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ABSTRACT

REDUCTION OF FALSE ARRHYTHMIA ALARMS ON
PATIENT MONITORING SYSTEMS IN INTENSIVE CARE

UNITS BY USING FUZZY LOGIC ALGORITHMS

YANAR, Erdem

M.S., Department of Electrical and Electronics Engineering

Supervisor : Assoc. Prof. Dr. Yeşim Serinağaoğlu Doğrusöz

January 2018, 132 pages

Generally in hospitals, monitoring devices in the intensive care units (ICU) have

high rates of false arrhythmia alarms independent of their brands and prices.

These falsely issued alarms have financial and physiological effects such as re-

dundant usage of hospital resources and hassling patients’ rest, reducing sensi-

tivity of the hospital staff to potential emergency cases, which is named as “false

alarm fatigue”. According to Deshmane et al. (2009), 43% of arrhythmia alarms

in ICUs are false. Moreover, This rate reaches 90% in some of the arrhyth-

mia types. In our study, we considered that the alarms are triggered by five life

threatening conditions, which are asystole (ASY), bradycardia (EBR), tachycar-

dia (ETC), ventricular tachycardia (VTA), ventricular flutter/fibrillation (VFB).

These alarms are usually triggered by analysis of ECG and pulsatile waveforms

recorded by patient monitoring equipments, which have standard alarm trig-

gering criteria such as instantaneous thresholds on the predictor values. Most
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of the ICU false alarms are caused by single channel artifacts. In this study,

we aim to fuse ECG features with information from other independent signals

and get more robust alarm algorithms for ICUs. Pulsatile waveforms, which are

highly correlated signals, can be used to corroborate the alarm category and to

suppress significant number of false ECG alarms in ICUs. Photoplethysmogram

(PPG), arterial blood pressure (ABP) or both PPG, and ABP can be used for

this purpose. These waveforms are the least noisy pressure signals available in

certain ICUs, and rarely contain ECG-related artifacts. We implemented four

different algorithms that use information from ECG, PPG and ABP waveforms.

We trained and tested these algorithms on Physionet Challenge 2015 database,

which consists of 5 main arrhythmia types and total of 750 recordings. These

algorithms have main analysis steps as: pre-processing (bandpass filters to re-

move baseline artifacts, scaling to normalize the amplitude of waveforms), beat

detection, alarm decision (for the generic algorithm). Our results show that if

we use only ECG data of the whole dataset, we can obtain 88.3% sensitivity and

77.4% specificity with negligible difference in results between two simultaneous

ECG channels. When we use ECG with ABP and PPG combinations, our sensi-

tivity was increased by 8% but specificity decreased by 4%. When we use ECG

with PPG combinations, our sensitivity was increased by 6.7% but specificity

decreased by 7.9%. These improved methods obtained in this work are around

the tolerances accepted by expert physicians, and slightly outperform the results

of EBR and VFB cases by the other known algorithms evaluated with the same

database.

Keywords: False alarm reduction, Signal quality assessment, ECG (Electrocar-

diogram); Intensive Care Unit; Blood pressure
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ÖZ

YOĞUN BAKIM ÜNİTELERİNDEKİ HASTA BAŞI

MONİTÖRLERİNDE YANLIŞ ARİTMİ ALARMLARININ

BULANIK MANTIK ALGORİTMALARI KULLANILARAK

AZALTILMASI

YANAR, Erdem

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Yeşim Serinağaoğlu Doğrusöz

Ocak 2018 , 132 sayfa

Günümüz hastane ünitelerinde gelişmiş medikal cihazlar, görüntüleme, tanı ve

tedavi açısından önem arz etmektedir. Bunlardan Hasta Başı Monitörleri (HBM)

gelişmiş sinyal işleme algoritmaları ve sensörleriyle erken tanı imkanı sağlayarak

ve alarm vererek özellikle yoğun bakım ünitelerinin ihtiyaçlarını karşılamaktadır-

lar. Bu sayede hastalardaki kritik ve olağandışı reaksiyonlara anında müdahale

edilebilmektedir. Fakat bu cihazlarda algılayıcı uçlarda temassızlık, hastanın fi-

ziksel hareketi, veya cihazdaki algoritmanın hatası sonucu yanlış alarmlar ortaya

çıkabilmekte acil bir durum olmadığı halde cihaz alarm verebilmektedir. Yapı-

lan bir araştırmaya göre hasta başı monitörlerinin verdiği alarmların %43’ünün
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yanlış alarm olduğu, hatta bu oranın bazı durumlarda %90’lara kadar çıkabildiği

saptanmıştır. Bu da hastane kaynaklarının boşa harcanmasına, hastane perso-

nelinin tepki süresinin uzamasına ve alarmların sıradan olarak algılanmasına

yol açmaktadır. Yukarda bahsedilen insan veya cihaz kaynaklı hataların azaltıl-

ması için elektrokardiyografi (EKG) verisi dışında ek verilerin de değerlendirilip,

sonuçların füzyon edilmesi ile daha hassas sonuçlar elde edilebilmektedir. Bu ça-

lışmada EKG verisinin, fotopletismografi (PPG) ve arteryel kan basıncı (ABP)

verilerinin analizi ile hasta başı monitörlerindeki beş temel aritmi (asistoli, bra-

dikardi, taşikardi, ventriküler taşikardi, ventriküler fibrilasyon) için yanlış alarm-

ların azaltılması amaçlanmaktadır. Bu doğrultuda dört farklı algoritma gelişti-

rilmiş ve bu algoritmalar Physionet Challenge 2015 veri seti üzerinde eğitilip test

edilmiştir. Yapılan araştırmalar sonunda veri setinden sadece EKG verisi kulla-

nılarak %83.3 hassaslık ve %77.4 özgüllük elde edilmiştir. EKG ve PPG verileri

birlikte kullanıldığında hassaslık %6.7 artırılırken buna karşılık özgüllükte %7.9

düşüş gözlemlenmiştir. EKG, PPG ve ABP verileri ile birlikte kullanıldığında

hassaslık %8 artırılırken buna karşılık özgüllükte %4 düşüş gözlemlenmiştir. Bu

çalışma kapsamında geliştirmiş olduğumuz metotlardan elde edilen sonuçlar, kar-

diyalogların aritmi saptama isterleri içerisinde kalmakta olup aynı data bankasını

kullanan literatürdeki diğer yöntemlere göre özellikle bradikardi ve ventriküler

taşikardi alarmlarında daha iyi performans göstermektedir.

Anahtar Kelimeler: False alarm reduction, Signal quality assessment, ECG (Elect-

rocardiogram); Intensive Care Unit; Blood pressure
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CHAPTER 1

INTRODUCTION

The intensive care unit (ICU) is a unit in the hospital such that seriously ill

patients, or patients who have undergone a major surgical operation or a serious

head injury are cared by specially trained staff with special devices. The ICU

staff includes doctors, nurses, respiratory therapists, clinical nurse specialists,

pharmacists, physical nurse practitioners, physician assistants, dietitians, social

workers and chaplains. There are a lot of equipments in the ICUs, such as venti-

lators, infusion pumps, syringe pumps, blood warmers, defibrillator and patient

monitors, which may seem overwhelming. Patient monitors, which are used to

monitor their heart, blood pressure and respiratory rate, and ventilators, which

are used to help some patients breathe until they are able to breathe on their

own, are the main devices in ICUs.

Clinical alarms are the another important duty of these ICU patient monitoring

devices. These alarm systems warn hospital staff when a patient, who may have

heart and blood vessel problems (such as very low/high blood pressure, heart

attack, or unstable heart rhythm), needs an emergency care or when a sudden

abnormal event occurs in the patient condition. In other words, when any emer-

gency case or an abnormal vital signal is detected, these systems are triggered

and give an alarm. Patient monitoring devices, which display frequent mea-

surements of a myriad of vital sign parameters such as heart rate, respiratory

rate (SpO2), systolic, diastolic, and mean values for all available pressures, are

the main devices of detection of these situations. When any of these individual

parameters fall outside the ‘too low’ or ‘too high’ alarm thresholds for a few

seconds, an alarm is triggered which may sound an audible tone or visual text

message. They are usually ECG signal-based devices.
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Falsely issued alarms are very common in these devices. These incessant alarms

are triggered by something as motion artifact from activities such as brushing

one’s teeth or noises from power line interference (details are explained in sub-

section 2.1.8). There are generally three main problems associated with false

arrhythmia alarms in ICUs. These problems are redundant usage of hospital

resources, hassling patients rest and inhibiting sensitivity of the hospital staff

to potential emergency cases [13]. In some cases, hospital staff turn off alarms

or adjust settings outside of safety limits, which lead to terrible consequences

like patient falls, delay in treatments or treatment errors. Nearly 90% of false

alarms are patient monitor based [19]. According to statistics, 43% of arrhyth-

mia alarms in ICUs are false, and it can be as high as 90% in some arrhythmia

types [2]. Therefore, reducing the number of falsely issued alarms in patient

monitoring devices is highly important and vital. These alarms can be handled

by improving the ECG processing or examining other measurable waveforms,

which shows that there are no critical signs of abnormalities in the cardiac func-

tion.

False arrhythmia alarm reduction approaches in literature can be divided into 4

main categories as: those that use only the ECG signals, those that use the ECG

and ABP signals together, those that use ECG and PPG signals together and

those that uses ECG, PPG and ABP signals together during processing with

respect to the input signals used in the approaches. In ECG only approaches,

the algorithm proposed by Krestava et al. [46] is used. The ECG signal quality is

obtained by using 3 frequency bands, which are high frequency (for spikes from

artifacts and pacemakers), medium frequency (for signal level and power-line

interference), low frequency (for baseline wanders) ranges.

Secondary waveforms are not measured directly from the heart; therefore, these

signals are not affected by the same types of artifacts and noises which appear in

the ECG signals. Moreover, these secondary signals such as pulsatile waveforms

can also be used to compute and compare morphology and timing features of

the cardiac cycle with the ones calculated from, the ECG signals.

In ECG with multiple pulsatile signals (ABP and PPG) as input approaches,

Zong et al. claimed that false arrhythmia alarm reduction rate can be improved

by comparing ECG signal results with multiple pulsatile waveform results [80].
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Therefore, if the main signal has low SQ, then the alternative or secondary sig-

nals can be used for alarm decision. There are mainly two signals convenient for

this purpose. One of them is photoplethysmogram (PPG) waveform. The PPG

waveform is a pulsatile signal, which is measured non-invasively by attaching a

pulse oximeter to a patient’s finger. The other one is the ABP waveform. ABP is

a basic hemodynamic index often utilized to guide therapeutic interventions, es-

pecially in critically ill patients and obtained from an arterial catheter connected

to a pressure transducer. These waveforms have different noise characteristics

from each other due to differences in their measurement techniques and sensor

locations. For example the PPG waveform measures the blood further down the

arterial tree, where the ABP measurement point is located. Therefore, the PPG

waveform appears like a low pass filtered and delayed form of an ABP waveform.

Usability of the PPG and the ABP waveforms and their performances vary from

case to case. For example, PPG waveforms could provide more information than

ABP if there is premature ventricular beat pattern during measurement. This

makes the ABP waveform noisier than the PPG waveform because the latter are

less affected from the noise due to inefficiency of blood pumping resulting in less

amplification to of the noise. However, if there is tachycardia pattern, probably

the ABP waveform is more useful than the PPG waveform for alarm suppres-

sion [43]. Clifford et al. reported that to avoid misleading decisions in their ECG

false alarms suppression framework, before using PPG and ABP waveforms they

apply SQ measurements on these signals to decide their reliability [43]. Details

of literature survey is given in subsection 2.2.5.

In ECG, ABP signals together input approach, Aboukhalil et al. have proposed a

mathematical model and a framework, which use arterial blood pressure (ABP)

waveforms to indicate false critical ECG arrhythmia alarms [2]. When ECG

based alarms occur, in parallel, the algorithm calculates the signal quality (SQ)

of the ABP waveform, which was recorded simultaneously with the ECG mea-

surement. If the ABP SQ is over the threshold, which means ABP signal is

proper to use, the algorithm computes and compares cardiac features with the

triggered ECG alarm. If the ABP SQ value is under the threshold, which means

ABP is not proper to use, and the ECG alarm is accepted as true. However,

ABP measurement is not commonly collected at all hospitals from all patients.
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According to Desmane et al. [23], only 60% of bed side monitors, which are con-

nected to patients, measure ECG and ABP signals together because the ABP

waveform measurement is invasive and not as simple as the ECG measurement.

They used PPG signals, which are more general in use than ABP signals, instead

of the ABP signals in addition to the ECG signals with a pulse oximeter.

In the integration of the results of each modality requires a robust decision

algorithm. The signal integration algorithms introduced in this thesis form a

decision scheme by using the PPG, ABP and ECG waveforms recorded in the

ICU monitoring devices. We used a total of 750 records given in the dataset

from Physionet Challenge 2015 (details are explained in Section 1.1 Physionet

Challenge 2015 Databases).

In the literature, there is no direct comparison of these three signals (ECG, ABP,

PPG) processing performances of false arrhythmia alarm reduction comparison

on the same dataset. They usually compare combinations of two them, such

as ECG+PPG versus ECG+ABP or only ECG versus ECG+ABP, ECG+PPG

processing algorithms. The future health care solutions have trends to be mo-

bile and computation efficient for worldwide usage without directly going to

hospital and connected to wired devices. The main obstacle of these trends are

cost efficient solution (without the need of high processing power and price of

hardware) for implementing and generalizing these applications. To overcome

these obstacle and improve the false arrhythmia alarm reduction, a variety of

algorithms, which perform filtering, artifact detection, pulse onset identification,

pulse feature extraction and then combining them by fuzzy logic, are specified

for the purpose of usage can be used to determine high-quality segments of these

waveforms, were developed from ones in the literature in this thesis. These have

been modified in order to get the best performances for specific usage areas

(explained in Section 4.1).

1.1 Physionet Challenge 2015 Databases

In this study, we need to compare our results with recent studies in the liter-

ature; therefore, we selected CinC2015 challenge ’Reducing False Arrhythmia

Alarms in the ICU’, which is the most important computing competition in the
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cardiology era because the participants of challenge and the committee mem-

bers are the pioneers in both medicine and engineering part of cardiology. The

results of the challenge have recently been announced in 2016. The topic of the

CinC2015 challenge was very similar with the scope of the thesis and provide a

good chance to compare the results of the thesis with the results of the finalists

of the challenge. The data set included 750 records from bedside monitors in the

ICU, which were manufactured by the three biggest intensive care monitoring

device manufacturers’. Each record contains ECG data from lead II, aVr, and

PPG/ABP pulsatile waveforms. Each alarm was labeled by expert cardiologists

as "false", "true" or "no comment" after reviewing the alarms for each arrhyth-

mia type. The arrhythmia types were asystole (ASY), extreme bradycardia

(EBR), extreme tachycardia (ETC), ventricular fibrillation or flutter (VFB), or

ventricular tachycardia (VTA), whose features are shown in Table 1.1.

Table 1.1: Data Set Alarm Definitions [17]

Alarm Type Alarm Definition
ASY 0 beats in 4s
EBR ≥ 5 beats, HR<40bpm
ETC ≥ 17 beats, HR>140bpm
VTA ≥ 5 ventricular beats, HR>100bpm
VFB Fibrillation waves

The dataset does not include more than three alarms of each of the five cate-

gories from any given patient, and alarms were at least 5 minutes apart (usually

longer). In this way, the dataset does not address the issue of what to do with

repeated alarms and how to use information from earlier alarms. An alarm was

triggered 5 minutes from the beginning of each record. The exact time of the

event that triggered the alarm varies somewhat from one record to another. How-

ever, the dataset meets the ANSI/AAMI EC13 Cardiac Monitor Standards [33],

which defines that the onset of the event must be within 10 seconds of the alarm

(i.e., between 4:50 and 5:00 of the record). All signals in the dataset are 250 Hz

and 12 bit data. Some ECG signals in dataset may have pacemaker and other

nose artifacts. Some pulsatile signals in the dataset have movement artifact,

sensor disconnects and other events (such as line flushes or coagulation in the

catheter). Each recording contains two ECG leads (which may or may not be
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the leads that triggered the alarm) and one or more pulsatile waveforms (the

photoplethysmogram and/or arterial blood pressure waveform). The detailed

number of false, true alarms and signal type, which the data set consist of, for

each arrhythmia type in the dataset is given Table 1.2. The distribution of signal

type and distribution of the records is given in Table 1.3.

Table 1.2: Data Set Alarms [17]

CinC2015 Dataset (N=750)
Alarm Type Total False True

ASY 120 100 20
EBR 90 45 45
ETC 139 8 131
VTA 343 253 90
VFB 58 52 6

All Signals 750 458 292

Table 1.3: Pulsatile Waveform Distribution of the Dataset [17]

CinC2015 Dataset (N=750) Pulsatile Waveforms Distributions
Alarm Type Total False True
PPG Only 405 227 178
ABP Only 122 59 63

Both PPG and ABP 233 172 51
All Signals 750 458 292

Note: Each of N records included ECG signals.

1.2 Objective of the Thesis

In this study we tried to develop and modify a new method to solve the problem

of high false alarm rates by increasing the sensitivity and specificity rates of ICU

alarms. We focused on five types of life-threatening arrhythmia alarms, which

were asystole, extreme bradycardia, extreme tachycardia, ventricular tachycar-

dia, ventricular fibrillation or flutter. We used a database, which is given for

CinC2015 challenge, of total 750 record for these five arrhythmia types. We used

fuzzy logic methods with information from various waveforms, such as electro-

cardiogram, photoplethysmogram, and arterial blood pressure. We had three
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steps in analysis of each type of waveforms.

For the ECG signal analysis, QRS detection was applied, which was based on

Hilbert transform with first differential method after pre-processing of the sig-

nal. Signal quality (SQ) was calculated based on ECG specific rules. If the SQ

was over the threshold, alarm decision rules for specific arrhythmia types were

applied to decide whether alarm is false or true.

For the ABP signal wabp.m function in Physionet toolbox package of CinC2015

was used. Then with abpfeature.m function features of the signal were calcu-

lated. The SQ of the signal was calculated by jSQI.m function. If the SQ was

over the threshold, alarm decision rules for specific arrhythmia types were ap-

plied to decide the alarm is false or true.

For PPG signal, we quantile, which was explained in Appendix A, the signal

to fit wabp.m function and calculated the heart beat, annotation times. The

ppgSQI.m function was applied with these inputs and SQ of the pulsatile wave-

form was calculated. If the SQ was over the threshold, alarm decision rules for

specific arrhythmia types were applied to decide the alarm is false or true.

In fusion part of our methods, we tried to fuse above algorithms to get more

robust methods in terms of sensitivity and specificity. We grouped these meth-

ods in two categories as: QRS Complex, PPG, ABP, Detection Based Methods,

METU BEST Methods by optimizing the method to the intended purpose of

use. In the QRS Complex, PPG, ABP, Detection Based Methods, we have im-

plemented Only ECG Method, Only PPG/ABP Method, Main PPG/ABP and

Secondary ECG Method, Main ECG and Secondary PPG/ABP Method with

respect to the signals used in the method. In the METU BEST Methods, we im-

plemented METU BEST Method, METU BEST (without using ABP) Method,

METU BEST Generic Method and, METU BEST (without using ABP) Generic

Method (for devices unable to measure ABP signals) with respect to the pur-

pose of the methods by modifying and mixing the first category methods for the

purpose of usage and comparison with CinC2015 challenge finalists.

In the performance evaluation part, we triane and tested the above methods with

training and testing datasets and compared the results with those of Cinc2015

challenge finalists’ by performing our methods on the same training dataset. We

explained the limitations of our methods and give examples of data, which our
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methods failed.

1.3 Contribution of Thesis

With this thesis we made the following contributions to "False Arrhythmia

Alarm reduction in ICU monitoring devices" studies:

• Fusing pulsatile waveforms such as ABP, PPG as a secondary decision

part increases the specificity which is proven in the literature by compar-

ing two of these three signals such as ECG versus ECG+ABP, ECG versus

ECG+PPG or ECG+PPG versus ECG+ABP. We proved these compar-

isons by calculating the performances of processing ECG, PPG, ABP and

their all combination of mixtures on the same database.

• Using ECG as the main and PPG as the secondary decision in fuzzy logic

showed comparable results as our superior method which uses PPG/ABP

as the secondary decision part. These comparable results made this method

eligible to be implemented in any ICU monitoring device because these de-

vices usually record ECG and PPG signals simultaneously. ABP signal is

rarely used due to its hard implementation and cost.

• Developing a robust and using low processing power method can be used

in the near future mobile health care devices for mobile patient monitoring

(we implemented our method on a $24 Texas Instrument watch).

1.4 Scope of the Study

The following topics are covered in this study:

• QRS detection step is improved by:

implementing a pre-processing step to suppress artifacts from the ECG

signal to enhance the performances of the QRS detection method which is

an improved version of Hilbert detector method.
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applying signal quality indexes to decide usability of them in the de-

tection method.

• Pulsatile Waveforms detection step is improved by:

implementing ABP detection method with MATLAB physionet tool-

box,

implementing PPG detection method with some modification in MAT-

LAB physionet toolbox,

applying signal quality indexes to decide usability of them in the de-

tection method.

• Fusing the detection methods using individual waveforms to get a robust

arrhythmia detection logic, which improved both sensitivity and specificity

rates of our methods.

• Evaluate the performances of our robust fuzzy logic methods by testing

and, comparing the results with the Physionet Challenge 2015 finalist

scores who use the same challenge training database. The comparisons

are made with respect to these parameters:

between the results obtained by each arrhythmia type performance,

between the overall score obtained by the total database evaluation.

