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ABSTRACT 

 

 

A METHOD FOR ESTIMATING TARGET VELOCITY AND RANGE 

WITH PASSIVE SEEKER DATA 

 

 

Babaoğlu, Buğra Can 

M.S., Department of Aerospace Engineering 

Supervisor: Assist. Prof. Dr. Ali Türker Kutay 

 

January 2018, 78 pages 

 

In basic guidance applications, the line-of-sight (LOS) and line-of-sight rate 

information, which can be provided using a passive seeker, are enough to steer the 

missile to the target. However, if one wants to augment the guidance algorithm, further 

information regarding the engagement and/or target is needed. Unlike passive seekers, 

active and semi-active seekers may provide such information. Nevertheless, if the 

missile is equipped with a passive seeker, those parameters need to be estimated. 

Various methods are available in the literature for the estimation, which use Kalman 

Filters, lacking observability if the missile does not accelerate. In this thesis, using a 

brute force method, a new algorithm for estimating target parameters is proposed; 

which does not need missile acceleration for observability. 

Keywords: Range Estimation, Passive Seeker, Velocity Estimation 
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ÖZ 

 

 

EDİLGEN ARAYICILI SİSTEMLER İÇİN BİR HEDEF HIZI VE MENZİL 

KESTİRİMİ YÖNTEMİ 

 

 

Babaoğlu, Buğra Can 

Yüksek Lisans, Havacılık ve Uzay Mühendisliği Bölümü 

Tez Yöneticisi: Yrd. Doç. Dr. Ali Türker Kutay 

 

Ocak 2018, 78 sayfa 

 

Temel güdüm uygulamalarında, bir edilgen arayıcı tarafından sağlanan görüş hattı 

açısı (LOS) ve görüş hattı açısal hızı bilgileri bir füzeyi hedefe yönlendirmek için 

yeterlidir. Ancak, tasarımcı güdüm algoritmalarını geliştirmek ister ise angajman 

ve/veya hedef ile ilgili bilgiye ihtiyacı vardır. Edilgen arayıcıların aksine, etkin ve yarı 

etkin arayıcılar bu parametreleri sağlayabilir. Ancak, füze üzerinde edilgen bir arayıcı 

mevcut ise, bu parametrelerin kestirilmesi gerekir. Literatürde konuyla ilgili birtakım 

yöntemler mevcut olup, bunlar ekseriyetle Kalman Filtresi yöntemini kullanırlar. Bu 

yöntemlerle tasarlanmış filtreler, füze manevrasının olmadığı durumlarda 

gözlemlenebilirliğini kaybetmektedir. Bu tezde, bir kaba kuvvet yöntemi ile 

geliştirilmiş, gözlemlenebilirlik için füze manevrasına gerek duymayan bir hedef ve 

angajman parametreleri kestirimi algoritması sunulmuştur. 

Anahtar Kelimeler: Menzil Kestirimi, Edilgen Arayıcı, Hız Kestirimi 
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CHAPTERS 

CHAPTER 1  

 

 

INTRODUCTION 

 

 

1.1. Basics 

A guided missile can be defined as a type of munition where the missile is directed 

towards a target by means of calculated routing commands. These commands 

incorporate target-missile kinematics of which variables are measured through either 

on-board or external sensors. The variables that consist target-missile kinematics 

include, but not limited to line-of-sight, range, closing velocity etc. The process (or 

algorithm) of calculating the routing commands from those variables is called 

Guidance Law [1]. 

One of the oldest application of such a law is called Parallel Navigation (or Collusion 

Course), which was especially common in old maritime applications [1] [2] where 

pirates attempt to seize a merchant ship by maintaining constant bearing. If such 

bearing was met, and the target ship was getting larger in sight; than it was said that 

both ships are on a collision course and they eventually meet at some point. Similarly, 

rodents use parallel navigation techniques to reach their targets, depending on the task 

itself [3]. 

In most modern missile application, similar to parallel navigation, a common law 

called Proportional Navigation Guidance (PNG) is used [4]. This law states that, the 

steering commands should be proportional to the line of sight rate (Elaborated in 

following chapters) which is the only measurement required regarding the target and 

engagement. 
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1.2. Motivation 

PNG is the most common guidance law that is currently being implemented in the 

industry. It is considered satisfactory when the total engagement time is relatively 

long when compared to the rise time of the guidance loop and missile is capable of 

performing higher manoeuvres compared to the target [5]. Nevertheless, PNG is a 

successful or the optimal solution among other methods under some assumptions like 

constant closing velocity, non-existent missile dynamics etc. Also, along with high 

sensitivity to input noise, increased technology within the target portfolio of missiles 

aggravate the performance of PNG [1] [4]. Better modelling of target motion is needed 

in order to increase the capability of the missile. For that end, more information about 

target and engagement (target velocity, range etc.) is required. 

Moreover, modern guidance applications now require more advanced solutions like 

optimal guidance [6], impact time constraint [7] [8], impact angle constraint [9] etc. 

The common thing in [6] - [9] is that, they all need extra engagement and/or target 

information besides LOS rate; like time-to-go or target velocity. 

The aforementioned requirements cause problem from two different aspects 

(elaborated in following chapters): 

• Measurement of those variables requires active tracking; increasing the risk of 

being detected by the target 

• Not having the required equipment to actively track the target due to weight 

and/or other physical limitations 

Especially for small munitions, the physical limitations are a critical parameter. 

Hence, they are equipped with passive seekers. 

In such cases, the only available measurements regarding the engagement are 

generally LOS and LOS rate, which are enough for standard PNG applications but not 

sufficient for more advanced tasks. Therefore, it is a field of study to estimate other 

parameters like range and target velocity. 
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1.3. Literature Review  

Estimating target and engagement parameters using LOS and LOS rate only is called 

“angle-only target tracking” in the literature (“bearings only tracking” is also 

available). 

Estimating the position of a point in space is a custom application in various fields, 

including geodesy, maritime warfare etc [10]. During World War II, the British were 

interested in finding an accurate target position using two or more D.F. (direction 

finding) stations [11] [12]. 

One of the algorithms used to estimate the position of a target is called Triangulation. 

This simple method is applicable to stationary targets. In such a case, if the angular 

position of the target relative to the missile and position of the missile is known at two 

different time steps; the position of the target can be computed by simple geometry. 

However, this method is vulnerable to measurement errors. To tackle this problem, 

noise characteristics of the measurements should be taken into consideration, as 

suggested in [13]. 

In most modern applications of target estimation, Kalman Filter and its different 

versions are the primary choice. The fundamentals of Kalman Filters are readily 

available in the literature [14], [15]. Since the tracking problem has a nonlinear nature 

[16], rather than plain Kalman Filter, Extended Kalman Filter (EKF) or Unscented 

Kalman Filter (UKF) are currently being used in the literature. For example, in [17], 

a regular Kalman Filter is proposed. Whereas in [18], an EKF is proposed by 

augmenting the model proposed in [17]. 

In those methods, observer acceleration is mandatory in order to have an observable 

solution [19] [20]. The observability problem can be considered as the hot topic of 

these algorithms. The issue is addressed in several publications including [21], [22]. 

To remedy the observability problem, in [23] and [24], which proposes certain 

guidance methods (called Modified Proportional Navigation Guidance or Target 

Adaptive Guidance) to save observability by changing the guidance structure; which 

also requires information related to target and engagement. 
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1.4. Contributions 

A new algorithm for both target speed and range estimation, which does not utilize 

Kalman Filter is proposed. A brute force approach is presented, the physical 

limitations of the missile-target engagement are exposed. 

In the proposed algorithm, missile manoeuvre is not necessary for observability as 

opposed to Kalman filter applications. It is shown that, the only condition for 

observability for this algorithm is a non-zero LOS rate, which should be attained only 

when the algorithm is initiated. This enables the algorithm to be used in any midcourse 

guidance phase where the missile does not manoeuvre much or does not manoeuvre 

at all. 

If Kalman Filter (or EKF, UKF etc.) is used, a good initial estimate is an important 

factor of the stability of the filter [25]. The proposed algorithm does not suffer from 

this drawback, as it does not need any initial estimate; it rather needs pre-determined 

elements (which could be adapted during flight – elaborated in Future Works), which 

are physically bounded. 

Since the algorithm does not use any dynamic modelling (system matrix, covariance 

matrix, Kalman gains etc.), instability can be discarded as a problem. If the algorithm 

starts providing gibberish results, it can be reset easily since initialization is not a hard 

issue. 

How the small deviations in measurements can affect the estimations are also 

investigated by algebraic manipulations and simulation results. 

1.5. Outline 

The remainder of the thesis is organized as follows: 

• In Chapter 2, the basic concepts of Guidance, Guidance Loop, Seeker, LOS, 

Engagement Geometry and their mathematical representations are presented 

to provide a background.  

• In Chapter 3, the proposed algorithm and related mathematical expressions are 

presented. The synthetic concept is explained. Moreover, the consequences of 

having errors in measurements are also shown. 
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• In Chapter 4, the simulation environment is presented. Simulation conditions 

and how the real-world effects are included to the environment. Then, the 

parameters related to the algorithm are shown 

• In Chapter 5, the algorithm is tested in various conditions in the environment 

described in Chapter 4; starting with an ideal case, where every measurement 

is perfect. Then, errors added to the simulation to investigate the effects of 

them. The discussion related to those results are presented following each test. 

The effects of imperfections are investigated. Also, a batch run in which a 

wide space of scenarios are tested is presented. 

• In Chapter 6, the discussion is concluded with some remarks about future 

works that could make the algorithm better and more practical. 
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CHAPTER 2  

 

 

MISSILE GUIDANCE & ENGAGEMENT GEOMETRY 

 

 

 

In this chapter, basic concepts related to missile and missile algorithms are presented. 

Then the geometry created by the missile and target and its mathematical formulation 

is shown. Finally, the mathematical expressions related to engagement geometry are 

interpreted in a passive seeker point of view, which would establish a background for 

the proposed algorithm. 

2.1. Missile Fundamentals 

In Oxford Living Dictionary [26] missile is defined as “An object which is forcibly 

propelled at a target, either by hand or from a mechanical weapon”. From guidance 

point of view, the main purpose of a missile is to reach a certain target, within its flight 

envelope. To that end, missiles are equipped with certain algorithms, which directs 

the missile to its target.  

 

Figure 2.1. A typical guidance loop in a missile 
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A simple guidance loop where sensors are omitted is illustrated in Figure 2.1. 

