to the true mean [33]. The largest value of CI in our

quality experiment is ±15.717% of the sample mean and in our speed experiment is

±8.124% of the sample mean. The smallest value of CI in our quality experiment is

±0.011% of the sample mean and in our speed experiment is ±0.002% of the sample

mean. We observe that as the number of particles gets larger, CI tends to get smaller.

To assess the speed of the resampling algorithms, we calculate the execution times

of the kernels of each resampling algorithm along with the execution times of the

kernels to compute the value of B. The speed up is the ratio of the execution time of

Metropolis over the execution times of the proposed algorithms.

We compute the value of B as prescribed in [22]. Therein we choose ε as 1/100 and
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β as ¯̃w/w̃max where ¯̃w is the mean of the weights and w̃max is the maximum weight.

We use the same B values for all three algorithms. We use the efficient reduction

algorithm in calculations [11].

5.2 Bias, MSE and Execution Time Results

In this section, firstly, we compare bias, MSE and execution time results of C1, C2

and M where C1 and C2 achieve their highest speed. Secondly, we compare them on

the same metrics where MSE of C1 and C2 are very close to MSE of M but in a faster

manner. We set the s-segment size in two different scenarios. In the first scenario,

we assign the value of SS as 128. The threads in the same warp read the randomly

chosen weights in a single transaction in C1 and C2. The bias and MSE results of the

M, C1 and C2 resampling on the gamma distributions are given in Figure 5.3. Their

respective execution time and speed up results are given in Figure 5.4.

The results in Figure 5.3 and Figure 5.4 indicate that both of these techniques are

better than M in speed, but worse in quality because they select the weights from a

limited portion of the weight sequence. The contribution of the squared bias to the

MSE in C1 is larger than that in M. Since C1 focuses on local selections, the expected

number of repetitions of the particles becomes different than that in M. This causes

the bias results of C1 become large. The variance in C1 is also large, because s-

segment size and warp size cause variance in the results of MSE. The contribution of

the squared bias to the MSE in C2 is similar to the one in M. This shows us that the

expected numbers of repetitions of the particles in both algorithms are quite similar.

The MSE results of C2 are worse than those of M, because s-segment size and warp

size cause variance in the results.

C2 is slower than C1 because it generates an extra random number at each iteration

of the inner loop. As C2 selects a new s-segment at each iteration of the inner loop,

it is more prone to non-coalesced memory reads of the w̃t. However, it is better

than C1 in quality because it encounters more variety in the selection of weights.

Regarding the speed up results, C1 and C2 achieve their highest speed up due to

complete elimination of the non-coalesced global memory read for w̃j . But the speed
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Figure 5.3: Bias and MSE results of the Metropolis, Metropolis-C1 and Metropolis-

C2 resampling algorithms on the gamma distributions. S-segment size is 128 bytes.
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Figure 5.4: Execution time and speed up results of the Metropolis, Metropolis-C1 and

Metropolis-C2 resampling algorithms on the gamma distributions. S-segment size is

128 bytes.
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up of C2 is less than that of C1 because of the non-coalesced global memory read for

w̃t. When the number of particles exceeds 524288, the execution time of M becomes

much worse where the improvements of C1 and C2 become more pronounced.

In the second scenario, we set SS to 2048. The threads in the same warp read the

randomly chosen weights in at most 16 transactions. The bias and MSE results of the

M, C1 and C2 resampling algorithms on the gamma distributions are given in Figure

5.5. Their respective execution time and speed up results are given in Figure 5.6.

The results in Figure 5.5 show that as the s-segment size is increased, both C1 and

C2 pick the weights from a bigger portion of the weight sequence, which leads both

techniques to approach M in quality. The contribution of the squared bias to the

MSE in C1 becomes closer to the contribution in M as the s-segment size increases.

Remember that C1 behaves same as M in quality when the s-segment size is 4N . The

variance caused by s-segment also reduces as well. Consequently, the MSE of C1

becomes similar to the MSE in M as the s-segment size increases. The contribution

of the squared bias in C2 is similar to that in M since they have similar expectation

on the number of repetitions of the particles. The variance caused by s-segment size

reduces as the s-segment increases which leads to C2 give MSE results very close to

M.

Regarding the results in Figure 5.6, the execution times of C1 and C2 are longer

than their execution times in the first scenario due to lesser coalescing, but they are

still faster than M. The speed up of C2 is less than that of C1 since C2 selects a

new s-segment at each iteration which allows non-coalesced global memory read for

w̃t. When the number of particles exceeds 524288, the execution time of M becomes

much worse where the improvements of C1 and C2 become more pronounced.

The bias and MSE results of M, C1 and C2 resampling algorithms on the distributions

in (2.33) with the s-segment size 128 are given in Figure 5.7 and their respective

execution time and speed up results are given in Figure 5.8. The bias and MSE

results of resampling algorithms on the same distributions with the s-segment size

2048 are given in Figure 5.9 and their respective execution time and speed up results

are given in Figure 5.10.
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Figure 5.5: Bias and MSE results of the Metropolis, Metropolis-C1 and Metropolis-

C2 resampling algorithms on the gamma distributions. S-segment size is 2048 bytes.
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Figure 5.6: Execution time and speed up results of the Metropolis, Metropolis-C1 and

Metropolis-C2 resampling algorithms on the gamma distributions. S-segment size is

2048 bytes.

48



Figure 5.7: Bias and MSE results of the Metropolis, Metropolis-C1 and Metropolis-

C2 resampling algorithms on the distributions in (2.33). S-segment size is 128 bytes.
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Figure 5.8: Execution time and speed up results of the Metropolis, Metropolis-C1

and Metropolis-C2 resampling algorithms on the distributions in (2.33). S-segment

size is 128 bytes.
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Figure 5.9: Bias and MSE results of the Metropolis, Metropolis-C1 and Metropolis-

C2 resampling algorithms on the distributions in (2.33). S-segment size is 2048 bytes.
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Figure 5.10: Execution time and speed up results of the Metropolis, Metropolis-C1

and Metropolis-C2 resampling algorithms on the distributions in (2.33). S-segment

size is 2048 bytes.
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The performance of C1 and C2 resampling are similar with the previous experiments

on the gamma distributions. In addition to this, we can see how the relative variance

in the weights affects the algorithms. The bias and MSE results of the C1 worsen

as the relative variance in weights increases and show diminishing improvement as

the s-segment size increases. However, the bias results of the C2 are not affected

from the relative variance in weights. The MSE results of C2 are only affected from

the s-segment size as in the previous experiments on the gamma distributions. For a

targeted quality, the execution times of all resampling algorithms become longer as

the relative variance in weights increases. The improvements of C1 and C2 become

more pronounced with increased relative variance.

5.3 Discussion on the B Parameter

In the matter of speed vs. quality trade-off, an intriguing possibility is to reduce the

value of B to run Metropolis faster at the expense of some decrease in quality. In this

section we explore the feasibility of this approach in comparison with C1 and C2.

For the first comparison we assume the quality is at a premium, and for the second

comparison we assume the speed is at a premium.

In the first comparison, we match the MSE results of the three resampling algorithms

by reducing B in M to see how far M can be sped up by iterating the inner loop less

without sacrificing the quality significantly. Note that, we do not reduce B in C1 and

C2. Since quality is important, the user should use C1 and C2 with relatively large

s-segment sizes. Thus, in this set of trials we pick s-segment size as 2048. We look

into a case where M, C1 and C2 have roughly the same MSE, and M is slowest. We

use the distributions in (2.33). The bias, MSE and execution time results of M and

C1 are given in Figure 5.11. The bias, MSE and execution time results of M and C2

are given in Figure 5.12. We do not consider the execution time of calculating B in

this experiment since it is not calculated in M.

The results in Figure 5.11 and Figure 5.12 show that these resampling algorithms

have different behaviors in quality even if their MSE results are very close. M exceeds

the speed of C1 but its bias results become worse than C1. M exceeds the speed of C2
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Figure 5.11: Bias, MSE and execution time results of the Metropolis and Metropolis-

C1 resampling algorithms on the distributions in (2.33) where the MSE results of

them are very close. S-segment size is 2048 bytes.
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Figure 5.12: Bias, MSE and execution time results of the Metropolis and Metropolis-

C2 resampling algorithms on the distributions in (2.33) where the MSE results of

them are very close. S-segment size is 2048 bytes.
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in the distributions where the number of particles or relative variance in the weight

set is small. When the number of particles is very large, as the relative variance in the

weight set increases, C2 becomes faster than M. The bias results of M become worse

whereas the bias results of C2 are much better in all cases.

In the second comparison, we match the execution times of the three resampling

algorithms by reducing B in M to see how much M sacrifices quality while it is sped

up by matching the elapsed times of C1 and C2. Note that we do not reduce B in C1

and C2. Since speed is important, the user should use C1 and C2 with relatively small

s-segment sizes. Thus, in this set of trials we pick s-segment size as 128. We look into

a case where C1 and C2 have shorter elapsed time than M, whereas M yields higher

quality results. We use the distributions in (2.33). The bias, MSE and execution time

results of M and C1 are given in Figure 5.13. The bias, MSE and execution time

results of M and C2 resampling are given in Figure 5.14. Again, we do not consider

the execution time of computing B.

It is seen that M yields better MSE results than C2 in most of the cases. However,

when the number of particles and the relative variance in the weight set are very

large, the MSE results of C2 become better than those of M. On the other hand, the

bias results of C2 are better than those of M as the number of particles increases.

Although the contribution of the squared bias to the MSE in C1 is less than that in

M when the number of particles is very large, the MSE results of M are less than the

results of C1 in almost all cases.

This analysis suggests that playing with the B parameter of M does not achieve the

same trade-off offered by C1 and C2. By reducingB, M sacrifices quality by allowing

the bias to be large. On the other hand, by reducing s-segment size, C2 sacrifices

quality by allowing the variance to be large. The situation is different for C1. Since

C1 focuses on local selections, both bias and variance can be affected adversely by

reducing the s-segment size. The performance of C2 is most promising since it yields

smallest bias. The importance of bias in resampling is elaborated in [22].
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Figure 5.13: Bias, MSE and execution time results of the Metropolis and Metropolis-

C1 resampling algorithms on the distributions in (2.33) where the execution time

results of them are very close. S-segment size is 128 bytes.
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Figure 5.14: Bias, MSE and execution time results of the Metropolis and Metropolis-

C2 resampling algorithms on the distributions in (2.33) where the execution time

results of them are very close. S-segment size is 128 bytes.
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5.4 A Simple End-to-End Application

To provide a perspective for the reader on the significance of the resampling stage in

the overall cost of the SIR particle filter, we run the SIR particle filter in Algorithm 2.4

on a highly non-linear example system given in (2.34) and (2.35).

We create 16 different trajectories and run them 100 times with each one of the three

resampling algorithms. We use these 16 trajectories in all the number of particles.

The results are the average of the results of these 16 trajectories. We set the number

of time steps to 100. The initial state x0 is set to 0.1. We measure the quality using

the root mean squared error (RMSE) metric [32]. We calculate the error at each time

step by getting the difference between the true state and estimated state. We set ε to

1/10 in calculation of B to accelerate the resampling algorithms without sacrificing

quality much [22]. We set the –use_fast_math flag at compile time to enable efficient

calculation of special functions such as cosines, square root, exponential [28]. We

estimate the confidence interval (CI) of each run with a level of 99% to see how close

the sample mean is to the true mean. The largest value of CI in our RMSE experiment

is ±0.191% of the sample mean and in our execution time experiment is ±0.751% of

the sample mean. In stage 4 of the SIR particle filter, we use the weights of particles

without normalization since Metropolis does not need normalized weights. The ratios

of each stage to the total execution times of the filter with varying numbers of particles

are given in Table 5.1.

