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ABSTRACT 

 

OPTIMIZATION OF WEIGHTS AND FEATURES IN USE OF AHP FOR SNP 

PRIORITIZATION 

 

 

Yılmaz, Arif 

Ph.D., Department of Health Informatics 

Supervisor: Assoc. Prof. Dr. Yeşim Aydın Son 

 

January 2018, 113 pages 

 

Single Nucleotide Polymorphisms (SNP) holds a promise in identification of 
genomic footprints of complex diseases such as cancer and diabetes. However, 
identification of SNPs associated to complex diseases is a challenging problem due 
to the high number and variety of SNPs present in individual genomes. Analysis of 
genome wide studies of SNP datasets mainly focus on statistical evidence.  As there 
are close to hundred million SNPs in human genome, incorporating biological and 
functional knowledge about statistically significant SNPs provides valuable features 
for further selection of SNPs. Analytical Hierarchy Process (AHP) based SNP 
prioritization approach is a method developed for this purpose. However, AHP 
requires expert knowledge, which results in subjective decisions. In this work, we 
propose a novel approach for AHP design and optimization by utilizing Random 
Forest based AHP (RF-AHP) assessment on categories. We utilized the results of 
previously developed genomic model on Prostate Cancer. Proposed RF-AHP 
approach was compared with Delphi-AHP based method on Schizophrenia, Prostate 
Cancer, Type 2 Diabetes and Alzheimer’s disease genomic datasets and same 
performance was achieved. Additionally, RegulomeDB database was integrated to 
RF-AHP. While similar performance was obtained in most of the datasets better 
prioritization scoring is achieved for Schizophrenia disease. 

Keywords: SNP Prioritization, Analytic Hierarchy Processing, Random Forest, 

Prostate Cancer, Type 2 Diabetes 
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ÖZ 

 

SNP ÖNCELİKLENDİRME AMAÇLI AHP KULLANIMINDA 

AĞIRLIKLARIN VE ÖZNİTELİKLERİN ENİYİLENMESİ 

 

 

Yılmaz, Arif 

Doktora Tıp Bilişimi Bölümü 

Tez Yöneticisi: Doç. Dr. Yeşim Aydın Son 

 

Ocak 2018, 113 sayfa 

 

Tekil Nükleotid Polimorfizmleri (SNP), kanser ya da tip 2 diyabet gibi karmaşık 
hastalıkların tespitinde umut vadetmektedir. Bununla birlikte karmaşık hastalıklarla 
ilişkili SNP’lerin tespit edilmesi bireylerin genomlarındaki çok sayıdaki ve 
değişkenlikteki SNP’ler nedeniyle zorlayıcı bir problemdir. SNP veri setlerinin 
genom çapında ilişkilendirme çalışmalarında çoğunlukla istatistiksel bulgular 
üzerinde odaklanılmaktadır. Bununla birlikte, bir insan genomunda yaklaşık yüz 
milyon SNP bulunmaktadır. İstatistiksel olarak anlamlı SNP’lerle ilgili biyolojik ve 
işlevsel bilgilerin eklenmesi daha ileri SNP seçimi için önemli özellikler 
sağlamaktadır. Analitik Hiyerarşi İşleme (AHİ) temelli SNP önceliklendirme 
tekniği bu görevi yerine getirmek amacıyla geliştirilmiştir. Fakat AHİ’nin 
uzmanların deneyimlerine ihtiyaç duyması özniteliklerin seçiminde ve 
ağırlıklarında öznel kararlara neden olmaktadır. Bu çalışmada AHİ tasarımı ve 
eniyilemesi için Rastgele Orman tabanlı AHİ (RO-AHİ) kategorilerinin ağırlık ve 
öznitelik belirleme yaklaşımı önerilmektedir. Bu amaçla Prostat Kanseri üzerinde 
daha önceden yapılmış olan çalışmalar sonucunda geliştirilmiş olan genomik model 
kullanılmıştır. Geliştirilen yöntem, Şizofreni, Prostat kanseri, Tip 2 Diyabet ve 
Alzheimer Hastalığı genetik veri setlerinde Delphi AHİ tabanlı bir yöntem ile 
karşılaştırılmış ve aynı başarıma ulaşılabilmiştir. Ek olarak, RegulomeDB 
veritabanı da RO-AHİ ye eklendiğinde Şizofreni hastalığı ile ilgili daha iyi 
sonuçlara ulaşılmış, diğer hastalıklar ile ilgili aynı başarım sonuçlarına ulaşılmıştır. 

Anahtar Sözcükler: SNP Önceliklendirme, Analitik Hiyerarşi İşleme, Rastgele 

Orman, Prostat Kanseri, Tip 2 Diyabet 
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CHAPTER 1 

CHAPTERS 

1. INTRODUCTION 

1.1 Motivation 

Human genome may be represented as a sequence, which consists of 3.3 billion 

letters, each representing a single nucleotide. The nucleotides are biomolecules, 

which are symbolized by one of the A, C, G, T letters [1]. In human genome, 99% 

of the nucleotide composition is identical. The remaining 1% consists of the 

variations which are basis for the differences between individuals. If a variation at 

a nucleotide locus is observable in at least 1% of the population, this variation is 

called a Single Nucleotide Polymorphism (SNP). SNPs are very efficient 

biomarkers, as they can be associated with many complex diseases by using 

statistical or intelligent methods.  

Variant data enables research of complex diseases such as diabetes, cardiovascular 

diseases, neuro-degenerative diseases and cancers [2][3]. Genome Wide 

Association Studies (GWAS) can be designed as case-control, cohort or trio study. 

It is used to identify the statistically associated SNPs with complex diseases by 

investigating millions of SNPs in a single experimental set-up. In case-control 

studies, which is the most widely used type, statistically significant variations 

differentiating between case and control samples are found.  

Nonetheless, the number of statistically significant SNPs that should be inspected 

still reaches over tens of thousands. Hence, after GWAS, prioritization of significant 

SNPs according to its biological relevance, and other prior information is required.  

Decision making techniques are shown to appropriately provide a solution to the 

prioritization problem of the candidate SNPs according to the complex criteria [4].  
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The objective of this thesis is to propose Random Forest based AHP (RF-AHP) 

method to address expert judgment uncertainty in decision making with AHP. It is 

accomplished by training the analytical hierarchy process input data using Random 

Forest machine learning method [5]. So, the AHP categories are evaluated according 

to calculated Variable Importances in the trained Random Forest model.  

The RF-AHP method offers pairwise comparisons of categories without any 

requirement of expert knowledge. Consequently, all of the criticisms of AHP related 

to judgement, subjectivity, and uncertainty and imprecision is avoided. A case study 

related to Single Nucleotide Polymorphism (SNP) Prioritization was performed to 

demonstrate the proposed approach. As a supervised learning algorithm, Random 

Forest (RF) method was employed to evaluate the importances of AHP categories. 

In evaluation of AHP categories using RF-AHP for SNP prioritization, three types 

of data source were used. First type of data source is the database existing in METU-

SNP software developed previously in METU-BIN laboratory [4]. Second type of 

data source is the genomic model for a complex disease. Results of a previously 

published study [6] on Prostate Cancer was used as the genomic model in this study. 

Third type of data source is the GWAS disease datasets from the literature. Four 

disease datasets were used in analysis and comparison tests; Schizophrenia, Prostate 

Cancer, Type 2 Diabetes, and Alzheimer’s disease. Prostate Cancer was used in 

training of Random Forest machine learning algorithm for AHP Category 

Evaluation. However, for performance evaluation all of the four disease datasets 

were used. Additionally, we have integrated RegulomeDB scores into RF-AHP 

based prioritization in the latest version of METU-SNP. 

Findings: We have compared our results with Delphi AHP and found out that some 

categories were uninformative and may be removed from AHP hierarchy. 

Consequently, a much simpler AHP tree was obtained providing same or better 

performance without any requirement for expert judgment. After incorporation of 

RegulomeDB, better results obtained for Schizophrenia. 

Originality: The proposed Random Forest based category evaluation method may 

be used in calculation of weights of AHP categories without requiring experts. To 

the best of our knowledge, at the time of writing the thesis, random forest based 

method for AHP category evaluation was not introduced in the literature.  

1.2 Thesis Organization 

This thesis consists of six chapters. In Chapter 1, i.e. this chapter, motivation and 

brief introduction to basic concepts is presented. Single Nucleotide Polymorphisms 
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(SNP) and Genome Wide Association Studies (GWAS) and SNP prioritization are 

briefly explained. Analytic Hierarchy Process decision making technique for SNP 

prioritization, its advantages and disadvantages are listed. The proposed Random 

Forest based Analytic Hierarchy Process to overcome subjectivity problem is 

mentioned. 

In Chapter 2, theoretical background for the concepts referenced in this thesis is 

provided. Firstly, basics of molecular biology science and genomic variations is 

presented. Later, the GWAS and SNP prioritization is explained. Theory of decision 

making with Analytic Hierarchy Processing is provided. Then theory of Random 

Forest machine learning algorithm is described.  

In Chapter 3, materials and methods employed to realize the proposed algorithms 

are presented. Detailed explanation of utilized data sources and their use is provided. 

Then software environment for developing the methodologies is outlined. 

In Chapter 4, theory of proposed Random Forest based Analytic Hierarch Process 

method using variable importances is presented. Its application for SNP 

prioritization is provided in detail. Incorporation of RegulomeDB database into RF-

AHP is described. Integration principles and transformation of RegulomeDB to RF-

AHP based SNP prioritization is detailed. 

In Chapter 5, results on realized RF-AHP and RegulomeDB integrated RF-AHP are 

presented. Comparison of Delphi AHP based method to RF-AHP method and RF-

AHP with RegulomeDB is explained. Then the performance of three methods are 

compared with respect to various performance plots. Later, discussion of the results 

is presented. 

In Chapter 6, conclusions of presented RF-AHP method and possible future 

improvements are discussed. 
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CHAPTER 2 

 

2. BACKGROUND 

Bioinformatics is a research and technology domain which aims to interpret 

molecular biology via computational techniques such as machine learning, statistics 

and high performance computing.  It is an interdisciplinary  field that relates biology 

and biomedical sciences to statistics and computer science [7]. Recent developments 

in the bioinformatics field drives revolutionary approaches to problems in various 

other domains such as health [8][9][10], agriculture [11], genetic engineering [12], 

biology [13], medicine [2], pharmacology [14], sociology [15][16] i.e. all 

dimensions in the universe where life exists. Bioinformatics is subdivided to many 

“omics” fields such as genomics, proteomics, and transcriptomics. These research 

are enabled by employing molecular biology and computational analysis algorithms 

on smallest components such as nucleotides, genes, amino acids, proteins and 

metabolites. Bioinformatics itself is also being revolutionized by new developments 

in biotechnology and data sciences [17]. This has paved the way for higher 

throughput and cheaper sequencing technologies. With emerging big data 

processing technologies such as cluster computing, artificial intelligence and data 

mining techniques, it is possible to make detailed investigation on omics data.  

Recently, one of the mostly focused fields in Bioinformatics is on understanding the 

meaning of the vast amount of data, identify molecular basis of genetic diseases and 

develop personalized medicine approaches [3][18][19][20]. The purpose of this 

thesis is such an effort in that research field. For this purpose, related background 

knowledge on basics of molecular biology, etiology of genetic diseases and genome 

wide association studies and related computational techniques are presented as 

follows. 
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2.1. Molecular Biology, DNA Replication, Transcription and Translation 

DNA is made of nucleic acids which are formed as a double stranded and twisted to 

the shape of double helix made of nucleotide pairs. It is constructed with four 

different types of nucleotides namely Adenine, Cytosine, Thymine and Guanine. 

These nucleotides represented by letters A, C, G, and T [1]. There are about 3 billion 

base pairs in human genome. A genome is made of chromosomes. Diploid 

organisms have pairs of chromosomes that are paternal (inherited from father) and 

maternal (inherited from mother) chromosomes. For instance, human genome 

consists of 23 maternal and 23 paternal chromosomes. The central dogma of 

Molecular Biology  explains replication, transcription and translation [21] as shown 

in Figure 1. Replication is the process of duplication of a DNA during cell division 

as shown in Figure 2. It begins with untwisting the chromosome [22]. Then DNA is 

unzipped by enzyme Helicase by breaking of hydrogen bonds between nucleotides 

and opening a replication fork. In elongation phase, the two separated strands work 

as a template for the nucleotides. An enzyme called DNA polymerase bonds the 

complementary nucleotides to two strands. Here, A is the complementary for T, 

similarly, C is complementary for G. DNA polymerase can operate only in 5’ to 3; 

direction. Therefore, the polymerization and duplication process always continues 

in 5’ to 3’ direction on DNA. During replication, the leading strand nucleotides are 

bond in forward direction continuously. However, in lagging strand, nucleotides are 

bonded in reverse direction in small sequences which are called Okazaki frames.  

Each small fragment is joined to previous fragment with enzyme DNA Ligase 

(Figure 2). 

During DNA replication, enzyme called Exonuclease checks and proofreads the 

bases and if there is an error in A-T or C-G matches, finds and corrects them. After 

replication complete telomere sequences are bonded the both ends of DNA by 

enzyme Telomerase. 99% of chromosome is non-coding regions with mainly 

regulative function. Remaining regions are named exome, where genes are located. 

Gene is a sequence of DNA that produces a specific protein for a specific function. 

A gene maps to specific genetic locus on a chromosome as shown in Figure 3.  
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Figure 1 Central Dogma of Molecular Biology: Replication, Transcription, Translation  (Credit: 

Creative Commons License). 

 

 

 
 

Figure 2 DNA Replication process (Credit: Creative Commons License). 

 

In transcription, the Deoxyribo-Nucleic Acid (DNA) corresponding to a gene is 

rewritten as Ribo-Nucleic Acid (RNA). Later RNA is processed by splicing. In 

splicing, non-coding parts (introns) are excised, and remaining coding regions 

(exons) are combined as the messenger RNA (mRNA). Translation is the coding 

of polypeptides as amino acids according to messenger RNAs as shown in Figure 4. 

