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ABSTRACT

PARALLEL BIO-INSPIRED SINGLE SOURCE SHORTEST PATH

ALGORITHMS

ARSLAN, HİLAL

Ph.D., Department of Computer Engineering

Supervisor : Assoc. Prof. Dr. Murat Manguoğlu

December 2017, 102 pages

Real-world shortest path problems that usually dynamically change are challeng-

ing and computationally expensive, and earlier studies in the literature require pro-

hibitively long time to obtain the solution. To cope with such problems, we introduce

novel bio-inspired parallel algorithms based on Physarum Solver. The first proposed

algorithm is a fast and efficient parallel Physarum Solver with the objective to find

the shortest path for static graphs with positive edge weights. Next, we propose a

novel fully-dynamic bio-inspired parallel algorithm in order to find the shortest path

on dynamically changing graphs with positive edge weights. The proposed dynamic

algorithm efficiently computes the shortest path when the edge weights of the graph

increases, decreases, or both over time. The proposed algorithms include various

improvements and optimizations for Physarum Solver. We parallelize the sequential

Physarum Solver proposed by Tero, Kobayashi and Nakagaki in 2006. Furthermore,
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Physarum Solver requires the solution of linear systems whose coefficient matrix is a

symmetric M-matrix and we note that this step is the most time consuming step. In

the literature, however, there are not any studies that take an advantage of M-matrix

property of the coefficient matrix to solve the linear systems efficiently in Physarum

Solver and they are often solved by using a direct method, which is infeasible for

large scale problems. We efficiently solve such linear systems using a parallel it-

erative solver with a preconditioner based on M-matrix property of the coefficient

matrix. Finally, we propose a novel hybrid algorithm in order to compute the shortest

path exactly since Physarum Solver is not guaranteed to find the exact shortest path.

This underlines the accuracy of the hybrid method to compute the shortest path ex-

actly. In the hybrid algorithm, Physarum Solver is used in order to detect the edges

which cannot form the shortest path tree. The algorithm, first, sparsifies a given graph

by removing the edges which cannot form the shortest path tree and then we apply

a classical shortest path algorithm, such as Dijkstra, or Breadth First Search (if the

graph is unweighted) on the sparser graph with positive edge weights. The proposed

method is, therefore, a two stage hybrid algorithm. The accuracy and the required

solution time by the proposed hybrid method are compared against a state-of-the-art

implementation of the Dijkstra’s algorithm on the original graph as the baseline. The

results show that the proposed hybrid method achieves a significant speed improve-

ment compared to the baseline. In order to evaluate the parallel algorithms, we use

three different large graph models representing diverse real life applications. The par-

allel scalability, running time and accuracy of the proposed algorithms are presented

and compared against ∆-stepping which is the most representative parallel implemen-

tation of Dijkstra’s algorithm. The proposed algorithms exhibit remarkable parallel

speedup with comparable accuracy for sparse large graphs. This underlines the effec-

tiveness of the proposed algorithm to deal with hard real-life problems requiring long

running time using classical algorithms.

Keywords: Symmetric M-matrix, Parallel shortest path, Preconditioning, Krylov

subspace methods, ∆-stepping, Dynamic graphs
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ÖZ

PARALEL BİYOLOJİK TABANLI TEK KAYNAKLI EN KISA YOL

ALGORİTMALARI

ARSLAN, HİLAL

Doktora, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Murat Manguoğlu

Aralık 2017 , 102 sayfa

Gerçek dünyadaki en kısa yol problemleri genellikle dinamik olarak değişip, zorlu

ve hesaplama masrafı yüksektir. Literatürdeki çalışmalar, bu problemleri çözmek için

çok uzun zaman gerektirir. En kısa yol problemlerini çözmek için, biyolojik yöntem-

lerden esinlenilmiş Physarum Çözücü’ye dayalı paralel algoritmalar sunuyoruz. İlk

önerilen algoritma, pozitif kenar ağırlıklı durağan graflarda en kısa yolu bulmak için

geliştirilmiş hızlı ve etkin Physarum Çözücü’dür. Ardından, pozitif kenar ağırlıklı di-

namik olarak değişen graflarda en kısa yolu bulmak için, biyolojik tabanlı dinamik

paralel bir algoritma öneriyoruz. Önerilen dinamik algoritma, grafın kenar ağırlıkları

zamanla arttığında, azaldığında veya hem artıp hem azaldığında en kısa yolu verimli

bir şekilde hesaplar. Önerilen algoritmalar, Physarum Çözücü için çeşitli iyileştirme-

ler ve optimizasyonlar içerir. 2006 yılında Tero, Kobayashi ve Nakagaki tarafından
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önerilen Physarum Çözücü’yü paralelleştirdik. Ayrıca, Physarum Çözücü, katsayı-

lar matrisi simetrik M-matris olan doğrusal denklemlerin çözümünü gerektirir ve bu

adım algoritmanın en zaman alan kısmıdır. Fakat literatürdeki çalışmalar, Physarum

Çözücü’deki bu doğrusal sistemleri çözmek için katsayılar matrisinin M-matris özel-

liğini ihmal etmektedirler ve genellikle büyük ölçekli problemler için uygulanabilir

olmayan bir direk çözücü kullanarak çözmektedirler. Bu çalışmada, bu doğrusal sis-

temleri, katsayı matrisinin M-matris özelliğine dayanan bir ön koşullayıcılı paralel

iteratif çözücü kullanarak verimli bir şekilde çözüyoruz. Son olarak, Physarum Çö-

zücü’nün en kısa yolu tam olarak bulması her zaman garanti edilmediğinden, en kısa

yolu hesaplamak için yeni bir hibrit algoritma önermekteyiz. Bu method en kısa yolun

tam olarak bulunduğunu ön plana çıkartmaktadir. Hibrit algoritmada, en kısa yol ağa-

cını oluşturamayan kenarları saptamak için Physarum Çözücü kullanılır. Algoritma,

öncelikle, en kısa yol ağacını oluşturamayan kenarları kaldırarak grafı seyrek yapar

ve sonra Dijkstra (veya ağırlıksız graflarda Breadth First Search) gibi klasik en kısa

yol algoritmaları, pozitif kenar ağırlıklı seyrek grafa uygulanarak en kısa yol bulunur.

Önerilen hibrit algoritma bu nedenle iki aşamalıdır. Hibrit algoritma’nın problemi

çözme süresi ve dogruluğu, Dijkstra algoritmasının modern uygulamasıyla karşılaş-

tırılmıştır. Sonuçlar, önerilen hibrit yöntemin belirgin bir hız artışı sağladığını gös-

termektedir. Paralel algoritmaların sonuçlarını değerlendirmek için de, gerçek yaşam

uygulamalarını da içeren üç farklı büyük graf modeli kullanıyoruz. Önerilen para-

lel algoritmaların paralel ölçeklenebilirlik, çalışma süreleri ve doğrulukları, Dijkstra

algoritmasının en iyi parallel versiyonu olan ∆-stepping metodu ile karşılaştırılmış-

tır. Önerilen paralel algoritmalar büyük boyutlu seyrek graflarda önemli paralel hız-

lanma göstermektedir. Bu da geliştirdiğimiz algoritmaların klasik algoritmalar kulla-

nıldığında uzun çözüm süresi gerektiren büyük ölçekli gerçek dünya problemlerini

verimli bir şekilde çözdüğünü göstermektedir.

Anahtar Kelimeler: Simetrik M-matris, Paralel en kısa yol algoritmaları,Ön koşul-

landırma, Krylov alt uzay metodları, ∆-stepping, Dinamik Çizgeler
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Computing the single source shortest path is a crucial kernel that arises in many appli-

cations such as large road networks [34], wireless networks [57], social networks [39],

multicast routing [11], and route information protocol [69]. Almost every process that

is found in natural systems is parallel and dynamic. Hence, the algorithms that are

inspired by biological systems are known to be suitable for computational environ-

ments that support parallelism and should be able to adapt themselves for dynami-

cally changing problems. For instance, if we consider real-time traffic information

system and we want to find the least cost traffic route from our current position to a

destination, both our route and the state of each link are likely to change over time.

Therefore, the shortest path needs to be recomputed [21]. Much effort has been spent

to solve dynamic shortest path problems [22, 36, 66, 10, 35]. The algorithms in the

literature are generally sequential and there are only few parallel algorithms to solve

the dynamic shortest path problem. Additionally, when both the percentage of chang-

ing edges and the size of a graph become larger, these algorithms are inefficient and

the process of determining affected edges gets more time consuming. In this thesis,

we consider the problem of computing the shortest paths and we propose bio-inspired

algorithms to solve the single source and single target shortest path problems for both

static and dynamic graphs. However, these algorithms may not compute the short-

est path exactly for every graph since they are based on Physarum Solver which is a

heuristic. In order to compute exact single source shortest path, we propose a hybrid

algorithm based on Physarum Solver and Dijkstra.

1



1.2 Problem Statement

In this thesis, novel parallel methods are developed to solve the single source-single

target shortest path problem based on Physarum Solver, which computes the shortest

path approximately. Moreover, we propose a hybrid method to compute the single

source shortest path problem exactly based on Physarum Solver and Dijkstra. There-

fore, in this section, we give the definition of the shortest path problem for static and

dynamic graphs.

Let G(V,E,w) be a graph where V is the set of vertices, E is the set of edges, and

w is a weight function from E to R+. When a source and a destination vertices are

given, the smallest weight path from one vertex to an other is determined in order to

find the shortest path between two vertices, which is called as single source-single

target shortest path problem. If the shortest path is computed from a source to every

other vertices, the problem is called as the single source shortest path problem. In

some problems, the edge weights of the graph may change over time. We assume

that the edge weights of G are changing over time and so, another graph G′(V,E,w′)

is obtained such that G′ and G have same set of vertices and edges. The main goal

is to compute the shortest path on G′ efficiently by using the shortest path informa-

tion obtained fromG. Computing the shortest path in dynamically changing graphs is

called the Dynamic Shortest Path (DSP) problem. In DSP problems, the edge weights

can change in three different ways: edge weights may increase, decrease, and both

increase and decrease (mix case). The algorithms that are designed for graphs whose

edge weights either strictly increase or decrease are called semi-dynamic. More-

over, the algorithms that permit mixed edge weight changes are called fully-dynamic.

Therefore, dynamic algorithms are further divided into two categories, which are

semi-dynamic and fully-dynamic. These algorithms compute the shortest path by

recomputing only affected vertices and so they save time when the small portion of

the edge weights change.

2



1.3 Contributions

In the literature, there are not any efficient parallel shortest path algorithm which are

applicable to dynamically changing graphs and real world graphs. The primary goal

in this thesis is to propose efficient parallel shortest path algorithms for both dynamic

and static graphs.

The highlights of our contributions are:

• Parallel bio-inspired shortest path algorithm for static graphs (PPA)

• Parallel fully-dynamic shortest path algorithm for dynamically changing graphs

(dynPPA)

– Suitably designed for dynamically changing graphs, that is, the previous

iteration feeds completely into the next one

• Hybrid algorithm in order to compute the single source shortest path exactly

1.4 Organization of the Thesis

In Chapter 2, previous studies related to the shortest path problems are summarized.

Our proposed methods are based on Physarum Solver and we compare our results

with a well-known implementation of Dijkstra’s algorithm, ∆-stepping. Therefore,

we give detailed information about the implementations of these algorithms in this

chapter. In Chapter 3, we summarize solution methods for sparse linear systems

since our proposed algorithms require solution of these systems. In Chapter 4 and

5, we introduce the proposed parallel bio-inspired shortest path algorithms for static

and dynamically changing graphs, respectively. In Chapter 6, we propose a hybrid

method based on Physarum Solver in order to compute the single source shortest

path exactly. In Chapter 7, we present experimental results for large graph models

including real-world graphs. Finally, Chapter 8 concludes this thesis.
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CHAPTER 2

RELATED WORK

In this chapter, earlier studies in the literature for finding the single shortest path

algorithms are summarized. Algorithms solving such problems can be divided into

two main groups which are static and dynamic shortest path algorithms.

First, we summarize the shortest path algorithms for static graphs. The Dijkstra’s

algorithm [27] is one of the most well-known algorithms to solve the single source

shortest path problem on graphs which have nonnegative edges. Given a graph G =

(V,E) in which V and E are the set of vertices and edges, respectively. The Dijk-

stra’s algorithm has O(|V |log|V | + |E|) time complexity when a priority queue is

utilized. The shortest path is obtained by incrementally building up a tree of shortest

paths from the source vertex s to all other vertices in Dijkstra’s algorithm. Priority

queues, which holds the distance from each vertex to the source vertex, are used in the

implementation. The pseudocode of the original algorithm is shown in Algorithm 1.

The relax function decides whether there is a shorter path from s to v, or not. After

the vertex u that has the minimum distance in the priority queue is dropped, dist[v] is

updated where w(u, v) is the weight of an edge (u, v) and dist[v] is the distance from

v to s.

In our experiments we have used Parallel Dijkstra implementation in Parallel Boost

Graph Library (Parallel BGL) [41], which is a library including graph algorithms on

parallel and distributed computing platforms for large graphs. In Parallel BGL, three

versions of Dijkstra’s algorithm, which are ∆-stepping, Crauser Dijkstra’s, and Eager

Dijkstra’s, are implemented. In all versions, as an input, Dijkstra’s algorithm takes

row wise distributed graph (stored by the distributed compressed sparse row format
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Algorithm 1 Dijkstra’s Algorithm

1: dist[s]← 0

2: for all vertices v ∈ V \ {s} do

3: dist[v]←∞
4: end for

5: for all edges (u, v) ∈ E(G) do

6: RELAX(u, v, w)

7: end for

8: function RELAX(u,v,w)

9: if (dist[v] < dist[u]+w(u, v))

10: dist[v] = dist[u]+w(u, v)

11: end function

or adjacency list) that each processor has its own the vertices and all edges which are

directed from those vertices. Each version of the Dijkstra’s algorithm uses a different

heuristic to specify which vertices are dropped out from the priority queue. That

is, these variants provide different priority queue implementations. Pseudocode of

the Boost Dijkstra algorithm is shown in Algorithm 2 [30]. The algorithm can be

considered as a modified version of distributed parallel breadth first search.

Algorithm 2 dijkstra_ shortest_ paths()
1: //G is the input graph

2: //s is the source node

3: relaxed_heap<Vertex> Q;

4: //Visitor that updates the priority queue

5: dijkstra_bfs_visitor bfs_vis(Q);

6: breadth_first_visit (G, s, Q, bfs_vis );

In Algorithm 3, dijkstra_bfs_visitor is given. tree_edge() and gray_target() are func-

tions which relax the edges for updating the priority queue. tree_edge() is called if

the target node of an edge has not been seen, but the breath first search spanning

tree includes the edge. Furthermore, gray_target() is called if the target node of an

edge has been seen; however, it is not processed [30]. Next we describe different

implementations of the Dijkstra’s algorithm.
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Algorithm 3 struct dijkstra_bfs_visitor
1: function TREE_EDGE(Edge e, Graph &g)

2: if(dist(source(e,g))+weight(e) < dist(target(e,g)))

3: dist(target(e,g))=dist(source(e,g))+weigh(e)

4: end function

5: function GRAY_TARGET(Edge e, Graph &g)

6: if(dist(source(e,g))+weight(e) < dist(target(e,g)))

7: Q.update(target(e,g))=dist(source(e,g))+weigh(e)

8: end function

Eager Dijkstra’s algorithm uses a constant lookahead factor λ. In Eager version, ev-

ery vertex u is removed from the priority queue by each processors if dist(u) ≤ µ+ λ

where µ is the global minimum value. If λ = 0, Eager Dijkstra’s algorithm is equiv-

alent to the naive parallelization of Dijkstra’s algorithm. It is noted that the larger

λ results in more parallelism, but this may cause a lot of reinsertions in the priority

queue. The optimum λ value depends on the graph density, shape, and distribution of

the edge weights.

Crauser et al. [25] variant of the Dijkstra’s algorithm introduces more precise heuristic

in order to remove more vertices from the priority queue without causing reinsertions.

Crauser et al. variant of the Dijkstra’s algorithm does not include any parameter

which will be tuned differently than the Eager version. This algorithm employs two

different criteria that determine which vertices are removed from the priority queue.