Guidance, Autopilot and CAS are the main elements of a missile algorithm of which 

tasks are elaborated in section Missile Algorithms. 

Along with algorithms, missiles are also equipped with certain sensors which provide 

the necessary data to be used in algorithms. 

Inertial Measurement Unit, also known as IMU, is an inertial sensor, consisting of 

gyroscopes (measuring angular rates) and accelerometers (measuring translational 

accelerations). Its outputs are the inputs of various algorithms like navigation, 

autopilot, guidance etc. 

Seeker is a key element for guidance algorithms since it provides the LOS and LOS 

rate data. There are three class of seekers in terms of homing type [27]. 

1) Active seekers send active signals to the target and detects the target by reading 

returning signals. Actively sending signals, enables the missile to directly 

obtain the range to the target along with LOS and LOS rate data. However, 

they require more weight, space, cost and the risk of detection due to its active 

nature. 

2) Semi-Active seekers, are similar to active ones. The difference is that, the 

seeker (e.g. radar) is not mounted on the missile itself, it is located at a different 

location like, ground, firing ship or aircraft etc. 

3) Passive seekers, which are also the focus of this theses, detects the signals 

emitted by the target. For example, an infrared seeker (IR seeker) detects the 

heat signature of the target. Since they do not use any active signals, they 

cannot be detected as easy as active seekers. However, passive seekers are 

unable to estimate the range to target (or the target velocity); they can only 

provide LOS and LOS rate data. 

2.2. Missile Algorithms 

2.2.1. Autopilot 

Main duty of an autopilot is to calculate the necessary fin deflections angles that CAS 

should realise in order to sustain the guidance commands that steers the missile to its 
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target. Various autopilot algorithms are available in the literature, which are out of the 

scope of this thesis. 

2.2.2. Control Actuation System 

Control Actuation System (or CAS) is a mechanism which includes fins that causes 

acceleration when their angles are changed, DC motors (or other actuation device like 

pneumatics) which changes the angles of the fins and an algorithm to drive the DC 

motors. The main purpose of CAS is to perform the angle commands created by the 

autopilot. 

2.2.3. Guidance 

The essential duty of a guidance algorithm is to interpret the current situation of the 

engagement kinematics, and provide the required commands to the autopilot. The 

most widely used guidance algorithm is called Proportional Navigation Guidance 

(PNG) where LOS rate and missile velocity is used as inputs and acceleration 

command is produced as output, as depicted in (2.1). 

𝑎⃗𝑐𝑜𝑚 = 𝑁𝜆⃗̇ × 𝑣⃗𝑚  (2.1) 

In (2.1), 𝜆⃗̇ is the LOS angular rate vector, provided by the seeker, 𝑣⃗𝑚 is the missile 

velocity vector, calculated using IMU outputs, 𝑁 is called PNG Gain, a value larger 

than 2. PNG algorithms can be “augmented” by incorporating several other variables 

like time-to-go and range [27] which are unavailable where the seeker is passive. 

2.3. Engagement Geometry 

 

Figure 2.2. Typical 2D engagement geometry 
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An engagement geometry is the resultant geometry due to the interaction of missile 

and target. Figure 2.2 depicts a 2D engagement geometry, which is the main scope of 

the work in this thesis. In the figure, 𝑣⃗𝑚 and 𝑣⃗𝑡 are the missile and target velocities; 

𝛾𝑚 and 𝛾𝑡 are missile and target flight path angles, 𝑅 is range and 𝜆 is the line-of-sight 

angle. 

The kinematics of the engagement geometry is driven by two scalar equations. One 

equation drives the angular position (2.2), and the other drives the translational 

position (2.3) of the relative kinematics. 

𝜆̇ =
𝑉𝑚 sin(𝜆−𝛾𝑚)−𝑉𝑡 sin(𝜆−𝛾𝑡)

𝑅
  (2.2) 

𝑅̇ = −𝑉𝑚 cos(𝜆 − 𝛾𝑚) + 𝑉𝑡 cos(𝜆 − 𝛾𝑡)  (2.3) 

In (2.2) and (2.3), 𝑉𝑚 and 𝑉𝑡 are the scalar values of the missile and target speeds, 

respectively. Consequently, the following remarks can be made: 

• There are four unknowns (𝑉𝑡, 𝛾𝑡, 𝑅, 𝑅̇) with two equations. (2.2) and (2.3) 

cannot be solved algebraically. There is a deficit of two unknowns. 

• (2.2) has also deficit of two unknowns (one equation, three unknowns). When 

(2.3) is added alongside with (2.2), it does not change the deficit level (two) 

as it introduces another unknown (𝑅̇). 

• If range was known perfectly, its derivative with respect to time can be taken 

and the aforementioned equation system can be solved 

• When the target is stationary (𝑉𝑡 = 0), both 𝑅 and 𝑅̇ can directly be found. 

Consequently, the complete knowledge of the engagement geometry requires 

either one of the following: 

• Stationary target 

• Perfect (differentiable) knowledge of range 

• Knowledge of two of the unknowns 

Since the existence of a stationary target cannot be guaranteed, and perfect knowledge 

of range (or any measurement) is impractical; estimation of target and/or engagement 

parameters is a more practical method, which is the focus of thesis. 
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CHAPTER 3  

 

 

ESTIMATION ALGORITHM 

 

 

3.1. Mathematical Background 

The basis of the algorithm is constructed from (2.2). Rearranging gives: 

𝑅 =
𝑉𝑚 sin(𝜆−𝛾𝑚)−𝑉𝑡 sin(𝜆−𝛾𝑡)

𝜆̇
  (3.1) 

In (3.1), one thing that should be noted is that, the unknowns on the right-hand side 

of the equation (𝛾𝑡 & 𝑉𝑡) are physically bounded. Namely, target flight path angle 

values range from 0 to 360°. Likewise, target speed values range from zero up to a 

certain limit. That limit can be enforced by the duty of the missile; in other words, it 

can be considered as unnecessary to estimate a target which cannot be captured by the 

missile. For example, an anti-tank missile can only capture a tank of which speed is 

limited and its limit is known prior to algorithm design. 

Therefore, it can be said that, guessing the target velocity vector successfully, which 

is bounded by physical limits, is sufficient to calculate range from (3.1). 

Consequently, the problem becomes guessing the target velocity vector as good as 

possible. 

Note that in (3.1), it can be seen that, whenever the LOS rate value is zero, the division 

becomes impractical, yielding in an unobservable situation. Thus, the only 

engagement criterion for observability becomes a non-zero LOS rate value. 

3.1.1. Uniqueness Problem 

It was said that for a missile with passive seeker, engagement geometry equations 

have an unknown deficit of two. This means that, there are infinite number of solutions 
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at a specific time point. 

Figure 3.1 depicts the aforementioned uniqueness problem. Without the information 

of range and/or target velocity, despite the knowledge of missile velocity and LOS 

angles (and LOS rates), target movement could either be from 𝑇1 to 𝑇2 or 𝑇1
′ to 𝑇2

′ (or 

one of the infinitely many displacements not depicted in Figure 3.1), where 𝑀1 and 

𝑀2 represents missile position in consecutive timesteps. 

Therefore, it is impossible to find a solution within a single timestep as there are 

infinitely many solutions for the problem due to the lack of information about the 

engagement. Consequently, the algorithm aims to look at the problem within a period 

of time. 

 

Figure 3.1. Uniqueness problem in an engagement 

3.2. Search Space Creation 

In this section, creation of a so-called search space, the domain of interest where the 

estimation algorithm would search for the correct estimate is defined and its 

construction is explained. 
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3.2.1. Guess Couples & Guessed Position Matrix 

To correctly estimate the engagement geometry, as previously stated, it is sufficient 

to correctly guess the target velocity vector consisting of a scalar speed value (𝑉𝑡) and 

a scalar angle value (𝛾𝑡). Bearing in mind that these values are physically bounded, a 

“search space” is created. 

A search space consists of a number of guess couples which are created by speed and 

angle guesses, depicted as 𝑉̂𝑡𝑖 (𝑖
𝑡ℎ guess of 𝑉𝑡) and 𝛾𝑡𝑗  (𝑗

𝑡ℎ guess of 𝛾𝑡). By doing so, 

current real engagement geometry would enforce a range guess (𝑅̂𝑖𝑗) through (3.1) for 

each guess couple. So, using the calculated range guess and known LOS angle, the 

position of the target can be guessed using (3.2) where 𝑥𝑚 and 𝑧𝑚 are the missile 

position coordinates and 𝑥̂𝑖𝑗 and 𝑧̂𝑖𝑗 are the guessed target position coordinates 

corresponding to the range guess 𝑅̂𝑖𝑗. 

[
𝑥̂𝑖𝑗
𝑧̂𝑖𝑗
] = 𝑅̂𝑖𝑗 [

cos 𝜆
sin 𝜆

] + [
𝑥𝑚
𝑧𝑚
]  (3.2) 

Therefore, for every (𝑉̂𝑡𝑖 , 𝛾𝑡𝑗) guess couple, there is a unique target position. That 

means, one can divide the search space into pieces of speed and angle guesses and 

find the corresponding guessed target position. That correspondence can be called as 

guessed position matrix (GPM), which is actually the grid created within the 

preselected search space. A visual representation of GPM can be observed in Figure 

3.2.  

 

Figure 3.2. Guessed Position Matrix 
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If the possible guessed speed range of the target is divided into 𝐼 pieces and the angle 

range is divided into 𝐽 pieces; that means there are 𝐽 × 𝐼 = 𝑁 number of elements in 

the search space. 

3.2.2. Synthetic Trajectories 

Assuming that the guess couples are fine enough (small grids), one of the elements in 

the search space must be the real case. That is, one guess couple should match the real 

one if the target does not accelerate. The problem now, is to isolate the real couple 

from the others. One way of doing so, is to create so-called synthetic trajectories using 

the GPM. 

 

Figure 3.3. Sample synthetic trajectories for 2 seconds 

Suppose that, in a certain time step, the abovementioned calculations are made and 

the GPM is constructed. Each target position guess in the GPM has their own unique 

velocity vector. By exploiting that fact, that position can be integrated and a unique 

trajectory, of which authenticity should be checked, can be calculated. Performing the 
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same operation for every element of the GPM results in 𝑁 number of synthetic 

trajectories.  

