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ABSTRACT 

A MULTIOBJECTIVE OPTIMIZATION TOOLBOX DEVELOPMENT 

FOR PARAMETER IDENTIFICATION OF ELASTOMERS 

 

 

Tekin, Tanyel 

M.S., Department of Mechanical Engineering 

Supervisor: Asst. Prof. Dr. Hüsnü Dal 

 

January 2018, 80 pages 

 

 

Rubber materials are widely used in industry because of their hyperelastic 

behaviors. Rubber materials show a highly nonlinear behavior due to hyperelastic 

deformability. Thus, small strain theory can not be applied to rubber materials. 

Various hyperelastic models are proposed by different researchers by deriving 

stress-stretch relations. Those relations differ in various test conditions including 

uniaxial, equibiaxial, pure shear and biaxial deformation modes. In this thesis, ten 

hyperelastic models including phenomenological and micro-mechanical models are 

examined. Stress definitions are obtained. Then, their efficiencies are compared by 

using related experimental data sets. Finally, a multiobjective optimization toolbox 

is developed in MATLAB GUI.  

Treloar data are used for parameter identification of rubber models in uniaxial, 

equibiaxial and pure shear cases after stress definitions are obtained for related 

model. Deformation gradient, right and left Cauchy-Green tensor and Kirchhoff 

stress differ according to each case. The Kirchhoff stresses are also decomposed 
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into volumetric and isochoric parts. The other stresses are used in continuum 

mechanics are the first and second Piola-Kirchhoff stresses and Cauchy stress. The 

data which are used for validation of biaxial case are Kawabata data in this study.  

In biaxial case, the material is stretched from two orthogonal directions with 

different ratios. This leads to different stretches in two orthogonal directions. If 

those stretches are same, the case becomes equibiaxial case. In biaxial case, same 

tensors are obtained like other cases. In Kawabata data, there are data for stress-

stretch in two directions. In present research, stress data of one of these directions 

are used for parameter identification procedure. 

 

 

Keywords: Hyperelasticity, Rubber Material, Parameter Identification, Rubber 

Models, Phenomenological Models, Micro-mechanical Models, MATLAB GUI  
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ÖZ 

ELASTOMERLERİN PARAMETRELERİNİN TANIMLANMASI İÇİN 

ÇOK AMAÇLI BİR ENİYİLEME PROGRAMI GELİŞTİRİLMESİ 

 

 

Tekin, Tanyel 

Yüksek Lisans, Makine Mühendisliği Bölümü 

Tez Yöneticisi: Y. Doç. Dr. Hüsnü Dal 

 

Ocak 2018, 80 sayfa 

 

 

Kauçuk malzemelerin hiperelastik davranışları sebebiyle endüstride geniş kullanım 

alanları mevcuttur. Kauçuk malzemeler uğradıkları hiperelastik deformasyon 

sebebiyle yüksek derecede doğrusal olmayan davranış gösterirler. Bu sebeple 

küçük gerinim teorisi kauçuk malzemeler için uygulanabilir değildir. Farklı 

araştırmacılar tarafından çeşitli hiperelastik modeller gerilim-gerinim ilişkileri 

türetilerek sunulmuştur. Bu ilişkilendirmeler tek eksenli, eşikieksenli, saf kayma ve 

iki eksenli olmak üzere çeşitli test koşulları altında değişmektedir. Bu tezde 

fenomenolojik ve mikro-mekanik hiperelastik modelleri içeren toplam on adet 

model incelenmiştir. Gerilme tanımlamaları elde edilmiştir. Daha sonra bu 

modellerin etkinlikleri ilgili veri setleri kullanılarak karşılaştırılmıştır. Son olarak 

çok amaçlı bir eniyileme programı MATLAB GUI’de geliştirilmiştir. 

 

Treloar verisi tek eksenli, eşikieksenli ve saf kayma test koşullarında kauçuk 

modellerindeki gerilme ifadeleri bulunduktan sonra ilgili modelin parametrelerinin 

tanımlanması için kullanılmaktadır. Deformasyon değişimi, sağ ve sol Cauchy-
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Green tensörleri ve Kirchhoff gerilme ifadeleri her test koşulunda değişmektedir. 

Kirchhoff gerilmesi volümetrik ve izokorik olarak iki kısma ayrılmaktadır. Birinci 

ve ikinci Piola-Kirchhoff gerilmeleri ve Cauchy gerilmesi de sürekli ortamlar 

mekaniğinde kullanılan diğer gerilmelerdir. 

 

İki eksenli test koşulu doğrulanması için kullanılan veri ise Kawabata verisidir. İki 

eksenli test koşulunda malzeme ortogonal iki eksenden farklı oranlarda 

uzatılmaktadır. Bu sebeple bu iki ortogonal eksende farklı uzamalar 

gerçekleşmektedir. Eğer bu eksenlerdeki uzama miktarları aynı olursa, test koşulu 

eşikieksenli durumu olur. Diğer test koşullarında olduğu gibi ilgili tensörler iki 

eksenli durum için de elde edilir. Kawabata verisinde iki farklı yön için iki farklı 

gerilme-uzama verisi bulunmaktadır. Bu çalışmada parameter tanımlanması 

prosedürü için bu yönlerden birindeki gerilme verileri kullanılmaktadır. 

 

 

 

Anahtar Kelimeler: Hiperelastisite, Kauçuk Malzeme, Parametre Tanımlanması, 

Kauçuk Modelleri, Fenomenolojik Modeller, Mikro-mekanik Modeller, MATLAB 

GUI  

 

 

 

 

 

 

 

 

 

 

 



 

 

 

ix 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To My Wife and Family 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

x 

ACKNOWLEDGMENTS 

I wish to express my deepest gratitude to my supervisor Asst. Prof. Dr. Hüsnü Dal 

for his guidance, advice, criticism, encouragements and insight throughout the 

thesis. 

I would also like to thank Yashar Badienia for their suggestions and comments 

during the research. 

I want to express best wishes to İsmail Kabakcı and Samet Aslan for their friendship 

and support during this study. 

I owe special and deepest gratitude to my wife Esra Tekin and my parents Nazmiye 

Tekin, Mustafa Tekin and Türkan Tekin Bulut for their love, support, patience and 

encouragement throughout the study.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

xi 

TABLE OF CONTENTS 

ABSTRACT ........................................................................................................ v 

ÖZ...................................................................................................................... vii 

ACKNOWLEDGMENTS ................................................................................... x 

TABLE OF CONTENTS……………………………………………………....xi 

LIST OF TABLES ........................................................................................... xiii 

LIST OF FIGURES .......................................................................................... xiv 

LIST OF SYMBOLS ..................................................................................... xviii 

 

CHAPTERS 

            1. INTRODUCTION ............................................................................. 1 

               1.1. Motivation ............................................................................. 1 

               1.2. Objective ............................................................................... 2 

               1.3. Thesis Overview .................................................................... 3 

            2. THEORETICAL BACKGROUND ................................................... 5 

               2.1. Continuum Mechanics Preliminaries .................................... 5 

               2.2. Literature Study ................................................................... 18 

            3. HYPERELASTIC MODELS STRESS-STRETCH EXPRESSION           

CALCULATIONS ............................................................................ 21 

               3.1. Phenomenological Models .................................................. 24 

               3.2. Micro-Mechanical Models .................................................. 30 

            4. PARAMETER IDENTIFICATION ALGORITHM AND 

MULTIOBJECTIVE TOOLBOX DEVELOPMENT IN MATLAB   

GUI ................................................................................................... 39 

               4.1. Matlab GUI Development for the Multiobjective   

Optimization Toolbox for Parameter Identification of 

Elastomers ............................................................................. 41 

            5. PARAMETER IDENTIFICATION RESULTS OF ELASTOMER 

MODELS .......................................................................................... 47 



 

 

 

xii 

               5.1. Performance of Hyperelastic Models on Treloar’s Data ..... 50 

               5.2. Performance of Hyperelastic Models on Kawabata’s Data..61 

            6. CONCLUSION ................................................................................ 73 

REFERENCES .................................................................................................. 77 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

xiii 

LIST OF TABLES 

TABLES 

Table 3.1: Integration points and weights on unit sphere [16] ……………………37 

Table 5.1: Identified parameters of elastomer models by using Treloar data……47 

Table 5.2: Identified weight coefficients of elastomer models by using Treloar data 

……………………...……………………………………………….....................48 

Table 5.3: Identified parameters of elastomer models by using Kawabata data…49 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

xiv 

LIST OF FIGURES 

FIGURES 

Figure 2.1: Deformation gradient mapping a line element from undeformed 

configuration to deformed configuration……………………...…………………...6 

Figure 2.2: Components of Cauchy stress distributed on a cubic element…...……9 

Figure 2.3: Traction vectors acting on reference and current configurations……..10 

Figure 2.4: Test specimen outline depicted for uniaxial tension test [8]…..……....12 

Figure 2.5: Uniaxial experiment test set-up designed for elastomers [8]……….....12 

Figure 2.6: Test specimen producted for equibiaxial tension test [8]………......... 13 

Figure 2.7: Equibiaxial experiment test set-up designed for elastomers [8]……....14 

Figure 2.8: Test specimen outline depicted for pure shear test [8]…………….......14 

Figure 2.9: Pure shear experiment test set-up designed for elastomers [8]……......15 

Figure 3.1: Eight-chain model structure undergoing deformation [29]…………...32 

Figure 3.2: Single chain outline of microsphere model: (a) Free single chain 

consisting of N segments with length l (b) Straight tube diameter constraining chain 

topology [16]……………………………………………………………………. 34 

Figure 3.3: Stereographic pole projection of unit sphere describing the 

microstructure of the network model [16]……………………………………….. 36 

Figure 4.1: Multiobjective optimization toolbox for parameter identification of 

elastomers overview with parameter identification mode…………….…….…....42 



 

 

 

xv 

Figure 4.2: Treloar test data loaded on multiobjective optimization toolbox for 

parameter identification of elastomers…..……...……………………..……..…..43 

Figure 4.3: Kawabata test data loaded on multiobjective optimization toolbox for 

parameter identification of elastomers.…………………….……….…………… 44 

Figure 4.4: The results given on multiobjective optimization toolbox for parameter 

identification of elastomers for Carroll model example by using Treloar 

data……………………………………………………………………………….45 

Figure 4.5: The results given on multiobjective optimization toolbox for parameter 

identification of elastomers for Carroll model example by using Kawabata 

data………………………..……………………………………………...….…...45 

Figure 4.6: Multiobjective optimization toolbox for parameter identification of 

elastomers overview with parameter entrance mode……………………………..46 

Figure 5.1: Performance of Neo-Hooke model on Treloar’s data for first Piola-

Kirchhoff stress: (a) Uniaxial Tension (b) Equibiaxial Tension (c) Pure 

Shear……………………………………………………………………………...51 

Figure 5.2: Performance of Mooney model on Treloar’s data for first Piola-

Kirchhoff stress: (a) Uniaxial Tension (b) Equibiaxial Tension (c) Pure Shear 

………………………………………………………………………….………...52 

Figure 5.3: Performance of Biderman model on Treloar’s data for first Piola-

Kirchhoff stress: (a) Uniaxial Tension (b) Equibiaxial Tension (c) Pure 

Shear...……………………………………………………………………………53 

Figure 5.4: Performance of Yeoh model on Treloar’s data for first Piola-Kirchhoff 

stress: (a) Uniaxial Tension (b) Equibiaxial Tension (c) Pure Shear 

……………………………………………………………………….…………...54 



 

 

 

xvi 

Figure 5.5: Performance of Carroll model on Treloar’s data for first Piola-Kirchhoff 

stress: (a) Uniaxial Tension (b) Equibiaxial Tension (c) Pure Shear 

…………………………………………………………………………................55 

Figure 5.6: Performance of Shariff model on Treloar’s data for first Piola-Kirchhoff 

stress: (a) Uniaxial Tension (b) Equibiaxial Tension (c) Pure Shear 

……………………………………………………….………...…………………56 

Figure 5.7: Performance of Ogden model on Treloar’s data for first Piola-Kirchhoff 

stress: (a) Uniaxial Tension (b) Equibiaxial Tension (c) Pure Shear 

…………………………………………………………………………................57 

Figure 5.8: Performance of eight-chain model on Treloar’s data for first Piola-

Kirchhoff stress: (a) Uniaxial Tension (b) Equibiaxial Tension (c) Pure Shear 

…………………………………………………………………………................58 

Figure 5.9: Performance of extended tube model on Treloar’s data for first Piola-