They are the OUT-criterion and IN-criterion. A threshold L based on the outgoing

edges is computed such that L = min{dist(u) + weight(u,w)| u is queued and

(u,w) ∈ E}. Each vertex v with dist(v) ≤ L is safely removed from the priority

queue by the processors. In the IN-criterion, a threshold based on the incoming edges

is computed. If the condition dist(v)−min{weight(u, v) : (u, v) ∈ E} ≤ µ (where

µ is the global minimum) is satisfied, the vertex v is safely removed from the priority

queue.

∆-stepping is known to be the best version of the Dijkstra’s algorithm [52] and hence,

in our studies, we use ∆-stepping as the baseline algorithm. ∆-stepping is given in

detail in the following section.
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2.1 ∆-stepping

∆-stepping proposed by Meyer and Sanders [52] solves the single source shortest

path problem efficiently for large sparse graphs. It can be implemented in parallel

or sequentially, and achieves significant speedup on parallel computers. The average

sequential running time of ∆-stepping algorithm is O(n + m + dL) where d is the

maximum vertex degree, L is the maximum shortest path length, n is the number

of vertices, and m is the number of edges. In parallel implementations, the time

complexity for PRAM model is O(dLlogn+ log2n) on average [52].

∆-stepping can be considered as a generalization of Dijkstra’s and Bellman-Ford al-

gorithms. The degree of the parallelism and processing time depend on ∆-parameter.

when ∆ = 1, the algorithm turns into Dijkstra’s algorithm. On the other hand, when

∆ is infinity, the algorithm turns into Bellman-Ford algorithm.

In ∆-stepping algorithm, a tentative distance is assigned for each node as in Dijkstra’s

algorithm. This distance represents the weight from the node to the source vertex.

The main difference between Dijkstra’s and ∆-stepping algorithms is that Dijkstra’s

algorithm removes one vertex from a priority queue at a time; on the other hand, ∆-

stepping groups the vertices in buckets storing the tentative distance in range of size

∆ and uses bucket based priority queue. That is, ith bucket stores the nodes whose

tentative distance within [i∆, (i + 1)∆]. ∆-stepping removes all vertices from the

smallest bucket in parallel and relaxes all light edges (whose weight is less than ∆) of

these nodes (relax function is given in Algorithm 5). In this step, there may be rein-

sertion into the current bucket if their tentative distance is improved. Moreover, new

nodes may be added into the current bucket. Next, the remaining heavy edges (whose

weight is greater than ∆) are relaxed once when a bucket is empty [52] after relax-

ations. ∆ parameter should be chosen carefully. If ∆ is too small, then the number

of reinsertions is large. Otherwise, if it is too large, the degree of parallelism is small.

The pseudocode of the algorithm is given in Algorithm 4. B represents bucket arrays

in the queue. The nodes are sorted by using the buckets which denote priority ranges

of size ∆ [23]. All nodes are deleted from the bucket and light edges are relaxed,

so new nodes may be added to the current bucket in each iteration of the algorithm

(the inner while loop, lines 10-17 in Algorithm 4). When a bucket is empty, all heavy
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Algorithm 4 ∆-stepping Algorithm [23]

Input: G(V,E) and weights, w : E → R+

Output: dist(u), u ∈ V , the shortest path length from source to u

1: for u ∈ V do

2: heavy(u)← {(u, v) ∈ E : w(u, v) > ∆}
3: light(u)← {(u, v) ∈ E : w(u, v) ≤ ∆}
4: dist(u)←∞
5: end for

6: relax(source,0)

7: i← 0

8: while B is not ∅ do

9: S ← ∅
10: while B[i] is not ∅ do

11: Req ← {(v, dist(u) + w(u, v)) : u ∈ B[i] ∧ (u, v) ∈ light(u)}
12: S ← S ∪B[i]

13: B[i]← ∅
14: for (u, x) ∈ Req do

15: relax(u,x)

16: end for

17: end while

18: Req ← {(v, dist(u) + w(u, v)) : u ∈ S ∧ (u, v) ∈ heavy(u)}
19: for (u, x) ∈ Req do

20: relax(u,x)

21: end for

22: if u == target then

23: break

24: end if

25: i← i+ 1

26: end while
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Algorithm 5 relax(u,x) function in ∆-stepping algorithm

1: if x < dist(u) then

2: B[bdist(u)/∆c]← B[bdist(v)/∆c] \{u}
3: B[bx/∆c]← B[bx/∆c] \{u}
4: dist(u)← x

5: end if

edges are relaxed at once (lines 18-21 in Algorithm 4) in each iteration. Moreover,

while deletion and edge relaxation can be done in parallel, individual relaxation can

be done in atomically in constant time.

There are several algorithms to solve the single source and single target shortest path

problem such as bidirectional search [63], and the algorithms in [45, 74, 82, 38].

We recall that ∆-stepping is a single source shortest path algorithm and computes

the shortest path between the source node to all other nodes. In order to compute the

single source-single target shortest path using ∆-stepping, we straightforward modify

∆-stepping algorithm to terminate when no paths shorter than the shortest path from

source to target existed by permitting to make early-termination for the source-target

shortest paths (see steps 22-24 in Algorithm 4).

When edge weights are negative, Bellman-Ford algorithm [13], which is another well-

known single source shortest path algorithm, is used instead of the Dijkstra’s algo-

rithm. It allows negative edge weights and can detect negative cycles in a graph. It has

O(|E||V |) time complexity and more expensive than Dijkstra’s algorithm. Chakar-

avarthy et.al. [19] introduce a novel algorithm to solve the shortest path problem by

combining Bellman-Ford and Dijkstra’s algorithms. They do not only apply some

pruning techniques to reduce communication, but also propose load balancing tech-

niques to cope with higher degree vertices. They obtain promising results on real

world and scale free graphs.

In some applications like distributed computing [8, 61], computational geometry [6]

and others, it may be sufficient to compute approximate shortest path instead of exact

shortest path. In this case, the shortest path is computed with some errors. Gubichev

et al. [42] computed approximate shortest paths with high accuracy over large real

world social and biological networks. Yuster [81], Elkin [33] and Sen [75] have
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studied on approximate shortest path algorithms. However, their methods are mainly

for solving all pairs shortest path problems.

In the studies mentioned above, static graphs are used and if the graph changes over

time, they solve this problem by recomputing the shortest path information whenever

the graph changes. They, however, consume relatively more time when the number of

edges that are changed is small. Therefore, dynamic algorithms have been emerged

in order to avoid unnecessary computation involving unchanged edges [21].

King [47] proposed the first fully-dynamic algorithm to solve all pairs shortest path

problems on directed graphs with positive edge weights. Then, Demetrescu and Ital-

iano [26] introduced the first fully-dynamic algorithm on directed graphs with real

edge weights by improving King’s algorithm. Narvaez et al. [55] introduced a new

dynamic algorithm that makes use of the previously computed shortest path infor-

mation in the graph to overcome single edge weigh change although the algorithms

mentioned above can accept single edge weight changes [86]. To update changes

more efficiently, Narvaez [54] proposed another algorithm called as BallString [54]

which is a semi-dynamic algorithm. They compared their results with existing results

and concluded that BallString is the best performing algorithm when the changes are

small.

Chan and Yang [21] proposed DynDijkstra algorithm which is a semi-dynamic ver-

sion of Dijkstra. Ramalingam and Reps [67] proposed the fully dynamic version of

the algorithm which is called as DynamicSWSF-FP. Later, it has been optimized by

Chan and Yang [21] and the resulting algorithm is called as MFP. They concluded

that these algorithms should be used instead of static Dijkstra’s algorithm if percent-

age of edges changed is smaller than a threshold. FMN [37, 36] and RR [66] are other

fully-dynamic algorithms. Firigioni et al. [35] compared the performance of these

algorithms. They showed that RR has a better performance than FMN due to its effi-

cient cache usage. Djidjev et al. [28] described the first parallel algorithm for solving

the dynamic shortest path problems in a planar directed graph. Chabini and Ganuga-

pati [17] reported the design, implementation, and computational testing for parallel

algorithms to solve many-to-many shortest path problems in dynamic networks. They

achieved satisfactory speedups with respect to the existing sequential algorithms.
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The algorithms mentioned above have some important shortcomings. First of all,

most of algorithms mentioned above are sequential and there are only few parallel

algorithms to solve the DSP problem. Additionally, when both the percentage of

changed edges and the size of a graph become larger, these algorithms are inefficient

and the process of determining affected edges gets more complicated especially in

the mix case. Moreover, these methods implement different algorithms depending

on whether increase or decrease of the edge weights. For instance, DynDijkstra runs

DynDijkInc method to cope with increased edge weights and runs DynDijkDec to

overcome decreased edge weights [86]. Because of these shortcoming, new algo-

rithms are needed for solving the DSP problems.

Although all of these algorithms can accurately find the shortest path, they are com-

putationally expensive and are not much amenable to parallelism [18]. Therefore,

many bio-inspired algorithms have emerged, such as genetic [5], ant colony [29] and

Physarum Solver [78].

Physarum Solver [78] is a popular bio-inspired method to solve the shortest path prob-

lem efficiently. This method is inspired by the behaviour of a single-celled amoeba

like organism called as Physarum polycephalum which is able to find the shortest path

in a labyrinth. The mathematical model of Physarum polycephalum, which exhibits

behaviour of path finding in a labyrinth, is described by Tero et al. [79]. Then, Miyaji

and Ohnishi [53] mathematically proved that Physarum can solve the shortest path

problem on Riemann surface. Recently, Becchetti et al. [12] proved that the mathe-

matical model of Physarum computes the shortest path approximately. Our proposed

methods are based on Physarum Solver, therefore we give a detailed description of

this model in the following section.

2.2 Physarum Solver

Physarum Solver [78] is developed based on physiological observations of an amoeba-

like organism. It is capable of finding path in a maze which can be considered as a

graph. Tero et al. [79] put food resources at two different locations of a maze which

is filled to Physarum Polycephalum. Then, plasmodium of Physarum Polycephalum
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constitutes a path which has the minimum length between two resources thanks to

its biological structures. The body of the plasmodium of Physarum Polycephalum

includes a network of tubes which circulates to nutrients and chemical signals and

it finds the shortest path by concentrating to food resources to feed on the nutrients.

This experiments are repeated for different mazes and for all experiments, the or-

ganism can be able to find the shortest path. Modelling the behaviour of Phsarum

Polycephalum has been developed, namely Physarum Solver [79].

Physarum Solver is an iterative solver and it differs from other well known methods

with the following capabilities. The paths which do not start at the starting or end

at the ending vertices and longer paths are gradually eliminated by Physarum Solver.

Moreover, it is capable of finding more than one shorter paths contrary to the other

shortest path algorithms. Furthermore, Physarum Solver is a flexible algorithm when

compared to the classical shortest path algorithms in the sense that it ends the execu-

tion whenever the desired accuracy is obtained. A proof of an approximation of the

shortest path by using the iterative method and the analysis of the running time are

presented in [12].

Physarum Solver requires solution of sparse linear system of equations and Miyaji

and Ohnishi [53] showed that the coefficient matrix is a symmetric M-matrix. Al-

though they can be solved via direct or iterative techniques, it is well known that the

preconditioned iterative methods are more suitable for such systems.

2.2.1 Mathematical Model

Let G(V,E,w) be a graph where V is the set vertices, E is the set of edges, and w

is a function from E to R+. Assume that G is a connected undirected graph. Eij

represents the edge connecting from vertex Vi to vertex Vj . The variable Qij is used

to state the flux though Eij from Vi to Vj . On the assumption that the tube has the

Poiseuille flow approximately, Equation 2.1 is obtained.

Qij =
Dij

Lij

(pi − pj) (2.1)
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where Dij is the conductivity of the tube Eij , Lij is the weight of the edge Eij , and

pi is the pressure at vertex Vi.

On the assumption of zero capacity of each vertex except the starting and ending

vertices, if the Kirchoff’s law [53] is applied, Equation 2.2 is obtained.

∑
i 6=j

Qij =


I0 if i = source

−I0 if i = target

0 otherwise

(2.2)

Tero et al. [79] prove that while the tubes which have larger fluxes are supported,

tubes which have smaller fluxes are eliminated. Equation 2.3 called as adaptation

equation describes the change in the conductivity Dij with respect to time.

d

dt
Dij = f(|Qij|)−Dij. (2.3)

The Poisson’s equation is obtained by using Equation 2.1 and 2.2 to compute the

pressure of each node in Equation 2.4.

∑
i

Qij

Lij

(pi − pj) =


I0 if j = source

−I0 if j = target

0 otherwise

(2.4)

where pn = 0 and Equation 2.4 can also be written in the matrix from

Ap = b (2.5)

where p=(p1, p2, ..., pn)T is the unknown, b is right hand side vector with zeros except

+1 and -1 on the source and target vertices, respectively, andA = (Aij) is a symmetric

M-matrix [53] given by Equation 2.6.

Aij =


∑

l 6=i Til if i = j

−Tij otherwise
(2.6)

where Tij = Dij/Lij . Therefore, all pi’s can be computed by solving Equation 2.5.

Although there exists more complicated models, we assume a simpler f(|Qij|) =
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|Qij| as in [79]. We use Equation 2.7 to discretize the conductivity values in Equa-

tion 2.3
Dn+1

ij −Dn
ij

∆t
= |Qn

ij| −Dn+1
ij (2.7)

where ∆t indicates the duration of one discrete time step (or iteration) and Dn+1
ij

represents the conductivity of the edge Eij in (n + 1)th nonlinear iteration (i.e. time

step). Note that here we use the term "nonlinear iteration" to distinguish it from the

iterations to solve the linear systems. For more details, see [53, 79].

2.2.2 Applications of Physarum Algorithm

Physarum related algorithms have various application areas. Liu et al. used Physarum

algorithm to solve Steiner tree problem [50] in networks and called the resulting al-

gorithm as Physarum optimization. In order to accelerate the convergence of the

Physarum algorithm, they used edge-cutting scheme and feedback-adjusting scheme.

The fundamental idea of the edge-cutting scheme is to delete the edge whose conduc-

tivity is small enough [50]. The main disadvantage of this scheme is that the deleted

edges cause to fluctuate quickly of the nearby vertices. Thus, the difference between

pi − pj changes in a larger amplitude. In this scheme, it is important how to deter-

mine whether the conductivity of an edge is small enough. To do this, they used a

threshold τ . If the conductivity of an edge (Dij) is smaller than this threshold, then

the corresponding edge (eij) will be deleted. They experiment that the number of

remaining edges decreases quickly at first, however, after a while the number of re-

maining edges decreases slightly [50]. Therefore, after several iterations, deleting an

edge is difficult by using a fix threshold. To handle this problem, a dynamic threshold

is used to delete the edges. This threshold increases when the number of iterations

increases. In feedback-adjusting scheme, they used positive feedback between the

flux and conductivity shown in Equation 2.8

Dt+1
ij = κtijD

t
ij (2.8)

where κtij = 1 + σ
|
∑g

k=1(p
t
ik−p

t
jk)|

Lij
− ρcij , σ and ρ control the flux weights and cost cij ,

respectively.

Zhang et al. [85] described an other Physarum related bio-inspired algorithm in the
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transportation networks for identification of critical components. In their model, they

used a flow value which can be calculated by the following equality:

Lij = Lij + cij(fij) (2.9)

where cij is a function presenting the relationship between the flow and the cost of

the edge (i, j). The Physarum model for directed network can be given as in the

following equation:

∑
i

(
Dij

Lij

+
Dji

Lji

)(pi − pj) =


+fij if j = source

−fij if j = target

0 otherwise

(2.10)

where fij represents the flow on the edge (i, j). Their proposed algorithm is given

in Algorithm 6. In this algorithm, when the termination criterion is satisfied, it is

accepted that the network achieves an equilibrium state and they compute the total

cost of the network by using the following equation

TC =
∑

i,j=1,2,...,N

Lijfij (2.11)

where Lij is the weight associated with the edge (i, j) and fij shows the flow on the

edge (i, j).

In order to identify the critical links in the transportation network, they used the fol-

lowing strategy. To remove the edge g from a network G, first, the importance of this

edge is measured by using following equation

l(g) = |TC(G)− TC(G− g)− Lgfg| (2.12)

where G− g is the network which does not include the edge g, Lg and fg show edge

weight and the flow of the edge g, respectively. They noticed that an edge is more

important is its removal has significant effect on the reconstruction of equilibrium

state in the transportation network. Therefore, by using this strategy, they identified

all important edges in the network and removed the edges entering and existing that

edge.

