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ABSTRACT 

 
 

 SEMANTIC VIDEO ANALYSIS FOR SURVEILLANCE SYSTEMS 
 
 

Kardaş, Karani 

Ph.D., Department of Computer Engineering 

Supervisor: Prof. Dr. Ahmet Coşar 

Co-Supervisor: Prof. Dr. Nihan Kesim Çiçekli 

 
 
 

January 2018, 118 pages 
 
 

This thesis presents novel studies about semantic inference of video events. In 

this respect, a surveillance video analysis system, called SVAS is introduced 

for surveillance domain, in which semantic rules and the definition of event 

models can be learned or defined by the user for automatic detection and 

inference of complex video events. In the scope of SVAS, an event model 

method named Interval-Based Spatio-Temporal Model (IBSTM) is proposed. 

SVAS can learn action models and event models without any predefined 

threshold values and generates human readable and manageable IBSTM event 

models. The thesis proposes hybrid machine learning methods. A set of feature 

models named Threshold Model, which reflects the spatio-temporal motion 

analysis of an event, is kept as the first model. As the second model, Bag of 

Actions (BoA) model is used in order to reduce the search space in the 

detection phase. Markov Logic Network (MLN) model, which provides 

understandable and manageable logic predicates for users, is kept as the third 

model. SVAS has high performance event detection capability due to its 
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interval-based hierarchical approach. It determines related candidate intervals 

for each main model of IBSTM and uses the related main model when needed 

rather than using all models as a whole. The main contribution of this study is 

to fill the semantic gap between humans and video computer systems such that, 

on one hand it decreases human intervention through its learning capabilities, 

but on the other hand it also enables human intervention when necessary 

through its manageable event model method. The study achieves all of them in 

the most efficient way through its machine learning methods. The proposed 

system is applied to different event datasets from CAVIAR, BEHAVE, 

CANTATA and our synthetic datasets. The experimental results show that our 

approach improves the event recognition performance and precision as 

compared to the current state-of-the-art approaches. 

 

Keywords: Event Detection, Markov Logic Networks, Video Surveillance, 

Event Model Learning, Event Inference 
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ÖZ 

 
 

GÖZETİM SİSTEMLER İ İÇİN ANLAMSAL V İDEO ANAL İZİ 
 
 

Kardaş, Karani 

Doktora, Bilgisayar Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Ahmet Coşar 

Ortak Tez Yöneticisi: Prof. Dr. Nihan Kesim Çiçekli 

 
 
 

Ocak 2018, 118 Sayfa 
 
 

Bu tez video olaylarının anlamsal çıkarımı konusunda geliştirilmi ş çalışmaları 

sunar. Bu bağlamda, gözetim alanında karmaşık video olaylarının otomatik 

algılanması ve çıkarılması için anlamsal kuralların ve olay modellerinin 

öğrenilebileceği veya kullanıcı tarafından tanımlanabileceği bir gözetim video 

analizi sistemini (SVAS) tanıtmaktadır. SVAS kapsamında, Interval-Based 

Spatio-Temporal Model (IBSTM) (Aralık Tabanlı Uzamsal ve Zamansal 

Model) adlı bir olay modeli yöntemi önerilmiştir. SVAS, önceden tanımlanmış 

eşik değerleri olmadan eylem modellerini ve olay modellerini öğrenebilir ve 

anlaşılabilir ve yönetilebilir IBSTM olay modelleri üretir. Melez makine 

öğrenme yöntemleri önerilir ve kullanılır. Bir olayın uzamsal ve zamansal 

hareket analizini yansıtan Threshold Model (Eşik Modeli) isimli bir küme 

özellik modeli, ilk model olarak tutulur. İkinci model olarak, tanıma 

aşamasındaki arama kümesini azaltmak için Bag of Actions (BoA) (Eylem 

Çantası) modeli kullanılmıştır. Kullanıcılar için anlaşılabilir ve yönetilebilir 

mantık yüklemleri sağlayan Markov Logic Network (MLN) (Markov 
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Mantıksal Ağ) modeli, üçüncü model olarak tutulmaktadır. SVAS, sahip 

olduğu aralık tabanlı hiyerarşik yapısı nedeniyle yüksek performanslı olay 

tanıma kabiliyetine sahiptir. IBSTM' in her ana modeli için ilgili aday 

aralıklarını belirler ve tüm modelleri bir bütün olarak kullanmak yerine ihtiyaç 

duyulduğunda ilgili ana modeli kullanır. Bu çalışmanın ana katkısı, bir yandan 

öğrenme kabiliyeti ile insan müdahalesini azaltmak, diğer yandan da 

yönetilebilir olay modeli yöntemi yoluyla gerektiğinde insan müdahalesini 

mümkün kılacak şekilde, insanlar ve video bilgisayar sistemleri arasındaki 

anlamsal boşluğu doldurmaktır. Çalışma, sahip olduğu makine öğrenme 

yöntemleri aracılığıyla tüm bunları en verimli şekilde başarmaktadır. Önerilen 

sistem CAVIAR, BEHAVE, CANTATA ve sentetik veri kümelerinden oluşan 

farklı olay veri kümelerine uygulanmıştır. Deneysel sonuçlar yaklaşımımızın, 

günümüz yaklaşımlara kıyasla olay tanıma performansını ve hassaslığını 

geliştirdiğini göstermektedir. 

 

Anahtar Kelimeler: Olay Tanıma, Markov Mantık Ağları, Video Gözetimi, 

Olay Modeli Öğrenme, Olay Çıkarımı 
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CHAPTER 1 

 

INTRODUCTION 

 

 

 

1.1 Motivation 

Nowadays, surveillance camera systems play an important role in public 

security. However, most of these systems are "Simple Image Recording 

Systems" with the mere capability of recording the images and "Visual 

Analysis Systems" with limited detection and tracking capabilities. Today, 

when an incident related with the public security occurs, pre-recorded videos 

are reviewed by humans. This situation delays the response time of security 

operations to the incident. Surveillance systems are not used efficiently since 

so many human interventions are needed and hence automation is limited. 

Considering the rapidly increasing number of cameras, it is necessary to detect 

events automatically. However, that feature is beyond the capabilities of 

currently available systems. Complex event detection and recognition has 

become a hot topic in recent years. There are various studies (e.g. [96], [7], 

[97], [73], [76], [16], [25], [120], [122], [4] and [67]) about this subject. 

However, many of the applications are scene-dependent and consider certain 

scenarios. Existing solutions are highly domain-specific and even event-

specific. In addition, some systems (e.g. [5], [68], [83], [62], [91] and [97]) are 

so human-oriented that many human interventions are required. 

In general, event detection is a complex process which requires two main 

levels of processing. These levels can be considered as low level and high level 

processing. At low levels, objects and people are detected and tracked 

throughout the video frames and their spatio-temporal relations are calculated 
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with respect to their positions through time. At high levels, using the 

information obtained from low levels, events are detected by using models, 

which have been defined or learned apriori. At both levels, studies continue to 

increase detection and recognition performance. There are various successful 

studies taking low levels into consideration (e.g. [38], [127] and [27]) in which 

especially actors for surveillance domain (such as car, bag and human) can be 

detected and tracked successfully. In addition, even skeleton motions can be 

captured successfully in studies about game industry such as KINECT / 

XBOX. Although low level processing is not the main concern of our study, 

studies on low level processing will be briefly discussed in the related work 

section of this thesis as well. 

High level processing include video event detection, inference of events and 

prediction of possible events. Finding semantic relations between actors and 

detecting events are at least as important as the detection and tracking of actors. 

At high levels, semantic relations are determined by using actor trajectories and 

spatio-temporal relations. High levels can be considered as a set of levels 

according to the inference goal. At the first level, features such as speed, 

distance, and direction are extracted and then interval-based actions (or sub-

events, simple events, primitive events) such as run, walk and stand can be 

inferred. At a higher level of inference, complex events such as meet, left 

object, fight can be extracted by using the inferred actions. At one step higher 

level of inference, prediction of possible events can be extracted, which is an 

important issue in public security for quick interference or preventing 

undesired situations.  

At high levels, the method of event modeling is very important to fulfill the 

requirements of video event inference. There has been a considerable amount 

of work on the detection and recognition of video events and video event 

modeling. Various event types are analyzed, compared and categorized in 

many different application domains. The literature survey on video event 
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recognition (which is discussed in Section 2) reveals that methods for event 

modeling should possess some important features. 

As the first feature, methods for event modeling should deal with uncertainty in 

order to be fault-tolerant [57]. Dealing with uncertainty is important since the 

information coming from the low levels is not always perfect due to noise, 

occlusions etc. Hence, the semantics should be extracted in such a way that the 

erroneous or missing information, caused by the aforementioned reasons, is 

compensated at high level without leading to false event detection.  

Performance is another important feature. In surveillance systems, the size of 

videos is continuously increasing. Learning process does not require high 

performance algorithms, but the performance is critical for the inference 

process. Inference processes should be almost real time for quick interference 

or to prevent undesired situations. 

Nowadays, in most of the event recognition applications, event models are 

defined by a domain expert. However, defining a model for an event is a 

difficult process. The main reason is that an event may have many scenarios. 

Domain expert has to prepare all possible scenarios of the event, which is not 

feasible in many situations. All scenarios must be considered to describe all 

possible happenings of an event.  

The structure of the scene that is recorded and processed is another issue that 

must be considered in event modeling. It is apparent that automatic inference 

of event models from data is essential for adaptability and scalability of event 

understanding systems. If the event model could be learned and defined 

automatically, it would be easier to deal with such situations. As a result, 

learning ability from training data is another important feature of event model 

methods. The advantages of automatic model learning can be summarized as 

follows: 
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• There is no need to define a strict model for an event for all scenarios, scenes 

or low level algorithms. 

• All scenarios of the event can be considered automatically with the help of 

the training data. 

• Event model can be updated according to the new event scenarios easily and 

quickly. 

On the other hand, some current solutions are fully machine-oriented, in which 

machine learning techniques are used in order to prevent user intervention. 

Most of these systems generate unreadable and unmanageable event models. 

Event models are learned from training data to provide event detection and 

recognition. However, these systems need large amount of training data. 

Automated inference should be increased for intelligent video surveillance, but 

limited user intervention increases the quality of video inference capability. 

The ideal event model method should have robust representational capability 

including semantic relations [57]. It should be semantically meaningful for the 

user and enable user intervention when needed. The model quality naturally 

has a high influence on the detection and recognition performance. 

1.2 Contributions of the Thesis  

This thesis introduces a surveillance video analysis system, shortly called 

SVAS, which aims at solving the mentioned problems encountered at high 

levels. Outputs of low-level operations are considered as inputs of the proposed 

system. In SVAS, semantic rules and the definition of the event models can be 

learned or defined by the user for automatic detection and inference of complex 

video events. The resulting framework makes event detection and recognition 

flexible, while enabling domain and scene independent. The system decreases 

human intervention but enables human intervention when needed.  

We propose a new interval-based hybrid event model method called Interval-

Based Spatio-Temporal Model (IBSTM). IBSTM is both machine and human 
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understandable high-level event model, in which different suitable machine 

learning techniques are used at different phases of the event inference. 

SVAS generates the collection of human understandable IBSTM rules as the 

event model in order to help the user intervene in the learned model when 

needed. This kind of flexible framework also provides users to define new 

event models and train them if there is no training data. The necessity of large 

training data reduces. IBSTM uses Markov Logic Networks (MLN) [82] to 

generate user understandable models. MLN combines the flexibility of First 

Order Logic (FOL) and the power of Markov Network on handling uncertainty. 

First Order Logic is easy to understand for end users, so it provides good 

semantic information about complex events. However, MLN has some 

performance deficiencies in video domain since it does not consider the nature 

of videos. MLN considers time variables in the same way as other variables. 

MLN tries to find the relation between all variables. This behavior slows down 

MLN particularly when dealing with huge amount of data flow. To solve 

MLN’s performance problems, IBSTM extends MLN for video domain in a 

hierarchical manner with the Bag of Actions (BoA) and the proposed 

Threshold Model methods.  

The major contributions of this thesis can be summarized as follows: 

• SVAS is developed for surveillance domain. It is scene-independent and 

can consider different scenarios for various events. It is possible to define 

basic spatial, temporal and logical relations in the surveillance domain. In 

addition, SVAS can be used in both calibrated and uncalibrated scenes. 

• A new event model method named Interval-Based Spatio-Temporal Model 

(IBSTM) is proposed. SVAS can learn action models and event models and 

generate manageable IBSTM event models.  

• Threshold Model is proposed to reflect the spatio-temporal motion analysis 

of an event. 
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• Hybrid machine learning methods are used and extended. Different suitable 

machine learning techniques are used at different phases of the event 

inference such as Bayesian Networks, Bag of Actions and Markov Logic 

Networks. 

• There are not any predefined thresholds in SVAS. Threshold Model can 

also be used for learning thresholds. 

• SVAS can handle uncertainty in order to be fault-tolerant in noisy 

conditions. Proposed algorithms generate probabilistic results to prevent 

discretization problems.  

• SVAS decreases human intervention through its event model learning 

ability from training data to ease user operation and prevent user errors. 

• IBSTM fills the semantic gap between humans and video systems. 

Generated event models are readable for the user. SVAS enables the user to 

control and manage the event model. In addition, the user can define new 

event models. 

• SVAS has high performance event detection capability due to its interval-

based hierarchical manner and its high performance algorithms. Threshold 

Models and BoA Models provide great efficiency in both action and 

complex event detection by eliminating irrelevant intervals. 

• Time variables in SVAS can be defined as point based or interval based. 

• The proposed algorithms are tested in different event datasets from 

CAVIAR, BEHAVE and synthetic datasets. Results show that SVAS 

improves the event recognition performance and precision as compared to 

the current state-of-the-art approaches. 

The assumptions and limitations of this thesis are stated as follows: 

(i) In this thesis, we focus on single camera videos. 

(ii)  We assume that videos are captured by stationary cameras. 

(iii)  We focus only on high-level video processing. The outputs of low-level 

video processing are taken as inputs of the proposed system. 
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1.3 Organization of the Thesis 

The thesis is organized as follows:  

Chapter 2 presents the background information and related work on video 

event detection and recognition. First, basic concepts used in this dissertation 

are defined. The video event detection concept is introduced and event model 

methods are discussed. Then, the relevant literature is reviewed. 

 

In Chapter 3, the proposed system (SVAS) is presented in detail. First, the 

overall architecture of SVAS is introduced and Trajectory Generation Module 

is presented. Then, Event Model Learning is explained in detail, which 

includes Action Model Learning, Action Detection and Complex Event Model 

Learning processes. In addition, Complex Event Detection and basic prediction 

approaches of SVAS are discussed. Finally, implementation details and sample 

application are presented. 

 

Experiments and their results are presented in Chapter 4. There are six types of 

evaluations in this chapter. Evaluations on publicly available datasets named 

CAVIAR, BEHAVE and CANTATA are discussed first. In addition, synthetic 

dataset is created and the system is evaluated to measure the effect of missing 

values. Performance and quality evaluations conclude the chapter. 

 

Finally, in Chapter 5, a short summary of the study is given and the dissertation 

is concluded with possible future directions for research. 
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CHAPTER 2 

 

BACKGROUND AND RELATED WORK 

 

 

 

In this chapter, general concepts on video event and video event detection are 

given, the background information for the main topics is covered and related 

work is reviewed. The chapter is organized as follows: Section 2.1 gives brief 

information about Video Event Detection. Event model concept is discussed 

and brief information about event model methods is presented. In this thesis, 

we propose methods based on Markov Logic Networks. Therefore, in this 

chapter we also present the background information on Markov Logic 

Networks and its applications Alchemy [22] and Tuffy [106]. Finally, in 

Section 2.2, related work on video event detection and recognition is presented 

in two video processing levels. This section reviews recent studies that are 

most relevant to this dissertation. In addition it presents a comparison of the 

related work with this study. 

2.1 Video Event Detection 

An event is something happening in a location at a given time. Video event 

detection is the process of searching videos for events and identifying occurred 

events in videos. Video event detection is a way to understand the semantic 

content of the video. The main goal of video event detection is to identify 

spatio-temporal events in video and estimate their start and end times. 

Events can be grouped into actions and complex events. An action is a simple 

event performed by a single actor. Actions can be short body movements such 

as “walking” and “running”. Complex events are events which include more 

than one actor who reside in a determined closeness. Actors can follow a path 
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named trajectory through the scene as a function of time. Typically, complex 

events can be considered as an interaction among humans, or between humans 

and objects. “Meet”, “Fight” and “Left Object” can be given as examples of 

complex events.  

An emerging trend in video event detection is to detect an event automatically. 

Detection of such kinds of events is a process of finding events in video using 

pre-learned or pre-defined event models. For this reason automatic event 

detection requires event models. The process often relies on the comparison of 

input video parts with event models.  

Pre-defined event models are usually defined by the user using static thresholds 

or assumptions. This kind of models is generally successful in some conditions. 

However, this manual process is error-prone. The performance of automated 

event detection increases if event models are learned. Pre-learned event models 

require learning ability. This process can be named as Event Model Learning 

and provides an automatic generation of event models. All scenarios of events 

can be considered automatically with the help of the training data. This 

automation facilitates user intervention and minimizes errors created by the 

user in the event model definition. Events are learned by using features such as 

actor trajectories and spatial relations between them.  

Learning ability requires machine learning techniques. In learning process, 

there are some basic operations. Feature selection and feature extraction 

operations are done first. In this phase, it is important to find the most 

distinguishing features. Then according to the selected machine learning 

technique, the system learns the event model by using training data. After 

learning operation is completed, the event model is ready for inference.  

Learning can be grouped as supervised learning and unsupervised learning 

according to the training data. Supervised learning uses labeled training data. 

