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ABSTRACT

DEVELOPMENT OF A SCREENING MODEL FOR THE CYCLIC
STEAM INJECTION (CSI) PROCESS

Yalgin, Gamze
M.S., Department of Petroleum and Natural Gas Engineering
Supervisor: Prof. Dr. Mustafa Versan Kok
Co-Supervisor: Assoc. Prof. Dr. Emre Artun

January 2018, 101 pages

Cyclic steam injection (CSI), a single-well enhanced oil recovery method for heavy
oil reservoirs, is characterized with three stages: injection, soaking, and production
which altogether constitute a cycle. In this study, it is aimed to develop a screening
model that can be used to accept or reject a given CSI proposal from a representative
performance indicator. This indicator is estimated from a large set of reservoir &
CSI design characteristics, using the screening model developed. The model has
been trained by using an artificial neural network (ANN) that can estimate the
process performance in a given reservoir depending on the steam-injection design
parameters. The data that be used for the ANN is generated using a representative
numerical reservoir model, built with a commercial simulator. A large number of
simulation cases are generated using the experimental design methodology to
account for a large variety of scenarios, and corresponding performance indicators
such as incremental oil recovery, and injection efficiency, are collected. After
proper training and validation, the screening tool is ready to estimate the



performance within a fraction of a second. Sensitivity study between the tool and
numerical model showed that the tool captured the problem very well. According
to the 90% of testing dataset results, the tool is able to estimate efficiencies with
having less than 0.2 STB/STB absolute difference error. A probabilistic assessment
study for a given reservoir illustrated the practicality of the tool.

Keywords:  cyclic steam injection, enhanced oil recovery, numerical simulation

model, artificial neural network, data-driven screening tool
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0z

DONGUSEL BUHAR ENJEKSIYONU (DBE) INCELEME MODELI
GELiSTIRME

Yalgin, Gamze
Yiiksek Lisans, Petrol ve Dogal Gaz Miihendisligi Boliimii
Tez Yoneticisi: Prof. Dr. Mustafa Versan Kok
Ortak Tez Yoneticisi: Dog. Dr. Emre Artun

Ocak 2018, 101 sayfa

Agir petrol rezervuarlari icin gelistirilmis tek kuyu da uygulanan bir petrol ¢ikarma
yontemi olan dongiisel buhar enjeksiyonu (DBE) bir dongii seklinde iic asamada
gerceklesir: enjeksiyon, yayilma, ve iiretim. Bu c¢alismada, temsili performans
belirleyiciye gore verilen DBE islemini onaylayan veya reddeden bir inceleme
modeli olusturmak amacglanmistir. Performans belirleyici, gelistirilen inceleme
modelini kullanarak genis bir rezervuar ve DBE dizayn parametrelerinden tahmin
edilir. Yapay sinir aglar1 (YSA) ile gelistirilen model; buhar enjeksiyon dizayn
parametrelerine bagli verilen rezervuardaki DBE islem performansini tahmin
edebilir. YSA’da kullanilan veriler; simiilatérde olusturularak temsili bir niimerik
rezervuar modeli kullanilarak elde edilmistir. Simiilasyonda deneysel dizayn
yontemi kullanilarak c¢esitli senaryolar tamimlanip ¢ok sayida durum
olusturulmustur. Artan petrol liretimi ve enjeksiyon verimliligi gibi senaryolara
karsilik gelen performans belirleyiciler toplanmistir. Uygun gelistirme ve

dogrulamadan sonra inceleme modeli saniyeler i¢inde performans tahmini igin

vii



hazir duruma getirilmistir. Inceleme modeli ve niimerik rezervuar modeli arasinda
yapilan duyarlilik analizi sonunda inceleme modelinin problem iyi 6grendigi
goriilmistiir. Test veri sonuglarinin %90’ 1na gore inceleme modeli performanslari
0.2 STB/STB’den diisiik mutlak hata fark: ile tahmin etmektedir. Verilen bir
rezervuar i¢in  olasilik  degerlendirme ¢alismast inceleme modelinin

kullanilabilirligini gostermistir.

Anahtar Kelimeler: dongiisel buhar enjeksiyonu, gelistirilmis petrol tretimi,

niimerik simiilasyon modeli, yapay sinir aglari, veriye dayali inceleme modeli
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CHAPTER 1

INTRODUCTION

According to Faergestad (2016), today’s total world oil resources are 9 to 13 trillion
bbl and British Petroleum Statistical Review of 2017 shows that only 1.7 trillion of
these resources can be counted as reserves. While light oil only accounts for 30%
of the total world oil resources, heavy oil and the others account for 70% of the
resources which corresponds to 6.3 to 9.1 trillion bbl. The amount of light oil met
the demand of world up to now; however, continuous increase in the demand for
oil and the decrease in the supply of light oil resulted in the need to consider other
sources like heavy oil and natural bitumen. Therefore, recovering heavy and other

resources has an important role in the petroleum industry.

Light, heavy and natural bitumen are classified by their API gravities. Light oil is
characterized by high API gravity and a low viscosity. On the other hand; low API
and high viscosity are associated with heavy oil or natural bitumen. Heavy oil
viscosity and gravity range from 100 to 10,000 cp and 20 to 10 API, respectively.
Due to high viscosity and low API, heavy oil is slightly mobile in the reservoir and
conventional production techniques cannot be used easily. In order to decrease
viscosity and increase mobility, enhanced oil recovery (EOR) or tertiary

recovery techniques are utilized.

EOR is generally applied for increasing the oil production after primary and
secondary recovery. Even though these techniques can be expensive, the recovery
can be increased up to 50-70%. According to reservoir characteristics and

feasibilities, different EOR methods can be applied as thermal and non-thermal



methods. For increasing heavy oil recovery, thermal methods are used which are
steam flooding, cyclic steam injection (CSI), steam assisted gravity drainage
(SAGD), hot water flooding and in situ combustion. In this study, cyclic steam

injection is considered as a recovery method for heavy oil reservoirs.

A number of studies have been conducted to improve the screening of cyclic steam
injection process. These studies involve constraining reservoir models, simulating
reservoirs in laboratory conditions, and using real and synthetic reservoir data. Most
of the earlier screening criteria studies (Taber 1997, Ali et al. 1994, Trujillo et al.
2010) focus on limited number of reservoir properties and they are based on limited
number of real cases. Even though these studies can give an idea about the
applicability of CSI via quantitative comparisons, they cannot provide any
production and performance results. While the studies which can predict the
performance provide ranges for different parameters, they are difficult to utilize for
different combinations of reservoir parameters. Therefore, they kept most of the

parameters as a constant.

Modeling studies are important to simulate possible cases before applying in real
life (Offeringa 1971, Pethrick et al. 1988, Scott et al. 1994, Razavi and Kharrat
2009, Mongy and Shedid 2015). Although commercial simulators analyze and
forecast the production of a reservoir, they are complex and time-consuming. They
require significant resources (computing, manpower, time), yet convergence
problems may occur in modeling of complex EOR processes. ANN-based models
have been proven to be successful for both forward and inverse modeling
applications for EOR (i.e. both performance forecasting and reservoir
characterization). Screening tools have been developed in this way for different
EOR methods, including cyclic steam injection in naturally fractured reservoirs
(Silpngarmlers et al. 2002, Parada 2008, Artun 2009, Arpac1 2014, Sun and Ertekin
2015). However, while some of the conducted studies are based on multi-layered

reservoir models, they distributed the properties to each layer homogeneously and



did not consider the heterogeneity. Moreover, they neglect anisotropy of
permeability, thermal properties and capillary pressures, and consider the EOR

application for a short period of time.

In this study, it is aimed to develop a screening model that can predict the
performance of a CSI process, once a set of reservoir characteristics and steam-
injection design parameters are provided. The model is trained by using an artificial
neural network (ANN) that can estimate the process performance in a given
reservoir depending on the steam-injection design parameters. These parameters
include steam injection rate, injected steam temperature, steam quality, durations
of steam injection, soaking, and economic rate limit. The data used for the training
of the ANN is generated using a representative numerical reservoir model, built

with a commercial simulator (CMG, 2015).

This thesis is organized into seven chapters as follows:

e In Chapter 2, a literature survey for cyclic steam injection processes and
applications of neuro-simulation in the petroleum industry are given.

e In Chapter 3, the statement of the problem and workflow are included.

¢ In Chapter 4, construction of the numerical model, ranges of reservoir and
operational parameters are described in details. Grid sensitivity process is
also explained.

e In Chapter 5, principles of artificial neural networks including its structure,
and architecture, and development of the screening model are presented.

e In Chapter 6, results of numerical modeling and the screening model,
analyses of the reservoir and operational parameters and a probabilistic
assessment study for a given reservoir is presented. The graphical user
interface (GUI) application is also presented.

e In Chapter 7, a brief summary and key conclusions are given.






CHAPTER 2

LITERATURE REVIEW

2.1 Cyclic Steam Injection

Cyclic steam injection is a single-well process for heavy oil reservoirs which means
the same well is used for both injection and production. This method is also called
cyclic steam stimulation and “huff and puff” steam injection. The aim of the process
is to increase the temperature around the wellbore by using steam energy and
decrease the viscosity of heavy oil. There are three stages: injection, soaking, and

production as shown in Figure 2.1.

Oil/Water/Gas
- e
- e

Injection Soaking Production

Figure 2.1 Cyclic Steam Injection Stages: injection, soaking and production.



Injection Stage: In this stage, steam is injected into the reservoir to increase the

temperature. Duration of this stage is generally 3 to 4 weeks depending on the

reservoir conditions (Arpaci, 2014).

Soaking Stage: After injection stage, the well is shut-in to let the steam diffuse into
the formation. While the steam diffuses and increases the temperature in the
reservoir, viscosity of heavy oil decreases and mobility of it increases. Duration of
this stage is generally 2 to 3 weeks depending on the reservoir conditions (Arpaci,
2014). This duration should be selected properly because if it is too short, steam
cannot heat the formation or if it is too long, heat can be lost and reservoir may cool

again.

Production Stage: When the desired viscosity is reached, well is again put on

production. Production continues until the production rate drops to an economic

rate limit (Figure 2.2).

After production rate reaches to an economic limit, whole cycle of injection,

soaking, and production may be repeated until it is considered to be feasible.

ONE CYCLE

Production Rate

INJECTION
SOAKING

Economic

Limit

Time

Figure 2.2 One cycle of cyclic steam injection with all stages.



In the late 1950s, a well in the Mene Grande Field located in Venezuela was
backflowed due to reservoir pressure during a steam flooding process. The flow rate
was increased and water cut was decreased compared to the unstimulated version
of the well. This accident led to the discovery of today’s cyclic steam injection
process (Trebolle et al., 1993). Compared to other thermal EOR techniques, in some
cases, a cyclic steam injection application may not increase the oil recovery
significantly by oneself since only a limited area around the well is affected by
steam. However, due to possible geological complexities like shale barriers, faults,
and disconnected formations, cyclic steam injection may be the only method that
can be applied successfully. For example, in some Cold Lake Field projects in
Alberta where ultimate oil recovery was lower than 20%, steam flooding was not
feasible because of very high oil viscosity and high conductive zones. Another
example is in the Marguerite Lake Field located in Canada where in-situ
combustion was tried as a posterior process and concluded with limited success
(Ali, 1994).

Although CSI method is used to improve the recovery by itself, there are also some
cases that it is used as a prior process to steam flooding, in-situ combustion, and
CO; injection in order to increase the recovery factor. For instance, in some
Californian fields, steam flooding applied after CSI increased total recoveries
approximately to 60% (Ali, 1994). Moreover, in Duri Field located in Indonesia,
the steam flood also followed the CSI operation. With this flood, the largest steam
flood in the world, about 300,000 BOPD were produced from more than 3000 wells
(Gael et al., 1995).

After CSI discovery, applications of this method were started in many heavy oil
reservoirs and many research studies were conducted on the effects of the reservoir
and operational parameters. By understanding the reservoir characteristics, steam

properties, and injection conditions better, screening criteria, analytical modeling



and numerical modeling studies were conducted to implement a successful CSI

operation.

By examining the real successful EOR projects and considering the main
mechanism of oil-displacement for EOR methods, Taber et al. (1997) proposed a
screening criteria based on oil properties and reservoir characteristics. They studied
on eight different EOR or IOR (improved oil recovery) methods include gas
injections (nitrogen, hydrocarbon, CO2), water flooding (polymer, alkaline),
thermal methods (in-situ, steam injection) and surface mining. According to API
gravity, viscosity, oil composition, oil saturation, formation type, net thickness,
permeability, depth and temperature, suitable EOR methods can be selected.
Moreover, Ali et al. (1974, 1997) conducted two comprehensive surveys of steam
injection to specify ranges for reservoir and operational parameters. Performed tests

between 1960 and 1970 were analyzed and ranges were specified as in Table 2.1.