Zhang et al. [90] combined Physarum model with ant colony approach and they called

resulting algorithm as PMACO, which is more efficient than original ant colony algo-
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Algorithm 6 Physarum inspired algorithm in transportation network [85]
1: //N is the size of network

2: Lij is edge weight between vertex i and vertex j

3: s is the starting vertex and t is the ending vertex

4: Dij ← 1 where L(i, j) 6= 0

5: Qij ← 0

6: count← 1

7: while a termination criterion is met do

8: Calculate pressures by using Equation 2.10

9: Qij =
Dij

Lij
(pi − pj)

10: Dij = Qij +Dij

11: if Qij < 0 then

12: Qij = 0

13: end if

14: //Update the cost of each edge weights

15: for i=1:N do

16: for j=1:N do

17: if Qij 6= 0 then

18: Lij = Lij + cij(fij)

19: Lji = Lij

20: end if

21: end for

22: end for

23: count← count+1

24: end while
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rithm. By using Physarum, the efficiency and robustness of the ant colony algorithm

is improved. Zhang et al. [87] proposed another Physarum related algorithm to solve

0-1 knapsack problem.

Liang et al. [49] proposed a new genetic algorithm based on the modified Physarum

network. In their hybrid algorithm, to improve the crossover operator in the traditional

genetic algorithms, Physarum network model is used. By ignoring the parts related to

the genetic algorithm, we summarizes only their modified Physarum network model.

In this model, they used a source node s and the destination nodes (DE) to present

the starting and ending points of the flux, respectively. By using Kirchhoff’s law, the

flux at the node s is equals to the total flux of output at all nodes in DE. Therefore,

Equation 2.13 is obtained

∑
i

Qij =


I0(N − 1) if j = source

−I0 if j ∈ DE
0 otherwise

(2.13)

Therefore, Physarum spanning tree is obtained. The linear equations (see Equa-

tion 2.5) in Physarum model is generally solved by the Gaussian elimination to find

the pressure values (pi). In their modified Physarum algorithm, they used an approx-

imate solution to the linear system shown in Equation 2.14

pt+1
i =



I0+
∑

j

Dij
Lij

ptj∑
j

Dij
Lij

if vi is a target node

0 if vi is a source node∑
j

Dij
Lij

ptj∑
j

Dij
Lij

otherwise

(2.14)

However, they reported that the approximate solution sometimes leads to noncon-

vergence of the algorithm. In order to provide convergence, they use a parameter λ

which controls the fluctuations of pressures and conductivities. Therefore, the fol-

lowing approximation is obtained

pt+1
i =



I0+
∑

j

Dij
Lij

ptj∑
j

Dij
Lij

λ+ (1− λ)pti if vi is a target node

0 if vi is a source node∑
j

Dij
Lij

ptj∑
j

Dij
Lij

λ+ (1− λ)pti otherwise

(2.15)
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Moreover, they used the following adapted equation in their study

Dt+1
ij =

Dt
ij +Qt

ij

k
(2.16)

where k is a parameter relative to the amplitude of conductivities in the Physarum

network. The pseudocode of the modified Physarum network is given in Algorithm 7.

Algorithm 7 The modified Physarum model [49]

1: Initializing with Dij = (0, 1] and pi = 0

2: while the terminal condition is not satisfied do

3: Computing pi using

pt+1
i =



I0+
∑

j

Dij
Lij

ptj∑
j

Dij
Lij

λ+ (1− λ)pti if vi is a target node

0 if vi is a source node∑
j

Dij
Lij

ptj∑
j

Dij
Lij

λ+ (1− λ)pti otherwise

(2.17)

4: Update Dij using

Dt+1
ij =

Dt
ij +Qt

ij

k
(2.18)

5: end while

One disadvantage of this method is that if the parameters (k and λ) are not chosen

carefully, the scalability of the algorithm will not be better. They run the model for

different λ and k values on small size random graphs. They showed that the modified

Physarum model is more sensitive to λ rather than k, while the higher k means that

the algorithm converge in a few number of iterations, the higher λ means that the

algorithm converge in a larger number of iterations.

We note that in the earlier studies, they use only small scale random graphs (such as

the graphs only 50 vertices) and when large graphs are used (typically the case for real

world applications), the algorithm becomes inefficient. Moreover, the parameters they

experimented may change with respect to the graph structure and parameter analysis

step is too much time consuming if large graphs are used.

Xu and Jiang [80] proposed a Physarum related model to solve the profit based

stochastic user equilibrium problem. They modified the original Physarum model

to find the shortest path in traffic direction networks. In the original Physarum model,
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there is one source and one target node and they extended the model with accepting

the multiple source and multiple target nodes. Furthermore, their modified Physarum

model can find the shortest path on directed networks. Now, we give the details of

their modified Physarum model. They modified the conductivity equation defined by

Equation 2.1 into the following:

Qij =


Dij

Lij
(pi − pj) if Dij

Lij
(pi − pj) > 0

0 otherwise
(2.19)

Let O present the set of source nodes (origin nodes) and D be the set of destination

nodes. The linear equation (Equation 2.2) accepting multiple source and target nodes

turns into the following equation

∑
i

(
Dij

Lij

+
Dji

Lji

)(pi − pj) =


−Io if ∀o ∈ O
+Id if ∀d ∈ D

0 otherwise

(2.20)

Further applications of Physarum related algorithms can be found in [88, 84].

When compared to the existing methods, the main advantages of Physarum algorithm

is its adaptivity in network design. Zhang et al. [86] uses this property to solve the

DSP problems. In their study, Physarum algorithm is modified for directed graphs

(see Algorithm 8). They used four random graphs whose sizes change from 500 to

2,000 and their edge weights change over time. They gave experimental results by

evaluating graph size, ratio of updated edges, and ratio of changed weight. They

presented that while the ratio of updated edges has little impact on the performance

of the algorithm, the ratio of changed weight has a larger effect on the performance.
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Algorithm 8 Physarum Algorithm for directed graphs [86]

1: Dij ← 1 where L(i, j) 6= 0

2: Q← 0

3: p← 0

4: while the terminal condition is not met do

5: pt ← 0

6: Computing the pressures using the following equation

∑
i

(
Dij

Lij

+
Dji

Lji

)(pi − pj) =


−1 if j = source

+1 if j = target

0 otherwise

(2.21)

7: Qij ← Dij × (pi − pj)
8: if Lij 6= inf and pi < pj then

9: Qij = 0

10: end if

11: D ← Q+D

12: end while
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CHAPTER 3

SOLVING SPARSE LINEAR SYSTEMS WHOSE

COEFFICIENT MATRIX IS A SYMMETRIC M-MATRIX

Solving sparse linear systems whose coefficient matrix is a symmetric M-matrix plays

a major role in Physarum Solver. In the sequential solution of those systems, it is

known that Gauss-Seidel method has a favorable rate of convergence for solving such

systems. In this thesis, we further investigate the parallel scalability of the solution

of those linear systems by using state-of-the art methods. Therefore, in this chapter,

we give an overview of solution methods of general sparse linear systems and recalls

important results.

Plemmon [62] gave 40 different properties of the M-matrices and we give some of

the important properties below. First we give the definition of an M-matrix.

A is an n × n square matrix. If A can be written as αI − B where B is nonnegative

matrix and ρ(B) ≤ α, then A is called as an M-matrix. Some important properties of

the M-matrices are listed as follows [62]:

1. M-matrices have positive principal minors

2. For each M-matrix A, A + D is nonsingular where D is a diagonal matrices

with positive entries

3. For each x 6= 0, xTADx > 0 where D is a nonnegative diagonal matrix

4. All real eigenvalue of an M-matrix is positive

5. Let A be an M-matrix. A = LU where L and U are lower and upper triangular

matrices with positive diagonals

23



6. For an M-matrix A, A−1 exists and A−1 ≥ 0. That is, A is inverse-positive

7. For an M-matrix A, A is monotone. That is,

Ax ≥ 0 =⇒ x ≥ 0 for all x ∈ Rn (3.1)

8. For an M-matrix A, A can be split into two parts such that

A = M −N, M−1 ≥ 0, N ≥ 0 (3.2)

where ρ(M−1N) < 1

9. For any M-matrix A,

AD +DAT (3.3)

is positive definite where D is a positive diagonal matrix

10. For each M-matrix A and positive semidefinite matrix P , PA has a positive

diagonal element

11. The real part of the eigenvalues of an M-matrix is positive

12. For any M-matrix A,

AW +WAT (3.4)

is positive definite where W is a symmetric positive definite matrix

13. For each M-matrix A, A is semipositive. That is, Ax > 0 for any x > 0

14. For any M-matrix A, the row summation of AD matrix is positive where D is

a positive diagonal matrix

15. For any M-matrixA,A has positive diagonal elements, and there exist a positive

diagonal matrix D such that AD is strictly diagonal dominant

Next, we summarize solution methods for general linear systems. A linear system of

m equations with n unknowns can be formed as

∑n
j=1 aijxj = bi for i = 1, 2, 3, ...,m
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where aij is the coefficient of the linear systems, xj is unknowns, and bi is the right

hand side. In this thesis, we interest the problems where n = m, that is, the number

of unknowns is equal to the number of equations. We can write these equations

compactly as follows

Ax = b, (3.5)

whereA is large and sparse coefficient matrix of order n, b is the right hand side, and x

is the unknown vector. However, in order to find the solution, computing A−1 is com-

putationally expensive and often numerically unstable. There are various techniques

for solving sparse linear system of equations. These techniques can be investigated in

two categories which are direct and iterative techniques. In these techniques, time to

obtain the solution is a major factor because the size of the problem is usually large.

Another important factor for solving linear system of equations is accuracy.

Direct methods are used in many problems in which robustness is the main issue [14].

In general, a factorization followed by solution via the factors is considered to be a

direct method. There a number of factorizations such LU, QR , WZ and many others.

However, they are not preferred for solving large linear system of equations because

of the considering memory requirements fill-in and arithmetic operation counts. It-

erative methods are preferred for solving large linear system of equations because

they use less memory and operation counts than direct methods, especially when an

approximate solution of relatively low accuracy is sought [14]. They do not show as

much robustness as direct methods, therefore they often fail in some applications and

preconditioning is needed in order to improve robustness and solution time. While

direct methods try to compute solution of linear systems in a finite number of oper-

ations, iterative methods start with an initial guess for the solution and improve the

initial guess in a finite sequence. Accuracy in iterative methods mostly depends on

the number of iterations.

3.1 Direct Methods

Finding the solution of a general sparse linear systems is a computationally expensive

problem. However, some special cases are relatively easier to solve. For instance, If

the coefficient matrix A is just a diagonal matrix (A = D), the solution can be given
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by the following equation

xi =
bi
Dii

. (3.6)

An other example is that if the coefficient matrix is an orthogonal matrix, the solution

can be given as follow:

x = QT b. (3.7)

Additionally, if the coefficient matrix is a lower triangular (or upper triangular), the

solution can be obtained by computing each xi successively in Equation 3.8 for the

lower triangular case (and similarly for the upper triangular case):

xi =
bi −

∑i−1
i=1 Li,jxj
Li,i

, i = 1, 2, ..., n (3.8)

The direct methods are based on decomposing or factorizing the coefficient matrix A

into the product of matrices that are in a more favorable form. There are various direct

methods. Most widely used direct methos is the sparse Gaussian elimination and the

resulting LU factorization. It requires the factorization of A as shown in Equation 3.9

A = LU (3.9)

where L is a lower triangular matrix and its diagonal consists of 1’s and U is an upper

triangular matrix. In order to find the solution, first, we solve the lower triangular

system shown in Equation 3.10 and the unknown vector y is found.

Ly = b (3.10)

Second, we solve the upper triangular (i.e. the forward substitution) system and so

the solution vector x that satisfies Ax = b can be obtained from Equation 3.11

Ux = y. (3.11)

This process, that is, computing the unknowns from an upper triangular system is

called the backward substitution. Pseudocode of LU factorization is shown in Al-

gorithm 9. The six permutations of the indices i, j, and k produce six different or-

ganizations of LU factorization and we call these "ijk" forms, and depending on the

computing platform different forms could have advantages [58].
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Algorithm 9 LU Factorization (kij form)
1: for k=1:n-1 do

2: for i=k+1:n do

3: A(i, k) = A(i, j)/A(k, k)

4: end for

5: for i=k+1:n do

6: for j=k+1:n do

7: A(i, j) = A(i, j)− A(i, k)A(k, j)

8: end for

9: end for

10: end for

When the coefficient matrix A has special properties, using variants of LU factoriza-

tion improves the performance. For instance, if the coefficient matrix is symmetric,

the LDLT decomposition can be used. Additionally, if the coefficient matrix is sym-

metric positive definite, the LLT decomposition also known as Cholesky factoriza-

tion is used. The other well known factorization methods are UL, QR, RQ, WZ, and

SVD [73, 68, 64].

3.2 Iterative Methods

The main idea of the iterative methods is that passing from one iteration to the next

one by gradually improving the approximate solution vector. To solve the linear sys-

tems shown in Equation 3.5 by using iterative methods, {xk} sequence vectors is

constructed such that

lim
k→∞

xk,

where x represents the real solution given by Equation 3.5 and xk is the kth approx-

imation of the exact solution. We note that when k = 0, x0 is called as the initial

guess. The construction of an iterative method begins with a splitting of A in Equa-

tion 3.5. Therefore, A is written as A = M −N where det(M) 6= 0 and M is easily
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inverted such that Equation 3.5 is equivalent to x = Tx + d where T = M−1N and

d = M−1b.

Convergence of iterative methods depends on properties of coefficient matrix such

as, distribution of eigenvalues, and hence it depends on spectral radius, and condition

number. Spectral radius of coefficient matrix is the largest eigenvalue of the coeffi-

cient matrix. Condition number is the ratio of the largest eigenvalue and the smallest

eigenvalue of the coefficient matrix. If the condition number is much more larger

than the unity, then eigenvalues of coefficient matrix are widespread and problem is

ill-conditioned. On the other hand, if the condition number is close or equal to one,

then eigenvalues are tightly together and problem is well-conditioned. Therefore,

knowing distribution of eigenvalues says a lot about the convergence. Gershgorin

theorem gives a bound on eigenvalues without finding them. According to theorem,

eigenvalues lies in a disk. To be more clear, each eigenvalue satisfies at least one of

the inequalities shown in equation 3.12.

| λi − aii| ≤ ri (3.12)

where ri =
∑n

j=1,j 6=i |aij| and A = [aij], i = 1, 2, .., n.

However, there are some drawbacks of iterative methods. Classical preconditioned

iterative methods may not be robust and often this can be improved with using better

preconditioning strategies.

3.2.1 Projection Methods

The projection methods aim to find the approximate solution of the linear systems in

a subspace of Rn. Let A be n-dimensional matrix, and K and L be two m dimen-

sional subspace of Rn. K represents search space and L represents the subspace of

constraints [71]. A projection technique aims to find an approximate solution x̃ ∈ K
such that b − Ax̃ ⊥ L. The projection methods can be classified into two groups

which are orthogonal and oblique. While in orthogonal projections, the subspace L

is equal to K, in oblique projections, the subspace L is different from K, in fact, they
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are unrelated to each other. When the initial guess x0 is provided, the problem turns

into the following one:

Find x̃ ∈ x0 +K such that b− Ax̃ ⊥ L.

Approximate solution can be stated as

x̃ = x0 + δ, δ ∈ K (3.13)

(r0 − Aδ, ω) = 0, ∀ω ∈ L. (3.14)

Next, we represent this problem using matrices. The columns of these matrices are

constituted as the basis vectors of these subspaces. Assume that V and W are the ma-

trix representations of K and L, respectively. If approximate solution can be formed

as:

x̃ = x0 + V y, (3.15)

then, if the orthogonality condition is applied, the following equations can be obtained

for vector y:

W TAV y = W T (b− Ax0). (3.16)

When we assume that W TAV is nonsingular, the following expression is obtained

for the approximate solution x̃,

x̃ = x0 + V (W TAV )−1W T (b− Ax0). (3.17)

A prototype projection algorithm is summarized by Algorithm 10.

We note thatW TAV may be singular. Anyone of the following conditions guarantees

a nonsingular of W TAV :

• A is positive definite and L = K.