• Arrhythmia classification step is added to get the generic performance of

our methods in unknown arrhythmia detection and classification cases.

• Preparing a Real-time method in guide of the above developed Retro-

respective method made our methods applicable in pre-clinical or clinical

usage because our methods only use the information from data before the

alarms alarm occurs.

1.5 Outline of the Thesis

• In Chapter 1, introduction to the subject matter is given. Then the objec-

tive of this thesis is stated. Finally, outline of the thesis report is presented.
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• In Chapter 2, background information is provided.

• In Chapter 3, details of the developed methods are explained.

• In Chapter 4, performance evaluation of the methods is provided.

• In Chapter 5, a brief summary on the performed study is given. This

chapter also contains some concluding remarks and recommendations for

future works.

• In Appendix A, Physionet Toolbox algorithms are given.
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CHAPTER 2

BACKGROUND INFORMATION

This chapter starts with brief explanation of the medical and electro physiolog-

ical background, followed by literature survey on QRS, PPG, ABP detection,

signal integration methods, feature extraction and classification. Then continues

with background information on performance evaluation features, training and

testing signals (ECG, ABP and PPG waveforms) databases.

2.1 Medical Background

In this part anatomy, physiology and electrical activity of the heart are briefly

explained based on the information provided in [52] and [71].

2.1.1 Anatomy and Physiology of the Heart

Heart is a vital organ that produces a wave of electrical activity to contract and

pump blood throughout the body. It is located in the thorax; between the lungs,

behind the sternum and the diaphragm.

Heart consists of two main parts; heart walls and valves. Walls consist of mainly

cardiac muscle, called myocardium and some striations. Right atria, left atria,

right ventricle and left ventricle are compartments of the heart.

Valves are the gates of the heart, which are tricuspid (located between right

atrium and right ventricle), mitral (between left atrium and left ventricle), pul-

monary (located between right ventricle and pulmonary artery) and aortic (lo-

cated between left ventricle and aorta). There are two types of circulation
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which are controlled by the heart, i.e., pulmonary and systemic circulation.

Pulmonary circulation moves blood between the heart and the lungs. It trans-

ports the blood out from right ventricle to the lungs through pulmonary valve.

Oxygenated blood enters to the left atrium from the lungs. Systemic circulation

moves blood between the heart and the rest of the body. Oxygenated blood

from the left ventricle is pumped to the whole body through aorta by the aortic

valve. Then the deoxygenated blood from the body enters the right atrium and

through tricuspid valve goes to right ventricle.

2.1.2 Electrical Activity of the Heart

Mechanism of the electric activation in a heart muscle cell (myocyte) is the same

as in a nerve cell. The distribution of ions across the cell membrane creates a

potential difference across the membrane of the cell. This potential difference

is called the transmembrane potential. The transmembrane becomes charged

and its potential increases during impulse propagation with action potential im-

pulses. An action potential is a carrier of the information providing the control

and coordination of organs like heart. An action potential is a wave of elec-

trical discharge that propagates along the membrane of a cell. Depolarization

increases the membrane potential and re-polarization decreases the membrane

potential so that the potential returns to its resting state.

In muscle cells, inflow of sodium ions through the cell membrane creates ac-

tion potential with amplitude of 100 mV and duration of approximately 300

ms. Electrical activation between cardiac muscle cells propagates and mechan-

ical contraction follows the electrical activation. Electrical activation consists

of two main nodes interactions, which are Sinoatrial, Atria Ventricular nodes

interactions. Sinoatrial node (SA node) consists of specialized, self-excitatory,

pacemaker muscle cells and located at superior vena cava in the right atrium.

These pacemaker cells stimulate electrical activation about 70 times in a minute

in a normal heart. Stimulated action potentials propagate through the atria

but not to the ventricles since there is a nonconducting barrier in the boundary

between the atria and ventricles. AV node is located at the boundary between

atria and ventricles. Similar to the SA node, AV node consists of specialized,
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self-excitatory, pacemaker muscle cells stimulating electrical activation about 50

times in a minute. But if AV node is on the path of an electrical activity having

higher frequency, the intrinsic frequency of the AV node does not appear. Since

at normal conditions, the action potential stimulated by SA node pass through

AV node and intrinsic frequency of AV node is about 50 times/min, which is

lower than SA node frequency (70 times/min). The SA node behaves just as a

normal conducting path from atria to ventricles. Action potential propagation

from AV node to ventricles is through a specialized bundle system, called bundle

of His and its branches are called Purkinje fibers.

2.1.3 ECG Waveform Morphology

In each cardiac cycle the flow of depolarization through the heart creates im-

pulses which are composed of P, QRS and T waves as shown in Figure 2.1. These

waves propagate in a different way with a delay through all blood circulation

system. Therefore, the waves can be detected by surface electrodes on body

skin. Then these detected signals are processed by an electrocardiograph which

filters, amplifies and records them in the form of consecutive waveforms called

ECG [10]. The ECG waveforms consist of main features which carry important

information about heart beat morphology like respective P wave, QRS complex,

T wave and their segment intervals. These features are depicted in Figure 2.1

and described in the following sections.Heart activity starts with atrial contrac-

tion (Systole) which propagates P wave. In cardiovascular diseases (CVDs) like

in Figure 2.2, the P wave can appear in an abnormal waveform. These P wave

abnormalities can be a sign of serious heart diseases. For example, negative P

wave is an indication of an abnormality in polarization direction of atria. In

other words, it is sign of, that pacemaker is not triggering the SA node or the

AV node. Broadened or notch shape in P wave is an indication of delay in depo-

larization of the left atrium, which possibly arise from problems in conduction

system. For example, if the measured ECG signals contain P waves, which have

amplitudes, it is sign of right atrial enlargement (P pulmonale).

Moreover, in some situations P waves do not appear because there can be a
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Figure 2.1: P wave, QRS Complex, T wave and Their Intervals Illustration [10]

Figure 2.2: P waves Examples [10]

junctional rhythm or SA block. On the other hand, it can be early atrial flut-

ter/fibrillation or temporary oscillations in the heart [10].
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The QRS complexes are the most important waveforms reflecting electrical sig-

nal with in the heart because of ventricular contraction (systole). Generally it

is the basis of automatic heart rate detection algorithms [45]. The QRS gives

important information of physiological action of the heart in each cycle (cham-

ber). The summation of Q, R and S waves give QRS complex. Firstly, Q wave

is defined as the first negative (downward) deflection. Secondly, R wave which

followed Q wave, is the positive (upward) deflection. Finally, S wave is the any

negative deflection just after the R wave. In some diagnosis, there are two or

more R waves or no R wave in the ECG record at all like one QRS complex as

depicted in Figure 2.3.

Figure 2.3: Various QRS complexes in the ECG [10]

Moreover, ECG signal measurements can be affected from the electrode or lead,

which is used to measure the wave. For example, S wave seen from lead VI,

which is located on the right hand side of the heart, is a large S wave because

the electrode location is where forces of the left ventricular pass away. Normally,

healthy Q waves have amplitude up to 2 mm or 0.03 s in width. Waves which

are not in these limits usually are indication of myocardial infarction (MI). The
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QRS complex is normally up to 0.1 s and its duration ranges are between 60−80

ms [10].

When ventricles relax (diastole) after ventricular contraction, T wave is gener-

ated like in the definition of T wave due to re-polarization. Unlikely Q and R

waves are due to polarization. T wave normally have 0.25 − 0.35 s after ven-

tricular depolarization. The lower heart chambers are electrically relaxing and

preparing for their muscle contraction, during T wave. Atria re-polarization

is difficult to observe because the larger QRS complex masks it during ven-

tricular contraction. Moreover, the QRS complex and T wave are in the same

direction because depolarization and re-polarization occurs in the opposite di-

rections. Most researches showed that T waves amplitudes are generally lower

than 5 mm. However, if they are taller than 5 mm it can be an indication of

myocardial infarction (MI) or if T waves are also flattened, it can an indication

of myxoedema or hypokalaemia. Slight T wave inversion can be due to hyper-

ventilation and smoking; however, it is usually because of heart walls infarctions

like bundle branch block, MI and, ventricular hypertrophy [10].

Shape and the time interval of the waves are important in the evaluation of car-

diac health. PQ interval is the time interval between the beginning of the P wave

and the onset of the QRS complex. PR interval is the time of onset on atrial

contraction. Atrial contraction is generally about 0.16 s [10]. If the heart tissue

is scarred or inflamed, PR interval usually becomes longer. In other words, the

depolarization wave need more time to propagate from atrial myocardium to AV

node. If PR interval is shortened, this can be an indication of junctional tissue

originated impulse or the Wolff-Parkinson-White syndrome [10]. The ST seg-

ment is usually a leveled signal straight line which starts with the QRS complex

and ends with T wave. Various CVDs are reflected in this segment. This seg-

ment is shown in Figure 2.4. If the heart walls (muscles) are damaged or there is

no enough blood, some disturbances appear in ventricular repolarization caus-

ing ST segments to be elevated or depressed depending on the observed ECG

lead. Concave upward ST segments over many cardiac cycles is an indication

of pericarditis. Shape of ST segment depression is characteristic to pathologies

which can indicate ventricular hypertophy, acute myocardial ischemia, and sinus

tachycardia [10].
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Figure 2.4: ST segments in the ECG [10]

2.1.4 ECG Waveform Measurement

The ECG lead (electrodes) placement on the body surface affects the voltage

obtained during a normal ECG monitoring [10]. There are different ways of lead

placement and configurations to decrease contact impedance and increase the

ECG signal. Generally three basic configurations are used in clinical applica-

tions. These are standard 12 − lead clinical ECG, Vector Cardiogram (VCG)

and Monitoring ECG (1 or 2 leads) or bipolar leads (I, II, and III are electrodes

attached to the limbs). These methods are based on 12 Leads ECG System

which is the central of the field of the ECG.

12 Lead ECG System Consist of three main ECG Leads Placement and Calcu-

lation Methodologies:

• Einthoven Triangle:

This method was invented by Willem Einthoven who used the capillary

electro-meter in his first ECG recordings. His application of the string

galvanometer (which was invented by Clément Ader (Ader, 1897).) is the

main contribution to clinical ECG-recording technology. The sensitivity
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rates of his system was higher than the previous system which are using

capillary electro-meter. He published the description of the first clinically

ECG measuring system in 1908. They are bipolar. Leads are defined in

Table 2.1.

Table 2.1: Einthoven Triangle Leads [10]

Lead Positive Electrode + Negative Electrode -
I Left Arm (LA) Right Arm (RA)
II Left Leg (LL) Right Arm (RA)
III Left Leg (LL) Left Arm (LA)

The mathematical equations of these leads are illustrated as:

VI = φL − φR

VII = φL − φR

VII = φL − φR

(2.1)

where:

VI = the voltage of Lead I

VII = the voltage of Lead II

VIII = the voltage of Lead III

φL = potential at the left arm

φR = potential at the right arm

φF = potential at the left foot

According to Kirchhoff’s law these lead voltages have the following rela-

tionship:

VI + VIII = VII (2.2)

These Einthoven’s lead system lead vectors are based on the assumption

that the heart is located in a homogeneous and infinite volume conductor

(at the center of a homogeneous sphere representing the torso). For ex-

ample, if the position of the left, right arms and left leg are at the vertices

of an equilateral triangle and the heart is located at the center of this

triangle, these lead vectors form and equilateral triangle.
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• Wilson Terminal:

Electrocardiographic unipolar potentials were defined by Frank Norman

Wilson in 1934. He and his colleges suggested the use of the central ter-

minal as reference for these measurements. They are unipolar leads. This

was achieved by connecting a 5000 Ω resistor from each terminal of the

limb leads to a common point called the central terminal.

His suggestions were that unipolar potentials should be measured with

respect to this terminal which approximates the potential at infinity. Al-

though, this central terminal is not independent of the limbs potentials,

it is the average of them. This can be easily proved by noting that in an

ideal voltmeter there is no lead current. Therefore, the total current in

to the central terminal from these limb leads sum to zero to satisfy the

conservation of current. Wilson used 5000 Ω resistances and got these

equations:

IR + IL + IF =
φCT − φR

5000
+
φCT − φL

5000
+
φCT − φF

5000
(2.3)

φCT =
φR + φL+ φF

3
(2.4)

• Goldberger Augmented Leads:

In this method three additional limb leads, VR, VL, and VF are obtained

by measuring the potential between each limb electrode and the Wilson

central terminal. They are unipolar leads. For instance, the measurement

from the left leg (foot) gives:

VF = φF − φCT =
2φF − φR − φL

3
(2.5)

E. Goldberger observed that these signals can be augmented by omitting

that resistance from the Wilson central terminal, which is connected to

the measurement electrode in 1942. Potential of the aVF is represented as:

VaVF = φF − φCT/aVF = φF −
φL + φR

2
=

2φF − φL − φR
2

(2.6)

• Precordial Leads Method:

Wilson introduced measuring the potentials from precordial leads close to

19



the heart in 1944. They are unipolar leads. These leads, which are defined

from V1-V6 and located over the left chest.

Therefore, the 12-lead ECG system has eight truly independent and four

redundant leads. The lead vectors for each lead are based on an idealized

(spherical) volume conductor.

For example in lead I electrodes, the positive electrode is attached to the left arm

and the negative to the right arm. Therefore, the potential voltage calculated

by subtracting the right arm voltage from the left arm voltage [10]. An example

of ECG waveforms, the potential difference calculated by subtracting positive

voltage leads from a voltage, that it is ground (GND) or a Wilson terminal,

which is a small voltage. It contains 3 limb lead electrodes [10].

Standard clinical ECG is implemented in hospital to a resting patient by using

12 leads (measured I, II, V1 to V6 and computed III, aVL, aVR and aVF). In

vectorcardiogram (VCG), 3 orthogonal leads are used to obtain 3 dimensional

vector model for the cardiac electrical activity. Main purpose of all these meth-

ods is for monitoring the cardiac electrical activity . Monitoring this activity

via ECG is implemented by using 1 or 2 leads for arrhythmia analysis in a long

term monitoring ICU. Monitoring ECG is generally battery or ambulatory pow-

ered application. Since main goal of monitoring ECG applications is to detect

each heart beat and perform arrhythmia analysis, the leads in which the R wave

is most apparent are selected; therefore, high signal to noise ratio is achieved.

Moreover, in general lead II is the first choice for monitoring, because it has the

highest R wave amplitude among other leads. Second lead is generally consid-

ered as a backup lead in case of a malfunction such as a loss of electrode contact

in the lead II channels.

2.1.5 PPG Waveform Morphology and Pulse Oximetry

Pulse oximetry was invented in the 1970s [23]. It was developed commercially in

the 1980s [23]. Pulse oximetry is a non-invasive technique of predicting oxygen

saturation values in clinical settings. The main idea of pulse oximetry is that

hemoglobin absorbs specific frequency intervals of light waves. Hemoglobin is
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bound reversibly to oxygen molecules in the blood, which is shown Figure 2.5.

Figure 2.5: 12 Lead Measurement Points [10]

These oxygen molecules are released in capillary level to feed tissues in the car-

diovascular system. These oxygen molecules shifting is changed in hemoglobin’s

charge densities, which effects their optical features [27]. For example, oxy-

genated hemoglobin (O2Hb) appear red, which means they absorbs blue region

of light. Deoxygenated hemoglobin (RHb) appear blue or darker, which means

they absorb approximately all frequencies of in visible light. Moreover, there

can be permanent bindings as carboxy hemoglobin (COHb) and methemoglobin

(MetHb) which prove that different binding molecules with hemoglobin gives

different frequencies of light absorption and give chance to detect the unknown

bound molecules. The light absorption level of (RHb) and (O2Hb) are very

different for near infrared and red regions [73] as shown in Figure 2.6. This dif-

ference is used in pulse oximetry devices. They measure at least two wavelengths

of light which are commonly around 660 nm and 940 nm. These reflected and

transmitted light measurements are taken from the forehead, finger or the ear

lobe.

The mathematical model of pulse oximetry relies on Beer-Lambert Law esti-

mations [73]. Beer-Lambert Law states that the intensity of light transmitted
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Figure 2.6: PPG Hemoglobin Extinction Curves [73]

through a material is scaled to the intensity of received light and exponentially

involved with the absorption frequency interval of the given light. The equation

consists of A, which is the amount of light absorbed by a sample, I (in W/m2),

which is a scalar value based on the light intensity of the influenced subject, and

I0, which is the light intensity in the absence of the sample as shown below:

A = log10 3
I

I0
(2.7)

2.1.6 Arterial Blood Pressure (ABP) Waveform Morphology

Cardiovascular control mechanism regulates the arterial blood pressure; there-

fore, the cardiovascular system depends on it. Figure 2.7 shows main features

of cardiovascular system as ventricular volume, pressure changes in a typical

cardiac cycle, heart sounds, electrocardiogram and venous pulse [49]. Arterial

blood pressure is the force exerted by the blood on the wall of blood vessels

during systole and diastole, which are the main phases of cardiac cycle. When

the heart is pumping (contracting), the degree of pressure is called as the Ps

(systolic blood pressure) and the phase is called as systole, which is around 1/3
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of the cardiac cycle. On the other hand, when the heart is relaxed, the blood

pressure is called as the Pd (diastolic blood pressure) and the phase called as

diastole, which is around 2/3 of the cardiac cycle. The Pp (pulse pressure) is

defined as Ps − Pd. Pm (mean pressure) is a time based average of arterial

blood pressure during one cardiac cycle and it is approximately Pd+ Pp/3. In

normal subjects, Ps and Pd are around 120 mmHg and 80 mmHg.

Figure 2.7: ABP Waveform [60]

2.1.7 Arterial Blood Pressure Measurement

ABP measurement techniques can be divided in to two main approaches: indi-

rect (noninvasive) cuff devices and direct (invasive) arterial cannulation. Indirect

cuff devices can be divided in to two types as manual and automated; or contin-

uous and instant intermittent technique. In the manual method patient’s arm

is grabbed with a cuff centered over the brachial artery and air is pumped in

an inflatable rubber bag inside the cuff until the artery is closed. Then the air
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pressure is released by opening the valve of the cuff until the pressure in the cuff

is equal to the pressure of blood in the artery. In other words, the air pressure is

released until the blood flow starts again and pulse sound is heard again. These

sounds can only be heard by stethoscopes placed over a pulse point. There is

also manometer on the cuff to measure the pressure of air inside it. During

measurement, while releasing the pressure, when the first pulse sound is heard,

the pressure value on the manometer is Ps. Then if you continue releasing the

air, when the second pulse sound is heard, the pressure value on the manometer

is Pd. In the automated version, the main difference is, that it does the manual

parts automatically, other steps are the same as the manual version. This mea-

surement system based on fluctuations around 20 mmHg baseline shift at night

or during rest [9]. However, ICU connected patients take medicines for stability

of their cardiovascular systems. Therefore, their heart rate and ABP ranges are

limited than healthy subjects [43]. In invasive measurement method, ICU mon-

itoring devices measure ABP waveforms by using a pressure transducer, which

is connected invasively to an artery. For example, doctors choose femoral artery

(radial artery) for measurement location because the risk of complications are

less and cannulation procedure is easy [66].

2.1.8 Artifacts in Physiological Signals

ECG, PPG, ABP signals may be corrupted by various kinds of noise. Typical

examples are: power line interference, electrode contact noise(loose of electrode

contact noise, motion artifacts and baseline drift and ECG amplitude modu-

lation with respiration), muscle contraction (electromyographic, (EMG) noise),

instrumentation noise generated by electronic device used in signal processing,

electro-surgical noise and other less significant noise sources. This section ex-

plains the origins and effects of these artifacts.

• Power Line Interference: Power line interferences consist of 60 Hz

(in the U.S.), 50 Hz (in EU) pickup frequencies and harmonics which

can be modeled as sinusoids [36] as shown Figure 2.8. Therefore, these

noises have characteristics like amplitude and frequency, which might need
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to be varied in a model of power line noises. These characteristics are

generally consistent for a given measurement situation and, once they are

calculated, they will not change during a detector evaluation, which make

their removal easier from the measured signal.

Figure 2.8: Power Line and Motion Artifacts [35]

• Electrode Contact Noises: These type of noises typically < 0.5 H z signals

(except for the abrupt shifts due to motion). General examples are: loose

of electrode contact noise, motion artifacts and baseline drift and ECG
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amplitude modulation with respiration.

– Loose of Electrode Contact Noise: The transient interference

due to loss of contact between the electrode and the subject‘s skin

surface, which also disconnects the measurement from the subject is

named as Loose of Electrode Contact Noise. This disconnection can

be intermittent or permanent which are in and out contact because

of unintended movement and vibration. The intermittent type of

disconnections change the input of the electrode impedance suddenly.

These sharp alterations produce significant artifacts and noises at the

input. In addition, if the amplifier of the input is disconnected 50 Hz

or 60 Hz interference affects the measurement system. This switching

action at the measurement system input can result in large artifact

since ECG signals capacitively coupled to the system. An example of

electrode contact noise is shown in Figure 2.9

Figure 2.9: Loose Electrode Contacts Artifacts [35]

– Motion Artifacts: Baseline fluctuations occur by alternations be-

tween the electrode to skin distance (impedance) named as motion

artifacts. Motion and movement of the subject without loss of the

contact between skin and electrode is the main source of motion ar-

tifacts. A typical example is shown in Figure 2.10.

Because of this impedance alteration, the ECG amplifier takes dif-

ferent source of impedances, which forms a voltage divider with the
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Figure 2.10: Loose Motion Artifacts [35]

amplifier input impedance. Therefore, the voltage depends on the

fluctuations on the position of the electrode.

– Baseline Drift and ECG Amplitude Modulation with Respi-

ration: The drift of the baseline with respiration can be represented

as a sinusoidal component at the frequency of respiration added to

the ECG signal. A typical example is shown in Figure 2.11.

