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ABSTRACT 

DEVELOPMENT OF A SCREENING MODEL FOR POLYMER 

FLOODING IN MULTI-LAYER RESERVOIRS 

 

 

ZarePakzad, Negar 

M.S., Department of Petroleum and Natural Gas Engineering 

Supervisor: Asst. Prof. Dr. Ismail Durgut 

 Co-Supervisor: Assoc. Prof. Dr. Emre Artun  

January 2018, 125 pages 

Polymer flooding is a chemical enhanced oil recovery method which aims 

to increase oil production from a water flooded oil reservoir by increase in water 

viscosity and reduction in water-oil mobility ratio. These changes result in 

significant increase in sweep efficiency of water comparing with water-only 

flooding technique. The objective of this study is to analyze the behavior of 

multilayer reservoirs under polymer flooding process, considering effects of 

reservoir characteristics, polymer properties and operational parameters. This 

research employs a commercial reservoir simulator to model the fluid flow in a 

polymer-flooded reservoir. A representative reservoir model is built in CMG IMEX 

black oil commercial simulator and an experimental design methodology is 

followed to include uncertainties in different parameters to create various reservoir 

and polymer injection (10,000) schemes. According to the performance indicators 

collected from the simulation runs, an optimization study is carried out to determine 
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the optimum parameters ranges to maximize the performance of polymer flooding. 

To evaluate the performance of the flooding operation the performance indicators  

 

are used to calculate efficiency and water cut for ten years of injection with two-

year intervals. A data driven screening tool that utilizes artificial neural networks is 

trained with the inputs and outputs of the simulator. This developed tool can be 

used to assess a large number of scenarios within a fraction of a second. Prediction 

performance of the tool is inspected with numerical simulator results and an average 

absolute error of ±0.06 bbl/lb and ±0.02 bbl/bbl are reported for efficiency and 

water cut outputs. Lastly, to ease the usability of the screening tool, a graphical user 

interface is generated.  

 

Keywords: Polymer, enhanced oil recovery, reservoir modeling, screening model, 

data-driven modeling 
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ÖZ 

ÇOK KATMANLI REZERVUARLARDA POLİMER ÖTELEMESİ İÇİN 

BİR TARAMA MODELİNİN GELİŞTİRİLMESİ 

 

 

ZarePakzad, Negar 

Yüksek Lisans, Petrol ve Doğal Gaz Mühendisliği Bölümü 

Tez Yöneticisi: Yrd. Doç. Dr. Ismail Durgut 

Ortak Tez Yöneticisi: Doç. Dr. Emre Artun 

Ocak 2018, 125 sayfa 

Polimer ötelemesi suyla ötelenen bir petrol rezervuarında, basılan suyun akış 

direncinin arttırılması ve su-petrol hareketlilik oranın azaltılması ile petrol üretimini 

arttırmak için kullanılan bir kimyasallarla geliştirilmiş petrol çıkarma yöntemidir. 

Bu değişiklikler, sadece suyla karşılaştırıldığında, süpürme verimliliğinde önemli 

bir artışa neden olur. Bu çalışmanın amacı, çok katmanlı rezervuarların bu işlem 

boyunca davranışlarını rezervuar özellikleri, polimer özellikleri ve operasyonel 

parametreleri dikkate alarak analiz etmektir. Bu çalışmada, polimer öteleme 

uygulanan rezervuarlardaki akışı temsil eden bir modelin oluşturulması için CMG 

IMEX rezervuar simülatörü kullanılmıştır. Deneysel tasarım yönetimiyle farklı 

parametrelerdeki belirsizlikleri dikkate alarak birbirinden farklı rezervuar ve 

polimer enjeksiyon tasarıları (10,000) oluşturulmuştur. Belirlenen performans 

kriterleri göz önüne alarak polimer-öteleme metodunun en verimli olarak 

uygulanabildiği koşulların bulunması (optimizasyonu) çalışılacaktır. Öteleme 
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işleminin performansını değerlendirmek için performans kriterleri kullanılarak 

ikişer yıllık aralıklarla on yıllık verimlilik ve su üretimi değerleri hesaplanacaktır. 

 

Veriye dayalı inceleme modeli, yapay sinir ağları kullanarak simülatörün girdi ve 

çıktıları ile eğitilmiştir. Elde edilen sonuçlar kullanılarak bir yapay-sinir-ağları 

modeli oluşturulup, bu modelin bir saniyeden bile kisa bir sürede tasarlanan işlemin 

değerlendirilebileceği bir tarama modeli oluşturmak amaçlanmıştır. 

 

Anahtar Kelime: Polimer ötemesi, rezervuar modeli, yapay-sinir-ağları, 

optimizasyon 
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INTRODUCTION 

Nowadays, enhanced oil recovery (EOR) technology is getting more 

important standing in the oil industry with respect to increasing oil demand and the 

limited worldwide hydrocarbon resources. Difficulties in finding new productive 

fields lead us to further improve our current technologies in order to produce much 

more hydrocarbons from existing hydrocarbon reservoirs. Oil recovery has been 

branched out into three stages, starting from primary stage which the production 

depends on natural drive mechanism of the reservoir system. As the primary 

production ceases, immiscible gas or water may be injected as a secondary recovery 

stage to maintain reservoir pressure. Tertiary recovery is any method used to 

produce the amount of oil remained in reservoir after the economic limit of 

secondary stage has been achieved. Enhanced oil recovery (tertiary recovery) 

processes in general includes miscible gas floods, chemicals and thermal methods. 

All these processes aim to produce the unconventional hydrocarbon left after the 

primary and secondary recovery periods. Chemical methods of enhanced oil 

recovery use polymer, alkaline, surfactant or combination of these chemicals to 

alter some chemical and physical properties of the reservoir rock and fluid in a 

favorable manner. These alterations result in increased sweep efficiency, generally 

by reducing the interfacial tension, water mobility, fingering as well as alternating 

wettability.  

Polymer flooding as one of the promising chemical EOR techniques primarily 

acts as a thickener in the direction of increasing the injected water viscosity (Taber 

et al., 1997). In addition to the increase in water viscosity, polymers can reduce 

relative permeability of the rock to the water, hence improving the volumetric 

sweep efficiency. These characteristics of polymer can boost the oil recovery 

compared to conventional water flooding. Polymer flooding is a mature recovery 
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method with more than 50 years of laboratory studies and commercial scale field 

applications. Recovery range of 5 to 30% OOIP, applicability for wide range of 

reservoir conditions in addition to its low operational cost are the reasons of 

outnumbering polymer flood processes from other chemical EOR methods. One of 

the most successful and largest polymer flooding practices is implemented in 

Daqing field, China. It is expected that using this recovery method can achieve an 

ultimate recovery of more than 50% OOIP. Furthermore, it is estimated that 

polymer flooding could result in additional 10-12% OOIP recovery comparing with 

water flooding (Wang et. al., 2009). 

In general, all of the oil recovery methods are expensive processes that require 

comprehensive analysis in order to assess the most suitable method according to a 

reservoir rock and fluid properties. Usually, the analysis initiate with referring to 

screening criteria. Although the published screening guidelines are based on real 

field data, they cannot provide information about production performance. Hence, 

laboratory studies or numerical modeling should be performed to ascertain the 

recovery performance. However, these analysis during appraisal stage are 

extremely time demanding and costly. Recently, data driven modeling approach in 

the petroleum engineering practices has been expanding expeditiously to assist in 

overcoming the aforementioned problems. The data driven modeling is used to 

build screening tools to facilitate the selection of suitable recovery in addition to 

providing the expected reservoir performance. 

For the last decades, data driven modeling approach has been widely applied 

in diverse applications of petroleum engineering field. Some of the advantages of 

this method over the numerical simulations should be pointed out to answer the 

reason behind this growing interest. The reservoir simulators require a detailed set 

of physical and chemical information about the reservoir system. Even though with 

presence of detailed data, simulations may not give accurate predictions and they 

required to adjust some parameters to match the actual performance of the reservoir. 

Moreover, simulations are expensive, time demanding, as well as being in need of 

professionals and computer resources to operate. Considering large projects, it is 
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practicable to invest on simulation studies, however, for the independent oil 

producers it is not the case. They demand for an inexpensive, time efficient and 

robust alternative. Consequently, artificial neural network based data driven models 

can assist in overcoming the efforts associated with the application reservoir 

simulations (Mabkhout et al., 2013).   

In 1986, predictive model polymer flooding is developed considering a 

detailed economic aspects of the operation and additional oil recovery that can be 

achieved if polymer flooding is implanted instead of water flooding (PFPM,1986). 

In this model, performance of heterogeneous reservoir can be predicted assuming 

that no capillary pressure and cross flow exist in the system. Although the model is 

inclusive as it considers several reservoir, operational and economical properties, it 

is not practical to use in today’s computers working with windows operating 

systems.  

Since early 2000’s, the literature has been enriched in various applications of 

data driven modelling in many reservoir engineering topics. This part of discussion 

is allocated to review some of the recent works published on modeling chemical 

EOR using artificial intelligence. Several data driven models have been developed 

to predict the operational and economical aspects of chemical flooding. Karambeigi 

(2011), predicts recovery factor and net present value for polymer-surfactant flood. 

Similarly, Mabkhout (2013), modeled polymer-surfactant flooding to predict the 

breakthrough time and the recovery factor for different amount of pore volume 

injection. In both of the studies, UTCHEM, a compositional chemical flood 

simulator is used to generate the neural network’s training data set.  

Concerning the application of data driven modeling approach in polymer 

flooding, several studies can be referred. Alghazal (2015), developed data driven 

models for polymer gel in naturally fractured reservoirs. Models are capable of 

providing forward solution for production profiles and inverse-looking solution for 

estimation of operational and reservoir parameters. Örs (2017), developed a data-

driven model for polymer gel treatment for heavily fractured reservoirs with high 

water cuts. Oloo and Chon (2017), predicted the performance of the polymer 
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flooding at different injection stages. They aimed to forecast recovery factor when 

two slugs of polymer are injected.  

Bearing in mind all the achievements of the previously published papers 

regarding the chemical EOR methods and screening tools, it is intended to fill the 

gaps and uncovered topics related with performance prediction of polymer flooding 

process. Some of the features of this research that can be supplement formerly 

developed tools and studies are as follow: 

 Diverse expectation from screening guidelines exist for different producing 

regions in the world. As an example, in USA the field ownership varies from 

one-person to large companies with low central interest in entire reserve of the 

country. However, in the UK all the oil reserves are owned by the government 

and the companies operating the fields are in partnership with each other. 

Hence, the screening criteria for polymer flooding should be in more detail for 

UK operations than in the USA (Sorbie, 1991). By the use of a data-driven based 

screening model numerous reservoir parameters beside wide ranges can be 

considered. The additional considerations namely are: relative permeabilities, 

capillary pressures and the wettability properties. The developed screening tool 

can be also beneficial for the small companies that a detailed study is not 

practicable as the laboratory and pilot tests are extremely costly. 

 

 Judgment upon which reservoir parameter is more critical to consider for 

polymer flooding acceptance or rejection is impossible by screening guidelines. 

In this study, reservoir parameter’s impact on polymer flooding process is 

sorted in the order of their importance.  

 

 Lack of literature in having a data-driven screening tool for polymer flooding 

with purpose of viscosity control as an earlier data-driven screening model is 

developed for heterogeneity control polymer floods (polymer gel injection). 
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In this study, a data driven screening tool using artificial neural networks is 

developed for polymer flooding EOR process. The screening tool provides the 

expected efficiency of the flooding process for a given reservoir characteristic. The 

sequence of this research presentation is organized into six chapters. In Chapter 2, 

a summary of the previous studies conducted around polymer flood process is 

provided. This includes the laboratory studies, the field applications and the 

screening analyses. Chapter 3, presents the problem statement, objectives and the 

work flow of this study. In Chapter 4, characterization of the reservoir simulation 

model and the development of data-driven screening tool for polymer flooding is 

described in details. Chapter 5 is assisted to thoroughly discuss the obtained results. 

This section incorporates the results of the data driven model as well as the 

parametric study on simulation model results. Chapter 6 includes the key 

conclusions obtained from parametric analysis and screening tool. Lastly, Chapter 

7 provides the recommendations for future work in the interest of expanding the 

current study.  
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LITERATURE REVIEW 

This chapter is dedicated to discuss the previous approaches on 

understanding the macroscopic and microscopic displacement behavior of the 

polymer flood in oil reservoir systems as well as developed of data driven models 

for this field of study. In the first part, the discussion mainly include: description of 

polymer flooding system, polymer properties, screening and field studies. The 

second part aims to cover the development progression of data driven models and 

remark the applications of these models in the petroleum industry.  

 

Polymer flooding is an enhanced oil recovery method in which a high 

molecular weight water soluble polymer is added to the injected water. The main 

role of these particles are improving the sweep efficiency and mobility ratio of the 

regular water flooding through increasing the viscosity of the water. By definition, 

the mobility ratio is expressed as the mobility of the displacing phase divided by 

mobility of the displaced phase. The mobility of a fluid is the relative permeability 

to the fluid over its apparent viscosity (Carcoana, 1992). In polymer augmented 

water flooding, the mobility of the displacing fluid is reduced due to the 

viscosifying effect of the polymer as well as decreasing the relative permeability to 

the displacing fluid. In this process no alteration in oil mobility present since the 

physical and chemical properties of the oil is not affected by the polymer. 

According to the mobility ratio equation shown in Equation 2.1, reduction in 

displacing fluid (polymer-water mixture) alongside with an unchanged mobility of 

the oil, results in favorable ratio of less than unity. Mobility control, improves the 

efficiency of the displacement process.  
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𝑀𝑀 = 𝑀𝑀𝑤𝑤
𝑀𝑀𝑜𝑜

= 𝑘𝑘𝑟𝑟𝑤𝑤 .𝜇𝜇𝑜𝑜
𝑘𝑘𝑟𝑟𝑜𝑜 .𝜇𝜇𝑤𝑤

…………………………………………………....Equation 2.1 

Where: Mw Mobility of water  
Mo Mobility of oil 
krw Relative permeability to water  
kro Relative permeability to oil  
µo Oil viscosity  
µo Water viscosity  
 

Both areal and vertical sweep efficiencies are enhanced by polymer flooding 

before and after breakthrough. Improved volumetric sweep efficiency brings late 

breakthrough and high oil recovery at breakthrough (Sorbie, 1991). Moreover, after 

breakthrough polymer flood is beneficial in shifting water path toward unswept 

areas. Simplified Buckley and Leverett fractional flow equation given in Equation 

2.2, can explain how fractional flow of the oil is increased after breakthrough due 

to advantageous modifications of the relative permeability and water viscosity 

(Carcoana, 1992). 

 

𝑓𝑓𝑜𝑜 = 1 − 1

1+�1𝑀𝑀�
………………………………….......……………….Equation 2.2 

Where: M Mobility ratio  
 

 Polymer Types 

Polymer term is derived from “polys” and “meros” meaning “many parts” in 

Greek language. Several polymers have possess the requirements to be used in 

polymer augmented water flooding process. Namely these polymers are: 

polyacrylamides, polysaccharides, cellulosics and polyacrylates (Donaldson et al., 

1989). Of the four, hydrolyzed polyacrylamide (HPAM) and polysaccharides or 

xanthan gum are the two types commonly used in field applications (Carcoana, 

1992; Sorbie, 1991; Donaldson et al., 1989). These two types have also been 

utilized broadly in other industries such as paper manufacturing and drag reduction 

using polyacrylamide and xanthan gum as a thickener in food industry (Sorbie, 
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1991). In the following two sections, properties of the mentioned polymers are 

presented in some detail. 

 

2.1.1.1 Hydrolyzed Polyacrylamide 

HPAM as a partially hydrolyzed form of polyacrylamides is the most widely 

used in polymer flood applications (Manrique et al., 2006; Abidin et al., 2012; 

Sheng et al., 2011; Sorbie, 1991). HPAM is a synthetic polymer with a linear chain 

molecular structure, molecular weight (MW) in a range of 2𝑥𝑥106 to 6𝑥𝑥106 (Sorbie, 

1991) and hydrolysis degree of 20% to 40% (Carcoana, 1992). HPAM is highly 

sensitive to several conditions which cause reduction in polymer solution viscosity 

when the HPAM molecules get broke down (Abidin et al., 2012; Carcoana, 1992). 

The presence of temperatures above 70°C, saline and hard water containing divalent 

ions like Ca2+ or Mg2+ cause polymer instability (Abidin et al., 2012; Sorbie, 1991).  

Thermal stability of the HPAM is affected by several factors, such as brine 

composition, molecular weight and hydrolysis degree of the polymer. The restricted 

temperature for use of this polymer can be boosted to 90°C in case an alkaline brine 

is used. HPAM in such mixtures can be chemically stable for more than 21 months 

at 90°C (Sorbie, 1991). Surfactants and other chemicals used as additive fluids are 

the main reasons for HPAM insatiability and degradation (Abidin et al., 2012; 

Sorbie, 1991). The hydrolysis degree of the HPAM is a key factor to favorably 

change some of the physical properties of the polymer such as adsorption level, 

mechanical shear and thermal stability (Sorbie, 1991). However, it should be noted 

that high hydrolysis degree and salinity are the two factor which reduce the polymer 

solution viscosity at a given concentration (Donaldson et al., 1989; Taber et al., 

1997).  
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2.1.1.2 Xanthan Gum 

Xanthan gum or shortly xanthan is a polysaccharide biopolymer produced 

from bacterial fermentation process (Carcoana, 1992). A wide-ranging molecular 

weight is available from 2𝑥𝑥106 to 50𝑥𝑥106. In polymer flood applications only the 

biopolymers with MW near to lower limit of the stated range is commercial to use 

(Sorbie, 1991). The structure of this material includes side chains holding the 

molecule in rigid, helical form (Donaldson et al., 1989). In general, Xanthan is an 

expensive type of polymer which is susceptible to bacterial activities, yet high 

tolerance for salinity, shearing effects (Carcoana, 1992). In addition, it has been 

proven that the temperature stability of this polymer is only a function of 

temperature and the concentration of the divalent ions has no effect on stability 

(Sheng et al., 2011; Sorbie, 1991). 