Kirchhoff stress: (a) Uniaxial Tension (b) Equibiaxial Tension (c) Pure Shear 

…………………………………………………………………………................59 

Figure 5.10: Performance of microsphere model on Treloar’s data for first Piola-

Kirchhoff stress: (a) Uniaxial Tension (b) Equibiaxial Tension (c) Pure 

Shear.......................................................................................................................60 

Figure 5.11: Stress P22 as function of the principal ratios of  λ1 and λ2................61 

Figure 5.12: Performance of Neo-Hooke model on Kawabata’s data for first Piola-

Kirchhoff Stress P22 ………………………………………………………….….63 

Figure 5.13: Performance of Mooney model on Kawabata’s data for first Piola-

Kirchhoff stress P22................................................................................................64 

Figure 5.14: Performance of Biderman model on Kawabata’s data for first Piola-

Kirchhoff stress P22 ……….………………………………………………….….65 



 

 

 

xvii 

Figure 5.15: Performance of Yeoh model on Kawabata’s data for first Piola-

Kirchhoff stress P22................................................................................................66 

Figure 5.16: Performance of Carroll model on Kawabata’s data for first Piola-

Kirchhoff stress P22..…………………………….……………………………….67 

Figure 5.17: Performance of Shariff model on Kawabata’s data for first Piola-

Kirchhoff stress P22................................................................................................68 

Figure 5.18: Performance of Ogden model on Kawabata’s data for first Piola-

Kirchhoff stress P22 ………………………………….….……………………….69 

Figure 5.19: Performance of eight-chain model on Kawabata’s data for first Piola-

Kirchhoff stress P22................................................................................................70 

Figure 5.20: Performance of extended tube model on Kawabata’s data for first 

Piola-Kirchhoff stress P22 ………………………………………………….…….71 

Figure 5.21: Performance of microsphere model on Kawabata’s data for first Piola-

Kirchhoff stress P22................................................................................................72 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

xviii 

LIST OF SYMBOLS  

F  Deformation gradient 

𝐅̅  Modified deformation gradient 

𝐂  The right Cauchy-Green deformation tensor 

𝐂  Isochoric right Cauchy-Green deformation tensor 

𝐁   The left Cauchy-Green deformation tensor (finger tensor) 

u  Displacement, m  

x  Position of deformed vector, m 

X  Position of undeformed vector, m  

J  Jacobian determinant 

W                    Free energy function 

δ  Kronecker delta 

𝐈  Identity tensor 

p ̂  Hydrostatic pressure, MPa 

m  Meter 

v  Deformed volume, m3 

V  Undeformed volume, m3 

λ  Stretch 



 

 

 

xix 

λ̅  Modified stretch 

n             Normal vector of deformed area 

N             Normal vector of undeformed area 

MPa   MegaPascal 

𝐏  First Piola-Kirchhoff stress tensor, MPa 

𝛔  Cauchy Stress, MPa 

𝐒  Second Piola-Kirchhoff stress tensor, MPa 

I             Strain invariant  

𝛕  Kirchhoff Stress Tensor, MPa 

𝛕̂  Isochoric Kirchhoff Stress Tensor, MPa 

E  Modulus of elasticity, MPa 

v  Poisson ratio  

μ  Shear modulus, MPa 

ℒ  Langevin function 

𝐭  Traction vector in deformed configuration, Pa 

𝐓  Traction vector in undeformed configuration, Pa 

N  Newton 

∆𝐹  Force element, N 

∆𝐴  Area element, m2 



 

 

 

xx 

𝐟  Force acting on the surface in the deformed configuration, N 

Θ  Absolute temperature, K 

k𝑏  Boltzmann’s constant, Joule/K 

K  Kelvin 

GUI                 Graphical User Interface 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

1 

CHAPTER 1 

INTRODUCTION 

1.1. Motivation 

Rubber materials are widely used in industry because of their hyperelastic behavior. 

They have a lot of applications especially in automotive industry. For instance, 

windshield wipers, transmission belts, washers, seals, gaskets and o-rings are made 

of rubber materials [1]. 

Solid materials are classified as metal, ceramic, polymers and composite materials. 

Polymeric materials have become significant materials due to their lightness and 

easy-machinability. Rubber materials are in polymeric material class. 

The macromolecules which are connected to each other via cross-links or 

entanglements form the rubber materials. Thus, rubber materials exhibit very high 

extensions under certain forces. Moreover, they can return to nearly their first length 

when the forces are removed. This property is based on low cross-link density and 

nonuniform structure. Permanent deformation is prevented by cross-links in the 

rubber structure. 

Rubber materials exhibit a highly nonlinear behavior because of hyperelastic 

deformability. Thus, they can not be evaluated by small strain theory. In small strain 

theory, deformed and undeformed configurations are nearly same. However, this 

may not be true for rubber materials. Those two configurations must be examined 

separately. Moreover, they have to be related with certain tensors including stress 

and strain tensors.  

Free energy functions are used to have constitutive equations of rubber materials to 

obtain stress-stretch relations. Two approaches for the study of rubber elasticity are 
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put forward. First approach is to have a phenomenological formulation for free 

energy function. The other approach is to derive rubber properties from idealized 

rubber structure models [2]. These models are important because appropriate rubber 

material model and its parameters lead to have correct results in finite element 

simulations.  

There are various hyperelastic constitutive rubber models and the problem is to use 

the best fitting material model with appropriate material parameters for related 

application. The nonlinear stretch-stress curves of rubber materials seem like ‘S’ 

letter. A rubber model should reproduce ‘S’ shaped response of rubbers, not to have 

problem with different deformation modes, have material parameters as few as 

possible, have a simple mathematical formulation as much as possible [3]. For this 

purpose, some studies have been conducted to identify material parameters of rubber 

models. Moreover, different experimental data like Treloar [4] and Kawabata [5] 

data are used to validate the results. 

It must be noted that those classical hyperelastic models of rubbers are more 

applicable to cross-linked rubbers due to cross-links’ providing the material 

elasticity property [6]. Also, those models are not used for mechanisms like material 

softening. The researchers should apply another approaches for these phenomena 

[7]. 

1.2. Objective 

The objective of this thesis is to develop a multiobjective optimization toolbox for 

parameter identification of elastomers. 

Ten hyperelastic rubber models involving phenomenological and micro-mechanical 

models are examined. Stress-stretch relations for those models are presented. A 

parameter identification algorithm is proposed. According to this algorithm, 

material parameters of ten hyperelastic rubber models are identified. Two material 

parameter sets are identified for each model. First material parameter set is used for 
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uniaxial, equibiaxial and pure shear cases for related model. Treloar data are used 

in this case for identification process. Second parameter set is used for biaxial case 

for related model. Kawabata data are used in this case for identification process. A 

multiobjective optimization toolbox is developed in MATLAB GUI to perform all 

those calculations faster and more easily. Furthermore, efficiency of rubber models 

are compared according to specified criteria. 

1.3. Thesis Overview 

Chapter 2 provides a detailed description of theoretical background for continuum 

mechanics preliminaries and literature studies are given in this chapter. Hyperelastic 

models’ stress-stretch expression calculations are given in Chapter 3. Chapter 4 

addresses the parameter identification algorithm and multiobjective toolbox 

development in MATLAB GUI. Chapter 5 shows the parameter identification 

results of hyperelastic models in uniaxial, equibiaxial, pure shear cases and biaxial 

case. Chapter 6 provides a summary of identification process results, results’ 

comparison and conclusions. 
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CHAPTER 2 

THEORETICAL BACKGROUND 

2.1. Continuum Mechanics Preliminaries 

2.1.1. Deformation Tensors 

The terms of a strain energy function which is power series in the invariants of 

deformation tensors can describe elastic properties of a rubber material. For this 

purpose, the right and left Cauchy-Green deformation tensors, respectively C and B 

should be presented. Thus, invariants of deformation tensors can be found as 

𝐂 = 𝐅T𝐅 and 𝐁 = 𝐅𝐅T. (2.1) 

Here, F is deformation gradient. The deformation gradient F is the measure of 

deformation in continuum mechanics. The deformation gradient is a tensor 

quantifying not only both 2D and 3D shape change but also whole material rotation. 

From Figure 2.1, deformation gradient mapping a line element from undeformed 

configuration to deformed configuration can be seen. The deformation gradient is 

calculated by performing derivation of the position of deformed x vector to the 

position of X undeformed reference vector as 

Fij = xi,j =
∂xi

∂Xj
=

[
 
 
 
 
 
 
∂x1

∂X1

∂x1

∂X2

∂x1

∂X3

∂x2

∂X1

∂x2

∂X2

∂x3

∂X1

∂x3

∂X2

∂x2

∂X3

∂x3

∂X3]
 
 
 
 
 
 

 . (2.2) 
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Figure 2.1:  Deformation gradient mapping a line element from undeformed 

configuration to deformed configuration 

Displacement u also can be calculated as  

𝐮 = 𝐱 − 𝐗. (2.3) 

That means  x= u+X and if we substitute  equation (2.3) into equation (2.2), F can 

be calculated as 

𝐅 =
∂(𝐗 + 𝐮)

∂𝐗
= 𝐈 +

∂𝐮

∂𝐗
 . (2.4) 

In tensor notation, it can be written as 

Fij = δij + ui,j . (2.5) 

Invariants of deformation tensors can be written as 

I1 = tr(𝐂) = tr(𝐁),     (2.6) 

I2 =
1

2
[(tr(𝐂))

2
− tr(𝐂𝐂)] =  

1

2
[(tr(𝐁))2 − tr(𝐁𝐁) ] , (2.7) 

and I3 = det(𝐂) = det(𝐁) =  J2. (2.8) 
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Here, J is a measure of change in volume. It is called as Jacobian determinant. J is 

found as 

J(𝐗, t) = det𝐅 =

|

|

∂x1

∂X1

∂x1

∂X2

∂x1

∂X3

∂x2

∂X1

∂x2

∂X2

∂x3

∂X1

∂x3

∂X2

∂x2

∂X3

∂x3

∂X3

|

|

 . (2.9) 

Since J shows how deformation changes the volume of a material, it is called as 

volume ratio and volume change can be calculated as 

𝑑v = J𝑑V. (2.10) 

Here, dV is undeformed (reference) volume element and dv is deformed (current) 

volume element. Since volumes must be positive and F has inverse, J must be bigger 

than 0 (zero). For incompressible case, volume change is 0 (zero). For this case, J 

must be 1 (one). 

After invariants of deformation tensors are given, at this point stretch, λ , must be 

defined. The ratio of the length of a deformed line element to the same element’s 

undeformed line element length is called as the stretch. Its calculation is given as 

λ =
|d𝐱|

|d𝐗|
 . (2.11) 

Here, eigenvalue decomposition of tensors C and B can be written as 

𝐁 = ∑ λA 
2 𝐧𝐀⨂𝐧𝐀

A=1 

 and (2.12) 

𝐂 = ∑ λA 
2 𝐍𝐀⨂𝐍𝐀 .

