
EXTRACTING AUXETIC PATTERNS FROM MESHES FOR 3D PRINTING

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

LEVEND MEHMET MERT

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

FEBRUARY 2018

Approval of the thesis:

EXTRACTING AUXETIC PATTERNS FROM MESHES FOR 3D PRINTING

submitted by LEVEND MEHMET MERT in partial fulfillment of the requirements
for the degree of Master of Science in Computer Engineering Department, Mid-
dle East Technical University by,

Prof. Dr. Gülbin Dural Ünver
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Halit Oğuztüzün
Head of Department, Computer Engineering

Assoc. Prof. Dr. Yusuf Sahillioğlu
Supervisor, Computer Engineering Department, METU

Assist. Prof. Dr. Ulaş Yaman
Co-supervisor, Mechanical Engineering Department, METU

Examining Committee Members:

Prof. Dr. Tolga Can
Computer Engineering Department, METU

Assoc. Prof. Dr. Yusuf Sahillioğlu
Computer Engineering Department, METU

Assist. Prof. Dr. Ufuk Çelikcan
Computer Engineering Department, HU

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: LEVEND MEHMET MERT

Signature :

iv

ABSTRACT

EXTRACTING AUXETIC PATTERNS FROM MESHES FOR 3D PRINTING

Mert, Levend Mehmet
M.S., Department of Computer Engineering

Supervisor : Assoc. Prof. Dr. Yusuf Sahillioğlu

Co-Supervisor : Assist. Prof. Dr. Ulaş Yaman

February 2018, 136 pages

3D printing is a manufacturing process which generates a physical, three-dimensional

object from a digital design. In our day, there exist lots of devices, called 3D printers,

having different working principles and using various materials for this manufactur-

ing process. A model designed digitally can be transformed into a three-dimensional

object in the real world by 3D printers. The elasticity of objects created by 3D print-

ers depends on the materials used during manufacturing and the digital designs. If

the digital design would be transformed into an object after 3D printing is modified

properly, the printed object can be more flexible even though the material used during

manufacturing remains the same.

In this thesis, we propose methods for extracting auxetic patterns from 3D print-

able digital designs by modifying the existing mesh primitives directly and fully-

automatically. Proposed methods were employed to extract auxetic patterns from

some digital designs. These extracted auxetic patterns were 3D printed. It was ob-

served that 3D printed objects from extracted auxetic patterns are more flexible when

they are compared to 3D printed objects from the original digital designs. Benefits

of extracting auxetic patterns from digital designs and 3D print them instead of the

v

original digital designs were revealed. Besides, challenges of 3D printing extracted

auxetic patterns and how to deal with these challenges were also referred. Finally,

constraints and performances of the proposed methods were explained and acquired

results of these methods for different digital designs were compared.

Keywords: Auxetic, Texture Synthesis, Filigree Synthesis, Geometry Processing, 3D

Printing, Digital Fabrication

vi

ÖZ

EKLEMELİ ÜRETİM İÇİN ÖRGÜ YAPILARINDAN OGZETİK
DESENLERİN ÇIKARTILMASI

Mert, Levend Mehmet
Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Yusuf Sahillioğlu

Ortak Tez Yöneticisi : Yrd. Doç. Dr. Ulaş Yaman

Şubat 2018 , 136 sayfa

Eklemeli üretim dijital bir tasarımdan fiziksel, 3 boyutlu bir nesne üretme işlemidir.

Günümüzde, bu işlem için farklı çalışma prensipleri olan ve çeşitli malzemeler kul-

lanabilen bir çok 3B yazıcı mevcuttur. Dijital ortamda oluşturulan bir tasarım bu 3B

yazıcılar sayesinde gerçek dünyada 3 boyutlu bir nesneye dönüştürülebilir. Eklemeli

üretim ile üretilen nesnelerin esneklikleri; üretim için kullanılan malzemelere ve diji-

tal tasarımlara bağlıdır. Eklemeli üretim sonucu nesneye dönüşecek bir dijital tasarım

uygun şekilde değiştirilirse üretimde kullanılacak malzeme aynı kalmasına rağmen

elde edilecek nesne daha esnek olabilir.

Bu tez kapsamında eklemeli üretim ile üretilebilecek dijital tasarımların; temel özel-

likleri doğrudan değişmeyecek şekilde, otomatik olarak esnek özellik gösteren de-

senlerle kaplanması için yöntemler önerilmektedir. Önerilen yöntemler kullanılarak

bazı dijital tasarımlar esnek özellik gösteren desenlerle kaplanmışlardır. Bazı diji-

tal tasarımların esnek özellik gösteren desenlerle kaplanmış halleri eklemeli üretim

ile üretilmişlerdir.Üretilen nesnelerin, dijital tasarımların orjinal hallerinin aynı mal-

zeme kullanılarak eklemeli üretim ile üretilmesi sonucu elde edilecek nesnelerden

vii

daha fazla esnek özelliğe sahip oldukları gözlenmiştir. Dijital tasarımların orjinal hal-

leri yerine esnek özellik gösteren desenlerle kaplanmış hallerinin eklemeli üretim ile

üretilmesinin sağladığı faydalar belirlenmiştir. Bu faydalara ek olarak, dijital tasarım-

ların orjinal halleri yerine esnek özellik gösteren desenlerle kaplanmış hallerinin ek-

lemeli üretim sürecine getirdiği zorluklar ve bu zorlukları aşmak için yapılabilecekler

de belirlenmiştir. Son olarak dijital tasarımları esnek özellik gösteren desenlerle kap-

lamak için önerilen yöntemlerin kısıtlarından ve başarımlarından bahsedilmiş, farklı

dijital tasarımlar üzerinde elde edilen sonuçlar kıyaslanmıştır.

Anahtar Kelimeler: Ogzetik, Yapı Sentezleme, Desen Sentezleme, Geometri İşleme,

3B Yazdırma, Dijital Üretim

viii

To my lovely family

ix

ACKNOWLEDGMENTS

I would first like to thank my thesis advisor Assoc. Prof. Dr. Yusuf Sahillioğlu

and co-advisor Asst. Prof. Dr. Ulaş Yaman for their surveillance, guidance and

encouragement.

I would like to thank my employer ASELSAN A.Ş. for allowing me to proceed my

education and use its resources during my education. I also thank my superiors and

colleagues for supporting me.

I wish to thank my friends who have helped and inspired me during my thesis study.

I would like to thank my fiancee for her patience and support.

Finally, I am grateful to my family for raising me.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xiii

