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ABSTRACT 

 

 

REAL TIME UNMANNED AIR VEHICLE ROUTING 

 

KARABAY, Nail 

 

M.S., Department of Industrial Engineering 

Supervisor  : Prof. Dr. Murat Köksalan  

Co-Supervisor : Assist. Prof. Dr. Diclehan Tezcaner Öztürk 

 

January 2018, 67 pages 

 

In this thesis, we study real-time routing of an unmanned air vehicle (UAV) in a two-

dimensional dynamic environment. The UAV starts from a base point, visits all targets 

and returns to the base point, while all targets change their locations during the 

mission period. We find the best route for the route planner (RP) considering two 

objectives; minimization of distance and minimization of radar detection threat. 

We develop a real-time algorithm to find the UAV’s most preferred route for a RP 

who has an underlying linear or quadratic preference function. In this algorithm, we 

structure the nondominated frontiers of the trajectories between each target pair and 

find a route using these trajectories. The algorithm updates the route of the UAV each 

time the UAV arrives at a target. As the UAV must return to the base target at the end 

of its journey, we solve a multi-objective shortest Hamiltonian path problem to find a 

route rather than a multi-objective traveling salesperson problem each time the UAV 

visits a target. To reduce the computational burden, we develop k-closest heuristic. In 

this heuristic, instead of structuring the nondominated frontiers between all target 

pairs, for each target, we select k closest targets and structure only the nondominated 
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frontiers of these k targets. In addition, we develop an adaptive algorithm to determine 

the value of k. For the RP who has a quadratic preference function, we choose among 

𝑛 nondominated trajectories for each target pair to find a route. We consider the cases 

𝑛 = 1 and 𝑛 > 1, seperately. We demonstrate all algorithms on different examples. 

Keywords: unmanned air vehicle routing, real-time routing, multi-objective 

programming, linear preference function, quadratic preference function  
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ÖZ 

 

 

İNSANSIZ HAVA ARAÇLARININ GERÇEK ZAMANLI ROTALAMASI 

 

KARABAY, Nail 

 

Yüksek Lisans, Endüstri Mühendisliği Bölümü 

Tez Yöneticisi           : Prof. Dr. Murat Köksalan 

Ortak Tez Yöneticisi : Yrd. Doç. Dr. Diclehan Tezcaner Öztürk 

 

Ocak 2018, 67 sayfa 

 

Bu tezde, iki boyutlu dinamik ortamda bulunan insansız hava araçlarının (İHA) 

rotalamasını çalıştık. İHA üs noktasından ayrılarak bütün hedeflere gidiyor ve üs 

noktasına geri dönüyor. Bu esnada bütün hedefler yerlerini değiştiriyorlar. Rota 

planlayıcısı için toplam mesafeyi en aza indirmeyi ve toplam radara yakalanma 

tehdidini en aza indirmeyi amaçlayarak en iyi rotayı buluyoruz. 

Lineer ve ikinci dereceden tercih fonksiyonuna sahip rota planlayıcısı için en tercih 

edilen turu bulmak için gerçek zamanlı bir algoritma geliştirdik. Bu algoritmada, her 

hedef arası etkin sınırları yapılandırıyoruz ve her ikili arasındaki uçuş güzergahlarına 

göre en iyi rotayı buluyoruz. Algoritma, İHA bir hedefe ulaşınca rotayı güncelliyor. 

İHA’nın yolculuğunun sonunda üs noktasına dönmesi gerektiği için, her hedef 

ziyaretinde çok amaçlı gezgin satıcı problemi yerine çok amaçlı en kısa Hamiltonian 

yol problemi çözdürüyoruz. Hesaplama yükünü azaltmak için, k-en yakın sezgisel 

algoritmayı geliştirdik. Her hedef çifti için bütün etkin sınırları bulmaktansa, her hedef 

için en yakın k hedefi seçip sadece onların etkin sınırlarını yapılandırıyoruz. Buna ek 

olarak, k’nın değerini belirlemek için uyarlanabilir bir algoritma geliştirdik. İkinci 
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dereceden tercih fonksiyonuna sahip rota planlayıcısı için, her hedef çifti için 𝑛 tane 

etkin uçuş güzergahı seçip rota bulduk. Burada, 𝑛 = 1 ve 𝑛 > 1 olduğu durumları 

ayrı ayrı ele aldık. Bütün algoritmaları farklı örneklerde gösterdik.  

Anahtar kelimeler: insansız hava aracı rotalama, gerçek zamanlı rotalama, çok amaçlı 

programlama, k-en yakın sezgisel algoritma, doğrusal tercih fonksiyonu, ikinci 

dereceden tercih fonksiyonu  
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

Unmanned Air Vehicles (UAVs) are unpiloted aircrafts that have been used for both 

military and civilian purposes such as reconnaissance, surveillance against crimes, 

agricultural applications, weather forecast, hurricane detection, transportation and 

minimizing hazardous effects of natural disasters. UAVs have substantial advantages 

over conventional aircrafts. The most noteworthy of them are listed below. Firstly, 

there is no need for a qualified on-board pilot to operate UAVs. As there is no pilot, 

human fatigue is not an issue in determining the flight duration.  Secondly, UAVs are 

mostly equipped with high-resolution video-recording capabilities to get aerial video 

of distant locations that would be risky for the pilots. Moreover, in some military 

applications, UAVs are equipped with weapons to destroy enemy targets. Lastly, the 

initial costs and operational costs (fuel and maintenance) of UAVs are much cheaper 

than those of conventional aircrafts. Owing to these advantages, use of UAVs, where 

practical, has increased significantly over the years.  

Route planning for these vehicles comprises determining the path of the UAV visiting 

the targets. Many criteria could be considered in these problems such as distance 

traveled, radar detection threat and risk posed by a UAV to third parties on the ground. 

Although a single objective, that is an aggregation of multiple objectives, is used in 

many applications, there is usually a tradeoff between the objectives that needs to be 

taken into account. Minimizing distance traveled and minimizing radar detection 

threat are two meaningful conflicting objectives in many military applications. In the 
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literature, this problem is studied in different domains. Either the terrain is discretized 

and the move of the UAV is limited or a continuous terrain is used where the UAV is 

allowed to move to any point in the terrain. Different solution methods are developed 

for static environments where the terrain structure is fixed and for dynamic 

environments where the terrain structure changes in time. 

In this thesis, we develop algorithms to find routes for a UAV in real-time under a 

dynamic environment where the targets change their locations in time. The UAV 

moves in continuous terrain, and the routes are structured considering two criteria; 

minimizing distance traveled and minimizing radar detection threat. We develop 

algorithms that find the most preferred solution of the route planner (RP) whose 

underlying preference functions are linear and quadratic. For computational 

efficiency, we also develop heuristic algorithms addressing both preference functions. 

Additionally, we establish an adaptive algorithm for underlying linear preference 

functions. We demonstrate all algorithms on different examples. 

The thesis unfolds as follows: in Chapter 2, we present the literature on the UAV route 

planning problem. We give the background and the problem definition in Chapter 3. 

In Chapter 4, we explain our solution methods for underlying linear and quadratic 

preference functions and demonstrate our algorithms on examples. In Chapter 5, we 

give our conclusions. 
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CHAPTER 2 

 

 

1 LITERATURE REVIEW 

 

 

 

There are many studies on the multi-objective route planning of UAVs in the 

literature. These studies can be classified according to whether the environment is 

static or dynamic. In a static environment, it is assumed that the conditions of the 

environment do not change in time. Therefore, when the route of the UAV is 

determined, this route is valid until the end of the mission of the UAV. We first explain 

the studies where the UAV visits a single target in a static environment. Bortoff (2000) 

developed a two-step algorithm to generate an optimal UAV path over a hostile 

territory in a two-dimensional static environment. In the first step, a suboptimal rough-

cut path is generated through the radar sites. In the second step, a set of nonlinear 

ordinary differential equations are solved to minimize the objective function that is a 

weighted sum of the two objectives: path length, and average distance from the radar 

sites. Kuwata et al. (2004) also developed a two-phase algorithm. In the first phase, a 

linear programming model is solved to find visibility of graph to avoid exposure to 

threats in a three-dimensional static environment. In the second phase, the Dijkstra’s 

algorithm is used to design a detailed trajectory. Xu et al. (2006) applied Particle 

Swarm Optimization to find a path for the UAV in a two-dimensional static 

environment. They consider two objectives (the flight time and safety). Allaire et al. 

(2009) developed a Genetic Algorithm to find a minimum path within the safety zone 

for the UAV in a three-dimensional static environment. Swartzentruber et al. (2009) 

used Particle Swarm Optimization to find a path for the UAV in a three-dimensional 

static environment. The resulting path is optimized with a preference towards 
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maximum safety, minimum fuel consumption, and target reconnaissance. Rudnick-

Cohen et al. (2016) presented four different optimization approaches (Network 

Optimization Approach, Local Improvement Approach, Greedy Improvement 

Approach, and Non-Network Approach) to find a path for the UAV in a three-

dimensional static environment. All algorithms minimize the risk posed by the UAV 

if it crashes during its operation and flight time.  

The following studies incorporate a dynamic environment to the UAV routing 

problem in different aspects. Zheng et al. (2005) developed an evolutionary algorithm 

to find a path for the UAV in a three-dimensional dynamic environment visiting a 

static target. They can handle unforeseeable changes in the environment like pop-up 

threats, and they also consider different kinds of mission constraints such as minimum 

route leg length, flying low altitude to avoid radar detection, maximum turning angle, 

and fixed approach vector to the goal position. Another study, Cruz et al. (2008) 

developed an Evolutionary Algorithm (EA) to find a path for multiple UAVs in a 

three-dimensional environment where the target is stable whereas there can be pop-

up threats. The EA tries to minimize the path length, the probability of kill, the flight 

altitude and the radar detection probability. For real-time route planning, the algorithm 

tries to avoid the new threats without considering two of the objectives, the flight 

altitude, and the path length. Ruz et al. (2008) used Mixed Integer Linear Program to 

find a path in three-dimensional dynamic environments where threat zones called 

popups are present. They take into account constraints such as maximum turning force 

which causes a minimum turning radius, maximum flying speed, and radar’s 

detection. Their objective function contains different measures of the quality in the 

solution of this problem, and the most important criterion is the minimization of the 

total flying time. Peng et al. (2012) developed Model Predictive Control and Particle 

Swarm Optimization Algorithm to find a path for the UAV in a three-dimensional 

dynamic environment where there are pop-up threats. Their cost function includes 

voyage cost, altitude cost, threat cost, and error cost that comes from deviation from 
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the shortest distance. Their algorithm first finds the reference route before the UAV 

starts its flight, based on the known information of the terrain and threats. During the 

UAV’s flight, as the UAV detects the environment and the threats, the route is 

replanned online. Chen et al. (2014) used the Voronoi diagram for path planning of 

the UAV in a two-dimensional dynamic environment. Initially, the radar threat field 

based on the Voronoi diagram is created, and the track performance indicators are 

established based on the radar threat and fuel costs. Then, an improved version of the 

Dijkstra’s algorithm is applied to reduce the planning time and to hit a moving target 

effectively.  

We next explain some studies on the route planning of the UAV visiting multiple 

targets. O’Rourke (1999) developed a reactive tabu search heuristic suitable for 

solving traveling salesperson problem (TSP) and vehicle routing problem (VRP). His 

objective function minimizes travel cost and penalties for violation of time windows, 

load capacity, and duration. If a pop-up target appears, the UAV goes to this target 

directly rather than following a potentially sub-optimal route. Location of the pop-up 

target becomes a new starting point, and the remaining targets are processed in a route 

that returns the UAV to the depot. Another study, Kinney (2000) extended 

O’Rourke’s efforts in two main areas. He added the ability to route vehicles so as to 

avoid restricted time windows or time walls. He also provided a quicker solution using 

a jump search/tabu search (JTS) hybrid algorithm. Another study, Zhenjua et al. 

(2008) developed a Multiobjective Ant Colony System (MACS) algorithm to the 

UAVs route planning problem based on the Voronoi diagram in a two-dimensional 

static environment. Their objective function minimizes the route length and danger 

exposure.  

Kim et al. (2007) developed exact and non-exact methods for the target assignment 

problem for the cases where the UAV returns to the base and stays at the last target in 

a three-dimensional dynamic environment. They considered single and multiple 



 
 
6 

 
 

UAVs. Their objective function minimizes operating time and risk exposure. They 

first showed how the problem can be exactly formulated in MILP which is likely to 

be cumbersome as the problem size increases. They then showed theoretically as well 

as numerically that the non-exact methods perform well regarding optimality and 

computational complexity. The non-exact methods are alternative MILP formulations 

which are computationally less intensive and, therefore, suited for real-time purposes. 

Tezcaner and Köksalan (2011) developed an algorithm to find the most preferred 

solution of a decision maker who has an underlying linear preference function 

considering two objectives in a discretized terrain. For the same problem structure, 

Tezcaner Öztürk and Köksalan (2016) developed an algorithm to find the most 

preferred solution of a decision maker who has an underlying quasiconvex preference 

function. Tezcaner Öztürk (2013) developed methods to generate the nondominated 

frontier of the routes in a continuous terrain. For the same problem structure, Türeci 

(2017) developed algorithms to find the best solution for a decision maker having 

linear and quasiconvex preference functions. We explain these studies in detail in the 

following chapter. In this thesis, we study the dynamic version of this problem. 