Table 2.1 Cyclic steam injection screening criteria (Ali et al., 1997).

Depth, ft < 3000
Reservoir Thickness, ft > 30
Porosity, % > 30
Permeability, mD 1000 - 2000
Initial Oil Saturation, % > 45
API Gravity <15
Viscosity (@ Reservoir Condition), cp <4000
Steam Quality, % 80-85
Steam Pressure, psi < 1400
Injection Time, days 14-21
Soaking Time, days 1-4

Trujillo et al. (2010) built a software tool to determine a feasible EOR method for
a reservoir by using screening criteria. Nineteen different EOR methods including
CSI can be screened with the certain reservoir rock and fluid properties; such as

porosity, permeability, viscosity, API, oil saturation, thickness, depth, temperature,



pressure and lithology. After determining the suitable method, by comparing
reservoir and fluid properties, analog models are selected through approximately
1000 real EOR cases to identify possible problems related to the selected EOR
method. To form an opinion, this tool can be beneficial to determine the EOR
method; however, results may not be accurate due to limited number of reservoir
parameters and real EOR cases. Although, screening criteria studies are useful to
have an idea about the applicability of CSI for a selected reservoir, production or

performance data cannot be obtained.

There are also a large number of analytical model studies developed to predict the
performance of a CSI process and almost all of these models used the Boberg-Lanz
model and the Mark-Langenheim model to calculate heat losses and estimate the
radius of the heated zone, respectively (Green and Willhite, 1998). Some of those
models are Jones model (1977, oil recovery from pressure depleted gravity drainage
reservoir using CSI process), Gantijo and Aziz model (1984, radial flow toward
vertical wells considering fluid flow and heat conduction together), Ozkan et al.
(1999, pressure drop in the wellbore), Wu et al. (2011, inflow performance for
horizontal well with gravity drainage using CSI) and Saripalli et al. (2017, oil
production from horizontal wells using CSI). Albeit an exact solution, existing

analytical models are only homogenous systems can be solved.

When the number of parameters increases, the process gets more complex. Due to
the number of unlimited combinations of reservoir and operational parameters, it is
hard to find the optimum solution for a given reservoir. Offeringa (1971) developed
a mathematical cyclic steam injection model by keeping most of the parameters as
constants. These parameters were taken from physical laboratory models or real
cyclic steam injection wells. By using different amounts of steam and lengths of a
cycle, the model was calibrated and the optimum production performance of the
well was predicted. However, due to keeping parameters constant, this study is

limited to performance estimation only.



Another optimization study was published by Pethrick et al. (1988). A numerical
model was built for cyclic steam injection process by using data of Cold Lake Field,
one of the world’s largest heavy oil sources located in northern Alberta. The aim
of the study was to optimize the operating strategies for multiple wells and a single
well. The results obtained from this study showed that reservoir modeling is useful
in order to optimize CSI performance. Furthermore, by using simulation, a number
of field pilot tests can be reduced and a cost-effective process can be achieved.
According to Scott et al. (1994), field performances and some research studies have
shown that increase in temperature by CSI may cause the occurrences of stresses
and deformations. The change in heavy oil formation structure affects the
permeability and water mobility of a reservoir. In their study, changes in the stress
path and temperature were tried to be modeled by using testing equipment and
experimental procedures. Moreover, the relations between the volume and
permeability were figured out by using Cold Lake Field data. A numerical
simulation modeling study conducted by Razavi and Kharrat (2009) was designed
with data taken from one of the fractured heavy oil reservoirs located in Iran to find
optimum recovery. Because of having less capital cost, less pressure operation and
fast production period compared to steam flooding, CSI was chosen as a thermal
method. Many CSI scenarios were created by changing the number of wells and
directions, steam injection rates, production rates, soaking time and steam quality
to determine the effect of operational parameters. They concluded that by using this
thermal method, the oil recovery could be increased from 0.66% to 10% in 10 years.

Mongy and Shedid (2015) conducted a simulation study to create a suitable steam
injection design for high cumulative oil recovery into a Middle Eastern heavy oil
reservoir. By changing the steam properties, well completion and well spaces,
different scenarios were created to analyze the effects of parameters on production

performance and to optimize both cyclic and continuous steam injection.
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As seen in the reviewed studies, reservoir simulators can be used to model the
possible flow behaviors of a certain reservoir for forecasting the performance of a
CSI. A model can be run many times with less manpower and expense in a short
period of time; however a real field application can be done only once. Therefore,
numerical simulation models are the most effective way to solve problems and to

analyze the optimum values under different possible scenarios.

2.2 Artificial Neural Network

Artificial Neural Network (ANN) is known as a biologically inspired information-
processing system. By using the relations between a problem and its solution, ANN
creates connection links between them to solve similar problems like a human brain
system. In 1943, a paper about the working principle of neurons was written by
neurophysiologist Warren McCulloch and mathematician Walter Pitts, and in 1960,
to solve a real world problem, the first neural network about a filter eliminating
echoes on phone lines was developed (Kriesel, 2011). After this application, its

usage started to become widespread and it was tried to be improved.

In the petroleum industry, there are a large number of artificial neural network
applications as the following (McCormack, 1991);

e Exploration; identification of microfossils, analysis of gas chromatography,
gravity/magnetics modeling, seismic data processing and other applications
for seismic, etc.

e Drilling; drill bit quality assessment system, etc.

e Reservoir and Production; predicting water saturation (Al-Bulushi et al.,

2007), analysis of pressure transient, analysis of gas well production,
permeability prediction (Singh, 2005), EOR method selection (Shokir et al.,
2002), etc.
For reservoir engineers especially those studying EOR methods, artificial neural
network can be very useful to predict oil recovery in a given field because complex

nonlinear relationships can be learned by ANN even if inputs are less precise.

11



Silpngarmlers et al. (2002) worked on ANN models that can predict two-phase
relative permeability. Training and testing were done by using endpoint saturations,
porosity, permeability, viscosity and interfacial tension as input parameters
obtained from relative permeability experiments. In the same year, Shokir et al.
studied on two neural networks to select a proper EOR method and check the
feasibility of the selected method by considering only seven reservoir parameters
which are area, porosity, permeability, reservoir depth, API gravity, viscosity and
initial oil saturation. Parada (2008) created two neuro-simulation tools to screen and
design different types of improved oil recovery (IOR) methods which are miscible
injection, waterflooding and steam injection. The first tool predicts oil production
profiles by using the reservoir and operational parameters as inputs. The second one
works as an inverse ANN which predicts the operational parameters by using
reservoir parameters and oil production profiles. Artun (2009) used artificial neural
network based proxy models to check the feasibility of the cyclic pressure pulsing
in different reservoir characteristics and to find the maximum efficiency of the
project by optimization. Moreover, by developing an inverse ANN-based proxy
model, optimized design parameters were provided for a given desired performance
criteria. Arpaci (2014) built six different ANN models for naturally fractured
reservoirs with horizontal wells to estimate the performance of CSI in a short
period. Two of them predicts oil flow rate, a number of cycles, cumulative oil
production, and duration of each cycle. Other two of them were built as inverse
models to predict operational parameters from performance indicators. Last two out
of six ANN was generated as predictors of reservoir parameters by using desired
production profile and operational parameters as an inverse modeling approach.
Despite built several ANN models, most of the parameters were taken as a constant
include API gravity, residual oil and irreducible water saturations or neglected
include anisotropy of permeability and capillary pressures. ANN-based proxy
models were developed by Sun and Ertekin (2015) to be used in steam assisted
gravity drainage (SAGD), and cyclic steam injection in naturally fractured
reservoirs. The number of cycles for CSI, oil flow rate and cumulative oil

12



production can be predicted with given certain reservoir and operational
parameters. These models help engineers to estimate the recovery of SAGD and
CSI projects in a faster way. In addition to this, graphical user’s interface was
developed to provide easy access and implementation to the ANN models to the
users. Although it is one of the most elaborate study in the literature, the effect of

the heterogeneity, anisotropy and capillary pressures were neglected.

In all these reviewed studies, artificial neural networks were used to develop
screening tools by learning the relationships between inputs and outputs. These
tools compared to real field applications and simulations help to achieve desired

outputs in seconds by using less manpower and energy spent.

To develop a successful CSI operation, it is important to analyze the applicability
and efficiency of CSI for a given reservoir. This requires understanding the
relationships between all parameters of the process and their effects on the
efficiency of CSI. As mentioned in this chapter, generating a screening tool
compared to field application and commercial simulators is a good option to
analyze a large number of possible operational cases and design a successful CSI
operation without complexity, manpower and long-computational time. Many
screening tool studies about CSI operation have been conducted by neglecting the
heterogeneity and some important reservoir parameters including capillary pressure

and thermal properties.
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CHAPTER 3

STATEMENT OF THE PROBLEM

Diversely in this study, the main objective is to develop a data-driven screening tool

that can predict the performance of a CSI operation in a rapid way for all kinds of

heavy oil reservoirs, once a set of reservoir characteristics and steam-injection

design parameters of a reservoir are provided. It is desired to develop a tool that has

the following characteristics which would also fill some of the important gaps in

the existing models presented in the literature:

The reservoir model is constructed as a five layered heterogeneous system.
Different thickness, porosity, horizontal and vertical permeability values
can be defined for each layer. One, two, three and four layered
heterogeneous and homogeneous systems can also be created by changing
these reservoir properties,

50 different reservoir and operational parameters are analyzed in detail and
36 of them are considered to build the screening model. By using Corey’s
correlations, capillary pressure and relative permeability effects are
included. Moreover, thermal conductivity and heat capacity of rock and
reservoir fluids are also considered.

The screening tool can predict time dependent performance of CSI. Five
artificial neural network models are developed to estimate efficiencies of

any CSI operation for 10, 8, 6, 4 and 2 years.
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CHAPTER 4

METHODOLOGY

In order to achieve these objectives, following steps are completed (Figure 4.1):

1. Conceptual model construction

e Arreservoir model is constructed using a commercial simulator (CMG,

2015) for cyclic steam injection.

2. Data-base construction

e Many different scenarios with different combinations of 56 reservoir

and operational parameters are run in the simulator with and without

CSl.

3. Performance data collection

e Incremental oil production and incremental steam injection results are

collected to calculate efficiencies of 10, 8, 6, 4 and 2 years of CSI

application.

e Unreasonable cases are eliminated by checking for simulator errors and

cases with only 1 cycle.

4. Artificial Neural Network Design

e By using results of rest of the cases, 5 different ANN-based screening

models are separately trained and tested to estimate efficiency for 10,

8, 6, 4 and 2 years of CSI application.

5. Analysis

e The results of numerical simulation model and ANN are compared and

the accuracy of the ANN is evaluated.
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e A reservoir having similar properties with a real field is created and it
is run with 10,000 different operational parameters to find optimum
values for injection design.

e Monte Carlo Simulation analysis is also performed with 10,000
different cases having different reservoir parameters and same

operational parameters.

e The effects of each parameter are examined by changing their
maximum and minimum values in the base case and tornado charts are

constructed with results of the numerical model and screening model.

1. Conceptual
Model
Construction

5964 scenarios

2. Data-base

N 30 reservoir parameters
Construction I

6 operational parameters

3. Performance
Data Collection

5 ANN models
Hidden
4. Artificial
Neural
Network Design

-
\

Parameters histograms

Tornado charts 5. Analysis

Monte carlo simulation

Figure 4.1 Summarized workflow of the study.
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CHAPTER 5

RESERVOIR MODEL CONSTRUCTION

In order to train and test ANN models, a database was created by using a reservoir
simulation model in CMG - Thermal & Advanced Processes Reservoir Simulator
(STARS). This simulator can design thermal and compositional applications such
as steam flooding, in-situ combustion, foam flooding and cyclic steam injection
(CMG, 2015).

The reservoir model was predicated on a CMG STARS template constructed by
Aziz et al. (1987) with some changes (CMG, 2015). The model was defined as a
radial heterogeneous reservoir with 12 logarithmically distributed grid points in the
radial direction and five layers as seen in Figure 5.1. A well was drilled in the center
of the grids to be used as a producer and an injector for CSI operation. 50 different

reservoir rock-fluid and 6 operational parameters were used to build the model.