3.2.2.1. Sample Synthetic Trajectory Calculation1 

For clarity, the calculations described so far are explained with a numerical example. 

Suppose a missile has a speed of 300 m/s and it is flying straight (𝛾𝑚 = 0°), initially 

starting from origin. Moreover, the seeker of the missile provides the LOS angle as 

𝜆 = 30° and the LOS angular rate as 𝜆̇ = 10°/𝑠 at a specific timestep. 

The guess couples are decided as follows: 

• 𝑉̂𝑡1 = 10 m/s, 𝑉̂𝑡2 = 15 m/s 

• 𝛾𝑡1 = 0°, 𝛾𝑡2 = 60° 

Using (3.1), the GPM can be constructed as in Table 3.1. 

The position values in the GPM would be used as the initial conditions for their 

respective synthetic trajectories. Those trajectories would be integrated by using their 

own speed and angle values, creating four distinctive flight paths for four different 

virtual targets. 

Table 3.1. GPM for sample calculation 

 𝜸̂𝒕𝟏 = 𝟎 𝜸̂𝒕𝟏 = 𝟔𝟎 

𝑽̂𝒕𝟏 = 𝟏𝟎   [719.5, 415.4] 𝑚 [769.1, 444.0] 𝑚 

𝑽̂𝒕𝟐 = 𝟏𝟓  [707.1, 408.2] 𝑚 [781.5, 451.4] 𝑚 

 

For the sake of illustration, those trajectories are integrated for two seconds and 

plotted in Figure 3.3 (note that the missile trajectory is not plotted here for simplicity). 

Here, the lack of uniqueness of trajectories can easily be seen. Not only their initial 

conditions are different; but also, they follow very different paths (although parallel). 

The algorithm would exploit that fact and use it as a tool to isolate the real case from 

the others. 

                                                 
1 At this point, the aim is not to estimate something; but to create the synthetic trajectories only 
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3.3.Isolation of the Correct Case within Search Space 

So far, the working domain of the algorithm was established by using physical 

limitations. After establishing the search space domain, the task evolves to searching 

for the true case. 

3.3.1. Synthetic LOS/LOS Rate Profiles 

The synthetic trajectories are the focus of the isolation algorithm as one of the 

trajectories should match the true engagement. Therefore, a property of those 

trajectories must be used to compare with the real measurements. For that end, by 

assuming constant target velocity, as the synthetic trajectories are integrated, each 

trajectory would produce its own LOS and LOS rate profiles, called synthetic LOS 

(rate) profiles. Then, one can compare those synthetic profiles with the real 

measurement, by defining a cost function, to isolate the true case. 

 

Figure 3.4. Resultant synthetic and real LOS rate profiles for the sample 

scenario 

To illustrate, the example GPM depicted in Table 3.1 is used for further analysis in 

order to create the synthetic LOS rate profiles by adding a real target to estimate. This 

time, the real target is assumed to be flying with 15 m/s and an angle of 60° (which 

happens to be exactly the same as one of the elements in the GPM). The resultant LOS 
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rate profiles of the synthetic trajectories and the real LOS rate are presented in Figure 

3.4, where all measurements are assumed to be ideal. 

In this sample, the algorithm is initiated at 0.3 seconds at which the GPM is created. 

Then, the sample synthetic trajectories are constructed (Figure 3.3). For each 

trajectory, since the corresponding guessed target position (hence, the range) and 

velocity are known, using (3.3), derived from (2.2), synthetic LOS rate profiles 

depicted in Figure 3.4 can be constructed. 

𝜆̂̇𝑖𝑗 =
𝑉𝑚 sin(𝜆̂𝑖𝑗−𝛾𝑚)−𝑉𝑡𝑖 sin(𝜆̂𝑖𝑗−𝛾̂𝑡𝑗)

𝑅𝑖𝑗
  (3.3) 

𝜆̂𝑖𝑗 indicates the guessed LOS angle (synthetic LOS angle), corresponding to 𝑖𝑡ℎ guess 

of speed and 𝑗𝑡ℎ guess of target flight path angle, calculated by simply taking the 

arctangent of the synthetic target position and true missile position. 

Inspection of Figure 3.4 suggests the successful capture of the real trajectory. The 

LOS rate profiles of both the synthetic (yellow-dash dotted) and the real (thick blue) 

profiles are exactly the same. The exact similarity could be obtained due to the facts 

that: 

1) Measurements are ideal 

2) The real case exactly matches to the initial guess in the GPM 

3.3.2. Comparison via Cost Function 

After obtaining the synthetic LOS rate profiles (or LOS profiles), the problem 

becomes to finding a metric to isolate the real case from others. 

The proposed methodology for the isolation is to calculate the difference between the 

measured LOS rate (or LOS) and the synthetic LOS rates (or LOS), which from this 

point on would be called as errors. Those errors would be accumulated within an 

integral (a cost function), shaped as desired. One can immediately infer that, 

instantaneously calculating the errors are enough to distinguish the actual case from 

the others. However, as previously stated, the given sample is ideal and in a non-ideal 

world the measurements would deviate from what they should be; making error 

accumulation in an integral a must.  
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Nevertheless, as long as the target moves without acceleration, even if there are errors 

in measurements, on the long run, the LOS and LOS rate profiles other than the real 

case should move away from the real case. Therefore, rather than looking for errors 

at every instant separately, the summation of errors should be a better solution. If LOS 

rate is taken as the main source of comparison, it can be used as an error source by 

taking the integral of the error (3.4).  

𝑒
𝜆̇

𝑖𝑗
= ∫ |𝜆̇𝑚𝑒𝑎𝑠 − 𝜆̂̇𝑖𝑗| 𝑑𝑡

𝑡𝑓
𝑡𝑖

  (3.4) 

The main purpose of this equation, is to collect the errors by summing their absolute 

values within a period of time. By doing so, LOS rate profiles obtained from unrelated 

synthetic trajectories would deviate from the real profile, rendering the integral larger, 

making the distinguish of the real case easier. 

Nevertheless, (3.4) can be diversified by different means. For example, instead of 

using absolute values, one can take the square. of the errors, as in (3.5). 

𝑒
𝜆̇

𝑖𝑗
= ∫ (𝜆̇𝑚𝑒𝑎𝑠 − 𝜆̂̇𝑖𝑗)

2

𝑑𝑡
𝑡𝑓
𝑡𝑖

  (3.5) 

Similarly, one can choose to compare LOS angles, rather than LOS angular rates. The 

corresponding LOS angles can be calculated using (3.6), where 𝑧𝑚 and 𝑥𝑚 are the 

missile position coordinates. 

𝜆̂𝑖𝑗 = 𝑎𝑡𝑎𝑛2(𝑧̂𝑖𝑗 − 𝑧𝑚, 𝑥̂𝑖𝑗 − 𝑥𝑚)  (3.6) 

Like in (3.4), the errors can be calculated as in (3.7). 

𝑒𝜆
𝑖𝑗
= ∫ |𝜆𝑚𝑒𝑎𝑠 − 𝜆̂𝑖𝑗|𝑑𝑡

𝑡𝑓
𝑡𝑖

  (3.7) 

The hypothesis is that, whichever guess couple minimizes the error value (𝑒𝜆
𝑖𝑗

, 𝑒
𝜆̇

𝑖𝑗
 or 

any combination of those) should correspond to the real case. 

To illustrate that, the integral values of the errors in the example are presented in Table 

3.2, in which the errors are calculated by using absolute value method. For this 

example, the integration is started at 𝑡𝑖 = 0.3 seconds and finished at 𝑡𝑓 = 2 seconds. 
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Therefore, it can be concluded that, the estimated target can be selected as 𝑉̂𝑡 = 15 

m/s and 𝛾𝑡 = 60° by looking at the minimum of the errors; which resulted in zero, 

since all measurements are perfect and the target scenario exactly matches with one 

of the previously determined guess couple. 

Table 3.2. Cost functions corresponding to each guess couple in sample scenario 

𝑽̂𝒕𝒊 (m/s) 𝜸̂𝒕𝒋 (°) 𝒆𝝀
𝒊𝒋

 (rad.s) 𝒆
𝝀̇

𝒊𝒋
 (rad) 

15 60 0 0 

10 60 0.06393 0.3457 

15 0 5.373 0.06386 

10 0 5.376 0.06106 

 

To sum up, the workflow of the algorithm would consist of the following steps: 

• In a single timestep, the GPM is created. 

• Using the elements of GPM as initial conditions, synthetic trajectories are 

created. 

• Each synthetic trajectory would result in its own LOS and LOS rate profiles 

(synthetic LOS profiles). 

• At each time step, the measured LOS and LOS rates are compared with their 

respective synthetic LOS and/or LOS rate profiles. 

• Finally, the synthetic LOS and/or LOS rate profile that is closest to the 

measurements belongs to the real engagement. 

Moreover, the isolation can be augmented by different means. Namely, some element 

in GPM could be ignored, as they may give unrealistic results. Assume that the 

algorithm would be implemented to a missile, having the following characteristics: 

• Maximum range: 10 km 

• Maximum altitude: 5 km 
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By using this knowledge, one can choose to disregard the elements in GPM, which 

provides a synthetic range larger than 10 km and smaller than 0 km (as it would be 

meaningless to have negative range). Similarly, the elements which has a z-position 

larger than 5 km can also be ignored as the designer may assert that estimating a target 

beyond the capabilities of the missile would be meaningless. 

This phenomenon is further explained in the last chapter under Future Work. 

3.4.Sensitivity of Range Estimation to Guess Couple Selection 

The sample scenario given previously assumed that the real target velocity exactly 

matched with one of the guess couples. This mostly would not be the case in real 

scenarios. However, if the grid of the guess couples are constructed fine enough, the 

resultant estimation could be within the vicinity of the real scenario, making a close 

estimation possible. So, the question becomes: “The physical limits in question should 

be partitioned into how many grids?”. 

There is a trade-off between computational effort (analysed in Chapter 5) and 

estimation performance. The finer the search grid (the more elements the GPM has), 

the better the estimation performance. However, since there would be too many 

elements in the GPM, resulting in too many integrations and consequently, too much 

computational time. Therefore, the grid partitioning should be optimised.  

The methodology to be followed is to look at how the calculations are affected if the 

real target velocity does not match with a guess couple. To do so, the real speed and 

angle values are perturbed from their original values as shown in (3.8) and (3.9). Their 

effects to range calculation are analysed as the range estimation is important to the 

algorithm since it is the initial condition for each guess. Note that in (3.8) and (3.9), 

the subscripts of 𝑖 and 𝑗 are dropped from 𝛾𝑡 and 𝑉̂𝑡 for clarity. 

