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ABSTRACT 

 

DETERMINATION OF RQD BY DIGITAL IMAGE ANALYSIS 

 

 

SARIÇAM, İ. Turgut 

M.Sc., Department of Mining Engineering 

Supervisor: Assoc. Prof. Dr. Hasan Öztürk 

 

January 2018, 92 pages 

 

Digital image processing and analysis methods allow us to automate routine tasks. 

Rock Quality Designation (RQD) is a rock quality index used in rock mechanics and 

geotechnical designs of slopes and underground excavations. Manual logging of 

hundreds of meters of rock core samples with a tape measure is a very laboursome and 

tedious process. In this research study, a method is introduced for the segmentation of 

cores and the determination of RQD from digital images of rows of core samples in 

core boxes in order to compute RQD in an automatic way by finding and locating 

natural fractures in cores and measuring intact core lengths.  

First, three digital true color images of a core box, with the same camera position but 

different light source positions, are taken using a high resolution camera. After the 

detection of the core box with color thresholding, the sections of the box are detected 

by using Hough transform and boundary tracing algorithms. Then, the cores are 

extracted from each section using color thresholding. After cleaning the shadows 

created by different light sources using various techniques, the segmentation part is 

finished by combining similar regions with each other. Later, non-cylindrical parts of 

the cores are detected by looking at the changes caused by two different light sources. 
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After completion of the fracture detection in the drill core, RQD is calculated by 

measuring the valid centerline lengths of each core. All coding routines are developed 

in MATLAB 2017a. Two different core boxes with 4 and 5 rows storing HQ and NQ 

diameter cores having various joint/bedding plane angles are photographed several 

times with different core placements.  

It is shown that the method is capable of separating even tightly fit joint surface cores. 

Moreover, it can successfully detect non-cylindrical parts of the cores, and avoid small 

or irregularly shaped ones which should not be included in RQD calculation. 

 

Keywords: RQD, Digital Image Processing, Geotechnical Logging  
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ÖZ 

 

DİJİTAL İMAJ ANALİZİYLE RQD TAYİNİ 

 

SARIÇAM, İ. Turgut  

Yüksek Lisans, Maden Mühendisliği Bölümü 

Tez Yöneticisi: Doçent Doktor Hasan Öztürk 

 

Ocak 2018, 92 sayfa 

 

Dijital görüntü işleme ve analiz yöntemleri, birçok olağan işin otomatik hale 

getirilebilmesine olanak sağlar. Kaya Kalite Göstergesi (RQD), şevlerin ve yeraltı 

açıklıklarının kaya mekaniği analizleri ve jeoteknik tasarımlarında kullanılan bir kaya 

kalite göstergesidir. Yüzlerce metre karotun el ile incelenip raporlanması bıktırıcı ve 

uğraştırıcı bir süreçtir. Bu tez çalışmasında, RQD hesabının otomatik olarak 

yapılması, doğal çatlakların yerlerinin belirlenmesi ve el değmemiş karot 

uzunluklarının ölçülmesi için, karotları karot sandıklarının dijital görüntüleri 

üzerinden bölütleyen ve RQD tayini yapan bir algoritma sunulmaktadır. 

 

İlk olarak, bir karot sandığının üç adet gerçek renk dijital görüntüsü, kamera 

pozisyonu aynı kalmak kaydıyla, pozisyonları farklı olan üç farklı ışık kaynağı altında 

yüksek çözünürlüklü kamera tarafından çekilir. Karot sandığının renk eşikleme 

yöntemiyle teşhis edilmesinin ardından, karot sandığının bölmeleri Hough dönüşümü 

ve sınır takip algoritmaları ile bulunur. Daha sonra, renk eşikleme yöntemi 

kullanılarak, her bir bölmedeki karotlar belirlenir. Farklı ışık kaynakları tarafından 

oluşturulan gölgeler çeşitli yöntemlerle temizlendikten sonra, benzer bölgelerin 

birbirleri ile birleştirilmesiyle bölütleme işlemi sonlandırılır. Ardından, iki farklı ışık 

kaynağından dolayı oluşan değişimler incelenerek, karotların silindirik olmayan 
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bölümleri teşhis edilir. Çatlak teşhisinin tamamlanmasının ardından, her bir karotun 

eksen uzunluğu ölçülerek RQD hesaplanır. Tüm kodlar MATLAB 2017a'da 

yazılmıştır. 4 ve 5 bölmeli, içerisinde çeşitli eklem ve katmanlaşmış düzlemler içeren 

NQ ve HQ çapında karotlar bulunan iki adet karot sandığı farklı karot yerleşimleri ile 

fotoğraflanmıştır. 

 

Algoritmanın, yüzeyleri birbirine sıkı bir şekilde temas eden karotları bile doğru 

şekilde bölütleyebildiği gösterilmiştir. Ek olarak, algoritma, karotların silindirik 

olmayan yüzeylerini başarılı bir şekilde teşhis edebilir ve küçük olması veya düzgün 

bir şekle sahip olmaması sebebiyle RQD hesabına dahil edilmemesi gereken karotları 

da RQD hesabına dahil etmez. 

 

 

Anahtar Kelimeler: RQD, Dijital Görüntü İşleme, Jeoteknik Loglama  
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CHAPTERS 

CHAPTER 1 

 

 

1. INTRODUCTION 

 

 

 

1.1 General Remarks 

Digital image processing and analysis methods allow us to automate routine tasks. 

Core logging is one of the routine tasks done as part of a rock characterization 

procedure of geotechnical and rock mechanical designs of slopes and underground 

excavations, which is performed by using several tools, such as tape measure, 

geological pick, pocket knife, chemical solutions, hand lenses, and protractors. In 

addition to being exhaustive, core logging results are biased, because it depends on 

the experience of the person who performs the logging. Therefore, automation of core 

logging will help us decide RQD in a bias-free manner, in addition to providing a 

scalable approach to the problem. This study mainly focuses on the automation 

process of detecting naturally broken cores inside a core box properly, while trying to 

provide a low-cost solution. 

 

1.2 Problem Statement 

Determination of RQD is one of the routine jobs in a mine, which is manually done 

by geologists and mining engineers for thousands of meters of core. Doing this 

manually is a tedious, time consuming, laboursome and bias-prone process. 
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1.3 Objectives of Study  

The objective of this study is to provide an accurate, fast, easy-to-setup, and relatively 

cheap method that can be used to determine RQD in an automated way that is free of 

human bias. 

 

1.4 Research Methodology 

The methodology shown in Figure 1 was followed in this research study. 

 
Figure 1. Research methodology 
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CHAPTER 2 

 

 

2. LITERATURE SURVEY 

 

 

 

Literature was comprehensively reviewed within the scope of this study and the details 

are given in this chapter.  

 

This chapter is divided into four subsections, which are introduction to image 

processing, algorithmic background, mining background and theoretical background. 

Each subsection explains topics that are used in or related to this thesis study. 

 

2.1 Introduction to Image Processing 

In this subsection, basic image processing terms and operations that are related to this 

thesis study are explained, which are color spaces, edge detection, filtering, labeling, 

and convex hull. 

2.1.1 Color Spaces 

Colors are part of the electromagnetic spectrum, which means they are measurable as 

a physical quantity. However, identifying colors by their physical quantity is not 

useful when representing them, since, most of the time, they are measured and 

evaluated physiologically by humans and sensors. Colors must be represented 

considering mathematical demands, technical conditions, and human perception. 

Image sensors and retina use additive color mixture model to perceive the color when 

different-wavelength lights hit the same place on the retina or on the sensor. These 

electromagnetic waves are mixed into a single color by using projectile overlapping. 

According to Grassmann’s First Law of additive color mixture (Grassmann, 1853), 

any color stimulus can be created using a set of three color stimuli which are 

independent from each other. Grassmann’s First Law can be written as: 
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𝐌 = 𝑅 ∙ 𝐑 + 𝐺 ∙ 𝐆 + 𝐵 ∙ 𝐁 

where primary colors R, G, and B are indicated by R, G, and B in the mixed color M. 

This law is also valid for a set M of n colors: 

𝐌 = 𝐌6	 	𝑖 = 1,… , n}	𝑤𝑖𝑡ℎ	𝐌6 = 𝑅6 ∙ 𝐑 + 𝐺6 ∙ 𝐆 + 𝐵6 ∙ 𝐁	𝑎𝑛𝑑 

𝐌D…E = 𝐑 ∙ 𝑅6

E

6FD

+ 𝐆 ∙ 𝐺6

E

6FD

+ 𝐁 ∙ 𝐵6

E

6FD

 

In 1931, International Lighting Commission CIE (Commission Internationale de 

L'Eclairage) announced the color matching functions and monochromatic primary 

values as the definition of the colormetric 2° CIE standard observer. Although the 

commission introduced 10° CIE standard observer in 1964, here, 2° is the size of the 

visual field that should guarantee color perception without stimulation of the rods, 

which are photoreceptors responsible for vision at low light levels. Table 1 shows 

wavelengths and corresponding spectral power of the primary values. 

Table 1. Wavelengths and the corresponding relative spectral power S of the CIE 

1931 primaries (Koschan & Abidi, 2008) 

Primary λ (in nm) S 

R 700.0 72.09 

G 546.1 1.379 

B 435.8 1.000 

 

By the color stimuli standardized with 𝑆(𝜆), the spectral tristimulus values r(𝜆), g 𝜆 , 

and b(𝜆) are produced. The following applies: 

𝑚 𝜆 = 𝑟 𝜆 ∙ 𝐑 + 𝑔 𝜆 ∙ 𝐆 + 𝑏 𝜆 ∙ 𝐁 

Color matching function of each stimulus in the spectral tristimulus values are shown 

in Figure 2. 
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Figure 2. Representations of CIE color matching functions values 𝑟, 𝑔, and 𝑏 for the 

2° CIE standard observer (Koschan & Abidi, 2008) 

CIE developed virtual primary values X, Y, and Z to be able to create a color mixture 

which covers the entire visible wavelength area. There is not any corresponding 

physical spectral distribution for these virtual values. Following linear transformation 

is used to convert real spectral value curves into virtual color matching functions x(𝜆), 

𝑦 𝜆 , and 𝑧(𝜆) by 2° CIE standard observer: 

𝑥 𝜆
𝑦 𝜆
𝑧(𝜆)

=
0.49000 0.31000 0.20000
0.17697 0.81240 0.01063
0.00000 0.01000 0.99000

∙
𝑟(𝜆)
𝑔(𝜆)
𝑏(𝜆)

 

Spectral values after the transformation can be seen in Figure 3. 

In order to obtain the standard color values X, Y and Z, transformed spectral values 

x(𝜆), 𝑦 𝜆 , and 𝑧(𝜆) and a color stimulus function are used. A color stimulus function 

indicates radiation that causes a color stimulus in the eye. Color stimulus function is 

defined as: 

𝜑 𝜆 = 	
𝑆(𝜆) for	luminous	objects
𝑆 𝜆 ∙ 𝑅(𝜆) for	body	colors
𝑆 𝜆 ∙ 𝑅 𝜆 + 𝑆c(𝜆) for	fluorscent	samples
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Figure 3. CIE color matching functions 𝑥(𝜆), 𝑦 𝜆 , and 𝑧(𝜆) for 2° CIE standard 

observer (Koschan & Abidi, 2008) 

where 𝑆(𝜆) is the spectral power, 𝑅(𝜆) is the spectral reflection factor and 𝑆c(𝜆) is 

the fluorescence function. Then, the standard color values are obtained by following 

equations: 

𝑋 = 𝑘 ∙ 𝜑 𝜆 ∙ x 𝜆 	𝑑𝜆 

𝑌 = 𝑘 ∙ 𝜑 𝜆 ∙ y 𝜆 	𝑑𝜆 

𝑍 = 𝑘 ∙ 𝜑 𝜆 ∙ 𝑧 𝜆 	𝑑𝜆 

where, the normalization factor k is defined as: 

𝑘 =
100

𝑆 𝜆 ∙ y 𝜆 	𝑑𝜆
 

Before moving onto color spaces, one last topic that needs to be described for a 

thorough understanding is chromaticity diagrams. Chromaticity is the color 

information that remain after eliminating brightness information. Hence, it is only 

defined by hue and saturation. A chromaticity diagram is a two-dimensional graphic 
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representation of an intersecting plane of a three-dimensional color space. For the RGB 

cube, this intersecting plane is the unit plane R + G + B = 1, which results in an 

equilateral triangle, also known as the Maxwell color triangle (Koschan & Abidi, 

2008). The intersection between the unit plane and the observed color position is 

denoted as M. For a color M, 

𝑟j =
𝑅

𝑅 + 𝐺 + 𝐵 , 	𝑔j =
𝐺

𝑅 + 𝐺 + 𝐵 , 𝑎𝑛𝑑	𝑏j =
𝐵

𝑅 + 𝐺 + 𝐵 

relationship is found by using the Newtonian gravity formulation. A more commonly 

used representation is the Cartesian representation. In this representation, r is the 

abscissa, g is the ordinate and blue lies in the origin. The relationship above also 

applies to the Cartesian representation as well. An example of this representation can 

be observed in Figure 4.  