It is seen that the resampling stage takes a big portion of the total execution time. The

behaviors of all resampling algorithms used in the previous experiments are manifest

in these experiments. It seems that the improvements in execution times by C1 and C2

are important in PF applications. As the number of particles increases, the share of the

resampling stage also increases, and the improvement in execution time brought about

by C1 and C2 becomes more pronounced. The RMSE results of the experiments are

given in Table 5.2. The results show us the RMSE results of M, C1 with SS = 2048,

C2 with SS = 128 or 2048 are very close the each other. Using one of them is enough

in this example. The RMSE of C1 with SS = 128 is slightly worse than that of M,

but this may not be significant. Hence, one can prefer C1 with SS = 128, if speed is

the primary concern.
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Table 5.1: The ratio of times spent in different stages. The results are percentage of
the total execution times. Total execution times (in seconds) are also given in the last
row.

N=16384 Resampling Methods
M C1-128 C1-2048 C2-128 C2-2048

Stage1 5.62 10.79 8.75 9.47 7.26
Stage2 5.30 9.96 8.07 8.74 6.70
Stage3 8.53 16.19 13.13 14.21 10.89
Stage4 80.55 63.05 70.04 67.58 75.15

Exec. Time 0.034 0.018 0.023 0.021 0.028

N=65536 Resampling Methods
M C1-128 C1-2048 C2-128 C2-2048

Stage1 5.62 12.79 9.57 10.58 7.44
Stage2 2.50 5.69 4.26 4.71 3.31
Stage3 4.09 9.32 6.98 7.71 5.42
Stage4 87.79 72.20 79.19 77.01 83.83

Exec. Time 0.089 0.039 0.052 0.047 0.067

N=262144 Resampling Methods
M C1-128 C1-2048 C2-128 C2-2048

Stage1 5.32 13.15 9.11 10.29 6.73
Stage2 1.20 2.98 2.06 2.33 1.52
Stage3 2.17 5.38 3.72 4.21 2.75
Stage4 91.31 78.50 85.11 83.17 88.99

Exec. Time 0.302 0.122 0.176 0.156 0.239

N=1048576 Resampling Methods
M C1-128 C1-2048 C2-128 C2-2048

Stage1 2.74 13.31 8.98 10.21 6.01
Stage2 0.43 2.11 1.42 1.62 0.95
Stage3 0.85 4.12 2.78 3.16 1.86
Stage4 95.97 80.46 86.81 85.01 91.17

Exec. Time 2.215 0.456 0.676 0.595 1.010

N=4194304 Resampling Methods
M C1-128 C1-2048 C2-128 C2-2048

Stage1 1.96 13.37 8.93 9.85 5.28
Stage2 0.25 1.73 1.16 1.28 0.68
Stage3 0.53 3.64 2.43 2.68 1.44
Stage4 97.25 81.26 87.48 86.19 92.60

Exec. Time 12.158 1.781 2.665 2.417 4.510
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Table 5.2: RMSE Results.

Resampling
Methods

The Number of Particles
16384 65536 262144 1048576 4194304

M 4.65801 4.65806 4.65911 4.65931 4.65894
C1-128 4.67725 4.67661 4.67649 4.67629 4.67659

C1-2048 4.66174 4.65886 4.65927 4.65919 4.65926
C2-128 4.66012 4.65909 4.65919 4.65912 4.65904

C2-2048 4.66008 4.65836 4.65901 4.65872 4.65909

5.5 Discussion on L1 Cache use

In Tesla K40, the L1 cache is used for local memory access such as register spills and

stack data. Global operations leverage L2 cache, but it is not controllable by the pro-

grammer. However, one can use L1 cache for the global memory operations by setting

the -Xptxas -dlcm=ca flag at compile time [27]. We use the l1_cache_global_hit_rate

metric in CUDA profiler [29]. In our experiments we use the default setting, which

is no L1 cache. Nevertheless, it is interesting to see how the proposed techniques

could benefit from the use of L1 cache. As C1 and C2 memory access patterns tend

to be more localized than those of M, we expect C1 and C2 benefit more from the

use of L1 cache. The cache size of the L1 cache is 128 byte. When there occurs

L1 cache miss, 128 byte from L2 cache or global memory is moved entirely. The

cache hit ratio depends on some factors. Occupancy on SMX is one of the factor. In

Tesla K40, at most 16 blocks or 64 warps or 2048 threads can be active at a time [36].

In our experiments, we consider these limitations to distribute the blocks among the

SMXs evenly. The working set size is another factor on the cache hit ratio. This is the

number of particles in our experiments. The other factor is the runtime scheduling of

warps. The blocks are assigned to the SMXs and warps of these blocks are scheduled

on the cores. When a block completes its job, the next block waiting in the queue

becomes active. Simultaneous run of warps are dependent to the hardware resources.

As long as enough resources exist, multiple warps can run at the same time. The last

factor is the configuration between L1 cache and shared memory. They share 64 KB

memory region. We can set the size of L1 cache as 16, 32 and 48 KB [36].
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Table 5.3: L1 cache global loads hit ratio (percent) of the resampling algorithms.

Resampling
Methods

Cache
Size

Number of Particles (log2N )
10 11 12 13 14 15 16 18 20

M 16 KB 99.72 99.80 99.85 51.01 26.29 13.61 7.07 1.80 0.45
M 32 KB 99.73 99.82 99.84 99.87 51.79 26.41 13.49 3.44 0.91
M 48 KB 99.73 99.81 99.85 99.87 77.52 39.65 20.20 5.15 1.36

C1-128 16 KB 95.64 96.36 96.61 96.62 96.75 96.82 96.80 96.81 96.80
C1-128 32 KB 94.98 96.13 96.44 96.55 96.77 96.82 96.82 96.85 96.84
C1-128 48 KB 95.54 96.32 96.63 96.60 96.75 96.79 96.84 96.86 96.85

C1-2048 16 KB 99.51 99.56 99.59 74.79 54.75 43.99 38.57 34.51 33.49
C1-2048 32 KB 99.48 99.57 99.61 99.63 92.66 85.11 80.25 76.18 75.09
C1-2048 48 KB 99.51 99.55 99.62 99.63 99.47 98.28 96.94 95.49 95.05

C2-128 16 KB 98.92 99.11 99.27 65.33 36.82 20.80 12.38 5.96 4.30
C2-128 32 KB 98.89 99.19 99.30 99.38 81.46 62.07 49.21 38.33 35.54
C2-128 48 KB 98.88 99.13 99.3 2 99.37 97.15 88.58 80.01 70.98 68.55

C2-2048 16 KB 99.54 99.64 99.71 53.34 27.42 13.85 7.04 1.83 0.51
C2-2048 32 KB 99.53 99.65 99.69 99.72 57.79 30.60 16.12 4.99 2.41
C2-2048 48 KB 99.49 99.64 99.71 99.74 85.90 51.70 30.05 11.33 7.20

We select a distribution that has the longest execution time among the ones we use.

This is the distribution in (2.33) by setting the value of y to 4. For each cache configu-

ration and each resampling algorithm, we create 16 different weight sequences for any

N . The resampling algorithms draw 256 (the value of K) offspring sequences from

each weight sequence. The results are the averages of these 16 weight sequences. We

only measure the kernels of M, C1 and C2. The cache hit ratios of all resampling al-

gorithms are given in Table 5.3. The values in the cells are the ratios of the cache hit

in L1 cache for the global loads inside the CUDA kernel of the resampling algorithms.

There are also two pieces of information given in the cells of the table. The numbers

written normally mean that the algorithm runs faster compared to its no-cache set-

ting. The underlined numbers mean that the algorithm runs slower compared to its

no-cache setting.

In all algorithms, we gain speed by enabling L1 cache as long as the number of

particles does not exceed 4096 when the cache size is 16 KB, 8192 when the cache
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size is 32 KB, and 16384 when the cache size is 48 KB. In M, when the cache size

is 16 KB, we can load at most 16KB/4Byte= 4096 single precision numbers. As

long as the number of particles does not exceed 4096, M uses the L1 cache around

99.8%. As the number of particles is doubled, the probability of the finding the data

in L1 cache at each iteration of the inner loop goes down to the half of the current

ratio. This behavior is same when the cache size is 32 KB. As long as the number

of particles does not exceed 8192, Metropolis uses the L1 cache around 99.8%. This

is a bit different when the cache size is 48 KB. Because 48 is not power of 2 and we

can load at most 12288 single precision numbers. When the number of particles is

16384, the cache hit ratio is around 75%. As the number of particles is doubled, the

probability of the finding the data in L1 cache at each iteration of the inner loop goes

down to the half of the current ratio.

In C1, when the s-segment size is 128, we gain speed in all experiments. This is

because the L1 cache is large enough to store all segment data in all configurations.

When the s-segment size increases to 2048, we still gain speed as the cache hit ratio

is around 74% or higher for 16 KB cache configuration, and 85% or higher for 32 KB

cache configuration. For 48 KB cache configuration, we gain speed at any number of

particles. In C2, when the s-segment size is 128, we gain speed although the cache

hit ratio is around 38%. When the s-segment size is 2048, we gain speed as the cache

hit ratio is around 85% or higher. Main factor of slowdown of the algorithms is cache

miss ratio. This suggests a strategy of bypassing the L1 cache as the cache miss ratio

increases. The execution time results of the algorithms are given in Table 5.4 and the

speed up results of the algorithms are given in Table 5.5. There are also two pieces of

information given in the cells of the table. The numbers written normally mean that

the algorithm runs faster compared to its no-cache setting. The underlined numbers

mean that the algorithm runs slower compared to its no-cache setting.

When we examine the speed up results of C1 with SS = 128, it is seen that it achieves

faster execution times along with higher speed-up in most experiments. But in some

of the experiments the speed-up is lower than its non-cache version, even if C1 gains

faster execution times. This shows us that M benefits more from the cache than C1 in

some of the configurations, especially, when the number of particles is small. These

are valid for the results of C1 with SS = 2048. In addition, the execution time of C1
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Table 5.4: Execution times (in milliseconds) of the resampling algorithms.

Resampling
Methods

Cache
Size

Number of Particles (log2N )
10 11 12 13 14 15 16 18 20

M NO 0.36 0.48 0.88 1.99 3.39 6.17 10.5 37.8 305
M 16 KB 0.31 0.44 0.57 2.24 5.58 9.96 18.0 68.2 317
M 32 KB 0.30 0.41 0.56 0.94 3.86 8.33 16.6 67.4 308
M 48 KB 0.35 0.42 0.56 0.97 2.77 6.95 15.4 65.8 307

C1-128 NO 0.26 0.29 0.34 0.65 0.99 1.61 2.89 10.9 43.1
C1-128 16 KB 0.22 0.26 0.29 0.53 0.77 1.27 2.26 8.52 33.4
C1-128 32 KB 0.23 0.24 0.29 0.52 0.78 1.27 2.27 8.51 33.3
C1-128 48 KB 0.22 0.25 0.29 0.51 0.77 1.28 2.27 8.53 33.4

C1-2048 NO 0.34 0.39 0.50 1.00 1.48 2.47 4.43 17.0 67.0
C1-2048 16 KB 0.30 0.35 0.42 0.96 1.71 3.03 5.66 21.9 87.0
C1-2048 32 KB 0.29 0.34 0.42 0.78 1.31 2.42 4.56 17.7 70.0
C1-2048 48 KB 0.28 0.34 0.40 0.78 1.16 2.01 3.73 14.4 57.3

C2-128 NO 0.35 0.42 0.47 1.00 1.55 2.64 4.77 18.1 73.4
C2-128 16 KB 0.31 0.36 0.41 0.99 1.61 2.84 5.27 20.8 85.0
C2-128 32 KB 0.33 0.38 0.42 0.82 1.43 2.47 4.53 17.7 73.9
C2-128 48 KB 0.32 0.34 0.44 0.84 1.31 2.33 4.27 16.8 70.3

C2-2048 NO 0.45 0.58 0.70 1.42 2.20 3.70 6.74 26.0 114
C2-2048 16 KB 0.42 0.46 0.55 1.66 3.09 5.87 11.7 47.0 189
C2-2048 32 KB 0.38 0.47 0.54 1.14 2.30 4.86 10.6 46.3 187
C2-2048 48 KB 0.38 0.51 0.54 1.13 1.98 3.85 9.11 43.5 178
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Table 5.5: Speed up of the resampling algorithms. The values are obtained by di-
viding the execution time of M to the corresponding execution time of C1 or C2.

