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ABSTRACT

OPTIMIZATION OF WEIGHTS AND FEATURES IN USE OF AHP FOR SNP
PRIORITIZATION

Yilmaz, Arif
Ph.D., Department of Health Informatics
Supervisor: Assoc. Prof. Dr. Yesim Aydin Son

January 2018, 113 pages

Single Nucleotide Polymorphisms (SNP) holds a promise in identification of
genomic footprints of complex diseases such as cancer and diabetes. However,
identification of SNPs associated to complex diseases is a challenging problem due
to the high number and variety of SNPs present in individual genomes. Analysis of
genome wide studies of SNP datasets mainly focus on statistical evidence. As there
are close to hundred million SNPs in human genome, incorporating biological and
functional knowledge about statistically significant SNPs provides valuable features
for further selection of SNPs. Analytical Hierarchy Process (AHP) based SNP
prioritization approach is a method developed for this purpose. However, AHP
requires expert knowledge, which results in subjective decisions. In this work, we
propose a novel approach for AHP design and optimization by utilizing Random
Forest based AHP (RF-AHP) assessment on categories. We utilized the results of
previously developed genomic model on Prostate Cancer. Proposed RF-AHP
approach was compared with Delphi-AHP based method on Schizophrenia, Prostate
Cancer, Type 2 Diabetes and Alzheimer’s disease genomic datasets and same
performance was achieved. Additionally, RegulomeDB database was integrated to
RF-AHP. While similar performance was obtained in most of the datasets better
prioritization scoring is achieved for Schizophrenia disease.

Keywords: SNP Prioritization, Analytic Hierarchy Processing, Random Forest,
Prostate Cancer, Type 2 Diabetes
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SNP ONCELIKLENDIRME AMACLI AHP KULLANIMINDA
AGIRLIKLARIN VE OZNITELIKLERIN ENiYILENMESI

Yilmaz, Arif
Doktora Tip Bilisimi Boliimii
Tez Yoneticisi: Dog. Dr. Yesim Aydin Son

Ocak 2018, 113 sayfa

Tekil Nukleotid Polimorfizmleri (SNP), kanser ya da tip 2 diyabet gibi karmagik
hastaliklarin tespitinde umut vadetmektedir. Bununla birlikte karmasik hastaliklarla
iligkili SNP’lerin tespit edilmesi bireylerin genomlarindaki c¢ok sayidaki ve
degiskenlikteki SNP’ler nedeniyle zorlayici bir problemdir. SNP veri setlerinin
genom c¢apinda iliskilendirme ¢alismalarinda ¢ogunlukla istatistiksel bulgular
tzerinde odaklanilmaktadir. Bununla birlikte, bir insan genomunda yaklasik yiiz
milyon SNP bulunmaktadir. Istatistiksel olarak anlamli SNP’lerle ilgili biyolojik ve
islevsel bilgilerin eklenmesi daha ileri SNP_secimi icin o6nemli 0Ozellikler
saglamaktadir. Analitik Hiyerarsi Isleme (AHI) temelli SNP &nceliklendirme
teknigi bu gorevi yerine getirmek amaciyla gelistirilmistir. Fakat AHI’nin
uzmanlarim deneyimlerine ihtiyag duymasi Ozniteliklerin  segiminde ve
agirliklarinda 6znel kararlara neden olmaktadir. Bu ¢alismada AHI tasarimi ve
eniyilemesi i¢in Rastgele Orman tabanli AHI (RO-AHI) kategorilerinin agirlik ve
Oznitelik belirleme yaklagimi onerilmektedir. Bu amagla Prostat Kanseri Uzerinde
daha 6nceden yapilmis olan ¢aligmalar sonucunda gelistirilmis olan genomik model
kullanilmistir. Gelistirilen yontem, Sizofreni, Prostat kanseri, Tip 2 Diyabet ve
Alzheimer Hastaligi genetik veri setlerinde Delphi AHI tabanli bir yontem ile
kargilagtirilmis ve aynmi basarima ulagilabilmistir. Ek olarak, RegulomeDB
veritaban1 da RO-AHI ye eklendiginde Sizofreni hastaligi ile ilgili daha iyi
sonuglara ulagilmig, diger hastaliklar ile ilgili ayn1 basarim sonuglarina ulagilmustir.

Anahtar Sozcikler: SNP Onceliklendirme, Analitik Hiyerarsi Isleme, Rastgele
Orman, Prostat Kanseri, Tip 2 Diyabet
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Human genome may be represented as a sequence, which consists of 3.3 billion
letters, each representing a single nucleotide. The nucleotides are biomolecules,
which are symbolized by one of the A, C, G, T letters [1]. In human genome, 99%
of the nucleotide composition is identical. The remaining 1% consists of the
variations which are basis for the differences between individuals. If a variation at
a nucleotide locus is observable in at least 1% of the population, this variation is
called a Single Nucleotide Polymorphism (SNP). SNPs are very efficient
biomarkers, as they can be associated with many complex diseases by using
statistical or intelligent methods.

Variant data enables research of complex diseases such as diabetes, cardiovascular
diseases, neuro-degenerative diseases and cancers [2][3]. Genome Wide
Association Studies (GWAS) can be designed as case-control, cohort or trio study.
It is used to identify the statistically associated SNPs with complex diseases by
investigating millions of SNPs in a single experimental set-up. In case-control
studies, which is the most widely used type, statistically significant variations
differentiating between case and control samples are found.

Nonetheless, the number of statistically significant SNPs that should be inspected
still reaches over tens of thousands. Hence, after GWAS, prioritization of significant
SNPs according to its biological relevance, and other prior information is required.

Decision making techniques are shown to appropriately provide a solution to the
prioritization problem of the candidate SNPs according to the complex criteria [4].



The objective of this thesis is to propose Random Forest based AHP (RF-AHP)
method to address expert judgment uncertainty in decision making with AHP. It is
accomplished by training the analytical hierarchy process input data using Random
Forest machine learning method [5]. So, the AHP categories are evaluated according
to calculated Variable Importances in the trained Random Forest model.

The RF-AHP method offers pairwise comparisons of categories without any
requirement of expert knowledge. Consequently, all of the criticisms of AHP related
to judgement, subjectivity, and uncertainty and imprecision is avoided. A case study
related to Single Nucleotide Polymorphism (SNP) Prioritization was performed to
demonstrate the proposed approach. As a supervised learning algorithm, Random
Forest (RF) method was employed to evaluate the importances of AHP categories.
In evaluation of AHP categories using RF-AHP for SNP prioritization, three types
of data source were used. First type of data source is the database existing in METU-
SNP software developed previously in METU-BIN laboratory [4]. Second type of
data source is the genomic model for a complex disease. Results of a previously
published study [6] on Prostate Cancer was used as the genomic model in this study.
Third type of data source is the GWAS disease datasets from the literature. Four
disease datasets were used in analysis and comparison tests; Schizophrenia, Prostate
Cancer, Type 2 Diabetes, and Alzheimer’s disease. Prostate Cancer was used in
training of Random Forest machine learning algorithm for AHP Category
Evaluation. However, for performance evaluation all of the four disease datasets
were used. Additionally, we have integrated RegulomeDB scores into RF-AHP
based prioritization in the latest version of METU-SNP,

Findings: We have compared our results with Delphi AHP and found out that some
categories were uninformative and may be removed from AHP hierarchy.
Consequently, a much simpler AHP tree was obtained providing same or better
performance without any requirement for expert judgment. After incorporation of
RegulomeDB, better results obtained for Schizophrenia.

Originality: The proposed Random Forest based category evaluation method may
be used in calculation of weights of AHP categories without requiring experts. To
the best of our knowledge, at the time of writing the thesis, random forest based
method for AHP category evaluation was not introduced in the literature.

1.2 Thesis Organization

This thesis consists of six chapters. In Chapter 1, i.e. this chapter, motivation and
brief introduction to basic concepts is presented. Single Nucleotide Polymorphisms
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(SNP) and Genome Wide Association Studies (GWAS) and SNP prioritization are
briefly explained. Analytic Hierarchy Process decision making technique for SNP
prioritization, its advantages and disadvantages are listed. The proposed Random
Forest based Analytic Hierarchy Process to overcome subjectivity problem is
mentioned.

In Chapter 2, theoretical background for the concepts referenced in this thesis is
provided. Firstly, basics of molecular biology science and genomic variations is
presented. Later, the GWAS and SNP prioritization is explained. Theory of decision
making with Analytic Hierarchy Processing is provided. Then theory of Random
Forest machine learning algorithm is described.

In Chapter 3, materials and methods employed to realize the proposed algorithms
are presented. Detailed explanation of utilized data sources and their use is provided.
Then software environment for developing the methodologies is outlined.

In Chapter 4, theory of proposed Random Forest based Analytic Hierarch Process
method using variable importances is presented. Its application for SNP
prioritization is provided in detail. Incorporation of RegulomeDB database into RF-
AHP is described. Integration principles and transformation of RegulomeDB to RF-
AHP based SNP prioritization is detailed.

In Chapter 5, results on realized RF-AHP and RegulomeDB integrated RF-AHP are
presented. Comparison of Delphi AHP based method to RF-AHP method and RF-
AHP with RegulomeDB is explained. Then the performance of three methods are
compared with respect to various performance plots. Later, discussion of the results
is presented.

In Chapter 6, conclusions of presented RF-AHP method and possible future
improvements are discussed.






CHAPTER 2

BACKGROUND

Bioinformatics is a research and technology domain which aims to interpret
molecular biology via computational techniques such as machine learning, statistics
and high performance computing. Itis an interdisciplinary field that relates biology
and biomedical sciences to statistics and computer science [7]. Recent developments
in the bioinformatics field drives revolutionary approaches to problems in various
other domains such as health [8][9][10], agriculture [11], genetic engineering [12],
biology [13], medicine [2], pharmacology [14], sociology [15][16] i.e. all
dimensions in the universe where life exists. Bioinformatics is subdivided to many
“omics” fields such as genomics, proteomics, and transcriptomics. These research
are enabled by employing molecular biology and computational analysis algorithms
on smallest components such as nucleotides, genes, amino acids, proteins and
metabolites. Bioinformatics itself is also being revolutionized by new developments
in biotechnology and data sciences [17]. This has paved the way for higher
throughput and cheaper sequencing technologies. With emerging big data
processing technologies such as cluster computing, artificial intelligence and data
mining techniques, it is possible to make detailed investigation on omics data.

Recently, one of the mostly focused fields in Bioinformatics is on understanding the
meaning of the vast amount of data, identify molecular basis of genetic diseases and
develop personalized medicine approaches [3][18][19][20]. The purpose of this
thesis is such an effort in that research field. For this purpose, related background
knowledge on basics of molecular biology, etiology of genetic diseases and genome
wide association studies and related computational techniques are presented as
follows.



2.1. Molecular Biology, DNA Replication, Transcription and Translation

DNA is made of nucleic acids which are formed as a double stranded and twisted to
the shape of double helix made of nucleotide pairs. It is constructed with four
different types of nucleotides namely Adenine, Cytosine, Thymine and Guanine.
These nucleotides represented by letters A, C, G, and T [1]. There are about 3 billion
base pairs in human genome. A genome is made of chromosomes. Diploid
organisms have pairs of chromosomes that are paternal (inherited from father) and
maternal (inherited from mother) chromosomes. For instance, human genome
consists of 23 maternal and 23 paternal chromosomes. The central dogma of
Molecular Biology explains replication, transcription and translation [21] as shown
in Figure 1. Replication is the process of duplication of a DNA during cell division
as shown in Figure 2. It begins with untwisting the chromosome [22]. Then DNA is
unzipped by enzyme Helicase by breaking of hydrogen bonds between nucleotides
and opening a replication fork. In elongation phase, the two separated strands work
as a template for the nucleotides. An enzyme called DNA polymerase bonds the
complementary nucleotides to two strands. Here, A is the complementary for T,
similarly, C is complementary for G. DNA polymerase can operate only in 5’ to 3;
direction. Therefore, the polymerization and duplication process always continues
in 5” to 3’ direction on DNA. During replication, the leading strand nucleotides are
bond in forward direction continuously. However, in lagging strand, nucleotides are
bonded in reverse direction in small sequences which are called Okazaki frames.
Each small fragment is joined to previous fragment with enzyme DNA Ligase
(Figure 2).

During DNA replication, enzyme called Exonuclease checks and proofreads the
bases and if there is an error in A-T or C-G matches, finds and corrects them. After
replication complete telomere sequences are bonded the both ends of DNA by
enzyme Telomerase. 99% of chromosome is non-coding regions with mainly
regulative function. Remaining regions are named exome, where genes are located.
Gene is a sequence of DNA that produces a specific protein for a specific function.
A gene maps to specific genetic locus on a chromosome as shown in Figure 3.



replication
(DNA -> DNA)
DNA Polymerase

DOV N

transcription
(DNA -> RNA)
RNA Polymerase

translation
(RNA -> Protein)
Ribosome

O-0-0-0-0-0-0O rrotein

Figure 1 Central Dogma of Molecular Biology: Replication, Transcription, Translation (Credit:
Creative Commons License).

Chromosome
Free nucleotides DNA polymerase
- T 5

Original
(template)

BhiA g strand

Helicase
Q/Lagging S

Replication
fork

@am» Adenine

@==x Thymine .
J 3
@ Cytosine >/ |
DNA polymerase Original (template) DNA strand

@ Guanine

Figure 2 DNA Replication process (Credit: Creative Commons License).