 

 

Figure 4. 1931 CIE chromaticity diagram for spectral colors in 400 – 700 nm range 

Results of addition of two colors are defined as a color gamut. In Figure 5, by adding 

the color I and the color J together with different proportions, all values lying on line 

IJ can be created. Similarly, by adding the color J and the color K with different 
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proportions, all values lying on line JK can be produced. With an addition of a third 

color K, all colors within the triangle IJK can be generated. 

 

 

Figure 5. 1931 CIE chromaticity diagram with IJK triangle 

Color spaces are color coordinate systems which represent the image values of a color 

image. Color distance is the difference of two image values in a color space. Different 

color distances in a color model are not identical to the color differences observed by 

humans.  

Color spaces can be investigated under three different categories, namely physics and 

technics-based color spaces, uniform color spaces, and perception-based color spaces. 

Physics and technics-based color spaces are composed of RGB, CMY(K), YIQ, YUV, 

YCBCR, Kodak PhotoCD YC1C2, and I1I2I3. Uniform color spaces are CIELAB and 

CIELUV. Finally, perception-based color spaces are composed of HIS, HSV, and 

opponent color spaces. 

In this research study, RGB and CIELAB color spaces are used. Therefore, only these 

two color spaces are explained below. 
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RGB color space is the most used color space in computer technology. It is formed by 

additive mixture of three primary colors, which are R, G, and B (Table 1). RGB color 

space is a 3-dimensional orthogonal color space whose base vectors are the primary 

colors. Therefore, any color can be obtained by combining the base vectors linearly. 

For a digital color image C with three channels, the three vector components are 

shown as 

𝑪 𝑥, 𝑦 = (𝑅 𝑥, 𝑦 , 𝐺 𝑥, 𝑦 , 𝐵(𝑥, 𝑦))l = (𝑅, 𝐺, 𝐵)l 

where (x, y) is an image pixel. These values are called as tristimulus values.  

In RGB color space, each color vector created by integers R, G, and B characterize a 

single color, provided that 0 ≤ 𝑅, 𝐺, 𝐵 ≤ 𝐺nop where 𝐺nop is the largest value of a 

color component. A representation of RGB color space can be observed in Figure 6. 

 

Figure 6. RGB color space 
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The cube’s boundaries are formed by the primary colors, which are red, green, and 

blue, the complementary colors, which are yellow, magenta and cyan, and the 

achromatic colors, which are black and white. All achromatic colors lie on the 

diagonal created by combining the corners represented by black and white. With a 

linear combination of all three vectors, almost every color in the visible spectrum can 

be generated. 

CIELAB is a uniform color space. In a uniform color space, the amount of change 

between color coordinates corresponds to the same amount of perceptible change in 

the visible color tones and color saturation. Although CIELAB is a uniform color 

space, there is no uniform color space that is perfectly uniform, which does not involve 

any biased or distorted representation. Although uniform color spaces are 

computationally expensive to convert from other color spaces, they are quite useful 

when comparing similar colors. 

L*a*b* color space, less known name of CIELAB color space, is recommended by 

CIE in 1976. It is also adopted by the German institute DIN (Deutsches Institut für 

Normierung). The color space is produced from CIE XYZ primary system by using 

the following conversion: 

𝑋∗ = 𝑋/𝑋E
s 𝑓𝑜𝑟	𝑋/𝑋E 	> 	0.008856

𝑋∗ = 7.787 ∙ (𝑋/𝑋E) 	+ 0.138 𝑓𝑜𝑟	𝑋/𝑋E 	≤ 	0.008856
 

𝑌∗ = 𝑌/𝑌E
s 𝑓𝑜𝑟	𝑌/𝑌E 	> 	0.008856

𝑌∗ = 7.787 ∙ (𝑌/𝑌E) 	+ 0.138 𝑓𝑜𝑟	𝑌/𝑌E 	≤ 	0.008856
 

𝑍∗ = 𝑍/𝑍E
s 𝑓𝑜𝑟	𝑍/𝑍E 	> 	0.008856

𝑍∗ = 7.787 ∙ (𝑍/𝑍E) 	+ 0.138 𝑓𝑜𝑟	𝑍/𝑍E 	≤ 	0.008856
 

Then, 

𝐿∗ = 116 ∙ 𝑌∗ − 16, 

𝑎∗ = 500 ∙ (𝑋∗ − 𝑌∗), 

𝑏∗ = 200 ∙ (𝑌∗ − 𝑍∗) 
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While L* channel represents lightness, a* represents green and red, and b* represents 

blue and yellow colors. 

2.1.2 Edge Detection 

Edge direction and strength at location (x, y) of an image f is simply found by 

calculating the gradient vector, which is denoted by ∇𝑓, defined as: 

∇𝑓 = 𝑔𝑟𝑎𝑑 𝑓 =
𝑔p
𝑔{ = 𝜕𝑓/𝜕𝑥

𝜕𝑓/𝜕𝑦  

This vector points in the direction of the greatest rate of change of f at location (x, y). 

The magnitude of the vector, denoted as 𝑀 𝑥, 𝑦 , is calculated by: 

𝑀 𝑥, 𝑦 = 𝑚𝑎𝑔 ∇𝑓 = 𝑔p~ + 𝑔{~ 

Magnitude of the gradient is the value of the rate of change in the direction of the 

gradient vector. The direction of the gradient vector is the angle 𝛼 𝑥, 𝑦  defined as: 

𝛼 𝑥, 𝑦 = 𝑡𝑎𝑛�D(	
𝑔{
𝑔p
	) 

The angle of the gradient vector at an arbitrary point (x, y), 𝛼 𝑥, 𝑦 , is orthogonal to 

the direction of the edge at that point.  

Here, 𝑔p, 𝑔{, 𝑀 𝑥, 𝑦  and 𝛼 𝑥, 𝑦  are all images of the same size as the input image 

f. 

To obtain the gradient of an image, partial derivatives of the image, 𝜕𝑓/𝜕𝑥 and 𝜕𝑓/𝜕𝑦, 

are required to be calculated at every pixel location. Since the partial derivatives are 

𝑔p =
𝜕𝑓 𝑥, 𝑦
𝜕𝑥 = 𝑓 𝑥 + 1, 𝑦 − 𝑓(𝑥, 𝑦) 

and 

𝑔{ =
𝜕𝑓 𝑥, 𝑦
𝜕𝑦 = 𝑓 𝑥, 𝑦 + 1 − 𝑓(𝑥, 𝑦) 
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they can be calculated for all pixels in the image by filtering f(x, y) with the 1-D masks 

shown in Figure 7. In this figure, (a) is the mask for calculating 𝑔p, while (b) is the 

mask for calculating 𝑔{. 

-1  -1 1 

1   

(a)  (b) 

Figure 7. One-dimensional masks 

The masks used for computing the gradient are also called gradient operators, edge 

operators, edge detectors or difference operators. There are several different 

commonly utilized gradient operators. Figure 8, Figure 9, and Figure 10 shows 

Roberts, Prewitt and Sobel edge detectors (Gonzalez & Woods, 2008), respectively. 

-1 0   0 -1 

0 1   1 0 

(a)   (b) 

Figure 8. Roberts edge detectors 

-1 -1 -1  -1 0 1  0 1 1  -1 -1 0 

0 0 0  -1 0 1  -1 0 1  -1 0 1 

1 1 1  -1 0 1  -1 -1 0  0 1 1 

(a)  (b)  (c)  (d) 

Figure 9. Prewitt edge detectors. (a) Horizontal edge detector. (b) Vertical edge 

detector. (c) (d) Diagonal edge detectors 

-1 -2 -1   -1 0 1   0 1 2   -2 -1 0 

0 0 0   -2 0 2   -1 0 1   -1 0 1 

1 2 1   -1 0 1   -2 -1 0   0 1 2 

(a)   (b)   (c)   (d) 

Figure 10. Sobel edge detectors. (a) Horizontal edge detector. (b) Vertical edge 

detector. (c) (d) Diagonal edge detectors 
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Filtering an image f(x, y) with one of these edge detectors results in an image with 

gradient values computed for each pixel in the image, i.e. a gradient image. 

2.1.3 Filtering 

Filtering is used in image processing for several different purposes such as image 

enhancement and edge detection. A spatial filter consists of a neighborhood, and a 

predefined operation. The predefined operation is applied to the image pixels inside 

the neighborhood. The output of the filtering operation is a pixel with a new value at 

the same coordinates of the center of the neighborhood. If the filtering operation is 

linear, then the filter is called a linear spatial filter. Otherwise, it is a nonlinear spatial 

filter. Only linear filters are discussed within the scope of this research. 

There are two important concepts that are related to linear spatial filtering, which are 

correlation and convolution. These two operations are very similar to each other. 

Correlation is the process that a filter is moved over the image and sum of the products 

of overlapping values at each location is computed. Figure 11 illustrates a section of 

an image (a) that is under filter mask w that has a 3x3 neighborhood (b).  

 

Figure 11. A section of an image f that is under a 3x3 filter mask w 
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The response of the filter at any point (x, y) in the image is, denoted as 𝑔(𝑥, 𝑦): 

𝑔 𝑥, 𝑦 = 𝑤 −1,−1 𝑓 𝑥 − 1, 𝑦 − 1 + 𝑤 −1,0 𝑓 𝑥 − 1, 𝑦 + ⋯	

                     +	𝑤 0,0 𝑓 𝑥, 𝑦 + ⋯+ 𝑤(1,1)𝑓(𝑥 + 1, 𝑦 + 1) 

Correlation filtering of an image f(x, y) of size 𝑀𝑥𝑁 with a filter w(x, y) of size	𝑚𝑥𝑛 

is computed as follows: 

𝑔 𝑥, 𝑦 = 𝑤 𝑠, 𝑡 𝑓 𝑥 + 𝑠, 𝑦 + 𝑡
�

�F��

o

�F�o

 

where, it is assumed that 𝑚 = 2𝑎 + 1 and 𝑛 = 2𝑏 + 1, a and b are positive integers. 

Although filters having an even size can be used, here, the focus is on odd-size filters. 

Convolution is a very similar process to correlation. In convolution, the computation 

procedure is the same. However, the filter or the image is rotated 180° before the filter 

is applied. Note that rotating the image has the same effect as rotating the filter. 

Convolution filtering of an image f(x, y) of size 𝑀𝑥𝑁 with a filter w(x, y) of size	𝑚𝑥𝑛 

is computed as follows: 

𝑔 𝑥, 𝑦 = 𝑤 𝑠, 𝑡 𝑓 𝑥 − 𝑠, 𝑦 − 𝑡
�

�F��

o

�F�o

 

Figure 12 illustrates correlation and convolution procedures applied to the same image 

f with the same spatial filter w in 1-dimension. 

Figure 12(a) shows the image and the filter. In Figure 12(b), the filter is aligned at the 

starting position. Here, the filter does not completely overlap with the image. A 

solution for this is to zero-pad the image, i.e. adding 0s to either side of the image, 

which is illustrated in Figure 12(c). Figure 12(d) and Figure 12(e) shows the filter 

shifted one and four positions. The final position of the filter is shown in Figure 12(f). 

Figure 12(g) and Figure 12(h) demonstrates the final correlation results as fully and 

cropped, respectively. The right side of Figure 12 shows the same procedure, but for 

convolution. 
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Figure 12. Illustration of 1-D correlation and convolution. (Gonzalez & E., 2008, p. 