The desired output is labeled in the training data. Unsupervised learning uses 

unlabeled training data. In this case, desired output is unknown. Semi-
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supervised learning can be considered as another group in which both labeled 

and unlabelled training data are combined in the learning process. 

There are various machine learning techniques in literature. Some brief 

information for most important ones is given in this section, since they are 

mentioned in the rest of the thesis. 

2.1.1 Support Vector Machines 

Support Vector Machines (SVM) [40] are Kernel Methods [121]. In these 

models no explicit event description exists. In SVM, group of supervised 

learning algorithms is used for classification and regression. A SVM model 

predicts whether a new example falls into one category or the other in training 

phase. The input data is mapped into a high dimensional feature space (kernel 

trick). In this high dimensional feature space, a linear classifier is created. The 

main goal is to find a hyper-plane which separates classes. SVM is generally 

used for non-separable cases. In SVM, it is possible to distinguish two groups 

by drawing a boundary between two groups in a plane for classification. The 

place where this border can be created is found by calculating the farthest place 

to their members of each group. In order to accomplish this, two near and 

parallel border lines are drawn on the two groups and these boundary lines are 

drawn closer together to produce a common boundary line. 

2.1.2 Graphical Models 

Graphical models are models such that relations between variables are 

established using graphs. In Graphical Models semantic information is given 

explicitly. Finite State Machines (FSM) [57] and Decision Trees [96] are 

typical examples of this category [57].  

FSM is a deterministic model and shows flow of states. Sequential events are 

suitable for FSM and they can be defined in FSM as a sequence of states. In 

Decision Trees, leaves, nodes and edges determine classes, queries and results, 

respectively. Decision Trees become unsuccessful as the number of classes 
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increases and the number of training data decreases. Overestimating is another 

problem of Decision Trees. 

The formalism of FSM and Decision Trees is well understood. However, they 

are not probabilistic models. For this reason, they are not suitable for domains 

where there is uncertainty. 

2.1.3 Probabilistic Graphical Models 

Probabilistic Graphical Models can handle uncertainty by using joint 

distribution of random variables. There are two main inference query types in 

Probabilistic Graphical Models which are conditional probability query and 

most probable assignment. Markov Network, Hidden Markov Model (HMM), 

Bayesian Inference, Bayesian Network (BN), Dynamic Bayesian Network 

(DBN), Conditional Random Fields, Neural Network and Deep Learning are in 

this category.  

Markov Network [82] is an undirected probabilistic graphical model. Nodes 

represent random variables. Edges represent relations between random 

variables. Interactions are represented as potential functions. There is one 

potential function for each clique by default. To increase the performance a 

log-linear model is used and exponentiated weighted sum of features is used 

instead of potential functions. Log-linear model is used for making linear in 

order to decrease the dimension of data. For each clique, a weight and a feature 

are assigned. Cyclic relations can be defined in Markov Network. 

Independence checking in Markov Networks is very easy, only neighbor values 

are considered.  

HMM [70] is a kind of directed probabilistic graphical model where the aim is 

to find hidden state variables. Since they can model the temporal evolution of 

the state, they are suitable for domains in which continuous knowledge of past 

and present states exists. Current observations are dependent only on the 

current state and the current state is only dependent upon the previous state (the 

Markov property). The parameters of the HMM model may be learned from 
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the training data or specified manually. The number of HMM states are 

generally determined empirically. In the training phase of HMM, the number 

of states is specified. High order relations cannot be modeled in a HMM. 

HMM has an efficient inference and parameter learning algorithm such as the 

Baum-Welch algorithm which is based on maximum likelihood. Since the 

complexity of exact algorithms is NP complete, approximation algorithms are 

used for complex models. There are various extensions of HMMs. 

BNs [29] are another kind of probabilistic graphical models which represent a 

set of random variables and their conditional independencies. They are directed 

acyclic graphs which are based on Bayesian theorem. Nodes represent random 

variables, and arcs represent conditional independencies between the variables. 

For each random variable a Conditional Probability Distribution table is kept. 

This structure of the BN shows the joint probability over all variables. BNs 

have efficient inference and learning algorithms. BNs do not model temporal 

relations. DBNs [70] are temporal extensions of BNs. Cyclic relations can be 

defined in DBNs. However, DBNs cause high computational complexity and 

require large amounts of training data. 

Conditional Random Fields [107] are undirected probabilistic graphical 

models. They can be considered as the generalization of HMM. Feature 

selection is not limited to the current observations in Conditional Random 

Fields. Unlike HMM, relations can be established between current state and 

past or future states so combinations of past and future observations can be 

considered. However, it demands a high parameter learning time. 

Neural Network [57] consists of related layers and transmission between these 

layers. Layers consist of interconnected nodes. These nodes contain an 

activation function. Training phase of Neural Network is too slow. Deep 

Learning [59] provides a powerful set of techniques for learning in Neural 

Networks and the results of Deep Learning methods are very successful. 

However, the generated model is not semantically readable.  
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2.1.4 Semantic Models  

Semantic models enable explicit specification of complex relations between 

variables. Semantic models are easy to understand for users and reflect the 

semantic content well. Petri Nets (PNs), Constraint Satisfaction, Grammars, 

Logic-based Approaches can be considered as Semantic Models [57]. 

Normally, semantic models cannot handle uncertainty. To cope with the 

uncertainty problems, some extensions to these models have been developed. 

PN [34] is a kind of graphical model that represents information flow explicitly 

using states (nodes), transitions (event) and tokens (event instance) as a 

bipartite graph. PNs can model semantic relations including temporal relations, 

hierarchy and ordering. Semantic nature of PNs makes learning PN models 

infeasible. For this reason, PN models are usually deterministic and specified 

manually by the user. 

Constraint Satisfaction [79] represents the model as a set of semantic 

constraints. The main advantage of Constraint Satisfaction models is that the 

semantic constraints can be formulated. 

Grammar models [75] consist of three component sets, which are terminals, 

non-terminals and production rules. Stochastic Grammars (Probabilistic 

Grammars) are an extension of Grammar models in which probabilities can be 

associated with production rules. For this reason Stochastic Grammars can 

handle uncertainties.  

In logic-based approaches, models are specified as a set of logical rules. 

Inference is done using logical inference techniques, such as resolution or 

abduction. These approaches cannot handle uncertainty. Event calculus can 

also be considered as logic-based model and is based on first-order predicate 

logic, including temporal formalism, for representing and reasoning about 

events and their effects [7 and 8]. If the number of predicates increases, 

performance problems occur in logic-based approaches. 
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2.1.5 Bag of Words 

Bag of Words is another model type in which data (particularly text data) are 

represented as a bag. Bag of Words ([13] and [109]) method is first developed 

for document organization. Word frequencies in documents are considered in 

this method. Topic models ([55] and [109]) are similar to bag of words 

approach. Main disadvantage of these methods is that they remove all spatial 

information. For this reason, these methods are considered as non-temporal 

methods in the literature [109]. 

2.1.6 Markov Logic Networks 

Markov Logic Networks (MLNs) [82] are probabilistic relational graphical 

models. MLNs can be considered as both Probabilistic Models and Semantic 

Models. For this reason, MLNs have advantages of those models. MLNs are 

combination of First Order Logic (FOL) [99] and Markov Network. FOL is a 

powerful language and it can express complex, relational information well. 

Constants, variables, functions and predicates can be defined in FOL. FOL is 

very flexible and provides compact representation for a wide range of domain 

knowledge. However FOL cannot handle uncertainty. For this reason, it is not 

suitable alone for real world which includes uncertainty and probability. Rules 

can be defined as a set of certain facts by using FOL. Markov Network 

provides uncertainty handling so strict rules becomes softer. Combination of 

FOL and Markov Network provides ability to model complex information that 

can include probability. MLNs can be used to model complex relations in a 

more meaningful way and handle uncertainty. 

MLNs are based on first-order logic. MLNs formulas or clauses are attached 

with weights. MLN formulas define the topology of a Markov network. A 

MLN is a template for Markov Networks, based on logical descriptions. 

Predicates in the template are generated as nodes in the network. In this 

network, edges represent logical connectives in formulas and vertices represent 

possible groundings of formulas. A ground formula is a formula which is 



16 
 

constructed by only ground terms and a ground term is a term which contains 

no variables. All variables are replaced by constants in ground terms. As a 

result, a set of weighted first order formulas are generated. Knowledgebase is 

kept as FOL predicates. Weights attached to predicates determine probability.  

Theoretically, a MLN L can be considered as a set of pairs (f, w) where: f is a 

first-order logic formula and w is a real number which is the weight of the 

formula. Probability in MLN is formulated as follows:  
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(2.1) 

There are three main operations in MLN: parameter learning, inference and 

structure learning. There are various efficient probabilistic algorithms 

developed for these operations. Inference operation is the process of 

calculating the probability or most likely state of query atoms. For inference 

operation, Most Probable Explanation (MPE) and Maximum A Posteriori 

(MAP) based algorithms are used ([22] and [82]). MaxWalkSAT algorithm is 

used in order to maximize the sum of weights of the satisfied clauses. 

MaxWalkSAT is a kind of weighted satisfiability solver algorithm [82]. 

However, this algorithm uses too many resources and its performance is low. 

For this reason, lazy versions of MaxWalkSAT is used [22 and 82]. In addition, 

approximate inference algorithms such as Markov Chain Monte Carlo 

(MCMC) [35] is used in order to find marginal and conditional probabilities. 

MCMC uses randomized sampling method. In order to increase MCMC 

efficiency, MC-SAT algorithm was developed. MC-SAT can be considered as 
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a combination of MCMC and the SampleSAT satisfiability solver ([22] and 

[82]).  

MLN learns from training samples. In parameter learning, parameters or 

weights are learned generatively or discriminatively. Weights are learned 

generatively by maximizing the pseudo-likelihood of the training data. To 

overcome overestimation problem, discriminative learning is used. The 

formula of discriminative weight learning is follows: 

Maximize conditional likelihood of query (y) given evidence (x):  
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(2.2) 

In structure learning, features can be learned from an empty or existing 

knowledge base using integer linear programming with arbitrary clauses and 

MAP score. Weighted version of pseudo-likelihood algorithm is used in this 

process ([22] and [82]).  

2.1.6.1 Alchemy  

Alchemy is a software package developed for implementation of MLN [22]. 

Alchemy provides a set of algorithms for structure learning, weight learning, 

and inference operations of MLN. Alchemy can perform probabilistic and 

MAP/MPE inferences. MaxWalkSAT and LazySAT are MAP/MPE inference 

algorithms in Alchemy. Lifted version of Belief Propagation algorithm 

decreases running time and memory usage. In addition, Alchemy has MC-

SAT, Gibbs Sampling, and Simulated Tempering algorithms. Default inference 

algorithm of Alchemy is MC-SAT algorithm as shown in Algorithm 1. For 

parameter learning, Alchemy’s discriminative weight learning algorithms are 
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Voted Perceptron, Conjugate Gradient, and Newton's Method [22]. For 

structure learning, the default algorithm in Alchemy is beam search. 

Algorithm 1: MC-SAT Inference Algorithm in Alchemy 

INPUT: clauses, weights, num samples 
    1: x(0) ← Satisfy(hard clauses) 
    2: for  i ← 1 to num samples do 
    3:     M ← Ø  
    4:     for  all ck ∈ clauses satisfied by x(i−1) do 
    5:         With probability 1 − e−wk add ck to M 
    6:     end for 
    7:     Sample x(i) ~ USAT(M) 
    8: end for 
 

Typical usage of Alchemy is as follows: First, the model is prepared. Model 

preparation includes definition of the model as MLN rules by using First Order 

Logic predicates. Then the weights of the rules are determined by Alchemy 

using training data. Finally, inference is done with weighted model by using 

Alchemy. 

“learnstruct”, “learnwts” and “infer” are basic commands of Alchemy. 

“learnstruct”, and “learnwts” are learning commands and take input “.mln” 

files, output “.mln” file and training “.db” files. “infer” command takes input 

weighted “.mln” files (either learned or manually weighted), output file for 

result, evidence “.db “files and query predicates. “.mln” files contain MLN 

rules with declarations and formulas. “.db” files contain a set of ground atoms. 

Sample usage of MLN weight leaning is as follows. First, unweighted MLN 

file is created in which predicate definitions and rule definitions exist. Figure 1 

shows a sample unweighted MLN file.  
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// Predicate definitions 

*Friends(person, person) 

Smokes(person) 

Cancer(person) 

// Rule definitions 

!Smokes(a1) v Cancer(a1) 

!Friends(a1,a2) v !Smokes(a1) v Smokes(a2) 

!Friends(a1,a2) v !Smokes(a2) v Smokes(a1) 

Figure 1 Sample Unweighted MLN file (Unweighted.mln) 

Then training file is prepared as shown in Figure 2. 

Friends(Ali, Ahmet) 

Friends(Ali, Nur) 

Friends(Ali, Elif) 

Friends(Nur, Elif) 

Friends(Zeynep, Mehmet) 

!Friends(Zeynep, Elif) 

Smokes(Ali) 

Smokes(Nur) 

Cancer(Nur) 

Figure 2 Sample training file (Training.db) 

Sample Alchemy command for weight learning operation is as follows: 

learnwts –d -i Unweighted.mln –o Weighted.mln –t Training.db –ne Cancer 

Result of this operation is prepared by discriminative weight learning algorithm 

and written into file named “Weighted.mln”. Figure 3 shows content of the file. 
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// Predicate definitions 

*Friends(person, person) 

Smokes(person) 

Cancer(person) 

// Rule definitions 

0.5 !Smokes(a1) v Cancer(a1) 

0.4 !Friends(a1,a2) v !Smokes(a1) v Smokes(a2) 

0.4 !Friends(a1,a2) v !Smokes(a2) v Smokes(a1) 

Figure 3 Content of Weighted.mln file 

Inference is done using weighted .mln file and evidence .db files. The structure 

of evidence file is similar to training files. Again it contains ground atoms that 

show evidences. Sample evidence file is shown in Figure 4. 

Friends(Serhat, Tuncay) 

Friends(Serhat, Burak) 

Friends(Serhat, Oktay) 

Friends(Burak, Oktay) 

Friends(Bora, Selma) 

!Friends(Bora, Oktay) 

Smokes(Serhat) 

Smokes(Burak) 

Figure 4 Sample evidence file (Evidence.db) 

Sample Alchemy command for infer operation is as follows: 

infer -ms -i Weighted.mln -r inferResult.result -e Evidence.db -q Cancer  

Result of this operation is prepared by MC-SAT algorithm and written into file 

named “inferResult.result”. Figure 5 shows content of the file. 
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0.75 Cancer(Burak) 

0.65 Cancer(Serhat) 

0.50 Cancer(Tuncay) 

0.45 Cancer(Oktay) 

Figure 5 Content of inferResult.result file 

 

2.1.6.2 Tuffy 

Tuffy [106] is another software tool developed for implementation of MLN. It 

is an open-source Markov Logic Network inference engine. Tuffy is developed 

using Java programming language and uses PostgreSQL [78]. PostgreSQL is a 

powerful, open source object-relational database system. Designers and 

developers of Tuffy used Alchemy as a reference system. For this reason, 

Tuffy is very similar to Alchemy and command options are mostly compatible 

with Alchemy. Tuffy is capable of Markov Random Field partitioning, MAP 

inference, Marginal inference and Weight learning operations. Number of 

implemented algorithms of Tuffy is less than Alchemy’s. However, since Tuffy 

is Java-based, it is platform independent. Default inference algorithm of Tuffy 

is MAP inference algorithm as shown in Algorithm 2. Commands of Tuffy are 

similar to Alchemy. The main difference is that query parameters are given in 

query files. Discriminative Weight learning and MAP inference parameters of 

Tuffy operations for the example given section 2.1.6.1, are as follows: 

-learnwt -i Unweighted.mln -e Training.db -queryFile Query.db -r Weighted.txt 

-mcsatSamples 50 -dMaxIter 100 

-i Weighted.mln -e Evidence.db -queryFile Query.db -r inferResult.result 
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Algorithm 2: MAP Inference Algorithm in Tuffy 

INPUT: A: initial active ground atoms, C: initial active ground 
clauses, MaxFlips, MaxTries 
    1: lowCost   ← +∞, s* ← 0 
    2: for  try = 1 to MaxTries do 
    3:     s ← a random truth assignment to A 
    4:     for  flip = 1 to MaxFlips do 
    5:         pick a random c ∈ C that’s violated 
    6:         rand ← random real ∈ [0, 1] 
    7:         if  rand ≤ 0.5 then 
    8:             atom ← random atom ∈ c 
    9:         else 
    10:           atom ← atom in c with lowest d-cost 
    11:       if  atom is inactive then 
    12:           activate atom; expand A, C 
    13:       flip atom in s; recompute the cost 
    14:       if  cost < lowCost then 
    15:           lowCost ← cost, s* ← s 
    16: return s*  
OUTPUT: s* : a truth assignment to A 

 

2.2 Related Work 

Research on complex event detection and recognition has been an active topic 

in both artificial intelligence and computer vision areas in recent years. There 

are various studies at all levels of this topic that can be grouped in many 

different categories such as: methods used, modeling techniques, considered 

features, studied levels, targeted event types, and domain or input types. In this 

section, studies are grouped in their prominent characteristics. 

2.2.1 Event detection using low-level video processing 

Pixel-based operations can be considered as the lowest level processing in 

complex event recognition process. In these methods, pixel level primitives 

such as color, texture and gradient are considered. Some of the studies in the 

literature try to solve event detection, action detection or anomaly detection 

issues directly using pixel-based operations (e.g. [103], [14] and [48]).  
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In [103] abandoned and removed objects can be found using background 

subtraction and foreground analysis. In [14] abandonment of an object studied. 