• A is nonsingular and L = AK.

Then,W TAV is nonsingular for any basis V andW ofK and L, respectively. Further

information can be found in [71].
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Algorithm 10 Prototype Projection Algorithm [71]
1: while until convergence do

2: Determine K and L subspaces

3: Select V and W for K and L, respectively

4: r := b− Ax
5: y := (W TAV )−1r

6: x := x+ V y

7: end while

3.2.2 Krylov Subspace Methods

Krylov subspace methods based on the projection methods whereKm is an m-dimensional

Krylov subspace are defined as following:

Km(A, r0) = span{r0, Ar0, A2r0, ..., A
m−1r0}, (3.18)

where r0 = b−Ax0. By choosing different subspaces of Lm and using precondition-

ing, the different versions of Krylov subspace can be obtained. Krylov subspaces are

classified into four categories roughly:

1. Ritz-Galerkin: Build xk such that b− Axk ⊥ Km(A, r0).

2. Residual norm minimization: Choose xm such that ||b − Axm||2 is minimized

over Km(A, r0).

3. Petrov-Galerkin: Choose xm such that b− Axm ⊥ Lm.

4. Error norm minimization: Choose xm such that ||xm − x||2 is minimized on

ATKm(AT , r0).

Conjugate Gradient [65], the Generalized Minimum Residual Method (GMRES) [72],

and Bi-Conjugate Gradient Stabilized (BiCGSTAB) [9] are examples of the Krylov

subspace methods.
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3.2.3 Recycling Krylov Subspace Methods

Some applications require to find the solution of a sequence of the linear systems

shown in Equation 3.19

A(i)x(i) = b(i) for i = 1, 2, 3, ... (3.19)

where the coefficient matrix A(i) ∈ Rn×n and the right hand side b(i) ∈ Rn change

from one iteration to the next one. Although the change between two consecutive

iterations could be small, that is A(i−1) ≈ A(i) and b(i−1) ≈ b(i), the cumulative

change is significant. In order to solve such systems, we reuse the information which

is computed previous iterations and so, the convergence behaviour of Krylov sub-

space method is improved. This is the main idea of recycling in the Krylov subspace

methods. That is, the Krylov space which is generated from the previous iterations is

used to solve the next linear systems, and it is expected that the method can converge

in a reasonable number of iterations. It is important that the significant convergence

improvement is obtained with a relatively small recycle space [60].

3.2.4 Arnoldi’s Method

Arnoldi’s method [7], which is an orthogonal projection method, generates a suitable

orthogonal basis for the Krylov subspace Km. The algorithm is first defined to find

the eigenvalues of large sparse matrix and then it is extended to find the solution of

sparse linear systems. A version of the method is given in Algorithm 11.

If Algorithm 11 does not stop before the mth step, v1, v2, ..., vm vectors construct an

orthonormal basis of the Krylov subspace.

3.2.5 The Symmetric Lanczos Method

The symmetric Lanczos method can be viewed as the special case of the Arnoldi’s

method when the matrix is symmetric. If the Arnoldi’s method is applied to the

symmetric matrix, the method generates the following coefficients hij ,

hij = 0 for 1 ≤ i < j − 1, (3.20)
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Algorithm 11 Arnoldi’s Method [71]

1: Select a vector v1 such that ||v1||2 = 1

2: for j=1,2,...,m do

3: Compute hij = (Avj, vi) for i = 1, 2, ..., j

4: Compute wj := Avj −
∑j

i=1 hijvi

5: hj+1,j = ||wj||2
6: if hj+1,j = 0 then

7: break

8: end if

9: vj+1 = wj/hj+1,j

10: end for

hj,j+1 = hj+1,j, j = 1, 2, ..., n. (3.21)

This means that the Arnold’s process results in a matrix Hm which is tridiagonal and

symmetric. The Lanczos algorithm is given in Algorithm 12 where αj = hjj and

βj = hj−1,j .

Algorithm 12 Symmetric Lanczos Algorithm [71]

1: Select v1 such that ||v1||2 = 1

2: Set β1 = 0 and v0 = 0

3: for j=1,2,...,m do

4: wj := Avj − βjvj−1
5: αj := (wj, vj)

6: βj+1 := ||wj||2
7: if βj+1 = 0 then

8: break

9: end if

10: vj+1 := wj/βj+1

11: end for

The algorithm guarantees, at least in exact arithmetic, that the vectors vi for i =

1, 2, ...,m are orthogonal.
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3.2.6 Conjugate Gradient Method

The Conjugate Gradient is an iterative method for finding a solution for large sparse

linear systems whose coefficient matrix is symmetric and positive definite. There are

two ways to derive the conjugate gradient method. One is as a Krylov subspace solver

based on the Lanczos method (for the derivation see [59]). The other way is to view

it as an enery minimization method which we will describe briefly. In order to solve

the linear system of equations (shown in Equation 3.5), Conjugate Gradient algorithm

minimizes the following quadratic function:

f(x) =
1

2
xTAx− xT b. (3.22)

A search direction di which is linearly independent and orthogonal to all previous

search directions is determined at each iteration of Conjugate Gradient algorithm. In

the orthogonality for all j < i, the following equation holds:

dTi Adj = 0.

After choosing suitable direction vector dk, xk+1 is updated as xk + αkdk where αk

is a minimization value of the quadratic function f(xk+1) at each iteration. As a

result, a sequence x0, x1, ...xk is generated and xk → x as k → ∞ where x is the

real solution of Equation 3.5. We note that it is expected that Conjugate Gradient

algorithm finds the optimum solution in n iterations theoretically since the whole

search space is covered by the directions d0, d1, ..., dn−1. Pseudocode of Conjugate

Gradient algorithm is given in Algorithm 13.

We note that the value of rk is good indicator to break the for loop. If rk is less than

a threshold, the program halts. . If A is not positive definite α may become too large

(Line 5) and the algorithm fails.

3.3 Preconditioning Techniques

Major drawback of iterative methods is their lack of robustness when compared to

direct methods. Note that robust solvers are guaranteed to find the solution of a non-

singular system after a finite number of arithmetic operations [51]. Convergence of
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Algorithm 13 Conjugate Gradient Algorithm [71]
1: Determine x0

2: r0 = b− Ax0
3: d0 = r0

4: for k=1,2,3,... do

5: αk = (rk,rk)
(dk,Adk)

6: xk+1 = xk + αkdk

7: rk+1 = rk − αkAdk

8: βk = (rk+1,rk+1)

(rk,rk)

9: dk+1 = rk+1 + βkdk

10: end for

iterative methods usually depends on the eigenvalues of the iteration matrix. To im-

prove convergence rate of iterative methods, preconditioning is often used.

The objective is to have a preconditioned system with a more favorable eigenvalue

distribution than the original one and also solving linear systems involving the pre-

conditioner is "easier". For parallel computing "easier" can translate to "more parallel

(scalable)" preconditioner. The first step of the preconditioning is to define a precon-

ditioning matrix M . A linear system in Equation 3.5 can be converted into a new

linear system given in Equation 3.23

M−1Ax = M−1b (3.23)

such that this system has the same solution of the system given by Equation 3.5.

The preconditioned system satisfies the following properties

• It should be nonsingular

• The preconditioned matrix (M−1A) has a more favorable eigenvalue distribu-

tion which means the eigenvalues form one or maybe a few clusters.

Then M−1A approximates the identity matrix, so condition number of M−1A is

smaller than the condition number of A. It would be expected that the precondi-

tioned system shown in Equation 3.23 should converge faster. Alternatively, the
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preconditioning may also be applied from the right

AM−1y = b, x = M−1y. (3.24)

In the above equation, we note that in order to compute x by using x = M−1y, the

linear system of equations, Mx = y is solved.

Moreover, the preconditioning can be applied from both left and right at the same

time called as split preconditioning,

M−1
L AM−1

R y = M−1
L b, x = M−1

R y (3.25)

where the preconditioner M = MLMR.

Next we presents some preconditioning methods that we use in our proposed methods

and for a more detailed discussion on other preonditioners please see [16].

3.3.1 Jacobi (Diagonal) Preconditioner

Jacobi preconditioner is the simplest method and it is computed by taking the diagonal

entries of the coefficient matrix A = [aij] and shown in Equation 3.26.

mij =

 aij for i = j

0 otherwise
(3.26)

We note that if diagonal entries of the coefficient matrix contain zeros, the jacobi

preconditioner is singular.

If we decompose of the coefficient A matrix into three parts shown in Equation 3.27.

A = D + E + F (3.27)

where D is the diagonal of A, E is the strictly lower part of A, and F is the strictly

upper part of A. Therefore, the Jacobi iteration can be written in vector form as

xk+1 = −D−1(E + F )xk +D−1b. (3.28)

where the Jacobi preconditioner MJ = D.

35



3.3.2 Gauss-Seidel

Gauss-Seidel iteration [71] determines ith component of the the current approximate

solution by annihilating the ith component of the residual and given by Equation 3.29.

x
(k+1)
i = − 1

aii

i−1∑
j=1

aijx
k+1
j − 1

aii

n∑
j=i+1

aijx
(k)
j +

bi
aii

(3.29)

where bi are the ith component of the right hand side and i = 1, 2, ..., n.

If we write the above equation in the matrix form, we obtain Equation 3.30

Xk+1 = −(D + E)−1Fxk + (D + E)−1b (3.30)

where the Gauss-Seidel preconditioner MGS = (D + E). In case of the coefficient

matrix is symmetric, the symmetric Gauss-Seidel can be formed as:

MSGS = (D + E)D−1(D + F ). (3.31)

3.3.3 Successive Over Relaxation

Overrelaxation based splitting [71] can be defined in Equation 3.32

ωA = (D + ωE)− (−ωF + (1− ω)D) (3.32)

and the corresponding Succesive Over Relaxation (SOR) method [71] can be pre-

sented in Equation 3.33

(D + ωE)xk+1 = [−ωF + (1− ω)D]xk + ωb (3.33)

where ω ∈ R is a relaxation parameter and the SOR preconditioner MSOR = 1
ω

(D −
ωE). The SOR method converges if and only if

0 < ω < 2. (3.34)

The optimum ω value is given [71]:

wopt =
2

1 +
√

1− ρ(B)2
(3.35)
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where ρ(B) is the spectral radius of the Jacobi iteration matrix. Similarly, a symmet-

ric SOR (SSOR) method is defined in Equation 3.36 and 3.37.

(D + ωE)xk+1/2 = [−ωF + (1− ω)D]xk + ωb (3.36)

(D + ωF )xk+1 = [−ωE + (1− ω)D]xk+1/2 + ωb (3.37)

These equations can be shown as the following recurrence relation:

xk+1 = Gωxk + fω (3.38)

where

Gω = (D + ωF )−1(−ωE + (1− ω)D)× (D + ωE)−1(−ωF + (1− ω)D)

fω = ω(D + ωF )−1(I + [−ωE + (1− ω)D](D + ωE)−1)b.

Therefore, the symmetric SOR preconditioner can be defined as:

MSSOR = ω(2− ω)(D + ωE)D−1(D + ωF ). (3.39)

We note that in case of ω = 1, the SOR method turns into the Gauss-Seidel method.

3.3.4 The Algebraic Multigrid

Algebraic Multigrid (AMG) is a popular purely matrix based hierarchical approach [76].

The method separates the error into two parts, which are referred as rough and smooth.

The rough components are decreased in size on the original (fine) grid with using

some iterative methods such as Gauss-Seidel or succesive over relaxation. Therefore,

the smooth components are prevalent in the error. Next, the error is interpolated back

to the fine grid and is used to correct the fine-grid approximation on a larger mesh

size (coarser graph). Algorithm 14 [40] presents the pseudocode of one iteration of

the AMG. We note that IHh shows the transfer function from a fine grid (h) to the next

coarser grid (H) and IhH from a coarse grid to the next finer grid.

In the algebraic multigrid [77, 44], a "grid hierarchy" and inter-grid transfer functions
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Algorithm 14 MGM(xh, bh, Ah) [40]
1: if on coarsestgrid then

2: solve Ahx
h = bh

3: else smooth Ahx
h = bh

4: rh = bh − Ahx
h

5: rH = IHh r
h

6: cH = 0

7: apply MGM(cH , rH , AH)

8: xh = xh + IhHc
H

9: smooth Ahx
h = bh

10: end if

are obtained from the original matrix A. The pseudocode of the AMG method is

given in Algorithm 15.

Algorithm 15 The AMG algorithm [40]

1: on each level set IHh = (IhH)T

2: recursively set AH = IHh AhI
h
H

3: for i=0,1,2,... do

4: apply MGM(xh, bh)

5: convergence check

6: end for

3.3.5 Sparse Approximate Inverse

Preconditioning techniques based on sparse approximate inverses [83, 15, 48] became

popular in recent years, mainly because its amenability to parallelism. The main

idea of sparse approximate inverse is to compute a sparse M which approximates

the inverse of A. Without loss of generality, we assume right preconditioning, the

following minimization problems is solved.

min||I − AM ||F (3.40)
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where ||.||F shows frobenius norm of a matrix. The main advantage of this approach

is that it is highly parallel since

||I − AM ||F 2 =
n∑

i=1

||ej − Amj||22 (3.41)

where ej shows jth column vector of identity matrix that are independent of each other

and mj shows jth column vector of M . Therefore, the problem is reduced to linear

least square problems. If no further constrains are applied the resulting inverse is

exact and dense[33]. However, that is not preferred in practice therefore, we impose

further constrains on the sparsity. There are many choices about the sparsity for

example one can assume A−1 and A has the same sparsity structure, or adaptively

increase the level of fill-in during the runtime or even assume some problem specific

predetermined structure in A−1. We refer the reader to [24, 71] for a more detailed

overview of the approximate inverse preconditioners.
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CHAPTER 4

A PARALLEL SHORTEST PATH ALGORITHM FOR STATIC

GRAPHS

In this chapter, a fast and efficient parallel Physarum Solver is proposed for static

graphs. The proposed algorithm requires solution of the linear systems whose coef-

ficient matrix is a symmetric M-matrix, and uses an effective parallel iterative linear

solver with a parallel preconditioner for M-matrices. The parallel scalability, solu-

tion time and accuracy of the proposed algorithm are evaluated and compared to a

state-of-the-art parallel implementation of ∆-stepping shortest path algorithm in the

Parallel Boost Graph library. The dataset to compare the algorithms contains graphs

corresponding to both synthetic and real world applications. Now, we give the details

of the algorithm.

4.1 The Proposed Parallel Algorithm

In this section, we present a scalable parallel bio-inspired shortest path algorithm

based on Physarum Solver, which is called Parallel Physarum Algorithm (PPA).

Portable, Extensible Toolkit for Scientific Computation (PETSc) [3], which is a widely

used state-of-the-art library, is used for implementing PPA. PETSc also provides effi-

cient parallel implementations of many subroutines such as preconditioners and linear

solvers including various Krylov subspace methods.

Before we explain the proposed algorithm ( given in Algorithm 16 ), the data struc-

tures used in PPA are explained. Graphs are represented as matrices which are stored

in the coordinate format. The proposed algorithm requires solution of the linear sys-
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tems and PETSc supports a variety of vector and sparse matrix data structures, which

are suitable for various solvers, in parallel (MPI-based). The coefficient matrix of the

linear systems (A matrix, step 9 in Algorithm 16) and b vector (right hand side of the

linear system, step 10 in Algorithm 16) are stored the MATMPIAIJ storage format

required by sparse linear solvers and preconditioners in PETSc. The following data

partitioning scheme is used in PPA. A, Q, D, and T matrices in Algorithm 16 have

the same sparsity structure and they are partitioned conformably by block rows. For

instance, the matrix A is partitioned as in the following

A =


A1

A2

...

At


where t is the total number of processors and each process k owns the block row

Ak = [Aij]k. Each block row has a dimension of mk × n where

n =
t∑

k=1

mk

in which n is the number of vertices of the graph.

Now, we explain the steps of the proposed algorithm in detail. First, the source and

the target nodes are set. Next, each process k initializes own conductivity values

([Dij]k) to 1 and own flux values ([Qij]k) to zero in steps 2 and 3, respectively. Then,

each process sets associated part of the A and T matrices to be zero. In the while loop

(steps 7-15), there is a solution of linear systems whose coefficient matrix (A) is a

symmetric M-matrix in step 9. This step is the most challenging and time consuming

step of the algorithm. However, in the literature, M-matrix property of the linear

systems are not used and they are sequentially solved by using direct solvers. This is

not feasible for large problems. We solve these linear systems in parallel by taking

consideration into M-matrix property and explain details in the following subsection.