Different than the previous studies in the literature where pop-up threats are included 

in the dynamic environment, in our problem setting, the locations of the targets change 

in time.   
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CHAPTER 3 

 

 

BACKGROUND & PROBLEM DEFINITION 

 

 

 

The multi-objective route planning problem of a UAV is studied well in the literature 

with different terrain structures, considering different objectives in a static or a 

dynamic environment. In this chapter, we give the specifics of our problem. We use 

the same problem structure and objectives as in Tezcaner Öztürk (2013) and Türeci 

(2017). We extend their studies by adding a dynamic environment to the problem.  

3.1 Definitions 

We present some notation and definitions that are directly taken from Tezcaner Öztürk 

and Köksalan (2016), and Smith (2003) before explaining our problem structure. We 

specify where we take each part from at the part we introduce it. 

Assume, without loss of generality, we have 𝑝 objectives to minimize. Let 𝑥 be the 

decision variable vector, and 𝑋 be the feasible set. The image of the feasible set in 

objective function space is denoted with 𝑍. The objective function vector for decision 

vector 𝑥 is 𝑧(𝑥) = (𝑧1(𝑥), 𝑧2(𝑥), … , 𝑧𝑝(𝑥)), where 𝑧𝑘(𝑥) is the performance of 

solution 𝑥 ∈ 𝑋 in objective 𝑘. 

We take definitions 3.1-3.4 directly from Tezcaner Öztürk and Köksalan (2016). 

Definition 3.1 A solution 𝑥 ∈ 𝑋 is efficient if there does not exist 𝑥′ ∈ 𝑋 such that 

𝑧𝑘(𝑥′) ≤ 𝑧𝑘(𝑥) for 𝑘 = 1,2, … , 𝑝 and 𝑧𝑘(𝑥′) < 𝑧𝑘(𝑥) for at least one objective. If 

there is such an 𝑥′, 𝑥 is said to be inefficient. All efficient solutions constitute the 

efficient frontier (set).  
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Definition 3.2 If a solution 𝑥 ∈ 𝑋 is efficient, then 𝑧(𝑥) is said to be nondominated, 

and if 𝑥 is inefficient, and then  𝑧(𝑥) is said to be dominated. All nondominated points 

constitute the nondominated frontier (set). 

Definition 3.3 A nondominated solution 𝑧(𝑥) is a supported nondominated solution 

if and only if there exists a positive linear combination of objectives minimized by 𝑥. 

If 𝑧(𝑥) is a supported nondominated solution then 𝑥 is supported efficient solution. 

Otherwise, 𝑧(𝑥) is an unsupported nondominated solution and 𝑥 is unsupported 

efficient solution. 

Definition 3.4 An extreme nondominated point 𝑧(𝑥) is a supported nondominated 

point that has the minimum possible value in at least one of the objectives. 

Definition 3.5 (Smith, 2003) A multigraph is formed from two parts. First, there is a 

set of points, called nodes or vertices, and second there is a set of lines which join 

pairs of these points. These lines are known as arcs or edges. For the convenience, 

this combination will be referred to as G= (V, E) with a vertex set V and an edge set 

E.  

In this thesis, we use “target” and “trajectory” to refer to “node” and “edge,” 

respectively. 

Definition 3.6 A Hamiltonian path is a sequence of trajectories that visits each vertex 

exactly once. In this thesis, we use a Hamiltonian Path and a route interchangeably. 

Shortest Hamiltonian Path Problem (SHPP) is the problem of finding a shortest 

Hamiltonian Path. 

Definition 3.7 A Hamiltonian tour is a sequence of trajectories that visits each vertex 

exactly once and returns to the starting vertex. A problem where a Hamiltonian tour 

that minimizes the total travel distance is found is called the TSP. 
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3.2 Terrain Structure 

The UAV is located at a base point, aims to visit all targets once and return to the base 

point. During its travel to all targets, the vehicle is allowed to move to any point in a 

two-dimensional terrain. A number of radars are located in the terrain. An example 

terrain can be seen in Figure 3.1, where the circular regions are areas where the radars 

are effective, the triangles are the target points, and the dashed lines are example tours 

that visit all targets.  

 

 

 

 

 

     Figure 3.1 Terrain Structure 

The radar is located at the center of the radar region, and it is ineffective in detecting 

the UAV outside its region. Inside the radar region, we have two parts: inner and outer 

regions. These two regions can be seen in Figure 3.2.  

 

 

 

 

 

     Figure 3.2 Radar Region 
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Inner Radar Region
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3.3 Objectives 

The features of the UAV and its mission’s purpose determine the objectives for the 

UAV route planning problem. Some objectives used in the literature are minimizing 

traveled distance, maximizing average distance from the radar sites, maximizing 

safety, minimizing the risk posed by the UAV if it crashes during its mission, 

minimizing flight altitude, minimizing radar detection probability, and minimizing 

error cost that comes from deviation from the possible shortest distance. In this thesis, 

to determine the best route the UAV follows, we consider two objectives: minimizing 

total distance traveled and minimizing radar detection threat.  

To find the total distance traveled, we sum the lengths of all the paths the UAV follows 

as in Tezcaner Öztürk (2013). The total distance between the initial target (𝑥𝑠, 𝑦𝑠) and 

the final target (𝑥𝑓 , 𝑦𝑓) can be calculated using (3.1). The expression 𝑑𝑠 in formula 

(3.1) represents the infinitesimal part in the movement of the vehicle betweeen the 

targets.  

𝐷 = ∫ 𝑑𝑠
(𝑥𝑓,𝑦𝑓)

(𝑥𝑠,𝑦𝑠)
                                  (3.1)                                                                                                  

For the second objective, we use the measure developed by Gudaitis (1994) and used 

in Tezcaner Öztürk (2013) and Türeci (2017). We sum the detection probabilities on 

the UAV’s path inside the radar regions. The detection probability is 1 in the inner 

radar region. The detection probability reduces from 1 to 0 as we move from the 

circumference of the inner radar region towards the circumference of the outer radar 

region. There is no detection probability outside of the radar region. The summation 

of these probabilities is a measure that approximates how long the vehicle is exposed 

to that much radar detection probability. The detection probability of a point (x, 

y)( 𝑝𝑑(𝑥,𝑦)) is calculated using (3.2) and it depends on the S/N (signal-to-noise ratio) 

of that point (Equation 3.3) inside a radar region with center at (𝑘, 𝑙). Total radar 

detection threat (3.4) is the summation of all the detection probabilities over the 
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trajectory between the initial target (𝑥𝑠, 𝑦𝑠) and final target (𝑥𝑓 , 𝑦𝑓). Realistic values 

are assigned to upper bound (UB) and lower bound (LB) to reach meaningful results.   

Let, 

𝑃𝑡: Power transmitted by radar (Watts) 

𝐺𝑡: Power gain of transmitting antenna 

𝐿𝑡: Transmitting system loss 

𝜆: Wave lenght of signal frequency (Meters) 

𝑇𝑠: Receive system noise temperature (Kelvin) 

𝐵𝑛:Noise bandwidth of receiver (Hertz) 

𝐾: Boltzman’s constant (Joules/Kelvin) 

𝜎: Aircraft radar cross section (RCS) (Square Meters) 

𝑅: Distance from the transmitter to aircraft’s location (𝑥, 𝑦) (Meters) 

𝑝𝑑(𝑥,𝑦): Detection probability at location (𝑥, 𝑦) 

𝑝𝑑(𝑥,𝑦) = {

1                                                 𝑖𝑓 𝑆/𝑁(𝑥,𝑦) > 𝑈𝐵𝑆 𝑁⁄

𝑆/𝑁(𝑥,𝑦)−𝐿𝐵𝑆 𝑁⁄

𝑈𝐵𝑆 𝑁⁄ −𝐿𝐵𝑆 𝑁⁄
                       𝑖𝑓 𝐿𝐵𝑆 𝑁⁄ < 𝑆/𝑁(𝑥,𝑦) ≤ 𝑈𝐵𝑆 𝑁⁄

0                                                  𝑖𝑓 𝑆/𝑁(𝑥,𝑦) ≤ 𝐿𝐵𝑆 𝑁⁄

                  (3.2) 

𝑆/𝑁(𝑥,𝑦) = 10𝑙𝑜𝑔10 (
𝐶 

𝑅4
)   where 𝐶 =

𝑃𝑡𝐺𝑡
2𝜆2𝜎

(4𝜋)3𝐾𝑇𝑠𝐵𝑛𝐿𝑡
2  &  𝑅 = ((𝑥 − 𝑘)2 + (𝑦 − 𝑙)2)

1

2                         

(3.3) 

𝑅𝐷𝑇 = ∫ 𝑝𝑑(𝑥,𝑦)𝑑𝑠
(𝑥𝑓,𝑦𝑓)

(𝑥𝑠,𝑦𝑠)
                                                                                       (3.4) 
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3.4. Problem Structure  

The route planning problem with multiple targets to be visited is a TSP. In this 

problem, the aim is to find a tour that starts from a base, visits all targets and returns 

to the base while optimizing some objectives. The most widely used objective is 

minimizing the total distance. If there are multiple objectives to be optimized, the 

problem turns to a MOTSP.  

In the literature, most studies on UAV route planning problem assume that the targets 

are connected with a single efficient trajectory. Although this might be the case for 

some target pairs, we expect to have multiple efficient trajectories between target pairs 

under the presence of conflicting objectives. MOTSP with multiple efficient 

trajectories is referred as generalized MOTSP and is studied in Tezcaner and Köksalan 

(2011), in Tezcaner Öztürk and Köksalan (2016), and in Köksalan and Tezcaner 

Öztürk (2017). The first two studies develop algorithms to find the most preferred 

solution of a decision maker with underlying linear and quasiconvex preference 

functions, respectively. The last study approximates the nondominated frontier of this 

problem using an evolutionary algorithm. 

In the MOTSP with a single efficient trajectory between targets, the aim is to find the 

visiting order to the targets. In the generalized MOTSP, we find both the visiting order 

to the targets and (since there are multiple options for the trajectories that can be used 

between target pairs) the trajectory to use between target pairs. The studies on 

generalized MOTSP (Tezcaner and Köksalan, 2011, Tezcaner Öztürk and Köksalan, 

2016, and Köksalan and Tezcaner Öztürk, 2017) assume that the terrain is discretized 

by grids, and the UAV is allowed to move only between the intersections points of 

the grids. We then have finite trajectory options between any two targets. However, 

in reality, the UAV can move to any point in the air so that there are infinitely many 

trajectory options between target pairs. In this study, we allow the UAV to move in a 

continuous terrain. Tezcaner Öztürk (2013) and Türeci (2017) are two studies on 
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routing UAVs in continuous terrain. Tezcaner Öztürk (2013) develop approaches to 

find the nondominated frontier of the overall problem, and Türeci (2017) develop 

interactive algorithms that find the most preferred solution of RPs with linear and 

quasiconvex preference functions.  

For the generalized MOTSP, the solution approach can be decomposed into two parts. 

Firstly, the efficient trajectories between target pairs should be found. This part is a 

multi-objective shortest path problem (MOSPP). After all efficient trajectories are 

found, the tour visiting all targets should be found. For the continuous terrain, 

Tezcaner Öztürk (2013) developed a nonlinear mathematical model that finds the 

optimal tour given one objective value.  

MOTSP with a single efficient trajectory between target pairs is NP-hard, and MOSPP 

is NP-complete and intractable (Ehrgott, 2000). This means finding a solution to these 

problems requires substantial computational effort, and as the problem size gets 

larger, the computational effort required increases considerably. The generalized 

MOTSP is also NP-hard. The solution approaches generally require substantial 

computational time for these problems. Although the problem is NP-hard, it is not so 

critical for us since UAVs do not need to visit too many targets. In this thesis, we use 

problems that have up to 15 targets. 

In this study, we relax the assumption that all locations of the targets are static. We 

allow the targets to change their locations during the travel of the UAV. We assume 

that the moves of the targets are not known in advance by the RP, but the exact 

locations of all the targets are known when the UAV visits a target. In a time between 

the departure of the UAV from any target and the arrival of the UAV to the next target, 

we assume that each target moves in a single direction with a constant velocity. As 

the UAV can detect the directions and the velocities of the targets, we find the point 

where the UAV catches the next target exactly. 
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With the assumptions stated above, the problem is still a generalized MOTSP with 

multiple efficient trajectories between target pairs. We can solve the generalized 

MOTSP before the UAV initiates its flight and let the UAV follow this initial route. 

However, this initial route of the UAV may become dominated as the targets change 

their locations, some get closer, and some get farther, and we might need to restructure 

the route. This update can be done more accurately when the new locations of the 

targets are known. Thus, we update the route as we visit each target on the route. 

Although the initial problem (with all targets to be visited) is a generalized MOTSP, 

as we visit targets, we only need to find a route that visits the targets that the UAV 

has not visited yet. This problem is a SHPP. Therefore, we need to solve a new SHPP 

after visiting each target in real time. In this problem, we need to start from the target 

the UAV is currently at; we need to visit all the remaining targets, and terminate at 

the base point. The resulting solution is not a tour for this problem but a path starting 

from one target, visiting all targets and going to a final target. SHPP is also NP-hard 

(Karger et al., 1995). 