 

 Polymer Solution Properties 

After the discovery of first commercial oil well by Drake at Pennsylvania in 

1859, Carl proposed that water injection may increase the chance on obtaining 

higher oil recoveries (Willhite, 1986). Starting from early 1900’s, the inefficiency 

of the conventional water flooding methods is realized and widespread research 

around sweep efficiency and displacement enhancement have been commenced 

(Chang, 1978). In 1944, for the first time Delting introduced water soluble polymer 

beside several other additives to viscosify the injected water and improve the sweep 

efficiency (Carcoana, 1992). In 1964, Pye and Standiford conducted laboratory 

studies suggesting that water soluble polymers can effectively reduce the water 

mobility. Laboratory results are confirmed with pilot field tests and economical 

analyses indicated the profitability of polymer flood recovery method (Pye, 1964). 

Meanwhile, Standiford used HPAM in his laboratory tests, indicating low 

concentration of HPAM is able to enhance oil production for low to high range of 
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oil viscosities (Sandiford, 1964). Later numerous laboratory studies on behavior of 

polymer solution in porous media were initiated. According to Mungan (1969), the 

polymer solution viscosity is affected by the molecular weight of the polymer, the 

shear rates, the salinity and PH of the water.  

 

 Flow Behavior of Polymer Solution 

In the laboratory polymer flood tests, it has been commonly observed that the 

concentration of the polymer bank decreased due to retention of the polymer 

material as it propagates inside the formation. In polymer retention phenomena 

several mechanisms are involved, namely, adsorption, mechanical trapping and 

hydrodynamic retention (Sheng, 2011). Adhesion of polymer particles to reservoir 

rock surface is called adsorption.  The film of the polymer created on rock surface 

during the adsorption process causing polymer loss and increasing the flow 

resistance (Schneider & Owens, 1982). Mechanical entrapment depends on opening 

size of the rock. This phenomenon happens when flow is restricted by the narrow 

flow channels. Hence building up of the material takes place causing the flow of 

the brine instead of the polymer molecules (Carcoana, 1992). Consequently, a 

higher polymer adsorption and entrapment occur when high polymer concentration 

is injected or low permeability formation exists. Hydrodynamic retention appears 

when a flow rate is altered. High hydrodynamic retention appears as the velocity 

increased. It is believed that hydrodynamic retention has a minor contribution in the 

total retention, its effect can be overlooked for the field applications (Sheng, 2011).  

In 1972, Dawson and Lantz introduce a new cause for denudation of polymer 

from the solution. They have suggested that in addition to the adsorption 

phenomena, inaccessible pore volume (IPV) is also affecting the polymer 

concentration at the front (Dawson & Lantz, 1972). Inaccessible pore volume is the 

volume of the pores which are smaller than the polymer molecular size thus causing 

a barrier to polymer flow (Sheng, 2011). About 30% of the total porosity cannot be 
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reached by polymer (Sheng, 2011; Schneider & Owens, 1982). Adsorption and the 

IPV influence the breakthrough time differently as the adsorption decreases the 

breakthrough time though IPV increases (Sheng, 2011; Dawson & Lantz, 1972). 

Laboratory studies on the two aforementioned processes provides that the IPV is 

more effective than the adsorption loss of the polymer. 

In addition to the relative permeability reduction of the rock due to adsorbed 

polymer, relative permeability curves can be affected. This subject has been 

supported in a few studies. Obtained results in one of the pioneering works in 1973, 

indicated that the adsorption causes a minimal reduction in the oil relative 

permeability but decreasing the aqueous phase relative permeability considerably. 

Degree of the alteration in the relative permeability relations upon the adsorption is 

also influenced by the wettability of the rock formation (Sheng, 2011). In a water-

wet rock, flooded by polymer solution, the oil relative permeability remained 

unaffected or increased, consequently improving oil recovery. However, the water 

relative permeability reduced significantly compared to its curve when rock is only 

water flooded. In case of oil-wet systems, both phase permeabilities affected after 

polymer contact. As one of the other conclusions of the experiment conducted by 

Schneider and Owens (1982), the various types of polyacrylamides polymers used 

do not notably affect the relative permeability curves. 

 

 Field Applications 

Starting from 1970, the polymer flooding field applications have been 

reviewed by Jewett and Schurz (1970). In their study, 61 polymer flooding projects 

were investigated. These projects represent more than 95% of the polymer flood 

application till 1969. In this review the small volume and short-term polymer 

injections were excluded. About 60% of the cases started the flooding close to the 

end of primary depletion stage and nearly 30% and 10% corresponding to depletion 

stages of secondary and tertiary, respectively. Among 61 projects, 29 had sufficient 
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information regarding the applicability of the polymer flooding method. Almost 

half of these 29 cases were successful projects which 9 were commercial scale field 

applications. This study concludes that the polymer injection process is efficacious 

over wide ranges of reservoir and fluid properties (Jewett, 1970). 

Updated project data and the new fields which transformed from pilot test 

to commercial scale were reviewed by Needham and Doe (1987). Among 27 

projects considered in this review, more than 90% of the polymer flooded reservoirs 

had sandstone lithology, 24 of them had been flooded by polyacrylamide and only 

two projects used biopolymers. A total of nine projects resulted in 8% or more 

additional OOIP recovery. After this review it was concluded that the polymer 

flooding is less prosperous if applied as a post water flooding application. It is 

beneficial in terms of oil recovery and amount of polymer usage to perform polymer 

flooding directly after primary production stage. Later in 1997, a similar study have 

been conducted by comparing the polymer injection projects inside and outside U.S. 

with the other EOR application. This study suggest that, the polymer flooding can 

improve the sweep efficiency of any water flooding operation, however, the 

economical limitations are the factor increasing the risk of unsuccessfulness of the 

polymer flooding operation (Taber et al., 1997). 

The world’s largest polymer flood application was implemented in China’s 

Daqing oil field (Wang et al., 2009; Saleh et al., 2014). Daqing field is a 

heterogeneous, multi-layer sandstone formation. The laboratory studies began in 

1960s to decide on a potential EOR method for Daqing field (Wang et al., 2009). 

Due to reservoir and crude oil properties of the field, it has been decided that none 

of the two common EOR methods, neither thermal nor miscible were suitable to 

apply (Wang et al., 2000). Hence polymer flooding as the only applicable method 

has been selected. Meanwhile in early 60’s, petroleum professionals started to 

perform comprehensive studies, deepening their knowledge in polymer injection 

process. The obtained results of these studies concluded that polymer injection 

recovers only 2 to 5% OOIP over water flooding (Wang et al., 2009). Hence 

polymer flood could not be assigned as an economically feasible process among 
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other industrial applications of EOR methods. On the contrary, the pilot test results 

were promising for Daqing oil field and rapidly pilot test expanded for a large 

spaced multi-well pattern. The obtained results from the pilot tests and the research 

studies from the mid 1980’s confirmed that polymer injection in Daqing field can 

effectively improve the sweep efficiency. A field scale polymer injection in the 

Daqing filed was initiated in 1996. Beforehand the water flooding was practiced 

with an average water cut of 90% and mobility ratio of 9.4. Within two years of 

injection, it has been reported that the water cut decreased from 90.8 to 73.1% 

(Wang et al., 1998). By 2007, the polymer flood in Daqing field contributed to 

22.3% of the total production and a recovery of 10 to 12% more than from water 

flooding. It should be also mentioned that reservoir conditions of Daqing field were 

in accordance with the earlier exhibited screening criteria for polymer flooding 

(Wang et al., 2009). 

As one of the important achievements of Daqing oil field is verifying the 

ability of polymer to sweep residual oil. In an experimental analysis, the effect of 

glycerin and polyacrylamide flood on residual oil reduction was investigated. The 

obtained results showed that with the same displacing fluid viscosity (30 cp) the 

amount of displaced fluid is changed. It has been indicated that the elastic property 

of the polymer can mobilize all variety of residual oil. Considering the economic 

aspects of the field project, it has been suggested that early polymer injection can 

reduce the amount of injected water. This saved amount of water can fully or 

partially offset the cost of the polymer (Wang et al., 2000). 

Going beyond the successful field projects with properties in consistency with 

the polymer flood screening criteria, there are some particular fields which have 

properties that do not follow the standard screening guides. Pelican Lake in Alberta 

is the first heavy oil reservoirs that polymer flooding is successfully implemented. 

Existence of the heavy oil in a thin formation made it inappropriate for 

implementation of thermal EOR due to significant heat loss (Delamaide et al., 

2013). The standard screening criteria suggests that an oil viscosity above 200 cp is 

not suitable for polymer injection. However, with some modification in operational 
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conditions in Pelican Lake field, the oil with a viscosity of 1000 to 1200 cp was 

recovered. The pioneering idea of applying polymer flood process to heavy oils was 

discovered as early as 1977. However, this process is applicable in the case of 

having horizontal wells and relatively high oil price (Wassmuth et al., 2007). 

Horizontal wells are used to overcome the injectivity problems of high viscosity 

polymer flood, in heavy oil recovery projects (Seright, 2010). By the mid 2000’s, 

the pilot tests in Pelican Lake field have been proved to have a recovery factor of 

about 25% if horizontal wells are used (Delamaide et al., 2013).  

In addition to the mentioned onshore applications of polymer flooding, in 

2010, an offshore medium viscosity oil recovery project was practiced (Morel, 

2012). Mainly two complications are associated with the offshore polymer flooding 

applications. Firstly and inevitably, the space limitations of offshore platform 

causing difficulties in installation of polymer storage, mixing and injection 

equipment (Sorbie, 1991). Secondly, beyond specific logistic problem, large well 

spacing between producer and injector is the other problem causing difficulties in 

flow control  

All in all, polymer injection process has a wide applicability over different 

reservoir and operational conditions. It should be taken into account that oil price 

is a critical factor if the polymer flood is considered as recovery process for heavy 

oils or the offshore projects. As might be seen that the application of polymer in 

EOR extended to heavy oil recovery after mid 2000’s when the oil price was 

exceeding $60 per barrel (MWV, 2017). 

 

 Screening Tools and Studies 

This section is intended to discuss the progress of screening studies conducted 

as a guidance to select an optimum reservoir for polymer flooding. With increasing 

oil production from EOR projects and declining production from conventional 

mechanism, a vital importance of selecting the best EOR method is growing 
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steadily. The idea behind developing a screening criteria is to set a simple range for 

fluid and reservoir properties to accept a recovery method for a further investigation 

on a specific field. By other meaning, screening criteria gives a certain rejection 

rather than acceptance criteria (Sorbie, 1991). Subsequently when a potential 

reservoir is identified for a specific EOR process, laboratory studies are initiated to 

further examine the rock and fluid properties. If satisfactory laboratory results are 

obtained, the field will undergo a pilot test before full field recovery begins 

(Sieberer et al., 2017).  

Screening studies started in 1970 by Jewett and Schurz and later different 

screening works in the literature published by several other researchers. Recently, 

seven screening works from year 1977 till 2014 are combined and compared by 

Saleh et al. (2014). The comparison between the evaluated studies are shown in 

Figure.2.1. These data are comprised of field projects, laboratory and pilot tests. 

According to the graph, different screening works are in good agreement on 

formation depth and temperature of less than 9400 m and 98.9°C, respectively. 

However, the data collected by the author suggest higher upper limits for 

permeability as well as saturation, viscosity and gravity of oil. The applicability of 

polymer injection for heavy oil recovery has been considered as the reported oil 

viscosity and gravity ranges are representing light to heavy oil conditions. The 

ranges for the mentioned parameters are summarized as follow: permeability > 10 

md, oil saturation > 21%, oil viscosity < 5000 cp, API gravity > 12. 

A similar technical screening work is published in 2015, comparing the same 

works shown by Saleh et al. except including only the field and pilot tests data 

(Sheng et al., 2015). According to this very recent publication the range of some 

parameters are changed. In Table 2.1, the screening ranges proposed by Saleh et al. 

(2014) and Sheng et al. (2015) are conferred. 
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Figure 2.1. Different screening criteria for polymer injection process (Saleh 

et al., 2014). 
 

 

Table 2.1. Comparison of some of the parameters from two recent polymer 
flooding screening guides. 

 
Published by T [°C] Lithology µo [cp] So Gravity [°API] Depth 

Saleh et al., 2014 < 98.9 

Sandstone 

& 

Carbonate 

< 5,000 > 0.21 > 12 <9400 

Sheng et al., 2015 < 93.3 Sandstone < 150 
(So-Sor) 

>0.1 
           NC* NC* 

 

 

Since many years ago, humans were curious to bring the idea of intelligent 

machines to the reality. With the evolution of the computers and 50 years of 

research, a new area in computational sciences called “Artificial Intelligence” have 

been introduced. This area of science is intending to develop machines that have an 
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ability to think, learn and deal with new situations like a human being’s brain. This 

ability achieved once the computer science gets along with physiology and 

philosophy sciences. In the last two decades, the integration of artificial intelligence 

(AI) with analytic tools attempt to solve challenging problems in different 

disciplines which previously were not possible or easy to solve (Mohaghegh, 2017). 

Artificial intelligence has been titled with various names such as virtual 

intelligence, computational intelligence and soft computing (Mohaghegh, 2000).  

Artificial neural networks (ANN) are one of the paradigms of the AI, used as 

a data-driven modeling approach (Artun, 2016). Data driven modeling approaches 

have been applied in many areas such as medical, transportation, 

telecommunication, security, financial, manufacturing and many more. As stated 

by Ali (1994), “while being the first to use a new technology is hazardous, being 

among the last may be disaster”. Remarkably, technical leadership is a necessity of 

the competitive oil industry. In the oil and gas industry, this technology has been 

used in geology, geophysics, drilling and reservoir engineering (Hagan et al., 2016). 

In this study, ANN as a computational intelligence technique is used as a data-

driven modeling alternative to develop a screening model for polymer flooding 

EOR. In the following sections, it is intended to cover the structure and mechanism 

of ANN, prior to reviewing the potential applications of data driven modeling in 

petroleum engineering field. 

 

 

The long history of data driven modeling can be traced back to late 19th 

century, once a novel work by McCulloch and Pitts (1943) put an origin for neural-

network field. They revealed that any arithmetic or logical operation could be 

processed by the network. Later Hebb (1949) showed a learning mechanism for 

biological neurons. A great deal of interest generated in neural network field when 

Rosenblatt (1958) made the first practical application of the network. In the 
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meantime, a network similar to Rosenblatt’s was introduced by Widrow and Hoff 

(1960), using a new learning algorithm. However, the both network’s had 

limitations for training complex problems. Starting from 1980’s, the lack of 

powerful computers was overcome, and new concepts were proposed. The use of 

statistical mechanics and backpropagation algorithm were the two concepts 

revivaling the field of neural networks. Since then, numerous papers have been 

published and many applications of neural network have been established (Hagan 

et al., 2016).  
 

 Structure of an Artificial Neural Network  

The artificial neural network is an information processing system in which 

the brain functions and neural system are the inspiration of this development 

(Hagan et al., 2016). Therefore, it is prerequisite to briefly explain the biological 

counterparts before discussing the artificial neural network. 

The basic structure of a neuron is comprising of dendrites, a cell body and an 

axon. A simplified schematic drawing of two bipolar neurons is shown in Figure 

2.2. The dendrites are responsible to carry the information as signals (electro-

chemical pulses) from other neurons to the cell body (Mohaghegh, 2017). The cell 

body is the processing part, which scales the incoming signals and transmits them 

to the next neuron via the axon (Fausett, 2004). The pathway between two 

consecutive neurons where the termination of axon in first neuron is close to the 

dendrites of the second one is called a synapse.  

Artificial neural networks have several features similar to the biological 

neuron system, though, they are still a rough approximation of the human brain’s 

functionality. Human brain has about 10-100 billion neurons. The interconnectivity 

and the parallel architecture of the neural system are the main driving force behind 

human’s complex behavior. Although, the cycle time of biological neurons are 10 

million times slower comparing with the electrical circuits, the brain can perform 
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many task much faster than computers due to its complicated structure. Therefore, 

the regular simple tasks done by humans involves complicated calculations that 

computers are not yet able to process.  

 

 
Figure 2.2. Schematic drawing of two bipolar neurons. 

 

 

Figure 2.3 shows the schematic drawing of an artificial neuron. The outputs 

from other neurons are feed as the inputs (I1, …, In) for next neuron and they are 

multiplied by weight factors (W1, …, Wn). The inputs are processed in the neuron 

via summation and the activation function, resulting in single output. 

 

 

 
Figure 2.3. Schematic drawing of an artificial neuron. 
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 Mechanism of an Artificial Neural Network  

An artificial neural network is a group of neurons arranged into layers. A 

multi-layer network consists of an input, an output and one or more hidden layers 

in between. The number of neurons in the input and output layers resemble the 

number of parameters as an input or output to the network. Multi-layer networks 

are used to solve complicated problems. In data driven models, networks can be 

trained to generate several outputs (Fausett, 2004). Figure 2.4 is a schematic 

diagram of a three-layer neural net. 

There are different classifications for the ANN. The most common category 

is the by the training methods which is subdivided into supervised and unsupervised 

training. In oil and gas industry the supervised training with back-propagation has 

more practical application as the both input and output are offered to the network. 

The procedure to use the artificial neural network is commenced with dividing the 

database into training, validation and test sets. Within the training set, both inputs 

and outputs are presented for the model to learn the logic of the problem. In order 

to check the training process, the network is calibrated with validation data. In this 

stage the inputs of the validation dataset are presented to the network and the 

obtained outputs from the model is compared with the actual outputs of the 

validation set. If a well prediction on validation output data are achieved, the 

network will be applied to a test set (Mohaghegh, 2017).  

 

 

 

 

 
 
 
 
 

 
Figure 2.4. Schematic diagram of a three-layer neural network. 

Input 

Hidden 
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STATEMENT OF THE PROBLEM  

Polymer flooding as one the most common chemical EOR method is used to 

improve the sweep efficiency. Selection of a proper reservoir for implementation 

of polymer injection is a quite challenging procedure as of for any other EOR 

methods. Hence, use of the screening criteria is crucial in assessing field 

development in order to select an appropriate recovery method. Numerous polymer 

flooding screening guides that have been published are based on reservoir rock and 

fluid properties. On one hand, screening studies are incapable to provide any 

information about the reservoir ultimate performance. Consequently, if only the 

screening criteria are to be followed, the economic evaluation is not possible. On 

the other hand, if the economic evaluation is to be accomplished with a numerical 

simulator, a huge investment on computational time, complex studies and 

professional expertise should be considered. These drawbacks can be overcome by 

a screening tool which combines the recommended screening criteria with reservoir 

production performance. The tool-box is an artificial neural network (ANN) based 

data-driven model which can generate immediate results for large number of 

reservoir and production scenarios in a time efficient manner. 