Next, Q and D matrices are updated for each while loop iteration. The parallelism

is achieved by partitioning the data, performing updates (lines 8, 9, 12, and 13) and

solving the linear system (line 10) in parallel.

We emphasize that steps 8, 9, and 13 are embarrassingly parallel. That is, after the
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Algorithm 16 The Proposed Parallel Algorithm
// L is an nxn matrix, Lij denotes the distance between vi and vj

// n is the size of the graph

// t is the number of processors and k is the processor ID

1: s← the source node and t← the target node

2: [Dij]k ← 1 where L(i, j) 6= 0

3: [Qij]k ← 0

4: [Aij]k ← 0

5: [Tij]k ← 0

6: iter ← 1

7: while until a termination criterion is met do

8: Tk ← Dk

Lk

9: [Aij]k =


∑

l 6=i[Til]k if i = j

−[Tij]k otherwise

10: solve Ap = b (Equation 2.5) in parallel

11: pn ← 0

12: [Qij]k ← [Tij]k x (pi − pj)
13: [Dij]k ← 1

2
(|[Qij]k|+ [Dij]k)

14: iter ← iter + 1

15: end while

partitioning, they do not require any communication. However, in step 10, the linear

systems are solved in parallel and require some communication since each processor

has own part. Similarly, in step 12, calculating the difference, pi − pj , requires a col-

lective communication operation which we implemented using an MPI_Allgatherv()

operation since each processor i initially only has pi. The outer while loop iterations

continue until one of the following termination criteria is met. First one is to check

whether the Frobenius norm of the change in the conductivity values (D matrix) is

less than or equal to a threshold between two consecutive outer iterations. Second,

when the iteration count has reached a maximum value, execution breaks the while

loop.
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4.1.1 Parallel iterative solution of the linear systems

In this part, we explain some details on the parallel solution of the sparse linear

systems of equations in step 10. The coefficient matrix (A) of the linear systems

in step 10 has important properties. Miyaji and Ohnishi [53] showed that A (step

9 in Algorithm 16) is a symmetric M-matrix. Hadjidimos [43] shows that when

left preconditioners such as Jacobi and Gauss-Seidel (type) methods applied to the

systems whose coefficient matrix is an M-matrix, the system convergences in a few

number of iterations. Neumann [56] mentions that the Gauss-Seidel method has a

favourable rate of convergence compared to the the Jacobi method. The study of

Rheinboldt [70] includes some convergence proofs that Gauss-Seidel method conver-

gences to the unique solution when the coefficient matrix is an M-matrix.

In the proposed algorithm, parallel Conjugate Gradient (CG) is used to solve the linear

systems iteratively where the coefficient matrix is a sparse symmetric M matrix (Step

9 in Algorithm 16) with symmetric Gauss-Seidel (GS) preconditioning.

Next, we explain implementation of the solution of the linear systems. PETSc KSP

solver is used to solve the linear systems efficiently by following the steps in below:

1. The solver is created by using KSPCreate().

2. The preconditioner is created by using PCCreate().

3. For solving the sparse linear systems using preconditioned Conjugate method,

KSPSetType() is set as KSPCG.

4. For using Gauss-Seidel preconditioner, PCSetType() is set as PCSOR.

5. For solving the sparse linear system, KSPSolve() is executed.

Eisenstat trick [32], which can be applied to any Krylov subspace method, is used to

make the matrix-vector multiplication in the preconditioning step more efficient.
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CHAPTER 5

A PARALLEL SHORTEST PATH ALGORITHM FOR

DYNAMIC GRAPHS

In this chapter, we introduce a fully-dynamic bio-inspired parallel algorithm based

on Physarum solver to find the shortest path from a single source to a single target

on dynamically changing graphs with the positive edge weights. Our contributions

are multiple folds towards obtaining an efficient parallel fully dynamic bio-inspired

shortest path algorithm. Firstly, at each iteration of Physarum solver, a sparse linear

system of equations needs to be solved, which is the most time consuming and chal-

lenging step of the algorithm especially when the problem size is large. We propose

a parallel preconditioned iterative method for solving those sparse linear systems as

in the static case. The proposed preconditioner is specifically designed based on the

properties of the coefficient matrix of those linear systems and the effectiveness of the

proposed preconditioner is compared against other state-of-the-art preconditioners on

dynamic graphs. Secondly, the proposed algorithm is designed to be suitable for dy-

namically changing graphs since it uses the information arising in earlier iterations.

Finally, while the earlier studies use only small scale random graphs on sequential

computing platforms, the proposed algorithm is evaluated using three different large

graph models representing diverse real life applications on a parallel multicore clus-

ter. The parallel scalability as well as the effect of changing the edge weights to the

time to obtain the solution are evaluated for each graph model, separately and com-

pared against ∆-stepping which is the most representative parallel implementation of

Dijkstra’s algorithm. Next, we give the details of the proposed method for dynamic

graphs.
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5.1 The Proposed Fully Dynamic Parallel Algorithm

In this section, a parallel fully dynamic bio-inspired shortest path algorithm, which

we call as dynamic parallel Physarum algorithm (dynPPA) is proposed based on

Physarum solver [78]. We recall that although Physarum solver was presented by

Tero, Kobayashi, and Nakagaki in 2006, there are only sequential variations of the

algorithm. Now, we describe the steps of the proposed algorithm. In Algorithm 17,

first, each process k initializes own conductivity values ([Dij]k) to 1 and own flux val-

ues ([Qij]k) to 0. Next, in step 11, each process k updates corresponding edge weights

[Lij]k of the original graph, so the graph is dynamically updated in each the for loop

iteration before entering the while loop. The for loop iterates four times like in [86],

therefore the graph changes four times. In step 11, the change of edge weights has

been updated in 5 different ways, which will be explained in the following subsection.

In the while loop, a linear system is needed to be solved in step 19, which is the most

critical step of the algorithm and determines the degree of parallelism as well as the

number of iterations of the while loop. The coefficient matrix (A) of these linear sys-

tems is computed in step 14 and in order to avoid some unnecessary computations,

the smaller values (|Aij| ≤ 10−17) in A may be considered to be 0 in steps 15-17.

Miyaji and Ohnishi [53] prove that A is a symmetric M-matrix. Although this is an

important property to consider when solving the linear systems, there are not any ear-

lier studies that uses M-matrix property of the coefficient matrix to solve the linear

systems efficiently in Physarum solver as in the static case. In this study, Conjugate

Gradient (CG) with symmetric Gauss-Seidel preconditioner is used to solve the linear

systems using a moderate tolerance, which is the residual norm relative to the norm

of the right hand side and is fixed at 10−3. The preconditioner is specifically designed

based on the properties of the coefficient matrix of those linear systems. The solution

vector of the linear systems is the pressure p = [pi] for each vertex i and this step

requires communication. We note that the performance of the parallel iterative solver

depends on the iterative linear solver, preconditioner and the initial guess for the so-

lution. In the rest of the thesis for simplicity we use the terms "outer" and "inner"

iterations to refer to the while loop and iterative linear solver, respectively. In step

18, we propose to use an initial guess that is the previous solution vector multiplied

by 2. The reason for this is that the conductivity values, computed by Equation 2.7
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Algorithm 17 The Proposed Fully Dynamic Parallel Algorithm
1: // L is an nxn graph, Lij denotes the length between vi and vj

2: // n is the number of vertices of the graph

3: // k is the processor ID

4: [Dij]k ← 1 where L(i, j) 6= 0

5: [Qij]k ← 0

6: [Aij]k ← 0

7: [Tij]k ← 0

8: iter ← 1

9: p← 0

10: for the graph dynamically changes do

11: update of the edge weights in Lk

12: while until a termination criterion is met do

13: Tk ← Dk

Lk

14: [Aij]k =


∑

l 6=i[Til]k if i = j

−[Tij]k otherwise

15: if |Aij| ≤ 10−17 then

16: Aij ← 0

17: end if

18: p0← 2p

19: solve Ap = b (Equation 2.5) iteratively in parallel

20: pn ← 0

21: [Qij]k ← [Tij]k x (pi − pj)
22: [Dij]k ← 1

2
(|[Qij]k|+ [Dij]k)

23: iter ← iter + 1

24: end while

25: end for
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approximately fall in half in step 22 (since frobenius norm ofA approximately falls in

half between two iterations) and the right hand side vector does not change. Next, in

step 21, each process k computes corresponding flux values [Qij]k for each neighbour

node j of node i based on the pressure values. It is important that computation of the

flux matrix requires the edge weights [Lij]k, which changes in each for loop iteration

in step 11. Moreover, computing the difference, pi−pj requires some communication

which is implemented using MPI_Allgatherv() operation since each processor k has

its own [pi]k. After this, each process k computes corresponding conductivity matrix

[Dij]k using the previous one and the flux (using Equation 2.7) in step 22. The itera-

tions continue until the frobenius norm of the change of the flux values between two

consecutive iterations is smaller than a threshold which is set to 0.1. We point out

that the result of each iteration is based on the previous iteration and fed into the next

one. We also note that the proposed algorithm is parallel and does not require any

communication except for steps 19 and 21.

5.1.1 Obtaining the dynamic graph

In this part, we provide some details on how the graph is dynamically changing in

step 11 of Algorithm 17. The following parameters, which are variables of the for

loop, indicates how many edges will be updated and in which ratio the edge weights

are to be increased and/or decreased. We also note that edges whose weights will be

changed are selected randomly.

• Percentage of edges changed (pce) presents the percentage of the edges changed

in the graph. In our experiments, the pce is between 0 and 0.6. For instance, if

the pce is 0.4 and the graph consists of 1000 edges, 400 edges are changed in

the graph. That is, 40 percentage of the edges are changed.

• Percentage of changed weight (pcw) presents percentages of edges whose

weights are decreased or increased compared to the original edge weight. While

the pcw changes from 0 to 6 in the increasing case, it changes from 0 to 0.6 in

the decreasing case. For instance, if the pcw is 4 and edge weight is 1000, new

weight of this edge will be 5000. If the pcw is 0.4, new weight of this edge will

be 600.
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Our graphs are dynamically changing in each for loop iteration. In Algorithm 17, the

for loop is iterated four times and in each iteration, dynamic graphs are obtained by

changing the pcw or the pce parameters by increasing and/or decreasing edge weights.

We use the same scheme for the changes as in the experiments in [86]. There are five

cases and the graph changes for four times in each case:

1. increase1: The percentage of number of edges weight changes are set by pce

parameter to 0, 0.2, 0.4, and 0.6, and the pcw is set to 1, which means that in the

first iteration (the pce=0), the original graph is used. 20, 40, and 60 percentages

of the total edges are selected and their edge weights are increased by adding

its own edge weight.

2. increase2: The pce is a constant for each iteration and set to 0.2, but the edge

weights are increased at different ratios by changing pcw from 0 to 6, which

means that in the first iteration (the pcw=0), the original edge weights are used.

The selected edge weights are increased by a factor of 2, 4, and 6 for second,

third, and fourth iterations, respectively.

3. decrease1: The percentage of number of edges weight changes are set by pce

parameter to 0, 0.2, 0.4, and 0.6, and the pcw is fixed at 0.2 for each iteration,

meaning that in the first iteration (the pce=0), the original graph is used. 20,

40, and 60 percentages of the total edges are selected and their edge weights

are decreased. For each case, the edge weight is decreased at 20 percent.

4. decrease2: The pce is constant at each iteration and set to 0.2, but the edge

weights are decreased at different percentages by setting the pcw to 0, 0.2, 0.4,

and 0.6, respectively. That is, in each iteration, 20 percentage of the total edges

is selected and their edge weights are decreased by 20, 40, and 60 percent,

respectively.

5. mix: The last case is the mix case. For each iteration, while some of edge

weights are increased, some are decreased. In this case, the pce is set to 0,

0.2, 0.4, and 0.6, respectively and the pcw is 2 for increasing case and 0.2 for

decreasing case. For instance, in the second iteration, the pce is 0.2, which

means that while 10 percent of the total edges are increased, 10 percent of the

total edges are decreased.
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CHAPTER 6

HYBRID METHOD

In this chapter, we propose a novel hybrid method that first sparsifies a given graph

by removing most edges which can not form the shortest path tree and then applies a

classical shortest path algorithm on the sparser graph. Depending on the problem, the

classical shortest path algorithm might be used for solving the single source shortest

path or the source to target shortest path problems. In this section, we solve the

single source shortest path problem. Removing all the edges that can not form the

shortest path tree would be expensive since it is equivalent to solving the original

problem. Therefore, we propose to use an iterative bio-inspired algorithm, namely

the Physarum algorithm as the first stage to sparsify the graph. We prove that the

resulting sparser graph always contains the shortest path tree of the original graph.

Next, any shortest path algorithm can be used to find the single source shortest path on

the resulting graph. The proposed method is, therefore, a two stage hybrid algorithm

and it computes the single source shortest path exactly. Next, we give the details of

the proposed hybrid method for solving single source shortest path problems.

6.1 Proposed Hybrid Method

When the number of the vertices and edges in a graph is larger, classical shortest path

algorithms require excessive computational time to find the shortest path even though

those edges may not be a part of the shortest path. For instance, a graph may include

many cycles and at least one edge on a cycle can not be a part of the shortest path.

Additionally, if the graph is complete, at least half of the edges can not be a part
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of the single source shortest path tree. If those edges are removed from the graph,

the computational time of any single source shortest path algorithm could be reduced

significantly without compromising its accuracy.

In our proposed algorithm, after most edges which can not be a part of the single

source shortest path are determined by using Physarum algorithm, those edges are

removed from the graph and sparser graph is obtained. Next, Dijkstra’s or breath

first search (BFS) are used to find the single source shortest path on the sparser graph

if the graph is unweighted or weighted, respectively. Thus, Dijkstra’s or BFS leads

to a significant reduction in computational time since search space of the algorithm

is significantly reduced. Next, we prove a crucial theorem that shows in Physarum

algorithm how eliminating edges that have fluxes less than zero does not disturb the

shortest path tree. First we need to prove a few lemmas, leading to the proof of our

theorem.

Lemma 6.1.1. Any edge Lij with negative Qij value can not be one of the edges

forming the shortest path.

Proof. Mathematical model of Physarum [78] based on Poiseuille flow and Kri-

chooff’s laws is represented by an electrical circuit system [89]. In this represen-

tation, the electrical current which is passing from node i to node j equals to the flux

on the edge Lij . The potential difference between node i and node j corresponds

to the difference of the pressures (pi − pj). Therefore, a mapping from Physarum

network to an electrical circuit is constructed by Equation 6.1, 6.2, and 6.3

Iij = Qij (6.1)

Vij = pi − pj (6.2)

Rij =
Lij

Dij

(6.3)

where Iij is the electrical current, Vij is the potential, andRij is the resistance between

vertex i and vertex j. In other words,

Iij =
Vij
Rij

=
Dij

Lij

(pi − pj) = Qij. (6.4)
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Therefore, Equation 6.4 is a model to the flows thorough the tubes in the Physarum

network (see Equation 2.1). We note that the flow direction is consistent with the

edge orientation.

If the potential difference between node i and node j is positive, the electrical current

flows from node i to node j by Ohm’s law. Now we apply this information in the

Physarum network. If Qij of an edge Lij is negative, it means that the flow moves

from node j to node i, which is the opposite of edge orientation. Thus, this edge can

not be on the shortest path. In conclusion, the edge with negative Q value can not be

one of the edges forming the shortest path from s to t since the orientation of the edge

is not consistent with the flow direction.

Lemma 6.1.2. Let G be a graph with positive edges. There is at least one edge Lij

on a cycle in G whose Qij is negative.

Proof. We assume that G includes a cycle whose length is k (i.e. there are k vertices

on the cycle, k ≤ n), vx is the starting vertex of the cycle, and vx+k−1 is the ending

vertex of the cycle. Moreover, we assume that all Q values of the edges on the cycle

are positive. Then, Equation 6.5 holds

px > px+1... > px+k−1 > px. (6.5)

This is a contradiction. Therefore, there is at least one edge Lij on the cycle whose

Qij is negative.