Figure 2.11: Respiration and Noise [35]

• Muscle Contraction(Electromyograpy, EMG): Muscle contractions

cause artifactual millivolt level potentials. The baseline electromyogram is

usually in the microvolt range. Therefore, it is usually insignificant. How-

ever, the surface EMG artifacts are around 10% of ECG signal potential

and may interfere or corrupt the ECG, which affects the data processing

and analysis. A typical example is shown in Figure 2.12.

• Instrumentation Noise Generated by Electronic Devices used in

Signal Processing: Artifacts generated by electronic devices in the in-

27



Figure 2.12: EMG Noise [35]

strumentation system are shown in Figure 2.13. These cannot be corrected

by a QRS detection algorithm. The input amplifier has saturated and no

information about the ECG can reach the detector. These kind of arti-

facts are generally caused by hardware error, disconnections of electrodes

or cables. In this case an alarm must sound to alert the ECG technician

to take corrective actions, such as check the connections and/or, reset the

patient monitor.

Figure 2.13: Instrumentation Saturation Noise [35]

• Electro-surgical Noise and other less Significant Noise Sources:

Electro surgical noise can be represented as a high amplitude sine wave

with frequency range between 0.1− 1000 kHz. These noises are added to

the ECG signal and destroy the ECG because the ECG sampling rate is

between 250-1000 Hz.
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• Other Noises: Flat/Zigzag lines are segments of signals having almost zero

electrical activity. Segments of signal, having zero amplitude difference

between two consecutive samples, for a duration of minimum two seconds,

are classified as being "flat lines". Segments of signal, having alternating

samples, for duration of minimum seconds, are classified as having zigzag

lines.

2.2 Signal Processing Background

In this part QRS complex enhancement methods, QRS complex detection meth-

ods, PPG waveform detection methods, ABP waveform detection methods, lit-

erature survey and performance evaluation are briefly explained.

2.2.1 QRS Complex Enhancement Methods

ECG signals detection is affected by various kinds of artifacts as mentioned in

section 2.1.8. Therefore, ECG signals have to be improved by filtering for noise

suppression, R peak enhancement and QRS enhancement stages, which are pre-

requisites for detecting the QRS complex. This section introduces amplitude

thresholding method, first derivative only approach, first and second derivative

only approach, digital filters approach, mathematical morphology approach, em-

pirical model decomposition, Hilbert transform approach, filter banks approach

and wavelet transform approach.

These QRS enhancement algorithms are numerically inefficient if we want to

remove all noise and achieve a proper less noisy ECG signal for QRS detection.

As the main purpose of this work is to highlight a suitable QRS enhancement al-

gorithms for a reliable ECG monitoring and also using it in a battery operated,

portable devices, using Hilbert transform with first derivate only approaches

gives a robustness for noise cancellation with medium level of numerical effi-

ciency. Details about our implementation is given in Section 3.2. Other methods

detailed explanations are given in Appendix C.
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2.2.2 QRS Complex Detection Methods

After enhancing the QRS features using the previous algorithms explained in

section 2.2.1 QRS Enhancement is the next step to detect the QRS complexes.

Through the previous enhancement step, QRS complexes are filtered and magni-

fied relative to other ECG features, artifacts and noise. There are many detection

techniques in the literature. These methods are: thresholding, neural network,

Hidden Markov Models, matched filters, syntactic method, zero crossing and

singularity.

When you compare these QRS detection algorithms, they are divided in two cat-

egory as numerically inefficient with high performance and numerically efficient

with medium performance. As the main purpose of this work is to highlight a

suitable QRS detection algorithms for a reliable ECG monitoring and also us-

ing it in a battery operated, portable devices, using Thresholding with adaptive

thresholds approaches gives a robustness for R peak detection with medium level

of numerical efficiency. Details about our implementation is given in Section 3.2.

Other methods detailed explanations are given in Appendix C.1.

2.2.3 PPG Waveform Detection Methods

PPG signal was generated by periodic ejection of the heart, so it has a close

relationship with the ejection period, from which the heart rate (HR) could be

extracted. In another aspect, from these information, such as heart rate and

onset times. You can decide state of the heart in terms of normal or abnormal

activities like Arrhythmia detection. Therefore, many researches have been made

to find and improve reliable, robust and fast PPG onset detection algorithm. The

top authors and their works are explained below:

• In 2010 Farooq et al [32], proposed a time domain based algorithm to detect

onset times and peaks of PPG with low computing cost. The core concept

of this algorithm is that this algorithm based on obtaining a transformed

PPG waveform which enhances the systolic rises of PPG to be a significant

peaks and onsets of the original waveform more reliable and robust to
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detect.

• Zhou et al. [79] proposed a novel algorithm based on the idea of raised

from physiological phenomenon that the trend of PPG waveform changes

sharply on the both side of the PPG onset points. For example, from a

decreasing movement in the previous end diastolic step to a sharp rising

movement in the coming early systolic step in PPG onset points are ob-

served because of the arrival of arterial pulse. Therefore, they implement

an adopted version of a published method [32] to detect the 1st derivative

PPG peak points. Then in the near region of each 1st derivative PPG

peak point, the waveform trend shifts between two sides of each point in

this near region was computed. Then the onset points was defined as the

one highest positive trend shift. The tendency of one side of a target was

computed from the arctan angles between the target point and its nearby

points on this side.

Figure 2.14: Onset Detection by using arctan [77]

• In 2015 Jang et al [42], proposed a pulse peak detection method, which

has low complexity and simple based on cascading recursive digital filters

and using slop sum function (SSF) with an adaptive filtering and thresh-

olding diagram. The algorithm has four main steps. In the first step they

eliminate noises in the PPG by applying cascaded low pass and high pass

filters (3 dB cut-off frequencies of 11 Hz and 0.5 Hz). In the second step

the filtered PPG signals are transformed by the SSF function, which en-
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hances the upslope of the PPG signal and suppresses the remainder part

for simplifying the detection of the pulse peaks. In the third step, SSF

peaks are identified by thresholds, which are updated by applying median

filter (with order of 5). This method adapts the thresholds against the

variations of SSF amplitudes. In the final step pulse peaks are identified

with in the interval of an onset index of the SSF signals to the following

zero index. In order to handle with the redundant over detections and

unnoticed information knowledge based rules post-processing is employed.

2.2.4 ABP Waveform Detection Methods

The ABP waveform contains rich information about the cardiovascular system,

such as heart rate, systolic, mean, diastolic pressure and it can be used to get

properties of the arterial vessel walls. Especially from heart rate and onset points

computed from ABP can be used for determination of heart situation.

wabp.m Algorithm:This algorithm has been developed by Zong et. al. [80].

The ABP onset time detection divided in 3 steps which are show in Figure 2.15

Figure 2.15: Block Diagram of The ABP Onset Time Detection Algorithm

The purpose of the low pass filter is suppress high frequency that could affect

the ABP onset detection. A second order recursive filter used as low pass filter,

which have consisted of:

H(z) =
(1− z−5)2

(1− z−1)2
(2.8)

|H(wT )| = (sin (3wT ))2

(sin (wT
2

))2
(2.9)

yn = 2yn−1 − yn−2 + xn − 2xn−5 + xn−10 (2.10)

The purpose of the slope sum function (SSF) is to enhance the upslope of the

ABP pulse and suppress the remainder of the pressure waveform. The weighted
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and windowed slope sum function by time i, zi are given below:

zi

i∑
k=i−w

∆uk (2.11)

∆uk =

 ∆yk ∆yk > 0

∆yk ∆yk ≤ 0
(2.12)

To maximize the SSF, w should be chosen equal or very close to the typical

duration of the upslope of the ABP pulse. The relationship between ABP and

the SSF is shown in Figure 2.16

Figure 2.16: Block ABP signal, SSF Comparison

In the decision part, which is the final step, they divide it in two. Firstly, by

adaptive thresholding the SSF pulses of appropriate amplitude detected from

the SSF signal. Secondly, by employing a local search algorithm around the

detection point to confirm the detection and identify the likely onset of the

pulse. The algorithm performance shown in Table 2.2

Table 2.2: wabp.mat Function Performance

Volume Sensitivity(%) Positive Predictive Accuracy(%)
Gross 99.71 99.69
Average 99.71 99.72
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2.2.5 Literature Survey on False Arrhythmia Alarms Reduction

Numerous works exist in the literature on the subject of design and implemen-

tation of false arrhythmia reduction in ICUs for asystole, extreme bradycardia,

extreme tachycardia, ventricular tachycardia and ventricular flutter/fibrillation.

Their explanation and figures are given as:

• ASY: The electrical activity of the heart is lost. There are no regularity,

rate, P, T or QRS waves measurements as shown in Figure 2.17:

Figure 2.17: ECG signal for Asystole Case [22]

• EBR: Heart rate is less than 40 times per minute. The R-R intervals are

constant and heart rhythms are regular. There is a uniform P wave before

QRS complex as shown in Figure 2.18:

Figure 2.18: ECG signal for Bradycardia Case [22]

• ETC: Heart rate is greater than 100 times per minute. The R-R intervals

are constant and heart rhythms are regular. There is a uniform P wave

before QRS complex as shown in Figure 2.19:
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Figure 2.19: ECG signal for Tachycardia Case [22]

• VTA: Heart rate is greater than 100 times per minute. The R-R intervals

are constant and heart rhythms are usually regular but sometimes slightly

irregular as shown in Figure 2.20:

Figure 2.20: ECG signal for Ventricular Tachycardia Case [22]

• VFB: Heart rate is greater than 100 times per minute. There are no

discernible waves or complexes to calculate the regularity, and rhythms of

the heart as shown in Figure 2.21:

Aboukhalil et al. [2] and Deshmane et. al. [23] applied a multi-parameter anal-

ysis on ECG and pulsatile waveforms and signal quality assessment technology

to improve algorithms for alarm generation. However, both methods met the

problem that alarms had high true alarm (TA) suppression rate while low false
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Figure 2.21: ECG signal for Ventricular Tachycardia Case [22]

alarm reduction rate because they only used morphological and timing informa-

tion. The work described by Sayadi et al. [65] deployed a model-based filtering

method to detecting alarms. Superior as the FA suppression rates are, this algo-

rithm is computationally intensive. Qiao Li and Gari D. Clifford [17] extracted

features from ECG, arterial blood pressure (ABP), and photoplethysmogram

(PPG) and employed a machine learning approach. They achieved a ventricular

tachycardia FA suppression of more than 30% with a true alarm suppression

rate below 1%.

We also reviewed CinC2015 Challenge articles in terms of :

• Preprocessing and Signal Conditioning: All filters and other methods are

applied before using the input in the main algorithm (beat detection) for

removing the noise, artifacts and redundant signals in the original signal

(such as P and T wave).

• Beat Detection: Processes that investigate QRS or R peaks are named as

beat detection.

• Beat Classification: Process that are used to classify the detected beats as

real or not real.

• Alarm Classification: Process that are used to classify the alarms as true

or false by investigating classified beats properties.

According to Plesinger et al., in the pre-processing stage, noise and pacemaker

activities were estimated between spectral content of the 50-70 Hz and bandpass
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filtered to them. Pulsatile waveforms are low pass filtered cut-off frequency at

either 5 or 20 Hz. In beat detection stage, ECG QRS detection were based

on analysis of Fourier and Hilbert transform derived envelopes with a 110 ms

refractory period between detection. Pulsatile signals based beat detection was

evaluated on estimated temporal slope values. In beat classification stage, spec-

tral features and descriptive residue statistics over 120 ms and 500 ms windows

were used. In alarm classification stage, on ASY, VTA and VFB alarms, count

of invalid features are used. Additionally, statistics of RR series, which are ob-

tained from multiple channels are used. A set of heuristic rules was applied based

on the derived RR series and the invalid region statistics. According to Kali-

das and Tamil et al.,In the pre-processing stage, a low pass filtered signal with

cutoff frequency 1 Hz is subtracted from the original signal to remove baseline

wanders. Alternating positive consecutive samples are tested to detect flat-line

and zig-zag artifacts. In beat detection stage, the standard Pan and Tompkins

1985 algorithm was used to detect QRS complexes in the ECG. Pulsatile peaks

were detected through first order differentiation. In alarm classification stage,

No pulsatile signal information was used for VFB and VTA arrhythmia alarms.

For each alarm type, an individual support vector machine and set heuristics

was developed. The features used into these classifiers included the ECG-derived

heart rate, and PPG-derived heart rate if morphology was considered valid (ex-

cluding the VFB and VTA alarms). The VFB and VTA alarms also included an

additional set of features related to the power spectra of the ECG waveforms.

According to Krasteva et al., in the pre-processing stage, the ECG channels

were fused to form two data streams: a magnitude (second norm) and a ve-

locity (second norm of the first order derivative). The ECG signal quality was

estimated using 3 frequency bands on 4s interval windows: high frequency was

used to estimate spikes from artifacts and pacemakers, medium frequency range

was used to estimate the signal level and power line interference (with intra-

beat temporal statistics used to estimate the power line noise level), and the

low frequency band was used to estimate baseline wander. Pulsatile signal were

low-pass filtered with a 1 Hz cutoff. The pulsatile signal quality was estimated

with periodicity index, and mean peak-to-peak amplitude values. In the beat

detection stage, a nonlinear filtering approach, with adaptively updated upper
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and lower thresholds, was used for QRS detection. The beat detector had a

conventional refractory period of 150 ms. In the beat classification stage, a beat

classifier was developed for supra-ventricular and ventricular ectopic beats. A

decision tree model was also used, based on features that included: informa-

tion from template correlation matching, beat morphology features, and RR

statistics. In alarm classification stage, an alarm classifier algorithm used a set

of heuristic rules based on heart rate, dominant frequency for ventricular rate,

phase, space area from both the ECG magnitude and velocity, and pulsatile

quality metrics. According to Rodrigues and Couto et al., in the preprocessing

stage, all signals were re-sampled to 125 Hz, and the ECG waveforms were pro-

cessed for pacemaker detection and removal. Baseline noise was removed by first

estimating it with a 125 sample median filter, followed by subtraction from the

original signal. Flat signal regions were identified by thresholding on low vari-

ance over 2 second windows. In the beat detection stage, ECG QRS detection

was performed using gqrs and osea software packages of Hamilton (2002). The

beats on the pulsatile signals were detected with the wabp software. The authors

developed their own specific beat detectors for ventricular fibrillation beats by

fitting a parabola on 125 ms windows. Following the method of Li et al. (2008),

a quality index was developed based on the fraction of matched beats from

gqrs.m and the osea software packages Hamilton (2002) on the ECG channels.

For pulsatile signals, the quality was estimated using the morphology of consec-

utive beats estimated from correlation and dynamic time warp analysis, per Li

and Clifford (2012). The detected beats were fused based on quality indices and

a tolerance window of 150 ms. Pulsatile beats were compensated with a delay

estimated from initial detections. In the beat classification stage, it was based

on a set of heuristics modified from the osea software package Hamilton (2002).

These set of rules included statistics derived from inter-beat interval and QRS

duration. Author also developed a four-category feature, termed ‘polarity’ that

characterized the different types of phases of the R wave into: positive, negative,

positive-negative, negative-positive (the last two representing biphasic R waves).

In the alarm classification stage, It was calculated from a set of decision rules

based on signal quality, but with priority weight given to ECG signals. Accord-

ing to Fallet et al., in the pre-processing stage, a filter, which was consisted of
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50 Hz power line noise removal was used. For the calculations of spectral purity

indices, the signal was down-sampled to 35 Hz and a 5-sample moving average

filter was applied. The signal quality for the pulsatile waveforms was estimated

through the ppgSQI and jSQI methods of Clifford et al. (2015) [17]. In the beat

detection stage, the QRS component of the ECG signal was detected through a

morphological analysis approach with an adaptive approach from Yazdani and

Vesin (2014) [31]. Beat detection on the pulsatile signals was performed using

the algorithm proposed by Arberet et al. (2013) [31]. The heart rate time series

was then derived through a multi-channel oscillator based adaptive frequency

tracking algorithm. In the beat classification stage, the spectral purity index

Sörnmo and Laguna (2005) [55]; Goncharova and Barlow (1990) [31] used a

feature to distinguish between normal, ventricular tachycardia, ventricular flut-

ter/fibrillatory arrhythmia (the index was expected to be higher for abnormal

rhythms). In the alarm classification stage, a set of heuristics rules was devel-

oped for the final alarm classification. In the case of ASY alarm, the algorithm

applied majority voting based on the heart rate series from individual ECG and

pulsatile channels. The pulsatile channels were only used if the quality was

above a certain threshold. A linear discriminant analysis classifier was used for

the retrospective event to corroborate the ECG output, but again, only if the

pulsatile signal quality was sufficiently high. If the pulsatile quality was low, a

set of heuristic thresholds was applied to the minimum heart rate from the last

five consecutive beats using 16 seconds before and five seconds after the alarm.

The extreme tachycardia alarm only used pulsatile waveforms: if the quality

was good, the alarm was checked against the pulsatile rate, else it was defaulted

to true. Ventricular flutter/fibrillatory alarms were checked through the maxi-

mum average spectral purity index calculation over a 3 second window, and no

pulsatile information was used. Finally, ventricular tachycardia alarms used a

set of Clifford et al. heuristic rules encompassing pulsatile waveform heart-rate

series, as well as current versus previous values of the ECG spectral purity in-

dexes. According to Hoog Antink et al., in the pre-processing stage, steps for

this algorithm included re-sampling of the signals to 100 Hz, band-pass filtering

with a pass-band region of 1-30 Hz. The signals were also normalized to zero

mean and unit variance using statistics calculated on 5-minutes of data prior to
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the alarm. In the beat detection stage, it was achieved through the Bayesian

fusion of several inter-beat interval estimators that rely on self-similarity: lag

adaptive short-time autocorrelation, average magnitude difference function, and

maximum amplitude pairs Brüser et al. (2013). A quality metric based on the

reliability of the fused estimates was derived from the peak height to area of the

fused similarity curve. In the alarm classification stage, the classifiers chosen

for the alarm validation included binary classification trees, regularized linear

discriminant analysis, a support vector machine, and a random forest. The

authors utilized a combination of both alarm specific and global classifiers (i.e.,

classifiers trained to detect a general false alarm). Their final choices were linear

discriminant analysis for EBR, VFB, and VTA, a binary classifier for ETC, and a

random forest model for ASY. A superset of 88 features was developed from: 24

beat-to-beat interval statistics and correlogram analysis of interval time series.

From this superset, subsets were selected according to alarm types. According to

Eerikäinen et al., in pre-processing stage, all signals were down-sampled to 125

Hz and the processing window length was optimized for each arrhythmia type

(varying from 14 to 16 seconds prior to the alarm). Noise levels were estimated

based on the power, which were estimated from the regions in between beats. In

the beat detection stage, beat detection on the ECG waveforms were performed

using a QRS detector based on wavelets and auto-regressive modeling of the

R-peak. According to Eerikainen et al., the pulsatile peaks were detected via

the open source detector wabp.m. In the alarm classification stage, a random

forest classifier was trained for each of the five different types of alarms. The

technique focused on comparing pairs of beats. Two beats were considered a

match if they were within 100 ms of each other. Delays across channels were

compensated, if the standard deviation of 10 consecutive beats was less than 5%

of the mean delay. For the VTA and VFB alarms, only the F1 statistic between

ECG leads was used, in addition to spectral purity indices. An alarm with an

F1 equal to zero was identified to be false. According to Ansari et al. [4], in the

pre-processing stage, steps consisted of re-sampling the signals to 125 Hz. The

ECG signals were band-pass filtered between 0.5-40 Hz, while the pulsatile sig-

nals were band-pass filtered between 0.5-10 Hz. Baseline and trend estimation

and subtraction was accomplished with a 250 point median filter. The authors
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also removed pacemaker activity by thresholding on the peak amplitude. In the

beat detection stage, he implemented 7 different QRS detectors for each ECG

signal, and 3 peak detectors for each of the pressure signals. The fiducial points

for all peaks were re-aligned by picking the maximum within 50 ms of the de-

tected beat for ECG signals, and the maximum within 50 ms before or 1 second

after the detected beat for the ABP or PPG signals. The outputs of all the 20

beat detectors were then fused by adding their binary outputs (with at least 1

beat under AS, at least 2 for other alarms). In the beat classification stage, ECG

beat classification was performed for the VFB and VTA alarms only. The beat

classifier was a decision tree that utilized features derived from the Stockwell

Transform on a 200 ms window. In the alarm classification stage, a decision

tree classifier was trained with fivefold cross validation in order to determine the

veracity of a beat. The final decision regarding the alarm veracity was made

based on a set of heuristics. The proposed algorithm operates on 16 seconds of

worth of data prior to the alarm. According to Liu et al., in the pre-processing

stage, the ECG and pulsatile signals were band-pass filtered with the passband

frequency region of 5− 40 Hz for the ECGs and a pass-band frequency region of

5− 35 Hz for the pulsatile waveforms. In the beat detection stage, the authors

developed an ECG R wave detection algorithm that used the average maximum

amplitude from 6 non-overlapping segments. Pulsatile beats were detected via

wabp . The final detected beats were validated based on intra-channel and inter-

channel verification of the detected beats along with a set of rules involving the

number of detected beats, R amplitude, and distance metrics between the heart

rate time series. In the beat classification stage, a set of heuristics was applied to

classify beats. The features included: morphology analysis based on correlation

against template, the ratio between changed beats and total beats in segment,

QRS width, and maximum heart rate. In the alarm classification stage, a set of

decision rules was applied to channels that passed a data quality check (if the

result of the test failed, the alarm was set to false). The features used for the

second classification step included number of valid feature points, heart rate,

and maximum heart rate at current analysis window. According to Sadr et al.,

in the pre-processing stage, baseline removal was performed by first estimating

the baseline component through median filtering and then subtracting this base-
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line component from the original signal.In the beat detection stage, a Hilbert

transform based QRS detector based was used for estimating the ECG beats

Benitez et al. (2001). The wabp algorithm was used to detect the peaks on

the ABP and PPG waveforms, and a quantile algorithm was also used to locate

peaks on the PPG waveform. In the alarm classification stage, the alarm verifi-

cation was performed on a 16 second window of data prior to the alarm. For all

of the alarms with the exception of VTA, the alarm data streams had to pass

four signal quality checks in order to be deemed a true alarm, otherwise they

were tagged as false. Pulsatile signal information was not used for the ETC and

VTA alarms. The classification also consisted of decision trees based on several

extracted features customized to each alarm type, including: threshold crossing

intervals, autocorrelation function values, complexity measures, and QRS tem-

plate parameters. According to Zong et al., in the pre-processing stage, pulsatile

signals were low pass filtered with cuto set to 16 Hz, and a signal quality esti-

mate was obtained using the technique as described in Zong et al. (2004). In the

beat detection stage, it was performed with the pulsatile signals using wabp and

with a forced detection after a period of 2 seconds from the last detected pulse.