In transcription, the Deoxyribo-Nucleic Acid (DNA) corresponding to a gene is
rewritten as Ribo-Nucleic Acid (RNA). Later RNA is processed by splicing. In
splicing, non-coding parts (introns) are excised, and remaining coding regions
(exons) are combined as the messenger RNA (MRNA). Translation is the coding
of polypeptides as amino acids according to messenger RNAs as shown in Figure 4.
Amino acids make up of polypeptides as shown in Figure 5. Proteins are composed
of polypeptides. They perform various functions in different biological processes,
and define the characteristics of organisms.
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Figure 4 Amino Acid Triplet Codes (Credit: Creative Commons License).
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Figure 5 DNA-mRNA-Polypeptide relation. (Credit: Creative Commons License)

2.2. Mutations

Changes that occur in DNA sequence is called mutations. This may occur as a result
of natural processes such as binding an incorrect base during DNA replication or
due to external factors. The external factors causing mutations are called
mutagens[23]. A mutagen may be a chemical material such as poison, tobacco,
pollution or a physical event such as UV light or X-Ray radiation that causes a
genetic change in DNA [24][25]. A mutation may affect small locus in a gene or
large portion of a chromosome. Some of the most frequently seen mutations include
[26]:

Substitution: When a nucleotide is replaced by another nucleotide, it is called
substitution.

Deletion: A nucleotide is removed from the sequence. This may cause a shift in
transcription of mRNA, therefore in amino acid synthesis all amino acids may be
different.

Insertion: A nucleotide is inserted into a sequence. Result of insertion is similar to
deletion and may cause large difference in synthesized amino acids.

If a mutation affects single amino acid it is called point mutation. One or a few
nucleotides are changed in a DNA sequence [27]. Insertions and deletions may cause
frameshift mutations if amount of change is not multiple of three bases. Drastic
changes may occur after the transcription and translation of a sequence. Codons are
translated to amino acids in triplets, therefore, one shift in the sequence may result
in completely different amino acids. Chromosomal mutations on the other hand are
those who affect all chromosome for instance loss or gain of chromosome
duplication, deletion or insertion in structure of chromosome. According to result of
the mutation in amino acid, they are organized under following groups [28][29]:



Silent or Synonymous Mutation: A mutation that does not alter the produced
amino acid. The resulting protein is the same as that produced before mutation.

Nonsynonymous Mutation: A mutation that results in alteration of produced amino
acid. Then resulting polypeptide and protein is going to be different. Types of non-
synonymous mutations are as follows:

Missense: A single base substitution (non-conservative substitution) causes
different coding in amino acid production resulting in different protein synthesis.

Nonsense: A substitution causes introduction of a stop codon. This results in early
termination in polypeptide string. The shorter polypeptide string causes loss of
normal biological activity.

Frameshift: As mentioned above, this may be result of insertion or deletion of
nucleotides in DNA sequence.

If mutations occur in a gamete, they are passed to the next generation i.e. offsprings.
Otherwise, the mutations remain in the individual, which are called somatic
mutations.

2.3. Polymorphism

If a variation is observed in at least 1% of a population, it is called as polymorphism
[30][31]. Variations, in which only one nucleotide is different from the population
is called Single Nucleotide Polymorphisms (SNP) [32]. SNP is very common type
of polymorphism. SNPs are the most common genomic polymorphisms; in average
a SNP can be observed in every 300 nucleotide of coding regions and in every 1000
nucleotide of non-coding genome [33][34]. The most frequently observed
nucleotide form of the SNP is called as major allele. Likewise, the allele with lowest
frequency is called as minor allele.

Inheritance of closely mapped alleles are linked to each other as a group. These
genetically linked alleles that are on closely linked locations on genes or
chromosomes are called haplotypes. Haplotypes are likely to be inherited together.
This non-random linkage between the alleles is called Linkage Disequilibrium (LD).

As of 2018, 10 million common SNPs have been identified in human genome. As
shown in Figure 6, according to location and nature of change, SNPs cause different
outcomes at biological and phenotypic level. Over 60% of all SNPs reported in
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dbSNP are exonic variations, where majority are missense, indicating a change in
the amino acid code. These changes can have varying level of effect from
individuals’ phenotype such as eye color, hair type etc. to susceptibility to diseases
such as cancer, or complex diseases. Therefore, SNPs are highly promising
biological markers in research of molecular genetic origins of disease risk,
susceptibility, or response to treatment. Through understanding of disease causing
changes in genome, molecular etiology of diseases can be revealed, by identifying
genes, biological pathways, and other biological interactions.

TYPES OF SNPs
Non-coding region Coding region
Synonymous ‘ Non-Synonymous ‘
Missense ‘ Nonsense

Figure 6 Types of SNPs (Credit: Creative Commons License).

2.4. Regulation of Gene Expression

On DNA molecule, genes are the loci that code proteins [35]. However, just before
the coding sequence of gene on DNA, a region called the promoter region exists as
shown .in Figure 7. The promoter region may be as short as a few nucleotides or as
long as a few hundred nucleotides. The proteins bind to these regions to regulate the
transcription [36]. Therefore, if the promoter region is long, more proteins bind to
the region, and gene expression is more controlled. General transcription factors
such as TFIID, assemble the transcription initiation complex on the promoter [37].
Then RNA polymerase binds to transcription initiation complex in promoter to
initiate transcription. Other special transcription factors may also bind to promoter
to regulate the gene expression for specific genes.
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As seen in Figure 7. There are enhancer regions outside promoter that help enhance
the transcription process [38]. Transcription factors also bind to enhancers. When
DNA bending proteins bind, the DNA bends, the activators bind to enhancers and
transcription factors, to increase gene expression. There are also transcription
repressors that prevent transcription. They bind to promoter and stop to RNA
polymerase effectively blocking the transcription of gene. Activators and repressors
respond to external effects to prevent the binding of transcription factors.

47 activators

oY T .

\ / promoter gene
enhancers _ )
group of mediator
proteins

distal control
transcription
/ factors

DNA bending
transcription

elements

RNA polymerase
Figure 7 Operation of Transcription Factors in Gene Transcription Process (Credit: Creative
Commons License).

This process is regulated according to cell type and many involved proteins [39].
Variation in these regulatory processes has an important role on activation,
deactivation and expression of a gene [40][41]. For instance, in [42], Gobbi et al.
identified a SNP that introduces a new promoter element which interferes with
activation of alpha-like globin genes that results in a form of a blood disorder Alpha
Thalassemia. Similarly, in [43], Zhou et al. analyzed the effects of a SNP which is
on the promoter of GRK3 that causes Bipolar Disorder.

The Encyclopedia of DNA Elements project aims to systematically maps the regions
in human DNA [44]. These regions include transcriptions, transcription factors, and
chromatin structure and histone modifications. These mappings assign 80% of
genome to biochemical functions. These do not include protein coding regions, and
correspond to regulatory functions for 147 different cell types. The datasets
available from ENCODE project is compiled and annotated according to various
requirements. RegulomeDB is such a database that aims to annotate variants in gene
regulating loci [45].
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2.5. SNP Profiling

In order to analyze the genetic foundation or characteristic of a trait or a disease,
various variants are determined through genotyping. This process is called as variant
profiling. For instance, in SNP profiling variations at specific SNP loci are
measured. SNPs are found to be involved in etiology of many complex diseases.
Therefore, they are used as markers in disease association studies. Additionally, a
combination of specific SNPs is useful as a genetic method for identity testing.
There are various SNP profiling techniques.

Hybridization (microarray) based Techniques: It is based on binding a primer to
a DNA target sequence. A RNA or cDNA is labeled with fluorescent. The labeled
targets are then hybridized on microarray surface which contains hundreds of probe
sequences at different position. When a target hybridized at a probe position,
fluorescent intensity at that location is high meaning the labeled target is expressed
[46].

Polymerase Chain Reaction (PCR): Itis an easy to use method. A template DNA
molecule is amplified by using DNA primers and enzyme DNA polymerase and
DNA nucleotides a mixture is prepared [47]. By cycling the temperature between
two temperatures, hydrogen bonds between strands are broken and restored. During
this DNA polymerase hybridizes the primer to template strand. It is more accurate
then NGS or microarray based techniques and mostly used type for DNA
sequencing.

Next Generation Sequencing (NGS): It enables massively multiplexed sequence
processing of more than ten million nucleotides at once [48].
2.6. Genetic Diseases

Genetic diseases may be classified as Chromosomal diseases, Mendelian diseases
and complex diseases [49].

Chromosomal Diseases: They are caused because of chromosomal abnormalities
such as lack of a chromosome, a non-disjunction of chromosome etc.

Mendelian diseases: These are also called monogenic diseases. They are caused by
one gene mutations inherited from parents. Hemophilia and color blindness, cystic
fibrosis are such diseases.
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Figure 8 Risk factors for complex diseases [50].

Complex Diseases: These diseases are caused by many genetic factors with small
effects as well as environmental factors and personal lifestyle [50][51]. The relation
between these factors may be seen in Figure 8. Genetics, Environment and Personal
lifestyle pose a risk of occurrence [52]. When any two factors come together, risk is
high. If three factors come together the risk level is critical. Genetic factors define
the risk of occurrence of a disease because of genetic variations in the individual’s
genome. Personal life style and environmental factors affect the prevalence of the
disease in time, earlier or later. For instance, in [53], Prostate Cancer disease model
was developed. As a result, 108 SNPs were found to be associated with the disease.
Additionally, BMI exercise and smoking was identified to be associated life style
phenotypes.

Complex Traits: Environmental and genetic factors may affect a phenotype
occurrence [54]. This type of trait is called as complex trait [55]. Large percent of
diseases that damage health status of human are complex traits [56]. In [57],
genetics only associations of complex traits to loci is performed using disease data
for 42 traits. As a result, 392 loci were identified. Moreover, finding the factors such
as genetic loci that affect a complex trait as well as the environmental factors were
studied [58]. For instance, in eye related disease called Age Related Macular
Degeneration (AMD) disease, age is a major influence. However in [59], researchers
identified BMI and smoking affect probability prevalence of AMD disease.

Epistasis: In complex traits, effect of a polymorphism may be dependent on another

polymorphism elsewhere in the genome [60][61][62]. When the mutational effect
size is large, the complex trait or disease consist of many variations with small
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interactions [63]. These interactions between polymorphisms are called epistasis
[64]. In epistasis, effect of one gene or locus is dependent on other genes or loci.

Pleiotropy: If a genetic locus is associated with multiple trait, it is called pleiotropy
[65][66]. Genetic variants may be related to multiple traits and distinct traits [67].
In literature there are reports that identified loci that are associated with multiple
traits [68][69]. In [57], 42 complex traits were identified. These are called as cross-
phenotype associations. Cross-phenotype associations may be due to pleiotropy.
Pleiotropy may be caused by single locus or single region. If a phenotype is related
to another then a change in first phenotype causes change in the other phenotype.
This is called mediated pleiotropy. However, sometimes the interaction due to other
factors may be associated falsely as cross-phenotypes causing spurious pleiotropy
[70]. Some variants causing cross-phenotypes are protein coding variants, splice site
variants, mutations in the protein coding genes and intergenic regulatory elements.
They may have a major role in pleiotropy because they may cause deregulation of
hundreds of target proteins.

2.7. Genome-Wide Association Study

Searching for statistically significant variations by analyzing whole genome and
identification of the genetic differences that result in differences between
individuals is called Genome Wide Association Study (GWAS) [71]. The resulting
differences may be a phenotype variation, disease or response to a drug e.qg., traits
like height, blood pressure, complex diseases like cancer, penicillin intolerance. The
common variations for a particular disease may be identified by statistically
analyzing the occurrences of genetic markers in the disease [72]. For this purpose,
the variations related to a trait may be checked in the genome of an individual. If
certain group of variations causes the disease in an individual, then it must not exist
in healthy person.

The number of variations related to other traits prevents easy identification by just
comparing all genomic locations. In order to perform GWAS to identify significant
variations one of following types of study configuration are performed [73]:

Trio Study: Data of the subject with the disease is studied against the genome of
his/her mother and father. The differences in genotypes between the parents who do
not have the disease is compared to the child with the disease. The variation between
parents and child is expected to be responsible of the disease.
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Cohort Study: For the research of a phenomenon, a population with specific trait
and another without that trait is observed for a long time then the result and
underlying reasons are analyzed.

Case-Control Study: The population with the disease or the trait are called cases.
Similarly, population without the case i.e. health individuals are called as controls.
Populations are collected to discover common non-random differences between all
cases and all controls to identify the cause of the disease. Because the data is
collected from readily performed genotyping of cases and controls, the analysis may
be completed in short time. About thousands of samples may be used in case-control
studies, therefore the genotyping errors in individuals are not important.

In GWAS, most used type of variation is SNP because of the high information
content, ease of genotyping and lower cost. Most preferred type of GWAS is Case-
Control Study due to use of already existing data from cases and controls. The
amount of case and control subjects are usually more than thousand to obtain enough
statistical power. This results in large amount of data to be processed. Statistical
tests are applied to SNPs to identify SNPs that have differences in allele frequencies
between cases and controls. After these SNPs known, the disease may be easily
identified later in other subjects by checking the identified SNPs. Later drugs may
be developed targeting the disease before it advances.

However, in all methods of GWAS, a large amount of data in order of terabytes has
to be processed. This requires complex computations and algorithm along with high
performance processors as well as large storage resources. Fortunately, for GWAS
there is no need to process all the genomic data for sequencing and extraction of
SNPs for subjects. In the Human Genome Project all of sequencing and extraction
of SNPs are performed and these findings are publicly available in various
databases. Some information about these databases are as follows:

HapMap Project: This project aims to identify and map nearby SNPs as blocks
that are inherited together. These blocks are accessible by representative tag SNPs.
1 million SNPs in human is mapped to 500 thousand tag SNPs. By using tag SNPs,
the project aims to catalog the similarities and dissimilarities in human. The catalog
variants are used to link the relations between variants, genes and diseases. Then it
would be used to produce medications targeting the disease or vaccines that will be
most effective in individuals.

The dbSNP Project: This database keeps polymorphisms such as SNPs insertions
and deletions. Additionally, SNP-gene, chromosome and SNP-disease relations are
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available in the database. It is publicly available at NCBI. In dbSNP about 45 million
SNPs are identified.