Amino acids make up of polypeptides as shown in Figure 5.  Proteins are composed 

of polypeptides. They perform various functions in different biological processes, 

and define the characteristics of organisms.  
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Figure 3 Transcription and Translation of DNA nucleotides on a chromosome (Credit: Creative 

Commons License). 

 

e  

Figure 4 Amino Acid Triplet Codes (Credit: Creative Commons License). 
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Figure 5 DNA-mRNA-Polypeptide relation. (Credit: Creative Commons License) 

2.2. Mutations 

Changes that occur in DNA sequence is called mutations.  This may occur as a result 

of natural processes such as binding an incorrect base during DNA replication or 

due to external factors. The external factors causing mutations are called 

mutagens[23]. A mutagen may be a chemical material such as poison, tobacco, 

pollution or a physical event such as UV light or X-Ray radiation that causes a 

genetic change in DNA [24][25]. A mutation may affect small locus in a gene or 

large portion of a chromosome. Some of the most frequently seen mutations include 

[26]: 

Substitution: When a nucleotide is replaced by another nucleotide, it is called 

substitution. 

Deletion: A nucleotide is removed from the sequence. This may cause a shift in 

transcription of mRNA, therefore in amino acid synthesis all amino acids may be 

different.  

Insertion:  A nucleotide is inserted into a sequence. Result of insertion is similar to 

deletion and may cause large difference in synthesized amino acids. 

If a mutation affects single amino acid it is called point mutation. One or a few 

nucleotides are changed in a DNA sequence [27]. Insertions and deletions may cause 

frameshift mutations if amount of change is not multiple of three bases.  Drastic 

changes may occur after the transcription and translation of a sequence. Codons are 

translated to amino acids in triplets, therefore, one shift in the sequence may result 

in completely different amino acids. Chromosomal mutations on the other hand are 

those who affect all chromosome for instance loss or gain of chromosome 

duplication, deletion or insertion in structure of chromosome. According to result of 

the mutation in amino acid, they are organized under following groups [28][29]: 



10 

 

 

 

Silent or Synonymous Mutation: A mutation that does not alter the produced 

amino acid. The resulting protein is the same as that produced before mutation. 

Nonsynonymous Mutation: A mutation that results in alteration of produced amino 

acid. Then resulting polypeptide and protein is going to be different. Types of non-

synonymous mutations are as follows: 

Missense: A single base substitution (non-conservative substitution) causes 

different coding in amino acid production resulting in different protein synthesis.  

Nonsense: A substitution causes introduction of a stop codon. This results in early 

termination in polypeptide string. The shorter polypeptide string causes loss of 

normal biological activity.  

Frameshift: As mentioned above, this may be result of insertion or deletion of 

nucleotides in DNA sequence.  

If mutations occur in a gamete, they are passed to the next generation i.e. offsprings. 

Otherwise, the mutations remain in the individual, which are called somatic 

mutations. 

2.3. Polymorphism  

If a variation is observed in at least 1% of a population, it is called as polymorphism 

[30][31]. Variations, in which only one nucleotide is different from the population 

is called Single Nucleotide Polymorphisms (SNP) [32]. SNP is very common type 

of polymorphism. SNPs are the most common genomic polymorphisms; in average 

a SNP can be observed in every 300 nucleotide of coding regions and in every 1000 

nucleotide of non-coding genome [33][34]. The most frequently observed 

nucleotide form of the SNP is called as major allele. Likewise, the allele with lowest 

frequency is called as minor allele.  

Inheritance of closely mapped alleles are linked to each other as a group. These 

genetically linked alleles that are on closely linked locations on genes or 

chromosomes are called haplotypes. Haplotypes are likely to be inherited together. 

This non-random linkage between the alleles is called Linkage Disequilibrium (LD).  

As of 2018, 10 million common SNPs have been identified in human genome. As 

shown in Figure 6, according to location and nature of change, SNPs cause different 

outcomes at biological and phenotypic level. Over 60% of all SNPs reported in 
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dbSNP are exonic variations, where majority are missense, indicating a change in 

the amino acid code. These changes can have varying level of effect from 

individuals’ phenotype such as eye color, hair type etc. to susceptibility to diseases 

such as cancer, or complex diseases. Therefore, SNPs are highly promising 

biological markers in research of molecular genetic origins of disease risk, 

susceptibility, or response to treatment. Through understanding of disease causing 

changes in genome, molecular etiology of diseases can be revealed, by identifying 

genes, biological pathways, and other biological interactions. 

 
 

Figure 6 Types of SNPs  (Credit: Creative Commons License). 

2.4. Regulation of Gene Expression 

On DNA molecule, genes are the loci that code proteins [35]. However, just before 

the coding sequence of gene on DNA, a region called the promoter region exists as 

shown .in Figure 7. The promoter region may be as short as a few nucleotides or as 

long as a few hundred nucleotides. The proteins bind to these regions to regulate the 

transcription [36]. Therefore, if the promoter region is long, more proteins bind to 

the region, and gene expression is more controlled. General transcription factors 

such as TFIID, assemble the transcription initiation complex on the promoter [37]. 

Then RNA polymerase binds to transcription initiation complex in promoter to 

initiate transcription. Other special transcription factors may also bind to promoter 

to regulate the gene expression for specific genes.  
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As seen in Figure 7. There are enhancer regions outside promoter that help enhance 

the transcription process [38]. Transcription factors also bind to enhancers. When 

DNA bending proteins bind, the DNA bends, the activators bind to enhancers and 

transcription factors, to increase gene expression. There are also transcription 

repressors that prevent transcription. They bind to promoter and stop to RNA 

polymerase effectively blocking the transcription of gene. Activators and repressors 

respond to external effects to prevent the binding of transcription factors.  

 
Figure 7  Operation of Transcription Factors in Gene Transcription Process (Credit: Creative 

Commons License). 

 

This process is regulated according to cell type and many involved proteins [39]. 

Variation in these regulatory processes has an important role on activation, 

deactivation and expression of a gene [40][41]. For instance, in [42], Gobbi et al. 

identified a SNP that introduces a new promoter element which interferes with 

activation of alpha-like globin genes that results in a form of a blood disorder Alpha 

Thalassemia. Similarly, in [43], Zhou et al. analyzed the effects of a SNP which is 

on the promoter of GRK3 that causes Bipolar Disorder.  

The Encyclopedia of DNA Elements project aims to systematically maps the regions 

in human DNA [44]. These regions include transcriptions, transcription factors, and 

chromatin structure and histone modifications. These mappings assign 80% of 

genome to biochemical functions. These do not include protein coding regions, and 

correspond to regulatory functions for 147 different cell types. The datasets 

available from ENCODE project is compiled and annotated according to various 

requirements. RegulomeDB is such a database that aims to annotate variants in gene 

regulating loci [45].   
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2.5. SNP Profiling  

In order to analyze the genetic foundation or characteristic of a trait or a disease, 

various variants are determined through genotyping. This process is called as variant 

profiling. For instance, in SNP profiling variations at specific SNP loci are 

measured.  SNPs are found to be involved in etiology of many complex diseases. 

Therefore, they are used as markers in disease association studies. Additionally, a 

combination of specific SNPs is useful as a genetic method for identity testing. 

There are various SNP profiling techniques.  

Hybridization (microarray) based Techniques: It is based on binding a primer to 

a DNA target sequence. A RNA or cDNA is labeled with fluorescent. The labeled 

targets are then hybridized on microarray surface which contains hundreds of probe 

sequences at different position. When a target hybridized at a probe position,  

fluorescent intensity at that location is high meaning the labeled target is expressed 

[46]. 

Polymerase Chain Reaction (PCR):  It is an easy to use method. A template DNA 

molecule is amplified by using DNA primers and enzyme DNA polymerase and 

DNA nucleotides a mixture is prepared [47].  By cycling the temperature between 

two temperatures, hydrogen bonds between strands are broken and restored. During 

this DNA polymerase hybridizes the primer to template strand. It is more accurate 

then NGS or microarray based techniques and mostly used type for DNA 

sequencing. 

Next Generation Sequencing (NGS): It enables massively multiplexed sequence 

processing of more than ten million nucleotides at once [48]. 

2.6. Genetic Diseases 

Genetic diseases may be classified as Chromosomal diseases, Mendelian diseases 

and complex diseases [49].  

Chromosomal Diseases: They are caused because of chromosomal abnormalities 

such as lack of a chromosome, a non-disjunction of chromosome etc. 

Mendelian diseases: These are also called monogenic diseases. They are caused by 

one gene mutations inherited from parents. Hemophilia and color blindness, cystic 

fibrosis are such diseases. 
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Figure 8 Risk factors for complex diseases [50]. 

 

Complex Diseases: These diseases are caused by many genetic factors with small 

effects as well as environmental factors and personal lifestyle  [50][51]. The relation 

between these factors may be seen in Figure 8. Genetics, Environment and Personal 

lifestyle pose a risk of occurrence [52]. When any two factors come together, risk is 

high. If three factors come together the risk level is critical. Genetic factors define 

the risk of occurrence of a disease because of genetic variations in the individual’s 

genome. Personal life style and environmental factors affect the prevalence of the 

disease in time, earlier or later. For instance, in [53], Prostate Cancer disease model 

was developed. As a result, 108 SNPs were found to be associated with the disease. 

Additionally, BMI exercise and smoking was identified to be associated life style 

phenotypes.  

Complex Traits: Environmental and genetic factors may affect a phenotype 

occurrence [54]. This type of trait is called as complex trait [55]. Large percent of 

diseases that damage health status of human are complex traits  [56]. In [57], 

genetics only associations of complex traits to loci is performed using disease data 

for 42 traits. As a result, 392 loci were identified. Moreover, finding the factors such 

as genetic loci that affect a complex trait as well as the environmental factors were 

studied [58]. For instance, in eye related disease called Age Related Macular 

Degeneration (AMD) disease, age is a major influence. However in [59], researchers 

identified BMI and smoking affect probability prevalence of AMD disease. 

Epistasis: In complex traits, effect of a polymorphism may be dependent on another 

polymorphism elsewhere in the genome [60][61][62]. When the mutational effect 

size is large, the complex trait or disease consist of many variations with small 
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interactions [63]. These interactions between polymorphisms are called epistasis 

[64]. In epistasis, effect of one gene or locus is dependent on other genes or loci. 

Pleiotropy: If a genetic locus is associated with multiple trait, it is called pleiotropy 

[65][66]. Genetic variants may be related to multiple traits and distinct traits [67]. 

In literature there are reports that identified loci that are associated with multiple 

traits [68][69]. In [57], 42 complex traits were identified.  These are called as cross-

phenotype associations. Cross-phenotype associations may be due to pleiotropy. 

Pleiotropy may be caused by single locus or single region. If a phenotype is related 

to another then a change in first phenotype causes change in the other phenotype. 

This is called mediated pleiotropy. However, sometimes the interaction due to other 

factors may be associated falsely as cross-phenotypes causing spurious pleiotropy 

[70]. Some variants causing cross-phenotypes are protein coding variants, splice site 

variants, mutations in the protein coding genes and intergenic regulatory elements. 

They may have a major role in pleiotropy because they may cause deregulation of 

hundreds of target proteins. 

2.7. Genome-Wide Association Study 

Searching for statistically significant variations by analyzing whole genome and 

identification of the genetic differences that result in differences between 

individuals is called Genome Wide Association Study (GWAS) [71]. The resulting 

differences may be a phenotype variation, disease or response to a drug e.g., traits 

like height, blood pressure, complex diseases like cancer, penicillin intolerance. The 

common variations for a particular disease may be identified by statistically 

analyzing the occurrences of genetic markers in the disease [72]. For this purpose, 

the variations related to a trait may be checked in the genome of an individual. If 

certain group of variations causes the disease in an individual, then it must not exist 

in healthy person.  

The number of variations related to other traits prevents easy identification by just 

comparing all genomic locations. In order to perform GWAS to identify significant 

variations one of following types of study configuration are performed [73]: 

Trio Study: Data of the subject with the disease is studied against the genome of 

his/her mother and father. The differences in genotypes between the parents who do 

not have the disease is compared to the child with the disease. The variation between 

parents and child is expected to be responsible of the disease.    
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Cohort Study: For the research of a phenomenon, a population with specific trait 

and another without that trait is observed for a long time then the result and 

underlying reasons are analyzed.  

Case-Control Study: The population with the disease or the trait are called cases. 

Similarly, population without the case i.e. health individuals are called as controls. 

Populations are collected to discover common non-random differences between all 

cases and all controls to identify the cause of the disease. Because the data is 

collected from readily performed genotyping of cases and controls, the analysis may 

be completed in short time. About thousands of samples may be used in case-control 

studies, therefore the genotyping errors in individuals are not important. 

In GWAS, most used type of variation is SNP because of the high information 

content, ease of genotyping and lower cost. Most preferred type of GWAS is Case-

Control Study due to use of already existing data from cases and controls. The 

amount of case and control subjects are usually more than thousand to obtain enough 

statistical power. This results in large amount of data to be processed. Statistical 

tests are applied to SNPs to identify SNPs that have differences in allele frequencies 

between cases and controls. After these SNPs known, the disease may be easily 

identified later in other subjects by checking the identified SNPs. Later drugs may 

be developed targeting the disease before it advances. 

However, in all methods of GWAS, a large amount of data in order of terabytes has 

to be processed. This requires complex computations and algorithm along with high 

performance processors as well as large storage resources. Fortunately, for GWAS 

there is no need to process all the genomic data for sequencing and extraction of 

SNPs for subjects. In the Human Genome Project all of sequencing and extraction 

of SNPs are performed and these findings are publicly available in various 

databases. Some information about these databases are as follows: 

HapMap Project: This project aims to identify and map nearby SNPs as blocks 

that are inherited together. These blocks are accessible by representative tag SNPs. 

1 million SNPs in human is mapped to 500 thousand tag SNPs. By using tag SNPs, 

the project aims to catalog the similarities and dissimilarities in human. The catalog 

variants are used to link the relations between variants, genes and diseases.  Then it 

would be used to produce medications targeting the disease or vaccines that will be 

most effective in individuals.  

The dbSNP Project: This database keeps polymorphisms such as SNPs insertions 

and deletions. Additionally, SNP-gene, chromosome and SNP-disease relations are 
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available in the database. It is publicly available at NCBI. In dbSNP about 45 million 

SNPs are identified.   

