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ABSTRACT

SEMANTIC VIDEO ANALYSIS FOR SURVEILLANCE SYSTEMS

Kardas, Karani
Ph.D., Department of Computer Engineering
Supervisor: Prof. Dr. Ahmet Gar

Co-Supervisor: Prof. Dr. Nihan Kesim Cicekli

January 2018, 11@ages

This thesis presents novel studies about semariécence of video events. In
this respect, a surveillance video analysis systatfied SVAS is introduced
for surveillance domain, in which semantic rulesl dhe definition of event
models can be learned or defined by the user ftonaatic detection and
inference of complex video events. In the scope&SWAS, an event model
method named Interval-Based Spatio-Temporal MolB$TM) is proposed.
SVAS can learn action models and event models witlamy predefined
threshold values and generates human readable andgeable IBSTM event
models. The thesis proposes hybrid machine leamigtipods. A set of feature
models named Threshold Model, which reflects thatisgemporal motion
analysis of an event, is kept as the first modeal.the second model, Bag of
Actions (BoA) model is used in order to reduce #dearch space in the
detection phase. Markov Logic Network (MLN) modethich provides
understandable and manageable logic predicatasstos, is kept as the third

model. SVAS has high performance event detectigpaluidity due to its



interval-based hierarchical approach. It determimdsted candidate intervals
for each main model of IBSTM and uses the relatathmmodel when needed
rather than using all models as a whole. The mairiribution of this study is
to fill the semantic gap between humans and videoputer systems such that,
on one hand it decreases human intervention thraadkarning capabilities,
but on the other hand it also enables human int¢ive when necessary
through its manageable event model method. The stadieves all of them in
the most efficient way through its machine learningthods. The proposed
system is applied to different event datasets frofVIAR, BEHAVE,
CANTATA and our synthetic datasets. The experimemtsults show that our
approach improves the event recognition performanod precision as

compared to the current state-of-the-art approaches

Keywords: Event Detection, Markov Logic Networksjd®o Surveillance,

Event Model Learning, Event Inference
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oz

GOZETIM SISTEMLERT iCIN ANLAMSAL V IDEO ANAL izi

Kardas, Karani
Doktora, Bilgisayar Muhendigi Boluma
Tez Yoneticisi: Prof. Dr. Ahmet Gar

Ortak Tez Yoneticisi: Prof. Dr. Nihan Kesim Cicekli

Ocak 2018, 118 Sayfa

Bu tez video olaylarinin anlamsal ¢ikarimi konusugelitirilmis calsmalari
sunar. Bu bglamda, gdzetim alaninda kargna video olaylarinin otomatik
algilanmasi ve cikarilmasi igin anlamsal kurallaue olay modellerinin
Ogrenilebilecgi veya kullanici tarafindan tanimlanabilgceir gozetim video
analizi sistemini (SVAS) tanitmaktadir. SVAS kapsada, Interval-Based
Spatio-Temporal Model (IBSTM) (Aralik Tabanh Uzamhsve Zamansal
Model) adli bir olay modeli yontemi 6nerilgtir. SVAS, 6nceden tanimlangi
esik degerleri olmadan eylem modellerini ve olay modelledgdrenebilir ve
anlailabilir ve yonetilebilir IBSTM olay modelleri Grgt Melez makine
O0grenme yontemleri 6nerilir ve kullanihir. Bir olaymazamsal ve zamansal
hareket analizini yansitan Threshold ModekiKEModeli) isimli bir kiime
ozellik modeli, ilk model olarak tutulurikinci model olarak, tanima
asamasindaki arama kimesini azaltmak icin Bag of dkti (BoA) (Eylem
Cantasi) modeli kullanilrgtir. Kullanicilar icin anlalabilir ve yonetilebilir

mantik yiklemleri sglayan Markov Logic Network (MLN) (Markov

Vii



Mantiksal A3) modeli, Ug¢unci model olarak tutulmaktadir. SVAShip
oldugu aralik tabanh hiyeraik yapisi nedeniyle yiksek performansh olay
tanima kabiliyetine sahiptir. IBSTM' in her ana mebdicin ilgili aday
araliklarini belirler ve tim modelleri bir butinachk kullanmak yerine ihtiyag
duyuldwzunda ilgili ana modeli kullanir. Bu ¢camanin ana katkisi, bir yandan
ogrenme Kkabiliyeti ile insan muidahalesini azaltmakged yandan da
yonetilebilir olay modeli yontemi yoluyla gerekimde insan mudahalesini
mumkan kilacaksekilde, insanlar ve video bilgisayar sistemleri samdaki
anlamsal bgugu doldurmaktir. Catma, sahip oldgu makine @renme
yontemleri aracifilyla tim bunlari en verimiekilde baarmaktadir. Onerilen
sistem CAVIAR, BEHAVE, CANTATA ve sentetik veri kimerinden olgan
farkli olay veri kimelerine uygulangtir. Deneysel sonuglar yakianimizin,
gunimuz yaklgmlara kiyasla olay tanima performansini ve hagsasl

gelistirdigini gostermektedir.

Anahtar Kelimeler: Olay Tanima, Markov Mantikglari, Video Gozetimi,

Olay Modeli Gsrenme, Olay Cikarimi
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Nowadays, surveillance camera systems play an tamorole in public

security. However, most of these systems are "Qmplage Recording
Systems" with the mere capability of recording tineages and "Visual

Analysis Systems" with limited detection and trackicapabilities. Today,
when an incident related with the public securitgwrs, pre-recorded videos
are reviewed by humans. This situation delays #spanse time of security
operations to the incident. Surveillance systenesrent used efficiently since

so many human interventions are needed and hetmeation is limited.

Considering the rapidly increasing number of cameitds necessary to detect
events automatically. However, that feature is beydhe capabilities of
currently available systems. Complex event detacamd recognition has
become a hot topic in recent years. There are wargtudies (e.g. [96], [7],
[97], [73], [76], [16], [25], [120], [122], [4] and67]) about this subject.
However, many of the applications are scene-depgraed consider certain
scenarios. Existing solutions are highly domaineffie and even event-
specific. In addition, some systems (e.qg. [5], [688], [62], [91] and [97]) are

so human-oriented that many human interventionseayeaired.

In general, event detection is a complex procesghwhequires two main
levels of processing. These levels can be congldesdow level and high level
processing. At low levels, objects and people aeteated and tracked

throughout the video frames and their spatio-tempaiations are calculated

1



with respect to their positions through time. Atghnilevels, using the
information obtained from low levels, events ardedted by using models,
which have been defined or learned apriori. At Hetrels, studies continue to
increase detection and recognition performancerelee various successful
studies taking low levels into consideration (€3], [127] and [27]) in which
especially actors for surveillance domain (sucletas bag and human) can be
detected and tracked successfully. In additionnesieleton motions can be
captured successfully in studies about game ingustich as KINECT /
XBOX. Although low level processing is not the maoncern of our study,
studies on low level processing will be briefly aissed in the related work

section of this thesis as well.

High level processing include video event detegtioference of events and
prediction of possible events. Finding semantiatiehs between actors and
detecting events are at least as important asetteetibn and tracking of actors.
At high levels, semantic relations are determingdding actor trajectories and
spatio-temporal relations. High levels can be abmrsid as a set of levels
according to the inference goal. At the first levigatures such as speed,
distance, and direction are extracted and thenviatdased actions (or sub-
events, simple events, primitive events) such as walk and stand can be
inferred. At a higher level of inference, complexests such as meet, left
object, fight can be extracted by using the inféraetions. At one step higher
level of inference, prediction of possible everas de extracted, which is an
important issue in public security for quick intménce or preventing

undesired situations.

At high levels, the method of event modeling isywanportant to fulfill the

requirements of video event inference. There has laeconsiderable amount
of work on the detection and recognition of videers and video event
modeling. Various event types are analyzed, congpamd categorized in
many different application domains. The literatigervey on video event



recognition (which is discussed in Section 2) révehat methods for event

modeling should possess some important features.

As the first feature, methods for event modelingudth deal with uncertainty in

order to be fault-tolerant [57]. Dealing with unieénty is important since the
information coming from the low levels is not alvgaperfect due to noise,
occlusions etc. Hence, the semantics should bactett in such a way that the
erroneous or missing information, caused by theeafentioned reasons, is

compensated at high level without leading to falgent detection.

Performance is another important feature. In sllareie systems, the size of
videos is continuously increasing. Learning procdess not require high
performance algorithms, but the performance isicatfitfor the inference
process. Inference processes should be almostimealfor quick interference

or to prevent undesired situations.

Nowadays, in most of the event recognition applces, event models are
defined by a domain expert. However, defining a eiddr an event is a
difficult process. The main reason is that an eveay have many scenarios.
Domain expert has to prepare all possible scenafidise event, which is not
feasible in many situations. All scenarios mustcbesidered to describe all

possible happenings of an event.

The structure of the scene that is recorded andepsed is another issue that
must be considered in event modeling. It is apgatteat automatic inference
of event models from data is essential for adafityalaind scalability of event
understanding systems. If the event model couldldagned and defined
automatically, it would be easier to deal with swgituations. As a result,
learning ability from training data is another imjamt feature of event model
methods. The advantages of automatic model learramgbe summarized as

follows:



* There is no need to define a strict model foeaent for all scenarios, scenes

or low level algorithms.

* All scenarios of the event can be consideredmaatally with the help of

the training data.

» Event model can be updated according to the nentescenarios easily and
quickly.

On the other hand, some current solutions are falighine-oriented, in which
machine learning techniques are used in order évgmt user intervention.
Most of these systems generate unreadable and ageable event models.
Event models are learned from training data to ideevent detection and
recognition. However, these systems need large amot training data.

Automated inference should be increased for it video surveillance, but
limited user intervention increases the qualityvifeo inference capability.
The ideal event model method should have robuseseptational capability
including semantic relations [57]. It should be satically meaningful for the
user and enable user intervention when needed.middel quality naturally

has a high influence on the detection and recagnjierformance.
1.2  Contributions of the Thesis

This thesis introduces a surveillance video anslysistem, shortly called
SVAS, which aims at solving the mentioned problesnsountered at high
levels. Outputs of low-level operations are consdeas inputs of the proposed
system. In SVAS, semantic rules and the definitbthe event models can be
learned or defined by the user for automatic dete@nd inference of complex
video events. The resulting framework makes evetgalion and recognition
flexible, while enabling domain and scene independéhe system decreases

human intervention but enables human interventibarnmneeded.

We propose a new interval-based hybrid event moughod called Interval-
Based Spatio-Temporal Model (IBSTM). IBSTM is battachine and human



understandable high-level event model, in whicHedént suitable machine

learning techniques are used at different phasdweadaévent inference.

SVAS generates the collection of human understdad&STM rules as the
event model in order to help the user intervenghm learned model when
needed. This kind of flexible framework also pr@sdusers to define new
event models and train them if there is no trairdatp. The necessity of large
training data reduces. IBSTM uses Markov Logic Nets (MLN) [82] to
generate user understandable models. MLN combimedléxibility of First
Order Logic (FOL) and the power of Markov Network lbandling uncertainty.
First Order Logic is easy to understand for endrgjsso it provides good
semantic information about complex events. HowewdiLN has some
performance deficiencies in video domain sinceogginot consider the nature
of videos. MLN considers time variables in the sawsy as other variables.
MLN tries to find the relation between all variafl& his behavior slows down
MLN particularly when dealing with huge amount cdta flow. To solve
MLN'’s performance problems, IBSTM extends MLN fod&o domain in a
hierarchical manner with the Bag of Actions (BoAhdathe proposed
Threshold Model methods.

The major contributions of this thesis can be sunzed as follows:

» SVAS is developed for surveillance domain. It ierseindependent and
can consider different scenarios for various evdnis possible to define
basic spatial, temporal and logical relations i@ slurveillance domain. In
addition, SVAS can be used in both calibrated amzhlibrated scenes.

* A new event model method named Interval-Based &amporal Model
(IBSTM) is proposed. SVAS can learn action modeld event models and
generate manageable IBSTM event models.

» Threshold Model is proposed to reflect the spagimgoral motion analysis
of an event.



Hybrid machine learning methods are used and egterdifferent suitable
machine learning techniques are used at differdrdsgs of the event
inference such as Bayesian Networks, Bag of Actemd Markov Logic
Networks.

There are not any predefined thresholds in SVASedhold Model can
also be used for learning thresholds.

SVAS can handle uncertainty in order to be fauksnt in noisy
conditions. Proposed algorithms generate probébiliesults to prevent
discretization problems.

SVAS decreases human intervention through its ewveaotlel learning
ability from training data to ease user operatiod prevent user errors.
IBSTM fills the semantic gap between humans andewidsystems.
Generated event models are readable for the UgAS &nables the user to
control and manage the event model. In additioa,uber can define new
event models.

SVAS has high performance event detection capglillie to its interval-
based hierarchical manner and its high performatgerithms. Threshold
Models and BoA Models provide great efficiency iottb action and
complex event detection by eliminating irrelevariervals.

Time variables in SVAS can be defined as point dasenterval based.
The proposed algorithms are tested in differentnevéatasets from
CAVIAR, BEHAVE and synthetic datasets. Results shtwat SVAS
improves the event recognition performance andigietcas compared to

the current state-of-the-art approaches.

The assumptions and limitations of this thesisstaited as follows:

(i)
(i)
(iii)

In this thesis, we focus on single camera videos.
We assume that videos are captured by stationangze.
We focus only on high-level video processing. Thepats of low-level

video processing are taken as inputs of the prapsgstem.



1.3  Organization of the Thesis

The thesis is organized as follows:

Chapter 2 presents the background information afated work on video
event detection and recognition. First, basic cptxesed in this dissertation
are defined. The video event detection conceptti®duced and event model

methods are discussed. Then, the relevant literagweviewed.

In Chapter 3, the proposed system (SVAS) is preseit detail. First, the
overall architecture of SVAS is introduced and &cépry Generation Module
is presented. Then, Event Model Learning is expldinn detail, which

includes Action Model Learning, Action Detectionda@omplex Event Model
Learning processes. In addition, Complex Event &&te and basic prediction
approaches of SVAS are discussed. Finally, impleatem details and sample
application are presented.

Experiments and their results are presented in €hdp There are six types of
evaluations in this chapter. Evaluations on puplavailable datasets named
CAVIAR, BEHAVE and CANTATA are discussed first. Bddition, synthetic

dataset is created and the system is evaluategasure the effect of missing

values. Performance and quality evaluations corcthd chapter.

Finally, in Chapter 5, a short summary of the stisdgiven and the dissertation

is concluded with possible future directions fasaarch.






CHAPTER 2

BACKGROUND AND RELATED WORK

In this chapter, general concepts on video evedtvaaeo event detection are
given, the background information for the main tspis covered and related
work is reviewed. The chapter is organized as ¥amtoSection 2.1 gives brief
information about Video Event Detection. Event modencept is discussed
and brief information about event model methodpresented. In this thesis,
we propose methods based on Markov Logic Networkeerefore, in this

chapter we also present the background informaton Markov Logic

Networks and its applications Alchemy [22] and TuffL06]. Finally, in

Section 2.2, related work on video event detecdiod recognition is presented
in two video processing levels. This section redemgcent studies that are
most relevant to this dissertation. In additiompriésents a comparison of the

related work with this study.
2.1  Video Event Detection

An event is something happening in a location givan time. Video event
detection is the process of searching videos fentsvand identifying occurred
events in videos. Video event detection is a waynderstand the semantic
content of the video. The main goal of video evdetection is to identify

spatio-temporal events in video and estimate stait and end times.

Events can be grouped into actions and complextevAnm action is a simple
event performed by a single actor. Actions canhmetsbody movements such
as “walking” and “running”. Complex events are etgewhich include more

than one actor who reside in a determined close#essrs can follow a path



named trajectory through the scene as a functioimad. Typically, complex
events can be considered as an interaction amama@ris) or between humans
and objects. “Meet”, “Fight” and “Left Object” came given as examples of

complex events.

An emerging trend in video event detection is teedean event automatically.
Detection of such kinds of events is a processnofirig events in video using
pre-learned or pre-defined event models. For tke&son automatic event
detection requires event models. The process ofiees on the comparison of

input video parts with event models.

Pre-defined event models are usually defined byifiee using static thresholds
or assumptions. This kind of models is generallycesgsful in some conditions.
However, this manual process is error-prone. Thopwance of automated
event detection increases if event models are éelafPre-learned event models
require learning ability. This process can be namedvent Model Learning
and provides an automatic generation of event nsoddl scenarios of events
can be considered automatically with the help o thaining data. This
automation facilitates user intervention and miaziesi errors created by the
user in the event model definition. Events arerledrby using features such as

actor trajectories and spatial relations betweemth

Learning ability requires machine learning techesuln learning process,
there are some basic operations. Feature seleeinoh feature extraction
operations are done first. In this phase, it is angnt to find the most
distinguishing features. Then according to the ciete machine learning
technique, the system learns the event model bygushining data. After

learning operation is completed, the event modedasly for inference.

Learning can be grouped as supervised learninguasdipervised learning
according to the training data. Supervised learnisgs labeled training data.
The desired output is labeled in the training dekasupervised learning uses

unlabeled training data. In this case, desired wuip unknown. Semi-

10



supervised learning can be considered as anotbapdn which both labeled

and unlabelled training data are combined in theniag process.