The dbGaP Project: Also developed by NCBI, this database contains the relations
between genotypes and phenotype information. The dbGaP database is essentially a
large repository keeping ordered data from many GWAS studies, genetic data of the
samples in the studies as well as their phenotypes. In the database, previously
performed studies of various types such as cohort, trio or case-control studies are
presented in well-organized form for other researchers.

RegulomeDB Project: This database stores SNP—regulatory element relations in
non-coding genetic locations of Human Genome Project. It incorporates many
datasets such as ENCODE and eQTL.

Online Mendelian Inheritance in Man (OMIM) Project: This project keeps a
catalog of Mendelian diseases. Mendelian Disease can be described by genomic
errors versus gene functions as a complex disease. NCBI hosts the OMIM database
that contains Mendelian disorders for about 12,000 genes.

Genetic Association Database (GAD) Project: In GAD, data about genes and
diseases are collected from academic literature and presented in gene based format.
GAD is also available from NCBI.

Using the databases listed above, biomarkers such as SNPs related to diseases or
traits may be identified using statistical or functional approaches. In statistical
analysis, statistical significance of each variation i.e. non-randomness between
control and case subjects is calculated. For instance, in a population with 1000 cases
and 1000 controls, the significance of variations are calculated. This analysis
includes millions of SNPs obtained from the databases above. Then, most significant
SNPs are obtained by ranking them according to significance. In significance
calculations, the difference of allele frequencies between cases and controls are used
for association.

2.8. Statistical Analysis using PLINK

In calculation of statistical significance there are various tools. Plink is a well-known
open source software developed by Shaun Purcell [74] for genome wide association
and statistical identification of significantly differential SNPs between cases and
controls. It consists of following features:
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1. Data management,

2. Summary statistics,

3. Population stratification,
4. Association testing,

5. Haplotype testing,

6. Meta-Analysis

In significance analysis, association testing feature is used. In association testing,
plink calculates the frequencies of alleles separately for cases and controls. Here the
calculations are performed according to Fisher’s Exact Test and T Test. In order to
perform association test, .bed, .bim and .fam files are required. After plink analysis,
the calculated significances are obtained as a specially formatted “.assoc.adjusted”
file. The file is a tab separated file that contains fields such as chromosome number,
SNP rsID, unadjusted asymptotic significance as p-value, Genomic Control (GC)
adjusted significance, Bonferroni adjusted significance, Sidak single-step adjusted
significance, Sidak step-down adjusted significance, step-up Benjamini-Hochberg
False Discovery Rate (FDR) control, and step-up Benjamini-Yekutieli FDR control.
Basically, as a result of association analysis, unadjusted asymptotic significance i.e.
p-value is used. After obtaining association test results as unadjusted significance
values, the prioritization of SNPs is performed. In biostatistics, SNPs with p-
value<0.05 are usually considered significant. In genome-wide studies a multiple
test correction for up to 1M samples should be considered, so a p-value < 107 is
usual threshold for GWAS [75]. However, the SNPs should be considered
according to their genetic function and biological features. Therefore, considering
p-value alone is not enough and SNP prioritization step should be executed after
GWAS analysis [76].

2.9. SNP Prioritization and Candidate SNP Selection

In spite of being scored with high statistical significance value, not all small effects
causing a complex disease may be biologically relevant variations. Most of the SNPs
in the SNP databases have no known disease -related results. Prioritization of SNPs
is essential in accurate disease SNP detection [77]. Prioritization is performed
according to additional knowledge such as meta-data or annotations about SNPs that
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provide functional information [72]. SNP prioritization process consists of three
stages as shown in Figure 9.

At first stage, SNP data quality control is performed according to minor allele
frequency, missing values and Hardy-Weinberg equilibrium criteria. In the second
stage, each SNP’s multiple testing adjusted p-values of association are calculated.
A significance threshold is set and only statistically significant SNPs are inspected
for prioritization instead of inspecting millions of SNPs. Otherwise processing all
of the SNPs to discover the ones associated with a disease is a very demanding task
requiring large processing power and appropriate selection technigue. In the third
stage, statistically significant SNPs are prioritized according to additional important
features such as SNP location, associated gene, associated disease, pathway etc. as
well as p-value. There are various tools in the literature for SNP prioritization such
as SPOT [78], SNPLogic [79] or Fast SNP [80] and METU-SNP [4].

Prioritization Based

SNP Data Quality on Statistical,
Control GWAS Analysis Functional

And Imputation and Biological
Relevance

Figure 9 Outline of generic SNP prioritization process.

In prioritization, statistically significant SNPs below a threshold value, for example
SNPs with significance p-value 0.05 or lower, are further analyzed with respect to
biological facts [81]. In this stage various features from domain knowledge is
integrated into associations to discover the SNPs that are really associated to
investigated trait or disease. For instance, linkage disequilibrium is a strong
association between SNPs at neighboring loci and may be given importance. It is
also possible to weight the genes according to their significance by using all SNPs
on the genes [82]. It may be done by calculating combined p-values for SNPs on a
gene using methods such as Fisher’s combination test as follows:

pgene(combinea) = =2 Z In Di (EQUATION 1)
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Where Pgene(combined) is the combined p-value of the gene and pi is the p-value for i
SNP on the gene for which combined p-value is calculated. Similarly, it is also
possible to obtain significance of pathways in which genes exists by calculating
Fisher’s exact test as follows:

- O (EQUATION 2)
Ppathway (combined) = 1- Z : 1\1In)_l
i=1 m

Here, Ppathway(combined) IS the combined p-value of the pathway, N is the total number
of genes, s is the number of genes associated to disease, m is the number of genes
on the pathway and K is the number of significantly associated genes in the pathway.
In addition to statistical evidences, biological and functional facts about knowledge
such as genomic location, disease association are considered in prioritization of
SNPs. The resulting list of SNPs from prioritization is called Candidate SNP list.

2.10. Decision Making and Analytic Hierarchy Process

Multi Criteria Decision Making (MCDM) is the process of making decisions, which
requires consideration of number of subjective factors. Analytic Hierarchy Process
(AHP) is one of the frequently used MCDM methods [83]. It has gained popularity
over the years especially in the fields of management, engineering and medicine
[84][85][86][87]. The outline of AHP is shown in Figure 10. One of its advantages
is its ease of use. Simple pairwise comparisons based upon the judgments of experts
are required to derive priority scales [88][89]. Performing pairwise comparisons
allows decision makers to assign weights to coefficients and compare alternatives.
Because it provides hierarchical view to problem structure, additions and
improvements to a model is easy. Since its introduction in 1980’s it was employed
in many areas such as economics, resource management, corporate policy and
strategy, public policy, political strategy, planning [90][91].

AHP has been extensively used in decision making problems in many fields
literature. For instance, some researchers studied AHP in contracting company
selection [24][92], product quality evaluation [93], plant or facility location
selection[94], game design factor evaluation [95] and search engine evaluation [96],
Risk Assessment Modeling for security of cross border gas pipeline [97] and Single
Nucleotide Polymorphism Prioritization after Genome Wide Association Studies in
Bioinformatics [4].
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Figure 10 Outline of generic AHP Hierarchy Model.

AHP requires assigning weights to the investigated categories. In order to set these
weights expert opinion is required. However, the judgement based on the expert
evaluations may be subjective, incorrect or not precise. Improper weighting of the
AHP categories may result in complete failure in the decision making process.
Moreover, the detection of related categories for the problem is another subjective
task. Literature search and expert knowledge is also required to obtain the relevant
categories to provide proper decision making capability for the AHP about the
problem. For this purpose questionnaires are provided to the experts to select
between important categories or add new ones [98][99][100]. As these methods do
not provide a complete solution to the problem, as long as the weighting is based on
expert evaluations, the problems stated above are yet unsolved [101].

These drawbacks i.e. subjectivity, uncertainty, imprecision in expert judgements for
pairwise comparisons have been mentioned and solutions have been proposed in
literature. An expert’s approach to a problem may not be the same. The results of
the decision may differ according to the expert Delphi method which was introduced
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by Dalkey [102][103][104] is one of most widely used methods. In Delphi method,
in order to reduce subjectivity, inputs from multiple experts are obtained and the
collected data is consolidated. It has been used to obtain single weight for each
pairwise comparison in the AHP model. Another approach is Interval AHP in which
categories are assigned as intervals instead of giving single value in pairwise
comparisons [105].

Researchers also proposed use of Fuzzy Set Theory to handle experts’ inputs
[101][106]. Fuzzy Logic Theory was introduced by Lotfi A. Zadeh [107]. It has
been extensively used in many studies and systems successfully. In real systems,
experts performs actions according to their preferences and customizations [108].
In many cases, converting a real world parameter to a precise mathematical model
iIs not always possible because a human senses and decides using previous
experience more than making calculations. For instance, a person can feel if water
is cold or warm. But cannot measure exact temperature of water. The felt
measurements are not crisp but fuzzy values. However, he or she does not know its
temperature quantitatively. Fuzzy logic theory takes this reality into account. The
weights assigned by experts during pairwise comparisons are evaluated as fuzzy
values instead of crisp values [109]. Using this method, the inadequate use of crisp
values is avoided for modeling of imprecise real life problems. Instead, experts
provide their evaluations as fuzzy assessments. In order to benefit from both,
combination of Fuzzy Theory and Delphi process was also proposed as Fuzzy
Delphi Method (FDM). FDM was used to mitigate risks of subjective evaluations in
pairwise comparisons in literature [99][106][109]. Although it has been used
widely, the efficiency of using Fuzzy Logic in AHP is also criticized in [101].

Here, we have proposed a novel “Random Forest based Analytic Hierarchy Process”
(RF-AHP) method to address the expert judgment uncertainty in AHP decision
making. The dependency to the expert opinion is eliminated by training the AHP
input data using Random Forest machine learning method. Evaluation of AHP
categories i.e. criteria is made according to the assigned importances by the trained
Random Forest model.

Although the methods above provide successful approaches to reduce the effect of
experts in the loop, to the best of our knowledge, there was no study that removes
the necessity of experts.
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2.11. Analytic Hierarchy Process Workflow

Analytic Hierarchy Process is essentially a decision making approach based on the
priorities which were obtained from pairwise comparison of criteria and
alternatives. The application steps of AHP is outlined in Figure 11.

The steps AHP may be explained as follows:

1. Problem Definition: In the first step of AHP, the problem to be solved is defined.
Therefore, the goal of the decision making is defined.

2. Criteria Definition: In the second step, the criteria that should be considered in
solving the problem are defined. Criteria are subjective based on the requirements
of experts. Also their validity should be checked.

3. Listing of Alternatives: In this step, possible decision alternatives are identified.
4. Construction of Hierarchy: In order to solve the problem, the goal, criteria and
alternatives are organized as a hierarchy as shown in Figure 10. The goal is in the
top level, criteria are in the second level, and the alternatives are at the bottom. In
the hierarchy, the elements which are at the same level are independent
(Independence axiom of AHP). The complexity of the hierarchy may change
according to number of levels in the hierarchy and complexity of the problem.

5. Scaling of the relative importances: In this step the range of relative importances
to be used in pairwise comparisons are defined. Although different scales may be
used, most commonly used scale is 1-9 scale as shown in Table 1 [88][89]. This
scale contains five major scores namely 1, 3, 5, 7, 9. However, if the expert is not
certain about these values, for instance, a comparison may require giving more than
2 but less than 3, then inter-values 2,4,6,8 may also be used.

Table 1 Available Options for Pairwise Comparisons in Criteria Evaluation.

Option Numerical Value
Equally Important 1
Weakly Important 3

More Important 5

Very Important 7
Extremely Important 9
Intermediate values (if required) 2.,46,8
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6. Receiving Expert Selections: During application of AHP, one or more experts
are interviewed or made questionnaires about the relative importances. In these
interviews experts make pairwise comparisons of criteria. The consistency of results
and decision performance of AHP is very much dependent on these decisions.
Therefore, expertise and appropriate knowledge of the selected people have critical
importance in AHP method. If there is only one expert, acquiring preferences and
making pairwise comparisons are easy. Otherwise multiple user evaluations are
averaged by using arithmetic or geometric mean to obtain single comparison result.

1. Problem Definition )—)( 2. Criteria Definition

4. Construction
of Hierarchy

5. Scaling of 6. Receiving L
Relative Importances Expert Selections

Evaluations Obtained via Expert Consultancy

8. Calculation Of 7. Preparing Pairwise
Relative Weghts Comparison Matrix

9, Calculation and
Ranking
of Alternatives' Scores

3. Listing of
Alternatives

Figure 11 Implementation steps of Analytic Hierarchy Process.



7. Preparing Pairwise Comparison Matrix: Using the pairwise comparisons from
Step 6, a pairwise comparison matrix is populated. If there are n criteria in the
hierarchy then n.(n-1)/2 comparisons are performed. Therefore the size of
comparison matrix is nxn.

Although, relative comparisons are used mostly, use of absolute scales such as
weight, height i.e. are also possible. In this case, the absolute values are written to
matrix directly. At the end of this step, the relative or absolute importances i.e.
preferences are obtained in matrix form. In this matrix, a;= 1/aj.

a;; =1 12 Q1n
1 =1 .. 9,

A= | Yo ax 2n (EQUATION 3)
1/aln 1/a2n o Opp =1

8. Calculation of Relative Weights of Criteria: After developing pairwise
comparison matrix, these values should be normalized. For normalization firstly
sum of cells for each column is obtained as shown in (4).

bj=Y a (EQUATION 4)
j=1

Then, each cell value is divided to sum of its column value as follows:

o — dii (EQUATION 5)
v bj
C11 C12 e Cip
C = "?l ‘?’-’ - ‘2 (EQUATION 6)
Cln  Con -+ Cpn

Having obtained matrix C which consists of c;j values, relative weights of each
category is obtained using arithmetic mean as shown in (6):
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9. Calculation of Scores and Ranking of Alternatives: When AHP hierarchy with
weights is available, all of the alternatives’ AHP scores are calculated finally. Then
the alternatives are ranked according to their AHP score. According to decision
requirement most ranking alternatives are identified and decision making process is
accomplished.