Resampling
Methods

Cache
Size

Number of Particles (log2N )
10 11 12 13 14 15 16 18 20

C1-128 NO 1.38 1.66 2.59 3.06 3.42 3.83 3.63 3.47 7.08
C1-128 16 KB 1.41 1.69 1.97 4.23 7.25 7.84 7.96 8.00 9.49
C1-128 32 KB 1.30 1.71 1.93 1.81 4.95 6.56 7.31 7.92 9.25
C1-128 48 KB 1.59 1.68 1.93 1.90 3.60 5.43 6.78 7.71 9.19

C1-2048 NO 1.06 1.23 1.76 1.99 2.29 2.50 2.37 2.22 4.55
C1-2048 16 KB 1.03 1.26 1.36 2.33 3.26 3.29 3.18 3.11 3.64
C1-2048 32 KB 1.03 1.21 1.33 1.21 2.95 3.44 3.64 3.81 4.40
C1-2048 48 KB 1.25 1.24 1.40 1.24 2.39 3.46 4.13 4.57 5.36

C2-128 NO 1.03 1.14 1.87 1.99 2.19 2.34 2.20 2.09 4.16
C2-128 16 KB 1.00 1.22 1.39 2.26 3.47 3.51 3.42 3.28 3.73
C2-128 32 KB 0.91 1.08 1.33 1.15 2.70 3.37 3.66 3.81 4.17
C2-128 48 KB 1.09 1.24 1.27 1.15 2.11 2.98 3.61 3.92 4.37

C2-2048 NO 0.80 0.83 1.26 1.40 1.54 1.67 1.56 1.45 2.68
C2-2048 16 KB 0.74 0.96 1.04 1.35 1.81 1.70 1.54 1.45 1.68
C2-2048 32 KB 0.79 0.87 1.04 0.82 1.68 1.71 1.57 1.46 1.65
C2-2048 48 KB 0.92 0.82 1.04 0.86 1.40 1.81 1.69 1.51 1.72
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is larger than its non-cache version, even if the speed-up is higher than its non-cache

version. In this situation, Metropolis is more affected adversely from the cache size

than C1 with SS = 2048. These situations are also valid for C2.
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CHAPTER 6

UPHILL RESAMPLING METHOD AND ITS VARIATIONS

In this chapter, we present our proposed resampling method named Uphill resam-

pling. We show how we eliminate the numerical instability problem with the Uphill

resampling. We compare bias, MSE and execution time results of Uphill with the

results of Systematic, Metropolis and Rejection. We also present coalesced version

of Uphill named Uphill-CA. We compare them in terms of bias, MSE and execution

time. We discuss the importance of Uphill-CA both in theory and practice. We also

present the generic version of Uphill named Uphill-C1. We compare them in terms

of bias, MSE and execution time. Then we compare all resampling algorithms on a

highly non-linear example. And we show how we benefit from the coalesced variants

of the Uphill resampling. There is also an experiment about the speed up of the GPU

implementation of SIR particle filter over the CPU implementation of it. Moreover,

we discuss the global memory load transactions and SMX efficiency of the Uphill

resampling algorithm and its variations on the profiler results. Finally, we discuss the

factors on the execution times of Uphill and its variations.

6.1 Uphill Resampling

We propose a new resampling method, designated Uphill resampling. It only com-

pares the weights of two particles. Similar to the Metropolis and Rejection resam-

pling, it does not suffer from numerical instability as it does not need cumulative sum

of the weights. It is suitable to implement on the GPU efficiently. The Uphill resam-

pling can run with a single CUDA kernel. However, it suffers from the non-coalesced
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global memory access problem like Metropolis and Rejection. The pseudo-code for

the Uphill algorithm is given in Algorithm 6.1.

Algorithm 6.1 Uphill Resampling
1: procedure [{xinew}Ni=1] = UPHILL({xi, w̃i}Ni=1, B)

2: foreach i = 1 : N

3: t = i

4: for m = 1 : B

5: j ∼ v{1, .., N}
6: if w̃t < w̃j then t = j end if

7: end for

8: xinew = xt

9: end foreach

In this algorithm, the inner loop bound B is indeed the number of candidate particles

to be tried for being replicated for the next time step. The other parameters are as in

Algorithm 2.3 and Algorithm 3.3. The ‘foreach’ loop can be executed in parallel

among the threads where a dedicated thread runs for each particle. Each thread selects

an ancestor for the particle it represents. The ancestor of the ith particle is selected

from the set of B + 1 particles (B randomly selected particles plus the ith particle).

The particle with the largest weight is chosen as the ancestor. If there is more than

one particle with the largest weight, the one selected earliest is kept.

The ordering of the weights in the weight array is a determiner in selection process.

The B parameter and the number of particles N have an effect on the selection pro-

cess. Larger B increases the probability of the selection of the particles with larger

weights. We can compute the expected number of replications of the particle which

is in the ith position in the weight array, assuming that the weight array is ordered,

with the following formula:

EU(i, B) =
iB+1 − (i− 1)B+1

NB
(6.1)

EU(i, B)/N is the probability of selection of the ith particle. The details of the

analysis are given in the Appendix A.1.
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6.2 Uphill-CA Resampling

Uphill suffers from non-coalesced global memory access pattern like Metropolis and

Rejection. We propose a memory coalesced variant of the Uphill resampling, desig-

nated Uphill-CA (abbreviated UCA), to ameliorate this problem.

We use s-segment concept which is introduced in [9] and Section 5.1. An s-segment

is a collection of contiguous segments, so that the smallest s-segment is a single

segment and the largest s-segment is the one that includes all segments. The sizes

of s-segments used in the algorithms in the same experiment are always equal. In this

technique, each warp selects an s-segment at each iteration of the ‘for’ loop. Each

thread in the same warp selects a random particle within the selected s-segment. The

pseudo-code for Uphill-CA is given in Algorithm 6.2.

Algorithm 6.2 Uphill-CA Resampling
1: procedure [{xinew}Ni=1] = UPHILL-CA({xi, w̃i}Ni=1, B, SC,DC)

2: foreach i = 1 : N

3: t = i

4: for m = 1 : B

5: s ∼ v{1, .., SC}
6: j ∼ v{(s− 1) ∗DC + 1, .., s ∗DC}
7: if w̃t < w̃j then t = j end if

8: end for

9: xinew = xt

10: end foreach

SC is the number of s-segments; its value is 4N/SS where SS denotes the size of

an s-segment in bytes. The value of N must be a power of 2. DC is the number of

weights in an s-segment; its value is SS/4. Recall that a single-precision floating-

point number occupies 4 bytes in CUDA. The j is a random integer between the

indexes of the first and the last elements of the s-segment drawn from a uniform

distribution. The s is the index of the selected s-segment for a warp, drawn from a

uniform distribution. All the threads in a warp must have the same value of s; this

can be ensured by using the index of the warp as the sequence of the random number

generator.

69



Figure 6.1: Examples of variances caused by s-segment size and warp size.

We analyze the Uphill-CA resampling algorithm. The expected number of replica-

tions of the particle which is in the ith position of the weight array, assumed ordered,

is given below.

EUCA(i, B) =
1

(SCDC)B
(SB + (i− 1)(SB − (S − 1)B)) (6.2)

where S =
∑SC

k=1 pik and pik is the position of the largest element whose weight is

less than or equal to w̃i in s-segment k. Since
∑SC

k=1 pik = i and SCDC = N , the

analysis is exactly same as the analysis of the Uphill resampling method. But there

occurs variance in the results depending on the s-segment size and warp size. Two

examples about this variance are given in Figure 6.1. It is seen that the probability

of drawing a weight is equal to 1
SCDC

where SCDC = N . But all the threads in

the warp draw the weights from the same s-segment, that is why the variances are

occurred in the experiments. The details of the analysis are given in the Appendix

A.2 and A.3.

6.3 Uphill-C1 Resampling

We also propose a generic version of the Uphill resampling called Uphill-C1 (abbre-

viated UC1). We use the same s-segment concept as in the Uphill-CA resampling.

The stages of the algorithm are given in Algorithm 6.3.
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Algorithm 6.3 Uphill-C1 Resampling
1: procedure [{xinew}Ni=1] = UPHILL-C1({xi, w̃i}Ni=1, B, SC,DC)

2: foreach i = 1 : N

3: t = i

4: s ∼ v{1, .., SC}
5: for m = 1 : B

6: j ∼ v{(s− 1) ∗DC + 1, .., s ∗DC}
7: if w̃t < w̃j then t = j end if

8: end for

9: xinew = xt

10: end foreach

The parameters are as in the Algorithm 6.2. The only difference from Uphill-CA is

the selection of an s-segment. In Uphill-C1, each warp selects a random s-segment

only once at the beginning. So this method approaches as a local way. The selection

of s for the threads in a warp can be done as in Uphill-CA.

We analyze the Uphill-C1 resampling algorithm. The expected number of replications

of the particle which is in the ith position of the weight array, assumed ordered, is

given below. The details of the analysis are given in Appendix A.4 and A.5.

EUC1(i, B) =
1

SC

1

DCB

(
SC∑
k=1

pBik + (i− 1)(cBi − (ci − 1)B)

)
(6.3)

where pik is the position of the largest element whose weight is less than or equal to w̃i

in s-segment k. And ci is the position of the ith particle in its own s-segment. Note

that as the s-segment size, SS, is selected larger the Uphill-C1 algorithm becomes

more similar to the original Uphill algorithm, and for the limiting case of SS = 4N

it becomes behaviorally same as the Uphill resampling. The expectation of the algo-

rithm differs as the s-segment size differs which makes Uphill-C1 a new resampling

algorithm in theory. The Uphill resampling is one of the new resampling algorithm

of the Uphill-C1 resampling. To give another examples, when SC = N and warp

size is equal to 1, there is only one weight in each warp and each thread selects single

weight. They choose the selected weight as their ancestor if it is greater than their
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own weight. When SC = N and warp size is equal to N , there is only one warp and

this warp selects a single weight. The threads in the warp compare their weights with

this selected weight. The particles whose weight is greater than this selected weight

replicate only once and the remaining ones consist of the particle of this selected

weight. Note that, in both scenarios setting B as 1 is enough.

6.4 Finding Optimum B

Ideally, we would choose the optimum B for the Uphill and Uphill-CA resampling

by minimizing the target function below:

min
0≤B

N∑
i=1

(
EU(i, B)− Nw̃i

s_w̃

)2

(6.4)

where EU(i, B) is the expected number of replications of the Uphill resampling for

the particle in the ith position of the weight array and w̃i is the weight of that particle.

This target function can also be considered as the minimum expected square bias with

respect to B. Implementation of this target function requires sorting on the weight

set and many reduction operations because of the pairwise operations on the target

function. This causes high computational cost which slows down the Uphill methods.

We forgo pairwise operations, and use the metric SSD below which is computed by

Algorithm 6.4.

SSD(P ) =
N∑
i=1

(
NP i

s_P
− 1

)2

(6.5)

It is seen that when the members of P are all equal, SSD is zero. Further, the value

of SSD increases monotonically as the relative variance in the distribution increases.

Note that P is a sequence.

In the first stage, the value of all members of P are summed up. In the second stage, to

form a summand, we subtract 1, which is the mean of the total expected replications

of each member of P , from the expected number of replications of the members of
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Algorithm 6.4 SSD
procedure [value] = SSD ({P i}Ni=1)

1: s_P = SUM [{P i}Ni=1]

2: value = SUM [{(NP i

s_P − 1)2}Ni=1]

P and square the difference. Then we sum the partial results to get the overall SSD

value of the P .

First, we apply Algorithm 6.4 to the EU(:, B) for each B from 0 to 8191 (a suffi-

ciently large number for B) only once and save the results in a file. In the experi-

ments, we load them from the file and save them to the global memory of the GPU

as an array. Then we apply Algorithm 6.4 to the current weight sequence to obtain

its SSD. To compute SSD we do not need to sort the weight sequence and we only

perform two reductions with logarithmic time complexity. With 4, 194, 304 particles,

this metric is about 75 times faster than (6.4). In some weight distributions, the values

of B are slightly different than the values of B in (6.4). But this does not harm Uphill

performance substantially.