Figure 5.1 A three-dimensional view of constructed reservoir model for CSI
operation (CMG, 2015).
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5.1 Reservoir Rock - Fluid Parameters

Some fluid parameters indicated in Table 5.1 were taken from the Aziz et al.’s
template or assumed as a constant. In addition to them, thermal conductivity of
water and thermal expansion of oil were determined as 8.3 Btu/ft.day.F (Schon,
2011) and 3.96E-4 1/F (Souraki et al., 2002), respectively.

Table 5.1 Constant fluid parameters

Molecular weight, Ib/Ibmole 18.02
Critical pressure, psi 3206.2
Critical temperature, °F 705.4
Coefficients in power-law correlation for A cp/R | 113E-5
o temperature dependence of gas-phase viscosity B 1.075
|
|<T: Mass density, Ib/ft3 0
= Compressibility, 1/°F 0 .
@)
Thermal expansion, 1/°F 0 %
Heat capacity, Btu/lbmole.F 0 g
H
Coefficients of the correlation for temperature A, cp 0 oL
dependence of component viscosity in the liquid
phases. B, °R 0
Critical pressure, psi 0
Critical temperature, °F 0
|
O | Coefficients in power-law correlation for A, cp/R 0
temperature dependence of gas-phase viscosity B 0
Compressibility, 1/F 5.0E-6
Porosity reference pressure, psi 14.7 >
Surface pressure, psi 14.7 (é
Surface temperature, °F 60 %
Reference pressure for fluid properties, psi 14.7 g
Reference temperature for T-dependent and thermal 60 z
properties, °F
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Apart from abovementioned parameters, 27 varying reservoir parameters were also

used to construct the model:

Thermal conductivity of oil

2. Thermal conductivity of gas

Thermal conductivity of formation rock
Thermal conductivity of upper/lower formation rock

Heat capacity of formation rock

Heat capacity of upper/lower formation rock

Porosity
Molecular weight of oil
Reservoir pressure

. Initial water saturation

. Initial oil saturation

. Well drainage area

. Reservoir depth

. Reservoir thickness

. Permeability

. Anisotropy of permeability (kv/kn)
. Rock compressibility

. Density

. Reservoir temperature

. Heat capacity of oil

. Viscosity coefficient of A

. Viscosity coefficient of B

. Residual oil saturation

. Irreducible water saturation

. Exponential coefficient for relative permeability
. Capillary pressure coefficient of oil
. Capillary pressure coefficient of gas

(Btu/ft.day.F)
(Btu/ft.day.F)
(Btu/ft.day.F)
(Btu/ft.day.F)
(Btu/fts.F)
(Btu/fts.F)
(fraction)
(Ib/Ibmole)
(psi)
(fraction)
(fraction)
(acres)

(ft)

(ft)

(mD)
(fraction)
(1/psi)

(Ib/ft3)

(°F)
(Btu/lbmole.F)
(cp)

(°R)
(fraction)
(fraction)
(unitless)
(unitless)
(unitless)

According to studies of Eppelbaum et al. (2014) and Schon (2011), wide range of

thermal properties were specified as seen in Table 5.2. Thermal conductivity of oil

(ho) is depend on reservoir temperature (Tres) and specific gravity (yo) of oil;

therefore, it was calculated from following equation in order to get an accurate

value:

1.62
A =

(o]
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Table 5.2 Ranges for thermal properties.

Eppelbaum | Schén | In this study
etal. (2014) | (2011) min max
Thermal conductivity of gas - 0.37 0.3 1.0
Thermal conductivity | Limestone 31 9-87
X 10 90
of formation rock Sandstone 33-48 13-90
Thermal conductlv[ty of Shale i 8-59 10 60
upper/lower formation rock
Heat capacity of Limestone 34 31-64
: 25 125
formation rock Sandstone 24 - 32 26-114
Heat capacity of Shale : 3354 | 33 | 54
upper/lower formation rock

Moreover, two screening criteria (Table 5.3) were investigated to determine range

of some properties which are porosity, molecular weight, reservoir pressure, initial

water saturation. It was assumed that reservoirs are saturated with only water (Swi)

and oil (Si) at initial state:

Soi +Swi =1

(5.2)

Wide and reasonable ranges for well drainage area, reservoir depth and thickness,

permeability ratio of kv/kn, rock compressibility, and API gravity of oil were

specified. In this study, range of API gravity was used from 10 to 20 due to heavy

oil characterization and with API value, density (po) was calculated by following

equations to use in simulator as an input.
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Each layer may have different thickness, porosity and permeability values. Lorenz
coefficient is used to state the degree of heterogeneity within the simulated
reservoir. The minimum “zero” value indicates that reservoir is completely
homogeneous; on the other hand, the maximum value “one” is a signal for
completely heterogeneous system (Dykstra and Parsons, 1950). This coefficient
was calculated by a code prepared by Liber Eleutherios in 2008 (MATLAB, 2013)

to be used as an input in ANN models.

Reservoir temperature (Tres) is a depth and surface temperature (Tsurface) dependent
parameter; therefore, it was calculated with following equation:

Depth (5.5)
Tres = Tsurface + —=7—
70

According to Wright (2014), changes in heat capacity of oil (cp,0) can be estimated
from graphs or Equation 5.7. The equation is related with API, reservoir
temperature and molecular weight (MW). In this study, equation was used:

Cpo’ = [(=1.39 % 107%) Tyes + (1.847 * 1073)]API

+ (5.6)
(6.312 * 1076)T,e5 + 0.352

Cpo = Cpo * MW (5.7)
Increase in viscosity causes an increase in residual oil saturation by decreasing the
mobility of oil. Due to that, viscosity is an important guideline for numerical
simulation to apply successful CSI operation. Although viscosity can be identified
by using a viscosity-temperature table, in this model, it was calculated with
reservoir temperature, viscosity coefficients A and B. Range of these coefficients
were specified by considering interval between 100 cp and 10,000 cp. These
parameters were used in Andrade's oil viscosity correlations (Sun and Ertekin

2016):

B
Lo = A + eTrest460 (58)
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In order to include the relative permeability tables as variables; ranges for residual
oil saturation (Sor), irreducible water saturation (Swirr) and exponential coefficient
for relative permeability (n) were determined (Table 5.3) and Corey's three-phase
relative permeability correlation were used to construct relative permeability tables
(Arpact, 2014, and Sun and Ertekin, 2016):

Oil/Water System

Sw — Swi n
Kk _ ( w wirr ) 59
w 1- Sor - Swirr ( )

1—-S,-—S n
K _ < or w ) 510
row 1- Sor - Swirr ( )

Gas/Liquid System
S n
g
= (— 511
e = (=5) (511
3 (1 —Sg — Swirr>n (5.12)
rel = 1- Swirr

where ki, Krow, Krg and krgi denote relative permeability to water, oil to water, gas

and gas to liquid, respectively. Sy is water saturation and Sgq is gas saturation.

In this study, capillary effects were also considered by using Corey’s capillary
pressure correlation with specified ranges for capillary pressure coefficient of oil
(co) and gas (cg). Capillary pressure tables were constructed with following

equations:
Oil/Water System p _ Co
cow —
\/ Sw = Swirr (5-13)
1- Sor - Swirr
Gas/Liquid System _ Cg
ngl (514)
1- Sg - Swirr
1- Swirr

where pcow is capillary pressure in water-oil system and pegi is capillary pressure in

gas-liquid.
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All determined wide and reasonable ranges were as in Table 5.3. Furthermore,

several CSI applied field properties (Table 5.4) were investigated to be sure that

ranges are suitable for real cases.

Table 5.3 Screening criteria and determined ranges of reservoir parameters.

Sun and Ertekin

Arpaci (2014) (2016) In this study
min max min max min max
Porosity 0.15 0.40 0.18 0.35 0.10 0.40
Molecular W. 600 420 700 200 600
Res. Pressure 500 3,500 600 1,200 500 2,000
Ini. Water Sat. 0.15 0.60 0.10 0.40 0.10 0.50
Area - - 35 104 5) 30
Depth 1,000 | 10,000 - - 500 5000
Thickness 40 200 30 120 10 500
Permeability 20 200 500 2,000 1 2,000
kv/kn 1.0 1.0 0.01 1.0
Rock Comp. SE-4 - - 3.00E-6 | 1.00E-5
API Gravity 6 10 25 10 20
Visc. Coef. A 1.00E-4 | 5.00E-3 | 0.01 0.05
visc-temp table
Visc. Coef. B 6,000 | 7,600 | 5,000 | 6,500
Res. Oil Sat. 0.15 0 0.05 0.1 0.3
Ir. Water Sat. 0.25 0.05 0.15 0.1 0.3
Rel. Perm. Exp. 2-2.5 2 4 2 4
Cap. P(r)?ls. Coef. 0 0 0 1 4
Cap. Pres. Coef. 0 0 0 01 03
gas
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5.2 Operational Parameters

The data-driven screening model can estimate the process performance in a given

reservoir depending on the steam-injection design parameters. These design

parameters include steam injection rate (Qinj), injected steam temperature (Tsteam),

steam quality (Qstam), durations of steam injection (tinj), soaking (tseak), and

economic rate limit. After investigating real CSI field applications and screening

criteria, wide and reasonable ranges were determined for operational parameters

(Table 5.5).

Table 5.5 Operational parameters of steam injected fields and screening criteria.

Qinj Tsteam | Qsteam tinj tsoak E?iorlr:’iat‘te
Midway-Sunset
(Monarch) 650 450 0.70 10 10 -
Hazlett et al. (1997)
Kern River
Chu and Tremble (1975) 1,000 410 0.80 20 8 )
Cymric i i i
Fong et al. (2001) 500 6 4
Huntingon Beach | 1,300- i 0.80 i i i
Adams and Khan (1969) | 1,350 '
Cox Penn 0.25-
Chiou and Murer (1989) 240-888 | 530-625 0.80 18-44 8-ar1 i
Los Perales 0.65-
Pascual (2001) 820 625 0.70 18 ) )
Duri
Gael et al (1995) 2,000 432 0.80 21 5 -
Arpac1 min 350 450 0.70 5 5 -
(2014) max 5,000 750 1.00 50 50 -
sunand | min 600 450 | 0.70 10 10 20
Ertekin
(2016) max 1,500 750 1.00 50 20 40
. min 500 450 0.70 10 10 5
In this
study
max 2,000 700 1.00 60 30 25

27




“TRIGGER” keyword (CMG, 2015) was implemented to add a condition to apply
cyclic steam injection. After simulation started with injection, well was put on
production until economic rate limit was reached and then, new injection-
production cycle starts again. All these parameters were constant for each cycle of
one case; however, they were changed in every case by randomly selecting from
ranges. Despite the constant parameters, production period was varied in each cycle
of one case according to economic rate limit. Therefore, the number of cycles was

also different for each case.

5.3 Grid Sensitivity Analysis

Smaller grid sizes provide more accurate results in numerical modeling studies;
however, execution time takes longer. Therefore, it is important to find best grid
sizes having shorter runtime with reasonable results (Shin et al., 2012). In this
study, a reservoir was created with the base values of parameters (can be seen in
Section 5.4 as a table) and grid sensitivity was performed. Firstly, the reservoir
model was divided in R-0-Z grids to create 3-D model (Figure 5.2) and run with
different dimensions in the 6 direction (360°, 90° and 60°).

L,

Figure 5.2 Division of grids in R-6-Z dimensions for constructed reservoir model
(CMG, 2015).

The production differences (Figure 5.3) and the elapsed time of the simulator
(Figure 5.4) indicated that increase in grids affect the production and computation

time. The more grids means longer computation time; therefore, according to the
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low percentages of the production differences, the model was constructed as 2-D

by not taking into account the 6 direction.

m4x90 m6x60 IS
10 B 3% 2 oxe0 [N 100
©
= 8 L %o it
[«5] —
Y X < oo I 71
£ 2
F 4 I =
|_
- o S 1x360 JJ 15
2 w (] 5
0% 5% 10% 15% 0 100 200
Production Difference Elapsed time, seconds
Figure 5.4 Absolute production Figure 5.4 The elapsed times for
difference compared with 1 grid 60° with 6 grids, 90° with 4 grids
model (360°). and 360° with 1 grid.

Secondly, after creating 2-D model, grid sizes were changed in R direction and
cumulative oil productions, cumulative water productions, cumulative steam

injections and elapsed time of simulation were collected (Figure 5.5 and Figure 5.6).

90
75

60
4
3
1
3 6 9 12 15 18

Grid Sizes

= Cum. Oil Prod. (Mbbl)

o o1 O o

Figure 5.5 Cumulative oil productions of different grid sizes.
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Figure 5.6 Cumulative water productions and cumulative steam injections of
different grid sizes.