                (a) The initial map     (b) The map after visiting target 4 

Figure 3.3 The location of the targets and the best routes initially and after visiting a target 

Figure 3.3 demonstrates the dynamic routing problem. Figure 3.3 (a) shows the initial 

map. Firstly, MOTSP is solved according to the initial map, and let tour 1-4-3-5-2-1 

is found as the most preferred solution of the RP. We assume that, while the UAV 
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moves to target 4 from target 1, all targets move in the directions shown by the arrows. 

When the UAV reaches target 4, it knows the exact locations of each target. Then, 

SHPP is solved for the updated map after visiting target 4, and the route 4-3-2-5-1 is 

found as the most preferred route of the RP (Figure 3.3 (b)). The RP prefers another 

route after visiting target 4, for the current locations of the targets that have not been 

visited yet.  

 

3.5 Movements of the UAV 

As the UAV is allowed to move to any point in the continuous terrain, there are 

infinitely many trajectories between each target pair and the combinations of these 

trajectories make infinitely many tours visiting all targets. In our solution approach, 

we firstly find the efficient trajectories between each target pair. This problem is a 

MOSPP between target pairs. We then find a route made of these efficient trajectories. 

This problem is a MOTSP with multiple efficient trajectories between target pairs. 

Tezcaner and Köksalan (2011) refer this problem as generalized MOTSP. In this 

section, we first explain the movement types between two targets.  

 

3.5.1 Movement between Two Targets 

The properties of the movements between two targets are developed by Tezcaner 

Öztürk (2013). There are three different movement types between each target pair.  If 

the shortest path between two targets does not intersect with a radar region, we have 

only one efficient trajectory (with the smallest distance and zero radar detection 

threat) between those targets. We refer this type of move as Type 1. For Type 2 moves, 

the shortest path between a target pair intersects a radar region and passes through 

only the outer radar region but not the inner radar region. For Type 3 moves, the 

shortest path between a target pair passes through both the outer and inner radar 
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regions. The three movement types can be seen in Figure 3.4.The points (𝑥𝑒𝑛, 𝑦𝑒𝑛) 

and (𝑥𝑒𝑥, 𝑦𝑒𝑥) represent the entrance and exit points from the outer radar region, 

respectively. The entrance and exit points from the inner radar region are the points 

(𝑥𝑖𝑒𝑛, 𝑦𝑖𝑒𝑛) and (𝑥𝑖𝑒𝑥, 𝑦𝑖𝑒𝑥) in Figure 3.4(c), respectively. If there is more than one 

radar between any target pair, we select the radar whose detection threat value is the 

highest as the effective radar, and ignore the detection threat from the other radars.  

 

(a) Type 1 Move                                                 (b) Type 2 Move 

 

 

 

            

(c) Type 3 Move       

Figure 3.4 Movement Types 

In Type 1, the shortest trajectory between two targets does not pass through the radar 

region. As a result, there exists a single efficient trajectory between those targets with 

the shortest distance and zero radar detection threat. Assuming that one target is 

located at coordinates (𝑥𝑠, 𝑦𝑠), and the other target located at coordinates (𝑥𝑓 , 𝑦𝑓), we 

calculate the total distance (𝐷) with equation (3.4). This is the Euclidean distance 

which is shown in Figure 3.4(a). 
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𝐷 = √(𝑥𝑓 − 𝑥𝑠)
2

+ (𝑦𝑓 − 𝑦𝑠)
2
                          (3.5) 

In Type 2, as the shortest path between a target pair intersects the radar region, there 

are infinitely many efficient trajectories between those targets. At the same time, each 

efficient trajectory enters and leaves the radar region from different points and passes 

through only the outer radar region. One example of Type 2 trajectories can be seen 

in Figure 3.4(b). 

Inside the outer radar regions, we assume that the vehicle follows a circular path as if 

it is moving on a circle, (𝑥 − 𝑎)2 + (𝑦 − 𝑏)2 = 𝑟2, centered at (𝑎, 𝑏) with radius 𝑟. 

The distance and radar detection threat measure are calculated with equations (3.6) 

and (3.7), respectively.  

𝐷 = √(𝑥𝑒𝑛 − 𝑥𝑠)2 + (𝑦𝑒𝑛 − 𝑦𝑠)2 + 2. 𝑎𝑟𝑐𝑠𝑖𝑛 (
√(𝑥𝑒𝑥−𝑥𝑒𝑛)2+(𝑦𝑒𝑥−𝑦𝑒𝑛)2

2𝑟
) . 𝑟 +

√(𝑥𝑓 − 𝑥𝑒𝑥)
2

+ (𝑦𝑓 − 𝑦𝑒𝑥)
2
           (3.6) 

𝑅𝐷𝑇 = ∫ (
10

𝑈𝐵𝑆 𝑁⁄ −𝐿𝐵𝑆 𝑁⁄
𝑙𝑜𝑔10 (

𝐶

(𝑥2+(√𝑟2−(𝑥−𝑎)2+𝑏)
2

)
2) −

𝑥𝑒𝑥

𝑥𝑒𝑛

𝐿𝐵𝑆 𝑁⁄

𝑈𝐵𝑆 𝑁⁄ −𝐿𝐵𝑆 𝑁⁄
) . √

𝑟2

𝑟2−(𝑥−𝑎)2 𝑑𝑥           (3.7) 

In distance calculation, as the UAV follows a straight line outside the radar region, 

the distance between the initial target (𝑥𝑠, 𝑦𝑠)  and the entrance point (𝑥𝑒𝑛, 𝑦𝑒𝑛) to the 

radar region, and the distance between the destination target (𝑥𝑓 , 𝑦𝑓) and the exit point 

(𝑥𝑒𝑥, 𝑦𝑒𝑥) from the radar region are the Euclidean distances. The second term is the 

length of the arc traveled inside the outer radar region. It gives the circular distance 

between the entrance and exit points. 
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Equation 3.7 gives the total radar detection threat value for the arc traveled inside the 

outer radar region. Details of this formula can be seen in Tezcaner Öztürk (2013).  

In type 3, the efficient trajectories between two targets pass through both the outer 

and the inner radar regions. Inside the outer radar region, it is assumed that the UAV 

makes a circular movement as in Type 2 (centered at (𝑎, 𝑏) with radius r). Inside the 

inner radar region, as the detection probability is 1, there is only one objective: 

minimizing the distance traveled. Consequently, the UAV follows a straight path 

inside the inner radar region. One example of a Type 3 trajectory is illustrated in 

Figure 3.4(c). 

Formulas for the total distance and total radar detection threat are given in (3.8) and 

(3.9), respectively. Here, (𝑥𝑖𝑒𝑛, 𝑦𝑖𝑒𝑛) is the entrance point to the inner radar region 

and (𝑥𝑖𝑒𝑥, 𝑦𝑖𝑒𝑥) is the exit point from the inner radar region. 

𝐷 = √(𝑥𝑒𝑛 − 𝑥𝑠)2 + (𝑦𝑒𝑛 − 𝑦𝑠)2 + 2. 𝑎𝑟𝑐𝑠𝑖𝑛 (
√(𝑥𝑖𝑒𝑛−𝑥𝑒𝑛)2+(𝑦𝑖𝑒𝑛−𝑦𝑒𝑛)2

2𝑟
) . 𝑟 +

√(𝑥𝑖𝑒𝑥 − 𝑥𝑖𝑒𝑛)2 + (𝑦𝑖𝑒𝑥 − 𝑦𝑖𝑒𝑛)2 + 2. 𝑎𝑟𝑐𝑠𝑖𝑛 (
√(𝑥𝑒𝑥−𝑥𝑖𝑒𝑥)2+(𝑦𝑒𝑥−𝑦𝑖𝑒𝑥)2

2𝑟
) . 𝑟 +

√(𝑥𝑓 − 𝑥𝑒𝑥)
2

+ (𝑦𝑓 − 𝑦𝑒𝑥)
2
                                    (3.8) 

𝑅𝐷𝑇 = ∫ (
10

𝑈𝐵𝑆 𝑁⁄ −𝐿𝐵𝑆 𝑁⁄
𝑙𝑜𝑔10 (

𝐶

(𝑥2+(√𝑟2−(𝑥−𝑎)2+𝑏)
2

)
2) −

𝑥𝑖𝑒𝑛

𝑥𝑒𝑛

𝐿𝐵𝑆 𝑁⁄

𝑈𝐵𝑆 𝑁⁄ −𝐿𝐵𝑆 𝑁⁄
) . √

𝑟2

𝑟2−(𝑥−𝑎)2
𝑑𝑥 +

∫ (
10

𝑈𝐵𝑆 𝑁⁄ −𝐿𝐵𝑆 𝑁⁄
𝑙𝑜𝑔10 (

𝐶

(𝑥2+(√𝑟2−(𝑥−𝑎)2+𝑏)
2

)
2) −

𝐿𝐵𝑆 𝑁⁄

𝑈𝐵𝑆 𝑁⁄ −𝐿𝐵𝑆 𝑁⁄
) . √

𝑟2

𝑟2−(𝑥−𝑎)2 𝑑𝑥 +
𝑥𝑒𝑥

𝑥𝑖𝑒𝑥

√(𝑥𝑖𝑒𝑥 − 𝑥𝑖𝑒𝑛)2 + (𝑦𝑖𝑒𝑥 − 𝑦𝑖𝑒𝑛)2                                     (3.9) 
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In distance calculation, the first and the last terms are the lengths of straight paths 

outside the outer radar region. The middle term is the direct distance between the 

entrance point to the inner radar region and the exit point from the inner radar region. 

The rest are the lengths of the arcs traveled inside the outer radar region. 

In radar detection threat value calculation, the first and the second terms give the radar 

detection threat values corresponding to the circular paths inside the outer radar 

region. The last term is the radar detection threat value of the movement inside the 

inner radar region.  

 

3.5.2 Nondominated Frontiers of Type 1-2-3 Moves 

The structures of the nondominated frontiers of each move type are developed by 

Tezcaner Öztürk (2013). They enumerate all possible trajectories between two targets 

and generate the nondominated frontier of the problem. They end up with three 

different move types. Specifically, for moves of Type 1 we have a single 

nondominated point, for moves of Type 2 (Figure 3.5(a)) we have a nondominated 

frontier that is curved, and for moves of Type 3 (Figure 3.5(b)) we have a two-piece 

nondominated frontier (one piece is a straight line and the other is curved). We end 

up with a straight line part, since the UAV follows a different path in the inner radar 

region and we use a different formula to estimate the detection probability. In the 

figure, i and j represent the targets.  
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(a) Nondominated Frontier of Type 2              (b) Nondominated Frontier of Type 3 

Figure 3.5 Nondominated Frontiers of Type 2 and 3 Moves 

To structure the curved part of the nondominated frontiers, we use Lq distance 

functions. Lq distance functions were first developed by Köksalan (1999) in a 

scheduling context, and it can be applied to the curved, convex, and continuous parts 

of the nondominated frontiers. Later, Köksalan and Lokman (2009) showed on many 

combinatorial problems that a Lq distance function fitted using only a few 

nondominated points is able to approximate the nondominated set well. In order to fit 

a Lq distance function, we need three points on the nondominated frontiers; two points 

on the extremes of the curved-line and one central point, as shown in Figure 3.5. These 

three nondominated points can be found using exact or heuristic methods developed 

by Tezcaner Öztürk (2013). In the exact method, a nonlinear programming model is 

solved. In the heuristic, the trajectory with the smallest radar detection threat value is 

approximated for a given distance value. The heuristic searches for the smallest radar 

detection threat value using the property that it is a convex function of the entrance 

and exit points’ midpoint. Using Golden Section Search, we change that midpoint and 

converge to the midpoint that gives the best radar detection threat value.  

Left Extreme  

Right Extreme 

𝑥(𝑖,𝑗)
𝐿𝐸  

𝑥(𝑖,𝑗)
𝑅𝐸𝐶  

𝑥(𝑖,𝑗)
𝐿𝐸𝐶  

𝑥(𝑖,𝑗)
𝐿𝐸𝐶  

𝑥(𝑖,𝑗)
𝑅𝐸𝐶  
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Let (𝑐𝐿
1, 𝑐𝐿

2) and (𝑐𝑅
1, 𝑐𝑅

2) represent the first and second objective function values of 

the left and the right extreme points, respectively. Then, we find a central point 

(𝑐𝑐𝑒𝑛𝑡𝑟𝑎𝑙
1 , 𝑐𝑐𝑒𝑛𝑡𝑟𝑎𝑙

2 ) between the extreme points by applying the heuristic method 

developed by Tezcaner Öztürk (2013). We then fit the Lq distance function using 

(3.10) below. 

 (1 − 𝑧𝑓1
𝑚)𝑞 + (1 − 𝑧𝑓2

𝑚)𝑞 = 1        (3.10) 

where, 𝑧𝑓𝑚 = (𝑧𝑓1
𝑚, 𝑧𝑓2

𝑚) = (
𝑐𝑐𝑒𝑛𝑡𝑟𝑎𝑙

1  − 𝑐𝐿
1

𝑐𝑅
1− 𝑐𝐿

1 ,
𝑐𝑐𝑒𝑛𝑡𝑟𝑎𝑙

2  − 𝑐𝑅
2

𝑐𝐿
2− 𝑐𝑅

2 ) 

After finding these three nondominated points, we find the value of q in the equation 

(3.10) by using the bisection method. 

For Type 2 moves, we have two extreme movements as shown in Figure 3.6(a). To 

find the trajectory with the minimum distance and maximum radar detection threat, 

we let the UAV follow a straight path between targets. This movement can be seen in 

Figure 3.6 (a). In Figure 3.6 (b), the UAV does not enter the radar region and follows 

a path around the circumference of the outer radar region. Thus, it gives the trajectory 

with the maximum distance and minimum radar detection threat (that is zero). 