If unattended object is detected, then owner of the object is searched.  

[92] uses gradient and histogram algorithms in order to detect left objects. 

[21] applies some low level algorithms such as Latent SVM on still images to 

analyze actions such as “take a photo”, “play music”, “riding bike”, “riding 

horse”, “running” and “walking”. 

The recognition of group activities is one of the hot research topics. In [53] 

discriminative group context feature and gated recurrent unit methods are 

proposed and used in order to recognize group activities. In [10] a group 

activity descriptor and recognition method based on trajectory analysis are 

proposed and used for group activity recognition. 

There are some violence detection studies in the literature. [123] proposes 

semi-supervised dictionary learning approach for violence detection. [111] 

focuses on fighting event detection using interaction energy force and low level 

features without any object extraction or tracking method. In [125], Gaussian 

Model of Optical Flow and Orientation Histogram of Optical Flow based 

approach is developed for violence detection. 

Anomaly Detection is another topic in low-level video event detection and 

there are lots of studies about this subject (e.g. [113], [128], [90], [65], [48], 

[118]). An anomaly can be considered as an observation which does not 

conform to expected normal behavior. Anomaly detection is about detecting 

those irregular behaviors. In anomaly detection, a model of expected behavior 

is learned and anomalies are detected by finding patterns that deviate from the 

model. Traffic events (illegal U-turns) and events of crowded people are 

considered in anomaly detection. In addition, there are some trajectory based 

anomaly detection studies in literature (e.g. [77], [60], [89] and [30]). In [61] 

anomaly detection techniques are discussed in three main groups which are 
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classification-based anomaly detection techniques, statistical-based detection 

techniques and clustering-based detection techniques. 

In all of these studies, there is no high-level reasoning or inference. Moreover, 

user understandable event representation is not considered. 

Some other studies try to generate reliable input data for higher levels. Subjects 

of these studies contain background subtraction, object detection, object 

tracking and object recognition (e.g. [38], [127], [101], [116], [117] and [27]). 

In addition, some studies about human recognition (e.g. [42] and [102]) can 

also be considered in these groups. In gaming industry, applications such as 

KINECT has successful tracking capabilities. In [26], action detection is done 

via KINECT using 3D Histograms of Scene Flow and Global Histograms of 

Oriented Gradient methods. 

There are some trajectory based video analysis studies in literature such as 

[49], [56], [63], [45], [47], [124], [110]. In these studies, trajectory based 

analysis is done with low level operations. 

2.2.2 Event detection using high-level video processing  

The studies at high levels can be grouped according to the methods they use. 

Rule-based methods, such as [5], [68] and [83] cannot handle uncertainty since 

they are not probabilistic. [5] uses Jess-Rule Engine in order to resolve 

conflicts and find optimal solution. However, [68] proposes event morpheme. 

In this study, there are three levels in the event detection, which are object 

detection, simple event detection and semantic scene description detection. 

[119] extends rule-based system in fuzzy-based manner. Rules, which describe 

events, are given by the domain expert directly. In these studies, there are 

predefined thresholds. 

In event recognition, probabilistic models are often used in many applications. 

Methods such as Neural Network, Bayesian Inference (e.g. [62]), Bayesian 

Network (BN), Dynamic Bayesian Networks (DBN) (e.g. [36], [91], [93]  and 

[104]), Hidden Markov Model (HMM) (e.g. [74], [69], [71], [70], [43] and 
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[20]), Conditional Random Fields (CRF) (e.g. [107] and [112]) can be 

considered in this group. These methods need training data and events are 

represented with probabilistic models. Approximation techniques are usually 

used to perform learning and inference. Event recognition is usually performed 

by using maximum likelihood estimation given observation sequences. 

Although these probabilistic approaches can handle uncertainty, they have the 

disadvantage that the number of actors and states cannot be changed 

dynamically in the model. They are not flexible, and hence not suitable for the 

video surveillance applications, where the number of actors always varies in 

time. They are not suitable for complex models neither. In addition, these 

models are generative. When the number of the features increases, their 

performance degrades comparing with the classifier-based approaches [96]. 

They also cannot model temporal constraints well, since they are based on time 

points instead of time intervals. In addition, these models have limited 

representation capabilities and so they are not semantically meaningful because 

of their complexity. They require large training sets to learn structure that a 

human cannot easily describe.  

There are also video event recognition studies which use other graphical 

models such as Finite State Machine (FSM) (e.g. [9] and [64]) and Decision 

Trees (e.g. [96]). FSM is a deterministic model and provide computationally 

efficient solutions. On the other hand, FSM cannot have hidden states and 

cannot handle uncertainty because of the sequence of states are fully 

observable. 

Some studies in the literature use semantic event models. Petri nets (PNs) (e.g 

[34] and [58]), grammar models, constraint satisfaction (e.g. [79], [31] and 

[1]), and logic-based approaches can be considered in this group. [34] proposes 

Parking-Lot application using PNs. Nice graphical representation is used. 

Semantic event models capture the structure of the event successfully. These 

models are usually fully specified using domain knowledge and are not usually 

learned from the training data. Because of their high-level nature, they are 
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often manually specified by a domain expert. These models are deterministic 

and the reasoning under uncertainty is not feasible generally. Since they are not 

probabilistic by default, they are sensitive to low-level failures. 

Stochastic grammars (e.g. [75], [87] and [88]) constitute a kind of grammar 

model which can be considered as probabilistic models. They can give a 

probability score to a number of legal parses. This extension provides a 

mechanism to deal with the uncertainty. In [75], Stochastic Context Sensitive 

Grammar is used as And-Or Graph to represent events and relations between 

events for office events. In addition, event interpolation concept is mentioned 

in order to solve occlusion problems. [87] defines group activities as a formal 

representation using context-free grammar. However, [88] defines probabilistic 

representation of group activities using probability distribution.  

Constraint satisfaction models represent events as a set of semantic constraints 

and recognition problems as constraint satisfaction. The main advantage of this 

approach is that the constraints can be formulated semantically. So, domain 

expert can model composite events with complex temporal constraints. There 

are also some studies (e.g. [84], [85] and [86]) that try to compose probabilistic 

constraint satisfaction to add an uncertainty handling mechanism. [85] 

computes the Gaussian probability density function for each feature in order to 

handle uncertainty. Rules are weighted manually. In [84] and [86] a complex 

event recognition approach with probabilistic reasoning is proposed and event 

description language is improved. For each sub-event, utility is assigned by 

human expert manually. 

Logic-based models have well-defined understandable structure. In this type of 

approaches (e.g. [23] and [95]), knowledge about an event domain is specified 

easily by the domain expert as a set of logic rules (predicates). Event 

recognition is done using logical inference techniques such as resolution. 

However, these techniques are not tractable in general when the number of 

predicates is too many. In addition, logic-based approaches cannot handle 

uncertainty. Logic provides methods to be semantically meaningful for user. 
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However, any false detection or miss may lead to a wrong event detection 

situation since those methods cannot handle uncertainty. There are also some 

studies which can handle uncertainty [44]. In these studies, probability is 

integrated to handle noisy conditions. Some authors also proposed new 

combined models in the literature. Markov Logic Network (MLN) [82] can be 

considered as the most important one. MLN combines the advantage of logic 

with Markov Network and used in event detection in many applications such as 

([72], [105], [15], [37], [50], [52] and [41] since it joins uncertainty handling 

and logical expressiveness properties. This method handles uncertainties in a 

flexible manner where the number of states and actors are allowed to change in 

time. Furthermore, relations can be represented in a robust way. However, in 

MLN models, performance decreases if the number of logic predicates 

increases. Particularly in surveillance video domain, in which there is 

continuous data flow, there are so many predicates. In addition, MLN has poor 

temporal reasoning capabilities. For time variables, relations are queried 

between one another which are meaningless for unrelated time variables. In 

Dynamic Markov Logic Network (DMLN); time point based extension is 

added but there are no rules for computing the intervals. Since MLN rules are 

semantically understandable, there are also studies in which ontologies are 

tried to be combined for different domains ([33], [81] and [6]).  

Like the other logic-based approaches, Event Calculus does not consider the 

problems of noise or missing observations that always exist in real world 

applications. [7], [98], [8] and [97] can be considered as important studies 

using event calculus in event recognition. 

Topic models or bag of words approaches are non-temporal methods in the 

literature (e.g. [13, 55, 12]). These approaches are mainly proposed for 

document categorization. In the visual domain, an image or a frame of a video 

can be represented by a bag of features. For example, in [55] each primitive 

event is kept as a topic and each activity is kept as bag of words to understand 

the scene in traffic events. The main reason for the success of these approaches 



28 
 

is that they can cope with many object types simultaneously. In these 

approaches, temporal ordering of observed actions is not necessary, and they 

do not need explicit tracking or event detection. In addition, they do not require 

many training data. However, their main disadvantage is that temporal 

relations, which are very important in many complex event types, are not 

considered in these models.  

For performance reasons, interval-based approaches are also studied in the 

literature. For instance, [126], [39] and [17] are the studies in which event 

recognition processes are extended in an interval-based manner, along with 

MLN as in [100] and [66]. 

Nowadays, methods that use Deep Learning become increasingly popular (e.g. 

[19], [46], [114], [32] and [94]). Methods based on Deep Learning have 

achieved promising performance in image classification and action recognition 

tasks and are generally used for anomaly detection. [19] uses deep learning 

methods to extract discriminative features from video data in anomaly 

detection. [46] presents video event detection application based on a 

regularized multi-modality deep learning method. The proposed application 

can encode the relationships between the visual and audio modalities. [114] 

proposes unsupervised deep learning framework for anomaly detection in 

complex scenes. The proposed method utilizes deep neural networks in which 

feature representations can be learned. [32] presents a deep Convolutional 

Neural Networks infrastructure which can detect pre-defined video events. [94] 

uses Discriminative Deep Belief Neural Network in order to detect activities. 

As stated before, semantically understandable event model is given directly by 

a user in most of the cases. There are limited studies in which a user 

understandable model is tried to be generated from training data (e.g. [51], [24] 

and [73]). 

Some studies are worth discussing in detail because of the similarities with the 

proposed method in this study. These similarities can be grouped into the 
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categories such as the methods and modeling techniques used, the features 

considered and test data. 

In [80], Bayesian classifier method is used. [76] compares many methods such 

as Hidden Markov Model, J.48 tree, Bayesian classifier and Neuro-Fuzzy. In 

both of the studies, CAVIAR Dataset is used and there are not any interests for 

user manageable model. Their feature sets are similar to ours. 

In [62], events are recognized in three levels using Bayesian Inference after 

trajectory smoothing is done using median filter. Events are represented as 

hypotheses, related cues are represented as evidences. They use Pets2006 

Dataset. In [91], Bayesian Inference is used to detect “leave object”, “get 

object”, “use object”, “walking” and “handup” by exploiting different cues like 

skin detection, trajectory analysis, people likelihood and group likelihood. In 

both of these studies, there is no event model learning. Instead, user given 

predefined models and thresholds are used. 

In [96], classifier-based approach is used for recognizing high-level events in 

CAVIAR Dataset. Space Time Volumes are proposed for describing motions 

and shapes of objects. These features are clustered. Clustered features can be 

considered as primitive events. After clustering operation, classification is done 

using decision trees in order to create event models. “meeting”, “pocket 

picking”, “fighting”, “leaving bag”, “forbidden zone” are considered events. 

Created event models are not understandable as models defined using MLN. 

In [85] and [86], probabilistic extensions are proposed to handle the uncertainty 

for Constraint Satisfaction Models in health care system, airport activity 

monitoring and simple activities such as “person sitting” or “in living room”. 

There is no event learning process. Event model is predefined and similar as 

logical rules. There is no weight learning operation for rules, as event model 

weights are given manually. 

In [7], event calculus is used. Event calculus can represent interval-based 

relations well but cannot handle uncertainty. CAVIAR Dataset is used for 
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detecting “fighting” and “leaving an object” events. There is no simple event 

detection so events such as “walking” and “inactive” must be given to the 

system. In [98], they extend the previous study by integrating MLNs to Event 

Calculus (EC). EC predicates are converted to MLN rules. In this conversion 

process, time intervals are lost because they define time point based predicates 

in MLN. In both of these studies, there is no event model learning capability. 

Even weights of MLN rules are given by manually. Only “meet” event is 

experimented. In [97], Prob-EC is proposed which is a combination of EC and 

ProbLog. ProbLog is a probabilistic extension of the logic programming 

language Prolog. Prob-EC can deal with uncertainty. However, there is no 

learning mechanism. It has predefined thresholds for some attributes such as 

closeness. In addition, there is no clear interval-based inference mechanism. 

Evaluation is done using CAVIAR Dataset. 

In [73], meeting detection is studied in which people trajectories are converted 

into semantic terms. The model is learned by employing a soft-computing 

clustering algorithm that combines trajectory information and motion semantic 

terms. However, learned model is not weighted clearly which is important for 

handling uncertainty. In addition, no time interval-based approach is used. 

Evaluation is done using CAVIAR Dataset. 

[105] is a MLN study to probabilistically infer activities in a parking lot. 

Domain knowledge is defined as MLN rules without learning. In [15], events 

that may occur in an office environment are recognized by using DMLN. Only 

close up view events such as writing, reading, eating are considered. In [37], 

complex events are inferred from multimodal data using MLNs for surveillance 

domain. In these three studies, rules are defined as time points instead of time 

intervals. In addition, there is no event model learning capability and user 

manageable event model definition. 

In [100], MLNs are used in an interval-based manner for cooking plan event 

such as “make tea” and “make coffee”. Low-Level Events are detected using 

KINECT. MLN is used for representing complex events without any learning. 
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In [66], Allen’s Interval Logic [3] is combined with MLNs for basketball 

domain. In both of these studies, time interval can be defined but, these studies 

do not have an event model learning capability and a user manageable event 

model definition. In addition, there is not any interval based inference. Rules 

and weights are given manually by domain expert. 

In [126], a new model is proposed which is a combination of Bayesian 

Network and Interval Algebra. They propose parameter learning and structure 

learning algorithms to model events. The proposed model is a kind of directed 

acyclic graph. Thus, the model is converted into Bayesian Network so that 

Bayesian Network algorithms can be used. Basketball and American football 

domains are used for experiments. However, event models that are learned by 

the system are not user manageable since models are not user readable. In [17], 

Probabilistic Event Logic (PEL) is presented, which uses weighted event-logic 

formulas to represent probabilistic constraints among events. However, the 

low-level uncertainty is not handled. In addition, they consider only the 

recognition of primitive events of basketball game such as shooting and 

dribbling. 

In [24], Inductive Logic Programming based event model learning is used. 

They use MLNs for event models and can define interval-based predicates. 

Experiments are done for only events in airport domain such as “aircraft 

arrival”, “positioning” and “departure”. This method is not suitable for 

domains where there is no tree like object type hierarchy because of great 

increase in search space. [13] uses the bag of activities approach in PETS 2006 

Dataset. Simple events are found using DBN and complex events are found 

using bag of activities. However, it is not suitable for domains in which time 

relations between simple events are important. 

Literature survey about methods for detection, recognition of video events, and 

video event modeling (e.g. [57], [11], [54], [108] and [2]) reveal that an ideal 

event model should consider spatial, temporal and logical relationships and 

should capture high-level semantics such as long-term temporal dependence. 
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The ideal event model should have a robust representational capability 

including semantic relations. It should be semantically meaningful for the user, 

it should also have learning ability from the training data to ease user operation 

and prevent user errors. In addition, an ideal event model should handle 

uncertainties to be fault-tolerant.  

Another important property the ideal event model should have is that its 

recognition algorithms should have high performance. According to the 

literature, there is no event model method which provides all of these features 

as a whole. Moreover, there is no uncertainty handler event model method, in 

which models can be learned or can be defined as user manageable rules. In 

this study, IBSTM is developed for SVAS in order to provide all these 

important model properties and SVAS is designed as an efficient video 

analysis system for surveillance domain by considering the aforementioned 

video domain needs. 
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CHAPTER 3 

 

SVAS: SURVEILLANCE VIDEO ANALYSIS SYSTEM 

 

 

 

In this chapter, SVAS is presented in detail. An overview of the proposed 

system and the main processes are discussed. The organization of the chapter is 

as follows: First, the overall architecture of SVAS is introduced in Section 3.1. 

In Section 3.2, Trajectory Generation Module is presented. In Section 3.3, 

Event Model Learning is explained in detail. In this section, Action Model 

Learning, Action Detection and Complex Event Model Learning are presented 

in sections 3.3.1, 3.3.2 and 3.3.3, respectively. In addition, Section 3.3.3 

includes definition and properties of Interval-Based Spatio-Temporal Model 

(IBSTM). Complex Event Detection is discussed in Section 3.4. In Section 3.5, 

simple approaches of SVAS for prediction are discussed. Finally, 

implementation details of SVAS and sample application using SVAS are 

presented in Section 3.6.  

3.1 The Overall Architecture Of The System 

In SVAS, there are five main modules, which are Trajectory Generation, 

Action Model Learning, Action Detection, Complex Event Model Learning 

and Complex Event Detection. These main modules are used in two main 

SVAS processes, which are event model learning (Figure 6) and event 

detection (Figure 7).  

In event model learning (Figure 6), actor trajectory generation is the first 

operation using Trajectory Generation Module. Trajectory Generation Module 

parses and prepares video data for processing. Event model learning includes 

two scenarios, which are action model learning and complex event model 
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learning. Action model learning is done using labeled training data for specific 

actions in Action Model Learning Module. Action Model Learning Module 

generates action models using the training data. A set of feature models named 

Threshold Models (TH Models) are kept with a Bayesian Network as action 

models. 