A=1 

 (2.13) 
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Here λA are principal stretches and 𝐧A, 𝐍A are components of normal vectors of 

corresponding tensors. Principal stretches and invariants of deformation gradients 

have the relations as 

I1 = tr(𝐁) = λ1
2 + λ2

2 + λ3
2 , (2.14) 

I2 =
1

2
[I1

2 − tr(𝐁𝐁)] = λ1
2λ2

2 + λ1
2λ3

2 + λ2
2λ3

2 and (2.15) 

I3 = det(𝐁) = λ1
2λ2

2λ3
2. (2.16) 

If material is incompressible, it leads to the definition 

I3 = 1. (2.17) 

2.1.2. Stress Tensors 

When deformation gradient is presented in the previous part, deformed and 

undeformed configurations are shown in the Figure 2.1. If the deformations are 

small, there is not a prominent difference between deformed and undeformed 

configurations. Thus, Cauchy stress (true stress) can be used for describing the 

actions of surface forces for each configuration. The limiting value of the ratio of 

force over area is called as the traction vector and it is calculated as 

𝐭(𝐧) = lim
∆A→0

∆𝐹

∆A
 . (2.18) 

Cauchy stress can be calculated as 

𝐭 = 𝛔𝐧 and (2.19) 

in tensor notation, it can be written as 

ti = σijnj. (2.20) 

In full notation, traction vector components can be written as 

t1 = σ11n1 + σ12n2 + σ13n3 , (2.21) 
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t2 = σ21n1 + σ22n2 + σ23n3 and (2.22) 

t3 = σ31n1 + σ32n2 + σ33n3 . (2.23) 

Components of Cauchy stress distributed on a cubic element are shown in Figure 

2.2. 

 

Figure 2.2: Components of Cauchy stress distributed on a cubic element  

If the deformations are large, reference configuration must be defined. In this case, 

Cauchy stress will not be enough. There are also different ways of defining the 

action of surface forces. 

The first Piola-Kirchhoff stress tensor, P, can be written as 

𝑑𝐟 = 𝐏𝐍𝑑A. (2.24) 

Here, df is the force acting on the surface element in the current configuration. dA 

is the area of the element. N is the unit normal. It should be noted that in reference 

configuration capital letters are used for notation whereas small letters are used in 

current configuration. It means that n will be used for unit normal in current 

configuration and da will be used for area of the element in the current 

configuration. Traction vectors acting on the reference and current configurations 

can be seen in Figure 2.3. 
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Figure 2.3: Traction vectors acting on the reference and current configurations 

It can be seen from equation (2.24) that the first Piola-Kirchhoff stress tensor is a 

two-point tensor because the surface element in the reference configuration is 

related to the force acting on the current configuration by this stress tensor. The 

relation between Cauchy stress and the first Piola-Kirchhoff stress can be written as 

𝛔𝐧𝑑a = 𝐏𝐍𝑑A. (2.25) 

In this point Piola transform can be used as 

𝐧𝑑a = J𝐅−T𝐍𝑑A. (2.26) 

If we substitute Piola transform into equation (2.25), the first Piola-Kirchhoff stress 

becomes 

𝐏 = J𝛔𝐅−T. (2.27) 

The second Piola-Kirchhoff stress tensor, S, can be written as 

𝐒 = J𝐅−1𝛔𝐅−T. (2.28) 

The second Piola-Kirchhoff stress tensor is a symmetric tensor. The first and second 

Piola-Kirchhoff stresses can be related as 

𝐏 = 𝐅𝐒. (2.29) 

Kirchhoff stress tensor, 𝛕, is defined as 

𝛕 = J𝛔. (2.30) 

Kirchhoff stress is the push forward of the second Piola-Kirchhoff stress tensor. It 

can be calculated as 
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𝛕 = 𝐅𝐒𝐅T. (2.31) 

There are more stress definitions which are used in continuum mechanics but in this 

thesis, the stresses explained above are used. It must be noted that those stress 

measures are all equivalent in small strain theory. If the deformations are small, 

terms involving products of displacement gradients are neglected. Then, it is 

applicable for metals. However, rubber materials can not be evaluated with small 

strain theory due to hyperelastic deformation. This also leads rubber materials to 

have nonlinear behavior. 

2.1.3. Deformation Modes 

As it was stated before, the design of metallic materials can be easily done since 

they have rather easier constitutive equations than rubber materials. Metallic 

materials, in elastic region, exhibit same behavior either in compression or in 

tension. In constitutive equations of metals, modulus of elasticity (E) and Poisson 

ratio (v) can be easily obtained by a simple uniaxial tension test. Thus, finite element 

analyses of metallic materials can be performed easily. However, this situation is 

completely different for rubber materials. Rubber materials have different chemical, 

mechanical and thermal properties than metals. Thus, obtaining constitutive 

equations of rubber materials are more difficult.  

Constitutive equations of rubber materials can not be defined directly by stress-

strain relations with required accuracy. Thus, free energy functions are used to have 

constitutive equations of rubber materials. Forming a free energy function is the 

initiating point of hyperelastic rubber modeling. Various researches proposed 

different free energy functions with different methods [1].  

After free energy function is obtained, material parameters in those free energy 

functions must be identified with certain material tests. In these tests, nominal stress 

vs. nominal strain data are required. It should be noted that experiments are cost-

intensive and time consuming. Thus, having a simpler free energy function with 
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minimized number of material parameters is desirable. More common tests which 

are performed for rubber materials are uniaxial tension, equibiaxial tension, pure 

shear and biaxial tension.  Those deformation modes are used in this thesis. 

Uniaxial tension is the more common and simpler deformation mode. Moreover, 

this experiment is commonly performed for rubber materials. The key point in this 

experiment is that the length of the specimen in the direction of stretching must be 

much longer than other dimensions for achievement of pure tensile strain (Figure 

2.4). Thus, specimen thinning can be achieved since there is no lateral thinning [8]. 

A uniaxial experiment test set-up can be seen in Figure 2.5.  

 

Figure 2.4: Test specimen outline depicted for uniaxial tension test [8] 

 
 

Figure 2.5: Uniaxial experiment test set-up designed for elastomers [8] 
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Only uniaxial tension test can not give enough information about free energy 

function. Thus, compression test also must be performed. However, in uniaxial 

compression test, homogenous deformation can not be obtained because of friction 

in compression areas in rubber materials. Thus, equibiaxial tension test is performed 

instead of uniaxial compression test. When straining is performed radially to the 

elastomer specimen in all directions in a single plane, free surfaces come together.  

In equibiaxial tension test, a state of strain equivalent to compression test is provided 

by performing an equal biaxial extension of a specimen. In spite of equibiaxial 

tension test’s having more complexity than compression test, achievement of a pure 

state of strain will lead to have a better accuracy in material model [8]. An 

equibiaxial test specimen can be seen in Figure 2.6. 

 

Figure 2.6: Test specimen producted for equibiaxial tension test [8]  

As it is seen from Figure 2.6, radial cuts exist into specimen so that no tangential 

forces occur between the grips. An equibiaxial experiment test set-up can be seen in 

Figure 2.7.  
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Figure 2.7: Equibiaxial experiment test set-up designed for elastomers [8] 

Especially in deformations where I1  and I2  are small ( I1, I2 < 4) , experimental 

errors get higher. In this situation, material parameters can be identified by pure 

shear test to minimize errors [9]. Moreover, since the rubber materials are assumed 

as incompressible, existence of pure shear is observed in the specimen at a 45 degree 

angle to the stretching direction. The key point in this experiment is that the 

specimen in the direction of stretching must be much shorter than the width. Thus, 

thinning of all the specimen can be achieved in the thickness direction by 

constraining the specimen perfectly in the lateral direction [8]. Pure shear test 

specimen outline can be seen below (Figure 2.8). 

 

Figure 2.8: Test specimen outline depicted for pure shear test [8] 
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Moreover, a pure shear experiment test set-up can be seen in Figure 2.9.  

 

Figure 2.9: Pure shear experiment test set-up designed for elastomers [8] 

For parameter identification of rubber models, Treloar data are used for uniaxial, 

equibiaxial and pure shear cases. In biaxial tension, the material is stretched from 

two orthogonal directions with different ratios. Equibiaxial tension case is specific 

form of biaxial tension case where the specimen is stretched equally from 

orthogonal directions. For biaxial case, Kawabata data are used for identification of 

material parameters.  

According to test method, the deformation gradient, F, finger tensor, 𝐁, and stresses 

change. Kirchhoff stress is used in this point. First deformation mode was uniaxial 

tension. For uniaxial tension, related tensors can be found as 

         [𝐅]ij = [

λ 0 0

0
1

√λ
0

0 0
1

√λ

] ,    [𝐁]ij = [

λ2 0 0

0
1

λ
0

0 0
1

λ

] , [𝛕]ij = [
τ 0 0
0 0 0
0 0 0

] . 
(2.32) 
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Here λ is known. Due to incompressible case,  λ2 and  λ3 are equal to  
1

√λ
 . The stress 

occurring on stretching direction is unknown. Principal invariants can be found 

according to equations (2.14), (2.15) and (2.16). As it is stated above, I3=1 because 

of incompressibility. Principal invariants can be calculated as 

I1 = λ2 +
2

λ
, (2.33) 

I2 = 2λ +
1

λ2
 , (2.34) 

I3 = 1. (2.35) 

Second deformation mode was equibiaxial tension. In this case, related tensors can 

be written as 

         [𝐅]ij = [

λ 0 0
0 λ 0

0 0
1

λ2

],   [𝐁]ij = [

λ2 0 0
0 λ2 0

0 0
1

λ4

],    [𝛕]ij = [
τ1 0 0
0 τ2 0
0 0 0

] . 
(2.36) 

Here, τ1  and τ2  are unknown. Similiarly, due to incompressibility, deformation 

gradient and finger tensor are written. Principal invariants in this case can be found 

as 

I1 = 2λ2 +
1

λ4
 , (2.37) 

I2 = λ4 +
2

λ2
 , (2.38) 

I3 = 1. (2.39) 

For pure shear deformation, related tensors can be written as 
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         [𝐅]ij = [

λ 0 0
0 1 0

0 0
1

λ

],     [𝐁]ij = [

λ2 0 0
0 1 0

0 0
1

λ2

],    [𝛕]ij = [
τ1 0 0
0 τ2 0
0 0 0

] . 
(2.40) 

In pure shear case, since one direction is kept unstretched, the stretch is 1 (one) on 

this direction. Here, τ1  and τ2  are also unknown. Similiarly, due to 

incompressibility, deformation gradient and finger tensor are formed. Principal 

invariants in this case can be found as 

I1 = λ2 + 1 +
1

λ2
 , (2.41) 

I2 = λ2 + 1 +
1

λ2
 , (2.42) 

I3 = 1. (2.43) 

For biaxial tension case, related matrices can be written as 

  [𝐅]ij = [

 λ1 0 0
0  λ2 0

0 0
1

  λ1λ2

], [𝐁]ij = [

 λ1
2 0 0

0  λ1
2 0

0 0
1

 λ1
2 λ1

2

] , [𝛕]ij = [
τ1 0 0
0 τ2 0
0 0 0

]. (2.44) 

In biaxial case, the material is stretched from two orthogonal directions which leads 

to different stretches.  λ1  and  λ2  are known. Here, τ1  and τ2  are also unknown. 

Similarly, due to incompressibility, deformation gradient and finger tensor are 

formed. Principal invariants in this case can be found as 

I1 =  λ1
2 +  λ2

2 +
1

 λ1
2 λ2

2 , (2.45) 

I2 =  λ1
2 λ2

2 +
1

λ2
2 +

1

 λ1
2 , (2.46) 

I3 = 1. (2.47) 
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2.2. Literature Study 

In this thesis, ten rubber hyperelastic models are examined. Seven of them are 

phenomenological models. Those are Neo Hooke [10], Mooney [11], Carroll [12], 

Shariff [13], Ogden [14], Biderman [15] and Yeoh [16] models. Three of the 

hyperelastic models are micro-mechanical models. Those are microsphere model 

[17], eight-chain model [18] and extended tube model [19]. Details of these models 

will be given in the next chapter. 

The efficiency of ten hyperelastic models which are stated above are compared in 

this thesis. Related calculations are performed in MATLAB GUI. Thus, this study 

is a comparative study. Previous comparative studies have been conducted to 

identify the material parameter sets in related models. There are also studies about 

parameter identification of one hyperelastic model. In the accessible literature, 

similar studies are investigated and those studies will be reviewed in this section. 

The attention will be drawn to studies about parameter identification of hyperelastic 

models.  

