DEVELOPMENT OF STATE DEPENDENT FACTORIZED OPTIMAL CONTROL
METHODS WITH APPLICATION TO SPACECRAFT COULOMB FORMATIONS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

MOHAMMAD MEHDI GOMROKI

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF DOCTOR OF PHILOSOPHY
IN
AEROSPACE ENGINEERING

DECEMBER 2017






Approval of the thesis:

DEVELOPMENT OF STATE DEPENDENT FACTORIZED OPTIMAL CONTROL
METHODS WITH APPLICATION TO SPACECRAFT COULOMB FORMATIONS

Submitted by MOHAMMAD MEHDI GOMROKI in partial fulfillment of the
requirements for the degree of Doctor of Philosophy in Aerospace Engineering
Department, Middle East Technical University by,

Prof. Dr. Guilbin Dural Unver
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Ozan Tekinalp
Head of Department, Aerospace Engineering

Prof. Dr. Ozan Tekinalp
Supervisor, Aerospace Engineering Dept., METU

Assist. Prof. Dr. Francesco Topputo
Co-Supervisor, Aerospace Science and Technology Dept., POLIMI

Examining Committee Members:

Assist. Prof. Dr. Ali Tlrker Kutay
Aerospace Engineering Dept., METU

Prof. Dr. Ozan Tekinalp
Aerospace Engineering Dept., METU

Prof. Dr. M. Kemal Ozgéren
Mechanical Engineering Dept., METU

Prof. Dr. Metin U. Salamci
Mechanical Engineering Dept., Gazi University

Assist. Prof. Dr. Nazim Kemal Ure
Aeronautical Engineering Dept., ITU

Date:




I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. | also declare that,
as required by these rules and conduct, | have fully cited and referenced all material

and results that are not original to this work.

Name, Last name: MOHAMMAD MEHDI, GOMROKI

Signature:



ABSTRACT

DEVELOPMENT OF STATE DEPENDENT FACTORIZED OPTIMAL
CONTROL METHODS WITH APPLICATION TO SPACECRAFT COULOMB
FORMATIONS

Gomroki, Mohammad Mehdi
Ph.D., Department of Aerospace Engineering
Supervisor: Prof. Dr. Ozan Tekinalp
Co-Supervisor: Assist. Prof. Dr. Francesco Topputo

December 2017, 119 pages

Among spacecraft formation control techniques, Coulomb tether to control the
relative distance is proposed in the literature. A Coulomb tether is similar to
physical tether that uses coulomb forces to keep spacecraft at close proximity. It is
indicated that a coulomb tether provides an almost a propellantless formation
control. The charges loaded to the bodies, can create attractive and repulsive
forces between these bodies. Since the forces are relative, coulomb forces cannot
change the total linear or angular momentum of the formation. In this thesis, state
dependent factorized optimal control methods are applied to control the formation
attitude and relative position of the spacecraft Coulomb formation at Earth-moon
libration points, Earth circular orbits, and deep space utilizing coulomb forces as
well as thrusters. Nonlinear equations of motion of a two-craft Coulomb
formation are properly manipulated to obtain a suitable State Dependent
Coefficient (SDC) formulation for orbit radial, along-track, and orbit-normal
configurations at Earth-Moon libration points, and Earth circular orbits.
Moreover, the nonlinear equations of motion and their SDC factorized form of a
three-craft Coulomb formation at deep space are discussed.

Nonlinear feedback control of radially aligned spacecraft Coulomb formation

through numerical simulations are presented in the current work. Moreover, the



nonlinear optimal control is realized using the Approximating Sequence of Riccati
Equations (ASRE) and State Dependent Coefficient Direct (SDC-Direct) methods.
The SDC-Direct method is an approached developed and implemented in the
current thesis. The present work introduces the SDC-Direct method to solve
constrained nonlinear optimal control problems using state dependent coefficient
factorization and Chebyshev polynomials. A recursive approximation technique
known as Approximating Sequence of Riccati Equations is used to replace the
nonlinear problem by a sequence of linear-quadratic and time-varying
approximating problems. The state variables are approximated and expanded in
Chebyshev polynomials. Then, the control variables are written as a function of
state variables and their derivatives. The constrained nonlinear optimal control
problem is then converted to a quadratic programming problem, and a constrained
optimization problem is solved. Different final state conditions (unspecified,
partly specified, and fully specified) are handled, and the effectiveness of the
approaches in reconfiguring the formation and comparison of them is

demonstrated through numerical simulations.

Keywords: spacecraft formation; Coulomb tether; nonlinear optimal control;

Chebyshev polynomials; optimization
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Durum Degiskenine Bagh Carpanlara Ayrilmis Optimal Kontrol Yontemlerinin
Gelistirilmesi ve Uzay Araci Coulomb Kol Ucusuna Uygulanmasi

Gomroki, Mohammad Mehdi
Doktora, Havacilik ve Uzay Miihendisligi Bolimii
Tez Yoneticisi: Prof. Dr. Ozan Tekinalp
Es Tez Yoneticisi: Yrd. Dog. Dr. Francesco Topputo

Aralik 2017, 119 sayfa

Uzay aract kol ugusu kontrol teknikleri arasinda, mesafeyi kontrol etmek icin
Coulomb tether literatiirde onerilmistir. Coulomb tether, uzay aracin1 yakin da
tutmak icin coulomb kuvvetleri kullanan fiziksel tether’a benzemektedir. Bir
Coulomb tether'in neredeyse itici olmayan bir kol ugusu kontrolii sagladigi
belirtilir. cisimlere yiiklenen yiikler, bu cisimler arasinda ¢ekici ve itici giicler
yaratabilir. Kuvvetler gorece oldugundan, coulomb kuvveti kol ugusunda toplam
dogrusal veya acisal momentumunu degistiremez. Bu tez ¢aligmasinda, Diinya-Ay
librasyon noktalarindaki, Diinya dairesel yoriungelerinde derin uzayda Coulomb
kol ucusu goreli yonelimi ve pozisyon kontrol etmek i¢in duruma bagh
faktorlestirilmis optimal kontrol yontemleri uygulamaktadir. Iki aragh bir
Coulomb kol wugusu dogrusal olmayan denklemleri, Diinya-Ay librasyon
noktalarinda ve Diinya dairesel yoriingelerinde yoriinge radyal, ydriinge yol
boyunca ve yoriinge normali i¢in uygun bir Durum Bagimli Katsayr (SDC)
formiilasyonu elde etmek ic¢in diizgiin sekilde manipiile edilir. Dahasi, dogrusal
olmayan hareket denklemleri ve derin uzaydaki ii¢ caraglhi bir Coulomb kol
ucusunun SDC'ye gore bigimlendirilmis formu tartisilmistir.

Radyal olarak hizalanmig uzay aracinin dogrusal olmayan geri besleme

kontrolii Coulomb kol uguslar1 sayisal simulasyonlar vasitasiyla mevcut ¢alismada

vii



sunulmaktadir. Ayrica dogrusal olmayan optimum kontrol, Approximating
Sequence of Riccati Equations (ASRE) ve Duruma Bagli Katsayr Dogrudan
(SDC-Dogrudan) yontemleri kullanilarak gergeklestirilir. SDC-Direct yontemi, bu
tezde gelistirilen ve uygulanan bir yaklasimdir. Bu ¢alismada, bagimli katsayi
carpanlara ayirma ve Chebyshev polinomlar1 kullanilarak kisitli dogrusal olmayan
optimal kontrol problemlerinin  ¢ozimu igin  SDC-Dogrudan  yontem
tanitilmaktadir. Dogrusal olmayan problemi dogrusal-kuadratik ve zamanla
degisen yaklagik problemlerin bir dizisi ile degistirmek i¢in, Riccati
Denklemlerinin Yaklasan Sirasi olarak bilinen tekrarlayan bir yaklasim teknigi
kullanilir. Durum degiskenleri, Chebyshev polinomlarin kullanilarak genisletilir.
Ardindan, kontrol degiskenleri, durum degiskenleri ve tiirevlerinin bir fonksiyonu
olarak yazilir. Sinirlandirilmis dogrusal olmayan optimal kontrol problemi daha
sonra bir kuadratik programlama problemine donistiriilir ve kisith bir
optimizasyon problemi ¢oziiliir. Farkli son durum kosullari (belirtilmemis, kismen
belirtilmis ve tam olarak belirtilmis) ele alinmis ve bunlarin yeniden
bicimlendirilmesinde ve karsilastirilmasinda yaklasimlarin etkinligi sayisal

benzetimlerle gosterilmistir.

Anahtar kelimeler: uzay araci kol ugusu, Coulomb bagi, dogrusal olmayan

optimal kontrol, Chebyshev polinomlari, eniyileme
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CHAPTER 1

INTRODUCTION

1.1 Introduction and Literature Survey

Spacecraft flying in formation for carrying out interferometry missions, sharing
resources, or patching together sensor data to obtain a higher resolution observation
has been envisaged in the past. Among formation flying techniques, tethers were also
proposed. A Coulomb tether is similar to physical tether that uses coulomb forces to
keep spacecraft at close proximity [1]. This approach produces almost a propellant
less formation control [2]. Such formations with the charges loaded to the bodies,
create attraction and repulsion between these bodies. Natural charging of the
spacecraft is observed at even geostationary altitudes [3]. However, such coulomb
forces cannot change the inertial translational and rotational momentum of the
spacecraft [4]. The separation distance between two spacecraft is controllable by
using electrostatic forces that can utilize both attractive and repulsive forces between
spacecraft [5, 6]. Such charged Coulomb formations are unstable, and require
feedback control to be stabilized [1].

The dynamic analysis and optimal reconfiguration of two-craft Coulomb
formations at Earth circular orbits is presented and discussed in the literature [7]. The
orbit radial dynamic analysis of a two-spacecraft Coulomb formation at Earth-Moon
collinear and triangular libration points was previously addressed [8]. In addition,
reference [9] investigates the orbit radial stabilization of a two-craft Coulomb
formation about circular orbits and Earth-Moon collinear libration points in the

presence of solar perturbation effects using the Lyapunov feedback control method.



In the current thesis, the nonlinear feedback control of two-craft Coulomb
formations at Earth circular orbits and Earth-moon libration points using State-
Dependent Riccati Equations (SDRE) method are presented and discussed. In
addition, the State Dependent Coefficient (SDC) factorized optimal control methods
are developed and applied to these applications.

Furthermore, three-craft Coulomb formations are presented and studied in the
literature. The similarity between the gravitational and electrostatic spinning 3-body
problem to determine invariant shape solutions are addressed in the literature, and it
is shown that multiple invariant shape solutions might be possible for a single set of
craft charges [10]. In reference [11], the collinear equilibrium three-craft-formation
charge feedback control problem is studied. In that work, a Lyapunov-based
nonlinear control algorithm is developed to stabilize the formation to the desired
shape and size.

It is shown that for any desired collinear invariant shape geometry, there exists a
real charge solution. For a given set of charges, three collinear invariant shape
solutions are possible [12]. Through linear stability and shape analysis of spinning
three-craft Coulomb formations, with specific formation geometries, it is shown that
the in-plane motion may be marginally stable for the three-craft invariant shape
formations in circular trajectories [12]. Nonlinear feedback control of three-craft
Coulomb formation using the SDRE control method is studied in the current thesis.

It should be noticed that in the current work, the nonlinear equations of motion for
the two-craft and three-craft configurations are written in the SDC factorized form
suitable for the SDRE, Approximating Sequence of Riccati Equations (ASRE), and
developed SDC-Direct methods.

The SDRE method [13-16] is employed due to its simplicity and effectiveness in
many applications [17-21]. This method treats the original infinite-horizon, nonlinear
optimal control problem as an infinite-horizon pointwise linear-quadratic regulator
(LQR). A number of LQR problems are solved sequentially at each time instant.
This is done by using state-dependent matrices that are pointwise evaluated at each

time step. The SDRE method may also be used to solve finite-horizon optimal



control [16]; one such approach chooses the state-dependent matrices as functions of
the time-to-go [22].