The dbGaP Project: Also developed by NCBI, this database contains the relations 

between genotypes and phenotype information. The dbGaP database is essentially a 

large repository keeping ordered data from many GWAS studies, genetic data of the 

samples in the studies as well as their phenotypes. In the database, previously 

performed studies of various types such as cohort, trio or case-control studies are 

presented in well-organized form for other researchers.     

RegulomeDB Project: This database stores SNP–regulatory element relations in 

non-coding genetic locations of Human Genome Project. It incorporates many 

datasets such as ENCODE and eQTL.  

Online Mendelian Inheritance in Man (OMIM) Project: This project keeps a 

catalog of Mendelian diseases. Mendelian Disease can be described by genomic 

errors versus gene functions as a complex disease. NCBI hosts the OMIM database 

that contains Mendelian disorders for about 12,000 genes. 

Genetic Association Database (GAD) Project: In GAD, data about genes and 

diseases are collected from academic literature and presented in gene based format. 

GAD is also available from NCBI.  

Using the databases listed above, biomarkers such as SNPs related to diseases or 

traits may be identified using statistical or functional approaches. In statistical 

analysis, statistical significance of each variation i.e. non-randomness between 

control and case subjects is calculated. For instance, in a population with 1000 cases 

and 1000 controls, the significance of variations are calculated. This analysis 

includes millions of SNPs obtained from the databases above. Then, most significant 

SNPs are obtained by ranking them according to significance. In significance 

calculations, the difference of allele frequencies between cases and controls are used 

for association.  

2.8. Statistical Analysis using PLINK 

In calculation of statistical significance there are various tools. Plink is a well-known 

open source software developed by Shaun Purcell [74] for genome wide association 

and statistical identification of significantly differential SNPs between cases and 

controls. It consists of following features: 
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1. Data management, 

2. Summary statistics, 

3. Population stratification, 

4. Association testing, 

5. Haplotype testing, 

6. Meta-Analysis 

In significance analysis, association testing feature is used. In association testing, 

plink calculates the frequencies of alleles separately for cases and controls. Here the 

calculations are performed according to Fisher’s Exact Test and T Test. In order to 

perform association test, .bed, .bim and .fam files are required. After plink analysis, 

the calculated significances are obtained as a specially formatted “.assoc.adjusted” 

file. The file is a tab separated file that contains fields such as chromosome number, 

SNP rsID, unadjusted asymptotic significance as p-value, Genomic Control (GC) 

adjusted significance, Bonferroni adjusted significance, Sidak single-step adjusted 

significance, Sidak step-down adjusted significance, step-up Benjamini-Hochberg 

False Discovery Rate (FDR) control, and step-up Benjamini-Yekutieli FDR control. 

Basically, as a result of association analysis, unadjusted asymptotic significance i.e. 

p-value is used. After obtaining association test results as unadjusted significance 

values, the prioritization of SNPs is performed. In biostatistics, SNPs with p-

value<0.05 are usually considered significant. In genome-wide studies a multiple 

test correction for up to 1M samples should be considered, so a p-value < 10-5 is 

usual threshold for GWAS  [75]. However, the SNPs should be considered 

according to their genetic function and biological features. Therefore, considering 

p-value alone is not enough and SNP prioritization step should be executed after 

GWAS analysis [76].  

2.9. SNP Prioritization and Candidate SNP Selection 

In spite of being scored with high statistical significance value, not all small effects 

causing a complex disease may be biologically relevant variations. Most of the SNPs 

in the SNP databases have no known disease -related results. Prioritization of SNPs 

is essential in accurate disease SNP detection [77]. Prioritization is performed 

according to additional knowledge such as meta-data or annotations about SNPs that 
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provide functional information [72]. SNP prioritization process consists of three 

stages as shown in Figure 9.  

At first stage, SNP data quality control is performed according to minor allele 

frequency, missing values and Hardy-Weinberg equilibrium criteria. In the second 

stage, each SNP’s multiple testing adjusted p-values of association are calculated. 

A significance threshold is set and only statistically significant SNPs are inspected 

for prioritization instead of inspecting millions of SNPs. Otherwise processing all 

of the SNPs to discover the ones associated with a disease is a very demanding task 

requiring large processing power and appropriate selection technique. In the third 

stage, statistically significant SNPs are prioritized according to additional important 

features such as SNP location, associated gene, associated disease, pathway etc. as 

well as p-value. There are various tools in the literature for SNP prioritization such 

as SPOT [78], SNPLogic [79] or Fast SNP [80] and METU-SNP [4]. 

 

 
Figure 9 Outline of generic SNP prioritization process. 

 

In prioritization, statistically significant SNPs below a threshold value, for example 

SNPs with significance p-value 0.05 or lower, are further analyzed with respect to 

biological facts [81]. In this stage various features from domain knowledge is 

integrated into associations to discover the SNPs that are really associated to 

investigated trait or disease.  For instance, linkage disequilibrium is a strong 

association between SNPs at neighboring loci and may be given importance. It is 

also possible to weight the genes according to their significance by using all SNPs 

on the genes [82]. It may be done by calculating combined p-values for SNPs on a 

gene using methods such as Fisher’s combination test as follows: 

𝑝𝑔𝑒𝑛𝑒(𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑) =  −2 ∑ 𝑙𝑛 𝑝𝑖   (EQUATION 1) 

  



20 

 

 

 

Where pgene(combined) is the combined p-value of the gene and pi is the p-value for ith 

SNP on the gene for which combined p-value is calculated. Similarly, it is also 

possible to obtain significance of pathways in which genes exists by calculating 

Fisher’s exact test as follows: 

𝑝𝑝𝑎𝑡ℎ𝑤𝑎𝑦(𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑) =  1 − ∑
(𝑠

𝑖
)(𝑁−𝑠

𝑚−𝑖
)

(𝑁
𝑚

)

𝐾

𝑖=1

 
(EQUATION 2) 

 

Here, ppathway(combined) is the combined p-value of the pathway, N is the total number 

of genes, s is the number of genes associated to disease, m is the number of genes 

on the pathway and K is the number of significantly associated genes in the pathway. 

In addition to statistical evidences, biological and functional facts about knowledge 

such as genomic location, disease association are considered in prioritization of 

SNPs. The resulting list of SNPs from prioritization is called Candidate SNP list.  

2.10. Decision Making and Analytic Hierarchy Process 

Multi Criteria Decision Making (MCDM) is the process of making decisions, which 

requires consideration of number of subjective factors. Analytic Hierarchy Process 

(AHP) is one of the frequently used MCDM methods [83]. It has gained popularity 

over the years especially in the fields of management, engineering and medicine 

[84][85][86][87]. The outline of AHP is shown in Figure 10. One of its advantages 

is its ease of use. Simple pairwise comparisons based upon the judgments of experts 

are required to derive priority scales [88][89]. Performing pairwise comparisons 

allows decision makers to assign weights to coefficients and compare alternatives. 

Because it provides hierarchical view to problem structure, additions and 

improvements to a model is easy. Since its introduction in 1980’s it was employed 

in many areas such as economics, resource management, corporate policy and 

strategy, public policy, political strategy, planning [90][91].  

AHP has been extensively used in decision making problems in many fields 

literature. For instance, some researchers studied AHP in contracting company 

selection [24][92], product quality evaluation [93], plant or facility location 

selection[94], game design factor evaluation [95] and search engine evaluation [96], 

Risk Assessment Modeling for security of cross border gas pipeline [97] and Single 

Nucleotide Polymorphism Prioritization after Genome Wide Association Studies in 

Bioinformatics [4]. 
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Figure 10 Outline of generic AHP Hierarchy Model. 

AHP requires assigning weights to the investigated categories. In order to set these 

weights expert opinion is required. However, the judgement based on the expert 

evaluations may be subjective, incorrect or not precise. Improper weighting of the 

AHP categories may result in complete failure in the decision making process. 

Moreover, the detection of related categories for the problem is another subjective 

task. Literature search and expert knowledge is also required to obtain the relevant 

categories to provide proper decision making capability for the AHP about the 

problem. For this purpose questionnaires are provided to the experts to select 

between important categories or add new ones [98][99][100]. As these methods do 

not provide a complete solution to the problem, as long as the weighting is based on 

expert evaluations, the problems stated above are yet unsolved [101]. 

These drawbacks i.e. subjectivity, uncertainty, imprecision in expert judgements for 

pairwise comparisons have been mentioned and solutions have been proposed in 

literature. An expert’s approach to a problem may not be the same. The results of 

the decision may differ according to the expert Delphi method which was introduced 
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by Dalkey [102][103][104] is one of most widely used methods. In Delphi method, 

in order to reduce subjectivity, inputs from multiple experts are obtained and the 

collected data is consolidated. It has been used to obtain single weight for each 

pairwise comparison in the AHP model. Another approach is Interval AHP in which 

categories are assigned as intervals instead of giving single value in pairwise 

comparisons [105].  

Researchers also proposed use of Fuzzy Set Theory to handle experts’ inputs 

[101][106]. Fuzzy Logic Theory was introduced by Lotfi A. Zadeh [107]. It has 

been extensively used in many studies and systems successfully. In real systems, 

experts performs actions according to their preferences and customizations [108]. 

In many cases, converting a real world parameter to a precise mathematical model 

is not always possible because a human senses and decides using previous 

experience more than making calculations. For instance, a person can feel if water 

is cold or warm. But cannot measure exact temperature of water. The felt 

measurements are not crisp but fuzzy values. However, he or she does not know its 

temperature quantitatively. Fuzzy logic theory takes this reality into account. The 

weights assigned by experts during pairwise comparisons are evaluated as fuzzy 

values instead of crisp values [109]. Using this method, the inadequate use of crisp 

values is avoided for modeling of imprecise real life problems. Instead, experts 

provide their evaluations as fuzzy assessments. In order to benefit from both, 

combination of Fuzzy Theory and Delphi process was also proposed as Fuzzy 

Delphi Method (FDM). FDM was used to mitigate risks of subjective evaluations in 

pairwise comparisons in literature [99][106][109]. Although it has been used 

widely, the efficiency of using Fuzzy Logic in AHP is also criticized in [101].  

Here, we have proposed a novel “Random Forest based Analytic Hierarchy Process” 

(RF-AHP) method to address the expert judgment uncertainty in AHP decision 

making. The dependency to the expert opinion is eliminated by training the AHP 

input data using Random Forest machine learning method. Evaluation of AHP 

categories i.e. criteria is made according to the assigned importances by the trained 

Random Forest model.  

Although the methods above provide successful approaches to reduce the effect of 

experts in the loop, to the best of our knowledge, there was no study that removes 

the necessity of experts.  



23 

 

 

 

2.11. Analytic Hierarchy Process Workflow 

Analytic Hierarchy Process is essentially a decision making approach based on the 

priorities which were obtained from pairwise comparison of criteria and 

alternatives. The application steps of AHP is outlined in Figure 11.  

The steps AHP may be explained as follows: 

1. Problem Definition: In the first step of AHP, the problem to be solved is defined. 

Therefore, the goal of the decision making is defined. 

2. Criteria Definition: In the second step, the criteria that should be considered in 

solving the problem are defined. Criteria are subjective based on the requirements 

of experts. Also their validity should be checked. 

3. Listing of Alternatives: In this step, possible decision alternatives are identified. 

4. Construction of Hierarchy: In order to solve the problem, the goal, criteria and 

alternatives are organized as a hierarchy as shown in Figure 10. The goal is in the 

top level, criteria are in the second level, and the alternatives are at the bottom. In 

the hierarchy, the elements which are at the same level are independent 

(Independence axiom of AHP). The complexity of the hierarchy may change 

according to number of levels in the hierarchy and complexity of the problem. 

5. Scaling of the relative importances: In this step the range of relative importances 

to be used in pairwise comparisons are defined. Although different scales may be 

used, most commonly used scale is 1-9 scale as shown in Table 1 [88][89]. This 

scale contains five major scores namely 1, 3, 5, 7, 9. However, if the expert is not 

certain about these values, for instance, a comparison may require giving more than 

2 but less than 3, then inter-values 2,4,6,8 may also be used. 

 
Table 1 Available Options for Pairwise Comparisons in Criteria Evaluation.  

Option Numerical Value 

Equally Important 1 

Weakly Important 3 

More Important 5 

Very Important 7 

Extremely Important 9 

Intermediate values (if required) 2 ,4,6, 8 

 



24 

 

 

 

6. Receiving Expert Selections: During application of AHP, one or more experts 

are interviewed or made questionnaires about the relative importances. In these 

interviews experts make pairwise comparisons of criteria. The consistency of results 

and decision performance of AHP is very much dependent on these decisions. 

Therefore, expertise and appropriate knowledge of the selected people have critical 

importance in AHP method. If there is only one expert, acquiring preferences and 

making pairwise comparisons are easy. Otherwise multiple user evaluations are 

averaged by using arithmetic or geometric mean to obtain single comparison result. 

 

 

 

Figure 11 Implementation steps of Analytic Hierarchy Process. 
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7. Preparing Pairwise Comparison Matrix: Using the pairwise comparisons from 

Step 6, a pairwise comparison matrix is populated. If there are n criteria in the 

hierarchy then n.(n-1)/2 comparisons are performed. Therefore the size of 

comparison matrix is nxn. 

Although, relative comparisons are used mostly, use of absolute scales such as 

weight, height i.e. are also possible. In this case, the absolute values are written to 

matrix directly. At the end of this step, the relative or absolute importances i.e. 

preferences are obtained in matrix form. In this matrix, aij = 1/aij. 

 

(EQUATION 3) 

 

8. Calculation of Relative Weights of Criteria: After developing pairwise 

comparison matrix, these values should be normalized. For normalization firstly 

sum of cells for each column is obtained as shown in (4). 