Marckmann and Verron [3] proposed a comparative study through twenty 

hyperelastic rubber models. They used two classical sets of experimental data 

(Treloar and Kawabata data) in different types of loading conditions. They proposed 

an efficient fitting procedure to identify material parameters. Moreover, stretch 

range of validity of each model are determined for each model. Like this thesis, 

rubber material models with their related definitions and calculations are given. 

Similarly, both phenomenological models and micro-mechanical models are 

presented in this study. As fitting procedure, least square method is used.  

Steinmann, Hossain and Possart [20] reviews fourteen hyperelastic rubber models. 

Stress-stretch relations for certain deformation modes are derived. Moreover, 

efficiencies of those models are evaluated by using classical Treloar data. In this 

study, uniaxial, equibiaxial and pure shear deformation modes are evaluated. In 

fitting procedure, four different material parameter sets are defined. Those are 
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uniaxial fitted, equibiaxial fitted, pure shear fitted and three deformation modes 

together fitted material parameter sets. 

Seibert and Schöche [21] also propose a comparative study by using six different 

hyperelastic models. In this comparison study, uniaxial and biaxial data of a carbon 

black-filled rubber are used. It is concluded that using higher order terms lead to 

achieve typical increase in stiffness at large strains. It is also stated that Arruda-

Boyce model gives reliable predictions with biaxial deformation even though the 

material parameter set which are found by fitting with only uniaxial data is used. 

Arruda and Boyce [22] also reviewed several models using Treloar’s experimental 

data for uniaxial, equibiaxial and pure shear deformation modes. In this study, 

statistical mechanical treatments, invariant based continuum mechanics treatments 

and stretch based continuum mechanics treatments are presented. It is also stated 

that the effects of incompressibility are significant in certain applications. Thus, 

appropriate extension of the strain energy functions is needed in those applications. 

Rackl [23] provided a technical background for curve fitting of Ogden, Yeoh and 

polynomial model. The least squares method is used for curve fitting procedure. The 

results are compared with the parameters found in ANSYS.  

Ali, Hosseini and Sahari [24] reviewed different constitutive models for rubber- like 

materials. In this study, polynomial, reduced polynomial, Ogden, Mooney-Rivlin, 

Neo-Hooke, Yeoh, Arruda-Boyce and Van der Waals models are reviewed. Least 

square optimization method is offered to determine material parameters. It is stated 

that material parameter identification is significant to have the relation between 

stress and strain because it is needed for finite element analysis of rubber materials. 

Finally, it is stated that classification of the models depends on domain of validity 

for all modes of deformation, number of material parameters and the type of 

formulation.  

https://www.researchgate.net/profile/Michael_Rackl
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Wu, Li and Wang [25] used Levenberg-Marquardt nonlinear optimization algorithm 

to determine the material parameters of Ogden model for uniaxial tension, biaxial 

tension, planar tension and simple shear by using Treloar experimental data. Those 

results are compared with ANSYS results for numerical verification. Number of 

terms considered for Ogden model are set as 3 (three) and 4 (four). The results are 

given for those options. When the number of terms is taken as 3 (three), the 

capability of fitting is stated as very well. If it is taken as 4 (four), the results are 

best.  

Nowak [26] also aimed to determine the phenomenological model for polyurethane 

(PUR) rubbers used in civil engineering. Stress-strain relation is characterized and 

the behavior of PUR rubbers is simulated. After strain-energy function is 

established, Piola-Kirchhoff stress is obtained. Then, parameter identifications of 

model parameters are presented. Identification process is supported by the 

experimental data from uniaxial quasi-static tension and compression tests. Material 

behavior is examined for both incompressible and slightly compressible 

deformations. 

Attard and Hunt [27] presented a different comparative study by using seven 

different authors’ experimental data to show efficiency of their own model for 

uniaxial tension, equibiaxial tension, pure shear, compression and biaxial extension. 

A higher elasticity model which is composed of a Neo-Hookean-like compressible 

and a generalized Mooney-type incompressible component is proposed in their 

study. 
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CHAPTER 3 

HYPERELASTIC MODELS STRESS-STRETCH EXPRESSION 

CALCULATIONS 

As it was stated before, stress-stretch expressions of rubbers can be written by using 

free energy functions and this is the starting point for rubber material modeling. It 

is assumed that materials show isotropic and incompressible behavior.  In the fully 

incompressible limit, free energy function can be written as 

W = W(𝐂) = W̃(𝐅) = Ŵ(𝐁). (3.1) 

That means that free energy functions can be written according to certain tensors. 

Since rubber materials shows a decoupled response to volumetric and isochoric 

deformations, it should be written as 

W(𝐂) =  Wvol(J) + Wiso(𝐂̅). (3.2) 

𝐂 is the isochoric right Cauchy-Green tensor and can be calculated as 

𝐂 = J−2/3𝐂 . (3.3) 

Second Piola-Kirchhoff stress can be written according to isochoric free energy 

function as 

𝐒 = 2∂𝐂 W. (3.4) 

This tensor also can be decomposed into volumetric and isochoric parts as 

𝐒 = 2
 ∂Wvol

∂𝐂
+ 2

 ∂Wiso

∂𝐂
 . (3.5) 

Volumetric part can be written as 
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𝐒𝐯𝐨𝐥 = 2
 ∂Wvol(J)

∂J

 ∂J

∂𝐂
= p ̂𝐂−1. (3.6) 

Here p ̂ is hydrostatic pressure term and defined as 

p ̂ = J
 ∂Wvol(J)

∂J
 . (3.7) 

In this study, materials are assumed as isotropic and incompressible. Thus, in the 

case of incompressibility J=1, p ̂ serves as a Lagrange multiplier [20]. Then, the 

second Piola-Kirchhoff stress becomes 

𝐒 = p ̂𝐂−1 + 2
 ∂Wiso

∂𝐂
 . (3.8) 

It was also stated before that Kirchhoff stress is the push forward of the second 

Piola-Kirchhoff stress tensor in (2.31) equation. Thus, if we substitute equation (3.8) 

into (2.31) equation, the expression is obtained as 

𝛕 = 𝐅(p ̂𝐂−1 + 2
 ∂Wiso

∂𝐂
)𝐅T. (3.9) 

Here, Kirchhoff stress is obtained. After necessary calculations, it can be written as 

𝛕 = p ̂1+𝛕̂ . (3.10) 

Here 𝛕̂ is isochoric Kirchhoff stress and can be written as 

𝛕̂ = 𝐅 (2
 ∂Wiso

∂𝐂
) 𝐅T =  𝐅 (2

 ∂Wiso

∂𝐁
) 𝐅T. (3.11) 

 

Finally, the first Piola-Kirchhoff stress tensor can be calculated as 

𝐏 = 𝛕𝐅−T. (3.12) 
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The pressure term p ̂ has to be calculated from equilibrium condition. Stress 

definitions for each material model can be obtained by using stress equations given 

above. 

Isochoric Kirchhoff stress expression is given in equation (3.11). If we substitute 

(2.1) into this equation, the expression is obtained as 

𝛕̂ = 2𝐅(∂𝐁 Wiso)𝐅
T = 2𝐁

 ∂Wiso(I1, I2)

∂𝐁
 . 

  

(3.13) 

If this expression is written more detailed, isochoric Kirchhoff stress is obtained as 

𝛕̂ = 2𝐁
∂𝐁 Wiso(I1, I2)

∂𝐁
= 2𝐁 [

∂Wiso

∂I1

∂I1
∂𝐁

+
∂Wiso

∂I2

∂I2
∂𝐁

] , (3.14) 

where  
∂I1
∂𝐁

= 𝟏 and 
∂I2
∂𝐁

= I1𝟏 − 𝐁 . (3.15) 

If we substitute equations (3.15) into equation (3.14), Kirchhoff stress becomes 

𝛕̂ = 2𝐁 [
∂Wiso

∂I1
𝟏 +

∂Wiso

∂I2
(I1𝟏 − 𝐁)]. (3.16) 

So, Kirchhoff stress expression for invariant base formulation is obtained.  Some 

hyperelastic rubber models have functional models in terms of principal stretches. 

Then, isochoric free energy function has the form as 

Wiso = Wiso(λ1
2, λ2

2, λ3
2). (3.17) 

The Kirchhoff stress tensor obtained for principal stretch-based formulation for 

purely incompressible materials is shown as 

𝛕 = ∑ Wiso,λa
λa𝐧A⨂𝐧A + p ̂𝟏

3

𝑎=1

 . (3.18) 
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The derivatives of isochoric free energy function, Wiso, with respect to principal 

stretches are used in this formulation. As it is seen from above, isochoric free energy 

function definition is required for both phenomenological and micro-mechanical 

models. 

3.1. Phenomenological Models 

Phenomenological models can be principal strain invariants based and principal 

stretch-based formulations. The most general case for isochoric free energy function 

based on principal strain invariants is defined as  

Wiso = ∑ ckl

∞

k,l=0

(I1 − 3)k(I2 − 3)l. (3.19) 

It must be noted that isotropic and incompressible case is assumed in all calculations 

[20]. Seven phenomenological models are presented in this thesis. Equation (3.19) 

represent most general case. Neo-Hooke, Mooney, Yeoh and Biderman models are 

in this form. Shariff and Carroll models are not in this form. Ogden model has a 

stretch-based formulation. 

3.1.1. Neo-Hooke Model 

Neo-Hooke model [10] is the simplest case of equation (3.19). In this model, k is 

taken as 1 (one) and l is taken as 0 (zero). It is also assumed that C00=0. The 

isochoric free energy function of Neo-Hooke model is given as 

Wiso =
μ

2
(I1 − 3). (3.20) 

 

Here, μ=2c10. μ is called as shear modulus. 

The derivatives of free energy function with respect to first and second principal 

strain invariants are given as 

∂Wiso

∂I1
=

μ

2
,

∂Wiso

∂I2
= 0. (3.21) 
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Finger tensor, B, can be found according to deformation mode. Thus, isochoric 

Kirchhoff stress definition is obtained which is given in equation (3.14). Kirchhoff 

stress is found according to equation (3.10). Here, Kirchhoff stress tensor differs 

according to deformation mode as it was stated before in Section (2.1.3). After 

Kirchhoff stress is obtained, the first Piola-Kirchhoff stress is found by using the 

equation (3.12). 

All those calculations for each hyperelastic models are done in MATLAB. The 

detailed information about algorithm used in MATLAB will be discussed in the next 

chapter. Neo-Hooke model has only one material parameter, μ. Neo-Hooke model 

can give acceptable results only for small deformations (λ<1.5) since it does not 

have enough parameters and powers of strain invariants to have ‘S’ shape. This will 

be proved in the results and discussion. Moreover, Neo-Hooke model provides a 

relation to micro-mechanical approaches by using Gaussian chain statistics. Thus, it 

coincides with 3 (three) chain model. 

3.1.2. Mooney Model 

In Mooney Model [11], k=1 and l=1 in equation (3.19). It is assumed that C00=0 and 

C11=0. Thus, the isochoric free energy function of Mooney model is written as 

Wiso = C1(I1 − 3) + C2(I2 − 3). (3.22) 

Here, C1 and C2 are material parameters.  Mooney model is suitable only in small 

stretches. The difference between Mooney model and Neo-Hooke model is Mooney 

model’s having second principal invariant in its isochoric free energy function. This 

will be discussed in results and discussion parts. The derivatives of free energy 

function with respect to first and second principal strain invariants are found as 

∂Wiso

∂I1
= C1,

∂Wiso

∂I2
= C2 . (3.23) 

To find the stress tensors, the same procedure stated in Neo-Hooke model is applied 
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in MATLAB toolbox. 

3.1.3. Biderman Model 

In this model [15], first and second principal invariants are used in free energy 

function like in Mooney model. However, the difference is that second and third 

powers of I1 terms are used in the isochoric free energy function as 

Wiso = C10(I1 − 3) + C01(I2 − 3) + C20(I1 − 3)2 + C30(I1 − 3)3. (3.24) 

There are four material parameters in this model. The derivatives of free energy 

function with respect to first and second principal strain invariants are found as 

∂Wiso

∂I1
= C10 + 2C20(I1 − 3) + 3C30(I1 − 3)2,

∂Wiso

∂I2
= C01. (3.25) 

To find the stress tensors, the same procedure stated in Neo-Hooke model is applied 

in MATLAB toolbox. 