2.12. Random Forest Machine Learning Algorithm

Random Forest (RF) is a supervised machine learning model developed by Leo
Breiman in 2001 [5][110][111]. It is called as forest because it consists of many
randomly produced decision trees. An RF is aggregation of thousands different
randomly produced decision trees. Each tree consist of randomly selected features
i.e. variables in the feature space. Also the training data is selected randomly using
bootstrap method. The trees are trained according to classification and regression
tree (CART) algorithm, which was also invented by Leo Breiman. Because each
tree is constructed randomly and using different variable set, each is trained uniquely
to classify the input space. Each tree classifies which class should be predicted in
their output. For an input instance, some trees may classify correctly or some may
do incorrectly. However the outcome of the random forest is obtained by combining
results from all of the trees based on voting. Overall output is the most voted value
by trees. The success of random forest relies on the fact that the major vote should
be the right selection for the whole forest.

Random Forest method has become a popular algorithm in machine learning. It is
successful in problems where the number of features is large. Being an ensemble
method, it is able to deal with complex interactions [5]. It is also able to provide a
measure about variable importances. Random forest is a classification and
regression method based on the ensemble of large number of trees. The trees are
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constructed from a training dataset. The generalized flow of Random Forest
algorithm is shown in Figure 12.

Step 1. The available data about the problem is sampled for each tree training using
bootstrapping. Sampled data is divided to 2 parts. The 2/3 portion of sampled data
is used as training data and 1/3 portion as Out-of Bag (OOB) data. OOB data is used
to estimate the error for each trained tree.

Step 2. For each sampled data a standard classification and regression tree (CART)
is grown. The parameters for the CART training is as follows:

mtry €{1,..,p}. random number of features to be used at splitting at each node
of each tree;

nodesize € {1,..,n}: the number of instances in each cell before split.

Step 2.a In RF training of CART is controlled by mtry parameter. In each split
(i.e. branching in tree), randomly, mtry number of prediction feature is selected
from all feature set.

Step 2.b Identify the best splitting feature in this feature set. In CART,
decrease of Gini impurity is used for splitting a cell. According to Gini index
a cell is divided to two branches.

Step 2.c Repeat until all of the feature splits are completed. Then a tree is
grown.

Step 3. After growing a tree, remaining data portion i.e. OOB is used to validate
prediction performance. Hence each tree is trained and evaluated by uniquely
bootstrapped data set. After a tree is grown, it is aggregated to the forest.

Step 4. Repeat the same steps to train new tree until number of trees in settings for
the forest is obtained.

Step 5. By averaging the OOB error for each tree, OOB error prediction for the
forest is obtained.

After the forest is obtained, the prediction by the forest is obtained by aggregation
of predictions of all of the trees in the forest. For random classification forest, most
voted response by the trees is the output class. In random regression forest the
average of the voted values is the response of the forest.
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Figure 12 Flowchart of Random Forest model.

2.13. Advantages of Random Forest

e Random Forest method may be used for categorical or numerical data for

classification and regression, respectively.

e |t is successful for predictions for both large and small data sets. There is no
need for dividing data for training and testing because it uses bootstraps from
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the full data set to grow individual trees. Hence, cross validation is not
necessary.

e Itis able to classify when the classes in the data set is imbalanced.

e Random Forest is relatively easy to use for the expert because it requires setting
only number of trees in the forest and selecting number of features in each split
by the user.

2.14. Pitfalls of Random Forest

In decision tree, the result of splits may be easily visualized to understand the nature
of the problem. However, in RF, there are thousands of trees and it is not possible
to understand any information by visualizing the trees. Hence RF model is a black
box method to the data analyst.

Additionally, in application software of the RF on a computer, all of the trees in the
forest should be kept in memory. Therefore, it requires larger memory and greater
processor resources during both training and prediction. However, as stated in [112],
it is possible to remove a tree instance in the forest when keeping all of the trees in
memory is not necessary.

2.15. Random Forest Use Cases: Prediction and Ranking

Random forest method may be used for prediction purpose in a classification or
regression problem or ranking purpose of the features according to their
performance in prediction used in that problem. Ranking is accomplished by
calculating the variable importances of features within the RF method. Here in the
presented work, we are using RF for ranking purpose. The ranking is made by
evaluation of the variable importances that are inherently calculated during the
training of RF model. The details of Ranking via variable importances are detailed
as follows.

2.16. RF Variable Importances

After training an RF model, it is possible to rank the feature importances. It is an
essential property of RF. There are two methods for calculation of variable i.e.
feature importances. The First is Mean Decrease in Gini Impurity (MDI) and the
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second is Mean Decrease in Accuracy (MDA) [5]. MDI is based on calculating the
total amount of decrease in node impurities i.e. information gain in all trees when
splits made on that variable [113] [114]. The amount of decrease of impurity (Al) of
variable X0 in a split at a node for only one tree (t) may be calculated as follows:

Al (XU)) = Iparent — (pleft.]left + pright.[right) (EQUAT'ON 9)

Here, the proportion of samples in left and right nodes is given by per and prigr., and
the impurities for parent, left and right nodes are Iparent, lier aNd Iign: respectively. The
impurities for nodes are calculated with:

I=1-Y (n(4)) (EQUATION 10)

J

Where p(j) is the proportion of samples with label () in that node. Then mpI of x»
for all trees may be calculated as:

ntree
1

MDI(XU)) = > ATW(XW)  (EQUATION 11)
t=1

ntree

Similarly, MDA may be calculated by averaging decrease of accuracies for all tree
[115]. If variable is not important, its MDA should not degrade prediction accuracy.
The amount of decrease of accuracy (A4) of variable xo for only one tree (t) may be
calculated according to following equation:

m —(t) m (1)
AAD (x0)) = 2z B 2im1¥ixi (EQUATION 12)

m m

Here, m is the no of samples in the Out of Bag portion of training data. 7" is 1 if y;
is correctly classified by tree ¢, 0 otherwise. Similarly, When xo is permuted, yir
is 1 if y;is correctly classified by tree (t) after x;is permuted , O otherwise. MDA of
xo for all trees may be calculated as:

niree

1 .
Y AAD(XY)) (EQUATION 13)
t=1

ntree

MDA(XW) =

On this equation, ntree is the number of trees in the random forest. MDA is obtained
by calculating the arithmetic mean of pA all trees in the random forest.
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CHAPTER 3

MATERIALS AND METHODS

3.1. Utilized Data Sources

In order to evaluate AHP categories using RF-AHP for SNP prioritization, four
types of data source were used: 1. Candidate SNP Lists, 2. Statistically Significant
SNP List, 3. SNP Feature Database, 4. dbGaP Disease Datasets. For evaluation of
regulatory contents RegulomeDB dataset is used. The details of these datasets are
presented as follows:

3.1.1 Candidate SNP List from Genomic Model

First type of data source is the candidate SNPs modeled in previous SNP
Prioritization studies. In these studies various data-mining approaches were used on
disease specific case-control data to identify SNPs associated with these diseases.
For PCa model, significant SNPs set was obtained from [6], where SVM+ID3
methods were used successively to detect PCa related SNPs. As a result, 108 SNPs
were selected as candidate. The list of these SNPs is available in APPENDIX A. We
have analyzed the previously published model, and used disease associated
candidate SNPs as Response. It should be noted that, the datasets were selected from
a study, in which, techniques other than AHP were used. This ensures that the
candidate SNPs identified by these models do not cause any bias in the training of
proposed model.

3.1.2 Statistically Significant SNP List

Second type of data source is statistically significant SNPs list. In order to obtain
statistically significant SNPs, Prostate Cancer (PCa) genotyping dataset from dbGaP
collection was used. The dataset obtained from “Multi Ethnic Genome Wide Scan
of Prostate Cancer” Study. It consists of 4650 cases and 4795 controls with 600.000
SNPs. [116][117]. In this study we used the SNP list from the genomic model results
already completed in [6]. It consisted of three stages. At first stage, SNP data quality
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control is performed according to minor allele frequency, missing values and Hardy-
Weinberg equilibrium criteria. In the second stage, each SNP’s multiple testing
adjusted p-values of association were calculated. The analysis was made using
PLINK and results were obtained in the form of “association.assoc.adjusted” file.
Finally, a significance threshold of p-value=0.05 is set in the
“association.assoc.adjusted” file and only statistically significant SNPs are
obtained.

3.1.3 SNP Features Database

Third type of data source is the SNP features database. This is the most essential
component of data oriented training of AHP and contains vast amount of
information accumulated from clinical bioinformatics domain. The database
contains detailed annotations of SNPs according to their genomic location, disease
association based on literature, prediction of consequences, and conservation across
species [4]. These features were collected from public dbSNP, EntrezGene, KEGG
and Gene Ontology databases. The database included following categories that may
be used for SNP prioritization:

1. GWAS Results:
e SNP p value
e SNPs related with significant genes according to combined p-value with
respect to Linkage Disequilibrium (i.e. non-random association of alleles at
two or more loci)
o SNP is on significant gene,
o SNP is on a significant gene which is on a significant pathway.
2. Biological Facts:
o SNP with evolutionary conserved regions.
e SNPs on a gene.
o SNPs that are associated with a gene which is related to a complex disease.
e SNP is proved to be associated to a Disease gene via either directly or LD
with another SNP, or a Pathway.
o SNP is associated to a Disease gene (but not proved) via either directly or LD
with another SNP, or a Pathway.
3. Genomic Location and Functional Effects:
e Non-Coding- UTR-3
Non-Coding- UTR-5
Non-Coding Intronic
Non-Coding - Near Gene 3
Non-Coding - Near Gene 5
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e Non-Coding - Splice3

e Non-Coding Splice5

e Coding- Frameshift

e Coding - CDS Non Synonymous

3.1.4 dbGaP Disease Datasets

First type of data source is the genotyping data from the following dbGaP
collections. Four disease datasets used in the analysis namely were 1.Prostate
Cancer (PCa), 2.Type 2 Diabetes Mellitus (T2DM), 3. Alzheimer's Disease (AD)
and 4. Schizophrenia (Sz). Details of datasets are as follows:

Prostate Cancer (PCa) Dataset: The PCa dataset for tests is the same as that used
in training. As explained above, it was obtained from “Multi Ethnic Genome Wide
Scan of Prostate Cancer”. This dataset consists of 4650 cases and 4795 controls with
600.000 SNPs [116].

Type 2 Diabetes Mellitus (T2DM) Dataset: T2DM dataset was obtained from
“Nurses' Health Study” (NHS, all female 1,769 controls and 1,479 cases) and the
Health Professionals Follow-up Study (HPFS - male 1,277 controls and 1,114
cases) on Type 2 Diabetes Mellitus" and includes 642,576 SNPs [118][119].

Alzheimer’s Disease (AD) Dataset: The AD dataset was obtained from GenADA
dataset. Genotyping data included 806 AD cases and 782 controls. It consists of
500,000 SNPs [120][121].

Schizophrenia (Sz) Dataset: Sz disease dataset was available from dbGaP public
database as “Molecular Genetics of Schizophrenia (MGS) study”. It consisted of
3,972 cases and 3,629 controls [122].

PCa data was used in training of Random Forest machine learning algorithm for
AHP Category Evaluation as shown in this table. However, for the performance
evaluation between Delphi-AHP and RF-AHP all of the four disease datasets were
used.

The imported version of RegulomeDB is 1.1 and is based on the data from
dbSNP141 version. We downloaded all of the RegulomeDB dataset on a server
machine due to its size. RegulomeDB 1.1 contains about 60 million SNPs. However,
the database reused from METU-SNP contained 11 million SNPs. About 10 million
of these SNPs existed in RegulomeDB as well.
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3.1.5 RegulomeDB Regulatory Variant Datasets

The imported version of RegulomeDB is 1.1 and is based on the data from
dbSNP141 version. All of the RegulomeDB dataset was downloaded and adapted
to the study.

3.2 Software Environment for the Analysis

RF-AHP development, analysis, performance comparisons are completed in R. In
the training process of Random Forest algorithm “randomForest” package in R data
mining and statistical analysis software [112] was used. Using the permutation test
facility of this package, Mean Decrease in Accuracies (MDA) and Mean Decrease
in Impurity (MDI) importance measures for the categories were calculated. METU-
SNP source code was tailored or reused when possible for development of RF-AHP
and performance comparison on GWAS Disease Datasets. MySQL Database used
to store SNP Annotation Datasets.
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CHAPTER 4

IMPLEMENTATION OF RANDOM FOREST AHP AND
INCORPORATION OF REGULOMEDB

4.1. Objectives

Random Forest based Analytic Hierarchy Process (RF-AHP) method has been
developed to address the expert judgment uncertainty in AHP decision making. The
dependency to the expert opinion is eliminated by training the AHP input data using
machine learning method called Random Forest. Evaluation of AHP categories is
made according to the calculated variable importances of Random Forest model.

The proposed RF-AHP method requires data preparation, application of Random
Forest machine learning method, inspecting RF model and evaluation steps. The
explanation of these steps is presented in following section. Sample application of
each step is detailed as a case study in Application of RF-AHP to SNP Prioritization
section of this chapter.

Finally, incorporation of RegulomeDB as an additional feature is presented at the
end of the chapter.
4.2. Implementation of RF-AHP Methodology

The RF step is implemented to eliminate the tasks that require an expert’s
consultancy. The proposed RF-AHP requires an initial database construction, thus
the availability of available datasets is essential for this method. The steps of the
proposed RF-AHP are explained below, and as shown in Figure 13.

1. Problem Definition: Similar to Delphi AHP, the first step is to define the
decision problem to be solved.
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1. Problem Definition 2. Database Collection

Y

3. RF-Training
Possible Alﬁmatives Possibl*e Criteria

# 1 4
Alternative#| Response |Criterion 1 |Criterion 2
Alternative 1 yes no yes
Alternative 2 yes yes no
yes
Alternative ... no no yes
Alternative ... no yes no
1 no

Random Forest Training Table
|

5. Calculation Of 4. Preparing Pairwise
Relative Weghts Comparison Matrix

—

6. Calculation and
Ranking
of Alternatives' Scores

Figure 13 Implementation steps of Random Forest based Analytic Hierarchy Process.

