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ABSTRACT 
 

A BLOOD DISTRIBUTION SYSTEM:  

AN APPLICATION TO THE TURKISH RED CRESCENT 
 

KURT, Atıl 

Ph.D. Department of Industrial Engineering 

Supervisor: Prof. Dr. Meral AZİZOĞLU 

Co-Supervisor: Assoc. Prof. Dr. Ferda Can ÇETİNKAYA 

 

January 2018, 139 pages 
 

In this study, we consider the blood distribution system in Turkey and focus on Central 

Anatolian Regional Blood Center. Our problem differs from the classical distribution 

problems as it resides irradiation centers, urgent demands, vehicle availability and 

traveling time restrictions. In this study, we considered two problems.  

To address the first problem, we develop a mixed integer linear program with two 

objectives: maximizing the demand satisfaction and minimizing total time travelled by 

the vehicles. We propose two decomposition-based heuristic solution approaches.  The 

results of our experiments have revealed that the model cannot solve even small sized 

instances in reasonable times; however, the heuristic solution approaches are 

appropriate for solving complex real life problems. 

Second problem proposes several demand satisfaction options by taking into 

account the irradiation centers, urgent demands, and product availability. To address 

the problem, we develop a mixed integer linear program with the objective of 

maximizing the weighted demand satisfaction, and propose a hybrid genetic algorithm.  

The results of our experiments have revealed that the model cannot solve even small 

sized instances in reasonable times; however, the hybrid genetic algorithm is 

appropriate for solving complex real life problems. 

 

Keywords: Blood distribution system, Mathematical model, Heuristic approach, 

Genetic algorithm 
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ÖZ 
 

KAN DAĞITIM SİSTEMİ: TÜRK KIZILAYI İÇİN BİR UYGULAMA 

KURT, Atıl 

Doktora, Endüstri Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Meral AZİZOĞLU 

Ortak Tez Yöneticisi: Doç. Dr. Ferda Can ÇETİNKAYA 

 

Ocak 2018, 139 sayfa 

 

Bu çalışmada Orta Anadolu Bölge Kan Merkezini’ne odaklanarak Türkiye’deki kan 

dağıtım sistemini ela aldık. Problemimiz ışınlama merkezlerini, acil talepleri, araç 

ulaşabilirlik ve seyahat süresi gibi kısıtları dikkate aldığından literaturedeki klasik 

dağıtım sistemlerinden farklı bir yapıya sahip olup iki tip problem incelenmiştir.  

Birinci problem iki amaçlı bir karışık tamsayılı doğrusal programlama modeli 

geliştirmiş olup ağırlıklandırılmış karşılanan talep miktarının en çoklanmayı ve toplam 

gezinti süresini en azlamayı amaçlamıştır. İki ayrıştırma-tabanlı sezgisel çözüm 

yaklaşımı geliştirdik. Deneylerimizin sonuçları modelin küçük boyutlu sayılabilecek 

problemleri bile çözemediğini gösterdi; ancak sezgisel çözüm yaklaşımlarının 

karmaşık gerçek yaşam problemleri için daha uygundur.  

İkinci problem ışınlama merkezlerini, acil talepleri ve ürün elverişliliğini dikkate 

alan ve farklı talep sağlama yöntemlerini önermektedir. Problem çözümü için bir 

toplam ağırlıklandırılmış karşılanan talep miktarını en çoklanmasını amaçlayan 

karmaşık tamsayılı doğrusal programlama modeli geliştirilmiştir ve bir melez genetik 

algoritma önerilmiştir. Deneylerimizin sonuçları modelin küçük boyutlu sayılabilecek 

problemleri bile çözemediğini gösterdi; ancak sezgisel çözüm yaklaşımlarının 

karmaşık gerçek yaşam problemleri için daha uygundur. 

 

Anahtar Kelimeler: Kan dağıtım Sistemi, Matematiksel model, Sezgisel yaklaşım, 

Genetik algoritma 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

The blood products supply chain management is more crucial than those of the 

ordinary goods due to the vital importance of blood for human beings. The associated 

supply chain has several different characteristics as stated by Pierskalla (2005). 

1. Blood is a perishable product and its sub-products have different shelf lives. 

2. The blood supply is not known with certainty. 

3. The demands for blood products are not known with certainty.  

4. Interactive decisions must be made at the strategic design and, at operational 

and tactical levels. 

5. The entire supply chain should be examined as a whole system but not as a 

subsystem of some larger systems.  

6. Generalized theoretical research can be derived via the practical real life 

problems.  

Blood supply chain systems of ten different countries are studied by Rock et al. 

(2000). As stated in the study, in the USA, the blood is supplied by different 

organizations: 85 percent of the blood products are supplied by non-profit 

organizations like America’s Blood Centers and American Red Cross and, the rest are 

supplied by for-profit organizations or hospitals. The blood products supply chains in 

England, Scotland, Italy, Switzerland, France, and Canada are organized by national 

non-profit organizations. In Norway, all blood centers are managed within the 

hospitals, whereas in South Africa, private organizations play a major role. 
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The blood supply chain in Turkey is organized by the Turkish Red Crescent (TRC), 

a non-profit organization. The organization is responsible to supply the whole blood, 

from the safe donors, extract the required blood product derivatives like red blood 

cells, plasma, and platelets and distribute them to the hospitals at the required times. 

The timely delivery of the blood products is crucial particularly for the urgent demand 

and emergency cases. The origin of TRC is Ottoman Assistance Association for the 

injured and sick soldier, which is founded in 1868. Service activity areas of TRC are 

blood, disaster intervention, healthcare, social benefits, youth, and education in all 

places that the human needs. Some historical events about blood supply system in 

Turkey are as follows: 

 First transfusion is made in 1938,  

 First blood centers are established in 1957, 

 Blood donation organization is established in 1974, 

 Blood Service Directorate of TRC is established in 1983, 

 In 2007, the TRC is assigned to meet blood demands in Turkey and 15 

Regional Blood Centers (RBC) are established. 

RBCs, Blood Centers (BC), and all laboratories in TRC have ISO 9001:20001 

Quality Management System Certificate. 

The Turkish Red Crescent distributes the blood to the demand points using the 

following six channels: 

i. Regional Blood Centers (RBC)  

ii. Temporary Regional Blood Centers (TRBC) 

iii. Blood Centers (BC) 

iv. Blood Stations (BS) 

v. Mobile Units (MU) 

vi. Transfusion Centers/Hospitals (H) 
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 There are four main blood subproducts which are supplied by the TRC. These are 

red blood cells, plasma, platelets, and apheresis platelets. The Turkish Red Crescent 

also considers the ABO group system and Rhesus factor for each supplied blood 

product while meeting the blood demand in Turkey. The detailed information about 

the type of supplied blood products are discussed in Chapter 2.  

Our main focus will be on the distribution system of the supply chain in TRC.  

Inspired from a practical problem, we consider the routing of the vehicles to the 

hospitals. We consider two blood distribution problems in this study.  

 

1.1 Problem 1 

 

The poor allocation of the blood products from the Central Anatolian RBC to the 

hospitals has posed a main challenge in our study. We recognize that developing an 

efficient blood distribution model is critical for academicians and practitioners due to 

the complexity of the timely allocation and distribution. We consider the routing of 

the vehicles to the hospitals and two objectives in hierarchy: maximum demand 

satisfaction and minimum total time travelled. We construct a mathematical model and 

propose two heuristic algorithms.  

To the best of our knowledge, our study is the first attempt that considers irradiation 

centers, urgent demands and blood products availability. Including irradiation centers 

leads to precedence structure, and product availability leads to the consideration of the 

partial demand satisfaction. Hence, we consider the allocation of the blood products 

along with their distribution to the hospitals and add a new category, distribution - 

product allocation, to the blood products literature.  
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1.2 Problem 2 

 

Problem 1 considered the blood products allocations and distribution problem with 

urgent demands, product availabilities, and irradiation centers. The promising results 

observed in Problem 1 and our continuing collaboration with the Turkish Red Crescent 

have been the main motivation of this problem. We recognize that the demand may 

not be satisfied fully due to the limited capacities of the Turkish Red Crescent, hence 

define new transportation options that use the vehicles of the hospitals in addition to 

the vehicles of the organization.  

In the current blood distribution system of the Central Anatolian RBC, the demand 

of hospitals is satisfied by its own vehicles. Due to the capacity and maximum travel 

time constraints of the vehicles, the demand of all hospitals cannot be satisfied by this 

way. To increase the amount of demand satisfaction, we propose several options to 

distribute the blood products. Satisfying the demand of the hospitals by the vehicles of 

the RBC is the first option (O1) of our proposed distribution system, and we call it as 

the current operation. Satisfying the demand of a hospital via another hospital where 

the hospital takes its demand from another hospital visited by the vehicle of the RBC 

is our second option (O2), and we call it as the transfer service. Satisfying the demand 

of a hospital directly from the RBC by the hospital’s vehicle visiting the RBC is the 

third option (O3), and we call it as the self service. We develop a mixed integer linear 

program with the objective of maximizing the demand satisfaction and a propose a 

hybrid genetic algorithm to solve the problem.  

1.3 Chapter Organization 

 

The thesis is organized as follows. Chapter 2 describes the blood supply chain 

system in Turkey and blood products. We present Problem 1 in Chapter 3. Problem 2 

is discussed in Chapter 4. Finally, our conclusion and future works are given in 

Chapter 5.  
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CHAPTER 2 

 

 

PROBLEM ENVIRONMENT 

 

 

 

Our main focus will be on the blood distribution system in Turkey. In this chapter, we 

give general information about the blood products and the blood supply systems in 

Turkey.  

 

2.1 Blood Products 

 

The main product of the TRC is the whole blood that is taken directly from the human 

beings, donors, and this blood is used in different cases when treating patients. The 

whole blood once taken from the donors should be transfused (the process of giving 

the blood to the human body) or centrifuged (the process of separating the 

components) in one day as its shelf life is one day. Following the centrifugation 

process, three main products, namely red blood cells, plasma, and platelets are 

obtained. The different components have different shelf lives and the separation 

enables one to adapt the use of the blood products to the specific needs of a patient. 

The treatment cases and shelf lives of the products are summarized in Table 2.1. 
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Table 2.1: Usage and shelf lives of the blood components 

Product Treatment Shelf Life 

Red Blood Cells Surgery with major blood loss 

Treatment of  anaemic patients 

Premature infants 

42 days 

Platelets Major blood loss 

Cancer treatment 

5 days 

Plasma Blood loss and curbs in surgery 

Treatment of  liver disease 

Treatment of burn injuries 

2 years 

 

Figure 2.1 below shows the structure of the blood products and the detailed 

explanations for the products are given below.  

Whole Blood

Red blood cells

Red blood cells 

without Buffy 

Coat

Red blood cells 

with additional 

solution

Washed red blood 

cells

Filtered red blood 

cells

Plasma

Cryoprecipitate

Platalets

Plasma

Whole Blood

 

Figure 2.1: Structure of the blood products 
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1. Red blood cells: Main duty of Red blood cells is delivering oxygen to the body 

tissues. The following four subproducts can be obtained from red blood cells. 

o Red blood cells without Buffy Coat: Produced by removing Buffy Coat 

and some part of its plasma from red blood cells. 

o Red blood cells with additional solution: Produced by adding a proper 

solution to red blood cells.  

o Washed red blood cells: Produced by washing of red blood cells with 

isotonic solution. 

o Filtered red blood cells: Produced by removing leucocytes from the red 

blood cells. 

Each subproduct has a shelf life of 42 days. 

2. Plasma: Plasma is a liquid composite that holds blood cells in the whole blood. 

After the centrifugation process, plasma is frozen and its temperature is 

reduced to under -30 degree in one hour.  

o Once plasma is centrifuged at high speed and concentrated up to 40 ml, 

it is called cryoprecipitate.  

Plasma itself and cryoprecipitate, each has a shelf life of 2 years. 

3. Platelet: It is a composite that includes high incidence platelet ingredients of 

whole blood. Main duty of the platelets is to stop bleeding vessel injuries. The 

whole blood should be centrifuged in 24 hours; otherwise it loses its platelet 

properties. Platelet has a shelf life of 5 days.  

Some blood products are directly obtained from the donors using apheresis device. 

The device filters the blood to take the desired components and sends the other 

components back to the donor. Turkish Red Crescent gets platelets via apheresis 

device and calls the obtained product as Aphaeresis platelets. 
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Irradiation is a process that ionizes the blood components to destroy all living 

leukocytes. The products that are subjected to the irradiation process are referred to as 

irradiated products. TRC is also responsible for the irradiation of the blood products.    

The products are safely transported to the hospitals in special boxes without any 

need for the refrigerator, in about 2 hours. 

There are many issues while making transfusion. The most important issues are the 

ABO group system and Rhesus factor, as the patient’s blood type and transfused blood 

type should coincide. Although some blood types can receive blood of different types, 

this is not applicable in today’s world. This can be applied in too rare cases such as 

war, earthquake, and huge disaster. Therefore, ABO group system and Rhesus factors 

for blood products should be considered in the blood supply chain system. 

There are four groups in ABO group system: A, B, AB, and 0. A and B are the 

names of the two proteins in the blood. If a person’s blood carries only protein A, then 

blood type is A. If it carries only protein B, then blood type is B. If it carries both of 

them, then blood type is AB. If it carries none of them, then blood type is 0.  

There are two groups in the Rhesus factor: negative and positive. The name of the 

blood type is determined by Antigen D in the blood. If a person’s blood carries Antigen 

D, then blood type is called as positive, otherwise blood type is called as negative. 

There are other antigens in the human body which are C, c, E and e. These antigens 

are not generally considered while transfusing, but they have to be considered for some 

patients while transfusing blood.  

ABO group system and Rhesus factor have to be considered while transfusing red 

blood cells, platelets, and whole blood. Although only ABO group system has to be 

considered at the plasma transfusion, the Turkish Red Crescent also considers Rhesus 

factor while plasma’s transfusion.  
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In this study we consider four major blood types (platelets, aphaeresis platelets, red 

blood cells and plasmas), with four blood groups and two Rhesus factors for a total of 

32 different products. 

 

2.2 Foundations for Blood Supply Chain System in Turkey 

 

In Turkey, the blood supply chain is organized by a government institution, the Turkish 

Red Crescent (TRC) having five types of service centers: Regional Blood Centers 

(RBC), Temporary Regional Blood Centers (TRBC), Blood Centers (BC), Blood 

Stations (BS), Mobile Units (MU) and Transfusion Centers/Hospitals (H). TRBC, BC, 

BS and MU take blood from donors. Hospitals can take blood from donors if RBC 

permits. BSs and MUs send their blood to BC, and BC sends it to RBC. The 

assignment between centers is fixed, and deliveries of blood are done according to 

these assignments. Finally, RBC sends blood products to hospitals and TRBCs are 

assigned to RBC. There is also possibility that blood products can be transferred within 

the RBCs and hospitals.  

 

2.2.1 Regional Blood Center (RBC) 

 

The flow of blood from donor to patient is coordinated by the RBCs. The 

responsibilities of the RBCs are listed below: 

 to test blood 

 to decompose the blood in its sub products 

 to store them in appropriate conditions 

 to make usable blood 
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 to distribute blood products to hospitals. 

 

 

Figure 2.2: Picture of unit blood 

 

There are seventeen RBCs in Turkey. Their names and amount of collected blood 

in 2016 are stated in Table 2.2. The number of blood centers, blood stations, and 

provinces that are in one RBC region can be seen in Appendix A.  
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Table 2.2: Regional Blood Centers in Turkey 

Number Name of the RBC Location 

Collected blood 

amount in 2016 

 (*Unit blood) 

1 Aegean RBC İzmir 345,435 

2 Europe RBC İstanbul- Bağcılar 238,531 

3 Central Anatolian RBC Ankara 216,642 

4 Central Mediterranean RBC Adana 191,242 

5 East Mediterranean RBC Gaziantep 153,851 

6 South Marmara RBC Bursa 135,507 

7 North Marmara RBC İstanbul - Kartal 123,563 

8 West Black Sea RBC Düzce 114,452 

9 Inner Anatolian RBC Kayseri 107,922 

10 West Mediterranean RBC Antalya 103,665 

11 Central Black Sea RBC Samsun 92,923 

12 West Anatolian RBC Eskisehir 79,180 

13 East Black Sea RBC Trabzon 58,101 

14 South West RBC Malatya 57,787 

15 East Anatolian RBC Erzurum 51,874 

16 South Anatolian RBC Diyarbakir 39,066 

17 South East RBC Van 32,024 

*Unit blood is shown in Figure 2.2. 

 

There is a blood center in each RBC except the ones located in Istanbul-Kartal, 

Izmir, Ankara, and Malatya. The blood centers in these four RBCs are located at 

different places. The location of RBCs on Turkey map can be seen in Figure 2.3.  
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Figure 2.3: Locations of the RBCs on Turkey’s Map 

 

To satisfy the needs of the hospitals, each RBC generally uses the bloods which 

are donated in their own region. In addition to this, the RBCs can transfer blood from 

the other RBCs. They use special vehicles and planes to transfer blood products. 

Each donated blood in a RBC has to be tested and used according to the results of 

these tests. A sample from each donated blood is sent to one of the RBCs which are 

located at Istanbul, Ankara, Izmir and Erzurum. The allocation of RBCs to these four 

RBCs is fixed. These blood samples are sent by planes of Turkish Airlines. Turkish 

Airlines offers free service for the Turkish Red Crescent. The results of these tests are 

sent to the RBC in one day. 

The RBCs in Turkey do not make any estimation for the number of donated and 

needed blood. However, the ministry of health determines yearly and monthly goals 

for blood donation. The blood donation organizations are planned according to these 

goals. The RBCs have safety stock levels to manage the unpredicted demand for blood 

products.  
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The RBCs are also responsible to satisfy blood product demands of the hospitals. 

They use a software program to coordinate blood flow between RBCs and hospitals. 

A hospital sends its demand to a RBC via this software program. The RBC determines 

amount of demand to be satisfied and sends this information via the software program. 

If the RBC cannot satisfy all demand of the hospital, then the RBC allows hospitals to 

receive blood directly from the donors. The satisfied demands are sent by the vehicles 

of the RBC. The distribution of the demand is done at predetermined time slots and 

vehicle routes. Hospitals send urgent demands to the RBC. There are three ways of 

supplying urgent demands. First way is sending directly to the hospitals. The RBC 

must always hold a vehicle in the facility for the urgent demands. Second way is the 

hospital sends a vehicle such as ambulance, commercial vehicle, bike, etc. to receive 

blood from the RBC. Third way is sending demand by the vehicle routes. In this case, 

vehicle first visits the hospital which has urgent demand, then visits the other hospitals 

according to the vehicle route.  

2.2.2 Temporary Regional Blood Centers (TRBC) 

 

The TRBCs can receive blood donation and transfuse blood to patients. They do not 

need to take permission from the RBC to receive blood donations. The TRBCs are also 

hospitals and they use their own donated blood. They do not send their donated blood 

to RBCs or other hospitals. They can also demand blood from the RBCs once needed.  

There are 25 TRBCs in Turkey by the end of the 2016. The Turkish Red Crescent 

wants to reduce the number of TRBC to zero since the Turkish Red Crescent wants to 

control each donated and transfused blood.  

2.2.3 Blood Centers (BC) 

 

They are responsible for receiving blood donations and store blood and send them to 

the RBC. They are organizing the mobile units. Collected bloods at blood stations and 



 

 

14 

 

mobile units are sent to the BCs. They are stored at BCs since BCs have suitable depots 

to store the blood. BCs normally do not distribute blood. However, BCs can distribute 

blood to some hospitals due to farness of hospitals to the RBCs. This distribution of 

blood products is also controlled by RBCs. There are 65 BCs in Turkey and each of 

them is assigned to one RBC. Location of the BCs in Turkey map can be seen at Figure 

2.4. Red points on maps shows the RBCs and the points which have the same colors 

show the BCs that belong to the RBCs 

RBC

Other colors shows the BCs in the region of represented RBC

 

Figure 2.4: Location of the BCs on Turkey’s map 

 

Some provinces in Turkey do not have any BC. These are depended to other BC. 

The assignment of these provinces can also be seen in the Figure 2.5. Province which 

does not have BC is shown by root of arrow and depended province is shown by arrow 

head on the map.   
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Figure 2.5: Provinces which does not have BC and depends on BC located in other province 
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2.2.4 Blood Stations (BS) 

 

Blood stations are responsible for taking blood donations. They send their donated 

bloods to assigned BC. Like the BCs, they are organized and managed by the BCs. 

The only difference of BS from mobile units is its fixed location. There are 44 BSs in 

Turkey.  

2.2.5 Mobile Units (MU) 

 

Mobile units take bloods from the donors and send them to the BCs. They are 

organized and planned by the assigned BC. Their assignment to the BC is fixed.  

BCs have special teams to make operation plans for the mobile units. Mobile units 

have to operate according to these plans. Mobile unit locations can be private or public 

institutions and special vehicles in the crowded public places. The factors used in 

planning the mobile units are listed below. 

 Amount of blood can be collected (potential blood) 

 Physical conditions to take blood  

 Permission of institutions or municipality 

Mobile units normally stay one day in a donation point. They can rarely visit two 

points in one day. They can also stay at a donation point more than one day depending 

on the quantity of potential blood collection. Special vehicles at mobile units return to 

the BC or parked to next position of mobile units if their position changes. If mobile 

unit location is far from the city center (such as some districts), then mobile unit teams 

will stay at this location. A mobile unit is set in about half an hour.  
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2.2.6 Transfusion Centers/Hospitals 

 

The hospitals transfuse bloods to patients. In order to do this, they demand the blood 

from the RBC, make necessary tests, and store on their depot. They can take blood 

from other sources upon the permission of the RBC. In Turkey, there are about 1156 

hospitals that take service from the Turkish Red Crescent. 

The assignment of the hospitals to the RBC is fixed. Hospitals can demand blood 

at any time. There are two types of blood product demand: routine demand and urgent 

demand. Routine demands are for usually the hospital’s inventory for future use, i.e., 

the RBC does not need to satisfy it soon as possible. If the demand is routine, bloods 

are distributed at predetermined time slots. Distribution of the demand must be done 

according to distance and accessibility of hospitals to the RBC. The RBC sends the 

amount of blood product units, to the hospitals. If the RBC gives a promise, then they 

have to transport it in 24 hours. Hospitals rarely receive blood from the other hospitals. 

Urgent demands are demands of blood product that have to be used in very short time 

such as injured people in accident. In urgent demand, blood is supplied as soon as 

possible by a vehicle.  

Hospitals have to keep safety stock for the red blood cells and plasmas. They 

cannot determine a safety stock for platelets due to its short shelf life.  

TRBC, BC, BS and mobile units take blood from donors. Hospitals can take blood 

from donors if the RBC permits. Blood stations and mobile units send their blood to 

BC, and BC sends it to the RBC. The assignment between centers is fixed, and 

deliveries of blood are done according to these assignments. Finally, the RBC sends 

blood products to hospitals and TRBCs which are assigned to the RBC. There is also 

possibility that blood products can be transferred between the RBCs and hospitals. 
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Figure 2.6 shows the blood flow between these centers. It can be observed from 

Figure 2.6 that TRBC, BC, BS and mobile units take blood from donors. Hospitals can 

take blood from donors if the RBC permits. Blood stations and mobile units send their 

blood to BC, and BC sends it to the RBC. The assignment between centers is fixed, 

and deliveries of blood are done according to these assignments. Finally, the RBC 

sends blood products to hospitals and TRBCs which are assigned to the RBC. There 

is also possibility that blood products can be transferred between the RBCs and 

hospitals.  

 

Figure 2.6: Blood flow structure 

  



 

 

19 

 

2.3 Information Flow Structure 

 

RBCs are responsible for each BCs, BSs, mobile units, and hospitals in their region. 

These relations between these centers are done according to the regulations. If a 

hospital wants to have service from a RBC, they have to make contract with the RBC 

and should obey to the rules of RBC. The BCs are responsible from BSs and mobile 

units. They decide on their working plan. The following figure shows the information 

flow structure of the blood supply chain in Turkey. 

 

H

TRBC

RBC

BS

MU

 

Figure 2.7: Information flow structure in Turkey 

 

2.4 Collection of Blood 

 

Blood donation is taken at BC, BS and mobile units. Bloods taken by BSs and mobile 

units are sent to the BC. Assignment of BSs and mobile units to BC is fixed. Then, 

BCs send collected bloods to the RBC. Detailed information about collection of blood 

is listed as follows: 
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 Taken blood from BS and mobile units are collected to the BC in the following 

two ways. First way, vehicle collects bloods by a route that starts at the BC, 

visits blood donation points and returns to the BC. Second way, collecting 

blood via mobile units that bring bloods to the BC when they are done. 

 Vehicle collects bloods by a route in the following situations. 

o Only close points are visited. 

o If blood inventory is not enough to satisfy demand, then blood donation 

points are visited. Platelet is important since it must be disassembled 

from whole blood in 24 hours. Otherwise, whole blood loses its platelet 

features. 

o Supply of bloods which have negative Rhesus factor is hard. Therefore, 

a vehicle visits blood donation points if there are considerable amount 

of negative Rhesus blood.  

 Collected bloods are held on special boxes and refrigerators. These holding 

conditions do not change the shelf life of blood.  

 There is no defined time window for collecting the bloods from BS and mobile 

units. 

 Vehicles collecting bloods can also distribute bloods to hospital, i.e., collection 

and distribution of blood can be done by the same route.  

There are 108 blood donation gain vehicles in Turkey at the end of year 2016. 

Only one of them is owned by the Turkish Red Crescent and others are rental.  

2.5 Distribution of Blood 

 

The distribution management of the blood products is done by the RBCs. In general, 

RBCs are responsible for distributing the bloods. In some cases, the BCs can distribute 

blood to hospitals according to their location under the management of the RBC. 

Information about blood distribution system in Turkey is listed below. 
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 Hospitals should determine their safety stocks and they should manage their 

inventory accordingly. However, most of the hospitals do not have any stock. 

 Hospitals can demand blood any time, but demands are distributed according 

to hospital’s location.  

 There are fixed routes for hospitals. Vehicles visits according to these routes.  

 Start times of vehicles routes are fixed (the available times of the vehicles are 

known and not subject to change). 

 More than one vehicle can be used at the same time to distribute the blood. 

 Urgent demands are directly supplied from the RBC. If a vehicle has urgent 

and routine demands, then vehicle first visits the hospital which has urgent 

demand and then visits the other hospitals. 

 Bloods are distributed in the special boxes and thermal protectors to hold blood 

in suitable temperature conditions. 

2.6 Blood Flow Structure of Central Anatolian RBC 

 

To understand the blood flow structure of the Turkish Red Crescent in a clearer way, 

we focus on the Central Anatolian RBC that is responsible for seven provinces; namely 

Ankara, Konya, Çorum, Kastamonu, Kırıkkale, Çankırı, and Karaman. There are 5 BC 

and 6 BS in the RBC. There are 128 hospitals which are served by Central Anatolian 

RBC; 66 from Ankara, 32 from Konya, 9 from Çorum, 6 from Kastamonu, 4 from 

Kırıkkale, 2 from Çankırı, and 4 from Karaman.  Five of them are also TRBC; 4 from 

Ankara and 1 from Konya. The blood flow structure of the Central Anatolian RBC can 

be seen in the following figure. 
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Figure 2.8: Blood flow structure of the Central Anatolian RBC 
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CHAPTER 3 

 

 

PROBLEM 1 (P1): SOLUTION APPROACHES TO THE PROBLEM OF 

BLOOD DISTRIBUTION IN THE TURKISH RED CRESCENT 

 

 

 

In this chapter, we discuss about our first problem which is introduced in Chapter 1. 

We start with discussing the literature and then we define the problem. Then, we give 

its mathematical model and present proposed algorithms. Finally, we discuss the 

results of our computational experiment. 

 

3.1 Literature Review 

 

Belien and Force (2012) present an extensive review of the literature on the supply 

chain management of the blood products.  The review classifies the studies according 

to the type of blood product, problem type, solution method, hierarchical level, type 

of approach (exact versus heuristic), performance measures, and practical 

implementation/case studies. Another review of the blood supply chain is provided by 

Osorio et al. (2015), where only quantitative models are considered and the main 

features of each model pertinent to the supply chains are presented. 

In this section, we present a review of the literature on supply chain management 

of blood products based on the problem type. In our review, we categorize the studies 

as inventory management, location and allocation, and distribution problems and we 

list the studies in Table 3.1 which includes the problem type, blood product type, 

hierarchical level, solution method, and practical implementation/case studies. 
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Inventory management studies 

Gunpinar and Centeno (2015) studied the blood inventory management problem at 

individual hospital level. They considered uncertain demand and proposed a robust 

integer programming. A mathematical model for age-based transhipment problem for 

blood banks inventory structure was developed by Wang and Ma (2015). They used 

simulation operating scenarios and concluded that age-based policy under first-in-

first-transhipment reduces the expired rate efficiently. Puranam et al. (2017) studied 

multi-period inventory management problem for red blood cells. They proposed a 

dynamic algorithm to minimize the total inventory cost. Daskin and Coullard (2002) 

studied the inventory management problem of platelets for the local blood bank in the 

Chicago area and solved the problem by the Lagrangian-based approach. 