There are various machine learning techniques teraliure. Some brief
information for most important ones is given insttgection, since they are

mentioned in the rest of the thesis.
2.1.1 Support Vector Machines

Support Vector Machines (SVM) [40] are Kernel Metho[121]. In these
models no explicit event description exists. In SVifoup of supervised
learning algorithms is used for classification aedression. A SVM model
predicts whether a new example falls into one @aiegr the other in training
phase. The input data is mapped into a high dimeasifeature space (kernel
trick). In this high dimensional feature spaceinaar classifier is created. The
main goal is to find a hyper-plane which separatasses. SVM is generally
used for non-separable cases. In SVM, it is pasgibldistinguish two groups
by drawing a boundary between two groups in a pfanelassification. The
place where this border can be created is founthlulating the farthest place
to their members of each group. In order to acc@hpthis, two near and
parallel border lines are drawn on the two groups these boundary lines are
drawn closer together to produce a common bouridaey

2.1.2 Graphical Models

Graphical models are models such that relationsvdest variables are
established using graphs. In Graphical Models sémarformation is given
explicitly. Finite State Machines (FSM) [57] and dson Trees [96] are

typical examples of this category [57].

FSM is a deterministic model and shows flow ofetatSequential events are
suitable for FSM and they can be defined in FSMaaequence of states. In
Decision Trees, leaves, nodes and edges deterfaisees, queries and results,

respectively. Decision Trees become unsuccessfuh@sumber of classes
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increases and the number of training data decre@sesestimating is another

problem of Decision Trees.

The formalism of FSM and Decision Trees is well emstibod. However, they
are not probabilistic models. For this reason, theynot suitable for domains

where there is uncertainty.
2.1.3 Probabilistic Graphical Models

Probabilistic Graphical Models can handle uncetyaibby using joint
distribution of random variables. There are twomaference query types in
Probabilistic Graphical Models which are conditibpaobability query and
most probable assignment. Markov Network, Hiddenmkda Model (HMM),
Bayesian Inference, Bayesian Network (BN), DynarB@&yesian Network
(DBN), Conditional Random Fields, Neural Networldddeep Learning are in

this category.

Markov Network [82] is an undirected probabilisticaphical model. Nodes
represent random variables. Edges represent mdatizetween random
variables. Interactions are represented as polefutigctions. There is one
potential function for each clique by default. Twrease the performance a
log-linear model is used and exponentiated weiglsted of features is used
instead of potential functions. Log-linear modelused for making linear in
order to decrease the dimension of data. For dapleca weight and a feature
are assigned. Cyclic relations can be defined inrkibha Network.
Independence checking in Markov Networks is vegyeanly neighbor values

are considered.

HMM [70] is a kind of directed probabilistic graglai model where the aim is
to find hidden state variables. Since they can rmtdetemporal evolution of

the state, they are suitable for domains in whimhtiouous knowledge of past
and present states exists. Current observationsdependent only on the
current state and the current state is only depgngeon the previous state (the

Markov property). The parameters of the HMM modelynbe learned from
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the training data or specified manually. The numbérHMM states are
generally determined empirically. In the trainingage of HMM, the number
of states is specified. High order relations canbetmodeled in a HMM.
HMM has an efficient inference and parameter lewyrdlgorithm such as the
Baum-Welch algorithm which is based on maximum lii@d. Since the
complexity of exact algorithms is NP complete, apgmation algorithms are

used for complex models. There are various extassid HMMs.

BNs [29] are another kind of probabilistic graphioedels which represent a
set of random variables and their conditional iredefencies. They are directed
acyclic graphs which are based on Bayesian thedxemes represent random
variables, and arcs represent conditional indepwside between the variables.
For each random variable a Conditional Probabiistribution table is kept.
This structure of the BN shows the joint probapilitver all variables. BNs
have efficient inference and learning algorithmslsBdo not model temporal
relations. DBNs [70] are temporal extensions of B8gclic relations can be
defined in DBNs. However, DBNs cause high compatati complexity and

require large amounts of training data.

Conditional Random Fields [107] are undirected pitulistic graphical
models. They can be considered as the generahzatioHMM. Feature
selection is not limited to the current observadian Conditional Random
Fields. Unlike HMM, relations can be establishedws®n current state and
past or future states so combinations of past ahgd observations can be

considered. However, it demands a high paramedenileg time.

Neural Network [57] consists of related layers @maghsmission between these
layers. Layers consist of interconnected nodes.s@herodes contain an
activation function. Training phase of Neural Netkwads too slow. Deep
Learning [59] provides a powerful set of techniqdes learning in Neural
Networks and the results of Deep Learning methaoes ve@ry successful.

However, the generated model is not semanticadlgable.
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2.1.4 Semantic Models

Semantic models enable explicit specification omptex relations between
variables. Semantic models are easy to understandsers and reflect the
semantic content well. Petri Nets (PNs), Constr&atisfaction, Grammars,
Logic-based Approaches can be considered as Semafdidels [57].

Normally, semantic models cannot handle uncertaifity cope with the

uncertainty problems, some extensions to these Isbdee been developed.

PN [34] is a kind of graphical model that represenformation flow explicitly

using states (nodes), transitions (event) and ®k@vent instance) as a
bipartite graph. PNs can model semantic relationkiding temporal relations,
hierarchy and ordering. Semantic nature of PNs mid&arning PN models
infeasible. For this reason, PN models are uswhdtgrministic and specified

manually by the user.

Constraint Satisfaction [79] represents the model aa set of semantic
constraints. The main advantage of Constraint faatisn models is that the

semantic constraints can be formulated.

Grammar models [75] consist of three component, sesch are terminals,
non-terminals and production rules. Stochastic @Gmans (Probabilistic
Grammars) are an extension of Grammar models ichwpiobabilities can be
associated with production rules. For this reastrcl&stic Grammars can

handle uncertainties.

In logic-based approaches, models are specified @&t of logical rules.
Inference is done using logical inference techrsgusich as resolution or
abduction. These approaches cannot handle undgrt&ment calculus can
also be considered as logic-based model and idhb@sdirst-order predicate
logic, including temporal formalism, for represegtiand reasoning about
events and their effects [7 and 8]. If the numbérpredicates increases,

performance problems occur in logic-based appraache
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2.1.5 Bag of Words

Bag of Words is another model type in which datart{pularly text data) are
represented as a bag. Bag of Words ([13] and [1®@}hod is first developed
for document organization. Word frequencies in doents are considered in
this method. Topic models ([55] and [109]) are &mito bag of words
approach. Main disadvantage of these methods istlies remove all spatial
information. For this reason, these methods aresidered as non-temporal

methods in the literature [109].
2.1.6 Markov Logic Networks

Markov Logic Networks (MLNs) [82] are probabilistielational graphical
models. MLNs can be considered as both Probabildbdels and Semantic
Models. For this reason, MLNs have advantages ade¢hmodels. MLNs are
combination of First Order Logic (FOL) [99] and Ntar Network. FOL is a
powerful language and it can express complex, ioglak information well.

Constants, variables, functions and predicatesbeadefined in FOL. FOL is
very flexible and provides compact representatmmaf wide range of domain
knowledge. However FOL cannot handle uncertainty.thRis reason, it is not
suitable alone for real world which includes unaerty and probability. Rules
can be defined as a set of certain facts by usi®g.PMarkov Network

provides uncertainty handling so strict rules beesraofter. Combination of
FOL and Markov Network provides ability to modelhgolex information that
can include probability. MLNs can be used to mocd&hplex relations in a

more meaningful way and handle uncertainty.

MLNs are based on first-order logic. MLNs formulasclauses are attached
with weights. MLN formulas define the topology ofNarkov network. A
MLN is a template for Markov Networks, based onidad) descriptions.
Predicates in the template are generated as nodéisei network. In this
network, edges represent logical connectives imfas and vertices represent

possible groundings of formulas. A ground formutaa formula which is
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constructed by only ground terms and a ground fsrenterm which contains
no variables. All variables are replaced by cortstan ground terms. As a
result, a set of weighted first order formulas gemerated. Knowledgebase is

kept as FOL predicates. Weights attached to preiaietermine probability.

Theoretically, a MLNL can be considered as a set of pdirsv where:f is a
first-order logic formula andv is a real number which is the weight of the

formula. Probability in MLN is formulated as foll@awv

1
P() = 7 exp D whA®

k € ground formulas
(Z is partition function) (2.1)

fo(x) = {1, if kth formula is satisfied given x
2710, otherwise

There are three main operations in MLN: parametarning, inference and
structure learning. There are various efficient batalistic algorithms
developed for these operations. Inference operat®onthe process of
calculating the probability or most likely state qifiery atoms. For inference
operation, Most Probable Explanation (MPE) and Maxn A Posteriori
(MAP) based algorithms are used ([22] and [82]) xWalkSAT algorithm is
used in order to maximize the sum of weights of Hatisfied clauses.
MaxWalkSAT is a kind of weighted satisfiability ser algorithm [82].
However, this algorithm uses too many resourcesi@nperformance is low.
For this reason, lazy versions of MaxWalkSAT isdig22 and 82]. In addition,
approximate inference algorithms such as Markov ilChislonte Carlo
(MCMC) [35] is used in order to find marginal andnditional probabilities.
MCMC uses randomized sampling method. In order nerease MCMC

efficiency, MC-SAT algorithm was developed. MC-SA&#@n be considered as
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a combination of MCMC and the SampleSAT satisfigbisolver ([22] and
[82]).

MLN learns from training samples. In parameter néay, parameters or
weights are learned generatively or discriminagivelVeights are learned
generatively by maximizing the pseudo-likelihood tbe training data. To
overcome overestimation problem, discriminative ri@ay is used. The

formula of discriminative weight learning is follew

Maximize conditional likelihood of query (y) givaavidence (x):

0
a—vwlong(ylx) = n;(x,y) — E,[ni(x, y)]

n;(x,y) : Number of true groundings of clause i in data 2.2)

E,[n;(x,y)] : Expected no.true groundings according to model

In structure learning, features can be learned femempty or existing
knowledge base using integer linear programmindp \&itoitrary clauses and
MAP score. Weighted version of pseudo-likelihoodoaithm is used in this
process ([22] and [82]).

2.1.6.1 Alchemy

Alchemy is a software package developed for implaateon of MLN [22].

Alchemy provides a set of algorithms for structlegarning, weight learning,
and inference operations of MLN. Alchemy can parfoprobabilistic and
MAP/MPE inferences. MaxWalkSAT and LazySAT are MMIPE inference
algorithms in Alchemy. Lifted version of Belief Rragation algorithm
decreases running time and memory usage. In addifichemy has MC-
SAT, Gibbs Sampling, and Simulated Tempering atbors. Default inference
algorithm of Alchemy is MC-SAT algorithm as showm Algorithm 1. For

parameter learning, Alchemy’s discriminative weidgdrning algorithms are
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Voted Perceptron, Conjugate Gradient, and Newtdviethod [22]. For

structure learning, the default algorithm in Alcheim beam search.

Algorithm 1: MC-SAT Inference Algorithm in Alchemy

INPUT: clauses, weights, num samy
1: X” — Satisfy(harctlause}
2:for i« 1 tonum sampledo

3 M—~@ _

4: for all ¢ € clausessatisfied by £ do
5: With probability 1 -4 add ¢ to M
6: endfor

7:  Sample®~ Usatou)

8:end for

Typical usage of Alchemy is as follows: First, thedel is prepared. Model
preparation includes definition of the model as MiLNes by using First Order
Logic predicates. Then the weights of the rules determined by Alchemy
using training data. Finally, inference is donehwiteighted model by using

Alchemy.

“learnstruct”, “learnwts” and “infer” are basic comands of Alchemy.
“learnstruct”, and “learnwts” are learning commaradsd take input “.min”
files, output “.miIn” file and training “.db” filestinfer” command takes input
weighted “.min” files (either learned or manuallyeiyhted), output file for
result, evidence “.db “files and query predicatesiin” files contain MLN

rules with declarations and formulas. “.db” filemtain a set of ground atoms.

Sample usage of MLN weight leaning is as followsst- unweighted MLN
file is created in which predicate definitions ante definitions exist. Figure 1

shows a sample unweighted MLN file.
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/I Predicate definitions
*Friends(person, person)
Smokes(person)
Cancer(person)

/I Rule definitions
ISmokes(al) v Cancer(al)

IFriends(al,a2) v !Smokes(al) v Smokes(a2

IFriends(al,a2) v !Smokes(a2) v Smokes(all

Figure 1 Sample Unweighted MLN file (Unweighted.mlh

Then training file is prepared as shown in Figure 2

Friends(Ali, Ahmet)
Friends(Ali, Nur)
Friends(Ali, Elif)
Friends(Nur, Elif)
Friends(Zeynep, Mehmet)
IFriends(Zeynep, Elif)
Smokes(Ali)
Smokes(Nur)

Cancer(Nur)

Figure 2 Sample training file (Training.db)
Sample Alchemy command for weight learning operaisoas follows:
learnwts —d -i Unweighted.mIn —o Weighted.min -aiffing.db —ne Cancer

Result of this operation is prepared by discrimugatveight learning algorithm

and written into file named “Weighted.min”. Figueshows content of the file.
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/I Predicate definitions

*Friends(person, person)

Smokes(person)

Cancer(person)

/I Rule definitions

0.5 'Smokes(al) v Cancer(al)

0.4 'Friends(al,a2) v !Smokes(al) v Smokes(a
0.4 'Friends(al,a2) v !Smokes(a2) v Smokes(al

Figure 3 Content of Weighted.min file

N

)
)

=)

Inference is done using weighted .min file and exick .db files. The structure
of evidence file is similar to training files. Agait contains ground atoms that

show evidences. Sample evidence file is showngurei 4.

Friends(Serhat, Tuncay)
Friends(Serhat, Burak)
Friends(Serhat, Oktay)
Friends(Burak, Oktay)
Friends(Bora, Selma)
IFriends(Bora, Oktay)
Smokes(Serhat)
Smokes(Burak)

Figure 4 Sample evidence file (Evidence.db)

Sample Alchemy command for infer operation is dieves:
infer -ms -i Weighted.min -r inferResult.resule&dence.db -q Cancer

Result of this operation is prepared by MC-SAT alhon and written into file
named “inferResult.result”. Figure 5 shows cont#rthe file.
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0.75 Cancer(Burak)
0.65 Cancer(Serhat)
0.50 Cancer(Tuncay)
0.45 Cancer(Oktay)

Figure 5 Content of inferResult.result file

2.1.6.2 Tuffy

Tuffy [106] is another software tool developed iimplementation of MLN. It
is an open-source Markov Logic Network inferencgiea. Tuffy is developed
using Java programming language and uses PostgrE@DLPostgreSQL is a
powerful, open source object-relational databasstesy. Designers and
developers of Tuffy used Alchemy as a referencedesys For this reason,
Tuffy is very similar to Alchemy and command opsosre mostly compatible
with Alchemy. Tuffy is capable of Markov Random [Eigoartitioning, MAP
inference, Marginal inference and Weight learningerations. Number of
implemented algorithms of Tuffy is less than AlchgsnHowever, since Tuffy
is Java-based, it is platform independent. Defaftrence algorithm of Tuffy
is MAP inference algorithm as shown in AlgorithmCbmmands of Tuffy are
similar to Alchemy. The main difference is that guparameters are given in
query files. Discriminative Weight learning and MA#ference parameters of

Tuffy operations for the example given section@1l,.are as follows:

-learnwt -i Unweighted.min -e Training.db -quernydQuery.db -r Weighted.txt
-mcsatSamples 50 -dMaxIter 100

-i Weighted.miIn -e Evidence.db -queryFile QueryrdhferResult.result
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Algorithm 2: MAP Inference Algorithm in Tuffy

INPUT: A: initial active ground atoms, C: initial activeragind
clauses, MaxFlips, MaxTries

1: lowCost « +w, s* «— 0

2:for try = 1 to MaxTrieslo

3: s« arandom truth assignment to A

4: for flip = 1 to MaxFlipsdo

5 pick a randome C that’s violated
6: rand— random reak [0, 1]
7
8

if rand< 0.5then
: atora— random aton& ¢
9: else

10: atom- atom in ¢ with lowestl-cost
11: if atom is inactivehen
12: activate atom; expand A, C

13: flip atom irs; recompute the cost
14: if cost < lowCosthen
15: lowCost- cost,s* <« s
16: returrs*
OUTPUT: s*: a truth assignment to

2.2 Related Work

Research on complex event detection and recogri@snbeen an active topic
in both artificial intelligence and computer visianeas in recent years. There
are various studies at all levels of this topicttban be grouped in many
different categories such as: methods used, mafédichniques, considered
features, studied levels, targeted event typesdan@iin or input types. In this

section, studies are grouped in their prominentagtiaristics.

2.2.1 Event detection using low-level video procesg

Pixel-based operations can be considered as thestolgvel processing in
complex event recognition process. In these methpikel level primitives

such as color, texture and gradient are consid&ethe of the studies in the
literature try to solve event detection, actionedébon or anomaly detection

issues directly using pixel-based operations (@@8], [14] and [48]).
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In [103] abandoned and removed objects can be faisidg background
subtraction and foreground analysis. In [14] abangent of an object studied.

If unattended object is detected, then owner obtject is searched.
[92] uses gradient and histogram algorithms in otdeletect left objects.

