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ABSTRACT 

DEVELOPMENT OF A SCREENING MODEL FOR THE CYCLIC 

STEAM INJECTION (CSI) PROCESS 

 

Yalgın, Gamze 

M.S., Department of Petroleum and Natural Gas Engineering 

Supervisor: Prof. Dr. Mustafa Verşan Kök 

Co-Supervisor: Assoc. Prof. Dr. Emre Artun 

 

 

January 2018, 101 pages 

Cyclic steam injection (CSI), a single-well enhanced oil recovery method for heavy 

oil reservoirs, is characterized with three stages: injection, soaking, and production 

which altogether constitute a cycle. In this study, it is aimed to develop a screening 

model that can be used to accept or reject a given CSI proposal from a representative 

performance indicator. This indicator is estimated from a large set of reservoir & 

CSI design characteristics, using the screening model developed. The model has 

been trained by using an artificial neural network (ANN) that can estimate the 

process performance in a given reservoir depending on the steam-injection design 

parameters. The data that be used for the ANN is generated using a representative 

numerical reservoir model, built with a commercial simulator. A large number of 

simulation cases are generated using the experimental design methodology to 

account for a large variety of scenarios, and corresponding performance indicators 

such as incremental oil recovery, and injection efficiency, are collected. After 

proper training and validation, the screening tool is ready to estimate the 
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performance within a fraction of a second. Sensitivity study between the tool and 

numerical model showed that the tool captured the problem very well. According 

to the 90% of testing dataset results, the tool is able to estimate efficiencies with 

having less than 0.2 STB/STB absolute difference error. A probabilistic assessment 

study for a given reservoir illustrated the practicality of the tool. 

 

Keywords: cyclic steam injection, enhanced oil recovery, numerical simulation 

model, artificial neural network, data-driven screening tool 
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ÖZ 

DÖNGÜSEL BUHAR ENJEKSİYONU (DBE) İNCELEME MODELİ 

GELİŞTİRME 

 

Yalgın, Gamze 

Yüksek Lisans, Petrol ve Doğal Gaz Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Mustafa Verşan Kök 

Ortak Tez Yöneticisi: Doç. Dr. Emre Artun 

 

 

Ocak 2018, 101 sayfa 

Ağır petrol rezervuarları için geliştirilmiş tek kuyu da uygulanan bir petrol çıkarma 

yöntemi olan döngüsel buhar enjeksiyonu (DBE) bir döngü şeklinde üç aşamada 

gerçekleşir: enjeksiyon, yayılma, ve üretim. Bu çalışmada, temsili performans 

belirleyiciye göre verilen DBE işlemini onaylayan veya reddeden bir inceleme 

modeli oluşturmak amaçlanmıştır. Performans belirleyici, geliştirilen inceleme 

modelini kullanarak geniş bir rezervuar ve DBE dizayn parametrelerinden tahmin 

edilir. Yapay sinir ağları (YSA) ile geliştirilen model; buhar enjeksiyon dizayn 

parametrelerine bağlı verilen rezervuardaki DBE işlem performansını tahmin 

edebilir. YSA’da kullanılan veriler; simülatörde oluşturularak temsili bir nümerik 

rezervuar modeli kullanılarak elde edilmiştir. Simülasyonda deneysel dizayn 

yöntemi kullanılarak çeşitli senaryolar tanımlanıp çok sayıda durum 

oluşturulmuştur. Artan petrol üretimi ve enjeksiyon verimliliği gibi senaryolara 

karşılık gelen performans belirleyiciler toplanmıştır. Uygun geliştirme ve 

doğrulamadan sonra inceleme modeli saniyeler içinde performans tahmini için 
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hazır duruma getirilmiştir. İnceleme modeli ve nümerik rezervuar modeli arasında 

yapılan duyarlılık analizi sonunda inceleme modelinin problem iyi öğrendiği 

görülmüştür. Test veri sonuçlarının %90’ına göre inceleme modeli performansları 

0.2 STB/STB’den düşük mutlak hata farkı ile tahmin etmektedir. Verilen bir 

rezervuar için olasılık değerlendirme çalışması inceleme modelinin 

kullanılabilirliğini göstermiştir. 

 

Anahtar Kelimeler: döngüsel buhar enjeksiyonu, geliştirilmiş petrol üretimi, 

nümerik simülasyon modeli, yapay sinir ağları, veriye dayalı inceleme modeli 
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CHAPTER 1 

1 INTRODUCTION 

 

According to Faergestad (2016), today’s total world oil resources are 9 to 13 trillion 

bbl and British Petroleum Statistical Review of 2017 shows that only 1.7 trillion of 

these resources can be counted as reserves. While light oil only accounts for 30% 

of the total world oil resources, heavy oil and the others account for 70% of the 

resources which corresponds to 6.3 to 9.1 trillion bbl. The amount of light oil met 

the demand of world up to now; however, continuous increase in the demand for 

oil and the decrease in the supply of light oil resulted in the need to consider other 

sources like heavy oil and natural bitumen. Therefore, recovering heavy and other 

resources has an important role in the petroleum industry. 

Light, heavy and natural bitumen are classified by their API gravities. Light oil is 

characterized by high API gravity and a low viscosity. On the other hand; low API 

and high viscosity are associated with heavy oil or natural bitumen. Heavy oil 

viscosity and gravity range from 100 to 10,000 cp and 20 to 10 API, respectively. 

Due to high viscosity and low API, heavy oil is slightly mobile in the reservoir and 

conventional production techniques cannot be used easily. In order to decrease 

viscosity and increase mobility, enhanced oil recovery (EOR) or tertiary 

recovery techniques are utilized. 

EOR is generally applied for increasing the oil production after primary and 

secondary recovery. Even though these techniques can be expensive, the recovery 

can be increased up to 50-70%. According to reservoir characteristics and 

feasibilities, different EOR methods can be applied as thermal and non-thermal 
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methods. For increasing heavy oil recovery, thermal methods are used which are 

steam flooding, cyclic steam injection (CSI), steam assisted gravity drainage 

(SAGD), hot water flooding and in situ combustion. In this study, cyclic steam 

injection is considered as a recovery method for heavy oil reservoirs. 

A number of studies have been conducted to improve the screening of cyclic steam 

injection process. These studies involve constraining reservoir models, simulating 

reservoirs in laboratory conditions, and using real and synthetic reservoir data. Most 

of the earlier screening criteria studies (Taber 1997, Ali et al. 1994, Trujillo et al. 

2010) focus on limited number of reservoir properties and they are based on limited 

number of real cases. Even though these studies can give an idea about the 

applicability of CSI via quantitative comparisons, they cannot provide any 

production and performance results. While the studies which can predict the 

performance provide ranges for different parameters, they are difficult to utilize for 

different combinations of reservoir parameters. Therefore, they kept most of the 

parameters as a constant.  

Modeling studies are important to simulate possible cases before applying in real 

life (Offeringa 1971, Pethrick et al. 1988, Scott et al. 1994, Razavi and Kharrat 

2009, Mongy and Shedid 2015). Although commercial simulators analyze and 

forecast the production of a reservoir, they are complex and time-consuming. They 

require significant resources (computing, manpower, time), yet convergence 

problems may occur in modeling of complex EOR processes. ANN-based models 

have been proven to be successful for both forward and inverse modeling 

applications for EOR (i.e. both performance forecasting and reservoir 

characterization). Screening tools have been developed in this way for different 

EOR methods, including cyclic steam injection in naturally fractured reservoirs 

(Silpngarmlers et al. 2002, Parada 2008, Artun 2009, Arpacı 2014, Sun and Ertekin 

2015). However, while some of the conducted studies are based on multi-layered 

reservoir models, they distributed the properties to each layer homogeneously and 
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did not consider the heterogeneity. Moreover, they neglect anisotropy of 

permeability, thermal properties and capillary pressures, and consider the EOR 

application for a short period of time. 

In this study, it is aimed to develop a screening model that can predict the 

performance of a CSI process, once a set of reservoir characteristics and steam-

injection design parameters are provided. The model is trained by using an artificial 

neural network (ANN) that can estimate the process performance in a given 

reservoir depending on the steam-injection design parameters. These parameters 

include steam injection rate, injected steam temperature, steam quality, durations 

of steam injection, soaking, and economic rate limit. The data used for the training 

of the ANN is generated using a representative numerical reservoir model, built 

with a commercial simulator (CMG, 2015). 

This thesis is organized into seven chapters as follows: 

• In Chapter 2, a literature survey for cyclic steam injection processes and 

applications of neuro-simulation in the petroleum industry are given.  

• In Chapter 3, the statement of the problem and workflow are included. 

• In Chapter 4, construction of the numerical model, ranges of reservoir and 

operational parameters are described in details. Grid sensitivity process is 

also explained. 

• In Chapter 5, principles of artificial neural networks including its structure, 

and architecture, and development of the screening model are presented. 

• In Chapter 6, results of numerical modeling and the screening model, 

analyses of the reservoir and operational parameters and a probabilistic 

assessment study for a given reservoir is presented. The graphical user 

interface (GUI) application is also presented. 

• In Chapter 7, a brief summary and key conclusions are given. 
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CHAPTER 2 

2 LITERATURE REVIEW 

 

2.1 Cyclic Steam Injection 

Cyclic steam injection is a single-well process for heavy oil reservoirs which means 

the same well is used for both injection and production. This method is also called 

cyclic steam stimulation and “huff and puff” steam injection. The aim of the process 

is to increase the temperature around the wellbore by using steam energy and 

decrease the viscosity of heavy oil. There are three stages: injection, soaking, and 

production as shown in Figure 2.1. 

 

Figure 2.1 Cyclic Steam Injection Stages: injection, soaking and production. 
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Injection Stage: In this stage, steam is injected into the reservoir to increase the 

temperature. Duration of this stage is generally 3 to 4 weeks depending on the 

reservoir conditions (Arpacı, 2014). 

Soaking Stage: After injection stage, the well is shut-in to let the steam diffuse into 

the formation. While the steam diffuses and increases the temperature in the 

reservoir, viscosity of heavy oil decreases and mobility of it increases. Duration of 

this stage is generally 2 to 3 weeks depending on the reservoir conditions (Arpacı, 

2014). This duration should be selected properly because if it is too short, steam 

cannot heat the formation or if it is too long, heat can be lost and reservoir may cool 

again.   

Production Stage: When the desired viscosity is reached, well is again put on 

production. Production continues until the production rate drops to an economic 

rate limit (Figure 2.2).  

After production rate reaches to an economic limit, whole cycle of injection, 

soaking, and production may be repeated until it is considered to be feasible. 

 

Figure 2.2 One cycle of cyclic steam injection with all stages. 
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In the late 1950s, a well in the Mene Grande Field located in Venezuela was 

backflowed due to reservoir pressure during a steam flooding process. The flow rate 

was increased and water cut was decreased compared to the unstimulated version 

of the well. This accident led to the discovery of today’s cyclic steam injection 

process (Trebolle et al., 1993). Compared to other thermal EOR techniques, in some 

cases, a cyclic steam injection application may not increase the oil recovery 

significantly by oneself since only a limited area around the well is affected by 

steam. However, due to possible geological complexities like shale barriers, faults, 

and disconnected formations, cyclic steam injection may be the only method that 

can be applied successfully. For example, in some Cold Lake Field projects in 

Alberta where ultimate oil recovery was lower than 20%, steam flooding was not 

feasible because of very high oil viscosity and high conductive zones. Another 

example is in the Marguerite Lake Field located in Canada where in-situ 

combustion was tried as a posterior process and concluded with limited success 

(Ali, 1994).  

Although CSI method is used to improve the recovery by itself, there are also some 

cases that it is used as a prior process to steam flooding, in-situ combustion, and 

CO2 injection in order to increase the recovery factor. For instance, in some 

Californian fields, steam flooding applied after CSI increased total recoveries 

approximately to 60% (Ali, 1994). Moreover, in Duri Field located in Indonesia, 

the steam flood also followed the CSI operation. With this flood, the largest steam 

flood in the world, about 300,000 BOPD were produced from more than 3000 wells 

(Gael et al., 1995). 

After CSI discovery, applications of this method were started in many heavy oil 

reservoirs and many research studies were conducted on the effects of the reservoir 

and operational parameters. By understanding the reservoir characteristics, steam 

properties, and injection conditions better, screening criteria, analytical modeling 
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and numerical modeling studies were conducted to implement a successful CSI 

operation. 

