
BIO-INSPIRED SOLUTIONS FOR BANDWIDTH PACKING

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

TALHA KORUK

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

JANUARY 2018

Approval of the thesis:

BIO-INSPIRED SOLUTIONS FOR BANDWIDTH PACKING

submitted by TALHA KORUK in partial fulfillment of the requirements for the de-
gree of Master of Science in Computer Engineering Department, Middle East
Technical University by,

Prof. Dr. Gülbin Dural
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Halit Oğuztüzün
Head of Department, Computer Engineering

Assoc. Prof. Dr. Ertan Onur
Supervisor, Computer Engineering Department, METU

Examining Committee Members:

Prof. Dr. Ahmet Coşar
Computer Engineering Department, METU

Assoc. Prof. Dr. Ertan Onur
Computer Engineering Department, METU

Assist. Prof. Dr. Hüseyin Polat
Computer Engineering Department, Gazi University

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: TALHA KORUK

Signature :

iv

ABSTRACT

BIO-INSPIRED SOLUTIONS FOR BANDWIDTH PACKING

Koruk, Talha
M.S., Department of Computer Engineering

Supervisor : Assoc. Prof. Dr. Ertan Onur

JANUARY 2018, 95 pages

Sharing channel capacity among multi-rate sensors or synonymously packing band-
width while satisfying quality of service requirements stays as an important chal-
lenge. We present bio-inspired solutions to this problem by reducing it to the NP-
hard multiple-choice knapsack problem. We employ various bio-inspired population-
based meta-heuristics to allocate capacity to the requesting nodes in a single-hop sen-
sor network. In this thesis, we present the controlled lab experiments for determining
the capacity of a wireless channel and then discuss the feasibility of meta-heuristic so-
lutions. The runtime and closeness to the optimal solutions results are presented and
discussed. Artificial bee colony optimisation provides the fastest solution although
the convergence rate per generation is slower.

Keywords: Bin Packing, Multiple-Choice Knapsack Problem, Bio-Inspired Meta-
Heuristics

v

ÖZ

DOĞA ESİNİMLİ BANT GENİŞLİĞİ PAYLAŞTIRMA ÇÖZÜMLERİ

Koruk, Talha
Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Ertan Onur

Ocak 2018 , 95 sayfa

Kablosuz alıcı ağlarında, bir yandan servis kalitesi gerekliliklerini sağlarken diğer
yandan sınırlı kanal kapasitesinin paylaşımı ya da başka bir deyişle bant genişli-
ğinin optimize bir biçimde doldurulması sorunu önemini korumaktadır. Bu çalış-
mada polinom zamanlı çözümü olmayan (NP) kombinatoriyal problemi, çoktan seç-
meli sırt çantası problemine indirgeyerek problemin çözülmesinde doğa-esinimli üst-
sezgisel yöntemlerden yararlanılabileceğini gösterdik. Muhtelif popülasyon tabanlı
doğa-esinimli algoritmaları bu tek sıçramalı sensör ağlarında kapasite dağıtımında
görevlendirdik. Biz bu gördüğünüz tez çalışmasında; oluşturduğumuz kablosuz ağın
kanal kapasitesini bulduktan sonra üst-sezgisel yöntemlerin yardımıyla belirlediğimiz
kontrollü laboratuvar çalışmalarını yürüttük ve bu çözümlerin uygulanabilirliğini sor-
guladık. Çözümleri, sonuca ulaşma süreleri ve doğru çözüme yakınlıkları bakımından
inceledik ve Yapay Arı Kolonisi optimizasyonunun, ıraksama oranı düşük olsa da en
hızlı ve güvenilir sonuçları sağladığını gözlemledik.

Anahtar Kelimeler: Kutu Paketleme, Çoktan Seçmeli Çanta Problemi, Doğa-Esinli
Üst-Sezgisel Yöntemler

vi

I dedicate this thesis to My Family. Endless thanks to my family.

vii

ACKNOWLEDGMENTS

I would like to thank my supervisor, Assoc. Prof. Dr. Ertan Onur, for understanding,
patience and providing experience in course of thesis study. His technical support,
understanding and patience were remarkable.

I would also like to thank Alitan Bayramoğlu, Mehmet Baskın, Bora Baydar, Ali
Ata, Alparslan Lorasdağı and Zeki Bozkurt for their tremendous friendship and un-
derstanding at all times.

Lastly, sincerest thanks to each of my family members for supporting and believing
in me all the way through my academic life.

viii

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vi

ACKNOWLEDGMENTS . viii

TABLE OF CONTENTS . ix

LIST OF TABLES . xiv

LIST OF FIGURES . xv

LIST OF ABBREVIATIONS . xix

CHAPTERS

1 INTRODUCTION . 1

1.1 Motivation . 2

1.2 Problem Definition . 3

1.2.1 Smart Home as a Realistic Scenario 4

1.2.2 Problem Definition 5

1.3 Problem Analysis . 9

1.3.1 The Problem Complexity 9

1.3.2 Formal Definition of Multi-Rate Bin Packing Prob-
lem . 11

ix

1.4 Literature Review . 12

1.5 Contribution . 14

1.6 Thesis Outline . 14

2 BACKGROUND . 15

2.1 General Information About ZigBee 15

2.1.1 What is ZigBee? 15

2.1.2 ZigBee Stack Architecture 16

2.1.3 ZigBee Node Types 16

2.1.3.1 Coordinator 17

2.1.3.2 Router 17

2.1.3.3 End-Device 18

2.1.4 XBee-ZigBee Addressing 18

2.1.4.1 64-Bit Device Addressing 18

2.1.4.2 16-Bit Network Addressing 18

2.1.5 Data Transmission 19

2.1.5.1 Unicast Transmission 19

2.1.5.2 Broadcast Transmission 19

2.1.6 Data Rate and Range 19

2.2 Hardware of Testbed . 20

2.2.1 Hardware Components 20

2.2.2 Digi XBee-ZigBee Series 2 Wireless Module . . . 20

x

2.2.3 Host and XBee-ZigBee Series 2 Module Commu-
nication . 20

2.2.4 Serial Interface Protocol 21

2.2.5 Module Modes of Operations 22

2.2.5.1 Idle Mode 22

2.2.5.2 Transmit Mode 22

2.2.5.3 Receive Mode 23

2.2.5.4 Command Mode 23

2.2.5.5 Sleep Mode 23

2.2.6 Platform . 23

2.3 Firmware, Platform Operating System and Software Infor-
mation . 24

2.3.1 Firmware of XBee-ZigBee 24

2.3.2 Platform Operating System 24

2.3.3 Software . 25

2.4 General Information About FIT IoT-LAB 25

2.4.1 What is FIT IoT-LAB? 25

2.4.2 Topology . 26

2.4.3 Node Hardware 27

2.4.4 Embedded Software Development 27

2.4.4.1 Architecture 28

2.4.4.2 Drivers 28

xi

2.4.4.3 Operating Systems 28

2.4.4.4 Libraries 28

2.4.4.5 Software in Open Source 28

2.4.5 System Platform Tools 29

2.4.5.1 Web-Based Tools 29

2.4.5.2 CLI-Command Tools 29

3 NETWORK CHANNEL CAPACITY 31

3.1 Capacity Measurement on ZigBee 31

3.2 Capacity Measurement on IoT-Lab 35

3.2.1 Experimentation Environment 35

3.2.2 Capacity Measurement 38

4 BIO-INSPIRED SOLUTIONS . 41

4.1 Methodology . 41

4.2 Artificial Bee Colony . 42

4.3 Ant Colony Optimization 47

4.4 Binary Bat Algorithm . 54

4.5 Criss-Cross Optimization 59

4.6 Genetic Algorithm . 65

4.7 Particle Swarm Optimization 72

5 RESULTS AND DISCUSSION . 77

6 CONCLUSION . 85

xii

REFERENCES . 89

xiii

LIST OF TABLES

TABLES

Table 1.1 Sensor Information . 6

Table 4.1 ABC Algorithm Parameters . 43

Table 4.2 ACO Algorithm Parameters . 48

Table 4.3 BBA Algorithm Parameters . 55

Table 4.4 COA Algorithm Parameters . 60

Table 4.5 GA Algorithm Parameters . 66

Table 4.6 PSO Algorithm Parameters . 73

xiv

LIST OF FIGURES

FIGURES

Figure 1.1 Smart Home Example . 3

Figure 1.2 A Scenario Where N Sensors Which Supports Multi-Rates are
Connected to a Coordinator . 7

Figure 1.3 An Example Configuration Where Four Sensors S1, S2, S3 and S4

with Their Pre-determined Rates are Connected to the Coordinator C . . . 8

Figure 1.4 An Example Scenario of Sensor Activity in Time 9

Figure 2.1 The ZigBee Stack [55] . 16

Figure 2.2 A Typical ZigBee Network Configuration [13] 17

Figure 2.3 XBee Hardware Device [17] . 21

Figure 2.4 XBee-ZigBee Communication [17] 21

Figure 2.5 XBee-ZigBee Transmitter and Receiver Buffers [17] 22

Figure 3.1 ZigBee Network Configuration 32

Figure 3.2 ZigBee Packet Transmission Infrastructure [17] 33

Figure 3.3 Offered and Successful Rates Depending on Slot Size 33

Figure 3.4 Sensor Packet Drop Ratio Depending on Slot Size 34

Figure 3.5 The Topology of the IoT-Lab Lille Laboratory [38] 35

Figure 3.6 M3 Node Structure [39] . 36

Figure 3.7 IoT-Lab M3 Node TDMA Scheme 37

Figure 3.8 IoT-Lab M3 Nodes Network Capacity in Lille Laboratory 38

xv

Figure 4.1 Time-to-solve the Bandwidth Packing Problem for Various Gener-
ation Sizes Depending on the Number of Sensors 43

Figure 4.2 Deviation from the Optimal Solution for Various Generation Sizes
Depending on the Number of Sensors . 44

Figure 4.3 Deviation from the Optimal Solution in Time Depending on the
Population Sizes . 45

Figure 4.4 Deviation from the Optimal Solution in Time Depending on the
Values of R . 46

Figure 4.5 Time-to-solve the Bandwidth Packing Problem for Various Gener-
ation Sizes Depending on the Number of Sensors 48

Figure 4.6 Deviation from the Optimal Solution for Various Generation Sizes
Depending on the Number of Sensors . 49

Figure 4.7 Deviation from the Optimal Solution in Time Depending on the
Population Sizes . 50

Figure 4.8 Deviation from the Optimal Solution in Time Depending on the
Values of β . 51

Figure 4.9 Deviation from the Optimal Solution in Time Depending on the
Values of ρ . 52

Figure 4.10 Deviation from the Optimal Solution in Time Depending on the
Values of ε . 53

Figure 4.11 Time-to-solve the Bandwidth Packing Problem for Various Gener-
ation Sizes Depending on the Number of Sensors 56

Figure 4.12 Deviation from the Optimal Solution for Various Generation Sizes
Depending on the Number of Sensors . 57

Figure 4.13 Deviation from the Optimal Solution in Time Depending on the
Population Sizes . 58

Figure 4.14 Time-to-solve the Bandwidth Packing Problem for Various Gener-
ation Sizes Depending on the Number of Sensors 60

Figure 4.15 Deviation from the Optimal Solution for Various Generation Sizes
Depending on the Number of Sensors . 61

Figure 4.16 Deviation from the Optimal Solution in Time Depending on the
Population Sizes . 62

xvi

Figure 4.17 Deviation from the Optimal Solution in Time Depending on the
Horizontal Probabilities . 63

Figure 4.18 Deviation from the Optimal Solution in Time Depending on the
Vertical Probabilities . 64

Figure 4.19 Time-to-solve the Bandwidth Packing Problem for Various Gener-
ation Sizes Depending on the Number of Sensors 67

Figure 4.20 Deviation from the Optimal Solution for Various Generation Sizes
Depending on the Number of Sensors . 68

Figure 4.21 Deviation from the Optimal Solution in Time Depending on the
Population Sizes . 69

Figure 4.22 Deviation from the Optimal Solution in Time Depending on the
Parent Pool Sizes . 70

Figure 4.23 Deviation from the Optimal Solution in Time Depending on the
Mutation Probabilities . 71

Figure 4.24 Time-to-solve the Bandwidth Packing Problem for Various Gener-
ation Sizes Depending on the Number of Sensors 73

Figure 4.25 Deviation from the Optimal Solution for Various Generation Sizes
Depending on the Number of Sensors . 74

Figure 4.26 Deviation from the Optimal Solution in Time Depending on the
Population Sizes . 75

Figure 4.27 Deviation from the Optimal Solution in Time Depending on the
Learning Factors . 76

Figure 5.1 Time-to-solve the Bandwidth Packing Problem For Each Algo-
rithm Depending on the Number of Sensors 78

Figure 5.2 Deviation from the Optimal Solution in Time for the 12-Sensors
Configuration . 79

Figure 5.3 Deviation from the Optimal Solution in Time for the 14-Sensors
Configuration . 80

Figure 5.4 Deviation from the Optimal Solution in Time for the 16-Sensors
Configuration . 81

Figure 5.5 Deviation from the Optimal Solution in Time for the 18-Sensors
Configuration . 82

xvii

Figure 5.6 Deviation from the Optimal Solution Depending on Various Gen-
eration Sizes for the 18-Sensors Configuration 83

xviii

LIST OF ABBREVIATIONS

ABC Artificial Bee Colony

ACO Ant Colony Optimization

API Application Programming Interface

APS Application Support Sub-Layer

BBA Binary Bat Algorithm

COA Criss-Cross Optimization

FTDI Future Technology Device Interface

GA Genetic Algorithm

GS Generation Size

GT Guard Time

HP Horizontal Probability

IDE Integrated Development Environment

IEEE Institute of Electrical and Electronics Engineers

KP Knapsack Problem

LF Learning Factor

MAC Medium Access Control

MCKP Multi-Choice Knapsack Problem

MP Mutation Probability

PAN Personal Area Network

PSO Particle Swarm Optimization

RF Radio Frequency

PPS Parent Pool Size

PS Population Size

UART Universal Asynchronous Receiver/Transmitter

USB Universal Serial Bus

WFQ Weighted Fair Queue

WMSN Wireless Multimedia Sensor Network

WPAN Wireless Personal Area Network

xix

WSN Wireless Sensor Network

QOS Quality Of Service

VP Vertical Probability

ZDO ZigBee Device Object

xx

CHAPTER 1

INTRODUCTION

Wireless sensor networks (WSN) have been developed to monitor the environmental

conditions and to operate controllable devices. These networks are generally com-

prised of “nodes”, a term that is used to define smart devices used to gather and relay

information. These nodes may contain different types of sensors that are put to work

to evaluate some form of scalar measurement or to gather multimedia information.