[21] applies some low level algorithms such as ha®&\V/M on still images to
analyze actions such as “take a photo”, “play nmfusiiding bike”, “riding

horse”, “running” and “walking”.

The recognition of group activities is one of thet nesearch topics. In [53]
discriminative group context feature and gated mecu unit methods are
proposed and used in order to recognize group itiesiv In [10] a group
activity descriptor and recognition method basedtmjectory analysis are

proposed and used for group activity recognition.

There are some violence detection studies in tieeature. [123] proposes
semi-supervised dictionary learning approach farlerice detection. [111]
focuses on fighting event detection using intecacénergy force and low level
features without any object extraction or trackingthod. In [125], Gaussian
Model of Optical Flow and Orientation Histogram Ofptical Flow based

approach is developed for violence detection.

Anomaly Detection is another topic in low-level @@ event detection and
there are lots of studies about this subject (@13], [128], [90], [65], [48],
[118]). An anomaly can be considered as an obdervathich does not
conform to expected normal behavior. Anomaly dédects about detecting
those irregular behaviors. In anomaly detectiomaalel of expected behavior
is learned and anomalies are detected by finditignme that deviate from the
model. Traffic events (illegal U-turns) and evemts crowded people are
considered in anomaly detection. In addition, theme some trajectory based
anomaly detection studies in literature (e.g. [18]], [89] and [30]). In [61]

anomaly detection techniques are discussed in tma@e groups which are
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classification-based anomaly detection techniqgésjstical-based detection

techniques and clustering-based detection techsique

In all of these studies, there is no high-levekogdng or inference. Moreover,

user understandable event representation is netazred.

Some other studies try to generate reliable inpta &r higher levels. Subjects
of these studies contain background subtractionecbbdetection, object
tracking and object recognition (e.g. [38], [12[2101], [116], [117] and [27]).
In addition, some studies about human recogniteg. ([42] and [102]) can
also be considered in these groups. In gaming tnduapplications such as
KINECT has successful tracking capabilities. In][2&tion detection is done
via KINECT using 3D Histograms of Scene Flow andlsall Histograms of
Oriented Gradient methods.

There are some trajectory based video analysidestud literature such as
[49], [56], [63], [45], [47], [124], [110]. In thes studies, trajectory based

analysis is done with low level operations.

2.2.2 Event detection using high-level video procgiag

The studies at high levels can be grouped accordirige methods they use.
Rule-based methods, such as [5], [68] and [83] akhandle uncertainty since
they are not probabilistic. [5] uses Jess-Rule BEmgin order to resolve

conflicts and find optimal solution. However, [68loposes event morpheme.
In this study, there are three levels in the ewdiection, which are object
detection, simple event detection and semantic esascription detection.

[119] extends rule-based system in fuzzy-based pramtules, which describe
events, are given by the domain expert directlytHese studies, there are

predefined thresholds.

In event recognition, probabilistic models are pftesed in many applications.
Methods such as Neural Network, Bayesian Infergiecg. [62]), Bayesian
Network (BN), Dynamic Bayesian Networks (DBN) (e[86], [91], [93] and
[104]), Hidden Markov Model (HMM) (e.g. [74], [69]71], [70], [43] and
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[20]), Conditional Random Fields (CRF) (e.g. [10&hd [112]) can be
considered in this group. These methods need tiaidata and events are
represented with probabilistic models. Approximatiechniques are usually
used to perform learning and inference. Event neitiog is usually performed
by using maximum likelihood estimation given obsgion sequences.
Although these probabilistic approaches can handtertainty, they have the
disadvantage that the number of actors and stazemot be changed
dynamically in the model. They are not flexiblegdadrence not suitable for the
video surveillance applications, where the numideaators always varies in
time. They are not suitable for complex models hegit In addition, these
models are generative. When the number of the festincreases, their
performance degrades comparing with the clasdii@sed approaches [96].
They also cannot model temporal constraints wigltesthey are based on time
points instead of time intervals. In addition, themodels have limited
representation capabilities and so they are noastoally meaningful because
of their complexity. They require large trainingtsséo learn structure that a

human cannot easily describe.

There are also video event recognition studies lwhise other graphical
models such as Finite State Machine (FSM) (e.gaf8] [64]) and Decision
Trees (e.g. [96]). FSM is a deterministic model g@ndvide computationally
efficient solutions. On the other hand, FSM canhave hidden states and
cannot handle uncertainty because of the sequeficstates are fully

observable.

Some studies in the literature use semantic evexdets. Petri nets (PNs) (e.g
[34] and [58]), grammar models, constraint satiséec (e.g. [79], [31] and
[1]), and logic-based approaches can be considertils group. [34] proposes

Parking-Lot application using PNs. Nice graphiegiresentation is used.

Semantic event models capture the structure oktemt successfully. These
models are usually fully specified using domain\klemige and are not usually

learned from the training data. Because of theghiievel nature, they are
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often manually specified by a domain expert. Theselels are deterministic
and the reasoning under uncertainty is not feagjgteerally. Since they are not

probabilistic by default, they are sensitive to {mwel failures.

Stochastic grammars (e.g. [75], [87] and [88]) ¢iume a kind of grammar
model which can be considered as probabilistic fsodEhey can give a
probability score to a number of legal parses. Téwsension provides a
mechanism to deal with the uncertainty. In [75pcBiastic Context Sensitive
Grammar is used as And-Or Graph to represent ewntgelations between
events for office events. In addition, event intdapion concept is mentioned
in order to solve occlusion problems. [87] defigesup activities as a formal
representation using context-free grammar. Howd®@&j,defines probabilistic

representation of group activities using probapflistribution.

Constraint satisfaction models represent eventsset of semantic constraints
and recognition problems as constraint satisfacfithe main advantage of this
approach is that the constraints can be formulatadantically. So, domain
expert can model composite events with complex teaiponstraints. There
are also some studies (e.g. [84], [85] and [86&]) thy to compose probabilistic
constraint satisfaction to add an uncertainty hagdlmechanism. [85]
computes the Gaussian probability density functasreach feature in order to
handle uncertainty. Rules are weighted manually{8#} and [86] a complex
event recognition approach with probabilistic remasg is proposed and event
description language is improved. For each subteudility is assigned by
human expert manually.

Logic-based models have well-defined understandstbleture. In this type of
approaches (e.g. [23] and [95]), knowledge about\aant domain is specified
easily by the domain expert as a set of logic rulpsedicates). Event
recognition is done using logical inference techei& such as resolution.
However, these techniques are not tractable inrgémenen the number of
predicates is too many. In addition, logic-basegrapches cannot handle

uncertainty. Logic provides methods to be semalhficaeaningful for user.
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However, any false detection or miss may lead toreng event detection
situation since those methods cannot handle unertd here are also some
studies which can handle uncertainty [44]. In thetedies, probability is
integrated to handle noisy conditions. Some authals® proposed new
combined models in the literature. Markov Logic Wetk (MLN) [82] can be
considered as the most important one. MLN combthesadvantage of logic
with Markov Network and used in event detectiomiany applications such as
([72], [2105], [15], [37], [50], [52] and [41] since joins uncertainty handling
and logical expressiveness properties. This mettardlles uncertainties in a
flexible manner where the number of states andsiei@ allowed to change in
time. Furthermore, relations can be representedl rimbust way. However, in
MLN models, performance decreases if the numberlogic predicates
increases. Particularly in surveillance video domain which there is
continuous data flow, there are so many predicétegddition, MLN has poor
temporal reasoning capabilities. For time variabledations are queried
between one another which are meaningless for ateckltime variables. In
Dynamic Markov Logic Network (DMLN); time point bad extension is
added but there are no rules for computing thevatse. Since MLN rules are
semantically understandable, there are also studieshich ontologies are
tried to be combined for different domains ([381] and [6]).

Like the other logic-based approaches, Event Cadcdbes not consider the
problems of noise or missing observations that gdwexist in real world
applications. [7], [98], [8] and [97] can be coresied as important studies

using event calculus in event recognition.

Topic models or bag of words approaches are nopdesh methods in the
literature (e.g. [13, 55, 12]). These approaches mainly proposed for
document categorization. In the visual domain,raage or a frame of a video
can be represented by a bag of features. For eranmp[55] each primitive
event is kept as a topic and each activity is lkepibag of words to understand

the scene in traffic events. The main reason fersticcess of these approaches
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is that they can cope with many object types siamdbusly. In these
approaches, temporal ordering of observed actiomoi necessary, and they
do not need explicit tracking or event detectionadidition, they do not require
many training data. However, their main disadvaatag that temporal
relations, which are very important in many compkvent types, are not

considered in these models.

For performance reasons, interval-based approaateslso studied in the
literature. For instance, [126], [39] and [17] dahe studies in which event
recognition processes are extended in an inteasédd manner, along with
MLN as in [100] and [66].

Nowadays, methods that use Deep Learning becomeaisiagly popular (e.qg.
[19], [46], [114], [32] and [94]). Methods based @eep Learning have
achieved promising performance in image classifioaand action recognition
tasks and are generally used for anomaly detecfi®]. uses deep learning
methods to extract discriminative features fromewddata in anomaly
detection. [46] presents video event detection iegippn based on a
regularized multi-modality deep learning method.e Troposed application
can encode the relationships between the visualaaib modalities. [114]
proposes unsupervised deep learning framework farmaly detection in
complex scenes. The proposed method utilizes deemhnetworks in which
feature representations can be learned. [32] preserdeep Convolutional
Neural Networks infrastructure which can detectgeéned video events. [94]

uses Discriminative Deep Belief Neural Network nder to detect activities.

As stated before, semantically understandable ewedel is given directly by
a user in most of the cases. There are limitedieduch which a user
understandable model is tried to be generated fraiming data (e.g. [51], [24]
and [73]).

Some studies are worth discussing in detail becaliee similarities with the

proposed method in this study. These similaritiee be grouped into the
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categories such as the methods and modeling tadwmigsed, the features

considered and test data.

In [80], Bayesian classifier method is used. [7@inpares many methods such
as Hidden Markov Model, J.48 tree, Bayesian cless#nd Neuro-Fuzzy. In
both of the studies, CAVIAR Dataset is used andetlage not any interests for

user manageable model. Their feature sets areasitoiburs.

In [62], events are recognized in three levels gidayesian Inference after
trajectory smoothing is done using median filtevels are represented as
hypotheses, related cues are represented as estdenbey use Pets2006
Dataset. In [91], Bayesian Inference is used teaetleave object”, “get
object”, “use object”, “walking” and “handup” by phoiting different cues like
skin detection, trajectory analysis, people likedd and group likelihood. In
both of these studies, there is no event modehiegr Instead, user given

predefined models and thresholds are used.

In [96], classifier-based approach is used for gacong high-level events in
CAVIAR Dataset. Space Time Volumes are proposeddéscribing motions
and shapes of objects. These features are clustehestered features can be
considered as primitive events. After clusteringrapion, classification is done
using decision trees in order to create event nsod&heeting”, “pocket

picking”, “fighting”, “leaving bag”, “forbidden zoe" are considered events.

Created event models are not understandable adsmaefaed using MLN.

In [85] and [86], probabilistic extensions are pyepd to handle the uncertainty
for Constraint Satisfaction Models in health cagestem, airport activity
monitoring and simple activities such as “persdting” or “in living room”.
There is no event learning process. Event modptaslefined and similar as
logical rules. There is no weight learning openatior rules, as event model

weights are given manually.

In [7], event calculus is used. Event calculus cepresent interval-based

relations well but cannot handle uncertainty. CARIAataset is used for
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detecting “fighting” and “leaving an object” eveniBhere is no simple event
detection so events such as “walking” and “inaétiveust be given to the
system. In [98], they extend the previous studyritggrating MLNs to Event
Calculus (EC). EC predicates are converted to MuMg. In this conversion
process, time intervals are lost because they eléifime point based predicates
in MLN. In both of these studies, there is no evaaidel learning capability.
Even weights of MLN rules are given by manually.YOfmeet” event is
experimented. In [97], Prob-EC is proposed which mombination of EC and
ProbLog. ProbLog is a probabilistic extension oé tlogic programming
language Prolog. Prob-EC can deal with uncertaikiywever, there is no
learning mechanism. It has predefined thresholdséme attributes such as
closeness. In addition, there is no clear intebasded inference mechanism.

Evaluation is done using CAVIAR Dataset.

In [73], meeting detection is studied in which pkeojpajectories are converted
into semantic terms. The model is learned by empipya soft-computing
clustering algorithm that combines trajectory imfation and motion semantic
terms. However, learned model is not weighted tleahich is important for
handling uncertainty. In addition, no time inter@sed approach is used.

Evaluation is done using CAVIAR Dataset.

[105] is a MLN study to probabilistically infer agties in a parking lot.
Domain knowledge is defined as MLN rules withowdrhgng. In [15], events
that may occur in an office environment are recpghiby using DMLN. Only
close up view events such as writing, reading,ngaéire considered. In [37],
complex events are inferred from multimodal datagi$1LNs for surveillance
domain. In these three studies, rules are defisetihee points instead of time
intervals. In addition, there is no event modelrié@zg capability and user

manageable event model definition.

In [100], MLNs are used in an interval-based marfoercooking plan event
such as “make tea” and “make coffee”. Low-Level geare detected using

KINECT. MLN is used for representing complex evewithout any learning.
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In [66], Allen’s Interval Logic [3] is combined wit MLNs for basketball

domain. In both of these studies, time interval lbardefined but, these studies
do not have an event model learning capability anger manageable event
model definition. In addition, there is not anyeintal based inference. Rules

and weights are given manually by domain expert.

In [126], a new model is proposed which is a coratom of Bayesian

Network and Interval Algebra. They propose paramiet&@ning and structure
learning algorithms to model events. The proposedehis a kind of directed

acyclic graph. Thus, the model is converted intyeB&an Network so that
Bayesian Network algorithms can be used. Basketrall American football

domains are used for experiments. However, evemefadhat are learned by
the system are not user manageable since modet®auoser readable. In [17],
Probabilistic Event Logic (PEL) is presented, whitdes weighted event-logic
formulas to represent probabilistic constraints agmevents. However, the
low-level uncertainty is not handled. In additiotiney consider only the
recognition of primitive events of basketball garsech as shooting and
dribbling.

In [24], Inductive Logic Programming based eventdelolearning is used.
They use MLNs for event models and can define vialdbased predicates.
Experiments are done for only events in airport dmmsuch as “aircraft
arrival”, “positioning” and “departure”. This mettlois not suitable for
domains where there is no tree like object typeanady because of great
increase in search space. [13] uses the bag eftegiapproach in PETS 2006
Dataset. Simple events are found using DBN and temevents are found
using bag of activities. However, it is not suiwalbbr domains in which time

relations between simple events are important.

Literature survey about methods for detection, gadmn of video events, and
video event modeling (e.g. [57], [11], [54], [10&hd [2]) reveal that an ideal
event model should consider spatial, temporal amical relationships and

should capture high-level semantics such as lomg-temporal dependence.
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The ideal event model should have a robust reptatsemal capability
including semantic relations. It should be semaifittaneaningful for the user,
it should also have learning ability from the tiaghdata to ease user operation
and prevent user errors. In addition, an ideal tvandel should handle

uncertainties to be fault-tolerant.

Another important property the ideal event modebwti have is that its
recognition algorithms should have high performanéecording to the

literature, there is no event model method whiabvioles all of these features
as a whole. Moreover, there is no uncertainty hameivent model method, in
which models can be learned or can be defined asmanageable rules. In
this study, IBSTM is developed for SVAS in order poovide all these

important model properties and SVAS is designedanasefficient video

analysis system for surveillance domain by congidethe aforementioned
video domain needs.
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CHAPTER 3

SVAS: SURVEILLANCE VIDEO ANALYSIS SYSTEM

In this chapter, SVAS is presented in detail. Arerview of the proposed
system and the main processes are discussed. Jaization of the chapter is
as follows: First, the overall architecture of SVASntroduced in Section 3.1.
In Section 3.2, Trajectory Generation Module issprged. In Section 3.3,
Event Model Learning is explained in detail. Insttdection, Action Model
Learning, Action Detection and Complex Event Modearning are presented
in sections 3.3.1, 3.3.2 and 3.3.3, respectivety.atdition, Section 3.3.3
includes definition and properties of Interval-Basgpatio-Temporal Model
(IBSTM). Complex Event Detection is discussed ictia 3.4. In Section 3.5,
simple approaches of SVAS for prediction are diseds Finally,

implementation details of SVAS and sample applcatusing SVAS are

presented in Section 3.6.
3.1 The Overall Architecture Of The System

In SVAS, there are five main modules, which arejdatry Generation,
Action Model Learning, Action Detection, Complex éfd Model Learning
and Complex Event Detection. These main modulesuaesl in two main
SVAS processes, which are event model learningu(Eigé) and event

detection (Figure 7).