By examining the real successful EOR projects and considering the main 

mechanism of oil-displacement for EOR methods, Taber et al. (1997) proposed a 

screening criteria based on oil properties and reservoir characteristics. They studied 

on eight different EOR or IOR (improved oil recovery) methods include gas 

injections (nitrogen, hydrocarbon, CO2), water flooding (polymer, alkaline), 

thermal methods (in-situ, steam injection) and surface mining. According to API 

gravity, viscosity, oil composition, oil saturation, formation type, net thickness, 

permeability, depth and temperature, suitable EOR methods can be selected. 

Moreover, Ali et al. (1974, 1997) conducted two comprehensive surveys of steam 

injection to specify ranges for reservoir and operational parameters. Performed tests 

between 1960 and 1970 were analyzed and ranges were specified as in Table 2.1.  

Table 2.1 Cyclic steam injection screening criteria (Ali et al., 1997). 

Depth, ft < 3000 
Reservoir Thickness, ft > 30 

Porosity, % > 30 
Permeability, mD 1000 - 2000 

Initial Oil Saturation, % > 45 
API Gravity < 15 

Viscosity (@ Reservoir Condition), cp < 4000 
Steam Quality, % 80 - 85 

Steam Pressure, psi < 1400 
Injection Time, days 14-21 
Soaking Time, days 1-4 

 

Trujillo et al. (2010) built a software tool to determine a feasible EOR method for 

a reservoir by using screening criteria. Nineteen different EOR methods including 

CSI can be screened with the certain reservoir rock and fluid properties; such as 

porosity, permeability, viscosity, API, oil saturation, thickness, depth, temperature, 
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pressure and lithology. After determining the suitable method, by comparing 

reservoir and fluid properties, analog models are selected through approximately 

1000 real EOR cases to identify possible problems related to the selected EOR 

method. To form an opinion, this tool can be beneficial to determine the EOR 

method; however, results may not be accurate due to limited number of reservoir 

parameters and real EOR cases. Although, screening criteria studies are useful to 

have an idea about the applicability of CSI for a selected reservoir, production or 

performance data cannot be obtained. 

There are also a large number of analytical model studies developed to predict the 

performance of a CSI process and almost all of these models used the Boberg-Lanz 

model and the Mark-Langenheim model to calculate heat losses and estimate the 

radius of the heated zone, respectively (Green and Willhite, 1998). Some of those 

models are Jones model (1977, oil recovery from pressure depleted gravity drainage 

reservoir using CSI process), Gantijo and Aziz model (1984, radial flow toward 

vertical wells considering fluid flow and heat conduction together), Ozkan et al. 

(1999, pressure drop in the wellbore), Wu et al. (2011, inflow performance for 

horizontal well with gravity drainage using CSI) and Saripalli et al. (2017, oil 

production from horizontal wells using CSI). Albeit an exact solution, existing 

analytical models are only homogenous systems can be solved. 

When the number of parameters increases, the process gets more complex. Due to 

the number of unlimited combinations of reservoir and operational parameters, it is 

hard to find the optimum solution for a given reservoir. Offeringa (1971) developed 

a mathematical cyclic steam injection model by keeping most of the parameters as 

constants. These parameters were taken from physical laboratory models or real 

cyclic steam injection wells. By using different amounts of steam and lengths of a 

cycle, the model was calibrated and the optimum production performance of the 

well was predicted. However, due to keeping parameters constant, this study is 

limited to performance estimation only.  
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Another optimization study was published by Pethrick et al. (1988). A numerical 

model was built for cyclic steam injection process by using data of Cold Lake Field, 

one of the world’s largest heavy oil sources located in northern Alberta.  The aim 

of the study was to optimize the operating strategies for multiple wells and a single 

well. The results obtained from this study showed that reservoir modeling is useful 

in order to optimize CSI performance. Furthermore, by using simulation, a number 

of field pilot tests can be reduced and a cost-effective process can be achieved. 

According to Scott et al. (1994), field performances and some research studies have 

shown that increase in temperature by CSI may cause the occurrences of stresses 

and deformations. The change in heavy oil formation structure affects the 

permeability and water mobility of a reservoir. In their study, changes in the stress 

path and temperature were tried to be modeled by using testing equipment and 

experimental procedures. Moreover, the relations between the volume and 

permeability were figured out by using Cold Lake Field data. A numerical 

simulation modeling study conducted by Razavi and Kharrat (2009) was designed 

with data taken from one of the fractured heavy oil reservoirs located in Iran to find 

optimum recovery. Because of having less capital cost, less pressure operation and 

fast production period compared to steam flooding, CSI was chosen as a thermal 

method. Many CSI scenarios were created by changing the number of wells and 

directions, steam injection rates, production rates, soaking time and steam quality 

to determine the effect of operational parameters. They concluded that by using this 

thermal method, the oil recovery could be increased from 0.66% to 10% in 10 years.  

Mongy and Shedid (2015) conducted a simulation study to create a suitable steam 

injection design for high cumulative oil recovery into a Middle Eastern heavy oil 

reservoir. By changing the steam properties, well completion and well spaces, 

different scenarios were created to analyze the effects of parameters on production 

performance and to optimize both cyclic and continuous steam injection.  
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As seen in the reviewed studies, reservoir simulators can be used to model the 

possible flow behaviors of a certain reservoir for forecasting the performance of a 

CSI. A model can be run many times with less manpower and expense in a short 

period of time; however a real field application can be done only once. Therefore, 

numerical simulation models are the most effective way to solve problems and to 

analyze the optimum values under different possible scenarios. 

2.2 Artificial Neural Network  

Artificial Neural Network (ANN) is known as a biologically inspired information-

processing system. By using the relations between a problem and its solution, ANN 

creates connection links between them to solve similar problems like a human brain 

system. In 1943, a paper about the working principle of neurons was written by 

neurophysiologist Warren McCulloch and mathematician Walter Pitts, and in 1960, 

to solve a real world problem, the first neural network about a filter eliminating 

echoes on phone lines was developed (Kriesel, 2011). After this application, its 

usage started to become widespread and it was tried to be improved.  

In the petroleum industry, there are a large number of artificial neural network 

applications as the following (McCormack, 1991); 

• Exploration; identification of microfossils, analysis of gas chromatography, 

gravity/magnetics modeling, seismic data processing and other applications 

for seismic, etc. 

• Drilling; drill bit quality assessment system, etc. 

• Reservoir and Production; predicting water saturation (Al-Bulushi et al., 

2007), analysis of pressure transient, analysis of gas well production, 

permeability prediction (Singh, 2005), EOR method selection (Shokir et al., 

2002), etc. 

For reservoir engineers especially those studying EOR methods, artificial neural 

network can be very useful to predict oil recovery in a given field because complex 

nonlinear relationships can be learned by ANN even if inputs are less precise. 
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Silpngarmlers et al. (2002) worked on ANN models that can predict two-phase 

relative permeability. Training and testing were done by using endpoint saturations, 

porosity, permeability, viscosity and interfacial tension as input parameters 

obtained from relative permeability experiments. In the same year, Shokir et al. 

studied on two neural networks to select a proper EOR method and check the 

feasibility of the selected method by considering only seven reservoir parameters 

which are area, porosity, permeability, reservoir depth, API gravity, viscosity and 

initial oil saturation. Parada (2008) created two neuro-simulation tools to screen and 

design different types of improved oil recovery (IOR) methods which are miscible 

injection, waterflooding and steam injection. The first tool predicts oil production 

profiles by using the reservoir and operational parameters as inputs. The second one 

works as an inverse ANN which predicts the operational parameters by using 

reservoir parameters and oil production profiles. Artun (2009) used artificial neural 

network based proxy models to check the feasibility of the cyclic pressure pulsing 

in different reservoir characteristics and to find the maximum efficiency of the 

project by optimization. Moreover, by developing an inverse ANN-based proxy 

model, optimized design parameters were provided for a given desired performance 

criteria. Arpacı (2014) built six different ANN models for naturally fractured 

reservoirs with horizontal wells to estimate the performance of CSI in a short 

period. Two of them predicts oil flow rate, a number of cycles, cumulative oil 

production, and duration of each cycle. Other two of them were built as inverse 

models to predict operational parameters from performance indicators. Last two out 

of six ANN was generated as predictors of reservoir parameters by using desired 

production profile and operational parameters as an inverse modeling approach. 

Despite built several ANN models, most of the parameters were taken as a constant 

include API gravity, residual oil and irreducible water saturations or neglected 

include anisotropy of permeability and capillary pressures. ANN-based proxy 

models were developed by Sun and Ertekin (2015) to be used in steam assisted 

gravity drainage (SAGD), and cyclic steam injection in naturally fractured 

reservoirs. The number of cycles for CSI, oil flow rate and cumulative oil 
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production can be predicted with given certain reservoir and operational 

parameters. These models help engineers to estimate the recovery of SAGD and 

CSI projects in a faster way. In addition to this, graphical user’s interface was 

developed to provide easy access and implementation to the ANN models to the 

users. Although it is one of the most elaborate study in the literature, the effect of 

the heterogeneity, anisotropy and capillary pressures were neglected. 

In all these reviewed studies, artificial neural networks were used to develop 

screening tools by learning the relationships between inputs and outputs. These 

tools compared to real field applications and simulations help to achieve desired 

outputs in seconds by using less manpower and energy spent.  

To develop a successful CSI operation, it is important to analyze the applicability 

and efficiency of CSI for a given reservoir. This requires understanding the 

relationships between all parameters of the process and their effects on the 

efficiency of CSI.  As mentioned in this chapter, generating a screening tool 

compared to field application and commercial simulators is a good option to 

analyze a large number of possible operational cases and design a successful CSI 

operation without complexity, manpower and long-computational time. Many 

screening tool studies about CSI operation have been conducted by neglecting the 

heterogeneity and some important reservoir parameters including capillary pressure 

and thermal properties. 
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CHAPTER 3 

3 STATEMENT OF THE PROBLEM 

 

Diversely in this study, the main objective is to develop a data-driven screening tool 

that can predict the performance of a CSI operation in a rapid way for all kinds of 

heavy oil reservoirs, once a set of reservoir characteristics and steam-injection 

design parameters of a reservoir are provided. It is desired to develop a tool that has 

the following characteristics which would also fill some of the important gaps in 

the existing models presented in the literature: 

• The reservoir model is constructed as a five layered heterogeneous system. 

Different thickness, porosity, horizontal and vertical permeability values 

can be defined for each layer. One, two, three and four layered 

heterogeneous and homogeneous systems can also be created  by changing 

these reservoir properties, 

• 50 different reservoir and operational parameters are analyzed in detail and 

36 of them are considered to build the screening model. By using Corey’s 

correlations, capillary pressure and relative permeability effects are 

included. Moreover, thermal conductivity and heat capacity of rock and 

reservoir fluids are also considered.  

• The screening tool can predict time dependent performance of CSI. Five 

artificial neural network models are developed to estimate efficiencies of 

any CSI operation for 10, 8, 6, 4 and 2 years. 
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CHAPTER 4 

4 METHODOLOGY 

 

In order to achieve these objectives, following steps are completed (Figure 4.1): 

1. Conceptual model construction 

• A reservoir model is constructed using a commercial simulator (CMG, 

2015) for cyclic steam injection. 

2. Data-base construction 

• Many different scenarios with different combinations of 56 reservoir 

and operational parameters are run in the simulator with and without 

CSI. 

3. Performance data collection 

• Incremental oil production and incremental steam injection results are 

collected to calculate efficiencies of 10, 8, 6, 4 and 2 years of CSI 

application.  

• Unreasonable cases are eliminated by checking for simulator errors and 

cases with only 1 cycle. 

4. Artificial Neural Network Design 

• By using results of rest of the cases, 5 different ANN-based screening 

models are separately trained and tested to estimate efficiency for 10, 

8, 6, 4 and 2 years of CSI application. 

5. Analysis 

• The results of numerical simulation model and ANN are compared and 

the accuracy of the ANN is evaluated. 
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• A reservoir having similar properties with a real field is created and it 

is run with 10,000 different operational parameters to find optimum 

values for injection design.  

• Monte Carlo Simulation analysis is also performed with 10,000 

different cases having different reservoir parameters and same 

operational parameters.  

• The effects of each parameter are examined by changing their 

maximum and minimum values in the base case and tornado charts are 

constructed with results of the numerical model and screening model.  

 

Figure 4.1 Summarized workflow of the study. 
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CHAPTER 5 

5 RESERVOIR MODEL CONSTRUCTION 

 

In order to train and test ANN models, a database was created by using a reservoir 

simulation model in CMG - Thermal & Advanced Processes Reservoir Simulator 

(STARS). This simulator can design thermal and compositional applications such 

as steam flooding, in-situ combustion, foam flooding and cyclic steam injection 

(CMG, 2015). 