While mainly a sensor node behaves as some kind of an end-device which only col-

lects data and sends information, some of them are tasked as coordinators to manage

the network and gather information from other sensor nodes. Assembled information

then gets evaluated in order to form an efficient network formation and to trigger the

desired sensors. This evaluation process tend to bear some significance, as perfor-

mance and efficiency of a WSN is affected by many factors. If we were to name a

few; network topology, hardware constraints, energy consumption, the platform’s op-

erating system or the communication protocol of the sensor node comes to mind. We

should add that with the relevant technology in cameras and microphones advanc-

ing in recent years, these devices have become more and more applicable for low-

bandwidth demanding WSNs. As a result, these types of multimedia sensors have

been implemented to wireless sensor networks and have enabled the development of

Wireless Multimedia Sensor Networks (WMSN). A WMSN, in addition to its moni-

toring capabilities, makes it possible to retrieve video and audio streams, picture and

scalar data. WMSNs not only facilitate communication between nodes but they can

also store information and evaluate them in real-time and actuate desired sensors.

In this way, WMSNs become applicable for various areas such as smart homes and

hospitals [58], transportation [62], environmental monitoring and industrial process

1

control [4, 7].

Mostly WMSNs are designed in terms of reliability and energy efficiency [28, 73]

due to scalar transmission. Nevertheless, in recent years, quality of services (QoS)

requirements regarding concerns of multimedia transmission through prioritizing data

packets, providing different services, scheduling resource efficiently [25, 26, 27, 74].

However, involvement of multimedia sensors brings about new technical challenges,

usually regarding bandwidth allocation. Due to the limited bandwidth, all of the

sensors of a network may not be active at any given time. WMSNs are obliged to deal

with the selection of sensors with higher service quality requirements and efficient use

of limited bandwidth capacity. In other words, WMSNs have to cope with dynamic

changes in sensor activities and bandwidth variations [68].

1.1 Motivation

Smart homes always have been the dream of mankind for generations [16]. Today

smart homes became a reality thanks to recent developments in home automation

technology which consists of electronically controllable units such as heaters, venti-

lators, lights and streaming video as shown in Figure 1.1. These units are designed to

provide better life quality in terms of security, energy efficiency and comfort. Mean-

while each unit has its own duty, home automation appliances tend to consolidate the

control of these units into a single device. In order to achieve this, each unit must

have communication with the other members of the network. Residents in a smart

home are given the chance to monitor the events in real-time and control components

remotely via their own mobile device, such as switching the lights on or off. This

type of instant control also tends to bring about a decrease in electricity, water and

gas consumption. On top of simple wireless device control, users tend to expand their

smart home experience with the help of video streaming, voice calls and more. The

industry is evolving into what we can call home automation with multimedia capa-

bilities. Therefore there is an increase in bandwidth in wireless networks installed

in smart houses partly because of these resource consuming applications [47]. Some

sensors may have a fixed position, however, some of them need to be mobile. There-

2

fore, power demand and connection of all units by cable does not seem possible.

More sensors of different understanding of service requirement of each sensor type

often leads to complex communication. All this communication can be carried out

with wireless signals, which eliminates the need for wires. This means WSNs play a

important role in our lives through applications such as home automation [63].

Figure 1.1: Smart Home Example

1.2 Problem Definition

Problem definition is examined into two topics. Firstly, we provide a realistic smart

home example to better understand the challenge. Secondly, we define the problem

formally for a specific scenario.

3

1.2.1 Smart Home as a Realistic Scenario

In the smart home scenario [21] the end-user requires an overview of the sensors’

present situation using a mobile device. The user may change the security settings,

alter the states of lights, curtains, heater or humidifier. The environment in this case

is a standard flat.

Let us review this scenario where a WMSN is installed in order to facilitate as a

smart home application as shown in Figure 1.1. Sections of the flat for the purposes

of this example are kitchen, living room, bedroom, baby room, bathroom, entrance

and entertainment room. Each room has a different number of nodes which employ

sensors. Each node is connected to the central device acting as the sink. The main

entrance of the building puts use to a kit that consists of a camera, a microphone, a

door lock trigger and a motion detector sensor. This kit is powered from electricity

of the main building itself. The motion detector sensor stays active at all times to

turn on the light and inform the user. The user may then activate the camera and the

microphone in order to get video streamed from downstairs to the sink device. The

resolution of the camera is adjustable. The user is also given the control over the lock

on the main entrance. The user can monitor whether the door is unlocked or not. The

entrance of the apartment is equipped with a control panel with a security number

pad.

The kitchen employs a fire sensor (battery-powered), a smoke sensor (battery-powered),

a gas sensor (battery-powered), a motion detector sensor (battery-powered), a temper-

ature sensor (battery-powered), a humidity sensor (battery-powered), a photo detec-

tor (battery-powered), a camera (main-powered) and a microphone (main-powered).

Among these units; the fire sensor, the smoke sensor and the gas sensor are always

active and of higher importance. The camera and the microphone may be activated

by the user with once again adjustable quality. Information coming from the tem-

perature sensors is used to adjust the room temperature. The TV can be controlled

by the motion detection sensors that resides in several positions around the flat. The

system monitors the input coming from these sensors and can decide whether the user

is in the kitchen or in the bathroom etc. and can turn the TV off or leave it on. Also

the lights around the house can be triggered from the motion detector sensor or mi-

4

crophone sensor. System may turn the TV off and the lights in 10 minute after the

user leaves. The curtains may be opened depending on the photo detector sensor, i.e.

whether there is sunlight coming from outside the house.

Living room has a motion detector sensor (main-powered), a temperature sensor

(battery-powered), a photo detector (battery-powered), a camera (main-powered) and

a microphone (main-powered). Curtains are automatically controlled depending on

photon sensors. The motion detector activates or deactivates the lights, the television

and the music box. Each wall has a temperature sensor. These temperature sensors

activate radiator or air conditioning to adjust room temperature to the desired value.

Lights, television and music box are closed in about 10 minutes after the user leaves

the room. The user may activate camera and microphone.

Baby room is equipped with a motion detection sensor (main-powered), a tempera-

ture sensor (battery-powered), a humidity sensor (battery-powered), a photon detector

(battery-powered), a camera (main-powered) and a microphone (main-powered). The

microphone is always active in case the baby cries. The user may activate the camera

to get video streaming or picture. The room temperature is adjusted to the desired

value automatically. Humidifier works also automatically depending on humidity

readings. The user may activate the camera to get video streaming or picture.

The requirements of each sensor is ideally the same but contains various parame-

ters which are listed in Table 1.1. The system is a single-hop star-topology dynamic

wireless sensor network. Each sensor behaves rather independent regarding to other

sensors that they only communicate with the coordinator (sink).

1.2.2 Problem Definition

In a stationary sensor network, let us assume that a sink node (e.g., Coordinator in

Figure 1.2) has N sensors connected to it forming a star topology in a single collision

domain as shown in Figure 1.2. Each sensor may be active or inactive at a time.

When the ith sensor si is active, it generates a traffic with rate λij bps where i = 1,

2, . . . , N , j = 1, 2, . . . , Mi and Mi represent the distinct number of rates that

may be potentially generated by si. For example, if the sensor is a video camera,

5

Table 1.1: Sensor Information

Sensor Information
Name Type Priority 1 Priority 2 Priority 3 Power Status

Rate 1 Rate 2 Rate 3
Camera Multimedia 100 150 200 Main-Powered

16 KBit/s 32 KBit/s 48 KBit/s
Microphone Multimedia 57 73 91 Main-Powered

8 KBit/s 16 KBit/s 32 KBit/s
Motion Detector Scalar 23 37 57 Low-Powered

4 KBit/s 8 KBit/s 12 KBit/s
Temperature Scalar 23 37 57 Low-Powered

1 KBit/s 2 KBit/s 4 KBit/s
Gas Detector Scalar 200 200 200 Low-Powered

1 KBit/s 1 KBit/s 1 KBit/s
Fire Detector Scalar 200 200 200 Low-Powered

1 KBit/s 1 KBit/s 1 KBit/s
Door Lock Scalar 41 83 131 Low-Powered

2 KBit/s 4 KBit/s 6 KBit/s

the traffic requirement depends on the compression algorithm of the video source and

the camera may support discrete number of compression rates where the number of

different compression rates is Mi. The sensors connected to the coordinator node

shares a channel with capacity C bits per second. We assume static channelization

and time-division multiple access (TDMA) scheme [46].

Depending on the scenario, some of the sensors will be active and others will be in-

active. The traffic requirements of the active sensors will be sustained on the shared

channel. The devices hosting sensors will communicate with the coordinator to con-

vey the sensor measurements. The traffic generated by the sensors will have discrete

integer priorities pij between 10 and 200, respectively. The coordinator C will collect

all the traffic requirements from the newly registered sensors and change the traffic

rate of each already connected sensors accordingly. The traffic rates of the sensors

will determine the duty-cycle as well. We assume that the coordinator is aware of

the types of sensors including possible λij and pij values. Coordinator will deter-

mine which sensor reading or stream will occupy the channel bandwidth based on the

priorities and traffic requirements in the run-time using an online algorithm.

6

Figure 1.2: A Scenario WhereN Sensors Which Supports Multi-Rates are Connected

to a Coordinator

Let’s sketch a simple scenario. AssumeN = 4; only four sensors S1, S2, S3 and S4 ex-

ist in a stationary sensor network connected to a coordinator following star topology.

As shown in Figure 1.3, first sensor S1 is equipped with a motion detector (scalar

sensor) and S2 a camera sensor that supports multiple codecs. The third sensor S3

is equipped with a temperature sensor and S4 is a microphone sensor. Let λ1 , λ2 ,

λ3 , λ4 represent the traffic requirement of S1’s motion detector sensor, S2’s camera

sensor, S3’s temperature sensor and S4’s microphone sensor, respectively.

The timeline of a simple scenario is shown in Figure 1.4. Assume that this scenario

runs over C = 22 Kbps. At the beginning, only the motion detector sensor and the

temperature sensor are active generating λ1 (6 Kbps), λ3 (4 Kbps) units of traffic re-

spectively. At the 20th second the motion detector goes off and video sensor S2 is

activated. Starting from the 20th second on the total traffic requirement is increased

by λ2 (16 Kbps) units. Then, at the 60th second microphone sensor is activated de-

pending on video stream. λ4 (8 Kbps) rate is added to total demand.

When the traffic rate of these four sensors are equally allocated it may not be possible

to utilize the channel for streaming the video. We need to adapt the rate of the sensors

7

Figure 1.3: An Example Configuration Where Four Sensors S1, S2, S3 and S4 with

Their Pre-determined Rates are Connected to the Coordinator C

to dynamically changing traffic requirements with different priority values. How to

determine shared channel allocation in real-time based on the traffic requirements

and priorities thereof is called as the bandwidth packing problem. In this problem,

we assume all the traffic requirements and their discrete priorities are known upfront;

that is why we can refer to this as an offline problem. However, the solution has to be

computed in real-time with minimal delay.

Bandwidth packing problem is a specific example of variable-sized one-dimensional

priority-based bin packing problem. The objective is to pack the traffic requirements

on a fixed capacity channel by considering the discrete priorities. However, the ob-

jective is accompanied by another important concern. If we can carefully schedule

the traffic, it may be possible to let sensors sleep more and conserve energy. In this

thesis, we concentrate on showing meta-heuristic methods to satisfy these objectives

in short time.

8

Figure 1.4: An Example Scenario of Sensor Activity in Time

1.3 Problem Analysis

In this section, we will show that our proposed problem can be reduced to the mul-

tiple choice knapsack problem. Initially, we should elaborate on what the multiple

choice knapsack problem [5, 48, 54, 75] really is. Then, we use meta-heuristic meth-

ods to solve for multi-rate bandwidth packing problem in short time to present the

applicability for real life systems.

1.3.1 The Problem Complexity

The main goal of the proposed problem is to find the best sensor configuration which

provides the maximum priority and optimum bandwidth allocation within the capac-

ity of wireless sensor networks. Having large numbers of sensors in the network,

with each sensor having different discrete rates and superorities against each other,

obtaining the optimal sensor configuration may prove somewhat difficult given the

capacity constraints and priority motives. Thus, ensuring bandwidth efficiency and

optimally prioritized sensor configurations in a constrained wireless sensor network

through allocating rates to sensors is the main requirement of the proposed problem.

Now that we have somewhat defined what inconveniences configuring wireless sensor

networks may present, we must draw attention to a very similar problem in many

ways [5, 48, 54, 75]; the Multiple-Choice Knapsack Problem (MCKP). The Knapsack

Problem is a renowned NP-Hard problem [22, 45, 52] in computer science due to its

9

various applications, and has an inception that dates back into 1890’s [31], and the

MCKP is a mere subproblem that introduces a class system upon the foundation that

is knapsack problem. If we were to define what the knapsack problem is used for;

we can use an allegory where we are given a knapsack that can only carry a limited

amount of weight. We are to fill this knapsack with items that each have their own

weight and their own value; with the goal of having the maximum value inside the

bag while not exceeding the weight limit. This problem has been reinterpreted over

a number of cases that involves basically two important factors; resource allocation

within fixed constraints.

The Multi Choice Knapsack Problem however, has further limitations in what items

can be put in this metaphorical bag; by implementing a class attribute into the set of

items in hand, and limiting the user into selecting only one item of each given class to

be put into this bag. This further complicates the NP-Hard problem [22, 45, 52] and

provides insight on how to solve many resource allocation problems by using meta-

heuristics such as the case we have in our hands, distributing and allocating bandwidth

and prioritizing data among the nodes in wireless multimedia sensor networks.

10

1.3.2 Formal Definition of Multi-Rate Bin Packing Problem

We can derive a solution to the NP-Hard QoS-aware bandwidth packing problem

by examining the solutions for multiple-choice knapsack problem [30, 33, 41]. Even

though a sensor may utilise more than one data rate, since we are adapting to the class

system that is introduced in multi-choice knapsack problem; we can ease the work-

force of the coordinator node by appointing a class to each data rate and necessitating

that each sensor may have only one class of rate in use.