In the beat classification stage, the pulsatile beats were classified based on the

abnormality index from Sun et al. (2006). In the alarm classification stage, it

was achieved using features from pulsatile signals that included: pulse-to-pulse

interval, amplitude, maximum slope, signal quality, and rhythm. The classifier

was developed based on set of heuristic rules specific to each alarm type. The

algorithm was developed and tested using the MIMIC II database [47] rather

than the Challenge data, and was not open sourced.

2.2.6 Performance Evaluation

In this study, sensitivity, specificity, positive and negative predictivity and chal-

lenge score equation measures were used for performance evaluation of the meth-

ods and compare with others in literature. General use of parameters calculation

given in the Table 2.3.

The variables and definitions of performance evaluation parameters can be sum-
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Table 2.3: General Use of Parameters

Predicted Outcome Gold Standards
True Alarm False Alarm

True Alarm TP (True Positive) FP (False Positive)
False Alarm FN (False Negative) TN (True Negative)

marized as follows:

• The gold standard is the best single test (or a combination of tests) that is

considered the current preferred method of diagnosing a particular disease

(X).

• Sensitivity is the ability of a test to correctly classify an individual as

diseased whose equation is given below.

Sensitivity = TP/(TP + FN) (2.13)

• The ability of a test to correctly classify an individual as disease- free is

called the tests specificity and the equation is given below.

Specificity = TN/(TN + FP ) (2.14)

• It is the percentage of patients with a positive test who actually have the

disease which‘s equation is given below.

PositivePredictivity = TP/(TP + FP ) (2.15)

• It is the percentage of patients with a negative test who do not have the

disease which‘s equation is given below.

NegativePredictivity = TN/(TN + FN) (2.16)

• In Physionet 2015 challenge competitors scored with equation given below.

In the score equation more specifically, competitors should attempt to

maximize TP and TN while minimizing FP and FN. The scoring will

weight FN more heavily than the FP.
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Score = (TP + TN)/(TP + TN + FP + 5 ∗ FN) (2.17)
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CHAPTER 3

METHODS

This chapter starts with the explanation of the pre-processing stage, followed

by the details of the QRS, PPG, ABP detection, feature selection and decision

methods implemented in this thesis.

3.1 Pre-Processing

As explained in Section 1.1 in chapter 1, in the dataset used for this study, the

alarm starts at the fifth minute and with ten seconds duration for each alarm

record in the given database. Moreover, each record has been labeled with only

one alarm type in the first five minute (usually in the 4 : 50 − 5 : 00), which

means that any other arrhythmias in the first five minutes period was not marked

or evaluated. In order to decrease carrying an error from a previous alarm to

the following alarm, information from the primitive and repeated alarms are not

used. Firstly, all signals in the data set were re-sampled from 12 bit and 250

Hz to 12 bit and 125 Hz frequency for simplicity in computation. ECG signals

and PPG/ABP signals are between 0.5− 40 Hz and 0.5− 5 Hz respectively, for

monitoring case. Therefore, ECG signals are band-pass filtered by using a finite

impulse response (FIR) filter designed with two different combinations of specific

lower and upper cut-off frequencies (5, 30 Hz), which are optimized by trial-end-

error method respectively with Hamming window approach to remove baseline

wanders, pacemaker noises and power line noises. Coagulation, movement arti-

facts, line flush, sensor disconnections and other noises may have damaged the

pulsatile signals (PPG and ABP). Therefore, the pulsatile signals were band-pass

filtered by using a FIR filter designed with specific lower and upper cut-off fre-
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quencies (0.5-5 Hz), which are optimized by trial-end-error method respectively

with Hamming window approach. Although these cutoff frequencies corrupt the

ECG signal, it is enough for R peak detection and suppressed other redundant

(P, T wave and low frequency noises) waves in the ECG signal. These cutoff

frequencies are based on analysis and modification of Tsimenidis and Murray

researches [74] to apply on our method. Although, there are other filter types

like adaptive filters with respect to ECG morphology and noise, they require a

large reference signal database and they need high processor power due to their

computational complexity (recursive least squares (RLS)). The block diagram

of the Pre-processing step shown in Figure 3.1.

Figure 3.1: Block Diagram of Pre-processing Step

3.2 QRS Complex Detection

After the pre-processing step, QRS complex detection algorithm is applied to

the filtered ECG signals, which are divided in to two parts: signal detection

and signal quality index (SQI) calculation. The first step of the signal detection

algorithm is to apply an R-peak/ECG pulse peak detection on a sample and to

compare the output of the detector with a set of physiologically relevant rules.

There are a lot of methods for R or QRS complex peak detection methods. You

can see their authors, pre-processing, QRS enhancement and QRS detection

methods and their numerical efficiencies in Table 3.1.

These methods performances are shown in Table 3.2, which includes the number
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Table 3.1: Summary of various researches for ECG beat segmentation

Authors QRS Enhancement QRS Detection Num. Efficiency
Benitez et al. [11] Hilbert transform One adaptive THV Medium

and 1st differential and 1st approximation
Christov et al. [16] Multiple moving averages, Combined three High

first derivative adaptive THV’s
Chen et al. [14] Wavelet denoising and One adaptive Medium

moving average filter THV
Lee at al. [48] Phase portrait Two THVs, refractory Low

and lowpass filter blanking and search back
Cvikl et al. [20] Phase portrait two THVs, refractory blanking Low

and bandpass filter and search back
Poli et al. [62] Polynomial Three adaptive Low

filter THVs
Afonso et al. [3] Filter Three THVs and Low

bank timing information
Pan and Morphological Four adaptive THVs and Medium
Tompkins [36] processing the average RRI information
Hamilton and Morphological Three adaptive THVs, Medium
Tompkins [35] processing refractory blanking

and search back

of beats are used for testing, sensitivity rates and positive predictivity rates of

them.

Table 3.2: QRS complex performance comparison with several algorithms

Method Number of beats Sensitivity Positive Predictivity
Benitez et al. [11] 45856 99.94 99.93
Cvikl et al. (2007) [20] 109494 99.82 99.82
Pan and Tompkins (1985) [36] 109809 99.75 99.54
Lee at al. (2002) [48] 109486 99.69 99.87
Hamilton and Tompkins (1986) [35] 109267 99.69 99.77
Christov (2004) [16] 110050 99.74 99.65
Poli et al. (1995) [62] 109963 99.60 99.50
Afonso et al. (1999) [3] 90909 99.55 99.59
Chen et al. [14] 100381 99.47 99.54

It is obvious that all these QRS detection algorithms have excellent perfor-

mances such as over 99% sensitivity and positive predictivity. The QRS detec-

tion method, which was proposed by Benitez et al. [11], is slightly the best in

all of them and in terms of numerical efficiency, it is proper to implement in a

low cost and processor power watch, which is one of our aims in this work. This

method is based on Hilbert transform and its flow diagram is shown in Figure

3.2.

Hilbert transform is an odd function, which means that if there is an inflection
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Figure 3.2: Block diagram of Hilbert Detector

point in the original waveform, Hilbert transform of the signal will intersect a

zero on the x axis. Similarly, an intersection of the zero between sequential

positive and negative inflections in the original waveform will be presented as

a peak in its Hilbert transformed conjugate. This interesting feature can be

used to implement a simple and easier algorithm to detect peaks of the QRS

complexes in the ECG waveform [11]. Correspondence of these zero crossings in

its first differential waveform d/dt(ECG) and peaks in its Hilbert transformed

waveforms are shown in Figure 3.3.

Figure 3.3: R wave equivalences in The Approach

In Figure 3.3, top row shows the ECG waveform, the second row shows d/dt(ECG),

which is the first derivative of original waveform, the third row showsH[d/dt(ECG)],
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which is the Hilbert transform of the first derivative of the original signal, the

last row shows B[d/dt(ECG)], which is the enveloped form of the ECG contri-

butions after HT.

In our work we modified the method [11] above by adding steps to its flow and

implemented it. Firstly, for the first derivative step d/dt(ECG) we used a 2-

point first-order differentiator. The x(n) is the filtered ECG waveform subset

sequence. It‘s first derivative (y(t) = d/dt(ECG)) in the discrete domain can

be obtained by:

y(n) =
1

2∆t
[x(n+ 1)− x(n− 1)] (3.1)

for n = 0, 1, 2, ...,m− 1

where: m is the total number of samples and ∆t is the sampling frequency.

The initial value is specified as x(−1) when n = 0, and final value is specified

as x(m) when n = m − 1. These preferences are necessary to minimize error

at boundaries. The Hilbert transform h(n) of the sequence y(n) that represents

the first derivative squared of the ECG waveform in this subset is then obtained

using the following methodology:

1. Obtain the filtered ECG signal x(n) after the pre-processing step, which

is explained in Section 3.1.

2. Scale the filtered ECG signal x(n) to have approximately same amplitudes

of R points in the signal.

3. Take the derivative of the signal x(n) with a 2 point 1st order differentiator.

4. Take the Hilbert transform of the first derivative of the signal.

5. Apply squaring function to the Hilbert transform of the signal. This opera-

tion makes all the data points in the processed signal positive and amplifies

the output of the derivative process nonlinearly. It emphasizes the higher

frequencies (QRS complex) and attenuates the lower frequencies (P and T

waves) like a low-pass filter.

6. A short sequences of a moving 16 second (2000 point) rectangular window

is used to subdivide the input.
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7. The rising slope of the R wave will correspond to a maximum in the first

derivative sequence and the falling slope of the R wave will correspond to

minimum in the first derivative signal. The peak of the R wave will be

equivalent to zero crossing between these two positive and negative peaks.

8. Find the standard deviation of the signal and multiply it with β which is

the optimized value for the given arrhythmia type to get an adaptive ECG

threshold value.

9. By using half of the threshold value, find the minimum peak distances and

heights.

10. Calculate the signal quality of the ECG signals by ECG signal quality

index (SQI) rules:

• After the beat detection step, at least beatnmmin number of beats

need to be detected. beatnmmin is found by trial and error methods

(heuristically) as 2.

• Maximum RR interval for each ECG signal was calculated. Then the

maximum RR interval was compared to the threshold RRintmax (6 s).

It should be smaller than RRintmax because RR intervals usually are

between 0− 6 s [64].

• The standard deviation of the ECG signal should be greater then

ECGampmin (0.05 [64]).

11. If the signal quality of the ECG signal is over the adaptive threshold values,

find the parameters related to each arrhythmia type, else disable further

analysis and tag the ECG signal as noisy, which means that the ECG

signal contains irremovable noise or artifacts.

When two peaks in these Hilbert sequences are located very close to each other

(less than 200 ms) only one of the peaks are considered as the real R peak.

Then the decision is based on the amplitude of the peak and their position re-

lated to the last R peak located using an adaptive time (duration) threshold.

This threshold is based on the average of inter beat length (R-R interval) of the

previously detected R peaks. The block diagram of the proposed approach is
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shown in Figure 3.4.

Figure 3.4: Block diagram of the proposed QRS detector

Ventricular tachycardia and ventricular fibrillation/flutter it is unclear if the

SQI analysis is appropriate to discriminate these arrhythmias from irremovable

artifacts. Our SQI rules for ECG signals gave better result for asystole, brady-

cardia and tachycardia cases than other arrhythmia cases. The ECG signal was

analyzed for non-physiological conditions, such as unusual flat baseline signals,

which are resulted from poor electrode contact noise. Therefore, we had a three

step SQI analysis:

3.3 PPG Detection

PPG detection is divided into three parts: adaptation to ABP signal detection

algorithms (explained in section 3.4 ABP Detection), signal detection, feature

extraction and signal quality analysis. For the first part, a quantile function is

used to separate the signal into three quantiles (0.05, 0.5, and 0.95). The last

two parts are implemented by modifying two Physionet open-source algorithms

for PPG processing. Then for the second part the wabp.m (algorithm detail are

in Appendix Section A) function is used to detect onset points by using the dif-
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ference between third quantile and first quantile. These onset point are used to

calculate R-R intervals. For the last part, the ppgSQI.m algorithm (algorithm

details are in Appendix Section A) is used to compute the SQI (algorithm de-

tails are in Appendix Section A). This SQI algorithm is based on beat template

correlation. Finally, if the signals have enough quality, the R-R intervals are cal-

culated as the difference of the onset points of the pulses in the signal and com-

pute high_hr_ppg, low_hr_ppg, hr_max_ppg, hr_min_ppg, max_rr_ppg

parameters for evaluating each arrhythmia type specifically. These parameters

are defined as follows:

• high_hr_ppg: Calculated high heart rate of 17 consecutive beats for

Tachycardia case from PPG signal.

• low_hr_ppg: Calculated low heart rate of 5 consecutive beats for Brady-

cardia case from PPG signal.

• hr_max_ppg: The calculated maximum heart rate 16 s before the alarm

for decision making from PPG signal.

• hr_min_ppg:The calculated minimum heart rate 16 s before the alarm

for decision making from PPG signal.

• max_rr_ppg:The calculated maximum RR interval 16 s before the alarm

for decision making from PPG signal.

The block diagram of the PPG detection step shown in Figure 3.5.

Figure 3.5: Block Diagram of PPG Detection Step
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3.4 ABP Detection

ABP detection can be divided into three parts as: onset point detection, feature

extraction and SQI calculation. These parts are implemented by modifying three

Physionet open-source algorithms specialized for ABP processing. For the first

part, the wabp.m algorithm (algorithm details are in Appendix Section A), which

is based on length transform [17], was implemented to detect the onset points

of the pulses in the ABP signal [17]. For the second part, the abpfeature.m

algorithm (algorithm details are in Appendix Section A) was implemented to

compute 12 features from ABP signal such as systolic and diastolic pressures,

systolic area and mean pressure, etc. from each detected pulse. For last part,

the jSQI.m algorithm (algorithm details are in Appendix Section A) was applied

to evaluate the signal quality of each detected beat of the ABP signal. Output

of the algorithm gives an average value between 0 − 1 to each feature of the

signal. If the calculated physiological parameter of the signal is in the normal

signal levels, the algorithm gives 1. If the calculated physiological parameter is

outside of the normal signal levels, algorithm gives 0. Then it sums all scores and

computes the mean. It is based on eliminating signals which have physiologically

meaningless onset points with respect their signal qualities. Finally, if the signal

quality level of the R-R intervals of the signal is over the adaptive threshold,

these R-R intervals, which are the time differences of the sequential onset points

of the pulses, are used to calculate high_hr_abp, low_hr_abp, hr_max_abp,

hr_min_abp, max_rr_abp parameters for evaluating each arrhythmia type

specifically. These parameters are defined as follows:

• high_hr_abp: The calculated high heart rate of 17 consecutive beats for

Tachycardia case from ABP signal.

• low_hr_abp: The calculated low heart rate of 5 consecutive beats for

Bradycardia case from ABP signal.

• hr_max_abp: The calculated maximum heart rate 16 s before the alarm

for decision making from ABP signal.

• hr_min_abp:The calculated minimum heart rate 16 s before the alarm
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for decision making from ABP signal.

• max_rr_abp:The calculated maximum RR interval 16 s before the alarm

for decision making from ABP signal.

The block diagram of the ABP detection step shown in Figure 3.6.

Figure 3.6: Block Diagram of ABP Detection Step

3.5 Signal Integration

When various signals are needed to process the outputs, they should be inte-

grated with an integration method to enhance the performance of the approach.

Signal fusion is the general name of these methods. There were different meth-

ods implemented such as SQI based methods [9], which was modified for this

work.

In this study, ECG, PPG and ABP signals were one by one mixed or employed

as the most reliable signals and tested to find the best decision logic for each

arrhythmia type. The input for the proposed method is the last 16 seconds of

each record in the presence of the expected arrhythmia. In this approach, four

different fuzzy logic methods are implemented as: "Only ECG" Method, which

uses only the ECG signal as input and gives output, "Only PPG or Only ABP"

Methods, which use only PPG or ABP signal as the input and gives the output,

"Main PPG" or Main ABP-Secondary ECG" Methods, which use firstly PPG

or ABP signal and give output with respect to these signals, and if these signals

are not available, or their SQ levels are under the thresholds, ECG signal is

used as the secondary input, "Main ECG-Secondary PPG or ABP" Algorithms,

which use firstly ECG signal as an input and give output with respect to it. If

these signals are not available, or its SQ level is under the thresholds, PPG or

ABP signal is used as input.
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• Only ECG Method: The block diagram of the Only ECG method is

shown in Figure 3.7. First, the ECG signal is extracted from the current

arrhythmia data and filtered by specific filters, which was explained in

Section 3.1. Then, the signal is evaluated with the degree of signal quality

by ECG SQI rules, which are explained in Section 3.2. If the signal SQI

degree is over the threshold, it can be used in the alarm decision step

by the QRS Complex detection algorithm with specific parameters to the

arrhythmia type, which are explained in section 3.6. The output gives the

final decision (false or true alarm). If the signal is noisy, which means that

the SQI degree of the signal is under the adaptive threshold, the alarm is

tagged as false alarm without processed by any other alarm decision step.

Figure 3.7: Block diagram of Only ECG Method

• Only PPG or ABP Method: The block diagram of the Only PPG or

ABP method is shown in Figure 3.8. First PPG, ABP, or both signals,

which are available, are extracted from the current arrhythmia data and

filtered by specific filters as explained in section 3.1. Then, signals are

evaluated with the degree of SQ by ppgSQI.m, jSQI.m, which are explained

in Appendix Section A. If the signals have SQI degrees over the thresholds,

it can be used in the alarm decision step by the PPG Detection and ABP

Detection methods with specific parameters to the arrhythmia type, which
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are explained in Section 3.6. The outputs gives the final decision (false or

true alarm) with respect to ’OR’ statement between PPG decision and

ABP decision rules which are explained in Sections 3.4 and 3.3. If signals

are both noisy, which means that both of them have SQI degrees of signals

under the adaptive thresholds, the alarm is tagged as false alarm without

processed by any other alarm decision step.

Figure 3.8: Block diagram of Only PPG/ABP Method

• Main PPG or ABP, Secondary ECG Method: The block diagram

of the Main PPG or ABP, Secondary ECG method is shown in Figure 3.9.

First ECG, PPG and ABP signals, which are available, are extracted from

the current arrhythmia data and filtered by specific filters explained in

Section 3.1. Then, PPG, ABP signal qualities are computed by ppgSQI.m,

abpSQI.m, which are explained in Appendix Section A. If the signals have

SQI degrees over the thresholds, they are evaluated by the PPG detection

and ABP detection methods with specific parameter to the arrhythmia

type, which are explained in Sections 3.4 and 3.3. The output gives the

final decision (false or true alarm) with respect to ’OR’ statement between

PPG decision and ABP decision. If signals are both noisy, which means

that both of their SQI degrees of signals are under the adaptive thresholds,

the ECG waveform SQ is computed by ECG SQI rules, which are explained

in Section 3.2. If the signal SQI degree is over the threshold, it can be used
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in the alarm decision step by the QRS Complex detection algorithm with

specific parameters to the arrhythmia type, which are explained in section

3.6. The output gives the final decision (false or true alarm). If the signal is

noisy, which means that the SQI degree of the signal is under the adaptive

threshold, the alarm is tagged as false alarm without processed by any

other alarm decision step.

Figure 3.9: Block diagram of Main decider PPG/ABP Secondary Decider ECG
Algorithm

• Main ECG, Secondary PPG or ABP Method: The block diagram of

the Main ECG, Secondary PPG or ABP method is shown in Figure 3.10.

Firstly available ECG, PPG and ABP signals, which are available, are

extracted from the current arrhythmia data and filtered by specific filters

explained in Section 3.1. Then, the signal is evaluated with the degree of

SQ by ECG SQI rules, which are explained in Section 3.2. If the signal

SQI degree is over the threshold, it can be used in the alarm decision step

by the QRS Complex detection algorithm with specific parameters to the

arrhythmia type, which are explained in section 3.6. The output gives

the final decision (false or true alarm). If the ECG signal is noisy, which

means that SQI degree is under the adaptive threshold, PPG, ABP signal
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qualities are computed by ppgSQI.m, abpSQI.m, which are explained in

Appendix Section A. If the signals have SQI degrees over the thresholds,

they are evaluated by the PPG detection and ABP detection methods

with specific parameter to the arrhythmia type, which are explained in

Sections 3.4 and 3.3. The output gives the final decision (false or true

alarm) with respect to ’OR’ statement between PPG decision and ABP

decision. If signals are both noisy, which means that both of their SQI

degrees of signals are under the adaptive thresholds, the alarm is tagged

as false alarm without processed by any other alarm decision step.