2. Database Collection: RF-AHP, being a data driven methodology, assumes the
availability of extensive data, and requires analysis of these data sources. The data
may be obtained from large databases, transaction systems, management
information systems, web, cloud, literature etc. The possible alternatives for the
decision problem should be researched from the structured or unstructured data and
transformed into rows as shown in Figure 13. Similarly, the criteria for making the
decision should be digested or consolidated from resources. The criteria are assigned
as features for the random forest method. The response variable should also be
populated according to each alternative whether it is selected or not selected in the
decision. In the end a classification (or regression) table should be populated in
which rows are the alternatives and columns are criteria for the decision. The table
is called as Random Forest Training Table as shown in Figure 13.
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3. RF Training: After obtaining the training table for the classification, a Random
Forest model is trained. The details of Random Forest training process are presented
Section 2.12 Random Forest Machine Learning Algorithm, therefore it will not be
repeated here. In RF-AHP, the variable importances from the trained RF model are
used. As mentioned in Section 2.12, two types of variable importances namely,
Mean Decrease in Impurity (MDI) and Mean Decrease in Accuracy (MDA)
calculations for each category in the RF training table are made on the trained RF
model. The user of the RF-AHP method may decide which importance to use
according to problem context.

4. Preparing Pairwise Comparison Matrix: After obtaining Criteria importances
i.e. Variable Importances as MDA or MDI, pairwise comparison matrix is calculated
as follows:

a1 = 1 VIl/VIQ Vfl/VIn

A— VIQ/VI]_ o9 = 1 VIQ/VIn
. : . (EQUATION 14)

VIn/Vll VIR/VIQ Apn — 1

Here, VI;stands for MDA;:if MDA importances are used in pairwise comparisons, or
V Iistands for MDI;if MDI importances are used in pairwise comparisons. Moreover,
user provided evaluation of combination of MDI and MDA is also possible.
Following precautions and alternatives may also be considered in construction of
pairwise comparison matrix:

1. Criteria which have VIs as zero should be removed. These criteria are not
effective in decision making. Additionally, it is not possible to construct pairwise
comparison matrix because it causes “division by zero” in elements as explained
by Saaty [123].

2. Likewise, the user may choose to apply the scale presented in Table 1 with
respect to MDA or MDI importances.

3. Although in normal process it is possible to use the importance values directly
according to MDA or MDI values, the decision maker may choose to use manual
scales by simply looking at VI values. For instance one variable may have very
high VI value that saturates the scaling, therefore very high values may be
clamped at a limit.
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5. Calculation of Relative Weights of Criteria for RF-AHP: After developing
pairwise comparison matrix above, its values should be normalized. For
normalization firstly sum of cells for each column is obtained as showed in (15)
previously. This step is covered in detail in Section 2.11 as Step 8 in the Analytic
Hierarchy Process Workflow. For the sake of completeness we summarize the
calculation of criteria weights again. The comparison matrix elements are
normalized as follows:

Cij #
D i1 @i (EQUATION 15)

Having obtained normalized matrix C which consists of cjj values, relative weights
of each criteria is obtained as W vector using arithmetic mean as shown in (16):

P EESTh
n

D j=1C2j

W = n (EQUATION 16)

m )
j=1Cnj

L n .

6. Calculation of RF-AHP Scores for Alternatives and Ranking: After RF-AHP
hierarchy with criteria weights is obtained, RF-AHP scores are calculated for the
alternatives and ranked. The details of these calculations are covered in Section 2.11
under Step 9. By applying a threshold to scores of alternatives prioritized
alternatives are obtained decision making process is completed.

4.3. Application of RF-AHP to SNP Prioritization

In order to validate proposed RF-AHP method, a case study was conducted for
Single Nucleotide Polymorphism (SNP) Prioritization [124]. Details of SNP
prioritization was also presented in Section 2.9 SNP Prioritization and Candidate
SNP Selection.

38



Candidate SNPs

Calculate Statistical Identified from
Significance of SNPs Previously Developed
Model

Filter SNPs by Y

Statistical
Significance

‘\. I/I. Atracted
Fetch Data for Train Random 1
Filtered SNPs from Forest Model
Database & Calculate MDAs

METU-SNP Database
(SNP Annotations)

Figure 14 Order of activities in application of RF-AHP method in SNP Prioritization.

The objective of RF-AHP in SNP Prioritization process is to give score to each SNP
in the dataset such that, the SNPs those responsible of subject disease get highest
score. Firstly,  statistical  analysis  results  were  obtained as
“association.assoc.adjusted” files from PLINK and significance threshold p-value
was selected. The SNPs which have smaller p-value than threshold were queried
from SNP features database to collect their accompanying data. After obtaining SNP
features, an input table was populated as shown in Figure 15.

On this table, if a SNP was supplied with information that, for instance, if the field
in ‘‘Frameshift” in the SNP Features database is valued as “1”, then it is recorded
as ‘‘yes”, otherwise it is recorded as ‘‘no”. Similarly, if there was no data available
for the SNP for that category, it is recorded as ‘‘no” by default, meaning that it has
no effect for the prioritization. If the SNP is one of the disease SNPs in the candidate
SNP then OUTPUT class is recorded as ‘‘yes”, otherwise it is recorded as ‘‘no”.
The steps to implement RF-AHP was explained in Section 4.2. Here we apply each
step to SNP prioritization as follows:

Step 1. Problem Definition: The goal of decision making problem in SNP
prioritization is to find the most relevant SNPs for a given SNP list. In order to
achieve this objective, the supplied SNPs are analyzed for various features from
SNP annotation database.
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Candidate Statistically SNP Features from
Disease SNPs Significant SNPs SNP Annotation Database

L | I_|
' 2 ‘|

SNP MIM Response |DiseaseGene|FrameShift

rs3371 yes no no

rs100167 I yes yes no

rs225461 no no yes

rs23731 no yes no
no

Random Forest Training Table

v

-
Extracted Variable Importances From

Trained Random Forest Model
Y J

v

Calculate AHP Weights

using Extracted Variable Importances
\. J

Calculate AHP Scores
and Obtain Most Important SNPs

Figure 15 Application of RF-AHP method in SNP Prioritization.

\

For instance, one may consider DiseaseGene_ViaDirect feature in SNP annotation
database. If the SNP (i.e. an alternative) is already associated with any other disease
gene, it may be highly a candidate for the subject disease as well. Therefore, the

decision making method should appropriately handle it for SNP prioritization.

Step 2. Database Collection: In this step, the datasets mentioned in Section 3.1are

used to populate the RF database table shown in Figure 15.
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First type of dataset is the candidate SNP list mentioned in Section 3.1.1. This SNP
list contains 108 SNPs associated to prostate cancer obtained from [53]. These SNPs
are inserted to the RF training table as Response = “yes” rows as shown in Figure
15.

Secondly, statistically significant SNPs explained in Section 3.1.2 are inserted to RF
training table as Response = “no” as shown in Figure 15. The significance threshold
p-value=0.05 is set, 26367 SNPs whose significance lower (i.e. better) than
threshold is selected.

The third type of dataset is SNP features dataset as explained in Section 3.1.3. The
features are all categorical data. It is used to populate the criteria columns in the RF
database table. If a SNP has an annotation for a criterion in the SNP features dataset,
the annotated value is recorded to the table as “yes”. If there is no annotation found
for a SNP, the feature is recorded as “no” for imputation.

Step 3. RF Training for SNP list and SNP features database: The training of RF
model is performed after obtaining the populated RF database table.

RandomForest Library Training Parameters: The RandomForest library accepts the
RF database training table as training data. The Response field was set as the
predictor output explicitly. Variable Importance Calculation feature was set to true.
Number of features to train for each tree was set to mtry=10 and number of trees in
the forest was set to N=5000. With these settings the training code was run and the
trained RF model was obtained.

Step 4. Calculation of Pairwise Comparison Matrix

In our model, the Variable Importances are the criteria in AHP. Random Forest
package in R calculates Mean Decrease in Accuracy i.e. MDA and mean decrease
in Gini (i.e. Impurity) MDI as importances.

The calculated MDA and MDI variable importances from RF model is plotted and
shown in Figure 16. On the figure, most of the annotated features for criteria are
found to be zero importance. When the MDA and MDI plot is inspected carefully,
it may be seen that MDA value for some criteria are negative valued. It means that
permuting those variables affect the model accuracy. For this purpose of keeping all
information possible, they are saved for criteria list. The MDA and MDI plot is not
similar because of negative values in MDA plot. For this reason, it is not easy to
follow “importance based weight calculation” approach. Instead, we opted for using
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RF selected categories, then used pairwise comparison weights from [4] based on
genomic, statistical and biological features.

Step 5. Calculation of Criteria Weights: The relative weights are calculated by

considering the importances, pairwise comparison weights and using equations (13),
(14) and (15) respectively. The results of calculated weights are shown in Figure 17.

Goal

GWAS Biological Facts
1 = mi

IndividualSNP Genomic Location Conservation
[
—— ——
Non-Coding Coding Mammalian Vertebrate

e,
UTR3’ MiRNA Significant Other
Prediction Mouse ECR Mammalian
. s NonSyn . e
Intronic Near Gene 3 |Pol hen Beni n| Gene Association

—— —
Crite ri a Other Gene Disease Gene —
Via Pathway
R — e .
Neutral Other Disease
Via Direct ViaLD Via Pathway Via Direct ViaLD Via Pathway

Figure 17 Resulting RF-AHP Tree for SNP Prioritization.
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Step 6. Calculation of RF-AHP Scores for Alternatives and Ranking:

After obtaining the criteria with weights the resulting AHP model is for calculation
of score for each SNP and ranked by their AHP scores. RF-AHP Score for each SNP
is calculated according to the following equation:

n

S(SNPt) = Zfi(SNPf)Wi t=1,..m (EQUATION 17)
i=1

Here, m is the number of SNPs, Wi is the normalized weight of a category in AHP
tree obtained by RF-AHP method and I; is the activation indicator for SNP; for
criteria i. For instance, if SNPt is related to disease gene on the same pathway
(DiseaseGene ViaPathway), its indicator value is 1, otherwise 0. Therefore, the
score of a SNP (i.e. alternative) is calculated by sum of activated weights. The
resulting RF-AHP Tree is shown in Figure 17. Application results for SNP
prioritization using obtained RF-AHP model is presented in Chapter 5.

4.4. Incorporation of RegulomeDB: RF-AHP-R

A large percentage of GWAS hits for common traits and common diseases or
phenotypes fall outside of exome i.e. non-coding regions [125][126][127].
RegulomeDB provides annotations for SNPs with known and predicted regulatory
DNA elements such as regions of DNase hypersensitivity, binding sites of
transcription factors, and promoter regions that have been biochemically
characterized to regulation transcription.

In RF-AHP, most of the SNP annotations currently existing in the database is mostly
on coding regions. Non-coding SNPs, without having any associated gene for a
annotation, it is difficult to effectively annotate a variant. One of the best features
of integrative approach with RF-AHP is ability to add new databases easily.
Thus, we have incorporated RegulomeDB dataset, which combines sources from
public ENCODE project [44], into RF-AHP scoring is done to improve its
prioritization performance. Details of incorporation of RegulomeDB to system is as
follows.

The RegulomeDB incorporated version of RF-AHP method i.e. RF-AHP-R is able
to score and prioritize SNPs in both coding and regulatory regions. In importing the
data, the categorical RegulomeDB score converted to numeric score in RF-AHP-R.
As explained in Section 3.1.5, the imported version of RegulomeDB is version 1.1.
The lookup table for conversion of RegulomeDB scores to RF-AHP-R scoring is
shown in Table 2.
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Table 2 RegulomeDB Scoring to RF-AHP-R Scoring for Computations.

RegulomeDB RF-AHP-R
Score Supporting Data Score
la eQTL + TF binding + Matched TF Motif + 6
Matched DNase Footprint + DNase Peak

1b eQTL + TF Binding + Any Motif + DNase 6
Footprint + DNase Peak

1c eQTL + TF Binding + Matched TF Motif + 5
DNase Peak

1d eQTL + TF Binding + Any Motif + DNase 5
peak

le eQTL + TF Binding + Matched TF Motif 4

1f eQTL + TF Binding / DNase Peak 3

2a TF binding + Matched TF Motif + Matched 4
DNase Footprint + DNase Peak

2b TF Binding + Any Motif + DNase Footprint + 4
DNase Peak

2¢C TF Binding + Matched TF Motif + DNase 3
Peak

3a TF Binding + Any Motif + DNase peak 3

3b TF Binding + Matched TF Motif 2

4 TF Binding + DNase Peak 2

5 TF Binding or DNase peak 1

6 Other 0
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CHAPTER 5

RESULTS AND DISCUSSIONS

In this study, variable importance property of Random Forest algorithm was used to
identify informative and uninformative categories in construction of RF-AHP. Our
results showed that, using the RF variable importances, AHP based SNP
prioritization can be performed without any subjectivity to obtain better decision
performance. Here, we have presented our results in two sections; First, RF-AHP
performance is demonstrated on the Prostate Cancer and the Alzheimer’s Disease
datasets. Next, comparison of RF-AHP and RF-AHP-R methods to Delphi AHP is
presented for all four disease datasets described in Section 3.1.4.