In event model learning (Figure 6), actor trajegtgeneration is the first
operation using Trajectory Generation Module. Totgey Generation Module
parses and prepares video data for processing.t Bvedel learning includes

two scenarios, which are action model learning aothplex event model
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learning. Action model learning is done using labeiraining data for specific
actions in Action Model Learning Module. Action MeldLearning Module
generates action models using the training datsetAof feature models named
Threshold Models (TH Models) are kept with a BagasNetwork as action

models.
Frame - Label - Object Type -X - ¥
1 Human 150170
Human 50 130
Object 158178
153172
Trajectory Generation
provides actor
| trajectories
labeled traning data labeled traning data
for actions for complex events
Action Model Learning Complex Event Model Learning
gets detected generates complex
gerllerates actions event models
action models

uses —

I—::: Em miﬁ: Z':] Action Detection | | comelex suen:ﬁnﬁe];]
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m TH MOdE|s
TH models SVAS User Interface for each feature
for each feature
+

BOA Model

+

MLN Model

Figure 6 Event Model Learning Process

In Figure 6, Complex event model learning is dosmgi labeled training data
for specific complex events in Complex Event Modadarning Module.
Complex Event Model Learning Module generates cem@vent models as
proposed IBSTM models using the training data antioAh Detection Module.
Generated complex event models are human undeadtiensio that a user can

interfere generated models via SVAS User Interfitedule if desired. In
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addition, the user can create his/her own eventetsoldy using the same
module.
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Figure 7 Event Detection Process

In Event Detection Process (Figure 7), actionsamdplex events are searched
in test videos by using learned models. In the §itsp, the video information is
parsed and actor trajectories are generated ushageciory Generation
Module. Complex event detection is performed foctheaomplex event type
that is defined in the system. Alarms are generfatethe detected events.
SVAS has a high performance event detection capabilie to its interval-
based hierarchical manner. In Figure 7, both Actimtection and Complex
Event Detection consider more than one model. S\d&&rmines related

candidate intervals for each main model and usesdlated main model when
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needed rather than using all models. Particulahy, proposed Threshold
Model method is first used in both detection tygmrause of its high-
performance capability. In the following sectiotiggse processes are discussed
in detail.

3.2 Trajectory Generation

Trajectory Generation generates actor trajectdrees input videos for further
processing. In this study, CAVIAR [115] and BEHAVES] datasets are used.
Since these datasets are in XML format, it is netessary to use low-level
operations such as background subtraction, obggetction, object recognition
or object tracking. However, low-level processiagiecessary for raw videos.
SVAS Trajectory Generation Module can be integrareth any low-level

study available. The overall trajectory generapoocess is shown in Figure 8:

Actor trajectories
. frame based
. time point based

Calibrator
\CAVIAR Data
Scene Info
Calibration Info,

|::> Trajectory Generation |:>

|
|
|
|
|
| (iditypelframe no/xly/width/height) (smoothing / noise cleaning)
|
|
|
|

type: personiobject/lbagicarl... Video Data
. calibrated (cm domain)
- uncalibrated (pixel domain)

Calibrator [ BEHAVEData
Scene Info
Calibration Info,

Figure 8 Trajectory Generation

In the first operation, text data input is parsed a list of tuples which are in
the form of <frame no, id no, coordinates (x, y)idth, height, type> is

obtained. These attributes represent the following:
« frame no: current frame number
* id no: label of the bounding box
* X: X coordinate of the center of the bounding box
* y: y coordinate of the center of the bounding box
* width: width of the bounding box

* height: height of the bounding box
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* type: type of the object in the bounding box (tey, object or person)

Since the parsing operation depends on video dadéferent parser is needed
for each video input type. When the input enteesdfsstem in this format, the
video data is prepared as actor trajectories farcgssing. Frame-based
trajectories of actors are calculated accordinghtoitems in the input data.
SVAS has cleaning and smoothing capabilities ir@idata. Noise elimination
and smoothing are carried out in this process. ipat is analyzed to
determine occlusion areas such as columns. Midsajectories resulting from
occlusion areas are assembled. Coordinates of @aelot and person in 15
consecutive frames are grouped and their arithnaat@rage is calculated to
eliminate noises and obtain smooth trajectoriess §touping operation can be
considered as the creation of time-based trajestoifime-based trajectories
per actor also provide greater efficiency for tbaesideration of some features.
The number of items that is considered in calcoietiis decreased by one
fifteenth. 15 consecutive frames are equivalemdarly 0.5 sec. The number
15 was selected for grouping frames since actioitirw0.5 seconds are
generally visible to the human eye. This indicdtest some features such as
speed and direction can be considered at 0.5 sectardals.

SVAS can generate the scene structure using tosiest Movable and

occlusion areas can be determined. However, ifesagtructure and context
information are given, a more accurate scene maglebbtained, which

increases the success of SVAS. If scene informatéonbe given as input by
the user, this information can be used by the Bmyste increase noise
elimination. Occlusion and exit areas can be ddtexdhand can be used to
update trajectories. Contextual information sucktatic features may improve
the event recognition performance. SVAS enablesutieg to define rules and
specific areas such as forbidden zones in the séedetailed scene structure
(e.g., roads, paths, and entry and exit points)hedp to solve many problems
and to minimize errors that come up from the loweleoperations. For

example if exit points are known; when an actot lo®ne of those points, it is
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inferred that he exits. Otherwise this situatiomses tracking problems. In
addition, detailed scene structure allows high llévierences. For example if
the bus stop area is known; for an actor in tha& dtris inferred that he waits

for a bus.

Trajectory Generation Module also has a basic ldn capability. The
camera, which captures the video input data, isaiweays necessarily located
at the center top of the scene. The location ofcmera causes perspective
problems in which the same size actors and the saowement changes are
not measured as the same in various parts of #r@esc€alibration process is
dependent on video data like a parsing operatioosthdf the video input
providers give calibration data additionally. Thdata contains information
about some positions in which pixel values andagis¢ values are given. The
number of calibration points increases accuracglleVrajectory Generation
Module can calculate the distance value of any |ppasition. As a result,
trajectories are calculated as if they are caledidtom a camera which is
located at the center top of the scene. The unisftion values is converted
to distance units such as centimeters. Higher sevkthe proposed system are
independent of units. The system can work with huittel and centimeter

units.

In CAVIAR Dataset, information of four points isvgin for calibration. Pixel
and distance values of these calibration pointgyasen as shown in Figure 9.
Trajectories of actors are changed from pixel dontai distance domain as
follows. For each pair of calibration points thetdince of a pixel is calculated
by proportion method. The distances are found intioceters for two
calibration points. The average of these valuesal@®ilated and determined as

the distance of the pixel position.
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Figure 9 Calibration points of CAVIAR Dataset

Trajectory visualization is another application ttimgovides visualization of
trajectories of actors if debugging is needed. éatary visualization can be
used for the evaluation of trajectories and deteimgi inconsistencies. In
Figure 10 illustrates a sample trajectory visudira

o meetiTwo people meet, walk together and splitimwslgtxmi calib.: false - o]
Visible Actors/ALL | ¥ Filter It (start,ene)] | set
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Figure 10 Sample Trajectory Visualization
3.3 Event Model Learning In SVAS

Event Model Learning is one of the most importardcpsses in SVAS, in
which models of Actions and Complex Events areredrusing the training

data. SVAS does not need any predefined thresHotdscene or event type
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contrary to many studies in the literature (e.¢][95], [68], [83], [62] and
[91]). It can learn required thresholds as Thredibbdels.

In this section, Event Model Learning is presentedetail (see Figure 6). The
learning capability of SVAS is a kind of supervidedrning in which labeled
training data is used for specific events and astitn Action Model Learning,
the input is the labeled training data. In Comptasent Model Learning, the
inputs are pre-learned action models and the ldliedéning data. Since closed
world assumption is used for both of the learnipgrations in SVAS, learning

only requires positive examples.
3.3.1 Action Model Learning

“Stand”, “Walk”, “Run” and “Instant Move” are exargs of actions that can
be learned and detected in the proposed systenseTioer are basic actions
which must be detected for targeted complex eviarttse surveillance domain.
However, note that proposed algorithms are mostlgpendent of action types

and users can train and define new action typéeilsystem.

It is not necessary to define semantically undadsdble models for actions
because of their simple structure. For this reasonSVAS, actions are
modeled as a combination of Threshold Models arBagesian Networks

Model, instead of using high-level predicates.

The Action Model Learning is done by the Action Mdbd.earning Module.
The training data for each action type is a sétiples in the form of video file,
an actor performing the action and action interVake Action Model Learning
Module takes this input and for each tuple it gates trajectories of the given
actor in each interval using the Trajectory GenenaModule. A movement
analysis is carried out for each trajectory. Itngortant to note that features
are prepared for both time-based trajectories aachd-based trajectories.
Time-based trajectories improve efficiency in tlavrtesting phase, which

helps eliminate irrelevant intervals.
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In Action Model Learner four key features, whichfleet the action, are

calculated for actor trajectories. These featuresaa follows:

1. Move Change It defines the possible position change values tfeo
position data. It also contains information aborgrage speed information.
The sum of all move change values (total travelsthdce) is divided by
interval length which gives the average speed.

2. Size Changelt defines the possible size change values far pwsition
data.

3. Average Distancelt defines possible position change values betwtbe
first and the last positions. The distance changée interval is divided by
the interval length which gives the average distanc

4. Direction Change It defines the possible direction change degralees

throughout the interval.

The direction of the actor is not actually knowmcs it is necessary to
recognize the front of an actor to detect the datimaction. If this information
comes from the low level, then the system can densithe relevant
information. Otherwise, the direction of the movemes determined and the
direction change degree is calculated as followst,Rhe angle between two
consecutive position data is calculated. Then, divection is determined
according to the angle which is illustrated in Fegull. The direction
information is prepared for slices of 45 degreesr Example, the angle
between 337.5 and 22.5° is considered as North. Then for each pair of
consecutive direction information, direction simitia degree, which is a value
between 0 and 1, is calculated. The direction aiityl degree is calculated for
two directions by considering their closeness. KFmtance, the similarity

degree for a North direction value is shown in FegL2.
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For each consecutive position in the interval, eeaion change value is
calculated by subtracting direction similarity degrfrom 1. Finally, averages
of these direction change values are calculatdtieaglirection change degree.

If low levels can provide new features, they carcdesidered too.

Threshold Models are proposed to reflect the moéinalysis of an event by
modeling basic trajectory features. A Threshold Blod created for each of
these four feature types and for each of trajedypgs (frame-based and time-
based), during the action learning process. Assaltref the action learning
process, eight Threshold Models are created fdn eation type according to
feature values in the training data. These stepssammarized in a flow

diagram in Figure 13.

c__ - 4

r—— — — — /"
Labeled training data . . | Movement Analysis |
: Trajectory Generation Actor trajectories
for an action type E‘l> . Y E:> E> I{calculating feature values) | E‘|> TH Models for
each feature type

Figure 13 Threshold Model (TH Model) Learning

A Threshold Model consists of a proportion model arfrequency table. After
all training data is analyzed, the proportion modetreated by considering
min3/4, min, average, max and max5/4 values onitngidata as in Figure 14.
The 1/4 buffers for min and max values are used@jifdng a chance for border
values in the detection phase. The proportion mgdekrates weight values
between 0 and 1 for the given test data accordirgjniilarity. The proportion

model is not Gaussian since this distribution carfiesymmetric around the
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average value. This model is simple and efficielowever, frequencies should
also be considered to prevent erroneous resultseX@mple, many movement
values are nearly O for Stand Action. The averagalso close to O, let's say
0.2. Assume that the maximum value is 9 in theningi data. In this case, the
proportion method produces the same result fomteevals (O - 0.2) and (0.2 -
9). 9 is less frequent and 0 is more frequent. dat with O or 9 gets the same
weight value which is 0.5. This behavior is not egg@ble for surveillance
domain. To solve this problem, frequencies of valirethe training data are
also kept in a table. Since data type is double laasl continuous values,
discretization is realized. Values are rounded riteger values to prevent
infinite rows in the frequency table. To avoid dl@ting small values, values
are multiplied by 10 before the round operationluga (multiplied by 10 and
then rounded) and their frequencies are kept ireguency table as shown in
Figure 15. It is also erroneous to take only thefiencies into consideration
for values which are less frequent but close toawerage. As a result, both
proportion model and frequency table are neededafoorrect and efficient

computation.

w Training data (td) | Value ((int)(td * 10)) | Frequency (f)
0.5 K] 1
32 32 1
41 11 2
4.15

L'

¥
min3/4 min avg max max 54 Value

Figure 14 Proportion Model Figure 15 Frequency Table Method

In this way, all training data can be consideredinduevaluation. For each
feature, the average, minimum and maximum valugentraining data and
their frequencies are considered as the ThreshaldeM In detection phase,
the Threshold Model can generate a weight valuevdsst O and 1 for a test
data according to the similarity between the tegadand the learned feature
model by using two weight calculators. One of theahculates the weight
using the proportion model while the other one dales the weight using the

frequency table. Weight calculation using the prtipa model is done for a
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test value given in a test interval by consideniagions in the model. As a
result, a value between 0 and 1 is generated dogotd the proportion in

regions. For example, if the test value is betwaeg. and max. values, the
weight value is calculated as follows:

Wyroportion = 1 — [(TestValue — avg)/(max — avg)] * 0.5 (3.1)

whereWroportion IS Weight value from the proportion method.

Weight calculation using the frequency table is eldar a given test value

which is in min.- max. interval. The weight valgedalculated as follows:

Wrrequency = 0.5 + (Valuefrequency/ 2 * TotalFrequencyCount) (3.2)

whereValugrequencyis FrequencyValueOfTestValue which is obtainednfrie
frequency table by casting 10 * test value to dagar andMrequencylS Weight
value from frequency method.

A value between 0.5 and 1 is obtained with thisnfaa. If the test data is not
in min.- max. interval, the result becomes 0 andilae between 0.5 and 1 is
created by considering the frequency. If the tadlier is not one of the training
data but it is in the min. - max. interval, itsduency becomes 0. To handle

this erroneous state, 2-unit close neighbor valeguency is considered.

When the weight of the test data for a featureeguired, both calculators are

used to calculate a weight value between 0 anddlrair maximum is chosen

as a result.
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WeightOfTestValue = Max(Wyroportion» Wrequency) (3.3)

After learning each Threshold Model for each feattype (currently 8), this
set of Threshold Models is kept as a part of th@maaenodel which shows raw
motion of an action. This set of feature modelsvigles quick elimination of
irrelevant intervals. Threshold Models provide grefficiency in the action
detection phase. In addition, they are used toimdite predefined threshold

values in the system.

An action model is not only a composition of ThraishModels but also
Bayesian Networks. After Threshold Models are ledrra Bayesian Network
is learned with the same features, for actionsneefiin the system. The

detailed action model is kept as a Bayesian Network

As a result; Action Model Learning Module generatgion models as
Threshold Models for each action type and a Bayeblatworks Model as

previously described in Figure 6.
3.3.2 Action Detection

Action Detection is used in both complex event ngag and complex event
detection operations. In action detection, actajettories and features are
generated for test data. Similarities between dedd and each pre-learned
action model are calculated. Similarity calculatisndone in two steps to

increase efficiency, as shown in Figure 16.
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Figure 16 Action Detection

In the first step, candidate event intervals aterdeined using the pre-learned
Threshold Model set and irrelevant intervals ateniebted. Video intervals

which are suitable for Threshold Models are pregya® candidate intervals. In
the second step, a detailed Bayesian Network asalysione for candidate
intervals using pre-learned Bayesian Networks ModRdeudocode of this

operation is shown below:

Algorithm 3: Action Detection

INPUT: V: part of the video
1: timepoints— TrajetoryGenerator creates using V
2: candidatelnts- {}
3:for all a€ action typesio
4. candidatelnts— findCandidatelntervalesing THModels and timepoints
5:end for
6: testinputForBN— generateBNTestData using candidatelnts
7: BNConsideration using testinputForBN and Bdddl
8: d— ParseBNResults
9: return d
OUTPUT: d: DetectedActions
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In detection phase, three seconds long video pattis0.5 second overlaps are
taken into consideration. First, time points ofeadparts are considered. For
these time points, Trajectory Generation Modulepares trajectories and
calculates feature values for feature types defindthe system [Pseudocode:
1]. For each action type defined in the systemdicite intervals are found
and collected in a list [Pseudocode: 2-5]. The sdcmain step of action
detection process is a detailed analysis of catalidéervals using pre-learned
Bayesian Network Model [Pseudocode: 6-7]. Bayeditwork evaluation
algorithm is used in this step. Bayesian Networkgrence, which has the
highest value for an interval, is chosen as thedaletl action for that interval.
The result of Bayesian Network evaluation algoritterparsed and detected
actions are determined [Pseudocode: 8-9].