Location and location-allocation studies 

Rusman and Rapi (2014) worked on blood bank location model for Makassar City. 

Their aim was to determine the location of blood banks so as to minimize the sum of 

blood bank opening cost and delivery cost from blood banks to hospitals. Chaiwuttisak 

et al. (2016) studied location-allocation problem for Thailand blood supply chain. 

Kaveh and Ghobadi (2017) solved p-median location-allocation problem, where a 

number of blood centers are located and allocated to hospitals to minimize total 

distance.  Sha and Huang (2012) studied multi-period location-allocation problem for 

temporary blood locations to collect blood products in big earthquake cases. Another 

multi-period location-allocation problem studied by Zahiri et al. (2014) considered 

different blood collection scenarios. Jabbarzadeh et al. (2014) determined the location 

of permanent and temporary blood collection facilities, distribution scheduling of 

temporary blood collection facilities, and blood inventory levels at blood centers. 
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Jacobs et al. (1996) studied the location problem for mid-Atlantic region of American 

Red Cross by developing collection and distribution models. Alfonso et al. (2013) 

focused on the planning of the mobile collection units in Auvergne-Loire Region in 

France in order to minimize the total number of imported red blood cells from other 

regions. In another study, Alfonso et al. (2014) studied the allocation of different 

resource types to blood mobile and fixed site units. Ramezanian and Behboodi (2017) 

worked on the location of permanent and temporary donation centers to design the 

blood supply chain in Tehran, Iran.  

Sahin et al. (2007) studied a hierarchical location-allocation problem for the 

Turkish Red Crescent. They basically determined the location of regional blood 

centers and blood centers and the allocation of the demand points to the pairs of 

regional blood centers and blood centers with the aim of minimizing the total weighted 

distance. Arvan et al. (2015) studied a supply chain network design problem by 

determining the location of donation points and blood banks. A stochastic bi-objective 

supply chain problem in disaster was studied by Fahimnia et al. (2017). Hsieh (2014) 

studied a multi-objective integrated inventory management and location-allocation 

problem for the blood banks.   

Distribution studies 

Distribution problems for blood products are rarely studied in the literature. Gregor 

et al. (1982) studied the distribution strategies to determine the number of vehicles 

used and inventory levels. They had three evaluation criteria: the number of emergency 

orders, average response time to an emergency order, the number of routine surgeries 

postponed. Hemmelmayr et al. (2009) studied the distribution problem of the blood 

products for Australian hospitals so as to minimize the total travel time. Stochastic 

nature of the same problem was considered by Hemmelmayr et al. (2010). Salehipour 

and Sepehri (2012) also studied blood distribution problem with the objective of 

minimizing the total waiting time.  
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Sahinyazan et al. (2015) focused on a selective vehicle routing problem for blood 

mobiles by considering the shuttles which collect blood from the bloodmobiles. 

Another vehicle routing problem for blood mobiles was studied by Gunpinar and 

Centeno (2016) by minimizing the number of blood mobiles and total distance 

travelled.  
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Table 3.1: Summary of the studies in our literature review 

Reference Problem 

type 

Type of blood 

products 

Hierarchi

cal level 

Solution 

methodology 

Alfonso et al. (2013) * Location Red blood cell RBC IP 

Alfonso et al. (2015) * Location Red blood cell RBC IP 
Chaiwuttisak et al. (2016) * Location 

Allocation 

Whole blood Supply 

Chain 

IP 

Daskin and Coullard (2002) Inventory 

Location 

Platelets RBC Lagrangian Relaxation  

Fahimnia et al. (2017) Location 

Allocation 

Whole blood Supply 

Chain 

ε-constrainted and 

Lagrangian Relaxation 

Gregor et al. (1986) * Distribution Blood products RBC Simulation   

Gunpinar and Centeno (2015) Inventory Red blood cell, 

platelets 

Individual 

Hospital 

IP  

Günpinar and Centeno (2016) Distribution Whole blood Supply 

Chain 

IP  

Hummelayr et al. (2009) * Distribution Other/Unknown RBC IP and VNS 

Hummelayr et al. (2010) * Distribution Other/Unknown RBC IP and VNS 

Jabbarzadeh et al. (2014) * Location 

Allocation 

Whole blood RBC IP  

Jacobs et al. (1996) * Location Whole blood Supply 

Chain 

IP 

Kaveh and Ghodabi (2017) * Location 

Allocation 

Blood products Supply 

Chain 

Enhanced colliding 

bodies algorithm 

Puranam et al. (2017) Inventory Red blood cell Supply 

Chain 

Dynamic 

programming 
Ramezanian and Behboodi (2017) 

* 

Location 

Allocation 

Whole blood Supply 

Chain 

IP  

Rusman and Rapi (2014) * Location 

Allocation 

Whole blood RBC IP 

Sahin et al. (2007) * Location 

Allocation 

Whole blood Supply 

Chain 

IP 

Sahinyazan et al. (2015) Distribution Whole blood Supply 

Chain 

IP based heuristic 

Selahipour and Sepehri (2012) * Distribution Blood products RBC IP and hybrid heuristic 

Sha and Huang (2012) * Location 

Allocation 

Whole blood RBC Lagrangian Relaxation 

based  

heuristic 
Wang and Ma (2015) Inventory Blood products RBC Simulation 

Zahiri et al. (2014) Location 

Allocation 

Whole blood Supply 

Chain 

IP 

Arvan et al. (2015) *,** Location 

Allocation 

Whole blood, 

blood products 

Supply 

Chain 

IP 

Hsieh (2014) ** Inventory 

Location  

 

Location 

Whole blood Supply 

Chain 

Genetic algorithm 

 

 

Our Problem *,** Distribution Blood products RBC Decomposition based 

heuristic 

IP: Integer Programming, VNS: Variable Neighborhood Search 

*: practical application, **: multi-objective 
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In this study, we consider the allocation of the blood products along with their 

distribution to the hospitals. Hence we consider a new category, distribution - product 

allocation. Different from all other studies, we take irradiation centers into account in 

our distribution network, which leads to precedence relations between nodes. We 

inspired from Sahin et al.’s (2007) study, which considers a practical situation in the 

Turkish Red Crescent and studies the hierarchical location-allocation problem there. 

 

3.2 Our problem - the blood distribution system 

 

Our observations on the blood supply chain system in Turkey have motivated us to 

deal with the blood distribution system.  We were inspired by a practical application 

and tested the performance of our solution approaches in the real life problem 

instances.   

In the current blood distribution system, the RBCs should determine the amounts 

to be shipped to the hospitals by considering its stock levels, demand and locations of 

the hospitals, and deadlines of the demand. Currently, the amount to be shipped to 

each hospital and the route to be followed by each vehicle are determined by the 

worker and driver experiences without any systematic approach. Generally, the 

vehicles first visit the urgent demand points and then the routine (non-urgent) demand 

points, thereby leading to inefficient routes. Furthermore, some issues like availability 

of the products and the vehicles, vehicle capacities, length of the distribution period 

and maximum travel time of the vehicles are not considered by the RBC while 

preparing the distribution plan. 

Our problem can be viewed as a multi-period blood distribution problem where the 

urgent demands and routine demands are considered simultaneously. Blood products 

can be irradiated or non-irradiated (normal), and are distributed from the RBC in three 
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different periods of a day. Hence, we solve three sequential single-period vehicle 

scheduling problems, starting from period 1, and apply rolling-time horizon approach 

where the solution of the vehicle scheduling problem for a distribution period is used 

as an input for the next distribution period. We treat the unsatisfied routine demand of 

a distribution period as a new demand for the next distribution period. 

In the blood distribution system of a single period, we have a set of vehicles 

available at the RBC to deliver blood products through a set of routes to a set of 

demand points, i.e., hospitals. The irradiated products are first delivered to the 

irradiation centers and then to the hospitals. We call these irradiation centers and 

hospitals as nodes and define a vehicle route as a sequence of visited nodes. Figure 3.1 

illustrates a distribution system in a period for a case where there are eight hospitals, 

one irradiation center, and two vehicles. The first vehicle is loaded with the normal 

demand of hospitals 3, 6 and 7. It first visits hospital 7 and then goes to the hospitals 

6 and 3 in its route and returns to the RBC. The second vehicle is loaded with the 

normal demand of hospitals 1 and 2 and the blood products to be irradiated for the 

hospitals 2 and 3. This second vehicle first visits hospital 1, and then goes to the 

irradiation center at which the blood products for hospitals 2 and 3 are irradiated. Then, 

the second vehicle visits hospital 3 and unloads the irradiated products of this hospital. 

Finally, hospital 2 is visited by the second vehicle, and the normal and irradiated 

products of this hospital are unloaded. The route of the second vehicle finishes at the 

RBC. As it is seen from the figure, the demand of hospitals 4, 5 and 8 are not satisfied 

within the distribution period.  
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Figure 3.1: Distribution system in a period 

 

3.3 Mathematical model 

 

In this section, we present the mathematical programming formulation of our blood 

distribution problem. We solve the problem over a distribution period of pre-specified 

length. We assume that there are 𝑁 + 1 nodes, where one node is for the RBC, 𝐼𝐶 

nodes are for the irradiation centers and the remaining 𝑁 − 𝐼𝐶 nodes are for the 

hospitals. Among these nodes (𝑖 = 0,1, … ,𝑁), 𝑖 = 0 is the regional blood center 

(RBC), 𝑖 = 1,2, … , 𝐼𝐶 are for the irradiation centers, and 𝑖 = 𝐼𝐶 + 1, 𝐼𝐶 + 2, … , 𝑁 are 

for the hospitals. 𝑈 is the set of hospitals with urgent demands (there are |𝑈| hospitals 

in 𝑈). 

The travel time between nodes 𝑖 and 𝑗 is 𝑇𝑖𝑗  time units. 𝑎𝑖 and 𝑏𝑖 are the quantity 

independent and per unit loading and unloading times for node 𝑖, respectively. 𝑤𝑖 is 
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the weight of hospital 𝑖 indicating its relative importance. 𝐷𝐷𝑖 is the deadline for 

hospital 𝑖. 

There are 𝑃 product types, and 𝐴𝑝 units of product 𝑝 (𝑝 = 1,2, . . , 𝑃) are available 

at the RBC. The amount of normal product 𝑝 demanded by hospital 𝑖 is 𝐷𝑖𝑝, and the 

amount of irradiated product 𝑝 demanded by hospital 𝑖 is 𝐼𝐷𝑖𝑝 units.  

There are 𝑉 vehicles, carrying blood products, with identical speed and different 

capacity. Carrying capacity of vehicle 𝑣 (𝑣 = 1,2, . . , 𝑉) is 𝐶𝑣  units. Vehicle 𝑣 becomes 

available at time 𝐸𝐴𝑣 and remains continuously available. Each vehicle starts and ends 

its route at the RBC. The maximum travel time of vehicle 𝑣 is 𝑀𝑇𝑣 time units. Hence, 

the maximum of the 𝑀𝑇𝑣 values is an upper bound on the length of the distribution 

period. 

We make the following additional assumptions to construct the mathematical 

model: 

 All parameters are known with certainty and not subject to any change, i.e., 

the system is deterministic and static. 

 Each vehicle can visit each node. 

 Each node can be visited by more than one vehicle. 

 Blood products to be irradiated are first delivered to the irradiation centers and 

then to the hospitals. 

 Irradiation centers are always available. 

 Urgent demand of a hospital should be satisfied fully before the deadline. 

However, routine demand of the hospitals might be unsatisfied or partially 

satisfied.   

Our problem is to deliver blood products (normal and irradiated) via a set of 

vehicles to a set of hospitals within the distribution period. Thus, 𝑁 is an upper bound 
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on the number of positions (nodes) visited on each vehicle route, where 𝑘 is an index 

for positions (𝑘 = 1,2, … ,𝑁) in this route. 

Decision variables: 

𝑋𝑖𝑘𝑣 = {
1
0

if vehicle 𝑣 visits node 𝑖 at position 𝑘 of its route   

otherwise                                                                 
 

𝑅𝑖𝑝𝑣 = Amount of normal product 𝑝 carried to hospital 𝑖 by vehicle 𝑣 

𝐼𝑅𝑖𝑗𝑝𝑣 = Amount of irradiated product 𝑝 processed by irradiation center 𝑗 (𝑗 =

1,… , 𝐼𝐶) and carried to hospital 𝑖 (𝑖 = 𝐼𝐶 + 1, 𝐼𝐶 + 2,… ,𝑁) by vehicle 

𝑣  

𝑌𝑖𝑗𝑣  = {
1 if irradiation center j is used to process the demand of  

hospital 𝑖 carried by vehicle 𝑣                                             
0  otherwise                                                                                   

 

𝑆𝑖𝑘𝑣 = Arrival time of vehicle 𝑣 to node 𝑖 at its 𝑘𝑡ℎ  position of its route 

𝑇𝑖𝑗
′ =  Travel time between nodes 𝑖 and 𝑗 

Objective function: 

We consider two objectives in hierarchy: first maximizing the total weighted 

demand satisfied, 𝑧1 = ∑ ∑ ∑ 𝑤𝑖(𝑅𝑖𝑝𝑣 + ∑ 𝐼𝑅𝑖𝑗𝑝𝑘
𝐼𝐶
𝑗=1 )𝑁

𝑖=𝐼𝐶+1
𝑃
𝑝=1

𝑉
𝑣=1  and then 

minimizing the total travel time, 𝑧2  = ∑ ∑ 𝑇𝑖𝑗
′𝑁

𝑖=0
𝑁
𝑗=0 . 

Among the solutions with the maximum satisfied demand, we select the one with 

the minimum total travel time. In doing so, we create the following composite 

objective function where the second objective is weighted by a sufficiently small 

positive coefficient 𝜀.  
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       Max 𝑧 = 𝑧1 − 𝜀𝑧2 = ∑ ∑ ∑ 𝑤𝑖(𝑅𝑖𝑝𝑣 + ∑ 𝐼𝑅𝑖𝑗𝑝𝑘
𝐼𝐶
𝑗=1 )𝑁

𝑖=𝐼𝐶+1
𝑃
𝑝=1

𝑉
𝑣=1                               

 −𝜀 ∑ ∑ 𝑇𝑖𝑗
′𝑁

𝑖=0
𝑁
𝑗=0                                                (3.1) 

The coefficient 𝜀 should be set small enough so that the amount of satisfied demand 

should not decrease even for the largest possible value of the total travel time. That is, 

𝑧1
∗ − 𝜀𝑧2

𝑚𝑎𝑥 ≥ 𝑧1
∗ − 1 − 𝜀𝑧2

𝑚𝑖𝑛                               (3.2) 

where 𝑧2
𝑚𝑖𝑛 and 𝑧2

𝑚𝑎𝑥 are the minimum and maximum possible total time values, 

respectively. This follows; 

1 ≥ 𝜀𝑧2
𝑚𝑎𝑥 − 𝜀𝑧2

𝑚𝑖𝑛                                       (3.3) 

𝜀 ≤
1

𝑧2
𝑚𝑎𝑥−𝑧2

𝑚𝑖𝑛 .                                       (3.4) 

As 𝑧2
𝑚𝑖𝑛 and 𝑧2

𝑚𝑎𝑥 values are not known, we use the respective lower and upper 

bounds, in their places. On the total time travelled, we use a lower bound 𝐿𝐵2 and an 

upper bound 𝑈𝐵2 in place of 𝑧2
𝑚𝑖𝑛 and 𝑧2

𝑚𝑎𝑥, respectively, and set 𝜀 according to the 

following equation 

𝜀 =
1

𝑈𝐵2−𝐿𝐵2+1
.                                          (3.5) 

 It is clear that 𝑈𝐵2 is the total of the maximum travel times of the vehicles. Thus, 

the following formula is used to obtain 𝑈𝐵2: 

𝑈𝐵2 = ∑ (𝑀𝑇𝑣 − 𝐸𝐴𝑣)
𝑉
𝑣=0 .                                 (3.6) 

Recall that we assume at least one hospital must be visited in a vehicle route and 

this hospital is the closest one to the RBC and the vehicle immediately returns to the 

RBC. Thus, the following formula is used to obtain 𝐿𝐵2: 

                                      𝐿𝐵2 = min
𝑗=𝐼𝐶+1,𝐼𝐶+2…,𝑛

{𝑇0𝑗 + 𝑇𝑗0}                        (3.7) 
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Constraints: 

∑ 𝑋𝑖𝑘𝑣
𝑁
𝑖=1 ≤ 1 for 𝑘 = 1,2, … ,𝑁;  𝑣 = 1,2, … , 𝑉  (3.8) 

∑ 𝑋𝑖,𝑘+1,𝑣
𝑁
𝑖=1 ≤ ∑ 𝑋𝑖𝑘𝑣

𝑁
𝑖=1  for 𝑘 = 1,2, … ,𝑁;  𝑣 = 1,2, … , 𝑉  (3.9) 

∑ ∑ 𝑋0𝑘𝑣
𝑁
𝑘=2

𝑉
𝑣=1 = ∑ ∑ 𝑋𝑖2𝑣

𝑉
𝑣=1

𝑁
𝑖=0         (3.10) 

∑ 𝑘 ∙ 𝑋𝑖𝑘𝑣
𝑁
𝑘=1 ≤ ∑ 𝑘 ∙ 𝑋0𝑘𝑣

𝑁
𝑘=1  for 𝑖 = 1,2, … ,𝑁;  𝑣 = 1,2, … , 𝑉  (3.11) 

∑ (𝑅𝑖𝑝𝑣 + ∑ 𝐼𝑅𝑖𝑗𝑝𝑣
𝐼𝐶
𝑗=1 ) ≤ (∑ (𝐷𝑖𝑝 + 𝐼𝐷𝑖𝑝)

𝑃
𝑝=1 )∑ 𝑋𝑖𝑘𝑣

𝑁
𝑘=1

𝑃
𝑝=1   

 for 𝑖 = 𝐼𝐶 + 1, 𝐼𝐶 + 2,… ,𝑁; 

 𝑣 = 1,2, … , 𝑉 (3.12) 

∑ 𝑅𝑖𝑝𝑣 ≤ 𝐷𝑖𝑝
𝑉
𝑣=1      for 𝑖 = 𝐼𝐶 + 1, 𝐼𝐶 + 2,… ,𝑁; 

 𝑝 = 1,2, … , 𝑃 (3.13) 

∑ ∑ 𝐼𝑅𝑖𝑗𝑝𝑣
𝐼𝐶
𝑗=1 ≤ 𝐼𝐷𝑖𝑝

𝑉
𝑣=1   for 𝑖 = 𝐼𝐶 + 1, 𝐼𝐶 + 2,… ,𝑁; 

 𝑝 = 1,2, … , 𝑃 (3.14) 

∑ ∑ (𝑅𝑖𝑝𝑣 + ∑ 𝐼𝑅𝑖𝑗𝑝𝑣
𝐼𝐶
𝑗=1 ) ≤ 𝐴𝑝

𝑁
𝑖=𝐼𝐶+1

𝑉
𝑣=1        for 𝑝 = 1,2, … , 𝑃   (3.15) 

∑ ∑ (𝑅𝑖𝑝𝑣 + ∑ 𝐼𝑅𝑖𝑗𝑝𝑣
𝐼𝐶
𝑗=1 ) ≤ 𝐶𝑣

𝑁
𝑖=𝐼𝐶+1

𝑃
𝑝=1        for 𝑣 = 1,2, … , 𝑉 (3.16) 

∑ 𝑋𝑖𝑘𝑣
𝑁
𝑘=1 + ∑ 𝑋𝑗𝑘𝑣

𝑁
𝑘=1 ≥ 2(𝑌𝑖𝑗𝑣 + ∑ 𝑋𝑖𝑘𝑣

𝑁
𝑘=1 − 1)  

 for 𝑖 = 𝐼𝐶 + 1, 𝐼𝐶 + 2,… ,𝑁; 𝑗 = 1,2, … , 𝐼𝐶;  

  ∑ 𝐼𝐷𝑖𝑝
𝑃
𝑝=1 > 0 ;𝑣 = 1,2, … , 𝑉 (3.17) 
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𝑆𝑖1𝑣 ≥ (𝑇0𝑖 + 𝐸𝐴𝑣)𝑋𝑖1𝑣 for 𝑖 = 1,2, … ,𝑁; 𝑣 = 1,2, … , 𝑉 (3.18) 

𝑆𝑗𝑘𝑣 ≥ 𝑆𝑖,𝑘−1,𝑣 + (𝑎𝑖 + 𝑏𝑖 ∑ (𝑅𝑖𝑝𝑣 + ∑ 𝐼𝑅𝑖𝑗′𝑝𝑣
𝐼𝐶
𝑗′=1 )𝑃

𝑝=1 ) + 𝑇𝑖𝑗 −

          [𝑎𝑖 + 𝑏𝑖 ∑ (𝐷𝑖𝑝 + 𝐼𝐷𝑖𝑝) +
𝑃
𝑝=1 max

𝑣′
{𝑀𝑇𝑣′}] × (2 − 𝑋𝑖,𝑘−1,𝑣 − 𝑋𝑗𝑘𝑣)  

  for 𝑖 = 𝐼𝐶 + 1, 𝐼𝐶 + 2,… ,𝑁;  𝑣 = 1,2, … , 𝑉; 

  𝑗 = 1,2, … ,𝑁; 𝑖 ≠ 𝑗; 𝑘 = 1,2, …𝑁 (3.19) 

𝑆𝑗𝑘𝑣 ≥ 𝑆𝑖,𝑘−1,𝑣 + (𝑎𝑖 + 𝑏𝑖 ∑ ∑ 𝐼𝑅𝑖′𝑖𝑝𝑘
𝑃
𝑝=1

𝑁
𝑖′=1 ) + 𝑇𝑖𝑗 −

             [𝑎𝑖 + 𝑏𝑖 ∑ ∑ 𝐼𝐷𝑖𝑝
𝑃
𝑝=1

𝑁
𝑖′=1 +max

𝑣′
{𝑀𝑇𝑣′}] × (2 − 𝑋𝑖,𝑘−1,𝑣 − 𝑋𝑗𝑘𝑣)  

  for 𝑖 = 1,2, … , 𝐼𝐶; 𝑗 = 1,2, … ,𝑁; 𝑖 ≠ 𝑗;  

  𝑘 = 1,2, …𝑁;  𝑣 = 1,2, … , 𝑉 (3.20) 

∑ 𝑘 ∙ 𝑋𝑖𝑘𝑣
𝑁
𝑘=1 ≥ ∑ 𝑘 ∙ 𝑋𝑗𝑘𝑣

𝑁
𝑘=1 − 𝑁(1 − 𝑌𝑖𝑗𝑣)  

  for 𝑖 = 𝐼𝐶 + 1, 𝐼𝐶 + 2,… ,𝑁; ∑ 𝐼𝐷𝑖𝑝
𝑃
𝑝=1 > 0; 

   𝑗 = 1,2, … , 𝐼𝐶;  𝑣 = 1,2, … , 𝑉 (3.21) 

𝑆𝑖𝑘𝑣 ≤ 𝐷𝐷𝑖 for 𝑖 = 𝐼𝐶 + 1, 𝐼𝐶 + 2,… ,𝑁; 𝑘 = 1,2, …𝑁;  

 𝑣 = 1,2, … , 𝑉   (3.22) 

𝑆0𝑘𝑣 ≤ 𝑀𝑇𝑣  for 𝑘 = 1,2, … ,𝑁; 𝑣 = 1,2, … , 𝑉  (3.23) 

∑ 𝐼𝑅𝑖𝑗𝑝𝑣
𝑃
𝑝=1

∑ 𝐼𝐷𝑖𝑝
𝑃
𝑝=1

≤ 𝑌𝑖𝑗𝑣  for 𝑖 = 𝐼𝐶 + 1, 𝐼𝐶 + 2,… ,𝑁;∑ 𝐼𝐷𝑖𝑝
𝑃
𝑝=1 > 0;  

 𝑗 = 1,2, … , 𝐼𝐶; 𝑣 = 1,2, … , 𝑉 (3.24) 

𝑇𝑖𝑗
′ ≥ 𝑇𝑖𝑗(𝑋𝑖,𝑘−1,𝑣 + 𝑋𝑗𝑘𝑣 − 1)  for 𝑖, 𝑗 = 0,1, … ,𝑁; 𝑗 ≠ 𝑖; 𝑘 = 2,3, … ,𝑁; 
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  𝑣 = 1,2, … , 𝑉  (3.25) 

𝑇0𝑗
′ ≥ 𝑇0𝑗𝑋𝑗1𝑣  for 𝑗 = 1,2, … , 𝑁; 𝑣 = 1,2, … , 𝑉  (3.26) 

∑ 𝑅𝑖𝑝𝑣 = 𝐷𝑖𝑝
𝑉
𝑣=1   for 𝑖 = 𝐼𝐶 + 1, 𝐼𝐶 + 2,… ,𝑁; 𝑝 = 1,2, … , 𝑃; 

 𝑖 ∈ 𝑈 (3.27) 

∑ ∑ 𝐼𝑅𝑖𝑗𝑝𝑣
𝐼𝐶
𝑗=1 = 𝐼𝐷𝑖𝑝

𝑉
𝑣=1   for 𝑖 = 𝐼𝐶 + 1, 𝐼𝐶 + 2,… ,𝑁; 𝑝 = 1,2, … , 𝑃; 

 𝑖 ∈ 𝑈 (3.28) 

𝑋𝑖𝑘𝑣, 𝑌𝑖𝑗𝑣 ∈ {0,1}  for 𝑖 = 0,1, … ,𝑁;  𝑘 = 1,2, … ,𝑁; 

 𝑣 = 1,2, … , 𝑉; 𝑗 = 1,2, … , 𝐼𝐶 (3.29) 

𝑆𝑖𝑘𝑣, 𝑇𝑖𝑗
′ ≥ 0 for 𝑖, 𝑗 = 0,1, … , 𝑁;  𝑘 = 1,2, … ,𝑁; 

 𝑣 = 1,2, … , 𝑉 (3.30) 

𝑅𝑖𝑝𝑣, 𝐼𝑅𝑖𝑗𝑝𝑣 ≥ 0  and integer  for 𝑖 = 𝐼𝐶 + 1, 𝐼𝐶 + 2,… ,𝑁; 𝑗 = 1,2, … , 𝐼𝐶; 

 𝑝 = 1,2, … , 𝑃;  𝑣 = 1,2, … , 𝑉 (3.31) 

Constraint set (3.8) guarantees that each vehicle visits at most one node in any 

position on its route. Constraint set (3.9) ensures that if a node is assigned to a position, 

then there must be an assignment to the previous position. Constraint set (3.10) states 

that the total number of vehicles departing from the RBC is equal to the total number 

of vehicles used. Constraint set (3.11) guarantees the RBC is visited as the last node 

by all vehicles. Constraint set (3.12) ensures that the demand of a hospital can be 

satisfied by a vehicle that visits the hospital. Constraint sets (3.13) and (3.14) state that 

the amount of products carried to the hospitals does not exceed the normal and 

irradiated demand, respectively. Constraint set (3.15) guarantees that the amount of 

products carried is limited by the amount available at the RBC. The capacities of the 
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vehicles are considered in Constraint set (3.16). Constraint set (3.17) ensures that if 

the demand of a hospital is processed by an irradiation center, then the hospital and 

the irradiation center should be visited by the same vehicle. Constraint sets (3.18), 

(3.19), and (3.20) calculate the arrival time of vehicle 𝑣 visiting node 𝑖 in the first 

position, the next node after leaving node 𝑖, and the next node after leaving irradiation 

center 𝑖, respectively. Constraint set (3.21) guarantees that a hospital with demand for 

the irradiated products should be visited after the irradiation center serves to this 

hospital’s demand. Constraint set (3.22) ensures that the arrival time of the vehicle to 

hospital 𝑖 should not exceed the deadline imposed by the hospital. Constraint set (3.23) 

guarantees that the arrival time of the vehicle to the RBC does not exceed its maximum 

travel time. Constraint set (3.24) assigns hospital 𝑖 to irradiation center 𝑗 if the hospital 

𝑖 is served by irradiation center 𝑗. Constraint set (3.25) calculates the travel time 

between two successive nodes visited by a vehicle. Constraint set (3.26) calculates the 

travel time between the RBC and the first visited node. Constraint sets (3.27) and 

(3.28) guarantee that the urgent demands and irradiated urgent demands are satisfied. 

Constraint sets (3.29), (3.30), and (3.31) represent the binary, non-negativity, and 

integrality restrictions, respectively. 

We now present some properties of the optimal solution whose incorporation (via 

additional constraints) may reduce the size of the search space, hence improve the 

efficiency of the MILP. Below, we state each of these properties and their associated 

constraints.  

Property 1: If any hospital’s irradiated product demand is satisfied by any vehicle, 

then this vehicle cannot visit the RBC in the second position of its route. 