Theorem 6.1.1. Let G be a connected graph. If we remove the edges Lij whose Qij

values are less than zero and call the resulting graph as Gs, then Gs is a tree and the

shortest path tree of the original graph G is a subtree of Gs.

Proof. First, we prove that Gs is a tree. In order to prove this, we will show that Gs

does not contain any cycle and is connected. First, we will show that Gs does not

contain any cycle. If all edges whose Q values are negative are removed from G and

in a cycle there is at least one edge with negativeQ value by Lemma 6.1.2, at least one

edge on a cycle is removed. Thus, the cycle is eliminated. Second, by Lemma 6.1.1,

edges with negative Q values can not be on the shortest path. Therefore, removing

such edges does not affect the connectivity of the graph since we only remove the
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edges which can not be on the shortest path. As a result, Gs is a tree. Finally, since

Gs includes all edges which may form the shortest path tree, the shortest path tree is

a sub tree of Gs.

Now, we give the pseudocode of the hybrid algorithm in Algorithm 18. The input

of the algorithm is a graph G = (V,E) where V and E are the set of vertices and

edges, respectively. L is the corresponding adjecency matrix. In Line 3, the diag-

onal entries of L (i.e. self loops) are removed directly since the shortest path can

not include the same node. Then, we apply Physarum algorithm in order to find the

flux values (Q matrix Lines 8-13). This is called as Stage1 of the hybrid algorithm.

In Physarum model, Equation 6.6, which is derived from Equation 2.10 and Equa-

tion 2.13, is used since our goal is to compute the shortest path from a source vertex

to the other vertices. In our algorithm, the while loop is iterated only once in order to

determine direction of the flux. For determining more edges not forming the single

source shortest path, the while loop could be iterated further. The algorithm requires

to find the solution of linear systems in Line 10 and they are iteratively solved by

using a moderate stopping tolerance, which is the residual norm relative to the norm

of the right hand side vector and is fixed at 10−3. After Q matrix is computed, the

edges whose Q values are less than ε (machine precision) are removed (Lines 15-

17) since they are practically zero. Therefore, the resulting graph Gs is simple and

sparse and by Theorem 6.1.1, Gs includes all edges which may form the shortest

path. Therefore, finding the single source shortest path on G corresponds the single

source shortest path on Gs. Finally, BFS efficiently computes the shortest path using

the simple and sparse graph, which is called as Stage2 of the hybrid algorithm. To

summarize, we present the flow of the algorithm in Figure 6.1.

To illustrate how the proposed method works, we give a small example. The example

graph G is given in Figure 6.2. There are 6 vertices (q1, q2, q3, q4, q5, and q6) and 19

edges in this graph. We assume that q1 is the source vertex and all edge weights are

1. In order to remove unnecessary edges, Physarum approach is applied. Therefore,

after the edges which can not form to the shortest path tree are removed by following

the steps in Algorithm 18, the resulting sparse graph, Gs, is obtained. In Figure 6.3,

Gs is shown by all edges with solid and dashed lines and the shortest path tree is
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Figure 6.1: Flow of the hybrid algorithm, note that Dijkstra’s algorithm is replaced

with BFS if the graph is unweighted

q4

q1 q2 q3

q5 q6

Figure 6.2: An example directed graph G

shown by only edges with solid lines. That is, the dashed edges belong to Gs, but not

in the shortest path tree. To sum up, there are eight edges inGs and only three of them

are not included in the shortest path tree. Finally, the single source shortest path is

computed by Dijkstra’s or BFS algorithms using Gs graph. If we choose the vertex q6

as a target vertex, the shortest path from q1 to q6 is computed as s = q1−q5−q6 = t. In

the next section, we show the performance of the proposed method on larger graphs.
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q4

q1 q2 q3

q5 q6

Figure 6.3: The resulting graph Gs (solid and dashed edges) where the solid edges

indicate the shortest path tree
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Algorithm 18 Hybrid Shortest Path Algorithm

1: Data: G = (V,E) where V and E are the set of vertices and edges respectively

of the graph (which is represented as an adjacency matrix L) and s is the source

vertex

2: Result: the single source shortest path

3: Ls = L− diag(L)

4: //Physarum Algorithm

5: Dij ← 1 where Ls
ij 6= 0

6: Q← 0

7: p← 0

8: while a termination condition is not met do

9: pt ← 0

10: Computing the pressures by Equation 6.6

∑
i

(
Dij

Ls
ij

+
Dji

Ls
ji

)(pi − pj) =

 n− 1 if j = source

−1 otherwise
(6.6)

11: Qij ← Dij

Lij
× (pi − pj)

12: D ← (Q+D)/2

13: end while

14: //Removing edges not forming the shortest path

15: if Qij < ε then

16: Ls
ij = 0

17: end if

18: //Dijkstra’s algorithm using Gs

19: [dist,path]=graphshortestpath(Gs,s) where Gs= (V,Es) represented by Ls
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CHAPTER 7

EXPERIMENTAL RESULTS

The numerical results are obtained by using the High Performance and Grid Com-

puting Center of the Scientific and Technological Research Council of Turkey. The

cluster that we are using consists of 128 nodes connected via Mellanox Connect×3

FDR Infiniband interconnection. Each node contains 2 × Xeon E5-2680v3 2.50GHz

(28 cores in total) processors and 256GB memory in total. We have access to at most

96 cores.

In our experiments, we have used ∆-stepping implementation in Parallel Boost Graph

Library (Parallel BGL) [41], version 1.63.0, which is a library that contains parallel

and efficient implementations of graph algorithms for large and sparse graphs which

are stored by using distributed adjacency list such that each processor has its local

vertices and all edges which are directed from those vertices. Parallel BGL uses

the Message Passing Interface (MPI) library for interprocess communication. ∆-

stepping (in Parallel BGL) is a single source shortest path algorithm and computes

the shortest path between the source node to all other nodes. There are no efficient

MPI implementation of source to target shortest path in Boost library or in any other

library that we know. Hence, we simply modify ∆-stepping algorithm in parallel

BGL to terminate when no paths shorter than the shortest path from s-t existed by

permitting to make early-termination for the s-t shortest paths (see steps 22-24 in

Algorithm 4). We use the following function:
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delta_stepping_shortest_paths

(const Graph& g,

typename graph_traits<Graph>::vertex_descriptor s,

typename graph_traits<Graph>::vertex_descriptor t,

PredecessorMap predecessor, DistanceMap distance, WeightMap weight)

Portable, Extensible Toolkit for Scientific Computation (PETSc) [3] by Argonne Na-

tional Laboratory, version 3.7.5, is used for implementing PPA and dynPPA. PETSc is

a high-performance linear algebra library and provides optimized parallel sparse ma-

trix and vector routines including efficient implementations of iterative solvers such

as Krylov subspace methods. It uses double precision arithmetic and also using MPI

for interprocessor communication in C language.

In our implementation, the graphs are represented and stored as sparse matrices. In

Algorithm 16 and 17, the MATMPIAIJ format of PETSc is used to store A matrix,

and b vector is stored by using PETSc vector storage format which is quite suitable

and efficient for PETSc linear solvers and preconditioners. To achieve good perfor-

mance during the matrix assembly, it is crucial to preallocate the memory needed for

the sparse matrices [3]. The other matrices (D, Q, and T ) in Algorithm 16 and 17

are stored in coordinate format because of the fact that the assembly operation in co-

ordinate format is cheaper. Details of these storage formats are explain below. All

matrices and vectors in the algorithm have the same sparsity structures and they are

conformably partitioned by block rows assigned to processors. For instance, the ma-

trix A can be partitioned as in the following

A =


A1

A2

...

At


where t is the total number of processors and each process k owns the block row

Ak = [Aij]k. Each block row has a dimension of mk × n where

n =
t∑

k=1

mk

n is the number of vertices of the graph.
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7.1 Results of PPA

First, we give information about the dataset. As the basis for comparison, we use 12

undirected graphs in two groups: (1) Real-world graphs obtained from the 9th DI-

MACS Implementation Challenge [1] and (2) Synthetic graphs. We used several dif-

ferent kinds of synthetic graphs: R-MAT, Erdos-Renyi, and small-world, generated by

ParMAT [46], erdos.renyi.game function [2] andwatts.strogatz.game function [4]

of igraph package in R language, respectively. These different graph sets exhibit dif-

ferent properties. While Erdos-Renyi graphs violate power laws (degree distribution

of Erdos-Renyi graphs converge to the Poisson distribution), R-MAT model fits a

unimodal and power law graphs [20]. In addition, R-MAT graphs are realistic resem-

bling social networks. Strogatz small-world networks have relatively smaller average

shortest path lengths, and clustering property. On the other hand, real-world graphs

have higher diameter and lower degree than the synthetic graphs.

We generated various size undirected synthetic graphs whose number of vertices

range from 1 to 20 Millions and the number of edges are between 100 and 200

Millions. In R-MAT, the graph is recursively subdivided into four equal-sized par-

titions. The distributed edges within these partitions have the probabilities which are

a = 0.4, b = 0.1, c = 0.1, and d = 0.4. The watts.strogatz.game function also

includes some parameters which are rewiring probability (p = 0.5) which an edge

is rewired. This means that the edge is disconnected from one of its vertices and

then randomly connected to another vertices anywhere in the graph. Moreover, the

neighborhood constant (nei) is set to 5. While we use distances for edge weights in

the real-world graphs, we use unit weights in synthetic graphs. The properties of the

graphs are given in Table 7.7.

We evaluate our results based on the time to solution, parallel scalability as well as

accuracy, and compare to the baseline algorithm namely, ∆-stepping algorithm which

is considered to be the best performing variant of the Dijkstra’s algorithm in Parallel

BGL [31, 41]. Note that in Dijkstra’s algorithm, we stop when the shortest path to the

target is found. The comparisons are performed by using several kinds of real-world

graphs for road networks of the USA and synthetic graphs.
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Table 7.1: Graph Properties

Graph Name Vertices Edges Kind

Erdos1 1M 100M Erdos-Renyi
Erdos2 1M 120M Erdos-Renyi
Erdos3 1M 140M Erdos-Renyi

Rmat1 1M 100M R-MAT
Rmat2 1M 120M R-MAT
Rmat3 1M 140M R-MAT

Smallworld1 10M 100M Small-world
Smallworld2 15M 150M Small-world
Smallworld3 20M 200M Small-world

USA CTR ∼14M ∼34M Real-world
USA W ∼6M ∼15M Real-world
USA E ∼3.5M ∼9M Real-world

PPA requires some parameters. First one is the maximum number of outer iterations

to break out the while loop which we set to be three in our experiments. The iteration

number may be increased if more accuracy is desired, but for dataset we found this to

be sufficient. CG method with GS preconditioner is used to solve the linear system. In

order to terminate the inner iterations(CG iterations), combination of setting a limit

on the maximum number of iterations and a stopping tolerance are used. In our

experiments, the stopping tolerance, which is the residual norm relative to the norm

of the right hand side, is called as the inner tolerance and is fixed at 0.01. Moreover,

the maximum number of iterations is set to be 104.

The baseline algorithm, ∆-stepping, uses the parameter ∆ which is set to the maxi-

mum edge weight divided by the maximum degree for the synthetic graphs [52] and

∆ is set to 400 for the real world graphs [31]. The sequential performances of both

PPA and ∆-stepping algorithm are shown in Table 7.2. PPA is 5 times faster than

∆-stepping on average. We believe the sequential performance of PPA is due to the

effective preconditioner for M-matrices which requires only 6 iterations to converge

for the synthetic graphs and at most 67 iterations for real-world graphs to reach the

desired inner tolerance.
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Figure 7.1: Speedup of Erdos-Renyi Graphs
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Figure 7.2: Speedup of RMAT Graphs
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Figure 7.3: Speedup of small-world Graphs
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Figure 7.4: Speedup of real-world Graphs
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Table 7.2: Sequential solution time for both PPA and ∆-stepping in seconds (using
Conjugate Gradient linear solver with Gauss-Seidel preconditioner, outer iteration
number is three) and the total number of inner iterations for PPA

PPA ∆-stepping

Graph Time Inner Iter Time

Erdos1 59.3 6 260.4
Erdos2 74.5 6 308.1
Erdos3 88.1 6 363.4

Rmat1 55.0 6 251.7
Rmat2 68.9 6 309.9
Rmat3 81.2 6 363.3

Smallworld1 60.5 6 288.8
Smallworld2 92.8 6 459.2
Smallworld3 125.9 6 568.9

USA E 2.9 37 28.8
USA W 10.6 67 50.0
USA CTR 10.6 13 115.6

Furthermore, we study the parallel scalability of PPA and ∆-stepping algorithm by

using the synthetic graphs and the real world graphs which have low and high di-

ameters, respectively. Figure 7.1, 7.2, 7.3, and 7.4 illustrate the strong scalability of

PPA and ∆-stepping algorithms with respect to the best sequential algorithm (in all

cases this is the sequential PPA). The synthetic graphs have a relatively more uniform

distribution of workloads shared by processors owing to the nature of random net-

works. Therefore, Erdos-Renyi, R-MAT, and small-world graphs in Figure 7.1, 7.2,

and 7.3, respectively, are more scalable than the real world networks in Figure 7.4

for both algorithms. PPA achieves a speedup of 32 and 12 for the synthetic and real

world graphs, respectively, using 96 cores (cluster) on average. On the other hand,

∆-stepping algorithm achieves a speedup of 5 for synthetic graphs using 96 cores on

average and it is not able to achieve any speedup for real world graphs.

Next, we look into the results in more detail for each graph. Both Erdos-Renyi and

RMAT graph sets contain three graphs with the same number of vertices and vary-

ing the number of edges. Figure 7.1 and Figure 7.2 depict the effect of the change

65



in the number of edges on the speedup in which the number of vertices are fixed

(see Table 7.7) for all graphs in the set. When the number of edges increases, the

speedup also increases due to the fact that there is more work per processsor. In Fig-

ure 7.1, the speedups of PPA and ∆-stepping are 32 and 4.5 for Erdos1 as shown in

Figure 7.1a, 35.3 and 4.8 for Erdos2 as shown in Figure 7.1b, and 38.2 and 5.5 for

Erdos3 as shown in Figure 7.1c, respectively using 96 cores. Similarly, in Figure 7.2

(Rmat1, Rmat2, and Rmat3) while PPA achieves the speedups of 33, 37.5, and 39.6,

∆-stepping achieves 4.4, 5.3, and 5.7, respectively as shown in Figure 7.2a, 7.2b,

and 7.2c using 96 cores.

Figure 7.3 shows speedups for small-world graphs where the number of edges and

number of vertices increase proportionally (see Table 7.7). As the number of proces-

sors increase, a better speedup for the larger problems is also observed. For Small-

world1, Smallworld2, and Smallworld3, the speedups of PPA are 23.6, 24.9, and

25.7; on the other hand, the speedups of ∆-stepping algorithm are 3.9 , 4.8, and 4.9

as shown in Figure 7.3a, 7.3b, and 7.3c, respectively using 96 cores.

In Figure 7.4, speedups for the real world graphs are given. PPA achieves a speedup of

9.6 for USA E, 12.3 for USA W, and 12.7 for USA CTR as shown in Figure 7.4b, 7.4c,

and 7.4a, respectively using 96 cores. On the other hand, ∆-stepping does not actually

give any speedup for all three problems. The main reason for the poor scalability of

∆-stepping for real world graphs is due to both the structure and the edge weights

of the graphs. Edmonds et. al. [31] investigate the real road networks of the USA

and they show that the reason for poor parallel scalability is that these graphs contain

a large number of edges with large weights on the graph. Traversing such edges in

the sparse regions may require a lot of iterations in ∆-stepping algorithm. Moreover,

they investigate the effect of graph partitioning for such networks and they show that

graph partitioning can not improve the performance. On the other hand, PPA shows a

relatively better scalability than ∆-stepping for real-world networks. However, PPA

requires more inner iterations for the real-world graphs compared to the synthetic

graphs which is also due to the irregular distribution of edge weights.

Finally, we compare the accuracy of PPA and ∆-stepping algorithm. Note that PPA

can compute the shortest path accurately provided that the number of outer iterations
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Figure 7.5: The computed shortest path lengths for PPA and ∆-stepping methods

and the accuracy of the linear system solution are set carefully. Figure 7.5 illustrates

the computed shortest path length by PPA and ∆-stepping algorithm. PPA and ∆-

stepping algorithm compute the same shortest path length for almost all test graphs,

except for Erdos3, Rmat3, and Smallworld3 for which the differences are 1, 4, and 2,

respectively and still quite accurate.