The reservoir model was predicated on a CMG STARS template constructed by 

Aziz et al. (1987) with some changes (CMG, 2015). The model was defined as a 

radial heterogeneous reservoir with 12 logarithmically distributed grid points in the 

radial direction and five layers as seen in Figure 5.1. A well was drilled in the center 

of the grids to be used as a producer and an injector for CSI operation. 50 different 

reservoir rock-fluid and 6 operational parameters were used to build the model. 

 

 

Figure 5.1 A three-dimensional view of constructed reservoir model for CSI 
operation (CMG, 2015). 
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5.1 Reservoir Rock - Fluid Parameters 

Some fluid parameters indicated in Table 5.1 were taken from the Aziz et al.’s 

template or assumed as a constant. In addition to them, thermal conductivity of 

water and thermal expansion of oil were determined as 8.3 Btu/ft.day.F (Schön, 

2011) and 3.96E-4 1/F (Souraki et al., 2002), respectively. 

Table 5.1 Constant fluid parameters 

W
A

T
E

R
 

Molecular weight, lb/lbmole 18.02 

(C
M

G
, 2015) 

Critical pressure, psi 3206.2 

Critical temperature, oF 705.4 

Coefficients in power-law correlation for 
temperature dependence of gas-phase viscosity 

A, cp/ R 1.13E-5 

B 1.075 

Mass density, lb/ft3 0 

Compressibility, 1/ oF 0 

Thermal expansion, 1/ oF 0 

Heat capacity, Btu/lbmole.F 0 
Coefficients of the correlation for temperature 
dependence of component viscosity in the liquid 
phases. 

A, cp 0 

B, oR 0 
 

O
IL

 

Critical pressure, psi 0 

Critical temperature, oF 0 

Coefficients in power-law correlation for 
temperature dependence of gas-phase viscosity 

A, cp/ R 0 

B 0 

Compressibility, 1/ F 5.0E-6 
 
Porosity reference pressure, psi 14.7 A

SSU
M

PTIO
N

S 

Surface pressure, psi 14.7 
Surface temperature, oF 60 
Reference pressure for fluid properties, psi 14.7 
Reference temperature for T-dependent and thermal 
properties, oF 60 
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Apart from abovementioned parameters, 27 varying reservoir parameters were also 

used to construct the model:  

1. Thermal conductivity of oil (Btu/ft.day.F) 
2. Thermal conductivity of gas (Btu/ft.day.F) 
3. Thermal conductivity of formation rock  (Btu/ft.day.F) 
4. Thermal conductivity of upper/lower formation rock (Btu/ft.day.F) 
5. Heat capacity of formation rock  (Btu/ft3.F) 
6. Heat capacity of upper/lower formation rock (Btu/ft3.F) 
7. Porosity (fraction) 
8. Molecular weight of oil (lb/lbmole) 
9. Reservoir pressure (psi) 
10. Initial water saturation (fraction) 
11. Initial oil saturation (fraction) 
12. Well drainage area (acres) 
13. Reservoir depth (ft) 
14. Reservoir thickness (ft) 
15. Permeability (mD) 
16. Anisotropy of permeability (kv/kh) (fraction) 
17. Rock compressibility (1/psi) 
18. Density (lb/ft3) 
19. Reservoir temperature (oF) 
20. Heat capacity of oil (Btu/lbmole.F) 
21. Viscosity coefficient of A (cp) 
22. Viscosity coefficient of B (oR) 
23. Residual oil saturation (fraction) 
24. Irreducible water saturation (fraction) 
25. Exponential coefficient for relative permeability  (unitless) 
26. Capillary pressure coefficient of oil (unitless) 
27. Capillary pressure coefficient of gas (unitless) 

 

According to studies of Eppelbaum et al. (2014) and Schön (2011), wide range of 

thermal properties were specified as seen in Table 5.2. Thermal conductivity of oil 

(λo) is depend on reservoir temperature (Tres) and specific gravity (γo) of oil; 

therefore, it was calculated from following equation in order to get an accurate 

value: 

 λo =
1.62
γo

[1 − 3(Tres) ∗  10−4] (5.1) 
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Table 5.2 Ranges for thermal properties. 

 Eppelbaum 
et al. (2014) 

Schön 
(2011) 

In this study 
min max 

Thermal conductivity of gas - 0.37 0.3 1.0 

Thermal conductivity 
of formation rock 

Limestone 31 9-87 
10 90 

Sandstone 33-48 13-90 
Thermal conductivity of 
upper/lower formation rock Shale - 8-59 10 60 

Heat capacity of 
formation rock 

Limestone 34 31-64 
25 125 

Sandstone 24 - 32 26-114 
Heat capacity of 
upper/lower formation rock Shale - 33-54 33 54 

 

Moreover, two screening criteria (Table 5.3) were investigated to determine range 

of some properties which are porosity, molecular weight, reservoir pressure, initial 

water saturation. It was assumed that reservoirs are saturated with only water (Swi) 

and oil (Soi) at initial state: 

 Soi + Swi = 1 (5.2) 

Wide and reasonable ranges for well drainage area, reservoir depth and thickness, 

permeability ratio of kv/kh, rock compressibility, and API gravity of oil were 

specified. In this study, range of API gravity was used from 10 to 20 due to heavy 

oil characterization and with API value, density (ρo) was calculated by following 

equations to use in simulator as an input. 

 API =
141.5
γo

− 131.5 (5.3) 

 γo =
ρo

62.4
 (5.4) 
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Each layer may have different thickness, porosity and permeability values. Lorenz 

coefficient is used to state the degree of heterogeneity within the simulated 

reservoir. The minimum “zero” value indicates that reservoir is completely 

homogeneous; on the other hand, the maximum value “one” is a signal for 

completely heterogeneous system (Dykstra and Parsons, 1950).  This coefficient 

was calculated by a code prepared by Liber Eleutherios in 2008 (MATLAB, 2013) 

to be used as an input in ANN models. 

Reservoir temperature (Tres) is a depth and surface temperature (Tsurface) dependent 

parameter; therefore, it was calculated with following equation:  

 
Tres = Tsurface +

Depth
70

 
(5.5) 

According to Wright (2014), changes in heat capacity of oil (cp,o) can be estimated 

from graphs or Equation 5.7. The equation is related with API, reservoir 

temperature and molecular weight (MW). In this study, equation was used: 

cp,o
′ = [(−1.39 ∗  10−6) Tres + (1.847 ∗  10−3)]API 

+ 
(6.312 ∗  10−6)Tres + 0.352 

(5.6) 

cp,o = cp,o
′ ∗  MW (5.7) 

Increase in viscosity causes an increase in residual oil saturation by decreasing the 

mobility of oil. Due to that, viscosity is an important guideline for numerical 

simulation to apply successful CSI operation. Although viscosity can be identified 

by using a viscosity-temperature table, in this model, it was calculated with 

reservoir temperature, viscosity coefficients A and B. Range of these coefficients 

were specified by considering interval between 100 cp and 10,000 cp. These 

parameters were used in Andrade's oil viscosity correlations (Sun and Ertekin 

2016): 

 µo = A + e
B

Tres+460 (5.8) 
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In order to include the relative permeability tables as variables; ranges for residual 

oil saturation (Sor), irreducible water saturation (Swirr) and exponential coefficient 

for relative permeability (n) were determined (Table 5.3) and Corey's three-phase 

relative permeability correlation were used to construct relative permeability tables 

(Arpacı, 2014, and Sun and Ertekin, 2016): 

Oil/Water System 

 krw = �
Sw − Swirr

1 − Sor − Swirr
�
n

 (5.9) 

 
krow = �

1 − Sor − Sw
1 − Sor − Swirr

�
n

 (5.10) 

Gas/Liquid System 

 
krg = �

Sg
1 − Swirr

�
n

 (5.11) 

 krgl = �
1 − Sg − Swirr

1 − Swirr
�
n

 
(5.12) 

where krw, krow, krg and krgl denote relative permeability to water, oil to water, gas 

and gas to liquid, respectively. Sw is water saturation and Sg is gas saturation. 

In this study, capillary effects were also considered by using Corey’s capillary 

pressure correlation with specified ranges for capillary pressure coefficient of oil 

(co) and gas (cg). Capillary pressure tables were constructed with following 

equations:  

Oil/Water System pcow =
co

� Sw − Swirr
1 − Sor − Swirr

 
(5.13) 

Gas/Liquid System pcgl =
cg

�1 − Sg − Swirr
1 − Swirr

 (5.14) 

where pcow is capillary pressure in water-oil system and pcgl is capillary pressure in 

gas-liquid. 
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All determined wide and reasonable ranges were as in Table 5.3. Furthermore, 

several CSI applied field properties (Table 5.4) were investigated to be sure that 

ranges are suitable for real cases. 

Table 5.3 Screening criteria and determined ranges of reservoir parameters. 

 
Arpacı (2014) Sun and Ertekin 

(2016) In this study 

min max min max min max 

Porosity 0.15 0.40 0.18 0.35 0.10 0.40 

Molecular W. 600 420 700 200 600 

Res. Pressure 500 3,500 600 1,200 500 2,000 

Ini. Water Sat. 0.15 0.60 0.10 0.40 0.10 0.50 

Area - - 35 104 5 30 

Depth 1,000 10,000 - - 500 5000 

Thickness 40 200 30 120 10 500 

Permeability 20 200 500 2,000 1 2,000 

kv/kh 1.0 1.0 0.01 1.0 

Rock Comp. 5E-4 - - 3.00E-6 1.00E-5 

API Gravity 6 10 25 10 20 

Visc. Coef. A 
visc-temp table 

1.00E-4 5.00E-3 0.01 0.05 

Visc. Coef. B 6,000 7,600 5,000 6,500 

Res. Oil Sat. 0.15 0 0.05 0.1 0.3 

Ir. Water Sat. 0.25 0.05 0.15 0.1 0.3 

Rel. Perm. Exp. 2-2.5 2 4 2 4 
Cap. Pres. Coef. 

oil 0 0 0 1 4 

Cap. Pres. Coef. 
gas 0 0 0 0.1 0.3 
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5.2 Operational Parameters 

The data-driven screening model can estimate the process performance in a given 

reservoir depending on the steam-injection design parameters. These design 

parameters include steam injection rate (qinj), injected steam temperature (Tsteam), 

steam quality (Qsteam), durations of steam injection (tinj), soaking (tsoak), and 

economic rate limit. After investigating real CSI field applications and screening 

criteria, wide and reasonable ranges were determined for operational parameters 

(Table 5.5). 

Table 5.5 Operational parameters of steam injected fields and screening criteria. 

 qinj Tsteam Qsteam tinj tsoak Eco.rate 
limit 

Midway-Sunset 
(Monarch) 

Hazlett et al. (1997) 
650 450 0.70 10 10 - 

Kern River 
Chu and Tremble (1975) 1,000 470 0.80 20 8 - 

Cymric 
Fong et al. (2001) 500 - - 6 4 - 

Huntingon Beach 
Adams and Khan (1969) 

1,300-
1,350 - 0.80 - - - 

Cox Penn 
Chiou and Murer (1989) 240-888 530-625 0.25-

0.80 18-44 8-47 - 

Los Perales 
Pascual (2001) 820 625 0.65-

0.70 18 - - 

Duri 
Gael et. al (1995) 2,000 432 0.80 21 5 - 

Arpacı 
(2014) 

min 350 450 0.70 5 5 - 
max 5,000 750 1.00 50 50 - 

Sun and 
Ertekin 
(2016) 

min 600 450 0.70 10 10 20 
max 1,500 750 1.00 50 20 40 

In this 
study 

min 500 450 0.70 10 10 5 

max 2,000 700 1.00 60 30 25 
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“TRIGGER” keyword (CMG, 2015) was implemented to add a condition to apply 

cyclic steam injection. After simulation started with injection, well was put on 

production until economic rate limit was reached and then, new injection-

production cycle starts again. All these parameters were constant for each cycle of 

one case; however, they were changed in every case by randomly selecting from 

ranges. Despite the constant parameters, production period was varied in each cycle 

of one case according to economic rate limit. Therefore, the number of cycles was 

also different for each case. 

5.3 Grid Sensitivity Analysis 

Smaller grid sizes provide more accurate results in numerical modeling studies; 

however, execution time takes longer. Therefore, it is important to find best grid 

sizes having shorter runtime with reasonable results (Shin et al., 2012).  In this 

study, a reservoir was created with the base values of parameters (can be seen in 

Section 5.4 as a table) and grid sensitivity was performed. Firstly, the reservoir 

model was divided in R-θ-Z grids to create 3-D model (Figure 5.2) and run with 

different dimensions in the θ direction (360o, 90o and 60o). 