LIST OF FIGURES . xiv

LIST OF ABBREVIATIONS . xx

CHAPTERS

1 INTRODUCTION . 1

1.1 Motivation . 2

1.2 Contributions . 2

1.3 Thesis Organization . 2

2 RELATED WORK . 5

2.1 Studies On Visuality . 5

2.2 Studies On Controlling Elasticity 6

2.3 Studies For Cost Effective Digital Fabrication 7

2.4 Studies For Rapid Fabrication 7

2.5 Application Areas of Auxetics 8

xi

3 AUXETIC PATTERNS EXTRACTION METHODS 11

3.1 Auxetic Pattern . 11

3.2 Extracting Auxetic Patterns From Triangle Meshes 13

3.3 Extracting Auxetic Patterns From Quad Meshes 54

3.4 Preparing Extracted Auxetic Patterns For 3D Printing 104

4 RESULTS AND DISCUSSIONS . 107

4.1 Advantages Of Extracting Auxetic Patterns For 3D Printing . 107

4.2 Challenges Of 3D Printing Extracted Auxetic Patterns 110

4.2.1 Increasing Weigth Challenge 110

4.2.2 3D Printing Flattened Auxetic Patterns 115

4.2.3 Folding Flattened Auxetic Patterns 118

4.2.4 Using Meltable Support Structures 121

4.3 Limitations Of Auxetic Patterns Extraction Methods 122

4.3.1 Auxetic Patterns Extraction Algorithm For Trian-
gle Meshes . 122

4.3.2 Auxetic Patterns Extraction Algorithm For Quad
Meshes . 124

4.4 Performances Of Auxetic Patterns Extraction Methods 126

5 CONCLUSION . 131

REFERENCES . 133

xii

LIST OF TABLES

TABLES

Table 4.1 3D Printing Requirements Of Different Models 109

Table 4.2 Running Results Of Quad Mesh Auxetic Patterns Extraction Algo-

rithm For Different Inputs . 126

Table 4.3 Running Results Of Quad Mesh Auxetic Patterns Extraction Algo-

rithm For Stanford Bunny Model . 127

xiii

LIST OF FIGURES

FIGURES

Figure 3.1 Re-entrant honeycomb structure 11

Figure 3.2 Hexagon and its expansion . 12

Figure 3.3 Resembling hexagon . 12

Figure 3.4 Execution steps of the GETBOWTIECANDIDATETRIS algorithm 15

Figure 3.4 Execution steps of the GETBOWTIECANDIDATETRIS algorithm

(cont.) . 16

Figure 3.5 Execution steps of the FINDBOWTIES algorithm 19

Figure 3.5 Execution steps of the FINDBOWTIES algorithm (cont.) 20

Figure 3.5 Execution steps of the FINDBOWTIES algorithm (cont.) 21

Figure 3.5 Execution steps of the FINDBOWTIES algorithm (cont.) 22

Figure 3.5 Execution steps of the FINDBOWTIES algorithm (cont.) 23

Figure 3.5 Execution steps of the FINDBOWTIES algorithm (cont.) 24

Figure 3.5 Execution steps of the FINDBOWTIES algorithm (cont.) 25

Figure 3.5 Execution steps of the FINDBOWTIES algorithm (cont.) 26

Figure 3.5 Execution steps of the FINDBOWTIES algorithm (cont.) 27

Figure 3.6 Execution steps of the INSERTBOWTIE algorithm 30

Figure 3.6 Execution steps of the INSERTBOWTIE algorithm (cont.) 31

xiv

Figure 3.6 Execution steps of the INSERTBOWTIE algorithm (cont.) 32

Figure 3.6 Execution steps of the INSERTBOWTIE algorithm (cont.) 33

Figure 3.6 Execution steps of the INSERTBOWTIE algorithm (cont.) 34

Figure 3.6 Execution steps of the INSERTBOWTIE algorithm (cont.) 35

Figure 3.6 Execution steps of the INSERTBOWTIE algorithm (cont.) 36

Figure 3.6 Execution steps of the INSERTBOWTIE algorithm (cont.) 37

Figure 3.6 Execution steps of the INSERTBOWTIE algorithm (cont.) 38

Figure 3.7 Execution steps of the GETADJACENTPAIRS algorithm 41

Figure 3.7 Execution steps of the GETADJACENTPAIRS algorithm (cont.) . . 42

Figure 3.7 Execution steps of the GETADJACENTPAIRS algorithm (cont.) . . 43

Figure 3.7 Execution steps of the GETADJACENTPAIRS algorithm (cont.) . . 44

Figure 3.7 Execution steps of the GETADJACENTPAIRS algorithm (cont.) . . 45

Figure 3.8 Execution steps of the FINDCONTIGUOUSBOWTIE algorithm . 48

Figure 3.8 Execution steps of the FINDCONTIGUOUSBOWTIE algorithm

(cont.) . 49

Figure 3.8 Execution steps of the FINDCONTIGUOUSBOWTIE algorithm

(cont.) . 50

Figure 3.8 Execution steps of the FINDCONTIGUOUSBOWTIE algorithm

(cont.) . 51

Figure 3.9 Triangle Mesh Plane . 53

Figure 3.10 Extracted Auxetic Patterns - Cross 53

Figure 3.11 Extracted Auxetic Patterns - Horizontal 53

Figure 3.12 Extracted Auxetic Patterns - Vertical 53

xv

Figure 3.13 Execution steps of the FINDBOWTIES algorithm 57

Figure 3.13 Execution steps of the FINDBOWTIES algorithm (cont.) 58

Figure 3.13 Execution steps of the FINDBOWTIES algorithm (cont.) 59

Figure 3.13 Execution steps of the FINDBOWTIES algorithm (cont.) 60

Figure 3.13 Execution steps of the FINDBOWTIES algorithm (cont.) 61

Figure 3.13 Execution steps of the FINDBOWTIES algorithm (cont.) 62

Figure 3.13 Execution steps of the FINDBOWTIES algorithm (cont.) 63

Figure 3.13 Execution steps of the FINDBOWTIES algorithm (cont.) 64

Figure 3.13 Execution steps of the FINDBOWTIES algorithm (cont.) 65

Figure 3.13 Execution steps of the FINDBOWTIES algorithm (cont.) 66

Figure 3.13 Execution steps of the FINDBOWTIES algorithm (cont.) 67

Figure 3.13 Execution steps of the FINDBOWTIES algorithm (cont.) 68

Figure 3.14 Execution steps of the INSERTBOWTIE algorithm 71

Figure 3.14 Execution steps of the INSERTBOWTIE algorithm (cont.) 72

Figure 3.14 Execution steps of the INSERTBOWTIE algorithm (cont.) 73

Figure 3.15 Execution steps of the GETADJACENTPAIRS algorithm 75

Figure 3.15 Execution steps of the GETADJACENTPAIRS algorithm (cont.) . . 76

Figure 3.15 Execution steps of the GETADJACENTPAIRS algorithm (cont.) . . 77

Figure 3.15 Execution steps of the GETADJACENTPAIRS algorithm (cont.) . . 78

Figure 3.16 Execution steps of the GETOPPOSITESIDENEIGHBOR algorithm 80

Figure 3.16 Execution steps of the GETOPPOSITESIDENEIGHBOR algo-

rithm (cont.) . 81

xvi

Figure 3.17 Execution steps of the FINDINTERNALBOWTIES algorithm . . . 84

Figure 3.17 Execution steps of the FINDINTERNALBOWTIES algorithm (cont.) 85

Figure 3.17 Execution steps of the FINDINTERNALBOWTIES algorithm (cont.) 86

Figure 3.17 Execution steps of the FINDINTERNALBOWTIES algorithm (cont.) 87

Figure 3.17 Execution steps of the FINDINTERNALBOWTIES algorithm (cont.) 88

Figure 3.17 Execution steps of the FINDINTERNALBOWTIES algorithm (cont.) 89

Figure 3.17 Execution steps of the FINDINTERNALBOWTIES algorithm (cont.) 90

Figure 3.17 Execution steps of the FINDINTERNALBOWTIES algorithm (cont.) 91

Figure 3.18 Execution steps of the INSERTINTERNALBOWTIE algorithm . . 95

Figure 3.18 Execution steps of the INSERTINTERNALBOWTIE algorithm

(cont.) . 96

Figure 3.18 Execution steps of the INSERTINTERNALBOWTIE algorithm

(cont.) . 97

Figure 3.19 Execution steps of the INSERTHALFBOWTIE algorithm 100

Figure 3.19 Execution steps of the INSERTHALFBOWTIE algorithm (cont.) . 101

Figure 3.19 Execution steps of the INSERTHALFBOWTIE algorithm (cont.) . 102

Figure 3.19 Execution steps of the INSERTHALFBOWTIE algorithm (cont.) . 103

Figure 3.20 Goblet model . 104

Figure 3.21 Extracted auxetic patterns prepared for 3D printing 105

Figure 4.1 Goblet model . 108

Figure 4.2 Vase model . 108

Figure 4.3 Glove model . 109

xvii

Figure 4.4 Downfall happened while 3D printing with Ultimaker 2+ 111

Figure 4.5 Successfully 3D printed auxetic patterns with Ultimaker 2+ 112

Figure 4.6 Layered goblet for DLP 3D printing 113

Figure 4.7 Images of goblet layers . 113

Figure 4.8 3D printed goblet with B9 Creator 1.2 114

Figure 4.9 WirePrint [1] . 114

Figure 4.10 5 DOF WireFrame Printer and its products [2] 115

Figure 4.11 3D printed flattened large auxetic patterns with Ultimaker 2+ . . . 116

Figure 4.12 3D printed flattened narrow auxetic patterns with Ultimaker 2+ . . 116

Figure 4.13 Male head model . 117

Figure 4.14 Parametrization results of male head model 117

Figure 4.15 Flattened hexagonal prism . 118

Figure 4.16 Distortions occurred on hexagonal prism 3D printed with Ulti-

maker 2+ . 119

Figure 4.17 Steps of folding 3D printed flattened hexagonal prism 119

Figure 4.18 Spot generated by [3] . 120

Figure 4.19 Max Planck generated by [4] . 120

Figure 4.20 Covering the male head model with flattened auxetic patterns . . . 121

Figure 4.21 3D printed auxetic patterns with Ultimaker 3 Extended 122

Figure 4.22 Appropriate case for triangle mesh algorithm 124

Figure 4.23 Inappropriate case for triangle mesh algorithm 124

Figure 4.24 Appropriate case for quad mesh algorithm 125

xviii

Figure 4.25 Inappropriate case for quad mesh algorithm 126

Figure 4.26 Surfaces of different models after quad mesh auxetic patterns ex-

traction algorithm run . 128

Figure 4.27 Failure case of the quad mesh auxetic patterns extraction algorithm

on Stanford bunny . 129

Figure 5.1 Auxetic planes having dimensions 200x200 mm 132

xix

LIST OF ABBREVIATIONS

3D Three Dimensional

CAD Computer-Aided Design

CAM Computer-Aided Manufacturing

DLP Digital Light Processing

DOF Degree Of Freedom

mm Millimeter

xx

CHAPTER 1

INTRODUCTION

3D printing is current technology for creating physical, three-dimensional objects

from digital designs. Nowadays, 3D printers are widely used in various fields from

homes to the industry. There are lots of 3D printers using diverse materials and based

on different technologies. Although there exists 3D printers using diverse materials,

using plastics are more common because of their price. Besides, plastics are also

cheaper than other materials used by 3D printers. These plastics used by 3D printers

have different flexibility characteristics. If an elastic object is desired as the output of

the 3D printer, the material used by the 3D printer also has to be elastic. 3D printers

just print the digital designs with specified materials, they are not aware of the digital

designs’ flexibility.

However, digital designs can be modified to behave elastically when they are 3D

printed even though the material used during 3D printing is not very elastic. This can

be done by changing the surface of the digital design with connected auxetic patterns.

The term auxetic refers a structure that becomes thicker when it stretched. These

structures bring flexibility to the objects. In other words, objects consisting of auxetic

patterns would be elastic.

Replacing surfaces of digital designs is always a popular topic in computer graphics

world. Many types of research have been studied on this topic for different purposes

and obtaining 3D printed elastic objects is also one of them. Various complex meth-

ods are proposed to change surfaces of digital designs in order to 3D print them and

obtain elastic objects with inelastic materials.

How to 3D print auxetic structures is another subject for computer graphics society

1

because they are vacuolar structures. 3D printing vacuolar structures vertically is

very hard without using internal support structures. If internal support structures are

employed, then finally obtained 3D printed object deviates from the original digital

design.

1.1 Motivation

In this thesis, we put forth new simple methods different from existing ones to extract

auxetic patterns from digital designs. We also propose 3D printing of these extracted

auxetic patterns instead of original digital designs in order to acquire elastic objects.

Additionally, we suggest a procedure to generate digital designs consisting of auxetic

patterns which can create simple elastic objects and cover complex shapes when they

are 3D printed. We promise elasticity for objects 3D printed with inelastic material

by using auxetic patterns.

1.2 Contributions

The main contributions of this thesis are as follows:

• In contrast to many pattern synthesis techniques that introduce additional prim-

itives such as curve networks, we modify the existing mesh primitives into aux-

etic patterns directly and fully-automatically. To this end, novel auxetic pattern

extraction algorithms are designed for triangle and quadrilateral meshes.

• Simple shapes consisting of auxetic patterns are generated in order to cover

complex shapes.

• Elastic fabrication is achieved by using auxetic tiling of inelastic and cheap

material.

1.3 Thesis Organization

The rest of this thesis is organized as follows:

2

Chapter 2 presents the related work on extracting patterns from digital models for 3D

printing and known and potential application areas of auxetics.

Chapter 3 describes auxetic patterns extraction processes from digital models and

how to prepare this extracted auxetic patterns for 3D printing.

In Chapter 4, benefits of 3D printing extracted auxetic patterns instead of digital mod-

els and of difficulties of 3D printing extracted auxetic patterns are discussed. Besides

restrictions and success of our auxetic pattern extraction methods are reported.

In Chapter 5, the conclusion of this thesis and future work can be done on this thesis

are emphasized.

3

4

CHAPTER 2

RELATED WORK

Texture and filigree synthesis for digital fabrication, in other words; 3D printing, are

important topics in computer graphics community and there are lots of studies carried

out on these topics in recent years. Although these studies have different purposes,

for example; visuality, flexibility, cost-effective manufacturing, fast prototyping; they

try to achieve the same thing: replacing the objects’ surfaces with patterns.

In this chapter, previous studies about texture, filigree and pattern synthesis for 3D

printing having various purposes are classified and expressed. Finally, application

areas of auxetics are stated.

2.1 Studies On Visuality

The aesthetic appearance of the digital models is quite important in computer graph-

ics as these models lend themselves to subsequent processes such as video games and

fabrication. There exist lots of studies about texture synthesis which enhances the

aesthetic appearance. Wei et al. [5] made an extensive survey on texture synthesis

methods. Different methods were designed on image-based texture synthesis such as

covering target surface with patches [6], mapping texture directly on the target sur-

face [7]. Zhou et al. [8] also designed a method which is named Mesh Quilting for

geometric texture synthesis. Ma et al. [9], developed a data-driven method for synthe-

sizing large domains with small input textures. Garg et al. [10] presented an approach

to design meshes consisting of woven wires. Their approach combines small wires

woven in a plain weave to create wire meshes which represent large objects.

5

Torres et al. [11] stated that haptic characteristics which contribute to aesthetic value

are generally lacking in 3D printed objects. Therefore, they created a tool for map-

ping texture elements onto objects for 3D printing. Dumas et al. [12] also synthesize

patterns which are not only fully connected but also structurally stable for 3D printing

along surfaces. Additionally, Chen et al. [13] managed to automatically synthesize set

of inputs creating filigrees together for target surfaces of objects. Their automatic fil-

igree creation results are also 3D printable. Furthermore, a tool for designers created

by Schumacher, Thomaszewski and Gross [14] in order to generate surfaces struc-

tured with decorative patterns. The user specifies the decorative pattern and target

shape and tool covers the target shape with the given decorative pattern while consid-

ering the target shape’s durableness. Therefore, target shape with covered decorative

pattern can be 3D printed. Zhender et al. [15] also develop a tool for designing orna-

mental surfaces consisting of curve networks. Their tool admits user-defined spline

curves as an essential design parameter. Therefore, the user can control aesthetic.

Besides, their tool considers the soundness of the surfaces for 3D printing.

Besides, Zhao et al. [16] have a different perspective. They focused on how to 3D

print efficiently objects synthesized with patterns. They suggest synthesizing surfaces

with connected spirals which can be 3D printed without on-off switching of the print

nozzle. Their approach selects continuity of a tool path followed by the print nozzle

during the 3D printing operation as a baseline.

2.2 Studies On Controlling Elasticity

Elastic models appear in many computer graphics applications ranging from deforma-

tion [17] to non-rigid correspondence [18]. It is also a desirable feature in real-world

models such as toys and tools. Spillmann and Teschner [19] proposed an approach to

modeling objects as networks of elastic rods. Perez et al. [20] creates a tool for 3D

printing deformable objects consisting of rod meshes. Their tool gets a deformable

object and a set of deformed poses of its and generates 3D printable rod mesh which

resembles the input object. When generated rod mesh is 3D printed, it exhibits the

desired deformation.

6

Panetta et al. [21] designed a pattern family consisting of small structures which are

3D printable with a single material and without internal supports. Their patterns are

also elastic. They can combine these small patterns from their designed pattern fam-

ily in order to fabricate large objects having desired mechanical behaviors. Similarly,

Schumacher et al. [22] proposed a method for 3D printing objects having differ-

ent elastic properties at different parts. They generated microstructures to control

elasticity at different parts of the objects. Their method enables to print 3D objects

consisting of this microstructures and demonstrate varied elastic properties at desired

parts of these objects with a single material. Additionally, Martinez et al. [23] used

microstructures inspired by Voronoi open-cell foams for creating 3D printed elastic

objects. They allow the user to specify elasticity on different parts of the model.

Then, they generate corresponding structures in order to provide these elasticities.

These generated structures also can be 3D printed directly.

Konakovic et al. [4] and Guseinov et al. [3] also have methods to design elastic

objects from 3D printed flat surfaces consisting of patterns which provide elasticity.

2.3 Studies For Cost Effective Digital Fabrication

One of the biggest issues in 3D printing is the material cost. Because of the high

material costs in 3D printing, Wang et al. [24] came up with the idea that 3D printing

skin-frame states of objects. They developed a method for automatically designing

skin-frame states of objects. Their skin-frame structures resemble the objects which

they derived and they are proper for 3D printing. Moreover, these structures decreases

the material would be used during 3D printing. Lu et al. [25] designed an hollowing

optimization method for generating honeycomb-like structures inside the objects in

order to reduce material costs in 3D printing.

2.4 Studies For Rapid Fabrication

Another important issue in 3D printing is the fabrication time. Mueller et al. [1]

complained about that 3D printing an object takes a long time and they proposed to

7

3D print wireframe previews instead of the objects. In other words, they replaced the

objects surfaces with wireframe meshes and then 3D printed them. They modified

a 3D printer in order to 3D print these wireframe meshes because layer-wise 3D

printing was not proper to 3D print edges of the wireframe meshes. Their modified 3D

printer extrudes material directly into 3D space and uses extra cooling mechanisms

while 3D printing edges of wireframe meshes.

Peng et al. [2] advanced the 3D printing wireframe meshes and they provided on-the-

fly 3D printing opportunity for designers. Their system integrated with CAD/CAM

software which designers create digital objects. The digital objects created designers

analyzed by their system and turned into wireframe meshes. These wireframe meshes

3D printed in parallel. Changes on the digital objects are immediately reflected on

the 3D print.