Determining candidate intervals using “findCandidatervals” method
provides great efficiency. It is not necessaryun Bayesian Network analysis
for each time point. Pseudocode of this methotdasve below:
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Algorithm 4: findCandidatelntervals

INPUT: thresholdModelSet, timepoints

1: candidateTimePoints {}

2: for all tp € timepointsdo

3:  weightvalue— @

4:  featureCourt- @

5. for all f € feature typesio

6: thresholdModek— get related THModel frorthresholdModelSet using f
7 if thresholdModel is time-point featutteen

8: weightvalue += calculate similarity value usingetsinoldModel and tp
9: featureCount++

10: end if

11: end for

12: weightvalue— weightvalue / featureCount;

13: if weightvalue > 0.4hen

14: candidateTimePoints tp

15: end if

16:end for

17: intervals— generate all intervals using candidateTimePoints
18: candidatelntervais- {}

19:for all inter € intervalsdo

20: weightvalue— @

21: featureCount @

22: for all f € feature typeslo

23 thresholdModek— get related THModel from thresholdModelSet using f
24.  weightvalue += calculate similarity value usingesioldModel and inter
25: featureCount++

26: end for

27: weightvalue— weightvalue / featureCount;

28: if weightvalue > 0.4hen

29: candidatelntervads inter
30: endif
31:end for

32:candidatelntervals- prepare unions and intersections using intervals
33: return candidatelntervals
OUTPUT: candidatelntervals

The inputs of the method “findCandidatelntervalsé @me points and an
action Threshold Model; and its output is the detandidate intervals. This
operation is done in two steps. In the first stBgeudocode: 1-16]; weight
values are calculated for each time point, usirgtlparned action models of

each action type. Only time point related featuses considered since the
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calculation is done for the time point. For examf¥everage Distance” feature
is not considered because this feature is calailéde the interval. The
calculated values which are less than 0.4 are mditad. The remaining ones
are considered as candidate time points for det&i@mination. Consecutive
candidate time points are merged and intervalscerated [Pseudocode: 17].
This operation generates all sub-interval combameti to obtain highly
cohesive intervals. Highly cohesive interval methedused to find the best
matching intervals. The best intervals are intenmlwhich the weight values
of the detected event are maximum. For examplee they be an interval t4-
t14 with a probability of 0.5 for event A. Howevan, this interval, there may
be a highly cohesive sub-interval t7-t10 with akadoility of 0.7. To find these
highly cohesive intervals, candidate consecutiweetpoints are extracted to
generate all sub-interval combinations. For examfie the interval t1-t3;
intervals t1-t2, t1-t3 and t2-t3 are generated aofakd to the interval list. In the
second step of the method “findCandidatelntervgdR8eudocode: 18-31],
weight values for the generated intervals are tatled using pre-learned
action models of each action type. In this caskfedture types including
interval-based features are considered. A valuerdmt O and 1 is generated
for each feature type. The averages of the genkrateight values are
calculated. Intervals for which weight values areager than 0.4 are selected
as candidate intervals. Then, these candidatevaiteare processed further to
reduce intervals containing the same action tyPse{idocode: 32]. When one
interval contains the other, they can be updatetivin possible ways: if the
interval containing the other has higher detectrafue, then sub-interval is
eliminated from the result set. Otherwise, the ametd subinterval is kept and
the interval which contains the sub-interval, iplaeed with two separate
subintervals which do not intersect with the camedi sub-interval. These sub-
intervals are added to the result set. If no irkcontains the other but there is
an intersection between them then the interseaBodetermined and new
interval is added to the result set for this irget®n. The start and the end time

of other two intervals are updated. The weight @atd the new interval is
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determined by the maximum weight value of the twterisecting intervals. In
the last step of the algorithm, two consecutivervils with the same action
type are replaced with a new joined interval. Theight value of the new
interval is calculated according to the weightsnbérvals by considering their

lengths such that:

newWeight = (occuredEvent_i.weight * occuredEvemtérvallength + occuredEvent_j.weight *

occuredEvent_j.intervallength) / (occuredEventtéimallength + occuredEvent_j.intervallength)

As the result, highly cohesive intervals for dedelcactions are determined as
candidate intervals and returned for detailed BayeNletwork Model analysis
[Pseudocode: 33].

3.3.3 Complex Event Model Learning

In Complex Event Model Learning, complex event nisdare generated
automatically. In this process two techniques aop@sed. In the first method,
non-interval-based complex event model learningngisMarkov Logic
Networks is proposed. Second method is more robusthod in which
complex event models are generated as IBSTM maoaeish reflect spatio-
temporal relations and Threshold Models of evertoaling to the training
data. In SVAS, Complex Event Models can be leamigdout any predefined
values or thresholds. Complex events such as “Me#tight”, “Walk
Together”, “Run Together”, “Follow”, “Chase”, “Lefdbject”, “Taken Object”
are examples of events that the proposed systenieean and detect. The
proposed algorithms are independent of complextelypes and the user can

train and define new complex event types in théesys

In the following sections, first, non-interval-baseomplex event model
learning method is described, then the propertiesuo Interval-based Spatio-

Temporal Model are described; finally the modethéay process is presented.
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3.3.3.1 Learning Non-Interval-Based Complex Event Models Using Markov
Logic Networks

This method is non-interval-based event model iegrrmethod in which
Markov Logic Network is directly used. Detectediaws are considered as a
set of predicates. In this method, a set of preditges is introduced which
define basic spatio-temporal relations and intévast between objects and
people in the videos. A set of policies to chodse dppropriate predicates is
proposed for event learning. First, the video dataonverted to a set of
Markov Logic Network (MLN) predicates. Then, thgsaicies, together with
the discriminative weight learning algorithm, aied to infer the relevance of
the predicates to the events being queried. Thevaat spatio-temporal rules
are learned by using the discriminative weightrieag algorithm and proposed
methodology which contains a set of policies. Rinathe event model is

generated.

First, 1) attributes of objects, 2) attributes afople, 3) spatio-temporal
relations between objects, 4) spatio-temporal imiat between people, 5)
spatio-temporal relations between objects and pe@pk considered and
logical predicates are generated. In order to cefieese basic attributes and
relations of objects and people, predicates thatganerated in this level are

grouped as follows:

1. Time based predicates, which are related to onb/ object or one person:

existPersonexistObjectstopPersonstopObject

2. Time based predicates, which show relations éetwtwo objects, two
people and one object-one persocipseDistanceOQ closeDistancePP

closeDistancePO

3. Predicate that shows attributes of only one aibfg only one person:

smallObject
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4. Predicate that shows relations between two thjd¢wo people and one

object-one persormwnedBy
5. Predicates that show temporal relatiahging, before after.
Meanings of predicates are listed as follows:

— existPerson(person,timé)r existObject(object,timg) The person (or object)

(parameter 1) is visible at that time (parameter 2)

— stopPerson(person, timér stopObject(object,timg)x, y coordinates of the
person (or object) does not change according toptedetermined threshold

for that time (parameter 2).

- closedistancePO(person,object,timd)person and an object are assumed to
be close if the distance between them is less @haredetermined pixel value.

(closedistancePRndclosedistanceO@re similar taclosedistancePP

- smallObject(object)Object is small (height and width values of thxeat is
considered).

- ownedBy(person, object)Vhen an object appears, the nearest personto tha
object is considered to be the owner of that objNetarest value is again a

predetermined threshold.

- during(timel,time2) The interval betweetimel andtime2 is less than a

predetermined threshold value.
- before(timel,time2}imelis less thatime2
- after(timel,time2)time2is less thatimel

All predicates that are found in this level aretten in a file. This file is the
predicate form of the video.

According to a set of policies, the information rfrothe action detection

process is queried by using discriminative weiglarhing algorithm in order to
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find the predicates relevant to a target event. rEhevant predicates compose
the event model.

In order to learn the model automatically, a methogy that contains a set of
policies is proposed. After the user defines tingetaevent for which the model
will be found, the predicates are considered whethey are relevant to the

event or not.

Policy 1: The relation between the event and the predicatdsch have

common parameters with the event, is considered.

There is no need to consider irrelevant predicatbg;h contain any parameter
that is not in the event parameters. This will afsprove the performance. For
example, if the target event has an object paramgie such akvent(obj1,...)
then predicates that have object parameter type a@sié;(objl) is considered.
P.(personl)is not considered because personl is not in teategarameters.

We callP; as a candidate predicate for this example.

Policy 2: The event predicates contain two time parametere of them

shows that event does not occur at that time, theramne shows that event
occurs at that time. By this way, effects of praths are considered according
to these time values. For this reas&q,..,, t+1) iS an event which occurs

while time changes from to ty.1.

We can define all possible relations between pegdicand events as follows.
Let us takeP as a predicate which we try to determine whethisrrielevant to
the event or not (i.e. it affects the event or nbBt us takeE as the event

predicate. There are four possible logical relatibatween them.
The weights of the relations are as follow® (* states ‘implies’ operator):
A: Weight of (E = P) [or weight of (P 2 'E)]

B: Weight of (E - P) [or weight of (P 2 E)]
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C: Weight of (E = 'P ) [or weight of (P 2 'E)]
D: Weight of (E = !P ) [or weight of (P 2 E)]

The values of A, B, C and D are calculated by ugiisgriminative weight
learning method. The model is generated accordinghése values. In the

following, we introduce some more policies abowt ¥alues of A, B, C and D.

Policy 3: If the values of A and D are high then the preiéaaffectsk alone
(P is very important folE to occur).P = E is added as a new model of the

event.

Policy 4: If the value of A is high but the value of D isMdahenP affectsE
with some other predicateB {s important forE to occur).P is added by using
“AND” operator to the model of event in which impant predicates are
contained.

Policy 5: If the value of B and the value of C are high tHénaffectsE alone
('P is very important folE to occur).!P = E is added as a new model of the

event.

Policy 6: If the value of C is high, theli? affectsE with some other predicates
('P is important forE to occur).!P is added by using AND operator to the

model of the event in which important predicatesarntained.

The value of A and the value of C cannot be higjetber because they have
opposite meanings. If both values are low, it ferired that the predicat®)

does not have any affect for the event (i.e. itrslevant). B and D are not
considered alone to make a decision. For examplenly the value of D is

high, then it is inferred that the predicate iglievant because the value of A is
low (when event occurs, the predicate may not be)trThis means that there
are states such the butE. In addition, low value of D does not show that th
predicate is irrelevant. Perhaps the predicatelsvant but it can affect the

event only with other predicates. As a result iinferred that without high
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value of A or high value of C, there is no needaasider values of D or B. So

new policies can be added to improve performance:
Policy 7: If the value of A is low, there is no need to ddes D.
Policy 8: If the value of C is low, there is no need to ¢desB.

As a result; for each of the very important pretiisgboth values of A and D
are high or both values of C and B are high), newdeh such a® - E or IP
- Eis added. For all important predicates only oneleh@uch a®; AND B,
AND P; ... AND R, = Eis created.

Predicates can be time dependent or time indepén8iennew policies can be
added:

Policy 9: Time independent predicates are valid throughweit/ideo.

Policy 10: Time dependent predicates cannot affect the eveasrring at a

time earlier than the time of the predicate time.

This policy can improve performance. The effecthaf candidate predicates is
gueried by using discriminative weight learningalthm and by considering

all these 10 policies in order to find the compéeent model.

The weight learning in MLNs is performed by optimg a likelihood
function, which is a statistical measure of howlwle® probabilistic model fits
the training data. The weights are learned by wolignative estimation.
Discriminative learning attempts to optimize thenditional distribution of a
set of outputs, given a set of inputs. Trainingeasl are also given to as a
database of facts. The weights of A, B, C and Dcaresidered as their values
and according to the policies relevant predicatesdetermined and an event
model is generated. After the creation of the cempévent model, it is
proposed to the user. Since MLN is FOL based, #er gan understand the

proposed event model and edit it easily.
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All operations that are fulfilled in this procese @aummarized in Figure 17.

The predicate form of the videos is obtained fréwe &ction detection process.
By using the defined policies and predicate typgdshemy is queried and the

event model is generated.

3.3.3.2 Interval-Based Spatio-Temporal Model (IBSTM)

IBSTM is a hybrid event model which meets the resmments of an event
model that are described in Sections 1 and 2. IBSillMthe semantic gap
between humans and video systems by providing thiewing basic

properties.
1. Domain convenience;

IBSTM is suitable for surveillance domain. Varioesents with different
scenarios can be learned and defined in IBSTM. MS3an model and
recognize similar events such as “fight” and “meeliich have similar logical
predicates at high level, but their behavior istejdifferent at low level. In

addition, complex events can be learned in a raked manner. Properties of
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each actor can be learned independently, e.gigbt évent, an actor who hits
a person or an actor who is hit by a person cadifferentiated. IBSTM is
scale invariant; there is no limitation on eventradions. Spatio-temporal
relations can be defined in IBSTM. The basic terapoelations of Allen’s
Interval Logic [3] are defined in IBSTM. Tempora&lations defined in Allen’s

Interval Logic relations are shown in Table 1.

Time variables can be point or interval based. Bapatial relations are
defined in IBSTM. Distance relations, namely “clos#ar”, “disconnected”

and “touch”, topological relations such as “insidaid “outside”, and position
relations “near”, “in front of” and “left of” canédefined. In addition, IBSTM
can be used in both calibrated and uncalibratetdiescsince the proposed
learning and detection algorithms are independéninds such as pixel or

centimeter.

Table 1 Temporal relations defined in AL relations

Relation Name Representation using X and Y
Before XY
XXXXX
Overlaps
verap yyYyy
Meets X.Y
X
Equal
qual Y
X
Starts
yyYyy
X
During v
X
Finishes
yyyYyy
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2. Uncertainty handling:

The input of the IBSTM which comes from low levelan be noisy due to
many problems such as the quality of low-level Athms, structure and
complexity of the video scene, camera problemgmihation changes,
segmentation issues, occlusions, and tracking atelction problems. These
problems may affect the recognition accuracy. Utagaty can be modeled in
IBSTM to minimize errors in noisy conditions. Evenbdels are learned with
weights in the training phase. Inference and detecalgorithms generate
probabilistic results to prevent discretization lgems. The proposed
“Threshold Model” is also probabilistic which coseall training data for a
feature in an efficient way. IBSTM can manage pholistic input data that
comes from low levels. If low levels generate piaubstic data, these data can

be used in learning and detection phases.
3. Understandability

IBSTM is based on MLN. MLN model provides user urstiendable and
manageable logic predicates. Generated event madelsresented to the user
as FOL rules. For this reason, the generated compleent model is
semantically readable. This property enables the eser to control and
manage the event model. The user can interferentiiel if desired. Also if
training data is not available, the user can crba#er own event models by

using SVAS User Interface Module.
4. Performance

IBSTM model consists of three main models: Thredhdbdels, BoA model
and MLN model. MLN has performance deficiencies video domain.
However, Threshold Models and BoA Models provideagrefficiency in both
action and complex event detection by eliminatimglévant intervals. These
two models are integrated with MLN to increase pleeformance of MLN in

video domain. As a result, only candidate interaats queried by MLN.
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3.3.3.3 Complex Event Model Learning Process

In Complex Event Model Learning, the inputs are-lparned action models
and the training data for complex events (see Eigr Complex Event Model
Learning Module takes video data, actors, and vateras training data for
each complex event type. First, the video data respgred by using the
Trajectory Generation Module. Movement analysislase for each actor so
that role-based event model can be learned. Fanos, in a “chasing” event,
one actor can be learned as the chaser while tiee can be learned as the one

who is chased.

Threshold Models are prepared for each actor foh daature type used in
action models. Spatial relations like distance qeftess) and direction
similarity degree between actors are also learnedThreshold Models.
Distance Threshold Model defines the spatial modkich includes the
possible distance values between two actors. DarecSimilarity Degree
Threshold Model defines the possible direction ¢geadegree values between
two actors throughout the interval. Direction samily degree feature is
calculated in a way similar to the calculation directionChangeDegree” in
action learning. For each time point, direction ifnity between actors is

determined by considering angles as in Figure 12.

In the second step, Complex Event Model Learningli® determines actions
in training data using Action Detection Module (lig 6). Detected actions are
used in BoA models and MLN models. Pre-learned@edefined actions are
detected by using highly cohesive intervals methedexplained in previous
sections. For detected actions, BoA Model is ceeaB®A Model is a kind of

“Bag of Words” approach in which actions in theinmag data are found

without considering temporal information, in ordar increase detection

performance.

BoA model reduces the search space in detectiorseply eliminating

intervals which are not suitable. Only suitableeiaals are queried by MLN.
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BoA model is also kept based on the roles of aabbrihe event. In the last

step, MLN models are learned.

In MLN models, actor types, temporal relationsjatg, spatial relations and
properties can be defined. The predicates thatuaeel in MLN model are
described in Table 2.

Table 2 MLN Predicates

Description | MLN Predicate

Type actor, timeint

Actor Type | Person, Object, Car

Actions Stand(actor,timeint), Run(actor,timeint),
InstantMove(actor,timeint), Walk(actor,timeint)

Temporal | Before(timeint, timeint), Meets(timeint, timeint),

Relations | Overlaps(timeint, timeint), Starts(timeint, timgint
Equal(timeint, timeint), During(timeint, timeint),
Finishes(timeint, timeint)

Spatial Near(actor,actor,timeint), Far(actor,actor,timeint)

Relations | Inside(actor,actor,timeint), Front(actor,actor,dirnt),
Rear(actor,actor, timeint), Left(actor,actor,tintgin
Right(actor,actor,timeint), Top(actor,actor,timgjint
Bottom(actor,actor,timeint), Outside(actor,actordint),
Touch(actor,actor,timeint),
Disconnected(actor,actor,timeint),
DirectionSimilar(actor,actor,timeint)

Properties Small(actor), OwnedBy(actor,object)

Certain IComplexEvent(al,al,t),

rules Meet(al,a2,tl) => Meet(a2,al,tl),
Equal(tl, t2) => Equal(t2, t1)
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MLN model is not created for all combinations ofe@iicates. To increase
performance MLN predicates and rules are createdifidy related (highly

cohesive) intervals. By using this summarizationthod, the number of
predicates decreases considerably. All predicatesrales are weighted and
the MLN model is generated. These steps are surnethin a flow diagram in

Figure18.

e '

r——— — — ——7
Labeled training data . . |  MovementAnalysis |
E“ > | Trajectory Generation E: > Actor trajectories T > >
fora complex eventtype ! i |(calculating feature values) ! E::hfel:jtzlrzftzrlm

Action Detection
v ——
N | Generating |
Detected Actions IZ:> | BoAModel | |:> BoA Model
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.

actor types, temporal relations, actions, &
spatial relations and properties

[

Figure 18 Complex Event Model Learning

At the end of the complex event model learning ess¢ a complex event
model is generated for each complex event type.ofpiex event model
consists of 3 types of models: Threshold Model8o& Model and a MLN
model. Such a combined model has efficient infezermapabilities as
demonstrated in Section 4.