In conclusion, PPA achieves much better speedup compared to ∆-stepping algorithm

for all graphs in the dataset. Furthermore, the speedup of PPA is near-linear for

synthetic graphs that have lower diameter while the speedup is still acceptable for

real world graphs that have higher diameter com- pared to ∆-stepping. On average,

PPA can compute the shortest path roughly eight orders of magnitude faster than ∆-

stepping algorithm with comparable accuracy in parallel using 96 cores.

7.2 Results of dynPPA

Our dataset includes various undirected graph models which are Erdos-Renyi, small-

world and real-world, which are the-state-of-the-art models as well as they exhibit

diverse properties. The dataset consists of four graphs. The properties of those

graphs are shown in Table 7.7. The first graph is Erdos which is generated by using

Erdos-Renyi model ( erdos.renyi.game function [2] of igraph library in R language).

Erdos-Renyi model produces a random graph and each pair of vertices in the graph
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Table 7.3: Graph Properties

Graph Name Vertices Edges Model Description

Erdos 1M 100M Erdos-Renyi Synthetic
Smallworld 1M 100M Small-world Synthetic

NW ∼1.2M ∼2.8M Real-world Northwest USA
CAL ∼2M ∼4.6M Real-world California and Nevada

is randomly connected with a probability. Degree distribution of Erdos-Renyi model

is a binomial distribution. When the number of vertices goes to infinity, the degree

distribution of Erdos-Renyi model converges to a Poisson distribution and this model

violates to generate power-law degree distribution. Therefore, degrees of the vertices

are high in such graphs. The second graph is Smallworld proposed by Watts and Stro-

gatz and generated by using watts.strogatz.game function [4] of igraph package in

R language. Small-world graphs have short average path lengths like random graphs,

but high clustering coefficient like real-world graphs. Therefore, small-world graphs

are between regular and random graphs. Most large scale sparse graphs are found

to be the type of the small-world graphs such as internet, neurons and social graphs.

The last two graphs are selected from real-world applications, which are CAL and

NW. The real-world graphs are obtained from 9th DIMACS Implementation Chal-

lenge [1]. They tend to be clustered, so the neighboring vertices are most likely

connected. When compared to the synthetic graphs, they have a higher diameter and

lower vertex degrees. Moreover, the degree distribution of real world graphs satisfy

the power law. While we use distances for edge weights in the real-world graphs, we

use unit weights in synthetic graphs, namely Smallworld and Erdos.

7.2.1 Parallel Scalability Results of dynPPA

We evaluate our results based on the time to solution and accuracy, and compare to the

parallel implementation of Dijkstra, namely ∆-stepping in parallel BGL. Moreover,

we analyze the effect of the percentage of the edges changed, percentage of changed

weight, and graph models to the parallel speedup of both dynPPA and ∆-stepping.

Furthermore, in the proposed algorithm, previous iteration fully feeds into the next
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Table 7.4: Total sequential time (in seconds) for synthetic graphs dynamically
changed

Smallworld Erdos

Edge weights dynPPA ∆-stepping dynPPA ∆-stepping

increase1 101.4 947.8 116.9 939.6
increase2 101.6 944.7 116.5 942.8
decrease1 102.5 937.5 117.0 933.4
decrease2 102.0 936.9 117.0 931.7
mix 103.0 968.6 116.1 956.1

Table 7.5: Total sequential time (in seconds) for real-world graphs dynamically
changed

NW CAL

Edge weights dynPPA ∆-stepping dynPPA ∆-stepping

increase1 3.9 38.0 60.6 74.1
increase2 3.2 1506 47.0 2846
decrease1 3.5 29.3 48.5 50.4
decrease2 3.4 29.4 54.3 50.4
mix 10.9 100.5 40.8 151.7

one. We discuss the effect of this adaptivity on the speedup.

Now, we evaluate the sequential performance of both dynPPA and ∆-stepping shown

in Table 7.4 and 7.5, for synthetic graphs and real-world graphs, respectively. First,

we evaluate the sequential performance of the synthetic graphs, which are Small-

world and Erdos in Table 7.4. We observe that for each method, five cases do not

make much difference in terms of the sequential running time, and it is only slightly

affected by the change of edge weights for five cases for both graphs in Table 7.4.

dynPPA is 9× faster than ∆-stepping in the sequential implementation. Second, we

evaluate the sequential performance for the real-world graphs shown in Table 7.5 for

the increasing, decreasing and mix cases. While dynPPA is still quite insensitive to

the edge weight changes, the edge weight changes affect ∆-stepping dramatically.

For increase2, ∆-stepping method requires a large amount of time to obtain the so-

lution for both real-world graphs. The reason for this is that sparse regions contain

many edges with large weights and if these edges are selected to be increased, so-
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Table 7.6: Maximum edge weights while changing CAL graph in each iteration

the graph dynamically changes

Edge weights iter1 iter2 iter3 iter4

increase1 215,354 490,100 2,389,632 4,835,840
increase2 215,354 1,983,123 100,096,875 487,943,225
decrease1 215,354 215,354 182,492 172,283.2
decrease2 215,354 194,861 182,492 161,736
mix 215,354 1,260,378 4,776,408 15,367,903.2

lution time of ∆-stepping increases sharply since this results in a large number of

reinsertions. To support this claim, we list max elements for dynamically changing

CAL graph in Table 7.6. Note that Table 7.6 shows the largest elements for each

iteration separately (the graph changes four times). In increase2 case, the largest ele-

ments at the sparse regions are larger with increasing iteration count. This results in

an increase in the solution time of ∆-stepping dramatically especially 3rd and 4th it-

erations. As a result, sum of the sequential running times for increase2 case increases

sharply. Secondly, when we study the results of decreasing cases (the decrease1 and

the decrease2), dynPPA is 8× faster than ∆-stepping algorithm for NW graph. On

the other hand, both methods require almost the same amount of time for CAL graph.

The running time of ∆-stepping is reduced by decreasing large edge weights at sparse

regions when compared to the increasing cases since the edge weights in the decreas-

ing cases become more uniform. Lastly, for the mix case, dynPPA is affected by

the edge weight changes and the sequential running time of dynPPA increases (espe-

cially fourth iteration in the for loop) since the change of the edge weights in the mix

case between two consecutive iterations is higher than the other cases, so the num-

ber of inner iterations is higher and solving the linear systems consumes relatively

more time. As a result, dynPPA is 10× and 3.7× faster than ∆-stepping for NW and

CAL, respectively for the mix case. We also note that the sequential running time of

dynPPA and ∆-stepping for the synthetic graphs are much higher than for the real-

world graphs since the number of nonzeros in the synthetic graphs is much higher

than the number of nonzeros in the real-world graphs.

Now, we give a comparison of the state-of-the-art preconditioners for dynPPA. The

most critical step of the algorithm is to solve the linear systems. In this step, using
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Figure 7.6: Comparison of the state-of-the-art implementation of the preconditioners

optimum linear solver and preconditioner is crucial based on the properties of the

coefficient matrix. Figure 7.6 illustrates the comparison of Block Jacobi, AMG, and

Gauss-Seidel preconditioners. Although we also used SAI preconditioner to solve the

linear systems, it reaches the maximum number of iterations without convergence. In

this study, the speedup is computed by dividing the best total sequential running time

to total parallel running time using 96 cores. The average speedups in Figure 7.6a are

computed by taking average of the speedups of the five cases ( increase1, increase2,

decrease1, decrease2, and mix) for each graph. Although the number of inner iter-

ations is the lowest for the real-world graphs when using AMG preconditioner, the

speedup achieved by AMG is poor. The reason for this is that the operations re-

lated to AMG preconditioner are costlier. Although both the parallel speedup and the

number of inner iterations are relatively close to each other for BJacobi and Gauss-

Seidel, dynPPA achieves the best speedups for all test graphs when Gauss-Seidel pre-

conditioner is used, and it finds the solution in a fewer number of inner iterations in

Figure 7.6b. Therefore, in the following experiments we use the Gauss-Seidel precon-

ditioner in dynPPA. We have also experimented with recycling the Krylov supspace

using RCG, however, it does not give any improvements since the change of the co-

efficient matrix of the linear systems among iterations is not small enough. In fact,

the frobenius norm of the coefficient matrix approximately falls in half between two

iterations. Therefore, RCG is not used in the following experiments.

Next, we discuss effect of the initial guess and adaptivity of the algorithm to the par-

allel speedup. In dynPPA, the values that are computed in the previous iteration feed
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Figure 7.7: The effect of initial guess and adaptivity of the algorithm to the parallel

speedup in Algorithm 1

into the next one. That is, the conductivity values, flux values, and the solution of the

linear systems are passed into the next for loop iteration. This emphasizes adaptiv-

ity of dynPPA in dynamically changing graph. dynPPA algorithm differentiates the

affected edges and recomputes them spontaneously. Therefore, the operations con-

taining unaffected edges remain the same and do not incur any additional cost. To

reduce the number of iterations, hence reducing the parallel and sequential running

time, the initial guess in the linear solver is improved in dynPPA. Figure 7.7 illus-

trates the effect of initial guess and adaptivity of the algorithm to the parallel speedup

in Algorithm 17. Moreover, the speedup of ∆-stepping is also shown in Figure 7.7. If

initial guesses are taken to be zero for all iterations, the resulting algorithm is called

as dynPPA_0. That is, there is no transferring the information from previous iteration

to the next one. As seen in Figure 7.7a, the average speedup of dynPPA is higher than

both dynPPA_0 and ∆-stepping, and dynPPA finds to solution in a fewer number of

inner iterations in Figure 7.7b. Furthermore, the speedup of ∆-stepping is too low

especially for real-world graphs. The reasons for this will be explained later.

Now, we look into the results in terms of accuracy. Accuracy of dynPPA depends on

both the number of iterations of while loop and the iterative solver to find the solution,

and it has no dependence on whether the code is run in parallel or sequential. The

number of the while loop is three and the number of inner iterations is shown in

Figure 7.7b. Figure 7.8 illustrates the computed shortest path lengths by dynPPA and

∆-stepping for five cases, separately. ∆-stepping and dynPPA compute nearly the
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same shortest path lengths.

Next, we evaluate the effect of the percentage of the edges changed, percentage of

changed weight, and graph models to the parallel speedup in detail. As in the sequen-

tial case, the results are again investigated into five cases, separately. The speedup is

computed by dividing the best total sequential running time to total parallel running

time.

First, we evaluate results of the increase1 case. In this case, while pce changes

from 0 to 0.6 through for loop iterations, the pcw is constant and set to 1. Fig-

ure 7.9a, 7.9b, 7.9c, and 7.9d present the speedup of dynPPA and ∆-stepping for

Smallworld, Erdos, CAL, and NW graphs, respectively. Synthetic graphs, which

are Smallworld and Erdos show near linear speedup using dynPPA. While dynPPA

achieves a speedup of 52.3 and 49.2, ∆-stepping achieves a speedup of 3.4 and 4.6 for

Smallworld and Erdos, respectively. In other words, the speedup achieved by dynPPA

is 17× and 12× higher than the speedup achieved by ∆-stepping for Smallworld and

Erdos, respectively. On the other hand, while dynPPA achieves a speedup of 14.1 for

both CAL and NW, the speedup of ∆-stepping is almost constant and smaller than 1.

Next, we study the results by fixing the number of cores to 96 and varying pce from 0

to 0.6. In Figure 7.10a, 7.10b, 7.10c, and 7.10d, we present the results of the parallel

running time for Smallworld, Erdos, CAL, and NW graphs, respectively. The parallel

running time of dynPPA is almost constant. We observe that the change of the pce

does not affect the parallel solution of the linear systems much (i.e. the number of

inner iterations and the cost per iteration do not change). In fact, for CAL graph, the

parallel running time decreases with improving the initial guess vector and adaptivity

of dynPPA although the number of edges changed increases. On the other hand, for

Smallworld graph, ∆-stepping method is sensitive to the change of the edge weights

and the parallel running time increases sharply at pce=0.6 since at the last for loop

iteration, edge weights of Smallworld graph are less uniform, so the graph has less

uniform workloads assigned to processors. For other graphs, parallel running time

of ∆-stepping among iterations is almost same. However, the parallel running time

of ∆-stepping for real-world graphs is much higher than the synthetic graphs. To

sum up, while dynPPA is not sensitive to the change of the parameter pce for all test

graphs, ∆-stepping is slightly sensitive.
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Figure 7.8: The computed shortest path distances for both ∆-stepping and dynPPA
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Second, we evaluate the results of increase2 case. In this case, pce is a constant

and set to 0.2. That is, 20 percent of total edges is randomly selected and their edge

weights are increased with the pcw parameter. The pcw changes from 0 to 6. That

is, the randomly selected edge weights will be increased by six times at the end of

fourth iteration of the for loop. Figure 7.11a, 7.11b, 7.11c, and 7.11d present the

speedup of dynPPA and ∆-stepping for Smallworld, Erdos, CAL, and NW graphs,

respectively as the number of cores changes from 1 to 96. While dynPPA achieves a

speedup of 50.6 and 49.4, ∆-stepping achieves a speedup of 2.7 and 2.2 for Small-

world and Erdos, respectively. In other words, the speedup of dynPPA is 17× and

22× higher than the speedup of ∆-stepping for Smallworld and Erdos, respectively.

On the other hand, while dynPPA achieves a speedup of 14 and 11 for CAL and

NW, respectively, the speedup of ∆-stepping for such graphs is smaller than 1. The

speedup achieved by dynPPA increases when the number of cores increases for all

graphs. However, the speedup achieved by ∆-stepping is almost constant for real-

world graphs and increases for the synthetic graphs as the number of cores increases.

Next, we study the results by fixing the number of cores to 96 and varying pcw from

0 to 6. Figure 7.12a, 7.12b, 7.12c, and 7.12d present results of the parallel running

time for Smallworld, Erdos, CAL, and NW, respectively. The parallel running time

of dynPPA is almost constant for all test graphs. We observe that the changes of the

pcw do not affect the parallel running of the linear systems much in dynPPA. There-

fore, dynPPA finds to solution quickly thanks to its adaptivity as well as the effect

of improving the initial guess especially for CAL graph. On the other hand, parallel

running time of ∆-stepping increases dramatically for all graphs, especially for real-

world graphs as the pcw increases. This shows that the pcw parameter has a great

effect on parallel running time of ∆-stepping method. We also point out that the par-

allel running time of ∆-stepping for the real-world graphs is much higher than for

synthetic graphs.

Third, we evaluate results of the decrease1 case. In this case, we see the effect of the

parameter pce to the parallel speedup and running time. While pce changes from 0

to 0.6, pcw is set to 0.2. Figure 7.13a, 7.13b, 7.13c, and 7.13d present the speedup of

dynPPA and ∆-stepping for Smallworld, Erdos, CAL, and NW graphs, respectively.

dynPPA achieves a speedup of 46.3 and 50.9 for Smallworld and Erdos, respectively
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although ∆-stepping achieves a speedup of 1.5 for such graphs on average. In other

words, the speedup achieved by dynPPA is 30× and 35× higher than the speedup

achieved by ∆-stepping for Smallworld and Erdos, respectively. On the other hand,

dynPPA achieves a speedup of 13 and 12 for CAL and NW graphs, respectively while

∆-stepping has poor scalability for such graphs. The speedup achieved by dynPPA

increases when the number of cores increases for all graphs. However, the speedup

achieved by ∆-stepping is almost constant for real-world graphs and generally in-

creases for the synthetic graphs as the number of cores increases. We also point out

that when the number of cores is 96, the speedup achieved by ∆-stepping decreases

because of the communication overhead. Next, we study the results by fixing the

number of cores to 96 and varying pce from 0 to 0.6. In Figure 7.14a, 7.14b, 7.14c,

and 7.14d, we present parallel running time of dynPPA and ∆-stepping for Small-

world, Erdos, CAL, and NW graphs respectively. For all graphs, the parallel running

time of dynPPA is almost constant since the change of the pce does not affect the par-

allel running time of the linear systems much. On the other hand, while the parallel

running time of ∆-stepping increases as the pce increases for the synthetic graphs and

is almost constant for the real-world graphs. To sum up, dynPPA is not sensitive to

the change of the parameter pce, ∆-stepping is sensitive especially for the synthetic

graphs. Compared to the increase1 and increase2 cases, the parallel running time of

∆-stepping for real-world graphs is significantly reduced in this case.