(a)Min 𝐷& Max 𝑅𝐷𝑇 Trajectory        (b) Max 𝐷 & Min 𝑅𝐷𝑇 Trajectory 

Figure 3.6 Extreme Movements of Type 2 

The structure of the nondominated frontier for type 2 moves can be seen in Figure 

3.5(a). The left extreme point of the curve (𝑥(𝑖,𝑗)
𝐿𝐸𝐶) corresponds to the trajectory which 
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has the minimum distance and maximum radar detection threat between targets 𝑖 and 

j (see Figure 3.6 (a)). The right extreme point of the curve (𝑥(𝑖,𝑗)
𝑅𝐸𝐶) corresponds to the 

trajectory which has the maximum distance and minimum radar detection threat 

(Figure 3.6 (b)). 

As the type 3 moves have a two-piece nondominated frontier, we need to find the 

extreme points of each piece of the nondominated frontier. For the straight line of the 

nondominated frontier, we need to find the shortest distance trajectory (Figure 3.7 (a)) 

and minimum distance trajectory (Figure 3.7 (b)) that does not enter the inner radar 

region. For the curved part, we additionally need to find the maximum distance 

trajectory (Figure 3.7 (c)) that does not enter the outer radar region. 

(a) Min 𝐷 & Max 𝑅𝐷𝑇 Traj                (b) Min D traj without entering the inner radar 

 

 

 

 

(c) Max 𝐷 & Min 𝑅𝐷𝑇 Trajectory 

Figure 3.7 Extreme Movements of Type 3  
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In Figure 3.5(b), the structure of the nondominated frontier of type 3 moves is given. 

The left extreme solution of the nondominated frontier (𝑥(𝑖,𝑗)
𝐿𝐸 ) represents the shortest 

path between targets (Figure 3.7 (a)). The left extreme of the curved part (𝑥(𝑖,𝑗)
𝐿𝐸𝐶) 

represents the trajectory that does not enter the inner radar region but passes around 

the boundary of inner and outer regions (Figure 3.7 (b)). The right extreme 

solution(𝑥(𝑖,𝑗)
𝑅𝐸𝐶) represents the path with zero radar detection threat (Figure 3.7 (c)).  
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CHAPTER 4 

 

 

SOLUTION APPROACH & RESULTS 

 

 

 

In this chapter, we explain our solution approaches we developed for routing problem 

in a dynamic environment. We consider two different underlying preference functions 

for the RP, linear and quadratic. For these two functions, we develop algorithms to 

find (or approximate) the most preferred route of the RP. For both approaches, we 

solve MOTSP and MOSHPP. We first introduce the mathematical models of MOTSP 

and MOSHPP. We next explain our solution approaches and give their computational 

results.  

 

4.1 Mathematical Models of MOTSP and MOSHPP 

We first give some definitions that are common to both models. We then introduce 

the generalized MOTSP formulation. We change some constraints of the MOTSP 

model to obtain the MOSHPP model. For both formulations, we assume that there are 

a finite number of efficient trajectories (𝐻𝑖𝑗) connecting target pair (i,j). Although this 

is not the case for multi-objective routing problems in continuous terrain, we use these 

formulations to find the most preferred solutions of the RP due to the structures of the 

preference functions and our assumptions.  

Sets: 

𝑇 : Set of targets 
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Decision Variables: 

𝑥𝑖𝑗
ℎ : 1 if ℎ𝑡ℎ efficient trajectory connecting targets (i, j) is used, 0 otherwise 

𝑢𝑖 : auxiliary variable 

Parameters: 

𝐻𝑖𝑗 : number of efficient trajectories between targets i and j. 

𝑐𝑖𝑗ℎ
𝑘 : objective k value of efficient trajectory h between targets i and j 

We next introduce the generalized MOTSP formulation as in Tezcaner Öztürk and 

Köksalan (2016).  

(MOTSP) 

Min 𝑧1=∑ ∑ ∑ 𝑐𝑖𝑗ℎ
1 𝑥𝑖𝑗

ℎ𝐻𝑖𝑗

ℎ=1𝑗∈𝑇𝑖∈𝑇                 (4.1) 

Min 𝑧2=∑ ∑ ∑ 𝑐𝑖𝑗ℎ
2 𝑥𝑖𝑗

ℎ𝐻𝑖𝑗

ℎ=1𝑗∈𝑇𝑖∈𝑇                 (4.2) 

S.to:  

∑ ∑ 𝑥𝑖𝑗
ℎ𝐻𝑖𝑗

ℎ=1𝑗∈𝑇 = 1             ∀ 𝑖 ∈ 𝑇           (4.3) 

∑ ∑ 𝑥𝑖𝑗
ℎ𝐻𝑖𝑗

ℎ=1𝑖∈𝑇  = 1             ∀ 𝑗 ∈ 𝑇           (4.4) 

𝑢𝑖 − 𝑢𝑗 + ∑ (|𝑇| − 1)𝑥𝑖𝑗
ℎ𝐻𝑖𝑗

ℎ=1 + ∑ (|𝑇| − 3)𝑥𝑗𝑖
ℎ𝐻𝑖𝑗

ℎ=1 ≥ |𝑇| − 2 ∀ 𝑖, 𝑗 ∈ 𝑇 − {1}, 𝑖 ≠ 𝑗

                             (4.5) 

1 ≤ 𝑢𝑖 ≤ |𝑇| − 1              ∀ 𝑖 ∈ 𝑇 − {1}                (4.6) 

𝑥𝑖𝑗
ℎ ∈ {0,1}                          ∀ 𝑖, 𝑗 ∈ 𝑇, ℎ = 1, … , 𝐻𝑖𝑗 

                    (4.7) 
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We minimize first and second objectives in (4.1) and (4.2), respectively. Departure 

from and arrival to each target are satisfied with Equations (4.3) and (4.4), 

respectively. Constraints (4.5) and (4.6) are the subtour elimination constraints which 

are the strengthened version of subtour elimination constraints of Miller, Tucker, and 

Zemlin (1960). Desrochers and Laporte (1991) developed this version.  

For the MOSHPP, we find the path starting from target ℓ and reaching target 1 (base 

point). We change constraints (4.3) and (4.4) such that only the targets that are not 

visited yet should both be arrived to and departed from. We should not depart from 

the base point and should not arrive at the current target again. Let the set of unvisited 

targets be M.  

∑ ∑ 𝑥𝑖𝑗
ℎ𝐻𝑖𝑗

ℎ=1𝑗∈𝑀∪{1} = 1           ∀ 𝑖 ∈ 𝑀 ∪ {ℓ}                 (4.8) 

∑ ∑ 𝑥𝑖𝑗
ℎ𝐻𝑖𝑗

ℎ=1𝑖∈𝑀∪{ℓ}  = 1                      ∀ 𝑗 ∈ 𝑀 ∪ {1}                 (4.9) 

We change constraints (4.3) and (4.4) with constraints (4.8) and (4.9), respectively. 

These constraints provide that there is no departure from visited targets except for 

where the UAV is currently located, and there is no arrival to visited targets except 

for the base target. In addition, constraints (4.5) and (4.6) are valid for all targets 

included in the set M for MOSHPP.  

 

4.2 Real-time Algorithm 

We develop a real-time algorithm that structures the route of the UAV each time a 

target is visited. Our algorithm consists of two phases. Before starting the algorithm, 

we assume that we interact with the RP and estimate the structure of the RP’s 

preference function. We explain the details of this step in the following sections. 
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Phase 1 - Initialization 

In the first phase, we find the initial route of the UAV starting from the base target. 

Let the base target be denoted as target 1, and assume that there are |𝑇| − 1 targets to 

be visited. Let 𝑀 be the set of targets that the UAV has not visited yet. At the start of 

the algorithm, 𝑀 = {2,3, … , |𝑇|}. 

At this phase, we solve the MOTSP for the initial placement of the targets. We obtain 

a tour that starts from and ends at target 1, and we find the trajectories to use between 

consecutive target pairs in the tour. Let the tour be 1-2-3-4-5-1 for a 5-target example. 

Target 1 is linked to two different targets in the resulting tour (targets 2 and 5), and, 

in a symmetrical problem setting, we need to choose which of those two targets to 

visit next. We compare the preference function values of the trajectories between 1 

and 2, and 1 and 5, using the equation of the preference function of the RP. We choose 

the trajectory that gives a better preference function value. Let ℓ indicate the selected 

target. We then update 𝑀 as 𝑀 = {2,3, … , |𝑇|} − {ℓ}. 

Phase 2 -  Real Time Phase 

In this phase, we solve the MOSHPP for the remaining targets that have not been 

visited yet. In the first execution of this phase, the UAV is at target ℓ, and there are 

|𝑇| − 2 targets to be visited. We obtain the new terrain setting for the current locations 

of the targets and based on this information, we derive the nondominated frontiers 

between each target pair in set 𝑀 ∪ {1, ℓ} except for the nondominated frontier 

between the target 1 and the target ℓ if it is not the last iteration. We then find the 

trajectory to be used between each target pair in set 𝑀 ∪ {1, ℓ}, and input this 

trajectory information to solve the MOSHPP. After the solution, we obtain a path that 

starts from target ℓ, ends at target 1, and visits all targets in 𝑀. Let the next target to 

be visited be denoted as ℓ′. We update 𝑀 as 𝑀 ← 𝑀 − {ℓ′}. We let the UAV follow 
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this path and when the UAV reaches target ℓ′, we follow the steps explained above. 

We repeat this phase until set 𝑀 becomes empty.      

We next give the steps of the two phases. 

PHASE 1 

Step 1: Solve MOTSP using the initial locations of the targets.   

Step 2: Find ℓ and set 𝑀= T-{1, ℓ}  

PHASE 2 

Step 1: Approximate the nondominated frontiers between all target pairs (i, j), i, jM 

∪ {1, ℓ}, (i, j) ≠ (1, ℓ), for the updated map.  

Step 2: Solve MOSHPP starting from ℓ and ending at 1, visiting all targets in M. Let 

ℓ′ be the target following ℓ in the MOSHPP.  

Step 3: Update ℓ ← ℓ′ and M←M-{ℓ′}. If M =, stop. Otherwise, go to Step 1. 

With our algorithm, we do not guarantee finding the optimal solution for the whole 

problem since there are many unknowns that we cannot account for. However, for 

given locations of targets, the solutions of MOTSP and MOSHPP give the optimal 

routes. 

In our problem, we assume that the locations of radars are static but our algorithm is 

applicable even if they are dynamic. For dynamic radars, at each execution of Phase 

2, we need to structure the nondominated frontiers between all target pairs for the new 

locations of the targets/radars.  
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4.2.1 Linear Preference Function (RT-L) 

In this section, we explain how we use our real-time algorithm for the dynamic routing 

problem to find the most preferred route of a RP whose underlying preference function 

is linear. 

The linear preference function (4.10) minimizes the summation of two objectives 

aggregated with weight 𝑤. Here, 𝑤 and 1- 𝑤 represent the importance the RP gives to 

the first and the second objectives, respectively. We minimize both objectives, 

therefore the most preferred solution of the RP is the solution that minimizes 𝑈(𝑥). 

𝑈(𝑥) = 𝑤 𝑧1(𝑥) + (1 − 𝑤) 𝑧2(𝑥) where 0 < 𝑤 < 1           (4.10) 

Here, 𝑧𝑖(𝑥) is the 𝑖𝑡ℎ objective’s value, and the objective values are normalized 

between 0 and 1 so that the weights (𝑤 and 1 − 𝑤) roughly represent the relative 

importance the RP associates with the corresponding objectives.  

In our solution approach, we assume that we interact with the RP before starting our 

algorithm and estimate the value of 𝑤∗ that structures the RP’s preference function. 

We use Türeci (2017)’s algorithm and find a narrow value range for 𝑤∗. We then set 

𝑤 to the middle point of that range and start our algorithm. 

During the algorithm, each time we search a new solution, we solve a MOTSP or a 

MOSHPP. However, we only input one efficient trajectory between each target pair 

to the model. Due to the structure of linear preference functions, the best tour 

optimizing (4.10) for a w uses the trajectories that optimize (4. 10) for that w between 

target pairs (Tezcaner and Köksalan, 2011).  In order to find this trajectory, we first 

check the movement type of the target pair. If the movement type is 1, then there is 

only one efficient trajectory which is the shortest distance trajectory, and we use this 

trajectory between that target pair. If the movement type is 2, we find the point where 

the derivative of the Lq distance function is equal to the derivative of the linear 
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objective function (4.10) on the Lq distance function. As the Lq distance function is 

nonlinear, we employ rood2d function in Matlab to solve this nonlinear equation. This 

is the trajectory which optimizes (4.10) for w between target pair that has movement 

type 2. If movement type of pair is 3, as type 3 has a two-piece nondominated frontier, 

we check both of the pieces. We find the point where the straight line part of the 

nondominated frontier intersects the linear objective function in addition to the point 

optimizing (4.10) on the curved part. We select the smaller one as the trajectory which 

optimizes (4.10) for w between the target pair that has movement type 3. Therefore, 

we reduce the infinitely many trajectory options between each target pair to one. The 

resulting problem turns into the classical TSP, where a single trajectory is assumed 

between each target pair. The mathematical model for this problem has 𝐻𝑖𝑗 = 1 for 

all target pairs.   