Table 5.6 shows all cumulative values and their change ratios according to previous
less grid sizes. By comparing these values, with 61.5 Mbbl cumulative oil
production, 1136 Mbbl cumulative water production, 1112 Mbbl cumulative steam
injection and 11 seconds runtime, 12 grid points was found to be the most

reasonable one respect to others.

Table 5.6 Cumulative values and change ratios.

Grid Cum. Oil Cum.Water Cum. _ Ela_psed
Sizes Prod. A Prod. A Steam Inj. A Time
(Mbbl) (Mbbl) (Mbbl) (sec)
3 85.1 970.4 871.9 1
6 70.7 -17% 966.0 0%| 832.6 5% 4
9 64.1 -9% 1172.9 -21%| 1098.6 | -32% 9
12 61.5 -4% 1136.3 3%| 1111.6 -1% 11
15 55.1 -10% 1063.3 6% | 966.4 13%| 14
18 50.6 -8% 1040.7 2% | 975.5 -1% 15

An exponentially increasing grid distribution was suitable for this model because it
was constructed as a radial reservoir. A linear equation was created by using best
fit for distributions of 5, 10, 15, 20, 25 and 30 acres (Figure 5.7).
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Figure 5.7 Best fit equation.

The distribution of grid points for well drainage area between 5 and 30 acres were

calculated from following equations:

x = 0.0496 * In(area) + 0.2875 (4.15)
grid size = exp(x * #ofgrid) (4.16)

# of grid ‘ 1 2 11 12
Grid sizes ‘ exp(X) exp(x*2) exp(x*11)  exp(x*12)
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5.4 Generation of the Dataset

The list of parameters used as input in the screening model and their ranges were

determined as in Table 5.7.

Table 5.7 Screening model inputs and their ranges.

# | Parameters Unit - In this study

min base max
1 | Well drainage area acres 5 18 30
2 | Total reservoir thickness ft 10 255 500
3 | Reservoir depth ft 500 2,750 5000
4 | klkn fraction 0.01 0.5 1.0
5 | Average porosity fraction 0.10 0.30 0.40
6 | Average permeability mD 1 200 2,000
7 | Rock compressibility 1/psi 3.00E-6 6.50E-6 1.00E-5
8 | Heat cap. of fm Btu/fts.F 25 75 125
9 | Therm. conductivity of fm Btu/ft.day.F 10 50 90
10 | Therm. conductivity of oil Btu/ft.day.F calculated
11 | Therm. conductivity of gas Btu/ft.day.F 0.3 0.7 1.0
12 | Heat capacity of u/l fm Btu/fts.F 33 44 54
13 | Therm. cond. of u/l fm Btu/ft.day.F 10 35 60
14 | Molecular weight of oil Ib/Ibmole 200 400 600
15 | Density of oil Ib/ft calculated
16 | Specific gravity of oil fraction calculated
17 | API gravity API 10 [ 15 | 20
18 | Heat capacity of oil Btu/lbmole.F calculated
19 | Viscosity coefficient A cp 0.01 0.03 0.05
20 | Viscosity coefficient B °R 5,000 5,750 6,500
21 | Residual oil saturation fraction 0.10 0.20 0.30
22 | Irreducible water saturation fraction 0.10 0.20 0.30
23 | Relative perm. exponent unitless 2 3 4
24 | Capillary pres. coef. of oil unitless 1 2.3 4
25 | Capillary pres. coef. of gas unitless 0.1 0.2 0.3
26 | Reservoir pressure psi 500 1,250 2,000
27 | Reservoir temperature °F calculated
28 | Initial water saturation fraction 0.10 0.30 0.50
29 | Initial oil saturation fraction calculated
30 | Steam temperature °F 450 575 700
31 | Steam quality fraction 0.70 0.85 1.00
32 | Steam injection rate bbl/day 500 1,250 2,000
33 | Injection time day 10 35 60
34 | Soaking time day 10 20 60
35 | Economic rate limit bbl/day 5 15 25
36 | Lorenz coefficient fraction calculated
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All selected parameters except permeability were uniformly distributed in their own
ranges. In reality, most of the permeability values are between 50 and 100 mD;
therefore, lognormal distribution was selected to be realistic. Porosity, permeability
and thickness values were selected for one layer and then, for other four layer,
values were selected from first layer’s values. Therefore, distribution of average
porosity, average permeability and total thickness were not seen uniform and
lognormal. Unfortunately, some scenarios were eliminated after the run. One part
of these could not be simulated by the simulator because of “convergence error”.
Some numerical controls were set to check the model (e.g. material balance error is
set to not exceed 1E-4). The other part did only one cycle CSI process in 10 years
since flow rates did not reach economic rate limit. After elimination, 5964 scenarios
were obtained for training and testing the screening model. Histogram plots of new
data set showed that elimination of scenarios did not affect the distributions (Figure
5.8-5.11).

Distribution of all cases Distribution of 5964 cases
1400 800
1200
. 1000 ' 600
g 800 g
o © 400
G 600 G
I+ T+
400 200
200
0 0
0.,%%, “S0, <00, %, %0, %S0, %%, 0, 0., "0, 0y 0; 7%, 0, *0, ©o,
/000 KA Jb 300 250 3000 350 “’000 1500 5000 000 RA 30, 9000 9500 ‘?000 3500 q000 q\fa %) 5000
Reservoir Depth, ft Reservoir Depth, ft
2500 1600
1500 .
g g 800
s 1000 o
o
** 500 w#+ 400
0 0
50~50 0 0L55 5 357, “60p 01~65 657. 00 ¥30.5, % 501~550 351, % 601~650 6575 o0
Steam Temperature, F Steam Temperature, F

Figure 5.8 Example uniform distributions of reservoir and operational
parameters.
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Figure 5.9 Distribution of permeability for one layer and five layers.
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Figure 5.10 Distributions of porosity for one layer and five layers.
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Figure 5.11 Distributions of porosity and thickness for one layer and five layers.
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Two simulator templates, seen in Appendices A and B, were created for “with” and
“without” CSI operation. Each case was simulated in both situations and cumulative
oil production, cumulative water production and cumulative steam injection for 10

years were collected as outputs. Then, efficiencies were calculated as follows:

1. Yearly production and injection were calculated for 10 years and then,
incremental values were found by subtracting ‘without injection” values

from “with injection’ values:

Yearly oil prod. : (Np,inc.)n = (Np,with inj.)n - (Np,withoutin]'.)n (5.17)
Yearly water prod. : (Wp,inc.)n = (Wp,with inj.)n - (Wp,without inj.)n (5.18)
Yearly steam inj. (Siinc)n = (Siwith inj.)n (5.19)

n:1, 2, 3,4...10 years

2. By using these incremental values for 10 years, present values (PV) were
calculated for 10, 8, 6, 4 and 2 years with 10% interest rate (i), separately
(Figure 5.12).

n
. (Np,inc.)j
PV oil prod. . (PVNp)n = £, m (520)
n
(Wp,inc.)j
PV water prod. : (PVWp)n = £, m (521)
n
. (Sijinc)j
PV steam inj. ; (PVspn = Z A+iy (5.22)

n:2,4,6,8 and 10 years
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Figure 5.12 Calculation of present values for different period of time.

3. Efficiencies of CSI operations for 10, 8, 6, 4 and 2 years were calculated
following equation:

_ (PVNp)n
(EFF)n = (PVsi)n

(5.23)
n:2,4,6,8 and 10 years

Each efficiency was used as an output of different ANN models (Figure 5.13). Same

training, validation and testing data sets were used to build data-driven screening
models.

36 inputs
[ [ ! [ |
1 output 1 output 1 output 1 output 1 output
EFF, EFFg EFFg EFF, EFF,

Figure 5.13 Five different ANN models with same inputs.
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CHAPTER 6

SCREENING TOOL DEVELOPMENT

Reservoir modeling can be a costly and time consuming process in complex
reservoirs because of the necessity of a comprehensive reservoir description. With
a reasonable range of error in accuracy and computational efficiency, a screening
tool can be used to reduce extensive time and energy spent in simulation and

modeling studies.

Data driven modeling approach was followed to develop the screening tool. The
principle about data driven modeling is based on learning the relationship between
inputs and outputs of a system by using a data set without explicit knowledge of
physical behavior of the system. There are a number of computational intelligence
techniques used for data-driven modeling. Artificial neural networks, fuzzy rule-
based systems and genetic algorithm are among the most popular ones (Abrahart et
al., 2008).

Artificial neural network (ANN) approach was selected to model the data driven
screening tool. ANN is very powerful to understand non-linear and complex
relationships between inputs and outputs. By creating regression models, input &

output mapping can be performed.

An artificial neural network is characterized by the following:
a. The connection pattern between neurons which represents the architecture of
the ANN.
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b. The method of determination of weights on the connections and its training

algorithm.

6.1 Structure and Architecture of Artificial Neural Network

The idea of ANN is similar with human brain system. A human brain contains
approximately 100 billion neurons that receive, process and transmit information
among themselves (Kriesel, 2011). The structure and working principle of ANN
mimic the human brain like a mathematical model representation of biological
nervous system (Figure 6.1). Similarly, in an ANN model, an information is
received from dendrites to process in cell body and transmitted by synapses to other

neuron.

Neurons in Nervous System Neurons in ANN

Hidden

Layer

Input

Qutput
Layer

~ Synapses
7 a
Dendrites Cell Synapses
Body
A Typical Neuron A Typical ANN Neuron

Figure 6.1 Structure of neurons in human brain and ANN.
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The architecture of an ANN model can be defined as the arrangement of neurons
and the connections between them. According to its classification, ANN is divided
into two: single layer and multilayer as seen in Figure 6.2. While single layer is
formed only input and output layers, multilayer has extra one or more layers to
connect input and output layers. These extra layers, named as “hidden layers”, can
be helpful in complex problems to be solved. The number of hidden layers and
neurons in each hidden layer are determined based on complexity of the problem

which can be defined as the number of input and output neurons.

Input Output
Layer Layer

Single Layer ANN MultiL.ayer ANN

Figure 6.2 ANN classification for architecture.

6.2 Weights and Training of Artificial Neural Network

Determination of weights between layers is another important characterization
aspect for ANN modeling. A weight refers to the strength of connection between

two neurons. By showing that how neurons have an influence on solution, weights
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have a direct relationship with the learning process. They are calibrated based on

inputs and outputs to become ideal connections in network.

Learning system behavior is a critical issue about ANN. While there are a number
of different learning algorithms, the most common way of calibration of weights
can be completed in two steps; forward propagation and back propagation.

w1 21 ()
W2 W7
W3
PRI (0] H—
ﬁ Ws
Ws
e ¥ e ™

Figure 6.3 Example ANN model with one hidden layer.

1. Forward propagation: Inputs (12 and I2) and output (O') are normalized between
-1 and +1, separately. A set of weights are randomly selected between 0 and 1. The
product of inputs and their selected weights (w) are summed for each hidden layer’s
neuron. A transfer function (f) is applied to the hidden layer sums (X) to obtain

hidden layer outputs (Figure 6.3).

21 = Il * Wl + 12 * W4 (61)
ZZ == Il * WZ + IZ * W5 (62)
23 = Il * W3 + 12 * W6 (63)
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More than ten different transfer functions can be used in forward propagation.
Linear function, log sigmoid function, step function and hyperbolic tangent sigmoid

function are the most common ones (Kulga, 2010):

e Inlinear function, hidden layer output (f) can be found with the multiplication
of input (X) by a constant (K). (Figure 6.4a)

f(X) =K+ X (6.4)

e In log sigmoid function, hidden layer outputs get values between 0 and 1 by

using following equation and produce “S” shape curve. (Figure 6.4b)

f(Z) =

1+eZ (6.5)

e In step function, hidden layer outputs can get two values, 1 and -1, based on
inputs. (Figure 6.4c)

1 if ¥>0
f(z){—l if <0 (66)

e In hyperbolic tangent sigmoid function, hidden layer outputs get values
between -1 and 1 by using following equation and produce again “S” shape

curve like log sigmoid function. (Figure 6.4d)

eX —e7Z
- " 6.7
fC) = 5= (6.7)

Calculated hidden layer outputs are multiplied with randomly determined weights
and summed to obtain the final output (O') as in Equation 6.8. Calculated output

(O") is compared with the target output (O).

O’ = f(Z)l * Wy + f(Z)z * Wg + f(Z)g * Wo (68)
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c. Step Function d. Hyperbolic Tangent
Sigmoid Function

Figure 6.4 Common transfer functions.