Cimen and Banks [23, 24] introduced a method known as Approximating
Sequence of Riccati Equations (ASRE) which uses State Dependent Coefficient
(SDC) factorization and iterative Time-Varying Linear Quadratic Regulator (TV-
LQR) approximations to solve Unconstrained Nonlinear Optimal Control (UNOC)
problem with unspecified final states. The ASRE approach is applied to many
problems like maneuvering of two-craft Coulomb formations at Earth circular orbits
and Earth-moon collinear libration points [25, 26]. Topputo and Bernelli [27, 28]
solved UNOC problems with unspecified, partly specified, and fully specified final
states by using ASRE method differing in the way the time dependent linear
quadratic regulator problems are solved. Rather than integrating the Riccati equation
in [23, 24], the approach represented in [27, 28] integrates the Hamiltonian matrix
equation to obtain state transition sub-matrices which enables easy handling of
boundary conditons.

Many numerical methods have been used to solve nonlinear optimal control
problems in the literature using direct and indirect methods [29]. Indirect methods
stem from the calculus of variations [30]; direct methods use nonlinear programming
optimization methods [31]. One of the approaches for handling the direct methods is
based on parameterization. For the parameterization method, three different
approaches are implemented in the literature: parameterization of the state variables
[32], parameterization of the control variables [33], and parameterization of both
states and controls [34]. In the current thesis, the state variable parameterization
approach is implemented to approximate the states using Chebyshev polynomials.
Then, the state derivatives are derived from the state variables. To this end, the
control variables are obtained as a function of state variables and their derivatives.
The SDC approaches in [23, 24, 27, 28] involve unconstrained nonlinear optimal
control problems. However, Constrained Nonlinear Optimal Control (CNOC)
problems are more fit to applications [35-37]. A solution to CNOC problems using
Chebyshev polynomials which uses quasilinearization is presented in [35]. Elnagar

and Kazemi [36] proposed a method to generate optimal trajectories with linear and



nonlinear constrained dynamic systems. Their approach is based on the utilization of
Chebyshev polynomials to parameterize the system and transform the optimal
control problem to a nonlinear programming problem. Also in [37], a generic Bolza
optimal control problem with state and control constraints is solved using a direct
transcription method.

In the present work, replacing the original dynamic system by Time-Varying
Linear Quadratic Regulator (TV-LQR) problems using iterative ASRE method and
parameterizing the states by finite-length Chebyshev polynomials is proposed to
convert the constrained nonlinear optimal control problem into a constrained
quadratic programming problem. Jaddu and Majdalawi [38] solved nonlinear optimal
control problems using SDC factorization and Chebyshev polynomials. Their
approach is similar to that in the current thesis with three differences. First, there are
no constraints on states and controls in their work, the resulting quadratic
programming problem has linear equality constraints only, and is more easily solved.
Second, further Chebyshev techniques are used in that paper to form an analytical
approximation to the performance index, whereas in the current thesis numerical
integration is used. Third, there are no specified terminal states, while our approach
deals with three different final state conditions: hard constrained (final state fully
specified), soft constrained (final state not specified), and mixed constrained

problems (final state partly specified).

1.2 Work Outline

The remaining part of the thesis is organized as follows. The nonlinear equations
of motion for three configurations (orbit radial, along track, and orbit normal) of a
two-spacecraft Coulomb formation at Earth circular orbits are derived and converted
to the SDC factorized form in Chap. 2. The nonlinear equations of motion and their
SDC factorization of two-craft Coulomb formation at Earth-moon libration points is
derived and discussed in Chap. 3. Moreover, Chap. 4 presents the nonlinear
equations of three-craft Coulomb formation that are converted to SDC factorized
form. In Chap. 5, the ASRE approaches are presented and development of the SDC-

Direct method for solving constrained nonlinear optimal control problems using



state-dependent factorization and Chebyshev polynomials is given and discussed.
The SDRE method and its application to Coulomb formation flying through
numerical simulations is given in Chap. 6. In addition, Chap. 7 shows the numerical
implementations of the ASRE approaches and SDC-Direct method with application
to Coulomb tethered satellite formations. Application of SDC-Direct method to two
more problems is presented in Chap. 8 to compare the results of the developed

method with those given in the literature. Concluding remarks are given in Chap. 9.






CHAPTER 2

TWO-CRAFT EQUATIONS OF MOTION AND SDC
FACTORIZATIONS AT EARTH CIRCULAR ORBITS

2.1 Orbit-Radial Configuration

The problem of describing the relative motion of a two-craft Coulomb formation
is considered in this section. It is assumed that the formation center of mass is
rotating in an Earth circular orbit. Such equations are called Clohessy-Wiltshire
equations or Hill’s equations [39]. As shown in Figure 1, the center of mass of the

formation which is coincident with the points V" and B is in a circular orbit of radius
R with a constant orbital rate Q =«/G'V|e / RC?’ , Where G is the universal gravitational

constant and M e is the Earth's mass. Three reference frames are defined here. First,

an Earth centered inertial frame E£:{é,,é,,é5}. Second, a fixed reference frame
N:{n,, 7y, fis} with (x,y, z) coordinates which rotates with a constant orbital rate Q
with respect to the inertial coordinate system. The reference frame V' is sometimes
called Hill’s frame. The 7, axis is in the orbit radial direction, the 7, axis is aligned
with the along-track direction, and the 7i; axis is completing the right-handed
coordinate frame which is directed out of the orbital plane. The basis vectors of the €
frame are in the same direction of the V" frame. Third, a body-fixed reference frame
B:{by, b,, b5} which rotates with respect to ' frame. The angular velocity vector of
IV with respect to € is defined as

N=0"°¢=0h,=0¢ (2.1)



Figure 1. Representing formation configuration for two-craft Earth circular orbits.

The two-craft Coulomb formation is assumed to behave like a rigid body. The
relative attitude between the V" and B frames is defined using the 3-2-1 sequence of
Euler angle rotations. As illustrated in Figure 2, the Euler angles, v, 8, and ¢, are
yaw, pitch, and roll angles, respectively from Hill orbit frame to the formation body-

fixed frame.

ﬁ’z ﬁ,z ~ 11 ny

) :in plane " g 6: out of plane

I

n3

Figure 2. Euler angle representations.

The 3,2,1 sequence used in this manuscript is given by
N —->N"C;)

N'"—= N":C,(0)
N'" — B: C,(9)

where V' and "' are two intermediate reference frames with basis vectors
{n1, 75, A3} and {Ay, Ay, A5}, respectively. The C;, C,, and C, terms are rotation

matrices that are obtained as [40]



[ cosy siny O

C;:(Y) =|—siny cosy 0] (2.2)

0 0 1

[cos8 0 —sind

C,(0)=] 0 1 0 (2.3)
lsin0 0 cosf
1 0 0

Ci(p)=1|0 cosp sing (2.4)
[0 —sing cosg

Now, the direction cosine matrix of B with respect to V' or the rotation matrix

from V' to B is given as

CBN = C1(p) C,(0) C3(P) =
cos B cosy cos 0 siny —sin6

singsin@cosyp —cospsiny singsinf@siny + cos@cosyp sin@cos 0](2.5)
cos@sinfcosyp +sinpsiny cos@sinfsiny —sing cosy cos @ cosb
The satellites are assumed to be point masses, so the third Euler angle is

meaningless. The direction cosine matrix will be obtained as

CB/V =| —siny cos 0
sinBcosy sinfBsiny cosO

cosOcosy cosBOsiny —sinb
] (2.6)

Based on the information given in Figure 1, the relative distance of the two-craft
formation is shown by L and the masses m; and m, are located at the distances d,
and d, respectively with respect to the formation center of mass. Since the origin of
the Hill frame and formation center of mass are coincident to each other, the center
of mass is at the origin of V" and B frames such that

myd, + myd, =0 2.7)

For the orbit-radial configuration, the relative distance vector of the two-craft is
aligned with the orbit-radial direction. By analyzing the geometry of the formation,
one may obtain

L=1Lb, (2.8)

Substituting Egs. (2.8) and (2.9) into Eq. (2.7) gives



mq

m1d1 + mde = 0 il ml(L + dz) + m2d2 = 0 - dz = — L El (210)
my+my

and

d,=—2-Lb, (2.11)

mq+m,

The vector d; may be written in the Hill orbit frame in a matrix vector notation as

X1 5T T m;l_zmzL | [cosBcosip
[dilw = |Y1|=|C / | tdis=|cC ! | 0 =mTfm2 cos@siny|(2.12)
z 0 —sin6

Similarly, the position vector of the mass m, in the V' frame can be written as

X7 - B m::l-lmz Ly [—cos6cosy
[d2]y = [3’2 =[] 1dals = [¢7] 0 = i | — c0s 0siny|(2.13)
Z2 0 sin@

The inertial velocity of the crafts may be obtained by using the transport theorem
[40, 41]

d(Rc+d)) __ (d(Rc+d)) N/E )
{_dt }g _{—dt }N+ V€ x (R + d;} (2.14)

Defining the inertial velocity as v;, it is

d(Re+d)) o e M2 T . N
v, = {T}e = x;, + y;if, + Z;fi3 + 0 0 Q2|=(0;—Qy)n, +
xi+Re yi 7
(3: + 2(x; + R))A, + 275 (2.15)

The kinetic energy of the system is given by
T = %mlvl.vl + %mzvz.vZ (216)
Substituting Egs. (2.12), (2.13), and (2.15) into Eqg. (2.16) the required formula

for kinetic energy will be obtained as

T = lM(LZ +12 (62 + ( + 2)° cos? 9)) + 2 (my + my)02RE (2.17)

2mq+m,
where the separation distance between the two craft is given by
L=(x; = %)% + (1 = ¥2)? + (21 — 2,)? (2.18)

The gravitational potential of the Earth on the two-craft formation is written as

V= —GM, (i ) (2.19)

[Rc+dq| ~ |Rc+d;|
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The terms — — may be approximated by the Taylor series Expansions up to the

[Rc+d;|
second order terms. The results are given by

Foea = %(1 - ﬁ( ) (R..dy) +- (m1+m2 Ri)2 (3(R..dy)" - 1))(2.20)

IRCj-dzl - Ric<1 - mr,mz ( ) (R..d;) ++ (m1+m2 Ri)z (3(§C.az)2 — 1))(2.21)

where R, and d; are the unit vectors of the R and d,, respectively. So,

my

dl = My +my Ld1 (222)
— M g
d, = — Ld, (2.23)
where
d, = cos 0 cosPfi; + cos O sin fi, — sin 0 A (2.24)
d, = —cos 0 cosfi; — cos @ siny i, + sin 6 A, (2.25)

Now, V; may be rewritten as

<(m1 +my) + 1M(i) (3(R d,)" - 1)) (2.26)

2mq+my

The Coulomb potential of the system is

Ve =k zexp (;—j) (2.27)

where k. is the Coulomb constant and q; is the electrostatic charge of each
satellite. The term A, is called debye length which controls the lower bound on the
electrostatic field strength of plasma shielding between the craft and varies between
80 — 1400 meters at GEO.

The nonlinear equations of motion are derived using the Lagrange’s equations.
The Lagrangian function is defined as £ =T — V. The most famous form of the

Lagrangian equation is

————=0; (2.28)

where ¢/ = (L,3,0) withj = (1...3) and Q;’s are generalized forces.