𝑋02𝑣 ≤ 2 − 𝑌𝑖𝑗𝑣 − ∑ 𝑋𝑖,𝑘′,𝑣
𝐾
𝑘′=1    for 𝑖 = 𝐼𝐶 + 1, 𝐼𝐶 + 2, … , 𝑁;  

       𝑗 = 1,2, … , 𝐼𝐶; 𝑣 = 1,2, … , 𝑉   (3.32) 
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Property 2: If any hospital’s irradiated product demand is satisfied by any vehicle, 

then this vehicle cannot visit this hospital in the first position. In other words, the 

irradiation center is visited before all hospitals served by that center. 

 𝑋𝑖1𝑣 ≤ 1 − 𝑌𝑖𝑗𝑣   for 𝑖 = 𝐼𝐶 + 1, 𝐼𝐶 + 2,… ,𝑁; 

   𝑗 = 1,2, … , 𝐼𝐶; 𝑣 = 1,2, … , 𝑉  (3.33) 

Property 3: The position of an irradiation center in the visiting sequence of the 

vehicle is less than the number available positions minus one plus the number of 

hospitals served by this irradiation center.  

∑ 𝑘𝑋𝑗𝑘𝑣
𝐾
𝑘=1 ≤ 𝐾 − (1 + ∑ 𝑌𝑖𝑗𝑣

𝑁
𝑖=𝐼𝐶+1 )   

 for 𝑗 = 1,2, … , 𝐼𝐶; 𝑣 = 1,2, … , 𝑉  (3.34) 

 

Property 4:  A vehicle cannot visit the RBC at position 1.  

∑ 𝑋01𝑣
𝑉
𝑣=1 = 0   (3.35) 

Any hospital cannot be visited at the final position. 

∑ ∑ 𝑋𝑖𝐾𝑣
𝑁
𝑖=𝐼𝐶+1

𝑉
𝑣=1 = 0  (3.36) 

Any irradiation center cannot be visited at position K−1.  

∑ ∑ 𝑋𝑗,𝐾−1,𝑣
𝐼𝐶
𝑗=1

𝑉
𝑣=1 = 0  (3.37) 

If the earliest arrival time of a vehicle to any hospital at any position is greater than 

the deadline of the hospital, then the hospital cannot be visited after this position.  

∑ 𝑋𝑖𝑘′𝑣
𝐾
𝑘′=𝑘 = 0  for 𝑖 = 𝐼𝐶 + 1, 𝐼𝐶 + 2,… ,𝑁; 𝑣 = 1,2, … , 𝑉;     
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   𝑘 = 1,2, … , 𝐾; 𝐸𝐴𝑣 + ∑ 𝐴[𝑙]
𝑘
𝑙=1 − 𝑎𝑖 > 𝐷𝐷𝑖      (3.38) 

where 𝐴𝑖 = min
𝑗
{𝑇𝑗𝑖 + 𝑎𝑖} and 𝐴𝑖 values are arranged as 𝐴[1] ≤ ⋯ ≤ 𝐴[𝐿]. 

We add (3.35) through (3.38) as each equates to zero and obtain the following 

constraint set. 

∑ 𝑋01𝑣
𝑉
𝑣=1 + ∑ ∑ 𝑋𝑖𝐾𝑣

𝑁
𝑖=1

𝑉
𝑣=1 + ∑ ∑ 𝑋𝑗,𝐾−1,𝑣

𝐼𝐶
𝑗=1

𝑉
𝑣=1 +

           ∑ ∑ ∑ ∑ 𝑋𝑖𝑘′𝑣
𝐾
𝑘′=𝑘 = 0𝐾

𝑘=1 and (𝐸𝐴𝑣+∑ 𝐴𝑙−𝑎𝑖)>𝐷𝐷𝑖
𝑘
𝑙=1

𝑁
𝑖=𝐼𝐶+1

𝑉
𝑣=1  (3.39) 

Our mathematical model is explained by the objective function (3.1) and the 

constraint sets (3.8) through (3.34), and the constraint (3.39). 

3.4 Proposed heuristic algorithms 

 

The size of the MILP model increases exponentially with an increase in the number of 

nodes or vehicles. We verify by computational tests that the model cannot solve even 

small sized problem instances. Recognizing this, we present two decomposition-based 

heuristic algorithms. Below are the detailed descriptions of our heuristic algorithms.
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3.4.1 Decomposition-based heuristic algorithms 

 

Our heuristic algorithms that decompose the problem into sub-problems involve five 

phases: Finding Eligible Vehicles for Hospitals, Finding an Initial Solution (Vehicle 

Schedule), Improvement by Inserting Nodes to Vehicle Routes, Building a New Vehicle 

Schedule by Perturbing the Current Solution, and Improvement by Swapping 

(Pairwise Interchanging) Nodes. The algorithms only vary by their phase flows. We 

use a predetermined critical load ratio (CLR) to improve the chance of assigning one 

vehicle to the hospital. The heuristics start with critical load ratio (CLR) of 0. NI is the 

number of iterations used by the algorithms.  

We round up all product quantities (𝑅𝑖𝑝𝑣 and 𝐼𝑅𝑖𝑗𝑝𝑣 values) returned by the 

heuristic algorithm to their upper integer values. If the solution is not feasible with 

rounded 𝑅𝑖𝑝𝑣 and 𝐼𝑅𝑖𝑗𝑝𝑣 values, we reduce the shipment to a hospital with the 

minimum weight by one unit until feasibility is maintained.  

The flowcharts of the heuristic algorithms 1 and 2 are given in Figures 3.2 and 3.3, 

respectively.  
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Figure 3.2: Flowchart of the Heuristic Algorithm 1 
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Figure 3.3: Flowchart of the Heuristic Algorithm 2 

Once we relax the integrality requirements on all binary variables, the resulting 

linear programming (LP) model makes product assignments to the hospitals. To 

describe this LP model, so called Model M1, we use the same parameters and decision 

variables of our original model and introduce a new parameter (𝑍𝑖𝑣) and two decision 

variables (𝑈𝐶𝑣
+, 𝑈𝐶𝑣

−) as defined below: 
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𝑍𝑖𝑣 = {
1 if hospital 𝑖 can be assigned to vehicle 𝑣

0 otherwise                                                       
            

𝑈𝐶𝑣
+ = Capacity over-usage (deviation) of vehicle 𝑣 from the average capacity 

usage of the vehicles 

𝑈𝐶𝑣
− = Capacity under-usage (deviation) of vehicle 𝑣 from the average capacity 

usage of the vehicles 

Model M1 becomes: 

(M1) Max 𝑧 = ∑ ∑ ∑ 𝑤𝑖(𝑅𝑖𝑝𝑣 + ∑ 𝐼𝑅𝑖𝑗𝑝𝑘
𝐼𝐶
𝑗=1 )𝑁

𝑖=𝐼𝐶+1
𝑃
𝑝=1

𝑉
𝑣=1 −

                             𝜀 ∑ (𝑈𝐶𝑣
+ + 𝑈𝐶𝑣

−)𝑉
𝑣=1    (3.40) 

Subject to  

Constraints (3.13, 3.14, 3.15, 3.16, 3.27, 3.28) and 

∑ (𝑅𝑖𝑝𝑣 + ∑ 𝐼𝑅𝑖𝑗𝑝𝑣
𝐼𝐶
𝑗=1 )(1 − 𝑍𝑖𝑣)

𝑃
𝑝=1 = 0  

for 𝑖 = 𝐼𝐶 + 1, 𝐼𝐶 + 2,… , 𝑁; 𝑣 = 1,2, … , 𝑉  (3.41) 

 ∑ ∑ (𝑅𝑖𝑝𝑣 +∑ 𝐼𝑅𝑖𝑗𝑝𝑣
𝐼𝐶
𝑗=1 )𝑁

𝑖=𝐼𝐶+1
𝑃
𝑝=1 − 𝑈𝐶𝑣

+ + 𝑈𝐶𝑣
−  =

           
∑ ∑ ∑ (𝑅

𝑖𝑝𝑣′
+∑ 𝐼𝑅

𝑖𝑗𝑝𝑣′
𝐼𝐶
𝑗=1 )𝑁

𝑖=𝐼𝐶+1
𝑃
𝑝=1

𝑉
𝑣′=1

𝑉
    for 𝑣 = 1,2, … , 𝑉      (3.42) 

𝑅𝑖𝑝𝑣, 𝐼𝑅𝑖𝑗𝑝𝑣, 𝑈𝐶𝑣
+, 𝑈𝐶𝑣

− ≥ 0    for 𝑖 = 𝐼𝐶 + 1, 𝐼𝐶 + 2,… ,𝑁;  

                              𝑝 = 1,2, … , 𝑃; 𝑗 = 1,2, … , 𝐼𝐶; 

 𝑣 = 1,2, … , 𝑉     (3.43) 

Our primary objective (3.40) is to maximize the total weighted demand satisfied. 

The total capacity usage deviation is minimized as the secondary objective weighed 

by a very small positive number 𝜀 = 0.001. Constraint set (3.41) ensures that a vehicle 
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cannot visit a hospital if it is not in the hospital’s set of eligible vehicles. Constraint 

set (3.42) calculates the capacity usage deviations of the vehicles. Constraint set (3.43) 

ensures non-negativity of the variables.     

Note that Model M1 can be solved in polynomial time since it is an LP. It returns 

𝑅𝑖𝑝𝑣 and 𝐼𝑅𝑖𝑗𝑝𝑣 values explicitly and, the assignment of nodes to the vehicles and 

hospitals to the irradiation centers implicitly. 

Given the allocation of the products to the hospitals and vehicles by Model M1, the 

new problem turns into 𝑉 independent single-machine sequence-dependent scheduling 

problems with additional precedence and fixed-position restrictions. We construct a 

mixed integer linear programming model (MILP) where the minimization of the total 

tardiness is the primary objective and the minimization of the total travel time is the 

secondary objective by weighing it with a very small positive number 𝜀 = 0.001.  

We use 𝑅𝑖𝑝𝑣 and 𝐼𝑅𝑖𝑗𝑝𝑣 values returned by Model M1 to find the total loading and 

unloading times (𝐿𝑂𝑖𝑣) for each node as: 

𝐿𝑂𝑖𝑣 = 𝑎𝑖 + 𝑏𝑖 ∑ ∑ 𝐼𝑅𝑖′𝑖𝑝𝑘
𝑃
𝑝=1

𝑁
𝑖′=𝐼𝐶+1    for 𝑖 = 1,2, … , 𝐼𝐶;    

           𝑣 = 1,2, … , 𝑉 (3.44) 

𝐿𝑂𝑖𝑣 = 𝑎𝑖 + 𝑏𝑖 ∑ (𝑅𝑖𝑝𝑣 + ∑ 𝐼𝑅𝑖𝑗𝑝𝑣
𝐼𝐶
𝑗=1 )

   
 

𝑃
𝑝=1       

 for 𝑖 = 𝐼𝐶 + 1, 𝐼𝐶 + 2, … ,𝑁; 

 𝑣 = 1,2, … , 𝑉 (3.45) 

We define the following additional sets, parameters and decision variables for our 

MILP Model M2. 

Additional sets and parameters: 
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𝑁𝑂𝑣 = Set of nodes (including the RBC) assigned to vehicle 𝑣 

|𝑁𝑂𝑣| = Total number of nodes assigned to vehicle 𝑣  

𝑌𝑖𝑗  = {
1 if irradiation center 𝑗 is used to process the demand of  

hospital 𝑖                                                                              
0  otherwise                                                                                   

 

𝐿𝑂𝑖 = Total loading and unloading time for node 𝑖 

Additional decision variables: 

𝑋𝑋𝑖𝑘 = {
1 if vehicle visits node 𝑖 at position 𝑘

0 otherwise                                         
  

𝑆𝑖𝑘 = Arrival time of a vehicle to node 𝑖 at position 𝑘 

𝑇𝐴𝑖 = Tardiness of node 𝑖 

Model M2 becomes: 

(M2) Min 𝑧 = ∑ 𝑇𝐴𝑖𝑖∈𝑁𝑂𝑣 + 𝜖∑ ∑ 𝑇𝑖𝑗
′

𝑖∈𝑁𝑂𝑣𝑗∈𝑁𝑂𝑣  (3.46) 

 Subject to 

∑ 𝑋𝑋𝑖𝑘 = 1𝑖∈𝑁𝑂𝑣  for 𝑘 = 1,2, … , |𝑁𝑂𝑣|  (3.47) 

∑ 𝑋𝑋𝑖𝑘
|𝑁𝑂𝑣| 
𝑘=1 = 1 for 𝑖 ∈ 𝑁𝑂𝑣 (3.48) 

𝑆𝑖1 ≥ (𝑇0𝑖 + 𝐸𝐴𝑣)𝑋𝑋𝑖1  for 𝑖 ∈ 𝑁𝑂𝑣 (3.49) 

𝑆𝑗𝑘 ≥ 𝑆𝑖,𝑘−1 + 𝐿𝑂𝑖 + 𝑇𝑖𝑗 − (𝐿𝑂𝑖 + 𝑇𝑖𝑗 +𝑀𝑇𝑣) × 

          (2 − 𝑋𝑋𝑖,𝑘−1 − 𝑋𝑋𝑗𝑘) for 𝑖, 𝑗 ∈ 𝑁𝑂𝑣; 𝑖 ≠ 𝑗;  

 𝑘 = 1,2, … , |𝑁𝑂𝑣|  (3.50) 



 

 

46 

 

∑ 𝑆𝑖𝑘
|𝑁𝑂𝑣| 
𝑘=1 − 𝐷𝐷𝑖 ≤ 𝑇𝐴𝑖  for 𝑖 ∈ 𝑁𝑂𝑣; 𝑖 ≠ 0 (3.51) 

𝑆0𝑣𝑘 −𝑀𝑇𝑣 ≤ 𝑇𝐴0  (3.52) 

∑ 𝑘 ∙ 𝑋𝑋𝑖𝑘
|𝑁𝑂𝑣| 
𝑘=1 ≥ 𝑌𝑖𝑗 ∑ 𝑘 ∙ 𝑋𝑋𝑗𝑘

|𝑁𝑂𝑣| 
𝑘=1    for 𝑖 ∈ 𝑁𝑂𝑣; 𝑖 ≠ 0;  

               𝑗 = 1,2, … , 𝐼𝐶; 𝑖 ≠ 𝑗   (3.53) 

𝑋𝑋0,|𝑁𝑂𝑣| = 1  (3.54) 

𝑇𝑖𝑗
′ ≥ 𝑇𝑖𝑗(𝑋𝑖,𝑘−1 + 𝑋𝑋𝑗𝑘 − 1)  for 𝑖, 𝑗 ∈ 𝑁𝑂𝑣; 𝑗 ≠ 𝑖;    

 𝑘 = 2,3, … , |𝑁𝑂𝑣|  (3.55) 

𝑇0𝑗
′ ≥ 𝑇0𝑗𝑋𝑋𝑗1 for 𝑗 ∈ 𝑁𝑂𝑣 (3.56) 

𝑋𝑋𝑖𝑘 ∈ {0,1} for 𝑖 ∈ 𝑁𝑂𝑣;  𝑘 = 1,2, … , |𝑁𝑂𝑣|   (3.57) 

𝑆𝑖𝑘 ≥ 0 for 𝑖 ∈ 𝑁𝑂𝑣;  𝑘 = 1,2, … , |𝑁𝑂𝑣|  (3.58) 

The objective (3.46) is to minimize the total tardiness while selecting the solution 

with minimum total travel time where we set 𝜀 to 0.001. Constraint sets (3.47) and 

(3.48) represent the assignment constraints for node and positions in the vehicle route, 

respectively. The arrival time of a vehicle to node 𝑖 in the first position and visiting 

node 𝑗 immediately are found by constraint sets (3.49) and (3.50). The tardiness values 

of the hospitals and the RBC are calculated by constraint sets (3.51) and (3.52). 

Constraint set (3.53) guarantees that the hospitals with irradiated demands should be 

visited after the irradiation center. Constraint set (3.54) assigns the RBC to the last 

position. Constraint set (3.55) calculates the travel time between two successively 

visited nodes, whereas the constraint set (3.56) calculates the travel time between the 

RBC and the first visited node. Constraint sets (3.57) and (3.58) represent the binary 

and non-negative variables, respectively. 
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For each vehicle route, if the total tardiness returned by Model M2 is zero, then it 

is an optimal solution for the first objective function 𝑧1 of the original problem for 

continuous 𝑅𝑖𝑝𝑣 and 𝐼𝑅𝑖𝑗𝑝𝑣 values; otherwise, the solution of Model M2 provides a 

promising route for this vehicle.  

Finding an optimal solution to Model M2 might require exponential effort due to 

the existence of the binary variables. Recognizing this fact, we aim approximate 

solutions, hence we develop a heuristic procedure. Recall that, Model M2 is similar to 

the single-machine tardiness problem with sequence-dependent setup times for which 

an Iterative Local Search (ILS) algorithm is proposed by Arroyo et al. (2009). We 

modify this algorithm in the following ways, and use its solution instead of solving 

Model M2 directly: 

 We set the RBC to the end of the sequence. 

 We set the objective function value to a sufficiently large number if any 

precedence constraint between an irradiation center and a hospital is not 

satisfied. 

 We set the due date of the irradiation centers to a sufficiently large number and 

the due date of the RBC to the maximum travel time. 

 We consider the total tardiness and the total travel time simultaneously. 

 If the deadlines of all assigned hospitals are greater than the maximum travel 

time of the vehicles, then we consider only the total travel time and use the 

nearest-neighbor heuristic (NNH) that is proposed for solving the travelling 

salesperson problem. 

 We use different number of iterations (NIMILS) and runs (NRMILS) and “α” 

value (AlphaMILS) in our modified ILS algorithm. 

One can observe that given the vehicle routes, our original problem can be modelled 

as an LP. Using this fact, we take vehicle routes, i.e., 𝑋𝑋𝑖𝑘 values, returned by the 
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modified ILS algorithm and transform them to 𝑋𝑖𝑘𝑣 values to be used as parameters 

for Model M3 below:  

(M3) Max 𝑧 = ∑ ∑ ∑ 𝑤𝑖(𝑅𝑖𝑝𝑣 + ∑ 𝐼𝑅𝑖𝑗𝑝𝑘
𝐼𝐶
𝑗=1 ) 𝑁

𝑖=𝐼𝐶+1
𝑃
𝑝=1

𝑉
𝑣=1  (3.59) 

Subject to         

Constraints (3.13, 3.14, 3.15, 3.16, 3.22, 3.23, 3.27, 3.28) and  

∑ (𝑅𝑖𝑝𝑣 + ∑ 𝐼𝑅𝑖𝑗𝑝𝑣
𝐼𝐶
𝑗=1 )𝑃

𝑝=1 (1 − ∑ 𝑋𝑖𝑘𝑣
|𝑁𝑂𝑣|
𝑘=1 ) = 0  

 for 𝑖 = 𝐼𝐶 + 1, 𝐼𝐶 + 2, … , 𝑁;  𝑣 = 1,2, … , 𝑉 (3.60) 

𝑆𝑖1𝑣 ≥ (𝑇0𝑖 + 𝐸𝐴𝑣)𝑋𝑖1𝑣 for 𝑖 = 1,2, … , 𝑁; 𝑣 = 1,2, … , 𝑉 (3.61) 

𝑆𝑗𝑘𝑣 ≥ 𝑆𝑖,𝑘−1,𝑣 + 𝑎𝑖 + 𝑏𝑖 ∑ (𝑅𝑖𝑝𝑣 + ∑ 𝐼𝑅𝑖𝑗𝑝𝑣
𝐼𝐶
𝑗=1 )𝑃

𝑝=1 + 𝑇𝑖𝑗    

  for 𝑖 = 𝐼𝐶 + 1, 𝐼𝐶 + 2,… ,𝑁; 𝑗 = 0,1, … , 𝑁; 

  𝑖 ≠ 𝑗; 𝑣 = 1,2, … , 𝑉; 𝑘 = 1,2, … , |𝑁𝑂𝑣|; 

  𝑋𝑗𝑘𝑣 = 𝑋𝑖,𝑘−1,𝑣 = 1 (3.62) 

𝑆𝑗𝑘𝑣 ≥ 𝑆𝑖,𝑘−1,𝑣 + 𝑎𝑖 + 𝑏𝑖 ∑ ∑ 𝐼𝑅𝑖′𝑖𝑝𝑣
𝑃
𝑝=1

𝑁
𝑖′=𝐼𝐶+1 + 𝑇𝑖𝑗  

                         for 𝑖 = 1,2, … , 𝐼𝐶;  𝑗 = 1,2, … ,𝑁; 

  𝑣 = 1,2, … , 𝑉;  𝑖 ≠ 𝑗; 

  𝑘 = 1,2, … , |𝑁𝑂𝑣|; 

  𝑋𝑗𝑘𝑣 = 𝑋𝑖,𝑘−1,𝑣 = 1 (3.63) 

∑ 𝐼𝑅𝑖𝑗𝑝𝑣
𝑃
𝑝=1 = 0     for 𝑗 = 1,2, … , 𝐼𝐶; 𝑖 = 𝐼𝐶 + 1, 𝐼𝐶 + 2,… ,𝑁;  

                          𝑣 = 1,2, … , 𝑉; 
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  ∑ 𝑘 ∙ 𝑋𝑖𝑘𝑣
|𝑁𝑂𝑣|
𝑘=1 ≤ ∑ 𝑘 ∙ 𝑋𝑗𝑘𝑣

|𝑁𝑂𝑣|
𝑘=1    (3.64) 

𝑅𝑖𝑝𝑣, 𝐼𝑅𝑖𝑗𝑝𝑣,  𝑆𝑖𝑘𝑣 ≥ 0     for 𝑖 = 0,1, … ,𝑁;  𝑝 = 1,2, … , 𝑃; 

  𝑗 = 1,2, … , 𝐼𝐶;  𝑣 = 1,2, … , 𝑉; 

  𝑘 = 1,2, … , |𝑁𝑂𝑣|  (3.65) 

Objective function (3.59) is maximizing the total weighted demand satisfied. 

Constraint set (3.60) guarantees that if the vehicle does not visit a hospital, then it 

cannot deliver any product to that hospital. The arrival time of a vehicle to node 𝑖 if 

this node is visited in the first position of its route, if node 𝑗 is immediately visited 

after hospital 𝑖, and if node 𝑗 is immediately visited after irradiation center 𝑖, are 

calculated in constraint sets (3.61), (3.62), and (3.63), respectively. Constraint set 

(3.64) ensures the amount of irradiated product 𝑝 carried to hospital 𝑖 from irradiation 

center 𝑗 by vehicle 𝑣 should be zero, if irradiation center 𝑗 is visited after hospital 𝑖. 

Constraint set (3.65) represents non-negative variables. 

Model M3 is an LP model, hence can be solved in polynomial time. After solving 

M3, we modify the objective function (3.59) by adding the term ∑ ∑ 𝑇𝑖𝑗
′𝑁

𝑖=0
𝑁
𝑗=0 , which 

is a constant since vehicle routes are known in advance. That is, we have 

Max 𝑧 = ∑ ∑ ∑ 𝑤𝑖(𝑅𝑖𝑝𝑣 + ∑ 𝐼𝑅𝑖𝑗𝑝𝑘
𝐼𝐶
𝑗=1 )𝑁

𝑖=𝐼𝐶+1
𝑃
𝑝=1

𝑉
𝑣=1 −  

 ε∑ ∑ 𝑇𝑖𝑗
′𝑁

𝑖=0
𝑁
𝑗=0   (3.66) 

We now give the detailed description of five phases of the heuristic algorithms.   
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Phase 1: Finding eligible vehicles for hospitals 

 

In this phase, we aim to find a good initial solution. In doing so, we group the hospitals 

by their locations and assign them to the vehicles. We get the inspiration from Ochi et 

al. (1998). 

We first estimate the angle for each hospital pairs where the origin point of the 

angle is taken as the RBC, using the cosine law (Angle𝑖𝑗 =

𝑎𝑟𝑐 cos{(𝑇0𝑖
2 + 𝑇0𝑗

2 − 𝑇𝑖𝑗
2) (2𝑇𝑜𝑖𝑇𝑜𝑗)⁄ }). Based on the angle values among all hospital 

pairs, we determine two leading hospitals with the maximum angle. For each 

unselected hospital, we determine the sum of the angles from the leading hospitals. 

We select the hospital with the maximum angle sum as the next leading one. We 

continue until all 𝑉 leading hospitals are selected. 

We assign the remaining hospitals to 𝑉 groups of leading hospitals by considering 

the critical angle (= 180 (𝑉 + 1)⁄ ) and the critical time (CT), which is found by 

multiplying the time ratio for eligibility set (TRES) and the average travel time between 

RBC and hospitals. If the angle between an unassigned hospital and a leading hospital 

is smaller than the critical angle or the travel time between the RBC and this 

unassigned hospital is smaller than the critical time, then we assign this hospital to the 

leading hospital group.  

For each hospital group, we find the maximum travel time of the hospitals in the 

group from the RBC. We sort the hospital groups in descending order of those 

maximum travel times. In case of ties, we give priority to the group with the highest 

total demand. For each vehicle, we determine the total available time which is the 

difference between 𝑀𝑇𝑣 and 𝐸𝐴𝑣. Similarly, we sort the vehicles in descending order 

of their total available times. In case of ties, we give priority to the vehicle with the 

larger capacity.  
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Starting from the first hospital group in the sorted list, we assign each hospital group 

to the vehicle in the same position of the sorted list of vehicles. For each hospital 𝑖 in 

a group of hospitals, we set its eligibility parameter 𝑍𝑖𝑣 to 1 if this group is assigned 

to vehicle 𝑣. This process is carried out for all hospitals with routine demand; however, 

all vehicles are assumed to be eligible for all irradiation centers and hospitals with 

urgent demand.  

Phase 2: Finding an initial solution 

 

We observe that the solutions of Model M1 and M2 may not be feasible for Model M3 

due the deadline and maximum travel time constraints. To ensure a feasible solution 

for Model M3, we propose this phase. 

We solve Model M1 and calculate the loading ratio (𝐿𝑅𝑖𝑣) for each hospital and 

vehicle pair as follows:  

𝐿𝑅𝑖𝑣 =
∑ (𝑅𝑖𝑝𝑣+∑ 𝐼𝑅𝑖𝑗𝑝𝑣

𝐼𝐶
𝑗=1 )𝑃

𝑝=1

∑ ∑ (𝑅
𝑖𝑝𝑣′+∑ 𝐼𝑅

𝑖𝑗𝑝𝑣′
𝐼𝐶
𝑗=1 )𝑃

𝑝=1
𝑉
𝑣′=1

                           (3.67) 

where the numerator is the total amount of product carried by vehicle 𝑣 to hospital 

𝑖, and the denominator is the total amount of product carried by all vehicles serving 

hospital 𝑖. 

Among all the hospital and vehicle pairs, we take pair (𝑖′, 𝑣′) which gives the 

minimum loading ratio. If this ratio is smaller than the critical load ratio (CLR), then 

we set vehicle 𝑣′ as ineligible for hospital 𝑖′. We resolve Model M1 and continue the 

process above until the minimum loading ratio is greater than CLR. 

We use the modified ILS algorithm, in place of solving Model M2, to calculate the 

required parameters for Model M3. Next, we solve Model M3. If the solution is 

infeasible, then we select a vehicle route with the maximum tardiness value, and 
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determine a hospital which is the furthest hospital (found heuristically) from the other 

hospitals on the same vehicle route. Otherwise, we apply Phase 2 until a feasible 

solution for Model M3 is found. Finally, we set this feasible solution as the 

Local_Solution and the Global_Solution since this feasible solution is the first solution 

to the original problem. 

Phase 3: Improvement by inserting nodes to the vehicle routes 

 

This phase tries to improve the solution by inserting additional nodes to the current 

vehicle routes since the value of our primary objective may increase as the number of 

assigned nodes increases. 

We start by selecting a random node 𝑖′ and a vehicle 𝑣′ where 𝑖′ is not already 

assigned to 𝑣′ and this node-vehicle pair may improve the Local_Solution. Among all 

the possible positions in the vehicle route 𝑣′, we randomly select IPOS number of 

insertion positions and calculate the travel time increase (TTI) for each selected 

position 𝑘 as follows: 

𝑇𝑇𝐼𝑘 = 𝑇𝑓(𝑘−1,𝑣′),𝑖′ + 𝑇𝑖′,𝑓(𝑘,𝑣′) − 𝑇𝑓(𝑘−1,𝑣′),𝑓(𝑘,𝑣′)     (3.68) 

where 𝑓(𝑘, 𝑣′) is the hospital which is assigned to position k of vehicle 𝑣′. Then, 

we select the position 𝑘′ which gives the minimum TTI value, and update our vehicle 

route 𝑣′ by inserting node 𝑖′ to position 𝑘′. Furthermore, we calculate the fitness value 

with the procedure given below and continue the process above until all possible node-

vehicle pairs are examined.  