The general objective of this study is to develop a screening tool and 

deepening the knowledge of viscosity control polymer flooding efficiency. Several 

considerations are made in the tool development and parametric analysis with 

intention of filling the gaps of previously conducted practices on polymer flooding 

method. The tool is capable of estimating the polymer flooding efficiency and water 

cut amount for wide variety of reservoir properties for different injection duration 

from two to ten years of polymer injection. 
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METHODOLOGY 

This chapter provides the methodology followed for the construction of 

reservoir simulator model and the development of the screening tool for polymer 

flooding process. The first section of this chapter describes the reservoir model 

generated by a reservoir simulator to mimic the flooding process for numerous 

reservoir and production scenarios. In the second section, procedure of collecting 

the inputs and outputs of the reservoir model to develop a neural-network based 

screening tool for the polymer injection is discussed.  

CMG IMEX black oil commercial simulator is used to build a numerical 

reservoir model with various reservoir and polymer injection schemes. The 

reservoir simulator product is used to generate the data for the training of ANN. 

Five ANN models are generated to estimate the additional efficiency that could be 

obtain if polymer flooding is practiced instead of permitting the reservoir to produce 

by its own natural drive mechanism. The models are presenting the efficiencies for 

different injection duration from two to ten years of polymer injection. All are feed 

forward back propagation models which estimates the efficiency for a given 

reservoir and operational parameters. Figure 3.1 shows the flow chart for the 

screening tool-box construction. The step by step procedure to build the tool-box 

are summarized as follow:  

 

A.1. Constructing a reservoir model for polymer flood process using 

reservoir simulator. 

A.2. Specifying meaningful ranges for reservoir and operational parameters.  

A.3. Generating various production schemes by combination different 

reservoir and operational parameters.  
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A.4. Running the generated scenarios in reservoir simulator and recording 

the essential performance indicators to derive a representative 

efficiency value. 

 

B.1 Feeding the neural network with the input and outputs of the simulator 

to train the network.  

B.2. Comparing the outputs from the network to the results from the 

simulator to evaluate the accuracy of the network. 

B.3. If the network outputs are not within an acceptable error margin: 

i. Evaluate the structure and topography of the network. 
ii. Evaluate the data set to add or remove some of the cases in order 

to cover diverse trends as possible. 
 

C. Parametrically analyzing the results for a better understanding of the 

polymer flooding efficiency. 
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A: Chapter 4 - Section 4.1 
B: Chapter 4 - Section 4.2 
C: Chapter 5 

Figure 4.1. Workflow followed to achieve the objectives of the study. 
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A three dimensional single porosity, black-oil reservoir model with a 

Cartesian grid system is constructed using CMG IMEX (2015) reservoir simulator. 

In this part, general reservoir description, initial conditions, rock and fluid 

properties as well as the operational parameters used in the reservoir model are 

discussed in details. Lastly, sensitivity analyses conducted on number of grid blocks 

is presented.  

 General Description and Initial Conditions 

A three dimensional, multi-layer reservoir with varying porosity and 

permeability is constructed, representing a heterogeneous system. The model has 

five layers in which the thicknesses are not equal and changing from 10 to 100 ft. 

Thus, all reservoir scenarios have a net hydrocarbon thickness of 50 to 500 ft. The 

layer’s thickness as well as all the other parameters used in the simulator are 

randomly selected within a specified range to perfectly represent all the reservoir 

conditions exist in the nature. All the parameters are uniformly distributed between 

a minimum and maximum limits except for the permeability. Considering the fact 

that most of the reservoirs have permeability less than 200 mD and the occurrence 

of permeability more than 200 mD is less frequent, a combination of normal and 

uniform distribution utilized to generate the permeability values. To generate 

10,000 random values for permeability, 8000 are selected with normal distribution 

having standard deviation of 1 mD and median of 4 mD. The selected median and 

standard deviation resulted in having 8000 values with almost all of them being less 

than 200 mD. For the remaining 2000 permeability values, a uniform distribution 

between 200 to 1000 md are used. Resulting permeability frequency distribution is 

shown in Figure 4.1. Porosity of the formation rock is uniformly distributed within 

a range of 0.1 to 0.4. Since the reservoir model represents a heterogeneous system, 

to characterize the degree of the pay zone heterogeneity as a single value, Lorenz 
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Coefficient is calculated for the given layer thicknesses, porosities and 

permeabilities. Lorenz coefficient varies from 0 to 1 representing a completely 

homogenous and heterogeneous systems, respectively. However, in the model, the 

porosity values are continuously modified to compensate the effect of fluid pressure 

rise and fall. This modification is a function of rock compressibility which varies 

between 3𝑥𝑥10−6 to 1𝑥𝑥10−5psi-1 at a constant reference pressure of 14.7 psi. 

 

 
Figure 4.2. Permeability distribution. 

 

Initial conditions are important parameters in designing the reservoir model. 

Reservoir pressure, bubble point pressure and water saturation are three parameters 

used to specify the reservoir’s initial conditions. As the polymer flooding can begin 

after primary or secondary production stages, a wide range for the initial conditions 

parameters is selected. Both initial reservoir pressures and bubble point pressures 

are randomly selected within a range of 500 to 4,000 psi, hence, both saturated and 

undersaturated reservoir cases exit. Concerning the initial fluid saturations, no gas 

is assumed to be present at the start of the polymer flooding as the flood operation 

is only taking place in the pay zone. Random water saturation values are selected 

within a lower limit equal to irreducible water saturation which is changing from 

0.1 to 0.3 and the upper limit of water saturation is 0.5. Consequently, all the 
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reservoir cases built in this research have a minimum and maximum oil saturation 

of 0.5 to 0.9. 

Reservoir temperature as one of the important properties of the reservoir 

under polymer flood, is determined as a function of reservoir depths. An average 

geothermal gradient of 1°F/100ft and a surface temperature of 70° F were used to 

calculate the reservoir temperature using Equation 4.1. The reservoir depths are 

between 500 and 10,000 ft. Consequently, the reservoir temperature is ranging from 

75 to170 °F. This parameter is used in PVT calculations, which will be discussed 

in the rock and fluid section of this chapter.  

 

𝑇𝑇 = 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. + 𝐷𝐷/100 ………………………….………………...…..... Equation 4.1 

Where: Tsurf Surface temperature, ºF 
   D Depth, ft  
 

 Rock and Fluid Properties  

This part of the discussion is framed by a brief explanation on the methods 

and assumptions used in generating the PVT, polymer adsorption and relative 

permeability data sets. In order to create 10,000 reservoir scenarios with different 

rock and fluid properties a number of Matlab codes are developed.  

4.1.2.1 Fluid Properties 

Pressure-volume-temperature (PVT) relation consideration is an essential 

stage to understand the behavior of reservoir fluid in porous media. As the reservoir 

cases under investigation are all operating for ten consecutive years, it is expected 

to have many cases in which the reservoir pressure drop below the bubble point 

pressure. Consequently, the PVT calculations are necessary to perform in order to 

accurately considering the effect of pressure drop on gas evolution. The defined 

PVT properties in the simulator as function of reservoir pressure includes: solution 
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gas ratio, oil formation volume factor, oil viscosity, gas expansion factor and gas 

viscosity. These factors are calculated using different methods and correlations. The 

calculated PVT properties are compared with the CMG Builder PVT Generator. In 

the Table 4.1 the methods available in CMG Builder for PVT calculation and the 

methods selected for this study are summarized. 

 

Table 4.1. PVT calculation methods. 

 

 CMG Builder In this study 

Solution Gas Ratio,  
     [ scf/STB] 

− Standing  
− Vazquez and Beggs 
− Glaso 
− Lasater 

− Vazquez and Beggs 
 

Oil Formation 
Volume Factor, 
     [ RB/STB] 

− Standing  
− Vazquez and Beggs 
− Glaso 
− Lasater 

− Vazquez and Beggs 
 

Oil Viscosity, 
      [ cp] 

Dead Oil:  
− Beggs and Robinson 
− Beal and Chew 
− Glaso 

 
Live Oil:  

− Beggs and Robinson 
− Beal and Chew  

Dead Oil: 
− Beggs and Robinson 
 
 

Live Oil: 
− Beggs and Robinson 

Gas Critical 
Properties, Gas 
Viscosity [ cp] 

− Standing 
− Sutton 

− Sutton  
(Critical gas properties) 
 

− Lee - Gonzalez – Eakin 
(Gas viscosity) 

 

 

In calculation of solution gas ratio, Rs, and the oil formation volume factor, 

Bo, Vazquez and Begss (1980) correlations given in Equations 4.2 and 4.3 are used. 

Rs is a function of temperature, pressure, oil gravity and imperial constants 

depending on oil API gravities. Bo is calculated for below bubble point pressure as 
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the simulator uses only saturated oil in the PVT table. The simulator automatically 

uses a variable substitution technique to calculate the PVT properties for under 

saturated conditions (IMEX User Guide, 2015). In Figure 4.2, the thick lines show 

the PVT data introduced to the simulator, dash lines show the modifications 

simulator makes if pressure is above the bubble point pressure.  

 

𝑅𝑅𝑠𝑠 =  𝐶𝐶1𝛾𝛾𝑔𝑔𝑠𝑠𝑃𝑃𝐶𝐶2𝑒𝑒
(𝐶𝐶3�

𝛾𝛾𝑜𝑜
𝑇𝑇+460�)....................................................................Equation 4.2 

𝐶𝐶1 = 0.0362 (𝛾𝛾𝑜𝑜 ≤ 30), 0.0178 (𝛾𝛾𝑜𝑜 > 30) 

𝐶𝐶2 = 1.0937 (𝛾𝛾𝑜𝑜 ≤ 30), 1.1870 (𝛾𝛾𝑜𝑜 > 30) 

𝐶𝐶3 = 25.7240 (𝛾𝛾𝑜𝑜 ≤ 30), 23.9310 (𝛾𝛾𝑜𝑜 > 30) 

Where: γgs Gas gravity at separator condition of 100 psig 
  γo Oil gravity,  °API 
  P Reservoir pressure, psia 
  T Reservoir temperature, °F 
   

𝐵𝐵𝑜𝑜 = 1 + 𝐶𝐶1𝑅𝑅𝑠𝑠 + 𝐶𝐶2(𝑇𝑇 − 60) � 𝛾𝛾𝑜𝑜
𝛾𝛾𝑔𝑔𝑔𝑔
� + 𝐶𝐶3𝑅𝑅𝑠𝑠(𝑇𝑇 − 60) � 𝛾𝛾𝑜𝑜

𝛾𝛾𝑔𝑔𝑔𝑔
�…...…….. Equation 4.3 

𝐶𝐶1 = 4.677𝑥𝑥10−4(𝛾𝛾𝑜𝑜 ≤ 30), 4.670𝑥𝑥10−4 (𝛾𝛾𝑜𝑜 > 30) 

𝐶𝐶2 = 1.751𝑥𝑥10−5 (𝛾𝛾𝑜𝑜 ≤ 30), 1.100𝑥𝑥10−5 (𝛾𝛾𝑜𝑜 > 30) 

𝐶𝐶3 = −1.811𝑥𝑥10−8 (𝛾𝛾𝑜𝑜 ≤ 30), 1.337𝑥𝑥10−9 (𝛾𝛾𝑜𝑜 > 30) 

Where: Rs Dissolved GOR, scf/STB 
 γgs Gas gravity at separator condition of 100 psig 

  γo Oil gravity,  °API 
  T Reservoir temperature, °F 
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Figure 4.3. PVT data curves (IMEX User Guide, 2015). 
 

 The oil viscosity at pressures below bubble point requires two calculation 

steps. First step is to obtain dead oil viscosity when no dissolved gas exists using 

Equation 4.4. Second step is to use the previously obtained dead oil viscosity and 

solution gas oil ratio in Equation 4.5 to calculate the live oil viscosity. 

 

𝜇𝜇𝑂𝑂𝑂𝑂 = 10𝑋𝑋 − 1 ……………………………………………...……….. Equation 4.4 

𝑋𝑋 = 𝑌𝑌 𝑇𝑇−1.163 

𝑌𝑌 = 10𝑍𝑍 

𝑍𝑍 = 3.0324 − 0.02023 𝛾𝛾𝑜𝑜  
Where: T Temperature, °F 

  γo Oil gravity,  °API 

 

𝜇𝜇𝑜𝑜 = 𝐴𝐴 𝜇𝜇𝑂𝑂𝑂𝑂𝐵𝐵 ………………………………………………………........ Equation 4.5 

𝐴𝐴 = 10.715 (𝑅𝑅𝑠𝑠 + 100)−0.515 
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𝐵𝐵 = 5.44(𝑅𝑅𝑠𝑠 + 150)−0.338 

Where: μOD Dead oil viscosity, cp 

  Rs Dissolved GOR, scf/STB 

 

 Oil density is calculated as a function of oil API gravity and taking a water 

density of 62.4 lb.ft-3 using Equations 4.6 and 4.7.  

 

𝑆𝑆𝑆𝑆 =  141.5
131.5 + 𝛾𝛾𝑜𝑜 

……………..……………………………………….... Equation 4.6 

𝜌𝜌𝑜𝑜 =  𝜌𝜌𝑤𝑤
𝑆𝑆𝑆𝑆 

……………..……………………..………………………..... Equation 4.7 

Where: γo Oil gravity, °API 
  ρw Water density, lb/ft3 
 SG Specific gravity 
 
 

Some of the parameters are constant for all the property calculations. These 

parameters are, gas specific gravity of 0.8, separator temperature and pressure of 

80°F and 115 psi, respectively. The pseudo critical properties of the gas phase are 

calculated by Sutton (1985) correlation. Compressibility of gas is calculated by 

Dranchuk and Abou-Kassem (1990) equation of state (Aniemena, 2013). The 

obtained compressibility value is used to calculate the gas expansion factor using 

Equation 4.8. Gas viscosity is estimated by Equation 4.9 (Lee et al. 1966). Viscosity 

using this method is a function of reservoir temperature, apparent molecular weight 

and density of the gas.  

 

𝐸𝐸𝑔𝑔 = 1
𝐵𝐵𝑔𝑔

= 198.6 𝑃𝑃
𝑧𝑧 .𝑇𝑇

………………………......…………...……..….. Equation 4.8 

Where: P Pressure, psia 
  z Gas compressibility factor 
 T Temperature, ºR 
 Bg Gas formation volume facto, ft3/scf 
 

𝜇𝜇𝑔𝑔 = 𝐴𝐴𝑒𝑒(𝐵𝐵𝜌𝜌𝑔𝑔𝐶𝐶)10−4 ………………………………………...………… Equation 4.9 

𝐴𝐴 =
(9.379 + 0.0160𝑀𝑀𝑎𝑎)𝑇𝑇1.5

209.2 + 19.26𝑀𝑀𝑎𝑎 + 𝑇𝑇
 

 34   

 



 

 

𝐵𝐵 = 3.448 + �
986.4
𝑇𝑇

� + 0.01009𝑀𝑀𝑎𝑎 

𝐶𝐶 = 2.447 − 0.2224𝐵𝐵 

Where: ρg Gas density, lb/ft3 

 Ma Apparent molecular weight, lb/lb.mol 
 T Temperature, ºR 
 
 

The parameters in PVT generated by the simulator is compared with the 

PVT data calculated using the above mentioned methods and all are shown in 

Figure 4.3 to Figure 4.7. The graphs represent a reservoir case with 30 °API oil at 

temperature of 122.5°F. 

 

 
Figure 4.4. Rs vs. pressure obtained from CMG and calculation. 

 

 

 
Figure 4.5. Bo vs. pressure obtained from CMG and calculation. 
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Figure 4.6. Eg vs. pressure obtained from CMG and calculation. 
 

 

 
Figure 4.7. Oil viscosity vs. pressure obtained from CMG and calculation. 
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Figure 4.8. Gas viscosity vs. pressure obtained from CMG and calculation. 

 

 

Some physical properties of the polymer as an additional component of the 

reservoir after the injection, is included in the model. CMG uses a nonlinear mixing 

model to modify the polymer solution viscosity accounting for the mixing of water 

and polymer. As shown in Equation 4.10, the mixture viscosity is a function of 

polymer viscosity, water viscosity and “α” which is a polymer concentration 

dependent parameter given in Equation 4.11. The reference polymer concentration 

in α is used to weight the polymer concentration for the viscosity mixing and it is 

assumed to be one. The new form of the nonlinear mixing model for solution 

viscosity is shown in Equation 4.12. The polymer concentration values, Cp, are 

randomly selected between 0.1 to 1 lb.STB-1 to represent low to high polymer 

concentrations floods (Denney, 2009; Yang et al., 2006). A constant water viscosity 

of 0.3 cp was considered. This low water viscosity value is selected in order to 

taking account the high salinity and high temperature effect on water viscosity. 

(Sharqawy et al., 2012).  

 

𝜇𝜇𝑚𝑚 = 𝜇𝜇𝑝𝑝𝑜𝑜𝑜𝑜 + 𝜇𝜇𝑤𝑤
(1−𝑜𝑜)……………………....………………..…...…… Equation 4.10 

𝛼𝛼 = 𝐶𝐶𝑝𝑝
𝐶𝐶𝑝𝑝𝑜𝑜

………………………….…………………....…….…………Equation 4.11 
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𝜇𝜇𝑚𝑚 = 𝜇𝜇𝑝𝑝
𝑜𝑜𝐶𝐶𝑝𝑝 + 𝜇𝜇𝑤𝑤

�1−𝐶𝐶𝑝𝑝�………….…………………………………… Equation 4.12 

Where: μp Polymer viscosity, cp  
  μw Water viscosity, cp 
 Cp Polymer concentration, lb.STB-1 

 

 

4.1.2.2 Rock-Fluid Interaction  

Relative permeability and capillary pressure are the two essential factors to 

be considered when flow mechanics in the porous media is assessed. In addition, 

these factors have a great importance in reserve and recovery estimation. The 

chemical properties of both fluid and rock, as well as the structure of the rock are 

the main reasons altering the relative permeability and the capillary pressure.  