3.1.4. Yeoh Model 

Yeoh model [16] uses only I1 term. However, I1 terms up to power of 3 (three) are 

included. Since it is observed in experiments that filled elastomers give almost 0 

(zero) values for  
∂Wiso

∂I2
 , this model is proposed especially for those rubbers. The 

isochoric free energy function of Yeoh model is given as 

Wiso = C1(I1 − 3) + C2(I1 − 3)2 + C3(I1 − 3)3. (3.26) 

C1, C2 and C3 are material parameters in this model. The derivative of free energy 

function with respect to first principal strain invariant is given as 

∂Wiso

∂I1
= C1 + 2C2(I1 − 3) + 3C3(I1 − 3)2,

∂Wiso

∂I2
= 0. (3.27) 
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Thus, it can be easily seen that the isochoric free energy function of Yeoh model 

does not have only I2 term if it is compared to Biderman Model. The effect of I2 

term will be seen in the results. 

To find the stress tensors, the same procedure stated in Neo-Hooke model is applied 

in MATLAB toolbox. 

3.1.5. Carroll Model 

In Carroll Model [12], I1 term with power of four and square root of I2 terms are 

used to decrease the error. It is based on a successive extension of free energy 

function by reducing the errors remaining in the response of previous terms. The 

first step is fitting a Neo-Hookean function with Treloar uniaxial tension data. 

Remaining difference is fitted once more with (I1)
4 term. First and second term 

together provides simulating equibiaxial tension. Finally, deviation from equibiaxial 

Treloar data are approached by using the √I2 term [20]. The isochoric free energy 

function of Carroll model is given as 

Wiso = aI1 + b(I1)
4 + c√I2 . (3.28) 

a, b and c are material parameters in this function. The derivatives of free energy 

function with respect to first and second principal invariants are found as 

∂Wiso

∂I1
= a + 4b(I1)

3,
∂Wiso

∂I2
=

c

2
(I2)

−0.5. (3.29) 

To find the stress tensors, the same procedure stated in Neo-Hooke model is applied 

in MATLAB toolbox. 

3.1.6. Ogden Model 

Ogden model [14] is a principal stretch-based formulation. Thus, the stress 

calculations are done according to equation (3.18). The isochoric free energy 

function of Carroll Model is given as 
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Wiso = ∑
μk

αk
[λ1̅

αk + λ2̅
αk + λ3̅

αk − 3]

K

k=1

. (3.30) 

Here, modified principal stretches are used. However, it is same with principal 

stretch in incompressible case. If K number is taken bigger, the calculations will be 

more complex. A moderate K number should be used for calculations. In this thesis, 

K is taken as 3 (three). It should be also noted that material parameters should 

provide the stability condition as 

μkαk > 0,   for k = 1,2 and 3. (3.31) 

3.1.7. Shariff Model 

Shariff model [13] differs from other phenomenological models by proposing a new 

model which has linear parameters proposed with a general separable form given as  

S(λ1, λ2, λ3) = r(λ1) + r(λ2) + r(λ3). (3.32) 

Thus, parameter identification process can be done by solving linear equations. 

Some researchers proposed separable strain energy functions like in the form of 

equation (3.32). However, those functions are nonlinear in their parameters. One of 

Shariff model’s parameters is E (Young’s Modulus). Cauchy stress can be obtained 

by the relation of separable strain energy function as 

σi = λi

∂S

∂λi
− p ̂. (3.33) 

Here, p ̂ is hydrostatic pressure which occurs due to incompressibility assumption. 

Here, i=1,2,3. From equation (3.33), the following expression can be obtained as 

σ1 − σ2 = λ1

∂Wiso

∂λ1
− λ2

∂Wiso

∂λ2
 . (3.34) 

Simplification for equation (3.34) can be done as 
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σ1 − σ2 = λ1r
′(λ1) − λ2r

′(λ2). (3.35) 

Prime in the equation (3.35) shows the differentiation with respect to the argument 

of function. A restriction is done in this point by taking r′(1)=0 without loss of 

generality due to simplicity in r function. Then, for  λ2 = 1 , equation (3.35) 

becomes 

σ1 − σ2 = λ1r
′(λ1). (3.36) 

An extension is done for moderate and larger strains by following expression as 

f(λ) = λr′(λ) = E∑αiϕi 

n

i=0

. (3.37) 

Here, E and αi  are material parameters. In this thesis, n=3. Thus, there are five 

parameters totally. According to this model, Cauchy stress can be found as 

σ1 = f(λ) − f (
1

λm
) ,   where  m =

1

2
, 1 and 2. (3.38) 

The assumption is that λ=λ1>1. Here, m=1/2 for uniaxial tension case, 1 for pure 

shear deformation case and 2 for equibiaxial tension case. According to model, ϕ0, 

ϕ1, ϕ2 and ϕ3 are chosen as 

ϕ0(λ) = (
2ln(λ)

3
) ,   ϕ1(λ) = e(1−λ) + λ-2, 

 ϕ2(λ) = e(1−λ)-λ  and  ϕ3(λ) =
(λ − 1)3

λ3.6
 . (3.39) 

For biaxial deformation case the calculations are given as 

σb = σ1 − σ2 = f(λ) − f(λ2). (3.40) 
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Also, it must be noted that the stress, σ1, in a uniaxial or equibiaxial or a pure shear 

deformation mode has a relation with the biaxial stress, σb, if the material can be 

written by a separable form of strain energy function. It can be written as 

σb = σb(λ0) − σb (
1

λ0
m). (3.41) 

3.2. Micro-Mechanical Models 

The microscopic response of chains in the network in rubber materials is the subject 

of micro-mechanical models. It is based on statistical mechanics arguments on 

networks of idealized chain molecules. Computational costs of micro-mechanical 

models are generally bigger than phenomenological models. However, micro-

mechanical models provide to relate macroscopic mechanical behavior to physical 

and chemical structure at molecular level. Thus, micro-mechanical models have got 

more attention recently.  

The rubber structure is modeled as a chain of N rigid beams with length L. The 

beams are called as Kuhn segments. Each segment has multiple monomers. 

According to statistical approaches, distance of a stress free undeformed chain is 

calculated as 

r0 = √NL . (3.42) 

 

From here, chain stretch can be calculated as 

Λ =
r

r0
 . (3.43) 

Here, r is the distance of the deformed chain. 

Thus, scalar free energy function should be written as a function of  Λ which can be 

shown as W = W(Λ). Free energy function of Gauss chain is one of the important 

examples and it can be calculated as 
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WGauss(Λ) =
3

2
kbΘΛ2 + W0 . (3.44) 

The other important example is free energy function of Langevin chain. It can be 

calculated as 

WLangevin(Λ) = kbΘN[
Λ

√N
ℒ−1 (Λ√𝑁−1) + ln(

ℒ−1(Λ√𝑁−1)

sinh (ℒ−1(Λ√𝑁−1))
)]. (3.45) 

Where kb ,Θ and ℒ−1 are denoted as Boltzmann’s constant, absolute temperature 

and inverse of Langevin function respectively. It should be noted that Gaussian 

chain is more suitable for low to moderate stretches. Also, inverse of Langevin 

function is generally substituted by using Pade approximation [28] as 

𝛾 =  ℒ−1(ΛN−1) ≈ Λ√N−1
3N − Λ2

N − Λ2
 . (3.46) 

Those Gauss and Langevin chain free energy expressions are written for free energy 

function of individual chains. The free energy of a whole network is equal to the 

sum of the free energy of individual chains. For this purpose, ensemble averaging 

of chain energies are used. Thus, mechanical behavior of true polymer network can 

be realized as much as possible by using the isochoric free energy function shown 

as 

Wiso = Wiso(𝐂) =
n

K
∑ W(Λk

K

k=1

). (3.47) 

Different chain structure models were proposed by various researchers. In this 

thesis, three of them are examined [20]. 
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3.2.1. Eight Chain Model 

This model is proposed by Arruda and Boyce [18]. A distribution of chains with 

eight directions starting from a unit sphere in the center of a cubic and going to the 

corners of the cubic is the main idea of this model. Stretch of those diagonal chains 

govern the model (Figure 3.1). 

 

Figure 3.1: Eight-chain model structure undergoing deformation [29] 

Chain stretch can be calculated for this model as  

Λ = Λk =
rk

r0
=

1

√3
√λ1

2 + λ2
2+λ3

2 . (3.48) 

Here k=1,…,8. 

Isochoric free energy function of eight chain model by using equation (3.47) can 

be calculated as 

Wiso =
n

8
∑ WLangevin(Λ𝑘

8

k=1

) =  μN [√N−1Λγ + ln (
γ

sinh (γ)
)]. (3.49) 

Here, μ and N are material parameters of eight chain model. Isochoric Kirchhoff 

stress expression can be obtained as 

𝛕̅ =
μ

3

9N − I1
3N − I1

𝐁 . (3.50) 
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3.2.2. Extended Tube Model 

Kaliske and Heinrich [19] proposed the extended tube model. This model is an 

extension of tube model of Kaliske and Heinrich. They proposed an inextensibility 

parameter δ and a new strain energy function is formed. In their research, not only 

limited chain extensibility of network chains but also topological constraints in filled 

rubbers are proposed. The isochoric free energy function of this model is given as 

Wiso = 
Gc

2
[
(1 − δ2)(D − 3)

1 − δ2(D − 3)
+ ln(1 − 𝛿2(D − 3))] +

2Ge

β2
∑( λA

−β

3

A=1

− 1). (3.51) 

 Gc, β, Ge and 𝛿 are material parameters. Gc is modulus of chemical network 

nodes. Ge is modulus of topological constraints. 𝛿 is finite deformation of finite 

chains and β is relaxation of system deformations. It should be also noted that 

empirical parameter β should be between 0 and 1. D expression also can be found 

as 

D = ∑ λA
2

3

A=1

= λ1
2 + λ2

2 + λ3
2 = I1 . (3.52) 

If we take δ parameter as zero, the energy function becomes 

Wiso = 
Gc

2
[I1 − 3] +

2Ge

β2
∑( λA

−β

3

A=1

− 1). (3.53) 

A transition can be done by inserting  I1 = λ1
2 + λ2

2 + λ3
2,  α1 = 2, α2 = −β, μ1 =

Gc,  μ2 =
−2

 β
Ge. Thus, Ogden model is achieved as 

Wiso = ∑
μk

αk
[λ1

αk + λ2
αk + λ3

αk − 3]

K

k=1

. (3.54) 

Here K=2. 
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3.2.3. Microsphere Model 

In microsphere model which is proposed by Goktepe [17], the chains are 

distributed in a unit sphere. The single chain has two micro-kinematic variables: 

the stretch λ  and area contraction v (Figure 3.2).  

 

(a)                                                      (b) 

Figure 3.2: Single chain outline of microsphere model: (a) Free single chain 

consisting of N segments with length l (b) Straight tube diameter constraining 

chain topology [17] 

Area contraction can be calculated as 

v = (
d0

d
)

2

. (3.55) 

Here d is the deformed tube diameter and d0 is the undeformed tube diameter.  

Free energy function of this model is decoupled into two parts for two micro-

kinematic variables as 

W = Wf + Wc . (3.56) 

Where Wf is free energy function for stretch part and Wc is free energy function for 

area contraction part. Free energy function for stretch part can be calculated by using 

Langevin function given in equation (3.45) for one single chain. Free energy 

function for area contraction part for one single chain can be calculated as 
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Wc = kbΘNUv + W0 . (3.57) 

Where U is tube geometry parameter and can be calculated as 

U = α (
l

d0
)
2

. (3.58) 

Here α changes according to the shape of the cross section of the tube. In non-affine 

transformation, parallel lines of body are not kept as parallel after deformation. Non-

affine model is developed in this model by letting micro-stretches fluctuate around 

macro-stretches. In this manner, the p root average of the non-affine stretch λ is 

taken as equal to the p root average of the macroscopic stretch λ̅ as 

λ̅i = √ri. C̅ri , (3.59) 

λ = (
1
|S|

∫ λ̅
p
dA)

1/p

. (3.60) 

Here S is sphere surface and p is non-affine stretch parameter. Integration is 

performed over the surface of unit sphere. Discrete integration over sphere is applied 

instead of integration over the surface of unit sphere.  