Figure 3.10: Block diagram of Main decider ECG Secondary Decider PPG/ABP
Method

3.6 Arrhythmia Type Based Processing and Classification

In this section arrhythmias specific parameters and processes (Asystole Process-

ing, Bradycardia Processing, Tachycardia Processing, Ventricular Tachycardia

Processing, Ventricular Fibrillation/Flutter) after explained.
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3.6.1 Asystole Processing

Asystole (ASY ) is defined as no heart beat for at least four seconds. The block

diagram of the Asystole Processing is shown in Figure 3.11. The asystole specific

processes are explained as follows:

• Unusual cases like less than 2 beats, adaptive signal amplitude, which

blank extreme higher and lower peaks etc. checked for each signal.

• Maximum R-R intervals of signals and their SQIs (explained in Section

3.2 and Appendix Section A) are calculated.

All these results fused with fusion methods, which are explained in Section 3.5.

Finally the arrhythmia alarm situation is updated.

Figure 3.11: Block diagram of Asystole Process
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3.6.2 Bradycardia Processing

If the heart rate is less than 40 bpm for five consecutive beats, it is defined as

Bradycardia (EBR). The block diagram of the Bradycardia Processing is shown

in Figure 3.12. The bradycardia specific processes are explained as follows:

• Unusual cases like less than 2 beats, adaptive signal amplitude, blank

higher peaks etc. checked for each signal.

• The lowest heart rate of each signal type and their SQIs (explained in

Section 3.2 and in Appendix Section A) are calculated.

All these results are combined with fusion methods, which are explained in

Section 3.5. Finally, the arrhythmia alarm situation is updated.

Figure 3.12: Block diagram of Extreme Bradycardia Process
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3.6.3 Tachycardia Processing

When the heart rate rise to more than 140 bpm for 17 consecutive beats, it is

named as Tachycardia (ETC). The block diagram of the Tachycardia Processing

is shown in Figure 3.13. The tachycardia specific processes are explained as

follows:

• Unusual cases like less than 2 beats, adaptive signal amplitude, blank

higher peaks etc. checked for each signal.

• The highest heart rates of each signal type and their SQIs (explained in

Section 3.2 and Appendix Section A) are calculated.

All these results are combined with fusion methods, which are explained in

Section 3.5. Finally, the arrhythmia alarm situation is updated.

Figure 3.13: Block diagram of Extreme Tachycardia Process
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3.6.4 Ventricular Tachycardia Processing

Ventricular tachycardia (VTA) defined as five or more ventricular beats with

heart rate higher than 100 bpm. The block diagram of the Ventricular Tachy-

cardia Processing is shown in Figure 3.14.

• Unusual cases like less than 2 beats, adaptive signal amplitude, blank

higher peaks etc. checked for each signal.

• The maximum heart rates of each signal type and their SQIs (explained

in Section 3.2 and Appendix Section A) are calculated.

All these results are combined with fusion methods, which are explained in

Section 3.5. Finally, the arrhythmia alarm situation is updated.

Figure 3.14: Block diagram of Ventricular Tachycardia Process
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3.6.5 Ventricular Flutter or Fibrillation Processing

Flutter, fibrillatory or an oscillatory waveforms for at least four seconds, it is

defined as Ventricular Flutter (VFB). The block diagram of the Ventricular

Flutter or Fibrillation Processing model shown in Figure 3.15.

• Unusual cases like less than 2 beats, adaptive signal amplitude, blank

higher peaks etc. checked for each signal.

• The maximum heart rates of each signal type and their SQIs (explained

in Section 3.2 and Appendix Section A) are calculated.

All these results are combined with fusion methods, which are explained in

Section 3.5. Finally, the arrhythmia alarm situation is updated.

Figure 3.15: Block diagram of Ventricular Flutter/Fibrillation Process
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CHAPTER 4

PERFORMANCE EVALUATION

In this chapter, our developed algorithms for false arrhythmia alarms reduc-

tion were tested on records containing false or true alarms of arrhythmias, such

as asystole, bradycardia, tachycardia, ventricular tachycardia, ventricular flut-

ter/fibrillation. Initially, dataset was divided in to two equal numbers of false

and true alarms for each arrhythmia cases and labeled as training and test sets.

All developed methods, as explained in Section 3.5, were trained and tested with

these equal condition (in terms of number of alarms and true and false alarms

percentages in the dataset) datasets, which are explained in Section 4.1. These

results were analyzed with respect to their powerful parts and limitations in

Section 4.1.1. These methods were fused to get the best performance method

and to improve the usability in different conditions (such as limited number of

physiological signals( Only PPG or ECG and PPG)), for feature health care so-

lutions and improvements, which are explained in 4.1.2. The best part of these

methods combination performances were compared with CinC2015 finalists by

using the whole dataset for each arrhythmia types, which is explained in Section

4.1.3.

4.1 QRS Complex, PPG, ABP, Detections Performances

In this section, evaluation tests were performed on the last 16 second duration

of the alarm records with sampling frequency of 125 Hz, which are modified

from Physionet 2015 Challenge training database [17]. There are 3 specific

sections: QRS Complex, PPG, ABP, Detection Based Methods Performances

(Only ECG Logic, Only PPG/ABP Logic, Main PPG/ABP and Secondary ECG
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Logic, Main ECG and Secondary PPG/ABP Logic performances and analysis

are explained), METU BEST Methods Performances (METU BEST Method,

METU BEST (without ABP signal) Method, METU BEST Generic Method,

METU BEST (without ABP signal) Generic Method (for devices unable to

measure ABP signals) performances and analysis are explained) performance

and analysis are explained). Details of each methods are explained in Section

3.5. Our methods were trained with the training data set. Training dataset

features are given in Tables 4.1 and 4.2. All the parameters of our methods were

tuned with respect to testing dataset. After tuning our methods were tested

with the testing dataset. Testing dataset features are given in Tables 4.1 and

4.2. Our methods were blindly entered to testing dataset. There were 60 records

for training dataset (50 false alarm and 10 true alarm) and 60 records for testing

dataset (50 false alarm and 10 true alarm) in ASY case. There were 45 records

for training dataset (22 false alarm and 23 true alarm) and 45 records for testing

dataset (23 false alarm and 22 true alarm) in EBR case. There were 69 records

for training dataset (4 false alarm and 65 true alarm) and 70 records for testing

dataset (4 false alarm and 66 true alarm) in ETC case. There were 171 records

for training dataset (126 false alarm and 45 true alarm) and 172 records for

testing dataset (127 false alarm and 45 true alarm) in VTA case. There were

29 records for training dataset (26 false alarm and 3 true alarm) and 29 records

for testing dataset (26 false alarm and 3 true alarm) in VFB case. For challenge

comparison we used the whole dataset (Training+Testing) for each arrhythmia

types.

Table 4.1: Training, Testing and Challenge Datasets Contents [17]

Alarms Training Set Testing Set Challenge Set
Total False True Total False True Total False True

ASY 60 50 10 60 50 10 120 100 20
EBR 45 22 23 45 23 22 90 45 45
ETC 69 4 65 70 4 66 139 8 131
VTA 171 126 45 172 127 45 343 253 90
VFB 29 26 3 29 26 3 58 52 6

The distribution of the pulsatile waveforms(PPG, ABP) were less than the ECG

signals. There were 199 PPG records, with false alarms, and 114 PPG records,
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with true alarms for total of all arrhythmia types in the training dataset. There

were 115 ABP records, with false alarms, and 56 ABP records, with true alarms

total of all arrhythmia types in the training dataset. There were 200 PPG

records, with false alarms, and 115 PPG records, with true alarms for total of

all arrhythmia types in the testing dataset. There were 116 ABP records, with

false alarms, and 58 ABP records, with true alarms in total of all arrhythmia

types in the testing dataset.

Table 4.2: Number of PPG/ABP signals in the Training, Testing Datasets [17]

Waveform Groups Training Set Testing Set Challenge Set
False True False True False True

PPG 113 89 114 89 227 178
ABP 29 31 30 32 59 63
PPG&ABP 86 25 86 26 172 51
Total 229 146 229 146 458 292

4.1.1 QRS Complex, PPG, ABP, Detection Based Methods Perfor-

mances

In this section we divided our methods with respect to their input signals and

evaluate their performances on our given datasets. These methods are: Only

ECG Method, Only PPG/ABP Method, Main PPG/ABP and Secondary ECG

Method, Main ECG and Secondary PPG/ABP Method. The detailed results of

Sensitivity (Sens), Specificity (Spec), Positive Predictivity (+P) and Negative

Predictivity (-P) of each arrhythmia type for each method are provided in the

following sections. Performance of methods, their detailed results and limita-

tions are explained in the sections below. Arrhythmias thresholds and tolerance

limit are given in Table 4.3.
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Table 4.3: General Arrhythmias Threshold and Tolerance Limit Parameters

Symbol Threshold Explanation Limit
Tolerance SQ tolerance %5
ASYth maximum period with with no beats 4 s
EBRth 40 beats (maximum number of beats for EBR) 40 bpm
ETCth 140 beats (minimum number of beats for ETC) 140 bpm
V TAth 100 beats (minimum number of beats for VTA) 100 bpm
V FBth 250 (minimum number of beats for VFB) 250 bpm
beatnmmin Minimum number of beat 2 bpm
RRintmax Maximum period of RR interval 6 s

• Only ECG Method, which was described in Section 3, which was used for

false alarm reduction. The methods specific parameters values are given

in Table 4.4.

Table 4.4: Only ECG Method Arrhythmia Based Parameters

Parameter Symbol Limit
SQ threshold SQI_th 0.9
ASY case peak detection threshold constant ECG_thASY 2.5
ASY processing interval Window_lengthASY 5 s
EBR case peak detection threshold constant ECG_thEBR 0.625
EBR processing interval Window_lengthEBR 16 s
TAC case peak detection threshold constant ECG_thTAC 2.5
TAC processing interval Window_lengthTAC 16 s
VTA case peak detection threshold constant ECG_thV TA 0.625
VTA processing interval Window_lengthV TA 16 s
VFB case peak detection threshold constant ECG_thV FB 0.625
VFB processing interval Window_lengthV FB 16 s

We get results for training and test data as shown in Table 4.5, 4.6.

Table 4.5: Only ECG Method Training Results

Arrhythmia Sens.(%) Spec(%) +P(%) -P(%)
ASY 80 94.2 72.7 96
EBR 94.7 76 75 95
ETC 95.5 75 98.4 60
VTA 79.3 54.9 26.4 92.9
VFB 100 100 100 100
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Table 4.6: Only ECG Method Testing Results

Arrhythmia Sens.(%) Spec.(%) +P(%) -P(%)
ASY 75 93.7 75 93.8
EBR 92.6 83.3 89.3 88.2
ETC 93.8 40 95.3 33.3
VTA 62.5 54.8 27.8 85
VFB 100 96.4 50 100

There were only 1 − 5% differences between the results of the training

and testing sets with respect to arrhythmia types, although the method

was tuned with respect to the training set. For comparison with chal-

lenge finalists, the method thresholds were tuned with the whole data set

(Training + Testing data sets) and our best results are shown as in Table

4.7 with respect to finalists of CinC2015 challenge.

Table 4.7: ONLY ECG Method for Challenge Case and Comparison with
CinC2015 Best Results

Alarms Sens.(%) Spec.(%) +P(%) -P(%) Best Sens.(%) Best Spec.(%)
ASY 77.3 94 74 95 100 [46] 97 [46]
EBR 94.4 79 81 94 100 [81] 78 [81]
ETC 95 63 97.3 46 100 [40] 100 [40]
VTA 75 54.1 29 90 90 [40] 71 [40]
VFB 100 98.1 86 100 100 [4] 90 [4]

There were comparable performance results with challenge finalists’ re-

sults. For EBR and VFB in terms of sensitivity/specificity, we got 94.4%/

79% and 100%/98.1% respectively to the challenge case, which are com-

parable and proper for clinical use (over 90% sensitivity) [33]. We get

low results for ASY and VTA due to noise. Because if the method senses

noise over the limit flags and go to directly mark the alarm as false. The

dataset was prepared for competition; therefore, they add really noisy

records which are hard to distinguish. In EBR type of arrhythmia the

sensitivity was high enough; however, specificity 79% was not good as the

others, because thresholds were optimized to get the highest sensitivity

and then we improved specificity. In other words, if we try to increase the

specificity percentage more than this the sensitivity start to decrease. The
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method fails in ASY provided in Figures 4.1 and 4.2 and in ETC provided

in Figures 4.3 and 4.4.

Figure 4.1: Asystole FalsePositive sample(a219l)

In the above asystole alarm FP case Only ECG Method detects the over 4

s period without beat and tagged as it is true alarm. However, as you can

see before and after this no beat 4 s period heart beats occurred again,

which proved that this was not an asystole. It was probably due to missing

beats during ECG recording.

Figure 4.2: Asystole FalseNegative sample(a653l)

In the above asystole alarm FN case Only ECG method could not detect

an over 4 s period without beat and tagged as it is false alarm. However,
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as you can see that there is a flat line after 296.5 s and it is continuous

until the end of the record. Therefore, this is an asystole.

Figure 4.3: Tachycardia FalsePositive sample(t409l)

In the above tachycardia alarm FP case Only ECG Method detects the

over 140 beats in 16 s period and tagged as it is true alarm. However, as

seen it looks like a continuous noise, probably due to a synchronous motion

artifact or noise. It is not possible to remove this type of noises without

affecting the original ECG signal with low process power filters. We need

to apply mathematical morphology and wavelet transform based filters to

remove this type of noises, which need higher processor power than simple

filters. Using high processor power algorithms are conflict with our main

approaches in this study. In the above tachycardia alarm FN case the

signal could not pass the SQ analysis because of the level of noise and

artifacts in the signal; therefore, the method tagged as it is false alarm.

However, if we analyze the PPG signal of this case, which we did in only

PPG/ABP Method, we tagged this alarm as true alarm like the experts.

• When Only PPG/ABP Method, which is described in 3 METHODS sec-

tion, was used for false alarm reduction. The method specific parameters

values are given in Table 4.8.
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Figure 4.4: Tachycardia FalseNegative sample(t114s)

Table 4.8: Only PPG or ABP Method Arrhythmia Based Parameters

Parameters Symbol Limit
SQ threshold SQI_th 0.9
Minimum required beat number beatnmmin 3
Minimum required beat number for EBR beatnm_EBRmin 5
Minimum required beat number for TAC beatnm_TACmin 17

We got results for training and test data as shown in Table 4.9, 4.10.

Table 4.9: Only PPG/ABP Method Training Results

Alarms Sens.(%) Spec.(%) +P(%) -P(%)
ASY 100 58.3 38.4 100
EBR 100 65 68.5 100
ETC 85.3 100 100 28.5
VTA 79.3 54.9 26.4 89.5
VFB 100 53.5 11.7 100

Table 4.10: Only PPG/ABP Method Testing Results

Alarms Sens.(%) Spec.(%) +P(%) -P(%)
ASY 70 54.9 23.4 89.1
EBR 93.6 58.6 77.8 85.3
ETC 84.1 65 97.5 22.5
VTA 79.3 35.2 40.2 76.5
VFB 82 50.4 25.5 94.7
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There were around 1 − 30% differences between performance results of

training and testing datasets with respect to arrhythmia types, because

the whole dataset of PPG and ABP records are not as big as the dataset

of ECG signals records, which is explained in Section 4.1. These small

dataset was divided in two as training and testing datasets, which also

decrease the number of data used in training set for tuning. Moreover,

these data sets have not equal number PPG and ABP together, only PPG,

only ABP records, which also miss tune our method. For comparison with

other finalist we tuned our method with the whole data set (Training +

Testing data sets) and our best results are shown in Table 4.11 with respect

to finalists of CinC2015 challenge.

Table 4.11: ONLY PPG/ABP Method for Challenge Case

Alarms Sens.(%) Spec.(%) +P(%) -P(%) Best Sens.(%) Best Spec.(%)
ASY 82 54 28.1 93.1 100 [46] 97 [46]
EBR 96 58.1 71 93 100 [81] 78 [81]
ETC 81 75 98 21.4 100 [40] 100 [40]
VTA 83.3 29 22.2 88 90 [40] 71 [40]
VFB 83.3 52 17 96.4 100 [4] 90 [4]

There were lower performance results with respect challenge finalists’ re-

sults. For VTA and EBR in terms of sensitivity/specificity, it is 83.3%/29%

and 96%/58.1% respectively to the challenge case, which are comparable

and proper for clinical use. However, we get low results for ASY, ETC and

VFB due to generally because of limited number of data includes PPG or

ABP signal. Therefore, if the method cannot find any signal, it goes to di-

rectly mark the alarm as false. In EBR type of arrhythmia the sensitivity

is high enough; however, specificity 58.1% is not good as the others, be-

cause thresholds were optimized to get the highest sensitivity then improve

specificity. In other words, if we try to increase the specificity percentage

more than this the sensitivity start to decrease. The method fails in VTA

provided in Figures 4.5 and 4.6, ETC provided in Figures 4.7 and 4.8 and

ASY provided in Figures 4.9 and 4.10.
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Figure 4.5: Ventricular Tachycardia FalsePositive sample (v100s)

In the above ventricular tachycardia alarm FP case Only PPG/ABPMethod

detected over 100 beats in 16 s period and tagged as it is true alarm. How-

ever, as you can see it looks like that a continuous sinusoidal noise, which

is probably due to a synchronous motion artifact or noise is added to the

signal. It is not possible to remove noise without affecting the original

PPG signal with low process power filters. We need to apply mathemati-

cal morphology and wavelet transform based filters to remove this type of

noises, which are not proper to use to perform our main approach of this

study.

Figure 4.6: Ventricular Tachycardia FalseNegative sample (v206s)

In the above ventricular tachycardia alarm FN case Only PPG/ABPMethod

could not detect an over 100 heart beats in the 16 s window. Although
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our method worked better in 16 s window, if the method particularly in-

vestigate the interval between 292− 300 s it directly tagged it true alarm.

without beat and tagged as it is false alarm.

Figure 4.7: Tachycardia FalsePositive sample (t503l)

In the above tachycardia alarm FP case Only PPG/ABP Method detected

an over 100 heart beats in the 16 s window and tagged as it is false alarm,

although it is a true alarm. In ETC case at low signal amplitude it is hard

to distinguish the ECG signal with noise with our low processor power pre-

processing methods. We can increase our thresholds to detect this false;

however, it affects the overall performance negatively. We need to apply

more complex filters and ECG enhancement techniques like mathemati-

cal morphology and wavelet transforms, which need more processor power

than our pre-processing steps, which conflicts with our main approaches

in this thesis.

In the below tachycardia alarm FN case Only PPG/ABP Method detected

an over 100 heart beats in the 16 s window and tagged as it is false alarm,

although it is a true alarm. We saw that in the last 2 seconds of the alarm

there is a low heart rate part, which probably due to weak electrode con-

tact. If we increase the investigation window of our method, we are going

to tag this alarm as true. However, it affects the overall performance and

numerical efficiency negatively.
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Figure 4.8: Tachycardia FalseNegative sample (t192s)

Figure 4.9: Asystole FalsePositive sample (a103l)

In the above asystole alarm FP case Only PPG/ABP Method tagged the

signal as noisy because its SQ level is under the SQIth value. If we de-

creased the threshold, the alarm would be tagged as false alarm. However,

it affects the overall performance and numerical efficiency negatively.

In the below asystole alarm FN case Only ABP/PPG Method could not

detect an over 4 s period without beat and tagged as it is false alarm.

However, as you can see that there is a no beat interval after the 296.5

s and it is continuous until the end of the record. Therefore, this is an

asystole.
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Figure 4.10: Asystole FalseNegative sample (a653l)

• When Main PPG or ABP and Secondary ECG Method, which is described

in Section 3, was used for false alarm reduction. The method specific pa-

rameters values are given in Table 4.4 and 4.8. We get results for training

and testing datasets as shown in Tables 4.12 and 4.13.

Table 4.12: Main PPG/ABP Secondary ECG Method Training Results

Alarms Sens.(%) Spec.(%) +P(%) -P(%)
ASY 75 70.8 39.1 91.9
EBR 100 72 73.1 100
ETC 78.8 100 100 22.2
VTA 82.8 41.5 22.4 92.2
VFB 100 57.1 7.7 100

Table 4.13: Main PPG/ABP Secondary ECG Method Testing Results

Arrhythmia Sens.(%) Spec.(%) +P(%) -P(%)
ASY 40 61.4 19 81.8
EBR 88.9 77.8 85.7 82.4
ETC 81.5 60 56.4 20
VTA 76.7 42.3 41.8 77.1
VFB 80 54.2 26.7 92.9
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There were 10 − 30 percent differences between results of the training

set and testing set because the method was tuned with respect to training

set which is not in equal condition with the testing set because of the non-

homogeneity of the data features(number data contains PPG+ABP+ECG,

PPG/ABP+ECG and only ECG signal). These performance results are

low and not eligible to clinical use. In addition, the worst cases of PPG/ABP

and ECG data are combined with this method, which is one of the reason

for these worst performance results. For comparison with other finalist

we tuned our method with the whole data set and our best results for

this method are shown in Table 4.14 with respect to finalist of CinC2015

challenge.

Table 4.14: MAIN PPG OR ABP SECONDARY ECG Method for Challenge
Case

Alarms Sens.(%) Spec.(%) +P(%) -P(%) Best Sens.(%) Best Spec(%)
ASY 59.1 68 29 88.3 100 [46] 97 [46]
EBR 94 74.4 80 91.4 100 [81] 78 [81]
ETC 80 75 98 21 100 [40] 100 [40]
VTA 83.3 43 26.3 91.3 90 [40] 71 [40]
VFB 83.3 56 18 97 100 [4] 90 [4]

There were the lowest performance results with respect to our methods

overall and challenge finalists results. For EBR in terms of sensitiv-

ity/specificity, the performance is 94%/74.4% respectively to the chal-

lenge case, which are comparable and proper for clinical use. We got

very low results for ASY case and average results (around 80% sensitivity)

for other arrhythmia types. Because in ASY cases ABP or PPG is not

sensitive enough as ECG. In average results group specificity cannot be

improved due to the priority of sensitivity in the balance between sensi-

tivity/specificity.