Effective permeability and absolute permeability are two terms that are 

needed to be defined prior to starting relative permeability concept. Conducted 

laboratory studies confirm that the effective permeability to a fluid is influenced by 

the fluid saturation and wetting property of reservoir rock. The absolute 

permeability is a rock property, determining the capability of the formation fluid 

flow. As in the real reservoirs more than one fluid exists, relative permeability 

should be defined for each of the phases. Relative permeability of a fluid is the ratio 

of its effective permeability to the absolute permeability at a given fluid saturation 

(Ahmed, 2010). In this study, two relative permeability data sets are used. First 

relative permeability data set is for the water-oil system and the second one is for 

liquid and gas phases. Both of the data sets are accounting for two-phase flow of 

the wetting and non-wetting phases. In the model, as the initial condition of the 

reservoirs are gas free, the oil-water relative permeability data is used. Later, when 

the reservoir pressure drops below the bubble point pressure, the liquid-gas relative 

permeability curves are considered in the calculations. Two phase relative 

permeability data in this study were generated using Corey’s correlations. The 

relative permeability calculations for oil-water system are calculated with 

Equations 4.13 and 4.14. In the liquid-gas relative permeability data set, Equations 
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4.15 and 4.16 are used to generate the relative permeabilities (Corey, 1954; Sun & 

Ertekin, 2017).  

 

𝑘𝑘𝑠𝑠𝑤𝑤 = � 𝑆𝑆𝑤𝑤−𝑆𝑆𝑤𝑤𝑤𝑤𝑟𝑟𝑟𝑟
1−𝑆𝑆𝑤𝑤−𝑆𝑆𝑤𝑤𝑤𝑤𝑟𝑟𝑟𝑟

�
𝑛𝑛

………………………...………..……………. Equation 4.13 

𝑘𝑘𝑠𝑠𝑜𝑜𝑤𝑤 = � 1−𝑆𝑆𝑜𝑜𝑟𝑟−𝑆𝑆𝑤𝑤
1−𝑆𝑆𝑜𝑜𝑟𝑟−𝑆𝑆𝑤𝑤𝑤𝑤𝑟𝑟𝑟𝑟

�
𝑛𝑛

……………………………...………...…….. Equation 4.14 

𝑘𝑘𝑠𝑠𝑔𝑔 = � 𝑆𝑆𝑔𝑔
1−𝑆𝑆𝑤𝑤𝑤𝑤𝑟𝑟𝑟𝑟

�
𝑛𝑛

………………….…………….……………...…… Equation 4.15 

𝑘𝑘𝑠𝑠𝑜𝑜𝑔𝑔 = �1−𝑆𝑆𝑔𝑔−𝑆𝑆𝑤𝑤𝑤𝑤𝑟𝑟𝑟𝑟
1−𝑆𝑆𝑤𝑤𝑤𝑤𝑟𝑟𝑟𝑟

�
𝑛𝑛

……………………………...……...………… Equation 4.16 

Where: n Relative permeability exponential coefficient 
Sw Water saturation, fraction 

 Swirr Irreducible water saturation, fraction 
 Sor Residual oil saturation, fraction 
 Sg Gas saturation, fraction 
  

 

Capillary pressure in the reservoir system is a function of several reservoir 

rock and fluid properties. These parameters are namely: surface tension of rock and 

fluid, interfacial tension between fluids, pore size, pore geometry and wetting 

properties of the formation. Any two combination of the reservoir fluids namely, 

oil, gas and water result in immiscible mixture that a discontinuous pressure 

presents between them. The pressure difference between the wetting and the non-

wetting phase is called capillary pressure (Ahmed, 2010). Corey’s method is 

utilized for generating the capillary pressure data as a function of fluid saturation. 

Equations 4.17 and 4.18 are used to calculate capillary pressures for oil-water and 

liquid-gas systems, respectively. Water saturation (Sw), residual oil and irreducible 

water saturations (Sor, Swirr), relative permeability curve exponential coefficient (n) 

and the capillary pressure coefficient for oil and gas (Co, Cg) are the five variables 

used to generate relative permeability and capillary pressure as function of 

saturation.  

 

𝑃𝑃𝑐𝑐𝑜𝑜𝑤𝑤 = 𝐶𝐶𝑜𝑜

�
𝑆𝑆𝑤𝑤−𝑆𝑆𝑤𝑤𝑤𝑤𝑟𝑟𝑟𝑟

1−𝑆𝑆𝑜𝑜𝑟𝑟−𝑆𝑆𝑤𝑤𝑤𝑤𝑟𝑟𝑟𝑟
 
…………………………..……...……………… Equation 4.17 
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𝑃𝑃𝑐𝑐𝑜𝑜𝑔𝑔 = 𝐶𝐶𝑔𝑔

�
1−𝑆𝑆𝑔𝑔−𝑆𝑆𝑤𝑤𝑤𝑤𝑟𝑟𝑟𝑟
1−𝑆𝑆𝑤𝑤𝑤𝑤𝑟𝑟𝑟𝑟

……………..……………………………….…… Equation 4.18 

Where: Co Oil capillary pressure coefficient 
  Cg Gas capillary pressure coefficient 

 Sw Water saturation, fraction 
  Swirr Irreducible water saturation, fraction 
  Sor Residual oil saturation, fraction 
  Sg Gas saturation, fraction 
 

 The mechanism effecting the polymer injection process in the model accounts 

for the mobility control, polymer retention and dispersion, inaccessible pore 

volume, apparent viscosity and resistance factor. However, it should be noted that 

among all the mentioned factors, the mobility ratio and viscosity alteration due to 

polymer adsorption. Adsorption of polymer on the rock surface during flooding is 

introduced to the simulator as a function of polymer concentration. In Figure 4.8, 

three common adsorption isotherms, Langmuir, Freundlich and Linear adsorption 

isotherms are shown. In polymer adsorption studies generally Langmuir isotherm 

is used. Langmuir adsorption isotherm, given in Equation 4.19 is used to generate 

polymer concentration and adsorption table. This type of isotherm indicates that at 

low polymer concentration the adsorption level rapidly rises to its maximum value 

and then becomes plateaus for higher concentrations.  

 

 
Figure 4.9. Commonly reported adsorption isotherms. 
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The coefficient of 𝑎𝑎𝑚𝑚𝑎𝑎𝑚𝑚 and b values are adjusted to fit the function with the 

default concentration and adsorption data provided in the simulator. With 𝑎𝑎𝑚𝑚𝑎𝑎𝑚𝑚, 

maximum adsorption capacity equal to 0.15 lb.STB-1 and b, a constant (function of 

enthalpy of adsorption and temperature) equal to 4 the curve fits perfectly with the 

concentration and adsorption graph of the simulator as shown in Figure 4.9 it has 

been observed that several factors can significantly alter the adsorption level of the 

polymer. These parameters namely are polymer type, surface area and type of the 

rock, pH, salinity, hardness of the solvent water (Sorbie, 1991). In order to take 

account the mentioned effects, wide ranges for 𝑎𝑎𝑚𝑚𝑎𝑎𝑚𝑚 from 0.01 to 0.3 and b from 1 

to 20 are selected. 

 

𝑎𝑎 = 𝑎𝑎𝑚𝑚𝑎𝑎𝑚𝑚
𝑏𝑏.𝐶𝐶

1+𝑏𝑏.𝐶𝐶
……………………………………...…………Equation 4.19 

 

 
Figure 4.10. Polymer adsorption isotherms. 
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 Operational Conditions 

Several operational parameters and constraints can be defined in CMG 

IMEX reservoir model undergoing polymer flooding process. Namely, wellbore’s 

location and geometry, wellhead and bottom hole pressures, fluid injection duration 

and its polymer concentration are the parameters controlling the operational aspects 

of the flooding process. In this study, one injection and one producer wells are 

indicated in the model. The well spacing in different production scenarios are 

between 565 to 1697 ft. Both wells are restricted by a maximum bottom hole 

pressure values. Flow rates of the wells are considered to be extremely high in order 

to letting the wells injecting and producing with any flow rate and having bottom 

hole pressure as the only controlling operating factor. For each of the reservoir 

cases, injection and production bottom hole pressures are a function of initial 

reservoir pressure, P. Using the fact that injector bottom hole pressure, Pbhp (inj.), 

should be higher that reservoir pressure, this pressure is taken randomly between a 

minimum pressure of P+1500 psi and a maximum pressure of P+3000 psi. In order 

to have the flow toward the producer, the bottom hole pressure at the producer, Pbhp 

(prod.), is selected below the reservoir initial pressure. Pbhp (prod.) is a pressure value 

between 5% and 95% of the reservoir initial pressure for lower and upper limits of 

the random value selection, respectively.  

 Grid Sensitivity  

Model sensitivity analysis is a very crucial preliminary step for numerical 

models. Sensitivity of the reservoir model was necessary to perform to determine 

the minimum number of grids which could result in accurate outputs in an 

acceptable computational time. In general, simulation time and accurate results both 

are directly related with the number of grids. Considering 20,000 simulation cases 

of this research practice, grid block sensitivity is an important stage to minimize the 

total computational time of the simulations. A base polymer flood scenarios having 
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average of all the reservoir and operational parameters is used for grid sensitivity 

analysis. The CMG’s template for polymer flood process (mxspr005) using the base 

values is shown in Appendix A. Cumulative oil production, Cumulative water 

production and the average reservoir pressure are the parameters selected to 

compare the total simulation elapse time. Using the base values for all the input 

parameters, seven models are generated with different number of grid blocks from 

5x5 to 35 x 35. In Figures 4.10 through 4.12 the simulation elapse time shows a 

sharp increase when the grid number is 30x30 or more. In Table 4.2 the relative 

change percentages of two consecutive grid number gives information on how fast 

we can approach to a stable value while increasing the grid number. Cumulative oil 

production has the least relative change percentage as the grid number increased. 

This relative change percentage is so small that one can say that the accuracy of this 

parameter is not affected by the grid number as the relative change is not more than 

1%. In addition, average reservoir pressure value is perfectly stabilized for grid 

number 15x15 or more with relative change of less than 0.5%. However, cumulative 

water production is greatly sensitive to the number of the grids. Considering the 

results of the most sensitive parameter, the cumulative water production and the 

elapsed time, it can be logical to decide on a model with 25x25 grids. This is firstly 

due to computational time that it is hugely increasing for 35x35 grids. Furthermore, 

the cumulative water production relative change for different grid numbers is 

dropping to less than 10% for the grid number of 25x25 and more.  

 

Table 4.2. Relative change percentages of successive grid numbers. 
 

Grid Number Oil Production Water Production Reservoir Pressure 
5x5 & 10x10 0.9 % 24.5 % 4.7 % 

10x10 & 15x15 0.8 % 16.1 % 2.2 % 
15x15 & 20x20 0.8 % 14.2 % 0.5 % 
20x20 & 25x25 0.7 % 11.1 % 0.2 % 
25x25 & 30x30 0.5 % 7.6   % 0.3 % 
30x30 & 35x35 0.3 % 5.9   % 0.4 % 
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Figure 4.11. Cumulative oil production sensitivity to the model grid number. 
 

 

 
Figure 4.12. Cumulative water production sensitivity to the model grid 

number. 
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Figure 4.13. Cumulative oil production sensitivity to the model grid number. 

 

 Generation of the Data Set for the Data-Driven Model 

In order to compute the efficiency of the polymer flooding process, the 

performance of a reservoir when reservoir is flooded by polymer should be 

compared with the performance when the reservoir is producing by its natural drive 

mechanism. In this study 20,000 production scenarios are generated by combination 

of the parameters randomly selected within a specified range as shown Table 4.3. 

These scenarios include 10,000 no injection reservoir cases in which all the 

parameters are kept the same as 10,000 polymer flooding scenarios except shutting 

down the injector well.  

The performance indicators for ten years of production for 20,000 simulation 

runs are summarized in Table 4.4. Among total 20,000 simulator runs 7,200 are 

omitted as they could not normally terminate the run process due to convergence 

problem. This is due to some reservoir cases that the random parameter combination 

may not be logical. Among the converged cases, material balance error for 3,000 

random polymer injection and no injection cases are checked. Almost all the case 

are resulting in a material balance error of one, which is indication of logical flow 

behavior in the reservoir system. The material balance error frequency for both 

production scenarios are presented in Figures 4.14 and 4.15, respectively.  
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Figure 4.14. Polymer injection cases material balance error frequencies. 

 

 

 
Figure 4.15. No injection cases material balance error frequencies. 
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Table 4.3. Range of model input parameters. 
 

Parameters  Minimum Maximum 
Well Spacing, ft 565 1,697 

Layer Thickness, ft 2 100 

Reservoir Depth (D), ft 500 10,000 

Permeability Anisotropy Ratio (kV/kH) 0.01 1 

Porosity (φ),fraction 0.1 0.4 

Permeability (k), mD 1 2,000 

Pore Compressibility (CPOR), psi-1 3 x 10-6 1 x 10-5 

Oil Gravity (γo), °API 15 45 

Bubble Point Pressure (Pb), psi Less than reservoir pressure 

Reservoir Pressure (P), psi 500 4,000 

Adsorption Coefficient (b) 1 20 

Maximum Polymer Adsorption (amax), lb.STB-1 0.01 0.3 

Reference Polymer Solution Viscosity (PVISC), cp 1 5 

Irreducible Water Saturation (Swirr) 0.1 0.3 

Residual Oil Saturation (Sor) 0.1 0.3 

Relative Permeability Coefficient (n) 2 4 

Oil Capillary Pressure Coefficient (Co) 0.5 4 

Gas Capillary Pressure Coefficient (Cg) 0.1 0.3 

* Water Saturation (Sw) Swirr 0.5 

Polymer Concentration (Cp), lb.STB-1 0.1 1 

**Injector Bottom Hole Pressure (Pbhp (inj.)), psi P + 1,500 P + 3,000 

**Producer Bottom Hole Pressure (Pbhp (prod.)), psi  0.05P 0.95P 
*   Lower limit is Swirr dependent  
** Reservoir pressure dependent  
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Table 4.4. Performance indicators collected from runs. 
 

 

 

In order to evaluate the efficiency of the polymer flooding process, the 

performance indicators collected from polymer flood and no injection scenarios are 

used to derive a single efficiency value. As the performance indicators are generated 

for every year of production for a time span of 10 years, it is a necessity to create a 

single value output which could represent large number of performance indicators, 

hence, could be fed into neural network for the training process. Yearly cumulative 

oil production from polymer injection and no injection scenarios and the cumulative 

polymer injection are the performance indicators used in calculation of efficiency 

value. Steps I through IV are followed to generate the efficiency value. Five data 

sets containing efficiencies and water cuts at different injection durations of two to 

ten years are calculated using Equation 4.30 and 4.31 to feed the five ANN models. 

A volumetric efficiency term, is also defined using Equation 4.32. The volumetric 

efficiency is used to parametrically evaluate the polymer flooding method as the 

division of the efficiency value by the reservoir volume can eliminate the effect of 

reservoir size and provide net effects of the reservoir and operational parameters. 

The process of feeding and training the data driven screening tool and the 

parametric studies on the reservoir simulator results are presented in the following 

chapters. 

 

Performance Indicators Scenario Type Injection/Production Term 

Cumulative Oil 
Polymer Flood Production Np (poly) 
No Injection Production Np (no. inj) 

Cumulative Water 
Polymer Flood Production Wp (poly) 

Injection Wi (poly) 

No Injection Production Wp (no.inj) 
Injection Wi (no.inj) 

Cumulative Polymer Polymer Flood Production Pp  
Injection Pi  
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a) Yearly oil and water productions of polymer injection and no injection 

scenarios for 𝑛𝑛 = 1,2, … , 10 years of production: 

𝑁𝑁𝑝𝑝(𝑝𝑝𝑜𝑜𝑝𝑝𝑝𝑝)𝑛𝑛 = 𝑁𝑁𝑝𝑝(𝑝𝑝𝑜𝑜𝑝𝑝𝑝𝑝)𝑛𝑛 − 𝑁𝑁𝑝𝑝(𝑝𝑝𝑜𝑜𝑝𝑝𝑝𝑝)𝑛𝑛−1……..........……….........Equation 4.20 

𝑊𝑊𝑝𝑝(𝑝𝑝𝑜𝑜𝑝𝑝𝑝𝑝)𝑛𝑛 = 𝑊𝑊𝑝𝑝(𝑝𝑝𝑜𝑜𝑝𝑝𝑝𝑝)𝑛𝑛 −𝑊𝑊𝑝𝑝(𝑝𝑝𝑜𝑜𝑝𝑝𝑝𝑝)𝑛𝑛−1………….……….........Equation 4.21 

𝑁𝑁𝑝𝑝(𝑛𝑛𝑜𝑜.𝑖𝑖𝑛𝑛𝑖𝑖)𝑛𝑛 = 𝑁𝑁𝑝𝑝(𝑛𝑛𝑜𝑜.𝑖𝑖𝑛𝑛𝑖𝑖)𝑛𝑛 − 𝑁𝑁𝑝𝑝(𝑛𝑛𝑜𝑜.𝑖𝑖𝑛𝑛𝑖𝑖)𝑛𝑛−1…………….....….....Equation 4.22  

𝑊𝑊𝑝𝑝(𝑛𝑛𝑜𝑜.𝑖𝑖𝑛𝑛𝑖𝑖)𝑛𝑛 = 𝑊𝑊𝑝𝑝(𝑛𝑛𝑜𝑜.𝑖𝑖𝑛𝑛𝑖𝑖)𝑛𝑛 −𝑊𝑊𝑝𝑝(𝑛𝑛𝑜𝑜.𝑖𝑖𝑛𝑛𝑖𝑖)𝑛𝑛−1……………...….....Equation 4.23  

 

b) Yearly polymer injection, oil and water production increments (𝑛𝑛 =

1,2, … , 10):  

𝑃𝑃𝑝𝑝𝑛𝑛 = 𝑃𝑃𝑝𝑝𝑛𝑛 − 𝑃𝑃𝑝𝑝𝑛𝑛−1………………………..….………...……...Equation 4.24 

𝑁𝑁𝑝𝑝𝑛𝑛 = 𝑁𝑁𝑝𝑝(𝑝𝑝𝑜𝑜𝑝𝑝𝑝𝑝)𝑛𝑛 − 𝑁𝑁𝑝𝑝(𝑛𝑛𝑜𝑜.𝑖𝑖𝑛𝑛𝑖𝑖)𝑛𝑛 ………………...…...................Equation 4.25 

𝑊𝑊𝑝𝑝𝑛𝑛 = 𝑊𝑊𝑝𝑝(𝑝𝑝𝑜𝑜𝑝𝑝𝑝𝑝)𝑛𝑛 −𝑊𝑊𝑝𝑝(𝑛𝑛𝑜𝑜.𝑖𝑖𝑛𝑛𝑖𝑖)𝑛𝑛 ……………….…...................Equation 4.26 