5.1 Comparison of Delphi AHP Categories to RF-AHP Categories

METU-SNP was developed in 2011 in METU-BIN Bioinformatics Laboratory. It
was constructed using Delphi-AHP methodology [4]. The database of the Delphi
AHP contains SNP annotations with features such as gene, disease etc. It employs a
novel approach to SNP prioritization using Analytic Hierarchy Process based
decision making technique for SNP prioritization. It analyzes and calculates a score
for each SNP according to different categories in the dataset. The weights of
categories were scored by six molecular biology experts using the Delphi method.
A Dbrief view of Delphi AHP tree is shown in APPENDIX B. Consequently, the
category evaluations are based on judgement. Moreover, it is not clear that all of the
inspected features in AHP tree are really necessary. A subset of questions which
were asked to experts is available in APPENDIX C.
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In this step comparative case study, the categories used in RF-AHP was compared
to categories in Delphi AHP. The Delphi AHP tree was analyzed in order to detect
uninformative and uncertain category weights based on RF-AHP results. The main
objective of RF-AHP is to select categories to evaluate from the list of categories
that exists in METU-SNP database. The application steps of Delphi AHP and RF-
AHP are shown in Figure 18 (a) and (b). When compared to Delphi AHP categories,
19 categories do not exist in RF-AHP categories shown in Table 3. They are found
to be uninformative by RF variable importances.

1. Problem Definition 2. Criteria Definition ( 1, Problem Definition )—)( 2. Database Collection }l

3, RF-Training
Possible A$rnaﬁvs Possible Criteria D
( 4, Construction 3. Listing of » 4k ¥ " a)
\ of Hierarchy Alternatives Alternativeif] Response |Criterion 1 |Criterion 2
Alternative 1 yes no yes
Alternative 2 yes YES no
5. Scaling of 6, Receiving | "e: m es
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Alternative ... no yes no
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Evaluations Obtained via Expert Consultancy Random Forest Training Table
8. Calculation Of 7. Preparing Pairwise 5. Calculation Of 4, Preparing Pairwise
Relative Weights Comparison Matrix Relative Weights Comparison Matrix
9. Calculation and 6. Calculation and
Ranking Ranking
of Alternatives' Scores of Alternatives' Scores
(a) (b)

Figure 18 Comparison of Delphi AHP and RF-AHP implementation steps.
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Table 3 List of Uninformative Categories According to Calculated Importances.

Non Coding UTR 3 NoMiRNAPred
Non Coding UTR 5 CpGlsland

Non Coding UTR 5 NoCpGlsland
Non Coding NearGene5 CpGlsland
Non Coding NearGene5 NoCpGlsind
Non Coding Splice3

Non Coding Splice5

Coding Frameshift

Coding CDS NonSyn PolyphenBenign
Coding CDS NSyn PossiblyDamaging
Coding CDS NSyn ProbablyDamaging
Coding CDS NSyn CompletelyDetermined
Significant Gene ViaLD

Significant Gene ViaDirect

Significant Gene ViaPathway
Significant Pathway Gene ViaLD
Significant Pathway Gene ViaDirect
Significant Pathway Gene ViaPathway
Disease Gene ViaLD

Disease Gene ViaDirect

5.2 Application of RF-AHP for SNP Prioritization

In order to validate the performance of trained RF-AHP model, analyses for Prostate
Cancer and Alzheimer’s Disease is performed. Details of Prostate Cancer and
Alzheimer’s Disease datasets used in the analyses were described in Section 3.1.4.

For the first analysis, statistically significant SNPs are selected from Prostate Cancer
GWAS analysis was used in the AHP prioritization. The trained RF-AHP model
described in the Section 4.3 was used to calculate the RF-AHP scores. In order to
select informative SNP set to analyze with SNPNexus, we filtered the SNPs with
highest scores. The number of SNPs having RF-AHP score greater than 0.1 was
found as 121 SNPs. For the second analysis, a completely different dataset i.e.
Alzheimer’s Disease dataset was selected. Following the same work-flow with the
Prostate Cancer variant analysis, statistically significant SNPs obtained from
Alzheimer’s Disecase GWAS analysis was selected for RF-AHP analysis. Then RF-
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AHP model was used to calculate RF-AHP scores. The number of SNPs, associated
with AD, having RF-AHP score greater than 0.1 was 56.

5.3 Analysis of RF-AHP Based SNP Prioritization Results

Prostate Cancer Analysis Results: Prostate Cancer associated 121 SNPs selected
through RF-AHP, returned rs1801701, rs531572, rs77905, rs8177812, rs12636081
SNP ids as the most frequently referenced SNPs by GAD. As shown in Table 4, all
the SNPs was successfully placed in Top 20 by RF-AHP except rs8177812. When
inspected, in the RF-AHP results, rs8177812 was ranked as 49th.

Table 4 Top 20 SNPs, calculated RF-AHP scores and GAD Rank for PCa.

Rank | SNP ID RF-AHP Score |GAD Rank
1 rs3912492 0.338088 8
2 rs12636081 0.338088 5
3 rs17061864 0.338088 6
4 rs6803449 0.338088 7
5 rs1801701 0.215257 1
6 rs77905 0.21326 3
7 rs12948056 0.212474 121
8 rs4794488 0.212474 66
9 rs1433369 0.197392 50
10 rs16930396 0.190501 35
11 rs1608114 0.190501 91
12 rs1915940 0.190501 95
13 rs2574824 0.182625 26
14 rs7249230 0.177416 109
15 rs11563056 0.175419 118
16 rs8064691 0.175419 75
17 rs12592981 0.175419 87
18 rs531572 0.175419 2
19 rs965560 0.159278 26
20 rs138726 0.159278 22
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SNPNexus results provided APOB, LARGE, LRRN1, FHIT, DBH as most
referenced genes. These genes were also associated with Metabolic, Cardiovascular,
Psychiatric, Cancer, Chemical Dependency disease classes. As most referenced
phenotypes Glucose, Cholesterol HDL, Tobacco Use Disorder, Cholesterol LDL
and Waist Circumference categories were obtained (Figure 19).
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Figure 19 SNPNexus Frequency Results of AHP results for Prostate Cancer Analysis: a) Most
Referenced SNPs b) Most Referenced Genes ¢) Most Referenced Disease Classes d) Most

Referenced Phenotypes.

Alzheimer’s Disease Analysis Results: For Alzheimer’s Disease, the results
obtained from the SNPNexus provided the references for 56 SNPs having RF-AHP
Score >0.1. SNPNexus returned rs6023, rs5897, rs4972, rs132954, rs6160 SNP ids
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as the most referenced SNPs. When it is checked in Table 5, all of the SNPs were
successfully found in Top 20 by RF-AHP. SNPNexus results provided F5, F2,
LARGE, ADD1, LRRN1 as most referenced genes. SNPNexus associated
Cardiovascular, Metabolic, Reproduction, Hematological, Cancer as disease classes
for the submitted SNPs. Glucose, Venous Thrombosis, Hypertension, Thrombo-
Embolism, Cholesterol HDL categories was obtained as the most associated
phenotype classes (Figure 20).

Table 5 Top 20 SNPs and calculated RF-AHP scores and GAD Rank for AD.

Rank | SNPID RF-AHP Score [GAD Rank
1 rs3084 0.474415 41
2 rs11523 0.460004 36
3 rs879 0.45345 52
4 rs897530 0.451068 21
5 rs7384 0.432316 N/A
6 rs2668 0.421324 26
7 rs6160 0.412137 5
8 rs7769 0.408969 46
9 rs5897 0.400453 2
10 rs1237 0.397055 25
11 rs14810 0.393636 14
12 rs11522 0.393636 32
13 rs783305 0.385102 20
14 rs4161 0.375043 34
15 rs9511 0.370289 18
16 rs1615 0.370289 N/A
17 rs17032 0.368507 10
18 rs42019 0.350949 23
19 rs4972 0.339956 3
20 rs138222 0.329827 9
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Figure 20 SNPNexus Frequency Results of AHP results for Alzheimer’s Disease Analysis: a)
Most Referenced SNPs, b) Most Referenced Genes, ¢) Most Referenced Disease Classes, d)

Most Referenced Phenotypes

5.4 Performance Comparison between Delphi-AHP and RF-AHP and
RegulomeDB Incorporated RF-AHP-R versions

In order to compare the prioritization performance of the three models, GWAS
Disease Datasets presented in Section 3.1.4 were used. There are four disease
datasets namely, Schizophrenia, Type 2 Diabetes Mellitus, Alzheimer’s Disease and
Prostate Cancer. RF-AHP and RegulomeDB incorporated version RF-AHP-R are
compared to Delphi AHP according to SNP prioritization results of these four
datasets. In these analyses, SNP scores for each method are calculated according to
Equation (17). Performance of the RF-AHP and RF-AHP-R are compared to the
expert evaluated Delphi-AHP by using the methods explained in Chapter 4. In order
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to obtain statistically significant SNPs, p-value threshold was selected as 0.05. Then
following analyses are repeated for each model for all disease datasets. The top 20
SNPs according to all methods for various disease datasets are presented in
APPENDIX D as tables. Number of available SNPs is also counted and presented
in APPENDIX E. Additionally, results of references calculated from SNPNexus
GAD results are presented in APPENDIX F.

5.4.1 Comparative Analysis of Schizophrenia SNP Prioritization Results for
Delphi AHP RF-AHP and RF-AHP-R

AHP Score distribution for Schizophrenia analyses are shown in Figure 21. Amount

of available SNPs which have AHP scores higher than threshold are shown in Table

6. For Schizophrenia disease, general distribution of AHP scores were higher.

Therefore, threshold was set to 0.5.
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Figure 21 Distribution of computed for Sz scores in Delphi AHP, RF-AHP and RF-AHP-R

According to Table 6, it may be seen that the number of available SNPs having AHP
scores above 0.1 was the same at 961 SNPs for Delphi AHP and 959 SNPs for RF-
AHP. This shows that designing AHP process using RF was able to provide almost
same response without requiring any expert and no loss of information occurred. Sz
analysis using RF-AHP-R provided 2424 SNPs which scored over threshold value.
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Table 6 No of Available SNPs as a Result of Schizophrenia Analysis

Analysis Name No of SNPs whose AHP score > 0.5
Sz analysis using Delphi AHP 961

Sz analysis using RF-AHP 959

Sz analysis using RF-AHP-R 2424

For each analysis result a separate SNPNexus job was submitted. Result of each job
analyzed and GAD results are shown in Figure 22.
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Figure 22 SNPNexus-GAD Frequency Results for Schizophrenia Analysis: a) Most Referenced
SNPs b) Most Referenced Genes c¢) Most Referenced Disease Classes d) Most Referenced
Phenotypes

5.4.2 Comparative Analysis of Prostate Cancer SNP Prioritization Results for
Delphi AHP RF-AHP and RF-AHP-R

AHP Score distribution for Prostate Cancer analyses are shown in Figure 23. For

Prostate Cancer according to general distribution of AHP scores threshold was set

to 0.1. Amount of available SNPs which have AHP score higher than threshold are

shown in Table 7.
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According to Table 7, it may be seen that the number of available SNPs having AHP
scores above 0.1 was the same at 121 SNPs for Delphi AHP and RF-AHP.

Table 7 No of Available SNPs as a Result of Prostate Cancer Analysis

Analysis Name No of SNPs whose AHP score > 0.1
PCa analysis using Delphi AHP 121
PCa analysis using RF-AHP 121
PCa analysis using RF-AHP-R 140

This shows that designing AHP process using RF was able to provide same response
without requiring any expert and no loss of information occurred. By incorporating
RegulomeDB data, in RF-AHP-R, number of available SNPs increased to 140. For
each analysis result a separate SNPNexus job was submitted. Result of each job
analyzed and GAD results are shown in Figure 24.
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Figure 24 SNPNexus-GAD Frequency Results for Prostate Cancer Analysis: a) Most Referenced
SNPs b) Most Referenced Genes ¢) Most Referenced Disease Classes d) Most Referenced
Phenotypes

5.4.3 Comparative Analysis of Type 2 Diabetes Mellitus SNP Prioritization
Results for Delphi AHP RF-AHP and RF-AHP-R

AHP Score distribution for Type 2 Diabetes Mellitus analyses are shown in Figure

25. For Type 2 Diabetes Mellitus disease, according to general distribution of AHP

scores threshold was set to 0.1.
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Amount of available SNPs which have AHP score higher than threshold are shown
in Table 8. According to Table 8, it may be seen that the number of available SNPs
having AHP scores above 0.1 was the same at 330 SNPs for Delphi AHP and RF-
AHP. This shows that designing AHP process using RF was able to provide same
response without requiring any expert and no loss of information occurred. By
incorporating RegulomeDB data, in RF-AHP-R, number of available SNPs
increased to 353 SNPs. For each analysis result a separate SNPNexus job was
submitted. Result of each job analyzed and GAD results are shown in Figure 26.

Table 8 No of Available SNPs as a Result of Type 2 Diabetes Analysis

Analysis Name No of SNPs whose AHP score > 0.1
T2DM analysis using Delphi AHP | 330
T2DM analysis using RF-AHP 330
T2DM analysis using RF-AHP-R 353
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Figure 26 SNPNexus-GAD Frequency Results for T2DM Analysis: a) Most Referenced SNPs b)
Most Referenced Genes ¢) Most Referenced Disease Classes d) Most Referenced Phenotypes
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5.4.4 Comparative Analysis of Alzheimer’s Disease SNP Prioritization Results for
Delphi AHP RF-AHP and RF-AHP-R

AHP Score distribution for Alzheimer’s Disease analyses are shown in Figure 27.

For Alzheimer’s Disease according to general distribution of AHP scores threshold

was set to 0.1.
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Figure 27 Distribution of computed scores for AD in Delphi AHP, RF-AHP and RF-AHP-R

As a result of Alzheimer’s Disease GWAS analysis number of significant SNPs
above p-value=0.05 was comparably lower than other diseases. Therefore
prioritization results contained less SNPs. Amount of available SNPs which have
AHP score higher than threshold are shown in Table 9. It may be seen that the
number of available SNPs having AHP scores above 0.1 was the same at 54 SNPs
for Delphi AHP and RF-AHP. Therefore, RF-AHP was able to provide same
response without requiring any expert and no information loss occurred. By
incorporating RegulomeDB, in RF-AHP-R, SNPs increased to 56 SNPs. GAD
results are shown in Figure 28.