Wu et al. [26] took wireframe 3D printing technology one step further with their

5DOF wireframe 3D printer. They developed a method for generating 3D printable

(by using their 5DOF wireframe 3D printer) wireframe meshes of arbitrary meshes.

Their 5DOF wireframe 3D printer can rotate the print during 3D printing operation if

it is necessary. Thus, any edge of the wireframe mesh can be 3D printed.

2.5 Application Areas of Auxetics

The most important property of auxetics is they become thicker when they stretched.

Under favor of this property, they have many application areas summarized by Liu

and Hu [27]:

• Textiles; rivets, fastener, fishnet, rope, fastener

• Industry: packing materials

• Aerospace; wing panels, aircraft noses

• Protection; crash helmet, bulletproof armor, shin and knee pad, glove, porous

barrier

• Biomedical; bandage reacting swells, muscle and ligament anchors

8

Additionally, auxetics have potential defense industry applications such as equipment

can be used by soldiers for protection and logistics stated by Underhill [28] and ex-

plosion proof military vehicles indicated by Imbalzano et al [29].

New application areas have being discovered day to day.

9

10

CHAPTER 3

AUXETIC PATTERNS EXTRACTION METHODS

In this chapter, preferred auxetic pattern is introduced in Section 3.1. Additionally,

reasons for choosing this auxetic pattern are also stated in the same section. Secondly,

extraction method of this pattern from triangle meshes is explained in Section 3.2.

Finally, extraction method of this pattern from quadrilateral, quad in short, meshes is

explained in Section 3.3.

3.1 Auxetic Pattern

We preferred the re-entrant honeycomb structure as an auxetic pattern. Figure 3.1

shows this structure.

Figure 3.1: Re-entrant honeycomb structure

The re-entrant honeycomb pattern is consisting of hexagons. Structure of hexagon

is proper to exhibit auxetic feature. When a tensile force applied to the hexagon, it

expands in a parallel direction to the applied force’s direction. The auxetic feature of

11

a hexagon can be seen in Figure 3.2.

Figure 3.2: Hexagon and its expansion

The re-entrant honeycomb pattern is chosen between auxetic patterns because the

hexagons creating this pattern can be derived easily from properly combined triangles

and quads. The shape of the hexagon is very similar to two triangles intersecting at

one point and their opposite edges of this point are parallel to each other shown in

Figure 3.3a. Likewise, two quads having one common edge are also associated with

a hexagon shape as shown in Figure 3.3b.

(a) Properly combined triangles (b) Properly combined quads

Figure 3.3: Resembling hexagon

In other words, meshes consisting of triangles or quads already host hexagons. There-

fore, re-entrant honeycomb pattern which consists of hexagons can be extracted from

triangle and quad meshes.

12

3.2 Extracting Auxetic Patterns From Triangle Meshes

We designed a novel approach to extract auxetic patterns from triangle meshes. Ex-

traction of the auxetic patterns from given triangle mesh is shown in Algorithm 3.2.1.

This algorithm searches and extracts honeycomb patterns on given triangle mesh start-

ing from given triangle and return the resulted structure.

Hexagons creating the auxetic patterns are named as bow ties and the extracted aux-

etic pattern structure referred as bow tie mesh at the rest of this section.

Algorithm 3.2.1 SEARCH(TriangleMesh, StartingTri)

1: BowTieMesh = empty set of bow ties, their points and their edges

2: BowTieCandidateTris = GETBOWTIECANDIDATETRIS(TriangleMesh, StartingTri)

3: Write BowTieCandidateTris

4: Read PairTri

5: BowTieTriPairs = FINDBOWTIES(BowTieMesh, TriangleMesh, StartingTri, PairTri)

6: for each triangle pair created bow tie P ∈ BowTieTriPairs do

7: ContiguousBowTieTriPair = FINDCONTIGUOUSBOWTIE(TriangleMesh, P.F irst, P.Second)

8: if ContiguousBowTieTriPair 6= null then

9: NewBowTieTriPairs = FINDBOWTIES(BowTieMesh, TriangleMesh, ContiguousBowTi-

eTriPair.First, ContiguousBowTieTriPair.Second)

10: Add NewBowTieTriPairs to BowTieTriPairs

11: end if

12: end for

13: return BowTieMesh

The SEARCH algorithm uses GETBOWTIECANDIDATETRIS algorithm in order

to get bow tie candidates of a triangle. The triangle and its bow tie candidate create

hexagon together. How to get bow tie candidates of a given triangle is shown in

Algorithm 3.2.2. This algorithm gets the bow tie candidates of the triangle on given

mesh and returns them. Execution of this algorithm is shown in Figure 3.4.

13

Algorithm 3.2.2 GETBOWTIECANDIDATETRIS(TriangleMesh, Tri)

1: BowTieCandidateTris = empty set of triangles

2: NeighborTris = triangles having at least one common point with Tri

3: EdgeNeighborTris = triangles having one common edge with Tri

4: UnsuitableTris = EdgeNeighborTris

5: for each triangle NeighborTri ∈ NeighborTris do

6: if NeighborTri has also common edge with one of the triangles from EdgeNeighborTris

then

7: Add NeighborTri to UnsuitableTris

8: end if

9: end for

10: BowTieCandidateTris = NeighborTris - UnsuitableTris

11: return BowTieCandidateTris

14

(a)

Figure 3.4: Execution steps of the GETBOWTIECANDIDATETRIS algorithm

15

(b)

Figure 3.4: Execution steps of the GETBOWTIECANDIDATETRIS algorithm

(cont.)

16

SEARCH algorithm also uses FINDBOWTIES algorithm to find bow ties and insert

them into bow tie mesh structure. How to find, create and insert bow ties starting from

a given triangle pair is shown in Algorithm 3.2.3. This algorithm gets the triangle pair,

tries to create and insert a bow tie from this pair, if it succeeds then it tries to find out

all bow ties can be created from neighbor triangle pairs of this pair recursively until

it cannot find any bow tie. Execution of this algorithm is shown in Figure 3.5.

Algorithm 3.2.3 FINDBOWTIES(BowTieMesh, TriangleMesh, StartingTri, PairTri)

1: FoundedBowTieTriPairs = empty pair of triangles which created bow tie

2: INSERTBOWTIE(BowTieMesh, TriangleMesh, StartingTri, PairTri)

3: if bow tie was inserted from StartingTri and PairTri then

4: Add [StartingTri, PairTri] to FoundedBowTieTriPairs

5: AdjacentPairs = empty set of adjacent pairs of tris

6: AdjacentPairs = GETADJACENTPAIRS(TriangleMesh, StartingTri, PairTri)

7: while AdjacentPairs 6= empty do

8: NewAdjacentPairs = empty set of adjacent pairs of tris

9: for each adjacent pair P ∈ AdjacentPairs do

10: INSERTBOWTIE(BowTieMesh, TriangleMesh, P.F irst, P.Second)

11: if bow tie was inserted from P.F irst and P.Second then

12: Add [P.F irst, P.Second] to FoundedBowTieTriPairs

13: AdcajentPairsFounded = GETADJACENTPAIRS(TriangleMesh, P.F irst, P.Second)

14: Add AdcajentPairsFounded to NewAdjacentPairs

15: end if

16: end for

17: AdjacentPairs = NewAdjacentPairs

18: end while

19: ContiguousBowTieTriPair = FINDCONTIGUOUSBOWTIE(TriangleMesh, StartingTri, Pair-

Tri)

20: if ContiguousBowTieTriPair 6= null then

21: NewFoundedBowTieTriPairs = FINDBOWTIES(BowTieMesh, TriangleMesh, Contiguous-

BowTieTriPair.First, ContiguousBowTieTriPair.Second)

22: Add NewFoundedBowTieTriPairs to FoundedBowTieTriPairs

23: end if

24: if ContiguousBowTieTriPair 6= null then

25: NewFoundedBowTieTriPairs = FINDBOWTIES(BowTieMesh, TriangleMesh, Contiguous-

17

BowTieTriPair.First, ContiguousBowTieTriPair.Second)

26: Add NewFoundedBowTieTriPairs to FoundedBowTieTriPairs

27: end if

28: end if

29: return FoundedBowTieTriPairs

18

(a)

Figure 3.5: Execution steps of the FINDBOWTIES algorithm

19

(b)

Figure 3.5: Execution steps of the FINDBOWTIES algorithm (cont.)

20

(c)

Figure 3.5: Execution steps of the FINDBOWTIES algorithm (cont.)

21

(d)

Figure 3.5: Execution steps of the FINDBOWTIES algorithm (cont.)

22

(e)

Figure 3.5: Execution steps of the FINDBOWTIES algorithm (cont.)

23

(f)

Figure 3.5: Execution steps of the FINDBOWTIES algorithm (cont.)

24

(g)

Figure 3.5: Execution steps of the FINDBOWTIES algorithm (cont.)

25

(h)

Figure 3.5: Execution steps of the FINDBOWTIES algorithm (cont.)

26

(i)

Figure 3.5: Execution steps of the FINDBOWTIES algorithm (cont.)

27

FINDBOWTIES algorithm employs INSERTBOWTIE algorithm to create and insert

bow tie. Bow tie creation from triangle pair is shown in Algorithm 3.2.4. This algo-

rithm calculates coordinates of points creating the bow tie and orders these points to

create related a bow tie. Then, inserts the points and edges consisting of these points

into bow tie mesh. Execution of this algorithm is shown in Figure 3.6.

Algorithm 3.2.4 INSERTBOWTIE(BowTieMesh, TriangleMesh, Tri1, Tri2)

1: CommonPoint = common point of Tri1 and Tri2

2: if CommonPoint exists then

3: Pair1 = CommonPoint’s triangles which have common edge

4: Pair2 = CommonPoint’s triangles which have common edge

5: if Pair1 and Pair2 exists then

6: FacingEdge = Tri1’s facing edge of CommonPoint

7: p1 = FacingEdge.First + (length of FacingEdge) * 1/8

8: p2 = FacingEdge.Second + (length of FacingEdge) * 1/8

9: CommonEdge = Pair1’s triangles common edge

10: p3 = CommonPoint + (length of CommonEdge) * 1/8

11: CommonEdge = Pair2’s triangles common edge

12: p4 = CommonPoint + (length of CommonEdge) * 1/8

13: FacingEdge = Tri2’s facing edge of CommonPoint

14: p5 = FacingEdge.First + (length of FacingEdge) * 1/8

15: p6 = FacingEdge.Second + (length of FacingEdge) * 1/8

16: Add points p1, p2, p3, p4, p5, p6 to BowTieMesh if they are not added before

17: BowTie = empty set of ordered points creating bow tie

18: Add point p1 to BowTie

19: Add point p2 to BowTie

20: if p3 is closer than p4 to p2 then

21: Add point p3 to BowTie

22: if p5 is closer than p6 to p3 then

23: Add point p5 to BowTie

24: Add point p6 to BowTie

25: else

26: Add point p6 to BowTie

27: Add point p5 to BowTie

28: end if

29: Add point p4 to BowTie

28

30: else

31: Add point p4 to BowTie

32: if p5 is closer than p6 to p3 then

33: Add point p5 to BowTie

34: Add point p6 to BowTie

35: else

36: Add point p6 to BowTie

37: Add point p5 to BowTie

38: end if

39: Add point p3 to BowTie

40: end if

41: if Tri1’s normal vector and BowTie’s normal vector are in the opposite directions then

42: Reverse points of BowTie

43: end if

44: Add BowTie to BowTieMesh

45: Tri1.IsMatched = true

46: Tri2.IsMatched = true

47: end if

48: end if

29

(a)

Figure 3.6: Execution steps of the INSERTBOWTIE algorithm

30

(b)

Figure 3.6: Execution steps of the INSERTBOWTIE algorithm (cont.)

31

(c)

Figure 3.6: Execution steps of the INSERTBOWTIE algorithm (cont.)

32

(d)

Figure 3.6: Execution steps of the INSERTBOWTIE algorithm (cont.)

33

(e)

Figure 3.6: Execution steps of the INSERTBOWTIE algorithm (cont.)

34

(f)

Figure 3.6: Execution steps of the INSERTBOWTIE algorithm (cont.)

35

(g)

Figure 3.6: Execution steps of the INSERTBOWTIE algorithm (cont.)

36

(h)

Figure 3.6: Execution steps of the INSERTBOWTIE algorithm (cont.)

37

(i)

Figure 3.6: Execution steps of the INSERTBOWTIE algorithm (cont.)

38

Additionally, FINDBOWTIES algorithm uses GETADJACENTPAIRS algorithm for

finding adjacent triangle pairs to triangle pairs created bow ties. Finding procedure

is shown in Algorithm 3.2.5. This algorithm checks neighbor triangles of the given

triangle pair and couples proper ones which can create new bow ties. Execution of

this algorithm is shown in Figure 3.7.