We search SSD of the weight sequence on the array to find a location where adding

it does not violate monotonous order of the array. The pseudo-code of this process is

given in Algorithm 6.5. Note that a single ‘if-else if’ instruction is run by each warp.

Algorithm 6.5 Find B
1: procedure [B] = FIND-B (array, value)

2: foreach i = 1 : N

3: if i == 1 && value ≤ array1 then

4: B = 0

5: else if value > arrayi−1 && value ≤ arrayi then

6: B = i− 1

7: end if

8: end foreach
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6.5 Quality, Execution Time Measures and Some Implementation Issues

To assess the quality of the resampling algorithms, we use the metrics and distribu-

tions given in Section 2.5. In any experiment, we choose the number of particles N

as a power of 2 between 24 and 222. We create 16 different weight sequences from

each distribution for any N . Each resampling algorithm draws 256 (the value of K)

offspring sequences from each weight sequence. The results are the averages of these

16 weight sequences. The output of the algorithms is the ancestor array (rather than

the states of particles). S-segment size is at most 4N .

To assess the execution times, in terms of seconds, we measure the main kernels of the

resampling algorithms along with necessary kernels to calculate a) B in Metropolis

and Uphill, b) maximum weight in Rejection and c) cumulative sum of the weights

and cumulative offspring to ancestor in the Systematic resampling. The speed up of

the Uphill-CA or Uphill-C1 resampling is the ratio of the execution time of Uphill

over the execution time of Uphill-CA or Uphill-C1 on the same input.

We use the formula in [22] to calculate the value of B in the Metropolis resampling.

Therein we choose ε as 1/100 and β as ¯̃w/w̃max where ¯̃w is the mean of the weights

and w̃max is the maximum weight. w̃max is calculated in the Rejection resampling

as well. We use the SSD metric, defined in (6.5) and computed by Algorithm 6.4,

to calculate the B in the Uphill resampling. We use prefix sum to calculate the cu-

mulative sum of the weights in the Systematic resampling. For the sum, mean and

maximum operations on the weight array, we use reduction techniques. We use an

O(logN) parallel reduction algorithm in the implementation of reduction [11], and

an O(logN) parallel scan algorithm for prefix sum operation [16]. In the System-

atic resampling, we call a simple kernel that consists of one thread to obtain uniform

number on the GPU.

6.6 Bias, MSE and Execution Time Results of Resampling Methods

In this section, we compare bias, MSE and execution time results of the Systematic,

Metropolis, Rejection and Uphill resampling methods. We reproduce the results of
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Figure 6.2: Bias results of the Systematic, Metropolis, Rejection and Uphill resam-

pling methods on the distributions in (2.33). The x-axis represents the number of

particles (in logarithmic scale).

Systematic, Metropolis and Rejection in [22]. Furthermore, we compare the quality

and execution time of the Metropolis and Uphill resampling by setting the value of B

same in both algorithms. Figure 6.2 shows the bias, Figure 6.3 shows the MSE and

Figure 6.4 shows the execution time results of the Systematic, Metropolis, Rejection

and Uphill resampling algorithms on the distributions in (2.33).

It is seen that the bias results of the Systematic resampling are affected by numerical

instability when the number of particles exceeds 218. Metropolis and Rejection do

not suffer from the numerical instability problem since they use the ratio of weights.

Uphill does not suffer from the numerical instability problem, too, since it performs

pairwise comparison on the weights. However, the bias contribution, i.e. the ratio

of the squared bias to the MSE, is higher than that in the other resampling methods
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Figure 6.3: MSE results of the Systematic, Metropolis, Rejection and Uphill resam-

pling methods on the distributions in (2.33). The x-axis represents the number of

particles (in logarithmic scale).
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Figure 6.4: Execution time results of the Systematic, Metropolis, Rejection and Up-

hill resampling methods on the distributions in (2.33). The x-axis represents the num-

ber of particles (in logarithmic scale).
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because Uphill considers the quantity of the weights for order comparison. The Sys-

tematic resampling has the best MSE results, since it uses stratification over the cu-

mulative sum of the weights. Rejection achieves better results in MSE and execution

times than Metropolis does. The Uphill resampling achieves better results in MSE

than Metropolis does when the relative weight variance within the weight sequence

is small, and achieves better results in execution time than Metropolis does. Up-

hill achieves good MSE results even though its squared bias contributions are larger

than the others. This is because the variance in the results of the Uphill resampling

is smaller than those in the Metropolis and Rejection resampling. Random number

generators also cause variance on the results. Uphill uses only one random number

generator while Metropolis and Rejection use two.

The Systematic resampling has better execution time results since it is not affected

from the relative variance within the weight sequence. The Uphill resampling is less

affected from it compared to Metropolis and Rejection. Uphill has faster execution

times than the Rejection resampling as the relative variance in the weights increases

and has faster execution times than the Metropolis resampling as either the number

of particles or relative variance in the weights is large.

We also investigate how Uphill is sensitive to the change in the value of y. We run

the Uphill resampling on the distributions in (2.33) by choosing the value of y in the

range [3.5 − 4.5] with increments of 0.1. The bias, MSE and execution time results

are given in Figure 6.5.

It is seen that the values of bias, MSE and execution time increases monotonically as

the value of y increases when the number of particles is sufficiently large.

We compare the experimental results of the Metropolis resampling and Uphill resam-

pling by setting the values ofB of the Metropolis resampling as the values ofB of the

Uphill resampling. The bias, variance and MSE values of both resampling methods

on the distributions in (2.33) are shown in Figure 6.6.

The bias of the Uphill resampling is smaller than that of Metropolis when the relative

variance in the weights is large. This causes the MSE of Uphill to be better than those

of Metropolis. When the relative variance in the weights is small, the bias of Metropo-
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Figure 6.5: The effects of the change in the values of y around 4.
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Figure 6.6: Bias, variance and MSE values of the Metropolis and Uphill resampling

methods on the distributions in (2.33). The values of B in both algorithms are the

same. The x-axis represents the number of particles (in logarithmic scale).
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Table 6.1: The summary of the operations of Uphill and Metropolis.

Resampling Method Random Number Comparison Division
Metropolis Two One One

Uphill One One -

lis is better than those of Uphill, but its MSE is worse. This is because of the variances

in the results of Uphill to be smaller than those of Metropolis. The variance in the

results of the Uphill resampling is smaller than that of Metropolis because Uphill

generates a single random number in the body of the ‘for’ loop whereas Metropolis

generates two. Furthermore, Uphill is slightly faster than Metropolis when the values

of B are same in both because of the lesser number of basic operations performed by

Uphill in the inner loop. The summary of the operations of Uphill and Metropolis are

given Table 6.1.

The bias, MSE and execution time results of these four resampling algorithms on the

generated gamma distributions are given in Figure 6.7, Figure 6.8 and Figure 6.9

respectively.

The four algorithms; Systematic, Metropolis, Rejection and Uphill, behave similarly

to the previous experiment in terms of bias, except for Uphill with two distributions.

The Systematic resampling is affected from the numerical instability problem in this

experiment as well. In terms of MSE, Systematic has better results than those of the

other resampling algorithms. The Uphill resampling is slightly better than Rejection

in some cases and slightly better than Metropolis in most cases. The Systematic

resampling has better execution times than those of the other methods. Uphill is

faster than both Metropolis and Rejection in most cases.

We also compare the experimental results of Metropolis and Uphill on the gamma

distributions by setting their B parameters as the value of B of Uphill. The bias,

variance and MSE values of both resampling methods are given in Figure 6.10. Even

though the bias of Metropolis is better than those of Uphill in most cases, Uphill is

slightly better than Metropolis in MSE due to lower variance in the results.
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Figure 6.7: Bias results of the Systematic, Metropolis, Rejection and Uphill resam-

pling methods on the gamma distributions. The x-axis represents the number of par-

ticles (in logarithmic scale).
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Figure 6.8: MSE results of the Systematic, Metropolis, Rejection and Uphill resam-

pling methods on the gamma distributions. The x-axis represents the number of par-

ticles (in logarithmic scale).
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Figure 6.9: Execution time results of the Systematic, Metropolis, Rejection and Up-

hill resampling methods on the gamma distributions. The x-axis represents the num-

ber of particles (in logarithmic scale).
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Figure 6.10: Bias, variance and MSE values of the Metropolis and Uphill resampling

methods on the gamma distributions. The values of B in both algorithms are the

same. The x-axis represents the number of particles (in logarithmic scale).
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Figure 6.11: MSE results of Uphill, Uphill-CA with SS = 128 and Uphill-CA with

SS = 2048 on the distributions in (2.33). The x-axis represents the number of parti-

cles (in logarithmic scale).

6.7 Bias, Variance, MSE and Execution Time Results of Uphill-CA Resampling

Although the expected numbers of replications of each particle in the Uphill-CA re-

sampling are same with Uphill, there occurs difference in variance depending on the

s-segment size and warp size. In this section, we examine this variance in the MSE

results. The MSE, bias and variance values of Uphill, Uphill-CA with SS = 128 and

Uphill-CA with SS = 2048 on the distributions in (2.33) are given in Figure 6.11 and

Figure 6.12. The execution time and speed up results of Uphill-CA with SS = 128

and Uphill-CA with SS = 2048 over the Uphill resampling on the distributions in

(2.33) are given in Figure 6.13.

86



Figure 6.12: Bias and variance values of Uphill, Uphill-CA with SS = 128 and

Uphill-CA with SS = 2048 on the distributions in (2.33). The x-axis represents the

number of particles (in logarithmic scale).
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Figure 6.13: Execution time and speed up results of Uphill, Uphill-CA with SS =

128 and Uphill-CA with SS = 2048 on the distributions in (2.33). The x-axis repre-

sents the number of particles (in logarithmic scale).
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It is seen that the bias of three resampling algorithms are very close to each other.

Uphill-CA with SS = 128 has the highest variance that causes its MSE to be worse

than those of the others. The MSE of Uphill-CA with SS = 2048 improves as its

variance reduces. Uphill-CA behaves similarly to the original Uphill resampling,

thus, can be considered as a faster alternative to it. We can not analyze the variance

caused by warp size since the warp size is a constant in the present GPU architectures.

We achieve speed up over the Uphill resampling with Uphill-CA with SS = 128 up

to seven times, and with Uphill-CA with SS = 2048 up to three times. The speed up

becomes more pronounced as the relative variance in the weight sequence increases.

The MSE, bias and variance values of the Uphill resampling, Uphill-CA with SS =

128 and Uphill-CA with SS = 2048 on the gamma distributions are given in Figure

6.14 and Figure 6.15. The execution time and speed up results of Uphill-CA with

SS = 128 and Uphill-CA with SS = 2048 over the Uphill resampling on the gamma

distributions are given in Figure 6.16.

In terms of quality, the behaviors of three resampling algorithms are similar to their

behaviors in the previous experiment. In terms of speed up over Uphill, we achieve up

to three times with Uphill-CA with SS = 128, and up to two times with Uphill-CA

with SS = 2048.

6.8 Bias, Variance, MSE and Execution Time Results of Uphill-C1 Resampling

Uphill-C1 is the generic version of the Uphill resampling. The behaviors of Uphill-C1

varies in theory as the s-segment differs. In this section, we discuss the behaviors of

Uphill-C1 by comparing its quality and execution time with the results of Uphill. We

show how bias and variance of Uphill-C1 are affected as the s-segment size differs.