11



The nonlinear equations of motion for orbit-radial direction of a two-craft

coulomb formation at earth circular orbits may be derived as
L—-1L (92 + (¢ + rz)2 cos? 6 — 0?%(1 — 3 cos? O cos? ¢)) = % (2.29)

Qv

mLZ cos? 60

1ﬁ—29tan9(1b+.(2)+2%(1/'}+.Q)+3.(226051/)sin1/)— (2.30)
o L - i . 2 Q
0+2-0+ cos@sm@((t/) +0)" +30%cos? 1/)) =m—§2 (2.31)

which are in agreement with the equations given in [7]. The terms Q;, Q,, and Qg

. . . m.m
are the generalized forces, and the constant, m, is defined as m =—-—*_ The
m +m,

Coulomb force, F,, acting between the two crafts is given by

Fop = =0, = —kc 22 exp (;—5) (1+ ;—d) (2.32)

The other generalized forces are defined by Q =F L and o — L where F, and
F, are the electric propulsion (EP) thrusting forces that introduce net formation

torques in the y and 6 directions. Note that to avoid any potential plume exhaust
impingement issues both the EP thruster forces are directed in orthogonal directions

to the formation line of sight wvector [7]. The inputs are

_kag. 5, B The Egs. (2.29)-(2.31) are rewritten as
m

L \Z

m m

L-L <92 + (P + !2)2 cos?0 — N%(1 — 3 cos? 6 cos? 1/))) =2 = bu, (2.33)
.. . . i ) F
Y —20tan6 (1,[) + .Q) + 22(1,0 + [2) + 302 cos P siny = mLc;psze Lcosze\ 2.34)

9+2%9+c0395in9((1/')+.(2)2+3.(226c0521/)) :%:uL—e (2.35)
where

=g (7)) (1)
2 &XP N N
Consider the following state and input vectors
x = (xq1, %y, X3, X4, X5, Xg)T = (L, Y,0,L, l/),é)T (2.36)

12



u= (uL,uw,ug)T (2.37)

The equations of motion will be written in the first order differential form as x =
F(x,u) which may be converted to an input affine form given by x = f(x) + B(x)u.
The equations of motion should cast into a state dependent form while making sure
that zero condition is an equilibrium point. The reason is discussed in Sections 5.1.2
and 6.1. Then, the equations are transformed to the SDC factorized form defined as
x = A(X)x + B(x)u. The equations of motion may be written in first-order

differential form as

X4
'J'cl] Xs
X, X6
X3 | _|x; (x62 + (x5 + )2 cos? x3 — 0*(1 — 3 cos? x, cos? x3)) n
X
x: -2 % (x5 +0) + 2xg tan x3 (x5 + ) — 30° cos X, SIn X,
‘xﬁJ | -2 i—‘l‘x(, — €0S X3 SinXx;3 ((x5 + 2)% 4 30% cos? xz)
0 0 07
0 0 0
0 0 0|y
b 0 0 [ud,] (2.38)
0 : > 0|lue
X1C0S* X3
0 0 —
L X1

By considering an equilibrium as
x=Fx,u) - F(x,,u,)=0 (2.39)

%e = (Lyer,0,00,00)" , u, = (u,,00,00,0) (2.40)

and defining new variables, X

¥=F®&+ x,,1+u,) (2.41)

X—Xg,andlii=u-—u,

One may get new representation of the first order differential equations given by

13



L X4
).Cl .7~C5
X X6
X3 | _ | (%2 + Lrer) (%62 + (s + 2)% cos? %3 — 02(1 — 3 cos? %, cos? %) )| 4
i4- X4 ~ ~ ~ [~ 2 ~ .~
% -2 Gortra)) (s + Q) + 2% tan X3 (Xs + 2) — 302° cos X, sin X,
[ X6 — (ﬁfzref) X¢ — C0S X3 sin X3 (Xs + 2)% + 307 cos? %,)
0 0 0
0 0 0 [ 0]
0 0 0 |ray, 8
b 0 0 i
; 0 X Ty |+, (2.42)
(Z1+Lyef) cOS? %3 Up 0
1
L o |
-0 0 (f1+Lref)-
The fourth element of the Eq. (2.42) is

The term £, may be rearranged as
fo= (%1 + Lyes) (5662 + (% + 2)% cos? %3 — N*(1 — 3 cos? &, cos? 9?3)) =
%1 (%67 + (s + 2)% cos? %5 — 02(1 — 3¢05% %, €052 %3) ) + Lyey (%6 +
(20%s + %5%) cos? %3) + Lyef0%(—3 sin? X, — 4 sin® X3 + 3 sin? &, sin? %) +
3Lyof02? (2.44)
The constant term in the Eq. (2.43), v, is given by

— kc(‘ll‘lz)e (2.45)

le =

where q,q, for charges for a radially aligned two spacecraft formation is [7]

Lie A Lye
(@192)e = —30°=%m (Lref‘i Ad) exp (22) (2.46)

c

which can be obtained from the Egs. (2.29)-(2.31) by putting all the parameters
L,L, 9,9, ¢, ¢, and $ equal to zero and defining L = L. Then, the equilibrium
input becomes

bule = 3Lref!22 (247)

Substituting Egs. (2.44) & (2.47) into Eqg. (2.43), the constant terms cancel each

other. There are infinite numbers of choices for SDC factorization. One such choice

14



of the A and B matrices that the pair of them is controllable and the controllability

matrix if full rank is given below.

r 0 0 0 1 0 0
0 0 0 0 1 0
o o o o o 1
A(X) = Ay Ay Az 0 Ay Ay (2.48)
0 52 0 Asy Ass Ase
0 0 Ay Ay, O 0
where
Ay = (3262 + (%5 + 2)? cos? X3 — N?(1 — 3 cos? %, cos? J?3))
- 25 L P02 &
A, = —3Lrefn2%, Auz = Lyep0%(—4 + 3 sin? xz)%
Ays = Lyop(%s + 202) cos?® X3, Aye = Lyep%e
~ — 2 ~ sin}?z ~ _ =20 ~ _ —2554_ ~ _ ~ ~
As, = —30% cos X, % , Agy = PV , Ags = Frtiey Ase = 2(Xs + Q) tan X3
Aoz = —((Fs + 0)? + 302 cos? %,) cos ¥ 2222 4, = —2%6
X3 X1t+Lyef
and
0 0 0
0 0 0
0 0 0
B =|b 0 0 (2.49)
0 S — 0
(Z1+Lyef) cos? X3
1
-0 0 (f1+Lref)-

2.2 Along-Track Configuration
Following the same approach presented in Sec. 2.1, the nonlinear equations of
motion for along-track configuration of a two-craft coulomb formation may be

written as

L-L ((,bz + (¥ + .(2)2 cos? @ — %(1 — 3 cos? ¢ sin? 1,[1)) = % = fef bu, (2.50)

m

-2 tang ( +02) + 25§ +0) — 302 cospsiny = 2= T

mL2cos2¢@  mLcos? g

Y (2.51)

Lcos? ¢

15



¢+2%¢)+cos<psin<p((1/)+.(2)2+3{225in21/1) =Q—‘P=F—“’=uL—"’ (2.52)

mL2 mL

where Q¢=F¢L, and F is the electric propulsion (EP) thrusting force that

4

introduce net formation torques in the @ direction. Consider the following state and

input vectors
. . \T
X = (xerer3rx4-; xS; x6)T = (LF l/)' (p; L; l/)' (P)

T
u= (uL,ulp,u(p)
For along-track configuration considering a reference separation distance between
the spacecraft and the equations as represented in (2.39)-(2.41), the state space form

of the equations of motion becomes

< - X4
X1 fs
fz 26
X3| = | (%1 + Lyey) (5662 + (%5 + 2)% cos? %3 — N?(1 — 3 cos? %5 sin? 562)) n
X4 N L % N o
% 2Xstan Xz (Xg +02) — 2 (flfzref) (X5 + 1) + 30% cos X, sin %,
[ X6 ] —2—% %, — cos X3 sin %z (Fs + 2)% + 302 sin? &,)
(x1+LT€f)
0 0 0
0 0 0 [ 0]
0 0 0 a1 |Puee
b (1) 0 iy |+ O (2.53)
0 ———— 0 i 0
(Z1+Lref) cos? X3 @ 0
1
L o |
-0 0 (721+Lref)-

The constant term in the Eq.(2.53), v, , for along-track formation is

w, =0 (2.54)

The multiplication term q,q, for charges for an along-track two spacecraft
formation becomes [7]

(Q1q2)along—track =0 (2.55)

In this formulation, f(0) = 0, and SDC factorization for along-track formation is

given as

16



r 0 0 0 1 0 0
0 0 0 0 1 0
o o o o o 1
A®) = Agp Ay Ay 0 Ays Age (2.56)
0 s2 0 Asy Ass Ase
0 0 Ay Ay, O 0
where
Ay = %% + (Fs + D)% cos? %3 — 0?(1 — 3 cos? %5 sin? &,)
~ P2 - L2
Ayy = 3Lyep02? cos? X3 Ly —Lrefﬂz%
Ays = Lyop(%s + 202) cos® X3 Aye = Lyop%e
~ - sin%, = 20 = 2%, s s
As, =30%cos %, SL;L:Z, Ag, = ET Ags = xﬁ::gf, Ase = 2(Xs + ) tan X3

2%

Ags = —((Fs + 0)% 4+ 302%5in %,) coS X3 =2 Agy = =
X3 x1+LT€f

The matrix B(X) is as the same as Eq. (2.49).

2.3 Orbit-Normal Configuration
The nonlinear equations of motion for orbit-normal configuration of a two-craft

coulomb formation are derived as

L—L(0%cos? ¢ + ¢? — 22 cos? ¢ cos? 6 + N0 sin2¢ cos 0 — 20¢ sinB) —
30%L cos? ¢ sin? 0 = A - bu, (2.57)
m m

6+ 2%9 — 290 tan @ + ZQ%tangocosé? + 20¢ cos 8 — 40? cos O sinf =
Q9 _ Fo _ Ug (258)

mL2cos2¢@  mLcos2¢@  Lcos?g

<p+2%(<p—ﬂsin9) + cos psing (6% — 0% cos? 6 + 302 sin?0) —
200 cos? ¢ cos 6 = % = % = uL—"’ (2.59)

Define new states and inputs as

x = (1, %2, X3, X4, %5, %6)T = (L, 0,0, L, 9,<p)T (2.60)

u= (uL,ug,u(p)T (2.61)
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For the orbit-normal configuration considering again a reference separation

distance between the spacecraft, the first order differential equations are given by

X1

X,

X1

A

Xs

[ %4 |

- %, .
Xs
X6

(%1 + Lres) %2 c0s? Xy + Xg? — 02 c0s? X3 c0S% Xy + 0Xs Sin 2% cOS Xy —
1 re ~ . ~ ~ . ~
! 20% sin X, + 302 cos? X3 sin? %,

Rt Lrey) (%1+Lref)

< 2 x—“fs + 2X¢Xstank; — 2.0 Ltam”é3 cos X, —>
20%¢ cos X, + 4007 cos X, sin X,

S S - (%g — 1 Sin%,) — cos X3 sin X3 (%> — N? cos? %, + 30% sin’ %, ) +
(Z1+Lrer)
1TLhref
| 20%< cos? X3 cos %, 1
0 0 0 7
0 0 0 07
0 0 0 4,1 |P%ee
b 0 S 1 Bl (2.62)
0 (R1+Lref) cos? %3 0 Ugp 0
1
_r L 0o
—0 O (fl"‘Lref)-

Now in the new form of equations the fourth entry in vector valued function f
simplifies as
fa = (F) (%% cos? %5 + %* — 02 cos? X3 cos? ¥, + NX5 sin 2%; cos X, —
20%g sin %, + 302 cos? Xz sin® %) + (Lyes ) (%s” cos? X3 + %6~ +
0%s sin 2%3 cos %, — 20%, sin %, + 3022 cos? %3 sin? %) —
Lyer2?(sin® %3 sin® X, — sin® X, — sin® ¥3) — Ly 02° (2.63)
The constant term in the Eq. (2.43),y;, , for orbit-normal configuration obtained

as

ul — kc(‘h‘?z)e (264)

€ m

where g, g, for charges for an orbit normal two spacecraft formation is [7]
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L;{e /1 Lre
(@102)e = 22 2L m (2 exp (42 (269)

Lref"'z-d

Then, the equilibrium input obtained as
bule = _Lref.Qz (266)

Substituting Egs. (2.63) & (2.66) into Eq. (2.62), the constant terms cancel each
other. Therefore, the equations are manipulated to the proper structure and the

necessary condition on f is satisfied. The following SDC factorization is used here.

0 0 0 1 0 0 7
0 0 0 0 1 0
0 0 0 0 0 1

A =4, (2.67)

0
Ags

5

[

Ay Az 0 a5 Az
52 56
0 0 |

D D I

Asy
A64 65
where

Ay = (%% cos? %3 + %> — 0% cos? %5 cos? X, + 0Fs sin 2%5 cos %,
— 20%¢ sin%, + 307 cos? %3 sin? %)

A,y = (L..02%)(3 cos? X, sin? X, — sin? %, sin® %, + sin?x,)/x
42 ref 3 2 3 2 2)/ %

sin®%; % - - .~ o
. 2, Ays = Lyes(Xs) cOS* X3 + Lyepf2 sin 2%3 cos %,
3

A43 = Lrefﬂz

sin X,

Ays = Lres (X — 202 sinX,), As; = 40% cos %, =
2

i ~2s 0— 1 tan®,cos®
54 = 3 - p anxs coS X,
X1 + Lref X1 + Lref

~ - I -~ = —2(Xe—N2sinX
Asc = 2%, tan X3, Asg = —20 cos Xy, Agy = ~2%e—0sinTy)
x1+Lref

sin X3

Agz = —((X)? — N? cos? %, + 30?% sin? %,) cos X3 —=,
63 5 Z

and the matrix B(X) is the same as given in Eq. (2.49).