 

c) 10 % discounted net present value (npv) for two years increments (𝑛𝑛 =

2, 4, 6, 8, 10) of polymer injection, oil and water productions: 

𝑁𝑁𝑛𝑛𝑝𝑝𝑛𝑛 (𝑛𝑛) = 𝑁𝑁𝑛𝑛𝑝𝑝𝑛𝑛 �
𝑁𝑁𝑝𝑝𝑛𝑛

𝑁𝑁� 𝑛𝑛𝑝𝑝𝑛𝑛
, 10%,𝑛𝑛�…......….……..…...…Equation 4.27 

𝑃𝑃𝑛𝑛𝑝𝑝𝑛𝑛 (𝑛𝑛) = 𝑃𝑃𝑛𝑛𝑝𝑝𝑛𝑛 �
𝑃𝑃𝑝𝑝𝑛𝑛

𝑃𝑃� 𝑛𝑛𝑝𝑝𝑛𝑛
, 10%,𝑛𝑛�…………………..….…Equation 4.28 

𝑊𝑊𝑛𝑛𝑝𝑝𝑛𝑛 (𝑛𝑛) = 𝑊𝑊𝑛𝑛𝑝𝑝𝑛𝑛 �
𝑊𝑊𝑝𝑝𝑛𝑛

𝑊𝑊� 𝑛𝑛𝑝𝑝𝑛𝑛
, 10%,𝑛𝑛�…...…………..….…Equation 4.29 

 

d) Efficiency value for two years increments (𝑛𝑛 = 2, 4, 6, 8, 10): 

a) 𝐸𝐸𝑓𝑓𝑓𝑓𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒𝑛𝑛𝐸𝐸𝐸𝐸𝑛𝑛 = 𝑁𝑁𝑛𝑛𝑝𝑝𝑛𝑛 (𝑛𝑛)

𝑃𝑃𝑛𝑛𝑝𝑝𝑛𝑛 (𝑛𝑛)
…………...……………..……...Equation 4.30 

b) 𝑊𝑊𝑎𝑎𝑊𝑊𝑒𝑒𝑊𝑊 𝐸𝐸𝑐𝑐𝑊𝑊𝑛𝑛 = 𝑊𝑊𝑛𝑛𝑝𝑝𝑛𝑛 (𝑛𝑛)

𝑁𝑁𝑛𝑛𝑝𝑝𝑛𝑛 (𝑛𝑛)+ 𝑊𝑊𝑛𝑛𝑝𝑝𝑛𝑛 (𝑛𝑛)
…………...….....……...Equation 4.31 

c) 𝑉𝑉𝑉𝑉𝑉𝑉𝑐𝑐𝑉𝑉𝑒𝑒𝑊𝑊𝑊𝑊𝐸𝐸𝐸𝐸 𝑒𝑒𝑓𝑓𝑓𝑓𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒𝑛𝑛𝐸𝐸𝐸𝐸𝑛𝑛 = 𝑁𝑁𝑛𝑛𝑝𝑝𝑛𝑛 (𝑛𝑛)

𝑃𝑃𝑛𝑛𝑝𝑝𝑛𝑛 (𝑛𝑛) 𝑋𝑋 𝑉𝑉𝑟𝑟𝑟𝑟𝑔𝑔 
………….....Equation 4.32 
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This part provides the methodology followed for the development of the 

screening tool, which is a neural-network based model. MATLAB Neural Network 

Toolbox (2013) is utilized to construct and train the network with a data set 

generated by the reservoir simulator’s inputs and outputs. 

 

 Optimization of Neural Network’s Design Parameters 

The structure of the neural network depends on the data set comprised of the 

simulator input and output data, namely reservoir properties, operational parameters 

and the performance indicators. Referring to the fact that a huge data set necessitates 

a large amount of computation, a complex problem such as reservoir performance 

prediction with large number of inputs and outputs may decrease the accuracy of 

the model. Consequently, to enhance the accuracy, the complexity of the polymer 

flooding performance prediction problem is reduced  by creation of five different 

ANN models, representing two, four, six, eight and ten years of polymer injection. 

ANN model for two years polymer injection is presented in Appendix B. All models 

are fed with similar input and functional links components which are tabulated in 

Table 4.5. Though, the outputs defer according to the injection period and the 

optimum topography varies for each ANN model. In order to develop a reliable and 

accurate model, several design components are optimized individually for each of 

these five ANN models. A systematic trial and error approach is utilized to obtain 

the optimum network structures. A set of guidelines and procedures are taken into 

account to create and optimize the screening models. In order to validate the 

network’s performance, regression plots are evaluated to ensure perfect fits. The 

regression plot displays the network outputs with respect to training targets. In a 

perfect fit, network outputs should lie along a 45 degree line which represents where 

the outputs are equal to targets.  
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Table 4.5. Input and output components of the ANN models. 
 

Input 

Reservoir Properties 

Well Distance 
Net Thickness 

Thickness-Weighted Average Porosity 
Thickness-Weighted Average Permeability 

Lorenz Coefficient 
Permeability Anisotropy Ratio 

Pore Compressibility 
Oil Gravity 

Reservoir Depth 
Reservoir Pressure 

Bubble Point Pressure 
Water Saturation 

Irreducible Water Saturation 
Residual Oil Saturation 

Relative Permeability Coefficient 
Oil Capillary Pressure Coefficient 
Gas Capillary Pressure Coefficient 

Adsorption Coefficient 
Maximum Polymer Adsorption 

Reference Polymer Solution Viscosity 

Operational Parameters 
Polymer Concentration 

Injector Bottom Hole Pressure 
Producer Bottom Hole Pressure 

Functional Links 

f1: Oil Density 
 f2: Oil Saturation 
f3: Poly. Conc. / Sw  

f4: Side 2 x Thickness  
f5: Poly. Conc. / Pbhp (prod.)  
f6: Reservoir Temperature 
f7: Res. Pressure / Pbhp (inj.) 

f8: Res. Pressure / Pbhp (prod.)  
f9: (Res. Vol. x Soi x ϕ) / 5.615 

Output Performance Indicators 

∗𝐸𝐸𝑓𝑓𝑓𝑓𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒𝑛𝑛𝐸𝐸𝐸𝐸(𝑛𝑛) =
𝑁𝑁𝑛𝑛𝑝𝑝𝑛𝑛 (𝑛𝑛)

𝑃𝑃𝑛𝑛𝑝𝑝𝑛𝑛 (𝑛𝑛)
 

∗𝑊𝑊𝑎𝑎𝑊𝑊𝑒𝑒𝑊𝑊 𝐸𝐸𝑐𝑐𝑊𝑊(𝑛𝑛) =
𝑊𝑊𝑛𝑛𝑝𝑝𝑛𝑛 (𝑛𝑛)

𝑁𝑁𝑛𝑛𝑝𝑝𝑛𝑛 (𝑛𝑛) +  𝑊𝑊𝑛𝑛𝑝𝑝𝑛𝑛 (𝑛𝑛)
 

* n=2, 4, 6, 8, 10 for ANN(2.yrs), ANN(4.yrs), ANN(6.yrs), ANN(8.yrs), ANN(10.yrs), respectively.  
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During the optimization procedure, it has been observed that the efficiency 

output was more complex for the network to be predicted accurately. Therefore, the 

models were primarily optimized by considering the accuracy of the prediction of 

the efficiency parameter, as the network was capable of precisely predicting water 

cut output without getting significantly influenced by different network structures. 

In the following sections, the optimization procedure is discussed in details and step 

by step structure selection for two years polymer injection model (2.yrs) is 

presented. 

 

Size of the dataset is an important design component as the optimum number 

of cases should be fed to train the network. Providing the network with unnecessary 

and extra data cause memorization and over fitting problems. On the other hand, 

not sufficient data cause under fitting which the network fail to predict a requisite 

trend regardless of the structure being used. In this study, after experimenting the 

models with different number of datasets, the use of total 6400 available cases 

offered the best product. It should be noted that normalization of the data set is a 

very important stage prior to feeding to the network when the input and the output 

variables are in different ranges (e.g. 3 x 10-6 <CPOR< 10-5 psi-1 and 500 < P < 

4,000 psi). In feedforward backpropagation of multi-layer network training, the 

most commonly used activation functions are sigmoid functions. It is a necessity to 

normalize the data set between 0 to 1 for binary sigmoid function and -1 to 1 for 

bipolar sigmoid function. Considering that the generated data set contains negative 

and positive values, the normalization is performed with a range of -1 to 1. 

 

Division of dataset is the number of cases subdivided into training, validation 

and testing sets. In addition to the optimum total number of data being used for the 

network, sufficient number of cases in the training set has high importance in order 

to prevent over-fitting or under-fitting problems. Training data set as the first 

subset, is used to updating and arriving at optimum weights. Second subset is the 

validation set which is used to evaluate the performance of the network on new 

 52   

 



 

 

patterns and stop the training process when the best generalization is achieved. In 

the testing set as the last subset, the overall performance of the network is generated. 

The division percentage of data set for the validation and testing sets should be also 

evaluated to be confident that the sets are covering a wide variety of patterns. 

Different data division percentages are selected for each of the models. Table 4.6 

shows the dataset division for training, validation and testing sets of two years 

polymer injection model. The model is tested with 50% to 90% division for the 

training set and the remaining data are equally divided for the validation and the 

testing sets. In 2.yrs model the optimum division is selected as 70%, 15% and 15% 

for the training, validation and testing sets, respectively. In this selection the priority 

is given for the testing set regression following by training and overall regressions. 

It should be noted that the cases within the sets are randomized prior to feed the 

network to ensure that relatively same cases are not piled up in any of the subsets. 

Hence, “divideint” function is used instead of commonly used “dividerand” 

(Matlab, 2013). This procedure results in training, validating and testing same cases 

for each of the sets as trial and error method is used for the optimization.  

 

 Determination of number of neurons, layers and functional links is the 

most important and significant step in ANN structure design. In this study, once the 

number of data and their division into training, validation and testing sets are 

optimized, the next step is to decide upon number of neurons within the hidden 

layer(s). First, Neuroshell rule-of-thumb formula suggested for the selection of 

optimum number of neurons is used. This experimentally derived equation is 

dependent on number of input and output variables as well as the total number of 

the dataset used in the training data set given in Equation 4.33 (Neuroshell, 1998). 

It should be noted that the equation is not derived on theoretical basis, hence it can 

be used only to have a rough estimation on the optimum neuron number when 

starting to the optimization process (Artun, 2008). Neuroshell equation 

recommended to start to the optimization with 95 neurons, as 32 input neurons (Ni), 

2 output neurons (No) and average of 5760 dataset in the training set are used in the 
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model. 75, 85, 95, 105, 115 neurons are adjusted to the single hidden layer model 

during optimization process. This neuron number optimization results for two years 

polymer injection model is summarized in Table 4.7. It can be seen that the highest 

regression for the testing set is 0.931 when 85 neurons is selected. However, this 

neuron number is considerably reducing the training performance. Consequently, 

the total of 95 neurons results in acceptable regressions for both testing and training 

sets.  

 

𝑁𝑁𝑛𝑛 =   𝑁𝑁𝑤𝑤+𝑁𝑁𝑜𝑜
2

+ �𝑇𝑇𝑉𝑉𝑊𝑊𝑎𝑎𝑉𝑉 𝑛𝑛𝑐𝑐𝑉𝑉𝑛𝑛𝑒𝑒𝑊𝑊 𝑉𝑉𝑓𝑓 𝑑𝑑𝑎𝑎𝑊𝑊𝑎𝑎𝑑𝑑𝑒𝑒𝑊𝑊 𝐸𝐸𝑛𝑛 𝑊𝑊𝑊𝑊𝑎𝑎𝑛𝑛𝐸𝐸𝑛𝑛𝑛𝑛 𝑑𝑑𝑒𝑒𝑊𝑊 .....….Equation 4.33 

 
 

Table 4.6. Data set division optimization for 2.yrs polymer injection model. 
 

 

 

Table 4.7. Neuron number optimization for 2.yrs polymer injection model. 

 

Divisions Efficiency Regression   
Training, Validation, Testing Training Validation Testing Overall 

50%, 25%, 25% 0.901 0.834 0.798 0.856 
60%, 20%, 20% 0.945 0.924 0.896 0.928 

*70%, 15%, 15% 0.950 0.939 0.923 0.941 
80%, 10%, 10% 0.946 0.941 0.863 0.932 
90%,   5%,  5% 0.960 0.923 0.898 0.949 

*  Selected data division  

# Neurons Efficiency Regression   
Training Validation Testing Overall 

  75 0.944 0.937 0.898 0.932 
  85 0.911 0.908 0.931 0.891 
*95   0.950 0.939 0.923 0.941 
105 0.921 0.910 0.838 0.902 
115 0.930 0.915 0.846 0.909 

*  Selected neuron number  
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When the optimum neuron in one hidden layer structures is achieved, the 

model is evaluated with two hidden layers by dividing the total neuron number in 

different distribution of neurons in the first and the second layer. The different 

neuron division in two layer model is made in such a way that the number of 

neurons in first layer is higher than the next layer. The optimization results of 

neuron division within two layer structure for 2.yrs model is presented in Table.4.8. 

Referring to the table, it can be observed that a configuration with 60 neurons in the 

first hidden layer and 35 neurons in the second hidden layer results in the best 

regression of the testing set. Moreover, the performance of the model is evaluated 

using different functional links and different combinations of these functions. It has 

been observed that using nine functional links which previously presented in Table 

4.5 results in the best performance. Furthermore, during the training process, it has 

been detected that the network is sensitive to low polymer concentrations values, 

thus in four functional links, concentration is included. The regression results for 

2.yrs model with and without functional links are shown in Table 4.9.  

 

Table 4.8. Neuron division optimization in two layer structure for 2.yrs 
polymer injection model. 

 

 

 
 

 

 

# Neurons Efficiency Regression   
Layer 1, Layer 2 Training Validation Testing Overall 

 50 + 45 0.979 0.941 0.898 0.956 
 55 + 40 0.968 0.935 0.874 0.943 
*60 + 35 0.972 0.915 0.928 0.953 
 65+ 30 0.937 0.911 0.872 0.919 
 70 + 25 0.969 0.923 0.921 0.953 

*  Selected neuron number in the hidden layers 
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Table 4.9. Function optimization for 2.yrs polymer injection model. 
 

 

 

The regression plots of the testing, validation, training sets and overall data 

for efficiency and water cut values are shown in Figures 4.16 and 4.17. The same 

optimization procedure used for the two years polymer injection model is also 

implemented for generating the optimum models for four to ten years of injection 

models. The optimum network structure for the five ANN models are summarized 

and presented in the results chapter of this study. 

 

 

Figure 4.16. Regression plots for the efficiency output.  

 

Functions Efficiency Regression   
Training Validation Testing Overall 

*Nine Functions  0.972 0.915 0.928 0.953 
No Function  0.980 0.918 0.912 0.956 

*  Selected functional link  
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Figure 4.17. Regression plots for the water cut output.  
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RESULTS AND DISCUSSIONS 

In this chapter, the results obtained from reservoir simulation and screening 

tool developed for polymer flooding process are discussed in detail. In the first part, 

the results of the reservoir simulation are investigated to understand how the 

reservoir and operational parameters work against or in favor of the polymer 

injection process. Second part is aiming to evaluate the performance of the 

developed polymer flooding screening tool, ensuring that the tool is sufficiently 

capable of generalizing the relation among the parameters. Ultimately, the 

developed Graphical User Interface (GUI) for the polymer flooding screening tool 

is introduced.  

 

 

In this part the polymer flooding performance is assessed to have a better 

understanding of the optimum ranges of reservoir and operational parameters in 

favor of the polymer flooding process. A screening guideline is offered, which 

suggest the optimum variable ranges as well as accounting their order of 

significance. Furthermore, the practical implementations of the data-driven 

polymer flooding screening model is presented. 

 

 Evaluation of High Performance Polymer Flooding Scenarios 

The parametric study is conducted on the best 500 efficiency cases out of 

6400 total polymer injection scenarios. For the selection of the most successful 
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ones, both of the defined unit efficiency and the water cut values are considered by 

dividing the two outputs as shown in Equation 5.1. The reason behind defining such 

an indicator to select the efficient cases are: (1) the unit efficiency is the ratio of the 

incremental oil production over incremental polymer injection which is divided by 

the reservoir volume to eliminate the effects of the reservoir size, (2) the unit 

efficiency value is divided by the water cut value to eliminate the cases which have 

high efficiency as well as very high water cuts.  

 

𝐸𝐸𝑓𝑓𝑓𝑓𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒𝑛𝑛𝐸𝐸𝐸𝐸𝑛𝑛𝑜𝑜𝑠𝑠𝑚𝑚𝑎𝑎𝑝𝑝𝑖𝑖𝑧𝑧𝑛𝑛𝑛𝑛,𝑛𝑛 =  𝑉𝑉𝑜𝑜𝑝𝑝𝑠𝑠𝑚𝑚𝑛𝑛𝑉𝑉𝑠𝑠𝑖𝑖𝑐𝑐 𝑛𝑛𝑠𝑠𝑠𝑠𝑖𝑖𝑐𝑐𝑖𝑖𝑛𝑛𝑛𝑛𝑐𝑐𝑝𝑝𝑛𝑛
𝑊𝑊𝑎𝑎𝑉𝑉𝑛𝑛𝑠𝑠 𝑐𝑐𝑠𝑠𝑉𝑉𝑛𝑛

……………………..Equation 5.1 

Where (𝑛𝑛 = 2, 4, 6, 8, 10) 

 

In order to analyze the effect of the reservoir and operational parameters on 

the performance of the polymer flood, histograms of all the parameters are plotted 

to visually observe the number of occurrences of successful cases within a different 

range of the parameters. The provided histograms are intended to illustrate two 

distinctive information: 1) the thick bars represent the frequency percentage of the 

total scenarios for a specific parameter, 2) the line bars show the number of 

occurrences successful cases for different injection duration. These data are 

presented on the same graph, to conveniently decide whether a non-uniform 

distribution of the efficient cases is resulted by the original distribution type of the 

all the cases or it should be considered as the parameter’s own effect on the flooding 

performance.  

Distribution of the total and 500 most efficient cases for different reservoir 

depth intervals is shown in Figure 5.1. The graph suggest that the performance of 

the polymer flooding is not effected by the reservoir depth as the successful cases 

show similar distribution profile as all the cases. Likewise, in Figure 5.2 the 

distribution of the total and efficient cases with different injection duration indicates 

that the thickness of the reservoir is not affecting the polymer flooding performance. 