169) 

Filtering in 2-D is the same as filtering in 1-D, which is illustrated in Figure 12. In 2-

D, a 2-D filter mask is used to filter a 2-D image. The mask is moved over on the 

image and filtering computation is done for each pixel in the image. 

2.1.4 Labeling 

A pixel p whose coordinates are (x, y) has four horizontal and vertical neighbors. 

These neighbors are 

𝑥 + 1, 𝑦 , 𝑥 − 1, 𝑦 , 𝑥, 𝑦 + 1 , 𝑥, 𝑦 − 1  

The set formed by these pixels are called the 4-neighbors of p, and is denoted by N4(p). 

Adding the four diagonal neighbors of p, which are 
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𝑥 + 1, 𝑦 + 1 , 𝑥 + 1, 𝑦 − 1 , 𝑥 − 1, 𝑦 + 1 , 𝑥 − 1, 𝑦 − 1  

denoted by ND(p), to N4(p), creates 8-neighbors of p, denoted as N8(p). Now, let V be 

the set containing the values used to define adjacency. In a binary image, V = {1}. In 

a gray-scale image, V contains all 256 values from 0 to 255. There are three types of 

adjacency: 

a) 4-adjacency. Pixels p and q whose values are in set V are 4-adjacent if q is in 

the set N4(p). 

b) 8-adjacency. Pixels p and q whose values are in set V are 8-adjacent if q is in 

the set N8(p). 

c) m-adjacency (mixed adjacency). Pixels p and q whose values are in set V are 

m-adjacent if 

i. q is in N4(p), or 

ii. q is in ND(p) and the set 𝑁�(𝑝) ∩ 𝑁�(𝑞) does not have any pixels whose 

values are from V. 

 
Pixels p and q that are in set S, a subset of pixels in an image, are connected in S if 

there is a path between these pixels which is formed entirely by the pixels in S. The 

set of pixels which are connected to a pixel p in S is called a connected component of 

S. If there is only one connected component in S, S is called a connected set or region. 

Extraction of connected components, or labeling, is accomplished by the following 

iterative procedure: 

𝑋� = 𝑋��D⨁𝐵 ∩ 𝐴										𝑘 = 1,2,3, … 

where B is a structuring element. The iteration is finalized when 𝑋� = 𝑋��D. When 

finding regions, it is important to define the adjacency of pixels, since an 8-connected 

region might be composed of several 4-connected regions. Therefore, a suitable B 

needs to be provided. 

An example labeling operation is shown in Figure 13. The structuring element B is 
used to find the 8-connected component in the image. Note that, with the same 
initialization, the left-most pixel would not be included if structuring element B is 
chosen to be 4-connected. 
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Figure 13. An example labeling operation 

2.1.5 Convex Hull 

A convex set is a set such that, the straight line connecting any two points lies entirely 

within that set. The smallest convex set containing an arbitrary set S is the convex hull 

H of set S. 

A convex set of an arbitrary set can be found by morphological operations. 

Let the structuring elements in Figure 14(a) be represented with Bi, where i = 1, 2, 3, 

4. Finding the convex hull implements the following equation: 

𝑋�6 = 𝑋��D ⊛ 𝐵6 ∪ 𝐴								𝑖 = 1,2,3,4								𝑎𝑛𝑑								𝑘 = 1,2,3, … 

with 𝑋�6 = 𝐴. The iterative process is stopped when 𝑋�6 = 𝑋��D6 , 𝐷6 is set as 𝑋�6 . Then, 

the convex hull of set A, denoted as C(A), is: 
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𝐶 𝐴 = 𝐷6
�

6FD

 

This procedure is based on applying the hit-or-miss transform to A with the four 

structuring elements B1, B2, B3 and B4 one by one. The results of the hit-or-miss 

transforms are then merged to create the convex hull. 

An example process is shown in Figure 14. At the top of the figure, there are four 3x3 

structuring elements defined. The origin of each structuring element is at the center. 

The positions marked with an “x” indicate that values of those pixels do not matter 

when applying the hit-or-miss transform. Figure 14(b) shows the set whose convex 

hull is sought. Figure 14(c) shows the result of the application of the above equation 

by using the structuring element B1. 𝑋�D indicates that the convergence is achieved at 

4th iteration. Similarly, Figure 14(d), Figure 14(e) and Figure 14(f) shows the results 

D2, D3 and D4. Figure 14(g) illustrates the union of D1, D2, D3 and D4, which is the 

convex hull of set A, C(A). Finally, in Figure 14(h), the contributions of each 

structuring element to the convex hull is demonstrated. 

As illustrated in Figure 14, with this procedure, the convex hull may grow beyond the 

minimum dimensions required to guarantee convexity. Although it adds 

computational complexity to the solution, this can be fixed by limiting the convex hull 

with the horizontal and vertical limits of the set. 
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Figure 14. Process for finding the convex hull for an example region 

2.2 Algorithmic Background 

In this section, algorithms used in this study are reviewed. 

 

2.2.1 Boundary Tracing 

The boundary tracing algorithm used in this study is based on Moore neighborhood 

of a pixel, which consists of 8 neighboring pixels of a pixel. Given that the boundary 

is composed of pixels labeled as 1 and the background pixels are 0, the following steps 

apply: 



 

20 
 

1. Let starting pixel b0 the upper-most and left-most pixel labeled as 1, and c0 be 

the left neighboring pixel of b0. Let i = 0, b = bi, and c = ci. 

2. Increase i by 1. Examine 8-neighbors of b, starting at c and going clockwise. 

Let bi be the pixel with value 1 that is hit first and ci be the preceding 0. Let b 

= bi, and c = ci.  

3. Repeat process of updating b and c. 

4. Continue until b = b0 and the next boundary point found as b1. 

5. The boundary is sequence of found bs. 

An example boundary tracing operation is shown in Figure 15. 

 

Figure 15. An example boundary tracing operation. The operation starts from (a) and 

ends with (o) 
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The boundary is sequence of found bs, which is {b1, b2, b3, b4, b5, b6, b7, b8, b9, 

b10, b11, b12, b13}. b14 is not included in the boundary because it corresponds to b1, 

which is the stopping case of the algorithm. 

2.2.2 Canny Edge Detector 

Canny edge detector (Canny, 1986) is an edge detector which detects edges using the 

following set of procedures: 

1. Apply a Gaussian filter to the image for smoothing. 

2. Compute the gradient angle and magnitude images. 

3. Apply nonmaxima suppression to the gradient magnitude image. 

4. Apply hysteresis thresholding. 

 
Let Gaussian function, denoted as 𝐺 𝑥, 𝑦 , be: 

𝐺 𝑥, 𝑦 = 𝑒�	
p��{�
~��  

For an image 𝑓 𝑥, 𝑦 , smoothed image 𝑓� 𝑥, 𝑦  is formed by convolution of G and f: 

𝑓� 𝑥, 𝑦 = 𝐺 𝑥, 𝑦 ⋆ 𝑓 𝑥, 𝑦  

Next, the gradient magnitude, 𝑀(𝑥, 𝑦), and angle (direction), 𝜎 𝑥, 𝑦  are: 

𝑀 𝑥, 𝑦 = 𝑔p~ + 𝑔{~ 

𝜎 𝑥, 𝑦 = 𝑡𝑎𝑛�D
𝑔{
𝑔p

 

where 𝑔p =
���
�p

 and  𝑔{ =
���
�{

. 𝑔p and 𝑔{ can be obtained by using any edge detectors 

such as Roberts, Prewitt or Sobel. 

The magnitude image 𝑀(𝑥, 𝑦), because it is generated using the gradient, generally 

contains wide ridges around local maxima. As a next step, Canny edge detector thins 

those ridges by a procedure called nonmaxima suppression. One of the ways to do this 

is to specify a number of orientations of the gradient vector (edge normal). For 

example, for a 3×3 region, four different orientations which pass through the center 
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point of the region can be defined. These are horizontal, vertical, +45° and -45° edges. 

Note that each edge has two possible orientations, the second one being the 180°-

rotated version of the first one. For example, edge normals of two possible orientations 

of a horizontal edge in a 3×3 region can be observed in Figure 16. 

 

Figure 16. Two possible horizontal edge orientations in a 3×3 region 

Since the edges are classified into four different orientations, edge normal ranges for 

which an edge is considered to be horizontal, vertical, +45° or -45° need to defined as 

well. The ranges for the four orientations in a 3×3 region can be observed in Figure 

17. Ranges indicating the same orientation are represented with the same color. 

 

Figure 17. The angle ranges of edge normals in a 3×3 region for the four 

orientations 
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Let the four basic edge directions be denoted as d1, d2, d3 and d4, for the 3×3 region, 

which are horizontal, vertical, +45° and -45°. Nonmaxima suppression procedure 

which is applied at every point (𝑥, 𝑦) in 𝜎(𝑥, 𝑦) is as follows: 

1. Find the direction dk which is closest to the angle 𝜎(𝑥, 𝑦) 

2. Along dk, if the magnitude 𝑀(𝑥, 𝑦) is less than at least one of its two neighbors, 

then suppress the value by letting 𝑔�(𝑥, 𝑦) = 0. Otherwise, let 𝑔�(𝑥, 𝑦) =

𝑀(𝑥, 𝑦). 

where 𝑔�(𝑥, 𝑦) is the image that is nonmaxima suppressed. 

Finally, after nonmaxima suppression, hysteresis thresholding is applied to 

nonmaxima-suppressed image 𝑔�(𝑥, 𝑦). The aim is to reduce false edge points while 

maintaining strong edges. The operation is done by thresholding the image with two 

different thresholds, called high and low threshold, denoted as 𝑇� and 𝑇� respectively. 

Canny (1986) suggested that the ratio of the high to low threshold should be two or 

three to one. Although the hysteresis thresholding can be applied on the same image, 

for the sake of simplicity, two additional images can be used to clearly visualize the 

procedure: 

𝑔�� 𝑥, 𝑦 = 𝑔 𝑥, 𝑦 ≥ 𝑇� 

and 

𝑔�� 𝑥, 𝑦 = 𝑔 𝑥, 𝑦 ≥ 𝑇� 

where 𝑔�� 𝑥, 𝑦  and 𝑔�� 𝑥, 𝑦  are set to 0 initially. After thresholding, 𝑔�� 𝑥, 𝑦  will 

have more non-zero pixels compared to 𝑔�� 𝑥, 𝑦  in general. However, all of the non-

zero pixels in 𝑔�� 𝑥, 𝑦  will be contained in 𝑔�� 𝑥, 𝑦 , which is created with a lower 

threshold. The non-zero pixels coming from 𝑔�� 𝑥, 𝑦  are eliminated from 𝑔�� 𝑥, 𝑦  

by letting 

𝑔�� 𝑥, 𝑦 = 𝑔�� 𝑥, 𝑦 − 𝑔�� 𝑥, 𝑦  

From now on, 𝑔�� 𝑥, 𝑦  can be considered as it contains only “weak” edge pixels, 

while 𝑔�� 𝑥, 𝑦  can be considered as it contains only “strong” edge pixels. 
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After thresholding, because 𝑔�� 𝑥, 𝑦  contains the strong edge pixels, they are 

marked immediately. The edges in 𝑔�� 𝑥, 𝑦  generally have gaps, depending on the 

threshold 𝑇�. To create longer edges, following procedure is used: 

1. Locate the next unvisited pixel, p, in 𝑔�� 𝑥, 𝑦  

2. Mark all the weak pixels in 𝑔�� 𝑥, 𝑦  that are connected to p as valid edge 

pixels using, e.g., 8-connectivity 

3. If there are unvisited pixels in 𝑔�� 𝑥, 𝑦 , return to step 1. Otherwise, continue 

with step 4. 

4. Set all pixels that were not marked as valid edge pixels in 𝑔�� 𝑥, 𝑦  to zero. 

 

Finally, the output of the algorithm is created by appending 𝑔�� 𝑥, 𝑦  to the all non-

zero pixels in 𝑔�� 𝑥, 𝑦 . At this point, there might remain edges that are wider than 1 

px. To make all edges 1-px wide, edge-thinning algorithm is typically applied to the 

final output. 