19



20



CHAPTER 3

TWO-CRAFT EQUATIONS OF MOTION AND SDC
FACTORIZATIONS AT LIBRATION POINTS

3.1 Earth-Moon Collinear Libration Points

3.1.1 Orbit-Radial Configuration

The problem of describing the relative motion of a two-craft Coulomb formation
at Earth-moon collinear libration point is considered in this section. The masses of
two craft are infinitesimal with respect to the masses of two primaries, Earth and
moon. Since the orbital motion of the two primaries is not affected by the two-craft,
it is reasonable to assume a circular orbital motion for the primaries about their
center of mass (barycenter) showed by the point § in the Figure 3. The constant

angular velocity of the orbital motion of the two primaries is given by

Q:\/G(M1+ M 2)/D3 , Where G is the universal gravitational constant, M; and M, are

the masses of the Earth and moon, respectively and D is the constant relative
distance between them. An inertial frame with its center at the barycenter is defined
here as §:{é,, é,, €3} with (X,Y,Z) coordinates, which its axes are aligned with the
Earth centered inertial frame, £:{é,, é,,é;} defined in the Section 2.1 and just its
center is different. The other coordinate systems are N:{f,,7,, 73} and
B:{by, b,, b3} frames which are also defined in the Sec. 2.1. Note that in this section,

the centers of Hill’s frame V" and Body frame B are located at the L, libration point.
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Figure 3. Formation configuration at Earth-moon collinear libration point.

The angular velocity is defined as

N=0""5=0"°¢=0n,=0eé, (3.1)

For the Earth-moon system, the parameters showed in Figure 3 are given by [40]

km?3
iy = GM; = 398,601—

km3
Uy = GMZ = 48875—2

M, = 81.3045M,

D = 384,748 km
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D; =0.01215D = 4674 km

D, = 98785 D = 380,073 km

rad
N =2.661699 X 10_6T

The two-craft Coulomb formation is assumed to behave like a rigid body. The
relative attitude between the N and B frames is represented using the 3-2-1
sequence of Euler angle rotations. As illustrated in Figure 2, the Euler angles are
defined as i, 8, and ¢, which are yaw, pitch, and roll angles from Hill orbit frame to
the formation body-fixed frame. The details about rotation matrices are given in the
Sec. 2.1.

The satellites are assumed to be point masses, so the assumption ¢ = 0 is applied
to the rotation matrix and the new direction cosine matrix used in this thesis will be
obtained as

cosBcosyy cosBOsiny —sinb
CB/V =| —siny cos 0 (3.2)
sinfcosy sinfBsiny cos6

The positions of two primaries in the Synodic frame are given by (—D,,0,0) and
(D,,0,0), respectively. The planar position of the collinear libration point L, in the
Synodic frame § is given by (X,, 0,0). So, the planar position vector of the libration
point L, from the two primaries in the Synodic frame becomes

R, = (X, + D,)é; + 0ée, + 0é, (3.3)

R2 = (XO - DZ)él + 0@2 + Oé3 (34)

Based on the information represented in Figure 3, the relative distance of the two-
craft formation is shown by L and the masses m, and m, are located at the distances
d, and d, respectively with respect to the formation center of mass. Since the origin
of the Hill frame and formation center of mass are coincident to each other, the
center of mass condition may be represented as

myd, + myd, =0 (3.5
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For the orbit-radial configuration, the relative distance vector of the two-craft is
aligned with the orbit-radial direction. By analyzing the geometry of the formation,
one may obtain

Substituting Egs. (3.6)-(3.7) into Eq. (3.5)gives

m1d1 + m2d2 = 0 - ml(L + dz) + mzdz == 0 - d2 == _mn_:jn L Bl (38)
1 2
and
_ M2 T
d, =" LB, (3.9)

Vector d, in Hill orbit frame in a matrix notation may be written as

X1 BT — mlrizmz _ [cos@cosy
[dily = |¥1| = [C7"] [dils = [C*"] 0 | = mimg |cosOsiny|(3.10)
21 0 —sin6

Similarly, the position vector of the mass m, in the " frame can be written as

X2 - - —acl] | [~cosBcosy
[da]y = [yzl =[c®™] 1dalp = [C*7] 0 = st |~ €05 O siny|(3.11)
VA 0 sin@

The inertial velocity of the two-craft may be obtained by using the transport
theorem [40, 41]

d(Rc+d;)] _ [d(Rc+dy) N/S )
[t }g_{—dt }N+ Q"5 X (R + d;}y (3.12)

Defining the inertial velocity as v;, it is

d(Rerd) Ay f, fi3

+a; PN . A PN 5 ~

P = {#}5 =Xy +yifl, +ZiAiz +| 0 0 0|=(—02y)A, +
xi+Re yi z

(y: + 2(x; + R))A, + 275 (3.13)

The kinetic energy of the system is given by

T = %mlvl.vl + %mzvz.vZ (314)

Substituting Egs.(3.10), (3.11), and (3.13) into Eq. (3.14)the required formula for

kinetic energy will be obtained as
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= 1Mz (L2 + 12 (62 + (4 +2)° cos 9)) +§(m1 +m,)2*RE (3.15)

2 m1+m2
where the separation distance between the two craft is given by
L =0 = x2)2 + (y1 = ¥2)? + (21 — 2,)? (3.16)

The gravitational potential of the Earth-moon on the two-craft formation is

written as
—_ _ my mpy _ my m,
V;’ - GMl (|R1+d1| + |R1+d2|) GM2 (|R2+d1| + |R2+d2|) (3'17)
The terms may be approximated by the Taylor series expansions up to the

IR; d1|

second order terms. The results are given by

= (12 () R + 12 ) (32 1) )

Ri+d;| R%(l _m::mz( )(Rl dy) +3 (mﬁmzé)z (3(R1 d,) -

(3.19)

)
= (12 () (R ) + 12 ) (R ) 1) Je20)

(1 () (o) 42 () (3R ) - 1) Jo2

where R; and d; are the unit vectors of the R; and d;, respectively. So,

d1 = m1+m2 Ld1 (322)
—_M 3
d, = — Ld, (3.23)
where
d, = cos 0 cos P, + cos @ sin fi, — sin O A (3.24)
d, = —cos 0 cosyfi; —cos O sinyfi, + sin O i, (3.25)
Now, V, can be rewritten as
1 L
by = =22y +mp) + 225 (L) (3(R,.,) - 1)) (@nl Fmy) +
1 mym, L = = \2
2myamy (R—Z) (3(Rz- dy) — 1)) (3.26)
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The Coulomb potential of the system is

Ve=k. % exp (;—dL) (3.27)

where k. is the Coulomb constant and q; is the electrostatic charge of each
satellite. The term A, is called debye length which controls the lower bound on the
electrostatic field strength of plasma shielding between the craft and varies between
80 — 1400 meters at GEO.

The nonlinear equations of motion are derived using the Lagrange’s equations.
The Lagrangian function is defined as £L =T — V. The most famous form of the
Lagrangian equation is

d oL oL _
42y (3.28)

where ¢/ = (L,,0) withj = (1...3) and Q;’s are generalized forces.
The nonlinear equations of motion for orbit-radial configuration for a two-craft

Coulomb formation at Earth-moon collinear libration points are derived as

L-L (92 + (¥ + (2)2 cos? 0 — %a(1 — 3 cos? 6 cos? lp)) =2 (3.29)

m

Qp

Y —20tand (P +0) +zz(¢+n) +30%0 cos P siny = —=L—— (3.30)
9+2£9+cos€sin0((zﬁ+ﬂ)2+3Qzacosz¢)=Q—9 (3.31)
L mL2 '

which are in agreement with those given in [8]. The constant, m, is defined as,

mlmZ 2 1

m= , and the mass ratio p is defined as p = ,and 1-p=

m, +m, M, +M, M, +M, "

The parameter o is defined as

1-p P
= + (3.32)
E)+o" |(B2)-1+o]

Note that if o=1, the Egs. (3.29)-(3.31) would be exactly the same as the

equations of motion for radial direction of a two-craft coulomb formation in circular
Earth orbits represented in Egs. (2.29)-(2.31). The terms Q.,Q,Q, are the

generalized forces associated with L, y and 0, respectively. For a two spacecraft
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Coulomb formation, with F¢ being the Coulomb force acting between the two crafts,

Q =-F,, we have

Fep = —k, qigz exp (;—i) (1 + ;—d) (3.33)

And Q =FL and Q =FL where F and F, are the electric propulsion (EP)

thrusting forces that introduce net formation torques in the y and 0 directions. Note
that to avoid any potential plume exhaust impingement issues both the EP thruster
forces are directed in orthogonal directions to the formation line of sight vector. The
equations of motion should cast in to a state dependent form while making sure that

zero condition is an equilibrium point. Consider the following state and input vectors
x = (X1, %y, X3, X4, X5, Xc)T = (L, Y, 0,L, ll},é)T (3.34)
u= (uL,uw,ug)T (3.35)

By considering an equilibrium as
x=Fx,u) - F(x,,u,) =0 (3.36)

%e = (Lyes0,0,000)" , u, = (1,,0,000,0)" (3.37)

and defining new variables, X = x — x,, and i = u — u,, we have
X =F&+ x,, U+ u,) (3.38)

The state space equations of motion in new definition for state and input variables

may be written as
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L X4
).Cl .52:5
X X6
9?3 — (%, + Lyer) (3?62 + (X5 + 2)? cos? X3 — N?0 (1 — 3 cos? %5 cos? 9?2)) n
i4- ~ ~ ~ X4 ~ 2 ~ .o~
%< 2Xstan Xz (Xs +02) — 2 Grrtrey) (%s + 2) — 30°0 cos X, sin X,
[ X6 —2—% %, — cos X sin¥s; (Fs + 2)% + 30%0 cos? &)
(x1+LTef)
0 0 0
0 0 0 [ 0]
0 0 0 |ray, 8
b 0 0 i
: 0 . Ly |+ pu, (3.39)
(Z1+Lyef) cOS? %3 Up 0
1
L o
-0 0 (f1+Lref)-
The fourth component in Eqg. (3.39) can be shown as
The simplified form of £, (%) is
(B =%, (9?62 + (X5 + 2)? cos? X3 — N?0 (1 — 3 cos? %5 cos? 9?2)) +
Lyes (%6 + (20%s + %5°) cos? %3) + Ly 2% (— sin® %3 + 30(—sin® X, —
Sin® X3 + sin® X3 sin® %) + (20 + 1)Ly 02° (3.41)
The constant term in the Eq. (3.40), U_ , is
uLe — kc(qr;‘h)e (342)

By putting all the parameters L, L, ¥, ¥, Y, ¢, @, and ¢ equal to zero and defining
L = Ly¢s in Egs. (3.29)-(3.31), the q,q, term for charges for a radially aligned two

spacecraft formation is given by

Orer = (Gr12)e = —(20 + )02 2Ly (24 o (2<)  (343)
ref q192)e ke Lref‘Md (4 Ad .

Then, the equilibrium input becomes

bu,, = (20 + 1)Ly 02? (3.44)
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So, the system is conformed to the proper structure and conditions (f (x)ec’(T)

with f(o):o, without bias term) such that a suitable form for applying state
dependent factorized control methods is obtained. There are many choices for SDC

factorization, where the f(X)is converted toA(%)X. One such choice is given

below.
0 0 0 1 0 0
0 0 0 0 1 0
|0 0o o 0 o0 1
AR) = Ay A Az 0 Ays Age (3.45)
0 52 ~0 1‘}54 55 4se
0 0 Ay A, O 0
where
Ay = (9?62 + (%5 + 2)? cos? %3 — N?0 (1 — 3 cos? %5 cos? fz))
Ay = =3Lyep020°%2 A, = 1, 02(—1 + 30(—1 + sin? &,)) S22
. N - - -20
Ays = Lyep(Xs + 202) cos? %3, Ay = Lyep¥g, Asa = Frtlror
As; = —30%0 cos % 2222 fog = —224 Age = 2(%s + ) tan %,
2 X1+L ef
Agy = x_ffe ,Aez = —((&s + 2)* + 302%0 cos? %,) cos %3 — s
1TLhref
and
0 0 0
0 0 0
0 0 0
B®) =|b <1) 0 (3.46)
0 0

(Z1+Lyef) cos? X3
0 0

1
(9?1+Lref)-

3.1.2 Along-Track Configuration
Following the same approach presented in Sec. 3.1.1, the nonlinear equations of
motion for along-track configuration for a two-craft coulomb formation at Earth-

moon collinear libration points may be written as
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L-L ((/’)2 + (¥ + .(2)2 cos? @ — 0% (1 — 3 cos? @ sin? 1/))) = % (3.47)

- 29 tang (4 + 0) + 22 (4 + 2) — 30%0 cos P siny =Q—”’(p(3.48)

mL2 cos?