 

Figure 5.2 Division of grids in R-θ-Z dimensions for constructed reservoir model 
(CMG, 2015). 

The production differences (Figure 5.3) and the elapsed time of the simulator 

(Figure 5.4) indicated that increase in grids affect the production and computation 

time. The more grids means longer computation time; therefore, according to the 
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low percentages of the production differences, the model was constructed as 2-D 

by not taking into account the θ direction. 

 
 

Secondly, after creating 2-D model, grid sizes were changed in R direction and 

cumulative oil productions, cumulative water productions, cumulative steam 

injections and elapsed time of simulation were collected (Figure 5.5 and Figure 5.6).  

 

 

Figure 5.5 Cumulative oil productions of different grid sizes. 
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Figure 5.6 Cumulative water productions and cumulative steam injections of 
different grid sizes. 

Table 5.6 shows all cumulative values and their change ratios according to previous 

less grid sizes. By comparing these values, with 61.5 Mbbl cumulative oil 

production, 1136 Mbbl cumulative water production, 1112 Mbbl cumulative steam 

injection and 11 seconds runtime, 12 grid points was found to be the most 

reasonable one respect to others.  

Table 5.6 Cumulative values and change ratios. 

Grid 
Sizes 

Cum. Oil 
Prod. 

(Mbbl) Δ 

Cum.Water 
Prod. 

(Mbbl) Δ 

Cum. 
Steam Inj. 

(Mbbl) Δ 

Elapsed 
Time 
(sec) 

3 85.1 970.4 871.9 1 
6 70.7 -17% 966.0 0% 832.6 5% 4 
9 64.1 -9% 1172.9 -21% 1098.6 -32% 9 
12 61.5 -4% 1136.3 3% 1111.6 -1% 11 
15 55.1 -10% 1063.3 6% 966.4 13% 14 
18 50.6 -8% 1040.7 2% 975.5 -1% 15 

 

An exponentially increasing grid distribution was suitable for this model because it 

was constructed as a radial reservoir. A linear equation was created by using best 

fit for distributions of 5, 10, 15, 20, 25 and 30 acres (Figure 5.7).  
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Figure 5.7 Best fit equation. 

The distribution of grid points for well drainage area between 5 and 30 acres were 

calculated from following equations: 

 x = 0.0496 ∗ ln(area) + 0.2875 (4.15) 

 grid size = exp (x ∗ #ofgrid) (4.16) 
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5.4 Generation of the Dataset 

The list of parameters used as input in the screening model and their ranges were 

determined as in Table 5.7. 

Table 5.7 Screening model inputs and their ranges. 

# Parameters Unit 
In this study 

min base max 
1 Well drainage area acres 5 18 30 
2 Total reservoir thickness ft 10 255 500 
3 Reservoir depth ft 500 2,750 5000 
4 kv/kh fraction 0.01 0.5 1.0 
5 Average porosity fraction 0.10 0.30 0.40 
6 Average permeability mD 1 200 2,000 
7 Rock compressibility 1/psi 3.00E-6 6.50E-6 1.00E-5 
8 Heat cap. of fm Btu/ft3.F 25 75 125 
9 Therm. conductivity of fm Btu/ft.day.F 10 50 90 
10 Therm. conductivity of oil Btu/ft.day.F calculated 
11 Therm. conductivity of gas Btu/ft.day.F 0.3 0.7 1.0 
12 Heat capacity of u/l fm Btu/ft3.F 33 44 54 
13 Therm. cond. of u/l fm Btu/ft.day.F 10 35 60 
14 Molecular weight of oil lb/lbmole 200 400 600 
15 Density of oil lb/ft3 calculated 
16 Specific gravity of oil fraction calculated 
17 API gravity API 10 15 20 
18 Heat capacity of oil Btu/lbmole.F calculated 
19 Viscosity coefficient A cp 0.01 0.03 0.05 
20 Viscosity coefficient B oR 5,000 5,750 6,500 
21 Residual oil saturation fraction 0.10 0.20 0.30 
22 Irreducible water saturation fraction 0.10 0.20 0.30 
23 Relative perm. exponent unitless 2 3 4 
24 Capillary pres. coef. of oil unitless 1 2.3 4 
25 Capillary pres. coef. of gas unitless 0.1 0.2 0.3 
26 Reservoir pressure psi 500 1,250 2,000 
27 Reservoir temperature oF calculated 
28 Initial water saturation fraction 0.10 0.30 0.50 
29 Initial oil saturation fraction calculated 
30 Steam temperature oF 450 575 700 
31 Steam quality fraction 0.70 0.85 1.00 
32 Steam injection rate bbl/day 500 1,250 2,000 
33 Injection time day 10 35 60 
34 Soaking time day 10 20 60 
35 Economic rate limit bbl/day 5 15 25 
36 Lorenz coefficient fraction calculated 
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All selected parameters except permeability were uniformly distributed in their own 

ranges. In reality, most of the permeability values are between 50 and 100 mD; 

therefore, lognormal distribution was selected to be realistic. Porosity, permeability 

and thickness values were selected for one layer and then, for other four layer, 

values were selected from first layer’s values. Therefore, distribution of average 

porosity, average permeability and total thickness were not seen uniform and 

lognormal. Unfortunately, some scenarios were eliminated after the run.  One part 

of these could not be simulated by the simulator because of “convergence error”. 

Some numerical controls were set to check the model (e.g. material balance error is 

set to not exceed 1E-4). The other part did only one cycle CSI process in 10 years 

since flow rates did not reach economic rate limit. After elimination, 5964 scenarios 

were obtained for training and testing the screening model. Histogram plots of new 

data set showed that elimination of scenarios did not affect the distributions (Figure 

5.8 - 5.11).  

 

Figure 5.8 Example uniform distributions of reservoir and operational 
parameters. 
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Figure 5.9 Distribution of permeability for one layer and five layers. 
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Figure 5.10 Distributions of porosity for one layer and five layers. 
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Figure 5.11 Distributions of porosity and thickness for one layer and five layers. 
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Two simulator templates, seen in Appendices A and B, were created for “with” and 

“without” CSI operation. Each case was simulated in both situations and cumulative 

oil production, cumulative water production and cumulative steam injection for 10 

years were collected as outputs. Then, efficiencies were calculated as follows: 

1. Yearly production and injection were calculated for 10 years and then, 

incremental values were found by subtracting ‘without injection’ values 

from ‘with injection’ values: 

Yearly oil prod. : (Np,inc.)n = (Np,with inj.)n − (Np,without inj.)n (5.17) 

Yearly water prod. : (Wp,inc.)n = (Wp,with inj.)n − (Wp,without inj.)n (5.18) 

Yearly steam inj. : (Si,inc.)n = (Si,with inj.)n (5.19) 

n:1, 2, 3, 4…10 years 

2. By using these incremental values for 10 years, present values (PV) were 

calculated for 10, 8, 6, 4 and 2 years with 10% interest rate (i), separately 

(Figure 5.12). 

PV oil prod. : (PVNp)n = �
(Np,inc.)j
(1 + i)j

n

j=1

 (5.20) 

PV water prod. : (PVWp)n = �
(Wp,inc.)j
(1 + i)j

n

j=1

 (5.21) 

PV steam inj. : (PVSi)n = �
(Si,inc.)j
(1 + i)j

n

j=1

 (5.22) 

n:2,4,6,8 and 10 years 
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Figure 5.12 Calculation of present values for different period of time. 

3. Efficiencies of CSI operations for 10, 8, 6, 4 and 2 years were calculated 

following equation: 

 (EFF)n =
(PVNp)n
(PVSi)n

 (5.23) 

n:2,4,6,8 and 10 years 

Each efficiency was used as an output of different ANN models (Figure 5.13). Same 

training, validation and testing data sets were used to build data-driven screening 

models. 

 

Figure 5.13 Five different ANN models with same inputs. 
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CHAPTER 6 

6 SCREENING TOOL DEVELOPMENT 

 

Reservoir modeling can be a costly and time consuming process in complex 

reservoirs because of the necessity of a comprehensive reservoir description. With 

a reasonable range of error in accuracy and computational efficiency, a screening 

tool can be used to reduce extensive time and energy spent in simulation and 

modeling studies. 

Data driven modeling approach was followed to develop the screening tool. The 

principle about data driven modeling is based on learning the relationship between 

inputs and outputs of a system by using a data set without explicit knowledge of 

physical behavior of the system. There are a number of computational intelligence 

techniques used for data-driven modeling. Artificial neural networks, fuzzy rule-

based systems and genetic algorithm are among the most popular ones (Abrahart et 

al., 2008).  

Artificial neural network (ANN) approach was selected to model the data driven 

screening tool.  ANN is very powerful to understand non-linear and complex 

relationships between inputs and outputs. By creating regression models, input & 

output mapping can be performed. 

An artificial neural network is characterized by the following: 

a. The connection pattern between neurons which represents the architecture of 

the ANN. 
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b. The method of determination of weights on the connections and its training 

algorithm. 

6.1 Structure and Architecture of Artificial Neural Network 

The idea of ANN is similar with human brain system. A human brain contains 

approximately 100 billion neurons that receive, process and transmit information 

among themselves (Kriesel, 2011). The structure and working principle of ANN 

mimic the human brain like a mathematical model representation of biological 

nervous system (Figure 6.1). Similarly, in an ANN model, an information is 

received from dendrites to process in cell body and transmitted by synapses to other 

neuron. 

 

 

Figure 6.1 Structure of neurons in human brain and ANN. 
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The architecture of an ANN model can be defined as the arrangement of neurons 

and the connections between them. According to its classification, ANN is divided 

into two: single layer and multilayer as seen in Figure 6.2. While single layer is 

formed only input and output layers, multilayer has extra one or more layers to 

connect input and output layers. These extra layers, named as “hidden layers”, can 

be helpful in complex problems to be solved. The number of hidden layers and 

neurons in each hidden layer are determined based on complexity of the problem 

which can be defined as the number of input and output neurons.  

 
 

Figure 6.2 ANN classification for architecture. 

6.2 Weights and Training of Artificial Neural Network 

Determination of weights between layers is another important characterization 

aspect for ANN modeling. A weight refers to the strength of connection between 

two neurons. By showing that how neurons have an influence on solution, weights 
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have a direct relationship with the learning process. They are calibrated based on 

inputs and outputs to become ideal connections in network. 

Learning system behavior is a critical issue about ANN. While there are a number 

of different learning algorithms, the most common way of calibration of weights 

can be completed in two steps; forward propagation and back propagation. 

 

Figure 6.3 Example ANN model with one hidden layer. 

1. Forward propagation: Inputs (I1 and I2) and output (O') are normalized between 

-1 and +1, separately. A set of weights are randomly selected between 0 and 1. The 

product of inputs and their selected weights (w) are summed for each hidden layer’s 

neuron. A transfer function (f) is applied to the hidden layer sums (Σ) to obtain 

hidden layer outputs (Figure 6.3). 

 Σ1 = I1 ∗ w1 + I2 ∗ w4 (6.1) 

 Σ2 = I1 ∗ w2 + I2 ∗ w5 (6.2) 

 Σ3 = I1 ∗ w3 + I2 ∗ w6 (6.3) 
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More than ten different transfer functions can be used in forward propagation. 

Linear function, log sigmoid function, step function and hyperbolic tangent sigmoid 

function are the most common ones (Kulga, 2010): 

• In linear function, hidden layer output (f) can be found with the multiplication 

of input (Σ) by a constant (K). (Figure 6.4a) 

 f(Σ) = K ∗  Σ (6.4) 

• In log sigmoid function, hidden layer outputs get values between 0 and 1 by 

using following equation and produce “S” shape curve. (Figure 6.4b) 

 f(Σ) =
1

1 + e−Σ
 (6.5) 

• In step function, hidden layer outputs can get two values, 1 and -1, based on 

inputs. (Figure 6.4c) 

 f(Σ) �    1    if   Σ > 0
 −1    if   Σ < 0 (6.6) 

• In hyperbolic tangent sigmoid function, hidden layer outputs get values 

between -1 and 1 by using following equation and produce again “S” shape 

curve like log sigmoid function. (Figure 6.4d) 

 f(Σ) =
eΣ − e−Σ

eΣ + e−Σ
 (6.7) 

Calculated hidden layer outputs are multiplied with randomly determined weights 

and summed to obtain the final output (O') as in Equation 6.8. Calculated output 

(O') is compared with the target output (O).  