 
                     (EQUATION 4) 

Then, each cell value is divided to sum of its column value as follows: 

 

 (EQUATION 5) 

 

(EQUATION 6) 

 

Having obtained matrix C which consists of cij values, relative weights of each 

category is obtained using arithmetic mean as shown in (6): 
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 (EQUATION 7) 

 

(EQUATION 8) 

 

9. Calculation of Scores and Ranking of Alternatives: When AHP hierarchy with 

weights is available, all of the alternatives’ AHP scores are calculated finally. Then 

the alternatives are ranked according to their AHP score. According to decision 

requirement most ranking alternatives are identified and decision making process is 

accomplished. 

2.12. Random Forest Machine Learning Algorithm 

Random Forest (RF) is a supervised machine learning model developed by Leo 

Breiman in 2001 [5][110][111]. It is called as forest because it consists of many 

randomly produced decision trees. An RF is aggregation of thousands different 

randomly produced decision trees. Each tree consist of randomly selected features 

i.e. variables in the feature space. Also the training data is selected randomly using 

bootstrap method. The trees are trained according to classification and regression 

tree (CART) algorithm, which was also invented by Leo Breiman. Because each 

tree is constructed randomly and using different variable set, each is trained uniquely 

to classify the input space. Each tree classifies which class should be predicted in 

their output. For an input instance, some trees may classify correctly or some may 

do incorrectly. However the outcome of the random forest is obtained by combining 

results from all of the trees based on voting. Overall output is the most voted value 

by trees. The success of random forest relies on the fact that the major vote should 

be the right selection for the whole forest. 

Random Forest method has become a popular algorithm in machine learning. It is 

successful in problems where the number of features is large. Being an ensemble 

method, it is able to deal with complex interactions [5]. It is also able to provide a 

measure about variable importances. Random forest is a classification and 

regression method based on the ensemble of large number of trees. The trees are 
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constructed from a training dataset.  The generalized flow of Random Forest 

algorithm is shown in Figure 12. 

Step 1. The available data about the problem is sampled for each tree training using 

bootstrapping. Sampled data is divided to 2 parts. The 2/3 portion of sampled data 

is used as training data and 1/3 portion as Out-of Bag (OOB) data. OOB data is used 

to estimate the error for each trained tree.  

Step 2. For each sampled data a standard classification and regression tree (CART) 

is grown. The parameters for the CART training is as follows: 

an ∈{1,...,n} : bootstrap data size in sampled data; 

mtry ∈{1,...,p}: random number of features to be used at splitting at each node 

of each tree;  

nodesize ∈ {1,...,n}: the number of instances in each cell before split. 

Step 2.a In RF training of CART is controlled by mtry parameter. In each split 

(i.e. branching in tree), randomly, mtry number of prediction feature is selected 

from all feature set. 

Step 2.b Identify the best splitting feature in this feature set. In CART, 

decrease of Gini impurity is used for splitting a cell. According to Gini index 

a cell is divided to two branches. 

Step 2.c Repeat until all of the feature splits are completed. Then a tree is 

grown. 

Step 3. After growing a tree, remaining data portion i.e. OOB is used to validate 

prediction performance. Hence each tree is trained and evaluated by uniquely 

bootstrapped data set. After a tree is grown, it is aggregated to the forest. 

Step 4. Repeat the same steps to train new tree until number of trees in settings for 

the forest is obtained. 

Step 5. By averaging the OOB error for each tree, OOB error prediction for the 

forest is obtained. 

After the forest is obtained, the prediction by the forest is obtained by aggregation 

of predictions of all of the trees in the forest. For random classification forest, most 

voted response by the trees is the output class. In random regression forest the 

average of the voted values is the response of the forest. 
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Figure 12 Flowchart of Random Forest model. 

2.13. Advantages of Random Forest 

● Random Forest method may be used for categorical or numerical data for 

classification and regression, respectively. 

● It is successful for predictions for both large and small data sets. There is no 

need for dividing data for training and testing because it uses bootstraps from 



29 

 

 

 

the full data set to grow individual trees. Hence, cross validation is not 

necessary. 

● It is able to classify when the classes in the data set is imbalanced. 

● Random Forest is relatively easy to use for the expert because it requires setting 

only number of trees in the forest and selecting number of features in each split 

by the user. 

2.14. Pitfalls of Random Forest 

In decision tree, the result of splits may be easily visualized to understand the nature 

of the problem. However, in RF, there are thousands of trees and it is not possible 

to understand any information by visualizing the trees. Hence RF model is a black 

box method to the data analyst. 

Additionally, in application software of the RF on a computer, all of the trees in the 

forest should be kept in memory. Therefore, it requires larger memory and greater 

processor resources during both training and prediction. However, as stated in [112], 

it is possible to remove a tree instance in the forest when keeping all of the trees in 

memory is not necessary. 

2.15. Random Forest Use Cases: Prediction and Ranking 

Random forest method may be used for prediction purpose in a classification or 

regression problem or ranking purpose of the features according to their 

performance in prediction used in that problem. Ranking is accomplished by 

calculating the variable importances of features within the RF method. Here in the 

presented work, we are using RF for ranking purpose. The ranking is made by 

evaluation of the variable importances that are inherently calculated during the 

training of RF model. The details of Ranking via variable importances are detailed 

as follows. 

2.16. RF Variable Importances 

After training an RF model, it is possible to rank the feature importances. It is an 

essential property of RF. There are two methods for calculation of variable i.e. 

feature importances. The First is Mean Decrease in Gini Impurity (MDI) and the 



30 

 

 

 

second is Mean Decrease in Accuracy (MDA) [5]. MDI is based on calculating the 

total amount of decrease in node impurities i.e. information gain in all trees when 

splits made on that variable [113] [114]. The amount of decrease of impurity (∆I) of 

variable X(j) in a split at a node for only one tree (t) may be calculated as follows: 

∆I(t)(X(j)) = Iparent − (pleft.Ileft + pright.Iright) (EQUATION 9) 

Here, the proportion of samples in left and right nodes is given by pleft  and pright, and 

the impurities for parent, left and right nodes are Iparent, Ileft  and Iright  respectively. The 

impurities for nodes are calculated with: 

 
(EQUATION 10) 

Where p(j) is the proportion of samples with label (j) in that node. Then MDI of X(j)   

for all trees may be calculated as: 

 
(EQUATION 11) 

Similarly, MDA may be calculated by averaging decrease of accuracies for all tree 

[115]. If variable is not important, its MDA should not degrade prediction accuracy. 

The amount of decrease of accuracy (∆A) of variable X(j) for only one tree (t) may be 

calculated according to following equation: 

 

 
(EQUATION 12) 

Here, m is the no of samples in the Out of Bag portion of training data.  

is correctly classified by tree t, 0 otherwise. Similarly, When X(j) is permuted,   yiπj(t) 

is 1 if y i is correctly classified by tree (t) after Xj is permuted , 0 otherwise. MDA of 

X(j)   for all trees may be calculated as: 

 
(EQUATION 13) 

On this equation, ntree is the number of trees in the random forest. MDA is obtained 

by calculating the arithmetic mean of DA all trees in the random forest.  
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CHAPTER 3 

 

3. MATERIALS AND METHODS 

3.1. Utilized Data Sources 

In order to evaluate AHP categories using RF-AHP for SNP prioritization, four 

types of data source were used: 1. Candidate SNP Lists, 2. Statistically Significant 

SNP List, 3. SNP Feature Database, 4. dbGaP Disease Datasets. For evaluation of 

regulatory contents RegulomeDB dataset is used. The details of these datasets are 

presented as follows: 

3.1.1 Candidate SNP List from Genomic Model 

First type of data source is the candidate SNPs modeled in previous SNP 

Prioritization studies. In these studies various data-mining approaches were used on 

disease specific case-control data to identify SNPs associated with these diseases. 

For PCa model, significant SNPs set was obtained from [6], where SVM+ID3 

methods were used successively to detect PCa related SNPs. As a result, 108 SNPs 

were selected as candidate. The list of these SNPs is available in APPENDIX A. We 

have analyzed the previously published model, and used disease associated 

candidate SNPs as Response. It should be noted that, the datasets were selected from 

a study, in which, techniques other than AHP were used. This ensures that the 

candidate SNPs identified by these models do not cause any bias in the training of 

proposed model. 

3.1.2 Statistically Significant SNP List 

Second type of data source is statistically significant SNPs list. In order to obtain 

statistically significant SNPs, Prostate Cancer (PCa) genotyping dataset from dbGaP 

collection was used. The dataset obtained from “Multi Ethnic Genome Wide Scan 

of Prostate Cancer” Study. It consists of 4650 cases and 4795 controls with 600.000 

SNPs. [116][117]. In this study we used the SNP list from the genomic model results 

already completed in [6]. It consisted of three stages. At first stage, SNP data quality 
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control is performed according to minor allele frequency, missing values and Hardy-

Weinberg equilibrium criteria. In the second stage, each SNP’s multiple testing 

adjusted p-values of association were calculated. The analysis was made using 

PLINK and results were obtained in the form of “association.assoc.adjusted” file. 

Finally, a significance threshold of p-value=0.05 is set in the 

“association.assoc.adjusted” file and only statistically significant SNPs are 

obtained. 

3.1.3 SNP Features Database 

Third type of data source is the SNP features database. This is the most essential 

component of data oriented training of AHP and contains vast amount of 

information accumulated from clinical bioinformatics domain. The database 

contains detailed annotations of SNPs according to their genomic location, disease 

association based on literature, prediction of consequences, and conservation across 

species [4]. These features were collected from public dbSNP, EntrezGene, KEGG 

and Gene Ontology databases. The database included following categories that may 

be used for SNP prioritization: 

1. GWAS Results: 

● SNP p value 

● SNPs related with significant genes according to combined p-value with 

respect to Linkage Disequilibrium (i.e. non-random association of alleles at 

two or more loci) 

● SNP is on significant gene, 

● SNP is on a significant gene which is on a significant pathway. 

2. Biological Facts: 

● SNP with evolutionary conserved regions. 

● SNPs on a gene. 

● SNPs that are associated with a gene which is related to a complex disease. 

● SNP is proved to be associated to a Disease gene via either directly or LD 

with another SNP, or a Pathway. 

● SNP is associated to a Disease gene (but not proved) via either directly or LD 

with another SNP, or a Pathway.  

3. Genomic Location and Functional Effects: 

● Non-Coding- UTR-3 

● Non-Coding- UTR-5 

● Non-Coding Intronic 

● Non-Coding - Near Gene 3 

● Non-Coding - Near Gene 5 
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● Non-Coding - Splice3 

● Non-Coding Splice5 

● Coding- Frameshift 

● Coding - CDS Non Synonymous 

3.1.4 dbGaP Disease Datasets 

First type of data source is the genotyping data from the following dbGaP 

collections. Four disease datasets used in the analysis namely were 1.Prostate 

Cancer (PCa), 2.Type 2 Diabetes Mellitus (T2DM), 3. Alzheimer's Disease (AD) 

and 4. Schizophrenia (Sz). Details of datasets are as follows: 

Prostate Cancer (PCa) Dataset: The PCa dataset for tests is the same as that used 

in training. As explained above, it was obtained from “Multi Ethnic Genome Wide 

Scan of Prostate Cancer”. This dataset consists of 4650 cases and 4795 controls with 

600.000 SNPs [116].  

Type 2 Diabetes Mellitus (T2DM) Dataset: T2DM dataset was obtained from 

“Nurses' Health Study” (NHS, all female 1,769 controls and 1,479 cases) and the 

Health Professionals Follow-up  Study  (HPFS  -  male 1,277 controls and 1,114 

cases) on  Type 2 Diabetes Mellitus'' and includes 642,576 SNPs [118][119].  

Alzheimer’s Disease (AD) Dataset: The AD dataset was obtained from GenADA 

dataset. Genotyping data included 806 AD cases and 782 controls. It consists of 

500,000 SNPs [120][121]. 

Schizophrenia (Sz) Dataset: Sz disease dataset was available from dbGaP public 

database as “Molecular Genetics of Schizophrenia (MGS) study”. It consisted of 

3,972 cases and 3,629 controls [122]. 

PCa data was used in training of Random Forest machine learning algorithm for 

AHP Category Evaluation as shown in this table. However, for the performance 

evaluation between Delphi-AHP and RF-AHP all of the four disease datasets were 

used. 

The imported version of RegulomeDB is 1.1 and is based on the data from 

dbSNP141 version. We downloaded all of the RegulomeDB dataset on a server 

machine due to its size. RegulomeDB 1.1 contains about 60 million SNPs. However, 

the database reused from METU-SNP contained 11 million SNPs. About 10 million 

of these SNPs existed in RegulomeDB as well. 
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3.1.5 RegulomeDB Regulatory Variant Datasets 

The imported version of RegulomeDB is 1.1 and is based on the data from 

dbSNP141 version. All of the RegulomeDB dataset was downloaded and adapted 

to the study.  

3.2 Software Environment for the Analysis 

RF-AHP development, analysis, performance comparisons are completed in R. In 

the training process of Random Forest algorithm “randomForest” package in R data 

mining and statistical analysis software [112] was used. Using the permutation test 

facility of this package, Mean Decrease in Accuracies (MDA) and Mean Decrease 

in Impurity (MDI) importance measures for the categories were calculated. METU-

SNP source code was tailored or reused when possible for development of RF-AHP 

and performance comparison on GWAS Disease Datasets. MySQL Database used 

to store SNP Annotation Datasets. 
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CHAPTER 4 

4. IMPLEMENTATION OF RANDOM FOREST AHP AND 

INCORPORATION OF REGULOMEDB 

4.1. Objectives 

Random Forest based Analytic Hierarchy Process (RF-AHP) method has been 

developed to address the expert judgment uncertainty in AHP decision making. The 

dependency to the expert opinion is eliminated by training the AHP input data using 

machine learning method called Random Forest. Evaluation of AHP categories is 

made according to the calculated variable importances of Random Forest model.  

The proposed RF-AHP method requires data preparation, application of Random 

Forest machine learning method, inspecting RF model and evaluation steps. The 

explanation of these steps is presented in following section. Sample application of 

each step is detailed as a case study in Application of RF-AHP to SNP Prioritization 

section of this chapter. 

Finally, incorporation of RegulomeDB as an additional feature is presented at the 

end of the chapter.  