@+ 2%<p + cos @ sin g ((1/) + [2)2 + 3020 sin? 1/1) = 2o (3.49)

mlL?
where Qw =FL ,and F, is the electric propulsion (EP) thrusting force that introduce

net formation torques in the ¢ direction. Note that if o=1, the Egs. (3.47)-(3.49)

would be exactly the same as the equations of motion for along-track configuration
of a two-craft coulomb formation in Earth circular orbits. Defining the states and

inputs as
. . \T
X = (xl,xz,x3,x4,x5,x6)T = (L' l/}' (p'L' l/), (p) (350)
u= (uL,uw,u(p)T (3.51)

By using the same procedure at the previous section, one obtains

. X4
).Cl fs
fz 26
933 — (& + Lyey) (5662 + (% + 2)? cos? %3 — N?0(1 — 3 cos? X5 sin? 9?2)) n
x ~
f‘; 2%, tan %5 (¥ + ) — 2 (flfzref) (%s + ) + 30%0 cos %, sin &,
| %] —2— %, — cos Xy sinFs (Fs + 2)2 + 30%0 sin® %,)
(X1+Lref)
0 0 0
0 0 0 0 7
0 0 0 |ra, 8
b 0 0 i
. 1 0 Ifll) + buy, (3.52)
(Z1+Lyef) cos? X3 Up 0
1
L o |
-0 0 (721+Lref)-
The fourth component in Eq. (3.52) can be written as

The simplified form of £, (%) is given by
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(@) =%, (5662 + (X5 + 2)? cos? %3 — N%0(1 — 3 cos? X3 sin® 9?2)) +
Lyes (%6 + (20%s + %5°) c05% %3) + Ly 2% (— sin’ %5 + 30 (sin? %, —
Sin? X3 sin® %) + (1 — 0) Ly 2?

The term, uLe LIS

_ kc(q192)e

uLe— ™

where q,q, for charges for an along track formation is obtained as
Lie —Lye Lye
Ores = (@102)e = (0~ DO* I exp (572) (1+52)

Then, the equilibrium input becomes
buLe = (1 - O')Lrefﬂz

Again, among many choices for SDC factorization, the following is selected.

0 0 0 1 0 O0F
0o 0 0 0 1 0
- o 0 o0 o0 o0 1
A(x) - A41 A42 A43 0 A45 A46
0 52 0 A54 55 56
[0 0 Ay Ay, 0 0

where
Ay = (9?62 + (%5 + 2)? cos? %3 — N%0 (1 — 3 cos? X5 sin? J?z))

2 ~ ~ . 2 ~
2"2, Ays = Loop22(—1 — 30 sin® %,) ==

sin Si
X X3

Ay = 3Ly p %0

Si fz

n
%2

Ays = Lyos (X5 + 202) cos? X3,A46 = LyerXe, As; = 30%0 cos %,

~ -20 7 _ —2%

Ac, = Acs = VA = 2(X5 + Q) tan %,

f1+Lref, f1+L‘r‘ef

= ~ , ~ ~ SinXsz
Agz = —((&s + 2)? + 30%0 sin? %,) cos X3 —=, Agy = =
X3 x1+Lref

—2%¢

The matrix B(X) is given by Eq. (3.46).
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3.1.3 Orbit-Normal Configuration

The nonlinear equations of motion for orbit-normal configuration of a two-craft
coulomb formation at Earth-moon collinear libration points are obtained as
L—L(62cos? ¢ + ¢? + 22 — 0% cos? ¢ cos? 0 + N0 sin2¢ cos 6 —

20¢ sinf) + N*L o(1— 3 cos? ¢ sin?0) = % (3.59)

6+ 2%9 —2¢0tan @ + ZQ%tan(pcosﬁ + 20¢ cos 0 — 2? cos O sinf —
30%0 cos 0 sinf = —20 (3.60)

mlL2 cos? ¢

¢+ 2%(([) — 0sinB) + cos psing (02 — 0% cos? 0 + 30%0 sin? Q) —
200 cos? ¢ cos 6 = 2o (3.61)

mL2

Note that if o=1, the Egs. (3.59)-(3.61) would be exactly the same as the equations
of motion for orbit-normal configuration of a two-craft coulomb formation in Earth

circular orbit. Define new states and inputs as

x = (xq1, %y, X3, X4, X5, Xc)T = (L, 0,0,L,6, (,’o)T (3.62)

u= (uL,ug,uq,)T (3.63)

The following equations are obtained
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X4
X5
X6
A %s? cos? %y + Xs? + 0%(1 — cos? %5 cos® &,) +
% (%1 + Lyey) 0X Sin 2%; cos X, — 20% ¢ sin &, —
3 N%0(1 — 3 cos? %3 sin* %,
3 ~ -
= _ X4 ~ ~ o~ ~ X4 ~ ~ +
J.C4 ( 2 Girlro)) X5 + 2XgXstanks — 2.0 Gitlro)) tanks cos X, )
9?5 20% cos X, + 0% cos X, sin%, (1 + 30)
5% P
Gt (X% — 2sinx,)
cos %3 sin¥3 (¥s° — 0% cos? %, + 30%0 sin? %,) +
20%s cos? X3 cos X,
0 0 0
0 0 0 [ 0]
0 0 0 i 8
b0 0 |la|+], (364)
0o — 0 i Uie
(Z1+Lref) cos? X3 ¢ 0
1
0 0 - 0 -
L (f1+Lref)-

Here g, q, for charges for an orbit normal configuration becomes

Lie _Lre L-re
Qref = (9192) orbit-normal = O 02? —fexp (Tf) (1 + /l_df) (3.65)

mk¢

By following the similar procedures that is used in Sec. 3.1.1, we have

0 0 0 1 0 0°-
0o 0 0 0 1 0
. 0 0 o0 0 0 1
A(X) = A41 A42 A43 0 1‘145 A46 (3.66)
0 1452 0 A54 ASS ~56
0 A, 0 Ay Ags 0
where
A41
(%5 cos? &3 + %6 + 0%(1 — cos? %3 cos? X,) + DX sin 2% cos X, — 20%¢ Sin ¥, —
B < N?0(1 — 3 cos? %3 sin? %,) )

A4y = (Lrep?) (30 cos? %3 sin? %, — sin? X3 sin’ X, + sin® %,) /%,

. 2%, ~
Ayz = Lyopf2? 5";3’63, Ays = Lyop(Xs) cos? Xz + Lyop) Sin 2X5 cos %,

33



sinX,

A46 = Lref(fﬁ — 20) sin fz), ASZ = ..(22 cos fz (1 + 30-)

b7
~ —2X 1 ~ ~ ~ ~ ~ ~ -
Agy = ———— 20 = tanX; cos X,, Ass = 2Xg tan X3, Asg = —2(2 cos X,,
x1+Lref x1+L,-ef
~ - N L _ SinXks
Agz = —((%5)? — % cos? %, + 30?0 sin? %,) cos X3 —

3

~ _ —2(3?6—.(25inf2)

Agy = , Ags = 200 cos %, cos? %,

9?1+Lref

In addition, the matrix B(X) is the same as given in Eq. (3.46).

3.2 Orbit-Radial Configuration at Earth-Moon Triangular Libration Points
The nonlinear equations of motion of an orbit-radially aligned two-craft Coulomb
formation at Earth-moon triangular libration point is derived and discussed in this
section. The procedure is similar to that presented in Sec. 3.1.1. The formation center
of mass is located at triangular libration point L, as shown in Figure 4. The planar
position of the point L, in the Synodic frame § is given by (X,,Y,, 0). The planar
position vector of the libration point L, from the two primaries in the Synodic frame
becomes

R1 = (XO + Dl)él + Yoéz + Oé3 (367)

RZ = (XO - Dz)él + Yoéz + 0@3 (368)
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Figure 4. Formation configuration at Earth-moon triangular libration point.

The kinetic energy and Coulomb potential energy equations are the same as those
represented in Sec. 3.1.1. However, the gravitational potential energy is different
from that represented in Eq. (3.17) because the vector R; is in Synodic frame and d;
is given in Hill’s frame. Since the Synodic frame and Hill’s frame are not aligned to
each other in this section, it is necessary to convert the R; vector from Synodic to

Hill coordinate system using the transformation matrix

cosa sina O
(3.69)

cV/s = [—sina cosa 0
0 0 1

So, the planar position vector of the libration point L, from the two primaries in

the Hill’s frame becomes
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R, = ((Xo + Dy) cos a + Yy sina)fi, + (—(X, + D,) sina + Y, cos a)fi, + 07i5(3.70)
R, = ((Xo — Dy) cos a + Yy sina)fty + (—(Xo — Dy) sina + Y, cos a)t, + 0fi3(3.71)
where the magnitudes of the vectors are
For the triangular libration point L,, we have [40]
Xo=(—0.5)D (3.74)

Yo =20 (3.75)
The nonlinear equations of motion for a two-craft coulomb formation at Earth-
moon triangular libration points in orbit-radial configuration become
L-1L (92 + (P + .(2)2 cos? 0 — .(22) — %L.Q2 cos?0 ((1—p)(Agcosy +
By sin)? + p(Cy cos Y + D, sinh)?) = % (3.76)

¢—29tan9(1/5+!2)+2%(1/)+.Q)—%.(22<(1—p)(AaBa60521/J+

BZ-A% . DZ—C3 . Q
—5sin le) +p (CaDa cos 21 + ———=sin 21!})) = Wlﬁsze (3.77)
6 + 2%9 + cos 0 sin 6 ((1/) + .(2)2 + %[22((1 — p)(A, cos P + B, sin)? +
p(C,cosy + Dy sin 1/))2)) = % (3.78)
where
A, = cosa +/3sina C, = —cosa + \/3sina
B, = —sina + /3cosa D, = sina +/3cosa

Now by using the new state and control variables defined in the Egs. (3.34)-(3.38)
, One may get
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o ooco

=

(F1+Lre) | 2 g2 cos 5, ((1 — p)(Aq cOs %, + By sin%,)? +>
4

/ 2Xstan Xz (s +0) — 2 ——=— (%5 + Q) + \ n

-
4

(1-p) (AaBa cos 2%, + B“;A“ sin 2%2) +\ |

(X2 + (X5 + Q)% cos?x; — N?) +

p(C, cos %, + Dy sinX,)?
X4

(f1+LTef)
2 2

2_ 2
P (CaDa cos 2%, + D“ZC"‘ sin 29?2)

i (Xs + 0)% +
(flfzref) X¢ — COS X3 Sin ¥4 3 2 ((1 —p)(A, cos X, + B, sinx,)? +)
. . 4 p(C, cos X, + D,y sin%,)?
0 0 0 7
0 0 |ra, 8
0 0 tae]|+{py (3.79)
- 0 i Le
(Z1+Lref) cos? X3 ¢ 0
1
L 0
0 (f1+Lref)-
The fourth component in Eq. (3.79) can be shown as
Xy = f[4(®) + bl + buy, (3.80)

The simplified form of f, (%) is given by

fi@® = £1(%2 + (& + 2)? cos? %3 — 02) + 2%,0% cos? %3 ((1 — p)(Aq cos %, +

By sin%,)? + p(Cy coS %y + Dy SiN%y)?) + Lo (X2 + (X2 + 2%502) cos? X3) +
%Lrefﬂz cos? %3 ((1 — p)(Ag B, sin 2%, + B2 sin? %,) + p(C,D, sin 2%, +