Algorithm 3.2.5 GETADJACENTPAIRS(TriangleMesh, Tri1, Tri2)

1: Pairs = empty set of pairs of triangles

2: CommonPoint = common point of Tri1 and Tri2

3: if CommonPoint exists then

4: Pair1 = CommonPoint’s triangles which have common edge

5: Pair2 = CommonPoint’s triangles which have common edge

6: if Pair1 exists then

7: CommonEdge = Pair1’s triangles’ common edge

8: OtherPoint = CommonEdge’s other point than CommonPoint

9: Triangles = triangles containing OtherPoint

10: First = null

11: Second = null

12: for each triangle Tri ∈ Triangles do

13: if Tri 6= Pair1.First and Tri 6= Pair1.Second and Tri has common edge with Pair1.First

or Pair1.Second then

14: if First = null then

15: First = Tri

16: else

17: Second = Tri

18: end if

19: end if

20: if First 6= null and !First.IsMatched and Second 6= null and !Second.IsMatched then

21: Add [First, Second] to Pairs

22: break

23: end if

24: end for

25: end if

26: if Pair2 exists then

27: CommonEdge = Pair2’s triangles’ common edge

28: OtherPoint = CommonEdge’s other point than CommonPoint

39

29: Triangles = triangles containing OtherPoint

30: First = null

31: Second = null

32: for each triangle Tri ∈ Triangles do

33: if Tri 6= Pair2.First and Tri 6= Pair2.Second and Tri has common edge with Pair2.First

or Pair2.Second then

34: if First = null then

35: First = Tri

36: else

37: Second = Tri

38: end if

39: end if

40: if First 6= null and !First.IsMatched and Second 6= null and !Second.IsMatched then

41: Add [First, Second] to Pairs

42: break

43: end if

44: end for

45: end if

46: end if

47: return Pairs

40

(a)

Figure 3.7: Execution steps of the GETADJACENTPAIRS algorithm

41

(b)

Figure 3.7: Execution steps of the GETADJACENTPAIRS algorithm (cont.)

42

(c)

Figure 3.7: Execution steps of the GETADJACENTPAIRS algorithm (cont.)

43

(d)

Figure 3.7: Execution steps of the GETADJACENTPAIRS algorithm (cont.)

44

(e)

Figure 3.7: Execution steps of the GETADJACENTPAIRS algorithm (cont.)

45

Finally, FINDBOWTIES algorithm delegates getting new triangle pair that can cre-

ate a contiguous bow tie to a founded bow tie task to FINDCONTIGUOUSBOWTIE

algorithm. How this task is achieved can be seen in Algorithm 3.2.6. This algo-

rithm checks neighbor triangles contiguous to the given triangle pair and returns first

neighbor couple which can create the new bow tie contiguous the bow tie created by

given triangle pair. While during this operation, FINDCONTIGUOUSBOWTIE uti-

lizes GETBOWTIECANDIDATETRIS described in Algorithm 3.2.2. Execution of

the FINDCONTIGUOUSBOWTIE algorithm is shown in Figure 3.8.

Besides, the algorithm FINDCONTIGUOUSBOWTIE is also employed by SEARCH

described in 3.2.1. After finding bow ties process, SEARCH algorithm scans the

founded bow ties and searches triangle pairs that can create contiguous bow ties to

founded bow ties by using FINDCONTIGUOUSBOWTIE algorithm.

Algorithm 3.2.6 FINDCONTIGUOUSBOWTIE(TriangleMesh, Tri1, Tri2)

1: ContiguousBowTieTriPair = pair of triangles which can create bow tie

2: FirstTri = null

3: SecondTri = null

4: CommonPoint = common point of Tri1 and Tri2

5: if CommonPoint exists then

6: Triangles = triangles containing CommonPoint

7: for each triangle Tri ∈ Triangles do

8: if Tri 6= Tri1 and Tri 6= Tri2 and !Tri.IsMatched then

9: FirstTri = Tri

10: break

11: end if

12: end for

13: end if

14: if FirstTri 6= null then

15: OtherPoint = other common point of Tri1 or Tri2 and FirstTri than CommonPoint

16: if OtherPoint exists then

17: BowTieCandidateTris = GETBOWTIECANDIDATETRIS(TriangleMesh, FirstTri)

18: if BowTieCandidateTris 6= empty then

19: for each bow tie candidate tri Tri ∈ BowTieCandidateTris do

20: if OtherPoint = common point of Tri and FirstTri and !Tri.IsMatched then

21: SecondTri = Tri

46

22: break

23: end if

24: end for

25: end if

26: end if

27: if SecondTri 6= null then

28: ContiguousBowTieTriPair.First = FirstTri

29: ContiguousBowTieTriPair.Second = SecondTri

30: end if

31: end if

32: return ContiguousBowTieTriPair

47

(a)

Figure 3.8: Execution steps of the FINDCONTIGUOUSBOWTIE algorithm

48

(b)

Figure 3.8: Execution steps of the FINDCONTIGUOUSBOWTIE algorithm (cont.)

49

(c)

Figure 3.8: Execution steps of the FINDCONTIGUOUSBOWTIE algorithm (cont.)

50

(d)

Figure 3.8: Execution steps of the FINDCONTIGUOUSBOWTIE algorithm (cont.)

51

This algorithm can extract auxetic patterns from triangle meshes; however, extracted

auxetic patterns are tilted in some cases. A triangle mesh plane is shown in Figure 3.9.

Extracted auxetic patterns from this plane by using the algorithm are shown in Fig-

ures 3.10, 3.11 and 3.12. There is no way to extract isotropic auxetic patterns that has

a uniform flow over the input plane mesh. We observe an undesired anisotropic be-

havior that emphasizes a particular direction, which in turn causes problems after fab-

rication, e.g., output bends towards those directions. The reason for the non-uniform

flow is that our algorithm creates hexagons with respect to triangles.

52

Figure 3.9: Triangle Mesh Plane Figure 3.10: Extracted Auxetic Pat-

terns - Cross

Figure 3.11: Extracted Auxetic Pat-

terns - Horizontal

Figure 3.12: Extracted Auxetic Pat-

terns - Vertical

53

3.3 Extracting Auxetic Patterns From Quad Meshes

Unlike triangle meshes, extracting isotropic auxetic patterns is possible from quad

meshes because usual quad meshes are mostly consisting of quads combined as shown

in Figure 3.3b. After designing an approach described in Section 3.2 to extract auxetic

patterns from triangle meshes, we modified this approach for quad meshes. Addition-

ally, we saw that we cannot extract auxetic patterns everywhere on shapes with the

approach for triangle meshes. This situation rises disconnectedness problems at the

resulted auxetic patterns. Then, we also extended our method in order to maintain

connectivity of shapes while extracting auxetic patterns. The extended approach cre-

ates half hexagons at locations that cannot create complete hexagons if it is possible.

Extraction of the auxetic patterns from given quad mesh is shown in Algorithm 3.3.1.

This algorithm searches and extracts auxetic patterns on given quad mesh starting

from given quad and return the resulted structure.

Hexagons creating the auxetic patterns are named as bow ties and the extracted aux-

etic pattern structure referred as bow tie mesh at the rest of this section.

Algorithm 3.3.1 SEARCH(QuadMesh, StartingQuad)

1: BowTieMesh = empty set of bow ties, their points and their edges

2: QuadNeighbors = quads having a common edge with StartingQuad

3: Write QuadNeighbors

4: Read PairQuad

5: FINDBOWTIES(BowTieMesh, QuadMesh, StartingQuad, PairQuad)

6: for each quad Q ∈ QuadMesh do

7: if Q.IsMatched then

8: QuadNeighbors = quads having a common edge with Q

9: for each neighbor quad NQ ∈ QuadNeighbors do

10: if !NQ.IsMatched and Q is the only neighbor of NQ which is matched then

11: NewStartingQuad = NQ

12: NewPairQuad = GETOPPOSITESIDENEIGHBOR(QuadMesh, NewStartingQuad ,

Q)

13: if NewPairQuad 6= null then

14: FINDBOWTIES(BowTieMesh, QuadMesh, NewStartingQuad, NewPairQuad)

15: break

54

16: end if

17: end if

18: end for

19: end if

20: end for

21: FINDINTERNALBOWTIES(BowTieMesh, QuadMesh, StartingQuad)

22: for each quad Q ∈ QuadMesh do

23: if !Q.IsInternalMatched and Q does not have any internal matched neighbor then

24: NewStartingQuad = Q

25: FINDINTERNALBOWTIES(BowTieMesh, QuadMesh, NewStartingQuad)

26: end if

27: end for

28: return BowTieMesh

The SEARCH algorithm uses FINDBOWTIES algorithm to find bow ties and insert

them into bow tie mesh structure. How to find, create and insert bow ties starting

from a given triangle pair on is shown in Algorithm 3.3.2. This algorithm gets the

quad pair, tries to create and insert a bow tie from this pair, if it succeeds then it tries

to find out all bow ties can be created from neighbor quad pairs of this pair recursively,

until it cannot find any bow tie. Execution of this algorithm is shown in Figure 3.13.

Algorithm 3.3.2 FINDBOWTIES(BowTieMesh, QuadMesh, StartingQuad,

PairQuad)
1: INSERTBOWTIE(BowTieMesh, QuadMesh, StartingQuad, PairQuad)

2: if bow tie was inserted from StartingQuad and PairQuad then

3: AdjacentPairs = empty set of adjacent pairs of quads

4: AdjacentPairs = GETADJACENTPAIRS(QuadMesh, Starting, Pair)

5: while AdjacentPairs 6= empty do

6: NewAdjacentPairs = empty set of adjacent pairs of quads

7: for each adjacent pair P ∈ AdjacentPairs do

8: INSERTBOWTIE(BowTieMesh, QuadMesh, P.F irst, P.Second)

9: if bow tie was inserted from P.F irst and P.Second then

10: Add [P.F irst, P.Second] to FoundedBowTieTriPairs

11: AdcajentPairsFounded = GETADJACENTPAIRS(QuadMesh, P.F irst, P.Second)

12: Add AdcajentPairsFounded to NewAdjacentPairs

13: end if

55

14: end for

15: AdjacentPairs = NewAdjacentPairs

16: end while

17: NewStartingQuad = GETOPPOSITESIDENEIGHBOR(QuadMesh, StartingQuad, PairQuad)

18: if NewStartingQuad 6= null then

19: NewPairQuad = GETOPPOSITESIDENEIGHBOR(QuadMesh, NewStartingQuad , Start-

ingQuad)

20: if NewPairQuad 6= null then

21: FINDBOWTIES(BowTieMesh, Quads, NewStartingQuad , NewPairQuad)

22: NewStartingQuad = GETOPPOSITESIDENEIGHBOR(QuadMesh, PairQuad, StartingQuad)

23: if NewStartingQuad 6= null then

24: NewPairQuad = GETOPPOSITESIDENEIGHBOR(QuadMesh, NewStartingQuad ,

PairQuad)

25: if NewPairQuad 6= null then

26: FINDBOWTIES(BowTieMesh, QuadMesh, NewStartingQuad, NewPairQuad)

27: end if

28: end if

29: end if

30: end if

31: end if

56

(a)

Figure 3.13: Execution steps of the FINDBOWTIES algorithm

57

(b)

Figure 3.13: Execution steps of the FINDBOWTIES algorithm (cont.)

58

(c)

Figure 3.13: Execution steps of the FINDBOWTIES algorithm (cont.)

59

(d)

Figure 3.13: Execution steps of the FINDBOWTIES algorithm (cont.)

60

(e)

Figure 3.13: Execution steps of the FINDBOWTIES algorithm (cont.)

61

(f)

Figure 3.13: Execution steps of the FINDBOWTIES algorithm (cont.)

62

(g)

Figure 3.13: Execution steps of the FINDBOWTIES algorithm (cont.)

63

(h)

Figure 3.13: Execution steps of the FINDBOWTIES algorithm (cont.)

64

(i)

Figure 3.13: Execution steps of the FINDBOWTIES algorithm (cont.)

65

(j)

Figure 3.13: Execution steps of the FINDBOWTIES algorithm (cont.)

66

(k)

Figure 3.13: Execution steps of the FINDBOWTIES algorithm (cont.)

67

(l)

Figure 3.13: Execution steps of the FINDBOWTIES algorithm (cont.)

68

FINDBOWTIES algorithm employs INSERTBOWTIE algorithm to create and insert

bow tie. Bow tie creation from a quad pair is shown in Algorithm 3.3.3. This algo-

rithm calculates coordinates of points creating the bow tie and orders these points to

create a related bow tie. Then, inserts the points and edges consisting of these points

into bow tie mesh. Execution of this algorithm is shown in Figure 3.14.