The formulation of the QoS-aware multi-rate bandwidth packing problem becomes

finding xij to maximize

Z =
N∑
i=1

Mi∑
j=1

xijpij

subject to

N∑
i=1

Mi∑
j=1

xijλij ≤ C, i = 1, 2, . . . , N (1.1)

Si∑
j=1

xij = 1, j = 1, 2, . . . ,Mi (1.2)

where Mi is the number of distinct rates of the ith sensor, xij = 1 if ai = 1 and si is

allocated the jth rate, otherwise it is zero, vij is the value of allocating rate λij to si, C

is the capacity of the shared channel when ai = 1 if the ith sensor is activated, other-

wise ai = 0 that sensor is off. The first constraint ensures that the channel capacity is

not exceeded with the rate allocations and the second constraint guarantees that only

one rate (compression rate, coding rate, etc.) is allocated to sensor si if it is active

(i.e., ai = 1). We assume that the network is stationary, the topology is known and the

environmental conditions do not change through the period of study. The end nodes

convey measurement results over a single hop to the coordinator in a star topology

and all the nodes are in the same collision domain. The types and possible rates of

sensors are known upfront. These guide us to acquire problem solution through meta-

heuristic optimization techniques [11, 44, 79] such as Artificial Bee Colony (ABC),

Ant Colony Optimization (ACO), Binary Bat Algorithm (BBA), Criss-Cross Optimi-

sation (COA), Genetic Algorithm (GA) and Particle Swarm optimization (PSO).

11

1.4 Literature Review

Bandwidth packing problem still proves to be a real issue when dealing with telecom-

munications and the Internet. Recent applications are presented in a survey [69]. Most

of the researchers consider bandwidth packing solution is possible through Poisson

traffic forming an M/M/1 queuing model. Therefore, they reduce their problem to the

knapsack problem and present their own heuristic solutions to meet the QoS require-

ments [24, 51].

Delay Guaranteed Routing and MAC (DGRAM) [65] is a TDMA-based delay guar-

anteed protocol which is based on re-using the allocated time slots. This way, this

is also considered as energy efficient. CSMA and TDMA based Intelligent Hybrid

MAC (IH-MAC) [3] is proposed for reduction of delay and better energy-efficiency

through utilizing CSMA and TDMA advantages. This is provided by the usage of

broadcasting and link scheduling intelligently. Bitmap-assisted efficient and scalable

TDMA-based MAC (BEST-MAC) [1] is proposed for supporting diverse traffic with-

out any loss and delay. These studies are the source of inspiration for us in terms

of usage of mini-slot, ordinary knapsack algorithms, management of the slots and

member registration.

In the literature, there are a few studies on WSN over Xbee-Zigbee series 2. Most of

these works debates performance evaluation on different conditions [14]. For exam-

ple, [6, 8] consider performance of ZigBee in terms of end-to-end delay, throughput,

energy consumption and packet delivery ratio. Especially, [59] may be considered

as a special study due to it conducting real-life performance tests over Xbee-ZigBee

series 2. However, most of the performance evaluation studies did not address the

delay factor caused by TDMA slot size.

Few researchers that we have come across show that Xbee-ZigBee presents its fea-

tures such as low power consumption or self-healing can be applied in real world

applications without much of an optimization when using it only on controlling envi-

ronmental factors [10, 23, 40]

Some studies are about high quality video, picture, audio streaming in real-time to

add multimedia features. In order to find a better solution for real-time multimedia

12

streaming, various researchers studied the problem from different aspects such as

optimal queue scheduling [61], the network layer, the routing scheme [49, 67, 72] and

the effect of packet size on throughput performance [70]. Also there are studies which

try to demonstrate that high resolution video, picture and voice transmission using

WSN without any specific design is not possible [32]. However, in [2] the author

shows that low quality real-time video transmission over Xbee-ZigBee by making

optimization on routing path is possible.

On the other hand, some researchers study frame packing to increase throughput and

provide the desired Quality of Service. For example, [60] presents the impact of

optimal frame packing regarding performance of the WSN. Another example, in [66]

the author approaches more specifically into designing next fit decreasing algorithm

according to the frame’s deadline and transmission time.

There are also works on MAC layer optimization [12, 19, 56, 77]. For example, in

[76] the author considered bandwidth packing at MAC layer level. Although there

is not enough studies for data-link layer optimization for black box systems such as

Xbee-ZigBee, researchers may be inspired by MAC layer optimization studies. Over

the MAC layer, packet classification and node scheduling is presented as a solution

[50]; nevertheless, quality of services is disregarded.

In [57] authors mention the impact of queue delay on WSN performance. Inter-frame

delay may be considered as an another type of controllable parameter that impacts the

queueing system.

As a result, the majority of works focus on mathematical modelling on existing WSN

equipment and computer simulations of QoS instead of real life measurements on cur-

rent global hardware such as Xbee-ZigBee. Therefore, we have centered our research

on the combination of TDMA-based optimization for maximum throughput with op-

timal energy consumption and the selection of the appropriate rates while schedul-

ing mini-slots efficiently using meta-heuristic methods depending on pre-determined

rates and discrete priority values of sensors.

13

1.5 Contribution

In this thesis, we have determined nearly the best traffic scheduling configuration for

multi-sensor having various discrete rates wireless network systems through meta-

heuristic solutions in short time depending on priorities of sensors’ rates. We have

found six applicable algorithms, analyzed parameters effects of each algorithm and

compared them. Artificial Bee Colony method is applicable for real life wireless

sensor networks. Results show that ABC could generate solutions for network con-

figurations in reasonable time. Moreover, providing nominal deviated solution is an-

other advantage. Through lower solution time and better deviations from the optimal

solution, we ensure the quality of service, in the meantime causing less delay and

maintaining better energy efficiency for star topology networks.

1.6 Thesis Outline

We have stated the problem in detail at the Introduction Chapter. In the Chapter 2,

background information about XBee-ZigBee and FIT IoT-Lab are given and their uses

have been explained roughly. Next, we have made a research for obtaining a realistic

network capacity to provide as input; in order to do that, XBee-ZigBee and IoT-

Lab network environments are selected then the bandwidth capacities are obtained in

Chapter 3. Brief information of meta-heuristic methods are given meanwhile evalu-

ating their applicabilities for the network configuration case in Chapter 4. Simulation

results are graphed and discussed; comparing a number of algorithms’ deviation from

the optimal solution and how they behave under multi sensor scenarios while at the

same time taking their run times into account was demonstrated in Chapter 5. Lastly,

we have concluded this thesis by declaring contributions and future work details.

14

CHAPTER 2

BACKGROUND

2.1 General Information About ZigBee

In this section, ZigBee protocol, XBee module and Fit IoT-Lab background informa-

tion are given in details.

2.1.1 What is ZigBee?

As a need of controlling and monitoring environment, communication type between

remotely controlled sensors gain importance in terms of energy consumption, data

rate and security. The possibility of the existence of lots of remotely controlled sen-

sors interaction shows that the need of standardized communication interface. Using

this interface, all modules may form a Personal Area Network (PAN) and intercon-

nect through it. XBee-ZigBee [17] is one of the standardized protocols which is based

on IEEE 802.15.4.

IEEE 802.15.4 is a global standard which is defined by the Institute of Electrical

and Electronics Engineers. This is developed for Wireless Personal Area Network

(WPAN) which provides low data rates. This comprises definition of “Physical Layer”

and “Mac Layer”. It uses CSMA/CA in the MAC layer. There are three operating

frequencies namely 2.4 GHz, 915 MHz and 868 MHz in the physical layer. Mainly;

it operates at 2.4 GHz with 250 Kbps theoretic limit.

ZigBee is a protocol which operates above IEEE 802.15.4 physical layer. ZigBee

protocol is developed by ZigBee Alliance memberships and is aimed to target low

15

bandwidth applications such as home automation. The ZigBee protocol provides

efficient energy consumption, cost utilization, low data rate, security, self-healing,

self-management network configuration and reliability.

2.1.2 ZigBee Stack Architecture

ZigBee stack is formed of various layers above MAC layer as shown in Figure 2.1.

These are network layer (NWK), application layer which is separated into parts which

are ZigBee Device Object (ZDO), Application Support Sub-layer (APS) and applica-

tion objects. Network layer of ZigBee is responsible for managing network, security

of network and routing. APS is responsible for maintaining of routing tables and for-

warding messages. ZDO is responsible for determining roles of devices, initiating a

device and discovering other devices on a network.

Figure 2.1: The ZigBee Stack [55]

2.1.3 ZigBee Node Types

ZigBee may have three types of roles in a WSN. These are coordinator, router and

end-device roles as shown in Figure 2.2. WSNs have to contain only one coordinator

16

which is the manager. Also, a WSN may have one or more routers and end-devices

limited according to addressing method.

Figure 2.2: A Typical ZigBee Network Configuration [13]

2.1.3.1 Coordinator

The coordinator’s main duty is to form the network. It controls channel by the en-

ergy scan method and valid PAN ID through checking the region. PAN ID may be

both 64-bit and 16-bit. PAN ID and operating channel are published for the entire

network. After the coordinator establishes the network and determines connection

parameters and rules, it publishes permission rules for routers and end-devices to

join the network. As a helper, coordinator assists in routing packets and buffers data

for destination node which may be in sleep state. The coordinator has to be main-

powered to manage network strictly and efficiently. The PAN may contain only one

coordinator.

2.1.3.2 Router

Router’s main duty is to route data from a source to a destination. The router checks

embedded PAN ID, then searches region for joining a valid network. If the parameters

of the router are appropriate for current network, then the coordinator allows joining.

17

After getting rules, routers may also allow other devices to join the network. This

may be used main-powered or battery-powered depending on usage area. Routers

also have buffers to store data for sleepy destination nodes. A PAN may contain lots

of routers.

2.1.3.3 End-Device

End-devices have to join a valid ZigBee PAN in order to transmit or receive data.

End-devices talks with only their parents. If an end-device loses its parent, then it has

to find another one to continue its communication in PAN. End-devices may be the

source of data or one destination of data but they cannot route data or allow another

nodes to join the network. They may be considered as slave nodes. End-devices

provide low-power modes to minimize energy consumption. End-devices are mostly

battery-powered. A PAN may contain lots of end-devices.

2.1.4 XBee-ZigBee Addressing

All ZigBee devices support two types of addressing, 64-bit device address and 16-bit

network address.

2.1.4.1 64-Bit Device Addressing

This address is unique for each XBee-ZigBee device. This address is embedded into

devices during manufacturing process and never change. This address may be used

as extended address when network grows.

2.1.4.2 16-Bit Network Addressing

Coordinator network address is assigned to zero. However, coordinator randomly

generates network address and assigns this network address for each device which

join the network. Each device’s network address is unique for current network. If

18

problem of network address such as conflicts occur, then the coordinator determines

a new address and changes the device’s network address.

2.1.5 Data Transmission

Zigbee sends data packets using unicast or broadcast transmission. Although, uni-

cast transmission is routed data directly from source to destination, using broadcast

transmission packet are sent to all devices in the network.

2.1.5.1 Unicast Transmission

Packets are transmitted from source node and received from destination node by fol-

lowing determined path which contains only necessary devices instead of all devices.

Unicast transmission uses 16-bit network address to form a path from source to des-

tination. Unicast transmission includes handshake structure due to MAC layer which

is CSMA/CA. Before transmitting a packet, the node gets acknowledgement from

destination node and determines efficient path towards the destination.

2.1.5.2 Broadcast Transmission

Packets are transmitted from source and received from all devices in the current PAN.

After all devices are received broadcast packets, they also try to retransmit packets 3

times as a MAC layer characteristic. Each device holds maximum 8 entry information

about packets for 8 seconds to make controllable retransmissions.

2.1.6 Data Rate and Range

XBee-ZigBee operates in three unlicensed bands, 2.4 GHz, 928 MHz and 868 MHz.

Its theoretic RF data rate limit is 250 Kbps. On the other hand, data throughput

theoretic limit is 35 Kbps. Serial interface communication (between XBee-ZigBee

and platform) data rate is up to 1 Mbps which can be adjustable by software. The

19

communication range is between 40-120m depending on operating environment such

as indoor and outdoor.

2.2 Hardware of Testbed

In this section, we mention about the components, the architecture and the communi-

cation of XBee-ZigBee.

2.2.1 Hardware Components

Components of testbed include Digi XBee-ZigBee Series 2 wireless module, USB

and RS-232 converter module, Digi Coordinator AT firmware (0x20XX), Digi Router

AT firmware (0x22XX) and laptop with Linux operating system.

2.2.2 Digi XBee-ZigBee Series 2 Wireless Module

Digi XBee-ZigBee series 2 as shown in Figure 2.3 wireless modules are developed

by Digi Company to meet a need of low energy consumption and low cost for WSN.

The module operates at 2.4 GHz.

2.2.3 Host and XBee-ZigBee Series 2 Module Communication

A host can send data to the XBee-Zigbee module through RS-232 serial port. The

host puts data into “serial receive buffer” of XBee-ZigBee module. On the other

hand, host gets data from “serial transmit buffer” of XBee-ZigBee module as shown

in Figure 2.4.

“Serial Receiver Buffer” may become full and possibly it may overflow due to contin-

uous transmission. “Serial Transmit Buffer” may become full and result in dropped

packets due to traffic load or flow control. Figure 2.5 shows Xbee module architec-

ture.

20

Figure 2.3: XBee Hardware Device [17]

Figure 2.4: XBee-ZigBee Communication [17]

2.2.4 Serial Interface Protocol

Hosts send data through DIN pin and data are queued up for wireless transmission.

When a packet is received, then the data are acquired by host through DOUT pin.

Data are buffered in the serial receive buffer until occurrence of conditions such as

packetization timeout, command mode request with (GT+CC+GT) specific combina-

21

Figure 2.5: XBee-ZigBee Transmitter and Receiver Buffers [17]

tion and the maximum characters that fit in a packet.

2.2.5 Module Modes of Operations

XBee-ZigBee has five different modes which are "Idle", "Transmit", "Receive", "Com-

mand" and "Sleep".

2.2.5.1 Idle Mode

XBee-ZigBee put itself into idle mode, when it carries out no action such receiving

or transmitting. While it is waiting in idle mode, it may switch itself to another mode

such as transmit, receive, sleep or command.

2.2.5.2 Transmit Mode

After getting data from host via serial communication and becoming ready for pack-

etization, the module decides to switch to transmit mode. Before transmission, the

module makes sure about destination path’s validation. If there is no determined path,

ZigBee discovers path before transmission.

22

2.2.5.3 Receive Mode

When a packet is received, then the data are copied into the serial transmit buffer.

2.2.5.4 Command Mode

The module enters the command mode to read and modify desired parameters. In

order to enter this mode, special four-step sequence has to be applied.

• Host does not send any character in pre-determined guard time (GT)

• Host sends special characters such as “+++”.

• Host does not send any character in pre-determined guard time (GT)

• Host receives OK message from the module.

• Command mode is ready for reading and modification.

2.2.5.5 Sleep Mode

The module uses sleep mode for low power consumption. In sleep mode, module

does not listen to the channel. Module may enter into sleep mode, when it is free for

action.