𝛾𝑡 = 𝛾𝑡 + Δ𝛾𝑡  (3.8) 

𝑉̂𝑡 = 𝑉𝑡 + Δ𝑉𝑡  (3.9) 

Then, (3.8) and (3.9) are inserted into (3.1), creating a small disturbance Δ𝑅 in range. 
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𝑅 + Δ𝑅 =
𝑉𝑚 sin(𝜆−𝛾𝑚)−(𝑉𝑡+Δ𝑉𝑡) sin(𝜆−𝛾𝑡−Δ𝛾𝑡)

𝜆̇
  (3.10) 

Using the trigonometric identity sin(𝑥 − 𝑦) = sin(𝑥) cos(𝑦) − sin(𝑦) cos(𝑥), (3.11) 

is obtained. 

𝑅 + Δ𝑅 =
𝑉𝑚 sin(𝜆−𝛾𝑚)−(𝑉𝑡+Δ𝑉𝑡)(sin(𝜆−𝛾𝑡) cos(Δ𝛾𝑡)−sin(Δ𝛾𝑡) cos(𝜆−𝛾𝑡))

𝜆̇
  (3.11) 

Assuming small angle assumption where sin(Δ𝛾𝑡) ≈ Δ𝛾𝑡 and cos(Δ𝛾𝑡) ≈ 1, (3.12) is 

found. 

𝑅 + Δ𝑅 =
𝑉𝑚 sin(𝜆−𝛾𝑚)−(𝑉𝑡+Δ𝑉𝑡)(sin(𝜆−𝛾𝑡)−Δ𝛾𝑡 cos(𝜆−𝛾𝑡))

𝜆̇
  (3.12) 

Rearranging gives (3.13). 

𝑅 + Δ𝑅 =
𝑉𝑚 sin(𝜆−𝛾𝑚)−𝑉𝑡 sin(𝜆−𝛾𝑡)

𝜆̇

⏞              
𝑅

−
(𝑉𝑡Δ𝛾𝑡 cos(𝜆−𝛾𝑡))−(Δ𝑉𝑡 sin(𝜆−𝛾𝑡))+(Δ𝑉𝑡Δ𝛾𝑡 cos(𝜆−𝛾𝑡))

𝜆̇
  

(3.13) 

Finally, the effect of the perturbations is available in (3.14). 

Δ𝑅 = −
𝑉𝑡 cos(𝜆−𝛾𝑡)

𝜆̇
Δ𝛾𝑡 +

sin(𝜆−𝛾𝑡)

𝜆̇
Δ𝑉𝑡 −

cos(𝜆−𝛾𝑡)

𝜆̇
 Δ𝑉𝑡Δ𝛾𝑡  (3.14) 

The immediate assessment of (3.14) clearly indicates that, all deviations in guesses 

are inversely proportional to the LOS rate. In other words, the agile the engagement 

(rendering 𝜆̇ large), the lower the deviations. Besides, since LOS rate is present in 

every term and it is in the denominator, its effect to each term is the same. Therefore, 

while comparing the terms, only nominators are taken into account. 

If the target is stationary, the deviations in 𝛾𝑡 becomes irrelevant (note that Δ𝛾𝑡 is 

multiplied with 𝑉𝑡, which is zero for a stationary target). This makes sense because of 

the fact that flight path angle for a stationary vehicle is meaningless. The second and 

third term are rather ambiguous. It includes the expression 𝜆 − 𝛾𝑡 in sine and cosine 

terms. Since the third term includes Δ𝛾𝑡 term, it can be assumed that the algorithm 

cannot estimate 𝛾𝑡 wrong, as all 𝛾𝑡’s are true for all targets, yielding the third term 

also irrelevant. Still, a mathematical and physical expression for 𝛾𝑡 is unavailable 

when the target is stationary, making the analysis of the second term hard. 
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Nevertheless, it can be assumed that since the sine term can have maximum value of 

1, it can be assumed that the maximum range error due to velocity estimation error is 

Δ𝑅 = Δ𝑉𝑡/𝜆̇. 

On the other hand, (noting that the trigonometric functions can only attain a maximum 

value of 1) if the target is fast (𝑉𝑡 is large) – which could be the case – deviations due 

to Δ𝛾𝑡 becomes large; hinting that the 𝛾𝑡 grids should be as fine as possible. 

Likewise, errors due to Δ𝑉𝑡 depends on a trigonometric function, of which maximum 

is 1. Numerically Δ𝑉𝑡 values are larger than Δ𝛾𝑡, of which units are m/s and radians, 

respectively. Therefore, directly comparing the respective terms of the errors are not 

possible. 

To determine the grids, it is selected that, the ratios of the maximum values of the 

error terms are set equal like in (3.15). While doing that, the last cross-coupling term 

is disregarded, since it consists of only a trigonometric function and the multiplication 

of two Δ terms. 

(
𝑉𝑡 cos(𝜆−𝛾𝑡)

𝜆̇
)
𝑚𝑎𝑥

Δ𝛾𝑡 = (
sin(𝜆−𝛾𝑡)

𝜆̇
)
𝑚𝑎𝑥

Δ𝑉𝑡  (3.15) 

𝜆̇ values that maximise the expressions in (3.15) are the same in both sides and 

maximum values of trigonometric functions are 1. Applying those gives the 

expression in (3.16). 

Δ𝛾𝑡

Δ𝑉𝑡
=

1

𝑉𝑡𝑚𝑎𝑥
  (3.16) 

(3.16) indicates that the maximum difference between an element of the guess couple 

and the real values is a function of the maximum possible value of the target. It was 

mentioned earlier that the Δ𝛾𝑡 term becomes large when target speed is large, 

rendering this term dominant in the expression. Therefore, it could be advised that the 

ratio expressed in (3.16) could be used as the maximum possible value for the grid 

selection. That is to say, one can choose a finer domain in 𝛾𝑡 than in 𝑉̂𝑡. 

To clarify, if the maximum value of a possible target is 500 m/s, when the speed 

domain is divided with 5 m/s of increments, that means the angle domain should be 
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divided with 0.01 rad of increments, maximum. Obviously, one can choose to divide 

the angle domain to smaller increments (e.g. 0.005 rad). 
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CHAPTER 4  

 

 

IMPLEMENTATION 

 

 

4.1.Simulink Environment 

The algorithm described above is tested in MATLAB – Simulink environment where 

the 2D missile – target engagement is simulated. The simulation is run with Euler 

integration, having a time step of 0.001 seconds. 

 

Figure 4.1. Typical speed profile of a missile with boost – sustain – coast sequence 

In the simulation, only the kinematics of the target is modelled, as the aerodynamics 

of the missile is irrelevant since the algorithm only needs good measurements. 

Nevertheless, the missile is assumed to have a dynamic as described in (4.1). 

𝛾𝑚

𝛾𝑚𝑐𝑜𝑚
=

𝜔𝑛
2

𝑠2+2𝜉𝜔𝑛𝑠+𝜔𝑛
2  (4.1) 
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This transfer function incorporates both the autopilot and guidance dynamics; as well 

as the CAS dynamics (refer to Figure 2.1). This dynamic is added to the simulation in 

order to add some realism to the testing environment. Likewise, the missile is assumed 

to have a typical boost – sustain – coast thrust sequence [27] like in Figure 4.1. 

Moreover, the missile is guided to the target via flight path angle guidance law, shown 

in (4.2) where 𝑁 is the navigation constant and 𝑏 is the bias term as depicted in [28].  

𝛾̇𝑚𝑐𝑜𝑚 = 𝑁𝜆̇ + 𝑏  (4.2) 

A bias term may be added if the algorithm designer would like to avoid the 

unobservable point where 𝜆̇ is zero as the bias term may avoid 𝜆̇ = 0 convergence, 

depending on its value. 

For starters, bias value is set to -0.1 rad/s and the navigation constant is set to 3, unless 

otherwise specified. These parameters are set to their values in order to have good 

observability even when the target is stationary. 

4.2. Real World Effects – Bias & Noise 

 

Figure 4.2. Bias and noise in a sample sine wave data 
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In real applications, the measurements would be either biased or noisy, or both. Noise 

is called the continuous deviation of the signal from its original value with a mean 

value of zero. On the other hand, bias is the deviation of the signal from its real value 

with a non-zero value. To illustrate, in Figure 4.2, the real data (sine wave) is 

corrupted with a constant bias term (0.3) and a random number generator (variance 

0.01). 

Bias and noise concepts are also added to the simulation environment to analyse their 

effects to the performance of the algorithm. 

 

4.2.1. Inertial Measurement Unit Errors 

 

Figure 4.3. Integration of a sine wave signal with noisy (solid) and biased (dash-

dotted) data 

IMU is the device that measures the acceleration and rotational velocity of the missile 

body. In order to find the navigational parameters like, speed, position etc. they need 

to be integrated. 

Since noise displays itself around a zero-mean value, its integration does not deviate 

from the real integral, theoretically. Conversely, since the mean value of the bias is 

not zero, its integral would accumulate over time. Consequently, as shown in Figure 
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4.3, while integral of the biased measurement deviates significantly from real values, 

the integral of the noised measurement does not move away notably. Therefore, it can 

be asserted that, rather than the noise, bias of the IMU could affect the performance 

of the algorithm; as it would cause the deviation of the navigational parameters used 

within the algorithm. 

4.2.2.Seeker Errors 

A seeker in a missile is mostly mounted on a device called gimbal, which rotates the 

seeker to look at the target directly. As it does so, it rotates around its axes, which 

creates a rotational velocity. Using this velocity and its current angular position of the 

gimbal, LOS rate and LOS angle can be constructed [29]. 

As long as the seeker is locked to the target and the target is kept within the FOV 

(Field of View), target tracking can be established with negligible bias. However, 

measurement noise would be present and not negligible. Moreover, most of the IR 

seekers work with a lower frequency (~50-100 Hz) than the flight computer (~500-

1000 Hz) due to image processing algorithms. This means that, there would be less 

number of real measurement to compare to their synthetic ones; degrading the 

performance of the algorithm. 

It should also be noted that, since the core of the algorithm is based on integrating the 

absolute value of LOS and/or LOS rate errors between measured and synthetic 

trajectories. Consequently, any noise in the measurement would accumulate in the 

error integration. 