 O′ = f(Σ)1 ∗ w7 + f(Σ)2 ∗ w8 + f(Σ)3 ∗ w9 (6.8) 
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Figure 6.4 Common transfer functions. 

2. Back propagation: The margin of error of the output is measured and weights 

are calibrated correspondingly to decrease the error based on “Generalized Delta 

Rule”. Both steps are repeated until weights are adjusted to ideal ones. Data set is 

divided into three as training, validation and testing. Training data set is used to 

calibrate the weights. Validation data set is used to show how training process goes: 

generalization or memorization. To avoid memorizing, during the training period, 
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the error of validation is monitored. If the error of validation increases while the 

training error decreases, this shows that ANN memorized the pattern instead of 

generalizing. Testing data set is used to assess generalization capabilities of the 

neural network (Arpacı, 2014). 

6.3 Application of Artificial Neural Network to Screening-Model 

Development 

As mentioned in the previous chapter, 5964 cases were created randomly with 36 

parameters and efficiencies of these cases were calculated for 2, 4, 6, 8 and 10 years. 

More inputs and outputs mean more complexity in ANN applications. Therefore, 

in this thesis, instead of creating an ANN with five different time periods, five 

different ANNs were built to predict performance of CSI for each period.  

Before training ANN models, all inputs and outputs were prepared. Each input 

parameter and output was normalized linearly between -1 and +1 in itself because 

all of them have different scale. For instance, while porosity ranges between 10 % 

and 40 %, reservoir depth ranges between 500 ft and 5000 ft. For both parameters, 

minimum values and maximum values were considered as -1 and +1, respectively 

and the remaining values were distributed proportionally. 

5964 cases were distributed into training, validation and testing data sets with 80 

%, 10 % and 10 % proportions, respectively (training data set - 4772 cases,  both 

validation and testing data sets - 596 cases).  It is important to train models with 

different parameters and efficiency values; therefore, in order to avoid using similar 

cases, efficiency values were distributed manually into the data sets. It was aimed 

that training, validation and testing data sets have all possible efficiency values from 
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minimum to maximum. Same data sets were used to train all ANN models as seen 

in Figure 6.5. 

 

Figure 6.5 Data sets distributions for ANN models. 

The most appropriate ANN structures were generated for each ANN model by using 

the trial and error method. Different number of hidden neurons and hidden layers 

were used and their effects on training were observed. By comparing regressions of 

the training, validation and testing data sets, the best training structures for each 
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ANN models were selected. In Figure 6.6, there are example regression graphs 

taken from training of ANN Model – 5.  

 

Figure 6.6 Regression graphs for 12th training trial (ANN Model – 5). 

All structure trials and regressions for ANN Model – 5 can be seen in Table 6.1 and 

Figure 6.7. As much as possible, the highest regressions were tried to be achieved. 

After 14 trials, 11th and 12th trials having close regressions were compared and 12th 

one with the highest testing regression was selected. 

• 11th Trial: Training R= 0.971 Validation R=0.910 Testing R=0.892 

• 12th Trial: Training R= 0.974 Validation R=0.894 Testing R=0.933 
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Table 6.1 Number of neurons and layers tested for building ANN Model – 5. 

Training 
trials 

Number of 
Neurons in 1. 
Hidden Layer 

Number of 
Neurons in 2. 
Hidden Layer 

Total Neurons 
in Hidden 

Layers 

1 100 - 100 
2 90 - 90 
3 80 - 80 
4 70 - 70 
5 60 - 60 
6 50 - 50 
7 40 - 40 
8 40 20 60 
9 50 10 60 
10 40 10 50 
11 30 20 50 
12 30 10 40 
13 25 15 40 
14 35 5 40 

 

 

Figure 6.7 Regression values for all training trials.  
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CHAPTER 7 

7 RESULTS AND DISCUSSIONS 

 

In this chapter, results obtained from the numerical simulator and the screening 

model are analyzed in detail. A number of cases are investigated to ascertain the 

effects of the reservoir and operational parameters and by carrying out a sensitivity 

study, the accuracy of the ANN is evaluated. Moreover, a reservoir model having 

similar properties with The Liaohe Oilfield is created and optimization studies are 

performed for operational parameters. 

7.1 Analyses of Reservoir and Operational Parameters 

After creating the dataset using the numerical simulator, best 500 cases, having the 

highest efficiencies, are selected to analyze the effects of the reservoir and 

operational parameters on efficiency. This selection is made separately for 10, 8, 6, 

4 and 2 years to analyze in detail. For each parameter, histograms are plotted, and 

their distributions in their ranges are analyzed to infer the effects. Exact conclusions 

cannot be achieved from these histograms since a large number of varying different 

parameters affect the performance indicators at the same time. 

In yearly parametric analysis, it is seen that there is no significant difference 

between them. However, distributions of some parameters according to their ranges 

change.  
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The histogram of viscosity shows that the efficiency decreases as long as viscosity 

increases (Figure 7.1). The cases having between 100 and 200 cp viscosity have 

lower efficiencies since the performance indicators were calculated by incremental 

production and injection values. For these cases, they have high base productions 

and there is no need to inject steam to the reservoir. 

 

Figure 7.1 Distribution of viscosity for best 500 cases. 

The following three histograms show that some parameters affect the efficiency 

positively. The increase in area, reservoir pressure, formation compressibility and 

anisotropy of permeability increase the efficiency (Figure 7.2 – 7.5).  

 

Figure 7.2 Distribution of area for best 500 cases. 

0

50

100

150

200

250

100-200 201-500 501-1000 1001-2000 2001-4000

Fr
eq

ue
nc

y

Viscosity, cp

eff2 eff4 eff6 eff8 eff10

0

40

80

120

160

200

5-10 11-15 16-20 21-25 26-30

Fr
eq

ue
nc

y

Area, acres

eff2 eff4 eff6 eff8 eff10

50 
 



 

Figure 7.3 Distribution of reservoir pressure for best 500 cases. 

  

Figure 7.4 Distribution of reservoir pressure for best 500 cases. 

 

Figure 7.5 Distribution of anisotropy of permeability for best 500 cases. 
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Relative permeability data is one of the critical physical properties for the 

production. Corey’s exponential coefficient for relative permeability (n) states the 

pore size distribution. In the model for each case, this number is taken as constant 

for oil/water and gas/liquid systems. Therefore, only pore size distribution can be 

analyzed. The solid line is for a wide range of pore sizes (n=2) while the dashed 

line shows a medium range pore sizes (n=4) (Figure 7.6). As seen in the Figure 7.7, 

more uniform pore size distribution helps to increase efficiency.  

 

Figure 7.6 Two different pore size distribution. 

 

Figure 7.7 Distribution of exponential coefficient for relative permeability for 
best 500 cases. 
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According to Corey’s equations, capillary pressure and coefficients are directly 

proportional. As seen in Figure 7.8, to extract water from the pores, more pressure 

is needed and this means, oppositely, oil can flow more easily in the pores. 

However, the histogram show that the effect of them is very small for the 

efficiencies (Figure 7.9). 

 

Figure 7.8 Capillary pressure vs. water saturation graph for different capillary 
pressure coefficients of oil 

 

Figure 7.9 Distribution of capillary pressure coefficient of oil for best 500 cases. 
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The ranges for operation parameters were determined after detailed literature 

review. Therefore, all values were optimum and distributed uniformly. The 

distribution of steam temperature, steam quality and soaking time can be seen in 

Figure 7.10 – 12. 

 

Figure 7.10 Distribution of steam temperature for best 500 cases. 

 

Figure 7.11 Distribution of steam quality for best 500 cases. 
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Figure 7.12 Distribution of soaking duration per cycle for best 500 cases. 

For injection duration per cycle, histogram (Figure 7.13) shows that cases with less 

injection time have high performance with cyclic steam injection process in 2 years 

period of time. When the operation time increases to 6 and more years, the effect 

of the parameter decreases. 

 

Figure 7.13 Distribution of injection duration per cycle for best 500 cases. 
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7.2 Accuracy of the Screening Tool 

Development of the screening tool is the most important part of this thesis and the 

stages are given in the previous chapter in detail.  By using different number of 

hidden neurons and hidden layers, trial and error method is applied and the most 

appropriate structures for ANN models are determined as in Table 7.1. 

Table 7.1 Determined number of neurons and hidden layer for all models. 

ANN Model 
# of hidden neurons Regressions 

Layer 1 Layer 2 Training Validation Testing 

1 – EFF10 50 10 0.977 0.932 0.931 

2 – EFF8 40 - 0.959 0.901 0.917 

3 – EFF6 30 10 0.941 0.865 0.894 

4 – EFF4 30 10 0.967 0.870 0.905 

5 – EFF2 30 10 0.974 0.894 0.933 

 

Prediction capabilities of ANN models were assessed by comparing numerical 

model outputs with ANN model outputs. The comparison graphs for testing data 

set of ANN models can be seen in Figures 7.14 to 7.18.  The darker line shows the 

numerical model outputs and the lighter one is data-driven model outputs. The 

overlapping of these two lines shows that the models can predict the efficiency 

values as much as precise.  
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Figure 7.14 The comparison of original output and ANN output for testing data 
set of Model – 1. 
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Figure 7.15 The comparison of original output and ANN output for testing data 
set of Model – 2. 
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Figure 7.16 The comparison of original output and ANN output for testing data 
set of Model – 3. 
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Figure 7.17 The comparison of original output and ANN output for testing data 
set of Model – 4. 
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Figure 7.18 The comparison of original output and ANN output for testing data 
set of Model – 5.  
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The error of prediction for each case was calculated by taking absolute difference 

between numerical simulator output and ANN output (Equation 7.1). In order to 

analyze the error distribution in testing data set, the frequency percentages of error 

were plotted (Equation 7.2). Figure 7.19 shows that for each model, only 10% of 

cases have higher than 0.2 STB/STB absolute difference error. If all testing data set 

is examined, this number can be considered as high error. However, checking errors 

for each case, especially peak values, would be more realistic. For instance, the 

efficiency of case 171 in Model – 5 (Figure 7.18) is calculated as 3.50 STB/STB 

from the numerical model and estimated as 2.60 STB/STB from the ANN model. 

For this case, 0.9 STB/STB absolute difference error can be ignored and the 

prediction can be considered as sufficient.  

 Error = |Effsimulator − EffANN| (7.1) 

 %Error =
Frequency of Error
Total Case Number

 x 100 (7.2) 

 
Figure 7.19 Histogram of ANN Model - 5 testing data set. 
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7.3 Sensitivity to Reservoir and Operational Parameters 

The sensitivity study shows the accuracy of the data-driven model by comparing 

the parametric order with numerical model. The average values of all parameters 

were used to create a reservoir model, and its efficiency value was taken as a base. 

58 cases were constructed by changing one parameter at a time to its maximum and 

minimum values to analyze each parameter’s influence on the efficiency. These 

cases were run using both the commercial numerical simulator and the screening 

tool. Parameters were sorted largest to smallest according to their effects on 

efficiency and tornado charts were plotted for first 15 parameters. (Figure 7.20 – 

7.24). 

The cases created with lowest values are stated with the lighter bars, and the highest 

values are the darker ones. By using the results of the data driven model and 

numerical model, the analyses are performed for all years separately. It is seen that 

all efficiencies are affected positively by increasing initial oil saturation, irreducible 

water saturation, the exponential coefficient of relative permeability and decreasing 

initial water saturation, viscosity coefficients, residual oil saturation. More detailed 

analyses should be performed for each parameter to examine the exact conclusion 

about the effects of the parameters. The similarities in the order of the data-driven 

model and numerical model results show that the screening tool captured the 

problem very well.  
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Figure 7.20 Parametric accuracy comparison between Data-driven model and 
Numerical model for 10 years 
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Figure 7.21 Parametric accuracy comparison between Data-driven model and 
Numerical model for 8 years 
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Figure 7.22 Parametric accuracy comparison between Data-driven model and 
Numerical model for 6 years 
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Figure 7.23 Parametric accuracy comparison between Data-driven model and 
Numerical model for 4 years 
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Figure 7.24 Parametric accuracy comparison between Data-driven model and 
Numerical model for 2 years 
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7.4 Probabilistic Assessment of CSI in a Given Reservoir 

Two studies were conducted separately as an implementation of the screening tool. 