The MSE, bias and variance values of the Uphill resampling, Uphill-C1 with SS =

128 and Uphill-C1 with SS = 2048 on the distributions in (2.33) are shown in Figure

6.17 and Figure 6.18. The execution time and speed up results are given in Figure

6.19. The MSE, bias and variance values of them on the gamma distributions are

shown in Figure 6.20 and Figure 6.21. The execution time and speed up results are

given in Figure 6.22. We use the same way to calculateB as in Uphill and Uphill-CA.
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Figure 6.14: MSE results of Uphill, Uphill-CA with SS = 128 and Uphill-CA with

SS = 2048 on the gamma distributions. The x-axis represents the number of particles

(in logarithmic scale).
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Figure 6.15: Bias and variance values of Uphill, Uphill-CA with SS = 128 and

Uphill-CA with SS = 2048 on the gamma distributions. The x-axis represents the

number of particles (in logarithmic scale).
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Figure 6.16: Execution time and speed up results of Uphill, Uphill-CA with SS =

128 and Uphill-CA with SS = 2048 on the gamma distributions. The x-axis repre-

sents the number of particles (in logarithmic scale).
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Figure 6.17: MSE results of Uphill, Uphill-C1 with SS = 128 and Uphill-C1 with

SS = 2048 on the distributions in (2.33). The x-axis represents the number of parti-

cles (in logarithmic scale).
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Figure 6.18: Bias and variance values of Uphill, Uphill-C1 with SS = 128 and

Uphill-C1 with SS = 2048 on the distributions in (2.33). The x-axis represents the

number of particles (in logarithmic scale).
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Figure 6.19: Execution time and speed up results of Uphill-C1 with SS = 128 and

Uphill-C1 with SS = 2048 over Uphill on the distributions in (2.33). The x-axis

represents the number of particles (in logarithmic scale).
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Figure 6.20: MSE results of Uphill, Uphill-C1 with SS = 128 and Uphill-C1 with

SS = 2048 on the gamma distributions. The x-axis represents the number of particles

(in logarithmic scale).
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Figure 6.21: Bias and variance values of Uphill, Uphill-C1 with SS = 128 and

Uphill-C1 with SS = 2048 on the gamma distributions. The x-axis represents the

number of particles (in logarithmic scale).
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Figure 6.22: Execution time and speed up results of Uphill-C1 with SS = 128 and

Uphill-C1 with SS = 2048 over the Uphill resampling on the gamma distributions.

The x-axis represents the number of particles (in logarithmic scale).
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It is seen that the bias of Uphill and Uphill-C1 with SS = 2048 are very close to

each other, but the bias of Uphill-C1 with SS = 128 are worse than the Uphill re-

sampling. S-segment size causes additional bias for Uphill-C1 with SS = 128. On

the other hand, the MSE of Uphill-C1 with SS = 128 are much worse than the Up-

hill resampling whereas the MSE of Uphill and Uphill-C1 with SS = 2048 are very

close to each other. Variances caused by s-segment size lead to much worse MSE

for Uphill-C1 with SS = 128. This shows us, s-segment size causes both bias and

variance on the MSE of Uphill-C1. And the results of Uphill-C1 with SS = 2048

show us the behavior of Uphill-C1 becomes same with the behavior of Uphill as the

s-segment size approaches to 4N . Using Uphill-C1 in tracking applications would

not be much problem since the bias and variance caused by s-segment size are not

significant in filtering applications. We can not analyze the variance caused by warp

size since the warp size is a constant in the GPU. However, we can surmise that the

variance increases as the warp size increases.

We achieve speed up with Uphill-C1 with SS = 128 up to ten times of the Uphill

resampling and achieve speed up with Uphill-C1 with SS = 2048 up to five times

of the Uphill resampling for the distributions in (2.33). We achieve speed up with

Uphill-C1 with SS = 128 up to three times of the Uphill resampling and achieve

speed up with Uphill-C1 with SS = 2048 up to two times of the Uphill resampling

for the gamma distributions. The speed up becomes more pronounced as the relative

variance on the weight sequence increases.

6.9 A Simple End-to-End Application

To provide a perspective for the reader on the significance of the resampling stage in

the overall cost of the SIR particle filter, we run the particle filter in Algorithm 2.4 on

a highly non-linear system given in (2.34) and (2.35).

We create 16 different trajectories and run them 100 times with each one of the five

resampling algorithms. We use these 16 trajectories in all the number of particles.

The results are the average of the results of these 16 trajectories. We set the number

of time steps to 100. The initial state x0 is set to 0.1. We measure the quality using the
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root mean squared error (RMSE) metric [32]. We calculate the error at each time step

by getting the difference between the true state and estimated state. We set ε to 1/10

in calculation of B of the Metropolis resampling to accelerate it without sacrificing

quality much [22]. We set the –use_fast_math flag at compile time to enable efficient

calculation of special functions such as cosines, square root, and exponential [28].

In stage 4, we use the weights of particles without normalization for the Metropolis,

Rejection and Uphill resampling methods, and the normalized weights for the Sys-

tematic resampling method. The ratios of each stage to the total execution times of

the filter with varying numbers of particles are given in Table 6.2.

It is seen that the resampling stage takes a big portion of the total execution time.

The ratio of time spent of the Uphill resampling increases as the number of particle

increases. This is not valid for the Systematic resampling, in fact the ratio of time

spent of it decreases as the number of particles increases. In the Metropolis and

Rejection resampling, the ratios of time spent increase as the number of particles

increases. This is also same for Uphill-CA with SS = 128 and Uphill-C1 with SS =

128. The improvement in execution time brought about by Uphill-CA and Uphill-C1

becomes more pronounced in PF applications. The RMSE results of the experiments

are given in Table 6.3.

The results show us the RMSE results of each resampling algorithms are very close

the each other. Therefore, the bias and variance in the results of the Uphill and Uphill-

CA resampling would not be much problem in this kind of applications. Uphill-CA

with SS = 128 seems preferable to the Systematic resampling in terms of execution

time, with the additional benefit of numerical stability. The RMSE of Uphill-C1 with

SS = 128 is slightly worse than that of others, but this may not be significant. Hence,

one can prefer Uphill-C1 with SS = 128, if speed is the primary concern.
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Table 6.2: The ratio of times spent in different stages. The results are percentage of
the total execution times. Total execution times (in seconds) are also given in the last
row.

log2N = 14 Systematic Metropolis Rejection Uphill UCA-128 UC1-128
Stage1 13.87 5.45 9.71 7.72 11.51 12.91
Stage2 13.10 5.14 9.17 7.28 10.65 11.94
Stage3 21.03 8.26 14.70 11.71 17.20 19.30
Stage4 52.01 81.15 66.42 73.29 60.63 55.85

Exec. Time 0.014 0.035 0.020 0.025 0.017 0.016
log2N = 16 Systematic Metropolis Rejection Uphill UCA-128 UC1-128

Stage1 23.83 5.45 11.72 8.46 13.77 16.48
Stage2 10.76 2.43 5.24 3.78 6.15 7.36
Stage3 17.52 3.97 8.52 6.14 10.00 11.98
Stage4 47.89 88.15 74.52 81.62 70.08 64.18

Exec. Time 0.021 0.092 0.043 0.059 0.036 0.030
log2N = 18 Systematic Metropolis Rejection Uphill UCA-128 UC1-128

Stage1 34.88 5.15 11.70 8.16 14.03 17.88
Stage2 7.88 1.17 2.64 1.85 3.18 4.06
Stage3 14.29 2.11 4.79 3.34 5.75 7.32
Stage4 42.95 91.58 80.87 86.65 77.04 70.74

Exec. Time 0.046 0.312 0.137 0.197 0.115 0.090
log2N = 20 Systematic Metropolis Rejection Uphill UCA-128 UC1-128

Stage1 40.62 2.67 7.81 4.31 14.16 18.50
Stage2 6.46 0.42 1.24 0.68 2.25 2.94
Stage3 12.60 0.83 2.42 1.34 4.39 5.74
Stage4 40.31 96.08 88.53 93.66 79.21 72.82

Exec. Time 0.149 2.277 0.777 1.407 0.429 0.328
log2N = 22 Systematic Metropolis Rejection Uphill UCA-128 UC1-128

Stage1 42.69 1.88 6.74 3.11 13.56 18.68
Stage2 5.54 0.24 0.87 0.40 1.76 2.43
Stage3 11.66 0.51 1.84 0.85 3.70 5.10
Stage4 40.11 97.36 90.55 95.63 80.97 73.79

Exec. Time 0.556 12.602 3.524 7.631 1.751 1.271
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Table 6.3: RMSE Results.

Particle No. 16384 65536 262144 1048576 4194304
Systematic 4.47061 4.47037 4.46955 4.46965 4.46975
Metropolis 4.47114 4.47121 4.47062 4.47026 4.47021
Rejection 4.47184 4.46996 4.47007 4.46976 4.46970

Uphill 4.46984 4.46885 4.46855 4.46832 4.46942
Uphill-CA-128 4.46903 4.46840 4.46806 4.46839 4.46927
Uphill-C1-128 4.50601 4.50465 4.50318 4.50253 4.50237

6.10 Speed up Analysis of SIR Particle Filter over CPU Implementation

In this section, we investigate the execution times of the SIR particle filter on CPU and

GPU. We experiment the speed up of its GPU implementation over its CPU imple-

mentation. We run the particle filter in Algorithm 2.4 on a highly non-linear system

given in (2.34) and (2.35). The CPU processor is Intel Core i7-4790K along with 16

GB RAM.

We create 16 different trajectories and run them 10 times with the Uphill resampling

algorithm. We use these 16 trajectories in all the number of particles. The results

are the average of the results of these 16 trajectories. We set the number of time

steps to 100. The initial state x0 is set to 0.1. We measure the quality using the root

mean squared error (RMSE) metric [32]. We calculate the error at each time step

by getting the difference between the true state and estimated state. We set the –

use_fast_math flag at compile time to enable efficient calculation of special functions

such as cosines, square root, and exponential [28]. In stage 4, we use the weights of

particles without normalization. The speed up results are given in Figure 6.23.

We achieve up to 98x speed up over the CPU implementation of the SIR particle filter.

Since the resampling stage takes a big portion of the total execution time, improving

resampling execution time is important in the GPU implementation. We achieve up

to 79x speed up in resampling execution time. When the number of particles exceeds

218, the ratio of speed up decreases. This is because of the effect of L2 cache size. The

size of L2 cache is not enough to load all data when the number of particles exceeds

218. Note that, the size of L2 cache is 1.5 MB in Tesla K40 board.
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Figure 6.23: The speed up results of the GPU implementation of the SIR Particle

Filter over the CPU implementation of it.

6.11 Global Memory Load Transactions of Uphill and its Variations

We have already mentioned the expected number of global memory load transactions

of Uphill, Uphill-C1 and Uphill-CA. When we set the size of s-segment as 128 KB,

we expect that the resampling algorithms read w̃j in a single global memory load

transaction. When we set it as 2048, we expect that the resampling algorithms read

w̃j in at most 16 global memory load transactions. In this section, we experiment

with the number of global memory load transactions by using the profiler of CUDA

[29].

We select a distribution that has the longest execution time among the ones we use.

This is the distribution in (2.33) by setting the value of y to 4. For each resampling

algorithm, we create 16 different weight sequences for any N . The resampling al-

gorithms draw 256 (the value of K) offspring sequences from each weight sequence.

The results are the averages of these 16 weight sequences. We use the correspond-

ing metric in CUDA profiler which is gld_transactions_per_request [29]. It gives us

the average number of global memory load transactions performed for each global

103



Figure 6.24: The global memory load transactions per request for Uphill, Uphill-C1

and Uphill-CA.

memory load. We only measure the kernels of Uphill, Uphill-C1 and Uphill-CA. The

experimental results are given in Figure 6.24.

When there is sufficient data (the number of particles), the resampling algorithms

converge to some points in terms of transactions. The average number of transactions

of Uphill-C1 with SS = 128 is around 1.34 and Uphill-CA with SS = 128 is around

5.13. The values are greater than one because of the non-coalesced read of w̃t. The

average number of transactions of Uphill-C1 with SS = 2048 is around 10.49 and

Uphill-CA with SS = 2048 is around 15.61. Both algorithms approach to similar

number of transactions for the read of w̃j . However, the result of Uphill-CA with

SS = 2048 is around 15.61 because it is more prone to non-coalesced read of w̃t.