Fourth, we evaluate results of the decrease2 case to see the effect of pcw parameter to

the parallel speedup and running time. In this case, while the pcw changes from 0 to

0.6, the pce is fixed at 0.2. Figure 7.15a, 7.15b, 7.15c, and 7.15d present the speedup

of dynPPA and ∆-stepping for Smallworld, Erdos, CAL, and NW graphs, respec-

tively. dynPPA achieves a speedup of 52.6 and 48.6 although ∆-stepping achieves

a speedup of 1.2 and 0.95 for Smallworld and Erdos, respectively. In other words,

the speedup achieved by dynPPA is 43× and 48× higher than the speedups achieved

by ∆-stepping for Smallworld and Erdos, respectively. On the other hand, dynPPA

achieves 14 and 11 speedups for CAL and NW graphs while ∆-stepping has poor

scalability for such graphs. The speedup achieved by dynPPA always increases when

the number of cores increases for all graphs. However, the speedup achieved by

∆-stepping is almost constant for real-world graphs and generally increases for the
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synthetic graphs as the number of cores increases. We also point out that when the

number of cores is 96, the speedup achieved by ∆-stepping decreases because of the

communication overhead. Next, we study the results by fixing the number of cores

to 96 and varying pcw from 0 to 0.6. In Figure 7.16a, 7.16b, 7.16c, and 7.16d, we

present parallel running time of dynPPA and ∆-stepping for Smallworld, Erdos, CAL,

and NW graphs respectively. For all graphs, the parallel running time of dynPPA is

almost constant and lower than the parallel running time of ∆-stepping. For the syn-

thetic graphs, similar to the previous case, the parallel running time of ∆-stepping

increases as pce increases and is almost constant for real-world graphs.

Finally, we evaluate the results of the mix case. In this case, edge weights are both

decreased and increased at the same percentage. While the parameter pce changes

from 0 to 0.6, the pcw is 2 and 0.2 for increasing and decreasing cases, respectively.

For instance, if there are 1000 edges whose weights will be updated, 500 of them

will be increased and 500 of them will be decreased. If the edge weight is 100 and

it is decreased, it will be 80. Otherwise, it is increased, the new edge weight will be

300. Figure 7.17a, 7.17b, 7.17c, and 7.17d present the speedup results of dynPPA

and ∆-stepping for Smallworld, Erdos, CAL, and NW graphs, respectively as the

number of cores changes from 1 to 96. dynPPA achieves a speedup of 50.4 and 45

although ∆-stepping achieves a speedup of 1.8 and 2.6 for Smallworld and Erdos, re-

spectively. In other words, the speedup achieved by dynPPA is 27× and 17× higher

than the speedup achieved by ∆-stepping for Smallworld and Erdos, respectively. The

speedup achieved by dynPPA is 14 and 17 for CAL and NW, respectively although the

speedup of ∆-stepping is smaller than 1 for such graphs. This show that dynPPA ef-

ficiently overcomes to the real world graphs for the mix case. As the number of cores

increases, the speedup of dynPPA increases for all graphs. Moreover, the speedup of

∆-stepping increases for Smallworld and Erdos while it is almost constant for real-

world graphs as the number of cores increases. Next, we study the results by fixing

the number of cores to 96 and varying pce from 0 to 0.6. In Figure 7.18a, 7.18b, 7.18c,

and 7.18d, we present the parallel running time of dynPPA and ∆-stepping for Small-

world, Erdos, CAL, and NW graphs, respectively. For all graphs, while the parallel

running time of dynPPA is almost constant, the parallel running time of ∆-stepping

generally increases as the pce is increasing. This show that while dynPPA is not sen-
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sitive to the changes of the pce for the mix case, ∆-stepping is quite sensitive. For

all graphs, the parallel running time of ∆-stepping is higher than the parallel running

time of dynPPA.

In the light of the information mentioned above, the speedup of dynPPA is close to

linear for the synthetic graphs whose the mean-shortest path lengths are small, so they

have a small diameter and high average degree. Therefore, dynPPA allows high par-

allelism on such graphs since they have relatively more uniform distribution of work-

loads shared by processors. On the other hand, the speedup achieved by dynPPA for

real-world graphs decreases to a degree, but still acceptable and provides a speedup

that ranges from 11× to 17× with respect to their sequential counterparts while ∆-

stepping has poor scalability on such graphs. The reason for this is that the real-world

graphs have very high diameter and this results in poor parallel speedup. Addition-

ally, they are largely unbalanced graphs due to power law degree distribution. In such

graphs, sparse regions contain heavy weights, which lead to removal of insufficient

number of vertices and hence leading to a load imbalance using ∆-stepping. This un-

derlines the effectiveness of dynPPA method to deal with such graphs. For all cases,

the speedup achieved by dynPPA increases when the number of cores increases, how-

ever, the speedup achieved by ∆-stepping is almost constant for real-world graphs,

and it decreases when the number of cores is 96 for the synthetic graphs in some cases

due to the communication overhead. On the other hand, for five cases, the parallel

running time of dynPPA is almost constant for all graphs as pce/pcw changes using

96 cores. In fact, for some graphs, the parallel running time of dynPPA decreases

thanks to its adaptivity as well as the effect of improving the initial guess even though

pce/pcw increases. However, the parallel running time of ∆-stepping generally in-

creases while pce/pcw changes especially for the synthetic graphs. Moreover, the

parallel running time of ∆-stepping for real-world graphs is much higher than for the

synthetic graphs in the increase1 and increase2 cases. This is due to the variation of

the edge weights since with increasing the pcw or the pce through the for loop, the

edge weights at sparse regions will be larger (see Table 7.6) and more heterogeneous.

This results in low degree of parallelism for ∆-stepping method. Contrary to the in-

crease1 and increase2 cases, the parallel running time of ∆-stepping for real-world

graphs in the decrease1 and decrease2 is not higher than for the synthetic graphs.
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The reason for this is that if the edges at sparse regions whose weights are large are

selected for decreasing their weights, the variation among the edge weights is smaller

and this results in more parallelism using ∆-stepping. For five cases, the parallel run-

ning time of ∆-stepping is much higher than the parallel running time of dynPPA.

While dynPPA is slightly sensitive to the changes of the parameters pce and pcw for

five cases, ∆-stepping is quite sensitive to the changes of those parameters. Moreover,

the parameter pcw has a more significant effect than pce for ∆-stepping.

To sum up, the speedup of dynPPA for Smallworld with the small average distance

and clustering effect is 50 and the speedup of dynPPA for Erdos with high vertex

degrees and very low diameter is 48 on average of five cases using 96 cores. That is,

In conclusion, dynPPA provides a near-linear speedup for the synthetic graphs since

small average distance and high average degree permit high parallelism. However, the

speedup of ∆-stepping is 2 for both Erdos and Smallworld on average of five cases.

On the other hand, the speedup of dynPPA for real-world graphs reaches 14 for both

CAL and NW on average. Real-world graphs are characterized by low degree and

a very high diameter. This results in a low parallel speedup when compared to the

synthetic graphs since in such a graph topology, the frontier is propagated. Moreover,

∆-stepping presents poor scaling for such graphs. This underlines the effectiveness

of the proposed method to deal with hard real-life problems requiring long time to

solution using classical algorithms. We note that even though we have tried graph

partitioning tools (such as METIS and PaToH) to improve the parallel scalability of

the sparse matrix-vector multiplications in CG in PPA and DynPPA, we have not

seen much improvement. However for much larger problems such partitioning can

potentially improve the results.

7.3 Results of the Hybrid Method

In this part, we present various numerical experiments. In order to demonstrate effi-

ciency of the proposed algorithm (Algorithm 18), as a baseline method, we use BFS

using the graphshortestpath function of Matlab, which takes an n by n sparse graph

and computes the single source shortest path. The proposed hybrid algorithm is im-

plemented by using Matlab on a computer with an Intel Pentium Core i7 (2.60 GHz)
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Figure 7.9: Increase1: Parallel speedup for sythetic and real-world graphs where pce

changes from 0 to 0.6 and pcw is 1
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Figure 7.10: Increase1: Parallel running time (in seconds) for sythetic and real-world

graphs using 96 cores
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Figure 7.11: Increase2: Parallel speedup for sythetic and real-world graphs where

pcw changes from 0 to 6 and pce = 0.2
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Figure 7.12: increase2: Parallel running time (in seconds) for sythetic and real-world

graphs using 96 cores

81



1 10 100

0.1

1

10

100
46.3

31.7

16.5

8.6

4.7

1.0
1.51.7

1.4
0.9

0.5

0.1

# of cores

sp
ee

du
p

Ideal

dynPPA

∆-stepping

(a) Smallworld

1 10 100

0.1

1

10

100
50.9

29.2

14.8
9.6

4.6

1.0
1.41.51.3

1.0

0.6

0.1

# of cores

sp
ee

du
p

Ideal

dynPPA

∆-stepping

(b) Erdos

1 10 100

1

10

100

13.3
9.0

4.8
3.6

1.9

1.0

0.33
0.45

0.630.710.66
0.96

# of cores

sp
ee

du
p

Ideal

dynPPA

∆-stepping

(c) CAL

1 10 100

0.1

1

10

100

12.0611.1
6.295.55

2.93

1

0.034
0.048

0.0670.0740.076
0.119

# of cores

sp
ee

du
p

Ideal

dynPPA

∆-stepping

(d) NW

Figure 7.13: decrease1: Speedup of sythetic and real-world graphs where pce changes

from 0 to 0.6 and pcw=0.2
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Figure 7.14: decrease1: Parallel running time (in seconds) for sythetic and real-world

graphs using 96 cores
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Figure 7.15: decrease2: Parallel speedup for sythetic and real-world graphs where

pcw changes from 0 to 0.6 and pce = 0.2
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Figure 7.16: decrease2: Parallel running time (in seconds) for sythetic and real-world

graphs using 96 cores
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Figure 7.17: Mix case: Speedup for sythetic and real-world graphs where rue changes

from 0 to 0.6 and rcw is 2 for the increasing and 0.2 for the decreasing case
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Figure 7.18: Mix case: Parallel running time (in seconds) for sythetic and real-world

graphs using 96 cores
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Table 7.7: Graph Properties

Graph Name Vertices Edges Kind

Rmat1 3500 6M R-MAT
Rmat2 4000 7M R-MAT
Rmat3 5000 12M R-MAT
Rmat4 6000 18M R-MAT

Erdos1 7000 24M Erdos-Renyi
Erdos2 8000 32M Erdos-Renyi
Erdos3 9000 40M Erdos-Renyi
Erdos4 10000 50M Erdos-Renyi

processor and 8GB RAM on Linux operating system. The dataset consists of eight

sparse unweighted directed graphs. The number of vertices, edges, and type of the

graphs are shown in Table 7.7. The first four graphs are generated by using Erdos-

Renyi model (erdos.renyi.game function [2] of igraph library in R language). The

last four graphs, which are R-MAT graph models, are generated by using PaRMAT

library [46]. Diverse real graphs can be well approximated by these models [20].

In the dataset, the graph size varies from 3500 to 10000 and the number of vertices

varies from 6M to 50M. We use the unit edge weights.

We evaluate the algorithms based on required time to solution as well as accuracy. In

the hybrid algorithm, first, the edges which can not form the shortest path tree are re-

moved. Thus, a sparser graph is obtained. Figure 7.19 presents the number of nonzero

elements ofGs (in which the edges which can not form the shortest path are removed)

for each graph, separately. Moreover, the number of nonzero elements for the origi-

nal test graphs G are shown in this figure. As shown in Figure 7.19, there are large

number of edges which can not form the shortest path tree and the proposed algorithm

identifies and removes such edges efficiently. Second, after removing a large number

of unused edges in the shortest path tree, BFS is used to compute the single source

shortest path by graphshortestpath() function in Matlab. Therefore, BFS algorithm

efficiently computes the single source shortest path. Next, we look into the timing

results. Hybrid algorithm consists of two stages and the solution time of these stages

and baseline algorithm are shown in Table 7.8 in seconds. The algorithm detects the

edges which are not a part of the single source shortest path quickly in Stage1 and the
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Figure 7.19: Total number of nonzeros elements for the adjacency matrices corre-

sponding to the original (G) and sparsified (Gs) graphs

solution time of this stage is shown in Table 7.8. Stage2 employs to BFS algorithm on

a simpler sparse graph and when we compare timing results of Stage2 and the base-

line algorithm, Stage2 is 4× faster than the baseline algorithm on average. The reason

for this is that the search space in Stage2 is significantly reduced when compared to

the search space in the baseline algorithm. We also note that for graph Rmat3, the

number of the edges which is removed from the graph in Figure 7.19 is larger and

therefore the required time for Stage2 is significantly reduced for this graph. Now,

we look into the results in terms of the total solution time. Total solution time of the

hybrid algorithm is the sum of the time of Stage1 and Stage2. In order to compare

the results, we apply BFS algorithm for each test graph and Figure 7.20 presents total

solution time of the baseline and the hybrid algorithm for each test graph separately.

As shown in Figure 7.20, the time of the hybrid algorithm is less than the baseline for

all test graphs. In fact, the proposed hybrid algorithm is about 2.5× faster than the

baseline on average. Removing the edges which cannot form the shortest path tree

saves significant amount of time. When the size of the graph increases, the time also

increases as we expect.

Now, we look into the results in terms of accuracy. We compute the shortest path from

the source vertex to the other vertices. Hybrid Algorithm and the baseline algorithm

compute exactly the same shortest path with the same distance. On the other hand, if

one had used the Physarum algorithm alone to find the shortest path it would be only

an approximation [12].
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Table 7.8: Time (in seconds, rounded to two decimal places) for Hybrid and the
baseline algorithms. Hybrid algorithm consists of two stages and time for these stages
is shown separately

Hybrid Algorithm Baseline Algorithm
Graph Name Stage1 Stage2 Total BFS

Rmat1 0.31 1.31 1.62 2.69
Rmat2 0.40 1.51 1.91 3.29
Rmat3 0.62 0.44 1.07 4.88
Rmat4 0.81 0.91 1.72 7.00

Erdos1 1.18 3.11 4.29 11.64
Erdos2 1.51 4.21 5.72 16.20
Erdos3 1.90 5.54 7.44 20.95
Erdos4 2.34 9.65 11.99 26.88
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Figure 7.20: Time in seconds of the baseline and Hybrid algorithms for each test

graph
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CHAPTER 8

CONCLUSION AND FUTURE WORK

As parallelism became more common with the advent of multi-core architectures

as well as large and complex networks have begun to emerge in many settings, it

is inevitable to come up with algorithms that take advantage of the current archi-

tectures. Moreover, bio-inspired models which are more amenable to parallelism

have became a promising alternative to handle large scale problems efficiently. Moti-

vated by this we propose iterative shortest path algorithms for static and dynamically

changing graphs based on Physarum solver on a multicore-cluster architecture. The

proposed algorithms include various improvements and optimizations for Physarum

solver. The linear systems are efficiently solved by both using a parallel iterative

solver with a preconditioner. The effect of the preconditioner to the time to solu-

tion is discussed by comparing the state-of-the-art preconditioners. Moreover, for

dynPPA, previous iteration feeds completely into the next one including initial guess

of the iterative solution. The effect of this improvement is also analysed in our study.

Finally, in order to compute the shortest path exactly, we propose a novel hybrid al-

gorithm since Physarum Solver is not guaranteed to find the exact shortest path. This

underlines the accuracy of the hybrid method to compute the shortest path exactly.

Physarum Solver is used in order to detect the edges which cannot form the short-

est path tree in the hybrid algorithm. Experimental results have been conducted on

graph models with different characteristics to compare the proposed method with the

most representative parallel implementation of Dijkstra’s algorithm, ∆-stepping. The

results are evaluated based on the required time to solution, the parallel speedup as

well as accuracy. The proposed algorithms achieve much better speedup compared

to ∆-stepping algorithm for all graphs in the datasets. While the speedups of the
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proposed methods are near-linear for synthetic graphs that have lower diameter, the

speedup is still acceptable for real world graphs that have higher diameter compared

to ∆-stepping. As a future study we plan to develop multiple source multiple target

parallel shortest path algorithm based on the Physarum Solver.
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