Before starting the route, we solve a MOTSP, and at each visit to the targets, we solve 

a MOSHPP. As we visit a new target, the cardinality of set 𝑀 decreases by 1 and we 

have a smaller problem to be solved. Even though our problem size decreases at each 

execution of Phase 2, the input preparation step (finding the nondominated frontiers 

of the trajectories between each target pair, and then, finding the best trajectory 

between each target pair) for the new setting requires considerable computational 

time. Also, we still solve NP-hard problems as explained above, and they require 

substantial computational time for large-sized problems. For our application, 

typically, the number of targets a UAV can visit is not too many and therefore the 

main computational burden is not in solving these problems to optimality. However, 

our approach should be employed in real-time, and we need to obtain results in short 

durations in order not to delay the flight of the UAV. To reduce the computational 

burden in Phase 2, we develop a heuristic that reduces the required computations for 

the input preparation step. In this heuristic, we may sacrifice from optimality for a 

gain in computational time. We next explain this heuristic. 
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4.2.2  k-Closest Heuristic  

As explained above, we develop a heuristic to reduce the computational burden. We 

first partitioned the algorithm into stages and recorded their solution times. The input 

preparation phase turns out to be the most time-consuming stage. In this stage, we 

structure the nondominated frontiers for all target pairs. For this, we first find the 

extreme nondominated points. Then we find solutions in the middle regions using the 

heuristic developed by Tezcaner Öztürk (2013). This heuristic employs Golden 

Section Search and partitions the solution space to find the solution that gives the 

smallest radar detection threat value for a given distance value. We use this heuristic 

once for each target pair that has more than one nondominated point. Then, we fit Lq 

distance function to their nondominated frontiers. On this function, we find the 

solution that minimizes equation (4.10) for a 𝑤 value. That is, we find the intersection 

of the Lq distance function with the assumed preference function by equating their 

slopes. We use binary search to fit the Lq distance function, and solve two nonlinear 

equations simultaneously to find the solution minimizing (4.10).   

We employ these steps for all target pairs, even if they are very distant and using the 

trajectories between these pairs in our solution is unlikely. To exploit this observation, 

for each target, we choose 𝑘 closest targets, and structure only these 𝑘 pairs’ 

nondominated frontiers. To decide on these closest targets, we evaluate their extreme 

nondominated points’ preference function values. For each target, the 𝑘 targets with 

the smallest preference function values are selected and the nondominated frontiers 

between those targets are structured. From these nondominated frontiers, the best 

solutions for a given 𝑤 are selected. If one target is not among the 𝑘 closest targets of 

another target, then the extreme nondominated point, with the smallest preference 

function value, is used as the best solution, although another solution on the frontier 

could be minimizing the preference function. We next give the steps of the 𝑘-closest 

heuristic. 
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 Let 𝑀′ =𝑀 ∪ {1, ℓ}, (i, j)≠(1, ℓ). 

For each target i ϵ 𝑀′: 

Step 1: Find the nondominated points (𝐴𝑖𝑗 and 𝐵𝑖𝑗) minimizing each objective, for 

each j ϵ 𝑀′, j ≠ i. 

Step 2: Let 𝑈𝑖𝑗 =min (U(𝐴𝑖𝑗), U(𝐵𝑖𝑗)). Choose 𝑘 closest neighbors (𝑘 smallest 𝑈𝑖𝑗 

values) of target i and place them in set 𝑄𝑖. 

Step 3: Fully structure the nondominated frontiers of (i, j) pairs, j ϵ 𝑄𝑖. 

Step 4: Find solution 𝑥 that minimizes 𝑈(𝑥) on the nondominated frontier of (i, j), j 

ϵ 𝑄𝑖. 

Step 5: Update 𝑈𝑖𝑗= 𝑈(𝑥) for (i,j), j ϵ 𝑄𝑖. 

With this heuristic, we have the possibility of missing some good solutions of some 

target pairs. However, overall, we avoid computation of the nondominated frontiers 

for many target pairs that are not used in the resulting tours.  

To obtain the best solution, we set 𝑘 to |𝑇| − 1. For 𝑘 = 𝑘′, 𝑘′ < |𝑇| − 1, we expect 

to obtain solutions that are at most as good as the results for 𝑘 = 𝑘′ + 1. 

k=0-Closest Heuristic 

This is the special case of 𝑘-closest heuristic. In this case, we do not structure any 

nondominated frontier. For each pair, the extreme nondominated point having the 

smaller preference function value, is used as the best solution. Using these trajectories, 

MOTSP and MOSHPP are solved.  

 

 



 
 

34 

 
 

4.2.3   Adaptive Algorithm  

The aim of the 𝑘-closest heuristic is to decrease the solution times. The smaller the 𝑘, 

the shorter the solution times. However, in theory, the value of 𝑘 is inversely 

proportional to the quality of the solution. Thus, when we determine 𝑘, we should take 

both objectives (the solution quality and the solution time) into consideration. Our 

motivation in this algorithm is to increase the value of 𝑘 (that is set initially to 0) if 

the solution of MOSHPP has the possibility of forming a different route. Thus, we 

develop a mechanism that firstly checks if higher 𝑘 values have the possibility of 

changing the route. If so, we increase the value of 𝑘 and structure more nondominated 

frontiers between target pairs. In each execution of Phase 2, we compare the values of 

a threshold and a gap to decide on the value of 𝑘. Although it is better to find new 

values of the threshold and gap each time the comparison is made, we set an initial 

value to the threshold and use it for all iterations. We recompute the value of gap each 

time we execute Phase 2. We explain the details of our algorithm below.  

The adaptive algorithm that determines the value of 𝑘 for each iteration contains two 

phases. In the initialization phase, we structure the nondominated frontiers of all target 

pairs, find the best trajectory between each target pair and solve TSP using these best 

trajectories. We refer this version as 𝑘=(|T|-1)-closest heuristic, which actually gives 

the best solution for the current location of the targets. The objective function 

coefficient of the TSP model for target pair (i,j) is the weighted combination of 𝑐𝑖𝑗ℎ
1  

and 𝑐𝑖𝑗ℎ
2  values in (4.1) and (4.2) for the best trajectory h. We also find the objective 

function coefficients of the TSP using 𝑘-closest heuristic for 𝑘 =0 (𝑘=0-closest 

heuristic).  Afterwards, for each decision variable, we subtract the objective function 

coefficients of the TSP for 𝑘=(|T|-1)-closest heuristic from the objective function 

coefficients of the TSP for 𝑘=0-closest heuristic. Then, we set the maximum objective 

function coefficient difference value as a threshold. This threshold is used in deciding 

whether 𝑘=0-closest heuristic is sufficient or not for further iterations. We do not 
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update this threshold in the following iterations because calculating a new threshold 

is a time-consuming process. In the following iterations, we apply 𝑘=0-closest 

heuristic, and we find the best and the second best route by solving SHPP. To find the 

second best route, we add a constraint that prevents model to reach the best route of 

the previous model. Afterwards, we calculate a gap which is the difference between 

the preference function values of the best route and the second best route. If this gap 

is greater than the threshold, we use the solution of 𝑘=0-closest heuristic. Otherwise, 

we repeat this iteration for a new 𝑘 value.  

We next explain our motivation for updating the value of 𝑘. We assume that the 

trajectory with maximum difference (for the 𝑘=(|T|-1) and 𝑘=0-closest heuristics) is 

not used in the solution of the SHPP. If the best trajectory for that target pair was used, 

we have the possibility of including that trajectory to the SHPP and improving the 

solution of the SHPP by that difference. If this difference is large enough to change 

the best route (by making the second best route the best route if threshold is greater 

than gap), we calculate better coefficient values by increasing the value of 𝑘.  The 

maximum value that 𝑘 can take depends on the number of unvisited targets. When we 

are setting the new value of 𝑘, we initially partition the range [0, threshold] into equal-

length intervals. The number of intervals equals the number of unvisited targets. We 

then set 𝑘 = |𝑀| − ⌊
𝑔𝑎𝑝

𝑖nterval−length
⌋.                  

To illustrate this method, we assume that there are 6 unvisited targets in a problem 

with 15 targets. In the ninth iteration, assume that the threshold is equal to 0.66 and 

the gap is equal to 0.2. As the gap is lower than the threshold, we need to determine a 

new 𝑘. We divide [0, 0.66] into 6 intervals of length 0.66/6=0.11. The intervals can 

be seen in Table 4.1. We then set 𝑘 to 6-floor(0.2/0.11)=5. 
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Table 4.1 Representation of the intervals in the adaptive algorithm 

Interval 1 2 3 4 5 6 

Range 0-0.11 0.11-0.22 0.22-0.33 0.33-0.44 0.44-0.55 0.55-0.66 

 

The gap falls in the second interval in Table 4.1. If the gap was higher than 0.66, we 

would accept the solution of 𝑘=0-closest heuristic. If the gap was 0.6, 𝑘=1-closest 

heuristic would be employed. Smaller values of the gap result in the need for higher 

precision in the solutions.  

We next give the steps of the adaptive algorithm. 

PHASE 1 

Step 1: (𝑘=(|T|-1)-closest heuristic) Structure the nondominated frontiers between all 

target pairs, find the best trajectory between each target pair, and find their 

corresponding objective function coefficients for the TSP. Let this be matrix 𝐶1 of 

dimensions 1 x |T|.|T|+|T|-1. Solve the TSP for 𝐶1. 

Step 2: Find the objective function coefficients of TSP according to the best extreme 

nondominated points. Let this be matrix 𝐶2 of dimensions 1 x |T|.|T|+|T|-1. 

Step 3: Find the threshold = max (𝑐2,1 − 𝑐1,1, 𝑐2,2 − 𝑐1,2, … , 𝑐2,|𝑇|.|𝑇|+|𝑇|−1 −

𝑐1,|𝑇|.|𝑇|+|𝑇|−1) 

PHASE 2 

Step 1: Solve SHPP using 𝑘=0-closest heuristic and let the preference function value 

of the best route be 𝑌1.   

Step 2: Find the second best route of SHPP using 𝑘=0-closest heuristic and let the 

preference function value of the second best route be 𝑌2.   
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Step 3: Set  gap = 𝑌2 − 𝑌1. 

Step 4: If  gap ≥  threshold then the solution of SHPP using 𝑘=0-closest heuristic is 

acceptable and go to step 1 for the next iteration. Otherwise, go to step 5. 

Step 5: Find the 𝑖nterval − length =
threshold 

|𝑀|
. 

Step 6: Find 𝑘′ = |𝑀| − ⌊
𝑔𝑎𝑝

𝑖nterval−length
⌋.  

Step 7: Solve SHPP using 𝑘 = 𝑘′-closest heuristic.  

 

4.2.4    Results  

4.2.4.1 Five-Target UAV Route Planning Problem 

Our first setting has one base point and 4 targets to be visited. In total, we have 5 

targets and 4 radar regions in a 400 km2 terrain. We are inspired from the setting of 

Tezcaner Öztürk (2013) but changed the locations of some targets and radars to reach 

different tours after solving TSP for the original problem and our algorithms. The 

initial locations of the targets and radars can be seen in Figure 4.1. The first target is 

the base point where the UAV starts and terminates its route.  
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   Figure 4.1 5-Target UAV Route Planning Problem 

We change the locations of the targets randomly by satisfying that there is no target 

in any radar region. We also assume that the targets can move with a speed that is one-

sixth of the speed of the UAV. We coded the algorithm in Matlab and used 

optimization package CPLEX to solve TSP and SHPP.  

Illustration of the Algorithm, k=4, w*=0.2 

We illustrate the real-time algorithm (𝑘 = 4) in Figure 4.2. The base point is target 1, 

and the UAV is at that target at time point 0. We assume that 𝑤∗ = 0.2 is the 

importance the RP gives to our first objective, distance traveled, and 0.8 is the 

importance of the second objective, radar detection threat. We solve the TSP for the 

initial setting and obtain tour 1-4-3-5-2-1 (Figure 4.2 (a)). We compare the preference 

function values of the trajectories between targets 1-2 and 1-4, and the trajectory 

between 1-4 gives smaller preference function value. Therefore, the UAV follows the 

trajectory between targets 1 and 4. When we find this trajectory, we use the final 

location of target 4 as the point where the UAV catches target 4. 
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 In Figure 4.2 (b), the new locations of the targets at the time the UAV visits target 4 

is given. The SHPP is solved for the targets that have not been visited yet, and the 

path 4-3-2-5-1 is found. We then visit target 3 and observe the new locations of the 

targets not visited yet. The new path at target 3 is found as 3-2-5-1. In Figure 4.2 (c), 

we show the new path starting from target 3. Figure 4.2 (d) is the final path going to 

the base point.    

(a) The initial tour                                                  (b) Hamiltonian path after visiting target 4 

 

(c) Hamiltonian path after visiting target 3            (d) Hamiltonian path after visiting target 2  

       

Figure 4.2 Illustration of the Algorithm, 𝒌 = 𝟒, 𝒘∗ = 𝟎. 𝟐 
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As can be seen from this example, the initial tour (1-4-3-5-2-1) is changed after the 

UAV visits target 4. The resulting tour is 1-4-3-2-5-1.  