• When Main ECG and Secondary PPG or ABP Method, which is described

in 3 METHODS section, was used for false alarm reduction. The method

specific parameters values are given in Table 4.15.

We got results for training and test data as shown in Table 4.16, 4.17.
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Table 4.15: Main ECG and Secondary PPG or ABP Method Arrhythmia Based
Parameters

Parameters Symbol Limit
SQ threshold for ASY SQI_thASY 0.8
SQ threshold for EBR SQI_thEBR 0.8
SQ threshold for TAC SQI_thTAC 0.85
SQ threshold for VTA SQI_thV TA 0.8
SQ threshold for VFB SQI_thV FB 0.8

Table 4.16: Main ECG Secondary PPG/ABP Method Training Results

Alarms Sens.(%) Spec.(%) +P(%) -P(%)
ASY 100 87.5 66.7 100
EBR 100 68 69.2 100
ETC 98.5 75 98.5 75
VTA 86.2 34.5 21.2 92.5
VFB 100 96.4 50 100

Table 4.17: Main ECG Secondary PPG/ABP Method Testing Results

Alarms Sens.(%) Spec.(%) +P(%) -P(%)
ASY 100 84.6 55.6 100
EBR 92.6 77.8 86.2 87.5
ETC 95.4 40 95.5 50
VTA 70 33.3 36.2 67.3
VFB 100 91.7 71.4 100

There were very similar results while comparing the results of the training

and the testing dataset, although the method is tuned with respect to

training set. For comparison with other finalist we tuned our method

with the whole data set and our best results are shown in Table 4.18 with

respect to finalist of CinC2015 challenge.

Table 4.18: MAIN ECG SECONDARY PPG AND ABP Method for Challenge
Case

Alarms Sens.(%) Spec.(%) +P(%) -P(%) Best Sens.(%) Best Spec.(%)
ASY 100 94.2 66.7 100 100 [46] 97 [46]
EBR 100 78 79 100 100 [81] 78 [81]
ETC 97.4 63 97.3 50 100 [40] 100 [40]
VTA 83.3 34 24 89.1 90 [40] 71 [40]
VFB 100 94.2 67 100 100 [4] 90 [4]
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There were good performance results with respect to our best results for

all arrhythmia types. VTA and ETC cases specificity is a little bit low due

to noise level. In average results group specificity cannot be improved due

to the priority of sensitivity in the balance between sensitivity/specificity.

The method worst case is VTA.

4.1.2 METU BEST Methods Performances

In this section we combined our methods which‘s performances are shown in

the previous section and try to get our best performance methods with respect

to their usage area. These methods are METU BEST Method, METU BEST

(without ABP signal) Method, METU BEST Generic Method, METU BEST

(without ABP signal) Generic Method (for devices unable to measure ABP

signals).

• When METU BEST Logic Method, which is described in METHODS

section, was used for false alarm reduction, we got results for training and

testing datasets as shown in Table 4.19, 4.20.

Table 4.19: METU BEST Method Training Results

Alarms Sens.(%) Spec.(%) +P(%) -P(%)
ASY 100 87.5 66.6 100
EBR 100 72 73.1 100
ETC 98.5 75 98.5 75
VTA 86.2 34.5 21.1 92.5
VFB 100 96.4 50 100

Table 4.20: METU BEST Method Testing Results

Alarms Sens.(%) Spec.(%) +P(%) -P(%)
ASY 100 78.8 47.6 100
EBR 88.8 77.7 85.7 82.4
ETC 96.9 40 95.5 50
VTA 70 33.3 36.2 67.2
VFB 100 91.7 71.4 100

The method specific parameters values are given in Table 4.21.
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Table 4.21: METU BEST Method Arrhythmia Based Parameters

Parameters Symbol Limit Method
SQ threshold for ASY SQI_thASY 0.75 ECG + PPG
SQ threshold for EBR SQI_thEBR 0.8 PPG/ABP + ECG
SQ threshold for ETC SQI_thETC 0.95 ECG + PPG
SQ threshold for VTA SQI_thV TA 0.8 ECG + PPG/ABP
SQ threshold for VFB SQI_thV FB 0.8 ECG + PPG/ABP

There were very similar performance results when you compare the results

of the training set and the testing set, although the method was tuned

with respect to training set. For comparison with other finalist we tuned

our method with the whole data set and our best results as shown in Table

4.22 with respect to finalist of CinC2015 challenge.

Table 4.22: METU BEST Method for Challenge Case

Alarms Sens.(%) Spec.(%) +P(%) -P(%) Best Sens.(%) Best Spec.(%)
ASY 100 86 61.1 100 100 [46] 97 [46]
EBR 100 78 79 100 100 [81] 78 [81]
ETC 98.2 63 97.4 71.4 100 [40] 100 [40]
VTA 83.3 43 26.3 91.3 90 [40] 71 [40]
VFB 100 98.1 86 100 100 [4] 90 [4]

Weakest part of the method is VTA in terms of sensitivity/specificity like

83.3%/43% respectively to the challenge case, because of limited number

of data includes PPG or ABP pulsatile signals, which are more sensitive

and less noisy in VTA cases due to their measurement location respect to

heart, where the level of noises are low compared to the original heart sig-

nals. In the overall results shown Table 4.22 it is better than the challenge

finalists results.

Moreover, all the above results are computed from fuzzy logic methods,

which were specifically tuned for each arrhythmia type because we know

the type of arrhythmia of each alarm data. If we want to implement these

methods in an ICU device, we need to optimize these methods with generic

thresholds for all arrhythmia types. The training and testing results for

Main ECG and Secondary PPG/ABP Method (Generic version of METU

BEST Method) with SQIth = 0.8 threshold and 10 s window (which is
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described in the Association for the Advancement of Medical Instrumenta-

tion (AAMI) regulations as alarm must be raised within 10 seconds of an

arrhythmia [33] alarm must be raised within 10) until the alarms happens

shown in Table 4.23, 4.24.

Table 4.23: METU BEST Generic Method Training Results

Alarms Sens.(%) Spec.(%) +P(%) -P(%)
ASY 100 87.5 66.6 100
EBR 100 68 69.2 100
ETC 96.9 79 98.4 60
VTA 86.2 34.5 21.2 92.5
VFB 100 96.4 50 100

Table 4.24: METU BEST Generic Method Testing Results

Alarms Sens(%) Spec(%) +P(%) -P(%)
ASY 100 84.6 66.6 100
EBR 92.6 77.8 86.2 87.5
ETC 93.8 40 95.3 33.3
VTA 70 33.3 36.2 67.3
VFB 100 91.7 71.4 100

• However, except intensive care patients, generally patients in other de-

partments use ICUs without measuring ABP because it is an expensive

treatment and not easy to implement to the patient. Therefore, we modi-

fied METU BEST Method to become more implementable in clinical use

and we got METU BEST (without using ABP signal) Method and if the

method cannot find any signal it goes to directly mark the alarm as false.

The method specific parameters values are given in Table 4.25.

Table 4.25: METU BEST (without using ABP signal) Method Arrhythmia
Based Parameters

Parameters Symbol Limit Method
SQ threshold for ASY SQI_thASY 0.8 ECG + PPG
SQ threshold for EBR SQI_thEBR 0.95 ECG + PPG
SQ threshold for ETC SQI_thETC 0.95 ECG + PPG
SQ threshold for VTA SQI_thV TA 0.85 ECG + PPG
SQ threshold for VFB SQI_thV FB 0.95 ECG + PPG
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We get results for training and test data as shown in Table 4.26, 4.27.

Table 4.26: METU BEST (without using ABP signal) Method Training Results

Alarms Sens.(%) Spec.(%) +P(%) -P(%)
ASY 100 87.5 66.6 100
EBR 94.7 68 69.2 94.4
ETC 98.5 75 98.5 75
VTA 86.2 32.4 20.7 92
VFB 100 96.4 50 100

Table 4.27: METU BEST (without using ABP signal) Method Testing Results

Alarms Sens.(%) Spec.(%) +P(%) -P(%)
ASY 100 84.6 55.5 100
EBR 92.6 72.2 83.3 86.6
ETC 98.5 40 95.5 66.7
VTA 71.6 33.3 36.8 68.5
VFB 100 91.7 71.4 100

There were very similar results when you compare the training set and

testing dataset, although the method was tuned with respect to training

dataset. For comparison with other other finalist we tuned our method

with the whole data set and our best results as shown in Table 4.28 with

respect to finalist of CinC2015 challenge.

Table 4.28: METU BEST (without using ABP signal) Method for Challenge
Case

Alarms Sens.(%) Spec.(%) +P(%) -P(%) Best Sens.(%) Best Spec.(%)
ASY 100 85.3 58.3 100 100 [46] 97 [46]
EBR 93.5 72.1 78.2 91.2 100 [81] 78 [81]
ETC 98.2 63 97.4 71.4 100 [40] 100 [40]
VTA 83.3 32 23 89 90 [40] 71 [40]
VFB 100 96.2 75 100 100 [4] 90 [4]
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Weakest part of the method is again VTA in terms of sensitivity/specificity

like 83.3%/32% respectively to the challenge case, because of limited num-

ber of data includes PPG or ABP pulsatile signals, which are more sensitive

and less noisy in VTA cases due to their measurement location respect to

heart, where the level of noises are low compared to the original heart

signals. In the overall results shown 4.22, it is better than the challenge

finalists results. When you compare it with the METU BEST Method,

results are similar The differences between their performance results are

change between 1 − 5 %. Because we tuned the thresholds to optimize

and get the highest sensitivity then improve specificity our best specificity

percentages always smaller than sensitivity. In other words, if we try to

increase the specificity percentage more than this the sensitivity start to

decrease. The method weakest part is ETC and the failed records in ETC

provided in Figure 4.11 and Figure 4.12.

Figure 4.11: Ventricular Tachycardia FalsePositive sample(a385l)

Moreover, all the above results are computed from fuzzy logic methods, which

were specifically tuned for each arrhythmia type because we know type of ar-

rhythmia of each alarm data. If we want to implement these methods in an

ICU device for general arrhythmia detection, we need to optimize these meth-

ods with generic thresholds for all arrhythmia types. The training and testing

results for Main ECG and Secondary PPG Method (Generic version of METU
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Figure 4.12: Ventricular Tachycardia TrueNegative sample(v111l)

BEST (without using ABP signal) Method) with 0.7 threshold and 10 s window

until the alarms happens shown in Table 4.29, 4.30.

Table 4.29: METU BEST (without using ABP signal) Generic Method Training
Results

Alarms Sens.(%) Spec.(%) +P(%) -P(%)
ASY 100 87.5 66.7 100
EBR 94.7 68 69.2 94.4
ETC 96.9 75 98.5 60
VTA 86.2 32.4 20.7 92
VFB 100 96.4 50 100

Table 4.30: METU BEST (without using ABP signal) Generic Method Testing
Results

Alarms Sens.(%) Spec.(%) +P(%) -P(%)
ASY 100 78.8 47.6 100
EBR 92.6 77.8 86.2 87.5
ETC 95.4 40 95.4 40
VTA 71.7 33.3 36.8 68.5
VFB 100 95.8 83.3 100
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Table 4.31: METU BEST (without using ABP signal) Generic Method Results
in Challenge Case

Alarms Sens.(%) Spec.(%) +P(%) -P(%) Best Sens.(%) Best Spec.(%)
ASY 100 85.3 58.3 100 100 [46] 97 [46]
EBR 93.5 72.1 78.2 91.2 100 [81] 78 [81]
ETC 98.2 63 97.4 71.4 100 [40] 100 [40]
VTA 83.3 32 23 89 90 [40] 71 [40]
VFB 100 96.2 75 100 100 [4] 90 [4]

When Main PPG or ABP and Secondary ECG Logic with 0.8 threshold Method,

which is described in Chapter 3, was used for false alarm reduction. There were

good performance results with respect to our best results for VTA and EBR in

terms of sensitivity/specificity like 83.3%/43% respectively to the challenge case.

We got low results for ASY case and average results (around 80% sensitivity)

for other arrhythmia types. Because in ASY cases ABP or PPG is not sensitive

enough as ECG. In average results group specificity can not be improved due to

the priority of sensitivity in the balance between sensitivity/specificity.

4.1.3 Our Best Methods vs Cinc2015 Finalists Performances

The detailed arrhythmia type based comparison, which‘s main criteria is sen-

sitivity and secondary criteria is specificity, of our best result with CinC2015

finalist are shown below:

• Asystole: The sensitivity and specificity of CinC2015 finalist‘ methods

and our methods for asystole case are given in Table 4.32.
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Table 4.32: Asystole Case Comparison

Rank Authors Sens.(%) Spec.(%)
1 V. Kresteva et al. [46] 100 97
2 F. Plesinger et al. [61] 100 97
3 METU BEST Method 100 86
4 METU BEST (without ABP signal) Method 100 85.3
5 S. Ansari et al. [4] 94 82
6 C. Daluwatte et al. [17] 91 86
7 W. Zong et al. [81] 89 63
8 L. M. Eerikainen et al. [28] 85 88
9 P. Couto et al. [18] 78 94
10 C. H. Antink et al. [40] 56 94
11 Average 81.2 79.3

In asystole case the average performance of sensitivity/specificity are 81.2%

/79.3%. METU BEST Method and METU BEST (without using ABP

signal) Method performances are 100%/86% and 100%/85.3%, which are

over average performance and they are third and fourth in the ranking in

Figure 4.13.

Figure 4.13: Asystole Case Comparison

• Bradycardia: The sensitivity and specificity of Cinc2015 finalist‘s meth-

ods and our methods for bradycardia case are given in Table 4.33.
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Table 4.33: Bradycardia Case Comparison

Rank Authors Sens.(%) Spec.(%)
1 METU BEST Method 100 78
2 W. Zong et al. [81] 100 78
3 F. Plesinger et al. [61] 100 72
4 C. H. Antink et al. [40] 100 57
5 V. Kresteva et al. [46] 98 86
6 C. Daluwatte et al. [17] 98 44
7 L. M. Eerikainen et al. [28] 96 79
8 P. Couto et al. [18] 95 66
9 METU BEST (without ABP signal) Method 93.5 72.1
10 S. Ansari et al. [4] 77 86
11 Average 87 65.3

In bradycardia case the average performance of sensitivity/specificity are

87%/65.3%.METU BEST Method and METU BEST (without using ABP

signal) Method performances are 100%/78% and 93.5%/72.1%, which are

over average performance and they are first and ninth in the ranking in

Figure 4.14.

Figure 4.14: Bradycardia Case Comparison

• Tachycardia: The sensitivity and specificity of CinC2015 finalist‘s meth-

ods and our methods for tachycardia case are given in Table 4.34.
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Table 4.34: Tachycardia Case Comparison

Rank Authors Sens.(%) Spec.(%)
1 C. H. Antink et al. [40] 100 100
2 P. Couto et al. [18] 100 80
3 L. M. Eerikainen et al. [28] 99 99
4 V. Kresteva et al. [46] 99 89
5 METU BEST Method 98.2 63
6 METU BEST (without ABP signal) Method 98.2 63
7 W. Zong et al. [81] 98 80
8 S. Ansari et al. [4] 98 60
9 F. Plesinger et al. [61] 97 100
10 C. Daluwatte et al. [17] 96 78
11 Average 89.4 73.8

In tachycardia case the average performance of sensitivity/specificity are

89.4%/73.8%. METU BEST Method and METU BEST (without using

ABP signal) Method performances are 98.2%/63% and 98.2%/63%, which

are over average performance and they are first and ninth in the ranking

in Figure 4.15.

Figure 4.15: Tachycardia Case Comparison

• Ventricular Tachycardia: The sensitivity and specificity of CinC2015

finalist‘s methods and our methods for ventricular-tachycardia case are

given in Table 4.35.
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Table 4.35: Ventricular-Tachycardia Case Comparison

Rank Authors Sens.(%) Spec.(%)
1 C. H. Antink et al. [40] 90 71
2 F. Plesinger et al. [61] 85 84
3 L. M. Eerikainen et al. [28] 84 74
4 W. Zong et al. [81] 84 43
5 METU BEST Method 83.3 43
6 METU BEST (without ABP signal) Method 83.3 32
7 V. Kresteva et al. [46] 82 71
8 C. Daluwatte et al. [17] 80 82
9 S. Ansari et al. [4] 78 85
10 P. Couto et al. [18] 69 95
11 Average 74.4 55

In tachycardia case the average performance of sensitivity/specificity are

74.4%/55%. METU BESTMethod and METU BEST (without using ABP

signal) Method performances are 83.3%/43% and 83.3%/32%, which are

over average performance and they are fifth and sixth in the ranking in

Figure 4.16.

Figure 4.16: Ventricular-Tachycardia Case Comparison

• Ventricular-Flutter/Fibrillation: The sensitivity and specificity of Cinc2015

finalist‘s methods and our methods for ventricular-flutter/fibrillation case

are given in Table 4.36.
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Table 4.36: Ventricular-Flutter/Fibrillation Case Comparison

Rank Authors Sens.(%) Spec.(%)
1 METU BEST Method 100 98.1
2 METU BEST (without ABP signal) Method 100 96.2
3 S. Ansari et al. [4] 100 90
4 V. Kresteva et al. [46] 100 87
5 C. Daluwatte et al. [17] 100 83
6 P. Couto et al. [18] 89 96
7 W. Zong et al. [81] 89 78
8 L. M. Eerikainen et al. [28] 75 94
9 F. Plesinger et al. [61] 67 100
10 C. H. Antink et al. [40] 67 92
11 Average 80.6 83.1

In ventricular-flutter/fibrillation case the average performance of sensi-

tivity/specificity are 80.6%/83.1%. METU BEST Method and METU

BEST (without using ABP signal) Method performances are 100%/98.1%

and 100%/96.2%, which are over average performance and they are first

and second in the ranking in Figure 4.17.

Figure 4.17: Ventricular-Flutter/Fibrillation Case Comparison

4.2 Limitations

• Annotations of the alarms were made by individuals who were not involved

in the creation of the ECG arrhythmia detection methods, which were used
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in the ICU bedside monitors. Therefore, these ECG alarms were annotated

using clinical criteria, and our alarm definitions may not be completely

consistent with the logic used by the monitoring methods in some cases

which decrease the sensitivity and specificity rate of our methods.

• Although heart beat detection on ECG signals was helpful in eliminating

stage of false ASY and EBR alarms, heart beat detection on PPG and

ABP signals had a significant role in ETC, VTA, VFB alarms because

of the high noise levels in the ECG signals. The dataset, which we used

in research have a limited number of PPG and ABP records (details are

shown in Table 4.2), which decreased our performances on our methods.

Therefore, a larger database is needed with more PPG and ABP signals.

• The annotations for the “ventricular tachycardia” alarm category in partic-

ular were limited, such as there are total 8 false VTA alarms in the whole

dataset, which means that only 4 records were used for tuning, and then

this affected our training stage for parameters tuning negatively.

• The monitor method fired an alarm upon the detection of rapid ventricular

tachycardia. The clinical annotator labeled rapid ventricular tachycardia

as “ventricular tachycardia” and the ventricular fibrillation annotation was

reserved for asynchronous ventricular electrical activity. The database

did not show any true ventricular fibrillation events. This annotation

methodology affects the performance of the PPG signal quality method,

ppgSQI.m function.
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CHAPTER 5

DISCUSSION AND CONCLUSIONS

This chapter starts with a summary of works done followed with the discussion

of improvements and limitations end with the conclusion and future works could

be implemented in this thesis.

5.1 Summary and Discussions

False arrhythmia alarms of ICUs have been ranked number in the 10 lists of

health technology hazards every year, since 2012 (by the ECRI Institute in de-

tails [75]). To reduce these alarms, efforts in two aspects are made: a) clinical

usage aspect, b) technology aspect.In clinical usage aspect, clinicians, nurses

should be aware of the fact that these devices are utilized them only as a tool in

the overall assessment of patients conditions and their improper configurations

and operations can be resulted negative (adverse) event in hospital. Educations

and trainings are useful for proper operation (well integration with other pro-

cedures and requirements of patient care), and avoid misconfiguration or false

alarms because of the current alarm systems. In technology aspect, especially

QRS detection is a mature field since most of the improvements of false alarm re-

ductions are tried and tested on ECG and other waveforms recordings, which are

measured from the heart. Their performances are usually above 99% with dif-

ferent amount of computational efforts [11]. However, in literature, only overall

results (sensitivity, specificity, etc. parameters) are provided for detection rates

without the timings and processor power requirements. Additionally, many of

algorithms are not implemented on a standalone device, which makes usability

of these algorithms questionable.
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In this study, firstly, we pre-processed all signal with specific filters, which are

explained in Section 3.1. For QRS detection a modified version of Hilbert trans-

form and a 1st differential method that is known to be successful and numerically

efficient (explained in Section 3.2), was implemented and results were compared.

For PPG detection Physionet open-source algorithms (ppgSQI.m) were used to

process the PPG signal. The process starts with a FIR bandpass filter applied

to the PPG signal followed with a quantile function to convert PPG signal to be

compliant with wabp.m function for onset point detection. The R-R intervals

were calculated from these onset points. Then the ppgSQI.m algorithm was used

to estimate the signal quality index to give the decision the alarm was true or

false (details are explained in Section 3.3). For ABP detection Physionet open-

source algorithms (wabp.m, jSQI.m) were used to process the ABP signal. The

process starts with a FIR bandpass filter applied to the ABP signal followed

wabp.mat function for computing onset points. The R-R intervals calculated

from these onset points. Then the jSQI.m algorithm was used to estimate the

signal quality index to give the decision the alarm was true or false (details are

explained in Section 3.4).