4.3. Algorithm Customisations Specific to the Thesis 

The algorithm to be tested was explained in Chapter 3. It can be asserted that the 

algorithm has some parameters that may be changed or tuned wherever deemed 

necessary. 

Firstly, the grid of the GPM is selected based on the 1/𝑉̂𝑡𝑚𝑎𝑥 rule. A grid of 2.5° is 

selected for 𝛾𝑡 along with a selected 𝑉̂𝑡𝑚𝑎𝑥  of 400 m/s. This forces a maximum Δ𝑉̂𝑡 

via (4.3) derived from (3.16). 
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Δ𝑉̂𝑡 = (2.5° ×
𝜋

180°
) (400 𝑚/𝑠) = 17.45 𝑚/𝑠  (4.3) 

For both safety and clarity purposes, the aforementioned speed grid is made finer by 

setting Δ𝑉̂𝑡 = 10 m/s rather than 17.45 m/s. This means that, there would be a total of 

144 × 41 = 5904 elements in the GPM 

The errors to be integrated are calculated from LOS rate values as in (3.7), rather than 

LOS errors; unless otherwise is stated. Results for LOS errors are also presented for 

comparison purposes only, but not for all cases. 

The algorithm is initiated at 0.3 seconds, in order to let the missile to gain speed, 

helping the observability. At 0.3 seconds, the GPM is created and synthetic 

trajectories are initiated, whereas at 0.5 seconds, integration of LOS/LOS rate errors 

are started. The reason for this is to let the synthetic trajectories to fall apart for a while 

such that the error integration would not be affected easily by similar trajectories. 

Immediately after error integration, the estimations are produced. Nevertheless, one 

can choose to output estimations after starting integrating errors. 
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CHAPTER 5  

 

 

RESULTS AND DISCUSSION 

 

 

 

In this chapter, the algorithm displayed in Chapter 3 is tested in the environment 

described in Chapter 4. This section is divided into two parts. First, some test scenarios 

are run individually for detailed analysis. While the algorithm is tested with ideal 

circumstances, the effects of imperfect measurements are also analysed. Further, the 

effect of guidance parameters is also investigated. In the second part, the result of a 

large batch run environment is shown. 

5.1. Individual Results 

Table 5.1. Scenario set #1 

# 𝑽𝒕 (m/s) 𝜸𝒕 (°) 𝒙𝒊𝒏𝒊𝒕 (m) 𝒛𝒊𝒏𝒊𝒕 (m) 

1 200 0 500 500 

2 140 20 500 500 

3 300 240 1000 1000 

4 160 180 500 500 

5 0 0 750 250 

6 20 320 500 500 

 

For ideal and imperfect measurements analyses, a scenario set of 6 different cases are 

used, as shown in Table 5.1. 
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The scenarios are selected in a fashion, such that it would cover: 

• All angle quadrants 

• A wide range of target speed 

• A stationary scenario 

• Only the elements in the GPM 

5.1.1. Ideal Results 

To begin the analysis, firstly, the environment is set to an ideal one. That is, all 

measurements are perfect and all scenario cases happen to match exactly one of the 

guess couples. In other words, one of the guessed target velocity is exactly the true 

target velocity. 

The resultant trajectories of the scenarios can be seen in Figure 5.1. Likewise, in 

Figure 5.2 and Figure 5.3, estimates for speed and angle can be seen, respectively.  

 

Figure 5.1. Resultant trajectories for ideal case 

Figure 5.2, Figure 5.3 and Figure 5.4 clearly indicate that the algorithm can estimate 

the target velocity, as well as the range. As all the measurement are ideal, and the real 

target velocity exactly matches to one of the elements in the GPM, perfect estimation 

is acquired. 
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Figure 5.2. Estimated speeds for ideal case 

 

Figure 5.3. Estimated flight path angles for ideal case 

 

Figure 5.4. Estimated and true ranges for ideal case 
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Figure 5.5. Zoomed speed estimations for ideal case when the error integration is 

started (0.5 s) 

However, the uniqueness problem emanates itself even when everything is perfect, as 

expected. In Figure 5.5 – zoomed version of Figure 5.2 – the estimations just after the 

error integrations is started is plotted. It can be seen that at time 0.501, the first 

timestep when the algorithm provides its first results, the estimations at hand are 

gibberish since the algorithm cannot differentiate the true and other trajectories as 

there are many “false true” trajectories due to the fact that the true trajectories are not 

unique, yet. 

Nevertheless, in the next timestep, the algorithm can “lock” itself to the true 

estimations. In the second timestep, the false true trajectories are eliminated by adding 

their error with their previous errors (which were zero). Owing to this error 

accumulation, in the second timestep, the real true case is isolated from all false true 

and other wrong trajectories. 

In summary, it can be said that, at least two timesteps are required to distinguish the 

true trajectory from other synthetic trajectories; proving the loss uniqueness in a 

passive seeker case. 

5.1.2. Imperfect Results 

The effect of imperfections is handled in four parts. Firstly, the effect of noise and 

bias of IMU on the algorithm is tested. Then, the seeker is contaminated with errors, 
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separately from IMU errors. Following that, both IMU and seeker errors are added to 

the simulation environment. Finally, cases when the target is not an element of the 

GPM is investigated. While doing so, in measurement error cases, the scenario set 

shown in Table 5.1 is used. For non-element case, a different scenario set is used, 

which is presented in its own section (Table 5.3). 

5.1.2.1. IMU Errors 

In this part, only the IMU noise and bias errors are added to the simulation. The values 

for noise and bias are based on Honeywell HG1930BA50 IMU of which data is 

provided in [30]. The results of this case are plotted in Figure 5.6, Figure 5.7 and 

Figure 5.8. 

Similar to the previous ideal case, correct estimation is established despite IMU error. 

This means that, with previously designated errors in IMU, the synthetic trajectories 

do not deviate much to change the synthetic LOS rates; making the LOS rate 

comparison easier. 

One difference that can be seen is the range estimates which are calculated using the 

navigation data, integrated from biased IMU measurements. In Figure 5.8, this 

difference is imperceptible to the human eye, however, when the integral of the 

estimation errors are calculated, Figure 5.9 can be obtained. Clearly, the errors in 

scenario 5 are significantly larger than other scenarios. The reason for this difference 

lies within the observability problem. Since the target is stationary in Scenario 5, the 

real LOS rates lie around zero; forcing any errors within the GPM to grow obeying 

(3.1). 

Also, one can notice the jumps at the last phases of the estimation. This can also be 

explained by the abrupt change in LOS rates at the final phase of the flight. Similar 

behaviour can be seen when seeker errors are included to the simulation. 
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Figure 5.6. Estimated and true speeds for IMU error case 

 

Figure 5.7. Estimated and true flight path angles for IMU error case 

 

Figure 5.8. Estimated and true range for IMU error case 



 

37 

 

 

Figure 5.9. Integral of |𝑅̂ − 𝑅| 

5.1.2.2.Seeker Errors 

In this section, bias and noise are added to seeker measurements only – errors in IMU 

are discarded for the time being. It can be said that any errors in seeker measurements 

could affect the algorithm greatly as they are directly compared to their synthetic 

counterparts. 

It could be considered as hard to find some metrics regarding errors in seeker 

measurements in literature. An ad hoc approach is adopted using previous experiences 

in selecting the measurement errors. For that end, bias in measurements are neglected 

as previously stated; and variances of noise in LOS and LOS rate measurements are 

selected as 1 mdeg and 0.1 mdeg/s, respectively. 

Moreover, the seeker measurements are downsampled to 100 Hz and fed to the 

algorithm, in order to simulate a more realistic seeker. 

The results for this case are provided in Figure 5.10, Figure 5.11 and Figure 5.12. 

Immediate assessments of Figure 5.10 and Figure 5.11 shows that, in scenario 5, in 

which the target is stationary speed estimates are off greatly from their true values 

(flight path angle estimates are irrelevant as the target is stationary). This can be 
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explained via (3.14). As the engagement is slow since target in scenario 5 is stationary, 

the resultant LOS rates at the time when the synthetic trajectories are initiated (0.3 s), 

attain a very low value (Table 5.2) – closer to zero than other scenarios. Since both 

LOS and LOS rates are contaminated with noise, any error in both measurements 

result in a large error in initial synthetic position in GPM calculation. This 

phenomenon shows that, successful estimation is harder to obtain if the engagement 

happens slowly. 

Nevertheless, when the range estimate of this scenario is investigated, the range 

estimation seems to be unaffected too much with the failure of the exact estimation of 

target speed (Figure 5.13). In scenario 5, target speed is zero, meaning that, in (3.14), 

errors due to Δ𝛾𝑡 estimations are irrelevant too. Also, target velocity estimation errors 

are not too much to create large range errors. For this scenario, it can be said that, as 

the errors are accumulated in the error integral, the algorithm is able to distinguish the 

real trajectory. Likewise, as the engagement becomes swifter, it is easier for the 

algorithm to differentiate the real trajectory. 

Likewise, when Table 5.2 is observed, the next lowest 𝜆̇ value at 0.3 seconds after 

scenarios 5 and 6, is scenario 3. Consequently, observation of Figure 5.12 shows that 

the next worse estimation performance after scenarios 5 and 6 is scenario 3, correlated 

with the value of LOS rate. So, it can be inferred that, as the value of 𝜆̇ increases at 

the time when GPM is crated, the quality of the estimations also gets better as well; 

in conjunction with the assessment made in Chapter 3 related to observability. 

Table 5.2. LOS rates at 0.3 seconds 

Scenario# 1 2 3 4 5 6 

𝝀̇ (°/s) -9.9588 -4.2464 -3.5308 9.8681 0.0625 -1.5994 
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Figure 5.10. Estimated and true speeds for seeker error case 

 

Figure 5.11. Estimated and true flight path angles for seeker error case 

 

Figure 5.12. Estimated and true ranges for seeker error case 
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Figure 5.13. Range estimation of scenario 5 for seeker error case 

Therefore, the algorithm designer may want to initiate the algorithm not at a specific 

time, but at a time when the engagement produces relatively large LOS rate values, 

increasing the chances of obtaining a better GPM. 

5.1.2.2.1 Results when LOS Errors are the Error Integration Source 

In this part, exactly the same simulation is run, except the source of the integration 

error, which is taken as in (3.7). The corresponding results are shown in Figure 5.14, 

Figure 5.15 and Figure 5.16. 