The average number of transactions of Uphill is around 26.43.
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Figure 6.25: SMX Efficiency of Uphill, Uphill-C1 and Uphill-CA.

6.12 SMX Efficiency of Uphill and its Variations

In this section, we investigate the efficiency of SMXs on the board. We select a

distribution that has the longest execution time among the ones we use. This is the

distribution in (2.33) by setting the value of y to 4. For each resampling algorithm,

we create 16 different weight sequences for any N . The resampling algorithms draw

256 (the value of K) offspring sequences from each weight sequence. The results

are the averages of these 16 weight sequences. We use the corresponding metric in

CUDA profiler which is sm_efficiency [29]. It gives us the percentage of time at least

one warp is active on a multiprocessor averaged over all multiprocessors on the GPU.

We only measure the kernels of Uphill, Uphill-C1 and Uphill-CA. The experimental

results are given in Figure 6.25.

It is seen that when the number of particles is large, the efficiency approaches to 99%.

There occurs a sharp decrease when the number of particles is between 210 and 216.

This is because of the residual blocks on several SMXs. To give an example, if we

have 16 blocks, 14 SMXs will run 1 block and 1 SMX will run 2 blocks. Or if we

have 32 blocks, 13 SMXs will run 2 blocks and 2 SMXs will run 3 blocks. This is the
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Figure 6.26: SMX Efficiency of Uphill, Uphill-C1 and Uphill-CA.

main reason of the decrease in the SMX efficiency. One way to alleviate this situation

is to decrease the size of the blocks appropriately so that the warps of residual blocks

can be distributed to SMXs as evenly as possible. Remember that we define the block

sizes in (2.28). We reduce the block sizes to 32 for all the number of particles except

24 particles and obtain the experiment results given in Figure 6.26.

It is seen that the SMX efficiency improves especially when the number of particles

is between 210 and 216.

6.13 Factors on the Execution Time of Uphill and its Variations

In this section, we investigate the factors that affect the execution times of Uphill

and its variations. There are three main factors. These are physical resources and

limitations, non-coalesced global memory access and the number of particles. We

experiment how they have an effect on the execution times of the resampling algo-

rithms.

We select a distribution that has the longest execution time among the ones we use.
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Figure 6.27: The ratio of execution times of Uphill, Uphill-C1 and Uphill-CA.

This is the distribution in (2.33) by setting the value of y to 4. We create 16 different

weight sequences for any N . Each resampling algorithm draws 256 (the value of K)

offspring sequences from each weight sequence. The results are the averages of these

16 weight sequences. The s-segment size of Uphill-C1 and Uphill-CA is 128 bytes.

The experimental results are given in Figure 6.27. The values are the ratios of the

current execution times of the resampling algorithms to the previous execution times

of them.

We have enough resources up to 211 particles. Remember that Tesla K40 board has 15

SMXs where each have 192 cores. When the number of particles exceeds 211, some

warps wait for available cores to issue their instructions. When a warp completes its

job on the cores, another warp in waiting status starts to run on the cores. All blocks

are active at the beginning up to 214 particles. When the number of particles exceeds

214, some blocks wait for available SMX to be scheduled. When a block completes its

kernel another block in waiting status becomes active and is scheduled to the SMX.
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The size of L2 cache is enough up to 218 particles. Note that the size of L2 cache is

1.5 MB.

Uphill is affected rapidly from the non-coalesced global memory access problem than

Uphill-C1 and Uphill-CA as the number of particles increases. It achieves its worst

case in terms of global memory load transactions when the number of particles ex-

ceeds 215. However, Uphill-C1 achieves its worst case in smaller number of particles

and Uphill-CA achieves its worst case when the number of particles exceeds 211. This

is the main reason why the results of Uphill are larger than those of the others when

the number of particles is between 211 and 215. Uphill is also affected from the lack

of L2 cache memory. When the number of particles is 219, Uphill can not load 27% of

its data to L2 cache. When it is 220, Uphill can not load 64% of its data to L2 cache.

When it is 221, Uphill can not load 82% of its data to L2 cache. This is the reason of

the peak point occurred when the number of particles is 220. The local peak is also

occurred because of the ratios of the warps that wait the cores when the number of

particles is 213. It has similar behavior with the effects of lacking L2 cache. 30%

of the threads are waiting for the cores when the number of particles is 212, 65% of

the threads when the number of particles is 213 and 83% when 214. The efficiency of

the SMX has also effects on the algorithms. We investigate it in the previous section.

When all the factors except the number of particles achieve their worst case or have

insignificant effects on the ratios of the execution times of the algorithms, the ratios

of all resampling algorithms approach to 2. From that point on, the execution time

doubles as the number of particles doubles.
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CHAPTER 7

TRACKING PERFORMANCE OF RESAMPLING

ALGORITHMS

In this chapter, we discuss the tracking performance of resampling algorithms. We

compute the execution time of each stage of the SIR particle filter given in Algorithm

2.4. We discuss the execution time results of resampling stage. Furthermore, we

compare the quality of resampling algorithms by measuring their root mean squared

error (RMSE).

7.1 Execution time and RMSE Results of Resampling Algorithms

We evaluate the tracking performance of resampling algorithms on a simple appli-

cation. Our application is target tracking with radar. The target, possibly an aircraft,

performs a maneuver. In the system model, we assume nearly constant velocity. In the

measurement model, we use the range and bearing of the target. The x = [pxpyvxvy]
T

is the state vector of the target in 2D. The px and py are the x position and y position

of the target, respectively; vx and vy are the velocity of the same. The system model

is given in (7.1) and the measurement model is given in (7.2).

xk =


1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1

 ∗ xk−1 +


T 2

2
0

0 T 2

2

T 0

0 T

 ∗ qk (7.1)
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Table 7.1: Simulation Parameters (Scenario 1).

Parameters Value Description
T 1 Sampling Time
x0 [1000 1000 0 0]T Initial State Vector
P0 diag[1002 1002 102 102] x0 covariance
Q diag[10 10] qk covariance
R diag[102 (0.1π/180)2] vk covariance

yk =

√p2xk + p2yk

arctan(
pyk
pxk

)

+ vk (7.2)

qk ∼ N(0, Q) and vk ∼ N(0, R) are Gaussian process noise and measurement noise,

respectively. T is the sampling time, k is the current time step. The measurement

units are m and m/sec.

We create 16 different trajectories by adding different measurement noises to the true

state of the aircraft which is given in Figure 7.1. We run them 100 times with each

one of the six different resampling algorithms. We use these 16 trajectories in all the

number of particles. And the results shown in the Table 7.2 and Table 7.3 are the

average of the results of these 16 trajectories. The simulation parameters are given

in Table 7.1. We measure the quality using the root mean squared error (RMSE)

metric [32]. We set ε to 1/10 in the calculation of the B parameter of the Metropolis

resampling to accelerate the Metropolis resampling without sacrificing quality much

[22]. We set the –use_fast_math flag at compile time to enable efficient calculation of

special functions such as cosine, square root, and exponential in CUDA math api [28].

We use the SIR particle filter given in Algorithm 2.4 with a variety of resampling

methods. The ratios of times spent by the four stages of Algorithm 2.4 are given in

Table 7.2. The RMSE results are given in Table 7.3.

It is seen that that the resampling stage (Stage4) takes up the largest portion of the ex-

ecution time in all the combinations tried. The ratio of the time spent for resampling

increases as the number of particles increases, except for the Systematic resampling.

It seems that the improvements in execution times by Uphill-CA and Uphill-C1 will
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Table 7.2: The ratio of times spent in different stages (Scenario 1). The results are
percentage of the total execution times. Total execution times (in seconds) are also
given in the last row.

log2N = 14 Systematic Metropolis Rejection Uphill UCA-128 UC1-128
Stage1 13.49 5.53 8.75 10.09 13.09 14.01
Stage2 9.52 3.92 6.23 7.17 9.12 9.73
Stage3 30.84 12.84 20.34 23.47 29.95 32.00
Stage4 46.14 77.72 64.69 59.27 47.84 44.26

Exec. Time 0.030 0.071 0.045 0.039 0.031 0.029
log2N = 16 Systematic Metropolis Rejection Uphill UCA-128 UC1-128

Stage1 22.34 5.60 10.34 12.24 17.04 19.35
Stage2 7.41 1.85 3.42 4.05 5.64 6.40
Stage3 24.55 6.14 11.35 13.43 18.68 21.21
Stage4 45.70 86.41 74.88 70.28 58.64 53.04

Exec. Time 0.046 0.183 0.099 0.084 0.060 0.053
log2N = 18 Systematic Metropolis Rejection Uphill UCA-128 UC1-128

Stage1 31.77 4.94 9.30 10.81 18.66 22.55
Stage2 5.24 0.81 1.53 1.79 3.08 3.72
Stage3 18.57 2.88 5.44 6.32 10.92 13.19
Stage4 44.41 91.36 83.73 81.08 67.34 60.53

Exec. Time 0.105 0.675 0.358 0.308 0.179 0.148
log2N = 20 Systematic Metropolis Rejection Uphill UCA-128 UC1-128

Stage1 36.73 2.64 6.69 6.79 19.42 24.24
Stage2 4.25 0.30 0.77 0.78 2.24 2.80
Stage3 14.71 1.06 2.68 2.72 7.78 9.71
Stage4 44.31 96.00 89.87 89.71 70.56 63.25

Exec. Time 0.343 4.770 1.883 1.856 0.648 0.519
log2N = 22 Systematic Metropolis Rejection Uphill UCA-128 UC1-128

Stage1 38.40 1.90 5.98 5.33 19.10 24.90
Stage2 3.63 0.18 0.57 0.50 1.80 2.35
Stage3 13.08 0.65 2.04 1.82 6.50 8.48
Stage4 44.89 97.28 91.42 92.35 72.59 64.27

Exec. Time 1.285 26.014 8.253 9.258 2.584 1.982
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Figure 7.1: True positions of the tracked aircraft in 2D coordinate system (Scenario

1).

Table 7.3: RMSE Results (Scenario 1).

Particle No. 16384 65536 262144 1048576 4194304
Systematic 7.87608 7.84466 7.83592 7.83344 7.83247
Metropolis 7.88148 7.84990 7.84052 7.83797 7.83726
Rejection 7.87885 7.84694 7.83657 7.83268 7.83236

Uphill 7.87073 7.83663 7.82887 7.82743 7.82833
Uphill-CA-128 7.87093 7.83890 7.82862 7.82785 7.82808
Uphill-C1-128 7.85419 7.83717 7.83338 7.83353 7.83357
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Figure 7.2: True positions of the tracked aircraft in 2D coordinate system (Scenario

2).

be significant in PF applications. As the number of particles increases, the improve-

ments in execution time brought about by Uphill-CA and Uphill-C1 become more

pronounced. The results show us the RMSE results of each resampling algorithms

are very close to each other. The bias and variance in the Uphill, Uphill-CA and

Uphill-C1 resampling would not be much problem. The RMSE results of any resam-

pling methods do not improve as the number of particles increases. This is occurred

because we assume all the measurements belong to the target and we set the param-

eters of the filter optimum. Furthermore, since the noises are Gaussian, the particles

do not diverge from the estimated position too much as the number of particles in-

creases. We can challenge against the Systematic resampling in times with Uphill-CA

SS = 128 and Uphill-C1 SS = 128 if numerical stability is the main concern.

We run resampling algorithms in another scenario. The true state of the aircraft is

given in Figure 7.2. We use the same environment in the previous experiment. The

simulation parameters are given in Table 7.4. The ratios of times spent by the four

stages are given in Table 7.5. The RMSE results are given in Table 7.6.

The results are similar to the results in the previous experiment. Uphill compares

favorably against the Systematic resampling in times with Uphill-CA SS = 128 and

Uphill-C1 SS = 128 if numerical stability is the main concern.
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Table 7.4: Simulation Parameters (Scenario 2).