2.2.3 Dijkstra’s Algorithm 

In this thesis study, Dijkstra’s algorithm is used to find the shortest paths in contour 

connection graphs, which are graphs created by using detected edges. Contour 

connection graphs are explained in section 3.2.3. 

Dijkstra’s algorithm (Dijkstra, 1959) finds the shortest path starting from a predefined 

vertex on a weighted, directed graph 𝐺 = (𝑉, 𝐸), where weight of each edge 

𝑤 𝑢, 𝑣 ≥ 0 for each edge 𝑢, 𝑣 ∈ 𝐸. 

A set S is used to store vertices whose final shortest-path weights have already been 

determined. The shortest-paths are calculated from the predefined source vertex s. The 

algorithm initializes S as an empty set. At the same time, a queue Q is used to store 

vertices whose final shortest-path weights have not already been determined. In the 

beginning, 𝑄 = 𝑉. The final shortest-path weight of s is selected as 0, and others as 

infinity. 

The algorithm keeps extracting the vertex with the smallest shortest-path estimate, u, 

from Q and adding it to S, which results in 𝑄 = 𝑉 − 𝑆. Then, for each vertex v adjacent 
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to s, it calculates the shortest-path by adding the estimated shortest-path weight of u 

to the weight of the smallest-weight edge that connects u and v. If one of the calculated 

weights is smaller than the current shortest-path weight of v, then the shortest-path 

weight of v is updated. This is repeated until 𝑄 = ∅ and, hence,	𝑆 = 𝑉. Pseudocode 

of the algorithm is given below (Cormen et al, 2009, p. 658): 

Dijkstra(G,	w,	s)	
1 Initialize-Single-Source(G,	s)	
2 𝑆 = ∅	
3 𝑄 = 𝐺. 𝑉	
4 while	𝑄 ≠ ∅	
5 						u	=	Extract-Min(Q)	
6 						𝑆 = 𝑆 ∪ {𝑢}	
7 						for	each	vertex	𝑣 ∈ 𝐺. 𝐴𝑑𝑗[𝑢]	
8 												Relax(u,	v,	w)	

 

Line 1 initializes the the weight of s as 0. Line 2 sets S as an empty set, while line 3 

sets Q equal to V. while loop of lines 4–8 is repeated until there is no vertex in Q. Line 

5 extracts the vertex with the minimum shortest-path estimate and assigns it to u. For 

the first time through the while loop, 𝑢 = 𝑠, since the weight of s is 0 while that of 

others is infinity. Line 6 adds vertex u to set S. Next, lines 7–8 relax each edge (u, v) 

leaving u, and, by this way, update the estimate shortest-path weight of v. 

Figure 18 shows the execution of Dijkstra’s algorithm over an example. In the figure, 

the estimates of the shortest paths are shown within vertices. Shaded edges indicate 

predecessor values. The vertices in the set S are shown with white text over black 

background. The vertices in the queue Q are shown with black text over white 

background. In the figure, (a) shows the initial situation where u = s, (b)-(f) are the 

situations after each successive repetition of the while loop where the vertices with 

gray background are the vertices selected as u, (f) shows the final situation where Q 

is an empty set. (Cormen et al, 2009, p. 659) 
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Figure 18. The execution of Dijkstra's algorithm 

2.2.4 Hough Transform 

Hough transform can be used to detect several different features such as lines and 

circles. In this section, only straight line detection is explained. 

Hough line transform detects straight lines in an edge image by expressing lines in 

polar coordinates. Figure 19 shows a line in x-y plane, whose normal makes an angle 

𝜃 with the horizontal axis and its distance to the origin is 𝜌. Then, this line can be 

expressed as a parametric equation: 

𝜌 = 𝑥𝑐𝑜𝑠 𝜃 + 𝑦𝑠𝑖𝑛(𝜃) 

 

Figure 19. A line in X-Y plane 
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In an edge image, position (x, y) of every pixel is known. Therefore, x and y are 

constants in the parametric equation, while 𝜌 and 𝜃 are unknowns. For each point in 

the edge image, Hough transform finds all lines that pass through that point by finding 

(𝜌, 𝜃) pairs that satisfy the parametric equation for that point. In Hough parameter 

space, or 𝜌 − 𝜃 space, lines passing through a point form a sinusoidal curve. If a line 

passes through two different points, then, the curves of these points in Hough 

parameter space intersect. 

Figure 20(b) shows Hough parameter space for the edge image in Figure 20(a). The 

Hough parameter space contains all (𝜌, 𝜃) pairs for each pixel in the edge image. For 

each pixel, a sinusoidal curve is created in the parameter space. Intersection points of 

the curves are 𝜌 and 𝜃 values for the lines found in the image. The points where the 

most number of curves intersect indicate a strong straight line. These points are 

marked with green frames in Figure 20(b). As a result, three strong lines are found in 

the edge image with 𝜌 and 𝜃 values of approximately (-4, -45), (15, 0) and (3, 90), 

which correspond to the three lines in Figure 20(a). 

 

Figure 20. Hough parameter space for a sample image 

Hough transform uses the fact that, for every point (x, y) on a line, the parametric 

equation is satisfied with the same (𝜌, 𝜃) pair. In a different point of view, each point 
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(x, y) in the edge image votes for several (𝜌, 𝜃) pairs. As a result, 𝜌, 𝜃  pairs with the 

highest number of votes indicate a straight line, since a line consists of several points. 

2.2.5 Image Differencing 

Image differencing is used to find differences or changes between two images. Let 

𝐼D 𝑥, 𝑦  and 𝐼~ 𝑥, 𝑦  be the two gray-scale images. Then, the difference image, 

denoted as 𝐼¿ 𝑥, 𝑦 , is defined as 

𝐼¿ 𝑥, 𝑦 = 	 𝐼D 𝑥, 𝑦 −	𝐼~ 𝑥, 𝑦  

In this research study, image differencing is utilized to detect shadows. According to 

İlsever and Ünsalan (2012): “Intensity differences due to land cover change resides at 

the tails of the difference distribution of the image. Assuming that changes due to land 

cover are less than changes by other factors, we expect that most of the difference is 

distributed around the mean.”. This approach is adopted for the shadow detection as 

well. For a zero mean difference, 𝐼~ can be normalized as 

𝐼~ 𝑥, 𝑦 = 	
𝜎D
𝜎~

𝐼~ 𝑥, 𝑦 	−	𝜇~ +	𝜇D 

where 𝐼~ is the normalized form of 𝐼~. 𝜇D, 𝜎Dand 𝜇~, 𝜎~ are the mean and the standard 

deviation of 𝐼D and 𝐼~, respectively. After normalization, the mean and standard 

deviation of the two images are equalized. Hence, the difference image will have zero 

mean (İlsever & Ünsalan, 2012). Now, the difference equation can be updated as 

𝐼¿ 𝑥, 𝑦 = 	 𝐼D 𝑥, 𝑦 −	𝐼~ 𝑥, 𝑦  

The values that are less than zero represent the pixels that are brighter in the shadow 

image. It is expected that the values representing the shadows in the difference image 

will be greater than a certain threshold and greater than zero. Therefore, shadow mask 

is 

𝑆 𝑥, 𝑦 = 	 		1, 𝐼¿ 𝑥, 𝑦 	≥ 𝜏
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

where the threshold 𝜏 is determined empirically. 

 



 

29 
 

2.2.6 RANSAC 

RANSAC, which is an abbreviation of Random Sample Consensus, is a general 

parameter estimation approach which is designed to deal with large number of outliers 

in the input data. While conventional sampling techniques use as much data points as 

possible, RANSAC generates candidate solutions by using minimum number of data 

points. 

The algorithm uses the smallest set possible and then proceeds with enlarging the set 

by using consistent data points. The algorithm works as follows: 

1. Randomly select the minimum number of data points to determine the 

parameters of the model. 

2. Solve for parameters of the model. 

3. From the set of all data points, determine how many of them fit with a 

predefined tolerance 𝜖. 

4. If the ratio of the number of inliers to the total number of data points in the set 

exceeds a predefined threshold 𝜏, make another estimation for the model 

parameters using all the identified inliers and terminate. Otherwise, proceed 

with step 5. 

5. Repeat steps 1 through 4 until predefined iteration limit N is reached. 

 

The number of iterations, N, is 

𝑁 =
log 1 − 𝑃

log	(1 − 1 − 𝜖 �) 

where 𝜖 is the independent probability of any point being an outlier, k is the number 

of points inside one random sampling containing no outliers, and P is the probability 

that at least one of the sets of random samples does not include an outlier. 

2.3 Mining Background 

This section covers the mining background related to this thesis study. In this section, 

geotechnical core logging and RQD are reviewed. 
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2.3.1 Geotechnical Core Logging 

Geotechnical core logging is performed in order to determine several parameters about 

the rock mass. In a standard geotechnical core logging process, information about 

structural region, RQD, condition of discontinuities, Q and RMR parameters, and 

intact rock strength parameters are recorded. In addition, comments are added for the 

examined cores. The format of the log should be structured to contain all required data 

that are required for rock mass classification schemes, such as RMR (Bieniawski, 

1976), GSI (Marinos & Hoek, 2000) and Q (Barton et al., 1974). A sample 

geotechnical core logging sheet can be observed in Table 2. 

Structural region parameters 

Structural region parameters consist of rock type, depth, and total core recovery 

(TCR). 

Rock type is the name of the rock that is logged. The defined rock type should be 

consistent throughout the project so that it does not cause confusion with identification 

of geological units. 

Depth information is recorded as an interval. From is the length from the collar of the 

hole to the beginning of the logged interval, while to is the length from the collar of 

the hole to the end of the logged interval. For example, an interval from 32.6 meters 

to 54.8 meters would be recorded as “From: 32.6 m … To: 54.8 m”. For consistency, 

the measurements should be made over uniform intervals of drill core, such as core 

runs. 

Total core recovery, or TCR, represented as percentage, is the total amount of core 

recovered over the measured length drilled for each core run. Because core losses are 

encountered in highly fractured or weak zones, which may be crucial for determining 

rock mass properties, they are important indicators of potentially poor geotechnical 

conditions. When determining TCR, rubble, redrill, or slough recovered at the top of 

a core lift which was not in place is not considered as recovered core. In addition, 

cores that slip through the core lifter and drop out of its core tube should be included 

in TCR. This only indicates a worn or unsuitable core lifter. TCR must not exceed 

100% on any logged interval. 
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Condition of discontinuities 

Condition of discontinuities are composed of fracture type, fracture frequency, dip 

with respect to core axis, fracture condition, and weathering index. 

Fracture type is the type of the fractures present in the core interval. Table 3 shows 

the types of the fractures and their abbreviations. 

Table 3. Fracture types and their abbreviations 

Fracture (FR): A discontinuity of uncertain origin (e.g., possible mechanical 

break) 

Joint (J): A discontinuity with no infilling and no evidence of previous 

movement 

Fault (F): A discontinuity across which there has been substantial 

movement. Infill will be relatively thick. 

Shear (S): A discontinuity across which there has been limited movement. 

Infill will be relatively thin, generally associated with polished 

or slicken-sided surfaces. 

Bedding (B): A discontinuity associated with sedimentary processes (e.g. mud 

seam in sandstone) 

Foliation (FO): A preferential direction of structural weakness in the rock due to 

alignment of weak minerals, caused by metamorphism. 

Vein (V): A discontinuity infilled or healed by another mineral (e.g. 

quartz). Veins are generally of limited interest unless material is 

particularly weak or broken. 

Fracture frequency is the number of natural fractures found over the examined core 

interval. It can also be recorded for each fracture type. Drilling-induced fractures and 

fractures whose length of persistence is less than the core diameter are not included in 

the count. The fracture frequency is determined by dividing the number of fractures 

to the length of the examined interval. It is used to determine the spacing between 
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fractures within a rock mass, which is called fracture spacing. Strength and behavior 

of the rock mass is directly influenced by the fracture spacing. This parameter is 

important for mine design studies, because it is harder to maintain the stability of the 

excavations when the fracture spacing is low. Moreover, since RQD is not sensitive 

enough for fracture spacing values greater than 10 cm, this parameter can be used as 

a complement to RQD. 