Non-affine tube part is developed by defining a fictitious straight micro-tube which 

constrains free movement of single chain. Non-affine stretch parameter q relates the 

microscopic tube contraction v and macroscopic area change as 

v̅i = √ri. C̅−1ri and (3.61) 

v = v̅i
𝑞 . (3.62) 

 In non-affine microsphere model, isochoric Kirchhoff stress is calculated as 

𝛕̅ =  τfλ
1−p𝐡 − μNU𝐤 . (3.63) 
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Material parameters are N, μ, U,q and p. τf is micro-stress. N is number of chain 

segments and μ is shear modulus like in the other micro-mechanical models.  𝐡 and 

𝐤 tensors will be defined in more detail below. 

In this model, calculations for non-affine microsphere model is given 

systematically. First step is to calculate the unimodular part of deformation gradient 

as  

𝐅̅ = J−1/3𝐅 . (3.64) 

Unimodular part of deformation gradient is equal to deformation gradient in 

incompressibility case. Then, set of orientation vectors and associated weight factors 

are set. The chains are distributed nearly uniformly by using these factors.   

Discrete points are defined only for the half-sphere. 21 integration points for the half 

sphere as 

𝐫i = r1
i e1 + r2

i e2 + r3
i e3 . (3.65) 

Microstructure of the network model is described by stereographic pole projection 

of unit sphere in Figure 3.3 with 21 integration points. 

 

Figure 3.3: Stereographic pole projection of unit sphere describing the 

microstructure of the network model [17] 
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21 integration points and associated weights are given below in Table 3.1. 

Table 3.1: Integration points and weights on unit sphere [16] 

 𝐍𝐨 

 
  

 

 

  
 

 

  
 

 

  
 

 

1 0 0 1 0.0265214244093 

 

2 0 1 0 

           

0.0265214244093 

 

3 1 0 0 

           

0.0265214244093 

 

4 0 0.707106781187 

        

0.707106781187 

           

0.0199301476312 

 

5 0        -0.707106781187 

        

0.707106781187 

           

0.0199301476312 

 

6         0.707106781187 0 

        

0.707106781187 

           

0.0199301476312 

 

7        -0.707106781187 0 

        

0.707106781187 

           

0.0199301476312 

 

8         0.707106781187 0.707106781187 0 

           

0.0199301476312 

 

9        -0.707106781187 0.707106781187 0 

           

0.0199301476312 

 

10         0.836095596749         0.387907304067 

        

0.387907304067 

           

0.0250712367487 

 

11        -0.836095596749         0.387907304067 

        

0.387907304067 

           

0.0250712367487 

 

12         0.836095596749        -0.387907304067 

        

0.387907304067 

           

0.0250712367487 

 

13        -0.836095596749        -0.387907304067 

        

0.387907304067 

           

0.0250712367487 

 

14         0.387907304067         0.836095596749 

        

0.387907304067 

           

0.0250712367487 

 

15        -0.387907304067         0.836095596749 

        

0.387907304067 

           

0.0250712367487 

 

16         0.387907304067        -0.836095596749 

        

0.387907304067 

           

0.0250712367487 

 

17        -0.387907304067        -0.836095596749 

        

0.387907304067 

           

0.0250712367487 

 

18         0.387907304067         0.387907304067 

        

0.836095596749 

           

0.0250712367487 

 

19        -0.387907304067         0.387907304067 

        

0.836095596749 

           

0.0250712367487 

 

20         0.387907304067        -0.387907304067 

        

0.836095596749 

           

0.0250712367487 

 

21        -0.387907304067        -0.387907304067 

        

0.836095596749 

           

0.0250712367487 

 

Then, non-affine stretch and non-affine tube parts are calculated. The last step is to 

write superimposed stress response.  
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In non-affine stretch part micro and macro stresses, τf and 𝛕̅𝐟 can be obtained as 

τf =  μ
(3N − λ2)

(N − λ2)λ
 , (3.66) 

𝛕̅𝐟 = τfλ
1−p𝐡 . (3.67) 

Here h and λ can be obtained as 

𝐡 = ∑(λ̅i)p−2𝐭i

m

i=1

⨂𝐭iwi , (3.68) 

λ = [∑(λ̅i)p

m

i=1

wi]

1/p

. (3.69) 

Here, deformed tangents  𝐭i = 𝐅̅𝐫i and affine micro stretches  λ̅i = |𝐭i| . Equation 

(3.69) is obtained by performing discrete integration to equation (3.60) . 

In non-affine tube part, macro stresses can be computed as 

𝛕̅𝐜 = μNU𝐤 . (3.70) 

Here k can be computed as 

𝐤 = q∑(v̅i)q−2𝐧i

m

i=1

⨂𝐧iwi . (3.71) 

Here, deformed normal 𝐧i = 𝐅̅−T𝐫i and  v̅i = |𝐧i| . 

Finally, superimposed stress response can be written by adding macro-stresses of 

stretch and tube deformation parts as 

𝛕̅ = 𝛕̅𝐜 + 𝛕̅𝐟 . (3.72) 

Thus, equation (3.63) is obtained. 
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CHAPTER 4 

PARAMETER IDENTIFICATION ALGORITHM AND 

MULTIOBJECTIVE TOOLBOX DEVELOPMENT IN MATLAB GUI 

In previous chapter, all the hyperelastic rubber models (totally ten) are presented 

with their material parameters. The purpose is having the best material parameters 

with respect to given test data.  As it was stated before, Treloar data are used for 

uniaxial tension, equibiaxial tension and pure shear cases whereas Kawabata data 

are used for biaxial case to identify the parameters in this thesis. Those data sets will 

be given in following chapters. A method must be presented to identify the 

parameters with respect to given data. The aim is fitting theoretical solutions which 

are obtained from models with experimental measures. In other words, the aim is 

minimizing the error between theoretical results and experimental results. In this 

study, MATLAB fmincon command is used to perform this task. This command 

minimizes the given function according to given initial points, bounds and 

constraints. For this function, least square error calculation will be used. Least 

square error calculation is given as 

error =  ∑||Xn − X̅n|| .

n

i=1

 (4.1) 

Obtaining error as zero is the ideal case. However, this can not be obtained due to 

uncertainties and high nonlinearities in experimental data. Even best hyperelastic 

models have small errors. Thus, the aim is to have the error as small as possible for 

given material model.  

Parameter identification process can be applied for only one deformation mode or 

more than one deformation modes together. However, if only one deformation mode 

is taken into account, identified parameters may not be suitable for other 
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deformation cases. Having one material parameter set is more logical because that 

will lead to time gain. If one material parameter set will be found, all error 

definitions should be added up when fmincon function is formed. However, one 

deformation mode can have bigger error than the other, so evaluating the error 

definitions equally will not lead to best minimized error for parameter identification 

process. Thus, weight numbers are used for each deformation mode. However, the 

problem is which deformation case should have the bigger weight number. Trying 

different weight numbers will lead to time loss. In this point, the solution is that 

weight numbers should be taken as unknown and they must be defined also with 

material parameters to have the best minimized error. In this point, constraint also 

must be added to fmincon command for weight numbers. Thus, summation of 

weight numbers is taken as 1 (one) in this study. 1 (One) will be shared between 

deformation modes to have the best minimized error. Error function can be written 

according to all the information given as 

f = c1ξuniaxial + c2ξequibiaxial + c3ξpureshear . (4.2) 

Here, c1, c2 and c3are weight numbers. ξuniaxial, ξequibiaxial and ξpureshear are the 

error expressions for related deformation mode written in their indices. After least 

square error calculation is done for related deformation mode, the expression is 

divided by data point number as 

ξ =  
1

n
∑(P11−P11

exp)2 

n

i=1

. (4.3) 

Here P11 consists of the first Piola-Kirchhoff stress data points of related model, 

P11
exp consists of experimental first Piola-Kirchhoff stress data. This expression is 

formed for all deformation modes. Then, it is multiplied with weight function and 

all the expressions are added to form the error function. 

The other important point is that material parameters should have the lower bound, 

upper bound and initial points if any information is available. For example, some 
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parameters can not be lower than zero according to physical laws. When all this 

information (error function, initial points, lower and upper bounds for all 

parameters, constraints) are entered to the fmincon, parameter identification can be 

done.  

However, there is only one error calculation for biaxial case. Then, no weight 

number is needed for that case. Applying equation (4.3) is enough in that case to 

form the error function.  

4.1. Matlab GUI Development for the Multiobjective Optimization Toolbox 

for Parameter Identification of Elastomers 

All the processes from doing continuum mechanics calculations for related model 

to identifying the parameters and plotting the results are long and complicated 

processes. There are a lot of calculations to be done and a lot of points to be careful 

with. Thus, for minimizing the mistakes and decreasing the time loss, an user 

friendly interface idea also come out for this thesis. For this purpose, MATLAB 

GUI is one of the best options. A multiobjective optimization toolbox is developed 

for parameter identification of elastomers.  

GUI provides the users to arrange all the information on a computer to perform the 

tasks easily by using various icons and menus. Push buttons, sliders, edit boxes, 

menus etc. and a consistent appearance will make the program easier to use. Doing 

all the calculations by looking a code file can lead to make mistakes. A developed 

GUI with a user manual will lead users to perform all the tasks faster. It also makes 

the users perform interactive tasks. It is also important that developed GUI should 

be in an understandable and predictable manner so that user should understand what 

to do for desired action. All the buttons should have the label for its function [30].  

In GUI screen, related components can be grouped. Moreover, the results can be 

given with the plots on the screen. The first thing to create a GUI in MATLAB is 

designing the lay-out for the required tasks. Every component which is put on the 
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lay-out screen will have a MATLAB callback code behind. The designer should 

write the related codes to make the related button to perform the related tasks [30]. 

The multiobjective optimization toolbox for parameter identification of elastomers 

developed in MATLAB GUI can be seen in Figure 4.1. 

 

Figure 4.1: Multiobjective optimization toolbox for parameter identification of 

elastomers overview with parameter identification mode 

As it is seen above, there are different panels on the screen. In parameter 

identification panel, rubber model and experimental case can be selected. As it was 

stated before, ten rubber material models are examined in this thesis. Thus, there are 

those rubber material models in the database of this toolbox. Parameter 

identification can be performed for only uniaxial tension case, only equibiaxial 

tension case, only pure shear case, equibiaxial and uniaxial tension cases together, 

pure shear, equibiaxial tension and uniaxial tension cases together and only biaxial 

case. If biaxial case is selected, biaxial data button also appears on this panel. 

Weight coefficients can be identified by the program to have best minimized error. 

Moreover, user can enter manually. Thus, one case can be more dominant if it is 

desired.  
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There are also data settings panel. Here, stretch data can be limited until specified 

point. Moreover, if there are limited number of data points, these can be increased 

between maximum and minimum data value by using a second order polynomial. 

The test data for uniaxial tension, equibiaxial tension and pure shear cases are loaded 

from here by using “Load UA/EB/PS Data” button. After test data are loaded, the 

data will be plotted automatically on the plots (Figure 4.2). These plots are for 

Treloar data of uniaxial tension, equibiaxial tension and pure shear respectively.  

 

Figure 4.2: Treloar test data loaded on multiobjective optimization toolbox for 

parameter identification of elastomers 

For biaxial case, another plot figure is opened for test data. As it was stated before, 

Kawabata data are used for biaxial case parameter identification process. Kawabata 

data can be loaded by using “Load Biaxial Data” (Figure 4.3). Another biaxial data 

can be entered if it is desired by adding as .mat file. 
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Figure 4.3: Kawabata test data loaded on multiobjective optimization toolbox for 

parameter identification of elastomers 

In parameter settings panel, parameters can be entered manually or implemented 

settings in the program can be used. If user would like to change parameter settings, 

they (upper and lower bound, initial point) can be changed for each parameter by 

selecting related parameter on the parameters panel. 