Table 9 No of Available SNPs as a Result of Alzheimer’s Disease Analysis

Analysis Name No of SNPs whose AHP score > 0.1
AD analysis using Delphi AHP 54
AD analysis using RF-AHP 54
AD analysis using RF-AHP-R 56
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Figure 28 SNPNexus-GAD Frequency Results for Alzheimer’s Disease Analysis: a) Most
Referenced SNPs b) Most Referenced Genes c¢) Most Referenced Disease Classes d) Most
Referenced Phenotypes

5.5 Discussion on the Analysis Results

Overall results of this thesis provided a proof-of-concept for Random Forest based
AHP (RF-AHP) method to address expert judgment uncertainty in decision making
with AHP. The AHP categories are evaluated according to calculated Variable
Importances in the trained Random Forest model providing automatic identification
of necessary set of features and weights.

Remarkably, according to Figure 16, categories such as Coding_Frameshift and
Other_Coding_Nonsynonymous have zero importance and they are omitted in RF-
AHP and RF-AHP-R It is logical because if these mutations occur then result is not
a complex disease but a monogenic disease with major effects.

When the number of SNPs over an AHP score threshold are compared between
Delphi AHP and RF-AHP analyses (Table 6 through Table 9) no change was
observed. This proved that designing AHP based on RF importances was successful
in representing the same decision making performance.
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Use of RegulomeDB incorporated RF-AHP-R method for Sz analysis nearly
doubled the number of available SNPs as it may be seen in Table 6. RF-AHP-R
scoring also provided insight into Schizophrenia disease. These results supported
that, Schizophrenia associated regions of genome are mainly located in regulatory
regions. Additionally, in PCa, T2D and AD analyses, the number of available SNPs
increased consistently in small amounts for RF-AHP-R because of additional
knowledge provided by RegulomeDB table.

The Top 5 most referenced SNPs were the same for all three of the methods for each
disease (Figure 22, 24, 26, and 28). Number of most referenced disease classes
increased proving that the optimized model is able to link higher number of SNPs
to diseases. One interesting result is that most referenced disease class is
METABOLIC although its phenotype is a cancer. In the T2DM results,
METABOLIC disease class results increased mostly meaning that the RF-AHP
model is able to perform better for T2D which is also a metabolic disease. In
Schizophrenia, most referenced disease types are METABOLIC and
PSYCHOLOGICAL class which are also logical. For Alzheimer
CARDIOVASCULAR type is mostly referenced in GAD database. The number of
most referenced phenotypes in analyses are consistent between Delphi AHP and RF-
AHP models. Proving that the RF-AHP model is able to link same or higher number
of SNPs to phenotypes. Moreover both the Delphi AHP and RF-AHP models were
able to detect most Diabetes Mellitus type phenotypes successfully. When the most
referenced number of genes in SNPNexus query is checked, it was found that they
are the same in all methods for each disease.

In summary, pruning the Delphi AHP tree categories did not cause any loss of
information. However, when these categories were asked to experts, mistakenly
these categories were given high importance. Therefore, data driven approach
avoided mistakes due to subjective weighing of categories by experts.
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CHAPTER 6

CONCLUSIONS AND FUTURE RESEARCH

6.1 Conclusions

The objective of this thesis work is to provide a solution to subjectivity and
uncertainty problem in Analytic Hierarchy Process based decision making caused
by the expert evaluations. In particular, a solution for Single Nucleotide
Polymorphism (SNP) prioritization problem for disease associated SNP biomarker
detection problem has been proposed. The introduction of the problem is provided
in the first chapter of this thesis. In the second chapter, the molecular biology
background concepts for complex diseases and SNP prioritization are presented to
establish a base of knowledge. Related literature for complex disease biomarker
discovery by use of SNPs is reviewed. Genome wide association study which is
widely used in prior to SNP prioritization is presented. Additionally, background
for Analytic Hierarchy Process based decision making and Random Forest based
machine learning method, their advantages and disadvantages are reviewed. In the
third chapter, materials and methods employed to realize the proposed algorithms
are presented. Detailed explanation of utilized data sources such as Schizophrenia,
Prostate Cancer, Type 2 Diabetes Mellitus and Alzheimer’s Disease is presented.
Additionally, software environment in development and testing of the
methodologies is outlined. In the fourth chapter, proposed Random Forest based
Analytic Hierarchy Process RF-AHP is described in detail. Its advantages for
eliminating subjective decisions is explained. A case study for application of RF-
AHP to SNP prioritization is presented as a step by step procedure. Moreover,
implementation details of RF-AHP-R method is described. With RF-AHP-R,
prioritization using SNPs with regulatory functions are provided by incorporation
of RegulomeDB.

Results and Discussion of tests performed on implemented methods are presented
in the fifth chapter. Performance of the realized RF-AHP is tested through two
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disease datasets namely Prostate Cancer and Alzheimer’s Disease. Comparison of
Delphi AHP based method to RF-AHP method and RF-AHP with RegulomeDB i.e.
RF-AHP-R is presented. The comparisons of performance for the three methods are
shown as various plots. Later, discussion of the results is presented. Finally in this
chapter, in the following sections, the contributions and possible future search
alternatives are provided.

6.2 Contributions

Proposed Random Forest based Analytic Hierarchy Process (RF-AHP) method to
address the expert judgment uncertainty problem in Analytic Hierarchy Process
design was showed to be viable for decision making in SNP prioritization. Both
important and uninformative AHP categories are identified by using the Random
Forest machine learning method using Prostate Cancer dataset [116][117] .

There are studies in the literature, where Random Forest analysis was applied to
discover candidate SNPs [128][129]. However, to the best of our knowledge,
incorporating Random Forest to the AHP approach in order to provide RF-AHP
prioritization was not reported in previous academic studies. In this study, variable
importance property of Random Forest method was shown to be useful to identify
informative and uninformative categories in a previously developed expert designed
Delphi-AHP. Consequently, using the RF-AHP method, AHP based SNP
prioritization can be performed without the need for experts, therefore subjectivity
in decisions may be eliminated.

Four disease datasets namely Schizophrenia [122], Prostate Cancer [116][117],
Type 2 Diabetes Mellitus [118][119] and Alzheimer’s Disease[120][121] were used
in analyses. RF-AHP and RF-AHP-R compared to Delphi AHP according to SNP
prioritization results of these four datasets. As a consequence of comparative
analyses, it is concluded that there is no loss of information in the results with respect
to the number of prioritized SNPs between three approaches. For instance,
Coding_Frameshift and Other_Coding_Nonsynonymous categories were not used
in RF-AHP as they were not found to have any impact on the decision. As coding
SNPs would have serious consequences on the biological outcome, they are more
likely to be the causative changes in single gene disorders. However, complex
genetic disorders such as, cancer, diabetes or neurological diseases studied here, are
the focus of GWAS. In a complex genetic disorder, many SNPs, spread throughout
the genome, contributes to increase disease susceptibility as small effects [55].
Furthermore, the genetic factors associated with the disease are not only the
variations between these groups, but there are additional factors such as
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demographical and clinical findings, lifestyle, and other environmental factors
[54][66].

The focus in the applied method was identification of valuable information in each
category in the Delphi-AHP tree. Therefore, building a more objective and more
efficient AHP tree was possible without use of any experts by Random Forest based
evaluation of uninformative categories of the AHP tree.

6.3 Future Research

As a future research on this study, firstly, the proposed method may be used to
analyze other complex diseases such as bipolar disorder or other types of cancers.
By this way, etiology of other diseases may be discovered by employing RF-AHP.

Secondly, considered SNP annotations include genetic biological and functional
annotations. In the analysis of complex diseases there are other factors that should
be considered such as clinical phenotypes, real time sensor data and lifestyle
information e.g. BMI, smoking and environmental conditions such as air pollution.
After these datasets are obtained and incorporated into RF-AHP, we believe the
prioritization performance may be further improved.

Thirdly, in the current database, only SNPs are evaluated in RF-AHP. However
other types of polymorphisms such as STRs and CNVs which were mentioned in
Section 2.3 may be analyzed for finding complex disease related biomarkers.

Finally, performance comparison of RF-AHP may be made to other machine
learning methods such as naive-Bayes or neural networks.
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APPENDICES

APPENDIX A

LIST OF SNPs FROM PROSTATE CANCER GENOMIC MODEL [6]

SNPs: 1-60 SNPs: 61-108
rs2442602 rs16863955
rs11729739 rs504207
rs17363393 rs17152800
rs7562894 rs12980509
rs17701543 rs12119983
rs3093679 rs9963110
rs280986 rs10068915
rs17595858 rs2296370
rs9848588 rs6708126
rs9347691 rs960278
rs11790106 rs1020235
rs5972169 rs7843255
rs964130 rs2853668
rs6851444 rs2115101
rs11126869 rs10106027
rs4782945 rs2194505
rs10195113 rs524534
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rs11086671 rs2602296
rs7775829 rs17111584
rs12243805 rs2120806
rs1433369 rs17799219
rs6887293 rs17400029
rs9401290 rs17178580
rs1454186 rs10517581
rs12733054 rs7183502
rs3812906 rs2948268
rs17284653 rs3760903
rs4827384 rs2103869
rs17375010 rs13011951
rs6549458 rs11685549
rs1379015 rs11584032
rs1122170 rs10788555
rs766045 rs12266639
rs2666205 rs6676372
rs1965340 rs4562278
rs501700 rs7067548
rs12201462 rs2826802
rs7010457 rs4793790
rs6704731 rs11885120
rs17432165 rs17001078
rs4908656 rs7024840
rs10854395 rs2711134
rs6475584 rs7584223
rs1470494 rs918285
rs9462806 rs197265
rs12644498 rs4517938
rs7876199 rs7152946
rs744346 rs7034430
rs1974562 rs517036
rs12247568 rs340542
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rs17673975

rs1074525

rs6774902

rs10954845

rs6686571

rs6779266

rs6747704
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APPENDIX B

DELPHI ANALYTIC HIERARCHY PROCESS TREE (Adapted from [4])
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APPENDIX C

SAMPLE QUESTIONNAIRE FOR DELPHI-AHP CATEGORY WEIGHTS
BY EXPERTS [4]

Priority | Description Expert1 | Expert2 | Expert3 | Expert4 | Expert5

vectors

0 Gwas Results 0.33 0.25 0.83 0.14 0.36

1 Biological Facts 0.67 0.75 0.17 0.86 0.64

0.1 Individual SNP 0.07 0.07 0.08 0.16 0.06

0.2 Significant -Gene 0.64 0.64 0.19 0.75 0.27

0.2.1 Significant Gene - Via | 0.06 0.11 0.07 0.07 0.11
LD

0.2.2 Significant Gene - Via | 0.66 0.63 0.75 0.81 0.33
Direct

0.2.3 Significant Gene - Via | 0.28 0.26 0.18 0.12 0.56
Pathway

0.3 Significant Pathway 0.28 0.28 0.72 0.09 0.67
Gene

0.3.1 Significant Pathway 0.06 0.11 0.08 0.11 0.11
Gene - Via LD

0.3.2 Significant Pathway 0.66 0.63 0.69 0.7 0.33
Gene - Via Direct

0.3.3 Significant Pathway 0.28 0.26 0.23 0.19 0.56
Gene - Via Pathway

1.1 Evolutionary 0.06 0.12 0.26 0.31 0.11
Conservation

111 Vertebrate 0.33 0.17 0.9 0.13 0.25

1.1.2 Mammalian 0.67 0.83 0.1 0.88 0.75

1.1.2.1 | Mammalian - 0.67 0.83 0.25 0.75 0.8
Significant Mouse
ECR

1.1.2.2 | Mammalian - Other 0.33 0.17 0.75 0.25 0.2
Mammalian

1.2 Gene Association 0.66 0.32 0.63 0.62 0.58

121 Disease Gene 0.9 0.83 0.88 0.9 0.88

1.2.1.1 | Disease Gene - ViaLD | 0.06 0.11 0.09 0.23 0.11
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APPENDIX D

DELPHI-AHP, RF-AHP AND RF-AHP-R SCORES FOR ANALYZED
DISEASES

TOP 20 DELPHI-AHP, RF-AHP AND RF-AHP-R SCORES FOR
ALZHEIMER’S DISEASE

AD DELPHI-AHP Scores:

rs879 0.435252
rs2668 0.422149
rs11523 0.421324
rs6160 0.412137
rs3084 0.398197
rs1237 0.398197
rs7384 0.376914
rs14810 0.375438
rs11522 0.375438
rs897530 0.374533
rs783305 0.366587
rs7769 0.353567
rs9511 0.352091
rs1615 0.351774
rs42019 0.351774
rs5897 0.323093
rs4972 0.320616
rs4161 0.298508
rs17032 0.292289
rs138222 0.291147
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AD RF-AHP Scores:

rs879 0.43411

rs2668 0.421324
rs11523 0.421324
rs6160 0.412137
rs3084 0.397055
rs1237 0.397055
rs14810 0.374296
rs7384 0.374296
rs11522 0.374296
rs897530 0.373708
rs783305 0.365762
rs9511 0.350949
rs1615 0.350949
rs7769 0.350949
rs42019 0.350949
rs5897 0.323093
rs4972 0.320616
rs4161 0.297683
rs17032 0.291147
rs138222 0.291147
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AD RF-AHP-R Scores:

rs3084 0.474415
rs11523 0.460004
rs879 0.45345

rs897530 0.451068
rs7384 0.432316
rs2668 0.421324
rs6160 0.412137
rs7769 0.408969
rs5897 0.400453
rs1237 0.397055
rs14810 0.393636
rs11522 0.393636
rs783305 0.385102
rs4161 0.375043
rs9511 0.370289
rs1615 0.370289
rs17032 0.368507
rs42019 0.350949
rs4972 0.339956
rs138222 0.329827
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TOP20 DELPHI-AHP, RF-AHP AND RF-AHP-R SCORES FOR PROSTATE
CANCER DISEASE