Dip with respect to core axis is the dip angle or range of dip angles for the fractures 

found in the examined interval. The angle is measured relative to the core axis, where 

dipping perpendicular to core axis is recorded as 90° and dipping parallel to the core 

axis is recorded as 0°. If there are more than one joint set, average dip angle for each 

joint set is recorded. 

Fracture condition is estimated using the definitions in RMR (Bieniawski, 1976) or 

Q (Barton et al., 1974) rock mass classification systems. The values can be obtained 

from Table 4 and Table 5. 
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Table 4. Rock mass rating system (Bieniawski, 1989) 
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Table 5. Classification of individual parameters used in the Tunnelling Quality Index 

Q (Barton et al., 1974) 
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Table 5. (cont'd) Classification of individual parameters used in the Tunnelling 

Quality Index Q (Barton et al., 1974) 
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Table 5. (cont'd) Classification of individual parameters used in the Tunnelling 

Quality Index Q (Barton et al., 1974) 

 
 

Weathering index, or alteration index, is the degree of weathering. This parameter is 

decided using Table 6. By this way, the degree of weathering for the original rock 

material is defined qualitatively. The intensity of the alteration is recorded along with 

the weathering, as well. Because alteration of the rock material has a negative effect 

on the strength of the rock, logging the weathering is crucial. 
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Table 6. Weathering classification (Brown, 1981) 

 
 

Q Parameters 

Q parameters are the parameters which are required as an input to Q (Barton et al., 

1974) rock mass classification system. These parameters are RQD, joint set number 

(Jn), joint roughness number (Jr), joint alteration number (Ja), joint water reduction 
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(Jw), and stress reduction factor (SRF). The values of these parameters can be found 

using Table 5. 

RMR Parameters 

RMR parameters are the input parameters required to find the value of RMR 

(Bieniawski, 1976) rock mass classification system. These parameters are strength of 

intact rock material, RQD, spacing of discontinuities, condition of discontinuities, 

groundwater, and strike and dip orientations. The values of these parameters can be 

found using Table 4. 

Intact rock strength 

The strength of the intact core pieces can be determined using Table 7, with the help 

of a pocket knife and a rock hammer, in a cost-effective way. In addition to this, point 

load tests should be carried out in the field on the projects for which intact rock 

strength is an important factor. When selecting samples to be tested, it is important to 

concentrate on representing rock mass rather than selecting the samples that are easiest 

to test. To provide a measure of anisotropy, both axial and diametric tests should be 

carried out. 

Comments 

The comments section in the log should be filled with a short description of principal 

geological characteristics of the interval that is examined. These characteristics 

include distinguishing features such as fabric, grain size, color, major minerals, 

descriptions of particularly weak zones and comments related to overall competency 

of the core. 



 

40 
 

Table 7. Intact rock strength classification (Brown, 1981) 

 
 

2.3.2 RQD 

Rock Quality Designation, RQD, which was first used on a design and construction 

project in 1964 (Deere & Deere, 1989), was developed as a rock quality index. The 

index is also included as an input parameter in rock classification systems developed 

by Bieniawski (1973) and Barton et al. (1974).  

RQD is obtained by counting only sound core pieces that are at least 100 mm (4-in.) 

in length, and whose diameter is at least NQ-size. Because of the potential core 
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breakage and loss, inclusion of BQ and BX size cores in RQD is discouraged. Core 

pieces that are slightly and moderately weathered can be included in the calculation 

as long as they cannot be broken by hand. RQD is calculated by: 

𝑅𝑄𝐷 =	
(𝐿𝑒𝑛𝑔𝑡ℎ	𝑜𝑓	𝑠𝑜𝑢𝑛𝑑	𝑐𝑜𝑟𝑒	𝑝𝑖𝑒𝑐𝑒𝑠 > 100	𝑚𝑚)

𝑇𝑜𝑡𝑎𝑙	𝑐𝑜𝑟𝑒	𝑟𝑢𝑛	𝑙𝑒𝑛𝑔𝑡ℎ  

Length of core pieces are measured through their centerline. Correct and incorrect 

length measurements are shown in Figure 21.  

 

Figure 21. Correct and incorrect ways of measuring the length of a core sample 

(Deere & Deere, 1989, p. 14) 
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Measuring the length along the centerline is the recommended procedure, which is 

advocated by the International Society for Rock Mechanics (ISRM), because of the 

fact that the measurement is independent of the core diameter, providing a 

standardized RQD, and that improperly penalizing the rock mass quality for cases 

where fractures are parallel to the borehole and are cut by a second set. 

When measuring the core length, core breaks caused by the drilling process, i.e. man-

made or mechanical breaks, must be considered as non-existent. In other words, core 

pieces created by mechanical breaks must be fitted together and counted as one single 

core. If the type of the break cannot be decided exactly, the type should be considered 

as natural in order to be conservative in the calculation. 

Core pieces that are not hard and sound should be included in the RQD calculation 

even if their measured length is greater than 100 mm (4-in.). The objective of this 

requirement is to downgrade the rock quality where the rock has been altered and 

weakened. If the core being a sound one or not cannot be decided, to be conservative 

in the calculation, it should be considered as not fulfilling the soundness requirement. 

While cores whose weathering type is classified as fresh or slightly weathered are 

included in the RQD count, and moderately weathered cores are included with the 

asterisk qualifier (*) next to them, highly weathered, completely weathered, and 

residual soil are excluded from the RQD count (Deere & Deere, 1989). 

The other input parameter of RQD is length of the core run. When the length of the 

core run decreases, RQD becomes more sensitive. For example, RQD value for a 

highly fractured 300-mm-long zone within a massive rock would be 90%, 80% and 

40% respectively for run lengths of 3 m, 1.5 m and 0.5 m. Deere & Deere (1989) 

recommend that the calculation of the RQD be based on the actual drilling-run length 

used in the field, which should not be greater than 1.5 m and certainly not more than 

3 m. “The ISRM Commission on Standardization of Laboratory and Field Tests 

(ISRM, 1978) recommends RQD logging using variable run lengths to separate 

individual beds, structural domains, weakness zones, etc., so as to indicate any 

inherent variability, and to provide a more accurate picture of the location and width 

of zones with anomalously low or high RQD values.” (Deere & Deere, 1989, p. 20). 
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An example RQD measurement can be observed in Figure 22. 

RQD is correlated with tunnel support/reinforcement design, prediction of in-situ 

modulus, foundation settlement and fracture frequency. It is also utilized in rock 

classification systems such as Rock Mass Rating (RMR) (Bieniawski, 1976) and Q 

(Barton et al., 1974) systems. 

 

Figure 22. RQD logging (Deere & Deere, 1989, p. 12) 
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2.4 Theoretical Background 

This chapter contains the theories that are utilized in this thesis study. 

2.4.1 Graph Theory 

Graph theory has several applications. In this thesis study, graph theory is used to 

create contour connection graphs to find the shortest paths that connect detected edges. 

The shortest paths are then used in the segmentation processes and in finding core 

fracture paths. 

A graph G is an ordered triple (𝑉 𝐺 , 𝐸 𝐺 , 𝜓Æ) where V(G) is a non-empty set of 

vertices, E(G) is a set, disjoint from V(G), of edges and 𝜓Æ  is an incidence function. 

𝜓Æ  associates each edge of G with an unordered pair of vertices of G. Let 𝑒 ∈ 𝐸(𝐺) 

and 𝑢, 𝑣 ∈ 𝑉(𝐺) such that 𝜓Æ 𝑒 = 𝑢𝑣. Then, u and v are said to be joined by e, and 

called the ends of e. 

As an example, a graph G is defined as 

𝐺 = (𝑉 𝐺 , 𝐸 𝐺 , 𝜓Æ) 

where 

𝑉 𝐺 = {𝑣D, 𝑣~, 𝑣Ç, 𝑣�, 𝑣È} 

𝐸 𝐺 = {𝑒D, 𝑒~, 𝑒Ç, 𝑒�, 𝑒È, 𝑒É, 𝑒Ê, 𝑒Ë} 

and 

𝜓Æ 𝑒D = 𝑣D𝑣~, 𝜓Æ 𝑒~ = 𝑣~𝑣Ç, 𝜓Æ 𝑒Ç = 𝑣Ç𝑣Ç, 𝜓Æ 𝑒� = 𝑣Ç𝑣� 

𝜓Æ 𝑒È = 𝑣~𝑣�, 𝜓Æ 𝑒É = 𝑣�𝑣È, 𝜓Æ 𝑒Ê = 𝑣~𝑣È, 𝜓Æ 𝑒Ë = 𝑣~𝑣È 

A graphic representation of graph G is shown in Figure 23. Although the names of the 

vertices and edges do not have any meaning in the graph, they are shown for clarity. 

In the diagram of the graph G, the vertices are shown as small circles while edges are 

shown as lines. 
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Figure 23. Diagrams of graphs G and H 

The vertices of an edge are said to be incident with that edge. Also, the edges of a 

vertex are said to be incident with that vertex. Adjacent vertices are the vertices that 

are incident with a common edge. Likewise, adjacent edges are the edges that are 

incident with a common vertex. A loop is an edge whose ends are identical. For 

example, b of graph H in Figure 23 is a loop. Edges that are not a loop are called links. 

A finite graph is a graph whose set of vertices and edges are both finite. A simple 

graph is composed only of links, i.e. without loops, and the same pair of vertices are 

connected by only one edge. 

Identical graphs are the graphs whose vertices, edges and incident functions are the 

same. Identical graphs can be represented by the same diagram. However, two graphs 

that are not identical can also be represented by the same diagram as well. For 

example, if the labels of vertices and the edges of graph H in Figure 23 are different, 

then it is a different graph which has the same representation as graph H. In this case, 

these graphs are called isomorphic. Let G and H be two graphs. If there are bijections 

𝜃: 𝑉 𝐺 → 𝑉(𝐻) and 𝜙: 𝐸 𝐺 → 𝐸(𝐻) such that 𝜓Æ(𝑒) = 𝑢𝑣 if and only if 

𝜓� 𝜙 𝑒 = 𝜃(𝑢)𝜃(𝑣). In this case, the graphs G and H are called isomorphic, 

denoted as 𝐺 ≅ 𝐻 and pairs of mappings (𝜃, 𝜙) are called isomorphism between G 

and H. 

Incidence matrix is the matrix 𝑣×𝑒. Let the vertices of a graph G be 𝑣D, 𝑣~, … , 𝑣Ñ and 

the edges be 𝑒D, 𝑒~, … , 𝑒Ò. Then, the incidence matrix of G is 𝐌 𝐺 = [𝑚6Ó], where 

[𝑚6Ó] is the number of times 𝑣6 and 𝑒Ó are incident, which can only be 0, 1, or 2. A 

graph can be specified by an incident matrix. Adjacency matrix of graph G, denoted 
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as 𝐀 𝐺 , is 𝑣×𝑣 matrix 𝐀 𝐺 = [𝑎6Ó], where 𝑎6Ó is the number of edges that connects 

𝑣6 and 𝑣Ó. Incidence and adjacency matrices of graph G in Figure 24 is shown in Figure 

25. 

A graph H is a subgraph of G, denoted as 𝐻 ⊆ 𝐺, if 𝑉 𝐻 ⊆ 𝑉(𝐺), 𝐸 𝐻 ⊆ 𝐸 𝐺 , 

and 𝜓� is the restriction of 𝜓Æ  to 𝐸 𝐻 . If 𝐻 ⊂ 𝐺, H is called a proper subgraph. In 

these cases, G is called a supergraph of H. A subgraph H with 𝑉 𝐻 = 𝑉(𝐺) is called 

a spanning subgraph (Bondy & Murty, 1976). The graph created after deleting all 

loops and duplicate links in G is called the underlying simple graph of G. 

 

Figure 24. Graph, G 

 𝑒D 𝑒~ 𝑒Ç 𝑒� 𝑒È 𝑒É 𝑒Ê   𝑣D 𝑣~ 𝑣Ç 𝑣� 

𝑣D 1 1 0 0 1 0 1  𝑣D 0 2 1 1 

𝑣~ 1 1 1 0 0 0 0  𝑣~ 2 0 1 0 

𝑣Ç 0 0 1 1 0 0 1  𝑣Ç 1 1 0 1 

𝑣� 0 0 0 1 1 2 0  𝑣� 1 0 1 1 

Figure 25. Incidence and adjacency matrices of graph G 

The degree of a vertex v in graph G, denoted as 𝑑Æ(𝑣), is the number of edges that are 

incident with v, where each loops is counted as two edges. 