This is an expected distribution as the reservoir volume effect on the unit efficiency 

(𝐸𝐸(𝑠𝑠)𝑛𝑛) value is ignored. Thickness weighted average porosity histogram is shown 
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in Figure 5.3. The plot indicates that higher porosity can positively affect the 

efficiency of the process. Figure 5.4 shows the histogram of the thickness weighted 

average permeability. The permeability distribution graph suggest that the 

permeability is a critical parameter as the histogram of the best 500 cases deviates 

notably from the histogram of the total 6400 cases. About 65% and 25% of the best 

performance cases have permeability of less than 80 and 160 mD, respectively. 

However, the distribution of the permeability in all the cases shows a frequency 

percentage of around 50 for permeability values less than 160 mD. Regarding 

higher permeability values, almost no successful case is observed for permeability 

above 400 mD. Though, these high permeabilities contribute to 16% of the all the 

cases under investigation. Considering the effect of the porosity and the 

permeability, it should be emphasized that the porosity of the formation has a 

marginal effect on the polymer flooding efficiency comparing with the 

permeability. The combinational effect of the thicknesses, porosities and 

permeabilities can be observed from Lorenz value histogram.  As shown in Figure 

5.5 the low Lorenz values representing more homogeneous reservoirs, are in favor 

of polymer flooding application. The Lorenz coefficient distribution within 

successful cases is denser for the coefficients less than 0.5. For more homogeneous 

reservoirs the distribution of normalized efficiency and all the cases are 80% and 

50%, respectively. Hence, the homogeneity or heterogeneity level of the reservoir 

has significant importance for polymer flooding process as it directly contributes to 

high fingering and resulting in high water cuts.  
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Figure 5.1. Reservoir depth distribution in best 500 and all the cases. 
 

 
Figure 5.2. Reservoir thickness distribution in best 500 and all the cases. 
 

 
Figure 5.3. Thickness weighted porosity distribution in best 500 and all the 

cases. 
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Figure 5.4. Thickness weighted permeability distribution in best 500 and all 

the cases. 

 
Figure 5.5. Lorenz coefficient distribution in best 500 and all the cases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

80 160 240 320 400 480 560 640 720 800 880
0%

20%

40%

60%

K avg, mD

Fr
eq

ue
nc

y

0.12 0.21 0.30 0.39 0.48 0.57 0.66 0.75 0.84 0.93
0%

8%

16%

24%

Lorenz value

Fr
eq

ue
nc

y

500 best performance scenarios for 10.yrs polymer injection model 
500 best performance scenarios for  8.yrs polymer injection model 
500 best performance scenarios for  6.yrs polymer injection model 
500 best performance scenarios for  4.yrs polymer injection model 
500 best performance scenarios for  2.yrs polymer injection model 
All 6400 scenarios used in this study 

 63   

 



 

 

Anisotropy ratio distribution shown in Figure 5.6 indicates that the flooding 

performance is not affected by this ratio as the distributions for all the cases and the 

best 500 performance cases are alike. Due to the fact that, injection and production 

is applied for each of the five layers, it can be assumed that the reservoir fluids are 

forced to flow in horizontal direction from the injection perforation to production 

perforation of a single layer. In Figure 5.7 pore compressibility (CPOR) distribution 

plot is also another reservoir rock property which does not have any remarkable 

influence on the performance of the polymer flooding process.  

Distribution of reservoir pressure and bubble point pressure as two of the 

most important initial reservoir conditions are plotted in Figures 5.8 and 5.9, 

respectively. Results suggest both low reservoir and bubble point pressures are in 

favor of the polymer flooding practice. The intention of the flooding system to low 

reservoir pressures can be clarified by referring to the injection bottom hole 

pressure and the permeability distributions. The low permeability of the successful 

cases can directly affect the injection bottom hole pressure as in tight systems high 

pressure cause injectivity problems. Consequently, the reservoir pressure is affected 

by as the injector bottom hole pressure is defined to be a function of reservoir 

pressure. Also, the efficiency of the different polymer injection duration is affected 

inversely by the reservoir initial pressure as the high initial reservoir pressures 

prefer lower duration of polymer injection operation. This is confirming that when 

the reservoir pressure at the start of the flooding operation is low, the energy of the 

system is not sufficient to continue the injection process. 

Concerning the bubble point pressure, an expected behavior is observed 

higher efficiency flooding scenarios have low bubble point pressures. This can be 

explained by the fact that lower bubble point pressure cause late evolvement of gas 

out of oil. Reservoir water saturation (Sw = 1-So) distribution, as the third initial 

condition of the production scenarios is presented in Figure 5.10. A significant 

alteration of initial water saturation distribution for both of the total and the best 

500 performance polymer flooding scenarios is an indication of high influence of 

the water saturation on the flooding process. Hence, higher oil saturation or by other 
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meaning starting the polymer flooding application in early stages of the production 

marks for effective operations. In addition, different injection durations for the best 

performance cases show different distribution of water saturation. Shorter polymer 

injection duration works in favor of reservoirs with low water saturation (high oil 

saturation). On the contrary, low initial water saturation reservoir require longer 

injection duration process to achieve a high performance operation. 

Oil ºAPI gravity distribution as one of the important outcomes of this part 

of analysis, reveal that low gravity values are resulting in higher polymer flooding 

efficiencies. The distribution of the oil ºAPI gravity is presented in Figure 5.11. 

This performance suggests that, high ºAPI gravity oils may sweep effectively by 

the reservoir natural drive mechanism. Consequently, if polymer is injected for a 

low ºAPI gravity oil, the additional oil that can be produced by polymer injection 

instead of no injection scenario is insignificant. As a result, opposing to the general 

belief that polymer flooding is much suitable for medium to light oils, this outcome 

strongly recommends to perform the polymer flooding application for heavy oils 

with acceptable recovery and water cut. 
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Figure 5.6. Anisotropy ratio distribution in best 500 and all the cases. 

 

 
Figure 5.7. Pore compressibility distribution in best 500 and all the cases. 

 

 
Figure 5.8. Reservoir pressure distribution in best 500 and all the cases. 
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Figure 5.9. Reservoir bubble point pressure distribution in best 500 and all 

the cases. 
 

 
Figure 5.10. Initial water saturation distribution in best 500 and all the cases. 
 

 
Figure 5.11. Oil ºAPI gravity distribution in best 500 and all the cases. 
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Polymer maximum adsorption level and adsorption coefficient distributions 

are shown in Figures 5.12 and 5.13. The two polymer related rock properties 

exposed no significant impact on the flooding efficiency. Yet the negligible 

influence, low values for polymer maximum adsorption do increase the flooding 

performance. This is an acceptable outcome as the high adsorption results in 

decrease in concentration of the polymer solution, hence, decreasing the sweeping 

performance of the flooding process. Moreover, high reference polymer solution 

viscosity (PVISC) as one of the polymer properties increases the polymer solution 

viscosity. This behavior can be perceived from PVISC distribution graph shown in 

Figure 5.14 as the PVISC increases the higher polymer solution viscosity can be 

obtained, henceforth, increasing the polymer flooding performance. 

Two phase relative permeability data of the scenarios were generated using 

Corey’s correlation in which the residual oil saturation (Sor), irreducible water 

saturation (Swirr) and relative permeability coefficient (n) are the variables. Residual 

oil saturation distribution within best 500 and total scenarios is presented in Figure 

5.15. Denser accumulation of successful cases for low residual oil saturations is not 

far from what should be expected. The lower residual oil saturation (higher mobile 

oil saturation) is an advantageous property of a reservoir in all kinds of the 

production methods. Residual water saturation distribution is shown in Figure 5.16. 

The frequency graph of efficient and all the cases do not show any specific behavior 

with different intervals of the water saturation. Comparing the effect of residual oil 

and irreducible water saturation, it can be assumed that the efficiency of the polymer 

flooding application is substantially influenced by the residual oil saturation.  

Moreover, the relative permeability coefficient distribution which is a 

parameter that specifies the sorting level of the pores is presented in Figure 5.17. 

High value corresponds to well sorted pore system that assist the fluid flow within 

porous media. Consequently, the sweep efficiency is improved as the sorting level 

increases. The distribution graph obtained from this set of data reveals the 

improvement of the polymer flooding process with increase of the relative 

permeability coefficient value. The capillary pressure coefficient for oil and gas 
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distributions are plotted in Figures 5.18 and 5.19, respectively. The similarities of 

the total and the best 500 cases distribution for different intervals of capillary 

pressure coefficients, indicated an insignificant effect of these parameters on the 

efficiency of the polymer flood process.  

 

 
Figure 5.12. Maximum polymer adsorption distribution in best 500 and all 

the cases. 
 

 
Figure 5.13. Polymer adsorption coefficient distribution in best 500 and all 

the cases. 
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Figure 5.14. Reference polymer viscosity distribution in best 500 and all the 

cases. 
 

 
Figure 5.15. Residual oil saturation distribution in best 500 and all the cases. 

 

 
Figure 5.16. Irreducible water saturation distribution in best 500 and all the 

cases. 
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Figure 5.17. Relative permeability coefficient distribution in best 500 and 

all the cases. 
 

 
Figure 5.18. Oil capillary pressure coefficient distribution in best 500 and 

all the cases. 
 

 
Figure 5.19. Gas capillary pressure coefficient distribution in best 500 and 

all the cases. 
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As one of the most important stages of process optimization, the effect of 

the operational parameters should be evaluated. Polymer mixture concentration and 

the injection pressure of the mixture are critical points for the polymer injection 

method. The polymer concentration distribution is shown in Figure 5.20. 

Approximately 45% of the successful flooding scenarios have concentration of less 

than 0.25 lb.bbl-1. This output suggest that low concentrations lead to more efficient 

flooding operation. Moreover, considering the concentration distribution for 

different injection duration, it can be observed that, for short injection duration high 

concentrations provide better productivity. In contrary, for long injection periods 

the concentration should be kept low. Distribution of the injector bottom hole 

pressure for the 500 efficient cases indicates that low injection pressure values are 

in favor of the process as shown in Figure 5.21. This behavior can be explained by 

the fact that these successful cases mostly have low permeabilities (less than 100 

mD). Therefore, practically very high injection pressures cannot be applied to a low 

permeability formation and the injectivity problem is the limiting factor. 

Additionally, the distribution of the injection bottom hole pressure varies for 

different injection durations. Low injection bottom hole pressure showed better 

flooding performance in long injection durations. Likewise, for short injection 

processes the high injection pressures should be applied. On the contrary, the 

bottom hole pressure at the producer does not show a notable effect on the 

performance of the flooding operation, as shown in Figure 5.22. However, 

extremely low production bottom hole pressures (less than 400 psi) results in less 

efficient cases. Lastly, the well space as another significant factors in designing the 

polymer flooding operation should be evaluated. The production and injection wells 

spacing distribution is presented in Figure 5.23. Opposing to the common belief 

that, for polymer injection, low well spacing should be considered, the outputs of 

the successful cases is conflicting with this idea. Well spacing shows a substantial 

impact in the efficiency of the successful scenarios. High well spacing should be 

preferred for polymer injection process to delay the water break though time as 

much as possible, hence, reducing the water cut.  
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Figure 5.20. Polymer concentration distribution in best 500 and all the cases. 

 
Figure 5.21. Injector bottom hole pressure distribution in best 500 and all 

the cases. 
 

 
Figure 5.22. Producer bottom hole pressure distribution in best 500 and all 

the cases. 
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Figure 5.23. Well spacing distribution in best 500 and all the cases. 
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 Parameter Sensitivity Analysis  

For further evaluation of the reservoir and operation parameters effects on 

the polymer flooding operation, a sensitivity analysis is performed, which aims to 

sort the parameters in order of their influence. The procedure to achieve a 

representable sensitivity analysis was completed by assigning a base value, a 

minimum and a maximum for each of the parameters. In this study the base is the 

average, the minimum and maximum is the calculated by taking 95% and 105% of 

the base value.  

Sensitivity to the following two parameters: 1) efficiency and 2) water cut are 

studied. This work would be a supplement to the previous study, as a complex 

efficiency term (𝐸𝐸𝐵𝐵𝑛𝑛𝑠𝑠𝑉𝑉,𝑛𝑛) is defined for finding the distribution of parameters in best-

performance cases. Henceforth, the parameter sensitivity is supplemented to 

compare the effects of the parameters separately on efficiency (𝐸𝐸𝑛𝑛) and water cut. 

Tornado charts is used as graphical demonstration of the sensitivity analysis results. 

Figure 5.24 and Figure 5.25 show the sensitivity to the efficiency and water cut for 

each of the parameters from two to ten years of polymer injection. The x-axis 

represent the efficiency values, bars expresses the impacts while parameter value 

change from minimum to maximum and in the y-axis  the parameters are sorted in 

order of their impacts.  

In general, it should be stated that both polymer injection efficiency and its 

water cut are prominently and commonly affected by oil API gravity, well spacing, 

initial water saturation, bottom hole pressures at the injector and the producer wells. 

Moreover, for short period polymer injection scenarios the order of the parameters 

are differing as the injection time increase. Four to ten years of injection processes 

indicate same behavior to the change of the parameter values. Considering the 

common rank parameters, the most 15 influencing ones for efficiency and water cut 

value are summarized in Table 5.1. 
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Table 5.1. Parameter sensitivity order for efficiency value and water cut. 

 
 
 
 

 

 

 

 

 

 

 

 

 Economic Analysis of Polymer Flooding Operation  

With the aim of having a rough knowledge on feasibility of the polymer 

injection operation, two considerations should be made. In the first step, it is to be 

decided whether the polymer injection process can result in additional oil 

production comparing with without injection production plan. In this study, the 

decision upon profitability of the polymer flooding over no injection scenario can 

be made by referring to the sign of the defined efficiency value. Meaning that, the 

negative sign is suggesting a production by the reservoir’s natural derive 

mechanism. And positive sign is an indication of productive scenario if polymer 

flood is chosen. In the second step, economic feasibility of the process should be 

questioned. Among total scenarios under investigation, the polymer injection is 

always resulting in oil production above the production could be attained without 

the injection. Statistically 99.9% of the case resulted in a positive efficiency, 

implying that almost for all the scenarios, polymer injection has priority over no 

injection scenario. Yet, particularly by having the positive efficiency value, it is not 

possible to ascertain the selection of the polymer flooding as a production scheme. 

Rank of importance Efficiency Water cut 
1st   Oil gravity  Oil gravity 
2nd  Well spacing  Well spacing 
3rd  BHP(i) BHP(i) 
4th BHP(p) Sw 
5th  Sw BHP(p) 
6th Porosity  Porosity  
7th  Permeability  Permeability  
8th Reservoir pressure  n 
9th  PVISC Poly. concentration 
10th n PVISC 
11th  Poly. concentration Reservoir pressure 
12th Sor Sor 
13th  Swirr Swirr 
14th Reservoir depth Reservoir depth 
15th  CPOR Reservoir thickness 
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Accordingly, in order to have a rough idea on economic feasibility of the polymer 

injection operation, a simple economic efficiency value is defined. As shown in 

Equation 5.2, the economic efficiency is considering the income achieved from 

incremental oil production and the cost generated by the injection of the profile. It 

should be mentioned that the capital, operational and etc. are not considered. Hence, 

the oil price and polymer price are the income and cost aspects of this feasibility 

study. This equation, though simple, can suggest if a polymer injection is feasible 

for different operation efficiencies, oil and polymer prices. An economic efficiency 

above 1 is the indication of a feasible injection scenario and below 1 is the clue of 

higher cost than income.  

 

𝐸𝐸𝑓𝑓𝑓𝑓𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒𝑛𝑛𝐸𝐸𝐸𝐸𝑛𝑛𝑐𝑐𝑜𝑜 = 𝐸𝐸𝑓𝑓𝑓𝑓𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒𝑛𝑛𝐸𝐸𝐸𝐸𝑛𝑛𝑥𝑥
$/𝑏𝑏𝑏𝑏𝑝𝑝 𝑜𝑜𝑖𝑖𝑝𝑝 

$/𝑘𝑘𝑔𝑔 𝑝𝑝𝑜𝑜𝑝𝑝𝑝𝑝𝑚𝑚𝑛𝑛𝑠𝑠 
…..………..…………..Equation 5.2 

Where   𝐸𝐸𝑓𝑓𝑓𝑓𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒𝑛𝑛𝐸𝐸𝐸𝐸𝑛𝑛 = 𝑁𝑁𝑛𝑛𝑝𝑝𝑛𝑛 (𝑛𝑛)

𝑃𝑃𝑛𝑛𝑝𝑝𝑛𝑛 (𝑛𝑛)
 

 

A quick feasibility study is conducted on 6339 efficient cases (additional oil 

production over no injection scenario) assuming oil and polymer price uncertainty 

of 20 to 100 $/bbl and 1 to 3 $/kg, respectively. Due to the uncertainty in the costs, 

Monte Carlo simulation is assessed to observe the impact of cost variabilities. The 

6339 random price values for the oil and polymer price are generated within the 

specified range of uncertainty. In Figure 5.26, the economic efficiency probability 

of the total available scenarios in this study is presented. The graph shows that 

almost with 90% probability, the economic efficiency is above one. This means that 

the polymer injection application for the scenarios generated in this study is 

economically feasible for more than 90%. The proved, probable and the possible 

probabilities of economic efficiency for different injection durations are 

summarized in Table 5.2. It can be seen that the proved probability is more than 

one for injection duration of two to six years. For injection duration of six to ten 

years the economic efficiency may not be feasible with the uncertainties defined for 

polymer and oil prices. Hence, to conclude this section of the analysis, polymer 
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flooding can be assertively applied for six years regardless of the price fluctuations 

of 20 to 100 $/bbl of oil and 1 to 3 $/kg of polymer.  

 

 
Figure 5.26. Probability of the economic efficiency. 

 

 

Table 5.2. Probability of the economic efficiency. 

 
 
 
 
 
 

 

 

 

To evaluate the performance of the ANN models the outputs should be 

compared with numerical model results to be assured that the models is sufficiently 

capable of generalizing the relation among the inputs and the outputs. Primarily, 

the neural network structure optimization summaries for the five ANN models are 

presented. In addition, to graphically illustrate the capability of the tool in 

0%

20%

40%

60%

80%

100%

0 10 20 30 40

Pr
ob

ab
ili

ty

Economic efficiency, bbl.lb-1

10.yrs inj.

8.yrs inj.

6.yrs inj.

4.yrs inj.

2.yrs inj.