Algorithm 3.3.3 INSERTBOWTIE(BowTieMesh, QuadMesh, Quad1, Quad2)

1: if !Quad1.IsMatched and !Quad2.IsMatched then

2: CommonEdge = common edge between Quad1 and Quad2

3: if CommonEdge exists then

4: FacingEdgeOfQuad1 = Quad1’s facing edge to CommonEdge

5: FacingEdgeOfQuad2 = Quad2’s facing edge to CommonEdge

6: if FacingEdgeOfQuad1 exists and FacingEdgeOfQuad2 exists then

7: p1 = FacingEdgeOfQuad1.First + (lengt of FacingEdgeOfQuad1) * 1/8

8: p2 = FacingEdgeOfQuad1.Second + (lengt of FacingEdgeOfQuad1) * 1/8

9: p3 = CommonEdge.First + (length of CommonEdge) * 3 / 8

10: p4 = CommonEdge.Second + (length of CommonEdge) * 3 / 8

11: p5 = FacingEdgeOfQuad2.First + (length of FacingEdgeOfQuad2) * 1/8

12: p6 = FacingEdgeOfQuad2.Second + (length of FacingEdgeOfQuad2) * 1/8

13: Add points p1, p2, p3, p4, p5, p6 to BowTieMesh if they are not added before

14: BowTie = empty set of ordered points creating bow tie

15: Add point p1 to BowTie

16: Add point p2 to BowTie

17: if p3 is closer than p4 to p2 then

18: Add point p3 to BowTie

19: if p5 is closer than p6 to p3 then

20: Add point p5 to BowTie

21: Add point p6 to BowTie

22: else

23: Add point p6 to BowTie

24: Add point p5 to BowTie

25: end if

26: Add point p4 to BowTie

27: else

28: Add point p4 to BowTie

29: if p5 is closer than p6 to p3 then

69

30: Add point p5 to BowTie

31: Add point p6 to BowTie

32: else

33: Add point p6 to BowTie

34: Add point p5 to BowTie

35: end if

36: Add point p3 to BowTie

37: end if

38: if Quad1’s normal vector and BowTie’s normal vector are in the opposite directions

then

39: Reverse points of BowTie

40: end if

41: Add BowTie to BowTieMesh

42: Quad1.IsMatched = true

43: Quad1.MatchedQuad = Quad2

44: Quad2.IsMatched = true

45: Quad2.MatchedQuad = Quad1

46: end if

47: end if

48: end if

70

(a)

Figure 3.14: Execution steps of the INSERTBOWTIE algorithm

71

(b)

Figure 3.14: Execution steps of the INSERTBOWTIE algorithm (cont.)

72

(c)

Figure 3.14: Execution steps of the INSERTBOWTIE algorithm (cont.)

73

Additionally, FINDBOWTIES algorithm uses GETADJACENTPAIRS algorithm for

finding adjacent quad pairs to quad pairs created bow ties. Finding procedure is shown

in Algorithm 3.3.4. This algorithm checks neighbor quads of the given quad pair and

couples proper ones which can create new bow ties. Execution of this algorithm is

shown in Figure 3.15.

Algorithm 3.3.4 GETADJACENTPAIRS(QuadMesh, Quad1, Quad2)

1: Pairs = empty set of pairs of quads

2: CommonEdge = common edge between Quad1 and Quad2

3: if CommonEdge exists then

4: for each point P ∈ CommonEdge do

5: First = null

6: Second = null

7: Quad1Neighbors = quads having a common edge with Quad1

8: for each neighbor quad NQ ∈ Quad1Neighbors do

9: if NQ 6= Quad2 and P is a point of NQ then

10: First = NQ

11: break

12: end if

13: end for

14: Quad2Neighbors = quads having a common edge with Quad2

15: for each neighbor quad NQ ∈ Quad2Neighbors do

16: if NQ 6= Quad1 and P is a point of NQ then

17: Second = NQ

18: break

19: end if

20: end for

21: if First 6= null and !First.IsMatched and Second 6= null and !Second.IsMatched then

22: Add [First, Second] to Pairs

23: end if

24: end for

25: end if

26: return Pairs

74

(a)

Figure 3.15: Execution steps of the GETADJACENTPAIRS algorithm

75

(b)

Figure 3.15: Execution steps of the GETADJACENTPAIRS algorithm (cont.)

76

(c)

Figure 3.15: Execution steps of the GETADJACENTPAIRS algorithm (cont.)

77

(d)

Figure 3.15: Execution steps of the GETADJACENTPAIRS algorithm (cont.)

78

Finally, FINDBOWTIES algorithm uses GETOPPOSITESIDENEIGHBOR algorithm

in order to continue finding bow ties and inserting them into bow tie mesh struc-

ture, recursively. The algorithm GETOPPOSITESIDENEIGHBOR finds and returns

neighbor quad of given quad and its already founded neighbor quad. In other words,

this algorithm returns the neighbor standing the opposite side of given quad according

to its neighbor quad. How this algorithm works is shown in Algorithm 3.3.5. Execu-

tion of the GETOPPOSITESIDENEIGHBOR algorithm is shown in Figure 3.16.

Besides, the algorithm GETOPPOSITESIDENEIGHBOR is also employed by SEARCH

described in Algorithm 3.3.1. After finding bow ties process, SEARCH algorithm

scans the quad mesh and detects the neighbor quads which does not participate in any

bow tie of quads created a bow tie. When it finds such a quad, it gets this quad’s

neighbor quad which can create bow tie with this quad by using GETOPPOSITESI-

DENEIGHBOR algorithm.

Algorithm 3.3.5 GETOPPOSITESIDENEIGHBOR(QuadMesh, Quad1, Quad2)

1: OppositeSideNeighbor = null

2: CommonEdge = common edge between Quad1 and Quad2

3: if CommonEdge exists then

4: Quad1Neighbors = quads having a common edge with Quad1

5: for each neighbor quad NQ ∈ Quad1Neighbors do

6: if NQ 6= Quad2 and !NQ.IsMatched then

7: CommonEdgeWithNeighbor = common edge between Quad1 and NQ

8: if CommonEdge and CommonEdgeWithNeighbor do not have any common point then

9: OppositeSideNeighbor = NQ

10: break

11: end if

12: end if

13: end for

14: end if

15: return OppositeSideNeighbor

79

(a)

Figure 3.16: Execution steps of the GETOPPOSITESIDENEIGHBOR algorithm

80

(b)

Figure 3.16: Execution steps of the GETOPPOSITESIDENEIGHBOR algorithm

(cont.)

81

After the algorithm SEARCH described in Algorithm 3.3.1 completes the finding

bow ties, then it starts a new finding operation to insert bow ties standing between

founded bow ties, called internal bow ties. Internal bow ties cannot be inserted di-

rectly because founded bow ties generate them. If internal bow ties cannot be added

into the bow tie mesh, gaps occur at the resulted bow tie mesh and these gaps cause

disconnections. FINDINTERNALBOWTIES explained in Algorithm 3.3.6 is used

for finding and inserting internal bow ties. This algorithm gets quad, checks bow ties

around it for internal bow ties and inserts internal bow ties. After that, this algorithm

jumps the neighbor quads of given quad and continues recursively. Execution of the

FINDINTERNALBOWTIES algorithm is shown in Figure 3.17.

Algorithm 3.3.6 FINDINTERNALBOWTIES(BowTieMesh, QuadMesh, Start-

ingQuad)
1: if StartingQuad.IsMatched then

2: PairQuad = StartingQuad.MatchedQuad

3: NeighborQuad = GETOPPOSITESIDENEIGHBOR(QuadMesh, StartingQuad, PairQuad)

4: if NeighborQuad 6= null and !NeighborQuad.IsInternalMatched and !StartingQuad.IsInternalMatched

then

5: PossibleInternalBowTies = empty set of [Quad1, Quad2, QuadPair] creating possible inter-

nal bow tie

6: AdjacentInternalPairs = GETADJACENTINTERNALPAIRS(QuadMesh, StartingQuad, Neigh-

bourQuad)

7: for each adjacent internal pair AIP ∈ AdjacentInternalPairs do

8: Add [StartingQuad, NeighborQuad, AIP] to PossibleInternalBowTies

9: end for

10: while PossibleInternalBowTies 6= empty do

11: NewPossibleInternalBowTies = empty set of [quad, quad, pair of quads] creating possi-

ble internal bow tie

12: for each possible internal bow tie PIB ∈ AdjacentInternalPairs do

13: INSERTINTERNALBOWTIE(BowTieMesh, QuadMesh, PIB.Quad1, PIB.Quad2,

PIB.QuadPair)

14: if bow tie was inserted from PIB then

15: NewAdjacentInternalPairs = GETADJACENTINTERNALPAIRS(QuadMesh, PIB.QuadPair.F irst,

PIB.QuadPair.Second)

16: for each adjacent internal pair AIP ∈ NewAdjacentInternalPairs do

17: Add [PIB.QuadPair.F irst, PIB.QuadPair.Second, AIP] to NewPossi-

82

bleInternalBowTies

18: end for

19: end if

20: end forPossibleInternalBowTies = NewPossibleInternalBowTies

21: end while

22: if NeighborQuad.IsMatched then

23: NewStartingQuad = NeighborQuad.MatchedQuad

24: FINDINTERNALBOWTIES(BowTieMesh, QuadMesh, NewStartingQuad)

25: end if

26: NewStartingQuad = PairQuad

27: FINDINTERNALBOWTIES(BowTieMesh, QuadMesh, NewStartingQuad)

28: end if

29: end if

83

(a)

Figure 3.17: Execution steps of the FINDINTERNALBOWTIES algorithm

84

(b)

Figure 3.17: Execution steps of the FINDINTERNALBOWTIES algorithm (cont.)

85

(c)

Figure 3.17: Execution steps of the FINDINTERNALBOWTIES algorithm (cont.)

86

(d)

Figure 3.17: Execution steps of the FINDINTERNALBOWTIES algorithm (cont.)

87

(e)

Figure 3.17: Execution steps of the FINDINTERNALBOWTIES algorithm (cont.)

88

(f)

Figure 3.17: Execution steps of the FINDINTERNALBOWTIES algorithm (cont.)

89

(g)

Figure 3.17: Execution steps of the FINDINTERNALBOWTIES algorithm (cont.)

90

(h)

Figure 3.17: Execution steps of the FINDINTERNALBOWTIES algorithm (cont.)

91

Similar to algorithm FINDBOWTIES described in Algorithm 3.3.2, FINDINTER-

NALBOWTIES algorithm is also used GETOPPOSITESIDENEIGHBOR algorithm

described in Algorithm 3.3.5 in order to find opposite side neighbor of the given quad.

The algorithm FINDINTERNALBOWTIES needs procedure getting adjacent inter-

nal pairs of quads of the given quad pair in order to create new internal bow ties.

This procedure is very close the Algorithm 3.3.4 used by the Algorithm 3.3.2. Detail

of this procedure is given in Algorithm 3.3.7. This algorithm, GETADJACENTIN-

TERNALPAIRS, takes a pair of quads, checks their neighbors which created bow tie

before and returns the suitable combination of them to create an internal bow tie with

the given pair of quads. GETADJACENTINTERNALPAIRS algorithm is almost the

same with the Algorithm 3.3.4 except being pair criteria therefore the same Figure

3.15 is valid for its execution.

Algorithm 3.3.7 GETADJACENTINTERNALPAIRS(QuadMesh, Quad1, Quad2)

1: Pairs = empty set of pairs of quads

2: CommonEdge = common edge between Quad1 and Quad2

3: if CommonEdge exists then

4: for each point P ∈ CommonEdge do

5: First = null

6: Second = null

7: Quad1Neighbors = quads having a common edge with Quad1

8: for each neighbor quad NQ ∈ Quad1Neighbors do

9: if NQ 6= Quad2 and P is a point of NQ then

10: First = NQ

11: break

12: end if

13: end for

14: Quad2Neighbors = quads having a common edge with Quad2

15: for each neighbor quad NQ ∈ Quad2Neighbors do

16: if NQ 6= Quad1 and P is a point of NQ then

17: Second = NQ

18: break

19: end if

20: end for

21: if First 6= null and Second 6= null and First 6= Second and !First.IsInternalMatched and

92

!Second.IsInternalMatched and First.IsMatched and Second.IsMatched and First.MatchedQuad

6= Second and Second.MatchedQuad 6= First then

22: Add [First, Second] to Pairs

23: end if

24: end for

25: end if

26: return Pairs

FINDINTERNALBOWTIES algorithm needs a different method from the INSERT-

BOWTIE described in Algorithm 3.3.3 to create and insert internal bow ties because

bow ties consist of quads while internal bow ties consist of the other bow ties. This

method is named INSERTINTERNALBOWTIE and described in Algorithm 3.3.8.

INSERTINTERNALBOWTIE algorithm takes four quads which created bow tie be-

fore in doubles. This algorithm calculates coordinates of points creating the internal

bow tie and orders these points to create related internal bow tie. Execution of this

algorithm is shown in Figure 3.18.