4.2. Implementation of RF-AHP Methodology 

The RF step is implemented to eliminate the tasks that require an expert’s 

consultancy. The proposed RF-AHP requires an initial database construction, thus 

the availability of available datasets is essential for this method. The steps of the 

proposed RF-AHP are explained below, and as shown in Figure 13.  

1. Problem Definition: Similar to Delphi AHP, the first step is to define the 

decision problem to be solved. 
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Figure 13 Implementation steps of Random Forest based Analytic Hierarchy Process. 

2. Database Collection: RF-AHP, being a data driven methodology, assumes the 

availability of extensive data, and requires analysis of these data sources. The data 

may be obtained from large databases, transaction systems, management 

information systems, web, cloud, literature etc. The possible alternatives for the 

decision problem should be researched from the structured or unstructured data and 

transformed into rows as shown in Figure 13. Similarly, the criteria for making the 

decision should be digested or consolidated from resources. The criteria are assigned 

as features for the random forest method. The response variable should also be 

populated according to each alternative whether it is selected or not selected in the 

decision. In the end a classification (or regression) table should be populated in 

which rows are the alternatives and columns are criteria for the decision. The table 

is called as Random Forest Training Table as shown in Figure 13. 
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3. RF Training: After obtaining the training table for the classification, a Random 

Forest model is trained. The details of Random Forest training process are presented 

Section 2.12 Random Forest Machine Learning Algorithm, therefore it will not be 

repeated here. In RF-AHP, the variable importances from the trained RF model are 

used. As mentioned in Section 2.12, two types of variable importances namely, 

Mean Decrease in Impurity (MDI) and Mean Decrease in Accuracy (MDA) 

calculations for each category in the RF training table are made on the trained RF 

model. The user of the RF-AHP method may decide which importance to use 

according to problem context. 

4. Preparing Pairwise Comparison Matrix: After obtaining Criteria importances 

i.e. Variable Importances as MDA or MDI, pairwise comparison matrix is calculated 

as follows: 

 

(EQUATION 14) 

Here, VIi stands for MDAi if MDA importances are used in pairwise comparisons, or 

V Ii stands for MDIi if MDI importances are used in pairwise comparisons. Moreover, 

user provided evaluation of combination of MDI and MDA is also possible. 

Following precautions and alternatives may also be considered in construction of 

pairwise comparison matrix: 

1. Criteria which have VIs as zero should be removed. These criteria are not 

effective in decision making. Additionally, it is not possible to construct pairwise 

comparison matrix because it causes “division by zero” in elements as explained 

by Saaty [123]. 

2. Likewise, the user may choose to apply the scale presented in Table 1 with 

respect to MDA or MDI importances. 

3. Although in normal process it is possible to use the importance values directly 

according to MDA or MDI values, the decision maker may choose to use manual 

scales by simply looking at VI values. For instance one variable may have very 

high VI value that saturates the scaling, therefore very high values may be 

clamped at a limit. 
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5. Calculation of Relative Weights of Criteria for RF-AHP: After developing 

pairwise comparison matrix above, its values should be normalized. For 

normalization firstly sum of cells for each column is obtained as showed in (15) 

previously. This step is covered in detail in Section 2.11 as Step 8 in the Analytic 

Hierarchy Process Workflow. For the sake of completeness we summarize the 

calculation of criteria weights again. The comparison matrix elements are 

normalized as follows:                                     

 

(EQUATION 15) 

Having obtained normalized matrix C which consists of cij values, relative weights 

of each criteria is obtained as W vector using arithmetic mean as shown in (16): 

 

(EQUATION 16) 

6. Calculation of RF-AHP Scores for Alternatives and Ranking: After RF-AHP 

hierarchy with criteria weights is obtained, RF-AHP scores are calculated for the 

alternatives and ranked. The details of these calculations are covered in Section 2.11 

under Step 9. By applying a threshold to scores of alternatives prioritized 

alternatives are obtained decision making process is completed. 

4.3. Application of RF-AHP to SNP Prioritization 

In order to validate proposed RF-AHP method, a case study was conducted for 

Single Nucleotide Polymorphism (SNP) Prioritization [124]. Details of SNP 

prioritization was also presented in Section 2.9 SNP Prioritization and Candidate 

SNP Selection.  
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Figure 14 Order of activities in application of RF-AHP method in SNP Prioritization. 

The objective of RF-AHP in SNP Prioritization process is to give score to each SNP 

in the dataset such that, the SNPs those responsible of subject disease get highest 

score. Firstly, statistical analysis results were obtained as 

“association.assoc.adjusted” files from PLINK and significance threshold p-value 

was selected. The SNPs which have smaller p-value than threshold were queried 

from SNP features database to collect their accompanying data. After obtaining SNP 

features, an input table was populated as shown in Figure 15.  

On this table, if a SNP was supplied with information that, for instance, if the field 

in ‘‘Frameshift” in the SNP Features database is valued as “1”, then it is recorded 

as ‘‘yes”, otherwise it is recorded as ‘‘no”. Similarly, if there was no data available 

for the SNP for that category, it is recorded as ‘‘no” by default, meaning that it has 

no effect for the prioritization. If the SNP is one of the disease SNPs in the candidate 

SNP then OUTPUT class is recorded as ‘‘yes”, otherwise it is recorded as ‘‘no”. 

The steps to implement RF-AHP was explained in Section 4.2. Here we apply each 

step to SNP prioritization as follows: 

Step 1. Problem Definition: The goal of decision making problem in SNP 

prioritization is to find the most relevant SNPs for a given SNP list. In order to 

achieve this objective, the supplied SNPs are analyzed for various features from 

SNP annotation database.  
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Figure 15 Application of RF-AHP method in SNP Prioritization. 

For instance, one may consider DiseaseGene_ViaDirect feature in SNP annotation 

database. If the SNP (i.e. an alternative) is already associated with any other disease 

gene, it may be highly a candidate for the subject disease as well.  Therefore, the 

decision making method should appropriately handle it for SNP prioritization. 

Step 2. Database Collection: In this step, the datasets mentioned in Section 3.1are 

used to populate the RF database table shown in Figure 15. 
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First type of dataset is the candidate SNP list mentioned in Section 3.1.1. This SNP 

list contains 108 SNPs associated to prostate cancer obtained from [53]. These SNPs 

are inserted to the RF training table as Response = “yes” rows as shown in Figure 

15. 

Secondly, statistically significant SNPs explained in Section 3.1.2 are inserted to RF 

training table as Response = “no” as shown in Figure 15. The significance threshold 

p-value=0.05 is set, 26367 SNPs whose significance lower (i.e. better) than 

threshold is selected. 

The third type of dataset is SNP features dataset as explained in Section 3.1.3. The 

features are all categorical data. It is used to populate the criteria columns in the RF 

database table. If a SNP has an annotation for a criterion in the SNP features dataset, 

the annotated value is recorded to the table as “yes”. If there is no annotation found 

for a SNP, the feature is recorded as “no” for imputation. 

Step 3. RF Training for SNP list and SNP features database: The training of RF 

model is performed after obtaining the populated RF database table.  

RandomForest Library Training Parameters: The RandomForest library accepts the 

RF database training table as training data. The Response field was set as the 

predictor output explicitly. Variable Importance Calculation feature was set to true. 

Number of features to train for each tree was set to mtry=10 and number of trees in 

the forest was set to N=5000. With these settings the training code was run and the 

trained RF model was obtained. 

Step 4. Calculation of Pairwise Comparison Matrix 

In our model, the Variable Importances are the criteria in AHP. Random Forest 

package in R calculates Mean Decrease in Accuracy i.e. MDA and mean decrease 

in Gini (i.e. Impurity) MDI as importances.  

The calculated MDA and MDI variable importances from RF model is plotted and 

shown in Figure 16. On the figure, most of the annotated features for criteria are 

found to be zero importance. When the MDA and MDI plot is inspected carefully, 

it may be seen that MDA value for some criteria are negative valued. It means that 

permuting those variables affect the model accuracy. For this purpose of keeping all 

information possible, they are saved for criteria list. The MDA and MDI plot is not 

similar because of negative values in MDA plot. For this reason, it is not easy to 

follow “importance based weight calculation” approach. Instead, we opted for using   
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RF selected categories, then used pairwise comparison weights from [4] based on 

genomic, statistical and biological features. 

Step 5. Calculation of Criteria Weights: The relative weights are calculated by 

considering the importances, pairwise comparison weights and using equations (13), 

(14) and (15) respectively. The results of calculated weights are shown in Figure 17. 

 

 

 

 
Figure 17 Resulting RF-AHP Tree for SNP Prioritization. 
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Step 6. Calculation of RF-AHP Scores for Alternatives and Ranking: 

After obtaining the criteria with weights the resulting AHP model is for calculation 

of score for each SNP and ranked by their AHP scores. RF-AHP Score for each SNP 

is calculated according to the following equation: 

  

(EQUATION 17) 

Here, m is the number of SNPs, Wi is the normalized weight of a category in AHP 

tree obtained by RF-AHP method and Ii is the activation indicator for SNPt for 

criteria i. For instance, if SNPt is related to disease gene on the same pathway 

(DiseaseGene ViaPathway), its indicator value is 1, otherwise 0. Therefore, the 

score of a SNP (i.e. alternative) is calculated by sum of activated weights. The 

resulting RF-AHP Tree is shown in Figure 17. Application results for SNP 

prioritization using obtained RF-AHP model is presented in Chapter 5. 

4.4. Incorporation of RegulomeDB: RF-AHP-R 

A large percentage of GWAS hits for common traits and common diseases or 

phenotypes fall outside of exome i.e. non-coding regions [125][126][127]. 

RegulomeDB provides annotations for SNPs with known and predicted regulatory 

DNA elements such as regions of DNase hypersensitivity, binding sites of 

transcription factors, and promoter regions that have been biochemically 

characterized to regulation transcription.  

 

In RF-AHP, most of the SNP annotations currently existing in the database is mostly 

on coding regions. Non-coding SNPs, without having any associated gene for a 

annotation, it is difficult to effectively annotate a variant. One of  the  best features  

of integrative  approach  with  RF-AHP  is  ability  to  add  new databases easily. 

Thus, we have incorporated RegulomeDB dataset, which combines sources from 

public ENCODE project [44], into RF-AHP scoring is done to improve its 

prioritization performance. Details of incorporation of RegulomeDB to system is as 

follows. 

 

The RegulomeDB incorporated version of RF-AHP method i.e. RF-AHP-R is able 

to score and prioritize SNPs in both coding and regulatory regions. In importing the 

data, the categorical RegulomeDB score converted to numeric score in RF-AHP-R. 

As explained in Section 3.1.5, the imported version of RegulomeDB is version 1.1. 

The lookup table for conversion of RegulomeDB scores to RF-AHP-R scoring is 

shown in Table 2. 
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Table 2 RegulomeDB Scoring to RF-AHP-R Scoring for Computations. 

RegulomeDB 

Score Supporting Data 
RF-AHP-R 

Score 

1a eQTL + TF binding + Matched TF Motif + 

Matched DNase Footprint + DNase Peak 

6 

1b eQTL + TF Binding + Any Motif + DNase 

Footprint + DNase Peak 

6 

1c eQTL + TF Binding + Matched TF Motif + 

DNase Peak 

5 

1d eQTL + TF Binding + Any Motif + DNase 

peak 

5 

1e eQTL + TF Binding + Matched TF Motif 4 

1f eQTL + TF Binding / DNase Peak 3 

2a TF binding + Matched TF Motif + Matched 

DNase Footprint + DNase Peak 

4 

2b TF Binding + Any Motif + DNase Footprint + 

DNase Peak 

4 

2c TF Binding + Matched TF Motif + DNase 

Peak 

3 

3a TF Binding + Any Motif + DNase peak 3 

3b TF Binding + Matched TF Motif 2 

4 TF Binding + DNase Peak 2 

5 TF Binding or DNase peak 1 

6 Other 0 
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CHAPTER 5 

 

5. RESULTS AND DISCUSSIONS 

In this study, variable importance property of Random Forest algorithm was used to 

identify informative and uninformative categories in construction of RF-AHP. Our 

results showed that, using the RF variable importances, AHP based SNP 

prioritization can be performed without any subjectivity to obtain better decision 

performance. Here, we have presented our results in two sections; First,   RF-AHP 

performance is demonstrated on the Prostate Cancer and the Alzheimer’s Disease 

datasets. Next, comparison of RF-AHP and RF-AHP-R methods to Delphi AHP is 

presented for all four disease datasets described in Section 3.1.4. 

5.1 Comparison of Delphi AHP Categories to RF-AHP Categories 

METU-SNP was developed in 2011 in METU-BIN Bioinformatics Laboratory. It 

was constructed using Delphi-AHP methodology [4].  The database of the Delphi 

AHP contains SNP annotations with features such as gene, disease etc. It employs a 

novel approach to SNP prioritization using Analytic Hierarchy Process based 

decision making technique for SNP prioritization. It analyzes and calculates a score 

for each SNP according to different categories in the dataset. The weights of 

categories were scored by six molecular biology experts using the Delphi method. 

A brief view of Delphi AHP tree is shown in APPENDIX B. Consequently, the 

category evaluations are based on judgement. Moreover, it is not clear that all of the 

inspected features in AHP tree are really necessary. A subset of questions which 

were asked to experts is available in APPENDIX C.  
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In this step comparative case study, the categories used in RF-AHP was compared 

to categories in Delphi AHP. The Delphi AHP tree was analyzed in order to detect 

uninformative and uncertain category weights based on RF-AHP results. The main 

objective of RF-AHP is to select categories to evaluate from the list of categories 

that exists in METU-SNP database. The application steps of Delphi AHP and RF-

AHP are shown in Figure 18 (a) and (b). When compared to Delphi AHP categories, 

19 categories do not exist in RF-AHP categories shown in Table 3. They are found 

to be uninformative by RF variable importances.  

 

                                  (a)  (b) 

Figure 18  Comparison of Delphi AHP and RF-AHP implementation steps. 
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Table 3 List of Uninformative Categories According to Calculated Importances. 