Here, with a quick inspection, performance of the algorithm when LOS errors are 

taken as the source for error integration degrades with respect to the case when 

integration error source is taken as LOS rate error. Estimation for scenario 6 is 

completely failed (In Figure 5.16 range estimation of scenario 5 is not within the 

limits; therefore, it is not plotted for clarity), whereas the performance of other 

scenarios is worsened. 

The reason why the LOS comparison was worse than LOS rate comparison lies within 

the noise content of those measurements. Generally, noise content of LOS 

measurements is larger in amplitude than of LOS rate measurements. Therefore, with 

the analysis performed, it is asserted that, it is better to use LOS rates for error 

integration. However, one can find a better cost function to minimise that can help 

selecting the real trajectory. 
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Figure 5.14. Estimated and true flight path for seeker error case with LOS error 

 

Figure 5.15. Estimated and true speeds for seeker error case with LOS error 

 

Figure 5.16. Estimated and true ranges for seeker error case with LOS error 
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It should be noted that, the presented results are a result of the selected measurement 

error metrics. If one observes a different measurement error in LOS and LOS rate, 

constructing the cost function via LOS errors may result better results. Nevertheless, 

with the selected measurement errors in this thesis, cost functions via LOS rate errors 

provide better results that LOS errors. 

5.1.2.3. Combined Errors 

In this part, both seeker and IMU errors are added to the simulation. Results are 

summarized in Figure 5.17, Figure 5.18 and Figure 5.19. 

 

Figure 5.17. Estimated and true speeds for combined error case 

 

Figure 5.18. Estimated and true target flight path angles for combined error case 
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Figure 5.19. Estimated and true ranges for combined error case 

As it can be seen from the figures, as expected, errors in IMU did not influence the 

results much. Consequently, it can be argued that errors in seeker measurements are 

always dominant in all cases as they are directly compared to their synthetic 

counterparts.  

5.1.2.4. “Non-Element” Case 

It is clear that the target velocity vector may not easily match with an element in the 

GPM. In such a case, it is guaranteed that the initial synthetic position calculation 

would include some errors forced by (3.14). For that end, 4 sample scenarios are 

created. Those scenarios and their specifications are summarised in Table 5.3. 

Scenarios in Table 5.3 are selected such that, the effects of missing the true target 

parameters (speed and angle) onto range estimation and how they are affected with 

the true target speed can be observed. Note that all non-element parameters are 

selected in such a way that they would lie exactly in the middle of two elements in 

order to maximise the deprivation effect. 

The simulations are run (1) with ideal measurements and (2) with all errors are 

available. In the following sections, the ideal and non-ideal results are shown; then 

the corresponding discussion is clarified. In both cases the resultant trajectories are 

similar and they are plotted in Figure 5.20. 
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Table 5.3. Scenario set #2 

# 𝑽𝒕 (m/s) 𝜸𝒕 (°) 𝒙𝒊𝒏𝒊𝒕 (m) 𝒛𝒊𝒏𝒊𝒕 (m) Notes 

1 205 10 3000 50 

High speed 

Speed non-element 

Angle element  

2 200 11.25 3000 50 

High speed 

Speed element 

Angle non-element 

3 20 116.25 1000 50 

Low speed 

Speed element 

Angle non-element 

4 15 115 1000 50 

High speed 

Speed non-element 

Angle element 

 

Figure 5.20. Resultant trajectories for scenario set #2 

5.1.2.4.1 Ideal Measurements 

Results for this case are plotted in Figure 5.21, Figure 5.22 and Figure 5.23. 
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Figure 5.21. Estimated and true speeds for non-element case (ideal) 

 

Figure 5.22. Estimated and true flight path angles for non-element case (ideal) 
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Figure 5.23. Estimated and true ranges for non-element case (ideal) 

5.1.2.5. Non-Ideal Measurements 

Results for this case are plotted in Figure 5.24, Figure 5.25 and Figure 5.26. 

 

Figure 5.24. Estimated and true speeds for non-element case (non-ideal) 
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Figure 5.25. Estimated and true flight path angles for non-element case (non-ideal) 

 

Figure 5.26. Estimated and true ranges for non-element case (non-ideal) 

5.1.2.5.1 Discussion of Non-Element Case 

One of the quick assessments that can be inferred from the figures plotted above is 

that, in scenarios 3 and 4, in which the targets are slow, the flight path angle estimates 
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are considerably off from their true values. Nevertheless, the speed estimates are 

relatively successful. Consequently, even when the measurements are contaminated 

with errors, the algorithm is successful in estimating the range. This result can easily 

be explained by (3.14). When the target is slow, the error term originating from angle 

estimation becomes smaller than the speed estimation term. Therefore, as long as the 

target speed estimation is close to its true counterpart (Figure 5.21 and Figure 5.24), 

a very rough estimation of flight path angle (Figure 5.22 and Figure 5.25) is enough 

for range estimation for slow targets (Figure 5.23 and Figure 5.26). 

Moreover, it can be said that, if the target is slow, it is hard to estimate the flight path 

angle precisely. This can be explained with the fact that, when the target speed is slow, 

the synthetic trajectories for the corresponding speed separate very slowly, making 

the true trajectory harder to be distinguished among false ones. However, as explained 

above, if the target speed is estimated good enough, a rough estimation of flight path 

angle is enough to estimate the range. 

Another evaluation that can be made is when the target is fast as in scenarios 1 and 2. 

Again, from (3.14), it can be said that a good flight path estimation is necessary for 

good range estimation, since now the term with flight path angle error is much more 

dominant than speed estimation error term. Since the flight path angle is estimated 

acceptably and speed estimations do not deviate from their true counterparts, the error 

estimations are close to their true values. 

5.1.3.Effect of Guidance Parameters 

In this section, the effect of PNG gain and bias to the performance of the algorithm is 

investigated. To that end, scenario shown in Table 5.4 is used. All cases are run with 

seeker and IMU errors for better reality. 

5.1.3.1.Effect of PNG Gain 

Using the scenario conditions in Table 5.4, the analysis is performed under different 

PNG gains starting from 2 to 8 with an increment of 1, using no bias. The resultant 

trajectories are plotted in Figure 5.27. As one can predict, as the PNG gain is 

increased, the missile follows a more agile trajectory, which is expected to have a 

positive effect to estimation performance. 
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Table 5.4. PNG gain and bias analysis scenario 

# 𝑽𝒕 (m/s) 𝜸𝒕 (°) 𝒙𝒊𝒏𝒊𝒕 (m) 𝒛𝒊𝒏𝒊𝒕 (m) 

1 200 180 500 500 

 

Figure 5.27. Trajectories for PNG gain analysis 

The estimated and true parameters are plotted in Figure 5.28, Figure 5.29 and Figure 

5.30. In all PNG gain cases, the algorithm captures the true values. However, in each 

case, the dynamics of the estimation differ from each other. In other words, the time 

required for the error integral in the algorithm to show the real trajectory is different 

for each case. 

To analyse the effect of PNG gain to the performance of the algorithm, the range 

estimation performance is used. To that end, the integrals of the absolute error in range 

is calculated (as in (5.1)) and plotted in Figure 5.31. 

Φ = ∫ |𝑅̂ − 𝑅|𝑑𝑡
𝑡𝑓
𝑡𝑖

    (5.1) 
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Figure 5.28. Estimated and true speeds for different PNG gains 

 

Figure 5.29. Estimated and true flight path angles for different PNG gains 

 

Figure 5.30. Estimated and true ranges for different PNG gains 
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Figure 5.31. Integral of absolute range estimation error for different PNG gains 

Figure 5.31 shows the correlation between the PNG gain and the estimation 

performance. As the PNG gain is increased the estimation performance – although not 

monotonically – increased owing to the fact that the engagement becomes more agile, 

helping the observability of the estimation. 

5.1.3.2. Effect of Guidance Bias 

Similar to the previous section, using the scenario conditions in Table 5.4, the analysis 

is performed under different guidance bias values starting from -0.3 rad/s to 0.3 rad/s 

with an increment of 0.1 rad/s, using a PNG gain of 3. Resultant trajectories are plotted 

in Figure 5.32 which suggests that, as the bias values are increased, missile follows a 

more aggressive trajectory. This phenomenon, similar to the previous PNG gain 

analysis, is expected to aid the observability of the system to improve. Related results 

are plotted in Figure 5.33, Figure 5.34 and Figure 5.35. 
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Figure 5.32. Trajectories for guidance bias analysis 

 

Figure 5.33. Estimated and true speeds for different bias values 
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Figure 5.34. Estimated and true flight path angles for different bias values 

 

Figure 5.35. Estimated and true ranges for different bias values 

Like in the previous PNG gain analysis, in all bias values, the algorithm estimates the 

parameters successfully, with different transient performance characteristics. To 

analyse the difference, (5.1) is used and its results are plotted in Figure 5.36 which 

shows that, in the cases where the bias values making the engagement sluggish, the 

range estimation performance decreases, in accordance with the previous remark. 
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Figure 5.36. Integral of absolute range estimation error for different bias values 

5.1.4. Non-Manoeuvring Missile 

In the beginning of the thesis, it was stated that one of the strong suits of the proposed 

algorithm was that it can work even when the missile does not accelerate. For this 

case, a new set of scenarios are selected (Table 5.5). In this scenario set, the missile is 

fired as before, but not steered to its target, by setting PNG gain and bias zero. 

The simulation is run with both IMU and seeker errors enabled. Moreover, since the 

missile is not expected to meet the target, the simulation termination condition is set 

5 seconds. 

Table 5.5. Scenario set #3 

# 𝑽𝒕 (m/s) 𝜸𝒕 (°) 𝒙𝒊𝒏𝒊𝒕 (m) 𝒛𝒊𝒏𝒊𝒕 (m) 

1 200 20 500 50 

2 100 240 2000 500 

3 300 180 2000 500 

4 0 0 1500 250 
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Figure 5.37. Estimated and true speeds for non-manoeuvring missile 

 

Figure 5.38. Estimated and true flight path angles for non-manoeuvring missile 

 

Figure 5.39. Estimated and true ranges for non-manoeuvring missile 
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Related results are plotted in Figure 5.37, Figure 5.38 and Figure 5.39. Note that, since 

the missile is not steered towards the target, range profiles start increasing after some 

point. 