3.4 Complex Event Detection In SVAS

Complex Event Detection is a process of finding ptax events in a video
using pre-learned IBSTM event models. Figure 19shthe flow diagram of

the operation.
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Figure 19 Complex Event Detection

Pseudocode of this operation is shown below:

Algorithm 5: Complex Event Detection

INPUT: V: part of the video

1: timepoints— TrajetoryGenerator creates usin

N

3
4
5:
6:
p
8
9

. candidatelnts- {}
. predicates- {}
: for all cee complex event type®

THModels— from ce
candidatelnts— getCandidatelntervals using THModels and timepoint
actions— detectActions for candidatelnts
candidatelnts— interval elimination using actions and BoAModels
predicates— createMLNPredicates using actions for candidagelnt

10:end for

11: f— createMLNFactFile using predicates
12: MC-SAT using f and MLN Model

13: d— parseMLNResults

14: return d

OUTPUT: d: Detecte Event:
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When the video is queried for event detection, Mlteo data is parsed and
actor trajectories are generated using Trajectorgne@ation Module
[Pseudocode: 1]. First, candidate intervals areerddghed using Threshold
Models of IBSTM [Pseudocode: 5-6]. Trajectories analyzed for actors and
detailed motion analysis is performed using prerled Threshold Models of
an event. For each complex event type defined éensystem, similarity of
movement analysis is searched using Threshold Mookekvents. Inference
process is executed in a hierarchical manner teease performance. In this
analysis, SVAS starts with the most distinguishiegtures. Features are
considered according to their effect. For examiplesideo event which occurs
between two actors, spatial features are considestdiue to their high-level
importance because spatio-temporal features betveegors are the most
discriminative features in complex events. SVASdpet try to find an event
for those actors who are not in an acceptable cixse Acceptable closeness
of an event is learned during learning phase a3 tineshold Model. Candidate
intervals for actors are determined according toe$hold Model for spatial
feature by considering spatial relations betweedaracFollowing this process,
the movement features of candidate actors are demrsl and detailed motion
analysis is performed by considering other featufeShreshold Models give
the similarity value greater than 0.4, then the dadate intervals are

determined for those actors.

After Threshold Model analysis, action detection dene for candidate
intervals using Action Detection Module [Pseudocodg Action Detection
Module queries candidate intervals and tries tecedctions using pre-learned
action models. Actions residing in the candidaterivals are determined by
highly cohesive intervals method in which sub-img#s with higher
probabilistic values are searched in an intervabbglyzing all sub-intervals.
This method contains a set of interval operatiarghsas division, intersection
and union to find the best intervals that have @igheights as discussed in
Section 3.3.2.
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In the second phase of the detection, the BoA misdbplied to the candidate
intervals [Pseudocode: 8]. It provides a quick @lamtion of unrelated

partitions of the input data. Actions found in calade intervals are compared
with the actions of pre-learned BoA Model. Whiletians in candidate

intervals are detected, they are queried in BoA daahd suitable intervals are
prepared for detailed complex event detection. Bdddel generates a value
between 0 and 1. The intervals, which are not Bl#éité.e. generated value is
less than 0.5) for BoA Model, are eliminated. Ttl®cking also increases the

performance for intervals in which no complex evectturred.

In the last step, candidate intervals which contiitable actions for BoA
Model are queried using MLN model. Since SVAS irival-based rather than
time point based, the number of MLN predicates esrely decreases and
minimum MLN graph is created. In addition, unrethfgredicate sets are not
given to MLN to prevent unnecessary operations. MirNdicates are created
for only highly cohesive candidate intervals whiduces the number of
variables [Pseudocode: 9]. As a result, the perdogce of MLN algorithm

increases. For the remaining candidate intervalsNMact file is created

[Pseudocode: 11]. A sample fact file includes pratdis as follows:
Stand(A1,T1)
Stand(A2,T2)
Equal(T1,T3)
Equal(T2,T3)

The remaining candidate intervals are queried WitG-SAT algorithm by
using MLN event models that are learned in theninai phase and created

MLN fact file. A sample result is as follows:
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Meet(A1,A2,T2) 0.0250475
Meet(A1,A2,T3) 0.280022
Meet(A2,A1,T2) 0.040046
Meet(A2,A1,T3) 0.311019
Meet(A2,A2,T1) 0.0060494

Intervals in which MC-SAT algorithm gives highersudts are considered as

alerts for complex events [Pseudocode: 12-14].
3.5 Prediction

Event Prediction is the highest level in surveidlardomain. The main goal is
to predict events before they occur. SVAS propdbese simple methods for
event prediction. As the first method, SVAS useSTBI models. In learning
phase, SVAS can learn event model with its previstase and post state if
training data has suitable features. The previtate $s the state of event actors
before the event occurs. The post state is the sitaevent actors after the
event. SVAS can generate IBSTM models for not ahly duration of the
event but also durations before and after the e\@WAS generates pre-event
IBSTM model and post-event IBSTM model for these tdurations in the
learning phase. Pre-event IBSTM model can be useavent prediction in

detection phase.

The second method is using BoA models. In detegiltase, SVAS uses BoA
models of events and determines the number of oegtuactions in BoA
models. This calculation gives the number of suiioas of a complex event.

The number of sub actions increases the predicfi@omplex events.

The third method considers the event detectionesht runtime. After event
detection generates the detection value, it is usatecide whether the event

has occurred or not. If this value is not adeqfateany event detection but it
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has a continuous increasing tendency for any etbkah this value is

considered as the prediction value.

3.6 Implementation Details and a Sample Application

In this section, implementation details of SVAS andample application are
presented. SVAS Application is implemented usingraJdProgramming
Language. IntelliJ IDEA Community Edition is usedr fIDE. The most
important tools that are used in this thesis areKWH28], Alchemy and
Tuffy. WEKA Library is used for running the requiremachine learning
algorithms such as Bayesian Networks. Alchemy awdfyTare used for

running MLN algorithms.

The sample application is prepared in order to sbome important features of
the main processes of SVAS. Learning and inferaxagmbility of SVAS is
presented using CAVIAR Dataset. Scene boundaries cafculated when

training dataset is parsed. The output of this ¢geds shown in Table 3.
Table 3 CAVIAR Dataset scene boundaries

Scene Values Pixel Values
MINX 3
MINY 1
MAXX 321
MAXY 286

After scene boundaries calculated, action modeldemrned using the training
dataset. In CAVIAR Dataset, four main actions (‘rung", "inactive",
"walking" and "active") can be learned. The actitinactive” can be
considered as a stand action and “active” can bsidered as an instant move
action. Action models are composed of threshold ef®oé&nd a Bayesian
network model. Table 4 shows some Threshold Moadlfedetions as a result of

Action Learning.
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Table 4 Threshold Models of CAVIAR Actions

. Threshold Max Average Min Frequency Values
Action | Model ! Value | Val Value - F
Name Value alue (Value - Frequency)
0-45,10-105,14-42,20-5
Move ,22-39,28-19,30-13,32
Change 8.0 1.68 0.0 | 13,36-2,40-4,41-4,42-1
54-1,58-1,63-2,
73-1,76-1,80-1
0-43,10-89,14-47,20- 48
Size 22-42,28-6,30-17,32-13
Running| Change 12.65 1.89 0.0 36-10,40-6,41-6,42-2
45-4 ,50-7,51-4,60-1, 63
1,67-1,90-1,126-1
Direction
Change 10 0.28 0.0 0-125,3-101,5-69,8-26
10-13
Degree
Average 8-1,9-3,10-2,11-1,12-
Distance 3.65 1.50 0.76 ,14-1,18-1,22-1,23-1,
24-1,36-1
Move
Change 0.0 0.0 0.0 0-375
Size
Change 0.0 0.0 0.0 0-375
Inactive
Direction
Change 0.0 0.0 0.0 0-360
Degree
Average
Distance 0.0 0.0 0.0 0-15
Move 0-143,10-133,14-40,20-2
Change 4.24 0.83 0.0 ,22-17,28-1,30-1,32-4
40-2,42-1
0-114,10-131,14-56,20- 2
Size ,22-17,28-3,30-5,32-3
Change 8.0 1.08 00 | 36-2,40-3,41-2,42-1,5
Walking -1,51-1,54-1,57-1,58-
,70-1,80-1
Direction
0-163,3-76,5-74,
Change 1.0 0.25 0.0 8-20.10- 16
Degree
Average 1-1,4-1,5-1,6-6,7-2,
Distance 133 0.67 0.06 -1,9-1,10-1,13-1
Move
0-262,10-57,14-7,20- 11
Change 3.16 0.32 0.0 22-5 .30-1,32.2
Size 0-234,10-67,14-19,20-1
Change 5.66 0.45 00|,22-3,28-2,30-2,40-1,74
Active -1
Direction
Change | 1.0 023 | 00 0-290,8783. 2769,
Degree ’
Average | ag 0.19 0.0 0-1,1-5,2-4,3-4,4-
Distance
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In addition to threshold models, Bayesian Modelaofions is learned using
WEKA tool. Training data file is prepared for WEKUsing the same features.
Attributes and classes are defined at the beginoihghe file. After that

training data values are given. Figure 20 showsgdahe training file.

@relation action

@attribute moveChange numeric
@attribute sizeChange numeric
@attribute distance numeric
@attribute directionChange numeric
@attribute class {running,inactive,walking,active}
@data

1.28, 1.54, 1.20, 0.24, running

1.11, 1.17, 0.92, 0.29, running

1.12, 1.44, 0.94, 0.39, running

1.08, 1.25, 1.00, 0.24, running

Figure 20 Sample Training File for WEKA

Some of the parameters of the learned Bayesiandktvodel are as follows:
class: 4

LogScore Bayes: -202.96185083886107

LogScore BDeu: -300.82134868085024

LogScore MDL: -305.04098870828847

LogScore ENTROPY: -217.01258062051335

LogScore AIC: -260.01258062051335

After action learning, SVAS is ready for action eldton or complex event
learning. For instance, complex event model of kivejTogether” can be
learned using the training data. The first ste@lseshold Model learning.
Same features in Threshold Models of actions aenésl again per actor. In

addition, Threshold Models for features related tactors are learned.
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“walkingTogether” complex event is not role-bas@&khavior of actors is
similar. For this reason, only one Threshold Moskdl is kept for both actors.
In role-based complex events, two Threshold Moeés are kept. Models for

“walkingTogether” event are shown in Table 5.

Table 5 Threshold Models for Two Actors

Threshold
Model
Name

Complex
Event

Max Average Min Frequency Values
Value Value Value (Value - Frequency)

54-2,76-1,82-1,8
-1,114-1,117-1,13
-1,139-1,163-2,
201-1,209-2,210-1
,212-1,215-2, 219
1,227-1,234-1, 236
-1,244-1,262-4,
. 269-1,275-1,280-1
distance 79.05 30.98 5.38 288-1,323-1, 327
walking 1,336-1,340-1, 345
together -1,354-1,365-1,
367-1,413-1,416-1
,428-1,432-1,444
1,458-2,655-1, 665
-1,726-1,743-1,
761-1,791-1

5-6,6-1,7-1,8-3|
1.0 0.73 0.5 9-1,10-5

O o1

Direction
Similarity
Degree

In complex event learning process, the second retEp is learning BoA
Models. Detected actions are found for BoA Modealténg and MLN Model

learning using pre-learned action models. While Bal MLN models are
being constructed, actions are determined by actletection. Candidate
intervals are found using Threshold Model analysiction detection also
includes WEKA inference operation using pre-learrigalyesian Network
model. WEKA test file is created for candidate magds. The structure of this
file is similar to the training file as shown ingkire 20. In the BoA model,
detected actions are kept with weights. BoA Model“walkingTogether”

event is shown in Table 6.
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Table 6 BoA Model of “walkingTogether” event

Is Role Based: no
Actions Values
running 0.09
inactive 0.11
walking 0.67

active 0.13

After BoOA Model is constructed, MLN model for theoraplex event is

constructed using Tuffy. First, the unweighted MfiM is prepared. Predicates
are determined using detected actions. The gederateeighted MLN file

named “walkingTogetherUnweighted.min” for “walkinfogether” event is

shown in Figure 21.

Person(acto

running(actor,timeint)

inactive(actor,timeint)

walking(actor,timeint)

active(actor,timeint)
directionSimilar(actor,actor,timeint)

near (actor,actor,timeint)
walkingTogether(actor,actor,timeint)
Irunning(al,tl) V walkingTogether(al,a2,t1)
linactive(al,tl) V walkingTogether(al,a2,t1)
lwalking(al,t1) V walkingTogether(al,a2,t1)
lactive(al,tl) V walkingTogether(al,a2,t1)
Irunning(a2,t1) V walkingTogether(al,a2,t1)
linactive(a2,t1) V walkingTogether(al,a2,t1)
lwalking(a2,t1) V walkingTogether(al,a2,t1)
lactive(a2,t1) V walkingTogether(al,a2,t1)

I directionSimilar (al,a2,t1) V walkingTogether(a2,t1)
I near(al,a2,tl) V walkingTogether(al,a2,t1)
I Person(al) V walkingTogether(al,a2,t1)

I Person(a2) V walkingTogether(al,a2,t1)

Figure 21 walkingTogetherUnweighted.min
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Then the training fact file is created using deddct actions.
“walkingTogetherlearnDB.db” file is prepared for ‘&king Together” event.
Figure 22 shows part of the training file.

Person(Al) Person(A2) walking(A1,T1) walking(A2,T1)
directionSimilar (A1, A2, T1) near (A1, A2, T1)
walkingTogether (A1, A2, T1)

Person(A3) Person(A4) walking(A3,T2) walking(A4,T2)
directionSimilar (A3, A4, T2) near (A3, A4, T2)
walkingTogether (A3, A4, T2)

Person(A5) Person(A6) inactive(A5,T3) active(A6,T3)
directionSimilar (A5, A6, T3) near (A5, A6, T3)
walkingTogether (A5, A6, T3)

Person(A7) Person(A8) inactive(A7,T4) active(A7,T4)
directionSimilar (A7, A8, T4) near (A7, A8, T4)
walkingTogether (A7, A8, T4)

Figure 22 walkingTogetherlearnDB.db

The query file is the last input file for Tuffy wght learning. For instance,
“walkingTogetherquery.db” file is prepared for “Walg Together” event
which contains WalkingTogether(al,a2, tl)as query. Then Tuffy weight
learning algorithm is called. The Tuffy parametéos weight learning of

“Walking Together” event is as follows:

-learnwt -i walkingTogetherunweighted.min -e waliirogetherlearnDB.db -
queryFile walkingTogetherquery.db -r weightedWatkingether.mln -mcsatSamples
10 -dMaxlter 100

The weighted MLN file for “walkingTogether” events igenerated by

discriminative weight learning algorithm as showrFigure 23.
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walking(actor,timeint)
running(actor,timeint)
walkingTogether(actor,actor,timeint)
inactive(actor,timeint)
active(actor,timeint)

Person(actor)
directionSimilar(actor,actor,timeint)

near (actor,actor,timeint)

0,2005 Irunning(v0, v1) V walkingTogethe®d(w2, v1)
0,1067 linactive(v0, v1) V walkingTogethéd(v2, v1)
0,8067 lwalking(v0, v1) V walkingTogethed(w2, v1)
0,2135 lactive(v0, v1) V walkingTogether(w@, v1)
0,1935 Irunning(v0, v1) V walkingTogethe2(wO, v1)
0,1303 linactive(v0, v1) V walkingTogeth&z( v0, v1)
0,8567 lwalking(vO0, v1) V walkingTogethe2(wO, v1)
0,1532 lactive(vO, v1) V walkingTogether(v®, v1)
0,7572 I directionSimilar (v2, v0, v1) V ikaagTogethefv2, vO, v1)
0,8566 I near (v2, v0, v1) V walkingTogeaiwe, vO, v1)
0,9574 I Person (vO, v1) V walkingTogetk&r(vO, v1)
0,9574 I Person (v2, vl) V walkingTogeth@r(v0, v1)
Figure 23 weightedWalkingTogether.min

After learning is finished, event detection carnpleeformed. A sample interval
from CAVIAR Dataset is used for detection. Thisttéata interval is not used

in learning phase.

In event detection phase, the first operation ecking the similarities between
Threshold Models and eliminating irrelevant intdsvaSimilarities between
test interval and Threshold Models of complex eseate considered.
Similarity values of some complex events such asft‘lObject” and “Fight”

with the test interval are too low. For this regsdetailed analyses for these
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complex events are eliminated. However, Thresholod@&l Similarities of

“Walking Together” and “Meeting” are high. The vakiare as follows:

"Walking Together> 0.66
"Meeting" 2 0.65

These two complex events can be considered asdsadcomplex events.
Then, actions in the test data are determined & Bnd MLN model, using
action detection processes of SVAS. BoA modelsamidadate complex event
models are considered with those detected actiims.results of BoA model

consideration is as follows:

"Walking Together"> 0.64
"Meeting" = 0.60

Both of the results are higher than 0.4. For tesson, MLN consideration is
done for the candidate complex events. Evideneenidmed “evidence.db” is
prepared for this operation, which includes dettetetions in the test interval.
The structure of evidence file is similar to traigifile as shown in Figure 22.
Finally, MLN consideration is done by using Tuffgrfboth candidate events.