DZsin? %;)) + Lyep0? sin® %; (—1 — % (1 —sin? %,) (A% — pA% + pCé)) +
ZLref.(Zz sin? X, (—A% + pA% — pC?2) + %Lrefﬂz (1 +2sin?a ++/3sin2a (1 —
2p))

(3.81)
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The constant term in the Eq. (3.80), U,_, is

y, = kl@rtz)e (3.82)

e m
where q,q, for charges for a radially aligned two spacecraft formation is obtained
as

Qref = (thz)e = _%(1 +2sin* a + \/§Sin 2a (1 -

Zp))ﬂzi—ifm( Ad )exp (L;—Zf) (3.83)

Lref""ld

Then, the equilibrium input becomes
bu,, = ZLref.Qz (1 + 2sin®a ++/3sin2a (1 — Zp)) (3.84)
Substituting Egs. (3.81) & (3.84) into Eq.(3.80), the constant terms cancel each

other.
The fifth component of Eq. (3.79) may be simplified as

2 - L ¥ - 3
fs(X) = 2% tanX; (X5 + 2) — Z(Qzlf—zref)(xs + ) +ZQZ ((1 —

2

2_ 2_r2
p) (—2A4Bq sin? %, + 2= 5in 2%, ) + p (—2CoD, sin? %, + 2= sin 2@)) +

2!22 (sin 2a + /3 cos 2a (1 — Zp)) (3.85)

The last term in Eq. (3.85) is a constant term and its value is

20? (sin2a + V3 cos 2a (1 - 2p)) = —0.108421 x 1074 (3.86)

and its effect is negligible on the differential equations and will be dropped from

the equation. There are many choices for SDC factorization where the term f()”() is

converted to A(X) X. One such choice, which is used in the numerical simulations, is

given as
r 0 0 0 1 0 0
0 0 0 0 1 0
- 0 0 0 0 0 1
A(X) = A41 A42 1443 0 A45 A4—6 (3.87)
0 A, ~0 1‘}54 0 Asg
L 0 0 Ag Ags O 0
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where
Ay = (&2 + (Fs + )% cos? %3 — N?) + %.(22 cos? %, ((1 —p)(A, cos %, +
B, sin%,)% + p(Cy cos %, + Dy sin %,)?),
Auy = ELrefQZ cos? %3 ((1 — p) (244 B, cos %, + B2 sin%,) + p(2C, Dy cos %, +

DZ sin xz)) SLE %Lref.(zz sinX, (A% + pA% — pC2) %,

sin? x3

A43 = Lref!22 (_1 - % (1 — sin? fz)(Az pAZ + pC2)>
Ays = Lyep(Fs + 20) cos? %3, Aye = Lyes%e

Ag, = E.Qz((l — p)(—2A,B, sin%, + (B2 — A2) cos %,) + p(—2C,Dy sin %, +
(D2 — C2) cos xz)) sinty.

—2(%5+0) —2%¢
5T A = 2(Re + D) tan ks, A, =
Fotlyey ' £156 (%s ) 3 Aea = Frtlres

Asy =

Ags = —cos %3 ((9?5 + 1)+ 3[22((1 —p)(A, cos %, + By sin%,)? +
p(C, cos X, + Dy sin%,)? )) nxs

In addition, the matrix B(%) is the same as given in Eq. (3.46).
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CHATER 4

THREE-CRAFT EQUATIONS OF MOTION AND SDC
FACTORIZATIONS AT DEEP SPACE

4.1 Planar Three Bodies Dynamic
The notation presented here is similar to that used in [12]. Consider a formation of

three charged craft operating in deep space as shown in Figure 5.

ma, qz
sz
X/j%: q3
Is :
I'io r
I3
my, qi

Figure 5. Three-craft Coulomb formation [12].

Also, consider a collinear configuration of craft, as shown in Figure 6.

(T
mi,qi w() mao, g2 ms3, q3
O fa--O0
T T
12 T23

Figure 6. Collinear invariant shape Coulomb formation [12].
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The frame B: {b,, b,, b5} is aligned such that the craft 1 is confined to the b, axis

for all time, while the craft 2 and 3 are free to move about in the 61 —62 plane. The
origin of the B frame is aligned with the center of mass of the formation, and the
frame rotates about this point as craft 1 moves around the center of mass. This
configuration is shown in Figure 7. Here, only planar dynamics are derived. The

angular velocity of the B frame relative to the inertial frame is, w®/? = 6b,.

Figure 7. The rotating B frame

In the absence of plasma shielding effects, the Coulomb forces experienced on

craft ‘i’ is expressed as

_ 3 qidj
Fi =21 jzikc—5 & (4.1)
ij

Where K, =8.99x10°Nm / C? is the Coulomb constant, J; is the charge on craft

i, and éji is the unit vector from craft j to craft i.

The nonlinear equations of motion for craft 1, 2 and 3 in a planar 3-body dynamic

configuration may be written as [12]

X = k;zl (CI2 xgzxz + 43 x;;f) + x, 6% (4.2)
6=— % (QZ r}i_;z +q3 :1733) - ZZfl (4.3)

% = T2 (05 + 4575 (4.

V2 = k;zz (%ZTZ"‘%%)"‘YZQZ — x,6 — 2,60 (4.5)
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. ke - - : 5o

% =5 (g, g "1233"2) + 2362 + y;0 + 29,0 (4.6)
. :kc%( Y54 y3_y2)+ 0% — x50 — 2x50 4.7)
V3 " 41 3 az 3, V3 3 3 -

Note that these equations imply an 11-dimensional state space, described by the

state variables
X = (xl»xl:xz’xz’h,)"z:x3:553,)’3:5’3,Q)T (4.8)
The inputs are defined as
u = (U, up,u3)" = (K192, ke G293, kcq193)" (4.9)

By using the states and inputs defined above, the equations of motion may be

written in state space form as
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maxy
0
V2 X2
(5)+7
0
1 (yzys)
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miXxq
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mix,

4.2 SDC Factorization Form

Y2

Ti2

2
(YZ
3

Ti2

)

)

o O © O ©O B, O oo o

(e}

1 X3—X2
ms \ 135
0
1 (y3—y2

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0
62 0 24 9
X1
o 0 0 1
h 20 6% 0
X1
0 0 0 0
0
2529
my 7”133
0
1 V23
_m1x1 (E)
0
X2 V3
mqXq (z)
0
L (a1 (3
m3( T35 ) myxq (rf’g)
0
1 (y3 1 (x3y3
s (a) to (E)

=)
mqixq 1"133

|

Uy

Us

|

S O O

0

(4.10)

The above formulation is applicable if, f(0) = 0. Thus, a state dependent

factorization is necessary while making sure that, f(0) = 0. However, an

investigation of Eq. (4.10) indicates that there are singularities when x = 0. This

problem can be solved by considering

x=Fx,u) » F(x,,u,) =0

(4.11)

. \T T
Xe = (%1,,0,%,,,0,0,0,x3,0,0,0,6.) , u=(us,u,uz,) (412)
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Considering a reference separation distance between three spacecraft, Eqg. (4.10)

may be written as

% =A% + B@u

(4.14)

There are infinite numbers of choices for SDC factorization. One such choice is

given below.
'~0 1 ~0 0 0 0 ~0 0 0 0 ~0 T
21 0 Ajs 0 0 0 Ayy 0 0 0 Ayqq
0 0 0 1 0 0 0 0 0 0 0
A41 0 A43 0 A45 A4-6 A4-7 0 A49 0 A411
o 0 o0 o0 0 1 0 0 0 0 0
AX) ={ 0 Ag 0 Aes Aes 0 0 0 Ago 0 0 |(4.15)
~0 0 ~0 0 ~0 0 ~0 1 ~0 ~0 ~0
A81 0 A83 0 A85 0 A87 0 A89 A810 A811
o 0 o0 0 0 ©0 0 0 o0 1 0
O A102 O 0 A105 0 O A108 A109 0 0
0 Ay, O O Ay O O 0 Ay O O
Where
i 2 56 A Me  TUsez _ LTl 7 1 Use
A21 =07+ 2996 + 93 + my i my 3 ’A23 h my 'A27 - my i3
~ 2 . ~ 1 u e 1 u e 1 u e
A211 = Hxle + Zeexle,A41 = _m_zi A43 = 92 + 299 + 9 + my T'jz ngzg
~ _ 2(§+93)X1 1 ule ~ A 2 (é‘ + 6 ) A _iuze
45 (9?1+xle) ml(x1+xle) T' yZ’ 46 e )ia7 — my f'23
o 1 us, 2(6+6.)
Ay = _mr J’Z,A411 = 9X2 + 26 Xze,Aez = Gatmn )(xz + X3 )
~ — ~ , _ N2 _& 1 uze (fz"‘JCze) E
Aoy =—2(0+6,.)As = 07 +200,+06," + P et fore e b
~ 1 uze (9?2+X2€,) & ~ _ _iﬁ _iuze
Aso = = my T3 My (F1+21,) f13’A81 T mg a3 A83 mg Ta3
A 1 Wiy N2 1 Uz, 1 us,
Ass my(%1+x1,) 12 3’A87 - 9 + 299 + 9 + mz fpz  mgz i3
)
9= o) " mE Ty s = 2(8+0.) Agiy = Oxs, + 20,75,
~ _ 2(§+63)(f3+X3e) ~ (x3+x3e) U, 1 Uz, » L .
102 = T Gy 05 T G ) m_3E’A108 =-2 (9 + ee)v
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3 . S22 1 u, | 1 us (Tst+xse) us
Argo = 62 + 2606, + 6, + L 22 4 L1 ) T’
109 + et U + + ms i3 m1(3?1+x1e) 713

mz T3
A= 2(6+5e) Aoom Y Meg __ 1 U
112 (f1+xle), 115 ‘ml()?1+xle) T~12, 119 ml(f1+xle) T~13’
And

0 0 0 1

BZl 0 BZ3

0 0 0

B4-1 42 B4-3
0 0 0

B(®%) ={Be1r Bez Bes (4.16)

0 0 0

381 BSZ 383
0 0 0

BlOl BlOZ B103

Blll 0 B113

Where
~ _ i f1+xle—f2—xze) ~ — i (f1+xle—f3—X3e)
Ba1 = my ( r3, B3 my T3 !
E _ i(f2+xze—f1—xle) _ 1 (&2) E _ i(f2+XZe—f3—X3e)
417 o, r3, my(F1+x1,) \15, /" 27, 3 !
5 1 Y293\ 1 (3 (F24x2,) (2
= sty () = 3 3 e (2)
43 mq(F1+x1,) \ 155 61 ™ m, r3, mq(F1+x1,) \r,
5o 1 (V=3 \ 5 _ (Z2+x2,) (&) 5o 1 (372373)
Bez = mz( 33 )’363 T omy (B tr,) \rdy Ba1 = my(F1+x1,) \ 155 /'

= 1 9?3+x38—9?2—xze ~ 1 9?3+x3e—551—x18 1 _'}732
Bgy = —\—5%—=).Bgz = — 3 - po 3
ms T3, ms 3 my(F1+x1,) \135

_(Fstxse) (y—;),éwz = (%—Eyz)ﬁm = m% (y_:) + m(:c&:_% (:1733)

B =
101 =
0 my (%1+x1,) \r5, msz \ T3 T13
s 1 2\ 5 1 V3
P — (—) Biazm——2t (_
111 ~ 11 =
mq(F1+x1,) \rd, /)’ 3 my(F1+x1,) \ri3/)’

The system has a few important constraints. As the Coulomb forces are internal to
the system, the forces between each two craft are equal and opposite. The center of
mass is inertial and does not have acceleration because these electrostatic forces are

the only forces acting on the system.
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MR, =F,, =0 (4.17)
Then, the resulting four constraints equations are
0 =mr; + myry, + myr; (4.18)
0 = myr; + mytr, + myi; (4.19)
By knowing the positions and velocities of craft 1 and 2, the position and velocity
of craft 3 can be computed. Since, there are no external forces and torques, the

formation angular momentum is constant.
H=0 (4.20)

Now, the state space model is reduced and there is a 6-dimensional state space
model. The reduced model can be described by the state variables
X = (Xq, %1, X2, %2, ¥2,72)" (4.21)

The final equations of motion are

i, = Kets (q2 2 4 q. 2’;%) + x,6? (4.22)
%, = " (0 5 4 45 P54 3,07 + 28 + 2926 (4.23)
V2 = k,;qz (CI1 3 +qs3 23;2) +y,6% — x,0 — 2x,06 (4.24)
where
iz = (2%, +X%)2 + 7 (4.25)
Tos = /(X1 + 2x3)% + 4y? (4.26)

The formation angular velocity equation is described as

_ mgHo+(y2%, —x23'72)(m% +m2m3)—m1m2(x1y2—x1y2) (4 27)
2mymyxg X +x% (M2 +myms)+(mZ+myms) (x2+y2) '

and H, is formation angular momentum.
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CHAPTER 5

STATE DEPENDENT FACTORIZED OPTIMAL CONTROL
METHODS

5.1 Review of Optimal Solutions to Unconstrained Nonlinear Optimal Control
Problems

In this section, the nonautonomous problems that are nonlinear in the state and

linear-affine in the control are considered. The initial state condition is specified, and

the final state condition can be either specified or unknown. Both the state variables

and controls are unconstrained, and the time span is fixed.