2. Back propagation: The margin of error of the output is measured and weights
are calibrated correspondingly to decrease the error based on “Generalized Delta
Rule”. Both steps are repeated until weights are adjusted to ideal ones. Data set is
divided into three as training, validation and testing. Training data set is used to
calibrate the weights. VValidation data set is used to show how training process goes:

generalization or memorization. To avoid memorizing, during the training period,
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the error of validation is monitored. If the error of validation increases while the
training error decreases, this shows that ANN memorized the pattern instead of
generalizing. Testing data set is used to assess generalization capabilities of the

neural network (Arpact, 2014).

6.3 Application of Artificial Neural Network to Screening-Model

Development

As mentioned in the previous chapter, 5964 cases were created randomly with 36
parameters and efficiencies of these cases were calculated for 2, 4, 6, 8 and 10 years.
More inputs and outputs mean more complexity in ANN applications. Therefore,
in this thesis, instead of creating an ANN with five different time periods, five

different ANNs were built to predict performance of CSI for each period.

Before training ANN models, all inputs and outputs were prepared. Each input
parameter and output was normalized linearly between -1 and +1 in itself because
all of them have different scale. For instance, while porosity ranges between 10 %
and 40 %, reservoir depth ranges between 500 ft and 5000 ft. For both parameters,
minimum values and maximum values were considered as -1 and +1, respectively

and the remaining values were distributed proportionally.

5964 cases were distributed into training, validation and testing data sets with 80
%, 10 % and 10 % proportions, respectively (training data set - 4772 cases, both
validation and testing data sets - 596 cases). It is important to train models with
different parameters and efficiency values; therefore, in order to avoid using similar
cases, efficiency values were distributed manually into the data sets. It was aimed

that training, validation and testing data sets have all possible efficiency values from
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minimum to maximum. Same data sets were used to train all ANN models as seen

in Figure 6.5.

ANN MODEL -1
5964 cases
36 inputs
1 output (EFF-10) ANN MODEL -2
5964 cases

/ l \ 36 inputs

1 output (EFF-8)

Training Validation Testing
Data Set Data Set Data Set / l \
_ Training Validation Testing
ANN MODEL -3 Data Set Data Set Data Set
5964 cases
36 inputs
1 output (EFF-6) ANN MODEL - 4
5964 cases

/ l \ 36 inputs

1 output (EFF-4)

Training Validation Testing
Data Set Data Set Data Set / l \
Trainin Validation Testin
ANN MODEL - 5 Data Se% Data Set Data Sgt
5964 cases
36 inputs
1 output (EFF-2)

N

Training Validation Testing
Data Set Data Set Data Set

Figure 6.5 Data sets distributions for ANN models.

The most appropriate ANN structures were generated for each ANN model by using
the trial and error method. Different number of hidden neurons and hidden layers
were used and their effects on training were observed. By comparing regressions of

the training, validation and testing data sets, the best training structures for each
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ANN models were selected. In Figure 6.6, there are example regression graphs

taken from training of ANN Model - 5.

091*Target +-0.08

0.84*Target +-0.14

Training: E=0.97404

& Data

Qutput ~

Target

Test: E=0.93321

& Data

Qutput ~

0.5

0.75*Target+-0.21

0.88*Target +-0.1

Output ~

Output ~

0.5

Validation: R=0.89374

< Data
Fit
......... ¥=T
o
.C. K
OQOQB) g ©
o
9]
] 0.5
Target

All: E=0.96064

& Data

Target

0.5 1

Figure 6.6 Regression graphs for 12th training trial (ANN Model - 5).

All structure trials and regressions for ANN Model — 5 can be seen in Table 6.1 and

Figure 6.7. As much as possible, the highest regressions were tried to be achieved.

After 14 trials, 11" and 12" trials having close regressions were compared and 12

one with the highest testing regression was selected.
e 11" Trial: Training R=0.971 Validation R=0.910
e 12" Trial: Training R=0.974 Validation R=0.894
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Table 6.1 Number of neurons and layers tested for building ANN Model - 5.

Training trial

Trainin Number of Number of Total Neurons
trials g Neuronsin 1. Neurons in 2. in Hidden
Hidden Layer | Hidden Layer Layers
1 100 - 100
2 90 - 90
3 80 - 80
4 70 - 70
5 60 - 60
6 50 - 50
7 40 - 40
8 40 20 60
9 50 10 60
10 40 10 50
11 30 20 50
12 30 10 40
13 25 15 40
14 35 5 40
Regression
0 01 02 03 04 05 06 07 08 09 1
| | | | | | | | | | | |
2
| | | | | | | | | | | |
3 I ———
4 e ————
5
! T — P — |
6
| | | | | | | | | | | | |
! e ————
8
| | 1 [ [ [ | | 1 [ [ |
9
10 | | | | | | | | | | | | o
| | | | | | | | | | | | .Trammg
11 W Validation
12 | | 1 [ [ [ | | 1 [ [ | .TESting
13
| | | | | | | | | | | |
14 . .

Figure 6.7 Regression values for all training trials.
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CHAPTER 7

RESULTS AND DISCUSSIONS

In this chapter, results obtained from the numerical simulator and the screening
model are analyzed in detail. A number of cases are investigated to ascertain the
effects of the reservoir and operational parameters and by carrying out a sensitivity
study, the accuracy of the ANN is evaluated. Moreover, a reservoir model having
similar properties with The Liaohe Qilfield is created and optimization studies are

performed for operational parameters.

7.1 Analyses of Reservoir and Operational Parameters

After creating the dataset using the numerical simulator, best 500 cases, having the
highest efficiencies, are selected to analyze the effects of the reservoir and
operational parameters on efficiency. This selection is made separately for 10, 8, 6,
4 and 2 years to analyze in detail. For each parameter, histograms are plotted, and
their distributions in their ranges are analyzed to infer the effects. Exact conclusions
cannot be achieved from these histograms since a large number of varying different

parameters affect the performance indicators at the same time.

In yearly parametric analysis, it is seen that there is no significant difference
between them. However, distributions of some parameters according to their ranges

change.
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The histogram of viscosity shows that the efficiency decreases as long as viscosity
increases (Figure 7.1). The cases having between 100 and 200 cp viscosity have
lower efficiencies since the performance indicators were calculated by incremental
production and injection values. For these cases, they have high base productions

and there is no need to inject steam to the reservoir.

meff2 meffA meff6o meff§ meffll
250

200

150
10 I I
Il I II I mln

100-200  201-500 501-1000 1001-2000 2001-4000
Viscosity, cp

o

Frequency

a1
o O

Figure 7.1 Distribution of viscosity for best 500 cases.

The following three histograms show that some parameters affect the efficiency
positively. The increase in area, reservoir pressure, formation compressibility and

anisotropy of permeability increase the efficiency (Figure 7.2 — 7.5).

meff2 meffi meff6o meff8 mefflO
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Figure 7.2 Distribution of area for best 500 cases.
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Figure 7.3 Distribution of reservoir pressure for best 500 cases.
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Figure 7.4 Distribution of reservoir pressure for best 500 cases.
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Figure 7.5 Distribution of anisotropy of permeability for best 500 cases.
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Relative permeability data is one of the critical physical properties for the
production. Corey’s exponential coefficient for relative permeability (n) states the
pore size distribution. In the model for each case, this number is taken as constant
for oil/water and gas/liquid systems. Therefore, only pore size distribution can be
analyzed. The solid line is for a wide range of pore sizes (n=2) while the dashed
line shows a medium range pore sizes (n=4) (Figure 7.6). As seen in the Figure 7.7,

more uniform pore size distribution helps to increase efficiency.

0.8

0.6 —krw, n=2

krow, n=2
0.4
- = =krw, n=4

0.2 - — —krow, n=4

0 0.2 0.4 0.6 0.8
S
Figure 7.6 Two different pore size distribution.
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Figure 7.7 Distribution of exponential coefficient for relative permeability for
best 500 cases.
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According to Corey’s equations, capillary pressure and coefficients are directly
proportional. As seen in Figure 7.8, to extract water from the pores, more pressure
is needed and this means, oppositely, oil can flow more easily in the pores.
However, the histogram show that the effect of them is very small for the
efficiencies (Figure 7.9).
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0 0.2 0.4 0.6 0.8 1
Sw

Figure 7.8 Capillary pressure vs. water saturation graph for different capillary
pressure coefficients of oil
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Figure 7.9 Distribution of capillary pressure coefficient of oil for best 500 cases.
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The ranges for operation parameters were determined after detailed literature
review. Therefore, all values were optimum and distributed uniformly. The
distribution of steam temperature, steam quality and soaking time can be seen in
Figure 7.10 - 12.

meff2 meff4 meff6 meff§ mefflO

450-500 501-550 551-600 601-650 651-700

140
120
10

Frequency
N B OO ©
o O O o o

o

Steam Temperature, F

Figure 7.10 Distribution of steam temperature for best 500 cases.
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Figure 7.11 Distribution of steam quality for best 500 cases.
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Figure 7.12 Distribution of soaking duration per cycle for best 500 cases.

For injection duration per cycle, histogram (Figure 7.13) shows that cases with less
injection time have high performance with cyclic steam injection process in 2 years
period of time. When the operation time increases to 6 and more years, the effect

of the parameter decreases.
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Figure 7.13 Distribution of injection duration per cycle for best 500 cases.
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7.2 Accuracy of the Screening Tool

Development of the screening tool is the most important part of this thesis and the
stages are given in the previous chapter in detail. By using different number of
hidden neurons and hidden layers, trial and error method is applied and the most
appropriate structures for ANN models are determined as in Table 7.1.

Table 7.1 Determined number of neurons and hidden layer for all models.

# of hidden neurons Regressions
ANN Model

Layer 1 Layer 2 Training | Validation Testing
1-EFF10 50 10 0.977 0.932 0.931
2 - EFF8 40 - 0.959 0.901 0.917
3 - EFF6 30 10 0.941 0.865 0.894
4 -EFF4 30 10 0.967 0.870 0.905
5-EFF2 30 10 0.974 0.894 0.933

Prediction capabilities of ANN models were assessed by comparing numerical
model outputs with ANN model outputs. The comparison graphs for testing data
set of ANN models can be seen in Figures 7.14 to 7.18. The darker line shows the
numerical model outputs and the lighter one is data-driven model outputs. The
overlapping of these two lines shows that the models can predict the efficiency

values as much as precise.
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Figure 7.14 The comparison of original output and ANN output for testing data
set of Model - 1.
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Figure 7.15 The comparison of original output and ANN output for testing data
set of Model - 2.
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Figure 7.16 The comparison of original output and ANN output for testing data
set of Model - 3.
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Figure 7.17 The comparison of original output and ANN output for testing data

set of Model — 4.
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Figure 7.18 The comparison of original output and ANN output for testing data
set of Model - 5.
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The error of prediction for each case was calculated by taking absolute difference
between numerical simulator output and ANN output (Equation 7.1). In order to
analyze the error distribution in testing data set, the frequency percentages of error
were plotted (Equation 7.2). Figure 7.19 shows that for each model, only 10% of
cases have higher than 0.2 STB/STB absolute difference error. If all testing data set
is examined, this number can be considered as high error. However, checking errors
for each case, especially peak values, would be more realistic. For instance, the
efficiency of case 171 in Model — 5 (Figure 7.18) is calculated as 3.50 STB/STB
from the numerical model and estimated as 2.60 STB/STB from the ANN model.
For this case, 0.9 STB/STB absolute difference error can be ignored and the

prediction can be considered as sufficient.

Error = |Effsimulator - EffANNl (7.1)

Frequency of Error

%E = 100 7.2
#oError Total Case Number X (7.2)
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Figure 7.19 Histogram of ANN Model - 5 testing data set.
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7.3 Sensitivity to Reservoir and Operational Parameters

The sensitivity study shows the accuracy of the data-driven model by comparing
the parametric order with numerical model. The average values of all parameters
were used to create a reservoir model, and its efficiency value was taken as a base.
58 cases were constructed by changing one parameter at a time to its maximum and
minimum values to analyze each parameter’s influence on the efficiency. These
cases were run using both the commercial numerical simulator and the screening
tool. Parameters were sorted largest to smallest according to their effects on
efficiency and tornado charts were plotted for first 15 parameters. (Figure 7.20 —
7.24).