The signal integration part is based on fuzzy logic with combination of different

types signals results and decision rules. Four type of fuzzy logic methods imple-

mented with regard to mix ECG, PPG, ABP signals processing results. These

are "Only ECG" Algorithm, which uses only the ECG signal as input and gives

output, "Only PPG or Only ABP" Algorithms, which use only PPG or ABP

signal as the input and gives the output, "Main PPG" or Main ABP-Secondary

ECG" Algorithms, which use firstly PPG or ABP signal and give output with

respect to these signals, and if these signals are not available, or their SQ levels

are under the thresholds, ECG signal is used as the secondary input, "Main

ECG-Secondary PPG or ABP" Algorithms, which use firstly ECG signal as an

input and give output with respect to it, and if these signals are not available,

or its SQ level is under the thresholds, PPG or ABP signal is used as input.

All these methods were trained with training dataset and tested with testing

dataset, which are explained in 4.1. The performance results of these methods,

are shown that although for QRS and arrhythmia detection, ECG signals are the

most reliable signals among the cardiac signals, combination of ECG, ABP, PPG
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signals in QRS detection and especially in false arrhythmia alarm reduction give

better performance than processing these signals individually. Performance re-

sults of them are shown in Section 4.1.1. After evaluation of these methods with

respect to Sens, Spec, +P, -P, These methods results also , we compared them

with the finalists results in CinC 2015, which are shown in 4.1.1, and we have

comparable results. In other words, in some arrhythmia types the performances

are better then CinC 2015 finalists performances, in other arrhythmia types the

performance are lower than CinC 2015 finalists performances. In order to im-

prove our performance compared with the CinC2015 finalists performances, we

combined these methods and got our best performance method, which is named

as METU BEST Method. METU BEST Logic, is ranked at the third in ASY

case, the first in EBR case, the fifth in ETC case, the fifth in VTA case, the first

in VFB case compared to the top 10 methods (our best methods are included)

of the CinC2015 challenge finalists according to mainly sensitivity, secondarily

specificity. One step further because the ABP signal which is rarely measured

from patients, using it in our method limited our method implementation in

ICU devices. Therefore, we modified our method like main decider as ECG sec-

ondary decider as PPG and it is named as METU BEST (without using ABP)

Method. In this way the method increase its usability. When we compared its

performance with the CinC2015 finalists performances, METU BEST (without

using ABP) Method, is ranked at the third in ASY case, the ninth in EBR case,

the fifth in ETC case, the sixth in VTA case, the second in VFB case compared

to the top 10 methods (our best methods are included) of the CinC2015 chal-

lenge finalists according to mainly sensitivity, secondarily specificity. To achieve

a generic arrhythmia alarms detection method, we found generic thresholds for

all arrhythmia types and got comparable by modifying METU BEST Logic and

METU BEST (Commercial) Logic, which is explained in Section 4.1. We named

them as METU BEST Generic Method and METU BEST (without using ABP)

Generic Method. It does not have clinically reliable results as METU BEST

Generic Method or METU BEST (without using ABP) Generic Method; how-

ever, it can be useful for early emergency case detection and continuous tracking

for patients who have arrhythmia risks.
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5.2 Conclusions

The study described in this thesis demonstrated that false alarm suppression

methods by using only one or more extra channels of non-ECG information

(ABP, PPG or respiration waveform) and fusing them with some fuzzy logic

methods allowed for the identification and suppression of the majority of false

critical ECG arrhythmia alarms (asystole, bradycardia, tachycardia, ventricu-

lar tachycardia, ventricular fibrillation/flutter). These approaches demonstrated

the potential of using multiple physiologic waveforms for reducing false alarms in

the clinical setting. The best performances of our METU best methods: METU

BEST Method, METU BEST (without using ABP) Method have really good

performances compared to CinC finalist. METU BEST Method, is ranked at the

third (Sens/Spec = %100/%86) in ASY case, the first (Sens/Spec=%100/%78)

in EBR case, the fifth (Sens/Spec = %98.2/%63) in ETC case, the fifth (Sens/

Spec=%83.3/%43) in VTA case, the first (Sens/Spec = %100/%98.1) in VFB

case compared to the top 10 methods (our best methods are included) of the

CinC2015 challenge finalists according to mainly sensitivity, secondarily speci-

ficity. METU BEST (without using ABP) Method, is ranked at the fourth

(Sens/Spec=%100/%85.3) in ASY case, the ninth (Sens/Spec = %93.5/%72.1)

in EBR case, the fifth (Sens/Spec = %98.2/%63) in ETC case, the sixth

(Sens/Spec = %83.3/%32) in VTA case, the second (Sens/Spec = %100/%96.2)

in VFB case compared to the top 10 methods (our best methods are included)

of the CinC2015 challenge finalists according to mainly sensitivity, secondarily

specificity. One step further because the ABP signal which is rarely measured

from patients, using it in our method limited our method implementation in

ICU devices. especially in retaining true alarms while rejecting the false ones.

However, due to comparison with other methods this method only tested with

750 alarm records in the comparison with the challenge case and 375 for test-

ing, 375 for training alarm records in the training and testing cases (details are

shown in Section 4). Our best methods were modified and specialized with re-

spect their usage area, such as METU BEST Generic Method was developed

for clinical use in ICU patient monitors, METU BEST (without using ABP)

Generic Method was developed for clinical use in patient monitors, which does
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not have ABP measuring option. METU best methods and generic ones have

very similar performances only a %1 − 2 changes between them regards to the

arrhythmia type. In the ETC and VTA case, our best performances are not

good as others performances in CinC2015. They are in the middle level perfor-

mance with respect to others performances in CinC2015. In some VTA alarm

cases, which is the hardest case to clasify accurately, in the dataset, because the

signals looking more normal and heart rate is very close the threshold limit, it is

not possible to detect alarm with not effect the overall performance of our low

processor cost algorithms. We may need to use mathematical morphology based

neural network approaches, which need more processor power and are explained

in Section 2.2. In conclusion, we have presented our effective methods to reduce

false critical alarms using waveforms ECG, PPG, and/or ABP signals and mod-

ified versions of them for specific usage areas. They are practical on account of

its real-time dynamic processing mechanism and computational efficiency.

5.3 Recommendations for Future Work

This section summarizes some future research ideas related to the study pre-

sented in this thesis. Some of the future work suggestions are:

• A more detailed study on VTA with a bigger dataset, could be increase

our sensitivity and specificity rates on VTA (now 83.3%) over 90% which

makes our method more reliable to use in clinics (ICUs).

• Amore detailed study could be carried out that using wavelet transform for

filtering stage and then using Hilbert transform and adaptive thresholding

for peak detection as computing techniques for QRS is going to give better

and more robust results, although it increase our computational cost.

• A more detailed study could be carried out that using mathematical mor-

phology for QRS detection for VTA cases increase the sensitivity and speci-

ficity rates [40] and than using adaptive thresholding for peak detection

as computing techniques for QRS is going to give better and more robust

results, although it increase our computational cost.
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• A bigger database and also pre-clinical test areas, where we can imple-

ment our methods parallel to commercial ones on patients to improve the

robustness of our method, can improve our results due to the nature of

fuzzy logic. Moreover, Our method uses PPG and ABP signals as seconder

decision maker which has no difference with using only ECG for evalua-

tion if the data does not contain PPG and ABP signals or contains one of

them only, which is an another problem with our database. This inhibits

the real performance of our method, because the our decision method tags

the alarm as false, if the signal quality level of the waveform is over the

threshold.

• Advances in technology have led to much change in the way we collect,

store and diagnose ECG signals, especially the use of mobile phones to im-

plement the clinical routine of ECG analysis into everyday life. Therefore,

our method need to be optimized to be compliant in terms of memory and

processor power of wearable, implantable devices or tele-medicine systems.
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APPENDIX A

MATLAB PHYSIONET TOOLBOX ALGORITHMS USED IN
THE THESIS

• jSQI.m: jSQI.m is ABP waveform signal quality index.

[BEATQ,R] = jSQI(FEATURES,ONSET,ABP ) (A.1)

The above function returns a binary signal quality assessment of each beat

in ABP. This algorithm relies on detecting abnormalities of numeric values

in FEATURES and ONSET. Written by James Sun (xinsun@mit.edu)

Table A.1: jSQI.m

Input
FEATURES <mx12> — features extracted from ABP using abpfeature.m
ONSET <nx1> — onset times of ABP using wabp.m
ABP <px1> — arterial blood pressure waveform (125Hz sampled)
Output
BEATQ <nx10> — SQI of each beat: 0=good, 1=bad
Col 1: logical OR of cols 2 thru 10
2: P not physiologic (<20 or >300 mmHg)
3: MAP not physiologic (<30 or >200 mmHg)
4: HR not physiologic (<20 or >200 bpm)
5: PP not physiologic (<30 mmHg)
6: abnormal Psys (beat-to-beat change > 20 mmHg)
7: abnormal Pdias (beat-to-beat change > 20 mmHg)
8: abnormal period (beat-to-beat change > 1/2 sec)
9: abnormal P(onset) (beat-to-beat change > 20 mmHg)
10: noisy beat (mean of negative dP < -3)
R <1x1> fraction of good beats in ABP
Usage
- FEATURES must be obtained using abpfeature.m
- ONSET must be obtained using wabp.m
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on Nov 19, 2005. - v2.0 - 1/18/06 - thresholds updated to reduce false

positives - v3.0 - 2/10/06 - added "..101..." detection - see lines 92-96

• abpfeature.m: abpfeature.m function is a ABP waveform feature extractor.

r = abpfeature(ABP,ONSETTIMES) (A.2)

The above function extracts features from ABP waveform such as systolic

pressure, mean pressure, etc. Written by James Sun (xinsun@mit.edu)

Table A.2: abpfeature.m

Input
ABP abp signal (125Hz sampled)
ONSETTIMES times of onset (in samples)
Output
Col 1: Time of systole [samples]
2: Systolic BP [mmHg]
3: Time of diastole [samples]
4: Diastolic BP [mmHg]
5: Pulse pressure [mmHg]
6: Mean pressure [mmHg]
7: Beat Period [samples]
8: meandyneg
9: End of systole time 0.3 ∗ sqrt(RR) method
10: Area under systole 0.3 ∗ sqrt(RR) method
11: End of systole time 1stmin− slope method
12: Area under systole 1stmin− slope method
Usage
- ONSET must be obtained using wabp.m

on Nov 19, 2005.

• rdmat.m:

[tm, signal, Fs, siginfo] = rdmat(recordName) (A.3)

The above function extracts features from ABP waveform such as systolic

pressure, mean pressure, etc. Written by Ikaro Silva, 2014

Last Modified: November 17, 2014

Version 1.1

Since 0.9.7
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Table A.3: rdmat.m

Input
recorName String specifying the name of the *.m file
Output
tm A Nx1 array of doubles specifying the time in seconds.
signal A NxM matrix of doubles contain the signals in physical units.
Fs A 1x1 integer specifying the sampling frequency in Hz for the entire record.
siginfo A LxN cell array specifying the signal siginfo.
Currently it is a structure with the following fields:
siginfo.Units
siginfo.Baseline
siginfo.Gain
siginfo.Description

• wabp.m:

r = wabp(Araw,Offset, Scale, Fs) (A.4)

The above function robustly detects the onset of each beat in the ABP

waveform. The basis of Zong’s onset detection algorithm is the slope sum

function (SSF), which amplifies the rising part of each beat (Figure A.1)

[80]. More details can be found in their paper. Gnu Public License

Figure A.1: The slope sum function (SSF),It aids in onset detection [80]

Applies

James Sun Feb 09 2005 with some changes from Gari Clifford based upon

wabp.c by Wei Zong (www.physionet.org)

• quantile:
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Table A.4: wabp.m

Input
Araw (125Hz sampled) waveform in wfdb-MIT format, Offset
Scale
Output
The onset times of the input ABP waveform
Usage
Defaults are Offset = 1600; Scale=20; Fs=125
If you pass 0 as the scale then above defaults are invoked

Y = quantile(X,p) returns quantiles of the values in data vector or matrix

X for the cumulative probability or probabilities p in the interval [0,1].

– If X is a vector, then Y is a scalar or a vector having the same length

as p.

– If X is a matrix, then Y is a row vector or a matrix where the number

of rows of Y is equal to the length of p.

– For multidimensional arrays, quantile operates along the first nons-

ingleton dimension of X.
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APPENDIX B

FEATURE EXTRACTION

For ABP signals feature extraction we used abpfeature.m function. This function

gets input as ABP (125Hz sampled), times of onset (in samples) and gives a set

of features shown in Table B.1. Ps and Pd are the local minimum and maximum

around the neighborhood of pressure onset point for each beat. Pm is the mean

pressure between sequential onsets. Noise level is defined as the mean of all

negative slopes in each beat.

Table B.1: ABP Features

Feature Description
Ps Systolic Blood Pressure
Pd Diastolic Blood Pressure
Pp Pulse Pressure (Ps − Pd)
Pm Mean Arterial Pressure
T Duration of each Beat
f Heart Rate (60/T )

w noise: mean of negative slopes

For ABP we use jSQI.m signal quality index algorithm which features and their

logic shown in Table B.2.

The first 4 criteria shown in Table B.2 controls signal based on physiological

ranges of each feature. The 6th criterion is the noise detector which is based on

observation and inspecting ABP data. The Final 3 criteria compare ABP feature

between adjacent beats and detect sharp changes in beat-to-beat intervals which

are signs of abnormality.
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Table B.2: SQI Logic

Feature Abnormality Criteria
Ps Systolic Blood Pressure
Pd Diastolic Blood Pressure
Pm Pulse Pressure (Ps − Pd)
f Mean Arterial Pressure
Pp Duration of each Beat
w Heart Rate (60/T )

Ps(k)− Ps(k − 1) |δPs| > 20mmHg

Pd(k)− Pd(k − 1) |δPd| > 20mmHg

T (k)− T (k − 1) |δT | > 2/3 sec

Table B.3: Asystole Case Comparison

Authors Sens.(%) Spec.(%)
V. Kresteva et al. 100 97
F. Plesinger et al. 100 97
METU BEST Method 100 86
METU BEST Generic Method 100 86
METU BEST (without using ABP) Method 100 85.3
METU BEST (Commercial) Generic Method 100 74
S. Ansari et al. 94 82
C. Daluwatte et al. 91 86
W. Zong et al. 89 63
L. M. Eerikainen et al. 85 88
P. Couto et al. 78 94
C. H. Antink et al. 56 94
Average 81.2 79.3
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Table B.4: Bradycardia Case Comparison

Authors Sens.(%) Spec.(%)
METU BEST Method 100 78
METU BEST Generic Method 100 78
W. Zong et al. 100 78
F. Plesinger et al. 100 72
C. H. Antink et al. 100 57
V. Kresteva et al. 98 86
C. Daluwatte et al. 98 44
L. M. Eerikainen et al. 96 79
P. Couto et al. 95 66
METU BEST (without using ABP) Method 93.5 72.1
METU BEST (without using ABP) Generic Method 93.5 72.1
S. Ansari et al. 77 86
Average 87 65.3

Table B.5: Tachycardia Case Comparison

Authors Sens.(%) Spec.(%)
C. H. Antink et al. 100 100
P. Couto et al. 100 80
L. M. Eerikainen et al. 99 99
V. Kresteva et al. 99 89
METU BEST Logic Algorithm 98.2 63
METU BEST Generic Logic Algorithm 95.6 62.5
METU BEST (without using ABP) Method 98.2 63
METU BEST (without using ABP) Generic Method 98.2 63
W. Zong et al. 98 80
S. Ansari et al. 98 60
F. Plesinger et al. 97 100
C. Daluwatte et al. 96 78
Average 89.4 73.8
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Table B.6: Ventricular-Tachycardia Case Comparison

Authors Sens.(%) Spec.(%)
C. H. Antink et al. 90 71
F. Plesinger et al. 85 84
L. M. Eerikainen et al. 84 74
W. Zong et al. 84 43
METU BEST Method 83.3 43
METU BEST Generic Method 83.3 43
METU BEST (without using ABP) Method 83.3 32
METU BEST (without using ABP) Generic Method 83.3 28.6
V. Kresteva et al. 82 71
C. Daluwatte et al. 80 82
S. Ansari et al. 78 85
P. Couto et al. 69 95
Average 74.4 55

Table B.7: Ventricular-Flutter/Fibrillation Case Comparison

Authors Sens.(%) Spec.(%)
METU BEST Method 100 98.1
METU BEST (without using ABP) Method 100 96.2
METU BEST Generic Method 100 94.2
METU BEST (without using ABP) Generic Method 100 94.2
S. Ansari et al. 100 90
V. Kresteva et al. 100 87
C. Daluwatte et al. 100 83
P. Couto et al. 89 96
W. Zong et al. 89 78
L. M. Eerikainen et al. 75 94
F. Plesinger et al. 67 100
C. H. Antink et al. 67 92
Average 80.6 83.1
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APPENDIX C

QRS COMPLEX ENHANCEMENT METHODS

ECG signals detection is affected by various kinds of artifacts as mentioned in

section 2.1.8. Therefore, ECG signals have to be improved by filtering for noise

suppression, R peak enhancement and QRS enhancement stages, which are pre-

requisites for detecting the QRS complex. This section introduces amplitude

thresholding method, first derivative only approach, first and second derivative

only approach, digital filters approach, mathematical morphology approach, em-

pirical model decomposition, Hilbert transform approach, filter banks approach

and wavelet transform approach.

• Amplitude Thresholding Method: Enhancement of R peaks in the

ECG signals is the oldest method for detecting R peaks in the ECG signals.

Moreover, it is the most common one and still useful for the last 30 years.

Sufi et al. [68] used this method in a standalone mobile phone application

for QRS detection. This method is usually supported by a first derivative

pre-processing step to attenuate P, T waves, and enhance R waves of the

signal. After this first derivative process, amplitude thresholding method

detects the QRS complex. Formulation is given below:

Xth = Λ ·X[n] (C.1)

where:

X[n] represents the ECG signal.

Λ represents the proportion of the ECG signal, which is useless and con-

tains artifacts. Λ is between 0− 1.

Xth represents the threshold, which should be removed from the ECG sig-

nal.
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Moreover, different threshold values and formulations has been used. For

example, Moriet-Mahoudeaux et al. [58] developed an amplitude threshold

algorithm using Xth = 0.3 ·maxX[n], which means 30% of the amplitudes

below the maximum positive values are truncated from the whole signal.

ECG signal noise is not removed properly. Although it is a simple method,

the order of complexity depends on the threshold used and segmentation.

• First Derivative Only Approach: First order differentiators for QRS

enhancement are commonly used for high-pass filtering which improves

baseline wanders and avoid high frequency noises. In addition, ECG sig-

nals phases are reconstructed with this process. Moreover, the output

ECG signals have zero crossing in the location of the R peaks. In the lit-

erature first derivative can be calculated in different ways. Some of these

first derivative detection algorithms, introduced in the literature [58] are

given below:

Y1[n] = −2X[n− 2]−X[n− 1] +X[n+ 1] + 2X[n+ 2] (C.2)

where:

Y1[n] represents the first derivative of the ECG signal.

In contrast, Holsinger [39] used a central finite-difference approach as:

Y [n] = X[n+ 1]−X[n− 1], (C.3)

In another study, Okada [56] used a backward difference scheme:

Y [n] = X[n]−X[n− 1]. (C.4)

This method can not remove high frequency noises. It reduces motion

artifacts and baseline drifts. It is a simple method. It contain one equation

for feature extraction. The order of complexity depends on the number of

the processed segments for each record.

• First and Second Derivative Approach: Generally, first and second

derivatives of raw ECG signals are computed separately. These computed

derivatives are linearly combined and used to enhance the QRS complex

part of the ECG signal relative to P and T waves. For example, in the
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research of Balda et al. [63], the formulation of First and Second Derivative

approach is given below:

Y1[n] = |X[n+ 1]−X[n− 1]|, Y2[n] = |X[n+ 2] +X[n− 2]|. (C.5)

where:

Y2[n] represents the second derivative of the ECG signal.

After that, they combined both derivatives according to:

Y3[n] = 1.3Y1[n] + 1.1Y2[n]. (C.6)

where:

Y3[n] represents the combination of the first and second derivatives of the

ECG signal.

According to Ahlstrom and Tompkins [36] they computed the absolute

value of the first derivative of the ECG signal as:

Y1[n] = |X[n+ 1]−X[n− 1]|. (C.7)

The rectified derivative was modified and improved as:

Y1mod[n] = 0.25(Y1[n− 1] + 2Y1[n] + Y1[n+ 1]). (C.8)

where:

Y1mod[n] represents the modified and rectified version the first derivative

of the ECG signal.

Then they calculated the rectified version of the second derivative as:

Y2[n] = |X[n+ 2]− 2X[n] +X[n− 2]|. (C.9)

Finally, the rectified and modified versions of the first and second deriva-

tives were combined as:

Y3[n] = Y1mod[n] + Y2[n]. (C.10)

where:

Y3[n] represents the combination of the rectified and modified version of

the first and second derivatives of the ECG signal.

This is a simple method, which contains 4 equations for feature extraction.