We sort the solutions obtained by the process above in descending order of their 

fitness values, and put the first NAS3 number of solutions into a temporary set of 

solutions. Starting from the best solution in this temporary set, we solve Model M3 

and apply the unprofitable node elimination procedure given in Section below for all 
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the members of the temporary set. For the first time when the objective function value 

returned by Model M3 for one of the solutions in the temporary set is better than that 

of the current Local_Solution, we replace the current Local_Solution with the new 

solution and repeat Phase 3 without solving the remaining solutions from the 

temporary set. If the objective function values returned by Model M3 for all solutions 

in the temporary set are not better than those of the current Local_Solution, we update 

the Global_Solution if the objective function value of the current Local_Solution is 

better than that of the current Global_Solution. 

Fitness value calculation 

Solving Model M3 many times may require excessive amount of computation time. In 

place of solving Model M3, we propose a method to find a powerful estimate (fitness) 

on its objective function value. In doing so, we first calculate the estimated values of 

Ripv by dividing hospital 𝑖’s demand for normal product 𝑝 to the total number of 

vehicles visiting hospital 𝑖, and IRijpv by dividing the hospital 𝑖’s irradiated demand for 

product 𝑝 to the number of irradiated center visited before hospital 𝑖. Using these 

estimated Ripv and IRijpv values, we check the product availability constraints, the 

vehicle capacity constraints, and the time related (deadline and maximum travel time) 

constraints. If one of these constraints are not satisfied, we calculate the amount of 

violations: 

 Product availability violation: Sum of all violation amounts due to the 

product availability constraints is as given below: 

𝑃𝐴𝑉 = ∑ max{∑ ∑ (𝑅𝑖𝑝𝑣 + ∑ 𝐼𝑅𝑖𝑗𝑝𝑣
𝐼𝐶
𝑗=1 ) − 𝐴𝑝

𝑁
𝑖=𝐼𝐶+1

𝑉
𝑣=1 , 0}𝑃

𝑝=1      (3.69) 

 Vehicle capacity violation:  Maximum of the difference between the total 

demand satisfied and the total vehicle capacity, and the sum of all vehicle 

capacity violation amounts, is as given below:  
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 𝑉𝐶𝑉 = max {
∑ (∑ ∑ (𝑅𝑖𝑝𝑣 + ∑ 𝐼𝑅𝑖𝑗𝑝𝑣

𝐼𝐶
𝑗=1 ) − 𝐶𝑣

𝑁
𝑖=𝐼𝐶+1

𝑃
𝑝=1 ),𝑉

𝑣=1                  

∑ max{∑ ∑ (𝑅𝑖′𝑝𝑣 + ∑ 𝐼𝑅𝑖′𝑗𝑝𝑣
𝐼𝐶
𝑗=1 ) − 𝐶𝑣

𝑁
𝑖′=𝐼𝐶+1

𝑃
𝑝=1 , 0}𝑉

𝑣=1

} (3.70) 

where 𝑖′ is the set of hospitals served by one vehicle only. 

 Time related violation: Maximum of the sum of the maximum deadline 

violations of all vehicle routes, sum of the maximum travel time violations of 

all vehicle routes and the difference between the total required time and the 

total vehicle availability time for all vehicle routes, is as given below: 

𝑇𝑅𝑉 = max{

∑ max
∀ 𝑖′

(𝑀𝐴𝑖′ − 𝐷𝐷𝑖′ , 0)
𝑉
𝑣=1

∑ max(𝑀𝑅𝑣 −𝑀𝑇𝑣, 0)  
𝑉
𝑣=1

𝑇𝑇𝑅 − ∑ (𝑀𝑇𝑣 − 𝐸𝐴𝑣)
𝑉
𝑣=1   

}          (3.71) 

where 

 𝑖′ is the set of hospitals which are visited by vehicle 𝑣. 

 𝑀𝐴𝑖′  (𝑀𝑅𝑣) is the minimum arrival time of a vehicle to hospital 𝑖′ (RBC), 

which includes 𝐸𝐴𝑣 values, sum of travel and constant loading/unloading 

times at all nodes that are visited before hospital 𝑖′(RBC), and all variable 

loading/unloading times of nodes that are served only by that vehicle and 

visited before hospital 𝑖′ (RBC).  

 𝑇𝑇𝑅 is the sum of all travel times, constant and variable loading/unloading 

times of all vehicle routes. 

We calculate the estimated value for the objective function as follows: 

∑ ∑ ∑ 𝑤𝑖(Ripv+∑ IRijpv
𝐼𝐶
j=1 )N

i=𝐼𝐶+1 −P
p=1 𝜀 ∑ ∑ 𝑇𝑖𝑗

′𝑁
𝑖=0

𝑁
𝑗=0

V
v=1   

−max {min
𝑖
(𝑤𝑖) × 𝑃𝐴𝑉,min

𝑖
(𝑤𝑖) × 𝑉𝐶𝑉,min

𝑖
(
𝑤𝑖

𝑏𝑖
′) × 𝑇𝑅𝑉}  (3.72) 

where 𝑇𝑖𝑗
′

 is the travel time between nodes 𝑖 and 𝑗,  
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𝑏𝑖
′ = {

𝑏𝑖 + 𝑏𝑖′    if irradiation center 𝑖′ is used to process the demand of 

hospital 𝑖                                                                  
𝑏𝑖              otherwise                                                                                  

},  

and ∑ ∑ 𝑇𝑖𝑗
′𝑁

𝑖=0
𝑁
𝑗=0  is a constant since vehicle routes are known in advance. 

Procedure for deleting unprofitable node 

If Model M3 returns a solution such that any hospital is visited with no service, we 

drop this hospital and resolve Model M3. If no such hospital exists, then we terminate 

the procedure.  

Phase 4: Building a new vehicle schedule 

The current Global_Solution may be a local optimal so that no further improvements 

could be achieved. In order not to get stuck in a local optimal solution, the current 

solution is perturbed either by removing a node from a vehicle route or interchanging 

two nodes in different vehicle routes. 

We first calculate 𝑃𝑉𝑘𝑣 values for each node 𝑘 in vehicle route 𝑣 of the 

Global_Solution, assuming that node 𝑘 is between nodes 𝑖 and 𝑗, as follows: 

  𝑃𝑉𝑘𝑣 = min
𝑖′=𝐼𝐶+1,…,𝑁

(
𝑤
𝑖′

𝑏𝑖′
) × (𝑇𝑖𝑘 + 𝑇𝑘𝑗 + 𝑎𝑘 − 𝑇𝑖𝑗) − 𝑤𝑘 × 𝑃𝐶𝑘𝑣  (3.73) 

where 𝑃𝐶𝑘𝑣 is the amount of products carried to node 𝑘 by vehicle 𝑣, and the 

maximum weight of the hospitals which are visited after an irradiation center by 

vehicle 𝑣 is used as the weight for this irradiation center.  

If the Global_Solution is updated in the current iteration, then we calculate the 

difference between the maximum travel time and the arrival time to the RBC for each 

vehicle, select the vehicle(s) giving the minimum difference, determine a node with 

the maximum 𝑃𝑉𝑘𝑣 value among vehicle(s) with the minimum difference, and remove 
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this node from its vehicle route. Otherwise, we randomly select two vehicles, 

determine a node with the maximum 𝑃𝑉𝑘𝑣 value in each vehicle, and pairwise 

interchange these two nodes. Finally, we replace the Local_Solution with the solution 

obtained by the process above.  

Phase 5: Improvement by swapping (pairwise interchanging) nodes 

This phase improves the solution by swapping two nodes in three ways, (1) between 

the vehicle routes, (2) within a vehicle route, and (3) between a node in a vehicle route 

and a node which is not in any vehicle route. 

We randomly select two nodes that may provide better solution by using three ways 

mentioned above. We update our vehicle routes by interchanging the selected nodes 

and calculate the fitness value by the Fitness Value Calculation procedure and continue 

the process above until all possible node pairs are examined. 

We sort the solutions obtained by the process above in descending order of their 

fitness values, and put the first NAS5 solutions into a temporary set. Starting from the 

best solution in this temporary set, we solve Model M3 and apply the unprofitable 

node elimination procedure for all the members of the temporary set. For the first time 

when the objective function value returned by Model M3 for one of the solutions in 

the temporary set is better than that of the current Local_Solution, we replace the 

current Local_Solution with the new solution. We repeat Phase 5 in Heuristic 

Algorithm 1 (Phase 3 in Heuristic Algorithm 2) without solving the remaining 

solutions from the temporary set, if the objective function values returned by Model 

M3 for all solutions in the temporary set are not better than those of the current 

Local_Solution, we update the Global_Solution if the objective function value of the 

current Local_Solution is better than that of the current Global_Solution. 
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The selection of the parameters (TRES, IPOS, NAS3, NAS5, NI, NIMILS, and 

NRMILS) used in our heuristic algorithms is discussed in the computational 

experiments section. 

 

3.5 Computational experiments 

 

In this section, we describe the computational experiment designed to evaluate the 

performance of the solution approaches. The heuristic algorithms are coded at the C++ 

platform, and C++ CPLEX application of IBM ILOG CPLEX optimization studio 

V12.6.2 is used to solve the mathematical models in our heuristic algorithms and the 

MILP model under the time limit of one hour. All computational experiments are 

conducted on a personal computer with Intel Xeon CPU E5-2650 2GHz (2 Processor) 

and 128 GB RAM under Windows 10 operating system. 

3.5.1 Parameter settings 

 

We use the real problem instances which are encountered the Central Anatolian RBC 

between January 4 and February 4, 2016. We observe that the product availabilities of 

this period are relatively smaller than the total demand of the hospitals. Therefore, this 

period is more critical period in a year, so it was selected. For this period, we solve 

360 problem instances where the number of nodes changes between 10 and 55.  

We now explain the way followed to obtain the data set. 

 Demand quantities are received from the RBC data base. We categorize them 

according to the daily distribution slots.  

 Urgent demands should be satisfied in one hour. 
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 Traveling times between nodes are determined via the geographic information 

system database of BASARSOFT Company, Ankara. 

 Constant and variable parts of the loading and unloading times are estimated 

by using worker experiences.  

 Weights of hospitals are determined as follows. 

o We classify the hospitals as standard (normal) hospitals, children hospitals, 

hospitals that cannot take blood from donor, large hospitals, hospitals 

sending special donors, and temporary RBCs.  

o We ask the experienced RBC staff to assign weights (between 0 and 10) 

to hospital classes and take the averages of the assigned weights.  

o Some hospitals that send their donors to the RBC have higher weights. A 

hospital’s demand can be more than the quantity obtained from their 

donors. In order to deal with this issue, we separate hospitals demand in 

two parts: one only includes the quantities obtained from donors and 

second is the difference between its original demand and quantities 

obtained from donors. We give the weight of 10 for the first part, and for 

the second part we give its original weight. We create a dummy node for 

the hospital. 

 If a hospital has both urgent and routine demand, then we duplicate the node 

of this hospital. 

 We use 3, 4, 5, and 6 vehicles in our problem instances. 

 All vehicles are identical in capacity with 300 units of blood products, and are 

ready at the beginning of the distribution period.  

 The length of a distribution period is 3 hours, and this period defines the 

maximum travel time allowed to each vehicle.  

 The problem instances are grouped by the number of nodes. Each group has 10 

problem instances.  

The number of nodes and product ranges are given in Table 2. 
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Table 3.2: Number of nodes and product types in our data set 

Group 1 2 3 4 5 6 7 8 9 

N 10-14 15-19 20-24 25-29 30-34 35-39 40-44 45-49 50-54 

P 8-19 8-23 13-23 15-21 16-22 17-24 20-27 19-30 20-28 

 

 

3.5.2 Performance measures 

 

To evaluate the performance of the heuristic algorithms, we consider two types of 

solutions provided by CPLEX for MILP. These are the best integer solution and the 

best non-integer solution (some of the variables are non-integer) obtained by MILP 

within one hour time limit. For the first objective function value, we separate the 

instances into following two sets.  

1. The instances with known optimal solutions- two cases may occur. 

i. CPLEX returns the optimal solution in one hour. 

ii. CPLEX cannot return the optimal solution in one hour, but the difference 

between best integer solution and best non-integer solution returned by 

CPLEX is less than 0.3. This implies that the optimal solution for the first 

objective function is found, as it can take only integer values or has a 

fractional part of 0.5 (since hospital weights used in the objective function 

are the multiples of 0.5). In this case, we cannot conclude that the resulting 

solution is optimal for the second objective function.  

2. The instances with unknown optimal solutions. 

On the other hand, for the first objective function, we use the following performance 

measure for the set of problem instances whose optimal solution is obtained by the 

MILP: 

Percent Error = PE =
𝑧1
𝐵– 𝑧1

𝐻

𝑧1
𝐻 ×100                                     (3.74) 
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where z1
𝐵 is the optimum value of the first objective function returned by the MILP 

model, and 𝑧1
𝐻 is the value of the first objective function returned by the heuristic 

algorithm. 

For the set of the problem instances whose optimal solution is unknown, we use the 

following performance measure for the first objective function: 

PE =
𝑧1
𝑁 − 𝑧1

𝐻

𝑧1
𝐻 ×100                                       (3.75) 

where  𝑧1
𝑁 is the value of the non-integer solution returned by the MILP model. The 

number of optimal solutions obtained is another performance measure for the heuristic 

algorithms. The optimality of the heuristic algorithms is assured when the first 

objective function value is equal to the best non-integer objective function value of the 

MILP.  

To evaluate the performance of the heuristic algorithms for the second objective 

function, we only use the set of problem instances with known optimal solution for the 

first objective function. We use the following performance measure for the second 

objective: 

PE =
𝑧2
𝐻– 𝑧2

𝑀

𝑧2
𝑀 ×100                                          (3.76) 

where 𝑧2
𝑀 is the value of the second objective returned by the MILP model, and 𝑧2

𝐻 

is the value of the second objective function returned by the heuristic algorithm. 

The CPU time is another performance measure used for the heuristic algorithms 

and the MILP model. 
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3.5.3 Parameter tuning for the heuristic algorithms 

 

In this section, we discuss the selection of parameters (TRES, IPOS, NAS3, NAS5, 

NI, NIMILS, and NRMILS) used in our heuristic algorithms. Three levels of each 

parameter are tested.  We use Group 1 and Group 9 defined in Table 3.3, i.e., small 

(10-14 nodes) and large (50-54 nodes) problem instances. We set the number of 

vehicles to 3 and 6. 

We change the level of each parameter while fixing the levels of other parameters 

at the same level, as in Salvietti et al. (2014) and Nearchou and Lagodimos (2013). 

Table 3.3 reports the values of the performance measures for each level of each 

parameter. 
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Table 3.3: Parameter tuning results for the heuristic algorithms 

Parameter   
 Levels 

Heuristic Algorithm 1 Heuristic Algorithm 2 

1 2 3 * ** 1 2 3 * ** 

Time ratio for 

eligibility set  

(TRES) 

Values 0.1 0.5 1     0.1 0.5 1     

PE 4.4 2.8 2.7 1 
0.5 

3.4 3.6 3.2 1 
1 

CPU 3.2 2.7 3.1 0.5 1.5 1.7 1.3 1 

# of insertion 

positions  

(IPOS) 

Values 1 3 5     1 3 5     

PE 3.1 2.9 2.9 3, 5 
3 

3.8 3.6 3.0 5 
5 

CPU 2.5 1.7 1.8 3 1.5 1.7 1.8 1 

# of alternative 

schedules for 

Phase 3 (NAS3) 

Values 5 10 15     5 10 15     

PE 3.0 3.0 2.8 15 
5 

3.3 3.3 3.3 5, 10, 15 
10 

CPU 0.9 1.4 2.3 5 2.5 1.6 2.1 10 

# of alternative 

solutions for 

Phase 5 (NAS5) 

Values 10 20 30     5 10 15     

PE 3.0 3.0 3.0 10, 20, 30 
10 

3.2 3.3 3.3 5 
5 

CPU 1.4 1.5 1.4 10, 30 1.5 1.5 1.6 5, 10 

# of iterations 

for the main 

algorithm  

(NI) 

Values 4 6 9     3 4 6     

PE 3.1 3.0 3.0 6, 9 
4 

3.3 3.3 3.3 3, 4, 6 
3 

CPU 1.1 1.5 2.2 4 1.3 1.6 1.9 3 

# of iterations 

for the Modified 

ILS Alg. 

(NRMILS) 

Values 5 10 100     5 10 100     

PE 3.3 3.2 3.5 10 
10 

3.3 3.3 3.3 5, 10, 15 
5 

CPU 1.5 1.4 1.5 10 1.5 1.6 1.8 5 

# of runs for the 

Modified ILS 

Alg. 

 (NRMILS) 

Values 2 5 10     2 5 10     

PE 3.2 3.0 3.2 5 
2 

3.3 3.3 3.3 2, 5, 10 
2 

CPU 1.5 1.8 1.6 2 1.5 1.7 2.0 2 

Alpha value for 

Modified ILS 

Alg. 

(AlphaMILS) 

Values 0.4 0.6 0.8    0.4 0.6 0.8   

PE 3.4 3.4 3.4 0.4, 0.6, 0.8 
0.8 

3.2 3.3 3.2 0.4, 0.8 
0.8 

CPU 0.8 0.8 0.8 0.4, 0.6, 0.8 1.4 1.4 1.4 0.4, 0.6, 0.8 

* Best value(s) for performance criteria 

** Selected value for the heuristic algorithm 
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Table 3.3 shows that all percent deviations of the heuristic algorithms are very small 

(almost all are below 3.5%) and not much sensitive to the selected levels of the 

parameters.  Hence, we base our parameter selection on the CPU times (select the level 

that gives the minimum CPU time) and we use the percent deviation as tie breaker (if 

any percent deviation cannot resolve ties, as for the NAS5 value of Heuristic Algorithm 

1 and AlphaMILS value for both algorithms, we make a random selection). We make 

a single exception for the IPOS value of Heuristic Algorithm 2 where we select the 

level that leads to the smallest percent deviation (3%) and highest CPU time, as the 

first and second smallest CPU times were due to the levels with relatively too high 

percent deviation values (above 3.5%).  

3.5.4 Discussion of the results 

 

In this section, we discuss the results of the experiments for two heuristic algorithms 

and the MILP model. We summarize the results in Table 3.4. 

Table 3.4: Summary for discussion of the results 

Difference between the 

best integer and the 

non-integer solution by 

the MILP  

Number of 

problem 

instances 

Objective  

function 1 

Objective 

function 2 

Less than 0.3 55 HAs obtain the 

optimal solution 

for all instances 

See Table 3.5 

Greater than 0.3 305 See Table 3.6      ---- 

 

We first discuss the performance of the heuristic algorithms for the problem 

instances whose optimal solutions are known. We observe that the MILP model 

obtains optimal solutions for the first objective function for 55 out of 360 problem 

instances. Heuristic Algorithms 1 and 2 also return optimal solutions for the first 
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objective function for all 55 problem instances. Table 3.5 reports on the CPU times of 

the heuristic algorithms and their performance relative to the second objective 

function.  

Note that Heuristic Algorithms 1 and 2 have average CPU times of 3.29 and 4.57 

seconds, respectively. We observe that the increase in the number of vehicles does not 

affect the CPU times of the heuristic algorithms; however, the number of nodes has a 

significant effect on the CPU times. From Table 3.5, we observe that our heuristic 

algorithms provide better solutions for the second objective function with negative 

average PEs. Overall performance error of the Heuristic Algorithms 1 and 2 are -29.09 

and -24.59 percent, respectively, i.e., our heuristic algorithms provide about 30 percent 

better results than the MILP. We observe that PE is affected by the number of vehicles 

since it significantly reduces as the number of vehicles increases. We may also 

conclude that the number of nodes does not have any effect on the PE since we did not 

observe any structural behaviour of PEs when the number of nodes increases. We also 

report the performance of these heuristic algorithms’ best one which is obtained by 

taking the minimum value of the second objective function returned by the heuristic 

algorithms. Best of these heuristics provides better results accordingly, but its 

contribution to the second objective is about 1.5 percent better than Heuristic 

Algorithm 1.  
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Table 3.5: Performance of heuristic algorithms – the instances with known optimal 

solutions for the first objective 

    Number of 

Optimum 

Solutions 

Obtained 

Heuristic  

Algorithm 1 

Heuristic 

Algorithm 2 

Heuristic Algorithm  

MIN{HA1, HA2) 

N V 

Avg.  

PE  

Avg. 

CPU 

(Sec.) 

Avg.  

PE  

Avg. 

CPU 

(Sec.) 

Avg.  

PE  

Avg. 

CPU 

(Sec.) 

10-14 
3 

10 -18.89 2.26 -16.70 3.34 -19.97 5.60 

15-19 2 -34.77 0.71 -23.99 0.80 -34.77 1.52 

Avg. (Sum)  (12) -21.53 2.01 -17.91 2.92 -22.44 4.92 

10-14 
4 

10 -25.37 2.75 -20.73 3.56 -27.22 6.31 

15-19 6 -24.00 5.15 -20.49 6.93 -26.49 12.09 

Avg. (Sum)  (16) -24.86 3.65 -20.64 4.82 -26.95 8.47 

10-14 
5 

10 -30.91 2.94 -26.35 3.65 -32.78 6.60 

15-19 4 -26.77 5.57 -25.96 8.22 -27.73 13.79 

Avg.  (Sum)  (14) -29.73 3.69 -26.24 4.96 -31.33 8.65 

10-14 
6 

10 -37.01 3.08 -28.56 4.17 -37.50 7.24 

15-19 3 -52.61 5.27 -51.42 9.42 -55.14 14.69 

Avg. (Sum)  (13) -40.61 3.58 -33.84 5.38 -41.57 8.96 

Avg. (Sum)  (55) -29.09 3.29 -24.59 4.57 -30.54 7.86 
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Table 3.6: Performance of heuristic algorithms for the first objective – unsolved instances by MILP. 

    Heuristic Algorithm 1 Heuristic Algorithm 2 

Heuristic Algorithm 

MAX{HA1, HA2) 

N V 

# of 

Hits* 

Avg. 

PE 

Avg. 

CPU 

(Sec.) 

# of 

Hits* 

Avg. 

PE 

Avg. 

CPU 

(Sec.) 

# of 

Hits* 

Avg. 

PE 

Avg. 

CPU 

(Sec.) 

15-19 3 7 0.38 5.29 7 0.38 7.66 7 0.38 12.95 

20-24 5 0.84 8.83 5 0.73 13.72 5 0.73 22.56 

25-29 1 1.49 15.65 5 1.60 24.61 5 1.22 40.26 

30-34 0 5.20 21.81 0 4.85 33.02 0 4.64 54.83 

35-39 0 7.38 33.40 0 6.31 49.52 0 5.64 82.91 

40-44 0 6.41 53.51 0 6.31 81.99 0 5.79 135.50 

45-49 0 8.10 58.69 0 8.57 111.16 0 7.84 169.85 

50-54 0 23.95 69.17 0 22.38 121.58 0 21.74 190.75 

Avg. (Sum)  (13) 6.88 34.01 (17) 6.55 56.63 (17) 6.14 90.64 

15-19 4 3 0.76 5.83 3 0.76 7.02 3 0.76 12.85 

20-24 8 0.06 12.45 10 0.00 16.50 10 0.00 28.94 

25-29 6 0.17 16.72 8 0.45 28.71 8 0.11 45.42 

30-34 1 2.33 29.10 1 1.75 43.45 1 1.57 72.55 

35-39 1 2.41 39.15 1 2.22 63.20 1 2.01 102.36 

40-44 0 2.79 64.39 0 2.60 84.84 0 2.10 149.23 

45-49 0 5.22 75.28 0 4.52 136.79 0 4.36 212.07 

50-54 0 6.99 95.16 0 6.78 149.99 0 5.89 245.15 

Avg. (Sum)  (19) 2.74 45.21 (23) 2.52 71.12 (23) 2.21 116.33 

15-19 5 5 0.51 5.76 5 0.51 8.24 5 0.51 14.00 

20-24 7 0.09 13.99 10 0.00 20.68 10 0.00 34.67 

25-29 7 0.20 18.89 9 0.27 39.66 9 0.19 58.55 

30-34 4 0.53 31.28 9 0.03 57.68 9 0.03 88.96 

35-39 3 1.38 48.88 6 0.28 76.68 7 0.21 125.56 

40-44 2 1.38 70.20 2 0.73 136.01 3 0.65 206.21 

45-49 0 2.37 92.21 0 1.46 140.67 0 1.16 232.88 

50-54 0 3.41 98.83 0 3.72 194.36 0 2.62 293.19 

Avg. (Sum)  (28) 1.27 49.70 (41) 0.89 88.25 (43) 0.68 137.95 

15-19 6 6 0.44 6.15 6 0.44 11.77 6 0.44 17.92 

20-24 8 0.33 16.35 8 0.33 24.30 8 0.33 40.65 

25-29 8 0.35 21.82 9 0.08 48.42 10 0.00 70.24 

30-34 7 0.31 37.42 10 0.00 71.71 10 0.00 109.12 

35-39 5 0.56 45.78 8 0.03 111.45 8 0.02 157.23 

40-44 3 0.86 72.58 6 0.28 149.62 6 0.25 222.20 

45-49 1 0.92 106.26 1 0.92 166.22 2 0.66 272.48 

50-54 0 1.80 119.43 0 1.16 223.98 0 1.01 343.40 

Avg. (Sum)  (38) 0.71 55.06 (48) 0.40 104.41 (50) 0.33 159.46 

Avg. (Sum)  (98) 2.92 45.95 (129) 2.61 80.09 (133) 2.36 126.04 
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 * # of Hits: Number of times the heuristic algorithm obtains the optimal solution 

The performance of the heuristic algorithms on the first objective function for the 

unsolved instances is presented in Table 3.6. We report the number of optimum 

solutions obtained by the heuristic algorithms and their average CPU times and PEs. 

From Table 3.6, we observe that Heuristic Algorithms 1 and 2 return optimal solutions 

for 98 and 129 out of 305 problem instances, respectively. We also observe that the 

PEs from the non-integer solutions returned by the MILP of Heuristic Algorithms 1 

and 2 on the first objective are 2.92 and 2.61, respectively. It means PE from the 

optimal solution on the first objective function is less than 2.92 and 2.61 percent, 

respectively. The average CPU times of these algorithms are 45.95 and 80.09 seconds, 

whereas those instances could not be solved in an hour by the CPLEX. Hence, our 

algorithms provide better results than the CPLEX in relatively short CPU times.  

We may also conclude that the number of vehicles has a significant effect on both 

CPU time and PE of the heuristic algorithms. CPU times increase and PEs decrease 

as the number of vehicles increases. In addition, the number of nodes has also effect 

on the performance measures; both CPU time and PE increases as the number of nodes 

increases. We also report the best solution of the heuristic algorithms which is given 

in the last three columns of Table 3.6. Taking the best of the heuristic algorithms 

returns better results where the total number of optimum solutions increased to 133 

and the PE reduced to 2.36. On the other hand, the average CPU time increased to 2 

minutes. We may conclude that the user can use both heuristic algorithms if one desires 

better results in longer CPU times.  

From our experiments, we can conclude that the MILP does not perform well since 

it does not provide the optimal solution for any problem instance and also it does not 

obtain an integer feasible solution for two problem instances within 1 hour of CPU 

time. Moreover, its relative gap between best non-integer and best integer solution is 

too high. On the other hand, our heuristic algorithms provide high quality solutions in 



 

 

68 

 

relatively small CPU times. Heuristic Algorithms 1 and 2 (on the first objective 

function) return optimal solutions for 153 and 184 problem instances (out of 360), 

respectively. Once the best solution of two heuristic algorithms is used, the optimal 

solutions for 188 (more than half) problem instances solved for the first objective 

function are reached. 

We also analyze the effects of the number of hospitals served, and the number of 

vehicles on the maximum weighted satisfied demand (𝑧1) and the total time travelled 

(𝑧2) values and report the results in Table 3.7.  

 

Table 3.7: Objective function values of the Heuristic Algorithm Max{HA1, HA2} 

V 3 4 5 6 

N 
Avg. 

𝑧1 

Avg. 

𝑧2 

Avg. 

𝑧1 

Avg. 

𝑧2 

Avg. 

𝑧1 

Avg. 

𝑧2 

Avg. 

𝑧1 

Avg. 

𝑧2 

10-14 645.9 118.5 645.9 119.4 645.9 118.4 645.9 115.4 

15-19 634.7 168.3 634.7 169.1 634.7 172.5 634.7 172.4 

20-24 1113.5 199.8 1120.5 223.1 1120.5 215.3 1118.7 220.0 

25-29 1163.6 205.1 1177.8 227.4 1176.9 233.9 1179.1 245.0 

30-34 1973.2 220.7 2036.6 269.3 2070.9 311.3 2071.6 313.6 

35-39 2120.4 223.8 2205.0 283.0 2251.4 306.5 2258.9 310.4 

40-44 3434.4 188.4 3574.6 237.1 3628.2 305.4 3642.5 325.1 

45-49 4086.9 204.6 4265.7 289.8 4403.7 359.2 4427.0 375.7 

50-54 4007.8 188.3 4249.9 280.0 4391.1 353.4 4463.7 396.2 

Avg. 2131.1 190.8 2212.3 233.1 2258.1 264.0 2271.3 274.8 

 

We observe from Table 3.7 that any increase in 𝑧1 value leads to an increase in 𝑧2 

value. That is, to satisfy more demand, one has to pay more for the distribution cost. 