5.1.1 Statement of Unconstrained Nonlinear Optimal Control Problem

Consider a set of n first-order differential equations

x=f(xt)+B(x,t)u (5.1)

with f:R"" - R" and B:R"" —R™™. The goal is to find m control functions

u(t) within the initial and final times, U, {; , such that the performance index

3 =p(xtt, ).t )+jt“ L (x(t),u(t).t )dt (5.2)

is minimized: L:R™™* >R, and @:R"™ >R, The initial condition is

assumed given, namely

X(to) = X (5.3)
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While three different forms are examined for the final state condition. These
describe the soft constrained problem (SCP), the hard constrained problem (HCP),
and the mixed constrained problem (MCP), with the final state not specified, fully
specified, and partly specified, respectively.

Defined the Hamiltonian H (x,%,u,t)=L(x,ut)+A" [f(x,t)+B(xt)u], the
solution of the problem may be found using the Euler-Lagrange equations,

: oH - oH oH
X=+—-", A=— =

_— —=0 (5.4)
o\ ox du

in which ) is the vector of costates. These Euler-Lagrange equations are the
necessary conditions, and their alternative solutions are represented in Eqgs. (5.10)-
(5.14) for the ASRE approach 1 and Egs. (5.18)-(5.19) for the ASRE approach 2.

5.1.2 Approximating Sequence of Riccati Equations Method

Suppose that f(x,t) in Eq. (5.1) is a continuously differentiable vector-valued
function of x and t in an open set T e R"*, f(-)eC'(I), and B(x,t)eC’(T) is a

continuous vector-valued function. In addition, f(0,t)=0,Vt eR. Under these

conditions [16], the State Dependent Coefficient (SDC) factorization of Eq. (5.1)

may be written as
x=A(Xt)x+B(xt)u (5.5)

which is a stabilizable parameterization of the nonlinear system represented in Eqg.
(5.1) inaregion T if the pair {A(x,t), B(x,t)} is point-wise stabilizable in the

linear sense for all X e I'. Redefinition of the objective function in the quadratic-like
form is

1, 1t/ g T
J =X (t; )S (x(t; ).t; )x(t )+ELO (x Q (x,t)x+u'R(xt )u)dt (5.6)
where S (X(t; ).t; ) and Q(x.t) are positive semi-definite, and R (x,t) is positive

definite time-varying matrices.
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5.1.2.1 Approachl

The ASRE approach presented in [23, 24] considers the following sequences of

Time Varying Linear Quadratic Regulator (TVLQR) approximations

Y
X =A%) X (t) +B(xo) u(t) 5.7)

[k +1]

x  =AM@E),t) x* B (t),t) uk Y (5.8)

where the superscript denotes the iteration. The initial state is X[k+1](t0): X,, and

the corresponding linear-quadratic cost functional is

gtk :%(X[kﬂ] (t, ))T S(X[k](tf ).t )(X[k*l](tf ))+

%f:' (X QU (1), )X+ U T RO 1), £ )ul ™ Yt (5.9)

Since each approximation is time-varying and linear-quadratic, the optimal

control sequence is in the form [23]

W) = R E)BT ()P X" ) (510

where the real, symmetric and positive-definite matrix ple-] (t) is the solution of

P (0 =-QU() - P IOAKI() - A ()P ) P IDERI )P )
(5.11)
with
P, ) = St ) (5.12)
ExM(t)) = B™ )R (x())B" (x"I(t)) (5.13)

Notice that the differential Riccati equation (5.11) has to be solved backward in
time and the optimal state trajectory is obtained by integrating the following

differential equation forward in time

[k +]

X 0 =[ AKO)-EI@)P IO XU (514)
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5.1.2.2 Approach2

The sequence of TVLQR is solved by exploiting the structure of their Euler--
Lagrange equations, so avoiding dealing with the matrix differential Riccati
equation. This approach is described in [27, 28]. Rather than integrating Eq. (5.11),
the approach in [27, 28] integrates the Hamiltonian matrix equation to obtain state
transition sub-matrices that enable easy handling of partially specified terminal
states.

Consider the system dynamic and quadratic objective function in Egs. (5.5)-(5.6).

The necessary conditions for this problem are obtained by applying Eqg. (5.4),

namely
X = A(xt) x+B(xt)u, (5.15)
A= -Q(x,t)x—A" (x,t) (5.16)
0 = R(xt)u+B"(x,t)2 (5.17)

From Eqg. (5.17), one may get
u=-R™(xt)B" (x,t) A (5.18)

which by substituting into Egs. (5.15)-(5.16) it is possible to get

X _[ A(xt) -B(x,t)R*(xt)B' (x,t)}[ xj (5.19)

" B -Q(x.t) —-A" (x.t) )

The solution of Eq. (5.19), which is a system of linear differential equations, is

given by
X(t)= . € t) X+ 4,,01) 4 (5.20)

M) =4, (o, )x, +6, (. ) A4 (5.21)
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where X, and 4, are the initial state and costate, respectively. The components of

the state transition matrix ¢,, @,,, #,, and ¢, are obtained by integrating the

following dynamics

[&XX ¢£X :|:
¢/1x ¢/1/1
with the required initial conditions defined as

¢xx (to’to) = ¢M(t0’t0) = Inxn 1 ¢xz1(to’to) = ¢zx (to’to) = Onxn (5.23)

A(xt) -B(ct)R™(xt)B <x,t>}[¢m i

~Q(xt) AT (x1) " @J (5-22)

The issue here is computing 4, as only X, is given. This is given by (refer to [42]

for detailed derivation)

Zo (%o X; tout ) =6, (Gt ) X = @ (ot ) X, ] for HCP
Ao (Xo b0t ):[¢M (to,t; )-S(t; )4, (to L, )]_l [S(tf )0 (Lot ), (tos L )] X, for SCP

Zo (o Y1 ot ) = (6 (Ko Ve toute ) (%00 ¥ 1 tguty ), for MCP
(5.24)

where ¢ and 7 are the component of A related to the elements of the final state

that are partially specified (their expressions are reported in [42]).

5.2 State Dependent Coefficient Direct Method

The problems treated in this section are the same as in Sec. 5.1 except that both
the states and controls are constrained. The proposed SDC Direct method employs
SDC factorization and Chebyshev polynomials. Constrained nonlinear optimal
control problem formulation is recalled and reformulated to SDC form. The state
variables are approximated and expanded to the Chebyshev polynomials. Then, the
state derivatives are derived from the state variables. To this end, the control
variables are obtained as a function of state variables and their derivatives. The
CNOC problem is converted to quadratic programming problem, and a constrained

optimization problem is solved.
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5.2.1 Statement of Constrained Nonlinear Optimal Control Problem
The statement of the constrained problem is similar to that of the unconstrained
case in Sect. 5.1.1, except that this time Egs. (5.25)-(5.26) have to be considered.

Xoin SX() £ X (5.25)

.. Sut)<u.. (5.26)

The necessary conditions for x and represented in Eq. (5.4) are kept here, while

the third condition, oH /ou =0, is replaced by the minimum principle
u= argmin,H (x,A,u,t) (5.27)
This new form of the necessary condition (minimum principle) on the
Hamiltonian prevent the use of alternative solutions described in Egs. (5.10)-(5.14)

and Egs. (5.18)-(5.19). Hence, the SDC Direct method to solve the constrained
problems in needed.

5.2.2 Converting Constrained Nonlinear Optimal Control Problems to Quadratic

Programming Problems Using Chebyshev Polynomials

From now, and without any loss of generality, we assume t;=0. In order to use

Chebyshev polynomials, the transformation time 7=2t/t, =1 is used; this is
defined in [-1,1]. By using Chebyshev time transformation, TVLQR approximations
in Eq. (5.8) are written as

dX[k +1]
dr

(1) = STAG (2,5 X+ B 0), ) ') (5.28)

At the first iteration, the states, the state matrix, and the control matrix are written
as X' =x,, AXM(7),7)=A(X,), and BX)(z),7) =B(X,), respectively. From the

second iteration on, the state variables x™* are approximated by Chebyshev

polynomials and the inputs ut™*! are obtained from the states and their derivatives.

Note that A(X*(7),7) and B(X*!(z),7) matrices for each iteration are evaluated

by the states of the previous iteration. So, the state and input matrices are functions
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of states and inputs of the previous iteration and they do not need to be approximated
by Chebyshev polynomials in the current thesis. The other equations are written as

gk :%( [k+l](1))T S(X[k](l),l)(x[k“] (1))+

%J:ll(x[k +1qT Q(X[k 1 (T), T) X[k +1] + u[k +1qT R(X[k](T), u[k 1 (T), T) U[k +1] b r (529)
XA (D) =x, (5.30)

X X () <X (5.31)

u_<u*(r)<u_ (5.32)

For approximating the state variables, Chebyshev polynomials of first kind, T; (1)

, are used such that

N
[k +1] _
Xj Hr)= Z

YT (1) (5.33)
i=0
where the dash (Z) denotes that the first term in the sum is to be halved,

j =1,2,...,n Is the number of states, N is the degree of the Chebyshev polynomial,

and ai(j) are unknown parameters. Eq. (5.33) may be rewritten in matrix form as

x| [ 0.5a® al v a® [Ty ]
xX“'(z)| | 05?2 a® . a?|( T,
X, ()] [ 05" a” Al ||Th(@)]

Using the Kronecker product yields a convenient notation

X H(@)=(1, 8T (2))a (5.34)

where T' (z) =[T,(2),T,(z),....Ty (z)] isan (1x(N +1)) row vector of Chebyshev

polynomials, and a =[al’/2,a",...ay, a?/2,..,a?,.., a"/2,..,aM"] is an
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(Ixn(N +1)) row vector of unknown parameters. Derivative of the state variables is

governed by equation

Xj () = Z a7 (0) (5.35)

which may be written in matrix form as

[k +1]

x (0)=(1,®T (1)D' )a (5.36)

where T=DT is used here, and D matrix has a dimension of (N +D)x(N +1)

which is defined as following. The derivative of Chebyshev polynomials is defined
in [43] as

N -1
dT, () N Z T.(2) (5.37)
4

From Eq. (5.37) it can be concluded that the derivative of the Chebyshev
polynomials of the first kind may be written as
dT,(z)
dr

=TO(T)

dT,(7)

dr =4T,(7)

de (7)

=3T,(r)+6T,(7)
dr

dT,(7)

=8T,(r)+8T,(7)
dr

de (7)
dr

=5T,(r)+10T,(r) +10T,(7)

% =12T,(zr) +12T,(7) +12T.(7)
T
and from the definition of the Chebyshev polynomials of the first kind in [43], we

dTo(T)
dz

have =0. Therefore, it may be proved that
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0O 0 0o 0O 00O 0 O 0
10 0 0 0 0 O O 0
0O 4 0 0 0 0 O O 0
3 0 6 0 0 O O O 0
D 0O 8 0 8 0 0 O O 0
5 0 10 0 10 0 O O 0
012 0 12 0 12 0 O 0
7 0 14 0 14 0 14 O 0
0 16 0 16 0 16 0O 16 0

Also, for the technique represented in Sec. 5.2.3, it is required to get the second

derivative of the state variables using the equation

x11(7) = i DT i (7) (5.38)

which in matrix form may be written as

Lk+1]

x (0)=(1,®T (-)D'D" )a (5.39)

where T=DDT is used here. The second derivative of Chebyshev polynomials
is defined in [43] as

%: NZZ "(N =i)N (N +i)T, (2) (5.40)
T i=0

From Eqg. (5.40) it can be concluded that the second derivative of the Chebyshev
polynomials of the first kind may be written as
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dsz(T)
dz?