The cases created with lowest values are stated with the lighter bars, and the highest
values are the darker ones. By using the results of the data driven model and
numerical model, the analyses are performed for all years separately. It is seen that
all efficiencies are affected positively by increasing initial oil saturation, irreducible
water saturation, the exponential coefficient of relative permeability and decreasing
initial water saturation, viscosity coefficients, residual oil saturation. More detailed
analyses should be performed for each parameter to examine the exact conclusion
about the effects of the parameters. The similarities in the order of the data-driven
model and numerical model results show that the screening tool captured the

problem very well.
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Figure 7.20 Parametric accuracy comparison between Data-driven model and
Numerical model for 10 years
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EFF 8 - Data Driven Model
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Figure 7.21 Parametric accuracy comparison between Data-driven model and
Numerical model for 8 years
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EFF 6 - Data Driven Model
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Figure 7.22 Parametric accuracy comparison between Data-driven model and
Numerical model for 6 years
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EFF 4 - Data Driven Model
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Figure 7.23 Parametric accuracy comparison between Data-driven model and
Numerical model for 4 years
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EFF 2 - Data Driven Model
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Figure 7.24 Parametric accuracy comparison between Data-driven model and
Numerical model for 2 years
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7.4 Probabilistic Assessment of CSI in a Given Reservoir

Two studies were conducted separately as an implementation of the screening tool.
In each study, 10,000 cases were created and run into the screening tool to produce
distributions of possible efficiency values. These probabilistic approaches help to
quantify the uncertainty in variables and the risk involved in potential decisions.

a. Specific reservoir parameters:

Different CSI applications in a specific reservoir are analyzed. Reservoir
parameters are taken from The Liaohe Oilfield; having a favorable CSI operation
in Northeast China (Wang et al., 2017) and operational parameters are selected
randomly. Only a few reservoir parameters were out of this study’s range; therefore,
adjusting them to given ranges did not result in a significant deviation from the

reality. Table 7.2 and 7.3 show the reservoir and operational parameters.

Table 7.2 The ranges of the operational parameters of The Liaohe Oilfield
(Wang et al., 2017).

Operational Parameters Unit

Steam temperature °F 500 - 700
Steam quality fraction 0.75-0.90
Steam injection rate bbl/day 500 - 700
Injection time day 10-30
Soaking time day 10-20
Economic rate limit bbl/day 10-20
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Table 7.3 The values of the reservoir parameters of The Liaohe Oilfield
(Wang et al., 2017).

Reservoir Parameters Unit

Well drainage area acres 18
Total reservoir thickness ft 91
Reservoir depth ft 2863
Anisotropy of permeability fraction 0.5
Average porosity fraction 0.29
Average permeability mD 1644
Rock compressibility 1/psi 1.00E-5
Heat capacity of formation Btu/ft®.F 36.5
Therm. conductivity of formation Btu/ft.day.F 24.2
Therm. conductivity of gas Btu/ft.day.F 0.52
Heat capacity of upper/lower formation | Btu/ft3.F 35
Therm. cond. of upper/lower formation | Btu/ft.day.F 16.9
Molecular weight of oil Ib/Ibmole 600
API gravity API 11.7
Viscosity coefficient A cp 0.045
Viscosity coefficient B °R 6,400
Residual oil saturation fraction 0.27
Irreducible water saturation fraction 0.30
Relative permeability exponent unitless 4
Capillary pressure coefficient of oil unitless 2.3
Capillary pressure coefficient of gas unitless 0.2
Reservoir pressure psi 1175
Initial water saturation fraction 0.32
Lorenz coefficient fraction 0.054

Due to having limited real production data, one-to-one comparison cannot be made.
However, expectation curve shows that the uncertainty in the efficiency of CSI
application can be quantified by reading corresponding values for cumulative
probabilities of 90%, 50%, and 10%. An example curve can be seen in Figure 7.25.
There is a 90% chance that the efficiency for 2 years will be at least 0.570 STB/STB
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and a 10% chance that it will be at least 0.880 STB/STB. Probabilities for other

models can be seen in Table 7.4.
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Figure 7.25 Probabilistic estimation of efficiency-2 years for given range
operational parameters.

Table 7.4 Yearly probabilistic approach for given range operational parameters.

1P (90%) 2P (50%) 3P (10%)
('\éllggell 01) 0.106 0.141 0.170
I(\/é(l):dFeI; 0.204 0.242 0.280
I(vlé(l):dlfg 0.178 0.198 0.219
|(\/E|oFo|Fel4 ;1 0.196 0.250 0.355
l(vé(l):dFelzi 0.570 0.690 0.880
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By considering economic aspects as well, the efficiency of the CSI process can be
interpreted more realistically. Therefore, oil prices and steam prices are included in
the efficiency calculations (Equation 7.3). To include both optimistic and
pessimistic scenarios, oil and steam prices are selected randomly from 20 to 100
$/bbl and 5 to 15 $/bbl, respectively. Expectation curve indicates that the efficiency
of CSI for this reservoir will be 1.90 STB/STB with 90% expectation and 8.70
STB/STB with 10% expectation (Figure 7.26). For all models, Table 7.5

summarizes all results obtained.

EFF_cost),, = (EFF (Oil Price), (7.3)
(EFF_cost) = (EFF)a (Steam Cost),, '

n:2,4,6,8 and 10 years

EFF 2

1P (90%)

2P (50%)

Cumulative Probability

3P (10%)

0 5 10 15 20 25
Efficiency (STB/STB)

Figure 7.26 Expectation curve for cost-efficiency- 2 years.
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Table 7.5 Yearly probabilistic approach with Economic Study-1.

1P (90%) 2P (50%) 3P (10%)
('\é'ggeiol) 0.35 0.84 1.78
'(VE'OFdFe'Bi 0.62 1.48 3.00
'(VéOFdFe'(S 0.50 1.20 250
'(VéOFdFe'LS 0.68 151 3.30
'(VéOFdFe';; 1.90 4.20 8.70

b. Reservoir parameters in a range:

In this part of the study, it is considered as if there is uncertainty in reservoir
parameters of a specific field and they were selected from a narrow range. For
instance, a general range for the area is between 5 and 30 acres in the screening
tool. The drainage area is known as around 18 acres, but it is not certain. A narrow
range is selected as from 15 to 20 acres. For all reservoir parameters, the same idea
is applied, and 10,000 cases are created according to narrow ranges. Same CSI
operation was applied to all cases by using constant operational parameters.
Expectation curve and probabilities for all models can be seen in Figure 7.27 and

Table 7.6, respectively.
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Figure 7.27 Probabilistic estimation of efficiency-2 years for given range
reservoir parameters.

Table 7.6 Yearly probabilistic approach for given range reservoir parameters.

1P (90%) 2P (50%) 3P (10%)
(“é'ﬁﬁe{ 01) 0.030 0.060 0.100
I(\/é(l):dFeI; 0.045 0.095 0.175
I(\/é('):dFels 0.085 0.122 0.170
I(\/é('):dFeILS 0.080 0.140 0.270
l(vEmFolFel2 t)s 0.170 0.420 0.940
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Table 7.7 shows probabilistic estimates of efficiencies when prices are also

considered.

Table 7.7 Yearly probabilistic approach with Economic Study-2.

1P (90%) 2P (50%) 3P (10%)
('\é'ggel'ol) 0.11 0.34 0.84
'(VéOFdFeg 0.20 0.55 1.40
'(Vé‘l):d:'g 0.31 0.75 1.60
'(\/E")FdFeL;‘ 0.35 0.88 221
'(VE'OFdFe'; 0.80 250 7,50

These examples illustrate the practicality of the screening tool that was developed.
A large range of uncertainties can be incorporated easily which would help to
understand the risks involved in the CSI application in a given reservoir.

7.5 Graphical User Interface Application

The calculation of efficiency for five different time periods in one ANN model is a
complex problem; therefore, in order to avoid complexity, five different ANN
models for each time periods are created. Thus, the models with one output can be
trained without problems and they can be used to predict the efficiencies more
accurately. However, by using these models, finding the efficiencies is not a user
friendly system. Creating a graphical user interface (GUI) is a convenient way of
increasing the practicality of the models. Five models are combined in a screening
tool GUI by using in-built functions of MATLAB (R2013a).
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In this chapter, features of this GUI application are presented which includes both

deterministic and probabilistic approaches:

Deterministic Approach is based on certain values (best estimates) for each

parameter of a given reservoir and a given set of operational parameters.

Probabilistic Approach is based on a range of values for each parameter of a given
reservoir and a given set of operational parameters. Since uncertainty in parameters
is taken into account, this approach gives more realistic results compared to

deterministic approach, by quantifying the uncertainty.

In the screening tool, 23 reservoir, 6 operational and 2 economical parameters can
be entered as inputs, besides, there are two options for thickness, porosity and
permeability parameters. While these parameters can be specified for each layer
with “Layer by Layer Values” option, they can also be defined as total thickness,
average porosity and permeability, and Lorenz coefficient with “Total/Average
Values” option (Figure 7.28).

| @) Layer by Layer Values ) Totalthverage Values
Ranges
Thickness Porosity ~ Permeability )
Total Thickness it 66 - 471
Layer-1 | | | |  Average Parosity fraction 0.10-0.28
Layer-2 Average Permeability mD 21-1648
| | | | Lorenz Coefficient fraction 0.0-10
Layer-3 | | | |
Layer-4 | | | |
Layer-5 | | | |
ft fraction mD
Ranges 66 - 471 0.10-0.38 21 - 1648
(Total) [Average) (Average)

Figure 7.28 Specification of thickness, porosity and permeability for
deterministic approach.

In “Layer by Layer Values” option, by taking two or more layers as a one layer,

system can be adjusted to different numbers of layers as required. For instance, a
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two layered system, having 36 and 20 ft thicknesses, can be entered as seen in

Figure 7.29. For probabilistic approach, for one to four layered systems, narrow

ranges should be specified (Figure 7.30).

Thickness Parosity Permeability

Layer-1 12 0.25 1500
Layer-2 12 0.25 1500
Layer-3 12 0.25 1500
Layer-4 10 0.3 1800
Layer-5 10 0.3 1800
i fracuon mo

Ranges 66 - 471 0.10-0.38 21-1648

(Total) (Average) (Average)

Figure 7.29 Two layered system for
deterministic approach.

Buttons and Their Functions

Thickness Porosity  Permeability

min

Layer-1 43 028 1500
max 50 0.3 1700
min

Layer-2 43 n.2a 1500
max 50 0.3 1700
min

Layer-3 2 0.3 1700
max 8 0.33 1800
min

Layer-4 ] 027 1250
max 15 0.3 1350
min

Layer-5 9 n.2a 1750
max 11 0.3 1800

it fraction mD
Ranges B6 - 4715 0.10-0.38 21- 1648

(total} (average) (average)

Figure 7.30 Four layered system for
probabilistic approach.

In deterministic and probabilistic approaches, there are the “Excel” buttons

connected to pre-processed Microsoft Excel (2013) file in order to import input

data. User can use either this button or GUI screen to enter the input parameters to

the tool.

In deterministic approach, one of the “Calculate” buttons is related with viscosity

(Figure 7.31). In the tool, to calculate viscosity of oil, viscosity coefficient A and B

should be entered. For the one who do not know these values, a viscosity calculation

part is created. Proper values can be found with trial and error method by setting

the desired viscosity.
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Viscosity Coefficient of A cp
Wiscosity Coefficient of B F

‘-.-"iSCUSi'L'ﬁl' {depend on depth, awisc and bwsc) Calculate cp

Figure 7.31 Viscosity determination part in deterministic approach.

The other “Calculate” button in deterministic approach is used to calculate
efficiencies for five different time periods and to accept or reject a given CSI
proposal from a representative performance indicator. By considering oil price and
steam cost, certain efficiency values can be obtained. If an economic efficiency is
above 1, it is indicating that the income is greater than steam cost. If it is below 1,
than the cost is more than the income. The same button is also created in the
probabilistic approach. Compared with the deterministic approach, for probabilistic
approach, the efficiencies are calculated with 90, 50 and 10% expectations. User
can identify all possible scenarios within determined ranges and analyze the
performance of CSI process in the selected reservoir.

The last button group is related to the “Expectation curve”. There are five different

buttons to plot expectation curves for different time periods: 10, 8, 6, 4 and 2 years.
When the efficiencies are calculated, the expectation graph for 2 years is plotted as
a default. User can plot other curves by selecting the desired time period.

Figure 7.32 and 7.33 indicate example simulations of the tool for The Liaohe

Oilfield as deterministic and probabilistic approach, respectively.
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CHAPTER 8

CONCLUSIONS

In this study, a five layered heterogeneous reservoir model is constructed using a
commercial simulator to study cycle steam injection process. 50 different
parameters including capillary pressure, relative permeability and thermal
properties are considered. A dataset is created with many different scenarios with
different combinations of these parameters with predefined statistical distributions
and ranges taken from the literature. After running these scenarios, incremental oil
production and incremental steam injection results for 10 years are collected to
calculate efficiencies at 2-year intervals. By training and testing with the input
parameters and efficiencies, a neural-network based screening tool is developed for
estimating the performance of a CSI operation for all kinds of heavy oil reservoirs

in a rapid way.