Tuffy parameters for this operation is as follows:

-i weightedWalkingTogether.min -e evidence.db -g&éde walkingTogetherquery.db

-r walkingTogetherinferout.txt

For this query, Tuffy writes results into a file mad
“walkingTogetherinferout.txt”. The results of in&rces are considered for
both of the candidate events and complex eventiwhés maximum value is

accepted as the detected event.
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CHAPTER 4

EXPERIMENTS AND RESULTS

In this chapter, the experiments on the systendeseribed and the results of
the experiments are presented. The results of tlopoped system are
compared with the results of the related studidse Drganization of the
chapter is as follows: First, the evaluation of QAR dataset is discussed in
Section 4.1. Then the evaluation of BEHAVE dataseadiscussed in Section
4.2. Both of the sections include evaluation ofcast and complex events. In
Section 4.3, the evaluation of synthetic datasptésented. In this section, the
tool which is developed for generating synthetidad&é also introduced.
Section 4.4 gives the results of performance evialng Qualitative evaluation
is discussed in Section 4.5. Finally, in Sectiof, £valuation of Learning
Non-Interval-Based Complex Event Models Using Markogic Networks is
presented using CANTATA Dataset.

In this study, a series of experiments have beenlwded and the proposed
methods are evaluated using four datasets whiclCAMIAR Dataset [115],
BEHAVE Dataset [16], CANTATA Dataset [18] and ownshetic dataset.
These datasets are used without considering oldjetgiction and tracking
issues. CAVIAR and BEHAVE datasets are mostly usethe literature for
event detection in surveillance domain (e.g. [98], [97], [73], [76], [16],
[25], [120], [122], [4] and [67]). Each video indbe datasets was manually
annotated to provide the ground truth. Both CAVIARd BEHAVE datasets
are in XML format. Figure 24 shows the structureacfample XML file from
CAVIAR Dataset. They provide actors and their pipesitions and blob width
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and height for each video frame. In SVAS, thesagsits are parsed to be used

by Trajectory Generation Module according to théu#L format.

rl
=grouplist/=
</frame=
- <frame number="284">
- <objectlist=>
- =zobject id="1"=>
<orientation=160</orientation
<box yc="173" xc="89" w="41" h="23"/>
<appearance=visible</appearance>
- <hypothesislist=
- <hypothesis id="1" prev="1.0" evaluation="1.0">
<movement evaluation="1.0">walking</movement=
<role evaluation="1.0">walker</role>
<context evaluation="1.0">walking </context>
<situation evaluation="1.0">moving</situation =
</hypothesis>
< /hypothesislist>
</object>
- <object id="2">
<orientation=130</orientation:
<box yc="70" xc="188" w="48" h="40"/>
<appearance=visible</appearance:>
- <hypothesislist=
- <hypothesis id="1" prev="1.0" evaluation="1.0">
<movement evaluation="1.0">walking</movement=
<role evaluation="1.0">walker</role>
<context evaluation="1.0">walking </context=
<situation evaluation="1.0">moving</situation=
</hypothesis=
< /hypothesislist>
</object>
</objectlist>
=grouplist/=
= /frame=
- <frame number="285">

Figure 24 Sample CAVIAR XML File

To deal effectively with the changes of viewing ditions, the features should
be invariant to geometrical transformations suctrasslation, rotation, scaling
and affine transformations. CAVIAR and BEHAVE dats provide
calibration data. Since the scenes in these datasetot viewed from exactly
top center and used cameras are a kind of fishcayeera, it is useful to
calibrate the data. In this study, calibration @itaets is considered and
calibrated datasets are also evaluated to show ptegiosed methods are
independent of unit.
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CAVIAR and BEHAVE datasets are generally challeggbecause they are
not consistent for some conditions. Some event Hate different scenarios
with inadequate number of videos. In addition, ivads are too short for some
events. As an example, the number of run eventmtisenough in CAVIAR
Dataset. As it is stated in [73], meeting scenan§£AVIAR Dataset vary.
Event models are generated differently for datagais example, in CAVIAR
videos, an object carried by a person is not trdckeonly the person who
carries it is tracked. The object will be trackéappear’) if and only if the
person leaves it somewhere. This input affectgémerated event models.

4.1 Evaluation of CAVIAR Dataset

CAVIAR Benchmark Dataset consists of manually aatest 28 surveillance
videos of a public space and contains several sicsnabout “Fight”, “Left
Object” and “Meet” complex events. A sample scréensf CAVIAR Dataset

is shown in Figure 25.

Figure 25 Sample screenshot of CAVIAR Dataset
4.1.1 Action Evaluation of CAVIAR Dataset

In this evaluation, hypothesis values, determingdCBVIAR team, are used.
There are 4 types of actions in this dataset whigh “running”, “inactive”,
“walking” and “active”. The action “inactive” is ecsidered as a “stand” action
and the action “active” is considered as an instanave action. Action

evaluations are done by using ten-fold cross vatidanethod. For each action
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type, we divided the datasets to ten-fold, witherfiold for training and one-
fold for testing.

In CAVIAR Dataset, labeled frame numbers for “rumgii “inactive”,
“walking” and “active” are 406, 2934, 14134 and 28@éspectively. There are
significant differences between the data sizesaftion types. This leads to
increase in the confusion of actions. For this eatibn, as it is stated in [96], it
is required to fix the dataset size. Since the Esiahumber of training data
available is for “run” action, we chose the comglset of “run” action and
determined 15 intervals. Each interval is 1 sectomi) and for each other
action types, 15 intervals which are 1 second kmgselected from the dataset.
As a result, dataset size for each action type rbecaqual. Results of

confusion matrix evaluation are shown in Table 7.

Table 7 Results of confusion matrix evaluation

running inactive walking active
running 93.33% 0% 6.67% 0%
inactive 0% 100% 0% 0%
walking 13.33% 0% 73.34% 13.33%
active 0% 0% 6.67% 93.33%

The results of other studies using CAVIAR Datasetshown in Table 8. [76]
has low accuracy values particularly for “activeida‘running” action types
according to their HMM (Genetic Algorithm) test rhet for four action types.
[96] tries some cluster based methods for thisoactataset. Each method
marks some actions high while the remaining ones ararked low.
Considering all actions, their best evaluation s fallows: 92.3% for
“running”, 77.4% for “inactive”, 77% for “walkingand 85.9% for “active”. In
[96], only the performance for “walking” is highénan our method. If each
frame in the hypothesis dataset is considered atghar then the results in

Table 9 are obtained.
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Table 8 Comparison of Action Detection Evaluation \ith

other studies in CAVIAR

Dataset
[96] [76] Our Results
Running 92.3% 0% 93.33%
Inactive 77.4% 85% 100%
Walking 7% 88% 73.34%
Active 85.9% 0% 93.33%
Table 9 Results of Frame-based CAVIAR Dataset evaiion
Action Dataset Detection | Undetection ) _
Hit Ratio
Name Count Count Count
Running 406 371 35 91.38 %
Inactive 2934 2930 4 99.86 %
Walking 14134 11806 2328 83.53 9
Active 1872 1866 6 99.68 %

4.1.2 Complex Event Evaluation of CAVIAR Dataset

Hypothesis values, determined by the CAVIAR teame ased in this
evaluation too. In CAVIAR Dataset, the number ofemts is small. For

“interacting” (“meeting”) there are 6, for “fightthere are 3 and for “left
object” there are 4 examples. To increase test degalivide test intervals into

sub-intervals with 15 frames long. We create 24rirdls for “meeting”, 18

intervals for “fight” and 9 intervals for “left obgt”. The results of confusion

matrix evaluation for CAVIAR complex events are wimoin Table 10.
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Table 10 Results of confusion matrix evaluation foCAVIAR complex events

meeting fight left object | UNFOUND
meeting 79.17% 12.5% 8.33% 0%
fight 16.67% 77.78% 5.55% 0%
left object 0% 0% 100.0% 0%

In [96], balanced dataset is used for complex eesatuation using decision
trees. Comparing with [96], the accuracy of our ptar event detections is
high. The accuracy result for “meeting” and “fighdte nearly 70, for “left

object” is nearly 75 in [96].

In [73], only “meeting” event detection is studiesing clustering methods and
compared with [7] in which Event Calculus is usadeeting” accuracy of [7]

and [73] are 67% and 89% respectively. Since [T&cks only one complex
event type, the accuracy result is high as expettéwn the number of event

types increases, confusion problems arise.

In [97], complex event evaluation is provided witholow-level action
detection using Event Calculus method. [97] usesl&vel action values from
CAVIAR ground truth. In [97], accuracies are asldals: for “meeting” is
85.5%, for “fighting” is 84.5%, for “left object’si 72.2%, for “walking” is
63.9%. We consider “walking” as action and accuraaje of our study is
higher as shown in Section 4.1.1 above. The pratisf “left object” event is
also higher in our system. On the other hand, tesfl [97] are better for
“fight” and “left object” events. However, sinceweevel actions are not
detected in their work, some errors are inevitafileese comparisons are

shown in Table 11.
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Table 11 Comparison of Complex Event Detection Evahtion with other studies in
CAVIAR Dataset

[96] [7] [97] [73] Our Results

meeting 2% 67% | 85.5% 89% 79.17%
fight 70% 100%| 84.5% - 77.78%
left object 75% 80% | 72.2% - 100.0%

4.2 Evaluation of BEHAVE Dataset

BEHAVE Dataset [16] consists of four videos and8D®, frames in total and
contains 25 frames per second with a resolutioddoix 480 pixels. It contains
several scenarios about “InGroup” (IG), “ApproactR), “WalkTogether”
(WT), “Split” (S), “Ignore” (1), “Following” (F), “Chase” (C), “Fight” (Fi),
“RunTogether” (RT) and “Meet” (M) events with a grad truth. Sample

screenshots of BEHAVE Dataset are shown in Figére 2

Figure 26 Sample screenshots of BEHAVE Dataset

This dataset is used in many studies in literasuich as [25], [120], [122], [4]
and [67]. The numbers of datasets for each evestaye listed in Table 12.

Table 12 Dataset counts of each event type in BEHA/Dataset

IG A | WT S I F C Fi RT M

35 25 43 23 2 1 10 19 12 1
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Evaluations in this section are done using the mplotruth values that are
determined by BEHAVE team.

4.2.1 Action Evaluation of BEHAVE Dataset

In BEHAVE Dataset, actions are not defined for extdHowever, we use
individual behaviors of actors for action evaluatid-or example, individual
behaviors of each actor in “InGroup” and “Meet” at&can be considered as
“Stand” action. In the same manner, individual hets of each actor in
“RunTogether”, “WalkTogether” and “Fight” events rcdbe considered as
“‘Run”, “Walk” and “Instant Move” actions, respectlly. We generate 32
intervals for “Run”, 106 intervals for “Stand”, 8&@tervals for “Walk”, and 19
intervals for “Instant Move” actions by consideriegch actor behavior in
BEHAVE Dataset instances. We use ten-fold crosslaabn method. For each
action type, we divide the interval datasets to-ftéd, with nine-fold for
training and one-fold for testing. Our action ewian results are shown in
Table 13. Accuracy values are between 89% and 9d#6ch are very

satisfactory.

Table 13 Confusion matrix of BEHAVE Dataset ActionEvaluation

Run Stand Walk Instant Move
Run 90.63% 0% 9.37% 0%
Stand 0% 91.51% | 5.66% 2.83%
Walk 1.22% 3.66% | 91.46% 3.66%
Instant Move 0% 10.53% 0% 89.47%

4.2.2 Complex Event Evaluation of BEHAVE Dataset

In this evaluation, complex events are evaluatéagugn-fold cross validation
method as in Action Evaluation of BEHAVE Dataseithc® the numbers of
“Meet”, “Ignore” and “Following” instances are lom dataset, they are not

used in the evaluation. In addition, we do not abesgroup events, so the
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events “Approach to group” and “Split from group®eanot evaluated. Results

of confusion matrix evaluation for BEHAVE eventg ahown in Table 14.

Table 14 Results of confusion matrix evaluation foBEHAVE events

(IG: InGroup, WT: WalkTogether , C: Chase, Fi: Fight, RT: RunTogether)

IG WT C Fi RT

IG | 100%| 0% 0% 0% 0%

WT | 0% | 88.37%| 0% 0% 11.63%

C 0% 0% | 100%| 0% 0%

Fi 0% | 5.26%| 0% | 89.48%| 5.26%

RT 0% 25% 0% 0% 75%

In [16], classification is provided using HMM withb considering “Chase”
and “RunTogether” events. Their average performamacges from 80% to
90%. [25] considers only “Fight” and “Meet” evenits BEHAVE dataset
evaluations using object tracking and classificatechnique. Their accuracies
are as follows: for “Meet” event, it is nearly 858ad for “Fight” event, it is
nearly 70%. [120] evaluates “InGroup”, “WalkTogetheé'Fight” and “Split”
events without confusion matrix method using Cdodal Gaussian Process
Dynamic Model. Their accuracies are 94.3%, 92.1%,1% and 93.1%,
respectively. In [122], accuracies of detected &v@m confusion matrix are
between 52% and 88% using Multi-Group Causalitiesthmd. [4] uses
Hierarchical Dirichlet Processes method. In [4cwaacies of detected events
in confusion matrix are between 50% and 80%. [6&gsuformal knowledge-
based reasoning approach and multi-person tratkg¢6.7], “WalkTogether”,
“RunTogether”, “Approach”, “Split” and “InGroup” ents are evaluated with
accuracies between 60% and 90%. Comparing ourtsesith these studies;

some accuracy values of our proposed work are apparhigher than the
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given values above, as shown in Table 14. Our ac@s are between 75%
and 100%. Our average performance is 90.57%. Rklatenparisons are
shown in Table 15.

Table 15 Comparison of Complex Event Detection Evahtion with other studies in
BEHAVE Dataset

(IG: InGroup, WT: WalkTogether , C: Chase, Fi: Fight, RT: RunTogether)

[25] | [120] | [122] [4] [67] | Our Results
IG - 94.3%| 88% | 53.73%| 90% 100%
WT - 92.1%| 88% 75% 60% 88.37%
C - - 52% - - 100%
Fi 70% | 95.1% - 80% - 89.48%
RT - - - - 60% 75%

4.3 Evaluation of Synthetic Dataset

Synthetic dataset is evaluated in order to congitlere event data in various
scenarios. Test Data Generation Tool is developedhis purpose. Test data
can be prepared for different event types easilysing this tool. Test Data
Generation Tool is an application in which scenedetoand video event

scenarios can be created. Various scenes can igaelgésis the composition of
50 cm * 50 cm grid cells, which approximately deteres an effect area of an
actor. Scenarios are created for top center viewy. tBere is no need for
calibration. Various actor types can be defined. éach actor, trajectories are
determined by giving time intervals. Actors and ithi&ajectories can be

determined by marking the route in the tool. Créateenarios can be played
for controlling purposes and can be used by TrajgoGeneration Module in

learning and testing phases of event detectionessocln Figure 27, user
interface of Test Data Generation Tool is shown.
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Figure 27 User interface of Test Data Generation Tal

As it is shown in Figure 27 video size and act@an be also determined by
using the right panel. For each actor trajectodaes determined giving time
intervals. Trajectories are determined by selecgrigs according to path of
the actor. Created scenario can be played by usattpm panel of right

component. Scenario information is displayed itustgpanel which is located
at the bottom of the view. By using “File” menupext and import operations
are done. A sample scenario for “meet” event whglprepared using Test

Data Generation Tool is shown below:

Video Interval: 1-15
Scene: 5-5

Actors: 2
0-PERSON
1-PERSON

Interval
Interval
Interval
Interval
Interval

Interval

: 0-1-5-0-5-4-5

: 0-5-10-4-5-4-5

: 0-10-15-4-5-0-5
:1-2-5-9-5-5-5
:1-5-10-5-5-5-5
:1-10-15-5-5-9-5

Movements are considered as one second actionsnst@ant move” action

cannot be defined in Test Data Generation Tooletuly. By using Test Data



Generation Tool, a total of 135 test data is cee&ve “Run”, “Stand”, “Walk”

actions and “Chase”, “Follow”, “Left Object”, “Mekt*‘Walk Together”, “Run

Together” complex events. By using leave-one-ostirig method, detections
are correct. However, detection accuracy decreabes some missing values
added randomly. We add missing values to eachitigaidata such that “1
second missing value per training data” meanseémh trajectory in training
dataset, we remove randomly 1 second movement firajectories as if they

are occluded.

Table 16 Evaluation of Synthetic Dataset

Missing Value Detection Count | Hit Ratio
No missing value 135 100 %
0.5 second missing value per training data 112 %2.9

1 second missing value per training data 98 72.6|%
2 seconds missing value per training data 67 49.6|%
3 seconds missing value per training data 0 0%

In Table 16, detection count decreases when misghg duration increases.
Since generated test data trajectories are maxighgatonds long, the impact
of missing value is very high. However, we can d¢ode that SVAS is robust

for missing values nearly 10% of trajectories.