2.2.6 Platform

The Xbee sensors are connected to a notebook through the serial port. It harvests

information from sensors, applies algorithms and prepares for communication. Serial

communication parameters as follows: 115200 baud rate, 8bit data, no parity and no

flow control.

23

2.3 Firmware, Platform Operating System and Software Information

In this section, we present the features of compatible Xbee module firmware which

is provided from ZigBee, the effect of platform operating system on communication

and graphical user interface of Xbee module namely "X-CTU".

2.3.1 Firmware of XBee-ZigBee

XBee-ZigBee presents “AT” router firmware and coordinator firmware to provide

control interface to developers. The XBee-ZigBee “AT” firmware commands are fol-

lows:

• Providing direct communication with network layer through by-passing appli-

cation framework layer.

• As a good feature, ZigBee protocol handles only forming a network and man-

aging the network without modifying any data.

• Providing maximum payload size (84 Bytes / packet)

• Operating in one of the determined channel which is between from 11 to 26. In

order to select the best channel, the module checks each channel’s energy state

in an efficient way peculiar to its improved protocol.

• Packetization timeout is a controllable parameter to adjust wireless packet size.

2.3.2 Platform Operating System

Linux Ubuntu open source operating system is selected due to these following rea-

sons:

• The sleep resolution of Linux is approximately 1.25ms comparing with win-

dows7 which is 10 ms.

• Developer environment is better due to being open source.

• The algorithms use multi-thread architecture; therefore, Linux is more efficient.

24

2.3.3 Software

In order to program firmware of XBee-ZigBee and change parameters, X-CTU graphic

user interface of Digi is used. Reading and modifying parameters through X-CTU

provides an easy interface. As a programming language, Python is used due its sup-

port for multi-cross environment.

2.4 General Information About FIT IoT-LAB

In this section, we present FIT IoT-Lab, node deployment, hardware and software

details are given.

2.4.1 What is FIT IoT-LAB?

FIT IoT-LAB [34] is a large scale Internet of Things (IoT) heterogeneous commu-

nicating testbed (node) infrastructure which is designed to provide any academic or

industrial developer [20] an environment where they are able to conduct real-time

and fully-controlled experiments. This platform presents an invaluable opportunity

to make faster development on network and application layers of wireless sensor net-

working technologies. Web-based and command-line interfaces are supported for the

management of system. Using one of these interfaces, any developer can schedule an

experiment and deploy different firmware for selected nodes. After running the ex-

periment, developers can monitor and store nodes’ data such as energy consumption,

sensor state or debugging information in real-time. Various real-life use cases can be

performed through different node types, topology designs and different sites.

IoT-LAB system has a total of 2728 wireless sensor nodes deployed expanding over

eight different locations across Central Europe. In addition to this large size of sensor

nodes implemented; there are numerous types of mobile nodes included within the

networks with either controllable or uncontrollable motion. The infrastructure has

been built with large-scale bandwidth allocation, connectivity and power consump-

tion in mind. Sensors used in creating these topologies offer a variety of different

types in the sense that some of them differ in the architecture of their processors or

25

even their physical wireless chips. This kind of variation is preferred when scientific

studies regarding WSNs are conducted due to results being more like that of real life

events. Researches are also provided with full access to these nodes via the gateways

in which the nodes are connected. Users can directly connect to a selected testbed

and seamlessly control these nodes, setting up an experiment via the interface with-

out much of an interruption.

2.4.2 Topology

Due to the full capacity of IoT-LAB expanding over numerous sites [35], applica-

tion developers can instrument the network infrastructure in Inria Grenoble (928

nodes), Inria Lille (640 nodes), ICube Strasbourg (400 nodes), Inria Rocquencourt

(344 nodes), Inria Rennes(256 nodes) and Institute Mines-Telecom (160 nodes), CITI

Lab (41 nodes) and Freie Universitat (50 nodes).

We have mentioned the mobility capacities of a part of these nodes in order to facili-

tate real life applications where sensors needed to be non-stationary. The portability

of these sensors are administered using robots; where each node is embedded on a

Turtlebot2 or Wifibot; with either has fixed trajectory or can be controlled by the net-

work. IoT-LAB offers various scenarios where the user can engage on these robots

in order to determine their path on various levels. In the uncontrollable course case,

there are a number of ways that can be preferred by the user, these can be either pre-

dictable or non-predictable. The bot can either adopt a pre-defined circuit, or it can

randomly select a way point inside the testbed and can repeatedly manoeuvre to the

currently set way point until it arrives to the destination. The bot can also instrument

an another type of mobility dubbed "Manhattan", where it moves along horizontal

and vertical lines and selects which way to go randomly at every stop, making it a

candidate in order to study traffic .

The last of the non-stationary applications implemented in IoT-LAB system is of

course, user controlled mobility. Control over the bots is left entirely on the user,

where the designer of the experiment can upload a mobility model just like the way

they can adjust the other parameters of the simulation. This kind of flexibility over

the trajectories that the bots can take paves way to such applications that investigates

26

the behaviours of swarm or fleet.

2.4.3 Node Hardware

The IoT-LAB network contains roughly 512 WSN430 nodes that run on 800MhZ,

632 WSN430 nodes that run on 2.4GhZ, 944 M3 nodes, 536 A8 nodes and 108 open

host nodes. WSN430 nodes are based on low-power MSP430F1611 MCU and can

communicate via a 802.15.4 PHY layer that can either run on 800MhZ or 2.4 Ghz.

M3 on the other hand, is based on STM32F103REY MCU and communicates with

802.15.4 PHY Layer that operates on 2.4 Ghz. A8 node is based on TI SITARA

AM3505 (ARM Cortex A8) which can run Linux. A M3 hardware node is embedded

on the A8. Hardware configurations are various as were aforementioned; which leads

to a cross-platform experiment medium that can produce more realistic solutions.

In order to further increase the diversity of hardware; custom boards can be added

externally that can be also used as nodes. Among these boards are Atmel SAM R21;

based on ARM Cortex architecture (2.4 Ghz operating frequency), Arduino Zero and

Zolertia RE-Mote.

The hardware infrastructure [37] is basically a set of IoT-LAB nodes that can commu-

nicate with each other and is set up by the user remotely in accordance to the current

experiment needs, while this whole time powered by a backbone provider which also

serves as a foundation for implementing seamless connectivity. The standard network

consists of three main components; open node, gateway and control node. Open node

is fully customisable by the user, meaning they can be load and run any software and

can be used for any purpose. Gateways act as a passage between the open node and

the rest of the network while the control node is used to reach out to open nodes and

to control them.

2.4.4 Embedded Software Development

IoT-LAB supports software development [36] on a great extent where users can build

their applications both via an operating system that is run on the node or on hardware

itself.

27

2.4.4.1 Architecture

In IoT-LAB environment; we can talk about three layers of API. These consist of

drivers, operating systems and communication libraries that is installed upon the hard-

ware. While drivers work as a mediator between the hardware and software; users can

develop their applications on top of supported operating systems or onto the driver it-

self.

2.4.4.2 Drivers

IoT-LAB provides low-level APIs for WSN430 and M3 nodes that is used to operate

and to communicate with the available hardware components within these nodes, like

ambient sensor lights, temperature sensors, accelerometers and so on.

2.4.4.3 Operating Systems

As mentioned above, the hardware that is used as nodes in IoT-LAB environment sup-

ports a number of operating system; albeit simple nodes like WSN430 and M3 can be

run with no operating system at all. A8 nodes are more heavyweight in terms of soft-

ware performance and can even run Linux. Other supported OS include FreeRTOS,

Contiki, TinyOS and Riot.

2.4.4.4 Libraries

Communication protocol between 802.15.4 chips used on the open nodes are carried

out with wireless communication libraries like CSMA, TDMA or 6LoWPAN.

2.4.4.5 Software in Open Source

The software used in IoT-LAB infrastructure is licensed under a CeCILL License.

Users are encouraged to contribute the research community with the results of their

inquiries regarding wireless sensor networks.

28

2.4.5 System Platform Tools

IoT-LAB system supports numerous tools that are provided in order to give the user

a wide range on the topic of deploying, running and manage experiments within the

network. The platform is built on three layers with the REST API on the bottom.

Web portal offers simplicity in tasks such as managing experiments and editing the

elements, which ssh front ends cater for the communication between nodes and offer

CLI tools.

2.4.5.1 Web-Based Tools

Web-based tools are included within the interface to accomplish regular tasks such as

checking platform status, allocation of nodes to selected experiments and so on.

2.4.5.2 CLI-Command Tools

Command line tools are also included in order to build control interfaces of the open

nodes. CLI tools leverage the REST API and their capabilities vary from querying

experiments to managing node configurations.

29

30

CHAPTER 3

NETWORK CHANNEL CAPACITY

The bandwidth packing problem incorporates both controlled and uncontrolled pa-

rameters which have an impact on the system itself [43]. One of the important factors

is the wireless system channel capacity denoted by C. The bandwidth capacity has

a correlation with the number of sensors, shown by N , the environmental conditions

and the distances between the sensors. The bandwidth capacity of the system is deter-

mined to find the solution for the bandwidth packing problem at hand. Therefore, in

this chapter, we primarily concentrate on determining the bandwidth capacity through

controlled experiments. We will also elaborate on these experiments’ details includ-

ing the topology of the sensors and the types of hardware used in those sensors. Lastly

we will present the network capacity measurement results.

3.1 Capacity Measurement on ZigBee

In this experiment, we have used five XBee Series-2 with integrated ZigBee protocol.

Data packets are provided from the personal computer as a host system. The coordi-

nator is located in the center position and four sensor nodes are placed around at the

periphary of the coordinator with a distance of 2 meters as seen Figure 3.1. Modules

are adjusted with minimum internal delay and maximum packet payload. Moreover,

the ATMode of ZigBee, which disables the ZigBee control layer, is selected in order

to reach maximum throughput. In other words, ATMode is designed to send accu-

rate data in relatively short time. We have used the communication protocol called

TDMA for the task of sending data from host to ZigBee module.

31

Figure 3.1: ZigBee Network Configuration

The host sends and receives a payload of packets to and from the ZigBee modules

prepared in advance, which has a size of 84 bytes, via RS-232 data communication

protocol. The ZigBee module then gets the payload data, and starts the encapsulation

process. Even if IEEE 802.15.4 supports 127 byte packet structure, ZigBee modules

use 43 bytes of it for header information. Theoretically, in order to reach maximum

throughput, platform should be sending packets sequentially without a delay. How-

ever, ZigBee multi-level infrastructure makes it impossible to make the transmission

sequentially without any guard time since the processes of sending a payload to the

ZigBee module, making packets of it inside the module, transferring this data be-

tween these modules and acquiring the payload from the received packet and sending

the payload to the host take reasonable time. Figure 3.2. Moreover, ZigBee protocol

in coordinator continuously checks network configuration such as node acceptance.

In the experiments, initially coordinator begins to establish network configuration.

After that, coordinator accepts other ZigBee nodes which have appropriate configu-

ration settings. All nodes have connection only with the coordinator. All nodes have

waited a beacon message from coordinator to obtain current slot configuration. The

coordinator randomly assign slots to nodes and shares slot configuration with nodes

every 2 second for experiment purpose. This system runs 20 times for each lasts 10

32

Figure 3.2: ZigBee Packet Transmission Infrastructure [17]

minutes period. These conditions are preserved for each slot size from 4 ms to 60 ms

with 2 ms interval.

Figure 3.3: Offered and Successful Rates Depending on Slot Size

As shown in Figure 3.3, TDMA slot size starts at 4 ms and increases 4 ms for each

measurement. XBee-ZigBee tries to send packets for each slot size. Before 24 ms slot

size, offered load and throughput is not correlated. However, after 24 ms slot size,

offered load and throughput produce same results. Figure 3.3 indicates that 26 ms

slot size is the best rate performance for current XBee-ZigBee network configuration.

33

Figure 3.4: Sensor Packet Drop Ratio Depending on Slot Size

On the other hand, packet drop ratio as shown in Figure 3.4 verifies measurement

result of Figure 3.3. Depending on these results, XBee-ZigBee maximum bandwidth

capacity could be considered 35.4 Kbps as shown in Figure 3.3.

34

3.2 Capacity Measurement on IoT-Lab

In this section, IoT-Lab experiment environment and capacity measurement details

are given.

3.2.1 Experimentation Environment

In this work, we concentrate on QoS and therefore consider TDMA as the medium

access control protocol.

Figure 3.5: The Topology of the IoT-Lab Lille Laboratory [38]

35

We have chosen Lille laboratory because of equidistant placement of sensors as shown

in Figure 3.5. In this design, the coordinator is placed at the epicentre and the nodes

are positioned in a star topology. The coordinator of the network may assign slots to

sensors after solving the bandwidth packing problem.

In order to acquire realistic results, we use the M3 hardware [37] node as shown in

Figure 3.6. This device supports the OpenWSN TDMA module which of details is

shown Figure 3.7 as the basis of our solution. The TDMA channel is represented as

superframes, which consists of frames that are comprised of variable number of slots.

In this scheme, every 2 second a beacon is broadcasted from coordinator to synchro-

nise all connected sensors. A frame contains 20 slots. Two slots are reserved for man-

agement. First management slot is used for collecting the traffic requirements of the

sensors and second one is required to broadcast scheduling configuration. The guard

period between consecutive slots is 1300 microseconds and all the listening nodes

start receiving 500 microseconds before the start of each subsequent slot. Packets are

127 Bytes in size.

Figure 3.6: M3 Node Structure [39]

36

Figure 3.7: IoT-Lab M3 Node TDMA Scheme

37

3.2.2 Capacity Measurement

The effective capacity of the channel is determined by the TDMA superframe struc-

ture, management slots and the guard period. The rate of the phy is 250 Kbps and

packets are 127 Bytes yielding a transmission duration of 4.06 ms per packet. 2

slots are reserved for management. Depending on the slot length, the number of

management frames change because the number of slots in a frame is fixed to 20.

Furthermore, the guard period also chokes up the channel capacity. A simple back-

of-the-envelop computation will yield a theoretic effective capacity shown in Figure

3.8 without considering the errors on the channel. We calculate theoretic effective

capacity using TDMA structure as shown in Figure 3.7.

Figure 3.8: IoT-Lab M3 Nodes Network Capacity in Lille Laboratory

We present the test-bed measurement results in Figure 3.8 for various star topologies

where the distance to the sink is 1.2 m and 3.6 m. We employ one coordinator and four

nodes in the experiments. The coordinator is put center position and nodes are located

38

equidistant to the coordinator and each other. All nodes have connection only with

the coordinator. The coordinator randomly assign slots to nodes. Each experiment is

started with warm-up period. Then, these last 3 minutes. Results are averages of 20

runs.