 

Illustration of the Algorithm, k=4, w*=0.8 

In this part, we illustrate the solution approach for 𝑤∗ = 0.8. The importance of the 

first objective, distance traveled, is greater than the importance given to the second 

objective, radar detection threat. The results can be seen in Table 2. The initial tour is 

1-4-3-5-2-1 (Figure 4.3 (a)) but the visiting order after target 4 changes in the second 

iteration (Figure 4.3 (b)). The final route followed by the UAV is 1-4-3-2-5-1. 

 

(a) The initial tour                                                  (b) Hamiltonian path after visiting target 4 
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(c) Hamiltonian path after visiting target 3            (d) Hamiltonian path after visiting target 2        

Figure 4.3 Illustration of the Algorithm, 𝒌 = 𝟒, 𝒘∗ = 𝟎. 𝟖 

 

Computational Results of the Algorithm 

We next give the results of the algorithm for 𝑘 = 0, 2,3 and 4. We expect 𝑘 = 0,2 and 

3 to result in a final tour that is at most as good as 𝑘 = 4. 

We solve the algorithm RT-L for the following values of 𝑤; 0.2, 0.4, 0.6, and 0.8. The 

results can be seen in Table 4.2. For all 𝑤 values, we obtain the same results when 

𝑘 = 0, 2 and, 3 and when 𝑘 = 4, therefore we report their results in a single column. 

In the first three columns, we report the results if the UAV follows the initial route 

that we obtain in Phase 1 and do not update the path as new targets are visited. In the 

second three columns, we apply our algorithm and update the path as new targets are 

visited. The distance traveled (D) and radar detection threat (RDT) values of the 

trajectories are given for both cases, and in the second last row, the overall distance 

and radar detection threat values of the route of the UAV is given. For all w values, 

until the third iteration, the visit order is same. At the third iteration, the real-time 

algorithm changes the initial route. Overall, the routes of the real-time algorithm 

dominates the initial routes for w=0.2, 0.4, 0.6, and 0.8.  As we give more importance 
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to the first objective (higher 𝑤 values), in general, the total distance traveled decreases 

and the total radar detection threat increases. The preference function value of each 

tour is given in the last row. We calculate the preference function values of the final 

routes by multiplying each objective with their weights to compare the resulting tours. 

For all 𝑤 values, updating the initial route results in better preference function values 

compared to using the initial route of Phase 1.  

We report the solution times for 𝑘 = 0,2,3, and 4, after each target visit in Table 4.3. 

The solution durations generally decrease at each iteration since we have a smaller 

problem after each visit to one of the targets. The solution durations increase as the 

value of 𝑘 increases, as expected.  

Table 4.2 – Results of RT-L - 5-Target Problem 

w 
Initial Route Real-Time Routing (k=0,2,3,4) 

Trajectory D RDT Trajectory D RDT 

0.2 

1-4 13.4460 0.0515 1-4 13.4460 0.0515 

4-3 15.7020 0.0131 4-3 15.7020 0.0131 

3-5 13.9026 0.0219 3-2 16.7000 0.0052 

5-2 9.6470 0.1473 2-5 9.7541 0.0000 

2-1 14.4556 0.0000 5-1 9.0479 0.0977 

Tour Total 67.1532 0.2338 Tour Total 64.6500 0.1675 

Preference Function Value 13.6177 Preference Function Value 13.0640 

w 
Initial Route Real-Time Routing (|k=0,2,3,4) 

Trajectory D RDT Trajectory D RDT 

0.4 

1-4 13.3080 0.4644 1-4 13.3080 0.4644 

4-3 15.6070 0.1516 4-3 15.6070 0.1516 

3-5 13.6957 0.3669 3-2 16.6690 0.0556 

5-2 8.9639 1.7954 2-5 9.7541 0.0000 

2-1 14.4556 0.0000 5-1 8.6754 1.0171 

Tour Total 66.0302 2.7783 Tour Total 64.0135 1.6887 

Preference Function Value 28.0791 Preference Function Value 26.6186 
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Table 4.2 Continued 

w 
Initial Route Real-Time Routing (k=0,2,3,4) 

Trajectory D RDT Trajectory D RDT 

0.6 

1-4 13.1670 1.3758 1-4 13.1670 1.3758 

4-3 15.4030 0.8162 4-3 15.4030 0.8162 

3-5 13.3144 1.7154 3-2 16.6000 0.3129 

5-2 8.7273 2.9412 2-5 9.7541 0.0000 

2-1 14.4556 0.0000 5-1 8.4240 2.3089 

Tour Total 65.0673 6.8486 Tour Total 63.3481 4.8138 

Preference Function Value 41.7798 Preference Function Value 39.9344 

w 
Initial Route Real-Time Routing (k=0,2,3,4) 

Trajectory D RDT Trajectory D RDT 

0.8 

1-4 13.1180 2.0708 1-4 13.1180 2.0708 

4-3 15.2200 2.1095 4-3 15.2200 2.1095 

3-5 13.1655 2.8071 3-2 16.5160 1.0035 

5-2 8.7083 3.1464 2-5 9.7541 0.0000 

2-1 14.4556 0.0000 5-1 8.3780 2.8281 

Tour Total 64.6674 10.1338 Tour Total 62.9861 8.0119 

Preference Function Value 53.7607 Preference Function Value 51.9913 

 

Table 4.3 – CPU Times for RT-L (seconds) - 5-Target Problem 

k 
Iteration 

Total 
1 2 3 4 

0 2.7737 2.3909 2.7884 2.5944 10.547 

2 26.209 18.617 7.065 2.823 54.713 

3 28.387 23.556 7.152 2.635 61.730 

4 28.028 27.335 7.798 2.610 65.771 

 

In this problem, the initial route (IR) is dominated for all cases when compared to 

real-time routing (RT-L) (Figure 4.4). In addition, as the importance the RP gives to 

the first objective increases, the distance travelled decreases and the radar detection 

threat increases. 
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Figure 4.4 Results of IR and RT-L for the 5-target problem 

 

4.2.4.2 Nine-Target UAV Route Planning Problem 

Our second setting has one base point and 8 targets to be visited. In total, there are 9 

targets and 4 radar regions in a 400 km2 terrain. We are inspired from the setting of 

Türeci (2017). Target 1 is the base point again. We employ the same approach as in 

the 5-target example and change the locations of the targets randomly assuming that 

the targets can move with a speed that is one-sixth of the speed of the UAV.  

Results of the Algorithm 

We solve this problem for k = 0,2,3, and 8. We assume four different 𝑤 values; 0.2, 

0.4, 0.6, and 0.8. We give the results in Table 4.4. All the routes of the heuristics 

with k = 0,2,3 are the same as those of k = 8. The initial route changes at some point 

during the algorithm for 𝑤 = 0.2, 0.4, 0.6, and we obtain solutions that have better 
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preference function values than the initial route by using our algorithm. Only for 𝑤 =

0.8, we obtain the same tour even if we update the tour at each visit to the targets. We 

give a summary of the results in Figure 4.5. All solutions except for 𝑤 = 0.8 found 

by the initial route (IR) are dominated by our algorithm RT-L. For 𝑤 = 0.8 we find 

the same solution with IR and RT-L. 

We report the solution times in Table 4.5. We gain in computational times 

considerably by using the heuristic, and our solution quality is not worsened.  

Table 4.4 – Results of RT-L - 9-Target Problem 

w 
Initial Route Real-Time Routing (k=0,2,3,8) 

Trajectory D RDT Trajectory D RDT 

0.2 

1-5 5.5289 0.0000 1-5 5.5289 0.0000 

5-8 9.3764 0.0089 5-8 9.3764 0.0089 

8-3 7.3557 0.0059 8-3 7.3557 0.0059 

3-9 2.4750 0.0000 3-9 2.4750 0.0000 

9-4 5.5480 0.0000 9-4 5.5480 0.0000 

4-7 8.6491 0.0840 4-2 6.2181 0.0000 

7-2 5.9977 0.0191 2-7 6.0560 0.0138 

2-6 9.7032 0.0000 7-6 10.8670 0.0000 

6-1 10.7644 0.0133 6-1 10.7640 0.0133 

Tour Total 65.3984 0.1312 Tour Total 64.1891 0.0419 

Preference Function Value 13.1846 Preference Function Value 12.8713 

w 
Initial Route Real-Time Routing (k=0,2,3,8) 

Trajectory D RDT Trajectory D RDT 

0.4 

1-5 5.5289 0.0000 1-5 5.5289 0.0000 

5-8 8.0256 2.0079 5-8 8.0256 2.0079 

8-3 7.3124 0.0750 8-3 7.3124 0.0750 

3-9 2.4750 0.0000 3-9 2.4750 0.0000 

9-4 5.5480 0.0000 9-4 5.5480 0.0000 

4-7 8.3567 0.8155 4-2 6.2181 0.0000 

7-2 5.9102 0.2150 2-7 5.9927 0.1563 

2-6 9.7032 0.0000 7-6 10.8670 0.0000 

6-1 10.6849 0.1523 6-1 10.6850 0.1523 
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Table 4.4 Continued 

 
Tour Total 63.5449 3.2657 Tour Total 62.6527 2.3915 

Preference Function Value 27.3774 Preference Function Value 26.4960 

w 
Initial Route Real-Time Routing (k=0,2,3,8) 

Trajectory D RDT Trajectory D RDT 

0.6 

1-5 5.5289 0.0000 1-5 5.5289 0.0000 

5-8 7.3942 3.4674 5-8 7.3942 3.4674 

8-3 7.2261 0.3786 8-3 7.2261 0.3786 

3-9 2.4750 0.0000 3-9 2.4750 0.0000 

9-4 5.5480 0.0000 9-4 5.5480 0.0000 

4-7 8.1451 1.9291 4-2 6.2181 0.0000 

7-2 5.8293 0.5949 2-7 5.9253 0.4771 

2-6 9.7032 0.0000 7-6 10.8670 0.0000 

6-1 10.5306 0.7541 6-1 10.5310 0.7538 

Tour Total 62.3804 7.1241 Tour Total 61.7136 5.0769 

Preference Function Value 40.2779 Preference Function Value 39.0589 

w 
Initial Route Real-Time Routing (k=0,2,3,8) 

Trajectory D RDT Trajectory D RDT 

0.8 

1-5 5.5289 0.0000 1-5 5.5289 0.0000 

5-8 7.3892 3.4926 5-8 7.3892 3.4926 

8-3 7.1698 0.7996 8-3 7.1698 0.7996 

3-9 2.4750 0.0000 3-9 2.4750 0.0000 

9-4 5.5480 0.0000 9-4 5.5480 0.0000 

4-7 8.1003 2.4475 4-7 8.1003 2.4475 

7-2 5.8098 0.7940 7-2 5.8098 0.7940 

2-6 9.7032 0.0000 2-6 9.7032 0.0000 

6-1 10.4160 1.7120 6-1 10.4160 1.7120 

Tour Total 62.1402 9.2457 Tour Total 62.1402 9.2457 

Preference Function Value 51.5613 Preference Function Value 51.5613 
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Table 4.5 – CPU Times for RT-L (seconds) - 9-Target Problem 

k 
Iteration 

Total 
1 2 3 4 5 6 7 8 

0 1.1474 4.3572 2.9009 0.5953 0.5935 1.0255 4.8634 3.3068 18.7899 

2 12.1974 16.4278 8.6395 16.1356 8.8076 9.3296 7.5073 3.2480 82.2928 

3 35.2190 32.9728 28.7157 16.1758 16.3130 6.9202 9.3035 3.0500 148.6700 

8 60.6453 57.6695 33.4395 24.7435 17.3754 9.5500 7.3270 3.1666 213.9168 

 

Figure 4.5 Results of IR and RT-L for the 9-target problem 

 

Effects of 𝑤 Estimation 

We find a narrow range for the value of w using the interactive algorithm developed 

by Türeci (2017). We then set w to the middle value of this range and execute our 

algorithm. However, there is a possibility that we are using a wrong value for w and 

thus finding a route that is not preferred by the RP. To estimate the error in the 
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estimation of w, we also compute the routes as if w equals the end points of its range. 

We report the results for the 9-target problem.  

Suppose we obtain the range [0.6, 0.8] covering w. We thus set w to 0.7 and execute 

our algorithm. In Table 4.6, we give the results for the case where actual 𝑤 is 0.6. We 

find the same route for both cases and, since we use different trajectories between 

target pairs, the preference function value of our estimation is barely worse than the 

preference function value of the actual 𝑤. In Table 4.7, we assume that the actual 𝑤 

is 0.8 when our estimation of 𝑤 is 0.7. By coincidence, our estimation results in a 

better route.  For these two cases, the preference function values deviate by at most 

2.5% which can be tolerable for the RP.  

Table 4.6 Effects of 𝑤 = 0.7 estimation if actual 𝑤 = 0.6 

 Actual (0.6) Estimation (0.7) 

Preference Function Value 39.06 39.33 

Route 1-5-8-3-9-4-2-7-6-1 Same 

Change -0.70% 

 

Table 4.7 Effects of 𝑤 = 0.7 estimation if actual 𝑤 = 0.8 

 Actual (0.8) Estimation (0.7) 

Preference Function Value 51.56 50.46 

Route 1-5-8-3-9-4-7-2-6-1 1-5-8-3-9-4-2-7-6-1 

Change 2.14% 

 

4.2.4.3 Fifteen-Target UAV Route Planning Problem  

Our third setting has one base point and 14 targets to be visited. In total, there are 15 

targets and 4 radar regions in a 400 km2 terrain. Target 1 is the base point again. We 

employ the same approach as in the 5-target example and change the locations of the 

targets randomly assuming that the targets can move with a speed that is one-sixth of 

the speed of the UAV.  
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Results of the Algorithm 

We solve this problem for k = 0,2,3, and 14. We assume four different 𝑤 values; 0.2, 

0.4, 0.6, and 0.8. We give the results in Table 4.8. All the routes of the heuristic 

with k = 0,2,3 are the same as those of k = 14. The initial route changes at some 

point during the algorithm for 𝑤 = 0.2, 0.4, 0.6, and 0.8, and with our algorithm we 

obtain solutions that have better preference function values than the initial route. We 

give a summary of the results in Figure 4.6. 