Algorithm 3.3.8 INSERTINTERNALBOWTIE(BowTieMesh, QuadMesh, Quad1,

Quad2, QuadPair)
1: CommonEdge1 = common edge between Quad1 and QuadPair.First

2: CommonEdge2 = common edge between QuadPair.First and QuadPair.Second

3: if CommonEdge1 exists and CommonEdge2 exists then

4: CommonPoint = common point of CommonEdge1, CommonEdge2

5: if CommonPoint exists then

6: OtherPoint1 = CommonEdge1’s other point than CommonPoint

7: OtherPoint2 = CommonEdge2’s other point than CommonPoint

8: Edge = QuadPair.First’s edge containing OtherPoint1 and not containing CommonPoint

9: p1 = OtherPoint1 + (length of Edge) * 3/8

10: Edge = QuadPair.First’s edge containing CommonPoint and not containing OtherPoint1

11: p2 = CommonPoint + (length of Edge) * 1/8

12: Edge = Pair.Second’s edge not containing CommonPoint and not containing OtherPoint2

13: Point = Edge’s point creating an edge with CommonPoint

14: p3 = Point + (length of Edge) * 1/8

15: Edge = Quad2’s edge containing Point and not containing CommonPoint

16: p4 = Point + (length of Edge) * 1/8

17: Edge = Quad2’s edge containing CommonPoint and not containing Point

93

18: p5 = CommonPoint + (length of Edge) * 3/8

19: Edge = Quad1’s edge containing OtherPoint1 and not containing CommonPoint

20: p6 = OtherPoint1 + (length of Edge) * 3/8

21: Add points p1, p2, p3, p4, p5, p6 to BowTieMesh if they are not added before

22: BowTie = empty set of ordered points creating bow tie

23: Add ordered points p1, p2, p3, p4, p5, p6 to BowTie

24: if Quad1’s normal vector and BowTie’s normal vector are in the opposite directions then

25: Reverse points of BowTie

26: end if

27: Add BowTie to BowTieMesh

28: Quad1.IsInternalMatched = true

29: Quad2.IsInternalMatched = true

30: QuadPair.First.IsInternalMatched = true

31: QuadPair.Second.IsInternalMatched = true

32: end if

33: else

34: INSERTHALFBOWTIE(BowTieMesh, QuadMesh, Quad1, Quad2, QuadPair)

35: end if

94

(a)

Figure 3.18: Execution steps of the INSERTINTERNALBOWTIE algorithm

95

(b)

Figure 3.18: Execution steps of the INSERTINTERNALBOWTIE algorithm (cont.)

96

"

(c)

Figure 3.18: Execution steps of the INSERTINTERNALBOWTIE algorithm (cont.)

97

If the algorithm INSERTINTERNALBOWTIE cannot achieve to create complete

bow tie due to lack of common edges, it applies to INSERTHALFBOWTIE described

in Algorithm 3.3.9. This algorithm tries to create one or two half bow tie with the

given quads and inserts what it founded in the bow tie mesh. Half bow ties are very

important to keep resulted bow tie mesh together. Insertion steps of half bow ties are

shown in Figure 3.19.

Algorithm 3.3.9 INSERTHALFBOWTIE(BowTieMesh, QuadMesh, Quad1, Quad2,

QuadPair)
1: CommonEdge1 = common edge between Quad1 and Quad2

2: CommonEdge1 = common edge between Quad1 and QuadPair.First

3: CommonEdge2 = common edge between Quad2 and QuadPair.Second

4: if CommonEdge1 exists and CommonEdge2 exists then

5: CommonPoint = common point of CommonEdge1, CommonEdge2

6: if CommonPoint exists then

7: OtherPoint = CommonEdge2’s other point than CommonPoint

8: Edge = Quad1’s edge containing OtherPoint and not containing CommonPoint

9: p1 = OtherPoint + (length of Edge) * 3/8

10: Edge = Quad1’s edge containing CommonPoint and not containing OtherPoint

11: p2 = CommonPoint + (length of Edge) * 1/8

12: Edge = Pair.First’s edge containing CommonPoint and not containing OtherPoint

13: p3 = CommonPoint + (length of Edge) * 1/8

14: Edge = Pair.First’s edge containing OtherPoint and not containin CommonPoint

15: p4 = OtherPoint + (length of Edge) * 3/8

16: Add points p1, p2, p3, p4 to BowTieMesh if they are not added before

17: HalfBowTie = empty set of ordered points creating bow tie

18: Add ordered points p1, p2, p3, p4 to HalfBowTie

19: if Quad1’s normal vector and HalfBowTie’s normal vector are in the opposite directions

then

20: Reverse points of HalfBowTie

21: end if

22: Add HalfBowTie to BowTieMesh

23: end if

24: end if

25: if CommonEdge1 exists and CommonEdge3 exists then

26: CommonPoint = common point of CommonEdge1, CommonEdge3

27: if CommonPoint exists then

98

28: OtherPoint = CommonEdge3’s other point than CommonPoint

29: Edge = Quad2’s edge containing OtherPoint and not containing CommonPoint

30: p5 = OtherPoint + (length of Edge) * 3/8

31: Edge = Quad2’s edge containing CommonPoint and not containing OtherPoint

32: p6 = CommonPoint + (length of Edge) * 1/8

33: Edge = Pair.Seconds’s edge containing CommonPoint and not containing OtherPoint

34: p7 = CommonPoint + (length of Edge) * 1/8

35: Edge = Pair.Seconds’s edge containing OtherPoint and not containin CommonPoint

36: p8 = OtherPoint + (length of Edge) * 3/8

37: Add points p5, p6, p7, p8 to BowTieMesh if they are not added before

38: HalfBowTie = empty set of ordered points creating bow tie

39: Add ordered points p5, p6, p7, p8 to HalfBowTie

40: if Quad2’s normal vector and HalfBowTie’s normal vector are in the opposite directions

then

41: Reverse points of HalfBowTie

42: end if

43: Add HalfBowTie to BowTieMesh

44: end if

45: end if

99

(a)

Figure 3.19: Execution steps of the INSERTHALFBOWTIE algorithm

100

(b)

Figure 3.19: Execution steps of the INSERTHALFBOWTIE algorithm (cont.)

101

(c)

Figure 3.19: Execution steps of the INSERTHALFBOWTIE algorithm (cont.)

102

(d)

Figure 3.19: Execution steps of the INSERTHALFBOWTIE algorithm (cont.)

103

3.4 Preparing Extracted Auxetic Patterns For 3D Printing

In Figure 3.20a, an example quad mesh goblet digital model which is the input of

auxetic pattern extraction algorithm described in Section 3.3. After the algorithm

works on it, obtained bow tie mesh is shown in Figure 3.20b. Quads were turned into

hexagons.

(a) Quad mesh (b) Bow tie mesh

Figure 3.20: Goblet model

After auxetic patterns were extracted, faces must be removed and remaining edges

must be thickened for 3D printing. At this stage, we get help from blender [30], an

open source 3D graphics designing software. This software presents implementa-

tions that can be used for modifying meshes. We use blender’s wireframe and skin

modifiers in order to get rid of faces created by hexagons and thicken the edges of

hexagons. The bow tie mesh in Figure 3.20b was processed in blender and desired

structure which is ready for 3D printing was acquired. Extracted re-entrant honey-

comb patterns without faces and with thickened edges are shown in Figure 3.21.

104

Figure 3.21: Extracted auxetic patterns prepared for 3D printing

105

106

CHAPTER 4

RESULTS AND DISCUSSIONS

4.1 Advantages Of Extracting Auxetic Patterns For 3D Printing

Extracting auxetic patterns from digital designs and 3D printing them instead of the

original digital designs provides some benefits. These benefits are addressed in this

section.

In Figure 4.1a the digital design of a goblet model is shown. The digital design is

a quad mesh. The goblet model does not have bottom and top bases; therefore, this

model is not a closed structure. Because of being not a closed structure, the goblet

is hollow. In Figure 4.1b auxetic pattern extracted from the goblet model is shown.

This auxetic pattern structure is a wireframe bow tie mesh.

In Figure 4.2a the digital design of a vase model is shown. The digital design is quad

mesh. The vase model has only bottom base; therefore, this model is a half closed

structure. The vase is also hollow. In Figure 4.2b auxetic pattern extracted from the

vase model is shown. This auxetic pattern structure is a wireframe bow tie mesh.

In Figure 4.3a the digital design of a glove model is shown. The digital design is

quad mesh. The glove model is complete closed structure. Despite being completely

closed, inside of the glove is empty. Therefore, the glove is also hollow. In Figure

4.3b auxetic pattern extracted from the vase model is shown. This auxetic pattern

structure is a wireframe bow tie mesh.

When we want to 3D print both the original digital models and extracted auxetic

patterns from them shown in Figures 4.1, 4.2, 4.3 the numbers about 3D printing pro-

cesses are shown in table 4.1. These numbers obtained from the 3D printing software,

107

(a) Original digital design (b) Extracted auxetic pattern

Figure 4.1: Goblet model

(a) Original digital design (b) Extracted auxetic pattern

Figure 4.2: Vase model

108

(a) Original digital design (b) Extracted auxetic pattern

Figure 4.3: Glove model

Cura [31] for 3D printer Ultimaker 2+. In all cases, original models and extracted

auxetic patterns have the same dimensions. Identical parameters(material, nozzle,

layer height, print speed) are used for both the original models and extracted auxetic

patterns. Besides, supports are not added and infill is not enabled in the 3D printing

software in any case for fair comparison.

Table 4.1: 3D Printing Requirements Of Different Models

Target Model Required Time Required Material Quantity

(minute) (meter / gram)

Goblet 372 3.05 / 24

Extracted Auxetic Patterns From Goblet 156 0.63 / 4

Vase 529 5.28 / 41

Extracted Auxetic Patterns From Vase 303 0.66 / 5

Glove 947 8.67 / 68

Extracted Auxetic Patterns From Glove 360 1.05 / 8

Printing the extracted auxetic patterns reduces the time spent for 3D printing. Re-

duced 3D printing time means that 3D printer works less and energy consumption of

109

it also reduces. Therefore, printing cost also becomes cheaper. Additionally, printing

the extracted auxetic patterns substantially reduces the material usage which consti-

tutes the essential cost of 3D printing. Wang et al. [24] point out that fabricating

wireframe meshes of objects is a cost-effective method in 3D printing world because

of the low material consumption.

Another benefit provided from reduced 3D printing time is quickly validating the

digital designs. Wireframe bow tie meshes geometrically approximate to original

meshes. In other words, wireframe bow ties replace the surface of the original meshes.

3D printing the wireframe bow tie meshes requires shorter time; however, obtained

3D objects resemble the 3D objects printed from the original meshes. Fast 3D printing

enables the designers quickly review their designs’ appearances. Mueller et al. [1]

also emphasize the importance of fast prototyping for designers.

4.2 Challenges Of 3D Printing Extracted Auxetic Patterns

Although 3D printing of extracted auxetic patterns from digital models provides some

benefits described in Section 4.1, it is not easy to print them. Challenges of 3D

printing extracted auxetic patterns and what can be done against them are addressed

in this section.

4.2.1 Increasing Weigth Challenge

Original digital models have solid structures. There are no gaps on their surfaces

shown as Figures 4.1a, 4.2a, 4.3a. 3D printing surfaces without gaps is not so hard.

While 3D printing, upper layers lean on bottom layers thus, the stability of the upper

layers guaranteed by bottom layers because there is not any gap between these layers.

However, auxetic patterns extracted from digital models have gaps on their surfaces

shown as Figures 4.1b, 4.2b, 4.3b. Because of existing gaps on the surfaces, extracted

auxetic patterns are not as durable as the original digital models. Thus, 3D printing

extracted auxetic patterns having gaps on their surfaces is harder than 3D printing

digital models without having gaps on their surfaces. Bottom layers of extracted aux-

110

etic patterns are as not solid as original digital models. Therefore, sometimes bottom

layers cannot resist increasing weight of upper layers. This situation causes down-

falls during 3D printing operation. Such a case is encountered during 3D printing of

extracted auxetic patterns shown in Figure 4.3b. This case is shown in Figure 4.4.

Figure 4.4: Downfall happened while 3D printing with Ultimaker 2+

If any downfall happens while 3D printing, the operation must be canceled imme-

diately because 3D printers cannot realize downfalls. Because of collapsed bottom

layers, they print upper layers on the air. They continue to print as if nothing has

happened and that means wasting of time and material.

Although it is harder to 3D print extracted auxetic patterns, it is not impossible. If

the structure (surface slope, balance) of the digital model is proper and thickness

is sufficient, auxetic patterns extracted from the digital model can be 3D printed.

Succeeded 3D printing of extracted auxetic patterns shown in Figure 4.1b can be seen

in Figure 4.5.

We also tried different 3D printer which is also based on different technology, named

DLP. DLP 3D printers can 3D print the entire layer at once. Layers for DLP 3D

printers are images. In each image, parts desired to be 3D printed are white pixels

and rest of the pixels are black. DLP 3D printers locate an image under the liquid

material and flash the image. Black pixels in the image block the light. Light only

gets through white pixels and solidates the liquid material at desired parts. DLP is

much better for 3D printing intricate shapes like our extracted auxetic patterns.

111

Figure 4.5: Successfully 3D printed auxetic patterns with Ultimaker 2+

We separated extracted auxetic patterns show in Figure 4.1b into layers. Each layer is

consisting of points belonging to edges of extracted auxetic patterns and when these

layers are added up target shape is formed. These layers can be seen in Figure 4.6.