After all necessary selections are done, parameter identification process can be 

initiated by using “Identify Parameters” button. Then, the results will be plotted on 

the test data. Moreover, on the identified parameters panel, results can be seen. Total 

error can also be seen from here. Total error gives an idea for the quality of 

parameter identification. Moreover, it can be seen from plots how good parameter 

identification is visually. The results on the toolbox for Carroll model are shown 

below for Treloar data and Kawabata data (Figure 4.4, Figure 4.5). This process is 

applied for all the models and detailed results and plots will be given in the next 

chapter. For Treloar data, parameters will be identified for three cases together. As 

it was stated before, parameters can be found for each case if it is desired. The results 

are given for first Piola-Kirchhoff stress. 
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Figure 4.4: The results given on multiobjective optimization toolbox for 

parameter identification of elastomers for Carroll model example by using Treloar 

data 

 

Figure 4.5: The results given on multiobjective optimization toolbox for 

parameter identification of elastomers for Carroll model example by using 

Kawabata data 
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There is also another mode of the toolbox except parameter identification mode. If 

one has the identified parameters, those parameters can be entered to the toolbox. 

Toolbox can take those parameters and plot the results with test data stretches and 

compare the results on plots by using desired model (Figure 4.5). 

 

Figure 4.6: Multiobjective optimization toolbox for parameter identification of 

elastomers overview with parameter entrance mode 

So, any Treloar data can be plotted and it can be compared with the desired rubber 

material model with the ready parameters which is obtained from some sources.  

As it was stated before, GUI provides the users to have an interactive environment 

and time gain. 
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CHAPTER 5 

PARAMETER IDENTIFICATION RESULTS OF ELASTOMER MODELS  

Necessary continuum mechanics calculations which was given in Chapter 2 and 

Chapter 3 are done and then parameter identification process is applied for each 

model by using the toolbox which was given in Chapter 4. The corresponding 

identified parameters and errors of each model for uniaxial tension, equibiaxial 

tension and pure shear cases with respect to Treloar data are given in Table 5.1. 

Table 5.1: Identified parameters of elastomer models by using Treloar data 

Model Name 

Identified Parameters, Error 

Model Name 

Identified Parameters, Error 

Neo-Hooke Model 

μ=0.489, Error=0.980 

Ogden Model 

μ1=1.718, μ2=6.969, μ3=-2.064, 

α1=0.428, α2=0.0000223, α3= 

-0.00933, Error=0.132 

 

 

Mooney Model 

C1=0.23, C2=0.0001, Error=1.056 

 

Shariff Model 

E=1.122, α0=0.915, α1=0.0369, 

α2=0.0000786, α3=0.0244, 

Error=0.0075 

 

Biderman Model 

C10=0.184, C01=0.0028, C20= -

0.00176, C30= 0.0000442, 

Error=0.169 

 

 

Eight-Chain Model 

μ=0.287, N=26.478, Error=0.0445 

 

Yeoh Model 

C1=0.177, C2=-0.0012, C3= 

0.0000377, Error=0.051 

 

Extended Tube Model 

Gc=0.195, 𝛿=0.0954, β=0.129, 

Ge=0.199, Error=0.0073 

 

 

 

Carroll Model 

a=0.147, b=3.093 x 10-7, c=0.106, 

Error=0.0092 

Microsphere Model 

μ=0.293, N=22.029, p=1.469, 

U=0.744, q=0.106, Error=0.004 
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The corresponding weight coefficients of deformation modes for each model with 

uniaxial tension, equibiaxial tension and pure shear cases together with respect to 

Treloar data are given in Table 5.2. 

Table 5.2: Identified weight coefficients of elastomer models by using Treloar 

data 

Model Name 

Weight Coefficients 

Model Name 

Weight Coefficients 

Neo-Hooke Model 

c1 =0.1, c2 =0.8, c3 =0.1 

Ogden Model 

c1 =0.33, c2 =0.33, c3 =0.33 

 

Mooney Model 

c1 =0.59, c2 =0.21, c3 =0.2 

Shariff Model 

c1 =0.2, c2 =0.6, c3 =0.2 

 

Biderman Model 

c1 =0.53, c2 =0.2, c3 =0.27 

 

Eight-Chain Model 

c1 =0.6, c2 =0.2, c3 =0.2 

Yeoh Model 

c1 =0.8, c2 =0.1, c3 =0.1 

 

Extended Tube Model 

c1 =0.6, c2 =0.2, c3 =0.2 

Carroll Model 

c1 =0.8, c2 =0.1, c3 =0.1 

Microsphere Model 

c1 =0.41, c2 =0.39, c3 =0.2 

 

As it was stated before, c1  is weight coefficient of uniaxial case, c2  is weight 

coefficient of equibiaxial case and c3 is weight coefficient of pure shear case. Sum 

of weight coefficients is 1 (one). 

The corresponding identified parameters and errors of each model for biaxial case 

with respect to Kawabata data are given in Table 5.3. Since there is only 

experimental case (biaxial tension), there is not any weight coefficient to be 

calculated. 
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Table 5.3: Identified parameters of elastomer models by using Kawabata data 

Model Name 

Identified Parameters, Error 

Model Name 

Identified Parameters, Error 

Neo-Hooke Model 

μ=0.448, Error=0.00396 

Ogden Model 

μ1=1.198, μ2=5.997, μ3=-2.420, 

α1=0.66, α2=0.000346, α3= 

-0.00403, Error=0.0000948 

 

Mooney Model 

C1=0.199, C2=0.00349, 

Error=0.00352 

 

Shariff Model 

E=1.09, α0=0.809, α1=0.0531, α2=0, 

α3=0.0289, Error=0.000125 

 

Biderman Model 

C10=0.191, C01=0.0190, C20= -

0.00653, C30= 0.0000231, 

Error=0.000665 

 

 

Eight-Chain Model 

μ=0.4, N=26.478, Error=0.00482 

 

Yeoh Model 

C1=0.209, C2=0.00384, C3= 0.000176, 

Error=0.00339 

 

Extended Tube Model 

Gc=0.256, 𝛿=0.0572, β=0.126, 

Ge=0.159, Error=0.0000289 

 

Carroll Model 

a=0.148, b=0, c=0.107, 

Error=0.000244 

 

Microsphere Model 

μ=0.304, N=22.010, p=1.475, 

U=0.741, q=0.0834, 

Error=0.0001276 

The toolbox is designed to select the best elastomer model from a given set of 

experiments. Certain criteria should be determined to compare hyperelastic 

constitutive models of elastomers. As it was stated before, a hyperelastic constitutive 

model should reproduce ‘S’ shaped response of rubbers, not to have problem with 

different deformation modes, have parameters as few as possible and have a simple 

mathematical formulation. First and second criteria can be examined by comparing 

the errors. Third and fourth criteria will provide time gain for calculations. 

Performance of those models are compared by using Treloar’s data and Kawabata’s 

data separately.  
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5.1. Performance of Hyperelastic Models on Treloar’s Data 

In algorithm, having the smallest error for three deformation modes with one 

material set is aimed for parameter identification of elastomer models by using 

Treloar’s data. Obtaining better fit quality requires a smaller error. That means ‘S’ 

shaped response can also be obtained better. According to Table 5.1, microsphere 

model has the smallest error between ten hyperelastic constitutive models. 

Moreover, Shariff, extended tube and Carroll models have also good results. Thus, 

those four models (two phenomenological models and two micro-mechanical 

models) meet the requirements for first and second criteria. Neo-Hooke and Mooney 

models have the worst fit quality. 

Having fewer material parameters was also another criterion. In this point, four 

elastomer models which have the smallest errors can be compared. Carroll model 

have the least material parameters which is 3 (three). However, microsphere and 

extended tube models have four and Shariff model has five material parameters. 

Moreover, Carroll model has the simplest mathematical model among those four 

elastomer models. However, extended tube and microsphere model relate 

macroscopic mechanical behavior to physical structure at molecular level. 

The plots are given for uniaxial tension, equibiaxial tension and pure shear cases for 

related hyperelastic model by comparing related Treloar’s data. The results are 

discussed for each model. The first Piola-Kirchhoff stress is used in Treloar’s data. 

Those results give information for selecting the right hyperelastic model for a 

particular application. Because, some hyperelastic models perform well in all region 

of deformations. Low stretch, moderate stretch and large stretch can be defined as 

1< λ  < 
1

3
λmax , 1< λ  < 

2

3
λmax  and 1< λ  < λmax  respectively. Some hyperelastic 

models can give good results on a specific region. Thus, if a particular application 

contains only low stretch region, a simpler model which give good results on this 

region can be used.  
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5.1.1. Neo-Hooke Model Results 

The performance of Neo-Hooke model on Treloar’s data is given in Figure 5.1 

according to identified parameters in Table 5.1. S shape can not be obtained due to 

simple model structure. In low stretch region, reasonable results are obtained. 

 

                           (a)                                                        (b) 

 

  (c) 

Figure 5.1: Performance of Neo-Hooke model on Treloar’s data for first Piola-

Kirchhoff stress: (a) Uniaxial Tension (b) Equibiaxial Tension (c) Pure Shear 
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5.1.2. Mooney Model Results 

The performance of Mooney model on Treloar’s data is given in Figure 5.2 

according to identified parameters in Table 5.1. S shape can not be obtained due to 

not having complex model structure like Neo-Hooke model. Thus, only in low 

stretch region reasonable results are obtained. 

 

                          (a)                                                       (b) 

 

 (c) 

Figure 5.2: Performance of Mooney model on Treloar’s data for first Piola-

Kirchhoff stress: (a) Uniaxial Tension (b) Equibiaxial Tension (c) Pure Shear 
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5.1.3. Biderman Model Results 

The performance of Biderman model on Treloar’s data is given in Figure 5.3 

according to identified parameters in Table 5.1. There are better models than 

Biderman however this model provides acceptable results. This model structure can 

produce S shape. It fits uniaxial case slightly better than other cases. 

 

                                (a)                                                         (b) 

 

 (c) 

Figure 5.3: Performance of Biderman model on Treloar’s data for first Piola-

Kirchhoff stress: (a) Uniaxial Tension (b) Equibiaxial Tension (c) Pure Shear 
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5.1.4. Yeoh Model Results 

The performance of Yeoh model on Treloar’s data is given in Figure 5.4 according 

to identified parameters in Table 5.1. This model structure can produce S shape. 

However, equibiaxial case results shall not be enough for specific applications in 

moderate and large stretches.  

 

                          (a)                                                        (b) 

 

(c) 

Figure 5.4: Performance of Yeoh model on Treloar’s data for first Piola-Kirchhoff 

stress: (a) Uniaxial Tension (b) Equibiaxial Tension (c) Pure Shear 
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5.1.5. Carroll Model Results 

The performance of Carroll model on Treloar’s data is given in Figure 5.5 according 

to identified parameters in Table 5.1. This model structure can produce S shape 

perfectly. Carroll model shows remarkable performance. Only in moderate stretches 

of equibiaxial tension, performance could be better. 

 
 

                           (a)                                                        (b) 

 

 

 
 (c) 

Figure 5.5: Performance of Carroll model on Treloar’s data for first Piola-

Kirchhoff stress: (a) Uniaxial Tension (b) Equibiaxial Tension (c) Pure Shear 
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5.1.6. Shariff Model Results 

The performance of Shariff model on Treloar’s data is given in Figure 5.6 according 

to identified parameters in Table 5.1. This model structure can produce S shape 

perfectly and shows remarkable performance like Carroll model. Only in stretch 

interval of 2<λ<3 in equibiaxial tension, performance could be better. 

 
 

(a) (b) 

 
(c) 

Figure 5.6: Performance of Shariff model on Treloar’s data for first Piola-

Kirchhoff stress: (a) Uniaxial Tension (b) Equibiaxial Tension (c) Pure Shear 
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5.1.7. Ogden Model Results 

The performance of Ogden model on Treloar’s data is given in Figure 5.7 according 

to identified parameters in Table 5.1. This model structure can produce S shape and 

shows good performance. Only equibiaxial tension performance could be better in 

moderate and large stretch regions. 