In each study, 10,000 cases were created and run into the screening tool to produce 

distributions of possible efficiency values. These probabilistic approaches help to 

quantify the uncertainty in variables and the risk involved in potential decisions. 

a. Specific reservoir parameters:  

Different CSI applications in a specific reservoir are analyzed. Reservoir 

parameters are taken from The Liaohe Oilfield; having a favorable CSI operation 

in Northeast China (Wang et al., 2017) and operational parameters are selected 

randomly. Only a few reservoir parameters were out of this study’s range; therefore, 

adjusting them to given ranges did not result in a significant deviation from the 

reality. Table 7.2 and 7.3 show the reservoir and operational parameters. 

Table 7.2 The ranges of the operational parameters of The Liaohe Oilfield 
(Wang et al., 2017). 

Operational Parameters Unit  

Steam temperature oF 500 – 700 

Steam quality fraction 0.75 – 0.90 

Steam injection rate bbl/day 500 – 700 

Injection time day 10 – 30 

Soaking time day 10 – 20 

Economic rate limit bbl/day 10 – 20 
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Table 7.3 The values of the reservoir parameters of The Liaohe Oilfield 
(Wang et al., 2017). 

Reservoir Parameters Unit  
Well drainage area acres 18 
Total reservoir thickness ft 91 
Reservoir depth ft 2863 
Anisotropy of permeability fraction 0.5 
Average porosity fraction 0.29 
Average permeability mD 1644 
Rock compressibility 1/psi 1.00E-5 
Heat capacity of formation Btu/ft3.F 36.5 
Therm. conductivity of formation Btu/ft.day.F 24.2 
Therm. conductivity of gas Btu/ft.day.F 0.52 
Heat capacity of upper/lower formation Btu/ft3.F 35 
Therm. cond. of upper/lower formation Btu/ft.day.F 16.9 
Molecular weight of oil lb/lbmole 600 
API gravity API 11.7 
Viscosity coefficient A cp 0.045 
Viscosity coefficient B oR 6,400 
Residual oil saturation fraction 0.27 
Irreducible water saturation fraction 0.30 
Relative permeability exponent unitless 4 
Capillary pressure coefficient of oil unitless 2.3 
Capillary pressure coefficient of gas unitless 0.2 
Reservoir pressure psi  1175 
Initial water saturation fraction 0.32 
Lorenz coefficient fraction 0.054 

 

Due to having limited real production data, one-to-one comparison cannot be made. 

However, expectation curve shows that the uncertainty in the efficiency of CSI 

application can be quantified by reading corresponding values for cumulative 

probabilities of 90%, 50%, and 10%. An example curve can be seen in Figure 7.25. 

There is a 90% chance that the efficiency for 2 years will be at least 0.570 STB/STB 
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and a 10% chance that it will be at least 0.880 STB/STB. Probabilities for other 

models can be seen in Table 7.4. 

 

Figure 7.25 Probabilistic estimation of efficiency-2 years for given range 
operational parameters. 

 

Table 7.4 Yearly probabilistic approach for given range operational parameters. 

 1P (90%) 2P (50%) 3P (10%) 

Model 1 
(EFF 10) 0.106 0.141 0.170 

Model 2 
(EFF 8) 0.204 0.242 0.280 

Model 3 
(EFF 6) 0.178 0.198 0.219 

Model 4 
(EFF 4) 0.196 0.250 0.355 

Model 5 
(EFF 2) 0.570 0.690 0.880 
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By considering economic aspects as well, the efficiency of the CSI process can be 

interpreted more realistically. Therefore, oil prices and steam prices are included in 

the efficiency calculations (Equation 7.3). To include both optimistic and 

pessimistic scenarios, oil and steam prices are selected randomly from 20 to 100 

$/bbl and 5 to 15 $/bbl, respectively. Expectation curve indicates that the efficiency 

of CSI for this reservoir will be 1.90 STB/STB with 90% expectation and 8.70 

STB/STB with 10% expectation (Figure 7.26). For all models, Table 7.5 

summarizes all results obtained. 

 

 (EFF_cost)n = (EFF)n
(Oil Price)n

(Steam Cost)n
 (7.3) 

n:2,4,6,8 and 10 years 

 

 

 

Figure 7.26 Expectation curve for cost-efficiency- 2 years. 
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Table 7.5 Yearly probabilistic approach with Economic Study-1. 

 1P (90%) 2P (50%) 3P (10%) 

Model 1 
(EFF 10) 0.35 0.84 1.78 

Model 2 
(EFF 8) 0.62 1.48 3.00 

Model 3 
(EFF 6) 0.50 1.20 2.50 

Model 4 
(EFF 4) 0.68 1.51 3.30 

Model 5 
(EFF 2) 1.90 4.20 8.70 

 

 

b. Reservoir parameters in a range: 

In this part of the study, it is considered as if there is uncertainty in reservoir 

parameters of a specific field and they were selected from a narrow range. For 

instance, a general range for the area is between 5 and 30 acres in the screening 

tool. The drainage area is known as around 18 acres, but it is not certain. A narrow 

range is selected as from 15 to 20 acres. For all reservoir parameters, the same idea 

is applied, and 10,000 cases are created according to narrow ranges. Same CSI 

operation was applied to all cases by using constant operational parameters. 

Expectation curve and probabilities for all models can be seen in Figure 7.27 and 

Table 7.6, respectively. 
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Figure 7.27 Probabilistic estimation of efficiency-2 years for given range 
reservoir parameters. 

 

Table 7.6 Yearly probabilistic approach for given range reservoir parameters. 

 1P (90%) 2P (50%) 3P (10%) 

Model 1 
(EFF 10) 0.030 0.060 0.100 

Model 2 
(EFF 8) 0.045 0.095 0.175 

Model 3 
(EFF 6) 0.085 0.122 0.170 

Model 4 
(EFF 4) 0.080 0.140 0.270 

Model 5 
(EFF 2) 0.170 0.420 0.940 
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Table 7.7 shows probabilistic estimates of efficiencies when prices are also 

considered. 

Table 7.7 Yearly probabilistic approach with Economic Study-2. 

 1P (90%) 2P (50%) 3P (10%) 

Model 1 
(EFF 10) 0.11 0.34 0.84 

Model 2 
(EFF 8) 0.20 0.55 1.40 

Model 3 
(EFF 6) 0.31 0.75 1.60 

Model 4 
(EFF 4) 0.35 0.88 2.21 

Model 5 
(EFF 2) 0.80 2.50 7.50 

 

These examples illustrate the practicality of the screening tool that was developed. 

A large range of uncertainties can be incorporated easily which would help to 

understand the risks involved in the CSI application in a given reservoir. 

7.5 Graphical User Interface Application 

The calculation of efficiency for five different time periods in one ANN model is a 

complex problem; therefore, in order to avoid complexity, five different ANN 

models for each time periods are created. Thus, the models with one output can be 

trained without problems and they can be used to predict the efficiencies more 

accurately. However, by using these models, finding the efficiencies is not a user 

friendly system. Creating a graphical user interface (GUI) is a convenient way of 

increasing the practicality of the models. Five models are combined in a screening 

tool GUI by using in-built functions of MATLAB (R2013a). 
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In this chapter, features of this GUI application are presented which includes both 

deterministic and probabilistic approaches:  

Deterministic Approach is based on certain values (best estimates) for each 

parameter of a given reservoir and a given set of operational parameters. 

Probabilistic Approach is based on a range of values for each parameter of a given 

reservoir and a given set of operational parameters. Since uncertainty in parameters 

is taken into account, this approach gives more realistic results compared to 

deterministic approach, by quantifying the uncertainty. 

In the screening tool, 23 reservoir, 6 operational and 2 economical parameters can 

be entered as inputs, besides, there are two options for thickness, porosity and 

permeability parameters. While these parameters can be specified for each layer 

with “Layer by Layer Values” option, they can also be defined as total thickness, 

average porosity and permeability, and Lorenz coefficient with “Total/Average 

Values” option (Figure 7.28).   

 

Figure 7.28 Specification of thickness, porosity and permeability for 
deterministic approach. 

In “Layer by Layer Values” option, by taking two or more layers as a one layer, 

system can be adjusted to different numbers of layers as required. For instance, a 
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two layered system, having 36 and 20 ft thicknesses, can be entered as seen in 

Figure 7.29. For probabilistic approach, for one to four layered systems, narrow 

ranges should be specified (Figure 7.30).  

   

Buttons and Their Functions 

In deterministic and probabilistic approaches, there are the “Excel” buttons 

connected to pre-processed Microsoft Excel (2013) file in order to import input 

data. User can use either this button or GUI screen to enter the input parameters to 

the tool.  

In deterministic approach, one of the “Calculate” buttons is related with viscosity 

(Figure 7.31). In the tool, to calculate viscosity of oil, viscosity coefficient A and B 

should be entered. For the one who do not know these values, a viscosity calculation 

part is created. Proper values can be found with trial and error method by setting 

the desired viscosity. 

Figure 7.29 Two layered system for 
deterministic approach. 

Figure 7.30 Four layered system for 
probabilistic approach. 
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Figure 7.31 Viscosity determination part in deterministic approach. 

The other “Calculate” button in deterministic approach is used to calculate 

efficiencies for five different time periods and to accept or reject a given CSI 

proposal from a representative performance indicator. By considering oil price and 

steam cost, certain efficiency values can be obtained. If an economic efficiency is 

above 1, it is indicating that the income is greater than steam cost. If it is below 1, 

than the cost is more than the income. The same button is also created in the 

probabilistic approach. Compared with the deterministic approach, for probabilistic 

approach, the efficiencies are calculated with 90, 50 and 10% expectations. User 

can identify all possible scenarios within determined ranges and analyze the 

performance of CSI process in the selected reservoir.  

The last button group is related to the “Expectation curve”. There are five different 

buttons to plot expectation curves for different time periods: 10, 8, 6, 4 and 2 years. 

When the efficiencies are calculated, the expectation graph for 2 years is plotted as 

a default. User can plot other curves by selecting the desired time period. 

Figure 7.32 and 7.33 indicate example simulations of the tool for The Liaohe 

Oilfield as deterministic and probabilistic approach, respectively.  
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CHAPTER 8 

8 CONCLUSIONS 

In this study, a five layered heterogeneous reservoir model is constructed using a 

commercial simulator to study cycle steam injection process. 50 different 

parameters including capillary pressure, relative permeability and thermal 

properties are considered. A dataset is created with many different scenarios with 

different combinations of these parameters with predefined statistical distributions 

and ranges taken from the literature. After running these scenarios, incremental oil 

production and incremental steam injection results for 10 years are collected to 

calculate efficiencies at 2-year intervals. By training and testing with the input 

parameters and efficiencies, a neural-network based screening tool is developed for 

estimating the performance of a CSI operation for all kinds of heavy oil reservoirs 

in a rapid way. 

In order to evaluate the effects of the parameters, detailed parametric analyses are 

performed. After development of the screening tool, a sensitivity study is conducted 

and the accuracy of the screening tool is evaluated. As a practical example for the 

screening tool, the Liaohe Oilfield is used and the efficiencies are calculated with 

both deterministic and probabilistic approaches. 

The key conclusions drawn from this study are listed as follows: 

1. Five different ANN models are created separately to predict each time 

period due to the complexity of the building one ANN model with five 

different time periods. This helped to improve the training performance. 

2. To train these models precisely, it is important to distribute the cases 

uniformly in train, validation and testing sets. 
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3. With a validation study, performed by comparing screening tool results with 

simulator results, it is seen that the screening tool captures the flow 

dynamics of CSI process and can predict the efficiency of any reservoir 

within the ranges. 

4. Selecting the parameters out of the ranges decreases the accuracy of the 

prediction of efficiencies. 

5. The screening tool can output the performance of a selected CSI operation 

by estimating the efficiency within a reasonable accuracy, eliminating 

convergence issues with simulators.  

6. Significant resources such as manpower, computing and time are not 

required to use the screening tool. 

7. The increase in initial oil saturation, irreducible water saturation and the 

exponential coefficient of relative permeability increases the efficiencies. 

8. The decrease in initial water saturation, residual oil saturation and the 

viscosity coefficients increases the efficiencies. 

9. While soaking time does not affect the efficiency, the increase in injection 

time affects the efficiencies negatively. 

10. Considering oil price and steam cost is important to analyze the efficiency 

values with a more realistic perspective. 
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CHAPTER 9 

9 RECOMMENDATIONS FOR FUTURE WORK 

This study can be further improved with the following items: 

1. Instead of using 10 years production period in simulator model, number of 

cycles can be considered to run the model. 

2. The number of parameters can be decreased and influential parameters can 

be focused on more effectively. 

3. Steam generation options and their costs can be integrated into the screening 

tool. For example, solar-energy assisted steam generation, a potential 

application of steam generators for the seasonal availability of the sunlight 

throughout the year in most parts of the world, can be integrated to the tool 

by studying the feasibility aspect. 