 

Figure 6 Event Model Learning Process 

In Figure 6, Complex event model learning is done using labeled training data 

for specific complex events in Complex Event Model Learning Module. 

Complex Event Model Learning Module generates complex event models as 

proposed IBSTM models using the training data and Action Detection Module. 

Generated complex event models are human understandable so that a user can 

interfere generated models via SVAS User Interface Module if desired. In 
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addition, the user can create his/her own event models by using the same 

module. 

 

Figure 7 Event Detection Process 

In Event Detection Process (Figure 7), actions and complex events are searched 

in test videos by using learned models. In the first step, the video information is 

parsed and actor trajectories are generated using Trajectory Generation 

Module. Complex event detection is performed for each complex event type 

that is defined in the system. Alarms are generated for the detected events. 

SVAS has a high performance event detection capability due to its interval-

based hierarchical manner. In Figure 7, both Action Detection and Complex 

Event Detection consider more than one model. SVAS determines related 

candidate intervals for each main model and uses the related main model when 
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needed rather than using all models. Particularly, the proposed Threshold 

Model method is first used in both detection types because of its high-

performance capability. In the following sections, these processes are discussed 

in detail. 

3.2 Trajectory Generation 

Trajectory Generation generates actor trajectories from input videos for further 

processing. In this study, CAVIAR [115] and BEHAVE [16] datasets are used. 

Since these datasets are in XML format, it is not necessary to use low-level 

operations such as background subtraction, object detection, object recognition 

or object tracking. However, low-level processing is necessary for raw videos. 

SVAS Trajectory Generation Module can be integrated with any low-level 

study available. The overall trajectory generation process is shown in Figure 8: 

 

Figure 8 Trajectory Generation 

In the first operation, text data input is parsed and a list of tuples which are in 

the form of <frame no, id no, coordinates (x, y), width, height, type> is 

obtained. These attributes represent the following:  

• frame no: current frame number 

• id no: label of the bounding box 

• x: x coordinate of the center of the bounding box 

• y: y coordinate of the center of the bounding box 

• width: width of the bounding box 

• height: height of the bounding box 
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• type: type of the object in the bounding box (car, bag, object or person) 

Since the parsing operation depends on video data, a different parser is needed 

for each video input type. When the input enters the system in this format, the 

video data is prepared as actor trajectories for processing. Frame-based 

trajectories of actors are calculated according to the items in the input data. 

SVAS has cleaning and smoothing capabilities in video data. Noise elimination 

and smoothing are carried out in this process. The input is analyzed to 

determine occlusion areas such as columns. Missing trajectories resulting from 

occlusion areas are assembled. Coordinates of each object and person in 15 

consecutive frames are grouped and their arithmetic average is calculated to 

eliminate noises and obtain smooth trajectories. This grouping operation can be 

considered as the creation of time-based trajectories. Time-based trajectories 

per actor also provide greater efficiency for the consideration of some features. 

The number of items that is considered in calculations is decreased by one 

fifteenth. 15 consecutive frames are equivalent to nearly 0.5 sec. The number 

15 was selected for grouping frames since actions within 0.5 seconds are 

generally visible to the human eye. This indicates that some features such as 

speed and direction can be considered at 0.5 second intervals. 

SVAS can generate the scene structure using trajectories. Movable and 

occlusion areas can be determined. However, if scene structure and context 

information are given, a more accurate scene model is obtained, which 

increases the success of SVAS. If scene information can be given as input by 

the user, this information can be used by the system to increase noise 

elimination. Occlusion and exit areas can be determined and can be used to 

update trajectories. Contextual information such as static features may improve 

the event recognition performance. SVAS enables the user to define rules and 

specific areas such as forbidden zones in the scene. A detailed scene structure 

(e.g., roads, paths, and entry and exit points) can help to solve many problems 

and to minimize errors that come up from the low-level operations. For 

example if exit points are known; when an actor lost in one of those points, it is 
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inferred that he exits. Otherwise this situation causes tracking problems. In 

addition, detailed scene structure allows high level inferences. For example if 

the bus stop area is known; for an actor in that area it is inferred that he waits 

for a bus. 

Trajectory Generation Module also has a basic calibration capability. The 

camera, which captures the video input data, is not always necessarily located 

at the center top of the scene. The location of the camera causes perspective 

problems in which the same size actors and the same movement changes are 

not measured as the same in various parts of the scene. Calibration process is 

dependent on video data like a parsing operation. Most of the video input 

providers give calibration data additionally. This data contains information 

about some positions in which pixel values and distance values are given. The 

number of calibration points increases accuracy level. Trajectory Generation 

Module can calculate the distance value of any pixel position. As a result, 

trajectories are calculated as if they are calculated from a camera which is 

located at the center top of the scene. The unit of position values is converted 

to distance units such as centimeters. Higher levels of the proposed system are 

independent of units. The system can work with both pixel and centimeter 

units.  

In CAVIAR Dataset, information of four points is given for calibration. Pixel 

and distance values of these calibration points are given as shown in Figure 9. 

Trajectories of actors are changed from pixel domain to distance domain as 

follows. For each pair of calibration points the distance of a pixel is calculated 

by proportion method. The distances are found in centimeters for two 

calibration points. The average of these values are calculated and determined as 

the distance of the pixel position. 
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Figure 9 Calibration points of CAVIAR Dataset 

Trajectory visualization is another application that provides visualization of 

trajectories of actors if debugging is needed. Trajectory visualization can be 

used for the evaluation of trajectories and determining inconsistencies. In 

Figure 10 illustrates a sample trajectory visualization: 

 

Figure 10 Sample Trajectory Visualization 

3.3 Event Model Learning In SVAS 

Event Model Learning is one of the most important processes in SVAS, in 

which models of Actions and Complex Events are learned using the training 

data. SVAS does not need any predefined thresholds for scene or event type 
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contrary to many studies in the literature (e.g. [97], [5], [68], [83], [62] and 

[91]). It can learn required thresholds as Threshold Models. 

In this section, Event Model Learning is presented in detail (see Figure 6). The 

learning capability of SVAS is a kind of supervised learning in which labeled 

training data is used for specific events and actions. In Action Model Learning, 

the input is the labeled training data. In Complex Event Model Learning, the 

inputs are pre-learned action models and the labeled training data. Since closed 

world assumption is used for both of the learning operations in SVAS, learning 

only requires positive examples. 

3.3.1 Action Model Learning 

“Stand”, “Walk”, “Run” and “Instant Move” are examples of actions that can 

be learned and detected in the proposed system. These four are basic actions 

which must be detected for targeted complex events in the surveillance domain. 

However, note that proposed algorithms are mostly independent of action types 

and users can train and define new action types in the system. 

It is not necessary to define semantically understandable models for actions 

because of their simple structure. For this reason, in SVAS, actions are 

modeled as a combination of Threshold Models and a Bayesian Networks 

Model, instead of using high-level predicates. 

The Action Model Learning is done by the Action Model Learning Module. 

The training data for each action type is a set of tuples in the form of video file, 

an actor performing the action and action interval. The Action Model Learning 

Module takes this input and for each tuple it generates trajectories of the given 

actor in each interval using the Trajectory Generation Module. A movement 

analysis is carried out for each trajectory. It is important to note that features 

are prepared for both time-based trajectories and frame-based trajectories. 

Time-based trajectories improve efficiency in the raw testing phase, which 

helps eliminate irrelevant intervals. 
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In Action Model Learner four key features, which reflect the action, are 

calculated for actor trajectories. These features are as follows: 

1. Move Change: It defines the possible position change values for two 

position data. It also contains information about average speed information. 

The sum of all move change values (total traveled distance) is divided by 

interval length which gives the average speed. 

2. Size Change: It defines the possible size change values for two position 

data. 

3. Average Distance: It defines possible position change values between the 

first and the last positions. The distance change in the interval is divided by 

the interval length which gives the average distance. 

4. Direction Change: It defines the possible direction change degree values 

throughout the interval. 

The direction of the actor is not actually known since it is necessary to 

recognize the front of an actor to detect the actual direction. If this information 

comes from the low level, then the system can consider the relevant 

information. Otherwise, the direction of the movement is determined and the 

direction change degree is calculated as follows: First, the angle between two 

consecutive position data is calculated. Then, the direction is determined 

according to the angle which is illustrated in Figure 11. The direction 

information is prepared for slices of 45 degrees. For example, the angle 

between 337.5 o and 22.5 o is considered as North. Then for each pair of 

consecutive direction information, direction similarity degree, which is a value 

between 0 and 1, is calculated. The direction similarity degree is calculated for 

two directions by considering their closeness. For instance, the similarity 

degree for a North direction value is shown in Figure 12. 
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Figure 11 Direction Information 

 
Figure 12 Direction Similarity Degree 

For each consecutive position in the interval, a direction change value is 

calculated by subtracting direction similarity degree from 1. Finally, averages 

of these direction change values are calculated as the direction change degree. 

If low levels can provide new features, they can be considered too.  

Threshold Models are proposed to reflect the motion analysis of an event by 

modeling basic trajectory features. A Threshold Model is created for each of 

these four feature types and for each of trajectory types (frame-based and time-

based), during the action learning process. As a result of the action learning 

process, eight Threshold Models are created for each action type according to 

feature values in the training data. These steps are summarized in a flow 

diagram in Figure 13. 

 
Figure 13 Threshold Model (TH Model) Learning 

 

A Threshold Model consists of a proportion model and a frequency table. After 

all training data is analyzed, the proportion model is created by considering 

min3/4, min, average, max and max5/4 values of training data as in Figure 14. 

The 1/4 buffers for min and max values are used for giving a chance for border 

values in the detection phase. The proportion model generates weight values 

between 0 and 1 for the given test data according to similarity. The proportion 

model is not Gaussian since this distribution cannot be symmetric around the 
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average value. This model is simple and efficient. However, frequencies should 

also be considered to prevent erroneous results. For example, many movement 

values are nearly 0 for Stand Action. The average is also close to 0, let’s say 

0.2. Assume that the maximum value is 9 in the training data. In this case, the 

proportion method produces the same result for the intervals (0 - 0.2) and (0.2 - 

9). 9 is less frequent and 0 is more frequent. Test data with 0 or 9 gets the same 

weight value which is 0.5. This behavior is not acceptable for surveillance 

domain. To solve this problem, frequencies of values in the training data are 

also kept in a table. Since data type is double and has continuous values, 

discretization is realized. Values are rounded to integer values to prevent 

infinite rows in the frequency table. To avoid eliminating small values, values 

are multiplied by 10 before the round operation. Values (multiplied by 10 and 

then rounded) and their frequencies are kept in a frequency table as shown in 

Figure 15. It is also erroneous to take only the frequencies into consideration 

for values which are less frequent but close to the average. As a result, both 

proportion model and frequency table are needed for a correct and efficient 

computation. 

 
Figure 14 Proportion Model 

 
Figure 15 Frequency Table Method 

In this way, all training data can be considered during evaluation. For each 

feature, the average, minimum and maximum values in the training data and 

their frequencies are considered as the Threshold Model. In detection phase, 

the Threshold Model can generate a weight value between 0 and 1 for a test 

data according to the similarity between the test data and the learned feature 

model by using two weight calculators. One of them calculates the weight 

using the proportion model while the other one calculates the weight using the 

frequency table. Weight calculation using the proportion model is done for a 
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test value given in a test interval by considering regions in the model. As a 

result, a value between 0 and 1 is generated according to the proportion in 

regions. For example, if the test value is between avg. and max. values, the 

weight value is calculated as follows: 

 

&���������� = 1 − 	  �'���(���� − ���� �max−	����⁄ ! ∗ 0.5 (3.1) 

 

where Wproportion is weight value from the proportion method. 

Weight calculation using the frequency table is done for a given test value 

which is in min.- max. interval. The weight value is calculated as follows: 

 

&	�������� = 0.5 + 	 *(����	�������� 2 ∗ '����+��,���$�-����⁄ . (3.2) 

 

where Valuefrequency is FrequencyValueOfTestValue which is obtained from the 

frequency table by casting 10 * test value to an integer and Wfrequency is Weight 

value from frequency method. 

A value between 0.5 and 1 is obtained with this formula. If the test data is not 

in min.- max. interval, the result becomes 0 and a value between 0.5 and 1 is 

created by considering the frequency. If the test value is not one of the training 

data but it is in the min. - max. interval, its frequency becomes 0. To handle 

this erroneous state, 2-unit close neighbor value frequency is considered. 

When the weight of the test data for a feature is required, both calculators are 

used to calculate a weight value between 0 and 1 and their maximum is chosen 

as a result. 
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After learning each Threshold Model for each feature type (currently 8), this 

set of Threshold Models is kept as a part of the action model which shows raw 

motion of an action. This set of feature models provides quick elimination of 

irrelevant intervals. Threshold Models provide great efficiency in the action 

detection phase. In addition, they are used to eliminate predefined threshold 

values in the system. 

An action model is not only a composition of Threshold Models but also 

Bayesian Networks. After Threshold Models are learned, a Bayesian Network 

is learned with the same features, for actions defined in the system. The 

detailed action model is kept as a Bayesian Network. 

As a result; Action Model Learning Module generates action models as 

Threshold Models for each action type and a Bayesian Networks Model as 

previously described in Figure 6. 

3.3.2 Action Detection 

Action Detection is used in both complex event learning and complex event 

detection operations. In action detection, actor trajectories and features are 

generated for test data. Similarities between test data and each pre-learned 

action model are calculated. Similarity calculation is done in two steps to 

increase efficiency, as shown in Figure 16.  
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Figure 16 Action Detection 

  

In the first step, candidate event intervals are determined using the pre-learned 

Threshold Model set and irrelevant intervals are eliminated. Video intervals 

which are suitable for Threshold Models are prepared as candidate intervals. In 

the second step, a detailed Bayesian Network analysis is done for candidate 

intervals using pre-learned Bayesian Networks Model. Pseudocode of this 

operation is shown below: 

Algorithm 3: Action Detection 

INPUT: V: part of the video 
    1: timepoints ← TrajetoryGenerator creates using V 
    2: candidateInts ← {}  
    3: for all a ∈ action types do  
    4:     candidateInts ← findCandidateIntervals using THModels and timepoints 
    5: end for 
    6: testInputForBN ← generateBNTestData using candidateInts         
    7: BNConsideration using testInputForBN and BNModel          
    8: d ← ParseBNResults 
    9: return d 
OUTPUT: d: DetectedActions 
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In detection phase, three seconds long video parts with 0.5 second overlaps are 

taken into consideration. First, time points of video parts are considered. For 

these time points, Trajectory Generation Module prepares trajectories and 

calculates feature values for feature types defined in the system [Pseudocode: 

1]. For each action type defined in the system, candidate intervals are found 

and collected in a list [Pseudocode: 2-5]. The second main step of action 

detection process is a detailed analysis of candidate intervals using pre-learned 

Bayesian Network Model [Pseudocode: 6-7]. Bayesian Network evaluation 

algorithm is used in this step. Bayesian Networks inference, which has the 

highest value for an interval, is chosen as the detected action for that interval. 

The result of Bayesian Network evaluation algorithm is parsed and detected 

actions are determined [Pseudocode: 8-9]. 

Determining candidate intervals using “findCandidateIntervals” method 

provides great efficiency. It is not necessary to run Bayesian Network analysis 

for each time point. Pseudocode of this method is shown below: 
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Algorithm 4: findCandidateIntervals 

INPUT: thresholdModelSet, timepoints 
    1:  candidateTimePoints ← {} 
    2:  for all tp ∈ timepoints do 
    3:      weightvalue  ← Ø 
    4:      featureCount ← Ø 
    5:      for all f ∈ feature types do 
    6:          thresholdModel ← get related THModel from thresholdModelSet using f 

    7:          if  thresholdModel is time-point feature then 
    8:              weightvalue += calculate similarity value using thresholdModel and tp  
    9:              featureCount++ 
    10:        end if 
    11:    end for 
    12:    weightvalue ← weightvalue / featureCount; 
    13:    if  weightvalue > 0.4 then 
    14:        candidateTimePoints ← tp 
    15:    end if 
    16: end for 
    17: intervals ← generate all intervals using candidateTimePoints 
    18: candidateIntervals ← {} 
    19: for all inter ∈ intervals do 
    20:    weightvalue  ← Ø 
    21:    featureCount ← Ø 
    22:    for all f ∈ feature types do 
    23:        thresholdModel ← get related THModel from thresholdModelSet using f 
    24:       weightvalue += calculate similarity value using thresholdModel and inter 

    25:       featureCount++ 
    26:    end for 
    27:    weightvalue ← weightvalue / featureCount; 
    28:    if  weightvalue > 0.4 then 
    29:        candidateIntervals ← inter 
    30:    end if 
    31: end for 
    32: candidateIntervals ← prepare unions and intersections using intervals 
    33: return candidateIntervals 
OUTPUT: candidateIntervals 

 
The inputs of the method “findCandidateIntervals” are time points and an 

action Threshold Model; and its output is the set of candidate intervals. This 

operation is done in two steps. In the first step [Pseudocode: 1-16]; weight 

values are calculated for each time point, using pre-learned action models of 

each action type. Only time point related features are considered since the 
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calculation is done for the time point. For example, “Average Distance” feature 

is not considered because this feature is calculated for the interval. The 

calculated values which are less than 0.4 are eliminated. The remaining ones 

are considered as candidate time points for detailed examination. Consecutive 

candidate time points are merged and intervals are created [Pseudocode: 17]. 