Note from the table that, increasing the number of vehicles increases 𝑧1 and 𝑧2 values. 

The increases are more significant when the number of vehicles is small. When the 

number of nodes is between 50-54 and the number of vehicles increases from 3 to 4, 

the total satisfied demand increases to 4250 from 4008 and total time travelled 
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increases to 280 from 188. For the same case, when the number of vehicles increases 

from 5 to 6, the total satisfied demand increases to 4464 from 4391 and total time 

travelled increases to 396 from 353. Using the results of Table 3.7, the managers may 

analyze the trade-offs between number of vehicles (along with 𝑧2 value) and 𝑧1 value 

and select the best solution according to their preferences. 

 

3.5.5 Sensitivity analysis 

 

In this section we aim to analyze the effects of some critical parameters on the 

maximum total weighted satisfied demand amount (𝑧1), total travel time (𝑧2) and on 

the CPU times. We select the maximum travel times for vehicles (MTv), availability of 

products (𝐴𝑝), and weight of the hospitals (𝑤𝑖) as critical parameters for the vehicles, 

products and hospitals, respectively.  

For the effects of the MTv, we select two levels: 180 minutes to represent low and 

240 minutes to represent high travel times. To see the effect of product availabilities, 

i.e., 𝐴𝑝 values, we select two levels: the original product availabilities and twice of the 

original product availabilities for the second level to represent low and high 

availability levels, respectively. To see the effects of hospital weights we use two 

levels. The low weight level is represented by the original data where the weights are 

distributed between 0.5 and 10. To find the high weight level instances, we take the 

weights of the low weight instances and double the ones that are below 5; hence, the 

resulting weights are distributed between 1 and 10.   

We select two problem combinations (Group 1– small sized instances with 10-14 

nodes and Group 9– large sized instances with 50-54 nodes) from Table 3.2 and report 

the associated results in Table 3.8. We set the number of vehicles to 3. 
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Note from Table 3.8 that the parameters do not have any significant effect on the 

CPU times of the heuristic algorithms. Recall that the problem size parameters 

(number of vehicles and number of hospitals) caused very significant increase on the 

CPU times. Furthermore, for large sized instances, the 𝑧1 values increase from 4010.4 

to 4250.4 when the maximum travel times increase from 180 to 240 minutes. This is 

due to the fact that by increasing travel times, more room becomes available for 

demand satisfactions. This in turn increases 𝑧2 values from 210.4 to 297.9 as more 

nodes are visited due to more available time. We observe that increasing the maximum 

travel time does not have a significant effect on the 𝑧1 and 𝑧2 values for the small sized 

problem instances.   

Table 3.8: Sensitivity analysis based on the parameters 

  Original High MTv Twice Ap Modified wi 

𝑧1 
Group 1 645.9 645.9 658.1 1060.1 

Group 9 4010.4 4250.4 4204.8 5686.3 

𝑧2 
Group 1 125.3 124.9 125.9 126.1 

Group 9 210.4 297.9 201.9 197.3 

CPU 
Group 1 4.2 4.5 4.2 4.3 

Group 9 168.4 158.9 164.8 171.2 

 

We also observe that 𝑧1 values slightly improve when the product availability 

increases. The improvement is more significant for the large-sized instances. It is less 

than expected and we can conclude that the availability of product is not a highly 

binding constraint for satisfying the demand of hospitals.  

Table 8 also shows that when the some hospital weights are doubled, the 𝑧1 values 

increase from 645.9 to 1060.1 (about 65%) and from 4010.4 to 5686.3 (about 40%) 

for the small and large-sized instances, respectively. However, the associated 𝑧2 values 

remain almost the same because the routes followed by the vehicles may not be 

affected from the hospital weights.   
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CHAPTER 4 

 

 

PROBLEM 2 (P2): NEW DISTRIBUTION STRATEGIES FOR BLOOD 

DISTRIBUTION PROBLEM FOR THE TURKISH RED CRESCENT 

 

 

 

In this chapter, we discuss our second problem that presents new distribution strategies 

for the Turkish Red Crescent. We extend some of our results for the first problem and 

develop some new approaches. We first define the problem. Then, we give its 

mathematical model and present heuristic algorithm. Finally, we discuss the results of 

our computational experiment. 

 

4.1 Literature Review  

The blood products literature goes back to 1960s. Since then, an enormous amount of 

research considering different aspects of blood products supply chain has been 

developed.  Several review papers have also been published, two most noteworthy are 

due to Belien and Force (2012) and Osorio et al. (2015). 

Osorio et al. (2015) consider quantitative models and present their main 

characteristics based on their relevance to the following stages of the supply chain: 

collection, production, inventory and delivery. Belien and Force (2012) classify the 

blood products literature under different classification fields as type of blood products, 

solution method, hierarchical levels, type of problems, type of approaches, 

performance measures, and practical implementation or case studies. We discuss the 

related literature based on type of the problems (one of the categories in Belien and 

Force (2012)). The position of the papers for the other categories given in Table 4.1.  
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Inventory management studies 

Hosseinifard and Abbasi (2018) considered the inventory centralization of the blood 

products at hospital level. They showed that the centralization of some hospitals so as 

to satisfy the demands of the others, helps to reduce the outdates and shortages at all 

places. Dillion et al. (2017) studied the inventory planning of red blood cells at 

individual hospital levels. They studied stochastic aspects of the problem and proposed 

stochastic models so as to find the review period length and target inventory level.  

Ensafian and Yaghaubi (2017) considered platelets at the RBC level and proposed 

mathematical models to find optimal (minimum cost) inventory levels. They also 

defined a biobjective problem that trade-offs between the total cost and the freshness 

of the delivered products. Attari et al. (2017) also considered two objectives: total cost 

and maximum unsatisfied demand among all hospitals, and proposed multi-choice 

goal programming technique to handle their trade-offs.  

Location and allocation-Planning for collection 

Ghasemi and Bashiri (2017) studied a blood supply network to find the locations of 

the blood mobile facilities and blood donation sites and, the inventory levels at the 

blood centers. To handle the stochastic demand, a two stage model that reduces the 

total wastage and holding costs is developed. Ramezanian and Behboodi (2017) 

considered location and allocation strategies in the blood supply network with demand 

and cost uncertainties. They first discussed a deterministic model so as to reduce 

shortages and harmful damages, and then incorporated uncertainties using a robust 

optimization approach. Zahiri and Pishvaee (2017) considered blood group 

incompatibility in their blood supply network. They gave a mathematical model with 

two objectives: total cost and maximum unsatisfied demand. To handle the 

uncertainties, they proposed robust probabilistic approaches.  Khalilpourazari and 
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Khamseh (2017) developed a multi objective model for the blood supply chain design 

in earthquakes. They considered the magnitude of the earthquakes, and different 

transportation models with variable speed and capacity. Zahiri and Pishvaee (2017) 

and Khalilpourazari and Khamseh (2017) discussed real world applications in Iran, of 

their studies.   

Location and allocation- studies which consider distribution 

Daskin et al.  (2002) introduced a distribution center location problem. They 

considered working inventory cost, safety stock inventory cost at the distribution 

centers, and transportation cost from suppliers, to the distribution centers. They 

formulate the problem as a nonlinear integer model and propose a lagrangian 

relaxation algorithm for its solution. Shen et al. (2003) considered a joint location –

inventory problem with a single supplier and multiple retailers. They proposed a set 

covering integer model that assigns the retailers to the distribution centers, and 

proposed a column generation algorithm for its solution. Yegül (2016) introduced a 

new echelon, so called regional transfusion centers, and proposed a nonlinear integer 

model to find the location of the regional blood and transfusion enters. They presented 

several decomposition and simulated annealing based heuristic algorithms to solve 

their real life application in the Turkish Red Crescent. Şahin et al. (2007) addressed 

the location problem in the Turkish Red Crescent, at a regional level. They defined 

two levels of hierarchy, where level 1 includes regional blood centers and level 2 

include blood centers, blood stations and mobile units. They developed several 

mathematical models to solve the problems at both levels.  

Kaveh and Ghobadi (2017) considered the problem of allocating the blood centers 

to the hospitals so as to minimize the total distance between the centers and hospitals. 

They proposed a graph partitioning based algorithm and a metaheuristic algorithm 

using a new neighborhood structure. Chaiwuttisak et al. (2016) considered a location-
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allocation problem with two types of service facilities: blood donation room only and 

donation room with a distribution center. They presented an integer programming 

model to improve the blood products supply while reducing the transportation costs.  

Kaveh and Ghobadi (2017) and Chaiwuttisak et al. (2016) presented case studies in 

Iran and Thailand, respectively.  

Fahimnia et al. (2017) considered the problem of finding the number of facilities, 

blood collection and transportation quantities and inventory levels in case of disasters. 

They developed a hybrid solution approach that combines ε-constrained and 

Lagrangian relaxation ideas. Their aim is to minimize supply chain costs while 

maintaining timely supply of blood.  

Distribution studies 

Distribution problems for blood products are rarely studied in the literature. Gregor et 

al. (1982) studied the distribution strategies to determine the number of vehicles used 

and inventory levels. They had three evaluation criteria: the number of emergency 

orders, average response time to an emergency order, the number of routine surgeries 

postponed. Hemmelmayr et al. (2009) studied the distribution problem of the blood 

products for Australian hospitals so as to minimize the total travel time. Stochastic 

nature of the same problem was considered by Hemmelmayr et al. (2010). Salehipour 

and Sepehri (2012) also studied blood distribution problem with the objective of 

minimizing the total waiting time.  

In this study, we extend the Problem 1 with considering two more distribution 

strategies. we consider the allocation of the blood products to the hospitals along with 

their distribution (O1), via another hospital (O2), and directly from RBC (O3). Hence 

we extended the category given in Problem 1, distribution - product allocation. 
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Moreover, we also consider irradiation centers in our distribution network different 

than the other studies, which leads to precedence relations between nodes.  

Table 4.1: Summary of the studies in our literature review 

Reference Problem type 

Type of blood 

products 

Hierarchica

l level 

Solution 

methodology 

Daskin et al. (2002) Inventory 

Location 

Platelets RBC Lagrangian 

Relaxation  

Dillon et al. (2017) Inventory Red Blood cells RBC IP 

Fahimnia et al. (2017) Location 

Allocation 

Whole blood Supply 

Chain 

ε-constrained and 

Lagrangian 

Relaxation 

Ghasemi and Bashiri (2017) Location 

Allocation 

Whole blood RBC Robust IP 

Shen et al. (2003) Inventory 

Location 

Platelets RBC IP  

Yegül (2016) Location 

Allocation 

Blood products Supply 

Chain 

Non-linear IP and 

Heuristic algorithms 

Chaiwuttisak et al. (2016) * Location 

Allocation 

Whole blood Supply 

Chain 

IP 

Gregor et al. (1982) * Distribution Blood products RBC Simulation   

Hummelayr et al. (2009) * Distribution Other/Unknown RBC IP and VNS 

Hummelayr et al. (2010) * Distribution Other/Unknown RBC IP and VNS 

Hosseinifard and Abbasi (2018) Inventory Blood products RBC What-if scenario 

analysis 

Kaveh and Ghodabi (2017) * Location 

Allocation 

Blood products Supply 

Chain 

Enhanced colliding 

bodies algorithm 

Ramezanian and Behboodi (2017) * Location 

Allocation 

Whole blood Supply 

Chain 

IP  

Sahin et al. (2007) * Location 

Allocation 

Whole blood Supply 

Chain 

IP 

Selahipour and Sepehri (2012) * Distribution Blood products RBC IP and hybrid 

heuristic 

Khalilpourazari and Khamseh 

(2017) *,** 

Location 

Allocation 

Whole blood Supply 

Chain 

IP 

Zahiri and Pishvaee (2017) *,** Location 

Allocation 

Whole blood Supply 

Chain 

Robust and Fuzzy 

IP 

Attari et al. (2017) *,** Inventory Blood products RBC IP 

Ensafian and Yaghaubi (2017) 
*,** 

Inventory Platelets RBC IP 

Problem 1 *,** Distribution Blood products RBC Decomposition 

based heuristic  

Problem 2 * Distribution Blood products RBC Hybrid genetic 

algorithm  

IP: Integer Programming, VNS: Variable Neighborhood Search 

*: practical application, **: multi-objective 
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4.2 The blood distribution Problem 

In the current blood supply chain system of TRC, there exists one way to satisfy the 

demand of the hospitals. Demand is only satisfied by the vehicles of the RBCs. Due to 

the vehicle and time limitations, the demand of all hospitals cannot be satisfied by this 

way. This have motivated us to propose new distribution strategies for distribution of 

the blood products.  We have inspired from first problem (Problem P1) and we 

proposed two new strategies to their problem, where demand is only satisfied by the 

vehicles of the RBC, and we call this option as the RBC service (Option O1). In 

addition to Option O1, we propose new strategies: transfer service (Option O2) and 

self-service (Option O3).  

In the blood distribution system, we have a set of vehicles available at the RBC to 

deliver blood products through a set of routes to a set of demand points, i.e., hospitals. 

We also considered the irradiated demand of the hospitals with our distribution 

strategies. Irradiation of the products in the options O1 and O2 is the responsibility of 

RBC, i.e., the RBC vehicles first carry the products to the irradiation centers for 

irradiation process, and then delivers the irradiated products to the hospitals. There are 

many irradiation centers, so we should choose the irradiation center and sequence it 

effectively in the vehicle route. However, irradiation of the products in the Option O3 

is the responsibility of the hospital with the irradiated product demand.  

We also considered the most of the issues given in Problem P1, but our second 

study differs in some ways. The comparison between the Problem P1 and Problem P2 

is given in Table 4.2.  
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Table 4.2: Comparison of the problem characteristics of Problem P1 and P2 

Problem Environment Problem P1  Problem P2  

RBC service (O1) Yes Yes 

Transfer service (O2) No Yes 

Self service (O3) No Yes 

Urgent demands 
Have to be 

satisfied 

Satisfied with high 

weights 

Vehicle capacity and availability 

constraints 
Yes Yes 

Product availability constraints Yes Yes 

Irradiation centers Yes Yes 

Number of objective functions Multiple Single 

Figure 4.1 illustrates a distribution system in a period for a case where there are 

eight hospitals, one irradiation center, and two RBC vehicles. Normal demand of the 

hospitals 3, 6 and 7 is loaded to the first vehicle of the RBC. This vehicle sequentially 

visits the hospitals 7, 6, 3 and returns to the RBC. The second vehicle of the RBC is 

loaded with the normal demand of the hospitals 1, 2 and 5, and the irradiated demand 

of the hospitals 2, 3 and 5. This second vehicle first visits the hospital 1, and then goes 

to the irradiation center at which the blood products for the hospitals 2, 3 and 5 are 

irradiated. Then, the second vehicle visits the hospital 3 and unloads the irradiated 

products of this hospital. Finally, the hospital 2 is visited by the second vehicle, and 

the normal and irradiated products of the hospitals 2 and 5 are unloaded. The route of 

the second vehicle finishes at the RBC. A vehicle of the hospital 5 visits the hospital 

2 and takes (normal and irradiated) demand of the hospital 5. Moreover, a vehicle of 

the hospital 4 directly visits the RBC to take its normal demand.  Figure 2 shows that 

the demand of the hospital 8 is not satisfied within the distribution period.  
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Figure 4.1: Distribution system 

 

4.3 Mathematical model 

 

In this section, we present the mathematical programming formulation of our blood 

distribution problem over a distribution period of pre-specified length. To do this, we 

will follow the notation given by Problem P1 and add new parameters, indices and 

decision variables. We assume that there are 𝑁 + 1 nodes, where one node is for the 

RBC, 𝐼𝐶 nodes are for the irradiation centers and the remaining 𝑁 − 𝐼𝐶 nodes are for 

the hospitals. Among these nodes (𝑖 = 0,1, … ,𝑁), 𝑖 = 0 is the regional blood center 

(RBC), 𝑖 = 1,2, … , 𝐼𝐶 are for the irradiation centers, and 𝑖 = 𝐼𝐶 + 1, 𝐼𝐶 + 2, … , 𝑁 are 

for the hospitals. 𝑈 is the set of hospitals with urgent demands (there are |𝑈| hospitals 

in 𝑈). 

The travel time between nodes 𝑖 and 𝑗 is 𝑇𝑖𝑗  time units. 𝑎𝑖 and 𝑏𝑖 are the quantity 

independent and per unit loading and unloading times for node 𝑖, respectively. 𝐷𝐷𝑖 is 

the deadline for hospital 𝑖. 



 

 

79 

 

The hospitals have different weights that represents their relative importance. We 

use relatively high weights for the hospitals whose demand is urgent. Hospitals 

weights are also dependent on the demand satisfaction option. The most profitable 

option is satisfying the demand with the RBC’s vehicles (Option O1) since it is likely 

to be the most preferred option by the hospitals. We use the transfer service (Option 

O2) as the second profitable option. The weight of this option depends on the two 

hospitals: hospital whose demand is satisfied and hospital giving the transfer service. 

This weight is smaller than the weight of the Option O1. Option O3 is the least 

preferred option for a hospital since this hospital must use its own vehicles to satisfy 

the demands. Therefore, the smallest weight is for the Option O3. Thus, we have the 

following relations for the weights of the hospitals: 

𝑤𝑖 ≥ 𝛼𝑖𝑙 ≥ 𝛽𝑖 

Where 𝑤𝑖 is the weight of hospital 𝑖 where demand is satisfied by the vehicles of 

the RBC (Option O1), 𝛼𝑖𝑙 is the weight of hospital 𝑖 whose demand is satisfied by the 

transfer hospital 𝑙, and 𝛽𝑖 is the weight of hospital 𝑖 whose demand is satisfied by the 

vehicles of this hospital. 

There are 𝑃 product types, and 𝐴𝑝 units of product 𝑝 (𝑝 = 1,2, . . , 𝑃) are available 

at the RBC. The amount of normal product 𝑝 demanded by hospital 𝑖 is 𝐷𝑖𝑝, and the 

amount of irradiated product 𝑝 demanded by hospital 𝑖 is 𝐼𝐷𝑖𝑝 units.  

There are 𝑉 vehicles, carrying blood products, with identical speed and different 

capacity. Carrying capacity of vehicle 𝑣 (𝑣 = 1,2, . . , 𝑉) is 𝐶𝑣  units. Vehicle 𝑣 becomes 

available at time 𝐸𝐴𝑣 and remains continuously available. Each vehicle starts and ends 

its route at the RBC. The maximum travel time of vehicle 𝑣 is 𝑀𝑇𝑣 time units. Hence, 

the maximum of the 𝑀𝑇𝑣 values is an upper bound on the length of the distribution 

period. 
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Each hospital cannot be used to satisfy the demand of another hospital due to some 

restrictions such as the lack of a depot area or a special refrigerator. Therefore, we use 

a subset 𝐶𝑇 of the hospitals which can be used as the set of transfer points to satisfy 

the demand of the other hospitals. We also assume that a hospital in this subset must 

have demand. Moreover, each hospital cannot use each hospital to satisfy its demands 

due to some restrictions such as the distance between two hospitals. Then, we use 𝐷𝐶𝑖 

and 𝐷𝐻𝑖 to represent the set of hospitals that can be used to satisfy the demand of 

hospital 𝑖 and the set of hospitals whose demand can be satisfied by hospital 𝑖, 

respectively. Some hospitals cannot directly visit the RBC due to lack of vehicles and 

long distance between the hospital and the RBC. Thus, we use another subset 𝑆𝐷 to 

identify the hospitals which can satisfy its demand by the Option O3.  

We make the following additional assumptions to construct the mathematical 

model: 

 All parameters are known with certainty and not subject to any change, i.e., 

the system is deterministic and static. 

 Each vehicle can visit each node. 

 Each node can be visited by more than one vehicle. 

 Blood products to be irradiated are first delivered to the irradiation centers 

and then to the hospitals. 

 Irradiation centers are always available. 

 If a hospital directly satisfies its demand from the RBC by its vehicle, then 

there should not be any transfer with the RBC vehicles or any hospital.  

 A hospital cannot be used as the transfer point to satisfy the demand of 

another hospital whose demand is not urgent if the demand of the hospital 

giving the transfer service is not fully satisfied. This case is not valid while 

satisfying the urgent demands. 
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Our problem is to deliver blood products (normal and irradiated) via three options. 

Thus, 𝑁 is an upper bound on the number of positions (nodes) visited on each vehicle 

route, where 𝑘 is an index for positions (𝑘 = 1,2, … , 𝐾) in this route. Based on the 

problem characteristics and assumptions mentioned above, we develop a mixed 

integer linear programming (MILP) model, which is an extension of the model given 

in Problem P1.  

Decision variables: 

𝑋𝑖𝑘𝑣 = {
1
0

if vehicle 𝑣 visits node 𝑖 at position 𝑘 of its route   

otherwise                                                                 
 

𝑅𝑖𝑝𝑣 = Amount of normal product 𝑝 carried to hospital 𝑖 by vehicle 𝑣 

𝐼𝑅𝑖𝑗𝑝𝑣 = Amount of irradiated product 𝑝 processed by irradiation center 𝑗 (𝑗 =

1,… , 𝐼𝐶) and carried to hospital 𝑖 (𝑖 = 𝐼𝐶 + 1, 𝐼𝐶 + 2,… ,𝑁) by vehicle 

𝑣 

𝐹𝑅𝑖𝑙𝑝𝑣 = Amount of normal product 𝑝 carried to hospital 𝑙 by vehicle 𝑣 to satisfy 

the normal demand of hospital i 

𝐹𝐼𝑅𝑖𝑗𝑙𝑝𝑣 = Amount of irradiated product 𝑝 processed by irradiation center 𝑗 and 

carried to hospital 𝑙 by vehicle 𝑣 to satisfy the irradiated product demand 

of hospital i 

𝐷𝑅𝑖𝑝 = Amount of product 𝑝 is used to satisfy the total demand of hospital i by 

Option O3.  

𝑌𝑖𝑗𝑣  = {
1 if irradiation center j is used to process the demand of  

hospital 𝑖 carried by vehicle 𝑣                                         

0  otherwise                                                                                   
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𝑆𝑖𝑘𝑣 = Arrival time of vehicle 𝑣 to node 𝑖 at its 𝑘𝑡ℎ  position of its route 

𝐷𝑉𝑖  = {
1 if hospital 𝑖 uses the self-service Option O3 to satisfy

its total demand                                                               
0  otherwise                                                                                 

 

𝑈𝑇𝑖𝑗𝑣  = {
1 If hospital j is used to satisfy the demand of hospital

𝑖 that has urgent demand by vehicle v                    

0  otherwise                                                                             
 

𝑊𝑆𝑖𝑝  = {
1 if all demand of hospital 𝑖 for product p is satisfied

 0  otherwise                                                                             
 

Objective function: 

Our objective function (4.1) maximizes the total weighted demand satisfied the 

Options O1, O2 and O3.  

Max 𝑧 = ∑ ∑ ∑ 𝑤𝑖(𝑅𝑖𝑝𝑣 + ∑ 𝐼𝑅𝑖𝑗𝑝𝑘
𝐼𝐶
𝑗=1 )𝑁

𝑖=𝐼𝐶+1
𝑃
𝑝=1

𝑉
𝑣=1 +

∑ ∑ ∑ ∑ 𝛼𝑖𝑙(𝐹𝑅𝑖𝑙𝑝𝑣 +∑ 𝐹𝐼𝑅𝑖𝑗𝑙𝑝𝑘
𝐼𝐶
𝑗=1 )𝑁

𝑖=𝐼𝐶+1
𝑃
𝑝=1

𝑉
𝑣=1𝑙∈𝐶𝑇 + ∑ ∑ 𝛽𝑖𝐷𝑅𝑖𝑝

𝑁
𝑖=𝐼𝐶+1

𝑃
𝑝=1  (4.1) 

Constraints: 

∑ 𝑋𝑖𝑘𝑣
𝑁
𝑖=1 ≤ 1 for 𝑘 = 1,2, … , 𝐾;  𝑣 = 1,2, … , 𝑉  (4.2) 

∑ 𝑋𝑖,𝑘+1,𝑣
𝑁
𝑖=1 ≤ ∑ 𝑋𝑖𝑘𝑣

𝑁
𝑖=1  for 𝑘 = 1,2, … , 𝐾 − 1; 𝑣 = 1,2, … , 𝑉 (4.3) 

∑ 𝑋𝑖𝑘𝑣
𝐾
𝑘=1 ≤ 1 for 𝑖 = 𝐼𝐶 + 1, 𝐼𝐶 + 2… ,𝑁;  

        𝑣 = 1,2, … , 𝑉 (4.4) 

∑ ∑ 𝑋0𝑘𝑣
𝑁
𝑘=2

𝑉
𝑣=1 = ∑ ∑ 𝑋𝑖2𝑣

𝑉
𝑣=1

𝑁
𝑖=0  (4.5) 

∑ 𝑘𝑋𝑖𝑘𝑣
𝐾
𝑘=1 ≤ ∑ 𝑘𝑋0𝑘𝑣

𝐾
𝑘=1  for 𝑖 = 1,2, … ,𝑁;  𝑣 = 1,2, … , 𝑉 (4.6) 
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∑ (𝑅𝑖𝑝𝑣 + ∑ 𝐼𝑅𝑖𝑗𝑝𝑣
𝐼𝐶
𝑗=1 ) ≤ (∑ (𝐷𝑖𝑝 + 𝐼𝐷𝑖𝑝)

𝑃
𝑝=1 )∑ 𝑋𝑖𝑘𝑣

𝐾
𝑘=1

𝑃
𝑝=1   

 for 𝑖 = 𝐼𝐶 + 1, 𝐼𝐶 + 2,… ,𝑁; 

      𝑣 = 1,2, … , 𝑉 (4.7) 

∑ (𝐹𝑅𝑖𝑙𝑝𝑣 + ∑ 𝐹𝐼𝑅𝑖𝑗𝑙𝑝𝑣
𝐼𝐶
𝑗=1 ) ≤ (∑ (𝐷𝑖𝑝 + 𝐼𝐷𝑖𝑝)

𝑃
𝑝=1 )∑ 𝑋𝑙𝑘𝑣

𝐾
𝑘=1

𝑃
𝑝=1   

 for 𝑙 ∈ 𝐶𝑇;  𝑖 ∈ 𝐷𝐻𝑙; 𝑣 = 1,2, … , 𝑉 (4.8) 

∑ (𝐹𝑅𝑖𝑙𝑝𝑣 + ∑ 𝐹𝐼𝑅𝑖𝑗𝑙𝑝𝑣
𝐼𝐶
𝑗=1 )𝑃

𝑝=1 ≤ ∑ (𝐷𝑖𝑝 + 𝐼𝐷𝑖𝑝)
𝑃
𝑝=1 𝑈𝑇𝑖𝑙𝑣  

 for 𝑖, 𝑙 = 𝐼𝐶 + 1, 𝐼𝐶 + 2,… ,𝑁; 

 𝑣 = 1,2, … , 𝑉 (4.9) 

∑ 𝑅𝑖𝑝𝑣 + ∑ ∑ 𝐹𝑅𝑖𝑙𝑝𝑣𝑙∈𝐷𝐶𝑖
𝑉
𝑣=1 ≤ 𝐷𝑖𝑝

𝑉
𝑣=1 (1 − 𝐷𝑉𝑖)  

 for 𝑖 = 𝐼𝐶 + 1, 𝐼𝐶 + 2,… ,𝑁; 

      𝑝 = 1,2, … , 𝑃 (4.10) 

∑ ∑ 𝐼𝑅𝑖𝑗𝑝𝑣
𝐼𝐶
𝑗=1 + ∑ ∑ ∑ 𝐹𝐼𝑅𝑖𝑗𝑙𝑝𝑣

𝐼𝐶
𝑗=1𝑙∈𝐷𝐶𝑖

𝑉
𝑣=1 ≤ 𝐼𝐷𝑖𝑝

𝑉
𝑣=1 (1 − 𝐷𝑉𝑖)  

 for 𝑖 = 𝐼𝐶 + 1, 𝐼𝐶 + 2,… ,𝑁;  

  𝑝 = 1,2, … , 𝑃  (4.11) 

∑ (∑ (𝑅𝑖𝑝𝑣 + ∑ 𝐹𝑅𝑖𝑙𝑝𝑣𝑙∈𝐷𝐶𝑖
+ ∑ (𝐼𝑅𝑖𝑗𝑝𝑣 + ∑ 𝐹𝐼𝑅𝑖𝑗𝑙𝑝𝑣𝑙∈𝐷𝐶𝑖

)𝐼𝐶
𝑗=1 ) +𝑉

𝑣=1
𝑁
𝑖=𝐼𝐶+1

𝐷𝑅𝑖𝑝) ≤ 𝐴𝑝  for 𝑝 = 1,2, … , 𝑃 (4.12) 