Injection duration 90 % 50 % 10 % 
2 years  1.6 8.5 38 
4 years 1.3 6.1 28 
6 years 1.1 5.9 23 
8 years 0.9 4.3 20.5 
10 years 0.8 3.7 18.4 
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predicting the polymer flooding performance, regression plots, overlapping graphs 

and model’s sensitivities to the parameters are compared with numerical simulator. 

Secondarily, the implementations that mark the data-driven screening tool to be 

superior to reservoir simulators are demonstrated. 

 

 ANN Models Structure Optimization’s Results  

The structure of the five ANN models for each two consecutive years of 

polymer injection are decided using the same methodology followed and described 

in chapter 4 for two years polymer injection model. The optimization results of the 

five ANN models representing different injection durations are summarized in 

Table 5.3. In Table 5.4 and 5.5 training, validation, testing and overall data 

regressions after the optimization process are presented. The graphical view of 

testing set regressions for all five ANN models are shown in Figure 5.27. 

Regression plots can also indicate that predicting the output of efficiency is less 

accurate than the water cut output. 

 

Table 5.3. Optimum structures for the five ANN models. 

 
 

 

 

 

Model 
Name 

Network Structure Design Components 
Divisions Neuron Hidden Layer Neuron Division 

2.yrs  70%,15%,15% 95 2 60 + 35 
4.yrs 90%, 5%, 5% 85 2 55 + 30 
6.yrs 90%, 5%, 5% 85 2 50 + 35 
8.yrs 90%, 5%, 5% 105 1 105 

10.yrs 90%, 5%, 5% 95 1 95 
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Table 5.4. Efficiency regression for the optimum structure selected for the 
ANN models. 

 
 
Table 5.5. Efficiency regression for the optimum structure selected for the 

ANN models. 

 
 

  

Model Name Efficiency Regression 
Training Validation Testing Overall 

2.yrs  0.972 0.915 0.928 0.953 
4.yrs 0.982 0.944 0.942 0.971 
6.yrs 0.991 0.951 0.971 0.984 
8.yrs 0.986 0.956 0.987 0.985 

10.yrs 0.988 0.961 0.985 0.986 

Model Name Water Cut Regression 
Training Validation Testing Overall 

2.yrs  0.995 0.960 0.963 0.985 
4.yrs 0.996 0.979 0.970 0.994 
6.yrs 0.997 0.981 0.974 0.995 
8.yrs 0.998 0.981 0.969 0.996 

10.yrs 0.997 0.981 0.979 0.995 
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Figure 5.27. Testing set regressions. (A) 2.yrs model, (B) 4.yrs model, (C) 
6.yrs model, (D) 8.yrs model, (E) 10.yrs model. (I) Output 1: Efficiency, (II) 
Output 2: Water cut. X-axis: target output (numerical model results), Y-axis: ANN. 
results.  
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 Training Performance Evaluation 

The performance of the ANN models should be compared with numerical 

model results to be assured that the models is capable of accurately predicting the 

polymer flooding performance. Accordingly, the testing set results obtained from 

reservoir simulator are overlapped against the ANN results for two years injection 

model, as shown in Figure 5.28. Remarkably, some extreme cases are predicted 

sufficiently well (e.g cases 51 and 159 for efficiency output and cases 13, 55, 115 

and 223 for water cut output). The comparison of the simulator results with ANN 

models for four to ten year of injections are presented in Figures 5.29 through 5.32. 

It can be noticed that the network can effectively predict the performance of the 

polymer flooding efficiency for different injection durations.  

The model sensitivity to the input parameters can also be used to check if 

the physics of the problem is understood correctly by the network. This includes 

examining the both reservoir simulator and ANN model to recognize the input 

influence on the outputs. For the parameter sensitivity, a base value for each of the 

parameters are selected and a minimum and maximum values are assigned for each 

by multiplying the base value with 1.05 and 0.95, respectively. Tornado charts are 

utilized as a graphical output of the sensitivity analysis. The x-axis of this chart 

shows the value of our primary objective which is the efficiency or water cut. The 

horizontal line represents the objective value of the base case. Each parameter has 

its own bar. Width of the bar expresses the impact weight of the parameter on the 

objective while changing through the range from minimum to maximum. In Figures 

5.33 through Figure 5.37 the sensitivity analysis conducted for efficiency value of 

two to ten years of polymer injection models are presented. The figures illustrate 

that even if the order of parameters sensitivities are not exactly matching, the orders 

are moving very closely. Comparing the five models of different injection 

durations, 2.yrs model shows higher inconsistency in order of parameters 

sensitivity. This inconsistency is reduced significantly as the injection duration 

increases (4.yrs,…, 10.yrs). Figures 5.38 through Figure 5.42 represent the 
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sensitivity of the numerical simulator and the ANN model to the water cut. Similar 

with the decreasing mismatching trend observed for sensitivity analysis with 

efficiency value objective from 2.yrs to 10.yrs injection models, the water cut 

sensitivity shows the same behavior. Hence, it can be concluded that the physics of 

the problem is perfectly understood for 10.yrs model as the order of the parameter 

sensitives are almost the same for both ANN and simulator models and this 

performance is marginally reduced when injection duration decreased. Moreover, 

comparing the sensitivity analysis conducted with different objectives, the 

efficiency and the water cut, it can be seen that the order of the parameters are more 

alike when water cut is intended. Ultimately, the results obtained from the 

parameter sensitivity is in agreement with the regression values. Both approaches 

suggest that the accuracy of the model is increasing from 2.yrs to 10.yrs injection 

duration models and, water cut output is predicted more precisely comparing with 

the efficiency output.   
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Figure 5.33. Parameter sensitivity of numerical model (left) and ANN model 
(right) to efficiency for 2.yrs polymer injection model. 

 

 

 
 

Figure 5.34. Parameter sensitivity of numerical model (left) and ANN model 
(right) to efficiency for 4.yrs polymer injection model. 
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Figure 5.35. Parameter sensitivity of numerical model (left) and ANN model 
(right) to efficiency for 6.yrs polymer injection model. 

 

 

 
 

Figure 5.36. Parameter sensitivity of numerical model (left) and ANN model 
(right) to efficiency for 8.yrs polymer injection model. 
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Figure 5.37. Parameter sensitivity of numerical model (left) and ANN model 
(right) to efficiency for 10.yrs polymer injection model. 

 

 

 
 

Figure 5.38. Parameter sensitivity of numerical model (left) and ANN model 
(right) to water cut for 2.yrs polymer injection model. 
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Figure 5.39. Parameter sensitivity of numerical model (left) and ANN model 
(right) to water cut for 4.yrs polymer injection model. 

 

 

 
 

Figure 5.40. Parameter sensitivity of numerical model (left) and ANN model 
(right) to water cut for 6.yrs polymer injection model. 
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Figure 5.41. Parameter sensitivity of numerical model (left) and ANN model 
(right) to water cut for 8.yrs polymer injection model. 

 

 

 
 

Figure 5.42. Parameter sensitivity of numerical model (left) and ANN model 
(right) to water cut for 10.yrs polymer injection. 
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 Real Field Implementation of Polymer Flooding Screening Tool  

In this part of the study, two powerful implementation of data-driven 

screening model are presented. The primary objective of this implementations are 

to provide the robust evidence on how the data driven models can overcome the 

weaknesses of the numerical simulators. In order to examine the built data-driven 

polymer injection screening model, a real field data in which the polymer flooding 

is successfully implemented is used. 

 Daqing oil field as one of the largest oil reservoir is discovered in 1959 

(Chauveteau et al., 1988). Laboratory studies to investigate the potential EOR 

method is initiated in 1960s and the polymer flooding is chosen to improve the 

sweep efficiency and mobility control (Wang et al., 2008). Today, the largest 

polymer flooding application is applied to Daqing oil field. Remarkably, by 2004, 

the polymer flooding contributed to 22.7% of the total oil production, enhancing 

the ultimate recovery of the field to more than 50% OOIP and producing 10% OOIP 

more than water flooding practice. To create a representative reservoir model for 

Daqing field using the data driven model, a 19 reservoir parameters are required. 

As a single detailed research describing the Daqing field not found, the reservoir 

rock and fluid properties are assembled from various published studies (Sheng et 

al., 2011;Wang et al., 2008; Wankui et al., 2000; Jingcun et al., 1995; Corlay et al., 

1992; Chauveteau et al., 1988). In Table 5.6, the reservoir properties assigned for 

the model to represent the Daqing field is presented as “Implementation I”. 

“Implementation I” is the uncertainty range defined for the second implementation. 

It should be mentioned the some parameters controlling the polymer adsorption, 

relative permeabilities and capillary pressures cannot be founded in literature, 

therefore, values are assigned in way that it can result in high efficient polymer 

flooding process.  
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Table 5.6. Daqing oil field reservoir properties. 

 
Parameters  Implementation I Implementation II 

Well Spacing, ft 736 [663, 810]* 

Layer Thickness, ft 10, 11, 12, 13, 14 [9 , 15] 

Reservoir Depth (D), ft 4300 [3870 , 4730] 

Permeability Anisotropy Ratio (kV/kH) 0.7 [0.63 , 0.77] 

Average Porosity (φ) 0.27 [0.225 , 0.33] 

Average Permeability (k), mD 342 [90 , 658] 

Pore Compressibility (CPOR), psi-1 6.5 x 10-6 [5.85 x 10-6 , 7.15 x 10-6] 

Oil Gravity (γo), °API 30 22.5, 30, 37.5 

Bubble Point Pressure (Pb), psi 1300 [P  , 1595] 

Reservoir Pressure (P), psi 1450 [1305 , 1595] 

Adsorption Coefficient (b) 10 [9 , 11] 

Maximum Polymer Adsorption (amax) 0.15 [0.135 , 0.165] 

Reference Polymer Solution Viscosity, cp 5 [4 , 5] 

Irreducible Water Saturation (Swirr) 0.2 [0.18 , 0.22] 

Residual Oil Saturation (Sor) 0.3 [0.27 , 0.33] 

Relative Permeability Coefficient (n) 4 [3.5 , 4] 

Oil Capillary Pressure Coefficient (Co) 2.25 [2.025 , 2.475] 

Gas Capillary Pressure Coefficient (Cg) 0.2 [0.18 , 0.22] 

Water Saturation (Sw) 0.2 [Swirr , 0.22] 

Polymer Concentration (Cp), lb.STB-1 [0.05 , 1] 0.5 

Injector Bottom Hole Pressure (Pbhp (inj.)), psi [P+1,500 , P+3,000] 3200 

Producer Bottom Hole Pressure (Pbhp (prod.)), psi [0.05P , 0.95P] 1600 

* [minimum , maximum] range of random values 
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First implementation objective is to optimize the performance of the 

polymer flooding process by selecting of proper values for the operational 

parameters, namely polymer concentration, injector and the producer bottom hole 

pressure. 10,000 production scenarios are generated for the modeled Daqing oil 

field, using different combination of the operational parameters which are changing 

within specified ranges. Assuming that the operational parameters are the 

uncertainty of the Daqing field’s production scenarios, the Monte Carlo simulation 

is used to indicate the probability of the polymer efficiency. Figure 5.43 shows the 

probability of the water cut amount for two to ten years of injection. In Figure 5.44 

and Figure 5.45 the efficiency and the economic efficiency probability of the 

production scenarios are presented. The economic efficiency probability is 

considering the uncertainty of the oil and polymer price of 20 to 100 $/bbl and 1 to 

3 $/kg, respectively. The proved, probable and possible probability of the water cut, 

efficiency and economic efficiency values are summarized in Table 5.7.  

 

 

 
Figure 5.43. Implementation I water cut probability. 
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Figure 5.44. Implementation I efficiency value probability. 

 

 

 
Figure 5.45. Implementation I economic efficiency value probability. 
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Table 5.7. Proved, probable, possible probability of Implementation I.   

 

 

Second implementation is aiming for predicting the performance of polymer 

flooding process when there are uncertainties in the reservoir properties. Similar to 

the procedure followed in the first implementation, 10,000 scenarios are generated. 

However, this time the operational parameters are kept constant and the reservoir 

parameters are randomly selected around the base values used in the previous 

implementation. Figure 5.46, Figure 5.47 and Figure 5.48 provides the probability 

of the water cut, efficiency and the economic efficiency value for five different 

injection duration from two to ten years. The proved, probable and possible 

probability resulted from the graphs are shown in Table 5.8. 

 

 
Figure 5.46. Implementation II water cut probability. 
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Injection 
Duration 

Water cut, bbl.bbl-1 Efficiency, bbl.lb-1  Efficiencyeco, $.bbl/$.lb 
   90%        50%        10%   90%      50%       10%   90%       50%         10% 

2 years  0.75 0.87 0.98 0.10 0.26 0.72 2 8 28 
4 years 0.85 0.94 0.99 0.11 0.17 0.30 2 5.5 14 
6 years 0.88 0.95 0.99 0.03 0.12 0.22 0.6 3.5 10 
8 years 0.83 0.92 0.99 0.13 0.22 0.29 2 6.5 16 

10 years 0.92 0.96 0.99 0.02 0.07 0.30 0.5 0.28 10 
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Figure 5.47. Implementation II efficiency value probability. 

 

 

 
Figure 5.48. Implementation II economic efficiency value probability. 
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Table 5.8. Proved, probable, possible probability of Implementation II.   
 

 

The obtained results from two implementations suggest that the simulated 

Daqing oil field with all uncertainties define for the reservoir properties, operational 

parameter and the polymer/oil prices, the field is strongly suitable for the polymer 

injection practice. The acceptable water cuts and the economic efficiencies of above 

one for most of the proved probabilities are the indication of this conclusion. It 

should be emphasized that aforementioned implementations of the data-driven 

polymer flooding screening model can predict these performances in fraction of 

seconds which is extremely time demanding if numerical models are to be used 

alone. 

  

Injection 
Duration 

Water cut, bbl.bbl-1 Efficiency, bbl.lb-1  Efficiencyeco, $.bbl/$.lb 
   90%        50%        10%  90%       50%       10%   90%      50%         10% 

2 years  0.50 0.72 0.85 0.37 0.53 0.75 6.5 16 40 
4 years 0.81 0.88 0.97 0.18 0.33 0.52 3.5 10 24 
6 years 0.73 0.83 0.89 0.16 0.28 0.46 3.2 8.5 22 
8 years 0.82 0.86 0.92 0.25 0.36 0.49 4.5 11 26 

10 years 0.84 0.93 0.98 0.10 0.16 0.23 1.8 4.5 12 
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This part of the chapter is aiming for introducing the graphical user interface 

(GUI) for the polymer flooding screening tool built in this study. The transition 

from text-base environment to a user-friendly environment has a significant 

importance in terms of accessibility and usability of a tool for the end user. For the 

polymer flooding screening tool, the end users are the petroleum or more 

specifically reservoir engineers, who are not particularly specialized to use a text-

base environment such as a neural network. Hence, to make the implementations of 

this screening tool straightforwardly usable, a GUI is built using Matlab tool box 

(Matlab, 2013).  

The developed GUI can predict the performance of the polymer flooding 

application for both deterministic and probabilistic scenarios. Deterministic model 

can be used once no uncertainty exist in the reservoir and operational parameter. 

The main panel of the deterministic model is shown in Figure 5.49. A total of 25 

inputs including the reservoir properties, operational parameters, oil and polymer 

price are to be defined for the model within a range specified beside each of the 

input cells. The outputs provided by the model are the efficiency, water cut and the 

economic efficiency which is the function of polymer and oil price defined for the 

time being. Once the input data are defined, “Run” button displays the output of the 

polymer flooding for the reservoir under appraisal. To indicate economic feasibility 

of the process for the defined reservoir, the economic efficiencies are indicate by 

green and red color representing feasible and unfeasible process, respectively. In 

order to ease the inputting data task, an “Import Excel” button can be selected by 

the user to transport the data into input cells of the panel. “Process” button is 

provided in case user prefer to manually input or if the Lorenz value is not known. 

This button calculates the Lorenz value, total thickness, thickness weighted porosity 

and permeability of the reservoir for the porosity, permeability and the thickness 

defined for each of the individual layer.  
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The probabilistic approach can be utilized if an uncertainty is exiting for any 

of the input parameters. A total of 50 input cells are generated for the probabilistic 

panel accounting for uncertainty range of each parameter within a minimum and 

maximum range according to the suggested intervals. The manually inputting the 

thickness, porosity and permeability of the layers in the probabilistic panel has two 

buttons of “Process Minimums” and “Process Maximums”. The “Import excel” and 

the “Run” buttons are working similar to deterministic model panel. In the outputs, 

the proved (P 90%), probable (P 50%) and possible (P 10%) probabilities are 

appeared as outputs for efficiency, water cut and economic efficiency for different 

injection periods. In addition, probability distributions of the economic efficiency 

and the water cut can be appeared by selection of the “2 years” to “10 years” buttons 

to graphically observe the probability percentages.   
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CONCLUSIONS  

Although polymer flooding is the most abundantly implemented method 

among the chemical enhanced oil recovery techniques, it should be kept in mind 

that the chemical recovery methods are contributing to insignificant enhanced 

recoveries in comparison with other EOR methods. Low intention toward selection 

of polymer flooding is due to the fact that economic condition is a limiting factor 

for the use of high concentration or large bank of polymer. Consequently, the actual 

sweeping potential of polymer flooding is not observed and low additional oil 

production and small alteration in water cut amount are achieved comparing with 

response of water-only flooding projects. Two main objectives are accomplished in 

this research practice: First, it is aimed to have a better understanding of the polymer 

injection process and analyzing the effect of the different reservoir characteristics 

and operational conditions on the performance of the flooding operation. Second, a 

data-driven screening tool is developed to predict the performance of the polymer 

flooding operation in a time efficient manner in comparison with computational 

time of reservoir simulators. In the following part some of the properties and 

features of the used reservoir model and developed screening tool with their specific 

conclusions are discussed. 

 

Polymer flooding reservoir model is generated in CMG black oil simulator 

for a multilayer heterogeneous system. A total of 10,000 injection/production 

scenarios are generated with combination of 34 reservoir and operational 

parameters, all uniformly (except for permeability) distributed within acceptable 

ranges decided upon available sources in literature. The sensitivity of the flooding 

process to different parameters a and the best performance cases b (high efficiency 
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and low water cut) are investigated. Two set of conclusions can be expressed for 

this section of the study: 

a) Sensitivity: The efficiency and water cut sensitivity to the parameters for two 

years injection is similar to sensitivities of longer injection durations, however, 

the orders of influences are slightly varying.  