 

 
                                (a)                                                         (b) 

 

 
 (c) 

Figure 5.7:  Performance of Ogden model on Treloar’s data for first Piola-

Kirchhoff stress: (a) Uniaxial Tension (b) Equibiaxial Tension (c) Pure Shear 
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5.1.8. Eight-Chain Model Results 

The performance of eight-chain model on Treloar’s data is given in Figure 5.8 

according to identified parameters in Table 5.1. This model structure does not 

produce S shape perfectly. Thus, the performance is not satisfying for equibiaxial 

and pure shear cases. However, it is better than Neo-Hooke and Mooney Models in 

any case.  

  
                               (a)                                                          (b) 

 

 
(c) 

Figure 5.8:  Performance of eight-chain model on Treloar’s data for first Piola-

Kirchhoff stress: (a) Uniaxial Tension (b) Equibiaxial Tension (c) Pure Shear 
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5.1.9. Extended Tube Model Results 

The performance of extended tube model on Treloar’s data is given in Figure 5.9 

according to identified parameters in Table 5.1. This model structure can produce S 

shape and shows remarkable performance. Only equibiaxial tension performance 

could be better in moderate and large stretch regions. 

 
 

                                (a)                                                        (b) 

 
 (c) 

Figure 5.9: Performance of extended tube model on Treloar’s data for first Piola-

Kirchhoff stress: (a) Uniaxial Tension (b) Equibiaxial Tension (c) Pure Shear 
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5.1.10. Microsphere Model Results 

The performance of microsphere model on Treloar’s data is given in Figure 5.10 

according to identified parameters in Table 5.1. This model structure can produce S 

shape perfectly. Microsphere model shows remarkable performance.  

 
                               (a)                                                         (b) 

 

 
(c) 

Figure 5.10: Performance of microsphere model on Treloar’s data for first Piola-

Kirchhoff stress: (a) Uniaxial Tension (b) Equibiaxial Tension (c) Pure Shear 
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5.2. Performance of Hyperelastic Models on Kawabata’s Data 

Treloar’s data consist of three deformation cases. Thus, algorithm aims to have the 

smallest error for three cases together. However, biaxial case is examined separately 

from uniaxial tension, equibiaxial tension and pure shear because another data, 

called Kawabata data, are used for parameter identification algorithm. Examining 

biaxial case with other deformation cases would decrease the fit quality of other 

deformation cases. 

Many researchers have used planar biaxial tension to determine the general form of 

the strain energy functions of elastomers [31]. In biaxial case, two different stresses 

occur in those two directions. In this thesis, P22  of Kawabata data are used for 

parameter identification algorithm (Figure 5.11). 

 

Figure 5.11: Stress P22 as function of the principal ratios of  λ1 and λ2 [5] 
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Since there is only 1 (one) case, weight coefficients are not needed for parameter 

identification process. Kawabata data contain uniaxial tension, equibiaxial tension 

and pure shear lines in itself. 

According to Table 5.3, extended tube model has the smallest error among ten 

elastomer models for parameter identification by using Kawabata data. Ogden 

model has the second smallest error on Kawabata data. Between those two models, 

extended tube model has the fewer material parameters. Thus, extended tube model 

seems as the best model for parameter identification by using Kawabata data. 

Moreover, extended tube model relates macroscopic mechanical behavior to 

physical structure at molecular level. 

The plots are given for biaxial tension case for related hyperelastic model with 

Kawabata data. The results are discussed for each model. 
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5.2.1. Neo-Hooke Model Results 

The performance of Neo-Hooke model on Kawabata data is given in Figure 5.12 

according to identified parameters in Table 5.3. As it is seen from the plot, Neo-

Hooke model performance on Kawabata data is not satisfying due to insufficient 

model structure. 

 

Figure 5.12: Performance of Neo-Hooke model on Kawabata’s data for first Piola-

Kirchhoff stress 𝐏𝟐𝟐 
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5.2.2. Mooney Model Results 

The performance of Mooney model on Kawabata data is given in Figure 5.13 

according to identified parameters in Table 5.3. As it is seen from the plot, Mooney 

model performance on Kawabata data is not satisfying due to insufficient model 

structure like Neo-Hooke model. 

 

Figure 5.13:  Performance of Mooney model on Kawabata’s data for first Piola-

Kirchhoff stress 𝐏𝟐𝟐 
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5.2.3. Biderman Model Results 

The performance of Biderman model on Kawabata data is given in Figure 5.14 

according to identified parameters in Table 5.3. As it is seen from the plot, Biderman 

model performance on Kawabata data is perfect in low stretch region of  λ2.  

 

Figure 5.14:  Performance of Biderman model on Kawabata’s data for first Piola-

Kirchhoff stress 𝐏𝟐𝟐 
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5.2.4. Yeoh Model Results 

The performance of Yeoh model on Kawabata data is given in Figure 5.15 according 

to identified parameters in Table 5.3. As it is seen from the plot, Yeoh model 

performance on Kawabata data is not satisfying. Yeoh model has good performance 

on uniaxial and equibiaxial case of Treloar data. However, it does not perform well 

on Kawabata data. 

 

Figure 5.15:  Performance of Yeoh model on Kawabata’s data for first Piola-

Kirchhoff stress 𝐏𝟐𝟐 
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5.2.5. Carroll Model Results 

The performance of Carroll model on Kawabata data is given in Figure 5.16 

according to identified parameters in Table 5.3. As it is seen from the plot, Carroll 

model performance on Kawabata data is remarkable. Only in large deformation 

region of λ2, the error is increasing compared to the other deformation regions. 

 

Figure 5.16: Performance of Carroll model on Kawabata’s data for first Piola-

Kirchhoff stress 𝐏𝟐𝟐 
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5.2.6. Shariff Model Results 

The performance of Shariff model on Kawabata data is given in Figure 5.17 

according to identified parameters in Table 5.3. As it is seen from the plot, Shariff 

model performance on Kawabata data is remarkable on all deformation regions of  

λ2. 

 

Figure 5.17:  Performance of Shariff model on Kawabata’s data for first Piola-

Kirchhoff stress 𝐏𝟐𝟐 
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5.2.7. Ogden Model Results 

The performance of Ogden model on Kawabata data is given in Figure 5.18 

according to identified parameters in Table 5.3. As it is seen from the plot, Ogden 

model performance on Kawabata data is remarkable. Only in large deformation 

region of λ2, the error is increasing compared to the other deformation regions. 

 

Figure 5.18: Performance of Ogden model on Kawabata’s data for first Piola-

Kirchhoff stress 𝐏𝟐𝟐 
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5.2.8. Eight-Chain Model Results 

The performance of eight-chain model on Kawabata data is given in Figure 5.19 

according to identified parameters in Table 5.3. As it is seen from the plot, eight-

chain model performance on Kawabata data is not satisfying due to insufficient 

model structure. 

 
Figure 5.19: Performance of eight-chain model on Kawabata’s data for first Piola-

Kirchhoff stress 𝐏𝟐𝟐 
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5.2.9. Extended Tube Model Results 

The performance of extended tube model on Kawabata data is given in Figure 5.20 

according to identified parameters in Table 5.3. As it is seen from the plot, extended 

tube model performance on Kawabata data is remarkable on all deformation regions 

of  λ2. As it was stated before, extended tube model is the best hyperelastic model 

among ten hyperelastic models presented in this thesis for biaxial case. 

 
Figure 5.20:  Performance of extended tube Model on Kawabata’s data for first 

Piola-Kirchhoff stress 𝐏𝟐𝟐 
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5.2.10. Microsphere Model Results 

The performance of microsphere model on Kawabata data is given in Figure 5.1 

according to identified parameters in Table 5.3. As it is seen from the plot, 

microsphere model performance on Kawabata data is remarkable on all deformation 

regions of  λ2.  

 

Figure 5.21:  Performance of microsphere model on Kawabata’s data for first 

Piola-Kirchhoff stress 𝐏𝟐𝟐 
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CHAPTER 6 

CONCLUSION 

 

In this study, a multiobjective optimization toolbox for parameter identification of 

elastomers is developed by using MATLAB GUI to do appropriate elastomer model 

selection. 

In the accessible literature, similar studies to the present study are discussed. It is 

seen that there are various studies comparing the constitutive hyperelastic models. 

Several algorithms have been applied to identify the parameters of hyperelastic 

models in the literature. 

In this study, ten constitutive hyperelastic models are compared according to certain 

criteria. Seven of the models are phenomenological models and three of the models 

are micro-mechanical models. 

Various experiments have been conducted to identify the material parameters of 

elastomer models. Uniaxial tension, equibiaxial tension, pure shear and biaxial 

tension experiments are used in this thesis. Treloar data are used for uniaxial tension, 

equibiaxial tension and pure shear deformation cases whereas Kawabata data are 

used for biaxial deformation case. 

Firstly, continuum mechanics preliminaries are briefed. Strain and stress tensors are 

introduced here. It is emphasized that elastomers exhibit hyperelastic deformability, 

so deformed and undeformed configurations must be examined separately unlike 

small strain theory. The relations between stress tensors are presented in this point. 

The aim is to have stress-stretch expression of related model for parameter 

identification process. Isochoric free energy function is used to derive stress-stretch 

expressions. Isochoric free energy function of each model is introduced in related 
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parts. Then, Kirchhoff stress expression is obtained for each model for desired 

deformation mode by performing necessary calculations. The first Piola-Kirchhoff 

stress expression also can be derived after Kirchhoff stress is obtained for each 

deformation mode of each model. The first Piola-Kirchhoff stress expression is used 

for parameter identification algorithm. 

Afterwards, parameter identification algorithm is presented. MATLAB fmincon is 

used for parameter identification process. For this MATLAB command, the function 

to be minimized has to be defined. Least squares method error expression is used to 

form the function. Summation of uniaxial, equibiaxial and pure shear case error 

expressions is used for this function. Weight coefficients are also defined for each 

case to minimize the error because each of the deformation cases may have different 

errors. Thus, effect of the errors should change on parameter identification process. 

Since biaxial deformation is evaluated alone, there is only one error expression to 

be minimized for this case. 

After parameter identification process is defined, a multiobjective optimization 

toolbox development for parameter identification of elastomers is presented. This 

toolbox is developed in MATLAB GUI. The aim is to perform all the calculations 

in an easier, faster and more user-friendly environment. This toolbox provides the 

user to reach the results after making certain selections on the interface.  

Ten constitutive hyperelastic models’ calculations which were studied in this thesis 

are coded in this toolbox. Identified parameters, error and necessary plots can be 

seen in this toolbox so that the user can do the appropriate model selection for 

specific application. Those identified parameters can be used in finite element 

calculations. 

As it was stated before, Treloar and Kawabata data are used in this thesis for related 

deformation modes. According to results, Carroll, extended tube, microsphere and 

Shariff models have the least errors for parameter identification with respect to 

Treloar data which consist of uniaxial tension, equibiaxial tension and pure shear 



 

 

 

75 

cases. However, Carroll model has the advantages of having fewer material 

parameters and simpler mathematical model compared to other hyperelastic 

constitutive models for elastomers. But, microsphere model and extended tube 

models relate macroscopic mechanical behavior to physical structure at molecular 

level. Yet, one of the other models can be more appropriate for a specific 

application.  

Another material parameter set is identified for each model for Kawabata data. 

According to results, Shariff, Ogden and extended tube models have the least errors 

for parameter identification with respect to Kawabata data which consist of biaxial 

data. Microsphere and Carroll models also show remarkable performances on 

Kawabata data. However, as it was stated before, extended tube and micro-

mechanical models have the advantage of giving a relation between macroscopic 

mechanical behavior and physical structure at molecular level. 

This study presented a multiobjective optimization toolbox development for 

parameter identification of elastomers. In future works, different parameter 

identification algorithms can be put forward. Moreover, different toolboxes can be 

developed for specific applications.  
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