This operation generates all sub-interval combinations to obtain highly 

cohesive intervals. Highly cohesive interval method is used to find the best 

matching intervals. The best intervals are intervals in which the weight values 

of the detected event are maximum. For example, there may be an interval t4-

t14 with a probability of 0.5 for event A. However, in this interval, there may 

be a highly cohesive sub-interval t7-t10 with a probability of 0.7. To find these 

highly cohesive intervals, candidate consecutive time points are extracted to 

generate all sub-interval combinations. For example, for the interval t1-t3; 

intervals t1-t2, t1-t3 and t2-t3 are generated and added to the interval list. In the 

second step of the method “findCandidateIntervals” [Pseudocode: 18-31], 

weight values for the generated intervals are calculated using pre-learned 

action models of each action type. In this case, all feature types including 

interval-based features are considered. A value between 0 and 1 is generated 

for each feature type. The averages of the generated weight values are 

calculated. Intervals for which weight values are greater than 0.4 are selected 

as candidate intervals. Then, these candidate intervals are processed further to 

reduce intervals containing the same action type. [Pseudocode: 32]. When one 

interval contains the other, they can be updated in two possible ways: if the 

interval containing the other has higher detection value, then sub-interval is 

eliminated from the result set. Otherwise, the contained subinterval is kept and 

the interval which contains the sub-interval, is replaced with two separate 

subintervals which do not intersect with the contained sub-interval. These sub-

intervals are added to the result set. If no interval contains the other but there is 

an intersection between them then the intersection is determined and new 

interval is added to the result set for this intersection. The start and the end time 

of other two intervals are updated. The weight value of the new interval is 
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determined by the maximum weight value of the two intersecting intervals. In 

the last step of the algorithm, two consecutive intervals with the same action 

type are replaced with a new joined interval. The weight value of the new 

interval is calculated according to the weights of intervals by considering their 

lengths such that: 

newWeight = (occuredEvent_i.weight * occuredEvent_i.intervallength + occuredEvent_j.weight *  

occuredEvent_j.intervallength) / (occuredEvent_i.intervallength + occuredEvent_j.intervallength) 

 

As the result, highly cohesive intervals for detected actions are determined as 

candidate intervals and returned for detailed Bayesian Network Model analysis 

[Pseudocode: 33]. 

3.3.3 Complex Event Model Learning  

In Complex Event Model Learning, complex event models are generated 

automatically. In this process two techniques are proposed. In the first method, 

non-interval-based complex event model learning using Markov Logic 

Networks is proposed. Second method is more robust method in which 

complex event models are generated as IBSTM models which reflect spatio-

temporal relations and Threshold Models of events according to the training 

data. In SVAS, Complex Event Models can be learned without any predefined 

values or thresholds. Complex events such as “Meet”, “Fight”, “Walk 

Together”, “Run Together”, “Follow”, “Chase”, “Left Object”, “Taken Object” 

are examples of events that the proposed system can learn and detect. The 

proposed algorithms are independent of complex event types and the user can 

train and define new complex event types in the system.  

In the following sections, first, non-interval-based complex event model 

learning method is described, then the properties of our Interval-based Spatio-

Temporal Model are described; finally the model learning process is presented. 
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3.3.3.1 Learning Non-Interval-Based Complex Event Models Using Markov 

Logic Networks 

This method is non-interval-based event model learning method in which 

Markov Logic Network is directly used. Detected actions are considered as a 

set of predicates. In this method, a set of predicate types is introduced which 

define basic spatio-temporal relations and interactions between objects and 

people in the videos. A set of policies to choose the appropriate predicates is 

proposed for event learning. First, the video data is converted to a set of 

Markov Logic Network (MLN) predicates. Then, these policies, together with 

the discriminative weight learning algorithm, are used to infer the relevance of 

the predicates to the events being queried. The relevant spatio-temporal rules 

are learned by using the discriminative weight learning algorithm and proposed 

methodology which contains a set of policies. Finally, the event model is 

generated. 

First, 1) attributes of objects, 2) attributes of people, 3) spatio-temporal 

relations between objects, 4) spatio-temporal relations between people, 5) 

spatio-temporal relations between objects and people are considered and 

logical predicates are generated. In order to reflect these basic attributes and 

relations of objects and people, predicates that are generated in this level are 

grouped as follows: 

1. Time based predicates, which are related to only one object or one person: 

existPerson, existObject, stopPerson, stopObject. 

2. Time based predicates, which show relations between two objects, two 

people and one object-one person: closeDistanceOO, closeDistancePP, 

closeDistancePO. 

3. Predicate that shows attributes of only one object or only one person: 

smallObject. 
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4. Predicate that shows relations between two objects, two people and one 

object-one person: ownedBy. 

5. Predicates that show temporal relations: during, before, after. 

Meanings of predicates are listed as follows: 

– existPerson(person,time) (or existObject(object,time)): The person (or object) 

(parameter 1) is visible at that time (parameter 2). 

– stopPerson(person, time) (or stopObject(object,time)): x, y coordinates of the 

person (or object) does not change according to the predetermined threshold 

for that time (parameter 2). 

- closedistancePO(person,object,time): A person and an object are assumed to 

be close if the distance between them is less than a predetermined pixel value. 

(closedistancePP and closedistanceOO are similar to closedistancePO). 

- smallObject(object): Object is small (height and width values of the object is 

considered). 

- ownedBy(person, object): When an object appears, the nearest person to that 

object is considered to be the owner of that object. Nearest value is again a 

predetermined threshold. 

- during(time1,time2): The interval between time1 and time2 is less than a 

predetermined threshold value. 

- before(time1,time2): time1 is less than time2. 

- after (time1,time2): time2 is less than time1. 

All predicates that are found in this level are written in a file. This file is the 

predicate form of the video. 

According to a set of policies, the information from the action detection 

process is queried by using discriminative weight learning algorithm in order to 
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find the predicates relevant to a target event. The relevant predicates compose 

the event model.  

In order to learn the model automatically, a methodology that contains a set of 

policies is proposed. After the user defines the target event for which the model 

will be found, the predicates are considered whether they are relevant to the 

event or not. 

Policy 1: The relation between the event and the predicates, which have 

common parameters with the event, is considered. 

There is no need to consider irrelevant predicates, which contain any parameter 

that is not in the event parameters. This will also improve the performance. For 

example, if the target event has an object parameter type such as Event(obj1,…) 

then predicates that have object parameter type such as P1(obj1) is considered. 

P2(person1) is not considered because person1 is not in the event parameters. 

We call P1 as a candidate predicate for this example. 

Policy 2: The event predicates contain two time parameters. One of them 

shows that event does not occur at that time, the other one shows that event 

occurs at that time. By this way, effects of predicates are considered according 

to these time values. For this reason, E(…,tn, tn+1) is an event which occurs 

while time changes from tn to tn+1. 

We can define all possible relations between predicates and events as follows. 

Let us take P as a predicate which we try to determine whether it is relevant to 

the event or not (i.e. it affects the event or not). Let us take E as the event 

predicate. There are four possible logical relations between them. 

The weights of the relations are as follows (‘�’ states ‘implies’ operator): 

A: Weight of ( E � P ) [or weight of ( !P � !E )] 

B: Weight of (!E � P ) [or weight of ( !P � E )] 
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C: Weight of ( E � !P ) [or weight of ( P � !E )] 

D: Weight of (!E � !P ) [or weight of ( P � E )] 

The values of A, B, C and D are calculated by using discriminative weight 

learning method. The model is generated according to these values. In the 

following, we introduce some more policies about the values of A, B, C and D. 

Policy 3: If the values of A and D are high then the predicate P affects E alone 

(P is very important for E to occur). P � E is added as a new model of the 

event. 

Policy 4: If the value of A is high but the value of D is low then P affects E 

with some other predicates (P is important for E to occur). P is added by using 

“AND” operator to the model of event in which important predicates are 

contained. 

Policy 5: If the value of B and the value of C are high then, !P affects E alone 

(!P is very important for E to occur). !P � E is added as a new model of the 

event. 

Policy 6: If the value of C is high, then !P affects E with some other predicates 

(!P is important for E to occur). !P is added by using AND operator to the 

model of the event in which important predicates are contained. 

The value of A and the value of C cannot be high together because they have 

opposite meanings. If both values are low, it is inferred that the predicate (P) 

does not have any affect for the event (i.e. it is irrelevant). B and D are not 

considered alone to make a decision. For example, if only the value of D is 

high, then it is inferred that the predicate is irrelevant because the value of A is 

low (when event occurs, the predicate may not be true). This means that there 

are states such that !P but E. In addition, low value of D does not show that the 

predicate is irrelevant. Perhaps the predicate is relevant but it can affect the 

event only with other predicates. As a result it is inferred that without high 
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value of A or high value of C, there is no need to consider values of D or B. So 

new policies can be added to improve performance: 

Policy 7: If the value of A is low, there is no need to consider D. 

Policy 8: If the value of C is low, there is no need to consider B. 

As a result; for each of the very important predicates (both values of A and D 

are high or both values of C and B are high), new model such as P � E or !P 

� E is added. For all important predicates only one model such as P1 AND P2 

AND P3 … AND PN � E is created. 

Predicates can be time dependent or time independent. So, new policies can be 

added: 

Policy 9: Time independent predicates are valid throughout the video. 

Policy 10: Time dependent predicates cannot affect the events occurring at a 

time earlier than the time of the predicate time. 

This policy can improve performance. The effect of the candidate predicates is 

queried by using discriminative weight learning algorithm and by considering 

all these 10 policies in order to find the complex event model. 

The weight learning in MLNs is performed by optimizing a likelihood 

function, which is a statistical measure of how well the probabilistic model fits 

the training data. The weights are learned by discriminative estimation. 

Discriminative learning attempts to optimize the conditional distribution of a 

set of outputs, given a set of inputs. Training videos are also given to as a 

database of facts. The weights of A, B, C and D are considered as their values 

and according to the policies relevant predicates are determined and an event 

model is generated. After the creation of the complex event model, it is 

proposed to the user. Since MLN is FOL based, the user can understand the 

proposed event model and edit it easily. 



56 
 

 

Figure 17 Non-Interval-Based Complex Event Model Generation 

All operations that are fulfilled in this process are summarized in Figure 17. 

The predicate form of the videos is obtained from the action detection process. 

By using the defined policies and predicate types, Alchemy is queried and the 

event model is generated. 

3.3.3.2 Interval-Based Spatio-Temporal Model (IBSTM) 

IBSTM is a hybrid event model which meets the requirements of an event 

model that are described in Sections 1 and 2. IBSTM fills the semantic gap 

between humans and video systems by providing the following basic 

properties. 

1. Domain convenience: 

IBSTM is suitable for surveillance domain. Various events with different 

scenarios can be learned and defined in IBSTM. IBSTM can model and 

recognize similar events such as “fight” and “meet” which have similar logical 

predicates at high level, but their behavior is quite different at low level. In 

addition, complex events can be learned in a role-based manner. Properties of 
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each actor can be learned independently, e.g. for fight event, an actor who hits 

a person or an actor who is hit by a person can be differentiated. IBSTM is 

scale invariant; there is no limitation on event durations. Spatio-temporal 

relations can be defined in IBSTM. The basic temporal relations of Allen’s 

Interval Logic [3] are defined in IBSTM. Temporal relations defined in Allen’s 

Interval Logic relations are shown in Table 1.  

Time variables can be point or interval based. Basic spatial relations are 

defined in IBSTM. Distance relations, namely “close”, “far”, “disconnected” 

and “touch”, topological relations such as “inside” and “outside”, and position 

relations “near”, “in front of” and “left of” can be defined. In addition, IBSTM 

can be used in both calibrated and uncalibrated scenes since the proposed 

learning and detection algorithms are independent of units such as pixel or 

centimeter. 

Table 1 Temporal relations defined in AIL relations 

Relation Name Representation using X and Y 

Before X Y 

Overlaps 

xxXxx 

yyYyy 

Meets X.Y 

Equal 

X 

Y 

Starts 

X 

yyYyy 

During 

X 

yyYyy 

Finishes 

X 

yyYyy 
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2. Uncertainty handling: 

The input of the IBSTM which comes from low levels can be noisy due to 

many problems such as the quality of low-level algorithms, structure and 

complexity of the video scene, camera problems, illumination changes, 

segmentation issues, occlusions, and tracking and detection problems. These 

problems may affect the recognition accuracy. Uncertainty can be modeled in 

IBSTM to minimize errors in noisy conditions. Event models are learned with 

weights in the training phase. Inference and detection algorithms generate 

probabilistic results to prevent discretization problems. The proposed 

“Threshold Model” is also probabilistic which covers all training data for a 

feature in an efficient way. IBSTM can manage probabilistic input data that 

comes from low levels. If low levels generate probabilistic data, these data can 

be used in learning and detection phases. 

3. Understandability: 

IBSTM is based on MLN. MLN model provides user understandable and 

manageable logic predicates. Generated event models are presented to the user 

as FOL rules. For this reason, the generated complex event model is 

semantically readable. This property enables the end user to control and 

manage the event model. The user can interfere the model if desired. Also if 

training data is not available, the user can create his/her own event models by 

using SVAS User Interface Module. 

4. Performance: 

IBSTM model consists of three main models: Threshold Models, BoA model 

and MLN model. MLN has performance deficiencies in video domain. 

However, Threshold Models and BoA Models provide great efficiency in both 

action and complex event detection by eliminating irrelevant intervals. These 

two models are integrated with MLN to increase the performance of MLN in 

video domain. As a result, only candidate intervals are queried by MLN. 
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3.3.3.3 Complex Event Model Learning Process 

In Complex Event Model Learning, the inputs are pre-learned action models 

and the training data for complex events (see Figure 6). Complex Event Model 

Learning Module takes video data, actors, and intervals as training data for 

each complex event type. First, the video data is prepared by using the 

Trajectory Generation Module. Movement analysis is done for each actor so 

that role-based event model can be learned. For instance, in a “chasing” event, 

one actor can be learned as the chaser while the other can be learned as the one 

who is chased. 

Threshold Models are prepared for each actor for each feature type used in 

action models. Spatial relations like distance (closeness) and direction 

similarity degree between actors are also learned as Threshold Models. 

Distance Threshold Model defines the spatial model which includes the 

possible distance values between two actors. Direction Similarity Degree 

Threshold Model defines the possible direction change degree values between 

two actors throughout the interval. Direction similarity degree feature is 

calculated in a way similar to the calculation of “directionChangeDegree” in 

action learning. For each time point, direction similarity between actors is 

determined by considering angles as in Figure 12. 

In the second step, Complex Event Model Learning Module determines actions 

in training data using Action Detection Module (Figure 6). Detected actions are 

used in BoA models and MLN models. Pre-learned and predefined actions are 

detected by using highly cohesive intervals method as explained in previous 

sections. For detected actions, BoA Model is created. BoA Model is a kind of 

“Bag of Words” approach in which actions in the training data are found 

without considering temporal information, in order to increase detection 

performance.  

BoA model reduces the search space in detection phase by eliminating 

intervals which are not suitable. Only suitable intervals are queried by MLN. 
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BoA model is also kept based on the roles of actors of the event. In the last 

step, MLN models are learned.  

In MLN models, actor types, temporal relations, actions, spatial relations and 

properties can be defined. The predicates that are used in MLN model are 

described in Table 2. 

Table 2 MLN Predicates 

Description MLN Predicate 

Type actor, timeint 

Actor Type Person, Object, Car 

Actions  Stand(actor,timeint), Run(actor,timeint), 

InstantMove(actor,timeint), Walk(actor,timeint) 

Temporal 

Relations 

Before(timeint, timeint), Meets(timeint, timeint), 

Overlaps(timeint, timeint), Starts(timeint, timeint), 

Equal(timeint, timeint), During(timeint, timeint), 

Finishes(timeint, timeint) 

Spatial 

Relations  

 

Near(actor,actor,timeint), Far(actor,actor,timeint), 

Inside(actor,actor,timeint), Front(actor,actor, timeint), 

Rear(actor,actor, timeint), Left(actor,actor,timeint), 

Right(actor,actor,timeint), Top(actor,actor,timeint), 

Bottom(actor,actor,timeint), Outside(actor,actor,timeint), 

Touch(actor,actor,timeint), 

Disconnected(actor,actor,timeint), 

DirectionSimilar(actor,actor,timeint) 

Properties  Small(actor), OwnedBy(actor,object) 

Certain 

rules 

!ComplexEvent(a1,a1,t),  

Meet(a1,a2,t1) => Meet(a2,a1,t1), 

Equal(t1, t2) => Equal(t2, t1) 
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MLN model is not created for all combinations of predicates. To increase 

performance MLN predicates and rules are created for only related (highly 

cohesive) intervals. By using this summarization method, the number of 

predicates decreases considerably. All predicates and rules are weighted and 

the MLN model is generated. These steps are summarized in a flow diagram in 

Figure 18.  

 
Figure 18 Complex Event Model Learning 

At the end of the complex event model learning process, a complex event 

model is generated for each complex event type. A complex event model 

consists of 3 types of models: Threshold Models, a BoA Model and a MLN 

model. Such a combined model has efficient inference capabilities as 

demonstrated in Section 4. 