Parameters Value Description
T 1 Sampling Time
x0 [1000 1000 0 0]T Initial State Vector
P0 diag[1002 1002 102 102] x0 covariance
Q diag[10 10] qk covariance
R diag[102 (0.1π/180)2] vk covariance
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Table 7.5: The ratio of times spent in different stages (Scenario 2). The results are
percentage of the total execution times. Total execution times (in seconds) are also
given in the last row.

log2N = 14 Systematic Metropolis Rejection Uphill UCA-128 UC1-128
Stage1 13.45 5.50 8.69 10.24 13.21 14.06
Stage2 9.49 3.91 6.19 7.28 9.19 9.77
Stage3 30.84 12.88 20.29 23.91 30.26 32.16
Stage4 46.22 77.71 64.83 58.57 47.34 44.01

Exec. Time 0.064 0.151 0.096 0.081 0.066 0.062
log2N = 16 Systematic Metropolis Rejection Uphill UCA-128 UC1-128

Stage1 22.22 5.51 10.16 12.33 17.15 19.49
Stage2 7.35 1.82 3.36 4.07 5.67 6.44
Stage3 24.38 6.04 11.14 13.52 18.81 21.38
Stage4 46.05 86.63 75.34 70.07 58.37 52.69

Exec. Time 0.099 0.399 0.216 0.178 0.128 0.113
log2N = 18 Systematic Metropolis Rejection Uphill UCA-128 UC1-128

Stage1 31.50 4.85 9.05 10.71 18.71 22.81
Stage2 5.19 0.80 1.49 1.77 3.09 3.77
Stage3 18.44 2.84 5.30 6.27 10.95 13.36
Stage4 44.86 91.51 84.16 81.25 67.25 60.06

Exec. Time 0.227 1.476 0.791 0.668 0.382 0.313
log2N = 20 Systematic Metropolis Rejection Uphill UCA-128 UC1-128

Stage1 36.39 2.55 6.46 6.68 19.42 24.64
Stage2 4.21 0.29 0.75 0.77 2.25 2.85
Stage3 14.60 1.02 2.59 2.68 7.79 9.89
Stage4 44.80 96.13 90.21 89.86 70.54 62.62

Exec. Time 0.742 10.610 4.186 4.047 1.392 1.097
log2N = 22 Systematic Metropolis Rejection Uphill UCA-128 UC1-128

Stage1 38.02 1.86 5.77 5.35 19.17 25.36
Stage2 3.60 0.18 0.55 0.51 1.82 2.40
Stage3 12.98 0.64 1.97 1.83 6.54 8.66
Stage4 45.40 97.32 91.72 92.32 72.47 63.59

Exec. Time 2.786 56.857 18.369 19.804 5.525 4.178
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Table 7.6: RMSE Results (Scenario 2).

Particle No. 16384 65536 262144 1048576 4194304
Systematic 7.39098 7.37688 7.37404 7.37347 7.37318
Metropolis 7.39984 7.38456 7.38123 7.38121 7.38068
Rejection 7.39179 7.37746 7.37408 7.37330 7.37320

Uphill 7.37307 7.35783 7.35639 7.35585 7.35575
Uphill-CA-128 7.37518 7.35789 7.35567 7.35543 7.35577
Uphill-C1-128 7.40920 7.39923 7.39643 7.39652 7.39717
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CHAPTER 8

CONCLUSION

We propose a new resampling algorithm for the particle filter, called the Uphill resam-

pling, which is suitable for GPU implementation. Based on the theoretical analysis

of the Uphill resampling, one can calculate the expected number of replications of

each particle with respect to any B, which is the number of iterations of the inner

loop. This allows us to calculate the B that yields the minimum square bias without

performing an experiment. We can set the expected number of replications of any

particle at the beginning by setting the value of B appropriately.

Experimental results show us that we achieve similar or better MSE results in most

cases compared to the Metropolis and Rejection resampling. But the contributions of

the square bias to MSE are not as small as in the Metropolis and Rejection resampling.

However, this does not affect the MSE results significantly unless the relative variance

in the weight sequence is large. We believe this bias would not be an issue in most

tracking applications as we observe in the tracking experiment of the SIR particle

filter on a highly nonlinear equation and a tracking application. The results suggest

that the filtering performance of all resampling algorithms are considered similar to

each other in terms of RMSE.

The execution time results of the Uphill resampling are better than those of Metropolis

and Rejection in most cases. Like the Metropolis and Rejection resampling, Uphill

also goes through non-coalesced global memory access patterns with a large number

of particles. To ameliorate this problem, we present a memory coalesced version

of the Uphill resampling, named Uphill-CA. They are same in expected number of

replications of the particles, but the variance of Uphill-CA caused by s-segment and
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warp size are worse than the one in the original Uphill resampling. We believe this

variance would not be much of a problem in most tracking applications. Furthermore,

we present a generic version of the Uphill resampling, named Uphill-C1. As the s-

segment size changes, the expectation of Uphill-C1 differs. Hence, we obtain a new

resampling method. Uphill is one of the new resampling method of Uphill-C1 when

we set the size of s-segment as 4N .

By comparing two weights at a time rather than calculating the cumulative sum of the

weights, Uphill avoids the numerical instability issue. For a practitioner who needs a

numerically stable resampling algorithm on the GPU, Uphill is advisable. However,

if the bias is crucial, the other algorithms can be chosen especially when the relative

variance in the weight sequence is large.

The Uphill-CA resampling is a considerable choice due to its speed. Uphill-CA has

same expectation analysis with the Uphill resampling, but it is faster with a variance in

the MSE results. As the s-segment size becomes large, Uphill-CA behaves more sim-

ilarly to Uphill, faster in any case. When the size of s-segment is set to the size of seg-

ment of the global memory of the GPU, the minimum, Uphill-CA achieves its highest

speed; however, there occurs discernible variance in the MSE results. Whether this

variance constitutes a hindrance depends on the application. Uphill-CA competes

favorably against the Systematic resampling when speed and numerical stability are

the main concerns. The Uphill-C1 resampling is also a considerable choice due to its

speed. When the size of s-segment is set to the size of segment of the global mem-

ory of the GPU, the minimum, Uphill-C1 achieves the highest speed among Uphill

and Uphill-CA. Although there occurs much bias than those of Uphill and Uphill-CA

caused by the s-segment size in most of the versions of it, it can be preferred if speed

is the primary concern.

We also devised two techniques, designated Metropolis-C1 and Metropolis-C2, to

ameliorate the non-coalesced global memory access problem of the Metropolis re-

sampling. Experimental results indicate that C1 and C2 achieve their fastest results

when the size of s-segment is chosen as the size of segment of the global memory

of the GPU. By increasing the size of s-segment both techniques yield results with

quality comparable to the original Metropolis resampling, at the expense of execution
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time. In any case, they remain remarkably faster than the original Metropolis resam-

pling at any comparable level of quality. Hence, C1 and C2 variations of Metropolis

provide a spectrum of speed vs quality trade-off for the users.

In the future, we would like to analyze in detail the effects of the bias of the Uphill

resampling on a wide variety of tracking applications. We focus on whether we can

benefit from the bias of the Uphill resampling in some special cases. We would

also like to investigate the issue of avoiding slow resampling process caused by large

relative variances on the weight sets for Metropolis and Uphill. To achieve this, we

try to reduce the parameter B adaptively and we expect to accelerate the resampling

stage of the particle filter without sacrificing quality much. We also want to accelerate

finding B process of the Uphill resampling with learning mechanisms.

A promising line of the study is the utility of the Uphill resampling in interacting

multiple model (IMM) filters in maneuvering scenarios. IMM consists of more than

one filter to handle the model mismatch scenarios in a tracking application. There are

more than one filter and each runs a different model. The mean of the results of these

filters constitutes the result of IMM filter. We want to investigate running more than

one Uphill resampling method at the same time with different setting of B parameter.

It would be interesting to investigate the performance of multi-processor/multi-core

systems, such as Intel Xeon Phi, for our proposed methods and compare them with the

GPUs. Performance of multi-GPU and CPU/GPU combined systems is also worthy

of future investigation. Running IMM particle filter on a single GPU or multi-GPU

can be a promising line of research.
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APPENDIX A

ANALYSES OF THE PROPOSED RESAMPLING

ALGORITHMS

A.1 Analysis of the Uphill Resampling Algorithm

In this section, we present the theoretical analysis of the Uphill resampling method.

The analysis gives us the expected number of replications of each particle or the

probability of selection of each particle with respect to the B parameter.

The algorithm is analyzed by computing the expected number of replications of the

particles corresponding to a given weight sequence. For the purpose of analysis,

assume that it is ordered such that w̃1 < w̃2 < ... < w̃N . This assumption does not

cause loss of generality. At each iteration, the algorithm selects the index i at the

beginning and selects an index j ∈ {1, .., N}, drawn from a uniform distribution,

B times (the probability of selection of any index is 1/N ). The maximum of these

indices indicates the particle that will be replicated. A particle can be selected in two

non-overlapping cases:

1. The particle is selected in its own thread. That is, when the algorithm starts with

the ith index, the possibility of selecting the indices less than i is eliminated;

ith index is selected if B other selections are less than or equal to i. So the

probability of selecting ith particle is as follows:

(
i

N

)B

(A.1)

2. The particle is selected in another particle’s thread. The probability of selection
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of jth particle in the inner loop is calculated under the following (mutually

exclusive) events:

• Among all B selections j is selected only once and others are less than j:

1

N

(
B

1

)(
j − 1

N

)B−1

(Notation:
(
B

1

)
is a binomial coefficient.)

(A.2)

• Among all B selections j is selected twice and others are less than j:

1

N2

(
B

2

)(
j − 1

N

)B−2

(A.3)

• Among all B selections j is selected k times and others are less than j:

1

Nk

(
B

k

)(
j − 1

N

)B−k

(A.4)

• Among all B selections j is selected B times:

1

NB
(A.5)

therefore the probability of selecting the jth element where j > i is:

1

NB

B∑
k=1

(
B

k

)
(j−1)B−k =

1

NB

((
B∑

k=0

(
B

k

)
αB−k

)
− αB

)
where α = (j − 1)

(A.6)

1

NB
((α + 1)B − αB) (A.7)

1

NB
(jB − (j − 1)B) (A.8)

The same probability occurs for each i that is less than j then the overall ex-

pectation of case 2 becomes:

(j − 1)

NB
(jB − (j − 1)B) (A.9)
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As a result the expected number of replications of jth particle is the sum of (A.1) and

(A.9):

(
j

N

)B

+
(j − 1)

NB
(jB − (j − 1)B) (A.10)

Note1: The above analysis assumes that all the weights of the particles are unequal.

When some of the weights are equal, the position of these weights must be the posi-

tion of the one with the largest index among these weights in the weight sequence.

Note2: We do a simplification about the expected number of replications of all parti-

cles and show that the sum of their probability is equal to one below:

•
∑N

j=1

(
j
N

)B
+
∑N

j=1

(
(j−1)
NB (jB − (j − 1)B)

)
=
∑N

j=1

[
�
�jB

NB + jB+1

NB −�
�jB

NB − (j−1)B+1

NB

]
• = 1

NB

∑N
j=1(j

B+1 − (j − 1)B+1)

• = 1
NB [�1− 0 + ���2B+1 −���1B+1 + 3B+1 −���2B+1 + . . . NB+1 −�������

(N − 1)B+1 ]

• NB+1

NB = N

Since the probability of drawing a particle is 1
N

, the overall probability is 1.

A.2 Analysis of the Uphill-CA Resampling Algorithm (Version 1)

In this section, we present the theoretical analysis of the Uphill-CA resampling method.

The analysis gives us the expected number of replications of each particle or prob-

ability of each particle with respect to the B parameter. In this analysis, the actual

positions of the particles in the s-segment are considered. We prove that the analysis

of Uphill-CA is same with the analysis of Uphill as follows:

For each warp wp the probability of selecting a particle can be calculated in two

non-overlapping cases:
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1. The particle is selected in its own thread. The probability of selecting ith par-

ticle in one iteration of the inner loop is as follows:

SC∑
k=1

1

SC

pik
DC

(A.11)

where pik is the position of the highest element whose weight is less than or

equal to w̃i in segment k (assume segment is ordered).