As shown in Figure 3.8, the theoretic capacity and measured capacity results are al-

most the same. When the slot duration is less than 6 ms, the effective throughput

decreases because packets in consecutive slots start colliding with each other. This

phenomenon does not reveal itself since errors are not considered in our simple theo-

retic computations. If it is large, we do not utilize the channel because of very large

slot durations in comparison to actual transmission times. In these scenarios, we

employed the smallest transmission power levels (-17 dBm) and have not observed

a significant bit error rate. Depending on the channel conditions, we may have to

periodically probe the channel capacity to be able to solve the bandwidth packing

problem.

39

40

CHAPTER 4

BIO-INSPIRED SOLUTIONS

In this section; we are going to go over numerous optimization solutions which are

derived from the nature itself. These formations proved to be the nature’s solution for

complicated problems [71] that resembles what we deal with in optimizing WMSNs

and allocating the resources. Swarm intelligence-based techniques [78] in algorithms

that are used for optimization share a certain characteristic as they’ve all originated

from real life behaviour of animals.

4.1 Methodology

The process begins by generating a sensor list with four different rates and priorities

assigned to each sensor type as shown in Chapter 1. From 6 to 18 sensor configu-

rations are constructed by selecting a sensor randomly from this list. Regardless of

which sensor configuration is selected, all sensors are assumed to be active during the

experiment. Using the exact algorithm, optimal solution values are found for each

sensor configuration. Before the final comparison, various parameters of the algo-

rithms are analysed in order to run the algorithms in the best performance possible.

Each parameter’s initial value is selected from the previous implementations of the

algorithm. Then, the imminent neighbourhood of the parameters’ values are checked.

Each experiment is conducted 500 times in order to ensure the results. Using the opti-

mal parameters, the solving time of the bandwidth packing problem and the deviation

percentage from the optimal solution are taken into consideration; and the selected

algorithms are compared in Chapter 5.

41

4.2 Artificial Bee Colony

The Artificial Bee Colony (ABC) [42] algorithm has become one of the standards in

swarm intelligence-based optimization problems due to its high accuracy and rel-

atively low-cost. We will introduce in this section a chosen few of these swarm

intelligence-based algorithms, along with Ant Colony Optimization and Particle Swarm

Optimization in order to try and compare how do they fare if implemented in Wire-

less Sensor Networks. In the ABC case of course, the algorithm tries to mimic a bee

colony. In order to achieve that, the algorithm puts to use three active classes of bees

in a colony; employed bees, onlooker bees and scouts. Fictionally speaking, these

three groups all have their respective tasks that work in some way to optimize the

solution for the problem at hand. In order to further understand how the optimiza-

tion process works, we have to once again turn to the real life example of how a bee

colony functions and distinguish the related tasks of these mentioned classes. First,

we have the employed bees phase; these bees are tasked to search for new and more

valuable resources of food in order to sustain the growing need of resources in the

colony proportional to the increase in population. The algorithm conducts this exact

“work versus food“ rhetoric by introducing a reward system that fortifies a worker

bee’s fitness level whenever a bee finds a new source of food. This incentive serves

as a way to optimize the way the elements work to gather resources, as the “fittest”

element continues to live on to the next cycle. Moving on to the subsequent phase;

we have the onlooker bees, which is an alegory for the caste system that is present in

bee colonies. All employed bees nominee to be an onlooker bee, but there’s a catch:

the more fitness levels gained in the previous phase by a certain employed bee will

accentuate its chance to be selected as one. The algorithm presents a reward for each

cycle of this phase whenever a new member gains their stripes.

The last phase of the ABC algorithm is the scout bees phase, which serves as a way

to cut any loose employed bee elements that can’t produce rewards or “food” through

evolving into an onlooker bee after a predetermined number of cycles. These fore-

mentioned phases are ran in the algorithm as many times as necessary in order to meet

the predetermined optimal solution.

ABC has three parameters which affect solution performance. These parameters are

42

population size (PS), generation size (GS) and comparison probability of the distance

between the new food position and current selected bee (R) as shown in Table 4.1.

In order to analyse R parameter effect, the 18 sensor network configuration case is

selected and other parameters are fixed. Experiments are run for each generation size

from the start.

Table 4.1: ABC Algorithm Parameters

Name Value Parameter Explanation
PS 90 Population Size
GS 7 Generation Size
R 0.3 Probability of the distance between the new food position and a bee

Figure 4.1: Time-to-solve the Bandwidth Packing Problem for Various Generation

Sizes Depending on the Number of Sensors

In Figure 4.1, we can acknowledge that the generation size in fact affects the solution

time considerably. For the 6 sensors network configuration case, the solution takes

43

about 10 ms, 22 ms, 36 ms, 48 ms for each consecutive generation respectively; yet in

the graph we have shown only the 1st, the 3rd, the 5th and the 7th generations in order

to provide some manner of clarity. The elapsed time difference between generation

sizes are approximately 12 miliseconds for the 6 sensor case. On the other hand we

should note that, for the 18 sensors network configuration, solution takes about 30

ms, 75 ms, 125 ms, 185 ms for selected generation sizes, almost double the amount

of time elapsed in 6 sensor case. In other words, as the number of sensors increase,

the time difference between generations also increases. Therefore, the generation size

should be preferred as small as possible for the real life network applications.

Figure 4.2: Deviation from the Optimal Solution for Various Generation Sizes De-

pending on the Number of Sensors

Figure 4.2 shows that the deviation is not directly related with the number of sen-

sor nor the generation size. For example, a 12-sensor network configuration presents

better deviation results for each generation size when compared with the 10 sensor

network configuration, while the opposite is also true. We can also note that; while

the deviation percentage can be seen as decreasing while moving towards higher gen-

44

eration sizes at each and every number of sensor configuration, the variance is not

linear and therefore irrelevant.

Figure 4.3: Deviation from the Optimal Solution in Time Depending on the Popula-

tion Sizes

As the x axis of Figure 4.3 shows the solution time versus the deviation percentage

of the 18 sensor configuration depending on various population sizes (PS). In popu-

lation sizes of 90 and 120; the results are considered to be better when compared to

population size of 60, due to the low deviation rate. Moreover, even if population size

of 120 may seem better for a while, population size of 90 shows better performance

after 75 ms. According to these data, a population size of 90 gives the better solutions

in this case.

45

Figure 4.4: Deviation from the Optimal Solution in Time Depending on the Values of

R

Figure 4.4 shows the characteristic of R that is defined as the effect of probability of

the distance between new food positions and a search agent, in this case a bee; on

the graph regarding the deviation percentage over the solution time. R = 0.3 has

performed generally better in terms of deviation under 175 ms. The time elapsed for

finding the first solution relatively increases depending on theR parameter. Deviation

percentage can be considered to be somewhat trivial compared to the time axis. Under

these conditions we are to select the optimal value ofR as 0.3 for experiment run-time

lower than 200 ms.

46

4.3 Ant Colony Optimization

The Ant Colony Optimization (ACO) [18] is yet another one of the most popular

algorithms in swarm intelligence-based category, as we’ve mentioned earlier. As the

name suggests, this technique has also been deduced from a real-life example; in this

case however, the subject in hand are ants. Ants, like bees; are also commonly known

for how their society functions, a rather interesting layered-class system where the

transitions between the classes are limited. Ants have forged this complex mechanism

for a very simple reason of course; in order to reproduce and grow their population.

And to increase population, the colony is in constant need of food. The way the ants

locate food sources in a limited space is particularly interesting. Each member starts

to search for food by moving rather freely, at random locations. This blind search

continues on until a food source is found. In order to retrace their steps and signal their

peers, ants release pheromones. Eventually with more ants locating the food source

and transmitting it piece by piece back to their colony, the amount of pheromones

on the path between the food source and the colony multiplies, thus strenghtening

the bond leading to more members of the colony eventually finding their ways to the

located food source. Meta-heuristic solution derived from this optimization method

can be thought of in a similar manner. In a cycle, all members move in a random

direction; then update their pheoromone values. A “trail” is then formed with these

pheromone values, between the starting point and the next node. The member then

selects their new path according to the accumulated pheromone between the arrival

point and the next possible node. This process is iterated until a solution is found.

This manner of soft computational method used for solving discrete optimization

problems have certain advantages and disadvantages over other algorithms [9]. The

ACO algorithm is random at first and the decisions are probabilistic, meaning the time

of convergence is uncertain; an undesirable situation in some cases. But in enough

generations, a solution is bound to be found.

47

ACO has five parameters which affect solution performance. These parameters are

population size (PS), generation size (GS), relative importance of pheromone (β),

maximum controlling level pheromone update (ρ) and minimum controlling level

pheromone update (ε) as shown in Table 4.2. In order to analyse PS, β, ρ and ε

parameter effect, the 18 sensor network configuration case is selected and other pa-

rameters are fixed. Experiments are run for each generation size from the start.

Table 4.2: ACO Algorithm Parameters

Name Value Parameter Explanation
PS 90 Population Size
GS 7 Generation Size
β 25 Relative Importance of the Pheromone
ρ 0.98 Control Maximum How the Pheromone is Updated
ε 0.005 Control Minimum How the Pheromone is Updated

Figure 4.5: Time-to-solve the Bandwidth Packing Problem for Various Generation

Sizes Depending on the Number of Sensors

48

In Figure 4.5, we can acknowledge that the generation size in fact affects the solution

time considerably. For the 6 sensors network configuration case, the solution takes

about 20 ms, 40 ms, 60 ms, 90 ms for each consecutive generation respectively; yet in

the graph we have shown only the 1st, the 3rd, the 5th and the 7th generations in order

to provide some manner of clarity. The elapsed time difference between generation

sizes are approximately 20 miliseconds for the 6 sensor case. On the other hand we

should note that, for the 18 sensors network configuration, solution takes about 50

ms, 180 ms, 300 ms, 420 ms for selected generation sizes, almost 4 times the amount

of time elapsed in 6 sensor case. In other words, as the number of sensors increase,

the time difference between the generations also increases. Therefore, the generation

size should be preferred as small as possible for the real life network applications.

Figure 4.6: Deviation from the Optimal Solution for Various Generation Sizes De-

pending on the Number of Sensors

Figure 4.6 shows that the deviation is irrelevant with the number of sensors or the

generation size. For example, a 12-sensor network configuration presents same devi-

ation results for each generation size while a 14-sensor network configuration behaves

49

differently. We can also note that; while the deviation percentage can be seen as de-

creasing while moving towards higher generation sizes at each and every number of

sensors configuration, the variance is not linear and therefore can be thought of as

irrelevant.

Figure 4.7: Deviation from the Optimal Solution in Time Depending on the Popula-

tion Sizes

In Figure 4.7, the Ant Colony Optimisation algorithm case, we have yet again dif-

ferent population sizes to test in order to find an optimal value; meanwhile, the 18

sensor network configuration case is selected and other parameters are fixed. As the

graph suggests, the deviation rate lowers upon increasing the population size, yet the

elapsed total time also rises. We have selected a PS value of 90 in this experiment;

since it has the best of both worlds.

50

Figure 4.8: Deviation from the Optimal Solution in Time Depending on the Values of

β

In Figure 4.8, we are obliged to find the optimal value for each related parameter of

the algorithm in order to solve for the best results. Therefore, a β level of 25 can be

acknowledged as the best case for this scenario.

51

Figure 4.9: Deviation from the Optimal Solution in Time Depending on the Values of

ρ

We have selected in Figure 4.9 a ρ value of 0.98 from the data we have gathered from

this graph; since it provides us the lowest deviation rate among these samples and the

time needed is same on all selections.

52

Figure 4.10: Deviation from the Optimal Solution in Time Depending on the Values

of ε

In the Figure 4.10, we have observed the behaviour of the algorithm regarding the

deviation rate, and at ε value of 0.005 we can observe a slightly improved deviation

percentage.

53

4.4 Binary Bat Algorithm

Binary Bat Algorithm (BBA) [64] refers to a rather recently developed meta-heuristic

computational technique that is inspired from, in this case, bats and the way they

locate prey. Just like other optimization algorithms that was reproduced from natural

systems, BBA also utilizes a hunter-prey logic but with an important difference; BBA

does not offer an evolution mechanic in order to promote producing solutions. On the

contrary, binary bat algorithm relies on something called “animal echolocation”, the

process where certain animals, bats among them, use their voices as some kind of a

sonar in order to locate obstacles, prey or one another. Echolocation functions as a

tool for the bat, who are otherwise blind, to determine their location by calculating

the distance from themselves to obstacles, walls, prey or even other bats. The main

feat of this meta-heuristic compared to the others is the fact that the individual, in this

case the bat, can change their search space in a continuous manner by altering their

cries’ amplitude and frequency. This enables some form of flexibility as different

positions in the search space may require larger or smaller steps in order to reach to a

solution in an efficient manner. This kind of alteration plays a vital role in scenarios

that require a faster rate of convergence and strict resource management.

The attributes mentioned above are what made Bat Algorithm rather popular amongst

population-based solutions. In time, it has been applied to all sorts of problems, one

of them is discrete binary optimisation problem. For the purposes of developing a

variant of the BA for discrete solutions, since it was originally not applicable to binary

problems directly, a binary version of BA was introduced to solve feature selection

problems. Hence BBA was acquainted as a high-performance meta-heuristic that

offers relative ease in solution finding in discrete problems. The mainframe of the

algorithm remains relatively the same while some minor key changes are applied.

Feature selection can be regarded as an optimisation problem because of the fact that

it generally requires a smarter approach contrary to impractical exhaustive search.

Swarm intelligence based algorithms are proven to function well in these problems;

and BBA is easily one of the most popular among them recently. The inception of

the algorithm remains the same yet in the feature selection part, the bat’s position is

represented by binary vectors; and it moves in the search space now remodelled as a

54

boolean lattice.

BBA has seven parameters which affect solution performance. These parameters are

population size (PS), generation size (GS), minimum frequency (fmin), maximum

frequency (fmax), velocity (V), rate of pulse (R) and loudness (A) as shown in Table

4.3. In order to analyse PS parameter effect, the 18 sensor network configuration case

is selected and other parameters are fixed. Experiments are run for each generation

size from the start. This algorithm’s parameters are selected randomly in the run-

time except of population size (PS) and generation size (GS) which are examined in

determined range values.