4. For further economic analysis, facility and operational costs can be also 

incorporated. 

5. Optimum operational parameters can be calculated by including an 

optimization routine in the GUI application. 
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APPENDIX A 

A. AN EXAMPLE SIMULATOR TEMPLATE WITH CSI 

 

**=================  INPUT/OUTPUT CONTROL  ================= 
RESULTS SIMULATOR STARS 
*INTERRUPT *STOP  
*TITLE1 'DEVELOPMENT OF A SCREENING MODEL FOR THE CYCLIC STEAM 
INJECTION (CSS) PROCESS' 
*INUNIT *FIELD   ** output same as input 
*OUTPRN *GRID *PRES *SW *SO *SG *TEMP *Y *X *W *SOLCONC *OBHLOSS 
*VISO *VISG 
*OUTPRN *WELL *ALL 
*WRST 200 
*WPRN *GRID 200 
*WPRN *ITER 200 
*WSRF SECTOR TIME 
*OUTSRF *GRID *PRES *SO *SG *TEMP 
 
**=============  GRID AND RESERVOIR DEFINITION  ============= 
*GRID *RADIAL 12 1 5 *RW 0    ** Zero inner radius matches previous treatment 
**  Radial blocks:  small near well;  outer block is large 
**  well drainage area: 20 
*DI *IVAR 1.55 2.39 3.70 5.72 8.85 13.69 21.17 32.74 50.64 78.33 121.14 187.37  
*KDIR DOWN 
*DJ *CON 360  **  Full circle 
*DK *KVAR 4 13 14 82 39  
*DEPTH 1 1 1 2495 
*POR *KVAR 0.17 0.18 0.24 0.28 0.20  
*PERMI *KVAR 239 480 698 38 571  
*PERMJ *EQUALSI 
*PERMK *EQUALSI  / 2.22 
*END-GRID 
*ROCKTYPE 1 
*CPOR 7.542063e-06  
*PRPOR 14.7 
*ROCKCP 104  
*THCONR 37  
*THCONW 8.3 
*THCONO 1.60  
*THCONG 0.51  
*HLOSSPROP  *OVERBUR 38 59  *UNDERBUR 38 59 
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**  ==================  FLUID DEFINITIONS  ================== 
*MODEL 2 2 2   ** Components are water and dead oil.  Most water 
               ** properties are defaulted (=0).  Dead oil K values 
               ** are zero, and no gas properties are needed. 
*COMPNAME       "Water"    "OIL" 
**  ----- ----- 
     *CMM 18.02 584 
     *PCRIT 3206.2 0        ** These four properties 
     *TCRIT 705.4 0        ** are for the gas phase. 
     *AVG 1.13e-5 0        ** The dead oil component does 
     *BVG 1.075 0        ** not appear in the gas phase. 
     *MASSDEN 0 62.0 
     *CP 0 5.e-6 
     *CT1 0 3.94e-4 
     *CPL1 0 1 
     *AVISC 0 0.02211 
     *BVISC 0 6067 
*PRSR 14.7 
*TEMR 60 
*PSURF 14.7 
*TSURF 60 
 
** ============== ROCK-FLUID PROPERTIES  ============== 
*ROCKFLUID 
*SWT   **  Water-oil relative permeabilities 
**   Sw         Krw          Krow       Pcow 
**  ----      --------      -------    ------- 
    0.25      0.000000     1.000000    9.438175  
    0.30      0.000137     0.670959    7.161045  
    0.35      0.001964     0.429810    5.489804  
    0.40      0.009323     0.259687    4.326815  
    0.45      0.028147     0.145385    3.574438  
    0.50      0.066320     0.073393    3.135036  
    0.55      0.133587     0.031935    2.910968  
    0.60      0.241489     0.011022    2.804598  
    0.65      0.403306     0.002518    2.718286  
    0.70      0.634020     0.000222    2.554394  
    0.75      1.000000     0.000000    2.215283  
*SLT   **  Liquid-gas relative permeabilities 
**   Sl         Krg          Krog       Pcog 
**  ----      --------      -------    ------- 
    0.25      1.000000     0.000000    1.160117  
    0.30      0.754187     0.000038    0.945986  
    0.35      0.567366     0.000486    0.772615  
    0.40      0.417203     0.002212    0.635640  
    0.45      0.298681     0.006539    0.530694  
    0.50      0.207121     0.015214    0.453413  
    0.55      0.138190     0.030386    0.399431  
    0.60      0.087904     0.054597    0.364382  
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    0.65      0.052635     0.090767    0.343902  
    0.70      0.029117     0.142185    0.333624  
    0.75      0.014455     0.212505    0.329183  
    0.80      0.006135     0.305732    0.326214  
    0.85      0.002032     0.426225    0.320351  
    0.90      0.000428     0.578684    0.307230  
    0.95      0.000030     0.768150    0.282484  
    1.00      0.000000     1.000000    0.241748  
 
**  =================   INITIAL CONDITIONS  ================= 
*INITIAL 
** Automatic static vertical equilibrium 
*VERTICAL *DEPTH_AVE  
*REFPRES 1009 
*REFBLOCK 1 1 1 
*TEMP *CON 96 
*SW *CON 0.38 
*SO *CON 0.62 
 
** =================   NUMERICAL CONTROL  ================= 
*NUMERICAL   ** All these can be defaulted.  The definitions 
             ** here match the previous data. 
*SDEGREE GAUSS 
*DTMAX 90 
*NORM     *PRESS 200  *SATUR 0.2   *TEMP 180  *Y 0.2   *X 0.2 
*RUN 
 
**  ==============  RECURRENT DATA  ====================== 
*DATE 2017 06 01  
   *DTWELL 0.01  
     ** INJECTOR:  Constant pressure steam injection type  
   *WELL 1 'Injector 1' *VERT 1 1 
   *INJECTOR *MOBWEIGHT EXPLICIT 'Injector 1' 
   *INCOMP WATER  1.0  0.0 
   *TINJW 520 
   QUAL 0.76 
   *OPERATE *MAX *STW   946  CONT      ** Maximum water rate  
   *PERFV 'Injector 1' 
                1  1000000.00 
                2  1000000.00 
                3  1000000.00 
                4  1000000.00 
                5  1000000.00 
   ** PRODUCER:  Constant liquid rate type 
   *WELL 2 'Producer 1' *VERT 1 1  
   *PRODUCER 'Producer 1'  
   *OPERATE *MAX *STL    10000  CONT  ** Starting liquid rate  
   **           rad  geofac  wfrac  skin 
   GEOMETRY  K  0.25  1.0  1.0  0.0 
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         PERF      GEO  'Producer 1' 
   **   UBA        ff    Status   Connection 
       1 1 1      1     OPEN    FLOW-FROM  'SURFACE'  REFLAYER 
       1 1 2      1     OPEN    FLOW-FROM  1 
       1 1 3      1     OPEN    FLOW-FROM  2 
       1 1 4      1     OPEN    FLOW-FROM  3 
       1 1 5      1     OPEN    FLOW-FROM  4 
ALTER 'Injector 1' 
946 
SHUTIN 'Producer 1' 
OPEN 'Injector 1' 
TRIGGER 'produce' 
ON_WELL 'Injector 1' STW-CI > 42570 
APPLY_TIMES 100 INCREMENT 42570 
SHUTIN 'Injector 1' 
TRIGGER 'soak' 
ON_ELAPSED 'time' treltd > 16 
OPEN 'Producer 1' 
TRIGGER 'check' 
ON_WELL 'Producer 1' STO-RP > 14 
TRIGGER 'check2' 
ON_ELAPSED 'time' treltd > 1.0 
TRIGGER 'inject' 
ON_WELL 'Producer 1' STO-RP < 14 
SHUTIN 'Producer 1' 
OPEN 'Injector 1' 
END_TRIGGER 
END_TRIGGER 
END_TRIGGER 
END_TRIGGER 
END_TRIGGER 
TIME 365 
TIME 760 
TIME 1095 
TIME 1460 
TIME 1825 
TIME 2190 
TIME 2555 
TIME 2920 
TIME 3285 
TIME 3650 
STOP 
  

94 
 



APPENDIX B 

B. AN EXAMPLE SIMULATOR TEMPLATE WITHOUT CSI 

 

**=================  INPUT/OUTPUT CONTROL  ================= 
RESULTS SIMULATOR STARS 
*INTERRUPT *STOP  
*TITLE1 'DEVELOPMENT OF A SCREENING MODEL FOR THE CYCLIC STEAM 
INJECTION (CSS) PROCESS' 
*INUNIT *FIELD   ** output same as input 
*OUTPRN *GRID *PRES *SW *SO *SG *TEMP *Y *X *W *SOLCONC *OBHLOSS 
*VISO *VISG 
*OUTPRN *WELL *ALL 
*WRST 200 
*WPRN *GRID 200 
*WPRN *ITER 200 
*WSRF SECTOR TIME 
*OUTSRF *GRID *PRES *SO *SG *TEMP 
 
**=============  GRID AND RESERVOIR DEFINITION  ============= 
*GRID *RADIAL 12 1 5 *RW 0    ** Zero inner radius matches previous treatment 
**  Radial blocks:  small near well;  outer block is large 
**  well drainage area: 20 
*DI *IVAR 1.55 2.39 3.70 5.72 8.85 13.69 21.17 32.74 50.64 78.33 121.14 187.37  
*KDIR DOWN 
*DJ *CON 360  **  Full circle 
*DK *KVAR 4 13 14 82 39  
*DEPTH 1 1 1 2495 
*POR *KVAR 0.17 0.18 0.24 0.28 0.20  
*PERMI *KVAR 239 480 698 38 571  
*PERMJ *EQUALSI 
*PERMK *EQUALSI  / 2.22 
*END-GRID 
*ROCKTYPE 1 
*CPOR 7.542063e-06  
*PRPOR 14.7 
*ROCKCP 104  
*THCONR 37  
*THCONW 8.3 
*THCONO 1.60  
*THCONG 0.51  
*HLOSSPROP  *OVERBUR 38 59  *UNDERBUR 38 59 
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**  ==================  FLUID DEFINITIONS  ================== 
*MODEL 2 2 2   ** Components are water and dead oil.  Most water 
               ** properties are defaulted (=0).  Dead oil K values 
               ** are zero, and no gas properties are needed. 
*COMPNAME       "Water"    "OIL" 
**  ----- ----- 
     *CMM 18.02 584 
     *PCRIT 3206.2 0        ** These four properties 
     *TCRIT 705.4 0        ** are for the gas phase. 
     *AVG 1.13e-5 0        ** The dead oil component does 
     *BVG 1.075 0        ** not appear in the gas phase. 
     *MASSDEN 0 62.0 
     *CP 0 5.e-6 
     *CT1 0 3.94e-4 
     *CPL1 0 1 
     *AVISC 0 0.02211 
     *BVISC 0 6067 
*PRSR 14.7 
*TEMR 60 
*PSURF 14.7 
*TSURF 60 
 
** ============== ROCK-FLUID PROPERTIES  ============== 
*ROCKFLUID 
*SWT   **  Water-oil relative permeabilities 
**   Sw         Krw          Krow       Pcow 
**  ----      --------      -------    ------- 
    0.25      0.000000     1.000000    9.438175  
    0.30      0.000137     0.670959    7.161045  
    0.35      0.001964     0.429810    5.489804  
    0.40      0.009323     0.259687    4.326815  
    0.45      0.028147     0.145385    3.574438  
    0.50      0.066320     0.073393    3.135036  
    0.55      0.133587     0.031935    2.910968  
    0.60      0.241489     0.011022    2.804598  
    0.65      0.403306     0.002518    2.718286  
    0.70      0.634020     0.000222    2.554394  
    0.75      1.000000     0.000000    2.215283  
*SLT   **  Liquid-gas relative permeabilities 
**   Sl         Krg          Krog       Pcog 
**  ----      --------      -------    ------- 
    0.25      1.000000     0.000000    1.160117  
    0.30      0.754187     0.000038    0.945986  
    0.35      0.567366     0.000486    0.772615  
    0.40      0.417203     0.002212    0.635640  
    0.45      0.298681     0.006539    0.530694  
    0.50      0.207121     0.015214    0.453413  
    0.55      0.138190     0.030386    0.399431  
    0.60      0.087904     0.054597    0.364382  
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    0.65      0.052635     0.090767    0.343902  
    0.70      0.029117     0.142185    0.333624  
    0.75      0.014455     0.212505    0.329183  
    0.80      0.006135     0.305732    0.326214  
    0.85      0.002032     0.426225    0.320351  
    0.90      0.000428     0.578684    0.307230  
    0.95      0.000030     0.768150    0.282484  
    1.00      0.000000     1.000000    0.241748  
 