Non Coding UTR 3 NoMiRNAPred 

Non Coding UTR 5 CpGIsland 

Non Coding UTR 5 NoCpGIsland 

Non Coding NearGene5 CpGIsland 

Non Coding NearGene5 NoCpGIslnd 

Non Coding Splice3 

Non Coding Splice5 

Coding Frameshift 

Coding CDS NonSyn PolyphenBenign 

Coding CDS NSyn PossiblyDamaging 

Coding CDS NSyn ProbablyDamaging 

Coding CDS NSyn CompletelyDetermined 

Significant Gene ViaLD 

Significant Gene ViaDirect 

Significant Gene ViaPathway 

Significant Pathway Gene ViaLD 

Significant Pathway Gene ViaDirect 

Significant Pathway Gene ViaPathway 

Disease Gene ViaLD 

Disease Gene ViaDirect 

5.2 Application of RF-AHP for SNP Prioritization 

In order to validate the performance of trained RF-AHP model, analyses for Prostate 

Cancer and Alzheimer’s Disease is performed. Details of Prostate Cancer and 

Alzheimer’s Disease datasets used in the analyses were described in Section 3.1.4.  

For the first analysis, statistically significant SNPs are selected from Prostate Cancer 

GWAS analysis was used in the AHP prioritization. The trained RF-AHP model 

described in the Section 4.3 was used to calculate the RF-AHP scores. In order to 

select informative SNP set to analyze with SNPNexus, we filtered the SNPs with 

highest scores. The number of SNPs having RF-AHP score greater than 0.1 was 

found as 121 SNPs. For the second analysis, a completely different dataset i.e. 

Alzheimer’s Disease dataset was selected. Following the same work-flow with the 

Prostate Cancer variant analysis, statistically significant SNPs obtained from 

Alzheimer’s Disease GWAS analysis was selected for RF-AHP analysis. Then RF-



50 

 

 

 

AHP model was used to calculate RF-AHP scores. The number of SNPs, associated 

with AD, having RF-AHP score greater than 0.1 was 56.  

5.3 Analysis of RF-AHP Based SNP Prioritization Results 

Prostate Cancer Analysis Results: Prostate Cancer associated 121 SNPs selected 

through RF-AHP, returned rs1801701, rs531572, rs77905, rs8177812, rs12636081 

SNP ids as the most frequently referenced SNPs by GAD. As shown in Table 4, all 

the SNPs was successfully placed in Top 20 by RF-AHP except rs8177812. When 

inspected, in the RF-AHP results, rs8177812 was ranked as 49th.  

Table 4 Top 20 SNPs, calculated RF-AHP scores and GAD Rank for PCa. 

Rank SNP ID RF-AHP Score  GAD Rank 

1 rs3912492 0.338088 8 

2 rs12636081 0.338088 5 

3 rs17061864 0.338088 6 

4 rs6803449 0.338088 7 

5 rs1801701 0.215257 1 

6 rs77905 0.21326 3 

7 rs12948056 0.212474 121 

8 rs4794488 0.212474 66 

9 rs1433369 0.197392 50 

10 rs16930396 0.190501 35 

11 rs1608114 0.190501 91 

12 rs1915940 0.190501 95 

13 rs2574824 0.182625 26 

14 rs7249230 0.177416 109 

15 rs11563056 0.175419 118 

16 rs8064691 0.175419 75 

17 rs12592981 0.175419 87 

18 rs531572 0.175419 2 

19 rs965560 0.159278 26 

20 rs138726 0.159278 22 
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SNPNexus results provided APOB, LARGE, LRRN1, FHIT, DBH as most 

referenced genes. These genes were also associated with Metabolic, Cardiovascular, 

Psychiatric, Cancer, Chemical Dependency disease classes. As most referenced 

phenotypes Glucose, Cholesterol HDL, Tobacco Use Disorder, Cholesterol LDL 

and Waist Circumference categories were obtained (Figure 19). 

 

 
a 

Figure 19 SNPNexus Frequency Results of AHP results for Prostate Cancer Analysis: a) Most 

Referenced SNPs b) Most Referenced Genes c) Most Referenced Disease Classes d) Most 

Referenced Phenotypes. 

 

Alzheimer’s Disease Analysis Results: For Alzheimer’s Disease, the results 

obtained from the SNPNexus provided the references for 56 SNPs having RF-AHP 

Score > 0.1. SNPNexus returned rs6023, rs5897, rs4972, rs132954, rs6160 SNP ids 
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as the most referenced SNPs. When it is checked in Table 5, all of the SNPs were 

successfully found in Top 20 by RF-AHP. SNPNexus results provided F5, F2, 

LARGE, ADD1, LRRN1 as most referenced genes. SNPNexus associated 

Cardiovascular, Metabolic, Reproduction, Hematological, Cancer as disease classes 

for the submitted SNPs. Glucose, Venous Thrombosis, Hypertension, Thrombo-

Embolism, Cholesterol HDL categories was obtained as the most associated 

phenotype classes (Figure 20).  

 
Table 5 Top 20 SNPs and calculated RF-AHP scores and GAD Rank for AD. 

Rank SNP ID RF-AHP Score GAD Rank 

1 rs3084 0.474415 41 

2 rs11523 0.460004 36 

3 rs879 0.45345 52 

4 rs897530 0.451068 21 

5 rs7384 0.432316 N/A 

6 rs2668 0.421324 26 

7 rs6160 0.412137 5 

8 rs7769 0.408969 46 

9 rs5897 0.400453 2 

10 rs1237 0.397055 25 

11 rs14810 0.393636 14 

12 rs11522 0.393636 32 

13 rs783305 0.385102 20 

14 rs4161 0.375043 34 

15 rs9511 0.370289 18 

16 rs1615 0.370289 N/A 

17 rs17032 0.368507 10 

18 rs42019 0.350949 23 

19 rs4972 0.339956 3 

20 rs138222 0.329827 9 
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Figure 20 SNPNexus Frequency Results of AHP results for Alzheimer’s Disease Analysis: a) 

Most Referenced SNPs, b) Most Referenced Genes, c) Most Referenced Disease Classes, d) 

Most Referenced Phenotypes 

5.4 Performance Comparison between Delphi-AHP and RF-AHP and 

RegulomeDB Incorporated RF-AHP-R versions 

In order to compare the prioritization performance of the three models, GWAS 

Disease Datasets presented in Section 3.1.4 were used. There are four disease 

datasets namely, Schizophrenia, Type 2 Diabetes Mellitus, Alzheimer’s Disease and 

Prostate Cancer. RF-AHP and RegulomeDB incorporated version RF-AHP-R are 

compared to Delphi AHP according to SNP prioritization results of these four 

datasets. In these analyses, SNP scores for each method are calculated according to 

Equation (17). Performance of the RF-AHP and RF-AHP-R are compared to the 

expert evaluated Delphi-AHP by using the methods explained in Chapter 4. In order 
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to obtain statistically significant SNPs, p-value threshold was selected as 0.05. Then 

following analyses are repeated for each model for all disease datasets. The top 20 

SNPs according to all methods for various disease datasets are presented in 

APPENDIX D as tables. Number of available SNPs is also counted and presented 

in APPENDIX E. Additionally, results of references calculated from SNPNexus 

GAD results are presented in APPENDIX F. 

5.4.1 Comparative Analysis of Schizophrenia SNP Prioritization Results for 

Delphi AHP RF-AHP and RF-AHP-R 

AHP Score distribution for Schizophrenia analyses are shown in Figure 21. Amount 

of available SNPs which have AHP scores higher than threshold are shown in Table 

6. For Schizophrenia disease, general distribution of AHP scores were higher. 

Therefore, threshold was set to 0.5. 

 

 

a) Sz scoring by     

Delphi AHP 

b) Sz scoring by        

RF- AHP 

c) Sz scoring by        

RF-AHP-R 

Figure 21 Distribution of computed for Sz scores in Delphi AHP, RF-AHP and RF-AHP-R 

According to Table 6, it may be seen that the number of available SNPs having AHP 

scores above 0.1 was the same at 961 SNPs for Delphi AHP and 959 SNPs for RF-

AHP. This shows that designing AHP process using RF was able to provide almost 

same response without requiring any expert and no loss of information occurred. Sz 

analysis using RF-AHP-R provided 2424 SNPs which scored over threshold value. 
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Table 6  No of Available SNPs as a Result of Schizophrenia Analysis 

Analysis Name No of SNPs whose AHP score > 0.5 

Sz analysis using Delphi AHP 961 

Sz analysis using RF-AHP 959 

Sz analysis using RF-AHP-R 2424 

 

For each analysis result a separate SNPNexus job was submitted. Result of each job 

analyzed and GAD results are shown in Figure 22. 

 

Figure 22 SNPNexus-GAD Frequency Results for Schizophrenia Analysis: a) Most Referenced 

SNPs b) Most Referenced Genes c) Most Referenced Disease Classes d) Most Referenced 

Phenotypes 

5.4.2 Comparative Analysis of Prostate Cancer SNP Prioritization Results for 

Delphi AHP RF-AHP and RF-AHP-R 

AHP Score distribution for Prostate Cancer analyses are shown in Figure 23. For 

Prostate Cancer according to general distribution of AHP scores threshold was set 

to 0.1. Amount of available SNPs which have AHP score higher than threshold are 

shown in Table 7.  
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a) PCa scoring by Delphi AHP b) PCa scoring by RF- AHP c) PCa scoring by RF-AHP-R 

Figure 23 Distribution of computed AHP Scores for PCa for Delphi AHP, RF-AHP and RF-AHP-R 

According to Table 7, it may be seen that the number of available SNPs having AHP 

scores above 0.1 was the same at 121 SNPs for Delphi AHP and RF-AHP. 

Table 7 No of Available SNPs as a Result of Prostate Cancer Analysis 

Analysis Name No of SNPs whose AHP score > 0.1 

PCa analysis using Delphi AHP 121 

PCa analysis using RF-AHP 121 

PCa analysis using RF-AHP-R 140 

 

This shows that designing AHP process using RF was able to provide same response 

without requiring any expert and no loss of information occurred. By incorporating 

RegulomeDB data, in RF-AHP-R, number of available SNPs increased to 140. For 

each analysis result a separate SNPNexus job was submitted. Result of each job 

analyzed and GAD results are shown in Figure 24.  
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Figure 24 SNPNexus-GAD Frequency Results for Prostate Cancer Analysis: a) Most Referenced 

SNPs b) Most Referenced Genes c) Most Referenced Disease Classes d) Most Referenced 

Phenotypes 

5.4.3 Comparative Analysis of Type 2 Diabetes Mellitus SNP Prioritization 

Results for Delphi AHP RF-AHP and RF-AHP-R 

AHP Score distribution for Type 2 Diabetes Mellitus analyses are shown in Figure 

25. For Type 2 Diabetes Mellitus disease, according to general distribution of AHP 

scores threshold was set to 0.1.  

 

a) T2DM scoring by 

Delphi AHP 

b) T2DM scoring by 

RF- AHP 

c) T2DM scoring by 

RF-AHP-R 

Figure 25 Distribution of computed AHP Scores for T2DM Delphi AHP, RF-AHP and RF-AHP-R 
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Amount of available SNPs which have AHP score higher than threshold are shown 

in Table 8. According to Table 8, it may be seen that the number of available SNPs 

having AHP scores above 0.1 was the same at 330 SNPs for Delphi AHP and RF-

AHP. This shows that designing AHP process using RF was able to provide same 

response without requiring any expert and no loss of information occurred. By 

incorporating RegulomeDB data, in RF-AHP-R, number of available SNPs 

increased to 353 SNPs. For each analysis result a separate SNPNexus job was 

submitted. Result of each job analyzed and GAD results are shown in Figure 26. 

Table 8  No of Available SNPs as a Result of Type 2 Diabetes Analysis 

Analysis Name No of SNPs whose AHP score > 0.1 

T2DM analysis using Delphi AHP 330 

T2DM analysis using RF-AHP 330 

T2DM analysis using RF-AHP-R 353 

 

 

Figure 26 SNPNexus-GAD Frequency Results for T2DM Analysis: a) Most Referenced SNPs b) 

Most Referenced Genes c) Most Referenced Disease Classes d) Most Referenced Phenotypes 
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5.4.4 Comparative Analysis of Alzheimer’s Disease SNP Prioritization Results for 

Delphi AHP RF-AHP and RF-AHP-R 

AHP Score distribution for Alzheimer’s Disease analyses are shown in Figure 27. 

For Alzheimer’s Disease according to general distribution of AHP scores threshold 

was set to 0.1.  

    

a) AD scoring by          

Delphi AHP 

b) AD scoring by      

RF- AHP 

c) AD scoring by                       

RF-AHP-R 

Figure 27 Distribution of computed scores for AD in Delphi AHP, RF-AHP and RF-AHP-R 

  

As a result of Alzheimer’s Disease GWAS analysis number of significant SNPs 

above p-value=0.05 was comparably lower than other diseases. Therefore 

prioritization results contained less SNPs. Amount of available SNPs which have 

AHP score higher than threshold are shown in Table 9. It may be seen that the 

number of available SNPs having AHP scores above 0.1 was the same at 54 SNPs 

for Delphi AHP and RF-AHP. Therefore, RF-AHP was able to provide same 

response without requiring any expert and no information loss occurred. By 

incorporating RegulomeDB, in RF-AHP-R, SNPs increased to 56 SNPs. GAD 

results are shown in Figure 28. 

Table 9  No of Available SNPs as a Result of Alzheimer’s Disease Analysis 

Analysis Name No of SNPs whose AHP score > 0.1 

AD analysis using Delphi AHP  54 

AD analysis using RF-AHP  54 

AD analysis using RF-AHP-R  56 
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Figure 28 SNPNexus-GAD Frequency Results for Alzheimer’s Disease Analysis: a) Most 

Referenced SNPs b) Most Referenced Genes c) Most Referenced Disease Classes d) Most 

Referenced Phenotypes 

5.5 Discussion on the Analysis Results 

Overall results of this thesis provided a proof-of-concept for Random Forest based 

AHP (RF-AHP) method to address expert judgment uncertainty in decision making 

with AHP.  The AHP categories are evaluated according to calculated Variable 

Importances in the trained Random Forest model providing automatic identification 

of necessary set of features and weights.  