Table 4.3: BBA Algorithm Parameters

Name Value Parameter Explanation
PS 90 Population Size
GS 7 Generation Size
fmin [0,1) Minimum Frequency (Uniform Real Distribution using MT19937 generator)
fmax [0,1) Maximum Frequency (Uniform Real Distribution using MT19937 generator)
V [-1,1) Velocity (Uniform Real Distribution using MT19937 generator)
R [0,1) Rate of Pulse (Uniform Real Distribution using MT19937 generator)
A [0,1) Loudness (Uniform Real Distribution using MT19937 generator)

55

Figure 4.11: Time-to-solve the Bandwidth Packing Problem for Various Generation

Sizes Depending on the Number of Sensors

In Figure 4.11 for the Binary Bat algorithm implementation, we have once again

sampled the algorithm in various generation sizes and compared how they fare against

each other in scenarios where 6 to 18 sensors are implemented within the network.

Yet again, we have come to a conclusion that the difference between each generation

of solutions increase with respect to the number of sensors implemented within the

system. We have graphed the 1st, the 3rd, the 5th and the 7th of these generations in

order to further emphasize this difference in time.

56

Figure 4.12: Deviation from the Optimal Solution for Various Generation Sizes De-

pending on the Number of Sensors

In Figure 4.12 shows that the deviation is irrelevant with the number of sensors or

the generation size. For example, right side of the 10-sensor network configuration

presents same deviation results for each generation size while left side shows devi-

ation percentage variation. We realize that comparing of 10-sensor, 12-sensor and

14-sensor network configurations shows that deviation does not have any relevance

with the number of sensors in the current network configuration.

57

Figure 4.13: Deviation from the Optimal Solution in Time Depending on the Popula-

tion Sizes

In the beginning of simulation, the 18 sensor network configuration case is selected

and other parameters are fixed. In Figure 4.13, a population size of 90 could be

considered as optimal value from the data we have gathered from this graph; since we

observe that there is a slightly improved rate in deviation percentage.

58

4.5 Criss-Cross Optimization

If we were to explain what Criss-Cross Optimisation (CSO) [53] stands for in one

word; it would be moderation. Inspired by the golden mean philosophy, the doctrine

the middle way between two extremes is considered to be the wisest; CSO instru-

ments the crossover operator originated from genetic algorithms into a dual search

mechanism where both horizontal and vertical crossovers are supported in order to

produce dissimilar offspring with the aim to secure more moderate solutions.

The individuals within the search space evolves into those of delivering increasingly

more optimal solutions after each generation, where after every generation, fitter off-

spring takes place of the parent members. Therefore we can say that utilising a multi-

dimensional crossover ability in CSO should have allowed us to achieve faster con-

vergence rates, since it reduces the unseen areas in the search space by going in both

directions. Thus by scanning the peripheral of every node that come up in the search

space we’d lessen the probability of premature convergence since in most cases this

was caused by not taking the necessary steps in both axes within the proximity of a

node. In this scenario, when reaching a stagnant point where no progress is made af-

ter several generations, a vertical crossover can be utilised in order to jump out of the

local minima of that stagnation region then a proper convergence can be achieved by

once again making use of once again horizontal crossovers. This kind of criss-cross

notion applied through the search space allows us to exert some kind of superiority

over traditional meta-heuristic methods.

Contrary to other swarm-intelligence based meta-heuristics, CSO uses its advantage

of multi-axis crossover operators by applying it after each evolutionary step twice.

The updated populations are then selected by the competitive operator, which func-

tions as a way of comparing parent and offspring individuals and decides whom to

terminate.

COA has four parameters which affect solution performance. These parameters are

population size (PS), generation size (GS), horizontal crossover probabilities (HP)

and vertical crossover probabilities (VP) as shown in Table 4.4. In order to analyse

PS, HP and VP parameters effect, the 18 sensor network configuration case is selected

59

and other parameters are fixed. Experiments are run for each generation size from the

start.

Table 4.4: COA Algorithm Parameters

Name Value Parameter Explanation
PS 90 Population Size
GS 7 Generation Size
HP 1 Horizontal Crossover Probabilities
VP 0.5 Vertical Crossover Probabilities

Figure 4.14: Time-to-solve the Bandwidth Packing Problem for Various Generation

Sizes Depending on the Number of Sensors

In Figure 4.14, for the Criss-Cross algorithm implementation, we have sampled the

algorithm in various generation sizes and compared between implemented scenarios

where 6 to 18 sensors. As a result, the difference between each generation of solu-

60

tions increase with respect to the number of sensors implemented within the system.

Through evaluating of the 18-sensor network configuration, solution time takes about

800 ms which could be considered barely applicable for real life systems.

Figure 4.15: Deviation from the Optimal Solution for Various Generation Sizes De-

pending on the Number of Sensors

Figure 4.15 shows that the deviation could be considered as irrelevant with the number

of sensor nor the generation size. For example, a 10-sensor network configuration

presents better deviation results for each generation size when compared with the 12-

sensor network configuration. We can also note that; while the deviation percentage

can be seen as decreasing while moving towards higher generation sizes at each and

every number of sensor configuration, the variance is not linear and therefore does

not have relevance.

61

Figure 4.16: Deviation from the Optimal Solution in Time Depending on the Popula-

tion Sizes

In Figure 4.16, as we can expect; COA meta-heuristic also behaves the same as with

the ACO case where increased population size improves the deviation rate to some

extent; meanwhile taking significantly longer to process.

62

Figure 4.17: Deviation from the Optimal Solution in Time Depending on the Hori-

zontal Probabilities

In Figure 4.17, we realize that Criss-Cross algorithm does not show any characteristic

behavior according to the HP parameter. For example, deviation percentage is higher

in some HP values while it is lower in others. Therefore, we cannot say that it is

directly correlated. Thus a horizontal probability value of 0.6 was selected taking

both deviation percentage and the time needed to concern.

63

Figure 4.18: Deviation from the Optimal Solution in Time Depending on the Vertical

Probabilities

In Figure 4.18, we realize that Criss-Cross algorithm does not show any characteris-

tic behaviour according to the VP parameter. For example, deviation percentage is

higher in some VP values while it is lower in others. Therefore we cannot say that

it is directly correlated. Thus a 0.5 of vertical probability was selected taking both

deviation percentage and the time needed to concern.

64

4.6 Genetic Algorithm

Lastly we have a genetic algorithm (GA) [15] based heuristic developed specifically

for the multidimensional knapsack problem (MKP for short). If we were to elaborate

on how these terms hold any significance, it should be noted that genetic algorithms

have been proven to present efficient solutions to MKP time and time again. Ge-

netic algorithms are series of processes in which the possible members that would

be eligible to a solution to an optimization problem are “evolved” into more viable

individuals as the system progresses and eventually converges. This kind of iterative

behaviour is key on almost all heuristic and meta-heuristic optimization algorithms

as we have expatiated on previous sections. Another common trait between these

algorithms is the “survival-of-the-fittest” rationale, whereafter each generation, indi-

viduals are evaluated by their perseverance, meaning how they have had fared in the

last evolutionary cycle towards the solution. Members are then “rewarded” by their

performance in terms of updating their “fitness” levels, which in turn increases the

chance to reach into an actual solution. Thus in each generation, members develop

and adapt to the task at hand, which is a desired situation for iterative solutions. After

initialization and representation problems are dealt with, one may put use the primary

operators of GA: selection, crossover and mutation operators. In the parent selection

phase, the logic is to give priority to more successful individuals, allowing them to

continue on to the next phase as candidates of crossover operations. Whether the in-

dividual is worthy of crossover is resolved by their fitness levels, i.e. how well they

fared in reaching a solution. Members that have proven to be more efficient than oth-

ers are chosen from the population via the selection operator and delivered onto the

next phase, crossover operation. In this part of the algorithm, individuals with high

fitness levels are selected two by two, and a crossover site amongst their bit strings is

randomly chosen. Selected bit sections are then transfered between the two strings in

order to form a genetic offspring. This process concludes the crossover. Then there’s

the mutation operator, which is a probabilistic process in order to maintain diver-

sity among fitter individuals and can be applied with selection operators in order to

make use of random walks through the search space. This serves as a way to balance

between deterministic and probabilistic attitudes in order to achieve a fast and effi-

cient way to solve discrete problems. Genetic algorithms for solving MKP problems

65

have been proven to be profitable due to its optimal use of selection, crossover and

mutation operators. The processes have been designed to deliver inevitable optimal

solutions for many problems.

GA has four parameters which affect solution performance. These parameters are

population size (PS), generation size (GS), parent pool size (PPS) and mutation prob-

ability (MP) as shown in Table 4.5. In order to analyse PS, PPS and MP parameters

effect, the 18 sensor network configuration case is selected and other parameters are

fixed. Experiments are run for each generation size from the start.

Table 4.5: GA Algorithm Parameters

Name Value Parameter Explanation
PS 60 Population Size
GS 7 Generation Size
PPS 8 Parent Pool Size
MP 0.5 Mutation Probability

66

Figure 4.19: Time-to-solve the Bandwidth Packing Problem for Various Generation

Sizes Depending on the Number of Sensors

In Figure 4.19, the algorithm is sampled in various generation sizes and compared

between 6 to 18 number of sensors. As a result, the difference between each genera-

tion of solutions increase with respect to the number of sensors implemented within

the system. Through evaluating of the 18-sensor network configuration, solution time

takes more than 500 ms which could be considered hardly applicable for real life

systems.

67

Figure 4.20: Deviation from the Optimal Solution for Various Generation Sizes De-

pending on the Number of Sensors

In genetic algorithm case Figure 4.20; we can see sharp increases in deviation rate on

almost all numbers of sensors on the first iteration; while the graph becomes smoother

after each generation. The same general manner of the graph is relatively the same

on all iterations though, deviation rate inevitably becomes a growing concern to the

algorithm as the number of sensors increase in the implementation of the network.

68

Figure 4.21: Deviation from the Optimal Solution in Time Depending on the Popula-

tion Sizes

According to Figure 4.21, genetic algorithm population size parameter shows better

performance at value of 60 compared with the population sizes of 90 and 120.

69

Figure 4.22: Deviation from the Optimal Solution in Time Depending on the Parent

Pool Sizes

In Figure 4.22 parent pool size plays an important role in genetic algorithms as can

be seen from the graph, it directly effects the deviation percentage; in which the

decrease from 11 percent to 7 percent indicates an improvement of almost a half from

the starting point.

70

Figure 4.23: Deviation from the Optimal Solution in Time Depending on the Mutation

Probabilities

In Figure 4.23, the mutation probability (MP) indicates, as the name suggests; the

coefficient that decides the probability of a mutation after each evolutionary step.

The optimal value for mutation probability is selected as 0.50 in this case since it

behaves the most consistent along the timeline even though mutation probability of

0.25 line may appear better in some cases.

71

4.7 Particle Swarm Optimization

The Particle Swarm Optimization (PSO) [29], has to be one of the most commonly

used optimization application in the field of swarm-intelligence based algorithms. It

was instigated from swarm or flock behaviours in nature, when Russell Eberhart and

James Kennedy started simulating bird flocks’ murmuration in computer environ-

ment. This algorithm was later discovered to be effective in finding optimal solutions

in search spaces, as many swarm-intelligence algorithms are. There are many PSO

variants developed since then, but many of them has the same structure as the origi-

nal. If we were to elaborate, the string of processes consists of basically manipulating

the trajectories of individuals searching for solutions in the search space along the

way in correlation with the current location and heading of the member who is the

closest to the solution at any given time. In this case, the individuals are called “par-

ticles”. The movement of a swarming particle along the search space can be defined

by a stochastic component and a deterministic component. This balance in random-

ization and definition tends to function well in solving for the optimal. Each particle

determines their next move in the search space by comparing its location with the

current location of the member that is closest to the solution, as in the flock example;

where birds chirp louder if they are near to a food source and the rest of the flock

swirls around it. The goal is to improve this location to an optimal solution until no

more progression can’t seem to be made after certain number of generations. This

behaviour inevitably brings the swarm closer and closer to the target, as one can ex-

pect. PSO is a relatively simple algorithm due to the fact that there is no need for

encoding or decoding into binary strings, unlike Genetic Algorithms due to the fact

that it can also work with real numbers. It can also be implemented in both continu-

ous and discrete cases; because positions and velocities can be discretized. There are

studies that show that PSO algorithms can outperform genetic algorithms in solving

many optimization problems, mainly because of its ability to update their members

towards a common goal regularly and globally.

72

PSO has three parameters which affect solution performance. These parameters are

population size (PS), generation size (GS) and learning factor (LF) as shown in Table

4.6. In order to analyse PS and LF parameters effect, the 18 sensor network config-

uration case is selected and other parameters are fixed. Experiments are run for each

generation size from the start.

Table 4.6: PSO Algorithm Parameters

Name Value Parameter Explanation
PS 90 Population Size
GS 7 Generation Size
LF 2 Learning Factor

Figure 4.24: Time-to-solve the Bandwidth Packing Problem for Various Generation

Sizes Depending on the Number of Sensors

In Figure 4.24, PSO algorithm has behaved similar to their counterparts; we can ob-

serve that, like the ones before, the difference between the elapsed times of each

73

generation increases as more sensors are added to the network.

Figure 4.25: Deviation from the Optimal Solution for Various Generation Sizes De-

pending on the Number of Sensors

In Figure 4.25, the deviation rate decrease after each iteration in PSO, as expected.

There are instances where the lower generation produces better results, but these can

be discarded as the general trend is higher the iteration, better the results.

74

Figure 4.26: Deviation from the Optimal Solution in Time Depending on the Popula-

tion Sizes

In Figure 4.26, as with the other algorithms, population size acts the same the to

general process of solution finding on almost all of the bio-inspired mechanisms.

The optimal point is proven to be a population size of 90 from this graph because it

provides an optimal spot for our needs regarding lower deviation rates and excellent

solution time. During the simulation, the 18 sensor network configuration case is

selected and other parameters are fixed.

75

Figure 4.27: Deviation from the Optimal Solution in Time Depending on the Learning

Factors

Figure 4.27 shows that in algorithms that encompasses different selected learning fac-

tor values should be examined in parts; mainly because there are some regions of time

where lower values of learning factor procures better results as can be seen in between

250 ms to almost 350 ms; the overall rate of deviation is lower in learning factor of 2.

During the simulation, the 18 sensor network configuration case is selected and other

parameters are fixed.

76

CHAPTER 5

RESULTS AND DISCUSSION

Meta-heuristic and exact algorithms are implemented in C++. Data set is constructed

using the sensor information table in Chapter 1 for network configurations with the

implementation of 6 to 18 sensors. Each sensor has four different discrete codec set-

tings. Initially, we have ran a brute force mechanism in order to find the optimal

priority value, the elapsed time and the number of deviation for that run for each data

set constructed. Afterwards, each data set is run for 500 times, while selecting the

bandwidth capacity randomly between 20 Kbps and 110 Kbps, which was determined

in network capacity measurement section. In order to solve for a near optimal con-

figuration cases in relatively short time, generation size of meta-heuristic algorithms

is limited to seven times. Elapsed time and the number of deviations are calculated

for each generation of the data set for the current number of sensors. Meta-heuristic

algorithm parameters are selected optimally and was fixed during the entire run time.