Immediate observation of the figures shows some deterrence in performance, but 

successful capture of the real parameters, similar to the previous cases, thus showing 

the performance of the algorithm when the missile does not manoeuvre.  

5.2. Batch Run Simulations 

In order to assess the performance of the algorithm within a broader space, it is tested 

in a batch run environment where the target velocity and initial position parameters 

are changed and they are shown in Table 5.6. 

Table 5.6. Batch run parameters 

 Selected increments 

𝜸𝒕 (°) [0:45:315] 

𝐕𝐭 (m/s)  [0:20:300] 

𝒙𝒊𝒏𝒊𝒕 (m) [500 1000 2000 4000 5000] 

𝒛𝒊𝒏𝒊𝒕 (m) [50 1000] 

 

The selected increment size shown in Table 5.6 results in 1280 simulations which are 

intended to cover a variety of cases like close/far target or slow/fast target etc. 

5.2.1. Determination of a Success Parameter for Batch Run 

In order to assess the performance of the simulation, it is necessary (and easier) to 

visually compare the true and estimated parameters when a few scenarios are run (like 

in the section Individual Results). However, in this section, since there are many of 

them, visual comparison is impractical. Instead, a simple mathematical expression is 

used as shown in (5.2) where 𝑅 denotes true range, 𝑅̂ denotes estimated range, 𝐽 

denotes performance parameter and 𝑡𝑡𝑜𝑡𝑎𝑙 denotes the total flight time. 
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𝐽 =
1

𝑡𝑡𝑜𝑡𝑎𝑙
∫ |𝑅 − 𝑅̂|𝑑𝑡 
𝑡𝑡𝑜𝑡𝑎𝑙
0

  (5.2) 

However, starting the integration in (5.2) right from the beginning results in larger 𝐽 

values than expected since it would also include errors from the transient region. 

Therefore, the following workaround is applied in finding the 𝐽 value: 

• If the scenario takes less than 2 seconds, the integration is started upon 

initialisation of the algorithm. 

• Otherwise, the integration is started at when the time reaches half of the flight 

time (e.g. if the missile takes 7 seconds to reach its target for a scenario, the 

integration is started at 3.5 seconds). 

Moreover, a clear threshold 𝐽 value must be selected for success criterion. After 

various individual runs, it could be said that a value of 𝐽 = 40 𝑚 can be selected for 

a conservatively good target velocity and range estimation performance. To make this 

selection easy to comprehend (physically understandable), a sample run of which 𝐽 is 

almost equal to 40 m (exactly 39.99 m). This run is obtained when the target moves 

with a speed of 80 m/s and an angle of 225°, starting from a location [4000 50] m. For 

this specific case, the range, speed and angle estimations are plotted in Figure 5.40, 

Figure 5.41 and Figure 5.42, respectively. 

 

Figure 5.40. Sample range estimation performance having a performance 

parameter 𝐽 = 40 𝑚 
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Figure 5.41. Sample speed estimation performance having a performance parameter 

𝐽 = 39.99 𝑚 

 

Figure 5.42. Sample target flight path angle estimation performance having a 

performance parameter 𝐽 = 39.99 𝑚 

Note that, in the aforementioned figures, it can be seen that, upon initialisation of the 

algorithm, the estimations take a bit of time to converge to its correct values, as 

expected. 

While a 𝐽 value of 40 is roughly selected for success criterion, success percentages for 

different 𝐽 values are also shown in the Batch Run Results section. 
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5.2.2. Batch Run Results 

As mentioned before, the batch run containing 1280 simulations with increments 

selected as in Table 5.6 is performed. When the batch run is performed under ideal 

conditions (no measurement noise or bias) all estimations become successful and 

therefore, their results are not included here. 

Table 5.7. Success performances (case count when 𝐽 < 𝐽𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑) 

𝑱𝒔𝒆𝒍𝒆𝒄𝒕𝒆𝒅 1 5 10 25 40 75 100 500 

Success (%) 34.84 42.5 49.141 63.51 76.88 88.75 91.48 99.84 

 

When the same procedure is applied for non-ideal conditions, unsuccessful attempts 

are available. The success performance for different 𝐽 values are presented in Table 

5.7.  

Also, the 𝐽 values for changing 𝛾𝑡 and 𝑉𝑡 values are plotted in Figure 5.43 and Figure 

5.44 (Note that the colour scale for the two figures are different). One thing that can 

immediately be noticed is that, increasing initial range (further the target is) is 

detrimental to the performance, as the LOS rate gets is smaller as the range increases. 

Also, the performance drops as targets escape with fast speeds due to the similar 

reasoning explained in the preceding paragraph. 

All in all, it can be concluded that, for variety of scenarios and conditions, the 

proposed algorithm provides correct results with acceptable rates (namely 76.88% for 

a conservative 𝐽 criterion). 
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Figure 5.43. 𝐽 values for different 𝛾𝑡 and 𝑉𝑡 values where initial range of the target is 

500 m 

 

Figure 5.44.  𝐽 values for different 𝛾𝑡 and 𝑉𝑡 values where initial range of the target 

is 5100 m 
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5.3.Computational Time 

One of the significant downside of the proposed algorithm is that it includes simple 

but numerous calculations, which requires significant amount computational time. In 

this section, effect of selecting the grid size of GPM to the computational time is 

analysed. 

The analysis is performed by calculating the total simulation time for different 

increments of flight path angle and speed guesses. For the sake of this analysis, the 

1/𝑉𝑡𝑚𝑎𝑥  rule is omitted and the increments are selected independently. 

Table 5.8. Performance specifications of the computer 

Specification Value 

CPU Frequency 2.4 GHz 

# of CPU Cores 8 

RAM 12 GB 

Operating System Windows 10, 64-bit 

MATLAB Version 2017a 

 

The simulations created in Simulink environment are run in accelerator mode with 1 

milliseconds timestep and Euler integration. The specifications of the computer in 

which the simulations are performed are listed in Table 5.8. 

Moreover, the scenario that has been used to assess the computational time is 

presented in Table 5.9. 

Table 5.9. Computational time scenario 

# 𝑽𝒕 (m/s) 𝜸𝒕 (°) 𝒙𝒊𝒏𝒊𝒕 (m) 𝒛𝒊𝒏𝒊𝒕 (m) Engagement time (s) 

1 20 15 1000 50 3.069 
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Table 5.10. Selection of GPM increments for time analysis 

 Selected increments 

𝚫𝜸̂𝒕 (°) [1, 2.5, 10, 20 ,45] 

𝚫𝑽̂𝒕 (m/s)  [5 10 20 50] 

 

The engagement scenario depicted in Table 5.9 is run with different Δ𝛾𝑡 and Δ𝑉̂𝑡 

increments selected as in Table 5.10. 

In the analysis, all combinations of selected increments are run. This means that, the 

total count of runs is 5 × 4 = 20. Using the selected increments depicted in Table 

5.10, the search grid limits are selected as in Table 5.11. 

Table 5.11. GPM limits used in time analysis 

 Minimum Maximum 

𝜸̂𝒕 (°) 0 360- Δ𝛾𝑡 

𝑽̂𝒕 (m/s)  0 400 

 

Consequently, minimum and maximum numbers of elements in the GPM becomes 72 

and 29160, respectively. The simulation times with respect to each increment 

selection are plotted in Figure 5.45. Likewise, the simulation times with respect to 

total number of elements in the GPM are also plotted in Figure 5.46. 

When both Figure 5.45 and Figure 5.46 are inspected, one can easily infer that a sharp 

change of computational time is present with the selection of increment size. 

Moreover, when a linear curve is fitted to Figure 5.46, (5.3) is obtained with an 𝑅2 of 

0.9972. 

𝑡𝑠𝑖𝑚 = 0.003562𝐺𝑃𝑀𝑠𝑖𝑧𝑒  (5.3) 
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Figure 5.45. Resultant computational times (seconds) with respect to individual 

guess increments 

 

Figure 5.46. Resultant computational times (logarithmic scale) with respect to 

number of elements in GPM 

(5.3) suggests that, the burden of each element in GPM is approximately 3.5 ms in a 

3 seconds scenario. Consequently, with a GPM configuration used in previous 
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sections (Δ𝛾𝑡 = 2.5° and Δ𝑉̂𝑡 = 10 m/s), the number of elements in GPM becomes 

144 × 41 = 5904; making the total run time of a 3 seconds simulation 

0.009442 × 5904 = 21.03 seconds. 

This phenomenon consists the biggest problem of the proposed algorithm. Possible 

theoretical remedies of this problem are proposed in the next chapter. 
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CHAPTER 6  

 

 

CONCLUSION AND FUTURE WORK 

 

 

 

In this chapter, some possible improvements to the algorithm are proposed. Then, a 

summary of the proposed algorithm and its results are presented. 

6.1. Possible Future Work 

Since the major drawback of the algorithm is its computational time (which is a 

function of the GPM grid), the proposed improvements to the algorithm focuses on 

decreasing the computational effort without decreasing observability. Instead of 

searching for the whole domain, the search grid can be optimised by certain methods. 

In this section, those possible optimization propositions are explained. Those 

propositions are: 

• Selecting a nonuniform GPM grid 

• Eliminating irrelevant elements in GPM 

• An adaptive search algorithm, which starts from a coarser grid 

6.1.1. Nonuniform GPM 

Throughout the thesis a uniformly distributed GPM grid was used. That is, Δ𝛾𝑡 and 

Δ𝑉̂𝑡 was constant. However, since errors related to these grids are dependent to each 

other, one can choose to have a nonuniform grid. 

For example, if the target is slow, the observability of 𝛾𝑡 worsens, as it was shown in 

previous chapter. As a remedy, a finer grid of 𝛾𝑡’s can be selected corresponding to 

slow 𝑉̂𝑡’s in order to increase observability in slower target speeds. Conversely, for 

large values of 𝑉̂𝑡, a coarser 𝛾𝑡 grid can be chosen to save from computational time. 
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6.1.2. Irrelevant Elimination 

Since an a priori information related to the target is unavailable, the algorithm should 

be initiated with a wide GPM range, including all possible scenarios. However, as the 

engagement occurs, some elements in GPM may become irrelevant to their scenarios. 