A walk in graph G is a finite non-null sequence 𝑊 = 𝑣�𝑒D𝑣D𝑒~𝑣~ … 𝑒�𝑣�, where 𝑣�..� 

denotes a vertex and 𝑒D..� denotes an edge. A walk starts with a vertex, called the 

origin, and ends with a vertex, called the terminus. In a walk, there comes an edge 
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after a vertex, and vice versa. The vertices 𝑣D, 𝑣~, … , 𝑣��D are internal vertices, where 

k is the length of W. A walk in a simple graph can also be represented by its vertex 

sequence, without including the edges. If a walk W is composed of distinct edges, W 

is also called a trail. If a trail’s vertices are distinct, it is also called a path. In the graph 

shown in Figure 26, uavfyfvgyhwbv is a walk, wcxdyhwbvgy is a trail, and xcwhyeuav 

is a path. 

 

Figure 26. A sample graph 

Two vertices u and v of graph G are said to be connected when there is a path that 

connects u and v in G. Subgraphs 𝐺 𝑉D , 𝐺 𝑉~ , … , 𝐺 𝑉Ø  of graph G are called the 

components of G. If G is composed of a single component, then it is a connected 

graph. Otherwise, it is a disconnected graph. 

A weighted graph is a graph where there is a real number associated with each edge. 

A directed graph D is a graph where each edge has an ordered pair of vertices such 

that 𝜓Ù(𝑒) = (𝑢, 𝑣), where e is an edge, and u and v are ordered vertices, called tail 

and head of e. 
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CHAPTER 3 

 

 

3. DETERMINATION OF RQD BY DIGITAL IMAGE ANALYSIS 

 

 

 

Rock Quality Designation (RQD) (Deere et al., 1967) is a rock quality index used in 

tunnel support/reinforcement design, prediction of in-situ modulus, finding allowable 

foundation contact pressures and fracture frequency, and as a parameter of RMR 

(Bieniawski, 1976), Q (Barton et al., 1974), and Geological Strength Index (GSI) 

(Marinos & Hoek, 2000) rock mass classification systems. Hence, determination of 

RQD by geotechnical logging is one of the routine tasks done before making a 

judgment about the rock. However, manual logging of hundreds of meters of core with 

a tape measure is a very laboursome and tedious process.  A systematic approach can 

be a better alternative for RQD logging.  

In literature, two approaches were used for calculation of RQD using photography and 

scanning techniques. Lemy et al. (2001) used an edge-detection-based approach. In 

their study, after detecting the edges with Steger algorithm (Steger, 1989), they 

followed an edge reconstruction process which calculates a cost for pairs of line 

segments and connects the line segments presenting the lowest cost to find the breaks. 

Finally, they calculated RQD after eliminating spurious breaks. In their approach, they 

were not able to detect mechanical breaks. Moreover, the algorithm considers the core 

box full of cores, i.e. no core-free regions (lost or washed-out cores), which might 

cause including core-free regions as cores in RQD calculation. Since the algorithm 

relies on edges only, it might consider thick fillings as breaks as well. Olson et al. 

(2015) used a 3D non-contact laser digitizer to generate 3D point cloud data of the 

entire core box. They detected the breaks and location of each core by analyzing the 

3D point cloud. They also created a fracture characterization algorithm which finds 

out whether a fracture is formed due to a mechanical break or not. While using a 3D 
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laser digitizer provides an excellent accuracy in core segmentation, it is an expensive 

device and the process is slow, tedious and hard to apply in the field. 

A shadow-based method for segmentation of cores and determination of RQD from 

digital images of rows of core in core boxes in order to compute RQD in an automatic 

way by finding and locating natural fractures in cores and measuring intact core 

lengths is introduced. The method is fast, cheap, and easily applicable in field 

conditions. 

3.1 Material and Methods 

In this study, a digital camera (Canon EOS 7D Mark II with Canon EF-S 18-135mm 

IS STM), a wireless remote controller (Canon RC-6), a flash (Canon Speedlite 600EX 

II-RT), a flash diffuser, a tripod with horizontal arm, a tripod head, a 5-cm-long pink 

marker, and a few black plastic trash bags (Figure 27 and Figure 28) are used to 

process core boxes with 4 and 5 rows each having 100 cm length, containing several 

different cores with mechanical and natural cracks, and having different core/lump 

lengths (Figure 29). 

Figure 27 shows the equipment used in this study, where 1) is the flash (Canon 

Speedlite 600EX II-RT), 2) is the digital camera (Canon EOS 7D Mark II with Canon 

EF-S 18-135mm IS STM), 3) is the flash diffuser, 4) is the wireless remote controller 

(Canon RC-6) and 5) is a 5-cm-long pink marker. 

 

Figure 27. Equipment used in the thesis study 
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To be able to take pictures of the core boxes from above, the camera is mounted to the 

horizontal arm of the tripod with a tripod head. The arm is extended so that the camera 

is positioned above the core box. The black plastic bags are used to create a black 

background and prevent unwanted light sources from illuminating the core box. The 

pink marker is used to measure a pixel’s physical length, as well as an indicator of the 

starting location of the shallowest depth in the core boxes. The setup can be observed 

in Figure 28 and in Appendix. 

 

Figure 28. Equipment setup 

This research study is conducted by using a single flash which is manually moved to 

three different positions to capture three different images. The tent setup with three 

different light sources is designed to create a dark-room environment in the field. 

Algorithm development has been performed in MATLAB 2017a (The MathWorks, 

2017), which comes with a bundle of toolboxes, such as image processing and 

statistics toolboxes, that contain a lot of well-written and efficient algorithms used in 

common image processing and statistics operations. 
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Figure 29. Core boxes used in algorithm development process 

3.2 Theory and Calculations 

In a typical logging procedure, the rock mass is divided into a number of structural 

domains and each domain is classified separately. The boundaries of the structural 

domains usually coincide with a major structural feature such as a fault or with a 

change in rock type. In some cases, significant changes in discontinuity spacing or 

characteristics, within the same rock type, may necessitate the division of the rock 
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mass into a number of small structural domains. In this study, each drilling maneuver 

is assumed to be a domain.  

Figure 30 shows level-1 data flow diagram for the algorithm used to compute RQD. 

 

Figure 30. Level-1 data flow diagram 

After the images are retrieved, box detection, row detection, core detection, depth 

image creation, and RQD computation operations are performed, respectively. 

First, after placing a 5-cm-long pink marker at the beginning of the core retrieved from 

the shallowest depth, three digital true color images of the core box, with the same 

camera position but different light source positions (left, right, and top) are taken using 

a high-resolution camera. Next, after detection of the core box with color thresholding, 

the rows of the box are detected by using Hough transform and boundary tracing 

algorithms. Then, cracks and shadows, which are detected by using the images 

captured under different light source positions, and concave points in core mask are 

used to separate touching cores from each other. After core segmentation, each core’s 

cylindrical and non-cylindrical parts, along with fracture paths separating these parts, 

are found by, again, using the shadows. Following this, by using the pink marker’s 

position, cores in which rows should be flipped upside-down are found. Benefiting 

from this information, a depth image is created. After finding the centerlines of the 

cores whether the fracture paths are mechanical or not is decided; RQD is calculated 

by considering the length of valid sections of the centerlines of the cores.  
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3.2.1 Box detection 

Core box detection consists of detection of the core box and the marker by color 

thresholding, and finding physical length of a pixel. Figure 31 shows the data flow 

diagram for this process. 

 

Figure 31. Level-2 data flow diagram for 'detect box' process 

Detecting the Box 

Blue plastic core boxes are widely used in the mining industry. The core boxes used 

in this study are also blue. Therefore, color thresholding approach is used to detect the 

core box. To improve the performance of color thresholding, black trash bags are laid 

under the core box so that the only blue object in the image is the core box. 

It is easier to separate blue from other colors in Lab color space compared to RGB, 

because Lab color space has lightness values separately in L* channel. Therefore, the 

image is converted from RGB to Lab using MATLAB’s rgb2lab function. [-100, 

0] range of Lab’s b* channel represents the blues in the image. First, the histogram of 

b* channel is calculated. The threshold value is then decided as the value at the local 

minima closest to the most frequent blue value and whose value is less than the most 

frequent value. 
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An example is shown in Figure 32. The image on the left is the main image without 

color thresholding, and histogram of b* channel of the image below it. The image on 

the right is the main image with color thresholding. The histogram below, which 

shows the values in b* channel, shows the threshold value (the value at where left 

handle is) that removes the core box.  

 

Figure 32. Box detection using color thresholding 

To extract the box from the main image, the mask found by thresholding is inverted. 

After that, coordinates of the non-zero pixels that are the closest to left, right, top and 

bottom limits of the inverted mask are used to crop the image. 

Detecting the Marker and Finding Physical Length of a Pixel 

A 5-cm-long pink marker is used to find physical length of a pixel. Before taking 

pictures of a core box, a pink marker having an exact length of 5 cm is placed on the 

core box, parallel to one of the short edges of the core box. This marker is detected by 

color thresholding. The found rectangular object’s length is measured in pixels. 

Finally, a pixel’s length in mm is found by dividing 50 mm to the length of the object 

in pixels. 

3.2.2 Row Detection 

After box detection, the rows are detected. Figure 33 shows the data flow diagram for 

this process. 
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Figure 33. Level-2 data flow diagram for 'detect rows' process 

First, the rows are detected by using edge detection, boundary tracing and RANSAC 

approaches, respectively. Then, the box pixels are removed by color thresholding to 

get the cores. 

Detecting Rows 

Each row of a core box is separated from each other with a separator. When the core 

box is viewed from above, these separators look like vertical lines. Row detection is 

done by exploiting this. 

First, strong edges in the box image is found by Canny edge detector (Canny, 1986). 

Next, by using Hough transform, vertical lines in the edge image are detected. After 

that, the contours in the edge image that overlap one of the detected vertical lines are 

traced by using a slightly modified boundary tracing algorithm which stops tracing the 

contour when it detects a non-vertical part of the contour. In other words, non-vertical 

parts of the contours are trimmed. The traced and trimmed contours can be observed 

in Figure 34, where, from left to right, the first image shows the strong edges in the 

box image, detected by Canny edge detector, the second image shows Hough lines 

(green) and vertical parts of the traced contours (magenta) and the third image shows 

vertical lines fit to traced vertical contours by RANSAC.  
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Figure 34. Row detection 

Then, vertical contours that are close to each other in X and that do not overlap each 

other are connected to each other with a straight line. Next, by using RANSAC 

(random sample consensus), a vertical line is fit to the connected vertical contours. At 

this point, there might be more than one vertical line found for each row separator. In 

that case, the vertical line whose slope angle is the closest to 90° is selected. Finally, 

the regions between the vertical lines are extracted by eliminating the regions whose 

area is less than a threshold value. These regions are the rows of the core box. 

Removing Box Pixels 

After the rows are detected, the box pixels are removed from each row region by using 

color thresholding, which is described in section 3.2.1. 
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3.2.3 Core Detection 

Row detection process is followed by core detection process. Level-2 data flow 

diagram for core detection can be observed in Figure 35. 

 

Figure 35. Level-2 data flow diagram for 'detect cores' process 

The rows with touching cores that are output by row detection process are input to 

core detection process. First, crack and shadow images are created by thresholding 

and image differencing methods. Then, touching cores are separated from each other. 

After this, over-separated regions are created. Next, the related regions are merged 

with each other to obtain regions that better represent the cores. Finally, invalid 

regions are eliminated to retrieve valid cores. 