77

Figure 5.1: Time-to-solve the Bandwidth Packing Problem For Each Algorithm De-

pending on the Number of Sensors

Figure 5.1 are generated with using a 18-sensors network configuration and seven

times generated solution. These show that the exact algorithm works perfectly with

zero deviation until we reach a network configuration constructed with 10-sensors

configuration. Moreover, the exact algorithm could be evaluated more efficiently due

to zero deviation and reasonable time elapsed for each generation at 11-sensors con-

figuration. However, after 12-sensors configuration, the exact algorithm takes a large

amount of time to find out the optimal solution, therefore it cannot be applicable for

real-time network systems. Meta-heuristic algorithms present much better perfor-

mance after 12-sensors configuration compared to the exact algorithm. On the other

hand, ABC is the quickest algorithm in terms of solve time.

78

Figure 5.2: Deviation from the Optimal Solution in Time for the 12-Sensors Config-

uration

As we can observe from the graphs at Figure 5.2, the Artificial Bee Colony, Criss-

Cross Optimisation and the Particle Swarm Optimisation are observed to have similar

rates of convergence when compared to Binary Bat Algorithm, Ant Colony Algo-

rithm, and the Genetic Algorithm in this scenario. In some cases, we may have

observed results in COA that have deviated less from the exact solution then their

counterparts; this algorithm is rather slow to acquire the near optimal results when

compared to the ABC. In the process of result evaluation, we have observed that the

deviation amount from the solution changes rather slowly in large intervals of time.

When we take into consideration all the deviation-calculated time results, we have

come to a conclusion that the deviation rate, when compared to the time samples

used in this scenario can be regarded as a trivial parameter.

79

Figure 5.3: Deviation from the Optimal Solution in Time for the 14-Sensors Config-

uration

Figure 5.3 shows us that the Artificial Bee Colony and the Criss-Cross Optimisation

has a much higher rate of convergence when compared to Binary Bat Algorithm, Ant

Colony Optimisation, Particle Swarm Optimisation and Genetic Algorithm in this

scenario. In some cases, we may have observed results in COA that have deviated

less from the exact solution then the ABC; this algorithm is rather slow to acquire the

near optimal results when compared to the latter. In the process of result evaluation,

we have observed that when compared to 12 sensor configuration case, the ABC

and COA’s performance thrives in terms of the deviation amounts from the solution.

When we take into consideration all of the deviation-calculated time results, we have

come to a conclusion that the deviation rate, when compared to the time samples used

in this scenario can be regarded as a trivial parameter.

80

Figure 5.4: Deviation from the Optimal Solution in Time for the 16-Sensors Config-

uration

In Figure 5.4, the Artificial Bee Colony starts to perform relatively better in terms

of solution deliverance time and convergence rate when compared to Binary Bat Al-

gorithm, Criss-Cross Optimisation, Particle Swarm Optimisation, Ant Colony Algo-

rithm and Genetic Algorithm the more we increase the number of sensors in the sce-

nario. It may have been observed in smaller network sizes that COA competes with

ABC in deviation rates and solution times; this algorithm is rather slow to acquire the

near optimal results when compared to the ABC.

81

Figure 5.5: Deviation from the Optimal Solution in Time for the 18-Sensors Config-

uration

As we can observe from the graphs at Figure 5.5, the Artificial Bee Colony clearly

outperforms others in convergence rate when compared to Binary Bat Algorithm,

Criss-Cross Optimisation, Ant Colony Optimisation, Particle Swarm Optimisation

and Genetic Algorithm in this scenario. When we take into consideration the time

management of these algorithms, the ABC remains the best option. Thus; as the

number of sensors employed within the wireless sensor network rises, other algo-

rithms pale in comparison even though they perform similarly in smaller network

sizes. Due to its performance as number of sensors increase, ABC proves to be the

best choice among these algorithms in terms of its applicability in real life implemen-

tations of WMSNs when taking into account its relatively faster convergence.

82

Figure 5.6: Deviation from the Optimal Solution Depending on Various Generation

Sizes for the 18-Sensors Configuration

In Figure 5.6 shows all meta-heuristic algorithms’ deviation rates for each genera-

tion at 18 sensors network configuration. At a first glance at this graph; the COA

may appear to be converging much better when compared to others until the fourth

generation mark; if we were to take the elapsed time between each generation into

consideration, this algorithm yet still falls behind in convergance rate then ABC.

83

Upon reaching a conclusion in our research of finding the meta-heuristic algorithm to

solve for parameters such as network capacity, sensor rate and sensor priority values

in wireless sensor network implementation problem presented, we have experimented

on different bio-inspired solutions and tried to compare them in terms of convergence

rate; deviation from the exact solution, time elapsed for each solutions and so on.

After running each algorithm on these problems that have been produced; we have

observed that in these terms; the Artificial Bee Colony Algorithm provides the best of

both worlds; faster but mature convergence rate with relatively less time requirement

for each generation in multi sensor cases.

84

CHAPTER 6

CONCLUSION

In today’s world, homes are becoming increasingly sentient with the help of smart-

systems that are designed to fulfill the expectation of humans. These technologies

have been adapted to living spaces in order to achieve maximum yield in life qual-

ity. Modern smart home applications have only been possible because of the fact

that wireless sensor networks and multimedia networks that have become increas-

ingly easy and cheap to facilitate. These networks have to be used in immediate

moderation, however; due to prominent use of bandwidth by the multimedia sensors

integrated within these smart homes such as those that provide real-time video and

audio streaming. For multi-element sensor networks in such scenarios, this optimiza-

tion problem consists of a number of ever-changing dilemmas that has to be solved in

meta-heuristic procedures rather than brute force methods.

The algorithms that have been implemented in order to solve this wireless multime-

dia sensor network deployment problem have a number of subsections in which we

can further elaborate. There is the matter of resource allocation that first comes to

mind; in our case we have considered to implementation of large sensor networks

with centralised multiple node systems, where all nodes report to a coordinator cen-

ter, this coordinator is then tasked to constantly adjust the existing resources in order

to submit efficient results to the user. This presents a problem which the coordinator

overcomes by instrumenting logic in processing the data received, for example in our

case video broadcasting from camera sensors are restricted to discrete transmission

rates that are adjusted in conformity with the current status of the network traffic.

Having a centralised single-hop wireless sensor network rather than a multi-hop one

85

proved to be a smart move on our part for a number of reasons, partly because all

sensor nodes answering to a center coordinator, and the coordinator doing the most of

the traffic management helps with the issue of coping with multiple data types that are

trafficked along the network. This kind of almost hierarchical approach in designing

the network has also helped with the issue of balancing the traffic and data flow;

meaning it gives the coordinator of the sensor network more authority to decide on

the time devoted to the communication of sensor nodes, and to shorten or lengthen it

according to the immediate need. If we had not built the architecture in this manner or

in other words if each data packet was appointed a fixed time slot to be delivered; then

there would be huge periods of time where only a small amount of data is delivered

to the coordinator hence causing a major deficit in already limited resources.

A follow up on the advantages of implementing a single-hop architecture in the wire-

less sensor networks is the fact that it has also proved to be relatively easier to run

meta-heuristic algorithms in such structured networks. In all population-based bio-

inspired meta-heuristic solutions that we’ve acquired, we had treated the varying pa-

rameters like transmission rates and packet sizes between sensor nodes as data that

is later utilised for finding an optimal solution by the coordinator instrumenting a

deterministic approach but also using probabilistic notions. This kind of weighed de-

meanor is key to processing NP-hard problems, and most nature inspired algorithms

have employed this as the main objective.

In our research, we have implemented several of the aforementioned bio-inspired

solutions to try and compare how well they fare against the presented bandwidth

packing problem. Each meta-heuristic that have been explained briefly in Chapter 4

has their advantages and superiorities against each other in the objective of finding

the optimal solutions. We’ve examined and compared them by their convergence

rates, whether they give prematurely converged solutions or not, the accuracy of the

solutions acquired, the applicability of these algorithms to the proposed problem.

The experimentation over these algorithms has shown us; after examining the data

sets each of them have produced thoroughly, we are convinced that the Artificial

Bee Colony algorithm, among of these meta-heuristics, have provided the best near

optimal solutions when taking into account its relatively faster convergence and when

86

taking its ease of applicability to the real life wireless multimedia sensor network

scenarios.

As a future work, we will use the optimum meta-heuristic algorithm as presented

in this research in order to design a new type of medium access layer that is much

appropriate for real life usage.

87

88

REFERENCES

[1] Ahmad Naseem Alvi, Safdar Hussain Bouk, Syed Hassan Ahmed, Muham-
mad Azfar Yaqub, Mahasweta Sarkar, and Houbing Song. BEST-MAC:
Bitmap-assisted efficient and scalable TDMA-based WSN MAC protocol for
smart cities. IEEE Access, 4:312–322, 2016.

[2] Abdul Wahid Ansari, Mannika Garg, Sushabhan Choudhury, and Rajesh Singh.
Arm based real time video streaming using XBee for perimeter control in de-
fense application. In Computing for Sustainable Global Development (INDI-
ACom), New Delhi, India, 2014 International Conference on, pages 943–947.
IEEE, 2014.

[3] Mohammad Arifuzzaman, Mitsuji Matsumoto, and Takuro Sato. An intelligent
hybrid mac with traffic-differentiation-based QoS for wireless sensor networks.
IEEE Sensors Journal, 13(6):2391–2399, 2013.

[4] Md Abul Kalam Azad, Amina Khatun, and Md Abdur Rahman. A slotted-sense
streaming MAC for real-time multimedia data transmission in industrial wire-
less sensor networks. International Journal of Advanced Engineering Research
and Science (ISSN: 2349-6495 (P)| 2456-1908 (O)), 4(3):236–244, 2017.

[5] Mehdi Azarmi and Bharat Bhargava. An end-to-end dynamic trust framework
for service-oriented architecture. In Cloud Computing (CLOUD), Honolulu,
USA, 2017 IEEE 10th International Conference on, pages 568–575. IEEE, 2017.

[6] Jaypal Baviskar, Afshan Mulla, Manish Upadhye, Jeet Desai, and Aniket Bho-
vad. Performance analysis of ZigBee based real time home automation system.
In Communication, Information & Computing Technology (ICCICT), Mumbai,
India, 2015 International Conference on, pages 1–6. IEEE, 2015.

[7] Charles Bell. Beginning sensor networks with Arduino and Raspberry Pi.
Apress, 2014.

[8] Bilal Erman Bilgin and VC Gungor. Performance evaluations of ZigBee in dif-
ferent smart grid environments. Computer Networks, 56(8):2196–2205, 2012.

[9] Christian Blum. Ant colony optimization: Introduction and recent trends.
Physics of Life reviews, 2(4):353–373, 2005.

[10] Vongsagon Boonsawat, Jurarat Ekchamanonta, Kulwadee Bumrungkhet, and
Somsak Kittipiyakul. XBee wireless sensor networks for temperature moni-

89

toring. In The Second Conference on Application Research and Development
(ECTI-CARD 2010), Chon Buri, Thailand, 2010.

[11] Vincent Boyer, Moussa Elkihel, and Didier El Baz. Heuristics for the 0-1 mul-
tidimensional knapsack problem. European Journal of Operational Research,
199(3):658–664, 2009.

[12] Michael Buettner, Gary V Yee, Eric Anderson, and Richard Han. X-MAC: a
short preamble MAC protocol for duty-cycled wireless sensor networks. In Pro-
ceedings of the 4th International Conference on Embedded Networked Sensor
Systems, Boulder, Colorado, USA, pages 307–320. ACM, 2006.

[13] Hong-Yi Chang. A connectivity-increasing mechanism of ZigBee-based iot de-
vices for wireless multimedia sensor networks. Multimedia Tools and Applica-
tions, pages 1–18, 2017.

[14] Jin Soo Choi and Meng Chu Zhou. Design issues in ZigBee-based sensor net-
work for healthcare applications. In Networking, Sensing and Control (ICNSC),
2012 9th IEEE International Conference on, Beijing, China, pages 238–243.
IEEE, 2012.

[15] Paul C Chu and John E Beasley. A genetic algorithm for the multidimensional
knapsack problem. Journal of Heuristics, 4(1):63–86, 1998.

[16] Sarah J Darby. Smart technology in the home: time for more clarity. Building
Research & Information, pages 1–8, 2017.

[17] DIGI, Digi International 11001 Bren Road East Minnetonka, MN 55343 US.
Xbee/Xbee-PRO ZigBee RF modules, March 2015.

[18] Marco Dorigo, Mauro Birattari, and Thomas Stutzle. Ant colony optimization.
IEEE Computational Intelligence Magazine, 1(4):28–39, 2006.

[19] Dushyanta Dutta, Arindam Karmakar, and Dilip Kr Saikia. Determining duty
cycle and beacon interval with energy efficiency and QoS for low traffic IEEE
802.15.4/ZigBee wireless sensor networks. In Advanced Computing, Network-
ing and Informatics-Volume 2, pages 75–84. Springer, 2014.

[20] Alperen Eroğlu, Ertan Onur, and Halit Oğuztüzün. Estimating density of wire-
less networks in practice. In Personal, Indoor, and Mobile Radio Communi-
cations (PIMRC), Hong Kong, China, 2015 IEEE 26th Annual International
Symposium on, pages 1476–1480. IEEE, 2015.

[21] Shuo Feng, Peyman Setoodeh, and Simon Haykin. Smart Home: Cognitive
interactive people-centric internet of things. IEEE Communications Magazine,
55(2):34–39, 2017.

90

[22] Robert J Fowler, Michael S Paterson, and Steven L Tanimoto. Optimal packing
and covering in the plane are np-complete. Information Processing Letters,
12(3):133–137, 1981.

[23] M Gayathri and I Harish. Smart home power management system using Zig-
Bee. International Journal of Emerging Trends in Engineering and Develop-
ment, 2(5), 2015.

[24] Vangelis Gazis, Nikos Houssos, Nancy Alonistioti, and Lazaros Merakos. On
the complexity of "Always Best Connected" in 4g mobile networks. In Vehic-
ular Technology Conference, Orlando, FL, USA 2003. VTC 2003-Fall. 2003
IEEE 58th, volume 4, pages 2312–2316. IEEE, 2003.

[25] Lei Guo, Zhaolong Ning, Qingyang Song, Lu Zhang, and Abbas Jamalipour. A
QoS-oriented high-efficiency resource allocation scheme in wireless multimedia
sensor networks. IEEE Sensors Journal, 17(5):1538–1548, 2017.