To illustrate using the scenario set depicted in Table 5.1 are run with ideal 

measurements and the count of irrelevant scenarios are obtained. For this case, the 

following elements in the GPM are considered irrelevant: 

(1) Those which has an altitude larger than 3 km 

(2) Those which has a range larger than 7 km 

(3) Those which have a negative range (|𝜆̂| > 90°) 

Since the same GPM composition as in Chapter 5 is used, it can be said that there is a 

total of 5904 elements in the GPM. The ones which are considered as irrelevant are 

summarised in Table 6.1. 

Table 6.1. Irrelevant results (some elements may become irrelevant due to multiple 

reasons) 

Scenario # 1 2 3 4 5 6 

Total GPM 5904 

Total Irrelevant 5021 4277 4129 4112 5380 4607 

Irrelevant by (1) 0 89 319 0 2377 1185 

Irrelevant by (2) 0 0 5 0 4957 1284 

Irrelevant by (3) 5021 4188 3810 4112 2880 3422 

Irrelevant/Total ratio (%) 85.04 72.44 69.94 69.65 91.12 78.03 

 

An examination of Table 6.1 suggests that, most of the elements in the GPM are 

actually irrelevant to their respective scenarios.  This means that, one can save about 

70% of computational time if the irrelevant elements are disregarded in estimation. 

However, lack of a priori information about the target forces the designer to start with 
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the broadest GPM domain possible as one cannot know the LOS/LOS rate profile 

beforehand to identify and eliminate the irrelevant elements. 

Moreover, one can infer from Table 6.1 that the concept of irrelevance in this case is 

dominated by (3). Mathematically (3) means “negative range”. Physically, it means 

that the missile passed by that synthetic target, making that element irrelevant. 

Another implication of Table 6.1 is related to the scenarios where the target is slow (5 

and 6). If the target is slow, one can expect the LOS rate to be a small value. This 

forces the synthetic range calculations corresponding to high speed guesses to be 

large, making them irrelevant to the estimation. In Table 6.1, it can easily be seen that, 

fast scenarios did not produce any irrelevance due to (2) (except for a small number 

of 5 in scenario 3). Conversely, a significant number of irrelevance due to (2) can be 

observed in scenarios 5 & 6, owing to the aforementioned reason. 

In Figure 6.1, Figure 6.2, Figure 6.3 and Figure 6.4 histograms (bin width: 0.5 s) of 

the time occurrences of irrelevance are plotted. The figures show the number of 

elements in the GPM which satisfies the irrelevance conditions, grouped by first time 

of occurrence. 

The most prominent implication of the histograms is that, most of the first irrelevances 

occur at the initialisation of the algorithm (Figure 6.1). This could help the designer 

to eliminate the irrelevant elements before synthetic trajectory integration. However, 

that workflow may be insecure since the seeker measurement may be false at that 

specific time, leading erroneous results. 

Similarly, the dominant characteristic of irrelevance due to negative range is also 

visible in the histograms. Upon initialisation, most of the elements become irrelevant. 

Afterwards, a small number of elements are added to the irrelevant pool as the 

engagement continues (Figure 6.4). This phenomenon occurs due to the fact that, as 

the engagement occurs, some of the synthetic trajectories passes by the missile, 

rendering them to have a “negative range”. 
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Figure 6.1. Histogram of irrelevant occurrence (any) 

 

Figure 6.2. Histogram of irrelevant occurrence (Only by (1)) 

Moreover, parallel to the results shown in Table 6.1, in Figure 6.2 and Figure 6.3, the 

effect of irrelevance due to (1) and (2) on scenarios 5 and 6 can be seen. Other 

scenarios do not produce these irrelevance types much, as explained before.  
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Figure 6.3. Histogram of irrelevant occurrence (Only by (2)) 

 

Figure 6.4. Histogram of irrelevant occurrence (Only by (3)) 

Likewise, as opposed to irrelevance due to (3), these cases are not added to the 

irrelevant pool conspicuously as the engagement continues. This can be explained by 

the fact that since the missile moves towards any synthetic target (except for negative 

range case), the engagement has the tendency to nullify the range. As this is the case, 
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if the synthetic range is within the specified limits prior to algorithm initialisation, it 

is unlikely to have an out-of-range value within the rest of the engagement. 

6.1.3. Creating an Adaptive Algorithm 

So far, the basis of the algorithm was to initialise the guesses by constructing a solid 

GPM grid throughout the engagement. It was also mentioned that this requires some 

computational time. One of the possible solutions for this problem is to start with a 

GPM and adapt it as the engagement proceeds. 

One method that can be used could be is a gradient based algorithm like steepest 

descend method, where an initial guess is iterated through the steepest gradient until 

a performance parameter is satisfied. In gradient based algorithms, there is a risk of 

convergence to a local minimum rather than the global minimum. Therefore, it is very 

critical to select an initial guess that yields a global minimiser. 

Likewise, other than gradient based algorithms, global search algorithm methods can 

be used. Such methods search the optimal solution within the entire set of possible 

solutions through an objective function and they do not need derivatives. Namely, in 

particle swarm optimisation (PSO), an initial guess and multiple particles are used. In 

that method, randomly generated points – called particles – are initiated and iterated 

until the optimisation criterion (e.g. a cost function) is minimised. Such a method may 

find the global minimum since it operates in the whole region as opposed to gradient 

based algorithms. However, the PSO may need some computational effort as it 

incorporates various particles to be iterated, depending on the selected particle count. 

6.2.Conclusion 

In this thesis, a new method for estimating target parameters and range-to-go without 

using standard Kalman Filters, which are susceptible to unobservability when the 

missile does not accelerate, is explained. It is explained that, each information related 

to the target and engagement is valuable for successful capture of the target; which is 

the basic motivation of estimating such parameters. Then, available methods within 

the literature for estimation are presented. 

In the beginning, basic information related to missiles, missile algorithms and 

guidance are explained in order to familiarise the reader to the missile guidance 
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concept. For this purpose, elements in missile guidance & control and the control loop 

they establish is clarified. Concepts of autopilot & guidance are presented along with 

the engagement geometry that missile and target create, which is the basis of any 

guidance law. Also, equations related to engagement geometry are presented, which 

would be used in the algorithm. 

Then, the algorithm is presented by starting with explaining the mathematics of the 

problem. The problem is approached by creating a grid called Guessed Position 

Matrix (abbreviated as GPM within the thesis) which includes all physically possible 

scenarios of the target. It is stated that at one timestep, the problem has infinitely many 

solutions; therefore, one should look for the solution to the problem within a time 

range. For that end, the synthetic trajectories concept is presented. By integrating the 

elements in the GPM, one can obtain a space of trajectories, one being the real case. 

Following that the problem evolves to selecting (or isolating) the true case among 

numerous trajectories. For isolation, the method of error integration (cost function) is 

described. That method includes calculating the LOS and LOS rates corresponding to 

each synthetic trajectory (called synthetic LOS/LOS rate) and comparing it with the 

real measurement. Clearly, the minimum error can be selected as the estimation. 

Then the effects of errors in GPM to range estimation are examined. It could be seen 

that, the influence of errors to range estimation change with the target speed. 

Mathematically, it could be shown that, when the target moves slowly, the errors in 

flight path angle estimations has little effect onto range calculation; even though 

observability of flight path angle diminishes in this case. Conversely, if the target is 

fast, mathematical expression showed that the errors in flight path angle affect the 

range estimation greatly. Similarly, using the same expression, the grid selection of 

the GPM is forced to obey an equality. 

After that, the environment that the algorithm would be tested was explained. The 

errors that were included in the system were presented along with defining the 

concepts of bias and noise. It is said that bias is a measurement error that would make 

the error of its integration larger as the time goes on. Conversely, noise does not 

diverge from the real integration; it rather deviates around it.  
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Then the results of the algorithm are presented starting with ideal results to validate 

the performance of the algorithm. The uniqueness problem could be seen, even when 

everything was ideal. The first meaningful estimations are obtained at the second 

timestep after the algorithm was initiated, proving the uniqueness problem. Then the 

scenarios are run under non-ideal conditions (IMU & Seeker Error with Non-Element 

case) to assess the robustness of the algorithm. It is seen that, for slow targets, the 

observability of the flight path angle worsens. Nevertheless, since the speed 

estimations are good enough, the range estimations are not greatly affected by flight 

path angle estimation. Conversely, when the target is fast, a small error in flight path 

angle affected the range estimation more, in conjunction with the previous assertions 

regarding the mathematical expression that relates estimation errors with range 

estimation. It is also seen that observability of flight path angle is better in a fast target 

scenario, which improves the range estimation for this case. 

Following those analyses, the effect of guidance parameters to the performance of the 

algorithm is explained. For that analysis, different PNG gains and bias values are 

selected for a specific scenario, of which estimation performance are investigated by 

looking for the integral of the errors in range estimations. It is seen that, conditions 

where the engagement become slow (namely low PNG gains), the performance of the 

algorithm worsens as the observability of the engagement diminishes. 

Then the performance of the algorithm when the missile does not manoeuvre, which 

was one of the benefits of the proposed algorithm, is investigated. To that end, some 

scenario conditions are run where the missile does not accelerate, and the 

measurements are contaminated with errors. It is asserted that, the algorithm works 

under those conditions, which could be advantageous for missiles with a midcourse 

phase where missile acceleration is mostly close to null. 

Subsequently, the algorithm is tested in a broader space, in order to numerically 

demonstrate that the algorithm performs well in the whole working domain. While it 

is mentioned that the algorithm works perfectly under ideal circumstances; when 

errors are introduced to measurements, a success criterion seemed to be necessary to 

assess the performance. Consequently, it is stated that with the selected criterion – a 

rather conservative one – the success rate of the algorithm is found as 76.875%. It 
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could also be argued that the type of engagement is the most critical element for 

convergence. It is seen that engagements resulting in low LOS rate values during 

initialisation of the algorithm, depreciates the performance significantly. 

Moreover, since the algorithm requires a lot of calculations and integration, the 

required computational time for a specific scenario was also analysed. It was seen 

that, each element in the GPM increases the computational time by nine milliseconds 

in a three seconds simulation. 

Finally, some possible solutions for the computational time are proposed. Those 

include nonuniform GPM, irrelevant elimination and an adaptive algorithm. In 

nonuniform GPM case, since the observability of the system changes with target 

speed, it was proposed that, one can choose to change the GPM grid size with target 

speed. In irrelevant elimination, it is possible to eliminate any physically infeasible 

cases and continue the estimation with the remaining elements in the GPM; hence the 

improvement the computational time. Also, one can find a clever solution such that, 

the algorithm changes its grid size during flight.  
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