3.4 Complex Event Detection In SVAS 

Complex Event Detection is a process of finding complex events in a video 

using pre-learned IBSTM event models. Figure 19 shows the flow diagram of 

the operation. 
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Figure 19 Complex Event Detection 

Pseudocode of this operation is shown below: 

Algorithm 5: Complex Event Detection 

INPUT: V: part of the video 
    1:  timepoints ← TrajetoryGenerator creates using V 
    2:  candidateInts ← {}  
    3:  predicates ← {}  
    4:  for all ce ∈ complex event types do  
    5:      THModels ← from ce 
    6:      candidateInts ← getCandidateIntervals using THModels and timepoints 
    7:      actions ← detectActions for candidateInts  
    8: candidateInts ← interval elimination using actions and BoAModels 
    9:  predicates ← createMLNPredicates using actions for candidateInts     
    10: end for 
    11: f ← createMLNFactFile using predicates 
    12: MC-SAT using f and MLN Model 
    13: d ← parseMLNResults 
    14: return d 
OUTPUT: d: Detected Events 
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When the video is queried for event detection, the video data is parsed and 

actor trajectories are generated using Trajectory Generation Module 

[Pseudocode: 1]. First, candidate intervals are determined using Threshold 

Models of IBSTM [Pseudocode: 5-6]. Trajectories are analyzed for actors and 

detailed motion analysis is performed using pre-learned Threshold Models of 

an event. For each complex event type defined in the system, similarity of 

movement analysis is searched using Threshold Models of events. Inference 

process is executed in a hierarchical manner to increase performance. In this 

analysis, SVAS starts with the most distinguishing features. Features are 

considered according to their effect. For example, in video event which occurs 

between two actors, spatial features are considered first due to their high-level 

importance because spatio-temporal features between actors are the most 

discriminative features in complex events. SVAS does not try to find an event 

for those actors who are not in an acceptable closeness. Acceptable closeness 

of an event is learned during learning phase as the Threshold Model. Candidate 

intervals for actors are determined according to Threshold Model for spatial 

feature by considering spatial relations between actors. Following this process, 

the movement features of candidate actors are considered and detailed motion 

analysis is performed by considering other features. If Threshold Models give 

the similarity value greater than 0.4, then the candidate intervals are 

determined for those actors. 

After Threshold Model analysis, action detection is done for candidate 

intervals using Action Detection Module [Pseudocode: 7]. Action Detection 

Module queries candidate intervals and tries to detect actions using pre-learned 

action models. Actions residing in the candidate intervals are determined by 

highly cohesive intervals method in which sub-intervals with higher 

probabilistic values are searched in an interval by analyzing all sub-intervals. 

This method contains a set of interval operations such as division, intersection 

and union to find the best intervals that have higher weights as discussed in 

Section 3.3.2. 
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In the second phase of the detection, the BoA model is applied to the candidate 

intervals [Pseudocode: 8]. It provides a quick elimination of unrelated 

partitions of the input data. Actions found in candidate intervals are compared 

with the actions of pre-learned BoA Model. While actions in candidate 

intervals are detected, they are queried in BoA Model and suitable intervals are 

prepared for detailed complex event detection. BoA Model generates a value 

between 0 and 1. The intervals, which are not suitable (i.e. generated value is 

less than 0.5) for BoA Model, are eliminated. This checking also increases the 

performance for intervals in which no complex event occurred. 

In the last step, candidate intervals which contain suitable actions for BoA 

Model are queried using MLN model. Since SVAS is interval-based rather than 

time point based, the number of MLN predicates extremely decreases and 

minimum MLN graph is created. In addition, unrelated predicate sets are not 

given to MLN to prevent unnecessary operations. MLN predicates are created 

for only highly cohesive candidate intervals which reduces the number of 

variables [Pseudocode: 9]. As a result, the performance of MLN algorithm 

increases. For the remaining candidate intervals, MLN fact file is created 

[Pseudocode: 11]. A sample fact file includes predicates as follows: 

Stand(A1,T1) 

Stand(A2,T2) 

Equal(T1,T3) 

Equal(T2,T3) 

The remaining candidate intervals are queried with MC-SAT algorithm by 

using MLN event models that are learned in the training phase and created 

MLN fact file. A sample result is as follows: 
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Meet(A1,A2,T2) 0.0250475 

Meet(A1,A2,T3) 0.280022 

Meet(A2,A1,T2) 0.040046 

Meet(A2,A1,T3) 0.311019 

Meet(A2,A2,T1) 0.0060494 

Intervals in which MC-SAT algorithm gives higher results are considered as 

alerts for complex events [Pseudocode: 12-14]. 

3.5 Prediction 

Event Prediction is the highest level in surveillance domain. The main goal is 

to predict events before they occur. SVAS proposes three simple methods for 

event prediction. As the first method, SVAS uses IBSTM models. In learning 

phase, SVAS can learn event model with its previous state and post state if 

training data has suitable features. The previous state is the state of event actors 

before the event occurs. The post state is the state of event actors after the 

event. SVAS can generate IBSTM models for not only the duration of the 

event but also durations before and after the event. SVAS generates pre-event 

IBSTM model and post-event IBSTM model for these two durations in the 

learning phase. Pre-event IBSTM model can be used for event prediction in 

detection phase. 

The second method is using BoA models. In detection phase, SVAS uses BoA 

models of events and determines the number of occurred actions in BoA 

models. This calculation gives the number of sub actions of a complex event. 

The number of sub actions increases the prediction of complex events. 

The third method considers the event detection values at runtime. After event 

detection generates the detection value, it is used to decide whether the event 

has occurred or not. If this value is not adequate for any event detection but it 
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has a continuous increasing tendency for any event then this value is 

considered as the prediction value. 

3.6 Implementation Details and a Sample Application 

In this section, implementation details of SVAS and a sample application are 

presented. SVAS Application is implemented using Java Programming 

Language. IntelliJ IDEA Community Edition is used for IDE. The most 

important tools that are used in this thesis are WEKA [28], Alchemy and 

Tuffy. WEKA Library is used for running the required machine learning 

algorithms such as Bayesian Networks. Alchemy and Tuffy are used for 

running MLN algorithms.  

The sample application is prepared in order to show some important features of 

the main processes of SVAS. Learning and inference capability of SVAS is 

presented using CAVIAR Dataset. Scene boundaries are calculated when 

training dataset is parsed. The output of this process is shown in Table 3. 

Table 3 CAVIAR Dataset scene boundaries 

Scene Values Pixel Values 

MINX 3 

MINY 1 

MAXX 321 

MAXY 286 

 

After scene boundaries calculated, action models are learned using the training 

dataset. In CAVIAR Dataset, four main actions ("running", "inactive", 

"walking" and "active") can be learned. The action “inactive” can be 

considered as a stand action and “active” can be considered as an instant move 

action. Action models are composed of threshold models and a Bayesian 

network model. Table 4 shows some Threshold Models of actions as a result of  

Action Learning.  
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Table 4 Threshold Models of CAVIAR Actions 

Action 
Threshold 

Model 
Name 

Max 
Value 

Average 
Value 

Min 
Value 

Frequency Values 
(Value - Frequency) 

Running 

Move 
Change 

8.0 1.68 0.0 

0 - 45 , 10 - 105 , 14 - 42 , 20 - 55 
, 22 - 39 , 28 - 19 , 30 - 13 , 32 - 

13 , 36 - 2 , 40 - 4 , 41 - 4 , 42 - 1 ,  
54 - 1 , 58 - 1 , 63 - 2 ,  
73 - 1, 76 - 1 , 80 - 1 

Size 
Change 

12.65 1.89 0.0 

0 - 43 , 10 - 89 , 14 - 47 , 20 - 48 , 
22 - 42 , 28 - 6 , 30 - 17 , 32 - 13 , 

36 - 10 , 40 - 6 , 41 - 6 , 42 - 2 
,45- 4 , 50 - 7 , 51 - 4 , 60 - 1, 63 - 

1 , 67 - 1, 90 - 1 , 126 - 1 
Direction 
Change 
Degree 

1.0 0.28 0.0 
0 - 125 , 3 - 101 , 5 - 69 , 8 - 26 , 

10 - 13 

Average 
Distance 

3.65 1.50 0.76 
8 - 1 , 9 - 3 , 10 - 2 , 11 - 1, 12 - 2 
, 14 - 1 , 18 - 1 , 22 - 1 , 23 - 1 ,  

24 - 1 , 36 - 1 

Inactive 

Move 
Change 

 
0.0 0.0 0.0 0 - 375 

Size 
Change 

 
0.0 0.0 0.0 0 - 375 

Direction 
Change 
Degree 

0.0 0.0 0.0 0 - 360 

Average 
Distance 

0.0 0.0 0.0 0 - 15 

Walking 

Move 
Change 

 
4.24 0.83 0.0 

0 - 143 , 10 - 133 , 14 - 40, 20 - 22 
, 22 - 17 , 28 - 1 , 30 - 1 , 32 - 4 ,  

40 - 2 , 42 - 1 

Size 
Change 

 
8.0 1.08 0.0 

0 - 114 , 10 - 131 ,14 - 56, 20 - 20 
, 22 - 17 , 28 - 3 , 30 - 5 , 32 - 3 ,  
36 - 2 , 40 - 3 , 41 - 2 , 42 - 1 , 50 
- 1 , 51 - 1 , 54 - 1 , 57 - 1 , 58 - 1 

, 70 - 1 , 80 - 1 
Direction 
Change 
Degree 

1.0 0.25 0.0 
0 - 163 , 3 - 76 , 5 - 74 ,  

8 - 20 , 10 - 16 

Average 
Distance 

1.33 0.67 0.06 
1 - 1 , 4 - 1 , 5 - 1 , 6 - 6 , 7 - 2 , 8 

- 1 , 9 - 1 , 10 - 1 , 13 - 1 

Active 

Move 
Change 

 
3.16 0.32 0.0 

0 - 262 , 10 - 57 , 14 - 7 , 20 - 11 , 
22 - 5 , 30 - 1 , 32 - 2 

Size 
Change 

 
5.66 0.45 0.0 

0 - 234 , 10 - 67 , 14 - 19 , 20 - 16 
, 22 - 3 , 28 - 2 , 30 - 2 , 40 - 1 , 57 

- 1 
Direction 
Change 
Degree 

1.0 0.23 0.0 
0 - 206 , 3 - 13 , 5 - 69 ,  

8 - 8 , 10 - 34 

Average 
Distance 

0.38 0.19 0.0 0 - 1 , 1 - 5 , 2 - 4 , 3 - 4 , 4 - 1 
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In addition to threshold models, Bayesian Model of actions is learned using 

WEKA tool. Training data file is prepared for WEKA using the same features. 

Attributes and classes are defined at the beginning of the file. After that 

training data values are given. Figure 20 shows part of the training file. 

 

@relation action  

@attribute moveChange numeric  

@attribute sizeChange numeric  

@attribute distance numeric  

@attribute directionChange numeric  

@attribute class {running,inactive,walking,active}  

@data  

1.28, 1.54, 1.20, 0.24, running 

1.11, 1.17, 0.92, 0.29, running 

1.12, 1.44, 0.94, 0.39, running 

1.08, 1.25, 1.00, 0.24, running 

                     … 

Figure 20 Sample Training File for WEKA 

Some of the parameters of the learned Bayesian Network Model are as follows: 

class: 4 

LogScore Bayes: -202.96185083886107 

LogScore BDeu: -300.82134868085024 

LogScore MDL: -305.04098870828847 

LogScore ENTROPY: -217.01258062051335 

LogScore AIC: -260.01258062051335 

 

After action learning, SVAS is ready for action detection or complex event 

learning. For instance, complex event model of “walkingTogether” can be 

learned using the training data. The first step is Threshold Model learning. 

Same features in Threshold Models of actions are learned again per actor. In 

addition, Threshold Models for features related two actors are learned. 
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“walkingTogether” complex event is not role-based. Behavior of actors is 

similar. For this reason, only one Threshold Model set is kept for both actors. 

In role-based complex events, two Threshold Model sets are kept. Models for 

“walkingTogether” event are shown in Table 5. 
 

Table 5 Threshold Models for Two Actors 

Complex 
Event 

Threshold 
Model 
Name 

Max 
Value 

Average 
Value 

Min 
Value 

Frequency Values 
(Value - Frequency) 

walking 
together 

distance 79.05 30.98 5.38 

54 - 2 , 76 - 1 , 82 - 1 , 85 
- 1, 114 - 1 , 117 - 1 , 130 

- 1 , 139 - 1 , 163 - 2 , 
201 - 1 , 209 - 2 , 210 - 1 
, 212 - 1 , 215 - 2 , 219 - 
1 , 227 - 1 , 234 - 1 , 236 

- 1 , 244 - 1 , 262 - 4 , 
269 - 1 , 275 - 1 , 280 - 1 
, 288 - 1 , 323 - 1 , 327 - 
1 , 336 - 1 , 340 - 1 , 345 

- 1 , 354 - 1 , 365 - 1 , 
367 - 1 , 413 - 1 , 416 - 1 
, 428 - 1 , 432 - 1 , 444 - 
1 , 458 - 2 , 655 - 1 , 665 

- 1 , 726 - 1 , 743 - 1 , 
761 - 1 , 791 - 1 

Direction 
Similarity 
Degree 

 

1.0 0.73 0.5 
5 - 6 , 6 - 1 , 7 - 1 , 8 - 3 ,  

9 - 1 , 10 - 5 
 

 

In complex event learning process, the second main step is learning BoA 

Models. Detected actions are found for BoA Model learning and MLN Model 

learning using pre-learned action models. While BoA and MLN models are 

being constructed, actions are determined by action detection. Candidate 

intervals are found using Threshold Model analysis.  Action detection also 

includes WEKA inference operation using pre-learned Bayesian Network 

model. WEKA test file is created for candidate intervals. The structure of this 

file is similar to the training file as shown in Figure 20. In the BoA model, 

detected actions are kept with weights. BoA Model of “walkingTogether” 

event is shown in Table 6.  



70 
 

Table 6 BoA Model of “walkingTogether” event 

Is Role Based: no 

Actions Values 

running 0.09 

inactive 0.11 

walking 0.67 

active 0.13 
 

After BoA Model is constructed, MLN model for the complex event is 

constructed using Tuffy. First, the unweighted MLN file is prepared. Predicates 

are determined using detected actions. The generated unweighted MLN file 

named “walkingTogetherUnweighted.mln” for “walking Together” event is 

shown in Figure 21. 

 Person(actor) 

 running(actor,timeint) 

 inactive(actor,timeint) 

 walking(actor,timeint) 

 active(actor,timeint) 

 directionSimilar(actor,actor,timeint) 

 near (actor,actor,timeint) 

 walkingTogether(actor,actor,timeint) 

 !running(a1,t1) V walkingTogether(a1,a2,t1) 

 !inactive(a1,t1) V walkingTogether(a1,a2,t1) 

 !walking(a1,t1) V walkingTogether(a1,a2,t1) 

 !active(a1,t1) V walkingTogether(a1,a2,t1) 

 !running(a2,t1) V walkingTogether(a1,a2,t1) 

 !inactive(a2,t1) V  walkingTogether(a1,a2,t1) 

 !walking(a2,t1) V walkingTogether(a1,a2,t1) 

 !active(a2,t1) V walkingTogether(a1,a2,t1) 

 ! directionSimilar (a1,a2,t1) V walkingTogether(a1,a2,t1) 

 ! near(a1,a2,t1) V walkingTogether(a1,a2,t1) 

 ! Person(a1) V walkingTogether(a1,a2,t1) 

 ! Person(a2) V walkingTogether(a1,a2,t1) 

Figure 21 walkingTogetherUnweighted.mln 
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Then the training fact file is created using detected actions. 

“walkingTogetherlearnDB.db” file is prepared for “Walking Together” event. 

Figure 22 shows part of the training file. 

 

Person(A1) Person(A2) walking(A1,T1) walking(A2,T1)  

directionSimilar (A1, A2, T1) near (A1, A2, T1)  

walkingTogether (A1, A2, T1)  

Person(A3) Person(A4) walking(A3,T2) walking(A4,T2)  

directionSimilar (A3, A4, T2) near (A3, A4, T2) 

 walkingTogether (A3, A4, T2) 

Person(A5) Person(A6) inactive(A5,T3) active(A6,T3)  

directionSimilar (A5, A6, T3) near (A5, A6, T3 ) 

 walkingTogether (A5, A6, T3) 

Person(A7) Person(A8) inactive(A7,T4) active(A7,T4)  

directionSimilar (A7, A8, T4) near (A7, A8, T4 )  

walkingTogether (A7, A8, T4) 

                         ... 

Figure 22 walkingTogetherlearnDB.db 

 

The query file is the last input file for Tuffy weight learning. For instance, 

“walkingTogetherquery.db” file is prepared for “Walking Together” event 

which contains “walkingTogether(a1,a2, t1)” as query. Then Tuffy weight 

learning algorithm is called. The Tuffy parameters for weight learning of 

“Walking Together” event is as follows:   

 

-learnwt -i walkingTogetherunweighted.mln -e walkingTogetherlearnDB.db -

queryFile walkingTogetherquery.db -r weightedWalkingTogether.mln -mcsatSamples 

10 -dMaxIter 100  

 

The weighted MLN file for “walkingTogether” event is generated by 

discriminative weight learning algorithm as shown in Figure 23. 
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walking(actor,timeint) 

running(actor,timeint) 

walkingTogether(actor,actor,timeint) 

inactive(actor,timeint) 

active(actor,timeint) 

Person(actor) 

directionSimilar(actor,actor,timeint)  

near (actor,actor,timeint) 

 

0,2005       !running(v0, v1)  V  walkingTogether(v0, v2, v1)   

0,1067       !inactive(v0, v1)  V  walkingTogether(v0, v2, v1)   

0,8067       !walking(v0, v1)  V  walkingTogether(v0, v2, v1)   

0,2135       !active(v0, v1)  V  walkingTogether(v0, v2, v1)   

0,1935       !running(v0, v1)  V  walkingTogether(v2, v0, v1)   

0,1303       !inactive(v0, v1)  V  walkingTogether(v2, v0, v1)   

0,8567       !walking(v0, v1)  V  walkingTogether(v2, v0, v1)   

0,1532       !active(v0, v1)  V  walkingTogether(v2, v0, v1)   

0,7572       ! directionSimilar (v2, v0, v1)  V  walkingTogether(v2, v0, v1)  

0,8566       ! near (v2, v0, v1)  V  walkingTogether(v2, v0, v1)   

0,9574       ! Person (v0, v1)  V  walkingTogether(v2, v0, v1)   

0,9574       ! Person (v2, v1)  V  walkingTogether(v2, v0, v1)   

Figure 23 weightedWalkingTogether.mln 

After learning is finished, event detection can be performed. A sample interval 

from CAVIAR Dataset is used for detection. This test data interval is not used 

in learning phase. 