∑ ∑ (𝑅𝑖𝑝𝑣 + ∑ 𝐹𝑅𝑖𝑙𝑝𝑣𝑙∈𝐷𝐶𝑖
+ ∑ (𝐼𝑅𝑖𝑗𝑝𝑣 + ∑ 𝐹𝐼𝑅𝑖𝑗𝑙𝑝𝑣𝑙∈𝐷𝐶𝑖

)𝐼𝐶
𝑗=1 ) ≤ 𝐶𝑣

𝑁
𝑖=𝐼𝐶+1

𝑃
𝑝=1    
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  for 𝑣 = 1,2, … , 𝑉 (4.13) 

𝑌𝑖𝑗𝑣 ≤ ∑ 𝑋𝑗𝑘𝑣
𝐾
𝑘=1  for 𝑖 = 𝐼𝐶 + 1, 𝐼𝐶 + 2,… ,𝑁; 

       𝑗 = 1,2, … 𝐼𝐶; 𝑣 = 1,2, … , 𝑉  (4.14) 

𝑆𝑖1𝑣 ≥ (𝑇0𝑖 + 𝐸𝐴𝑣)𝑋𝑖1𝑣 for 𝑖 = 1,2, … ,𝑁; 𝑣 = 1,2, … , 𝑉  (4.15) 

𝑆𝑗𝑘𝑣 ≥ 𝑆𝑖,𝑘−1,𝑣 + (𝑎𝑖 + 𝑏𝑖 ∑ (𝑅𝑖𝑝𝑣 + ∑ 𝐼𝑅𝑖𝑗𝑝𝑣
𝐼𝐶
𝑗=1 + ∑ (𝐹𝑅𝑙𝑖𝑝𝑣 +𝑙∈𝐷𝐻𝑖

𝑃
𝑝=1

∑ 𝐹𝐼𝑅𝑙𝑗𝑖𝑝𝑣
𝐼𝐶
𝑗=1 ))) + 𝑇𝑖𝑗 −  𝑀1(2 − 𝑋𝑖,𝑘−1,𝑣 − 𝑋𝑗𝑘𝑣)  

  for 𝑖 = 𝐼𝐶 + 1, 𝐼𝐶 + 2, … , 𝑁;  

       𝑗 = 0,1, … ,𝑁;  𝑖 ≠ 𝑗; 𝑘 = 1,2, …𝐾;        

     𝑣 = 1,2, … , 𝑉 (4.16) 

𝑆𝑗𝑘𝑣 ≥ 𝑆𝑖,𝑘−1,𝑣 + (𝑎𝑖 + 𝑏𝑖 ∑ ∑ (𝐼𝑅𝑖′𝑖𝑝𝑘 + ∑ 𝐹𝐼𝑅𝑙𝑖𝑖′𝑝𝑣
𝑛
𝑙=𝐼𝐶+1 )𝑃

𝑝=1
𝑁
𝑖′=𝐼𝐶+1 ) + 𝑇𝑖𝑗 −

𝑀2 × (2 − 𝑋𝑖,𝑘−1,𝑣 − 𝑋𝑗𝑘𝑣)   

  for 𝑖 = 1,2, … , 𝐼𝐶;  𝑗 = 0,1, … ,𝑁;  𝑖 ≠ 𝑗; 

 𝑘 = 1,2, …𝐾;  𝑣 = 1,2, … , 𝑉 (4.17) 

∑ 𝑘 ∙ 𝑋𝑖𝑘𝑣
𝐾
𝑘=1 ≥ ∑ 𝑘 ∙ 𝑋𝑗𝑘𝑣

𝐾
𝑘=1 − 𝐾(1 − 𝑌𝑖𝑗𝑣)   

 for 𝑖 = 𝐼𝐶 + 1, 𝐼𝐶 + 2,… ,𝑁;  

  𝑗 = 1,2, … , 𝐼𝐶;  𝑣 = 1,2, … , 𝑉 (4.18) 

𝑆𝑖𝑘𝑣 ≤ 𝐷𝐷𝑖  for 𝑘 = 1,2, …𝐾;  𝑣 = 1,2, … , 𝑉; i ∈ 𝑈 (4.19) 

𝑆0𝑘𝑣 ≤ 𝑀𝑇𝑣 for 𝑘 = 1,2, … , 𝐾; 𝑣 = 1,2, … , 𝑉 (4.20) 
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∑ (𝐼𝑅𝑖𝑗𝑝𝑣+∑ 𝐹𝐼𝑅𝑙𝑗𝑖𝑝𝑣𝑙∈𝐷𝐻𝑖
)𝑃

𝑝=1

∑ (𝐼𝐷𝑖𝑝+∑ 𝐼𝐷𝑙𝑝𝑙∈𝐷𝐻𝑖
)𝑃

𝑝=1

≤ 𝑌𝑖𝑗𝑣 for 𝑖 = 𝐼𝐶 + 1, 𝐼𝐶 + 2,… ,𝑁; 

      𝑗 = 1,2, … , 𝐼𝐶; 𝑣 = 1,2, … , 𝑉 (4.21) 

𝐷𝑅𝑖𝑝 ≤ (𝐷𝑖𝑝 + 𝐼𝐷𝑖𝑝)𝐷𝑉𝑖 for i ∈ 𝑆𝐷;  𝑝 = 1,2, … , 𝑃  (4.22) 

𝐷𝑅𝑖𝑝 = 0 for i ∉ 𝑆𝐷;  𝑝 = 1,2, … , 𝑃 (4.23) 

∑ 𝑅𝑖𝑝𝑣 + ∑ ∑ 𝐼𝑅𝑖𝑗𝑝𝑣
𝐼𝐶
𝑗=1

𝑉
𝑣=1 ≥ (𝐷𝑖𝑝 + 𝐼𝐷𝑖𝑝)

𝑉
𝑣=1 𝑊𝑆𝑖𝑝  

 for 𝑖 ∈ 𝐶𝑇;  𝑝 = 1,2, … , 𝑃 (4.24) 

∑ (𝐹𝑅𝑖𝑙𝑝𝑣 + ∑ 𝐹𝐼𝑅𝑖𝑗𝑙𝑝𝑣
𝐼𝐶
𝑗=1 ) ≤ (∑ (𝐷𝑖𝑝 + 𝐼𝐷𝑖𝑝)

𝑉
𝑣=1 )𝑊𝑆𝑙𝑝

𝑉
𝑣=1   

 for 𝑙 ∈ 𝐶𝑇;  𝑖 ∈ 𝐷𝐻𝑙;  𝑝 = 1,2, … , 𝑃; 𝑖 ∉ 𝑈

 (4.25) 

𝑆𝑖𝑘𝑣 ≥ 𝑆𝑗𝑘𝑣 + 𝑇𝑗𝑖 − (𝑀𝑇𝑣 + 𝑇𝑗𝑖)(1 − 𝑈𝑇𝑖𝑗𝑣)  

 for j ∈ 𝐶𝑇; 𝑖 ∈ 𝐷𝐻𝑗; 𝑖 ∈ 𝑈; 𝑘 = 1,2, …𝐾; 

       𝑣 = 1,2, … , 𝑉 (4.26) 

𝑈𝑇𝑖𝑗𝑣 = 0  for 𝑗 ∉ 𝐶𝑇; 𝑖 ∉ 𝐷𝐻𝑗;  𝑖 ∉ 𝑈; 

 𝑣 = 1,2, … , 𝑉 (4.27) 

𝑋𝑖𝑘𝑣, 𝑌𝑖𝑗𝑣, 𝐷𝑉𝑖,𝑊𝑆𝑖𝑝, 𝑈𝑇𝑖𝑖′𝑣 ∈ {0,1} 

 for 𝑖, 𝑖′ = 0,1, … ,𝑁; 𝑘 = 1,2, … , 𝐾; 
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 𝑣 = 1,2, … , 𝑉; 𝑗 = 1,2, … , 𝐼𝐶;  

 𝑝 = 1,2, … , 𝑃;  (4.28) 

𝑆𝑖𝑘𝑣, 𝑅𝑖𝑝𝑣, 𝐼𝑅𝑖𝑗𝑝𝑣, 𝐷𝑅𝑖𝑝, 𝐹𝑅𝑖𝑙𝑝𝑣, 𝐹𝐼𝑅𝑖𝑗𝑙𝑝𝑣 ≥ 0 

 for 𝑖, 𝑙 = 0,1, … , 𝑁;  𝑝 = 1,2, … , 𝑃;  

 𝑗 = 1,2, … , 𝐼𝐶;  𝑣 = 1,2, … , 𝑉 (4.29) 

𝑅𝑖𝑝𝑣, 𝐼𝑅𝑖𝑗𝑝𝑣, 𝐷𝑅𝑖𝑝, 𝐹𝑅𝑖𝑙𝑝𝑣, 𝐹𝐼𝑅𝑖𝑗𝑙𝑝𝑣 are integer 

  for 𝑖, 𝑙 = 0,1, … ,𝑁;  𝑝 = 1,2, … , 𝑃;  

  𝑗 = 1,2, … , 𝐼𝐶; 𝑣 = 1,2, … , 𝑉 (4.30) 

where 𝑀1 in (4.16) and 𝑀2 in (4.17) are sufficiently large positive numbers and can 

be obtained by the following formulas: 

𝑀1 = 𝑎𝑖 + 𝑏𝑖 ∑ (𝐷𝑖𝑝 + 𝐼𝐷𝑖𝑝 + ∑ (𝐷𝑙𝑝 + 𝐼𝐷𝑙𝑝)𝑙∈𝐷𝐻𝑖
)𝑃

𝑝=1 +𝑀𝑇𝑣   

𝑀2 = 𝑎𝑖 + 𝑏𝑖 ∑ ∑ (𝐼𝐷𝑖′𝑝 + ∑ 𝐼𝐷𝑙𝑝𝑙∈𝐷𝐻𝑖′
)𝑃

𝑝=1
𝑁
𝑖′=𝐼𝐶+1 +𝑀𝑇𝑣  

Constraint set (4.2) ensures that each vehicle can visit at most one node in any 

position on its route. Constraint set (4.3) ensures that if a node is assigned to a position, 

then there must be an assignment to the previous position. Constraint set (4.4) ensures 

each vehicle can visit a node at most one position on its route. Constraint set (4.5) 

states that the total number of vehicles departing from the RBC is equal to the total 

number of vehicles used. Constraint set (4.6) guarantees the RBC is visited as the last 

node by all vehicles. Constraint set (4.7) ensures that the demand of a hospital can be 

satisfied by a vehicle that visits the hospital. Constraint set (4.8) guarantees that any 

demand of a hospital (𝑖) can be satisfied from another hospital (𝑙) if the vehicle visits 



 

 

87 

 

the hospital (𝑙). Constraint set (4.9) links 𝑈𝑇𝑖𝑙𝑣 values with amount of satisfied demand 

via O2. Constraint sets (4.10) and (4.11) ensure the amount of total satisfied demand 

of a hospital by the Options O1 and O2 should not exceed its total (normal and 

irradiated) demand if the hospital does not use the Option O3. Constraint set (4.12) 

guarantees that the amount of products carried is limited by the amount available at 

the RBC. The capacities of the vehicles are considered in Constraint set (4.13). 

Constraint set (4.14) ensures that if the demand of a hospital is processed by an 

irradiation center, then the hospital and the irradiation center should be visited by the 

same vehicle. Constraint sets (4.15), (4.16), and (4.17) calculate the arrival time of 

vehicle 𝑣 visiting node 𝑖 in the first position, the next node after leaving node 𝑖, and 

the next node after leaving irradiation center 𝑖, respectively. Constraint set (4.18) 

guarantees that a hospital with demand for the irradiated products should be visited 

after the irradiation center serves to this hospital’s demand. Constraint set (4.19) 

ensures that the arrival time of the vehicle to hospital 𝑖 should not exceed the deadline 

imposed by the hospital. Constraint set (4.20) guarantees that the arrival time of the 

vehicle to the RBC does not exceed its maximum travel time. Constraint set (4.21) 

assigns hospital 𝑖 to irradiation center 𝑗 if the hospital 𝑖 is served by irradiation center 

𝑗. Constraint set (4.22) ensures that if a hospital uses the option O3, then the amount 

of demand satisfied by the Option O3 should not exceed the total (normal and 

irradiated) demand of this hospital. Constraint set (4.23) guarantees that a hospital 

cannot satisfy its demand by the Option O3 if it is not in the set of SD. Constraint set 

(4.24) controls the demand of a hospital is fully satisfied, where the hospital is used as 

a transfer point for another hospital that uses the Option O2. Constraint set (4.25) 

guarantees that a hospital can satisfy its demand by the Option O2 if the demand of 

the hospital used as a transfer point is fully satisfied. Constraint set (4.26) calculates 

the arrival time of the products to hospital 𝑖 which has urgent demand if hospital 𝑗 is 

used to satisfy the demand of hospital i in the route vehicle 𝑣. Constraint set (4.27) 

guarantees that decision variable 𝑈𝑇𝑖𝑗𝑣 (that controls the satisfaction of urgent 
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demands by the Option O2) takes value zero if hospital 𝑗 is giving transfer service to 

an hospital that is not covered in CT or hospital 𝑖 is not in 𝐷𝐻𝑗 or the demand of 

hospital 𝑖 is not urgent. Constraint sets (4.28), (4.29), and (4.30) represent the binary, 

non-negative, and integer variables. 

We now present some properties of the optimal solution whose incorporation (via 

additional constraints) may reduce the size of the search space, hence improve the 

efficiency of the MILP. We use the same optimal properties given for Problem P1. In 

addition, we provide the following property and its associated constraint. 

Property: If any hospital’s total demand (normal and irradiated) for a product is 

greater than the availability of this product, then the hospital’s demand cannot be fully 

satisfied. We use the following constraint to improve the efficiency of the model.  

𝑊𝑆𝑖𝑝 = 0         for 𝑖 = 𝐼𝐶 + 1, 𝐼𝐶 + 2,… ,𝑁; 𝑝 = 1,2, … , 𝑃;  

 𝐷𝑖𝑝 + 𝐼𝐷𝑖𝑝 > 𝐴𝑝 

 (4.31) 

Our mathematical model is explained by the objective function (4.1) and the 

constraint sets (4.2) through (4.30), the constraints (3.32), (3.33), (3.34) and (3.39) 

given by given for Problem P1, and the constraint (4.31). 

A feasible solution for Problem P1 is also feasible for our problem P2 and some 

constraints (such as deadline and urgent demand constraints) in their problem are 

relaxed or not considered in our problem. This follows that the optimal solution of the 

first objective function value of their Problem P1 is a lower bound for our problem P2. 

We state this result formally by the following property.  
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Property: 𝑧∗(𝑃2) ≥ 𝑧∗(𝑃1) 

Proof: Note that any solution that is feasible for Problem P1 is also feasible for 

Problem P2. Thus, an optimal solution of P1 is also a feasible solution for P2. Hence, 

the optimal solution of P2 is greater than or equal to the optimal value of primary 

objective function at P1, i.e., 𝑧∗(𝑃2) ≥ 𝑧∗(𝑃1)  .  ∎ 

4.4 Proposed Solution Procedure - Hybrid Genetic Algorithm 

We observe from computational tests that the MILP cannot solve medium and large 

sized problem instances since the size of the MILP drastically increase with an increase 

in the number of nodes and vehicles. Therefore, we propose a hybrid genetic algorithm 

(HGA) to solve the problem. Our hybrid genetic algorithm includes three stages: 

Iterative local search (ILS) based algorithm for initialization, genetic algorithm for 

improvement, and a linear programming model is solved for its finalization. The first 

two stages of the algorithm aim to find good vehicle routes and final stage allocates 

products to hospitals with considering the vehicle routes. We now give the detailed 

descriptions of each part used in our hybrid genetic algorithm. 

4.4.1 Initialization: Iterative local search based algorithm 

Our iterative local search based initialization algorithm involve four phases: Finding 

an Initial Schedule, Improvement by Inserting Nodes to Vehicle Routes, Building a 

New Vehicle Schedule, and Improvement by Swapping (Pairwise Interchanging) 

Nodes. Let NI be the number of iterations used by the algorithm and NIS be the number 

of initial schedules. The flowchart of the iterative local search based initialization 

algorithm is given in Figure 4.2.  
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Figure 4.2: Flow of the iterative local search based initialization algorithm 

 

We now give the detailed description of four phases of the iterative local search 

based initialization algorithm.   

Phase 1: Finding an Initial Solution 

This phase finds a feasible solution to MILP model given in Section 4.3 by relaxing 

the integrality requirements on variables Ripv, IRijpv, FRilpv, FIRijlpv, and DRip. 

We first apply a greedy randomized initialization procedure given below to assign 

the nodes to the vehicles and hospital set satisfying the demand by using Option O3. 

This initialization procedure may end up with some illogical cases. We handle these 
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illogical cases by the rules explained below. Next, we calculate the loading and 

unloading times for each node by assuming all demand of this hospital is satisfied. 

𝐿𝑂𝑖𝑣 =

{
 
 

 
 𝑎𝑖 + 𝑏𝑖 ∑ (∑ 𝐼𝐷𝑖′𝑝

𝑃
𝑝=1 )𝑁

𝑖′=𝐼𝐶+1,𝑖′∈𝑣𝑖
, 𝑖 = 1,2, . . , 𝐼𝐶;  𝑖 ∈ 𝑣𝑖;

                                           𝑣 = 1,2, … , 𝑉

𝑎𝑖 + 𝑏𝑖 ∑ (𝐷𝑖𝑝)
𝑃
𝑝=1 ,                             𝑖 = 𝐼𝐶 + 1, 𝐼𝐶 + 2,… ,𝑁;

                                                         𝑖 ∈ 𝑣𝑖; 𝑣 = 1,2, … , 𝑉

   (4.32) 

where 𝑣𝑖 represents the nodes assigned to vehicle 𝑣.  

We use the modified iterative local search (MILS) algorithm given for Problem P1 

which is originally proposed by Arroyo et al. (2009) to solve single-machine tardiness 

problem with sequence-dependent setup times. 

Finally, we calculate the fitness value with the procedure and given below to obtain 

a solution for the problem. We repeat this initial solution generation procedure for 

TNRIS (Total number of initial schedules) times and until we get at least one feasible 

solution. Then, we start with a feasible solution (vehicle routes and assignment of 

hospitals using the Option O3) which gives the best fitness value and set this feasible 

solution as the Local_Solution and the Global_Solution. 

Greedy Randomized Initialization Procedure 

The stepwise description of the greedy randomized procedure is given below. 

Step 1. Calculate the potential normal demand PDi, potential irradiated demand 

(PIDi) for each irradiation center and hospital: 

𝑃𝐷𝑖 = ∑ 𝐷𝑖𝑝
𝑃
𝑝=1  for  𝑖 = 𝐼𝐶 + 1, 𝐼𝐶 + 2,… ,𝑁 (4.33) 

𝑃𝐼𝐷𝑖 = {
∑ 𝐼𝐷𝑖𝑝
𝑃
𝑝=1 ,           𝑖 = 𝐼𝐶 + 1, 𝐼𝐶 + 2,… ,𝑁

∑ 𝑃𝐼𝐷𝑗          
𝑁
𝑗=𝐼𝐶+1

𝐵𝑉
, 𝑖 = 1,2, … , 𝐼𝐶                    

                   (4.34) 
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Step 2. For each vehicle 𝑣, set the position index to zero, i.e., 𝑘𝑣 = 0. 

Step 3. Randomly select a vehicle 𝑣′ between 1 and 𝑉. 

Step 4. Calculate the potential gain ratio 𝐺𝑅𝑖 to be assigned to the selected 

vehicle 𝑣′.  

 

𝐺𝑅𝑖 =

{
 
 
 
 

 
 
 
 

(𝑤𝑖−𝛽𝑖)(𝑃𝐷𝑖+𝑃𝐼𝐷𝑖)

𝑇0𝑖+𝑎𝑖+𝑏𝑖(𝑃𝐷𝑖+𝑃𝐼𝐷𝑖)

𝑖 = 𝐼𝐶 + 1, 𝐼𝐶 + 2,… ,𝑁;
𝑘𝑣′ = 0                                

(𝑤𝑖−𝛽𝑖)(𝑃𝐷𝑖+𝑃𝐼𝐷𝑖)

𝑇
(𝑐ℎ

𝑘
𝑣′
−1,𝑣′

),𝑖
+𝑎𝑖+𝑏𝑖(𝑃𝐷𝑖+𝑃𝐼𝐷𝑖)

 
𝑖 = 𝐼𝐶 + 1, 𝐼𝐶 + 2,… ,𝑁;
𝑘𝑣′ > 0                                

(𝑃𝐼𝐷𝑗)× max
𝑗=𝐼𝐶+1,𝐼𝐶+2,…,𝑁1

{𝑤𝑗}

𝑇0𝑖+𝑎𝑖+𝑏𝑖(𝑃𝐼𝐷𝑖)
𝑖 = 1,2, … , 𝐼𝐶; 𝑘𝑣′ = 0

max
𝑗=𝐼𝐶+1,𝐼𝐶+2,…,𝑁

{𝑤𝑗}×(𝑃𝐼𝐷𝑖)

𝑇
(𝑐ℎ𝑘

𝑣′
−1,𝑣′),𝑖

+𝑎𝑖+𝑏𝑖(𝑃𝐼𝐷𝑖)
𝑖 = 1,2, … , 𝐼𝐶; 𝑘𝑣′ > 0

  (4.35) 

where 𝑐ℎ𝑘𝑣 represents the node that are assigned to position k of set 𝑣. 

Step 5. Calculate the maximum (Gmax) and minimum (Gmin) gain for the 

vehicle 𝑣′. 

𝐺𝑚𝑎𝑥 = max
𝑖=1,2,…,𝑁

𝐺𝑅𝑖 

 (4.36) 

𝐺𝑚𝑖𝑛 = min
𝑖=1,2,…,𝑁

𝐺𝑅𝑖

 (4.37)  

Step 6. Randomly select a node 𝑖′ between 1 and 𝑁. 

Step 7. If the following conditions satisfy 

𝐺𝑅𝑖′ > 𝐺𝑚𝑎𝑥 − 𝑃𝐴 × (𝐺𝑚𝑎𝑥 − 𝐺𝑚𝑖𝑛)

 (4.38) 
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𝐷𝐷𝑖′ ≥ ∑ (𝑇𝑐ℎ
𝑗,𝑣′

,𝑐ℎ
𝑗+1,𝑣′

+ 𝑎𝑐ℎ
𝑗,𝑣′
+ 𝑏𝑐ℎ

𝑗,𝑣′
× (𝑃𝐷𝑐ℎ

𝑗,𝑣′
+

𝑘
𝑣′
−1

𝑗=1

𝑃𝐼𝐷𝑐ℎ
𝑗,𝑣′
)) + 𝐸𝐴𝑣′ + 𝑇0,𝑐ℎ1,𝑣′

+ 𝑇𝑐ℎ
𝑘
𝑣′
,𝑣′
,𝑖′ (4.39) 

𝑀𝑇𝑣′ ≥ ∑ (𝑇𝑐ℎ
𝑗,𝑣′

,𝑐ℎ
𝑗+1,𝑣′

+ 𝑎𝑐ℎ
𝑗,𝑣′
+ 𝑏𝑐ℎ

𝑗,𝑣′
× (𝑃𝐷𝑐ℎ

𝑗,𝑣′
+

𝑘
𝑣′
−1

𝑗=1

𝑃𝐼𝐷𝑐ℎ
𝑗,𝑣′
)) + 𝑇𝑐ℎ

𝑘
𝑣′
,𝑣′
,𝑖′ + 𝑎𝑖′ + 𝑏𝑖′ × (𝑃𝐷𝑖′ + 𝑃𝐼𝐷𝑖′) +

𝐸𝐴𝑣′ + 𝑇0,𝑐ℎ1,𝑣′
+𝑇𝑖′,0 (4.40) 

where PA is a parameter for our algorithm that represents the 

assignment ratio; then, we assign node 𝑖′ to vehicle 𝑣′ and update the 

following parameters: 

𝑃𝐷𝑖′ = (1 − 𝐴𝑅)𝑃𝐷𝑖′ (4.41) 

𝑃𝐼𝐷𝑖′ = (1 − 𝐴𝑅)𝑃𝐼𝐷𝑖′ (4.42) 

𝑘𝑣′ = 𝑘𝑣′ + 1 (4.43) 

𝑐ℎ𝑘
𝑣′
,𝑣′ = 𝑖

′ (4.44) 

where AR is the assignment ratio which is a constant parameter 

represents the ratio of hospital’s demand is satisfied by the assigned 

vehicle, and go to Step 3.  

Otherwise (i.e., one of the conditions 4.38, 4.39 and 4.40 are not 

satisfied), then we do not assign node 𝑖′  to vehicle 𝑣′and we repeat Step 

6 until each node has been selected. If each node is selected, then we 

assign −1 to all remaining positions in vehicle 𝑣′. 
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Step 8. Go to Step 3 until each position of vehicle is filled.  

Step 9. If a hospital is not assigned to any position of a vehicle but it can use 

Option O3 to satisfy its demand, then, we assign the hospital to hospital 

set which use Option O3, with a probability PFD (probability of direct 

visit), and repeat this step for each hospital.  

Step 10. If a node is not assigned to any vehicle or set above, then we assign it 

to the set of hospitals which are not visited and not using the Option O3 

to satisfy their demand.   

Step 11. Put node zero (RBC) to the first -1 in each vehicle list. 

We can call each solution obtained by schedule as chromosome. 

Handling the Illogical Cases 

As we stated before, the greedy randomized initialization procedure may provide some 

illogical cases. In this section, we investigate these cases.  

Case 1: There is not any assigned hospital after an irradiation center in a vehicle 

list. We delete the irradiation center. 

Case 2: There exists two irradiation center in a vehicle list and  

o a hospital with urgent demand between two irradiation center and it 

has irradiated demand. We keep both irradiation centers. 

o a hospital with routine demand between two irradiation centers and 

hospital has irradiated demand. We will delete the last scheduled 

irradiation center node. If the hospital does not have any irradiated 

demand, then we will delete irradiation center which creates more 

travelling time. 
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Case 3: There exists a hospital assigned to set of hospitals using Option O3 to 

satisfy its demand but it is not in the set of SD. We delete the hospitals 

from the list. 

Case 4: A hospital assigned more than one to the list for set of hospitals using 

Option O3 and hospital set which is not visited and do not use Option 

O3. We keep one of them and delete the others. 

Case 5: A hospital with urgent demand is assigned more than one to a list for 

vehicle routes, then we keep the first node assigned to vehicle and delete 

the others. 

Case 6: A hospital is assigned to a vehicle, then we will delete it from the set of 

hospitals using Option O3 and hospital set which is not visited. 

Case 7: A hospital with routine demand is assigned more than one to a list for 

vehicle, then we will delete the hospital which needs more travelling 

time. 

Case 8: A hospital is not assigned to any vehicle list and cannot use Option O2 to 

satisfy its demand but it is in the set of SD. We assign it to the set of 

hospitals using Option O3. 

 

Fitness value calculation 

We may solve the LP given in Section 4.4.3 to evaluate the value of the objective 

function for a given vehicle route. However, we observe that solving this LP model 

for many times may require excessive amount of computation time. In place of solving 

this model, we propose the following method to find a powerful estimate (fitness) on 

its objective function value.  

Firstly, we control the deadline and maximum travel time constraints only using the 

earliest available time of vehicles, travelling times, and constant loading and unloading 

times. If any of these time constraints are violated due to vehicle routes, then the 
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solution is infeasible and we terminate the procedure with an objective function value 

which is the sum of the time constraints violations. Otherwise, we apply the following 

procedure to find the allocation of products to the hospitals. 

In the MILP model given in Section 4.3, we have several binary variables. When 

we fix the values of some binary variables, we may easily solve the LP model in 

Section 5.3 and determine the allocation of the products to the hospitals. For this 

purpose, we use the following methods.  

(1) [Setting 𝑈𝑇𝑖𝑗𝑣values] 𝑈𝑇𝑖𝑗𝑣’s  are binary decision variables which control the 

hospitals with urgent demands to use the Option O2 to satisfy their demand. 

We first assume that only the hospitals, which are not assigned to any vehicle 

or hospital set using Option O3, can use Option O2.  We secondly assume that 

only one hospital and vehicle pair can be used. Then, we use the following 

procedure to find 𝑈𝑇𝑖𝑗𝑣 values. 

 For each visited hospital and vehicle pair, we calculate minimum arrival 

time (𝑀𝐴𝑗𝑣) from the RBC to hospital j via vehicle v.  The minimum 

arrival time (𝑀𝐴𝑗𝑣) is the sum of the earliest available time of vehicles 

(𝐸𝐴𝑣), travel time between nodes visited before hospital 𝑗 and fixed 

loading and unloading times (𝑎𝑖) of the nodes visited before hospital 𝑗. 

 Then, we find the time differences 𝐷𝐵𝐷𝑖𝑗𝑣 between deadline of hospital i 

and the sum of the minimum arrival time (𝑀𝐴𝑗𝑣) to hospital j and the time 

between hospitals i and j. 