We report the solution durations in Table 4.9. We again gain in computational times 

considerably by using the heuristic, and our solution quality is not worsened.  

Table 4.8 – Results of RT-L - 15-Target Problem 

w 
Initial Route Real-Time Routing (k=0,2,3,14) 

Trajectory D RDT Trajectory D RDT 

0.2 

1-4 15.7160 0.0141 1-4 15.7160 0.0141 

4-5 2.0998 0.0000 4-5 2.0998 0.0000 

5-6 5.6690 0.0000 5-6 5.6690 0.0000 

6-7 7.2094 0.0000 6-7 7.2094 0.0000 

7-8 6.3537 0.0000 7-8 6.3537 0.0000 

8-9 8.0721 0.0000 8-9 8.0721 0.0000 

9-10 5.8702 0.0000 9-12 2.8374 0.0000 

10-11 2.5173 0.0000 12-13 1.4225 0.0000 

11-3 1.9984 0.0000 13-10 2.6470 0.0000 

3-12 6.6119 0.0000 10-11 3.8408 0.0000 

12-13 2.8764 0.0000 11-3 2.8324 0.0000 

13-14 7.1553 0.0000 3-2 7.8616 0.0186 

14-15 3.5492 0.0000 2-14 4.5913 0.0000 

15-2 7.5457 0.0937 14-15 4.5459 0.0000 

2-1 9.6113 0.0598 15-1 1.7877 0.0000 

Tour Total 92.8557 0.1676 Tour Total 77.4866 0.0327 

 

 

 



 
 

50 

 
 

Table 4.8 Continued 

 Objective 18.7052 Objective 15.5235 

w 
Initial Route Real-Time Routing (k=0,2,3,14) 

Trajectory D RDT Trajectory D RDT 

0.4 

1-4 15.6530 0.1437 1-4 15.6530 0.1437 

4-5 2.0998 0.0000 4-5 2.0998 0.0000 

5-6 5.6690 0.0000 5-6 5.6690 0.0000 

6-7 7.2094 0.0000 6-7 7.2094 0.0000 

7-8 6.3537 0.0000 7-8 6.3537 0.0000 

8-9 8.0721 0.0000 8-9 8.0721 0.0000 

9-10 5.8702 0.0000 9-12 2.8374 0.0000 

 

10-11 2.5173 0.0000 12-13 1.4225 0.0000 

11-3 1.9984 0.0000 13-10 2.6470 0.0000 

3-12 6.6119 0.0000 10-11 3.8408 0.0000 

12-13 2.8764 0.0000 11-3 2.8324 0.0000 

13-14 7.1553 0.0000 3-2 7.7352 0.2390 

14-15 3.5492 0.0000 2-14 4.5913 0.0000 

15-2 7.1176 1.0202 14-15 4.5459 0.0000 

2-1 9.3388 0.6609 15-1 1.7877 0.0000 

Tour Total 92.0921 1.8248 Tour Total 77.2972 0.3827 

Objective 37.9317 Objective 31.1485 

w 
Initial Route Real-Time Routing (k=0,2,3,14) 

Trajectory D RDT Trajectory D RDT 

0.6 

1-4 15.5340 0.7011 1-4 15.5340 0.7011 

4-5 2.0998 0.0000 4-5 2.0998 0.0000 

5-6 5.6690 0.0000 5-6 5.6690 0.0000 

6-7 7.2094 0.0000 6-7 7.2094 0.0000 

7-8 6.3537 0.0000 7-8 6.3537 0.0000 

8-9 8.0721 0.0000 8-9 8.0721 0.0000 

9-10 5.8702 0.0000 9-12 2.8374 0.0000 

10-11 2.5173 0.0000 12-13 1.4225 0.0000 

11-3 1.9984 0.0000 13-10 2.6470 0.0000 

3-12 6.6119 0.0000 10-11 3.8408 0.0000 

12-13 2.8764 0.0000 11-3 2.8324 0.0000 

13-14 7.1553 0.0000 3-2 7.5418 0.9628 

14-15 3.5492 0.0000 2-14 4.5913 0.0000 

15-2 6.8495 2.2177 14-15 4.5459 0.0000 
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Table 4.8 Continued 

 

2-1 9.0636 1.9453 15-1 1.7877 0.0000 

Tour Total 91.4298 4.8641 Tour Total 76.9848 1.6639 

Objective 56.8035 Objective 46.8564 

w 
Initial Route Real-Time Routing (k=0,2,3,14) 

Trajectory D RDT Trajectory D RDT 

0.8 

1-4 15.4310 1.7556 1-4 15.4310 1.7556 

4-5 2.0998 0.0000 4-5 2.0998 0.0000 

5-6 5.6690 0.0000 5-6 5.6690 0.0000 

6-7 7.2094 0.0000 6-7 7.2094 0.0000 

7-8 6.3537 0.0000 7-8 6.3537 0.0000 

8-9 8.0721 0.0000 8-9 8.0721 0.0000 

9-13 4.6981 0.0000 9-12 2.8374 0.0000 

13-12 1.4533 0.0000 12-13 1.4225 0.0000 

12-10 2.5115 0.0000 13-10 2.6470 0.0000 

10-11 3.8408 0.0000 10-11 3.8408 0.0000 

11-3 2.8324 0.0000 11-3 2.8324 0.0000 

3-14 11.9797 0.2210 3-2 7.4626 1.5914 

14-15 3.5492 0.0000 2-14 4.5913 0.0000 

15-2 6.8063 2.6430 14-15 4.5459 0.0000 

2-1 8.9879 2.7093 15-1 1.7877 0.0000 

Tour Total 91.4942 7.3289 Tour Total 76.8026 3.3470 

Objective 74.6611 Objective 62.1115 

 

 

Table 4.9 – CPU Times for RT-L (seconds) - 15-Target Problem 

k Iteration   

  1 2 3 4 5 6 7   

0 7.5060 1.3846 1.2349 0.9994 0.8557 0.8280 0.7513   

2 36.7091 16.9697 9.9140 8.2834 9.4224 7.5305 8.2567   

3 44.3867 35.3451 27.9331 23.4369 24.7633 20.8668 32.5523   

14 146.5959 129.3704 112.5418 89.9264 64.8744 56.1650 49.1579   
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Table 4.9 Continued 

k 
Iteration Total 

8 9 10 11 12 13 14   

0 0.8657 0.7436 0.7156 0.6961 2.8312 0.6208 0.5328 20.5658 

2 14.2409 11.7810 7.2457 9.2997 11.6953 2.7654 0.5259 154.6398 

3 25.6776 17.9709 17.2812 18.5023 13.3634 2.7619 0.5142 305.3557 

14 43.1888 29.3928 24.3432 19.0597 14.3084 3.3948 0.5582 782.8776 

 

 

Figure 4.6 Results of IR and RT-L for the 15-target problem 

 

4.3 Quadratic Preference Function (RT-Q) 

We apply our algorithms to find the most preferred solutions of RPs with quadratic 

preference functions. In this chapter, we explain the structure of quadratic preference 

functions and how we apply our algorithms for these functions.  
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Quadratic preference functions are one type of quasiconvex preference functions 

(where all objectives are minimized). Quasiconvex preference functions cover a large 

set of preference function. They are considered to represent human behavior well. For 

these functions, the marginal rate of substitution decreases. The structure of the 

quadratic preference function with two objectives is given in (4.11), where the square 

of two objectives are aggregated with weight 𝑤. The importance the RP gives to the 

first objective is 𝑤 and 1 − 𝑤 is the importance of the second objective. As we 

minimize both objectives, the solution that minimizes 𝑈(𝑥) 𝑖𝑠 the most preferred 

solution of the RP.  

𝑈(𝑥) = 𝑤 𝑧1(𝑥)2 + (1 − 𝑤) 𝑧2(𝑥)2 where 0 < 𝑤 < 1           (4.11) 

In 𝑈(𝑥) function, 𝑧𝑖(𝑥) is the 𝑖𝑡ℎ objective’s value, and the objective values are 

normalized between 0 and 1 so that the weights (𝑤 and 1 − 𝑤) roughly represent the 

relative importance the RP associates with the corresponding objectives.  

We apply the real-time algorithm to these functions. Different than the linear 

preference functions, the most preferred tour is not necessarily made of the most 

preferred trajectories between target pairs. This is shown with an example in Tezcaner 

Öztürk (2013). Therefore, to find the most preferred tour, we need to input all efficient 

trajectories to the model. For our problem, this requires including infinitely many 

efficient trajectories to the model and solving a mixed integer nonlinear program (with 

nonlinear objective function and constraints) each time the UAV visits one target, 

which is not computationally favorable for dynamic routing. We thus select a subset 

of the efficient trajectories and introduce those trajectories to the models. We next 

explain the different approaches we employ for selecting a subset of efficient 

trajectories.       
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4.3.1 𝒏 -Trajectories between All Target Pairs  

In our first method, we select 𝑛 efficient trajectories for each target pair on their 

nondominated frontier, and we use these 𝑛 trajectories for each target pair in the 

solution of TSP or SHPP. The value of 𝑛 affects the problem size drastically because 

the number of decision variable in TSP or SHPP is |T|.|T|. 𝑛 +(|T|-1).  

 

 - Choosing 𝑛 Trajectories (𝑛 > 1) 

We reduce the infinitely many trajectory options between each target pair to 𝑛 which 

is greater than 1. In other words, we discretize the continuous frontier with 𝑛 different 

points. Thus, we set 𝐻𝑖𝑗 to 𝑛 for all target pairs in the models for TSP and SHPP. We 

select 𝑛 trajectories in two different ways.  

 𝑛 − 1 equally-dispersed trajectories & best trajectory  

In this method, we select 𝑛 trajectories for each target pair including the most 

preferred trajectory for that target pair. The remaining 𝑛 − 1 trajectories are equally-

dispersed points on the nondominated frontier of that target pair, where two of them 

are the extreme nondominated points. 

To find the most preferred trajectory for a target pair for a 𝑤, we find the trajectory 

that optimizes (4.11) for 𝑤 between that target pair. For this, we solve a minimization 

problem. Our objective function is the quadratic objective function (4.12), and our 

constraint finds the most preferred solution on the nondominated frontier. In the 

formulation, d and r represent the distance and radar detection threat values for that 

target pair, respectively. d′and r′ are the normalized versions of d and r. We normalize 

these values by subtracting their minimum possible values and then dividing with their 

range.  
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min(d′, r′) = 𝑤 d′2 + (1 − 𝑤) r′2              (4.12) 

S.to: 

 (1 −  
(d−dmin)

(dmax−dmin)
)𝑞+(1 −

(r−rmin)

(rmax−rmin)
)𝑞 = 1             (4.13) 

  r -(slopeofline)*d=constantofline              (4.14) 

Constraint (4.13) makes sure that the solution optimizing (4.12) is on the Lq distance 

function and constraint (4.14) makes sure that the solution optimizing (4.12) is on the 

straight line part of the nondominated frontier, which has a slope slopeofline and an 

intersection point with the y-axis constantofline. When movement type of pair is 2, 

we only use constraint (4.13) since the nondominated frontier is only made of the Lq 

distance function. When the movement type of pair is 3, we optimize (4.12) twice; 

once subject to (4.13) and once subject to constraint (4.14).  After solving both 

models, we select the solution which has the smaller objective function value as the 

trajectory which optimizes (4.11) for w between that target pair. As the Lq distance 

function is nonlinear, we employ confuneq and objfun functions in Matlab to solve 

this problem. 

In order to find (𝑛 − 1) equally-dispersed points, we firstly scale the nondominated 

frontier between 0 and 1 for all objectives, such that every distance and radar detection 

threat value are proportionally declined to a value between 0 and 1. The graph that 

has normalized distance and radar detection threat values can be seen in Figure 4.7. 

We then find the nadir point, which is the point with the worst objective values. For 

the normalized objective values, the nadir point is (1, 1). We divide the right angle at 

(1, 1) to 𝑛 − 2 to find the angle θ structuring the location of the equally-dispersed 

points on the nondominated frontier.To determine the coordinates of equally-

dispersed points on the nondominated frontier, from point (1,1), 𝑛 − 3 straight lines 

are sent to the nondominated frontier as the angle between each neighbour line is θ. 
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Afterwards, we find all intersection points of these straight lines and nondominated 

frontier. As nondominated frontier is nonlinear, we employ rood2d function, and this 

function finds us distance and radar detection threat value which satisfy both of the 

equations (4.15) and (4.16). At last, we have 𝑛 trajectories for each pair to use in the 

mathematical models of MOTSP or MOSHPP.  