In a row, cores are placed adjacent to each other. Most of the times, the adjacent cores 

touch each other, or they look like they touch each other when the core box is viewed 

from the top. Hence, cores that touch each other needs to be detected separately for a 

proper segmentation. 
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Core segmentation can be done by using several methods, such as using edge 

detection, pattern recognition, stereo photogrammetry, depth estimation using 

defocus, depth estimation from a single image using deep learning, a 3D laser scanner, 

and shadows. Using the edges alone does not produce good results because cores 

might have too many different textures on them. In this case, whether an edge is 

formed due to a touching point or not is ambiguous. Pattern recognition might be a 

good choice. However, it might not be too precise and quickly become a tedious task 

because of the hard-to-predict nature of textures on the cores. Stereo photogrammetry 

can be used to get a 3D point cloud of the entire core box. However, it requires at least 

two cameras or a camera placed on top of a slider, dealing with which might be 

tiresome. Depth estimation using defocus produces good results when the subject is 

close to the camera. However, 3D point cloud of an object as big as a core box that is 

far away from the camera cannot be precisely retrieved using defocus method. In 

addition, several photographs or a high quality video must be taken by changing the 

focus. Estimating the depth from a single image with deep learning requires a lot of 

training, and hence, collecting too much data. In addition, training a deep neural 

network might take too much time and, since it requires a lot of GPU power, it might 

be quite expensive. With a 3D laser scanner, 3D point cloud of the entire core box 

along with the cores can be detected with high precision. However, it is an expensive 

device. Using shadows require controlled lighting conditions and more than one 

photograph of the core box to be taken, in this study, three photographs are taken. 

However, when used with edge detection algorithms, this method can produce good 

results. Moreover, it is cheaper than a 3D laser scanner and easier to implement when 

compared to pattern recognition and the deep learning methods. Also, taking 

photographs can be automated. Hence, in this study, core segmentation task is done 

by using shadows because it is cheaper and easier to implement. 

The cores are placed in rows inside a core box, and a typical core fills the width of a 

row. Hence, a light source placed at the start or the end of a row, which beams light 

parallel to the row, causes creation of shadows that can be used to detect cylindrical 

and non-cylindrical parts of the cores. Considering this, in addition to the photograph 

taken with a top light source, two additional photographs are taken by placing the light 
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source to the left and right sides of the core box so that shadows can be created for 

each end of each core. The images can be observed in Figure 36. In this figure, from 

left to right, the first image is the gray core box image illuminated by a light source at 

the top, the second image is the gray core box image illuminated by a light source on 

the left, and the third image is the gray core box image illuminated by a light source 

on the right. 

 

Figure 36. Shadow images 

Detecting Cracks 

Cracks are actually the regions having too low intensity. They are found by simply 

thresholding the gray versions of three core box images that were taken under different 

lighting conditions. 
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First, the pixels whose intensity is lower than some threshold value are found in all 

three images of the core box. Then, the found low-intensity regions are combined to 

create a single mask. Next, the pixels that are too close to row separators are removed, 

because they might be created by the shadows of row separators. After that, the image 

is prepared by some morphological operations such as cleaning and closing. Crack 

regions whose area is less than some threshold area are removed to make sure small 

low-intensity regions are not included, since they might have been created by rough 

surfaces on the cores, which actually do not indicate a crack. Finally, the mask is 

dilated and the regions outside of the core mask, i.e. regions that overlap the core box 

mask, are removed. The crack image will be used to separate touching cores. 

Therefore, the regions in this image should overlap contours that might separate the 

touching cores. A dilated crack region will overlap more contours, which increases 

the chance of finding the right contours that separate the touching cores. A typical 

final crack mask can be observed in Figure 37. In this figure, the image on the left is 

the shadow-free RGB image of the box, while the image on the right is the crack mask. 

 

Figure 37. Detected cracks 
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Detecting Shadows 

Shadows are found by comparing the shadow images to the shadow-free image. Since 

the differences between these images are the shadows, a pixel-based change detection 

approach is adopted. For this purpose, image differencing method is used. 

Found shadow masks are prepared by morphological operations, such as closing, 

filling holes and cleaning, and by removing the regions that fall outside of the core 

mask. Final shadow masks can be observed in Figure 38. In this figure, from left to 

right: 1) shadow-free image of the box, 2) shadows detected from the image of the box 

illuminated by a light source on the left side, and 3) shadows detected from the image 

of the box illuminated by a light source on the right side. 

 

Figure 38. Detected shadows 
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Detecting Touching Cores 

Cores are detected using the crack mask (Figure 37), the shadow masks (Figure 38) 

and core mask (Figure 39), i.e. the mask that removes the pixels belonging to the box 

itself, which is retrieved by color thresholding. 

Figure 39 shows the found core mask. In this figure, from left to right: 1) gray version 

of box image, 2) core mask, and 3) gray core image. 

 

Figure 39. Core mask 

Separating Touching Cores 

First, strong edges in gray core box image are found by Canny edge detector. The 

edges that come from the box itself are removed by applying the core mask to the edge 

image. Next, a contour connection graph is created.  

A contour connection graph is a graph which is formed by considering contours 

(detected edges) as graph nodes and the smallest distance between the contours as 

graph edges. Visualization of a sample graph can be found in Figure 40. In this figure, 
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from left to right: 1) image showing two cores that touch each other. Blue frame shows 

the region of interest (ROI), 2) edges detected in the ROI, and 3) contour connection 

graph created from the edges in the ROI. 

 

Figure 40. Contour connection graph 

To create the graph, first, contours in the close vicinity of each contour is found. Then, 

the smallest distance between the contours that are close to each other is found. Next, 

a connection is created between the two contours using the two points that create the 

smallest distance between them. By following this procedure, each contour is virtually 

connected to the contours in their close vicinity. 

As the next step in detecting cores, the boundary of the regions that store the cores are 

separated into two parts as left and right boundaries. The left boundary of a core region 

is the part of its boundary that is closer to the row separator on its left. Likewise, the 

right boundary is the part of its boundary closer to the row separator on its right. The 

theory is that if the left boundary can be connected to the right boundary by following 

a short path passing through the detected contours, that path is the path that separates 

two touching cores. To implement this logic, the left boundary and the right boundary 
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are assigned as sink and source nodes, respectively, in the contour connection graph, 

and every contour in the graph is virtually connected to both sink and source nodes. 

After contour connection graph creation, all shortest paths that connect the left and the 

right boundaries and that pass through one of the contours overlapping a crack region 

are found by using Dijkstra’s algorithm (Dijkstra, 1959). The contours forming the 

shortest paths are connected to each other with a straight line to make sure the paths 

separate the core region into at least two regions. Note that the final path is not cleaned 

from possible branches to allow natural separations to happen. Hence, most of the 

time, the crack region is separated into smaller regions by the branches of the shortest 

paths as well. These small regions will be merged together in the following parts of 

this section. 

The core regions are further divided into regions by using concave points as well. The 

theory behind this idea is that when there is a concave point in a core region, it is 

probably created due to two adjacent cores. This is because a typical core is cylindrical 

and it does not have concave points on it. The concave points are found by calculating 

Euclidean distances from the boundary points of the core region to the boundary points 

of the region’s convex hull. Convex hull of a region is the smallest convex region that 

contains the region. An example of convex hull can be observed in Figure 41. In this 

figure, the image at the top is the core region mask, while the one at the bottom is the 

convex hull of the core region mask. 

 

Figure 41. Convex hull 

After the distances from each point of convex hull’s boundary to the points of the 

region’s boundary are calculated, the points whose distance to the hull’s boundary is 

greater than a threshold are selected as concave points. Then, the concave points that 

are in the close vicinity of each other are connected by following low-intensity pixels, 

if the distance to be travelled is lower than a threshold value. In addition, for two 
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concave points to be connected, while one is on the left boundary, the other one should 

be on the right boundary. In other words, if two points that are close to each other are 

on the same side of the core, they are not connected. This is because the path created 

by connecting the two points should divide the region. 

The connection path from one concave point to another is found by using MATLAB’s 

graydist function. First, gray distance from first point to every point is calculated. 

Next, gray distance from second point to every point is calculated. Then, the distance 

images are summed and the minimum value is found. The pixels having the minimum 

value create the shortest gray path between the two concave points. After the skeleton 

of the path is found, the path is cleared from its branches following the same procedure 

on the path image by using MATLAB’s bwdistgeodesic function this time, 

instead of graydist. Found concave points and connections between them can be 

observed in Figure 42. In this figure, from left to right: 1) core mask, 2) core mask 

with concave points represented by red dots, 3) RGB of the box with concave points. 

Yellow frames show the locations of the zoomed-in regions. Red lines in the zoomed-

in regions are the valid connections between concave points. 

 

Figure 42. Connected concave points 
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The paths created between concave points are used to divide the core mask into 

smaller regions. Separation results can be seen in Figure 43. In this figure, the image 

on the left is the label image showing the regions created after separating touching 

cores. Each color represents a different region. Regions that have the same color but 

are not adjacent to each other are different regions. Red dots are the concave points. 

The second image is the RGB image of the core box. Again, red dots are the concave 

points. 

 

Figure 43. Regions after separating touching cores 
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Merging Related Regions 

Because of the procedure followed to separate cores, there are several small and big 

regions created after the touching cores are separated. For a more precise 

segmentation, the regions that are found to be related to each other are merged with 

each other. Whether two regions are related or not is decided by using concave points 

and shadows. 

First, before doing any merging, the regions that might represent a core are found. To 

decide this, there are several thresholds defined, which are minimum length, minimum 

width, minimum extent and maximum crack region overlap. Minimum length 

threshold is a value that defines the minimum vertical length a region must have so 

that it can be considered as a core region. Likewise, minimum width threshold defines 

the smallest width of a core region. Minimum extent constraint looks at the ratio of 

the number of pixels in the region to the number of pixels in its bounding box. 

Maximum crack region overlap is the threshold that sets a limit to how much of a core 

region overlaps a crack region at most. 

According to the assumption about the concave points, a concave point only exists 

around where two cores touch each other. Therefore, the regions staying between a 

core region and a concave point are considered as they are related to that core region. 

After the regions are merged by using the concave points, another merge operation is 

done on the created label image. This time, shadows are used to find related regions. 

Regions that overlap the same shadow region are considered as related. First, the 

shadow regions are found in the left and the right shadow masks. Next, areas that the 

two shadow masks overlap are found. Among these areas, smaller ones are discarded. 

Then, the remaining shadow areas are used to group the labels of non-core regions. 

After merging related non-core regions with each other, which core region they belong 

to is decided by looking at the shadow regions and concave points. When a non-core 

region is adjacent to a core region or they overlap the same shadow area, and there are 

no concave points between them, they are merged with each other. Results of merging 

can be seen in Figure 44. In this figure, red dots show the concave points. For the first 

and the second image from the left, each color represents a different region. Regions 
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that have the same color but are not adjacent to each other are different regions. In this 

figure, from left to right: 1) labels after separating touching cores, 2) labels after 

merging related regions, 3) left shadow image, 4) right shadow image, and 5) RGB of 

the core box. 

 

Figure 44. Merged labels 

Eliminating Invalid Regions 

After separation of touching cores and merging of related regions, the regions are 

subjected to an elimination process. Core regions are found by applying the thresholds 

described previously. Regions that are not classified as cores are eliminated. Figure 

45 and Figure 46 show the detected cores. In these figures, from left to right, the first 

image is RGB of the core box. The second image is the labels decided as core regions. 

Each color represents a different region. Regions that have the same color but are not 

adjacent to each other are different regions. The third one shows the cores. Red frames 

are bounding boxes of each core. An ID is given to each core. The IDs are shown in 

green. 
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Figure 45. Detected cores 
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Figure 46. Detected cores in another core box 

3.2.4 Depth Image Creation 

After the cores are detected, the depth image is created. Creating the depth image 

consists of finding break paths of each core, detecting the depth of each core, and 

combining the cores into an image that starts from the shallowest core and ends with 

the deepest core. The process can be observed in the data flow diagram shown in 

Figure 47. 
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Figure 47. Level-2 data flow diagram for 'create depth image' process 

Finding Break Paths 

Fracture paths are the paths that show where cylindrical part of the core ends and its 

fractured region starts. The fracture paths will be used to decide if two adjacent cores 

are mechanically-cracked, which should be included in RQD calculation as intact core 

(Deere et al., 1967). 

 

Figure 48. Fracture paths 
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The paths are detected using the shadow masks. For each detected core, related 

shadows are retrieved from the left and the right shadow masks. When a core piece is 

illuminated from its left side, shadows are created on its right side. Likewise, when 

the light source is placed on the right side of the core, the left side of the core will be 

under shadows. This can be seen in Figure 48. In this figure, from left to right: 1) core 

illuminated from its left (top), 2) shadows detected in 1), 3) core illuminated from its 

right (bottom), 4) shadows detected in 3, 5) shadow-free core image. Detected fracture 

paths are shown in red. 