𝐷𝐵𝐷𝑖𝑗𝑣 = 𝐷𝐷𝑖 − (𝑀𝐴𝑗𝑣 + 𝑇𝑗𝑖)  (4.45) 

 Finally, we set 𝑈𝑇𝑖𝑗𝑣 to 1 for hospital 𝑖 to satisfy its demand from hospital 

𝑗 and vehicle 𝑣 pair providing the maximum 𝐷𝐵𝐷𝑖𝑗𝑣 value. 

(2) [Modifying 𝛼𝑖𝑙 values] In our original model given in Section 4.3, we consider 

that a hospital 𝑖 cannot be used to satisfy the demand of a specific product from 
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another hospital 𝑙 if the demand of hospital 𝑙 is not fully satisfied for that 

product. In order to deal with this consideration, we modify the weight (𝛼𝑖𝑙) of 

satisfying the demand of hospital 𝑖 from hospital 𝑙. The modified weight should 

be less than the weight of the hospital 𝑙 which is used as a transfer point. By 

this way, we firstly satisfy the demand of the hospital with higher weight.  The 

modified weight should consider the their original weights of hospital 𝑖 and 𝑙. 

We modify our weights 𝛼𝑖𝑙
′  as:  

𝛼𝑖𝑙
′ = {

𝛼𝑖𝑙

max
𝑖′
(𝛼𝑖′𝑙)+𝜀

𝑤𝑙 , 𝑤𝑙 ≤ 𝛼𝑖𝑙

𝛼𝑖𝑙

max
𝑖′
(𝛼𝑖′𝑙)+𝜀

𝛼𝑖𝑙 , 𝑤𝑙 > 𝛼𝑖𝑙
 (4.46) 

where 𝜀 is the minimum weight, which is 0.5, in our problem instances.  

(3) [Modifying 𝐷𝑉𝑖 values] If a hospital is not assigned to any vehicle and cannot 

satisfy its demand from another hospital by Option O2, then we add this 

hospital to the hospital set which satisfy its demand by Option O3 if it is in the 

set of SD.  

Step 1. Calculate the estimated values:  

 Ripv by dividing hospital 𝑖’s demand for normal product 𝑝 to the total 

number of vehicles visiting hospital 𝑖, 

 IRijpv by dividing the hospital 𝑖’s irradiated demand for product 𝑝 to the 

number of irradiated center visited before hospital 𝑖, 

 FRilpv by dividing the hospital 𝑖’s demand for normal product 𝑝 to the 

number of hospitals which can be used as a transfer point for hospital 

𝑖, 

 FIRiljpv by dividing the hospital 𝑖’s irradiated demand for product 𝑝 to 

the number of irradiated centers visited before hospital 𝑙 which can be 

used as a transfer point for hospital 𝑖, 
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 DRip by summing the hospital 𝑖’s normal and irradiated demand for 

product 𝑝. 

In order to calculate the FRilpv and FIRiljpv values for hospital 𝑖 with 

urgent demand. We use the hospitals and vehicle pairs which provide 

the 𝑈𝑇𝑖𝑗𝑣 values as one.  

Step 2. [Update of the allocation amounts when the time constraints are violated] 

a. Set 𝑣 = 1. 

b. Calculate the arrival time of vehicle v to the hospitals and the RBC.  

c. Check the feasibility of deadline constraints with urgent demands 

(according to the sequence of hospitals visited by vehicle 𝑣). If one of 

them is violated, then 

c.1.  Find the least profitable allocation that gives the following value 

𝑚𝑖𝑛
𝑖
(
𝑤𝑖

𝑏𝑖
, 𝑚𝑖𝑛

𝑙
(
𝛼𝑙𝑖
′

𝑏𝑖
) ,

𝑤𝑖

𝑏𝑖+𝑏𝑗
, 𝑚𝑖𝑛

𝑙
(

𝛼𝑙𝑖
′

𝑏𝑖+𝑏𝑗
)) (4.47) 

where 𝑖 is the visited hospital and 𝑗 is the irradiation center visited 

and used for satisfying the irradiation requirement of this hospital 

𝑖, before a hospital (not inclusive) where the deadline constraint 

is violated.  

c.2  If the total violation is greater than the allocation amount 

multiplied by the variable loading and unloading time (bi), then 

set the allocation amount to zero, update the violation amount, 

and go to Step 2.c.1. While updating the allocation amount, firstly 

we select product type if product availability constraint is 

violated, if there is no any product type violation, then we 

randomly select a product type to update allocation. 

 Otherwise, reduce the allocation amount by the ratio of violation 

value to the variable loading and unloading time (bi), and go to 
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Step 2.b. until all deadline and maximum travel time constraints 

in vehicle 𝑣 are satisfied.  

d. Otherwise, set 𝑣 = 𝑣 + 1, and go to Step 2.b. 

Step 3. [Update of the allocation amounts when the product availability 

constraints are violated] 

a. Set 𝑝 = 1. 

b. For product type 𝑝, calculate the total allocation. 

c. Check the feasibility of product availability constraint. If the constraint 

is violated, then  

c.1. Find the least profitable allocation (hospital which uses Option O1 

or Option O3, or hospital pair which uses Option O2) that gives the 

following value:  

𝑚𝑖𝑛
𝑖
(𝑤𝑖, 𝑚𝑖𝑛

𝑙
(𝛼𝑙𝑖

′ ), 𝛽𝑖) (4.48) 

 where hospital 𝑖 having the allocation for product 𝑝. 

c.2. If the total violation is smaller the allocation amount, then change 

the allocation amount to the amount of violation, set 𝑝 = 𝑝 + 1, 

and go to Step 3.b. 

 Otherwise, set the allocation amount to zero, update the violation 

amount, and go to Step 3.c.1.  

d. Otherwise, set 𝑝 = 𝑝 + 1, and go to Step 3.b. 

Step 4. [Update of the allocation amounts when the vehicle capacity constraints 

are violated] 

a. Set 𝑣 = 1. 

b. Calculate the total allocation for vehicle 𝑣. 

c. Check the feasibility of vehicle capacity constraint. If the constraint is 

violated, then  
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c.1. Find the least profitable allocation (hospital which uses Option O1 

or hospital pair which uses Option O2) that gives the following 

value:  

𝑚𝑖𝑛
𝑖
(𝑤𝑖, 𝑚𝑖𝑛

𝑙
(𝛼𝑙𝑖

′ )) (4.49) 

 where hospital 𝑖 visited by vehicle 𝑣. 

c.2. If the total violation is smaller the allocation amount, then change 

the allocation amount to the amount of violation, set 𝑣 = 𝑣 + 1, 

and go to Step 4.b. 

 Otherwise, set the allocation amount to zero, update the violation 

amount, and go to Step 4.c.1.  

d. Otherwise, set 𝑣 = 𝑣 + 1, and go to Step 4.b. 

Step 5. [Procedure for deleting unprofitable node] 

If Step 4 returns a solution such that any hospital is visited with no service, 

we drop this hospital and go to Step 1; otherwise go to Step 6.  

Step 6. Calculate the objective function value with the original weights and 

updated allocation amounts. 

Phase 2: Improvement by inserting nodes to the vehicle routes 

This phase tries to improve the solution by inserting additional nodes to the current 

vehicle routes since the value of our objective may increase as the number of assigned 

nodes increases. We consider the set of hospitals using Option O3 by setting its set as 

another vehicle (V+1). We use similar procedure for this set while inserting nodes. We 

eliminate some insertion of hospitals which may lead the Local_Solution to be an 

infeasible solution and whose potential gain with insertion is less than the average 

potential gain of all hospitals.  

∑ (𝐷𝑖𝑝 + 𝐼𝐷𝑖𝑝)
𝑃
𝑝=1 − ∑ 𝐺𝑖𝑣

𝑉
𝑣=1     (4.50) 
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where 𝐺𝑖𝑣 is the amount of weighted demand already gained from hospital i 

assigned to vehicle v in the current Local_Solution. 

We start by selecting a random node 𝑖′ and a vehicle 𝑣′ where 𝑖′ is not already 

assigned to 𝑣′ and this node-vehicle pair may improve the Local_Solution. If the 

selected vehicle is 𝑉 + 1 (set for hospitals using Option O3) and hospital 𝑖′ is proper 

for it, then we assign node 𝑖′ to vehicle 𝑉 + 1 and drop hospital 𝑖′ from the other 

vehicles if it assigned to it. Otherwise, we randomly select IPOS number of insertion 

positions and calculate the travel time increase (TTI) for each selected position 𝑘 as 

follows: 

𝑇𝑇𝐼𝑘 = 𝑇𝑓(𝑘−1,𝑣′),𝑖′ + 𝑇𝑖′,𝑓(𝑘,𝑣′) − 𝑇𝑓(𝑘−1,𝑣′),𝑓(𝑘,𝑣′)    (4.51) 

where 𝑓(𝑘, 𝑣′) is the hospital which is assigned to position k of vehicle 𝑣′. Then, 

we select the position 𝑘′ which gives the minimum TTI value, and update our vehicle 

route 𝑣′ by inserting node 𝑖′ to position 𝑘′. Furthermore, we calculate the fitness value 

with the Fitness Value Calculation Procedure. 

If the objective function value returned by the insertion is better than API (API is 

the acceptable percentage increase, and is used to reduce the solution time for the 

algorithm) times the objective function value of the current Local_Solution, then we 

replace the current Local_Solution with the new solution and repeat Phase 2. 

Otherwise, we select another node-vehicle pair, and repeat the procedure. We continue 

the process above until all possible node-vehicle pairs are examined. Finally, we 

update the Global_Solution if the objective function value of the current 

Local_Solution is better than that of the current Global_Solution. 
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Phase 3: Building a new vehicle schedule 

The current Global_Solution may be a local optimal so that no further improvements 

could be achieved. In order not to get stuck in a local optimal solution, the current 

solution is perturbed either by removing a node from a vehicle route or interchanging 

two nodes in different vehicle routes. 

We first calculate 𝑃𝑉𝑘𝑣 values for each node 𝑘 in vehicle route 𝑣 of the 

Global_Solution, assuming that node 𝑘 is between nodes 𝑖 and 𝑗, as follows: 

  𝑃𝑉𝑘𝑣 = min
𝑖′=𝐼𝐶+1,…,𝑁

(
𝑤
𝑖′

𝑏𝑖′
) × (𝑇𝑖𝑘 + 𝑇𝑘𝑗 + 𝑎𝑘 − 𝑇𝑖𝑗) − 𝑤𝑘 × 𝑃𝐶𝑘𝑣 +

𝛽𝑘 ∑ (𝐷𝑘𝑝 + 𝐼𝐷𝑘𝑝)
𝑃
𝑝=1  (4.52) 

where 𝑃𝐶𝑘𝑣 is the amount of products carried to node 𝑘 by vehicle 𝑣, the maximum 

weight of the hospitals which are visited after an irradiation center by vehicle 𝑣 is used 

as the weight for this irradiation center and the term “𝛽𝑘 ∑ (𝐷𝑘𝑝 + 𝐼𝐷𝑘𝑝)
𝑃
𝑝=1 " is not 

considered in Equation 4.52 if node k is not in the subset SD including the hospitals 

satisfying their demand by the Option O3.  

If the Global_Solution is updated in the current iteration, then we calculate the 

difference between the maximum travel time and the arrival time to the RBC for each 

vehicle, select the vehicle(s) giving the minimum difference, determine a node with 

the maximum 𝑃𝑉𝑘𝑣 value among vehicle(s) with the minimum difference, and remove 

this node from its vehicle route. Otherwise, we randomly select two vehicles, 

determine a node with the maximum 𝑃𝑉𝑘𝑣 value in each vehicle, and pairwise 

interchange these two nodes. Finally, we replace the Local_Solution with the solution 

obtained by the process above.  
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Phase 4: Improvement by swapping (pairwise interchanging) nodes 

This phase improves the solution by swapping two nodes in four ways, (1) between 

the vehicle routes, (2) within a vehicle route, and (3) between a node in a vehicle route 

and a node which is not in any vehicle route, and (4) between a node in a vehicle route 

and a hospital which is in the set of hospitals using Option O3. 

We randomly select two nodes that may provide better solution by using four ways 

mentioned above. We update our vehicle routes by interchanging the selected nodes 

and we drop the hospital 𝑖′  from the its assigned vehicles if selected 𝑖′ will be inserted 

to the set of hospitals using Option O3. Then, we calculate the fitness value by Fitness 

Value Calculation Procedure. 

If the objective function value returned by the pairwise interchanging is better than 

API times the objective function value of the current Local_Solution, then we replace 

the current Local_Solution by the new solution and repeat Phase 4. Otherwise, we 

select another node-vehicle pair and repeat the procedure. We repeat the process above 

until all possible node pairs are examined. Finally, we update the Global_Solution if 

the objective function value of the current Local_Solution is better than that of the 

current Global_Solution. 

The selection of the parameters (AR, PA, PFD, TNRIS, AIP, NI, NIMILS, NRMILS, 

and AlphaMILS) used in the iterative local search algorithm is discussed in the 

computational experiments section. 

4.4.2 Improvement: Genetic Algorithm 

To improve the initial solution, we propose a genetic algorithm. Genetic algorithms 

are first developed by Holland (1975). They use a mechanism that is close to the 

surviving way of the vital populations, where good individuals are usually from the 

combination of two good organisms, so called parents.  
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We give the flowchart of the genetic algorithm in Figure 4.3. As can be observed 

from the figure, our algorithm generates the initial population from the solution of the 

iterative local search based algorithm and improves it via crossover and mutation 

operators.  

 

Figure 4.3: Flow of Genetic Algorithm 

NOC: Number of crossover; TNC: Total number of crossover;  
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Chromosome Representation 

Our chromosome representation scheme is similar to the ones used for the traveling 

salesman problem. The chromosome, so-called genes, reside 𝑁 × (𝑉 + 2) 

components. The first 𝑁 × 𝑉 genes are for the vehicles, the next 𝑁  genes are for the 

hospitals using Option O3 and the last 𝑁 genes are for the hospitals with no 

assignments. We use positive integers for the nodes and “-1” for the unassigned 

positions.  

To illustrate our representation scheme, consider 8-node and 2-vehicle instance. 

The routes 0-2-4-6-0 and 0-1-6-3-0 for vehicles 1 and 2, respectively. Option O3 is 

used by hospitals 5 and 7. Hospital 8 does not have any assignment. The resulting 

32 (= 8 × (2 + 2)) chromosomes are tabulated below.  

Table 4.3: The chromosome representation for the example instance 

Route for Vehicle 1 (Set 1) 2 4 6 -1 -1 -1 -1 -1 

Route for Vehicle 2 (Set 𝑉) 1 6 3 -1 -1 -1 -1 -1 

Set of hospitals using O3 (Set 𝑉 + 1) 5 7 -1 -1 -1 -1 -1 -1 

Unassigned Nodes (Set 𝑉 + 2) 8 -1 -1 -1 -1 -1 -1 -1 

 

Finding the Initial Population 

Our initial population with the predetermined population size (PS) is formed as 

follows:  

 The iterative local search algorithm (ILS) is solved to generate the first 

member. 

 The greedy randomized algorithm, handling the illogical cases, and the 

modified ILS algorithm are solved successively to get the first half of the 

population.   
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 To generate the other members of the population, we use the ILS solution. We 

apply pairwise interchanges to two different genes and use the Handling the 

Illogical Cases Procedure, and the modified ILS algorithm.   

Evaluating the Chromosome 

To evaluate the performance of the chromosomes, we use the Fitness Value 

Calculation Procedure. We consider the infeasible solutions as well, as they may 

provide some better results with crossover and mutation operators.  

Selecting the Parents 

We select two chromosomes as parents for the generation of two children using the 

following ranking procedure.  

Step 1. List the solutions in nonincreasing order of their fitness values. 

Step 2. For each task in the list define a selection probability (𝑆𝑃𝑖) as follows: 

𝑆𝑃𝑖 =
PS−rank of i +1

PS(PS+1)/2
                                           (4.58) 

where 𝑆𝑃𝑖 values are higher for better chromosomes. 

Step 3. Generate two random numbers from U[0,1] 

Step 4. Select parents according to the generated numbers and 𝑆𝑃𝑖 values.  

Crossover Operator 

Crossover process is performed over two randomly selected parents. We start with 

randomly selecting two cut points between 1 and N.  The genes between the selected 

cut points are preserved while other genes are crossed.  

We illustrate the process on an example instance with following selected parents 

given in Table 4.4.  
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Table 4.4: Two selected parents for crossover 

Parent 1  Parent 2 

2 4 6 -1 -1 -1 -1 -1  3 7 -1 -1 -1 -1 -1 -1 

1 6 3 -1 -1 -1 -1 -1  1 8 4 -1 -1 -1 -1 -1 

5 7 -1 -1 -1 -1 -1 -1  5 -1 -1 -1 -1 -1 -1 -1 

8 -1 -1 -1 -1 -1 -1 -1  6 2 -1 -1 -1 -1 -1 -1 

 

First, we select two random numbers (a is the small number and b is the big 

number). Then, we preserve the genes between two random numbers (inclusive) of 

each gene set of parents 1 and 2, and create two lists (List 1 and List 2) for each parent. 

List 1 starts with gene one plus big random number of last set in Parent 1 (gene b+1 

of set V +2) then continues with the ones that are not preserved for Parent 1. List 2 is 

created similarly. An example for the preserved genes and lists are given in Figure 4.4.   

We create Offspring 1 using the preserved genes from Parent 1 and List 2. We put 

List 2 to the remaining genes of the preserved chromosome. We apply the same 

method for Offspring 2. After creating the offspring, we modify the chromosomes 

where the genes with “-1” must be at the end of sets. The crossover methodology is 

summarized in Figure 4.4.  
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List 1 -1 2 4 -1 1 6 -1 5 7 -1 8 -1 

 

List 2 -1 3 7 -1 1 8 -1 5 -1 -1 6 2 

Parent 1  Parent 2 

2 4 6 -1 -1 -1 -1 -1  3 7 -1 -1 -1 -1 -1 -1 

1 6 3 -1 -1 -1 -1 -1  1 8 4 -1 -1 -1 -1 -1 

5 7 -1 -1 -1 -1 -1 -1  5 -1 -1 -1 -1 -1 -1 -1 

8 -1 -1 -1 -1 -1 -1 -1  6 2 -1 -1 -1 -1 -1 -1 

 Preserved 1  Preserved 2 

_ _ 6 -1 -1 -1 -1 _  _ _ -1 -1 -1 -1 -1 _ 

_ _ 3 -1 -1 -1 -1 _  _ _ 4 -1 -1 -1 -1 _ 

_ _ -1 -1 -1 -1 -1 _  _ _ -1 -1 -1 -1 -1 _ 

_ _ -1 -1 -1 -1 -1 _  _ _ -1 -1 -1 -1 -1 _ 

 

Offspring 1  Offspring 2 

-1 3 6 -1 -1 -1 -1 7  -1 2 -1 -1 -1 -1 -1 4 

-1 1 3 -1 -1 -1 -1 8  -1 1 4 -1 -1 -1 -1 6 

-1 5 -1 -1 -1 -1 -1 -1  -1 5 -1 -1 -1 -1 -1 7 

-1 6 -1 -1 -1 -1 -1 2  -1 8 -1 -1 -1 -1 -1 -1 

Reorganized Offspring 1  Reorganized Offspring 2 

3 6 7 -1 -1 -1 -1 -1  2 4 -1 -1 -1 -1 -1 -1 

1 3 8 -1 -1 -1 -1 -1  1 4 6 -1 -1 -1 -1 -1 

5 -1 -1 -1 -1 -1 -1 -1  5 7 -1 -1 -1 -1 -1 -1 

6 2 -1 -1 -1 -1 -1 -1  8 -1 -1 -1 -1 -1 -1 -1 

  

Figure 4.4: Illustration of the Crossover Operation 

 

Resolving Offspring 1 and 2 may not give a feasible schedule for our problem, in 

such a case we must use the procedure of Handling the Illogical Cases.  

Mutation Operator 

Mutation operation for offspring is applied over the crossover operation with the hope 

of further improvement. The operation is performed only if a randomly generated 
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probability value is greater than the predetermined mutation probability (MP). Below 

is the stepwise description of the mutation operation. 

Step 1. Chromosome Insertion. 

i. Eliminate some insertion for vehicles, nodes, and positions considering the 

deadline constraint of the nodes. 

ii. Randomly select a vehicle v' between 1 and V. 

iii. Calculate the potential gain for insertion (PGI) for each node and position. 

If inserted node i is in the set for V+1, then 

𝑃𝐺𝐼𝑖𝑘 =
(𝑤𝑖−𝛽𝑖)∑ (𝐷𝑖𝑝+𝐼𝐷𝑖𝑝)

𝑃
𝑝=1

𝑇
(𝑐ℎ𝑘−1,𝑣′),𝑖

+𝑇
𝑖,(𝑐ℎ𝑘,𝑣′)

−𝑇
(𝑐ℎ𝑘−1,𝑣′),(𝑐ℎ𝑘,𝑣′)

+𝑎𝑖+𝑏𝑖(𝑃𝐷𝑖+𝑃𝐼𝐷𝑖)
  

 for  𝑘 = 1,… , 𝐾 

 (4.58) 

If inserted node i is in the set for V+2, then 

𝑃𝐺𝐼𝑖𝑘 =
(𝑤𝑖−max

𝑙
{𝛼𝑖𝑙})∑ (𝐷𝑖𝑝+𝐼𝐷𝑖𝑝)

𝑃
𝑝=1

𝑇
(𝑐ℎ𝑘−1,𝑣′),𝑖

+𝑇
𝑖,(𝑐ℎ𝑘,𝑣′)

−𝑇
(𝑐ℎ𝑘−1,𝑣′),(𝑐ℎ𝑘,𝑣′)

+𝑎𝑖+𝑏𝑖(𝑃𝐷𝑖+𝑃𝐼𝐷𝑖)
  

 for  𝑘 = 1,… , 𝐾 

 (4.59) 

iv. Select a node and position pair which provides maximum PGI value and 

does not violate the maximum travel time for vehicle v'. 

v. Insert the selected node to the selected position of vehicle v'. 

vi. Go to Step 2 until each vehicle is selected. 

vii. Update the schedule and terminate the mutation operator. 

If any node is inserted to a vehicle, then we stop the mutation operation. Otherwise, 

we apply Step 2.  

Step 2. Pairwise interchange of two genes.  
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i. Calculate total travel time for the chromosome. 

ii. Repeat the following procedure N times: 

a. Randomly select two genes from chromosome. 

b. Swap (pair-wise interchange) the two genes. 

c. Calculate the total travel time for the new chromosome.  

d. Calculate the change in the total travel time (difference between new 

and existing chromosomes). 

iii. Select the genes which provide maximum gain in the total travel time (only 

consider the swaps which reduce the total travel time). 

iv. Swap the selected genes. 

v. Update the schedule and terminate the mutation operator. 

If any node is swapped, then stop. Otherwise, we apply Step 3. 

Step 3. Gene change 

i. Select randomly one gene.  

ii. Generate a number randomly: it is -1 with probability of 0.5, and it is 

between 1 and N with probability of 0.5. 

iii. Replace the gene with the randomly selected different gene. 

iv. Update the schedule and terminate the mutation operator. 

We need to use Handling the Illogical Cases Procedure since resolving the 

chromosome does not give a reasonable solution. 

Termination Procedure 

We set a termination limit of CTL×N×V seconds for the genetic algorithm, where CTL 

is predetermined constant. We set an upper limit of TNC operations, for the number of 

crossover operations.  
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The values of the parameters (AR, PA, PFD, PS, MP, TNC, CTL, NIMILS, NRMILS, 

and AlphaMILS) are set via a parametric analysis discussed in Section 4.5.3.   

4.4.3 Finalization: A Linear Programming Model 

Given the vehicle routes and the hospitals served directly from the RBC, we find the 

allocation of blood types using an LP model. Our LP model uses the assumed values 

(𝑈𝑇𝑖𝑙𝑣, 𝛼𝑖𝑙
′ , and 𝐷𝑉𝑖) discussed in the Fitness Value Calculation Procedure and stated 

as below:  

 

Max 𝑧1 = ∑ ∑ ∑ 𝑤𝑖(𝑅𝑖𝑝𝑣 + ∑ 𝐼𝑅𝑖𝑗𝑝𝑘
𝐼𝐶
𝑗=1 )𝑁

𝑖=𝐼𝐶+1
𝑃
𝑝=1

𝑉
𝑣=1 +

∑ ∑ ∑ ∑ 𝛼𝑖𝑙
′ (𝐹𝑅𝑖𝑙𝑝𝑣 + ∑ 𝐹𝐼𝑅𝑖𝑗𝑙𝑝𝑘

𝐼𝐶
𝑗=1 )𝑁

𝑖=𝐼𝐶+1
𝑃
𝑝=1

𝑉
𝑣=1𝑙∈𝐶𝑇 +

∑ ∑ 𝛽𝑖𝐷𝑅𝑖𝑝
𝑁
𝑖=𝐼𝐶+1

𝑃
𝑝=1  (4.60) 

Subject to 

Constraints (10, 11, 12, 13, 15, 19, 20, 22) and 

∑ (𝐹𝑅𝑖𝑙𝑝𝑣 + ∑ 𝐹𝐼𝑅𝑖𝑗𝑙𝑝𝑣
𝐼𝐶
𝑗=1 )𝑃

𝑝=1 = 0 for 𝑣 = 1,2, … , 𝑉 𝑜𝑟 𝑙 ∉ 𝐷𝐶𝑖 𝑜𝑟  

    𝑙 ∉ 𝐶𝑇 𝑜𝑟 ∑ 𝑋𝑙𝑘𝑣 = 0
𝑁
𝑘=1 or  

    (𝑈𝑇𝑖𝑙𝑣 = 0 and 𝑖 ∈ 𝑈) (4.61) 

∑ (𝑅𝑖𝑝𝑣 + ∑ 𝐼𝑅𝑖𝑗𝑝𝑣
𝐼𝐶
𝑗=1 )𝑃

𝑝=1 (1 − ∑ 𝑋𝑖𝑘𝑣
𝑁
𝑘=1 ) = 0  

 for 𝑖 = 𝐼𝐶 + 1, 𝐼𝐶 + 2,… ,𝑁; 

    𝑣 = 1,2, … , 𝑉; (4.62) 

𝑆𝑗𝑘𝑣 ≥ 𝑆𝑖,𝑘−1,𝑣 + 𝑎𝑖 + 𝑏𝑖 ∑ (𝑅𝑖𝑝𝑣 + ∑ 𝐼𝑅𝑖𝑗𝑝𝑣
𝐼𝐶
𝑗=1 + ∑ (𝐹𝑅𝑙𝑖𝑝𝑣 +𝑙∈𝐷𝐻𝑖

𝑃
𝑝=1

∑ 𝐹𝐼𝑅𝑙𝑗𝑖𝑝𝑣
𝐼𝐶
𝑗=1 )) + 𝑇𝑖𝑗 for 𝑖 = 𝐼𝐶 + 1, 𝐼𝐶 + 2,… ,𝑁; 

    𝑗 = 0,1, … ,𝑁; 𝑖 ≠ 𝑗;  

   𝑣 = 1,2, … , 𝑉; 

   𝑋𝑗𝑘𝑣 = 𝑋𝑖,𝑘−1,𝑣 = 1 (4.63) 
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𝑆𝑗𝑘𝑣 ≥ 𝑆𝑖,𝑘−1,𝑣 + 𝑎𝑖 + 𝑏𝑖 ∑ ∑ (𝐼𝑅𝑖′𝑖𝑝𝑘 + ∑ 𝐹𝐼𝑅𝑙𝑖𝑖′𝑝𝑣𝑙∈𝐷𝐻𝑖′
)𝑃

𝑝=1
𝑁
𝑖′=𝐼𝐶+1 + 𝑇𝑖𝑗  

 for  𝑖 = 1,2, … , 𝐼𝐶; 𝑗 = 1,2, … , 𝑁; 

          𝑘 = 1,2, … ,𝑁;  𝑣 = 1,2, … , 𝑉; 

      𝑋𝑗𝑘𝑣 = 𝑋𝑖,𝑘−1,𝑣 = 1 (4.64) 

∑ 𝐼𝑅𝑖𝑗𝑝𝑣 + ∑ 𝐹𝐼𝑅𝑙𝑖𝑖𝑝𝑣𝑙∈𝐷𝐻𝑖
𝑃
𝑝=1 = 0 for  𝑗 = 1,2, … 𝐼𝐶; 𝑣 = 1,2, … , 𝑉; 

       𝑖 = 𝐼𝐶 + 1, 𝐼𝐶 + 2,… ,𝑁; 

 ∑ 𝑘 ∙ 𝑋𝑖𝑘𝑣
𝑁
𝑘=1 < ∑ 𝑘 ∙ 𝑋𝑗𝑘𝑣

𝑁
𝑘=1  (4.65) 

𝑆𝑖𝑘𝑣 ≥ 𝑆𝑗𝑘𝑣 + 𝑇𝑗𝑖 for  j ∈ 𝐶𝑇;  𝑖 ∈ 𝐷𝐻𝑗;  𝑖 ∈ 𝑈;  

      𝑘 = 1,2, …𝑁;  𝑣 = 1,2, … , 𝑉; 

      𝑈𝑇𝑖𝑗𝑣 = 1 (4.66) 

𝑅𝑖𝑝𝑣, 𝐼𝑅𝑖𝑗𝑝𝑣, 𝑆𝑖𝑘𝑣, 𝐹𝑅𝑖𝑙𝑝𝑣 , 𝐹𝐼𝑅𝑖𝑗𝑙𝑝𝑣, 𝐷𝑅𝑖𝑝 ≥ 0 

 for  𝑖 = 0,1, … ,𝑁;  𝑝 = 1,2, … , 𝑃; 

     𝑙 ∈ 𝐷𝐶𝑖;  𝑗 = 1,2, … , 𝐼𝐶;  

     𝑣 = 1,2, … , 𝑉; (4.67) 

Objective function (4.60) maximizes the total weighted demand satisfied. 