 

In event detection phase, the first operation is checking the similarities between 

Threshold Models and eliminating irrelevant intervals. Similarities between 

test interval and Threshold Models of complex events are considered. 

Similarity values of some complex events such as “Left Object” and “Fight” 

with the test interval are too low. For this reason, detailed analyses for these 



73 
 

complex events are eliminated. However, Threshold Model Similarities of 

“Walking Together” and “Meeting” are high. The values are as follows: 

 

"Walking Together" � 0.66 

"Meeting" � 0.65 

 

These two complex events can be considered as candidate complex events. 

Then, actions in the test data are determined for BoA and MLN model, using 

action detection processes of SVAS. BoA models of candidate complex event 

models are considered with those detected actions. The results of BoA model 

consideration is as follows: 

 

"Walking Together" � 0.64 

"Meeting" � 0.60 

 

Both of the results are higher than 0.4. For this reason, MLN consideration is 

done for the candidate complex events. Evidence file named “evidence.db” is 

prepared for this operation, which includes detected actions in the test interval. 

The structure of evidence file is similar to training file as shown in Figure 22. 

Finally, MLN consideration is done by using Tuffy for both candidate events. 

Tuffy parameters for this operation is as follows: 

 

-i weightedWalkingTogether.mln -e evidence.db -queryFile walkingTogetherquery.db 

-r walkingTogetherinferout.txt 

 

For this query, Tuffy writes results into a file named 

“walkingTogetherinferout.txt”. The results of inferences are considered for 

both of the candidate events and complex event which has maximum value is 

accepted as the detected event. 
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CHAPTER 4 

 

EXPERIMENTS AND RESULTS 

 

 

 

In this chapter, the experiments on the system are described and the results of 

the experiments are presented. The results of the proposed system are 

compared with the results of the related studies. The organization of the 

chapter is as follows: First, the evaluation of CAVIAR dataset is discussed in 

Section 4.1. Then the evaluation of BEHAVE dataset is discussed in Section 

4.2. Both of the sections include evaluation of actions and complex events. In 

Section 4.3, the evaluation of synthetic dataset is presented. In this section, the 

tool which is developed for generating synthetic data is also introduced. 

Section 4.4 gives the results of performance evaluations. Qualitative evaluation 

is discussed in Section 4.5. Finally, in Section 4.6, Evaluation of Learning 

Non-Interval-Based Complex Event Models Using Markov Logic Networks is 

presented using CANTATA Dataset. 

In this study, a series of experiments have been conducted and the proposed 

methods are evaluated using four datasets which are CAVIAR Dataset [115], 

BEHAVE Dataset [16], CANTATA Dataset [18] and our synthetic dataset. 

These datasets are used without considering object detection and tracking 

issues. CAVIAR and BEHAVE datasets are mostly used in the literature for 

event detection in surveillance domain (e.g. [96], [7], [97], [73], [76], [16], 

[25], [120], [122], [4] and [67]). Each video in these datasets was manually 

annotated to provide the ground truth. Both CAVIAR and BEHAVE datasets 

are in XML format. Figure 24 shows the structure of a sample XML file from 

CAVIAR Dataset. They provide actors and their pixel positions and blob width 
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and height for each video frame. In SVAS, these datasets are parsed to be used 

by Trajectory Generation Module according to their XML format.  

 

 
Figure 24 Sample CAVIAR XML File 

 

To deal effectively with the changes of viewing conditions, the features should 

be invariant to geometrical transformations such as translation, rotation, scaling 

and affine transformations. CAVIAR and BEHAVE datasets provide 

calibration data. Since the scenes in these datasets are not viewed from exactly 

top center and used cameras are a kind of fish eye camera, it is useful to 

calibrate the data. In this study, calibration of datasets is considered and 

calibrated datasets are also evaluated to show that proposed methods are 

independent of unit. 
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CAVIAR and BEHAVE datasets are generally challenging because they are 

not consistent for some conditions. Some event data have different scenarios 

with inadequate number of videos. In addition, intervals are too short for some 

events. As an example, the number of run events is not enough in CAVIAR 

Dataset. As it is stated in [73], meeting scenarios in CAVIAR Dataset vary. 

Event models are generated differently for datasets. For example, in CAVIAR 

videos, an object carried by a person is not tracked – only the person who 

carries it is tracked. The object will be tracked (‘appear’) if and only if the 

person leaves it somewhere. This input affects the generated event models. 

4.1 Evaluation of CAVIAR Dataset 

CAVIAR Benchmark Dataset consists of manually annotated 28 surveillance 

videos of a public space and contains several scenarios about “Fight”, “Left 

Object” and “Meet” complex events. A sample screenshot of CAVIAR Dataset 

is shown in Figure 25. 

 

 
Figure 25 Sample screenshot of CAVIAR Dataset 

4.1.1 Action Evaluation of CAVIAR Dataset 

In this evaluation, hypothesis values, determined by CAVIAR team, are used. 

There are 4 types of actions in this dataset which are: “running”, “inactive”, 

“walking” and “active”. The action “inactive” is considered as a “stand” action 

and the action “active” is considered as an instant move action. Action 

evaluations are done by using ten-fold cross validation method. For each action 
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type, we divided the datasets to ten-fold, with nine-fold for training and one-

fold for testing. 

In CAVIAR Dataset, labeled frame numbers for “running”, “inactive”, 

“walking” and “active” are 406, 2934, 14134 and 1872 respectively. There are 

significant differences between the data sizes for action types. This leads to 

increase in the confusion of actions. For this evaluation, as it is stated in [96], it 

is required to fix the dataset size. Since the smallest number of training data 

available is for “run” action, we chose the complete set of “run” action and 

determined 15 intervals. Each interval is 1 second long and for each other 

action types, 15 intervals which are 1 second long are selected from the dataset. 

As a result, dataset size for each action type became equal. Results of 

confusion matrix evaluation are shown in Table 7.   

Table 7 Results of confusion matrix evaluation 

 running inactive walking active 

running 93.33% 0% 6.67% 0% 

inactive 0% 100% 0% 0% 

walking 13.33% 0% 73.34% 13.33% 

active 0% 0% 6.67% 93.33% 

 

The results of other studies using CAVIAR Dataset are shown in Table 8. [76] 

has low accuracy values particularly for “active” and “running” action types 

according to their HMM (Genetic Algorithm) test method for four action types. 

[96] tries some cluster based methods for this action dataset. Each method 

marks some actions high while the remaining ones are marked low. 

Considering all actions, their best evaluation is as follows: 92.3% for 

“running”, 77.4% for “inactive”, 77% for “walking” and 85.9% for “active”. In 

[96], only the performance for “walking” is higher than our method. If each 

frame in the hypothesis dataset is considered separately, then the results in 

Table 9 are obtained. 
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Table 8 Comparison of Action Detection Evaluation with other studies in CAVIAR 

Dataset 

 [96] [76] Our Results 

Running 92.3% 0% 93.33% 

Inactive 77.4% 85% 100% 

Walking  77% 88% 73.34% 

Active 85.9% 0% 93.33% 

 

Table 9 Results of Frame-based CAVIAR Dataset evaluation 

Action 

Name 

Dataset 

Count 

Detection 

Count 

Undetection 

Count 
Hit Ratio 

Running 406 371 35 91.38 % 

Inactive 2934 2930 4 99.86 % 

Walking 14134 11806 2328 83.53 % 

Active 1872 1866 6 99.68 % 

 

4.1.2 Complex Event Evaluation of CAVIAR Dataset  

Hypothesis values, determined by the CAVIAR team, are used in this 

evaluation too. In CAVIAR Dataset, the number of events is small. For 

“interacting” (“meeting”) there are 6, for “fight” there are 3 and for “left 

object” there are 4 examples. To increase test data, we divide test intervals into 

sub-intervals with 15 frames long. We create 24 intervals for “meeting”, 18 

intervals for “fight” and 9 intervals for “left object”. The results of confusion 

matrix evaluation for CAVIAR complex events are shown in Table 10. 
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Table 10 Results of confusion matrix evaluation for CAVIAR complex events 

 meeting fight left object UNFOUND 

meeting 79.17% 12.5% 8.33% 0% 

fight 16.67% 77.78% 5.55% 0% 

left object 0% 0% 100.0% 0% 

 

In [96], balanced dataset is used for complex event evaluation using decision 

trees. Comparing with [96], the accuracy of our complex event detections is 

high. The accuracy result for “meeting” and “fight” are nearly 70, for “left 

object” is nearly 75 in [96]. 

 

In [73], only “meeting” event detection is studied using clustering methods and 

compared with [7] in which Event Calculus is used. “meeting” accuracy of [7] 

and [73] are 67% and 89% respectively. Since [73] attacks only one complex 

event type, the accuracy result is high as expected. When the number of event 

types increases, confusion problems arise. 

 

In [97], complex event evaluation is provided without low-level action 

detection using Event Calculus method. [97] uses low-level action values from 

CAVIAR ground truth. In [97], accuracies are as follows: for “meeting” is 

85.5%, for “fighting” is 84.5%, for “left object” is 72.2%, for “walking” is 

63.9%. We consider “walking” as action and accuracy value of our study is 

higher as shown in Section 4.1.1 above. The precision of “left object” event is 

also higher in our system. On the other hand, results of [97] are better for 

“fight” and “left object” events. However, since low-level actions are not 

detected in their work, some errors are inevitable. These comparisons are 

shown in Table 11. 
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Table 11 Comparison of Complex Event Detection Evaluation with other studies in 

CAVIAR Dataset 

 
4.2 Evaluation of BEHAVE Dataset 

BEHAVE Dataset [16] consists of four videos and 76,800 frames in total and 

contains 25 frames per second with a resolution of 640× 480 pixels. It contains 

several scenarios about “InGroup” (IG), “Approach” (A), “WalkTogether” 

(WT), “Split” (S), “Ignore” (I), “Following” (F), “Chase” (C), “Fight” (Fi), 

“RunTogether” (RT) and “Meet” (M) events with a ground truth. Sample 

screenshots of BEHAVE Dataset are shown in Figure 26. 

  
 
Figure 26 Sample screenshots of BEHAVE Dataset 
 

This dataset is used in many studies in literature such as [25], [120], [122], [4] 

and [67]. The numbers of datasets for each event type are listed in Table 12.  

Table 12 Dataset counts of each event type in BEHAVE Dataset 

IG A WT S I F C Fi RT M 

35 25 43 23 2 1 10 19 12 1 

 [96] [7] [97] [73] Our Results 

meeting 72% 67% 85.5% 89% 79.17% 

fight 70% 100% 84.5% - 77.78% 

left object 75% 80% 72.2% - 100.0% 
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Evaluations in this section are done using the ground truth values that are 

determined by BEHAVE team.  

4.2.1 Action Evaluation of BEHAVE Dataset 

In BEHAVE Dataset, actions are not defined for actors. However, we use 

individual behaviors of actors for action evaluation. For example, individual 

behaviors of each actor in “InGroup” and “Meet” events can be considered as 

“Stand” action. In the same manner, individual behaviors of each actor in 

“RunTogether”, “WalkTogether” and “Fight” events can be considered as 

“Run”, “Walk” and “Instant Move” actions, respectively. We generate 32 

intervals for “Run”, 106 intervals for “Stand”, 82 intervals for “Walk”, and 19 

intervals for “Instant Move” actions by considering each actor behavior in 

BEHAVE Dataset instances. We use ten-fold cross validation method. For each 

action type, we divide the interval datasets to ten-fold, with nine-fold for 

training and one-fold for testing. Our action evaluation results are shown in 

Table 13. Accuracy values are between 89% and 91%, which are very 

satisfactory. 

Table 13 Confusion matrix of BEHAVE Dataset Action Evaluation 

 Run Stand Walk Instant Move 

Run 90.63% 0% 9.37% 0% 

Stand 0% 91.51% 5.66% 2.83% 

Walk 1.22% 3.66% 91.46% 3.66% 

Instant Move 0% 10.53% 0% 89.47% 

 

4.2.2 Complex Event Evaluation of BEHAVE Dataset 

In this evaluation, complex events are evaluated using ten-fold cross validation 

method as in Action Evaluation of BEHAVE Dataset. Since the numbers of 

“Meet”, “Ignore” and “Following” instances are low in dataset, they are not 

used in the evaluation. In addition, we do not consider group events, so the 
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events “Approach to group” and “Split from group” are not evaluated. Results 

of confusion matrix evaluation for BEHAVE events are shown in Table 14. 

Table 14 Results of confusion matrix evaluation for BEHAVE events 

(IG: InGroup, WT: WalkTogether , C: Chase, Fi: Fight, RT: RunTogether) 

 IG WT C Fi RT 

IG 100% 0% 0% 0% 0% 

WT 0% 88.37% 0% 0% 11.63% 

C 0% 0% 100% 0% 0% 

Fi 0% 5.26% 0% 89.48% 5.26% 

RT 0% 25% 0% 0% 75% 

 

In [16], classification is provided using HMM without considering “Chase” 

and “RunTogether” events. Their average performance ranges from 80% to 

90%. [25] considers only “Fight” and “Meet” events in BEHAVE dataset 

evaluations using object tracking and classification technique. Their accuracies 

are as follows: for “Meet” event, it is nearly 85% and for “Fight” event, it is 

nearly 70%. [120] evaluates “InGroup”, “WalkTogether”, “Fight” and “Split” 

events without confusion matrix method using Conditional Gaussian Process 

Dynamic Model. Their accuracies are 94.3%, 92.1%, 95.1% and 93.1%, 

respectively. In [122], accuracies of detected events in confusion matrix are 

between 52% and 88% using Multi-Group Causalities method. [4] uses 

Hierarchical Dirichlet Processes method. In [4], accuracies of detected events 

in confusion matrix are between 50% and 80%. [67] uses formal knowledge-

based reasoning approach and multi-person tracker. In [67], “WalkTogether”, 

“RunTogether”, “Approach”, “Split” and “InGroup” events are evaluated with 

accuracies between 60% and 90%. Comparing our results with these studies; 

some accuracy values of our proposed work are apparently higher than the 
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given values above, as shown in Table 14. Our accuracies are between 75% 

and 100%. Our average performance is 90.57%. Related comparisons are 

shown in Table 15. 

Table 15 Comparison of Complex Event Detection Evaluation with other studies in 

BEHAVE Dataset 

(IG: InGroup, WT: WalkTogether , C: Chase, Fi: Fight, RT: RunTogether) 

 [25] [120] [122] [4] [67] Our Results 

IG - 94.3% 88% 53.73% 90% 100% 

WT - 92.1% 88% 75% 60% 88.37% 

C - - 52% - - 100% 

Fi 70% 95.1% - 80% - 89.48% 

RT - - - - 60% 75% 

 

4.3 Evaluation of Synthetic Dataset 

Synthetic dataset is evaluated in order to consider more event data in various 

scenarios. Test Data Generation Tool is developed for this purpose. Test data 

can be prepared for different event types easily by using this tool. Test Data 

Generation Tool is an application in which scene model and video event 

scenarios can be created. Various scenes can be designed as the composition of 

50 cm * 50 cm grid cells, which approximately determines an effect area of an 

actor. Scenarios are created for top center view. So, there is no need for 

calibration. Various actor types can be defined. For each actor, trajectories are 

determined by giving time intervals. Actors and their trajectories can be 

determined by marking the route in the tool. Created scenarios can be played 

for controlling purposes and can be used by Trajectory Generation Module in 

learning and testing phases of event detection process. In Figure 27, user 

interface of Test Data Generation Tool is shown. 
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Figure 27 User interface of Test Data Generation Tool 

As it is shown in Figure 27 video size and actors can be also determined by 

using the right panel. For each actor trajectories are determined giving time 

intervals. Trajectories are determined by selecting grids according to path of 

the actor. Created scenario can be played by using bottom panel of right 

component. Scenario information is displayed in status panel which is located 

at the bottom of the view. By using “File” menu, export and import operations 

are done. A sample scenario for “meet” event which is prepared using Test 

Data Generation Tool is shown below: 

Video Interval: 1-15 

Scene: 5-5  

Actors: 2 

0-PERSON 

1-PERSON 

Interval: 0-1-5-0-5-4-5 

Interval: 0-5-10-4-5-4-5 

Interval: 0-10-15-4-5-0-5 

Interval: 1-2-5-9-5-5-5 

Interval: 1-5-10-5-5-5-5 

Interval: 1-10-15-5-5-9-5 

Movements are considered as one second actions so “instant move” action 

cannot be defined in Test Data Generation Tool currently. By using Test Data 
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Generation Tool, a total of 135 test data is created for “Run”, “Stand”, “Walk” 

actions and “Chase”, “Follow”, “Left Object”, “Meet”, “Walk Together”, “Run 

Together” complex events. By using leave-one-out testing method, detections 

are correct. However, detection accuracy decreases when some missing values 

added randomly. We add missing values to each training data such that “1 

second missing value per training data” means: for each trajectory in training 

dataset, we remove randomly 1 second movement from trajectories as if they 

are occluded. 

Table 16 Evaluation of Synthetic Dataset 

Missing Value Detection Count Hit Ratio 

No missing value 135 100 % 

0.5 second missing value per training data 112 82.9 % 

1 second missing value per training data 98 72.6 % 

2 seconds missing value per training data 67 49.6 % 

3 seconds missing value per training data 0 0 % 

 

In Table 16, detection count decreases when missing value duration increases. 