In order to evaluate the effects of the parameters, detailed parametric analyses are
performed. After development of the screening tool, a sensitivity study is conducted
and the accuracy of the screening tool is evaluated. As a practical example for the
screening tool, the Liaohe Oilfield is used and the efficiencies are calculated with
both deterministic and probabilistic approaches.

The key conclusions drawn from this study are listed as follows:

1. Five different ANN models are created separately to predict each time
period due to the complexity of the building one ANN model with five
different time periods. This helped to improve the training performance.

2. To train these models precisely, it is important to distribute the cases

uniformly in train, validation and testing sets.
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10.

With a validation study, performed by comparing screening tool results with
simulator results, it is seen that the screening tool captures the flow
dynamics of CSI process and can predict the efficiency of any reservoir
within the ranges.

Selecting the parameters out of the ranges decreases the accuracy of the
prediction of efficiencies.

The screening tool can output the performance of a selected CSI operation
by estimating the efficiency within a reasonable accuracy, eliminating
convergence issues with simulators.

Significant resources such as manpower, computing and time are not
required to use the screening tool.

The increase in initial oil saturation, irreducible water saturation and the
exponential coefficient of relative permeability increases the efficiencies.
The decrease in initial water saturation, residual oil saturation and the
viscosity coefficients increases the efficiencies.

While soaking time does not affect the efficiency, the increase in injection
time affects the efficiencies negatively.

Considering oil price and steam cost is important to analyze the efficiency

values with a more realistic perspective.

82



CHAPTER 9

RECOMMENDATIONS FOR FUTURE WORK

This study can be further improved with the following items:

1.

Instead of using 10 years production period in simulator model, number of
cycles can be considered to run the model.

The number of parameters can be decreased and influential parameters can
be focused on more effectively.

Steam generation options and their costs can be integrated into the screening
tool. For example, solar-energy assisted steam generation, a potential
application of steam generators for the seasonal availability of the sunlight
throughout the year in most parts of the world, can be integrated to the tool
by studying the feasibility aspect.

For further economic analysis, facility and operational costs can be also
incorporated.

Optimum operational parameters can be calculated by including an

optimization routine in the GUI application.
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APPENDIX A

AN EXAMPLE SIMULATOR TEMPLATE WITH CSI

**—————==—===—======= |NPUT/OUTPUT CONTROL =================
RESULTS SIMULATOR STARS

*INTERRUPT *STOP

*TITLEL1 'DEVELOPMENT OF A SCREENING MODEL FOR THE CYCLIC STEAM
INJECTION (CSS) PROCESS

*INUNIT *FIELD ** output same as input

*OUTPRN *GRID *PRES *SW *SO *SG *TEMP *Y *X *W *SOLCONC *OBHLOSS
*VISO *VISG

*OUTPRN *WELL *ALL

*WRST 200

*WPRN *GRID 200

*WPRN *ITER 200

*WSRF SECTOR TIME

*OUTSRF *GRID *PRES *SO *SG *TEMP

**———=—=—=—=—====== GRID AND RESERVOIR DEFINITION =============
*GRID *RADIAL 12 1 5*RW 0 ** Zero inner radius matches previous treatment
** Radial blocks: small near well; outer block is large

** well drainage area: 20

*DI *IVAR 1.55 2.39 3.705.72 8.85 13.69 21.17 32.74 50.64 78.33 121.14 187.37
*KDIR DOWN

*DJ *CON 360 ** Full circle

*DK *KVAR 4 13 14 82 39

*DEPTH 111 2495

*POR *KVAR 0.17 0.18 0.24 0.28 0.20

*PERMI *KVAR 239 480 698 38 571

*PERMJ *EQUALSI

*PERMK *EQUALSI /2.22

*END-GRID

*ROCKTYPE 1

*CPOR 7.542063e-06

*PRPOR 14.7

*ROCKCP 104

*THCONR 37

*THCONW 8.3

*THCONO 1.60

*THCONG 0.51

*HLOSSPROP *OVERBUR 38 59 *UNDERBUR 38 59
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*% —o=—==—==—=—=—=—===—==== FLUID DEFINITIONS ==================
*MODEL 222 ** Components are water and dead oil. Most water

** properties are defaulted (=0). Dead oil K values

** are zero, and no gas properties are needed.
*COMPNAME  "Water" "OIL"

**

*CMM 18.02 584
*PCRIT 3206.2 0 ** These four properties
*TCRIT 705.4 0 ** are for the gas phase.
*AVG 1.13e-5 0 ** The dead oil component does
*BVG 1.075 0 ** not appear in the gas phase.
*MASSDEN 0 62.0
*CP 0 5.e-6
*CT1 0 3.94e-4
*CPL1 0 1
*AVISC 0 0.02211
*BVISC 0 6067
*PRSR 14.7
*TEMR 60
*PSURF 14.7
*TSURF 60
**% —============= ROCK-FLUID PROPERTIES ==============
*ROCKFLUID
*SWT ** Water-oil relative permeabilities
** Sw Krw Krow Pcow

**

0.25 0.000000 1.000000 9.438175
0.30 0.000137 0.670959 7.161045
0.35 0.001964 0.429810 5.489804
0.40 0.009323 0.259687 4.326815
0.45 0.028147 0.145385 3.574438
0.50 0.066320 0.073393 3.135036
0.55 0.133587 0.031935 2.910968
0.60 0.241489 0.011022 2.804598
0.65 0.403306 0.002518 2.718286
0.70  0.634020 0.000222 2.554394
0.75 1.000000 0.000000 2.215283
*SLT ** Liquid-gas relative permeabilities
** Sl Krg Krog  Pcog

**

0.25 1.000000 0.000000 1.160117
0.30 0.754187 0.000038 0.945986
0.35 0.567366 0.000486 0.772615
0.40 0.417203 0.002212 0.635640
045 0.298681 0.006539 0.530694
0.50 0.207121 0.015214 0.453413
0.55 0.138190 0.030386 0.399431
0.60 0.087904 0.054597 0.364382
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0.65 0.052635 0.090767 0.343902
0.70  0.029117 0.142185 0.333624
0.75 0.014455 0.212505 0.329183
0.80 0.006135 0.305732 0.326214
0.85 0.002032 0.426225 0.320351
0.90 0.000428 0.578684 0.307230
0.95 0.000030 0.768150 0.282484
1.00 0.000000 1.000000 0.241748

*% ——===—=—====—=—===—=== |NITIAL CONDITIONS =================
*INITIAL

** Automatic static vertical equilibrium

*VERTICAL *DEPTH_AVE

*REFPRES 1009

*REFBLOCK 111

*TEMP *CON 96

*SW *CON 0.38

*SO *CON 0.62

**% —=======—========= NUMERICAL CONTROL =================
*NUMERICAL ** All these can be defaulted. The definitions
** here match the previous data.
*SDEGREE GAUSS
*DTMAX 90
*NORM *PRESS 200 *SATUR 0.2 *TEMP 180 *Y 0.2 *X 0.2
*RUN

*DATE 2017 06 01
*DTWELL 0.01
** INJECTOR: Constant pressure steam injection type
*WELL 1 'Injector 1' *VERT 11
*INJECTOR *MOBWEIGHT EXPLICIT 'Injector 1'
*INCOMP WATER 1.0 0.0
*TINJW 520
QUAL 0.76
*OPERATE *MAX *STW 946 CONT  ** Maximum water rate
*PERFV 'Injector 1'
1 1000000.00
2 1000000.00
3 1000000.00
4 1000000.00
5 1000000.00
** PRODUCER: Constant liquid rate type
*WELL 2 'Producer 1' *VERT 1 1
*PRODUCER 'Producer 1'
*OPERATE *MAX *STL 10000 CONT ** Starting liquid rate
** rad geofac wfrac skin
GEOMETRY K 0.25 1.0 1.0 0.0
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PERF GEO 'Producer 1'
** UBA ff Status Connection

111 1 OPEN FLOW-FROM 'SURFACE' REFLAYER
112 1 OPEN FLOW-FROM 1
113 1 OPEN FLOW-FROM 2
114 1 OPEN FLOW-FROM 3

115 1 OPEN FLOW-FROM 4
ALTER ‘Injector 1'
946
SHUTIN 'Producer 1'
OPEN 'Injector 1'
TRIGGER 'produce’
ON_WELL 'Injector 1' STW-CI > 42570
APPLY_TIMES 100 INCREMENT 42570
SHUTIN 'Injector 1'
TRIGGER 'soak’
ON_ELAPSED 'time'treltd > 16
OPEN 'Producer 1'
TRIGGER 'check’
ON_WELL 'Producer 1' STO-RP > 14
TRIGGER ‘check2'
ON_ELAPSED 'time'treltd > 1.0
TRIGGER 'inject'
ON_WELL 'Producer 1' STO-RP < 14
SHUTIN 'Producer 1'
OPEN 'Injector 1'
END_TRIGGER
END_TRIGGER
END_TRIGGER
END_TRIGGER
END_TRIGGER
TIME 365
TIME 760
TIME 1095
TIME 1460
TIME 1825
TIME 2190
TIME 2555
TIME 2920
TIME 3285
TIME 3650
STOP
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APPENDIX B

AN EXAMPLE SIMULATOR TEMPLATE WITHOUT CSI

**—————==—===—======= |NPUT/OUTPUT CONTROL =================
RESULTS SIMULATOR STARS

*INTERRUPT *STOP

*TITLEL1 'DEVELOPMENT OF A SCREENING MODEL FOR THE CYCLIC STEAM
INJECTION (CSS) PROCESS

*INUNIT *FIELD ** output same as input

*OUTPRN *GRID *PRES *SW *SO *SG *TEMP *Y *X *W *SOLCONC *OBHLOSS
*VISO *VISG

*OUTPRN *WELL *ALL

*WRST 200

*WPRN *GRID 200

*WPRN *ITER 200

*WSRF SECTOR TIME

*OUTSRF *GRID *PRES *SO *SG *TEMP

**———=—=—=—=—====== GRID AND RESERVOIR DEFINITION =============
*GRID *RADIAL 12 1 5*RW 0 ** Zero inner radius matches previous treatment
** Radial blocks: small near well; outer block is large

** well drainage area: 20

*DI *IVAR 1.55 2.39 3.705.72 8.85 13.69 21.17 32.74 50.64 78.33 121.14 187.37
*KDIR DOWN

*DJ *CON 360 ** Full circle

*DK *KVAR 4 13 14 82 39

*DEPTH 111 2495

*POR *KVAR 0.17 0.18 0.24 0.28 0.20

*PERMI *KVAR 239 480 698 38 571

*PERMJ *EQUALSI

*PERMK *EQUALSI /2.22

*END-GRID

*ROCKTYPE 1

*CPOR 7.542063e-06

*PRPOR 14.7

*ROCKCP 104

*THCONR 37

*THCONW 8.3

*THCONO 1.60

*THCONG 0.51

*HLOSSPROP *OVERBUR 38 59 *UNDERBUR 38 59
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*% —o=—==—==—=—=—=—===—==== FLUID DEFINITIONS ==================
*MODEL 222 ** Components are water and dead oil. Most water

** properties are defaulted (=0). Dead oil K values

** are zero, and no gas properties are needed.
*COMPNAME  "Water" "OIL"

**

*CMM 18.02 584
*PCRIT 3206.2 0 ** These four properties
*TCRIT 705.4 0 ** are for the gas phase.
*AVG 1.13e-5 0 ** The dead oil component does
*BVG 1.075 0 ** not appear in the gas phase.
*MASSDEN 0 62.0
*CP 0 5.e-6
*CT1 0 3.94e-4
*CPL1 0 1
*AVISC 0 0.02211
*BVISC 0 6067
*PRSR 14.7
*TEMR 60
*PSURF 14.7
*TSURF 60
**% —============= ROCK-FLUID PROPERTIES ==============
*ROCKFLUID
*SWT ** Water-oil relative permeabilities
** Sw Krw Krow Pcow

**

0.25 0.000000 1.000000 9.438175
0.30 0.000137 0.670959 7.161045
0.35 0.001964 0.429810 5.489804
0.40 0.009323 0.259687 4.326815
0.45 0.028147 0.145385 3.574438
0.50 0.066320 0.073393 3.135036
0.55 0.133587 0.031935 2.910968
0.60 0.241489 0.011022 2.804598
0.65 0.403306 0.002518 2.718286
0.70  0.634020 0.000222 2.554394
0.75 1.000000 0.000000 2.215283
*SLT ** Liquid-gas relative permeabilities
** Sl Krg Krog  Pcog