Constraint set (4.61) guarantees that the demand of a hospital cannot be satisfied from 

a transfer point (another hospital) if the transfer point is not in the set for hospital or 

the vehicle does not visit the transfer point, or the corresponding 𝑈𝑇𝑖𝑙𝑣 value is zero 

for urgent demands.  Constraint set (4.62) guarantees that if the vehicle does not visit 

a hospital, then it cannot deliver any product to that hospital. The arrival time of a 

vehicle to node 𝑗 if node 𝑗 is immediately visited after hospital 𝑖, and if node 𝑗 is 

immediately visited after irradiation center 𝑖, are calculated in constraint sets (4.63) 

and (4.64), respectively. Constraint set (4.65) ensures the amount of irradiated product 

𝑝 carried to hospital 𝑖 from irradiation center 𝑗 by vehicle 𝑣 should be zero, if 

irradiation center 𝑗 is visited after hospital 𝑖. Constraint set (4.66) calculates the arrival 
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time of the products to the hospitals with urgent demands and uses another hospital to 

satisfy the demand. Constraint set (4.67) represents non-negative variables. 

We round all product quantities (𝑅𝑖𝑝𝑣, 𝐼𝑅𝑖𝑗𝑝𝑣, 𝐹𝑅𝑖𝑙𝑝𝑣, 𝐹𝐼𝑅𝑖𝑗𝑙𝑝𝑣, and 𝐷𝑅𝑖𝑝 values) 

returned by the model to the nearest integer values. If the solution is not feasible with 

rounded 𝑅𝑖𝑝𝑣, 𝐼𝑅𝑖𝑗𝑝𝑣, 𝐹𝑅𝑖𝑙𝑝𝑣, 𝐹𝐼𝑅𝑖𝑗𝑙𝑝𝑣, and 𝐷𝑅𝑖𝑝𝑣 values, we reduce the shipment to a 

hospital with the minimum weight (where the modified weights are used) by one unit 

until feasibility is maintained. Finally, we use the original hospital weights to obtain 

the resulting objective function value. 

 

4.5 Computational Experiments 

 

In this section, we describe the computational experiments designed to evaluate the 

performance of the solution approaches. The hybrid genetic algorithm is coded at the 

C++ platform, and C++ CPLEX application of IBM ILOG CPLEX optimization studio 

V12.6.2 is used to solve the mathematical models in our heuristic algorithm and the 

MILP model under the time limit of two hours. All computational experiments are 

conducted on a personal computer with Intel Xeon CPU E5-2650 2GHz (2 Processor) 

and 128 GB RAM under Windows 10 operating system. 

4.5.1 Parameter settings 

We use the same 360 real problem instances given for Problem P1. Those problem 

instances were encountered the Central Anatolian RBC between January 4 and 

February 4, 2016. In addition to the data in their problem instances, we have used the 

following methods of obtaining the additional parameters which are needed for our 

problem.  
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 Set of hospitals (CT) that can be used to satisfy the demand of other hospitals 

(CT) must have special refrigerator and enough storage space to keep the 

products. Therefore, each hospital in the responsibility of the Central 

Anatolian RBC cannot be in the set CT. The hospital set CT has been 

determined by a manager from the TRC who knows the facilities of each 

hospital. 

 Set of hospital using Options O2 and O3 are determined by using the travelled 

time among the hospitals and hospital and RBC, respectively. A hospital can 

take its demand from another hospital if the travelled time between two 

hospitals is less than 20 minutes. A hospital can take its demand directly from 

the RBC if its traveled time to RBC is less than 20 minutes. These travel time 

limits are determined intuitively and experimentally. We run our randomly 

generated problem instances with different travel time limits from 5 to 30 

minutes, and then we observed that our objective function value does not 

increase much after 20 minutes but CPU time to obtain the optimal solution 

drastically increases.  

 Weight for satisfying demand by Option O2 (𝛼𝑖𝑙) and satisfying demand by 

Option O3 (𝛽𝑖) are determined with the help of a manager from the Turkish 

Red Crescent. The manager claims that the original weights of the hospitals 

will be reduced maximum ten and twenty percent if Options O2 and O3 are 

used, respectively, by considering the travel times among the hospitals and 

hospital and the RBC. Then, we create the weights 𝛼𝑖𝑙 and 𝛽𝑖 by the following 

formulas.  

𝛼𝑖𝑙 = 𝑤𝑖 (1 −
0.10×𝑇𝑖𝑙

max
𝑙
𝑇𝑖𝑙
)             (4.68) 

𝛽𝑖 = 𝑤𝑖 (1 −
0.20×𝑇𝑖0

max
𝑖
𝑇𝑖0
)   (4.69) 

With the above formulas, we also preserve the relative importance of the 

hospitals.  
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 In order to consider the urgent demands in our problem, we modified the 

weights of the hospitals with urgent demands. We modify its original weight 

by adding maximum relative weight in the problem instances which is ten in 

our problem instances.  

 We use 2, 3, 4, and 5 vehicles in our problem instances. 

 The length of a distribution period is 2 hours, and this period defines the 

maximum travel time allowed to each vehicle.  

 There exist 2 irradiation centers. 

 

The number of nodes and product ranges are given in Table 4.5. 

 

Table 4.5: Number of nodes and product types in our data set 

Group 1 2 3 4 5 6 7 8 9 

N 10-14 15-19 20-24 25-29 30-34 35-39 40-44 45-49 50-54 

P 8-19 8-23 13-23 15-21 16-22 17-24 20-27 19-30 20-28 

 

 

4.5.2 Performance measures 

To evaluate the performance of the heuristic algorithms, we consider the best non-

integer solution (some of the variables are non-integer) obtained by MILP within two 

hours of time limit.  

We use the following performance measure for each problem instances since best 

integer value and best non-integer value obtained by the MILP are same in the optimal 

solutions: 

Percent Error = PE =
𝑧𝑁–𝑧𝐻

𝑧𝐻
×100 (4.70) 
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where 𝑧𝑁 is the value of the non-integer solution returned by the MILP model, and 

𝑧𝐻 is the value of the objective function returned by the heuristic algorithm. We use 

the best integer value returned by the MILP mode to evaluate its solution quality which 

is calculated as follows: 

PE =
𝑧𝑁–𝑧𝐵

𝑧𝐵
×100    (4.71) 

where 𝑧𝐵 is the value of the best integer solution returned by the MILP model. The 

number of optimal solutions obtained is another performance measure for the heuristic 

algorithm. The optimality of the heuristic algorithm is assured when the objective 

function value is equal to the best non-integer objective function value of the MILP.  

The CPU time is another performance measure used for the heuristic algorithm and 

the MILP model. 

4.5.3 Parameter tuning for the heuristic algorithm 

 

In this section, we discuss the selection of the parameters used by our heuristic 

algorithm. We use Groups, 1, 5 and 9 from Table 4.5 and set the number of vehicles 

to 2 and 5. Five random instances are used for each parameter combination.  

Table 4.8 reports the values of the parameters used in the initialization part. For 

each value of the tested design parameters, we keep the other parameters at fixed 

values. The fixed values are also reported in Table 4.6. We give the PE values and 

CPU time for each tested level, and base our selection on the best trade-off between 

the PE values and CPU times. The selected values are also given in the table. 
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Table 4.6: The results of the parameter tuning- Initialization part 

Parameter   
Levels 

Initialization part 

1 2 3 Best Selected Fixed 

Assignment ratio 

(AR) 

Values 0.6 0.8 1.0       

PE 2.7 2.5 2.2 1.0 
1 0.8 

CPU 1.1 1.2 1.2 0.6 

Assignment 

probability (PA) 

Values 0.3 0.5 0.7     

PE 2.4 2.5 2.4 0.3, 0.7 
0.7 0.5 

CPU 1.1 1.1 1.1 0.3, 0.5, 0.7 

Probability of direct 

visit (PFD) 

Values 0.3 0.5 0.7     

PE 2.4 2.5 2.2 0.7 
0.7 0.5 

CPU 1.2 1.2 1.1 0.7 

Total number of 

initial schedule 

(TNRIS) 

Values 10 20 40     

PE 2.5 2.5 2.3 40 
40 20 

CPU 1.2 1.2 1.1 40 

Number of insertion 

positions  

(IPOS) 

Values 1 3 5     

PE 2.4 2.5 2.4 1, 5 
5 3 

CPU 1.2 1.2 0.9 5 

Acceptable 

percentage increase 

(AIP) 

Values 1.000 1.001 1.002    

PE 2.3 2.5 2.4 1.000 
1.002 1.001 

CPU 1.8 1.2 0.9 1.002 

Number of iterations 

for the main 

algorithm  

 (NI) 

Values 3 4 6    

PE 2.5 2.5 2.3 6 
3 3 

CPU 1.2 1.2 1.4 3 ,4 

# of iterations for the 

Modified ILS Alg. 

(NIMILS) 

Values 10 50 100     

PE 2.5 2.2 2.4 50 
50 10 

CPU 1.2 1.1 1.0 100 

# of runs for the 

Modified ILS Alg. 

 (NRMILS) 

Values 2 5 10     

PE 2.7 2.5 2.5 5, 10 
10 5 

CPU 1.1 1.2 1.1 2, 10 

Alpha value for 

Modified ILS Alg. 

(AlphaMILS) 

Values 0.4 0.6 0.8     

PE 2.5 2.5 2.5 0.4, 0.6, 0.8 
0.6 0.6 

CPU 1.2 1.2 1.2 0.4, 0.6, 0.8 

For the improvement stage of the algorithm, we first decide on the termination limit 

(CTL). We test four values (1, 3, 6 and 9) for the CTL values. Table 4.7 reports on the 

performance values of each value of CTL.  
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Table 4.7: The results of the parameter tuning–CTL value 

Value 1 3 6 9 

Avg. PE 2.23 2.18 2.11 2.06 

Avg. CPU (Min) 2.09 5.74 11.38 17.01 

 

After analyzing the performance results we set CTL value to 6, as it leads to 

reasonable CPU times with good PE values. The PE values for CTL values of 6 and 9 

are 2.11 % and 2.06 %, respectively, hence are very close. 

For the other parameters’ tunings, we set a constant termination limit and use PE 

for the selection criterion. We use three levels for each parameter and set the other 

parameters to the fixed values given in table.    
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Table 4.8: The results of the parameter tuning –Improvement part 

Parameter   
 Levels 

Improvement part 
 

1 2 3 Selected 

value 

Fixed 

value 

Assignment ratio (AR) 
Values 0.6 0.8 1.0    

PE 2.15 2.20 2.20 1 0.8 

Assignment probability (PA) 
Values 0.3 0.5 0.7    

PE 2.21 2.14 2.18 0.5 0.5 

Probability of direct visit (PFD) 
Values 0.4 0.6 0.8    

PE 2.19 2.21 2.19 0.8 0.6 

Population size (PS) 
Values 5 10 20    

PE 2.25 2.14 2.21 10 10 

Mutation Probability 

(MP) 

Values 0.1 0.5 0.9    

PE 2.20 2.14 2.22 0.5 0.1 

Total number of crossover 

(TNC) 

Values 40 80 120   

PE 2.14 2.13 2.17 80 40 

# of iterations for the Modified 

ILS Alg. (NIMILS) 

Values 10 50 100    

PE 2.21 2.19 2.21 50 10 

# of runs for the 

Modified ILS Alg. (NRMILS) 

 (NRMILS) 

Values 2 5 10    

PE 2.21 2.20 2.19 10 2 

Alpha value for 

Modified ILS Alg. (AlphaMILS) 

Values 0.4 0.6 0.8    

PE 2.13 2.21 2.14 0.4 0.6 

 

The table also includes the parameter value fixed while selecting the other 

parameters. The selected value of the parameter is the one that leads to the smallest 

PE value. 
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4.5.4 Discussion of the results 

In this section, we discuss the results of the experiment for the MILP model and the 

heuristic algorithm.  

We observe that the MILP returns optimal solution only for the small-sized problem 

instances with up to 25 nodes, and report the related CPU times in Table 4.9. We set a 

termination limit of 2 hours for the MILP model.  

Table 4.9: The CPU times of the MILP model – small-sized instances 

  

N 

  

V 

CPU (Sec.) # of solved in CPU 

limit of 2 hours Avg. Max. 

10-14 

2 

3033 7200 6 

15-19 7200 7200 0 

20-24 7200 7200 0 

Avg., Max., (sum) 5811 7200 (6) 

10-14 

3 

137 641 10 

15-19 6670 7200 2 

20-24 7200 7200 0 

Avg., Max., (sum) 4669 7200 (12) 

10-14 

4 

103 452 10 

15-19 3509 7200 7 

20-24 6865 7200 1 

Avg., Max., (sum) 3492 7200 (18) 

10-14 

5 

105 250 10 

15-19 2608 7200 8 

20-24 6105 7200 3 

Avg., Max., (sum) 2939 7200 (21) 

Avg., Max., (sum) 4228 7200 (57) 

 

Note from the table that even for the small-sized problem instances. The majority 

of the problems could not be solved in our termination limit of two hours.  

We observe that the performance of the MILP highly depends on the problem size 

parameters. Any increase in 𝑁 and 𝑉 leads to significant changes in CPU times. Note 

that when there are 10-14 nodes, the average CPU time decreases from 3033 to 105 
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seconds. When the number of vehicles increases from 2 to 5. When the average number 

of vehicles is 4, the average CPU times increases from 103 to 6865 seconds when the 

number of nodes increases from 10-14 to 20-24.  

We report the PE values of the heuristic algorithm for the small-sized problem 

instance whose optimal solutions are returned by the MILP, in Table 4.10.  

Table 4.10: Performance of heuristic algorithm – the instances with known optimal solutions 

N V 
# of 

instances 

Avg. 

CPU 

(Sec.) 

PE (%) # of 

optimum 

solutions Avg. Max. 

10-14 2 6 148.90 0.00 0.00 6 

10-14 
3 

10 231.85 0.00 0.03 9 

15-19 2 337.59 0.00 0.00 2 

10-14 

4 

10 308.98 0.00 0.00 10 

15-19 7 422.57 0.00 0.00 7 

20-24 1 485.19 0.00 0.00 1 

10-14 

5 

10 386.30 0.00 0.00 10 

15-19 8 534.53 0.00 0.00 8 

20-24 3 617.95 0.02 0.06 2 

Avg., Max., (sum) (57) 358.12 0.00 0.06 (55) 

 

The HGA uses the parameters that are fine tuned in the previous section. 

Accordingly, we set the termination limit for the instances with 𝑁 nodes and 𝑉 vehicles 

to 𝑁 × 𝑉 × 6 seconds. 

Note from the table that the HGA obtains optimal solution for the 55 out of 57 

instances. The gaps of the unsolved instances are 0.03 % and 0.06 %. These values 

show the outstanding performance of our HGA over small-sized problem instances. 

Table 4.11 reports on the performance the MILP model and the HGA over all 

problem sets, residing 360 problem instances.   
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Table 4.11: Performance of heuristic algorithm and the MILP model – over all problem set 

N V 

PE (%) 

MILP model HGA 
Avg. Max Avg. Max. 

10-14 

2 

0.39 1.66 0.17(6)* 0.60 
15-19 1.09 3.46 0.80 1.64 

20-24 6.50 17.89 4.00 11.42 
25-29 8.19 22.12 4.23 15.74 

30-34 10.77 27.80 4.44 10.47 
35-39 10.62 18.65 5.14 8.17 

40-44 9.75 16.07 4.96 8.59 

45-49 15.62 23.76 6.58 9.67 
50-54 16.65 22.27 6.86 12.37 

10-14 

3 

0.00 0.00 0.00(9)* 0.03 
15-19 0.35 2.10 0.03(6)* 0.16 

20-24 5.77 23.87 2.47 14.96 

25-29 5.26 13.74 2.18 11.83 
30-34 8.05 12.51 2.61 8.12 

35-39 8.92 14.81 2.55 3.48 
40-44 20.23 46.41 3.13 5.14 

45-49 17.82(2)** 25.28 4.69 7.83 

50-54 23.00(1)** 32.55 5.01 8.91 

10-14 

4 

0.00 0.00 0.00(10)* 0.00 
15-19 0.03 0.20 0.00(10)* 0.00 
20-24 3.92 12.85 0.80(1)* 4.25 

25-29 3.64 9.20 0.66 2.39 
30-34 7.66 12.29 1.80 6.67 

35-39 11.92 20.78 1.61 2.98 

40-44 12.06 25.21 2.14 3.95 
45-49 20.20(4)** 24.84 2.89 4.38 

50-54 21.98(1)** 27.99 3.47 5.73 

10-14 

5 

0.00 0.00 0.00(10)* 0.00 
15-19 0.03 0.30 0.00(10)* 0.00 

20-24 2.94 8.32 0.49(5)* 4.33 
25-29 2.22 5.70 0.28(5)* 1.54 

30-34 7.28 11.26 1.07 5.23 
35-39 12.57 37.23 1.03 3.21 

40-44 11.58 17.33 1.25 2.58 
45-49 19.73(4)** 32.77 2.21 5.39 

50-54 22.45(1)** 31.65 2.42 4.42 

Avg., Max., (sum)  9.14(13)** 46.41 2.28(72)* 15.74 
*Number of times HGA equals to the upper bound 

**Number of times no feasible solution is found in 2 hours. 

 

We observe that the MILP fails to return any feasible solution of 13 out of 360 

problem instances, after 2 hours of execution.  
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From Table 4.11, we also observe that heuristic algorithm returns optimal solutions 

for 72 out of 360 problem instances. We also observe that the PE from the non-integer 

solutions returned by the MILP of heuristic algorithm is 2.28 percent. It means PE 

from the optimal solution is less than 2.28 percent. Recall that the CPU times of the 

heuristic are fixed to CTL×N×V seconds, whereas those instances could not be solved 

in two hours by the MILP. Hence, our algorithms provide much better results than the 

MILP in relatively short CPU times.  

We can see from Table 4.11 that the PE of both MILP model and HGA increases 

when the number of nodes increases since problem size increases. Note that when there 

are 2 vehicles, the PE values for the MILP model are 0.39 and 16.65, for 𝑁 =  10 −

14 and 𝑁 =  50 − 54, respectively. For the HGA, the respective PE values are 0.60 

and 12.37 for 𝑁 =  10 − 14 and 𝑁 =  50 − 54. This is due to the fact that the number 

of integer variables increases and the differences between integer solution and the 

relaxation of the problem getting bigger. Number of vehicle does not significantly 

affect the PE of the MILP model but it significantly reduces the PE of the heuristic 

algorithm. It may be due to the number of alternative solution increases when the 

number of vehicles increases. 

We can conclude that the MILP does not perform well since most of the problem 

instances are not optimally solved by the MILP model in two hours. Moreover, the 

MILP model cannot obtain an integer feasible solution for 13 problem instances within 

2 hours of CPU time and its relative gap between best non-integer and best integer 

solution is too high. On the other hand, our heuristic algorithm provides high quality 

solutions in relatively small pre-determined CPU times. Heuristic algorithm returns 

optimal solutions for 72 problem instances (out of 360). Hence, we can suggest user 

to use the heuristic algorithm to solve the problem of any size.   



 

 

124 

 

We also analyze the effects of the number of hospitals served, and the number of 

vehicles on the maximum weighted satisfied demand (𝑧) and report the results in Table 

4.12.  

Table 4.12: Objective function values of the heuristic algorithm 

V 2 3 4 5 

N Avg. 𝑧 Avg. 𝑧 Avg. 𝑧 Avg. 𝑧 

10-14 655.99 656.90 656.90 656.90 

15-19 641.89 645.54 645.65 645.65 

20-24 1104.78 1132.76 1142.33 1143.73 

25-29 1215.29 1239.25 1247.73 1252.73 

30-34 2038.22 2076.31 2097.36 2111.18 

35-39 2247.37 2308.56 2328.20 2339.60 

40-44 3531.62 3601.83 3639.41 3659.55 

45-49 4226.65 4332.67 4403.79 4440.29 

50-54 4350.45 4446.57 4512.60 4554.71 

Avg. 2223.59 2271.15 2297.11 2311.59 

 

Note from the table that, increasing the number of vehicles increases 𝑧 value. The 

increases are more significant when the number of vehicles is small. When the number 

of nodes is between 45-49 and the number of vehicles increases from 2 to 3, the total 

satisfied demand increases to 4332.67 from 4226.65. For the same case, when the 

number of vehicles increases from 4 to 5, the total satisfied demand increases to 

4440.29 from 4403.79. Using the results of Table 4.12, the managers may analyze the 

trade-offs between number of vehicles and 𝑧 value and select the best solution 

according to their preferences. 
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4.5.5 Sensitivity analysis 

In this section we aim to analyze the effects of some critical parameters on the 

maximum total weighted satisfied demand amount (𝑧). We select the maximum travel 

times for vehicles (MTv), availability of products (𝐴𝑝), and weight of the hospitals (𝑤𝑖) 

as critical parameters for the vehicles, products and hospitals, respectively.  

For the effects of the MTv, we select two levels: 120 minutes to represent low and 

180 minutes to represent high travel times. To see the effect of product availabilities, 

i.e., 𝐴𝑝 values, we select two levels: the original product availabilities and twice of the 

original product availabilities for the second level to represent low and high 

availability levels, respectively. To see the effects of hospital weights we use two 

levels. The low weight level is represented by the original data where the weights are 

distributed between 0.5 and 10. To find the high weight level instances, we take the 

weights of the low weight instances and double the ones that are below 5; hence, the 

resulting weights are distributed between 1 and 10.   

We select three problem combinations (Group 1– small sized instances with 10-14 

nodes, Group 5 – medium sized instances with 30-34 nodes, and Group 9– large sized 

instances with 50-54 nodes) from Table 4.5 and report the associated results in Table 

4.13. We set the number of vehicles to 2. 

Note from Table 4.13 that the 𝑧 values increase from 4676.93 to 4803.22 when the 

maximum travel times increase from 120 to 180 minutes for large sized instances. This 

is due to the fact that by increasing travel times, more room becomes available for 

demand satisfactions. We also observe that increasing the maximum travel time does 

not have a significant effect on the 𝑧 values for the small and medium sized problem 

instances.   
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Table 4.13: Sensitivity analysis based on the parameters 

  Original High MTv Twice Ap Modified wi 

𝑧 

Group 1 923.67 925.50 942.19 1510.84 

Group 5 2173.56 2229.34 2208.16 3489.09 

Group 9 4676.93 4803.22 5115.04 6619.08 

 

We also observe that 𝑧 values slightly improve when the product availability 

increases. The improvement is more significant for the large-sized instances. It is less 

than expected and we can conclude that the availability of product is not a highly 

binding constraint for satisfying the demand of hospitals.  

Table 4.13 also shows that when the some hospital weights are doubled, the 𝑧 values 

increase from 623.67 to 1510.84 (about 64%), from 2173.56 to 3489.09 (about 60%), 

and 4676.93 to 6619.08 (about 41%)  for the small, medium, and large-sized instances, 

respectively.  
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CHAPTER 5 

 

 

CONCLUSIONS AND FUTURE RESEARCH ISSUES 

 

 

 

In this study, we consider the blood distribution system in Turkey and focus on the 

Central Anatolian Regional Blood Center. We studied two problems for the blood 

distribution system in Central Anatolian Regional Blood Center.  

To the best of our knowledge, our first problem is the first attempt that considers 

irradiation centers, urgent demands and blood products availability. Including 

irradiation centers leads to precedence structure where product availability may lead 

to partial satisfaction of the demands of some customers.  Hence, we study the 

allocation of the demand along with their distribution to the hospitals. 

We aim to maximize the amount of blood products carried to the hospitals for each 

distribution period of specified length. Among the alternative optimal solutions of the 

problem, we select the one that minimizes the total time travelled.  

We model the Problem 1 as a MILP model and improve its efficiency using the 

properties of the optimal solutions. We find that the MILP model cannot be solved 

within our termination limit of one hour. Having experienced the difficulty of attaining 

optimal solutions through the MILP, we propose two decomposition-based heuristic 

procedures. We collect and organize real data to test the performances of the MILP 

and heuristic procedures. We analyze the effects of the problem size parameters 

(number of hospitals, number of vehicles) on the difficulty of the solutions and on the 

maximum satisfied demand and total time travelled values. We find that our heuristics 
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return high quality solutions at reasonable times and can be used to solve large sized 

problem instances. We also observe that the maximum satisfied demand and total time 

travelled are sensitive to the number of vehicles, number of the hospitals, and weight 

of the hospitals. We study the trade-off between the problem size parameters and 

maximum satisfied demand and total time travelled values, we recommend the 

managers to select the number of vehicles that best fulfils their demand satisfaction 

and travel cost concerns. 

Our second problem extends the first problem with considering two more demand 

satisfaction options. We aim to maximize the amount of blood products carried to the 

hospitals for each distribution period of specified length.  

We model the Problem 2 as a MILP model and improve its efficiency using the 

properties of the optimal solutions. We find that the MILP model cannot be solved 

within our termination limit of two hours. Having experienced the difficulty of 

attaining optimal solutions through the MILP model, we propose a hybrid genetic 

algorithm with three stages: initialization based on iterative local search algorithm, 

improvement based on genetic algorithm and finalization is based on a linear 

programming. We collect and organize real data to test the performances of the MILP 

and heuristic procedures. We analyze the effects of the problem size parameters 

(number of hospitals, number of vehicles) on the difficulty of the solutions and on the 

maximum satisfied demand and total time travelled values. We find that our heuristic 

algorithm returns high quality solutions at reasonable times and can be used to solve 

large sized problem instances. We also observe that the maximum satisfied demand is 

sensitive to the number of vehicles, number of the hospitals, and weight of the 

hospitals. We study the trade-off between the problem size parameters and maximum 

satisfied demand, we recommend the managers to select the number of vehicles that 

best fulfils their demand satisfaction concerns. 
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Our motivation in the study was to improve the distribution system of the TRC. We 

hope our study opens new research directions for theoretical and practical concerns. 

For theoretical purposes, the development of exact procedures using decomposition 

ideas might be worthwhile. The practitioners may extend our study to multiple RBCs, 

full demand satisfactions, and time windows on service times for hospitals and visits 

times of irradiation centers. Moreover, a strategic problem of opening new irradiation 

centers and defining their locations might be worth studying.  
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APPENDIX  

 

Table A1. Information about RBC in Turkey 

RBC: Regional Blood Center, BC: Blood Center, BS: Blood Stations 

Regional Blood 

Center 

Number 

of BC 

Number 

of BS 

Provinces which are in the 

responsibility of RBC 

Aegean RBC 7 10 İzmir, Muğla, Aydın, Uşak, Manisa, 

Denizli 

North Marmara RBC 5 1 İstanbul 

Central Anatolian 

RBC 

5 6 Ankara, Konya, Çorum, Kırıkkale, 

Kastamonu, Çankırı, Karaman 

Central 

Mediterranean RBC 

3 8 Adana, Mersin, Hatay, Osmaniye 

East Mediterranean 

RBC 

4 5 Gaziantep, Şanlıurfa, 

Kahramanmaraş, Kilis 

South Marmara RBC 4 3 Bursa, Balıkesir, Yalova, Çanakkale 

West Black Sea RBC 5 6 Düzce, Sakarya, Kocaeli, 

Zonguldak, Karabuk, Bolu, Bartın 

Inner Anatolian RBC 5 1 Kayseri, Nevşehir, Kırşehir, Sivas, 

Yozgat, Aksaray, Niğde 

West Mediterranean 

RBC 

3 2 Antalya, Burdur, Isparta 

Central Black Sea 

RBC 

3 2 Samsun, Tokat, Ordu, Sinop, 

Amasya 

West Anatolian RBC 3 1 Eskişehir, Kütahya, Afyon, Bilecik 

East Anatolian RBC 2 3 Erzurum, Erzincan, Tunceli, 

Ardahan, Bayburt, Kars 

East Black Sea RBC 5 0 Trabzon, Rize, Artvin, Giresun, 

Gümüşhane 

South Anatolian RBC 3 2 Diyarbakir, Siirt, Batman, Şırnak, 

Bingöl, Mardin 

South West RBC 2 0 Malatya, Elazığ, Adıyaman 

South East RBC 2 0 Van, Muş, Hakkari, Ağrı, Iğdır, 

Bitlis 

Europe RBC 3 4 İstanbul, Edirne, Kırklareli, 

Tekirdağ 

Total 64 54   
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