Five top most effecting parameters for the two outputs of the process 

(efficiency and water cut) are: initial water/oil saturation, oil gravity, well 

spacing and bottom hole pressures. The most influencing one for two years 

injection is initial water/oil saturation and for the longer injection periods is the 

oil gravity. 

b) Best performance cases: In general, the behavior of the successful polymer 

scenarios which contribute to high efficiencies and low water cuts are 

suggesting for: 

- High porosity  
- High oil saturation 
- High polymer viscosity  
- High well spacing 
- Well sorted pore size distribution  
- Low permeability 
- Low Lorenz coefficient (low heterogeneity) 
- Low reservoir pressure 
- Low bubble point pressure 
- Low irreducible water saturation 
- Low oil gravity  
- Low residual oil saturation 
- Low polymer concentration 
- Low bottom hole pressure at injector well 

 

High well spacing and low permeability are preferred by the polymer 

injection process as in the efficiency value defined in this study, the amount of 

water cut is taken into consideration. Hence, this outcome suggest that low well 

spacing and high permeability cause high water production.   
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Successes of low oil gravity scenarios indicates that, the light oils can 

effectively be produced without polymer injection. This is due to the efficiency 

value which accounts for incremental oil that can be produced by polymer 

injection in addition to no injection scenario.  

 

Polymer flooding screening tool is developed using artificial neural 

networks. To enhance the performance of the tool, five models are generated 

representing two to ten years of flooding periods. Individual optimization based on 

the efficiency value for each model resulted in different network structures. The 

performance results c, strengths d and limitations e of the tool can be listed as the 

following:  

c) Performance results: Efficiency and water cut sensitivity to reservoir and 

operational parameters resulted from neural network models are in a good 

agreement with the simulator sensitivity output. 

Efficiency and water cut are predicted by regression of more than 0.91 and 

0.96, respectively.  

Efficiency and water cut are predicted with less than ±0.06 bbl/lb and ±0.02 

bbl/bbl errors, respectively. 

d) Strengths: The numerical model errors and uncertainties are directly 

transported to the screening tool as the neural networks are trained with the 

outputs of the simulator. 

The screening tool is capable of predicting polymer flooding performance 

only if the parameters are defined within the range they were trained for.  

e) Limitations: Among a total of 10,000 cases run in the simulator, 6400 cases 

are converged. However, this screening tool is able to give outputs as it learned 

the flow dynamics of the polymer flooding process.  

Probabilistic and deterministic performance estimation of the polymer 

flooding can be achieved within fraction of seconds.  
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RECOMMENDATIONS FOR FUTURE WORK  

This section of the thesis presents several recommendations that can be 

thought out if a further improvement is intended for the current study. As one of the 

main recommendations, in addition to comparing the polymer flooding operation 

with no injection scenario, comparison to water-only flooding can be considered. 

This comparison can strengthen the work by providing the amount of additional 

recovery that can be achieved if polymer flooding is used instead of water-only 

flooding operation. Moreover, the evaluation of model sensitivity analysis to 

different reservoir and operational parameters suggests that the parameters which 

do not significantly affect the flooding process can be eliminated. On the other 

hand, initial conditions of the reservoir can be improved in order to simulate the 

reservoir at saturated conditions. In addition, the polymer flooding model can be 

analyzed with different grid orientations, in order to consider the best orientation 

representing real polymer flow in the porous media from injector to producer well.  

Regarding the economic aspects of the polymer flooding operation, a more detailed 

economic parameter consideration can be supplemented. This consideration may 

include capital investments, operational and etc. costs of the polymer flooding. 

Lastly, the practicability of the developed GUI for polymer flooding can be 

improved by adding an operational optimization routine. This can be used for both 

deterministic and probabilistic approaches of model. 
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APPENDIX A 

CMG TEMPLATE FOR POLYMER FLOOD PROCESS 

RESULTS SIMULATOR IMEX 
******************  I/O Control Section  ****************** 
*TITLE1 
"Polymer Test Problem" 
*TITLE2 
"3d Polymer Test Case in a 25x25x5 grid configuration." 
*INUNIT *FIELD 
*WPRN   *WELL 10 
*WPRN   *GRID 10 
*WPRN   *ITER    *ALL 
*OUTPRN *WELL    *ALL 
*OUTPRN *TABLES  *NONE 
*OUTPRN *RES     *NONE 
*OUTPRN *GRID    *EXCEPT  *OILPOT  *DATUMPRES 
 *WSRF   *GRID    *TIME 
 *OUTSRF *GRID    *EXCEPT  *OILPOT  *DATUMPRES 
*************  Reservoir Description Section  ************* 
 *GRID *CART 25 25 5 
 *DI *CON  
 41.00 
 *DJ *CON 
 41.00 
 *KDIR *DOWN  
 *Dk *KVAR  
  20.5   98.8   94.8   56.2   25.2   
*DEPTH 1 1 1 5487.4 
 *POR *KVAR 
 0.356   0.280   0.192   0.237   0.209 
 *PRPOR    14.7 
 *CPOR     7.46e-06 
 *PERMI *KVAR 
       37.56   257.06   144.85    11.28   710.70 
 *PERMJ *KVAR 
       37.56   257.06   144.85    11.28   710.70 
 *PERMK *KVAR 
       36.87   252.34   142.19    11.07   697.66 
**************  Component Property Section  *************** 
 *MODEL *POLY 
 *PVT 
 **  p        rs      bo       eg     viso    visg 
    14.7     1.1    1.020        4.998   87.343   0.011 
   264.7    26.8    1.032       93.935   61.704   0.011 
   514.7    55.5    1.045      190.899   45.027   0.012 
   764.7    85.5    1.058      296.658   34.273   0.013 
   1014.7   116.5    1.072      411.285   27.033   0.014 
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   1264.7   148.2    1.086      533.905   21.950   0.015 
   1514.7   180.6    1.101      661.501   18.249   0.016 
   1764.7   213.4    1.115      790.003   15.470   0.017 
   2014.7   246.7    1.130      914.561   13.328   0.019 
   2514.7   314.3    1.160      1138.194   10.283   0.023 
   3014.7   383.3    1.191      1321.346   8.258   0.026 
   3514.7   453.3    1.223      1467.746   6.835   0.029 
   4014.7   524.3    1.254      1585.507   5.792   0.033 
   4514.7   596.1    1.286      1682.314   5.001   0.035 
   5014.7   668.7    1.319      1763.638   4.384   0.038 
   5514.7   742.0    1.352      1833.133   3.892   0.040 
   6014.7   815.9    1.385      1893.688   3.492   0.042 
   6514.7   890.3    1.418      1947.328   3.161   0.045 
   7014.7   965.3    1.452      1995.293   2.884   0.046 
   7500.0   1038.6    1.484      2037.519   2.655   0.048 
 *DENSITY *OIL    60.27  
 *DENSITY *GAS    6.470000e-02  
 *DENSITY *WATER  62.238000  
 *CO     1.37e-05  
 *CVO    4.60e-05  
 *BWI    1.04  
 *CW     3.04e-06  
 *REFPW  14.7  
 *VWI    0.31  
 *CVW    0.00  
 *PADSORP 
 **  p_con        adsop_level 
      0         0.00 
      1.000000e-01         0.01 
      2.000000e-01         0.01 
      3.000000e-01         0.02 
      4.000000e-01         0.02 
      5.000000e-01         0.02 
      6.000000e-01         0.03 
      7.000000e-01         0.03 
      8.000000e-01         0.03 
      9.000000e-01         0.03 
 *PMIX *LINEAR 
 *PVISC     3.318047 
 *PREFCONC  1.000000 
 *PPERM 
 **  perm   max_ad   res_ad   p_pore   rrf 
     10.0   0.30      0.15    0.95     1.20 
     1000.0 0.20      0.10    1.00     1.20 
*************  Rock-fluid Property Component  ************* 
 *ROCKFLUID 
 *RPT 
 *SWT 
** Sw     krw       krow      Pcow 
  0.19 0.0000000 1.0000000 3.6836725 
  0.25 0.0004559 0.7365446 2.9368518 
  0.30 0.0042139 0.5252842 2.0766678 
  0.36 0.0154752 0.3599820 1.6955921 
  0.41 0.0389476 0.2345438 1.4684259 
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  0.46 0.0796890 0.1430334 1.3134000 
  0.52 0.1430334 0.0796890 1.1989647 
  0.57 0.2345438 0.0389476 1.1100256 
  0.63 0.3599820 0.0154752 1.0383339 
  0.68 0.5252842 0.0042139 0.9789506 
  0.73 0.7365446 0.0004559 0.9287141 
  0.79 1.0000000 0.0000000 0.8854941 
*SLT 
** Sl     krg       krog      Pcog 
  0.19 1.0000000 0.0000000 1.0257886 
  0.24 0.8129707 0.0001370 0.9035042 
  0.29 0.6515433 0.0012665 0.6388739 
  0.35 0.5136704 0.0046511 0.5216384 
  0.40 0.3973348 0.0117057 0.4517521 
  0.45 0.3005514 0.0239507 0.4040593 
  0.50 0.2213695 0.0429889 0.3688540 
  0.55 0.1578749 0.0704925 0.3414925 
  0.60 0.1081931 0.1081931 0.3194370 
  0.65 0.0704925 0.1578749 0.3011681 
  0.70 0.0429889 0.2213695 0.2857131 
  0.75 0.0239507 0.3005514 0.2724168 
  0.80 0.0117057 0.3973348 0.2608192 
  0.85 0.0046511 0.5136704 0.2505870 
  0.90 0.0012665 0.6515433 0.2414716 
  0.95 0.0001370 0.8129707 0.2332838 
  1.00 0.0000000 1.0000000 0.2258760 
***************  Initial Condition Section  *************** 
 *INITIAL 
 *USER_INPUT 
 *PRES *CON 2350.6 
 *PB   *CON 1915.7 
 *SO   *CON     0.676 
 *SW   *CON     0.324 
***********  Numerical Methods Control Section  *********** 
 *NUMERICAL  
 *DTMAX  62  
******************  Well Data Section  ******************* 
 *RUN  
 *DATE  2017 03 13 
 *AIMSET   *CON  1  
 *DTWELL      1.0  
 *WELL 1    "WATER INJECTOR"  
 *WELL 2    "PRODUCER"  
 *INJECTOR  *MOBWEIGHT  1 
 *INCOMP  *WATER  4.66e-01 
 *OPERATE   *MAX       *STW    100000 
 *OPERATE   *MAX       *BHP    4846 *CONT  
 **            rad    geofac  wfrac   skin 
 *GEOMETRY  *K  0.25   1    1   0 
 *PERF *GEO  1 
 ** UBA      ff      Status      Connection 
     1 1 1      1      OPEN     FLOW-FROM     "SURFACE"   REFLAYER  
     1 1 2      1      OPEN     FLOW-FROM     1 
     1 1 3      1      OPEN     FLOW-FROM     2 
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     1 1 4      1      OPEN     FLOW-FROM     3 
     1 1 5      1      OPEN     FLOW-FROM     4 
 *PRODUCER  2 
 *OPERATE   *MAX       *STO    100000 
 *OPERATE   *MIN       *BHP    1793 
 **            rad    geofac  wfrac   skin 
 *GEOMETRY  *K  0.25   1    1   0 
 *PERF *GEO  2 
 ** UBA      ff      Status      Connection 
     25 25 1      1      OPEN     FLOW-FROM     "SURFACE"   REFLAYER   
     25 25 2      1      OPEN     FLOW-FROM     1 
     25 25 3      1      OPEN     FLOW-FROM     2 
     25 25 4      1      OPEN     FLOW-FROM     3 
     25 25 5      1      OPEN     FLOW-FROM     4 
 *TIME      3650 
 *DTWELL     5 
 *TIME 3650.1 
 *STOP 
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APPENDIX B 

ANN MODEL FOR TWO YEARS POLYMER INJECTION  

clc; clear all; 
% Inporting the Input and Output Data 
data_in = xlsread('NPV-Eff poly removed.xlsx', 'B4:AS6342'); %%7494conc btw 0.1 & 1 
data_out1 = xlsread('NPV-Eff poly removed.xlsx', 'GM4:GM6342'); %% WOR 
data_out2 = xlsread('NPV-Eff poly removed.xlsx', 'GH4:GH6342'); %% Np/Pi 
 
P(1,:)=data_in(:,1)';         %Side 
P(2,:)=data_in(:,7)';         %Depth 
P(3,:)=data_in(:,14)';        %CPOR 
P(4,:)=data_in(:,20)';        %Kv/Kh 
P(5,:)=data_in(:,21)';        %Pres 
P(6,:)=data_in(:,22)';        %BP 
P(7,:)=data_in(:,23)';        %API 
P(8,:)=data_in(:,25)';        %Kl 
P(9,:)=data_in(:,26)';        %Qmax 
P(10,:)=data_in(:,27)';       %Pvisc 
P(11,:)=data_in(:,28)';       %Swirr 
P(12,:)=data_in(:,29)';       %Sor 
P(13,:)=data_in(:,30)';       %n 
P(14,:)=data_in(:,31)';       %Co 
P(15,:)=data_in(:,32)';      %Cg 
P(16,:)=data_in(:,33)';      %Sw 
P(17,:)=data_in(:,34)';       %Conc 
P(18,:)=data_in(:,35)';       %BHP(i) 
P(19,:)=data_in(:,36)';       %BHP(p) 
P(20,:)=data_in(:,37)';      %avg. Premeability 
P(21,:)=data_in(:,38)';       %Total thickness 
P(22,:)=data_in(:,39)';       %avg. Porosity 
P(23,:)=data_in(:,40)';       %Lorenz  
% Functions % 
P(24,:) = 8829.6 ./ (131.5 + P(7,:));                            %Oil Density 
P(25,:) = 70 + P(2,:)./100 ;                                       %Temperature 
P(26,:) = (P(1,:).^2).*P(21,:).*(1-P(16,:)).* P(22,:)./5.615;    %OOIP              
P(27,:) = P(17,:)./P(16,:);                                        %conc/Sw 
P(28,:) = P(5,:)./P(18,:);                                         %Press/BHP(i) 
P(29,:) = P(5,:)./P(19,:);                                         %Press/BHP(p) 
P(30,:) = (P(1,:).^2).*P(21,:);                                   %Reservoir Volume 
P(31,:) = 1- P(16,:);                                                %So 
P(32,:) = P(17,:)./P(18,:);                                       %conc/BHP(i) 
 
T(1,:)=data_out1(:,1)';   % Water Cut 
T(2,:)=data_out2(:,1)';   % Np/Pi 
 
[NLin,NP] = size(P);     %size of input 
[NLout,Nt] = size(T);    %size of output layer  
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% NORMALIZATION OF DATA  
for i= 1:NLin 
    Pminimum(i,:)= min(P(i,:)); 
    Pmaximum(i,:)= max(P(i,:)); 
    Pn(i,:)= (2*(P(i,:)-Pminimum(i,:))/(Pmaximum(i,:)-Pminimum(i,:))) - 1; 
end  
 
for i= 1:NLout 
    Tminimum(i,:)= min(T(i,:)); 
    Tmaximum(i,:)= max(T(i,:)); 
    Tn(i,:)= (2*(T(i,:)-Tminimum(i,:))/(Tmaximum(i,:)-Tminimum(i,:))) - 1; 
end 
 
rand('state',0); 
%BACKPROPAGATION ALGORITHM - CREATING THE NETWORK 
net = fitnet([60 35]); 
% SEPARATE TRAINING, TESTING AND VALIDATION 
NP=NP; 
ntrain=ceil(NP*0.70); 
nval= floor((NP-ntrain)*0.5); 
ntest= floor((NP-ntrain)*0.5); 
% Division of data set for training, validation, testing 
net.divideFcn = 'divideind';  
net.divideParam.trainInd = 1:ntrain; 
net.divideParam.valInd = ntrain+1:ntrain+nval; 
net.divideParam.testInd = ntrain+nval+1:ntrain+nval+ntest; 
% Adjustment of training parameters 
net.trainParam.goal = 0.00001;         %Accuracy check 
net.trainParam.epochs = 15000;         %# of iterations check 
net.trainParam.show = 1; 
net.trainParam.max_fail = 5;           %# of validation check 
net.efficiency.memoryReduction = 2;    %Reduction of memory requirements 
net.trainParam.showWindow = true; 
 
% Network Training 
[net,tr]=train(net,Pn,Tn); 
 
% SIMULATION OF THE NETWORK WITH THE TRAINING DATA 
for i=1:ntrain 
    Pn_train(:,i) = Pn(:,i); 
    Tn_train(:,i) = Tn(:,i); %nomalized 
    T_train(:,i) = T(:,i);   %not Normalized 
end  
tn_train_ann = sim(net,Pn_train); 
% SIMULATION OF THE NETWORK WITH THE VALIDATION DATA 
for i=1:nval 
    Pn_val(:,i) = Pn(:,i+ntrain); 
    Tn_val(:,i) = Tn(:,i+ntrain);   %nomalized 
    T_val(:,i) = T(:,i+ntrain);     %not Normalized 
end  
tn_val_ann = sim(net,Pn_val); 
% PREDICTIONS-NEW DATA-SETS THE NETWORK HAS NOT SEEN BEFORE 
for i=1:ntest 
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    Pn_test(:,i) = Pn(:,i+ntrain+nval); 
    Tn_test(:,i) = Tn(:,i+ntrain+nval); 
    T_test(:,i) = T(:,i+ntrain+nval); 
end  
tn_test_ann = sim(net, Pn_test); 
% DENORMALIZATION OF THE SIMULATION 
for i= 1:NLout 
    t_train_ann(i,:)= (Tmaximum(i,:)-Tminimum(i,:)).*((tn_train_ann(i,:)+1)./2)+Tminimum(i,:); 
end 
for i= 1:NLout 
    t_val_ann(i,:)=(Tmaximum(i,:)- (i,:)).*((tn_val_ann(i,:)+1)./2)+Tminimum(i,:); 
end 
for i= 1:NLout 
    t_test_ann(i,:)=(Tmaximum(i,:)- (i,:)).*((tn_test_ann(i,:)+1)./2)+Tminimum(i,:); 
end 
Tn_ann = [tn_train_ann,tn_val_ann,tn_test_ann]; 
T_ann = [t_train_ann,t_val_ann,t_test_ann]; 
T=T(:,1:(nval+ntest+ntrain)); 
Tn=Tn(:,1:(nval+ntest+ntrain)); 
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