**  =================   INITIAL CONDITIONS  ================= 
*INITIAL 
** Automatic static vertical equilibrium 
*VERTICAL *DEPTH_AVE  
*REFPRES 1009 
*REFBLOCK 1 1 1 
*TEMP *CON 96 
*SW *CON 0.38 
*SO *CON 0.62 
 
** =================   NUMERICAL CONTROL  ================= 
*NUMERICAL   ** All these can be defaulted.  The definitions 
             ** here match the previous data. 
*SDEGREE GAUSS 
*DTMAX 90 
*NORM     *PRESS 200  *SATUR 0.2   *TEMP 180  *Y 0.2   *X 0.2 
*RUN 
 
**  ==============  RECURRENT DATA  ====================== 
*DATE 2017 06 01  
   *DTWELL 0.01  
     ** INJECTOR:  Constant pressure steam injection type  
   *WELL 1 'Injector 1' *VERT 1 1 
   *INJECTOR *MOBWEIGHT EXPLICIT 'Injector 1' 
   *INCOMP WATER  1.0  0.0 
   *TINJW 520 
   QUAL 0.76 
   *OPERATE *MAX *STW   946  CONT      ** Maximum water rate  
   *PERFV 'Injector 1' 
                1  1000000.00 
                2  1000000.00 
                3  1000000.00 
                4  1000000.00 
                5  1000000.00 
   ** PRODUCER:  Constant liquid rate type 
   *WELL 2 'Producer 1' *VERT 1 1  
   *PRODUCER 'Producer 1'  
   *OPERATE *MAX *STL    10000  CONT  ** Starting liquid rate  
   **           rad  geofac  wfrac  skin 
   GEOMETRY  K  0.25  1.0  1.0  0.0 

97 
 



         PERF      GEO  'Producer 1' 
   **   UBA        ff    Status   Connection 
       1 1 1      1     OPEN    FLOW-FROM  'SURFACE'  REFLAYER 
       1 1 2      1     OPEN    FLOW-FROM  1 
       1 1 3      1     OPEN    FLOW-FROM  2 
       1 1 4      1     OPEN    FLOW-FROM  3 
       1 1 5      1     OPEN    FLOW-FROM  4 
SHUTIN 'Injector 1' 
OPEN 'Producer 1' 
TIME 365 
TIME 760 
TIME 1095 
TIME 1460 
TIME 1825 
TIME 2190 
TIME 2555 
TIME 2920 
TIME 3285 
TIME 3650 
STOP 
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APPENDIX C 

C. MATLAB – ANN TRAINING CODE 

 

filename='ANN - eff10.xlsx'; 
sheet=1; 
io_all=xlsread(filename,sheet,'D7:BC5970'); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
caseno=5964; 
ni=36; %number of input neurons 
no=1; %number of outputs neurons 
 
%Number of training, validation, testing 
ntrain=4772; 
nval=596; 
ntest=596; 
 
%Number of hidden neurons 
numhid=((ni+no)/2)+sqrt(ntrain); 
nh1=30;   nh2=10;   nh=nh1+nh2;   % Two hidden layers 
year=2; 
 
%Adjustment of training parameters 
goal=0.00001;%Accuracy check 
epochs=15000;%# of iterations check 
max_fail=6;%# of validation check 
memoryReduction=2;%Reduction of memory requirements 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%Normalizing Inputs separately 
%Grid & Reservoir Parameters 
P(1,:)=(io_all(1:caseno,1))';[Pn(1,:),ps(1,:)]=mapminmax(P(1,:),-1,1); %Area 
P(2,:)=(io_all(1:caseno,2))';[Pn(2,:),ps(2,:)]=mapminmax(P(2,:),-1,1); %Total Thickness 
P(3,:)=(io_all(1:caseno,3))';[Pn(3,:),ps(3,:)]=mapminmax(P(3,:),-1,1); %Reservoir Depth 
P(4,:)=(io_all(1:caseno,4))';[Pn(4,:),ps(4,:)]=mapminmax(P(4,:),-1,1); %kv/kh 
P(5,:)=(io_all(1:caseno,5))';[Pn(5,:),ps(5,:)]=mapminmax(P(5,:),-1,1); %Average Porosity 
P(6,:)=(io_all(1:caseno,6))';[Pn(6,:),ps(6,:)]=mapminmax(P(6,:),-1,1); %Average Permeability 
P(7,:)=(io_all(1:caseno,7))';[Pn(7,:),ps(7,:)]=mapminmax(P(7,:),-1,1); %Rock Compressibility 
P(8,:)=(io_all(1:caseno,8))';[Pn(8,:),ps(8,:)]=mapminmax(P(8,:),-1,1); %Heat Capacity of Formation 
P(9,:)=(io_all(1:caseno,9))';[Pn(9,:),ps(9,:)]=mapminmax(P(9,:),-1,1); %Thermal Conductivity of Formation 
P(10,:)=(io_all(1:caseno,10))';[Pn(10,:),ps(10,:)]=mapminmax(P(10,:),-1,1); %Thermal Conductivity of Oil 
P(11,:)=(io_all(1:caseno,11))';[Pn(11,:),ps(11,:)]=mapminmax(P(11,:),-1,1); %Thermal Conductivity of Gas 
P(12,:)=(io_all(1:caseno,12))';[Pn(12,:),ps(12,:)]=mapminmax(P(12,:),-1,1); %Heat Capacity of Shale 
P(13,:)=(io_all(1:caseno,13))';[Pn(13,:),ps(13,:)]=mapminmax(P(13,:),-1,1); %Thermal Conductivity of Shale 
%Fluid Parameters 
P(14,:)=(io_all(1:caseno,14))';[Pn(14,:),ps(14,:)]=mapminmax(P(14,:),-1,1); %Oil Molecular Weight 
P(15,:)=(io_all(1:caseno,15))';[Pn(15,:),ps(15,:)]=mapminmax(P(15,:),-1,1); %Oil Mass Density 
P(16,:)=(io_all(1:caseno,16))';[Pn(16,:),ps(16,:)]=mapminmax(P(16,:),-1,1); %Oil Specific Gravity 
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P(17,:)=(io_all(1:caseno,17))';[Pn(17,:),ps(17,:)]=mapminmax(P(17,:),-1,1); %Oil API Gravity 
P(18,:)=(io_all(1:caseno,18))';[Pn(18,:),ps(18,:)]=mapminmax(P(18,:),-1,1); %Heat Capacity of Oil 
P(19,:)=(io_all(1:caseno,19))';[Pn(19,:),ps(19,:)]=mapminmax(P(19,:),-1,1); %Viscosity Coefficient A 
P(20,:)=(io_all(1:caseno,20))';[Pn(20,:),ps(20,:)]=mapminmax(P(20,:),-1,1); %Viscosity Coefficient B 
%Rock and Fluid Properties 
P(21,:)=(io_all(1:caseno,21))';[Pn(21,:),ps(21,:)]=mapminmax(P(21,:),-1,1); %Residual Oil Saturation 
P(22,:)=(io_all(1:caseno,22))';[Pn(22,:),ps(22,:)]=mapminmax(P(22,:),-1,1); %Irreducible Water Saturation 
P(23,:)=(io_all(1:caseno,23))';[Pn(23,:),ps(23,:)]=mapminmax(P(23,:),-1,1); %Rel. Perm. Exponent 
P(24,:)=(io_all(1:caseno,24))';[Pn(24,:),ps(24,:)]=mapminmax(P(24,:),-1,1); %Cap. Pres. Coefficient for Oil 
P(25,:)=(io_all(1:caseno,25))';[Pn(25,:),ps(25,:)]=mapminmax(P(25,:),-1,1); %Cap. Pres. Coefficient for Gas 
%Initial Conditions 
P(26,:)=(io_all(1:caseno,26))';[Pn(26,:),ps(26,:)]=mapminmax(P(26,:),-1,1); %Reservoir Pressure 
P(27,:)=(io_all(1:caseno,27))';[Pn(27,:),ps(27,:)]=mapminmax(P(27,:),-1,1); %Reservoir Temperature 
P(28,:)=(io_all(1:caseno,28))';[Pn(28,:),ps(28,:)]=mapminmax(P(28,:),-1,1); %Initial Water Saturation 
P(29,:)=(io_all(1:caseno,29))';[Pn(29,:),ps(29,:)]=mapminmax(P(29,:),-1,1); %Initial Oil Saturation 
%Steam and Production Parameters 
P(30,:)=(io_all(1:caseno,30))';[Pn(30,:),ps(30,:)]=mapminmax(P(30,:),-1,1); %Steam Temperature 
P(31,:)=(io_all(1:caseno,31))';[Pn(31,:),ps(31,:)]=mapminmax(P(31,:),-1,1); %Steam Quality 
P(32,:)=(io_all(1:caseno,32))';[Pn(32,:),ps(32,:)]=mapminmax(P(32,:),-1,1); %Steam Injection Rate 
P(33,:)=(io_all(1:caseno,33))';[Pn(33,:),ps(33,:)]=mapminmax(P(33,:),-1,1); %Injection Time 
P(34,:)=(io_all(1:caseno,34))';[Pn(34,:),ps(34,:)]=mapminmax(P(34,:),-1,1); %Soaking Time 
P(35,:)=(io_all(1:caseno,35))';[Pn(35,:),ps(35,:)]=mapminmax(P(35,:),-1,1); %Economic Rate Limit 
%Lorenz Coefficient (thickness-porosity-permeability) 
P(36,:)=(io_all(1:caseno,36))';[Pn(36,:),ps(36,:)]=mapminmax(P(36,:),-1,1); 
         
%Normalizing Outputs 
T(1,:)=(io_all(1:caseno,47))';[Tn(1,:),ts(1,:)]=mapminmax(T(1,:),-1,1); %Np/Si-Efficiency - 2 
  
%Fixing weights - trying different # of hidden neurons and train-val-test sets 
rand('state',0); 
  
%Creating backpropagation algorithm 
net=fitnet([nh1 nh2]); % two hidden layers 
  
%Division of data set for training, validation, testing 
net.divideFcn = 'divideind';  
net.divideParam.trainInd = 1:ntrain; 
net.divideParam.valInd = ntrain+1:ntrain+nval; 
net.divideParam.testInd = ntrain+nval+1:ntrain+nval+ntest; 
  
%Adjustment of training parameters 
net.trainParam.goal=goal;%Accuracy check 
net.trainParam.epochs=epochs;%# of iterations check 
net.trainParam.max_fail=max_fail;%# of validation check 
net.efficiency.memoryReduction=memoryReduction;%Reduction of memory requirements 
net.trainParam.showWindow=true; 
  
%Network Training 
[net,tr]=train(net,Pn,Tn); 
  
%Data Set Separation 
Pn_train=Pn(1:ni,1:ntrain); 
Tn_train=Tn(1:no,1:ntrain); 
T_train=T(1:no,1:ntrain); 
  
Pn_val=Pn(1:ni,ntrain+1:ntrain+nval); 
Tn_val=Tn(1:no,ntrain+1:ntrain+nval); 
T_val=T(1:no,ntrain+1:ntrain+nval); 
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Pn_test=Pn(1:ni,ntrain+nval+1:ntrain+nval+ntest); 
Tn_test=Tn(1:no,ntrain+nval+1:ntrain+nval+ntest); 
T_test=T(1:no,ntrain+nval+1:ntrain+nval+ntest); 
  
%Simulation of the network with the training/validation/testing data 
Tn_train_ann=sim(net,Pn_train); 
Tn_val_ann=sim(net,Pn_val); 
Tn_test_ann=sim(net,Pn_test); 
Tn_ann=[Tn_train_ann Tn_val_ann Tn_test_ann]; 
  
%Denormalization of the outputs 
for i=1:no; 
    T_train_ann(i,:)=mapminmax('reverse',Tn_train_ann(i,:),ts(i,:)); 
    T_val_ann(i,:)=mapminmax('reverse',Tn_val_ann(i,:),ts(i,:)); 
    T_test_ann(i,:)=mapminmax('reverse',Tn_test_ann(i,:),ts(i,:)); 
end 
T_ann=[T_train_ann T_val_ann T_test_ann]; 
  
%Error Calculation 
Error_train=abs(T_train-T_train_ann); 
Error_val=abs(T_val-T_val_ann); 
Error_test=abs(T_test-T_test_ann);             
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