The probability of selecting ith particle after B iteration becomes:

(
SC∑
k=1

1

SC

pik
DC

)B

=
1

(SCDC)B

(
SC∑
k=1

pik

)B

(A.12)

2. The particle is selected in another particle’s thread. The probability of selection

of jth particle in the inner loop is calculated as follows:

• Among all B selections j is selected only once and others are less than j:

1

(SCDC)

(
B

1

)(
(
∑SC

k=1 pjk)− 1

(SCDC)

)B−1

(A.13)

where
(
B
1

)
is a binomial coefficient and pjk is same with pik in the first

case. Lets call
∑SC

k=1 pjk as c.

• Among all B selections j is selected k times and others are less than j:

1

(SCDC)k

(
B

k

)(
(
∑SC

k=1 pjk)− 1

(SCDC)

)B−k

(A.14)

The probability of selecting jth particle becomes:

1

(SCDC)B
(cB − (c− 1)B) (A.15)

The same probability occurs for each i that is less than j in warp wp then the

overall expectation of case 2 becomes:

jwp(c
B − (c− 1)B)

(SCDC)B
(A.16)

where jwp is the number of i that is smaller than j in warp wp.
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As a result the expected number of replications of jth particle in a warp is the sum-

mation of (A.12) and (A.16):

E(j, wp) =
1

(SCDC)B

( SC∑
k=1

pjk

)B

+ jwp

( SC∑
k=1

pjk

)B

−

((
SC∑
k=1

pjk

)
− 1

)B
 (A.17)

where
∑N

j=1E(j, wp) = WS. Note that WS is the number of threads in a warp.

Therefore, the total expected number of replications of jth particle is
∑WC

wp=1E(j, wp)

where WC represents the number of warps.

Note 1:
∑N

j=1

∑WC
wp=1E(j, wp) is equal to N .

Note 2: pik is zero, if the ith particle /∈ warp wp, and
∑WC

wp=1 jwp is equal to j − 1.

Note 3:
∑SC

k=1 pjk is equal to j and SCDC is equal toN therefore the expected number

of replication of jth particle is equal to 1
NB (jB + (j − 1)(jB − (j − 1)B)). This is

exactly same with the analysis of the Uphill resampling method.

A.3 Analysis of the Uphill-CA Resampling Algorithm (Version 2)

The first analysis depends on the positions of the weights in the actual weight se-

quence and has high computational cost. The second version of the analysis of the

Uphill-CA algorithm approaches as a general way which does not depend on the po-

sitions of the weights in the actual weight sequence.

For each warp wp the probability of selecting a particle can be calculated in two

non-overlapping cases:

1. The particle is selected in its own thread. The probability of selecting ith par-

ticle in one iteration of the inner loop is as follows:

SC∑
k=1

(
1

SC

(
DC∑
l=1

(P1(i = l, DC)
l

DC
)

))
(A.18)
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where P1(i = l, DC) is the probability of the order of the highest weight whose

value is less than or equal to w̃i in a segment is equal to l and is calculated as(∏l
m=1

i−m+1
N−m+1

)(∏DC
m=l+1

N−i+l−m+1
N−m+1

) (
DC

DC−1

)
The probability of selecting ith particle after B iteration becomes:

(
SC∑
k=1

(
1

SC

(
DC∑
l=1

(P1(i = l, DC)
l

DC
)

)))B

=
1

(SCDC)B

(
SC∑
k=1

DC∑
l=1

(P1(i = l, DC)l)

)B
(A.19)

2. The particle is selected in another particle’s thread. The probability of selection

of jth particle in the inner loop is calculated as follows:

1

(SCDC)B

( SC∑
k=1

DC∑
l=1

(P1(j = l,DC)l)

)B

−

((
SC∑
k=1

DC∑
l=1

(P1(j = l,DC)l)

)
− 1)

)B


(A.20)

The same probability occurs for each i that is less than j in warp wp then the

overall expectation of case 2 becomes:

1

(SCDC)B

(
WS+1∑
k=1

P2(j = k,WS)(k − 1)

)
( SC∑

k=1

DC∑
l=1

(P1(j = l, DC)l)

)B

−

((
SC∑
k=1

DC∑
l=1

(P1(j = l, DC)l)

)
− 1)

)B


(A.21)

where P2(j = k,WS) is the probability of the number of weights that is less

than w̃j in a warp is equal to k − 1 and is calculated as(∏k−1
m=1

j−m
N−m+1

)(∏WS
m=k

N−j+k−m+1
N−m+1

) (
WS

WS−k+1

)
Note that WS is the number

of threads in a warp.

As a result the expected number of replications of jth particle in a warp is the sum-
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mation of (A.19) and (A.21):

E(j, wp) =
1

(SCDC)B

(
SC∑
k=1

DC∑
l=1

(P1(j = l,DC)l)

)B

+

(
WS+1∑
k=1

P2(j = k,WS)(k − 1)

)
( SC∑

k=1

DC∑
l=1

(P1(j = l,DC)l)

)B

−

((
SC∑
k=1

DC∑
l=1

(P1(j = l,DC)l)

)
− 1)

)B
 1

(SCDC)B

(A.22)

where
∑N

j=1E(j, wp) = WS.

Therefore, the total expected number of replications of jth particle is
∑WC

wp=1E(j, wp)

where WC represents the number of warps.

Note 1:
∑N

j=1

∑WC
wp=1E(j, wp) is equal to N .

Note 2: Case 1 occurs in a single warp and the results of case 2 are equal on each

warp, for the simplicity of the computation, the expected number of replications of

jth particle can be written as:

1

(SCDC)B

(
SC∑
k=1

DC∑
l=1

(P1(j = l,DC)l)

)B

+WC

(
WS+1∑
k=1

P2(j = k,WS)(k − 1)

)
( SC∑

k=1

DC∑
l=1

(P1(j = l,DC)l)

)B

−

((
SC∑
k=1

DC∑
l=1

(P1(j = l,DC)l)

)
− 1)

)B
 1

(SCDC)B

(A.23)

A.4 Analysis of the Uphill-C1 Resampling Algorithm (Version 1)

In this section, we present the theoretical analysis of the Uphill-C1 resampling method.

The analysis gives us the expected number of replications of each particle or prob-

ability of each particle with respect to the B parameter. In this analysis, the actual

positions of the particles in the s-segment are considered.

For each warp wp the probability of selecting a particle can be calculated in two

non-overlapping cases:
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1. The particle is selected in its own thread. For any selected segment, the proba-

bility of selecting ith particle is as follows:

1

SC

( pik
DC

)B
(A.24)

where pik is the position of the highest element whose weight is less than or

equal to w̃i in segment k (assume segment is ordered).

When we consider all possible segments, the probability of selecting ith parti-

cle is as follows:

SC∑
k=1

1

SC

( pik
DC

)B
=

1

SC

1

DCB

SC∑
k=1

(pik)B (A.25)

2. The particle is selected in another particle’s thread. The probability of selection

of jth particle in the inner loop is as follows:

1

SC

(
1

DCB

(
cBj − (cj − 1)B

))
(A.26)

where cj is the position of jth element on its own segment (assume segment is

ordered).

The same probability occurs for each i that is less than j in warp wp then the

overall expectation of case 2 becomes:

jwp(c
B
j − (cj − 1)B)

SCDCB
(A.27)

where jwp is the number of i that is smaller than j in warp wp.

As a result the expected number of replications of jth particle in a warp is the sum-

mation of (A.25) and (A.27):

E(j, wp) =
1

SCDCB

(
SC∑
k=1

(pjk)B + jwp(c
B
j − (cj − 1)B)

)
(A.28)

where
∑N

j=1E(j, wp) = WS. Note that WS is the number of threads in a warp.
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Therefore, the total expected number of replications of jth particle is
∑WC

wp=1E(j, wp)

where WC represents the number of warps.

Note 1:
∑N

j=1

∑WC
wp=1E(j, wp) is equal to N .

Note 2: pik is zero, if the ith particle /∈ warp wp, and
∑WC

wp=1 jwp is equal to j−1. For

the simplicity of the computation, the expected number of replications of jth particle

can be written as:

1

SCDCB

(
SC∑
k=1

(pjk)B + (j − 1)(cBj − (cj − 1)B)

)
(A.29)

Note 3:When we take SC = 1 and DC = N , pjk becomes j and cj becomes j

therefore the expected number of replication of jth particle becomes 1
NB (jB + (j −

1)(jB − (j − 1)B)). This is exactly same with the analysis of the Uphill resampling

method.

A.5 Analysis of the Uphill-C1 Resampling Algorithm (Version 2)

The first analysis depends on the positions of the weights in the actual weight se-

quence and has high computational cost. The second version of the analysis of the

Uphill-C1 algorithm approaches as a general way which does not depend on the po-

sitions of the weights in the actual weight sequence.

For each warp wp the probability of selecting a particle can be calculated in two

non-overlapping cases:

1. The particle is selected in its own thread. The probability of selecting ith par-

ticle is as follows:

1

SC

DC∑
l=1

P1(i = l, DC)

(
l

DC

)B

(A.30)

where P1(i = l, DC) is the probability of the order of the highest weight whose

value is less than or equal to w̃i in a segment is equal to l and is calculated as(∏l
m=1

i−m+1
N−m+1

)(∏DC
m=l+1

N−i+l−m+1
N−m+1

) (
DC

DC−1

)
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When we consider all possible segments, the probability of selecting ith parti-

cle is as follows:

SC∑
k=1

(
1

SC

DC∑
l=1

P1(i = l, DC)

(
l

DC

)B
)

=
1

SC

1

DCB
SC

DC∑
l=1

P1(i = l, DC)lB

(A.31)

2. The particle is selected in another particle’s thread. The probability of selection

of jth particle in the inner loop is calculated as follows:

1

SC

DC∑
l=1

P2(j = l, DC − 1)

(
lB − (l − 1)B

DCB

)
=

1

SC

1

DCB

DC∑
l=1

P2(j = l, DC − 1)(lB − (l − 1)B)

(A.32)

where P2(j = l, DC − 1) is the probability of the order of jth particle in its

own segment is equal to l and is calculated as(∏l−1
m=1

j−m
(N−1)−m+1

)(∏DC−1
m=l

(N−1)−j+l−m+1
(N−1)−m+1

) (
DC−1

(DC−1)−l+1

)
The same probability occurs for each i that is less than j in warp wp then the

overall expectation of case 2 becomes:

1

SC

1

DCB

(
WS+1∑
k=1

P3(j = k,WS)(k − 1)

)
DC∑
l=1

P2(j = l, DC−1)(lB−(l−1)B)

(A.33)

where P3(j = k,WS) is the probability of the number of weights that is less

than w̃j in a warp is equal to k − 1 and is calculated as(∏k−1
m=1

j−m
N−m+1

)(∏WS
m=k

N−j+k−m+1
N−m+1

) (
WS

WS−k+1

)
Note that WS is the number

of threads in a warp.

As a result the expected number of replications of jth particle in a warp is the sum-
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mation of (A.31) and (A.33):

E(j, wp) =
1

SC

1

DCB

(
SC

DC∑
l=1

P1(j = l, DC)lB

)
+

1

SC

1

DCB(
WS+1∑
k=1

P3(j = k,WS)(k − 1)

)(
DC∑
l=1

P2(j = l, DC − 1)(lB − (l − 1)B)

)
(A.34)

where
∑N

j=1E(j, wp) = WS.

Therefore, the total expected number of replications of jth particle is
∑WC

wp=1E(j, wp)

where WC represents the number of warps.

Note 1:
∑N

j=1

∑WC
wp=1E(j, wp) is equal to N .

Note 2: Case 1 occurs in a single warp and the results of case 2 are equal on each

warp, for the simplicity of the computation, the expected number of replications of

jth particle can be written as:

1

SC

1

DCB

(
SC

DC∑
l=1

P1(j = l, DC)lB

)
+

1

SC

1

DCB

WC

(
WS+1∑
k=1

P3(j = k,WS)(k − 1)

)(
DC∑
l=1

P2(j = l, DC − 1)(lB − (l − 1)B)

)
(A.35)
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