[26] Guangjie Han, Jinfang Jiang, Mohsen Guizani, and Joel JP C Rodrigues. Green
routing protocols for wireless multimedia sensor networks. IEEE Wireless Com-
munications, 23(6):140–146, 2016.

[27] Mohammed Zaki Hasan, Hussain Al-Rizzo, and Fadi Al-Turjman. A survey on
multipath routing protocols for qos assurances in real-time wireless multimedia
sensor networks. IEEE Communications Surveys & Tutorials, 2017.

[28] Wendi Rabiner Heinzelman, Anantha Chandrakasan, and Hari Balakrishnan.
Energy-efficient communication protocol for wireless microsensor networks. In
System Sciences, Honululu, USA, 2000. Proceedings of the 33rd Annual Hawaii
International Conference on, pages 10–pp. IEEE, 2000.

[29] Fernanda Hembecker, Heitor S Lopes, and Walter Godoy Jr. Particle swarm
optimization for the multidimensional knapsack problem. In Proc. of the Inter-
national Conference on Adaptive and Natural Computing Algorithms, Warsaw,
Poland, pages 358–365. Springer, April 11-14, 2007.

[30] Raymond R Hill and Chaitr S Hiremath. Generation methods for multidimen-
sional knapsack problems and their implications. Journal of Systems, Cybernet-
ics, and Informatics (JSCI), 5(5):59–64, 2007.

[31] Ellis Horowitz and Sartaj Sahni. Computing partitions with applications to the
knapsack problem. Journal of the ACM (JACM), 21(2):277–292, 1974.

[32] Goran Horvat, Drago Zagar, and Tomislav Matic. Analysis of QoS parameters
for multimedia streaming in wireless sensor networks. In in Proceedings of the
55th International Symposium (ELMAR ’13), Zadar, Croatia, pages 279–282.
IEEE, September 2013.

91

[33] Toshihide Ibaraki, Toshiharu Hasegawa, Katsumi Teranaka, and Jiro Iwase. The
multiple choice knapsack problem. J. Oper. Res. Soc. Japan, 21:59–94, 1978.

[34] IoT-Lab. Fit iot-lab. https://www.iot-lab.info/. Accessed: 2017-
10-15.

[35] IoT-Lab. Fit iot-lab deployment. https://www.iot-lab.info/
deployment/. Accessed: 2017-10-15.

[36] IoT-Lab. Fit iot-lab development center. https://www.iot-lab.info/
dev-center/. Accessed: 2017-10-15.

[37] IoT-Lab. Fit iot-lab hardware. https://www.iot-lab.info/
hardware/. Accessed: 2017-10-15.

[38] IoT-Lab. Fit iot-lab lille deployment. https://www.iot-lab.info/
deployment/lille/. Accessed: 2017-10-15.

[39] IoT-Lab. Fit iot-lab m3 node structure. https://www.iot-lab.info/
hardware/m3/. Accessed: 2017-10-15.

[40] Pankaj Jadhav, Amit Chaudhari, and Swapnil Vavale. Home automation using
ZigBee protocol. International Journal of Computer Science & Information
Technologies, 5(2), 2014.

[41] Chandrashekar Jatoth, GR Gangadharan, and Rajkumar Buyya. Computational
intelligence based QoS-aware web service composition: A systematic literature
review. IEEE Transactions on Services Computing, 2015.

[42] Dongli Jia, Xintao Duan, and Muhammad Khurram Khan. Binary Artificial
Bee Colony optimization using bitwise operation. Computers & Industrial En-
gineering, 76:360–365, 2014.

[43] Mohamed Amine Kafi, Djamel Djenouri, Jalel Ben-Othman, and Nadjib
Badache. Congestion control protocols in wireless sensor networks: a survey.
IEEE communications Surveys & Tutorials, 16(3):1369–1390, 2014.

[44] Arpan Kumar Kar. Bio inspired computing-A review of algorithms and scope
of applications. Expert Systems with Applications, 59:20–32, 2016.

[45] Shahadat Khan, Kin F Li, Eric G Manning, and Md Mostofa Akbar. Solving
the knapsack problem for adaptive multimedia systems. Stud. Inform. Univ.,
2(1):157–178, 2002.

[46] Talha Koruk and Ertan Onur. Bio-inspired bandwidth packing. In Consumer
Communications & Networking Conference (CCNC), Las Vegas, USA, 2017
14th IEEE Annual, pages 1–4. IEEE, 2017.

92

https://www.iot-lab.info/
https://www.iot-lab.info/deployment/
https://www.iot-lab.info/deployment/
https://www.iot-lab.info/dev-center/
https://www.iot-lab.info/dev-center/
https://www.iot-lab.info/hardware/
https://www.iot-lab.info/hardware/
https://www.iot-lab.info/deployment/lille/
https://www.iot-lab.info/deployment/lille/
https://www.iot-lab.info/hardware/m3/
https://www.iot-lab.info/hardware/m3/

[47] Jingang Lai, Hong Zhou, Wenshan Hu, Dongguo Zhou, and Liang Zhong.
Smart demand response based on smart homes. Mathematical Problems in En-
gineering, 2015, 2015.

[48] Adam N Letchford and Juan-José Salazar González. The capacitated vehicle
routing problem: Stronger bounds in pseudo-polynomial time. 2017.

[49] Yanjun Li, Chung Shue Chen, Ye-Qiong Song, Zhi Wang, and Youxian Sun.
Enhancing real-time delivery in wireless sensor networks with two-hop infor-
mation. IEEE Transactions on Industrial Informatics, 5(2):113–122, 2009.

[50] Yang Liu, Itamar Elhanany, and Hairong Qi. An energy-efficient QoS-aware
media access control protocol for wireless sensor networks. In Mobile Adhoc
and Sensor Systems Conference, Washington, DC, USA, 2005. IEEE Interna-
tional Conference on, pages 3–pp. IEEE, 2005.

[51] Guisselle A García Llinás and Rakesh Nagi. Network and QoS-based selec-
tion of complementary services. IEEE Transactions on Services Computing,
8(1):79–91, 2015.

[52] Michael J Magazine and Maw-Sheng Chern. A note on approximation schemes
for multidimensional knapsack problems. Mathematics of Operations Research,
9(2):244–247, 1984.

[53] An-bo Meng, Yu-cheng Chen, Hao Yin, and Si-zhe Chen. Crisscross opti-
mization algorithm and its application. Knowledge-Based Systems, 67:218–229,
2014.

[54] Naoyuki Morimoto. Energy-on-demand system based on combinatorial opti-
mization of appliance power consumptions. Journal of Information Processing,
25:268–276, 2017.

[55] A Narmada and P Sudhakara Rao. Average end-to-end delay of customised
ZigBee stack. In Parallel Computing Technologies (PARCOMPTECH), 2017
National Conference on, pages 1–7. IEEE, 2017.

[56] Jian Ni, Bo Tan, and Rayadurgam Srikant. Q-CSMA: Queue-length-based CS-
MA/CA algorithms for achieving maximum throughput and low delay in wire-
less networks. IEEE/ACM Transactions on Networking, 20(3):825–836, 2012.

[57] Kathleen Nichols and Van Jacobson. Controlling queue delay. Communications
of the ACM, 55(7):42–50, 2012.

[58] Adam Noel, Abderrazak Abdaoui, Ahmed Badawy, Tarek Elfouly, Mohamed
Ahmed, and Mohamed Shehata. Structural health monitoring using wireless
sensor networks: A comprehensive survey. IEEE Communications Surveys &
Tutorials, 2017.

93

[59] Rajeev Piyare and Seong-ro Lee. Performance analysis of XBee ZB module
based wireless sensor networks. International Journal of Scientific & Engineer-
ing Research, 4(4):1615–1621, 2013.

[60] Florian Polzlbauer, Iain Bate, and Eugen Brenner. Optimized frame packing for
embedded systems. IEEE Embedded Systems Letters, 4(3):65–68, 2012.

[61] S Rajeswari and Y Venkataramani. Congestion control and QOS improvement
for AEERG protocol in MANET. International Journal on AdHoc Networking
Systems (IJANS) Vol, 2:13–21, 2012.

[62] Bushra Rashid and Mubashir Husain Rehmani. Applications of wireless sensor
networks for urban areas: A survey. Journal of Network and Computer Appli-
cations, 60:192–219, 2016.

[63] Priyanka Rawat, Kamal Deep Singh, Hakima Chaouchi, and Jean Marie Bon-
nin. Wireless sensor networks: a survey on recent developments and potential
synergies. The Journal of Supercomputing, 68(1):1–48, 2014.

[64] Sara Sabba and Salim Chikhi. A discrete binary version of bat algorithm for
multidimensional knapsack problem. International Journal of Bio-Inspired
Computation, 6(2):140–152, 2014.

[65] Anirudha Sahoo and Shanti Chilukuri. DGRAM: A delay guaranteed routing
and mac protocol for wireless sensor networks. IEEE Transactions on Mobile
Computing, 9(10):1407–1423, 2010.

[66] Kristian Sandstrom, C Norstom, and Magnus Ahlmark. Frame packing in real-
time communication. In Real-Time Computing Systems and Applications, Cheju
Island, 2000. Proceedings. Seventh International Conference on, pages 399–
403. IEEE, 2000.

[67] Chinyang Henry Tseng. Coordinator traffic diffusion for data-intensive ZigBee
transmission in real-time electrocardiography monitoring. IEEE Transactions
on Biomedical Engineering, 60(12):3340–3346, 2013.

[68] Muhammad Usman, Ning Yang, Mian Ahmad Jan, Xiangjian He, Min Xu, and
KM Lam. A joint framework for QoS and QoE for video transmission over
wireless multimedia sensor networks. IEEE Transactions on Mobile Comput-
ing, 2017.

[69] Navneet Vidyarthi, Sachin Jayaswal, Vikranth Babu Tirumala Chetty, et al. Ex-
act solution to bandwidth packing problem with queuing delays. Indian Institute
of Management, 2013.

[70] Naimah Yaakob, Ibrahim Khalil, and Jiankun Hu. Performance analysis of op-
timal packet size for congestion control in wireless sensor networks. In In Proc.

94

of. Network Computing and Applications (NCA), pages 210–213. IEEE, 15-17
July 2010.

[71] Xin-She Yang. Nature-inspired optimization algorithms. Elsevier, 2014.

[72] Lan Yao, Fuxiang Gao, Ge Yu, and Jian Wang. A Multi-QoS constraint routing
protocol for multimedia wireless sensor networks. In In proc. of IMSCI 2009,
July 10th-13th, Orlando, USA, 2009, 2009.

[73] Wei Ye, John Heidemann, and Deborah Estrin. An energy-efficient MAC proto-
col for wireless sensor networks. In INFOCOM, New York, USA, 2002. Twenty-
First Annual Joint Conference of the IEEE Computer and Communications So-
cieties. Proceedings. IEEE, volume 3, pages 1567–1576. IEEE, 2002.

[74] Mohamed Younis, Kemal Akkaya, and Moustafa Youssef. Handling QoS traffic
in wireless sensor networks. In Encyclopedia On Ad Hoc And Ubiquitous Com-
puting: Theory and Design of Wireless Ad Hoc, Sensor, and Mesh Networks,
pages 257–279. World Scientific, 2010.

[75] Tao Zhong and Rhonda Young. Multiple choice knapsack problem: Exam-
ple of planning choice in transportation. Evaluation and program planning,
33(2):128–137, 2010.

[76] Shuguo Zhuo, Ye-Qiong Song, Zhi Wang, and Zhibo Wang. Queue-MAC:
A queue-length aware hybrid CSMA/TDMA MAC protocol for providing dy-
namic adaptation to traffic and duty-cycle variation in wireless sensor net-
works. In 9th IEEE International Workshop on Factory Communication Sys-
tems (WFCS2012), Lemgo, NRW, Germany, pages 105–114. IEEE, May 21-24,
2012.

[77] Shuguo Zhuo, Zhi Wang, Ye-Qiong Song, Zhibo Wang, and Luis Almeida.
IQUEUE-MAC: A traffic adaptive duty-cycled MAC protocol with dynamic
slot allocation. In Sensor, Mesh and Ad Hoc Communications and Networks
(SECON), New Orleans, USA, 2013 10th Annual IEEE Communications Soci-
ety Conference on, pages 95–103. IEEE, 2013.

[78] Kenneth Zyma. Multiple choice multi dimensional knapsack heuristics.
https://github.com/kzyma/MMKP_Heuristics. Accessed: 2016-
07-15.

[79] Kenneth Zyma, Yun Lu, and Francis J Vasko. Teacher training enhances
the teaching-learning-based optimisation metaheuristic when used to solve
multiple-choice multidimensional knapsack problems. International Journal of
Metaheuristics, 4(3-4):268–293, 2015.

95

https://github.com/kzyma/MMKP_Heuristics

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	Motivation
	Problem Definition
	Smart Home as a Realistic Scenario
	Problem Definition

	Problem Analysis
	The Problem Complexity
	Formal Definition of Multi-Rate Bin Packing Problem

	Literature Review
	Contribution
	Thesis Outline

	BACKGROUND
	General Information About ZigBee
	What is ZigBee?
	ZigBee Stack Architecture
	ZigBee Node Types
	Coordinator
	Router
	End-Device

	XBee-ZigBee Addressing
	64-Bit Device Addressing
	16-Bit Network Addressing

	Data Transmission
	Unicast Transmission
	Broadcast Transmission

	Data Rate and Range

	Hardware of Testbed
	Hardware Components
	Digi XBee-ZigBee Series 2 Wireless Module
	Host and XBee-ZigBee Series 2 Module Communication
	Serial Interface Protocol
	Module Modes of Operations
	Idle Mode
	Transmit Mode
	Receive Mode
	Command Mode
	Sleep Mode

	Platform

	Firmware, Platform Operating System and Software Information
	Firmware of XBee-ZigBee
	Platform Operating System
	Software

	General Information About FIT IoT-LAB
	What is FIT IoT-LAB?
	Topology
	Node Hardware
	Embedded Software Development
	Architecture
	Drivers
	Operating Systems
	Libraries
	Software in Open Source

	System Platform Tools
	Web-Based Tools
	CLI-Command Tools

	NETWORK CHANNEL CAPACITY
	Capacity Measurement on ZigBee
	Capacity Measurement on IoT-Lab
	Experimentation Environment
	Capacity Measurement

	BIO-INSPIRED SOLUTIONS
	Methodology
	Artificial Bee Colony
	Ant Colony Optimization
	Binary Bat Algorithm
	Criss-Cross Optimization
	Genetic Algorithm
	Particle Swarm Optimization

	Results and Discussion
	CONCLUSION
	REFERENCES