**

0.25 1.000000 0.000000 1.160117
0.30 0.754187 0.000038 0.945986
0.35 0.567366 0.000486 0.772615
0.40 0.417203 0.002212 0.635640
045 0.298681 0.006539 0.530694
0.50 0.207121 0.015214 0.453413
0.55 0.138190 0.030386 0.399431
0.60 0.087904 0.054597 0.364382
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0.65 0.052635 0.090767 0.343902
0.70  0.029117 0.142185 0.333624
0.75 0.014455 0.212505 0.329183
0.80 0.006135 0.305732 0.326214
0.85 0.002032 0.426225 0.320351
0.90 0.000428 0.578684 0.307230
0.95 0.000030 0.768150 0.282484
1.00 0.000000 1.000000 0.241748

*% ——===—=—====—=—===—=== |NITIAL CONDITIONS =================
*INITIAL

** Automatic static vertical equilibrium

*VERTICAL *DEPTH_AVE

*REFPRES 1009

*REFBLOCK 111

*TEMP *CON 96

*SW *CON 0.38

*SO *CON 0.62

**% —================ NUMERICAL CONTROL =================
*NUMERICAL ** All these can be defaulted. The definitions
** here match the previous data.
*SDEGREE GAUSS
*DTMAX 90
*NORM *PRESS 200 *SATUR 0.2 *TEMP 180 *Y 0.2 *X 0.2
*RUN

*DATE 2017 06 01
*DTWELL 0.01
** INJECTOR: Constant pressure steam injection type
*WELL 1 'Injector 1' *VERT 11
*INJECTOR *MOBWEIGHT EXPLICIT 'Injector 1'
*INCOMP WATER 1.0 0.0
*TINJW 520
QUAL 0.76
*OPERATE *MAX *STW 946 CONT  ** Maximum water rate
*PERFV 'Injector 1'
1 1000000.00
2 1000000.00
3 1000000.00
4 1000000.00
5 1000000.00
** PRODUCER: Constant liquid rate type
*WELL 2 'Producer 1' *VERT 1 1
*PRODUCER 'Producer 1'
*OPERATE *MAX *STL 10000 CONT ** Starting liquid rate
** rad geofac wfrac skin
GEOMETRY K 0.25 1.0 1.0 0.0
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PERF GEO 'Producer 1'
** UBA ff Status Connection

111 1 OPEN FLOW-FROM 'SURFACE' REFLAYER
112 1 OPEN FLOW-FROM 1
113 1 OPEN FLOW-FROM 2
114 1 OPEN FLOW-FROM 3

115 1 OPEN FLOW-FROM 4
SHUTIN 'Injector 1'
OPEN 'Producer 1'
TIME 365
TIME 760
TIME 1095
TIME 1460
TIME 1825
TIME 2190
TIME 2555
TIME 2920
TIME 3285
TIME 3650
STOP
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APPENDIX C

MATLAB - ANN TRAINING CODE

filename="ANN - eff10.xlsx’;
sheet=1;
io_all=xlIsread(filename,sheet,'D7:BC5970);

%96%%%%%%%%% %% %% % % %% %%%% %% %% %% % % %
caseno=5964;

ni=36; %number of input neurons

no=1; %number of outputs neurons

%Number of training, validation, testing
ntrain=4772;

nval=596;

ntest=596;

%Number of hidden neurons
numhid=((ni+no)/2)+sqgrt(ntrain);

nh1=30; nh2=10; nh=nhl+nh2; 9% Two hidden layers
year=2;

%Adjustment of training parameters

g0al=0.00001;%Accuracy check

epochs=15000;%*# of iterations check

max_fail=6;%# of validation check
memoryReduction=2;%Reduction of memory requirements
%%0%%%%%%% %% %% %% %% % %% % %% % %% % %% % %%

%Normalizing Inputs separately

%Grid & Reservoir Parameters

P(1,:)=(io_all(1:caseno,1));[Pn(1,:),ps(1,:)]=mapminmax(P(1,:),-1,1); %Area
P(2,:)=(io_all(1:caseno,2))’;[Pn(2,:),ps(2,:)]=mapminmax(P(2,:),-1,1); %Total Thickness
P(3,:)=(io_all(1:caseno,3))’;[Pn(3,:),ps(3,:)]=mapminmax(P(3,:),-1,1); %Reservoir Depth
P(4,:)=(io_all(1:caseno,4))";[Pn(4,:),ps(4,:)]=mapminmax(P(4,:),-1,1); %kv/kh
P(5,:)=(io_all(1:caseno,5))";[Pn(5,:),ps(5,:)]=mapminmax(P(5,:),-1,1); %Average Porosity
P(6,:)=(io_all(1:caseno,6))’;[Pn(6,:),ps(6,:)]=mapminmax(P(6,:),-1,1); %Average Permeability
P(7,:)=(io_all(1:caseno,7))";[Pn(7,:),ps(7,:)]=mapminmax(P(7,:),-1,1); %Rock Compressibility
P(8,:)=(io_all(1:caseno,8))";[Pn(8,:),ps(8,:)]=mapminmax(P(8,:),-1,1); %Heat Capacity of Formation
P(9,:)=(io_all(1:caseno,9))";[Pn(9,:),ps(9,:)]=mapminmax(P(9,:),-1,1); %Thermal Conductivity of Formation
P(10,:)=(io_all(1:caseno,10))";[Pn(10,:),ps(10,:)]=mapminmax(P(10,:),-1,1); % Thermal Conductivity of Oil
P(11,:)=(io_all(1:caseno,11));[Pn(11,:),ps(11,:)]=mapminmax(P(11,:),-1,1); % Thermal Conductivity of Gas
P(12,:)=(io_all(1:caseno,12));[Pn(12,:),ps(12,:)]=mapminmax(P(12,:),-1,1); %Heat Capacity of Shale
P(13,:)=(io_all(1:caseno,13))";[Pn(13,:),ps(13,:)]=mapminmax(P(13,:),-1,1); %Thermal Conductivity of Shale
%Fluid Parameters

P(14,:)=(io_all(1:caseno,14));[Pn(14,:),ps(14,:)]=mapminmax(P(14,:),-1,1); %0il Molecular Weight
P(15,:)=(io_all(1:caseno,15))";[Pn(15,:),ps(15,:)]=mapminmax(P(15,:),-1,1); %0il Mass Density
P(16,:)=(io_all(1:caseno,16))";[Pn(16,:),ps(16,:)]=mapminmax(P(16,:),-1,1); %0il Specific Gravity
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P(17,:)=(io_all(1:caseno,17));[Pn(17,:),ps(17,:)]=mapminmax(P(17,:),-1,1); %0il API Gravity
P(18,:)=(io_all(1:caseno,18))";[Pn(18,:),ps(18,:)]=mapminmax(P(18,:),-1,1); %Heat Capacity of Oil
P(19,:)=(io_all(1:caseno,19));[Pn(19,:),ps(19,:)]=mapminmax(P(19,:),-1,1); %Viscosity Coefficient A
P(20,:)=(io_all(1:caseno,20))";[Pn(20,:),ps(20,:)]=mapminmax(P(20,:),-1,1); %Viscosity Coefficient B
%Rock and Fluid Properties

P(21,:)=(io_all(1:caseno,21));[Pn(21,:),ps(21,:)]=mapminmax(P(21,:),-1,1); %Residual Oil Saturation
P(22,:)=(io_all(1:caseno,22));[Pn(22,:),ps(22,:)]=mapminmax(P(22,:),-1,1); %Irreducible Water Saturation
P(23,:)=(io_all(1:caseno,23))";[Pn(23,:),ps(23,:)]=mapminmax(P(23,:),-1,1); %Rel. Perm. Exponent
P(24,:)=(io_all(1:caseno,24))";[Pn(24,:),ps(24,:)]=mapminmax(P(24,:),-1,1); %Cap. Pres. Coefficient for Oil
P(25,:)=(io_all(1:caseno,25))";[Pn(25,:),ps(25,:)]=mapminmax(P(25,:),-1,1); %Cap. Pres. Coefficient for Gas
%lnitial Conditions

P(26,:)=(io_all(1:caseno,26))";[Pn(26,:),ps(26,:)]=mapminmax(P(26,:),-1,1); %Reservoir Pressure
P(27,:)=(io_all(1:caseno,27))";[Pn(27,:),ps(27,:)]=mapminmax(P(27,:),-1,1); %Reservoir Temperature
P(28,:)=(io_all(1:caseno,28))";[Pn(28,:),ps(28,:)]=mapminmax(P(28,:),-1,1); %Initial Water Saturation
P(29,:)=(io_all(1:caseno,29))";[Pn(29,:),ps(29,:)]=mapminmax(P(29,:),-1,1); %Initial Oil Saturation
%Steam and Production Parameters
P(30,:)=(io_all(1:caseno,30))";[Pn(30,:),ps(30,:)]=mapminmax(P(30,:),-1,1); %Steam Temperature
P(31,:)=(io_all(1:caseno,31)),;[Pn(31,:),ps(31,:)]=mapminmax(P(31,:),-1,1); %Steam Quality
P(32,:)=(io_all(1:caseno,32))";[Pn(32,:),ps(32,:)]=mapminmax(P(32,:),-1,1); %Steam Injection Rate
P(33,:)=(io_all(1:caseno,33))";[Pn(33,:),ps(33,:)]=mapminmax(P(33,:),-1,1); %Injection Time
P(34,:)=(io_all(1:caseno,34))";[Pn(34,:),ps(34,:)]=mapminmax(P(34,:),-1,1); %Soaking Time
P(35,:)=(io_all(1:caseno,35))";[Pn(35,:),ps(35,:)]=mapminmax(P(35,:),-1,1); %Economic Rate Limit
%Lorenz Coefficient (thickness-porosity-permeability)
P(36,:)=(io_all(1:caseno,36))";[Pn(36,:),ps(36,:)]=mapminmax(P(36,:),-1,1);

%Normalizing Outputs
T(1,:)=(io_all(1:caseno,47)),;[Tn(1,:),ts(1,:)]=mapminmax(T(1,:),-1,1); %Np/Si-Efficiency - 2

%Fixing weights - trying different # of hidden neurons and train-val-test sets
rand('state’,0);

%Creating backpropagation algorithm
net=fitnet([nh1 nh2]); % two hidden layers

%Division of data set for training, validation, testing
net.divideFcn = 'divideind’;

net.divideParam.trainlnd = 1:ntrain;
net.divideParam.vallnd = ntrain+1:ntrain+nval;
net.divideParam.testind = ntrain+nval+1:ntrain+nval+ntest;

%Adjustment of training parameters

net.trainParam.goal=goal;%Accuracy check

net.trainParam.epochs=epochs;%# of iterations check
net.trainParam.max_fail=max_fail;%# of validation check
net.efficiency.memoryReduction=memoryReduction;%Reduction of memory requirements
net.trainParam.showWindow=true;

%Network Training
[net,tr]=train(net,Pn,Tn);

%Data Set Separation
Pn_train=Pn(1:ni,1:ntrain);
Tn_train=Tn(1:no,1:ntrain);
T_train=T(1:no,1:ntrain);

Pn_val=Pn(1:ni,ntrain+1:ntrain+nval);
Tn_val=Tn(1:no,ntrain+1:ntrain+nval);
T_val=T(1:no,ntrain+1:ntrain+nval);
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Pn_test=Pn(1:ni,ntrain+nval+1:ntrain+nval+ntest);
Tn_test=Tn(1:no,ntrain+nval+1:ntrain+nval+ntest);
T_test=T(1:no,ntrain+nval+1:ntrain+nval+ntest);

%Simulation of the network with the training/validation/testing data
Tn_train_ann=sim(net,Pn_train);

Tn_val_ann=sim(net,Pn_val);

Tn_test_ann=sim(net,Pn_test);

Tn_ann=[Tn_train_ann Tn_val_ann Tn_test_ann];

%Denormalization of the outputs

for i=1:no;
T_train_ann(i,:)=mapminmax(‘reverse', Tn_train_ann(i,:),ts(i,:));
T_val_ann(i,:)=mapminmax('reverse',Tn_val_ann(i,:),ts(i,:));
T_test_ann(i,:)=mapminmax(‘reverse', Tn_test_ann(i,:),ts(i,:));

end

T_ann=[T_train_ann T_val_ann T_test_ann];

%Error Calculation
Error_train=abs(T_train-T_train_ann);
Error_val=abs(T_val-T_val_ann);
Error_test=abs(T_test-T_test_ann);
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