After the shadows are detected, boundaries of the shadow regions are retrieved. The 

boundaries are trimmed so that only the points closest to the core center remain. Next, 

a contour connection graph is created by using the edges detected by Canny edge 

detector (Canny, 1986). To find the fracture path at the top side of the core, edges of 

the image of the core illuminated from its bottom are detected, because the fracture 

path is more obvious in that image due to shadows. In the same way, the core image 

illuminated from its top side is used to detect edges for the fracture path at the bottom. 

After the edges are detected, a contour connection graph is created for both edge 

masks. Then, for each edge that overlaps the found shadow boundaries, the shortest 

path that connects the left-most end and the right-most end of the image is found. 

Finally, the best path is found by looking at how many edges passing through the 

shadow boundary a path contains. For example, if a path contains 20 edges that pass 

through the shadow boundary while another does 10, the first one is chosen as the best 

path. When there are multiple paths containing the same number of edges passing 

through the shadow boundary, the path with the smallest distance is selected as the 

best one. In the cases where there are no shadows, the boundary of the core mask is 

considered as the fracture path. 

Creating the Depth Image 

Depth image is an image showing the cores as they are retrieved from the drilling rod, 

before they are put into the core box.  

First, the 5-cm pink marker’s position is retrieved by color thresholding. The marker’s 

position indicates the position of the core retrieved from the shallowest depth 
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compared to the other cores inside the core box. Since the placement of the cores in 

the box follow a snake-like pattern with respect to their depth, which rows store the 

cores upside-down can be detected using the marker’s position. 

Figure 49 shows the orientations of each row. 

 

Figure 49. Row orientation 

The depth gets deeper along yellow snake-like path. The pink marker is placed at the 

beginning of the core having the shallowest depth. 

Finally, the cores placed upside down are flipped in XY, and then each core is placed 

to their right depth in the depth image. 

Depth images of the two core boxes can be observed in Figure 50 and Figure 51. In 

these figures, the depth increases from top to bottom, and left to right. Red vertical 

lines show the centerline of each core. Green vertical lines indicate that the core is 

included in RQD calculation. Red paths on each end of the cores indicate the break 

paths. 
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Figure 50. Depth image output for test core box 1. 
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Figure 51. Depth image output for test core box 2. 
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3.2.5 RQD Calculation 

After the depth image is created, RQD is calculated. Figure 52 shows the data flow 

diagram for RQD calculation process. 

 

Figure 52. Level-2 data flow diagram for 'compute RQD' process 

In this study, total core run length is taken as the length of a row. To find the lengths 

of the core pieces, first, their centerline length is calculated. Next, fracture types of the 

two ends of each core is decided. Finally, mechanically-cracked cores are detected 

and the centerline lengths of the mechanically-cracked core pieces are added to each 

other by excluding the centerline parts overlapping the non-cylindrical parts created 

due to the mechanical crack. When calculating the centerline length, while length of 

the cylindrical part of the core is included fully, only half of the length of the centerline 

parts overlapping non-cylindrical parts of the cores are included. 

Finding Centerline Lengths 

Centerline of a core is the line that passes through the center of the core, parallel to 

long axis of the rows of the core box. When calculating the length of the centerline, in 

addition to the cylindrical part of the core, the non-cylindrical parts are considered as 

well. Cylindrical and non-cylindrical parts of a core are found by utilizing the shadow 

masks. Figure 53 shows a core mask with the detected centerline. In this figure, blue 
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line shows the part of the centerline overlapping the cylindrical part of the core, while 

the red line shows the part that overlaps the non-cylindrical part at the bottom. Core 

length is calculated by adding half of the red line’s length to the blue line’s length. 

Green paths are the fracture paths. 

 

Figure 53. Detected centerline of a core 

Fracture Characterization 

Fractures are characterized as mechanical and natural by using Olson et al. (2015)’s 

fracture characterization algorithm. The algorithm examines the path in two ways. The 

first one is to fit a line to the path and measure its angle with respect to the long axis 

of the core. The second way is to examine the roughness of the path. The roughness 

is handled by using two different methods. One of them is to measure the residuals – 

the normal difference between the points on the path and the best-fit line. The other 

one is to compute the angle between each path point and the core axis. In the end, 

there are total of three decisions made by three different measurements. In all 

decisions, the most frequent one is selected as the type of the fracture path. 

Detecting and Combining Mechanically-Cracked Cores 

After fracture type of the top and bottom parts of the cores are determined, adjacent 

cores are examined to find mechanically-cracked cores. When the fracture types of the 
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adjacent sides of two adjacent cores are both mechanical, these two cores are 

considered as mechanically-cracked. In the cases where there are mechanical cracks, 

centerline lengths of the cores must be recalculated by removing centerline parts that 

overlap the non-cylindrical parts formed due to the man-made crack. 

Computing RQD 

After collecting all of the necessary data, RQD is calculated using the following 

equation (Deere et al., 1967): 

𝑅𝑄𝐷 =	
(𝐿𝑒𝑛𝑔𝑡ℎ	𝑜𝑓	𝑠𝑜𝑢𝑛𝑑	𝑐𝑜𝑟𝑒	𝑝𝑖𝑒𝑐𝑒𝑠 > 100	𝑚𝑚)

𝑇𝑜𝑡𝑎𝑙	𝑐𝑜𝑟𝑒	𝑟𝑢𝑛	𝑙𝑒𝑛𝑔𝑡ℎ  

3.2.5.1 RQD Results 

RQD values for the two test core boxes are computed by assuming that total core run 

length is equal to length of a row, which is 1 meter for both cases. The measurements 

below are in millimeters. 

RQD values computed by the algorithm for each row of core box 1 are: 

𝑅𝑄𝐷ÚÛÜDD 273.1 + 142.41 + 34.97 + 143.14 + 204.54
1000 = 79.82% 

𝑅𝑄𝐷ÚÛÜ~D 100.11 + 205.38 + 527.53
1000 = 83.3% 

𝑅𝑄𝐷ÚÛÜÇD 178.38 + 173.31 + 167.72 + 351.69
1000 = 87.11% 

𝑅𝑄𝐷ÚÛÜ�D 174.68 + 341.14 + 241.67
1000 = 75.74% 

𝑅𝑄𝐷ÚÛÜÈD 0
1000 = 0% 

RQD values computed manually for each row of core box 1 are: 

𝑅𝑄𝐷ÚÛÜDD 270 + 142 + 165 + 206
1000 = 78.3% 
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𝑅𝑄𝐷ÚÛÜ~D 100 + 190 + 530
1000 = 82% 

𝑅𝑄𝐷ÚÛÜÇD 165 + 170 + 160 + 350
1000 = 84.5% 

𝑅𝑄𝐷ÚÛÜ�D 175 + 340 + 230
1000 = 74.5% 

𝑅𝑄𝐷ÚÛÜÈD 0
1000 = 0% 

 

 RQD values computed by the algorithm for each row of core box 2 are: 

𝑅𝑄𝐷ÚÛÜD~ 162.75 + 181.63
1000 = 34.44% 

𝑅𝑄𝐷ÚÛÜ~~ 252.51 + 144.48 + 181.93
1000 = 57.89% 

𝑅𝑄𝐷ÚÛÜÇ~ 218.37 + 203.71 + 136.14 + 212.95
1000 = 77.11% 

𝑅𝑄𝐷ÚÛÜ�~ 150.9 + 150.8 + 222.09
1000 = 52.38% 

RQD values computed manually for each row of core box 2 are: 

𝑅𝑄𝐷ÚÛÜD~ 180 + 180
1000 = 36% 

𝑅𝑄𝐷ÚÛÜ~~ 260 + 130 + 180
1000 = 57% 

𝑅𝑄𝐷ÚÛÜÇ~ 225 + 200 + 125 + 200
1000 = 75% 

𝑅𝑄𝐷ÚÛÜ�~ 140 + 165 + 210
1000 = 51.5% 

Comparison of the RQD values computed by the algorithm and by manual logging 

can be observed in Table 8. 
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Table 8. Comparison of RQD values computed manually and algorithmically. 

	 Core Box 1  Core Box 2 

 Manual Algorithm Error 
(%)  Manual Algorithm Error 

(%) 
Row 1 78.3 79.82 1.94   36 34.44 -4.33 
Row 2 82 83.3 1.59  57 57.89 1.56 
Row 3 84.5 87.11 3.09  75 77.11 2.81 
Row 4 74.5 75.74 1.66  51.5 52.38 1.71 
Row 5 0 0 0.00  - - - 

 

Considering manual measurement correct, the algorithm computes RQD within an 

error margin of 5% as it can be seen in Table 8. 

 



 

82 
 



 

83 
 

 

CHAPTER 4 

 

 

4. CONCLUSIONS AND RECOMMENDATIONS 

 

 

 

The objective of this thesis is to introduce a shadow-based approach to automate RQD 

calculation using digital image processing and analysis methods. 

 

Main conclusions from this thesis are as follows: 

i. The study has been conducted using two different core boxes with 4 and 5 

rows, having 4 and 5 meters of core respectively. 

ii. The algorithm successfully detects the core box, its rows, cores inside each 

row, and each core's cylindrical/non-cylindrical parts, mechanical and 

natural fractures. In addition, it can create a depth image. 

iii. The algorithm calculates RQD with an error rate of around 5%. 

iv. The algorithm takes 90 to 120 seconds (with 2.5 GHz Intel Core i7 

processor, 16 GB 1600 MHz DDR3 RAM) to complete depending on the 

number of cores, shadow areas and edges in the image, and available 

processing power.  

v. Since shadows are utilized, edges created by the patterns on the cores do 

not cause a misbehavior in separation of touching cores. 

vi. Because creation of the shadows requires only a light source, the 

automation can be done at a low cost. 

Although the method works well for most of the time, some variables might affect the 

segmentation negatively and some improvements can be made. 

i. The method cannot properly differentiate two cores whose ends fit each 

other perfectly such that no shadow is created. 
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ii. Rows with dirt causes a change in core box color. Since the method 

separates the box from the cores by using color-thresholding, the dirt is 

considered as core as well. Although the dirty areas will be eliminated 

because of their size and shape, they might be considered as a part of a 

core, which causes inaccuracy in the final results. 

iii. The light sources causing the creation of shadows should be placed such 

that the illumination creates enough shadows to properly segment the 

touching cores as well as to decide where the non-cylindrical parts of the 

cores are. In addition, it is important that the light is diffused so that it does 

not create a light burst. Hence, lighting has a vital role for the method to 

succeed, which requires a controlled lighting environment that might be 

hard to create. 

iv. Cores having deep wears on their cylindrical parts which causes shadow 

creation may mislead the segmentation, if these shadows are not cleared 

properly. 

v. Too dark cores might be considered as cracks because the cracks are 

detected by thresholding the gray versions of the photographs. 

vi. A machine learning approach might be more suitable for fracture 

characterization. 

vii. Camera calibration might increase the accuracy of the measurements. 

For the algorithm to work properly, the following conditions are recommended to be 

provided: 

i. The core box should be blue. If blue is not an option, then a color which is 

distinct from any color that can be seen on a core should be selected, and 

the algorithm should be modified so that it will consider the selected color 

as the box color. 

ii. The color of the core box should be different from the colors of the cores 

in the core box. 

iii. The core box should be free of dirt and dust. It should not contain anything 

other than the cores themselves. 
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iv. Before taking the photographs, the cores that are too close to each other 

such that no shadow can be created between them should be separated from 

each other to allow shadow creation. 

v. The cores should not be marked. 

vi. The cores should be cleaned such that no unwanted shadows are created 

on them. 

vii. The cores should not be sprayed with water because it causes unwanted 

glitters to occur. 

For the future work, more core boxes containing cores of various rock types are 

suggested to be evaluated.  
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APPENDIX 

APPENDIX  

 

 

 

 

Figure 54. Camera view 

 

Figure 55. Inside of the tent with all lights turned on and core box outside 
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Figure 56. Tent with core box outside 
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Figure 57. Ends of the rail of core box tray 
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Figure 58. Inside of the tent. Right light is turned on. The core box is inside 