Then, we created related images from layers. Example images are shown in Figure

4.7. We fed the DLP 3D printer with these images and DLP 3D printer created the

shape shown in Figure 4.8.

However, increasing weight problem is also valid for DLP 3D printers in a different

way. Top layers, because of their increasing weight, pulls bottom layers down during

the 3D printing process. Therefore, sometimes bottom layers cannot resist gravita-

tional force causing the weight of top layers and connections between bottom and top

layers can be broken.

Mueller et al. [1] suggest a method, called WirePrint, which is more appropriate to 3D

print our extracted auxetic patterns. They developed a software which arranges the 3D

112

(a) All layers creating the goblet (b) Zoomed layers

Figure 4.6: Layered goblet for DLP 3D printing

(a) Image of layer from bottom of the goblet (b) Image of layer from middle of the goblet

(c) Image of layer from top of the goblet

Figure 4.7: Images of goblet layers

printers’ print head moves for WirePrint. In other words, they transform traditional

3D printers to print not layer by layer but edge by edge. However, arranging print head

moves is not enough, they also use extra cooling mechanisms integrated with the print

head to strengthen edges during the edge by edge print process. Their printer cools

113

(a) (b)

Figure 4.8: 3D printed goblet with B9 Creator 1.2

the edges immediately after they printed. Therefore, printed edges are more strong

and their resistance to increasing weight of upper layers is better. Their modified

printer and printed object with this printer are shown in Figure 4.9. If we have the

opportunity of using such a 3D printer, we can 3D print our extracted auxetic patterns

easily.

Figure 4.9: WirePrint [1]

Additionally, there is another modified 3D printer to wireframe printing developed by

Peng et al. [2], 5DOF Wireframe Printer. This 3D printing technique improved on

the method designed by Mueller et al. [1]. 5DOF Wireframe Printer has a rotating

114

platform additional to print head with extra cooling mechanisms. The platform rotates

already printed part of the object during 3D print operation in order to print new edges

smoothly. When the weight on the bottom layers increased, already printed bottom

layers can be rotated and printing can go on horizontally with the 5DOF WireFrame

Printer. There could be collisions between already printed parts and print head moves;

fortunately, this problem is solved before by Wu et al. [26]. 5 DOF WireFrame Printer

and its products are shown in Figure 4.10. 5 DOF WireFrame Printer seems to be great

for 3D printing our extracted auxetic patterns.

(a) (b)

Figure 4.10: 5 DOF WireFrame Printer and its products [2]

4.2.2 3D Printing Flattened Auxetic Patterns

After we saw difficulties of 3D printing wireframe meshes, our extracted auxetic pat-

terns, with ordinary 3D printers; we come up with the idea that 3D printing flattened

auxetic patterns. It is not hard to 3D print flattened shapes because they have almost

two dimensions. Our 3D printed flattened auxetic patterns are shown in Figures 4.11

and 4.12.

We apply 3D mesh parametrization methods in order to transform 3D extracted aux-

etic patterns to 2D flattened auxetic patterns. However, after applying parametriza-

tion operations to 3D extracted auxetic patterns, they would turn into 2D surfaces

by definition of the parametrization. Therefore, we decide to apply parametrization

methods to 3D meshes, turn them into 2D meshes and extract the auxetic patterns on

115

(a) Normal (b) Stretched

Figure 4.11: 3D printed flattened large auxetic patterns with Ultimaker 2+

(a) Normal (b) Stretched

Figure 4.12: 3D printed flattened narrow auxetic patterns with Ultimaker 2+

2D meshes.

We utilize an open source geometry processing library, libigl [32]. The libigl provides

three different parametrization method implementation: harmonic [33], least squares

conformal maps [34] and as-rigid-as possible [35]. Harmonic parametrization detects

the given shapes’ boundaries, map these boundary points to a circle, then place the

other points inside the circle. Least square conformal maps parametrization aims to

minimize angular deformity while as-rigid-as possible approach tries to conserve not

only angles but also distances.

116

In Figure 4.13, a triangle mesh male head model can be seen in different perspec-

tives. We applied parametrization methods from libigl to this head model. Results are

shown in 4.14.

(a) Front view (b) Side view

Figure 4.13: Male head model

(a) Harmonic (b) Least conformal square maps

(c) As-rigid-as possible

Figure 4.14: Parametrization results of male head model

117

These results except shown in Figure 4.14c do not seem bad. If we extract auxetic

patterns from them, then we can 3D print the extracted auxetic patterns. After that,

we can fold the 3D printed auxetic patterns on the original model shown in Figure

4.13. However, our extraction algorithms described in Chapter 3 are not proper for

these resulted meshes due to the limitations referred in Section 4.3. In order to extract

auxetic patterns from these resulted meshes, developing new algorithms is required.

4.2.3 Folding Flattened Auxetic Patterns

Because of cannot extracting auxetic patterns from parameterized meshes, we decided

to generate flattened simple shapes consisting of auxetic patterns. After 3D printing

these flattened simple shapes, we would fold them and create target shapes. For exam-

ple, we generated a flattened hexagonal prism shown in Figure 4.15. This hexagonal

prism was 3D printed. We scraped off the print from the table immediately after 3D

printing operation completed because we wanted to fold it. The only way to this, fold

it while it is hot and not solidified completely. However, distortions occurred while

scraping off the print. These distortions can be seen in Figure 4.16. Although these

distortions, we tried to fold the print. Folding steps are shown in Figure 4.17.

Figure 4.15: Flattened hexagonal prism

We deduced that our elementary folding approach is not successful. Scraping off the

print while it is still hot is a problem and folding the print is another problem. Even if

118

Figure 4.16: Distortions occurred on hexagonal prism 3D printed with Ultimaker 2+

(a) (b)

Figure 4.17: Steps of folding 3D printed flattened hexagonal prism

we scrape off and fold the print successfully, we have to paste and dry it and it raises

a new trouble. When we paste and dry the print, resulted shape would not be flexible

and durable.

Unlike us, Guseinov et al. [3] have a study based on shaping objects from flat plates,

named CurveUps, similar to our folding approach. Their method is very advanced

when compared to ours. There are lots of step in their method, thus their method is

119

a little bit tedious. However, they achieved to generate some shapes shown in Figure

4.18. Konakovic et al. [4] also managed to cover shapes with single sheet fabricated

material. They analyze the target shape and then generates combinations of auxetic

patterns special to this shape. Their example can be seen in Figure 4.19.

Figure 4.18: Spot generated by [3]

Figure 4.19: Max Planck generated by [4]

We also tried to cover complex shapes with 3D printed flattened auxetic patterns.

Experiments about covering 3D printed male head model (Figure 4.13) are shown

in Figure 4.20. In Figure 4.20a, large auxetic patterns shown in Figure 4.11b and

120

in Figure 4.20b narrow auxetic patterns shown in Figure 4.12b are used. Because

of these auxetic patterns are not generated particularly for the male head model, we

failed.

(a) With large auxetic patterns (b) With narrow auxetic patterns

Figure 4.20: Covering the male head model with flattened auxetic patterns

4.2.4 Using Meltable Support Structures

Finally, we updated our 3D printing technology and we started to proceed in a differ-

ent way. The essential problem of 3D printing extracted auxetic patterns is increasing

weight causing downfalls on the bottom layers described in Section 4.2.1. This prob-

lem can be eliminated by using support structures which can be provided any 3D

printing software; for instance, Cura [31]. However, added support structures distorts

the desired shapes. If support structures used during the 3D printing operation, 3D

printed shape must be purified from these after 3D printing.

We employed a 3D printer using 2 different materials; one material to print parts of

actual shape and another material to print parts of external supports. The material

used for supports is water-soluble. We 3D printed extracted auxetic patterns from the

goblet model shown in Figure 4.1b with this printer. Melting phases of supports and

the resulted shape shown in Figure 4.21.

121

(a) Initial shape (b) Melting supports

(c) Final shape

Figure 4.21: 3D printed auxetic patterns with Ultimaker 3 Extended

4.3 Limitations Of Auxetic Patterns Extraction Methods

Like all algorithms, our auxetic patterns extraction algorithms described in Sections

3.2 and 3.3 have also some restrictions. They work under certain conditions. In this

section, limitations of our algorithms are indicated clearly in Subsections 4.3.1 and

4.3.2.

4.3.1 Auxetic Patterns Extraction Algorithm For Triangle Meshes

The steps of what algorithm does in order to match triangles for creating bow tie:

122

• Gets a target triangle to find its pair.

• Clusters the triangles having a common vertex with target triangle.

• Eliminates triangles having also common edge with target triangle among this

cluster.

• Eliminates triangles having a common edge with triangles eliminated at previ-

ous step among this cluster.

• Remaining triangles in the cluster are candidate triangles for creating bow tie

together with target triangle.

• Algorithm expects just one triangle for each vertex of target triangle in the

remaining set.

• Chooses a triangle from the remaining set considering already created bow ties’

orientations.

Consider triangle T shown in Figure 4.22. Vertices of this triangle are v1, v2, v3 and

all these vertices’ valences are six. Triangles can be matched with T also shown in

the same figure. This is the desired and proper case for the algorithm.

If the algorithm encounters a triangle having a vertex with valence value different

from six during its running, it can find that triangle’s match candidates. However, it

cannot decide to choose which of them. Such an exceptional case for the algorithm

shown in Figure 4.23. Triangle T’s vertices v1, v2, v3 have valence values different

from six. The algorithm does not find any match candidates for vertices v2, v3 and

finds three match candidates for vertex v1. This is inconvenient for the algorithm.

The algorithm requires a triangle mesh which its vertices valence values are six

mostly. Triangles having vertices with valence values different from six are discarded

by the algorithm. The more triangles having vertices with valence values six the more

bow tie can be founded. If the input triangle mesh would be a six-regular mesh (all

vertex valence values are six), the algorithm can completely cover the input mesh

with bow ties.

123

Figure 4.22: Appropriate case for triangle mesh algorithm

Figure 4.23: Inappropriate case for triangle mesh algorithm

4.3.2 Auxetic Patterns Extraction Algorithm For Quad Meshes

The steps of what algorithm does in order to match quads for creating bow tie:

124

• Gets a target quad to find its pair.

• Clusters the quads having just one common complete edge with target quad.

• Chooses a quad from this cluster considering already created bow ties’ orienta-

tions.

The proper case for the algorithm is shown in Figure 4.24. Quad Q’s match candidates

can be detected easily by the algorithm.

Figure 4.24: Appropriate case for quad mesh algorithm

If the algorithm encounters a quad and cannot find its edge neighbor quads during its

running, it also cannot find this quad’s match candidates. As a result, this quad cannot

be matched. Such a case is shown in Figure 4.25. Quad Q does not have any edge

neighbor having the complete common edge with it. All edges of Q involves adjacent

quads’ edges. There is not any complete edge between Q and its adjacent quads.

Consequently, the algorithm requires a quad mesh which its internal vertices are

mostly regular (valance values are four) and its edges do not involve each other as

possible as. Quads having edge involving another quad’s edge are discarded by the

algorithm. Valence semi-regular quad meshes classified by Bommes et al. [36] are

ideally suited as inputs for our algorithm.

125

Figure 4.25: Inappropriate case for quad mesh algorithm

4.4 Performances Of Auxetic Patterns Extraction Methods

Algorithms described in Sections 3.2 and 3.3 have similar working principals. Their

complexities are O(n2). Because of having similar working principals, only analyze

results of algorithm designed for quad meshes described in Section 3.3 are presented.

The algorithm for quad meshes was run on three different inputs with different sizes

and shapes shown in Figures 4.1a (goblet), 4.2a (vase) and 4.3a (glove). The numbers

about quad meshes and running processes are exhibited in table 4.2.

Table 4.2: Running Results Of Quad Mesh Auxetic Patterns Extraction Algorithm

For Different Inputs

Target Model Number Of Number Of Number Of Running Time

Quads Paired Quads Internally Paired Quads (milisecond)

Goblet 896 896 896 2132

Vase 2784 2784 2752 7197

Glove 536 536 504 1582

The first model, goblet, is very suitable for the algorithm. All bow ties and internal

bow ties between these bow ties are founded from quads. There is no gap on the

126

goblet’s surface shown in Figure 4.26a.

Second and third models, vase and glove are almost suitable for the algorithm. All

bow ties are founded from quads; however, some internal bow ties cannot be founded

due to the shapes of these models. There are some gaps on their surfaces shown in

Figures 4.26b and 4.26c.

There are also models which not much suitable for the algorithm. In Figure 4.27a, a

famous model in computer graphics world is shown, Stanford bunny. Although this

Stanford bunny quad mesh model was regularized by Peng et al. [37], it still contains

irregular vertices. We tried our algorithm on this quad mesh. The numbers about this

quad mesh and running process are exhibited in table 4.3. Additionally, the result of

the algorithm can be seen in Figure 4.27b. There are some lanes consisting of gaps

and interlaced bow ties shown in Figures 4.27c and 4.27d. The algorithm needs to be

improved.