Remarkably, according to Figure 16, categories such as Coding_Frameshift and 

Other_Coding_Nonsynonymous have zero importance and they are omitted in RF-

AHP and RF-AHP-R It is logical because if these mutations occur then result is not 

a complex disease but a monogenic disease with major effects.  

When the number of SNPs over an AHP score threshold are compared between 

Delphi AHP and RF-AHP analyses (Table 6 through Table 9) no change was 

observed. This proved that designing AHP based on RF importances was successful 

in representing the same decision making performance.  
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Use of RegulomeDB incorporated RF-AHP-R method for Sz analysis nearly 

doubled the number of available SNPs as it may be seen in Table 6. RF-AHP-R 

scoring also provided insight into Schizophrenia disease. These results supported 

that, Schizophrenia associated regions of genome are mainly located in regulatory 

regions. Additionally, in PCa, T2D and AD analyses, the number of available SNPs 

increased consistently in small amounts for RF-AHP-R because of additional 

knowledge provided by RegulomeDB table. 

The Top 5 most referenced SNPs were the same for all three of the methods for each 

disease (Figure 22, 24, 26, and 28). Number of most referenced disease classes 

increased proving that the optimized model is able to link higher number of SNPs 

to diseases. One interesting result is that most referenced disease class is 

METABOLIC although its phenotype is a cancer. In the T2DM results, 

METABOLIC disease class results increased mostly meaning that the RF-AHP 

model is able to perform better for T2D which is also a metabolic disease. In 

Schizophrenia, most referenced disease types are METABOLIC and 

PSYCHOLOGICAL class which are also logical. For Alzheimer 

CARDIOVASCULAR type is mostly referenced in GAD database. The number of 

most referenced phenotypes in analyses are consistent between Delphi AHP and RF-

AHP models. Proving that the RF-AHP model is able to link same or higher number 

of SNPs to phenotypes. Moreover both the Delphi AHP and RF-AHP models were 

able to detect most Diabetes Mellitus type phenotypes successfully. When the most 

referenced number of genes in SNPNexus query is checked, it was found that they 

are the same in all methods for each disease. 

In summary, pruning the Delphi AHP tree categories did not cause any loss of 

information. However, when these categories were asked to experts, mistakenly 

these categories were given high importance. Therefore, data driven approach 

avoided mistakes due to subjective weighing of categories by experts.  
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CHAPTER 6 

 

6. CONCLUSIONS AND FUTURE RESEARCH 

6.1 Conclusions 

The objective of this thesis work is to provide a solution to subjectivity and 

uncertainty problem in Analytic Hierarchy Process based decision making caused 

by the expert evaluations. In particular, a solution for Single Nucleotide 

Polymorphism (SNP) prioritization problem for disease associated SNP biomarker 

detection problem has been proposed. The introduction of the problem is provided 

in the first chapter of this thesis. In the second chapter, the molecular biology 

background concepts for complex diseases and SNP prioritization are presented to 

establish a base of knowledge. Related literature for complex disease biomarker 

discovery by use of SNPs is reviewed. Genome wide association study which is 

widely used in prior to SNP prioritization is presented.  Additionally, background 

for Analytic Hierarchy Process based decision making and Random Forest based 

machine learning method, their advantages and disadvantages are reviewed. In the 

third chapter, materials and methods employed to realize the proposed algorithms 

are presented. Detailed explanation of utilized data sources such as Schizophrenia, 

Prostate Cancer, Type 2 Diabetes Mellitus and Alzheimer’s Disease is presented. 

Additionally, software environment in development and testing of the 

methodologies is outlined. In the fourth chapter, proposed Random Forest based 

Analytic Hierarchy Process RF-AHP is described in detail. Its advantages for 

eliminating subjective decisions is explained. A case study for application of RF-

AHP to SNP prioritization is presented as a step by step procedure. Moreover, 

implementation details of RF-AHP-R method is described. With RF-AHP-R, 

prioritization using SNPs with regulatory functions are provided by incorporation 

of RegulomeDB.  

Results and Discussion of tests performed on implemented methods are presented 

in the fifth chapter. Performance of the realized RF-AHP is tested through two 
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disease datasets namely Prostate Cancer and Alzheimer’s Disease. Comparison of 

Delphi AHP based method to RF-AHP method and RF-AHP with RegulomeDB i.e. 

RF-AHP-R is presented. The comparisons of performance for the three methods are 

shown as various plots. Later, discussion of the results is presented. Finally in this 

chapter, in the following sections, the contributions and possible future search 

alternatives are provided. 

6.2 Contributions 

Proposed Random Forest based Analytic Hierarchy Process (RF-AHP) method to 

address the expert judgment uncertainty problem in Analytic Hierarchy Process 

design was showed to be viable for decision making in SNP prioritization. Both 

important and uninformative AHP categories are identified by using the Random 

Forest machine learning method using Prostate Cancer dataset [116][117] .  

There are studies in the literature, where Random Forest analysis was applied to 

discover candidate SNPs [128][129]. However, to the best of our knowledge, 

incorporating Random Forest to the AHP approach in order to provide RF-AHP 

prioritization was not reported in previous academic studies. In this study, variable 

importance property of Random Forest method was shown to be useful to identify 

informative and uninformative categories in a previously developed expert designed 

Delphi-AHP. Consequently, using the RF-AHP method, AHP based SNP 

prioritization can be performed without the need for experts, therefore subjectivity 

in decisions may be eliminated. 

Four disease datasets namely Schizophrenia [122], Prostate Cancer [116][117], 

Type 2 Diabetes Mellitus [118][119] and Alzheimer’s Disease[120][121] were used 

in analyses. RF-AHP and RF-AHP-R compared to Delphi AHP according to SNP 

prioritization results of these four datasets. As a consequence of comparative 

analyses, it is concluded that there is no loss of information in the results with respect 

to the number of prioritized SNPs between three approaches. For instance, 

Coding_Frameshift and Other_Coding_Nonsynonymous categories were not used 

in RF-AHP as they were not found to have any impact on the decision. As coding 

SNPs would have serious consequences on the biological outcome, they are more 

likely to be the causative changes in single gene disorders. However, complex 

genetic disorders such as, cancer, diabetes or neurological diseases studied here, are 

the focus of GWAS. In a complex genetic disorder, many SNPs, spread throughout 

the genome, contributes to increase disease susceptibility as small effects [55]. 

Furthermore, the genetic factors associated with the disease are not only the 

variations between these groups, but there are additional factors such as 
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demographical and clinical findings, lifestyle, and other environmental factors 

[54][66].  

The focus in the applied method was identification of valuable information in each 

category in the Delphi-AHP tree. Therefore, building a more objective and more 

efficient AHP tree was possible without use of any experts by Random Forest based 

evaluation of uninformative categories of the AHP tree. 

6.3 Future Research 

As a future research on this study, firstly, the proposed method may be used to 

analyze other complex diseases such as bipolar disorder or other types of cancers. 

By this way, etiology of other diseases may be discovered by employing RF-AHP. 

Secondly, considered SNP annotations include genetic biological and functional 

annotations. In the analysis of complex diseases there are other factors that should 

be considered such as clinical phenotypes, real time sensor data and lifestyle 

information e.g. BMI, smoking and environmental conditions such as air pollution. 

After these datasets are obtained and incorporated into RF-AHP, we believe the 

prioritization performance may be further improved.  

Thirdly, in the current database, only SNPs are evaluated in RF-AHP. However 

other types of polymorphisms such as STRs and CNVs which were mentioned in 

Section 2.3 may be analyzed for finding complex disease related biomarkers.     

Finally, performance comparison of RF-AHP may be made to other machine 

learning methods such as naïve-Bayes or neural networks.
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APPENDICES 

APPENDIX A 

LIST OF SNPs FROM PROSTATE CANCER GENOMIC MODEL [6]  

 

SNPs: 1-60 SNPs: 61-108 

rs2442602 rs16863955 

rs11729739 rs504207 

rs17363393 rs17152800 

rs7562894 rs12980509 

rs17701543 rs12119983 

rs3093679 rs9963110 

rs280986 rs10068915 

rs17595858 rs2296370 

rs9848588 rs6708126 

rs9347691 rs960278 

rs11790106 rs1020235 

rs5972169 rs7843255 

rs964130 rs2853668 

rs6851444 rs2115101 

rs11126869 rs10106027 

rs4782945 rs2194505 

rs10195113 rs524534 
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rs11086671 rs2602296 

rs7775829 rs17111584 

rs12243805 rs2120806 

rs1433369 rs17799219 

rs6887293 rs17400029 

rs9401290 rs17178580 

rs1454186 rs10517581 

rs12733054 rs7183502 

rs3812906 rs2948268 

rs17284653 rs3760903 

rs4827384 rs2103869 

rs17375010 rs13011951 

rs6549458 rs11685549 

rs1379015 rs11584032 

rs1122170 rs10788555 

rs766045 rs12266639 

rs2666205 rs6676372 

rs1965340 rs4562278 

rs501700 rs7067548 

rs12201462 rs2826802 

rs7010457 rs4793790 

rs6704731 rs11885120 

rs17432165 rs17001078 

rs4908656 rs7024840 

rs10854395 rs2711134 

rs6475584 rs7584223 

rs1470494 rs918285 

rs9462806 rs197265 

rs12644498 rs4517938 

rs7876199 rs7152946 

rs744346 rs7034430 

rs1974562 rs517036 

rs12247568 rs340542 
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rs17673975 rs1074525 

rs6774902  

rs10954845  

rs6686571  

rs6779266  

rs6747704  
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APPENDIX B 

DELPHI ANALYTIC HIERARCHY PROCESS TREE (Adapted from [4]) 
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APPENDIX C 

SAMPLE QUESTIONNAIRE FOR DELPHI-AHP CATEGORY WEIGHTS 

BY EXPERTS [4] 

 
Priority 

vectors   
Description  Expert 1  Expert 2  Expert 3  Expert 4  Expert 5  

0  Gwas Results  0.33  0.25  0.83  0.14  0.36  

1  Biological Facts  0.67  0.75  0.17  0.86  0.64  

0.1  Individual SNP  0.07  0.07  0.08  0.16  0.06  

0.2  Significant -Gene  0.64  0.64  0.19  0.75  0.27  

0.2.1  Significant Gene - Via 

LD  

0.06  0.11  0.07  0.07  0.11  

0.2.2  Significant Gene - Via 

Direct  

0.66  0.63  0.75  0.81  0.33  

0.2.3  Significant Gene - Via 

Pathway  

0.28  0.26  0.18  0.12  0.56  

0.3  Significant Pathway 

Gene  

0.28  0.28  0.72  0.09  0.67  

0.3.1  Significant Pathway 

Gene - Via LD  

0.06  0.11  0.08  0.11  0.11  

0.3.2  Significant Pathway 

Gene - Via Direct  

0.66  0.63  0.69  0.7  0.33  

0.3.3  Significant Pathway 

Gene - Via Pathway  

0.28  0.26  0.23  0.19  0.56  

1.1  Evolutionary 

Conservation  

0.06  0.12  0.26  0.31  0.11  

1.1.1  Vertebrate  0.33  0.17  0.9  0.13  0.25  

1.1.2  Mammalian  0.67  0.83  0.1  0.88  0.75  

1.1.2.1  Mammalian - 

Significant Mouse 

ECR  

0.67  0.83  0.25  0.75  0.8  

1.1.2.2  Mammalian - Other 

Mammalian  

0.33  0.17  0.75  0.25  0.2  

1.2  Gene Association  0.66  0.32  0.63  0.62  0.58  

1.2.1  Disease Gene  0.9  0.83  0.88  0.9  0.88  

1.2.1.1  Disease Gene - Via LD  0.06  0.11  0.09  0.23  0.11  
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APPENDIX D 

DELPHI-AHP, RF-AHP AND RF-AHP-R SCORES FOR ANALYZED 

DISEASES 

 

TOP 20 DELPHI-AHP, RF-AHP AND RF-AHP-R SCORES FOR 

ALZHEIMER’S DISEASE 

AD DELPHI-AHP Scores: 

rs879 0.435252 

rs2668 0.422149 

rs11523 0.421324 

rs6160 0.412137 

rs3084 0.398197 

rs1237 0.398197 

rs7384 0.376914 

rs14810 0.375438 

rs11522 0.375438 

rs897530 0.374533 

rs783305 0.366587 

rs7769 0.353567 

rs9511 0.352091 

rs1615 0.351774 

rs42019 0.351774 

rs5897 0.323093 

rs4972 0.320616 

rs4161 0.298508 

rs17032 0.292289 

rs138222 0.291147 
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AD RF-AHP Scores: 

rs879 0.43411 

rs2668 0.421324 

rs11523 0.421324 

rs6160 0.412137 

rs3084 0.397055 

rs1237 0.397055 

rs14810 0.374296 

rs7384 0.374296 

rs11522 0.374296 

rs897530 0.373708 

rs783305 0.365762 

rs9511 0.350949 

rs1615 0.350949 

rs7769 0.350949 

rs42019 0.350949 

rs5897 0.323093 

rs4972 0.320616 

rs4161 0.297683 

rs17032 0.291147 

rs138222 0.291147 
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AD RF-AHP-R Scores: 

rs3084 0.474415 

rs11523 0.460004 

rs879 0.45345 

rs897530 0.451068 

rs7384 0.432316 

rs2668 0.421324 

rs6160 0.412137 

rs7769 0.408969 

rs5897 0.400453 

rs1237 0.397055 

rs14810 0.393636 

rs11522 0.393636 

rs783305 0.385102 

rs4161 0.375043 

rs9511 0.370289 

rs1615 0.370289 

rs17032 0.368507 

rs42019 0.350949 

rs4972 0.339956 

rs138222 0.329827 
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TOP20 DELPHI-AHP, RF-AHP AND RF-AHP-R SCORES FOR PROSTATE 