4.4 Performance Evaluation

The effect of the proposed methods on the perfocmanalso evaluated. Both
for “Action Detection” and “Complex Event Detectiprthe proposed methods
provide a great performance gain as discussed be(@alculations are

measured by a personal computer which has 8 GB RaM Intel i5-4210

CPU.
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In “Action Detection” phase, Threshold Model eliration increases the
performance as shown in Figure 28 and Table 17.tGneshold query duration
is nearly 0.06 msec., which can be considered ag fast. However, one
Bayesian Network query duration is nearly betweemsgec. and 9 msec.
Bayesian Network query duration is at least 80 siroéthe threshold query
duration. For this reason, using Bayesian Netwarirg when needed gives a

big performance gain.

As listed in Table 17, there is little overhead fbe first two rows since all
intervals are selected as they contain action datavever, in real videos,
actions exist only in a small portion of the vidéence, big performance gain
is provided. In this case, only candidate intenais queried using Bayesian

Network.

Table 17 Action Detection Performance Evaluation

Test Total TH Total BN | Eliminated | Average | Average | Estimated
intervals query query Interval 1Th 1 BN |Performance

Count duration duration | CountBy | query query | gain (msec)
(msec) (msec) | Th Model | duration | duration
(msec) | (msec)

60 14,88 295,2 0 0,062 4.92 -14,88
150 33 1038 0 0,055 6.92 -33
400 89,6 2702,84 57 0,054 7,88 359,56
732 169,824 5261,76 123 0,058 8,64 892,896
813 178,86 3150,08 385 0,055 7,36 2654,74
800 188,8 172,52 781 0,059 9,08 6902,68

Formulas of calculations are as follows [‘Actionpés” is the number of

actions defined in the system which is current]y 4.
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Total Th query duration

A 1Th duration = 4.1
verage query GUTation = o5t intervals count * Action types (4.1)
( Average 1 BN ) Total BN query duration
query duration B Test intervals count — (Eliminated interval) (4.2)
count by TH model

Estimated Eliminated Interval Average 1 BN Total TH
( )=[( )+( )= ) 43)

Performance gain count by TH model query duration query duration

In Figure 28, the performance gain increases whemumber of eliminated
intervals increases. This elimination power shdvesrtecessity and importance
of the Threshold Model.

9000
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4000 /
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2000

1000 /
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Figure 28 Action Detection Performance Evaluation

In “Complex Event Detection” phase, two-step eliaiian exists. One of them
is Threshold Model while the other is BoA Model. réshold Model
elimination provides a big performance gain in c@rpevent detection phase
as in Figure 29 and Table 18. Performance gainod Blodel is limited but its

calculation is very fast such as almost 1 msecB8é, Model is also useful.

In this case, performance gain is huge since tlegance operation in MLN is
nearly between 1.5 sec and 4 sec. By considerisghtige MLN query time,
the overhead of BoA Model and Threshold Model dalitons can be omitted.

A small number of MLN queries offer higher perfommea. In Table 18, there
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is little overhead for the first three rows sindeir@ervals are selected as they
contain complex event data. However, in real videmsnplex events occur

only in a small portion of video. In this case, @ Iperformance gain is

provided.

Table 18 Complex Event Detection Performance Evaluign

Test | Total Total Total Eliminated | Eliminated Total | Average| Estimated
inter- TH Action BoA Interval Interval MLN 1 MLN | Performan-
vals | query | Detection | query Count By Count By Query | query | ce gain for
Count | dura- | duration dura- Th model | BoA model | Dura- dura- | MLN Query
tion (msec) tion tion tion Elimination
(msec) (msec) (msec) | (msec) (msec)
6 1 13 1 0 0 10980 1830 -2
12 1 24 1 0 0 23808 1984 -2
14 3 24 1 0 0 55804 3986 -4
97 17 131 2 24 3 193200 2760 74501
223 34 319 6 55 3 26812p 1624 94210
438 49 537 7 102 5 785794 2374 253961
721 54 817 12 176 6 1449371 2689 489332

Formulas of calculations are as follows:

(Total Eliminated ) _ (Eliminated Interval) (Eliminated Interval) (4.4)

Interval Count )~ \ Count By Th model Count By BoA model

<Average 1 MLN) _ Total MLN Query Duration

query duration Test intervals) _ (Tatal Eliminated (45)
Count Interval Count

Total TH ) ( Total BoA

Total Elimination duration = ( .
query duration

) (4.6)

query duration
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( Total Eliminated ) <Average 1 MLN) <Total Eliminated
= *

) @

MLN query duration query duration Interval Count

(Estimated Performance gain) _ ( Total Eliminated ) (Total Elimination) (4 8)

for MLN Query Elimination MLN query duration duration

In this estimation, Duration of Action Detectionnche omitted due to its low

computational time.

Figure 29 shows that, the performance increasesdemrably when the number
of eliminated intervals increases. Since the elatiom of intervals depends on
Threshold Model and BoA Model, the figure also shatve importance of

these two models. Without them, MLN alone wouldvbey inefficient.
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Figure 29 Complex Event Detection Performance Evahtion
4.5 Qualitative Evaluation

SVAS generates semantically meaningful event madelLN format. Some
of the generated complex event models are showalte 19. As shown in the

table, the models are semantically consistent aiftectations.
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Table 19 Generated event models A' states ‘AND’ operator and ‘!' states ‘NOT’

operator)

Event MLN Model

Meet(al, a2, t1) Person(alp Person(a2) Stand(al, tI)
Stand(a2, tI) Near(al, a2, t1)

Fight(al, a2, t1) Person(al) A Person(a2) A InstantMove(al, t1) A
InstantMove(a2, t1) IDirectionSimilar(al, a2, t1)
Near(al, a2, t1)

Walk Togethe! Person(al) Person(a2) Walk(al, t1)A

(a1, a2, t1) Walk(a2, t1)A DirectionSimilar(al, a2, tlA Near(al, a2, t1)

Run Togethe Person(alj Person(a2) Run(al, t1)

(a1, a2, t1) Run(a2, t1 DirectionSimilar(al, a2, t1) Near(al, a2, t1)

Follow(al, a2, t1) Person(alj Person(a2) Walk(al, t1)A

Walk(a2, t1)A DirectionSimilar(al, a2, tI) Far(al, a2, t1)
Chase(al, a2, t1) Person(alj Person(a2) Run(al, t1n

Run(a2, t1)A DirectionSimilar(al, a2, tin Far(al, a2, t1)
LeftObject(al, a2, t1)| Object(al)r Person(a2j Stand(al, tI)

Walk(a2, tL)A Far(al, a2, t1)

TakenObjec Object(al)r Person(a2)\ Person(a3n

(a1, a2, a3, t2) Walk(al, t1)A Walk(a2, t1)A Far(al, a3, tI)

Near(al, a2, t1) Walk(al, t2)A Walk(a3, t2)A

Far(al, a2, t2\ Near(al, a3, t2) (t2 > t1)

For generated models, some spatial relations, asctNear” and “Far”, are
unique to the event. These predicates reflectltseness between actors while
the event is taking place. They are defined andilleanvith Threshold Models.
However, for non-generated models which are dedignethe user without
learning operations, these predicates can be 8escioy giving threshold
values explicitly.

Table 19 shows that the generated rules are in fé@hat and so they are
readable. In addition, a user can manage thess. rile user can change the

rules or add new scenarios to any complex eventeinaaly by text editing.
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For example, the user can add a new scenario fft @bject” complex event,

where previous time periods of the event is comsitlas follows:

LeftObject(al, a2, t1, t2) : Object(ad)Person(a2)A Stand(al, tI) Stand(a2, t1)
Near(al, a2, t1) Stand(al, t2) Walk(a2, tL)A Far(al, a2, t2)\ (12 > t1)

4.6 Evaluation of Learning Non-Interval-Based Compéx Event Models
Using Markov Logic Networks

For evaluation of Learning Non-Interval-Based ComxpEvent Models Using
Markov Logic Networks, three event types are testgdising the leave-one-
out testing method. For each event type, variodferdnt scenarios are

considered in automatic model generation. Thesetdypes are:

Case 1: “Left Object” event (leftObject(person, aitij timel, time2) means

that the person leaves the object while the tinss@sfrom timel to time2).

Case 2:"Taking Left Object” event (takingLeftObjgmrsonl, person2, object,
timel, time2) means that the owner of the objegisonl. Person2 takes the

object while the time passes from timel to time2).

Case 3. “Meet” event (meet(personl, person2, timethe2) means that

personl and person2 meet while the time passestiinoed to time2).

Eight videos for “left object”, three videos foraking left object” and four
videos for “meet” event are used as test videosr Faleos for “left object”

were from CANTATA Dataset [18]. The others are newiteated videos, in
order to cover more scenarios. Sample image shota these videos are

displayed inFigure 30.
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(I11) (IV)

Figure 30 Sample image shots for I) Case 1, IlI) Cas3, Ill) Case 2, V)

For Case 1, in each turn-around of leave-one-atihtge method, seven of eight
videos are used in event model generation. Thergtemodels are used to
detect events in the remaining video by using ti&elf” command of
Alchemy. After all turn-arounds, all of the possilpredicates that can affect
the event are listed with their average weight§ahle 20. These predicates are
chosen according to the parameters of the eventr Emample
“closedistancePP” is not considered because “l¢#€@bhas only one person

attribute.
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Table 20 Evaluation Results of Learning Non-Interv&Based Complex Event Models

Case 1
Event Steps
A B C D
existPerson(pl, tl1) 1.22 -1.22| 0.14| -0.14
existPerson(pl, t2) 0.38 -0.38 042 -0.42
existObject(ol, t1) 1.16 -1.16| 0.45| -0.45
existObject(ol, t2) 1.14 -1.14| 0.36| -0.36
stopPerson(pl, t1) 0.44 -0.44 0.38 -0.88
stopPerson(pl, t2) 0.54 -0.54 048 -0.48
stopObject(ol, t1) 1.22 -1.22| 0.44| -0.44
stopObject(ol, t2) 1.14 -1.14| 0.29| -0.29

closeDistancePO(p1, o1, t1) 1.37 -1.37| 0.67| -0.67

closeDistancePO(pl, o1, t2) 0.34 -0.y 1.31 | -1.31
smallObject(ol) 1.17 -1.17| 0.48| -0.48
ownedBy(p1, 01) 127 | -1.27| -0.22] 022
during(tl, t2) 1.50 -1.50| 0.19| -0.19
before(t1, t2) 1.50 -1.50| 0.19| -0.19
before(t2, t1) 0.60 -0.60 0.49 -0.40

The event model is created by considering the gabfethe table as follows

(‘N states ‘AND’ operator):
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existPerson(pl,t1y1 existObject(ol,t1)1 existObject(ol,t2)1 stopObject(ol,t1y
stopObject(ol1,t21 closeDistancePO(pl1, o1, t1) !closeDistancePO(pl, 01, t2)
smallObject(ol) 1 ownedBy(pl, o01) 4 during(t1,t2) A before (t1,t2) >
leftObject(pl, ol, t1, t2)

The result is consistent with our expectations. éaxh predicate, A, B, C and
D values are considered. If all values are low, pihedicate is selected as
irrelevant. If only the value of A is high, the pgreate is added to the model. If
only the value of C is high, the predicate is adttethe model with the “not”
operator. Both the value of A and the value of both the value of B and the
value of C are not high for any predicate in thierd, because none of the
predicates causes the event alone. The valuesatieatconsidered in the
decision of the model are shaded in Table 20. Betbe occurrence of the
event; pl and ol must exist and close to each.dthisrnot necessary for the
person to ‘stop’; p1l can be moving while the evartturs. The object must be
small and owned by p1. While the event occurs,d @l must be far and pl
can be out of the scene sexistPerson(p1,t2)s irrelevant. Temporal relations
are also correctly detected for the event. Evetgati®ns in test videos are also
successful. The occurrences of the events aretddtat the correct frames of
the test videos. For Case 2 and Case 3, the gederatnt models are listed in
Table 21.

Table 21 Generated event models for Case 2 and Case

Events Models

takingLeftObjec existPerson(p2, t1) existPerson(p2, t2) existObject(ol, t1n

(p1, p2, 01, t1, t2) | existObject(ol, t2) closeDistancePO(p2, o1, tk)
closeDistancePO (p2, 01, t2)smallObject(o1y ownedBy(pl, oL}
lownedBy(p2, o) during(t1, t2)/ before(tl, t2)y1 after(t2, t1)
meet(pl, p2, t1,t2)| stopPerson(pl,tlgtopPerson(p2, t1) existPerson(p2, t1)

existPerson(p2, t2) closeDistancePP(pl, p2, th)
stopPerson(pl, t2) stopPerson(p2, t2) closeDistancePP(pl, p2, t2)
during(t1, t2)2 before(t1, t2)
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CHAPTER 5

CONCLUSION AND FUTURE WORKS

In this thesis, a Surveillance Video Analysis Syst(SVAS) is proposed for
the surveillance domain in which semantic rules treddefinition of the event
models can be learned or defined by the user ftonaatic detection and
inference of complex video events. Interval-Basqmiti®®-Temporal Model
(IBSTM) is proposed for event modeling, which filtlee semantic gap between
humans and video computer systems. By this modsdicbspatial, temporal
and logical relations in the surveillance domaim d@ established. Unlike
current solutions, generated models are user umadel@ble and manageable
since IBSTM is based on first order logic. This el technique provides
user to interfere generated event models in spedatitions. In addition,
IBSTM provides users to define their own modelscase of unavailable

training data.

SVAS does not need any predefined thresholds fenescor event model
compared to many studies by its learning abilit®¥AS decreases human
intervention through its event model learning #@pifiom training data to ease
user operation and prevent user errors. Threshaddeld are proposed for
learning valid values for features and calculasimgilarity values in detection
phases in order to reflect the spatio-temporal omoéinalysis. SVAS can learn
actions and complex event models using a set ofidhyimachine learning
techniques including Threshold Models, Bayesianwdeks, Bag of Actions,
Highly Cohesive Intervals and Markov Logic Netwarks$n addition, these

powerful methods enable SVAS to handle uncertaintyprder to be fault-
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tolerant in noisy conditions. Proposed and impla®@ralgorithms generate

probabilistic results to prevent discretizationkgems.

SVAS is extensively evaluated in different waysngsimany video data from
various datasets such as CAVIAR, BEHAVE, CANTATA dasynthetic
datasets. Our evaluations show that the proposeagh improves the event
recognition performance and precision as comparebe current state-of-the-
art approaches in many action and complex evergstyp different event
datasets. Moreover, performance evaluations contmat SVAS has high
performance ability due to its interval-based higli&cal manner and its high

performance algorithms.

SVAS is based on the intervals instead of time fgoand different suitable
machine learning techniques are used at differeasgs of the event detection.
In addition, Threshold Models and BoA Model provigteat efficiency in both
action and complex event detection. These methtidgnate performance
problems of MLN method in video domain. In detegtiphases, Threshold
Models and BoA Models eliminate huge irrelevanemals. Thus, the number
of MLN predicates considerably decreases, and nummMLN graph is
created. It is observed that the performance céovidvent detection is highly
increased by the proposed methods due to the aibased hierarchical

detection capability.

SVAS is flexible and extendable so that new featuagetion types, event types
or actor types can be added. Any feature, whichesofrom the low level, can
be used in SVAS. If low-level processes providelaites such as movements
of arm, leg or head, color or shape, these at&#aan also be considered in
event detection in SVAS.

To sum up, literature survey reveals that SVAS ign&ue system, which
possesses all key features of video domain neatlsdsabove as a whole. On
the one hand it is unique because it decreasesrhumtexvention through its

learning capabilities, on the other hand it alsabdes human intervention
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when necessary through its manageable event mod#ioth The system
achieves all of them in the most efficient way tigb its machine learning

methods.

In future work, we plan to test SVAS on more exiemslata sets. Moreover,
we intend to adapt the system to handle moving caraed multi camera
datasets and to include other complex event typkss/ant for surveillance
domain. In addition, the proposed Threshold Mod®h de used in other
domains since it is independent of feature typdsoAthe proposed methods
can be used for automatic indexing or video brogisi future direction of

research is to focus on extending usage of ThrdshMudel in different

domains.

Highly cohesive interval method can be used incbection of training data
boundaries, which is given by the user during trejn phase. The
inconsistencies in the training boundaries canlineireated. As another future
work, consistency of training data and automatimtng data correction can be
implemented. In addition, the calibration and namination method used in

the current study should be enhanced for complerex:

Current prediction capability of SVAS is limited caevaluation of this ability
is not implemented yet. Another future direction reSearch is increasing
prediction capability of SVAS with more suitabletasets and comparing with

other studies in this field.

SVAS needs a more user-friendly interface. Gendrateent models can be
defined or edited using text editors in currenteifdce of SVAS. The
development of a more user-friendly applicatioreifdce is another future

work.

SVAS is currently a single threaded application angs on a single CPU core.
In the future, we have a plan to implement reaktisarveillance applications.

The proposed Threshold Model algorithms are kepipkd in this study, to
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make them suitable for GPU programming. Implementime current action
detection phase in GPU is another future work whiwky provide enhanced

performance.
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