Since generated test data trajectories are maximum 5 seconds long, the impact 

of missing value is very high. However, we can conclude that SVAS is robust 

for missing values nearly 10% of trajectories. 

 

4.4 Performance Evaluation 

The effect of the proposed methods on the performance is also evaluated. Both 

for “Action Detection” and “Complex Event Detection”, the proposed methods 

provide a great performance gain as discussed below. Calculations are 

measured by a personal computer which has 8 GB RAM and Intel i5-4210 

CPU. 
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In “Action Detection” phase, Threshold Model elimination increases the 

performance as shown in Figure 28 and Table 17. One threshold query duration 

is nearly 0.06 msec., which can be considered as very fast. However, one 

Bayesian Network query duration is nearly between 4 msec. and 9 msec. 

Bayesian Network query duration is at least 80 times of the threshold query 

duration. For this reason, using Bayesian Network query when needed gives a 

big performance gain.  

As listed in Table 17, there is little overhead for the first two rows since all 

intervals are selected as they contain action data. However, in real videos, 

actions exist only in a small portion of the video; hence, big performance gain 

is provided. In this case, only candidate intervals are queried using Bayesian 

Network. 

Table 17 Action Detection Performance Evaluation 

Test 

intervals 

Count 

Total TH 

query 

duration 

(msec) 

Total BN 

query 

duration  

(msec) 

Eliminated 

Interval 

Count By 

Th Model 

Average 

1 Th 

query 

duration 

(msec) 

Average 

1 BN 

query 

duration 

(msec) 

Estimated 

Performance 

gain (msec) 

60 14,88 295,2 0 0,062 4.92 -14,88 

150 33 1038 0 0,055 6.92 -33 

400 89,6 2702,84 57 0,056 7,88 359,56 

732 169,824 5261,76 123 0,058 8,64 892,896 

813 178,86 3150,08 385 0,055 7,36 2654,74 

800 188,8 172,52 781 0,059 9,08 6902,68 

 

Formulas of calculations are as follows [“Action types” is the number of 

actions defined in the system which is currently 4.]: 
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In Figure 28, the performance gain increases when the number of eliminated 

intervals increases. This elimination power shows the necessity and importance 

of the Threshold Model. 

 

Figure 28 Action Detection Performance Evaluation 

In “Complex Event Detection” phase, two-step elimination exists. One of them 

is Threshold Model while the other is BoA Model. Threshold Model 

elimination provides a big performance gain in complex event detection phase 

as in Figure 29 and Table 18. Performance gain of BoA Model is limited but its 

calculation is very fast such as almost 1 msec. So, BoA Model is also useful. 

In this case, performance gain is huge since the inference operation in MLN is 

nearly between 1.5 sec and 4 sec. By considering this huge MLN query time, 

the overhead of BoA Model and Threshold Model calculations can be omitted. 

A small number of MLN queries offer higher performance. In Table 18, there 
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is little overhead for the first three rows since all intervals are selected as they 

contain complex event data. However, in real videos, complex events occur 

only in a small portion of video. In this case, a big performance gain is 

provided.  

Table 18 Complex Event Detection Performance Evaluation 

Test 

inter-

vals 

Count 

Total 

TH 

query 

dura-

tion  

(msec) 

Total 

Action 

Detection 

duration 

(msec) 

Total 

BoA 

query 

dura-

tion 

(msec) 

Eliminated 

Interval 

Count By 

Th model 

Eliminated 

Interval 

Count By 

BoA model 

Total 

MLN 

Query 

Dura-

tion 

(msec) 

Average 

1 MLN 

query 

dura-

tion 

(msec) 

Estimated 

Performan-

ce gain for 

MLN Query 

Elimination  

(msec) 

6 1 13 1 0 0 10980 1830 -2 

12 1 24 1 0 0 23808 1984 -2 

14 3 24 1 0 0 55804 3986 -4 

97 17 131 2 24 3 193200 2760 74501 

223 34 319 6 55 3 268125 1625 94210 

438 49 537 7 102 5 785794 2374 253962 

721 54 817 12 176 6 1449371 2689 489332 

 

Formulas of calculations are as follows: 
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In this estimation, Duration of Action Detection can be omitted due to its low 

computational time. 

Figure 29 shows that, the performance increases considerably when the number 

of eliminated intervals increases. Since the elimination of intervals depends on 

Threshold Model and BoA Model, the figure also shows the importance of 

these two models. Without them, MLN alone would be very inefficient. 

 

Figure 29 Complex Event Detection Performance Evaluation 

4.5 Qualitative Evaluation 

SVAS generates semantically meaningful event models in MLN format. Some 

of the generated complex event models are shown in Table 19. As shown in the 

table, the models are semantically consistent with expectations.  
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Table 19 Generated event models (‘∧’ states ‘AND’ operator and ‘!’ states ‘NOT’ 

operator) 

Event MLN Model 

Meet(a1, a2, t1) Person(a1) ∧ Person(a2) ∧ Stand(a1, t1) ∧  

Stand(a2, t1) ∧ Near(a1, a2, t1) 

Fight(a1, a2, t1) Person(a1) ∧ Person(a2) ∧ InstantMove(a1, t1) ∧                    

InstantMove(a2, t1) ∧ !DirectionSimilar(a1, a2, t1) ∧  

Near(a1, a2, t1) 

Walk Together  

(a1, a2, t1) 

Person(a1) ∧ Person(a2) ∧ Walk(a1, t1) ∧  

Walk(a2, t1) ∧ DirectionSimilar(a1, a2, t1) ∧ Near(a1, a2, t1) 

Run Together  

(a1, a2, t1) 

Person(a1) ∧ Person(a2) ∧ Run(a1, t1) ∧  

Run(a2, t1) ∧ DirectionSimilar(a1, a2, t1) ∧ Near(a1, a2, t1) 

Follow(a1, a2, t1) Person(a1) ∧ Person(a2) ∧ Walk(a1, t1) ∧  

Walk(a2, t1) ∧ DirectionSimilar(a1, a2, t1)  ∧ Far(a1, a2, t1) 

Chase(a1, a2, t1) Person(a1) ∧ Person(a2) ∧ Run(a1, t1) ∧  

Run(a2, t1) ∧ DirectionSimilar(a1, a2, t1)  ∧ Far(a1, a2, t1) 

LeftObject(a1, a2, t1) Object(a1) ∧ Person(a2) ∧ Stand(a1, t1) ∧  

Walk(a2, t1) ∧ Far(a1, a2, t1) 

TakenObject 

(a1, a2, a3, t2) 

Object(a1) ∧ Person(a2) ∧ Person(a3) ∧  

Walk(a1, t1) ∧ Walk(a2, t1) ∧ Far(a1, a3, t1) ∧  

Near(a1, a2, t1) ∧ Walk(a1, t2) ∧ Walk(a3, t2) ∧  

Far(a1, a2, t2) ∧ Near(a1, a3, t2) ∧ (t2 > t1) 

 

For generated models, some spatial relations, such as “Near” and “Far”, are 

unique to the event. These predicates reflect the closeness between actors while 

the event is taking place. They are defined and handled with Threshold Models. 

However, for non-generated models which are designed by the user without 

learning operations, these predicates can be described by giving threshold 

values explicitly. 

Table 19 shows that the generated rules are in FOL format and so they are 

readable. In addition, a user can manage these rules. The user can change the 

rules or add new scenarios to any complex event model only by text editing. 
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For example, the user can add a new scenario for “Left Object” complex event, 

where previous time periods of the event is considered as follows:  

 

LeftObject(a1, a2, t1, t2) :  Object(a1) ∧ Person(a2)  ∧ Stand(a1, t1) ∧ Stand(a2, t1) ∧ 

Near(a1, a2, t1) ∧ Stand(a1, t2) ∧  Walk(a2, t1) ∧ Far(a1, a2, t2) ∧ (t2 > t1) 

4.6 Evaluation of Learning Non-Interval-Based Complex Event Models 
Using Markov Logic Networks 

For evaluation of Learning Non-Interval-Based Complex Event Models Using 

Markov Logic Networks, three event types are tested by using the leave-one-

out testing method. For each event type, various different scenarios are 

considered in automatic model generation. These event types are: 

Case 1: “Left Object” event (leftObject(person, object, time1, time2) means 

that the person leaves the object while the time passes from time1 to time2). 

Case 2:“Taking Left Object” event (takingLeftObject(person1, person2, object, 

time1, time2) means that the owner of the object is person1. Person2 takes the 

object while the time passes from time1 to time2). 

Case 3: “Meet” event (meet(person1, person2, time1, time2) means that 

person1 and person2 meet while the time passes from time1 to time2). 

Eight videos for “left object”, three videos for “taking left object” and four 

videos for “meet” event are used as test videos. Four videos for “left object” 

were from CANTATA Dataset [18]. The others are newly created videos, in 

order to cover more scenarios. Sample image shots from these videos are 

displayed in Figure 30. 
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Figure 30 Sample image shots for I) Case 1, II) Case 3, III) Case 2, IV) 

For Case 1, in each turn-around of leave-one-out testing method, seven of eight 

videos are used in event model generation. The generated models are used to 

detect events in the remaining video by using the “infer” command of 

Alchemy. After all turn-arounds, all of the possible predicates that can affect 

the event are listed with their average weights in Table 20. These predicates are 

chosen according to the parameters of the event. For example 

“closedistancePP” is not considered because “leftObject” has only one person 

attribute. 
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Table 20 Evaluation Results of Learning Non-Interval-Based Complex Event Models 

Event Steps 
Case 1 

A B C D 

existPerson(p1,  t1) 1.22 -1.22 0.14 -0.14 

existPerson(p1,  t2) 0.38 -0.38 0.42 -0.42 

existObject(o1,  t1) 1.16 -1.16 0.45 -0.45 

existObject(o1,  t2) 1.14 -1.14 0.36 -0.36 

stopPerson(p1, t1) 0.44 -0.44 0.38 -0.38 

stopPerson(p1, t2) 0.54 -0.54 0.48 -0.48 

stopObject(o1, t1) 1.22 -1.22 0.44 -0.44 

stopObject(o1, t2) 1.14 -1.14 0.29 -0.29 

closeDistancePO(p1, o1, t1) 1.37 -1.37 0.67 -0.67 

closeDistancePO(p1, o1, t2) 0.34 -0.34 1.31 -1.31 

smallObject(o1) 1.17 -1.17 0.48 -0.48 

ownedBy(p1, o1) 1.27 -1.27 -0.22 0.22 

during(t1, t2) 1.50 -1.50 0.19 -0.19 

before(t1, t2) 1.50 -1.50 0.19 -0.19 

before(t2, t1) 0.60 -0.60 0.49 -0.49 

 

The event model is created by considering the values of the table as follows 

(‘∧’ states ‘AND’ operator):  
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existPerson(p1,t1) ∧ existObject(o1,t1) ∧ existObject(o1,t2) ∧ stopObject(o1,t1) ∧ 

stopObject(o1,t2) ∧ closeDistancePO(p1, o1, t1) ∧ !closeDistancePO(p1, o1, t2) ∧ 

smallObject(o1) ∧ ownedBy(p1, o1) ∧ during(t1,t2) ∧ before (t1,t2) �      

leftObject(p1, o1, t1, t2) 

The result is consistent with our expectations. For each predicate, A, B, C and 

D values are considered. If all values are low, the predicate is selected as 

irrelevant. If only the value of A is high, the predicate is added to the model. If 

only the value of C is high, the predicate is added to the model with the “not” 

operator. Both the value of A and the value of D or both the value of B and the 

value of C are not high for any predicate in this event, because none of the 

predicates causes the event alone. The values that are considered in the 

decision of the model are shaded in Table 20. Before the occurrence of the 

event; p1 and o1 must exist and close to each other. It is not necessary for the 

person to ‘stop’; p1 can be moving while the event occurs. The object must be 

small and owned by p1. While the event occurs, p1 and o1 must be far and p1 

can be out of the scene so “existPerson(p1,t2)” is irrelevant. Temporal relations 

are also correctly detected for the event. Event detections in test videos are also 

successful. The occurrences of the events are detected at the correct frames of 

the test videos. For Case 2 and Case 3, the generated event models are listed in 

Table 21. 

Table 21 Generated event models for Case 2 and Case 3 

Events Models 

takingLeftObject 

(p1, p2, o1, t1, t2) 

existPerson(p2, t1) ∧ existPerson(p2, t2) ∧ existObject(o1, t1) ∧ 

existObject(o1, t2) ∧ closeDistancePO(p2, o1, t1) ∧   

closeDistancePO (p2, o1, t2) ∧ smallObject(o1) ∧ ownedBy(p1, o1) ∧ 

!ownedBy(p2, o1) ∧ during(t1, t2) ∧ before(t1, t2) ∧ after(t2, t1) 

meet(p1, p2, t1, t2) stopPerson(p1, t1) ∧ stopPerson(p2, t1) ∧ existPerson(p2, t1) ∧ 

existPerson(p2, t2) ∧ closeDistancePP(p1, p2, t1) ∧  

stopPerson(p1, t2) ∧ stopPerson(p2, t2) ∧ closeDistancePP(p1, p2, t2) ∧ 

during(t1, t2) ∧ before(t1, t2) 
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CHAPTER 5 

 

CONCLUSION AND FUTURE WORKS 

 

 

 

In this thesis, a Surveillance Video Analysis System (SVAS) is proposed for 

the surveillance domain in which semantic rules and the definition of the event 

models can be learned or defined by the user for automatic detection and 

inference of complex video events. Interval-Based Spatio-Temporal Model 

(IBSTM) is proposed for event modeling, which fills the semantic gap between 

humans and video computer systems. By this model, basic spatial, temporal 

and logical relations in the surveillance domain can be established. Unlike 

current solutions, generated models are user understandable and manageable 

since IBSTM is based on first order logic. This modeling technique provides 

user to interfere generated event models in special conditions. In addition, 

IBSTM provides users to define their own models in case of unavailable 

training data. 

SVAS does not need any predefined thresholds for scene or event model 

compared to many studies by its learning abilities. SVAS decreases human 

intervention through its event model learning ability from training data to ease 

user operation and prevent user errors. Threshold Models are proposed for 

learning valid values for features and calculating similarity values in detection 

phases in order to reflect the spatio-temporal motion analysis. SVAS can learn 

actions and complex event models using a set of hybrid machine learning 

techniques including Threshold Models, Bayesian Networks, Bag of Actions, 

Highly Cohesive Intervals and Markov Logic Networks.  In addition, these 

powerful methods enable SVAS to handle uncertainty in order to be fault-



98 
 

tolerant in noisy conditions. Proposed and implemented algorithms generate 

probabilistic results to prevent discretization problems.  

SVAS is extensively evaluated in different ways using many video data from 

various datasets such as CAVIAR, BEHAVE, CANTATA and synthetic 

datasets. Our evaluations show that the proposed approach improves the event 

recognition performance and precision as compared to the current state-of-the-

art approaches in many action and complex event types in different event 

datasets. Moreover, performance evaluations confirm that SVAS has high 

performance ability due to its interval-based hierarchical manner and its high 

performance algorithms.  

SVAS is based on the intervals instead of time points and different suitable 

machine learning techniques are used at different phases of the event detection.  

In addition, Threshold Models and BoA Model provide great efficiency in both 

action and complex event detection. These methods eliminate performance 

problems of MLN method in video domain. In detection phases, Threshold 

Models and BoA Models eliminate huge irrelevant intervals. Thus, the number 

of MLN predicates considerably decreases, and minimum MLN graph is 

created. It is observed that the performance of video event detection is highly 

increased by the proposed methods due to the interval-based hierarchical 

detection capability. 

SVAS is flexible and extendable so that new features, action types, event types 

or actor types can be added. Any feature, which comes from the low level, can 

be used in SVAS. If low-level processes provide attributes such as movements 

of arm, leg or head, color or shape, these attributes can also be considered in 

event detection in SVAS. 

To sum up, literature survey reveals that SVAS is a unique system, which 

possesses all key features of video domain needs stated above as a whole. On 

the one hand it is unique because it decreases human intervention through its 

learning capabilities, on the other hand it also enables human intervention 
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when necessary through its manageable event model method. The system 

achieves all of them in the most efficient way through its machine learning 

methods. 

In future work, we plan to test SVAS on more extensive data sets. Moreover, 

we intend to adapt the system to handle moving camera and multi camera 

datasets and to include other complex event types relevant for surveillance 

domain. In addition, the proposed Threshold Model can be used in other 

domains since it is independent of feature types. Also, the proposed methods 

can be used for automatic indexing or video browsing. A future direction of 

research is to focus on extending usage of Threshold Model in different 

domains. 

Highly cohesive interval method can be used in the correction of training data 

boundaries, which is given by the user during training phase. The 

inconsistencies in the training boundaries can be eliminated. As another future 

work, consistency of training data and automatic training data correction can be 

implemented. In addition, the calibration and noise elimination method used in 

the current study should be enhanced for complex scenes. 

Current prediction capability of SVAS is limited and evaluation of this ability 

is not implemented yet. Another future direction of research is increasing 

prediction capability of SVAS with more suitable datasets and comparing with 

other studies in this field. 

SVAS needs a more user-friendly interface. Generated event models can be 

defined or edited using text editors in current interface of SVAS. The 

development of a more user-friendly application interface is another future 

work. 

SVAS is currently a single threaded application and runs on a single CPU core. 

In the future, we have a plan to implement real-time surveillance applications. 

The proposed Threshold Model algorithms are kept simple in this study, to 
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make them suitable for GPU programming. Implementing the current action 

detection phase in GPU is another future work which may provide enhanced 

performance. 
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