CANCER DISEASE 

PCa DELPHI-AHP Scores: 

rs3912492 0.338913 

rs12636081 0.338913 

rs17061864 0.338913 

rs6803449 0.338913 

rs1801701 0.215257 

rs4794488 0.213299 

rs77905 0.21326 

rs12948056 0.212474 

rs1433369 0.198217 

rs1608114 0.191643 

rs16930396 0.191326 

rs1915940 0.191326 

rs2574824 0.18345 

rs7249230 0.177416 

rs11563056 0.176244 

rs8064691 0.176244 

rs12592981 0.176244 

rs531572 0.176244 

rs965560 0.160103 

rs138726 0.159278 
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PCa RF-AHP Scores: 

rs3912492 0.338088 

rs12636081 0.338088 

rs17061864 0.338088 

rs6803449 0.338088 

rs1801701 0.215257 

rs77905 0.21326 

rs12948056 0.212474 

rs4794488 0.212474 

rs1433369 0.197392 

rs16930396 0.190501 

rs1608114 0.190501 

rs1915940 0.190501 

rs2574824 0.182625 

rs7249230 0.177416 

rs11563056 0.175419 

rs8064691 0.175419 

rs12592981 0.175419 

rs531572 0.175419 

rs965560 0.159278 

rs138726 0.159278 
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PCa RF-AHP-R Scores: 

rs3912492 0.357428 

rs12636081 0.357428 

rs17061864 0.338088 

rs6803449 0.338088 

rs1433369 0.274752 

rs1801701 0.253937 

rs1608114 0.248521 

rs77905 0.2326 

rs12948056 0.231814 

rs666721 0.23002 

rs16930396 0.229181 

rs4794488 0.212474 

rs3782851 0.21068 

rs11695247 0.210092 

rs138000 0.210092 

rs1915940 0.209841 

rs680949 0.206673 

rs11253552 0.206673 

rs6949101 0.206673 

rs2574824 0.201965 
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TOP20 DELPHI-AHP, RF-AHP AND RF-AHP-R SCORES FOR 

SCHIZOPHRENIA DISEASE 

 

Sz DELPHI-AHP Scores: 

rs17115004 0.737535 

rs3793504 0.737535 

rs2229163 0.73671 

rs7009117 0.71945 

rs6589360 0.715562 

rs7128875 0.715562 

rs6475523 0.715562 

rs16895119 0.714737 

rs17011998 0.692803 

rs2982712 0.692215 

rs12295969 0.677721 

rs11819808 0.677721 

rs11568942 0.677721 

rs720024 0.677721 

rs7074934 0.677721 

rs7111410 0.677721 

rs16848098 0.677721 

rs5030351 0.677721 

rs17021884 0.677721 

rs6669695 0.677721 
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Sz RF-AHP Scores: 

rs17115004 0.73671 

rs2229163 0.73671 

rs3793504 0.73671 

rs7009117 0.71945 

rs6589360 0.714737 

rs7128875 0.714737 

rs6475523 0.714737 

rs16895119 0.714737 

rs17011998 0.691978 

rs2982712 0.69139 

rs12295969 0.676896 

rs11819808 0.676896 

rs11568942 0.676896 

rs720024 0.676896 

rs7074934 0.676896 

rs7111410 0.676896 

rs16848098 0.676896 

rs5030351 0.676896 

rs17021884 0.676896 

rs6669695 0.676896 
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Sz RF-AHP-R Scores: 

rs7009117 0.77747 

rs2229163 0.77539 

rs3793504 0.77539 

rs7541690 0.754256 

rs6589360 0.753417 

rs17115004 0.73671 

rs4655836 0.734916 

rs7128875 0.734077 

rs16895119 0.734077 

rs10790976 0.730909 

rs2227284 0.730909 

rs7019331 0.730909 

rs10757185 0.715576 

rs7875344 0.715576 

rs41368546 0.715576 

rs447 0.715576 

rs3213219 0.715576 

rs951240 0.715576 

rs6475523 0.714737 

rs7722406 0.712157 
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TOP20 DELPHI-AHP, RF-AHP AND RF-AHP-R SCORES FOR TYPE 2 

DIABETES MELLITUS DISEASE 

 

T2DM DELPHI-AHP Scores: 

rs12592542 0.506199 

rs3935795 0.491705 

rs3935794 0.491705 

rs3935796 0.491705 

rs11593943 0.491705 

rs16886364 0.491705 

rs16886448 0.491705 

rs17109221 0.491705 

rs10841843 0.468946 

rs190092 0.468358 

rs12907278 0.468358 

rs17764096 0.468358 

rs7153625 0.468358 

rs7154599 0.468358 

rs6866823 0.468358 

rs6871286 0.468358 

rs6886001 0.468358 

rs1979398 0.468358 

rs4685598 0.468358 

rs7649544 0.468358 
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T2DM RF-AHP Scores: 

rs12592542 0.505374 

rs3935795 0.49088 

rs3935794 0.49088 

rs3935796 0.49088 

rs11593943 0.49088 

rs16886364 0.49088 

rs16886448 0.49088 

rs17109221 0.49088 

rs10841843 0.468121 

rs190092 0.467533 

rs12907278 0.467533 

rs17764096 0.467533 

rs7153625 0.467533 

rs7154599 0.467533 

rs6866823 0.467533 

rs6871286 0.467533 

rs6886001 0.467533 

rs1979398 0.467533 

rs4685598 0.467533 

rs7649544 0.467533 
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T2DM RF-AHP-R Scores: 

rs3935795 0.56824 

rs3935794 0.56824 

rs3935796 0.52956 

rs7144011 0.525553 

rs12592542 0.524714 

rs11593943 0.51022 

rs16886364 0.51022 

rs17109221 0.51022 

rs17764096 0.506213 

rs10518694 0.492916 

rs228768 0.492916 

rs16886448 0.49088 

rs11603383 0.489748 

rs1402002 0.489748 

rs1979398 0.486873 

rs4685598 0.486873 

rs11693602 0.470996 

rs4077463 0.470996 

rs10841843 0.468121 

rs190092 0.467533 
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APPENDIX E 

 

AVAILABLE SNPS FOR AHP, RF-AHP RF-AHP-R METHODS FOR 

PROSTATE CANCER, TYPE 2 DIABETES, SCHIZOPHRENIA AND 

ALZHEIMER’S DISEASE ANALYSES 

 

Table E.1 No of Available SNPs as a Result of Prostate Cancer Analysis 

Analysis Name No of SNPs whose AHP score > 0.1 

PCa analysis with Delphi-AHP 121 

PCa analysis with RF-AHP 121 

PCa analysis with RF-AHP-R 140 

 

 

Table E.2 No of Available SNPs as a Result of Type 2 Diabetes Analysis 

Analysis Name No of SNPs whose AHP score > 0.1 

T2D analysis with Delphi-AHP 330 

T2D analysis with RF-AHP 330 

T2D analysis with RF-AHP-R 353 
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Table E.3 No of Available SNPs as a Result of Schizophrenia Analysis 

Analysis Name No of SNPs whose AHP score > 0.5 

Sz analysis with Delphi-AHP 961 

Sz analysis with RF-AHP 959 

Sz analysis with RF-AHP-R 2424 

 

Table E.4 No of Available SNPs as a Result of Alzheimer’s Disease Analysis 

Analysis Name No of SNPs whose AHP score > 0.1 

AD analysis with Delphi-AHP 54 

AD analysis with RF-AHP 54 

AD analysis with RF-AHP-R 56 

 

 

 

 

 

 

 

 

 

 



103 

 

 

 

 

 

APPENDIX F 

GAD RESULTS FOR PROSTATE CANCER DISEASE ANALYSIS IN 

AHP, RF-AHP RF-AHP-REGULOME METHODS 

Table F.1  No of most referenced SNPs in the results of GAD query 

        SNP#     Delphi-AHP RF-AHP RF-AHP-R 

rs1801701  272 272 272 

rs531572   90 90 90 

rs77905    88 88 88 

rs8177812  55 55 55 

rs12636081 50 50 50 

rs17061864 50 50 50 

(Other)    1437 1437 1531 
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Table F.2 No of most referenced disease classes in the results of GAD query 

Disease Class Delphi-

AHP 

RF-AHP RF-AHP-R 

METABOLIC      621 621 672 

CARDIOVASCULAR 342 342 356 

PSYCH          213 213 214 

CANCER         188 188 190 

CHEMDEPENDENCY 124 124 131 

NEUROLOGICAL   101 101 105 

(Other)        453 453 468 

Table F.3 No of most referenced phenotypes in the results of GAD query 

               

Phenotype  

Delphi-AHP RF-AHP RF-AHP-R 

Glucose              90 90 92 

Cholesterol, HDL     77 77 86 

Tobacco Use 

Disorder 

69 69 71 

Cholesterol, LDL     58 58 58 

Waist 

Circumference  

54 54 58 

Menopause            46 46 51 

(Other)              1648 1648 1720 
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Table  F.4 No of most referenced genes in the results of GAD query 

      Gene    Delphi-AHP RF-AHP RF-AHP-R 

 APOB    269 269 269 

 LARGE   145 145 160 

 LRRN1   144 144 145 

 FHIT    119 119 119 

 DBH     86 86 86 

 MGMT    84 84 84 

 (Other) 1195 1195 1273 
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GAD RESULTS FOR TYPE 2 DIABETES DISEASE ANALYSIS IN AHP, 

RF-AHP RF-AHP-REGULOME METHODS 

 Table F.5 No of most referenced SNPs in the results of GAD query 

        SNP#     Delphi-AHP RF-AHP RF-AHP-R 

rs11196208 247 247 247 

rs12255372 247 247 247 

rs10885409 246 246 246 

rs11196205 246 246 246 

rs12243326 246 246 246 

rs7077039  246 246 246 

(Other)    5204 5204 5345 

Table F.6 No of most referenced disease classes in the results of GAD query 

Disease Class Delphi-AHP RF-AHP RF-AHP-R 

METABOLIC      3419 3419 3465 

CARDIOVASCUL

AR 

748 748 776 

CANCER         408 408 412 

IMMUNE         365 365 374 

CHEMDEPENDE

NCY 

296 296 309 

UNKNOWN        273 273 274 

(Other)        1173 1173 1213 
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Table F.7 No of most referenced phenotypes in the results of GAD query 

               Phenotype  Delphi-AHP RF-AHP RF-AHP-R 

Phenotype  1011 1011 1012 

diabetes, type 2          488 488 488 

Type 2 diabetes           214 214 218 

Tobacco Use Disorder      197 197 197 

Diabetes Mellitus, 

Type 2 

148 148 148 

type 2 diabetes           123 123 123 

Waist Circumference       4501 4501 4637 

 

Table F.8 No of most referenced genes in the results of GAD query 

      Gene    Delphi-AHP RF-AHP RF-AHP-R 

TCF7L2  2813 2813 2813 

CDKAL1  225 225 225 

LRRN1   176 176 176 

NAV2    165 165 176 

NCAM2   126 126 147 

NRXN3   123 123 123 

(Other) 3054 3054 3163 
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GAD RESULTS FOR SCHIZOPHRENIA DISEASE ANALYSIS IN AHP, 

RF-AHP RF-AHP-REGULOME METHODS 

  

Table F.9 No of most referenced SNPs in the results of GAD query 

        SNP#     Delphi-AHP RF-AHP RF-AHP-R 

rs4846051 1951 1951 1951 

rs4349    1648 1648 1648 

rs4297    1646 1646 1646 

rs7212502 1052 1052 1052 

rs9903602 1052 1052 1052 

rs8191446 794 794 794 

(Other)   29989 29989 63874 

Table F.10 No of most referenced disease classes for Schizophrenia in the 

results of GAD query 

       Disease Class Delphi-AHP RF-AHP RF-AHP-R 

Metabolic      6984 6984 14896 

Psych          6074 6074 10703 

Cardiovascular 5794 5794 9687 

Cancer         4742 4742 7977 

Immune         2331 2331 6230 

Neurological   2320 2320 4179 

(Other)        9887 9887 18345 
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Table F.11 No of most referenced phenotypes for Schizophrenia in the results 

of GAD query 

               

Phenotype  

Delphi-AHP RF-AHP RF-AHP-R 

Schizophrenia        1252 1252 1562 

Undefined              1011 1011 1433 

Tobacco Use 

Disorder 

774 774 1425 

Lung Cancer          544 544 1039 

Autism               474 474 1000 

Breast Cancer        469 469 881 

(Other)              33608 33608 64677 

Table F.12 No of most referenced genes in the results of GAD query 

      Gene    Delphi-AHP RF-AHP RF-AHP-R 

ESR1    3918 3918 3918 

ACE     3284 3284 3284 

CNTNAP2 2225 2225 2906 

SLC6A4  2102 2102 2244 

MTHFR   1947 1947 2102 

IL4     1804 1804 1947 

(Other) 22852 22852 55616 
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GAD RESULTS FOR ALZHEIMER’S DISEASE ANALYSIS IN AHP ,RF-

AHP RF-AHP-REGULOME METHODS 

Table F.13 No of most referenced SNPs in the results of GAD query 

        SNP#     Delphi-AHP RF-AHP RF-AHP-R 

rs6023   848 848 848 

rs5897   655 655 655 

rs4972   141 141 141 

rs132954 49 49 49 

rs6160   43 43 43 

rs35627  37 37 37 

(Other)  520 520 523 

 

Table F.14 No of most referenced disease classes for Alzheimer’s Disease in the 

results of GAD query 

       Disease Class Delphi-AHP RF-AHP RF-AHP-R 

Cardiovascular 919 919 919 

Metabolic      354 352 354 

Reproduction   236 236 236 

Unknown        196 196 196 

Hematological  143 143 143 

Cancer         109 109 109 

(Other)        338 338 339 
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Table F.15 No of most referenced phenotypes for Alzheimer’s Disease in the 

results of GAD query 

               

Phenotype  

Delphi-AHP RF-AHP RF-AHP-R 

Glucose                 88 88 88 

Venous 

Thrombosis       

63 63 63 

Hypertension            43 43 43 

Undefined           41 41 41 

Thromboembolism

, Venous 

34 34 34 

Cholesterol, HDL        30 30 30 

(Other)                 1994 1994 1997 

Table F.16 No of most referenced genes in the results of GAD query 

      Gene    Delphi-AHP RF-AHP RF-AHP-R 

F5      846 846 846 

F2      641 641 641 

LARGE   145 145 145 

ADD1    140 140 140 

LRRN1   48 48 48 

CYP11A1 43 43 43 

(Other) 430 430 433 
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