The order of complexity depends on the derived equations and the number

of processed segments.
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• Digital Filters Approach: There are a lot of useful digital filters, which

are used for QRS enhancement [30], [59]. For example, Engelse and Zee-

lenberg [30] firstly passed the ECG signal through a differentiator:

Y1[n] = X[n]−X[n− 4]. (C.11)

Then this signal is passed through a digital low pass filter:

Y3[n] = Y1[n] + 4Y1[n− 1] + 6Y1[n− 2] + 4Y1[n− 3] + Y1[n− 4] (C.12)

where:

Y3[n] represents the digital low pass filtered version of the first derivative

of the ECG signal.

In [56], a queue digital filter was used. First, a three-point moving average

filter is applied to the ECG signal:

Y0[n] = 0.25(X[n− 1] + 2X[n] +X[n+ 1]) (C.13)

Y0[n] represents the filtered version of the ECG signal.

Then a low pass filter was applied to the output Y0[n] of this filter:

Y1[n] =
1

2m+ 1

n+m∑
k=n−m

Y0[k]. (C.14)

The difference of the output and input of this low-pass filter was then

squared to suppress low amplitude waves relative to the R peak:

Y2[n] = (Y0[n]− Y1[n])2. (C.15)

where:

Y2[n] represents the combination of the input and output of the low pass

filter.

To amplify the QRS complex region compared to P and T wave regions,

the squared difference signal Y2[n] was filtered.

Y3[n] = Y2[n](
n+m∑

k=n−m

Y2[n])2 (C.16)

where:

Y3[n] represents the amplified version of the Y2[n].
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Multiplication of backward difference (MOBD) approach is also a digital

filter approach and has been used (details in [69], [70]). This approach

consists of AND gates integration of close magnitude values derivative

outputs. The MOBD function is defined as:

Z[n] =
N−1∏
k=0

(X[n− k]−X[n− k − 1]). (C.17)

where:

N represents the MOBD order,

Z[n] represents the extracted QRS complex, which can be detected by a

suitable threshold.

Another approach, which is developed by Dokur et al. [25], contains two

separate bandpass filters. Then filtered outputs are multiplied as W [n]

and F [n]:

Z[n] = W [n].F [n]. (C.18)

where:

W [n] represents bandpass filter 1. F [n]represents bandpass filter 2. The

approach above relies on the assumption that concurrently resulting fre-

quency components characterize each QRS complex within the pass-band

of every filter. The AND combination is performed by the multiplication

operation. If the result of AND integration is true, it states a QRS com-

plex. Because of the multiplication operator, if all filter outputs are high

then the output is true. Conversely, Pan and Tompkins [34] apply a band-

pass digital filter before the derivative operator to the ECG signals. The

bandpass filter resulted from a low pass filter Y1[n]:

Y1[n] = 2Y1[n− 1]− Y1[n− 2] +X[n]− 2X[n− 6] +X[n− 12]. (C.19)

Then a high pass filter applied as Y2[n]:

Y2[n] = 32Y1[n− 16]− (Y2[n− 1] + Y1[n]− Y1[n− 32]). (C.20)

where:

Y1[n] represents the low pass filtered form of the ECG signal,

Y2[n] represents the high pass filtered form of Y1[n].
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The first derivative (Y3[n]) is obtained after the bandpass filter step was

specified as:

Y3[n] =
1

8
(−Y2[n− 3]− 2Y2[n− 1] + 2Y2[n+ 1] + Y2[n+ 2]) (C.21)

where:

Y3[n] represents the first derivative of Y2[n].

The last differentiation step emphasizes high frequency signal waves (QRS

complex, R wave) and suppresses flat ECG waves, baseline wanders and

low frequency noises. This method increases SNR ratio depends on the

nature of the filter and its order. It is a simple algorithm, which contains

up to 4 equations for feature extraction. The complexity depending on the

number of processed segments for each record.

• Mathematical Morphology Approach: The details of mathematical

morphology approach is provided in [72]. The following theoretical back-

ground is a brief summary of detailed works. Its origin came from image

processing, later it was applied to enhance ECG signals. There are two

main operators, dilation and erosion.

Erosion function is defined as:

(f 	 k)(m) = minn=0,1,...,M−1f [m+ n]− k[n] (C.22)

for N>M and m=0,...,N-M where:

f: F → I,

k: K → I, (structuring element)

F=0,1...N-1,

K=0,1...M-1,

m=0,1...N-M,

I defined as a set of integer numbers.

(f 	 k) values are always less than those f values. Dilation function is

defined as:

(f ⊕ k)(m) = minn=0,1,...,M−1f [n]− k[m− n] (C.23)

for N>M and m=M-1,...,N-1

where:
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m=M-1,M...N-1,

These two functions can be combined for additional operations such as

Opening (erosion followed by dilation ’◦’) and Closing (dilation followed

by erosion ′•′). If Opening is applied to a signal, it removes all peaks. If

Closing is applied to a signal, it removes all negative peaks. Trahanias et

al. [72] used these functions to suppress noise from the ECG signal:

Xmod[n] =
[(X[n] ◦ k) • k] + [(X[n] • k) ◦ k]

2
(C.24)

where:

Xmod[n] represents the filtered signal after the noise suppression.

• Empirical Model Decomposition: In literature empirical model de-

composition (EMD) was introduced by Huang et al. [41] for nonlinear and

non-stationary signal analysis. This method is based on the idea that any

complex data set can be resolved on a quantifiable and generally small

number of intrinsic mode functions (IMFs), which is same as well-behaved

Hilbert transforms. Moreover, if IMFs, which are decomposed raw ECG

signals, are combined to produce a resulting signal, the QRS complex is

more explicit. This approach can also be defined as a type of adaptive

filter and have the same behavior of using wavelet transform. Shifting is

the main process in EMD. It decomposes the raw signal into a group of

IMFs. K modes dk[n] and residual term r[n], are the main parameters of

this process, [57], [21], which are obtained and expressed by:

X[n] =
K∏
k=1

dk + r[n] (C.25)

where:

dk represents K mode of the IMF.

r[n] represents the residual term of the IMF.

The detailed steps of the EMD approach are given below:

1. Start with the signal dk=1[n] = x[n], which followed by the sifting

process with hj[n] = dk[n].

where:

j = 0

hj[n] represents sifting process.
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2. Calculate all local extrema points of hj[n].

3. Identify the lower (EnvMin) and the upper (EnvMax) envelopes by

using cubic spline interpolation of the maxima and minima points.

4. Compute the mean of the upper and lower envelopes as: m[n] =

1
2
(EnvMax[n] + EnvMin[n]).

5. Extract the details of hj+1[n] = hj[n]−m[n].

6. If the hj+1[n] is an IMF, extract the mode dk = hj+1[n]; otherwise,

iterate the steps 2, 3, 4, 5 on the signal hj+1[n], j = j + 1 again.

7. Compute the residual rk[n] = x[n]− dk[n].

8. If the number of extrema points are less than two in rk[n], the ex-

traction process is finished as r[n] = rk[n]. Otherwise, return back to

step 1 and start from the residual rk[n], k = k + 1.

The first several IMFs can filter out the noise and preserve the QRS

content compared to other ECG features such as P and T waves. It

is a simple algorithm, which contains at least 9 steps with several

equations for feature extraction. The complexity of the algorithm in-

creases with the number of processed ECG segments. Its complexity

is higher than the other approaches such as derivative based algo-

rithms and digital filters algorithms.

• Hilbert Transform Approach: Zhou et al. [78] and Nygards and Srnmo

et al. [55] proposed and implemented, that Hilbert Transform can be used

for QRS detection. Firstly, ECG signals are transformed by output of a

filter response as:

XH [t] = H{X} =

∫ +∞

−∞

X(τ)

t− τ
dτ (C.26)

=
1

π
⊗X(t) (C.27)

where:

X[t] represents the ECG signal in continuous time domain.

H{X} represents the Hilbert transform operator.

XH [t] represents the Hilbert transform of X[t].

∗ is the convolution operator.
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In the frequency domain, the ECG signal can be transformed with a filter

of response:

XH(jω) = X(jω) ∗H(jω) (C.28)

where:

X(jω) represents the ECG signal in frequency domain.

Hilbert transform transfer function in frequency domain H(jω) is given

as:

H(jω) =

 −j 0 ≤ ω < π,

j −π ≤ ω < 0.
(C.29)

Fast Fourier Transform (FFT) provides numerical efficiency in calculation,

which makes it easier to compute the Hilbert transform. XH [n] is the

Hilbert transform of the ECG signal. X[n] is utilized for the calculation

of the signal. Ye[n] is used for the computation of the signal envelope of

XH [n], which is discrete Hilbert transform of the ECG signal X[n], [55].

For band-limited signals the equation given below:

Ye[n] ≈
√
X2[n] +X2

H [n]. (C.30)

For numerical efficiency, the envelope equation is simplified as [55]:

Ye[n] ≈ |X[n]|+ |XH [n]| (C.31)

Nygards and Srnmo et al. [55] proposed that the envelope is low pass

filtered to eliminate ripples and remove ambiguities in the peak level de-

tection. Moreover, they submit a waveform adaptive design for avoiding

low-frequency ECG components. The method of Zhou et al. [78] is based

on the envelope of the signal is approximated using:

Ye[n] ≈ |Y1[n]|+ |Y2[n]|. (C.32)

In the above equation the Y1[n] and Y2[n] are the outputs of two orthogonal

digital filters, which can be defined as:

Y1[n] = X[n]−X[n− 6], (C.33)

Y2[n] = X[n]−X[n− 2]−X[n− 6]−X[n− 8]. (C.34)
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A four-tap moving average filter applied the envelope signal Ye[n] to smooth

and remove noise. Some researchers use a first derivative before applying

the Hilbert transform [6], [11], [7]. Differentiation of the ECG changes

its phase by creating a zero crossing at the assumed points of R peaks.

Therefore, in order to create a signal with marked peaks at true locations

of R peaks, the transformation operation needs to rectify the phase of the

signal. Only Hilbert transform (HT) does not improve SNR ratio. Hence,

some researchers apply filter to remove the muscular noise and maximize

the QRS before using HT. The HT contains at least 9 steps with several

equations for feature extraction. However, the main disadvantages of this

method are that the computational works require FFT calculations, and

the number of processed ECG segments, which increase the complexity

compared with time domain approaches. In addition, details and a brief

explanation of the application of HT is given in section 3.2 QRS Complex

Detection.

• Filter Banks Approach: Filter banks divide the input ECG signal,

which can be down-sampled, into uniform frequency sub-band signals, be-

cause the bandwidth of these sub-band signals have lower amplitude than

the input signal. Additionally, the sub-bands carry information from multi-

ple frequency ranges; therefore, this make possible to implement frequency-

dependent and time dependent signal processing of the input signal.

Filter banks include analysis filters, which divide the input signal into uni-

form frequency sub-band signals. The input ECG signal is band-passed

by these analysis filters to produce sub-band signals as:

ui(z) = Hi(z)X(z). (C.35)

where:

X(z) represents the ECG signal in frequency domain.

Hi(z) represents the analysis filters in frequency domain.

ui(z) represents the decomposed sub-band signals.

The effective bandwidth of ui(z) is π
M

and i = 0, 1, ...,M − 1. Therefore,

they can be down-sampled to reduce the total rate. The down-sampled
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signal wi(z) is:

wi(z) =
1

M

M−1∑
k=0

ui(z
1
MW k) (C.36)

where:

M represent the number of sub-bands (samples) In the above equation

W = e−j(
2π
M

). The sub-bands ui(z) and wi(z) are band-pass filtered forms

of the input. ui(z) has a higher sample rate than wi(z). The filtering

process can be easily integrated with 1
M

of the input ratio because of

the advantage of the down-sampling. This method is referred to poly-

phase implementation and it plays a central role of computational efficiency

of the filter bank algorithms [3]. According to Afonso et al. [3] various

features of the ECG complex can be implemented by using sub-bands.

For example, a sum of absolute values feature can be computed using sub-

bands, i = 1, ..., 4. From these sub-bands six features (p1, p2, p3, p4, p5,

p6) can be derived as follows:

p1 =
3∑
i=1

|wi(z)|, p2 =
4∑
i=1

|wi(z)|, p3 =
4∑
i=2

|wi(z)|

p4 =
3∑
i=1

(wi(z))2, p5 =
4∑
i=1

(wi(z))2, p6 =
4∑
i=2

(wi(z))2

(C.37)

These six properties values are proportional to the QRS complex energy.

Therefore, these features can be matched with QRS complex by using

heuristic beat-detection logic. Digital filters sharply improve the SNR

(especially for muscle noise) for Gaussian noise with respect to the mean

and median averaging methods. Relatively high computational cost is

required because ff involvement of a large amount of multipliers in the

FIR.

• Wavelet Transform Approach: Wavelets have similar features as the

filter banks. The wavelet transform (WT) [26] is a function of f(t). It is

an integral transformation formulated as:

Wf (a, b) =

∫
−∞

+∞f(t)ψ∗a,b(t)dt. (C.38)

where:

f(t)represents the ECG signal in continuous time domain.
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the wavelet function is denoted as ψ(t) and its complex conjugate is de-

noted as ψ∗(t). WT has a time-scale notation,that the short-time Fourier

transform (STFT) has similar notation. In contrast to STFT, the WTs

perform variable frequency resolution and corresponded time for variable

frequency bands by using some analyzing functions. These functions are

wave family and they are induced from the same mother wavelet ψ(t) by:

ψa,b(t) =
1√
2
ψ(
t− b
a

) (C.39)

The a and b are the scaling (dilation) and shifting parameters respectively.

Parameter a represents the frequency parameter of the STFT. The mother

wavelet can be defined as a short oscillation with a zero mean. If a and

b parameters of WT are discretized, it is transformed to discrete wavelet

transform (DWT ). For example, a = 2j and b = n(2j) and j and n are

integers. These parameters turn DWT to become dyadic WT (DyWT )

shown below:

Wf (2
j, b) =

∫ +∞

−∞
f(t)ψ∗2j ,b(t)dt, (C.40)

ψ2j ,b(t) =
1

2
j
2

ψ(
t

2j
− n). (C.41)

Although all the equations are shown as an integral transform for DyWT ,

in practice, it is generally implemented as dyadic filter banks with coeffi-

cients, which are derived from the wavelet function [12], [54], [29]. Only

WT does not improve SNR ratios. However, SNR can be improved by

selecting the WT coefficients with the largest amplitude. The length of

segment in each segmentation reflects the tradeoff between accuracy and

computational time. In general computational cost of WT is the same as

digital filter banks and relatively high compared to others.

C.1 QRS Complex Detection Methods

• Thresholding: The set of thresholds that Pan and Tompkins (1985) used

for this stage of the QRS detection algorithm were set such that signal

peaks (i.e., valid QRS complexes) were detected. Signal peaks are defined

as those of the QRS complex, while noise peaks are those of the T waves,
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muscle noise, etc. After the ECG signal has passed through the bandpass

filter stages, its SNR (signal-to-noise ratio) increases. This permits the

use of thresholds that are just above the noise peak levels. Therefore,

the overall sensitivity of the detector is improved. It a simple and low

complexity method; however, if the SNR of the data is low, performance

of this approach is affected negatively. Moreover, choosing the optimal

threshold is not easy and you need to optimize it with a huge database.

• Neural Networks: Artificial neural networks have been widely applied

in nonlinear signal processing, classification and optimization. Generally,

their performances are better than classical linear approaches. In ECG

signal processing, learning vector quantization (LVQ), radial basis function

(RBF) networks and the multilayer perception (MLP) networks are used.

In Figure C.1, the MLP network consist of multiple layers of interconnected

neurons and each neuron is corresponded by a processing function:

y = f(w0 +
N∑
i=1

wixi). (C.42)

where:

wi is the weight assigned to the input xi and f(.) is a linear or nonlinear

function.

In the nonlinear case, f(.) frequently defined as the logistic function f(u) =

1/(1 + e−u) or f(u) = tanh(u). RBF networks are an implementation of

the functional equation:

y(n) =
N∑
i=1

wi exp(−x(n)− ci
θi

) (C.43)

where:

y(n) is the RBF network output,

x(n) symbolizes several input of the data vector of the network,

N denotes the quantity of neuron,

wi denotes the coefficients of the network,

ci denotes the center vectors,

θi denotes the standard deviations of the network.

The diagram of the MLP shown in Figure C.1: The exponentials may have
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Figure C.1: Multilayer Perception [44]

alternative (other) functions to be replaced. In the linear layer a classi-

fication is applied, which is based on Euclidean distance method among

the competitive neurons. In the final layer, the outputs of the former layer

are combined with respect to user defined target classes (similar to fuzzy

logic) [8].The general structure of LVQ network shown in Figure C.2. In

addition, despite of the MLP and RBF networks, which are trained by su-

pervised learning algorithms, the LVQ network is tuned in an unmanaged

manner [15], [5]. The training stages of these approaches are numerically

Figure C.2: LVQ Network [44]

in efficient due to an iterative process for adjusting the neural network

weights. If the hidden neurons quantity increased the computational load
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is also increased. Although you implement these approach on a mobile

phone, the amount of memory to store the neuron weights have to be

large. In the operating stage a considerable amount of process power is

needed for evaluation of nonlinear functions like sigmoid; therefore, it is

computationally inefficient.

• Hidden Markov Models: In Hidden Markov Models (HMM) the ob-

served data are divided by a probability function, which is based on a

Hidden Markov Chain. The objective of the algorithm the HMM method

is to understand the primary state sequence in the observed data. For ECG

signal processing, probable states are QRS complex, P wave and T wave.

In addition, because all states of P waves, QRS complexes and T wave are

determined, this method have an important advantage. The disadvantage

of this algorithm is including a necessary manual segmentation for training

prior to analysis of a record, its patient dependence and the considerable

computational complexity even when the computationally efficient Viterby

algorithm [76] is applied.

• Matched Filters: There are generally neural-network based with linear

matched filtering approaches. They improve SNR. Preprocessing steps,

such as automatic gain control, are applied to the signal and it is digitized

before processing. Then the digitized signal is filtered by a bandpass filter

(15−40 Hz) with 50 Hz notch. In the final step a matched filter is applied

shown below:

y(n) =
N−1∑
i=0

h(i)x(n− i) (C.44)

h(n) is the impulse response, which is taken from the first cardiac cycle

of the contemporary measurements.Moreover interpolation is used up to

four times of the sampling frequency. In final decision step, QRS complex

from the filtered signals are separated with respect to fixed threshold.

This Method increases timing accuracy of the R wave threshold based

detection [24].

According to Lindecrantz et al. [38] research, their algorithm searches from

the minimum of average magnitude cross difference (AMCD) instead of

using the cross correlation between the signal and the template. The
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AMCD equation shown below:

AMCD =
N∑
i=1

|x(n− i)− h(i)|. (C.45)

In the above equation, the ECG signal is defined as x(n) and the time-

reversed variable defined as template.Because there is no multiplication

in the equation, computation of the method is easy to implement and

computationally inexpensive. Further applications are reported by Grass

et. al. [37] in their study, they implemented this method on ICUs for real-

time applications. This method is sensitive to noise (such as heart rate

variations, baseline wanders). In the operation stage, it evaluates sample

by sample moving windows for comparison with the template along the

ECG signals, which make this method computationally high.

• Syntactic Method: In the syntactic algorithms, signals are examined by

a sequence of singularity, which is represented as strings. This representa-

tion is solved for search patterns. Therefore, this pattern recognition part

is provided by syntactic algorithm with representations. This method is

sensitive to noise (such as heart rate variations, baseline wanders).

The specific case of ECG signal processing, the signal divided into short

intervals of fixed or variable periods. Each interval is symbolized by a

primitive, which is coded with the predefined alphabet [67], [77], [12], [77].

Moreover, These line primitive groups are enlarged by parabolic curves,

peaks and features. The computational cost of this algorithm compared to

others, because measurements of various parameters have to be performed

and semantics are needed to the model of the formulation of the pattern

grammar of the specific ECG signal.

• Zero Crossing: QRS detection based on zero crossing counts starts with

bandpass filtered signal. Then the b(n) = k(n)(−1)n is a high frequency

sequence, which is added to the filtered signal y1(n):

y2(n) = y1(n) + b(n). (C.46)

The amplitude of the high-frequency sequence k(n) is computed by a run-

ning average of the factor of the band-pass filtered ECG |y1(n)|. Since the
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amplitude of k(n) is lower than the amplitude of the QRS complex, the

number of zero crossing is large in the period of non-QRS segments and

low in the period of the QRS complex. Computing [1] a running average

of the number of zero crossings results in a robust feature z(n) for the

QRS complexes. An adaptive threshold is used to check the feature signal

z(n) for the detection of QRS complex. Then a maximum points search

in the bandpass filtered signal is used to find the temporal location of the

R-wave around a detected QRS candidate. It is a simple algorithm with

an inefficient computational cost, because of the time consuming stages in

the maxima and minima search for temporal localization of R wave in the

ECG signal.

• Singularity: The algorithm first applied to QRS detection by Mallat

Hwang [51]. The R peaks are found by using local maxima of the wavelet

coefficient signals [1]. This method is sensitive to noise (such as heart

rate variations, baseline wanders). In this method the correspondence

between singularities of a function f(t) and local maxima in its wavelet

transformWf(a, t) is investigated. The singularities correspond to pairs of

modulus maxima across several scales. A point to point mapping between

a signal with its singularities and wavelet coefficients are shown in Figure

C.3. The computation of the singularity degree (peakiness) used for peak

Figure C.3: Singularity Work Flow [44]
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classification. The local Liptschitz regularity α must be greater than zero

for a valid R-peak. α is computed by from the decline of the wavelet

coefficients of the signal as [1]:

αj = log2 |Wf(2j+1, nj+1)| − log2 |Wf(2j, nj)| (C.47)

α =
α1 + α2

2
(C.48)

It is computationally inefficient because of the time consuming stage of

the search and optimization for detecting R waves in ECG segments.
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