(1 −  d′)𝑞 + (1 − r′)𝑞 = 1                          (4.15) 

tan(𝜃)=(1-r′)/(1- d′)                (4.16) 

Figure 4.7 Normalized graph and equally-dispersed lines 

 𝑛 equally-dispersed Trajectories 

In this case, as finding the best trajectory for each target pair is time-consuming, we 

find 𝑛 equally-dispersed trajectories. The calculation of angle 𝜃 and the number of 

straight lines to be sent change in this method as 𝜃 is determined by dividing the right 

angle to 𝑛 − 1 and we have 𝑛 − 2 lines.  

- Choosing n Trajectories (𝑛 = 1) 

As there are no known polynomial-time algorithms for the TSP (Dasgupta et al., 

2006), reduction of the number of the decision variables is very crucial to reduce the 

computation times. Therefore, we developed the version that only one trajectory for 
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each pair is sent to the TSP or SHPP. This decreases the number of the decision 

variables to |T|.|T|+(|T|-1) from |T|.|T|. 𝑛 +(|T|-1). 

 Using the best trajectory (𝑛 = 1/𝐵) 

The best trajectory for each target pair is found using the method explained above. 

This trajectory for each target pair is used in the solution of MOTSP or MOSHPP.  

 

 Using the best extreme trajectory (𝑛 = 1/𝐸) 

To find the best trajectory, we need to find the structure of the nondominated frontiers 

between each target pair, which requires substantial computational effort. In order to 

further reduce the computation times, we use the extreme trajectory with the smaller 

quadratic preference function (4.11) value for each target pair.  

 

4.3.2-Results 

4.3.2.1-Five-Target UAV Route Planning Problem 

We solve the problem introduced in Section 4.2.4.1 for a RP who has quadratic 

preference function. We assume four different 𝑤 values; 0.2, 0.4, 0.6, and 0.8. We 

give the results in Table 4.10. For all 𝑤 values, the best routes for the cases 𝑛 = 1 

with the best trajectory (n=1/B), 𝑛 = 1 with the best extreme trajectory (n=1/E),𝑛 =

5  equally-dispersed (n=5/WB), and 𝑛 = 5 −  1 equally–dispersed with the best 

trajectory (n=5/B) are the same. We thus report their results in a single column. For 

all cases and for all 𝑤 values, until the third iteration, the visiting order is the same 

with the initial route. At the third iteration, RT-Q follows a different path compared 

to the initial route. Overall, the results of the real-time algorithm are better than the 

initial routes since they dominate the initial routes (Figure 4.8). Again as we give more 
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importance to the first objective (higher 𝑤 values), in general, the total distance 

traveled decreases and the total radar detection threat increases. We calculate the 

preference function values of the final routes by multiplying each squared objective 

with their weights to compare the resulting tours. For all 𝑤 values, updating the initial 

route results in better preference function values compared to using the initial route 

of Phase 1.  

We report the solution durations in Table 4.11. When n=5, solving nonlinear models 

of MOTSP or MOSHPP takes a lot of time due to the presence of higher number of 

decision variables. If the best trajectory is included in n, it takes more time because 

finding the best trajectory takes more time than finding equally distributed points. We 

again gain in computational times considerably by using one trajectory between each 

target pair, and our solution quality is not worsened.  

  

Figure 4.8 Results of IR and RT-Q for the 5-target problem 
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Table 4.10 – Results of RT-Q- 5-Target Problem 

W 
Initial Route Real-Time Routing(n=1 & B/E, n=5(B&WB)) 

Trajectory D RDT Trajectory D RDT 

0.2 

1-4 13.1130 2.2477 1-4 13.1130 2.2477 

4-3 15.2060 2.3020 4-3 15.2060 2.3020 

3-5 13.1651 2.8134 3-2 16.4980 1.3699 

5-2 8.7228 2.9798 2-5 9.7541 0.0000 

2-1 14.4556 0.0000 5-1 8.3779 2.8295 

Tour Total 64.6625 10.3429 Tour Total 62.9490 8.7491 

Objective 921.8282 Objective 853.7527 

W 
Initial Route Real-Time Routing(n=1 & B/E, n=5(B&WB) 

Trajectory D RDT Trajectory D RDT 

0.4 

1-4 13.1120 2.2980 1-4 13.1120 2.2980 

4-3 15.1900 2.6382 4-3 15.1900 2.6382 

3-5 13.1392 3.3655 3-2 16.4960 1.4692 

5-2 8.6624 3.5351 2-5 9.7541 0.0000 

2-1 14.4556 0.0000 5-1 8.3751 2.9136 

Tour Total 64.5592 11.8368 Tour Total 62.9272 9.3190 

Objective 1751.2220 Objective 1636.0393 

w 
Initial Route Real-Time Routing(n=1 & B/E, n=5(B&WB) 

Trajectory D RDT Trajectory D RDT 

0.6 

1-4 13.1120 2.3088 1-4 13.1120 2.3088 

4-3 15.1880 2.7279 4-3 15.1880 2.7279 

3-5 13.1392 3.3655 3-2 16.4960 1.4940 

5-2 8.6624 3.5351 2-5 9.7541 0.0000 

2-1 14.4556 0.0000 5-1 8.3736 3.0420 

Tour Total 64.5572 11.9373 Tour Total 62.9237 9.5727 

Objective 2557.5789 Objective 2412.2898 

w 
Initial Route Real-Time Routing(n=1 & B/E, n=5(B&WB) 

Trajectory D RDT Trajectory D RDT 

0.8 

1-4 13.1120 2.3123 1-4 13.1120 2.3123 

4-3 15.1880 2.7576 4-3 15.1880 2.7576 

3-5 13.1392 3.3655 3-2 16.4960 1.5026 

5-2 8.6624 3.5351 2-5 9.7541 0.0000 

2-1 14.4556 0.0000 5-1 8.3736 3.0420 

Tour Total 64.5572 11.9705 Tour Total 62.9237 9.6145 

Objective 3362.7642 Objective 3186.0013 
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Table 4.11 – CPU Times for RT-Q (seconds) - 5-Target Problem  

n 
Iteration 

Total 
1 2 3 4 

1 (E) 3.5978 2.9364 2.9693 2.6884 12.1919 

1 (B) 32.1996 25.9158 7.6884 2.8327 68.6365 

5 (WB) 28.8324 24.7993 11.4747 7.2165 72.3229 

5 (B) 166.3001 26.0832 11.9992 2.9802 207.3627 

 

4.3.2.2-Nine-Target UAV Route Planning Problem 

We solve the 9-target problem we introduced in Section 4.2.4.2 for the cases n=1/B 

and n=1/E. Cplex could not find a solution to the 9 target problem for n values greater 

than 1. We assume four different 𝑤 values; 0.2, 0.4, 0.6, and 0.8. We give the results 

in Table 4.12. The initial route changes at some point during the algorithm for 𝑤 =

0.4, 0.6, 0.8, and we obtain solutions that have better preference function values than 

the initial route by using our algorithm. Only for 𝑤 = 0.2, we obtain the same initial 

tour even if we update the tour at each visit to the targets.  

We report the solution times in Table 4.13. We gain in computational times 

considerably by using the best extreme trajectory rather than the best trajectory, and 

our solution quality is not worsened.  
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Table 4.12 – Results of RT-Q- 9-Target Problem 

w 
Initial Route Real-Time Routing(n=1 & B/E) 

Trajectory D RDT Trajectory D RDT 

0.2 

1-5 5.5289 0.0000 1-5 5.5289 0.0000 

5-8 7.0578 3.8862 5-8 7.0578 3.8862 

8-3 7.1645 0.8881 8-3 7.1645 0.8881 

3-9 2.4750 0.0000 3-9 2.4750 0.0000 

9-4 5.5480 0.0000 9-4 5.5480 0.0000 

4-7 8.0993 2.4709 4-7 8.0993 2.4709 

7-2 5.8085 0.8274 7-2 5.8085 0.8274 

2-6 9.7032 0.0000 2-6 9.7032 0.0000 

6-1 10.4080 1.8521 6-1 10.4080 1.8521 

Tour Total 61.7932 9.9247 Tour Total 61.7932 9.9247 

Objective 842.4796 Objective 842.4796 

w 
Initial Route Real-Time Routing(n=1 & B/E) 

Trajectory D RDT Trajectory D RDT 

0.4 

1-5 5.5289 0.0000 1-5 5.5289 0.0000 

5-8 7.0578 3.8862 5-8 7.0578 3.8862 

8-3 7.1629 0.9385 8-3 7.1629 0.9385 

3-9 2.4750 0.0000 3-9 2.4750 0.0000 

9-4 5.5480 0.0000 9-4 5.5480 0.0000 

4-7 8.0971 2.5491 4-2 6.2181 0.0000 

7-2 5.8083 0.8368 2-7 5.9044 0.7228 

2-6 9.7032 0.0000 7-6 10.8670 0.0000 

6-1 10.3989 2.1083 6-1 10.4000 2.0663 

Tour Total 61.7801 10.3189 Tour Total 61.1621 7.6138 

Objective 1590.6001 Objective 1531.1030 

w 
Initial Route Real-Time Routing(n=1 & B/E) 

Trajectory D RDT Trajectory D RDT 

0.6 

1-5 5.5289 0.0000 1-5 5.5289 0.0000 

5-8 7.0578 3.8862 5-8 7.0578 3.8862 

8-3 7.1627 0.9485 8-3 7.1627 0.9485 

3-9 2.4750 0.0000 3-9 2.4750 0.0000 

9-4 5.5480 0.0000 9-4 5.5480 0.0000 

4-7 8.0969 2.5626 4-2 6.2181 0.0000 

7-2 5.8083 0.8383 2-7 5.9044 0.7241 

2-6 9.7032 0.0000 7-6 10.8670 0.0000 
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Table 4.12 Continued 

 

6-1 10.3987 2.1321 6-1 10.3990 2.1193 

Tour Total 61.7795 10.3677 Tour Total 61.1609 7.6781 

Objective 2333.0197 Objective 2267.9747 

w 
Initial Route Real-Time Routing(n=1 & B/E) 

Trajectory D RDT Trajectory D RDT 

0.8 

1-5 5.5289 0.0000 1-5 5.5289 0.0000 

5-8 7.0578 3.8862 5-8 7.0578 3.8862 

8-3 7.1627 0.9513 8-3 7.1627 0.9513 

3-9 2.4750 0.0000 3-9 2.4750 0.0000 

9-4 5.5480 0.0000 9-4 5.5480 0.0000 

4-7 8.0969 2.5660 4-2 6.2181 0.0000 

7-2 5.8083 0.8386 2-7 5.9044 0.7244 

2-6 9.7032 0.0000 7-6 10.8670 0.0000 

6-1 10.3987 2.1395 6-1 10.3990 2.1364 

Tour Total 61.7795 10.3816 Tour Total 61.1609 7.6983 

Objective 3074.9208 Objective 3004.3773 

 

Table 4.13 – CPU Times for RT-Q (seconds) - 9-Target Problem 

 

 

 

 

 

 

n 
Iteration 

Total 
1 2 3 4 5 6 7 8 

1 (E) 195.5762 14.2673 3.8205 1.3335 1.1978 0.733 5.5267 2.4164 224.8714 

1 (B) 155.2906 68.1673 35.8789 25.8589 18.0768 7.2304 9.9618 2.5387 323.0034 
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CHAPTER 5 

 

 

2 CONCLUSIONS 

 

 

 

In this thesis, we consider the real-time routing problem of UAVs in a two-

dimensional dynamic environment where the locations of the targets change in time. 

The UAV is located at a base point and is supposed to visit some targets in a 

continuous terrain where the UAV is allowed to move to any point. We aim to 

minimize two criteria: distance traveled and radar detection threat.  

We develop a real-time algorithm to find the most preferred routes for a RP with 

underlying linear and quadratic preference functions. The algorithm updates the route 

of the UAV when the UAV arrives at a target. For the linear preference function case, 

the best trajectory for each target pair is calculated and the best routes are structured 

using these trajectories. To reduce the computational burden, we develop k-closest 

heuristic. We choose k closest targets and structure only these k pairs’ nondominated 

frontiers for each target. We also develop an adaptive algorithm that determines the 

value of k each time the UAV visits a new target.  For quadratic preference functions, 

we use the same algorithm, but we select the efficient trajectories to be used in the 

models using different approaches. In general, we select n trajectories for each target 

pair to find a route for the UAV. We consider the cases 𝑛 = 1 and 𝑛 > 1, seperately. 

To observe the changes in the computation times and the quality of the solutions, we 

also include the best trajectory in n solutionsfor each case.  

We apply the algorithms on different examples in Chapter 4. We develop 5, 9, and 15 

target problems with 4 radars distributed in 400 𝑘𝑚2 terrains. We compare the 
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solutions proposed by our algorithms and the initial tours that are found before the 

flight of the UAV. For these instances, the routes found by our algorithms (RT-L and 

RT-Q) generally dominate the initial routes. The results show that we reduce the 

computation times considerably using the heuristics without sacrificing from the 

quality of solutions.  

For future works, this study can be extended to the three-dimensional dynamic 

environment. In this case, the altitude of the UAVs and the ground structure are 

considered. Also, our calculation of total distance and total radar detection threat 

measures must be revised according to the three-dimensional environment. More 

dynamic components can be added to the problem structure, like changing radar 

locations, having pop-up targets or radars, etc. Also, the problem of routing multiple 

UAVs to multiple targets can be considered. This problem is a vehicle routing 

problem and both static and dynamic environments can be considered for this 

problem. We considered this problem as a node routing problem, where targets need 

to be visited. If instead some edges need to be visited, the problem turns to be an arc 

routing problem.  
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