Table 4.3: Running Results Of Quad Mesh Auxetic Patterns Extraction Algorithm

For Stanford Bunny Model

Target Model Number Of Number Of Number Of Running Time

Quads Paired Quads Internally Paired Quads (milisecond)

Bunny 12087 11856 11004 351665

The algorithm was run multiple times for each quad meshes and average running time

was calculated and presented as running time. Change on running times of algorithm

for different quad meshes is as expected. Increasing quad counts in meshes also

increases the running times with respect to the complexity of the algorithm which is

O(n2).

127

(a) Goblet

(b) Vase

(c) Glove

Figure 4.26: Surfaces of different models after quad mesh auxetic patterns extraction

algorithm run

128

(a) Quad mesh Stanford bunny model [37] (b) Final result obtained by the algoritm

(c) Zoomed to the lanes consisting of gaps

(d) Zoomed to the interlaced bow ties

Figure 4.27: Failure case of the quad mesh auxetic patterns extraction algorithm on

Stanford bunny

129

130

CHAPTER 5

CONCLUSION

In this thesis, we developed novel methods for extracting auxetic patterns from 3D

printable digital designs by modifying the existing mesh primitives directly and fully-

automatically. Then, we used our methods and obtained extracted auxetic patterns

which can be 3D printed. We 3D printed some of them and observed the auxetic be-

haviors on outputs. During 3D printing processes, we encountered problems caused

by the difficulties of fabricating auxetic patterns. We tried different methods to fab-

ricate auxetic patterns and create objects consisting of auxetic patterns; however, our

tries generates other problems. We strived to solve these problems in order to obtain

convenient 3D printed objects having auxetic behavior.

To conclude, although we managed to 3D print some extracted auxetic patterns suc-

cessfully, we do not have perfect 3D printed objects having auxetic behavior. Addi-

tionally, we cannot extract auxetics patterns for arbitrary digital designs. Our methods

have some constraints. Moreover, we cannot 3D print successfully all auxetic patterns

extracted with our methods by 3D printers we already have. We created flattened dig-

ital designs consisting of auxetic patterns which can be 3D printed easily. Then, we

tried to fold them to generate objects having auxetic behavior but we failed. How-

ever, our works are encouraging and 3D printing auxetic objects is still popular in the

worlds of computer graphics and digital fabrication.

In the future, we plan to improve our algorithms in order to extract auxetic patterns

from more complex digital models having nontrivial geometric features. This requires

a multi-resolution approach that employs auxetic patters of varying sizes on the same

mesh (Figure 5.1). Establishing smooth transition between such multi-resolution pat-

terns is expected to alleviate the gapping and interlacing problems demonstrated in

131

Figure 4.27. Such an approach will also enable varying elasticity over the fabricated

object, where the places tiled with smaller patterns will be less elastic than the ones

tiled with larger patterns. Finally, we aim to perform fabrication using more sophisti-

cated 3D printers than the ones we employed.

(a) Consisting of 5x10 mm auxetic patterns (b) Consisting of 8x16 mm auxetic patterns

(c) Consisting of 10x20 mm auxetic patterns (d) Consisting of 20x40 mm auxetic patterns

Figure 5.1: Auxetic planes having dimensions 200x200 mm

132

REFERENCES

[1] S. Mueller, S. Im, S. Gurevich, A. Teibrich, L. Pfisterer, F. Guimbretière, and

P. Baudisch, “Wireprint: 3d printed previews for fast prototyping,” in Proceed-

ings of the 27th annual ACM symposium on User interface software and tech-

nology, pp. 273–280, ACM, 2014.

[2] H. Peng, R. Wu, S. Marschner, and F. Guimbretière, “On-the-fly print: Incre-

mental printing while modelling,” in Proceedings of the 2016 CHI Conference

on Human Factors in Computing Systems, pp. 887–896, ACM, 2016.

[3] R. Guseinov, E. Miguel, and B. Bickel, “Curveups: shaping objects from flat

plates with tension-actuated curvature,” ACM Transactions on Graphics (TOG),

vol. 36, no. 4, p. 64, 2017.

[4] M. Konaković, K. Crane, B. Deng, S. Bouaziz, D. Piker, and M. Pauly, “Be-

yond developable: computational design and fabrication with auxetic materials,”

ACM Transactions on Graphics (TOG), vol. 35, no. 4, p. 89, 2016.

[5] L.-Y. Wei, S. Lefebvre, V. Kwatra, and G. Turk, “State of the art in example-

based texture synthesis,” in Eurographics 2009, State of the Art Report, EG-

STAR, pp. 93–117, Eurographics Association, 2009.

[6] E. Praun, A. Finkelstein, and H. Hoppe, “Lapped textures,” in Proceedings of

the 27th annual conference on Computer graphics and interactive techniques,

pp. 465–470, ACM Press/Addison-Wesley Publishing Co., 2000.

[7] S. Lefebvre and H. Hoppe, “Appearance-space texture synthesis,” in ACM

Transactions on Graphics (TOG), vol. 25, pp. 541–548, ACM, 2006.

[8] K. Zhou, X. Huang, X. Wang, Y. Tong, M. Desbrun, B. Guo, and H.-Y.

Shum, “Mesh quilting for geometric texture synthesis,” in ACM Transactions

on Graphics (TOG), vol. 25, pp. 690–697, ACM, 2006.

133

[9] C. Ma, L.-Y. Wei, and X. Tong, “Discrete element textures,” in ACM Transac-

tions on Graphics (TOG), vol. 30, p. 62, ACM, 2011.

[10] A. Garg, A. O. Sageman-Furnas, B. Deng, Y. Yue, E. Grinspun, M. Pauly, and

M. Wardetzky, “Wire mesh design.,” ACM Trans. Graph., vol. 33, no. 4, pp. 66–

1, 2014.

[11] C. Torres, T. Campbell, N. Kumar, and E. Paulos, “Hapticprint: Designing feel

aesthetics for digital fabrication,” in Proceedings of the 28th Annual ACM Sym-

posium on User Interface Software & Technology, pp. 583–591, ACM, 2015.

[12] J. Dumas, A. Lu, S. Lefebvre, J. Wu, and C. Dick, “By-example synthesis of

structurally sound patterns,” ACM Transactions on Graphics (TOG), vol. 34,

no. 4, p. 137, 2015.

[13] W. Chen, X. Zhang, S. Xin, Y. Xia, S. Lefebvre, and W. Wang, “Synthesis of

filigrees for digital fabrication,” ACM Transactions on Graphics (TOG), vol. 35,

no. 4, p. 98, 2016.

[14] C. Schumacher, B. Thomaszewski, and M. Gross, “Stenciling: Designing

structurally-sound surfaces with decorative patterns,” in Computer Graphics Fo-

rum, vol. 35, pp. 101–110, Wiley Online Library, 2016.

[15] J. Zehnder, S. Coros, and B. Thomaszewski, “Designing structurally-sound

ornamental curve networks,” ACM Transactions on Graphics (TOG), vol. 35,

no. 4, p. 99, 2016.

[16] H. Zhao, F. Gu, Q.-X. Huang, J. Garcia, Y. Chen, C. Tu, B. Benes, H. Zhang,

D. Cohen-Or, and B. Chen, “Connected fermat spirals for layered fabrication,”

ACM Transactions on Graphics (TOG), vol. 35, no. 4, p. 100, 2016.

[17] A. Jacobson, I. Baran, J. Popovic, and O. Sorkine, “Bounded biharmonic

weights for real-time deformation.,” ACM Trans. Graph., vol. 30, no. 4, pp. 78–

1, 2011.

[18] Y. Sahillioğlu and Y. Yemez, “Minimum-distortion isometric shape correspon-

dence using em algorithm,” IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, vol. 34, no. 11, pp. 2203–2215, 2012.

134

[19] J. Spillmann and M. Teschner, “Cosserat nets,” IEEE Transactions on Visualiza-

tion and Computer Graphics, vol. 15, no. 2, pp. 325–338, 2009.

[20] J. Pérez, B. Thomaszewski, S. Coros, B. Bickel, J. A. Canabal, R. Sumner, and

M. A. Otaduy, “Design and fabrication of flexible rod meshes,” ACM Transac-

tions on Graphics (TOG), vol. 34, no. 4, p. 138, 2015.

[21] J. Panetta, Q. Zhou, L. Malomo, N. Pietroni, P. Cignoni, and D. Zorin, “Elas-

tic textures for additive fabrication,” ACM Transactions on Graphics (TOG),

vol. 34, no. 4, p. 135, 2015.

[22] C. Schumacher, B. Bickel, J. Rys, S. Marschner, C. Daraio, and M. Gross, “Mi-

crostructures to control elasticity in 3d printing,” ACM Transactions on Graph-

ics (TOG), vol. 34, no. 4, p. 136, 2015.

[23] J. Martínez, J. Dumas, and S. Lefebvre, “Procedural voronoi foams for additive

manufacturing,” ACM Transactions on Graphics (TOG), vol. 35, no. 4, p. 44,

2016.

[24] W. Wang, T. Y. Wang, Z. Yang, L. Liu, X. Tong, W. Tong, J. Deng, F. Chen, and

X. Liu, “Cost-effective printing of 3d objects with skin-frame structures,” ACM

Transactions on Graphics (TOG), vol. 32, no. 6, p. 177, 2013.

[25] L. Lu, A. Sharf, H. Zhao, Y. Wei, Q. Fan, X. Chen, Y. Savoye, C. Tu, D. Cohen-

Or, and B. Chen, “Build-to-last: strength to weight 3d printed objects,” ACM

Transactions on Graphics (TOG), vol. 33, no. 4, p. 97, 2014.

[26] R. Wu, H. Peng, F. Guimbretière, and S. Marschner, “Printing arbitrary meshes

with a 5dof wireframe printer,” ACM Transactions on Graphics (TOG), vol. 35,

no. 4, p. 101, 2016.

[27] Y. Liu and H. Hu, “A review on auxetic structures and polymeric materials,”

Scientific Research and Essays, vol. 5, no. 10, pp. 1052–1063, 2010.

[28] R. Underhill, “Defense applications of auxetic materials,” Defense Systems In-

formation Analysis Center, 07 2014.

[29] G. Imbalzano, J. P. Tran, T. Ngo, and P. Lee, “Three-dimensional modelling of

135

auxetic sandwich panels for localised impact resistance,” vol. 19, pp. 291–316,

12 2015.

[30] blender - Free and Open Source Creation Suit, 2017 (last released Sep 12, 2017).

available: https://www.blender.org/.

[31] Ultimaker Cura Software, 2017 (last released May 12, 2017).

available: https://ultimaker.com/en/products/

ultimaker-cura-software.

[32] libigl - A simple C++ geometry processing library, 2018 (last commited Jan 11,

2018). available: https://github.com/libigl/libigl/.

[33] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and W. Stuetzle,

“Multiresolution analysis of arbitrary meshes,” in Proceedings of the 22nd an-

nual conference on Computer graphics and interactive techniques, pp. 173–182,

ACM, 1995.

[34] B. Lévy, S. Petitjean, N. Ray, and J. Maillot, “Least squares conformal maps for

automatic texture atlas generation,” in ACM transactions on graphics (TOG),

vol. 21, pp. 362–371, ACM, 2002.

[35] P. Mullen, Y. Tong, P. Alliez, and M. Desbrun, “Spectral conformal parameter-

ization,” in Computer Graphics Forum, vol. 27, pp. 1487–1494, Wiley Online

Library, 2008.

[36] D. Bommes, B. Lévy, N. Pietroni, C. Silva, M. Tarini, and D. Zorin, “State of

the art in quad meshing,” 2012.

[37] C.-H. Peng, E. Zhang, Y. Kobayashi, and P. Wonka, “Connectivity editing for

quadrilateral meshes,” in ACM Transactions on Graphics (TOG), vol. 30, p. 141,

ACM, 2011.

136

https://www.blender.org/
https://ultimaker.com/en/products/ultimaker-cura-software
https://ultimaker.com/en/products/ultimaker-cura-software
https://github.com/libigl/libigl/

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	Motivation
	Contributions
	Thesis Organization

	RELATED WORK
	Studies On Visuality
	Studies On Controlling Elasticity
	Studies For Cost Effective Digital Fabrication
	Studies For Rapid Fabrication
	Application Areas of Auxetics

	AUXETIC PATTERNS EXTRACTION METHODS
	Auxetic Pattern
	Extracting Auxetic Patterns From Triangle Meshes
	Extracting Auxetic Patterns From Quad Meshes
	Preparing Extracted Auxetic Patterns For 3D Printing

	RESULTS AND DISCUSSIONS
	Advantages Of Extracting Auxetic Patterns For 3D Printing
	Challenges Of 3D Printing Extracted Auxetic Patterns
	Increasing Weigth Challenge
	3D Printing Flattened Auxetic Patterns
	Folding Flattened Auxetic Patterns
	Using Meltable Support Structures

	Limitations Of Auxetic Patterns Extraction Methods
	Auxetic Patterns Extraction Algorithm For Triangle Meshes
	Auxetic Patterns Extraction Algorithm For Quad Meshes

	Performances Of Auxetic Patterns Extraction Methods

	CONCLUSION
	REFERENCES