PCa DELPHI-AHP Scores:

rs3912492 0.338913
rs12636081 0.338913
rs17061864 0.338913
rs6803449 0.338913
rs1801701 0.215257
rs4794488 0.213299
rs77905 0.21326

rs12948056 0.212474
rs1433369 0.198217
rs1608114 0.191643
rs16930396 0.191326
rs1915940 0.191326
rs2574824 0.18345

rs7249230 0.177416
rs11563056 0.176244
rs8064691 0.176244
rs12592981 0.176244
rs531572 0.176244
rs965560 0.160103
rs138726 0.159278
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PCa RF-AHP Scores:

rs3912492 0.338088
rs12636081 0.338088
rs17061864 0.338088
rs6803449 0.338088
rs1801701 0.215257
rs77905 0.21326

rs12948056 0.212474
rs4794488 0.212474
rs1433369 0.197392
rs16930396 0.190501
rs1608114 0.190501
rs1915940 0.190501
rs2574824 0.182625
rs7249230 0.177416
rs11563056 0.175419
rs8064691 0.175419
rs12592981 0.175419
rs531572 0.175419
rs965560 0.159278
rs138726 0.159278
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PCa RF-AHP-R Scores:

rs3912492 0.357428
rs12636081 0.357428
rs17061864 0.338088
rs6803449 0.338088
rs1433369 0.274752
rs1801701 0.253937
rs1608114 0.248521
rs77905 0.2326
rs12948056 0.231814
rs666721 0.23002
rs16930396 0.229181
rs4794488 0.212474
rs3782851 0.21068
rs11695247 0.210092
rs138000 0.210092
rs1915940 0.209841
rs680949 0.206673
rs11253552 0.206673
rs6949101 0.206673
rs2574824 0.201965
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TOP20 DELPHI-AHP, RF-AHP AND RF-AHP-R SCORES FOR
SCHIZOPHRENIA DISEASE

Sz DELPHI-AHP Scores:

rs17115004 0.737535
rs3793504 0.737535
rs2229163 0.73671

rs7009117 0.71945

rs6589360 0.715562
rs7128875 0.715562
rs6475523 0.715562
rs16895119 0.714737
rs17011998 0.692803
rs2982712 0.692215
rs12295969 0.677721
rs11819808 0.677721
rs11568942 0.677721
rs720024 0.677721
rs7074934 0.677721
rs7111410 0.677721
rs16848098 0.677721
rs5030351 0.677721
rs17021884 0.677721
rs6669695 0.677721
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Sz RF-AHP Scores:

rs17115004 0.73671

rs2229163 0.73671

rs3793504 0.73671

rs7009117 0.71945

rs6589360 0.714737
rs7128875 0.714737
rs6475523 0.714737
rs16895119 0.714737
rs17011998 0.691978
rs2982712 0.69139

rs12295969 0.676896
rs11819808 0.676896
rs11568942 0.676896
rs720024 0.676896
rs7074934 0.676896
rs7111410 0.676896
rs16848098 0.676896
rs5030351 0.676896
rs17021884 0.676896
rs6669695 0.676896
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Sz RF-AHP-R Scores:

rs7009117 0.77747

rs2229163 0.77539

rs3793504 0.77539

rs7541690 0.754256
rs6589360 0.753417
rs17115004 0.73671

rs4655836 0.734916
rs7128875 0.734077
rs16895119 0.734077
rs10790976 0.730909
12227284 0.730909
rs7019331 0.730909
rs10757185 0.715576
rs7875344 0.715576
rs41368546 0.715576
rs447 0.715576
rs3213219 0.715576
rs951240 0.715576
rs6475523 0.714737
rs7722406 0.712157
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TOP20 DELPHI-AHP, RF-AHP AND RF-AHP-R SCORES FOR TYPE 2
DIABETES MELLITUS DISEASE

T2DM DELPHI-AHP Scores:

rs12592542 0.506199
rs3935795 0.491705
rs3935794 0.491705
rs3935796 0.491705
rs11593943 0.491705
rs16886364 0.491705
rs16886448 0.491705
rs17109221 0.491705
rs10841843 0.468946
rs190092 0.468358
rs12907278 0.468358
rs17764096 0.468358
rs7153625 0.468358
rs7154599 0.468358
rs6866823 0.468358
rs6871286 0.468358
rs6886001 0.468358
rs1979398 0.468358
rs4685598 0.468358
rs7649544 0.468358
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T2DM RF-AHP Scores:

rs12592542 0.505374
rs3935795 0.49088
rs3935794 0.49088
rs3935796 0.49088
rs11593943 0.49088
rs16886364 0.49088
rs16886448 0.49088
rs17109221 0.49088
rs10841843 0.468121
rs190092 0.467533
rs12907278 0.467533
rs17764096 0.467533
rs7153625 0.467533
rs7154599 0.467533
rs6866823 0.467533
rs6871286 0.467533
rs6886001 0.467533
rs1979398 0.467533
rs4685598 0.467533
rs7649544 0.467533
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T2DM RF-AHP-R Scores:

rs3935795 0.56824
rs3935794 0.56824
rs3935796 0.52956
rs7144011 0.525553
rs12592542 0.524714
rs11593943 0.51022
rs16886364 0.51022
rs17109221 0.51022
rs17764096 0.506213
rs10518694 0.492916
rs228768 0.492916
rs16886448 0.49088
rs11603383 0.489748
rs1402002 0.489748
rs1979398 0.486873
rs4685598 0.486873
rs11693602 0.470996
rs4077463 0.470996
rs10841843 0.468121
rs190092 0.467533
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APPENDIX E

AVAILABLE SNPS FOR AHP, RF-AHP RF-AHP-R METHODS FOR
PROSTATE CANCER, TYPE 2 DIABETES, SCHIZOPHRENIA AND
ALZHEIMER’S DISEASE ANALYSES

Table E.1 No of Available SNPs as a Result of Prostate Cancer Analysis

Analysis Name No of SNPs whose AHP score > 0.1
PCa analysis with Delphi-AHP 121
PCa analysis with RF-AHP 121
PCa analysis with RF-AHP-R 140

Table E.2 No of Available SNPs as a Result of Type 2 Diabetes Analysis

Analysis Name No of SNPs whose AHP score > 0.1
T2D analysis with Delphi-AHP 330
T2D analysis with RF-AHP 330
T2D analysis with RF-AHP-R 353

101



Table E.3 No of Available SNPs as a Result of Schizophrenia Analysis

Analysis Name No of SNPs whose AHP score > 0.5
Sz analysis with Delphi-AHP 961
Sz analysis with RF-AHP 959
Sz analysis with RF-AHP-R 2424

Table E.4 No of Available SNPs as a Result of Alzheimer’s Disease Analysis

Analysis Name No of SNPs whose AHP score > 0.1
AD analysis with Delphi-AHP 54
AD analysis with RF-AHP 54
AD analysis with RF-AHP-R 56
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APPENDIX F

GAD RESULTS FOR PROSTATE CANCER DISEASE ANALYSIS IN
AHP, RF-AHP RF-AHP-REGULOME METHODS

Table F.1 No of most referenced SNPs in the results of GAD query

SNP# Delphi-AHP RF-AHP RF-AHP-R
rs1801701 272 272 272
rs531572 90 90 90
rs77905 88 88 88
rs8177812 55 55 55
rs12636081 50 50 50
rs17061864 50 50 50
(Other) 1437 1437 1531
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Table F.2 No of most referenced disease classes in the results of GAD query

Disease Class Delphi- RF-AHP RF-AHP-R
AHP
METABOLIC 621 621 672
CARDIOVASCULAR 342 342 356
PSYCH 213 213 214
CANCER 188 188 190
CHEMDEPENDENCY 124 124 131
NEUROLOGICAL 101 101 105
(Other) 453 453 468

Table F.3 No of most referenced phenotypes in the results of GAD query

Delphi-AHP RF-AHP RF-AHP-R
Phenotype
Glucose 90 90 92
Cholesterol, HDL 77 77 86
Tobacco Use 69 69 71
Disorder
Cholesterol, LDL 58 58 58
Waist 54 54 58
Circumference
Menopause 46 46 51
(Other) 1648 1648 1720
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Table F.4 No of most referenced genes in the results of GAD query

Gene Delphi-AHP RF-AHP RF-AHP-R
APOB 269 269 269
LARGE 145 145 160
LRRN1 144 144 145
FHIT 119 119 119
DBH 86 86 86
MGMT 84 84 84
(Other) 1195 1195 1273
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GAD RESULTS FOR TYPE 2 DIABETES DISEASE ANALYSIS IN AHP,
RF-AHP RF-AHP-REGULOME METHODS

Table F.5 No of most referenced SNPs in the results of GAD query

SNP# Delphi-AHP RF-AHP RF-AHP-R
rs11196208 247 247 247
1512255372 247 247 247
rs10885409 246 246 246
rs11196205 246 246 246
1512243326 246 246 246
rs7077039 246 246 246
(Other) 5204 5204 5345

Table F.6 No of most referenced disease classes in the results of GAD query

Disease Class Delphi-AHP RF-AHP RF-AHP-R
METABOLIC 3419 3419 3465
CARDIOVASCUL 748 748 776
AR

CANCER 408 408 412
IMMUNE 365 365 374
CHEMDEPENDE 296 296 309
NCY

UNKNOWN 273 273 274
(Other) 1173 1173 1213
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Table F.7 No of most referenced phenotypes in the results of GAD query

Phenotype Delphi-AHP | RF-AHP RF-AHP-R
Phenotype 1011 1011 1012
diabetes, type 2 488 488 488
Type 2 diabetes 214 214 218
Tobacco Use Disorder 197 197 197
Diabetes Mellitus, 148 148 148
Type 2
type 2 diabetes 123 123 123
Waist Circumference 4501 4501 4637

Table F.8 No of most referenced genes in the results of GAD query

Gene Delphi-AHP RF-AHP RF-AHP-R
TCF7L2 2813 2813 2813
CDKAL1 225 225 225
LRRN1 176 176 176
NAV2 165 165 176
NCAM2 126 126 147
NRXN3 123 123 123
(Other) 3054 3054 3163
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GAD RESULTS FOR SCHIZOPHRENIA DISEASE ANALYSIS IN AHP,
RF-AHP RF-AHP-REGULOME METHODS

Table F.9 No of most referenced SNPs in the results of GAD query

SNP# Delphi-AHP RF-AHP RF-AHP-R
rs4846051 1951 1951 1951
rs4349 1648 1648 1648
rs4297 1646 1646 1646
rs7212502 1052 1052 1052
rs9903602 1052 1052 1052
rs8191446 794 794 794
(Other) 29989 29989 63874

Table F.10 No of most referenced disease classes for Schizophrenia in the
results of GAD query

Disease Class Delphi-AHP RF-AHP RF-AHP-R
Metabolic 6984 6984 14896
Psych 6074 6074 10703
Cardiovascular 5794 5794 9687
Cancer 4742 4742 7977
Immune 2331 2331 6230
Neurological 2320 2320 4179
(Other) 9887 9887 18345
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Table F.11 No of most referenced phenotypes for Schizophrenia in the results

of GAD query
Delphi-AHP RF-AHP RF-AHP-R

Phenotype
Schizophrenia 1252 1252 1562
Undefined 1011 1011 1433
Tobacco Use 774 774 1425
Disorder
Lung Cancer 544 544 1039
Autism 474 474 1000
Breast Cancer 469 469 881
(Other) 33608 33608 64677

Table F.12 No of mo

st referenced genes in the results of GAD query

Gene Delphi-AHP RF-AHP RF-AHP-R
ESR1 3918 3918 3918
ACE 3284 3284 3284
CNTNAP2 2225 2225 2906
SLC6A4 2102 2102 2244
MTHFR 1947 1947 2102
IL4 1804 1804 1947
(Other) 22852 22852 55616
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GAD RESULTS FOR ALZHEIMER’S DISEASE ANALYSIS IN AHP ,RF-
AHP RF-AHP-REGULOME METHODS

Table F.13 No of most referenced SNPs in the results of GAD query

SNP# Delphi-AHP RF-AHP RF-AHP-R
rs6023 848 848 848
rs5897 655 655 655
rs4972 141 141 141
rs132954 49 49 49
rs6160 43 43 43
rs35627 37 37 37
(Other) 520 520 523

Table F.14 No of most referenced disease classes for Alzheimer’s Disease in the
results of GAD query

Disease Class Delphi-AHP RF-AHP RF-AHP-R
Cardiovascular 919 919 919
Metabolic 354 352 354
Reproduction 236 236 236
Unknown 196 196 196
Hematological 143 143 143
Cancer 109 109 109
(Other) 338 338 339
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Table F.15 No of most referenced phenotypes for Alzheimer’s Disease in the

results of GAD query

Delphi-AHP RF-AHP RF-AHP-R
Phenotype
Glucose 88 88 88
Venous 63 63 63
Thrombosis
Hypertension 43 43 43
Undefined 41 41 41
Thromboembolism 34 34 34
, Venous
Cholesterol, HDL 30 30 30
(Other) 1994 1994 1997

Table F.16 No of mo

st referenced genes in the results of GAD query

Gene Delphi-AHP RF-AHP RF-AHP-R
FS 846 846 846
F2 641 641 641
LARGE 145 145 145
ADD1 140 140 140
LRRN1 48 48 48
CYP11A1 43 43 43
(Other) 430 430 433
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Development Group

TUBITAK-BILTEN Information
Technologies Research Institute- E-
Commerce, E-Signature and
Software Development Group

Turkish War Academies Command-

War Games Simulation Center,
Military Service

TUBITAK-BILTEN Information
Technologies Research Institute-
Intelligent Energy Conversion
Systems Group

TUBITAK-BILTEN Information
Technologies Research Institute-
Intelligent Energy Conversion
Systems Group

Hacettepe University, Department
of Electrical and Electronics
Engineering

FOREIGN LANGUAGES
English: Fluent, French: Basic
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Senior Researcher

Senior Researcher

Software Developer

Senior Researcher

Researcher

Research Assistant