=4T,(7)

dsz(T)
dz?

=24T,(r)

d2T4(7)

2
T

=32T,(r) +48T,(z)

dsz(T) _

=
T

120T,(r) +80T,(z)

and from the definition of the Chebyshev polynomials of the first kind in [43], we

0 33 0 280 0 168 O
256 0 480 0 384 0 224

have %: 0, and dzr;(f) =0. So,

o 0o 0 0O O O 0 0 .. O]

o 0 0O O O o0 0 O0..0

4 0 0 O O O 0 0 ..0

0 24 0 0 0 0O 0 0 ..0

o 32z 0 48 0 0 0 O0 0 ..0

0 120 0 8 0O O O 0 ..0

108 0 192 0 120 0 0 O .. O

0 .. 0

0 .. 0

Until now, the state variables are approximated and expanded to the Chebyshev
polynomials. Moreover, the state derivatives are derived from the state variables. To
this end, the control variables are obtained as a function of state variables and their
derivatives. Here, it is assumed that the number of states, n , is equal to the number
of inputs, m , and the B(X[k]) matrix in Eq. (5.28) is square and invertible. Sec. 5.2.3

will handle the case in which the number of states, n , is greater than the number of

inputs, m , and B(X*) is not square and invertible. Now rearranging Eq. (5.28)

gives us the required formula for inputs which is in the form
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Ut (r) = B (z)) [ti(ln ®T (1)D" Ja- A (@)(1, ®T (r))a} (5.41)

Without loss of generality, we consider that the matrices Q, R, and S are

constant for convenience. Taking into account of all the approximations for states,

state derivatives, and inputs and substituting them in Eq. (5.29) may give
1
-1

e =%aT (1, 8T @)s(1, &T” (1))a+tj7j [ (1,®T()Q(1, ®T ())afdr +

tjrlLEaT (1, ®DT(r))-a (I, ®T(r)) A (7)) }x

F(7) LE(IH ®T (r)D" Ja- A () (1, ®T (r))a}dr (5.42)

where F(r) = (B(X"!(2))™")" RB(x™(r))™, and 54 is an approximate value of
J &+ Multiplication of the elements in Eq. (5.42) will give the formula for the

approximated objective function in the form

1
1
4 f f f

Jtel = %aT h0a+tL_[7 {aT h1a+tizaT h,a+a' h3a—t£aT h4a—t£aT hsa}dr (5.43)

where

h,=S®T )T (1)
h,=Q®T(2)T (r)
h, =F(z)®DT(r)T (r)D'
h, = (AX @) FOAK () ®T()T (7)
h, =F(@)AX(2)) ®DT(2) T (7)

hy = (A" (2)) FO)®T(@)T' (r)D'

The current work computes the objective function numerically using the

pointwise evaluations of the states, their derived derivatives, and the derived
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controls. From Eqg. (5.34) it can be concluded that the initial boundary condition in

(5.30) may be written as
XA =(1, T T (-D))a=x, (5.44)

In addition, by substituting the state and control approximations defined in Egs.
(5.34) and (5.41) into Eqgs. (5.31) and (5.32),0ne may obtain

<(1,®T (r))a<x, (5.45)

m|n -

u,. <BxM ()™ L (1,®T (7)D" Ja— A @) (1, ®T (r))a}gum(s.%)

f

Now we are dealing with a special type of mathematical optimization problem
known as Quadratic Programming problem. The goal is minimization of a quadratic
function, J™+4, of several variables, d, subject to linear constraints on these
variables. Inequality constraints result from the state and control constraints
(bounds), and equality constraints result from the state boundary conditions. The

unknowns are no longer x(t), u(t), but rather the coefficients . The minimization

problem is summarized as follows
N 1
min J¥ =Z-a"Ha
a 2

st. Aa-b<0 (5.47)
Aqa-b,, =

where the quadratic function H will be described below for the different cases.

The matrices and vectors for inequality constraints are defined as

B(x*!(z))™ L (1,T (@)D" )-AX@)(1, 0T (r))}

f

A | BEI@) { (1,T (D" )-AX @) (1, 0T (r))} (5.48)

(1,7 (1)
(1,87 (2))
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b — min (549)

and matrices and vectors for equality constraints are defined as

A =[(1,®T 7 (-D)] (5.50)
b, =[X] (5.51)

Consider that Egs. (5.50) and (5.51) are valid for soft constrained problems in
which the final state conditions are not specified. The matrices and vectors for
equality constraints for hard constrained problems and mixed constrained problems
are rewritten in Sec. 5.2.2.2 and Sec. 5.2.2.3, respectively. To summarize the

proposed method, for the first iteration, the states, the state matrix, and the control
matrix are written as X''=x,, AX(z),7)=A(X,), and B(x*(z),r)=B(x,),
respectively. Furthemore, the TVLQR approximations represented in Eq. (5.28)

e+
dr

(1) = %[A(x[k](r), 2) x4 B (2), 1) U]

followed by the herein equations in Sec. 5.2.2, help to understand that for the
second, third, and the other iterations, the state variables x™** are approximated by
Chebyshev polynomials and the inputs ut“* will be obtained from the states and
their derivatives. Note that A(X)(7),7) and B(X*!(r),7) matrices for each
iteration are evaluated by the states of the previous iteration. Next, the optimization
problem in Eq. (5.47) with its equality and inequality constrained has to be solved to
get the parameters in the @ =[a\"/2,a",..,ay, a?/2,..,a?,.., aV /2,...,a"]
matrix.

This optimization problem is a type of quadratic programming problem which is
the problem of finding a vector @ that minimizes a quadratic function 1/2aTHa,

subject to linear constraints. For implementations and numerical examples, the

quadprog syntax of Matlab with the interior-point-convex algorithm is used to solve
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the problems in the current thesis. To this end, the states, the state derivatives and the

inputs are evaluated from Egs. (5.34), (5.36), and (5.41), respectively.

5.2.2.1 Soft Constrained Problem

The quadratic function required for minimization problem (5.47) is given by

H=h, +%J'11{h1 + 4 h,+h, —t3h4 —tghs}dr (5.52)

2
tf f f

Since the final state is not specified, the equality constraint's matrices and vectors
are as stated in Egs. (5.50) and (5.51).

5.2.2.2 Hard Constrained Problem

The quadratic function required for minimization problem (5.47) is in the form of

t. 1 4 2 2
H = éJ‘_l{hl +t—2h2 +h, —t—h4 —t—hs}dr (5.53)
f

f f

where final state condition X; is specified in this case. For HCP, the matrices and

vectors for equality constraints of the optimization problem are expressed in the form

of
(1,877 (-D)
A, = (ln o7 (1)) (5.54)
b, = [XO} (5.55)
Xy

5.2.2.3 Mixed Constrained Problem

The quadratic function required for minimization problem (5.47) is given by

2
f f f

H=h, +%J'11{h1 +tih2 h, —t3h4 —tghs}dr (5.56)
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The final state is not fully specified in this case. Let the state to be decomposed as

x =(y,z), where ¥ =(X;,...,X,) are the r known components at final time,

whereas Z =(Xr+1,---,Xn) are the remaining n — r free components at final time.

So, the equality constraint conditions may be written as

(1,877 (-D)
" (1. 0T ) >0
b,, = {XO} (5.58)
V¢

Also, it is important to notice that matrix S in Eq. (5.43) for ho term, should be

0 0
S _ rxr rx(n-r)

(n—r)xr (n—r)x(n-r)

updated as

where the terms 0's in above matrix are zero matrices.

5.2.3 Number of Inputs Less than Number of States

Remember the approximated equation for uf®*% represented in (5.41), which

shows that the inverse matrix of B(X[k]) is required. For the case with n = m, the
matrix B(X[k]) is square and the necessary condition for that is to be invertible.

However, for the case in which, n > m, the matrix B(X')) is not square, so not
invertible and the following technique briefly explained in [38] may be used. This
technique is applicable to the systems that are written in the form of Eq.(5.59).
Consider the dynamic system represented in Eg.(5.5), for the case n > m, to be

written as
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X, () AL ) +ALX, )+ +A, X, ()

X,at) = A X ) FAG X O) o+ A X, ()

Xo0) = A ®)+AX )+ +AX, E)+Bu ) +Bu,t)+...+Bgu, (t)
X,t) = A X {O)+A X, t)+...+A x,t)+B, u,t)+B u,t)+...+B u, )

(5.59)

where the subscript q is defined as ¢ = n — m + 1, and the A and B terms may be
state dependent, and these terms are evaluated with the previous iteration's values at

the current iteration. Converting the equations to Chebyshev time domain results in

X, (r) = é(Allxl(r)+A12X2(r)+ AALX n(r))

Xq—1(7) té( (q-12X (T)+A(q 1)2Xz(7)+---+A(q “n n(T))

X,(r) = %(Aqlxl(r)+A X (2) .+ ALK, () + By (1) + B U, (1) +...+ B,u, (7))
X,(r) = é(Anlx (r)+A, X, (7)+...+A X, (r)+B u,(r)+ B, u,(r)+...+B U m(z'))

(5.60)

Now, approximate the states X, (7),X,(7),...,X,(7) by Chebyshev polynomials

as represented in Eq. (5.35), and then obtain the first and second derivatives of them

by using Egs. (5.36) and (5.39). Rearrange the first q —1 terms in (5.59) as following

to obtain the states X, (7),X,, (), X, (7).

2
t_x (T) A11X (T) 1(q—1)X —1(7) = 1q q(T)+ +A1n n(T)
f
2
Xqa(0) = Ag X1 (@) = = A g Xq1(7) = AgX @)+ +A,X,(7)
f
(5.61)
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By taking the derivative from both sides of Eqg.(5.61), the terms

X ()X 4(2),.... X, (7) will be obtained. So,
2
EXl(T) ApXy ()= l(q 1Xq (41(7) = 1q q(T)+ +ALX,(7)
X4 Xy (7) = A(q X ()= (q 1) a-nXq (a(7) = qq q(T)"' +Aqn ( (7)

f
(5.62)
To this end, from last m equations of (5.60) the required inputs will be found.

These inputs Uy,U,,...,U , are obtained from

tEX (T) Aqlxl(r) Aqn n(r) = Bqlul(r)+Bq2u2(7)+”'+qu m(T)

f

tgx (T) Anlx (T) Ann n(T) = Bnlul(T)+Bq2u2(‘[)+“'+Bnm m(T)

f

(5.63)

Then, following the same approach represented in Sec. 5.2.2 gives the updated
versions of the Egs. (5.43), (5.46), and (5.48).
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CHAPTER 6

APPLICATION OF STATE DEPENDENT RICCATI
EQUATION METHOD TO SPACECRAFT COULOMB
FORMATIONS

6.1 State Dependent Riccati Equation Method

Consider an autonomous, infinite-horizon, nonlinear regulator problem for
minimizing the performance index

J =%J.:XTQ(X)X+UT R (X)udt (6.1)

Subject to the nonlinear differential constraints

x=f(x)+B(x)u (6.2)

With state vector xeR"and input vector ueR", such that f:R" > R" and
B:R" >R™, with Bz0ovx, and o :r" > r™ and rR:R" »R"™" for all x are
positive semi-definite and positive-definite matrices, respectively, and f(0)=0,

which does not have bias term [16, 44].

The SDRE approach for obtaining a suboptimal, locally asymptotically stabilizing
solution of problem which stated in Egs. (6.1)-(6.2) may be realized first by
obtaining the state dependent coefficient (SDC) form of Eq. (6.2) as

X:A(x)x+B(x)u (6.3)

The SDC representation in Eg. (6.3) is a stabilizable (respectively controllable)
parameterization of the nonlinear system in Eq. (6.2) in a region T if the pair (A(x),
B(x)) is point wise stabilizable (respectively controllable) in the linear sense for all
xel', and f(x) is a continuously differentiable vector-valued function of x on T,

that is, f(.)eC'(T'), and B(x) is a C"(I') matrix-valued function. Assuming that the
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states are slowly varying and considering A and B matrices are constant, the
Riccati equation may be solved as

P(X)AX)+A" (X)P(x)-P(X)BX)R?(X)B" (X)P(X)+Q(X)=0  (6.4)

Then, the feedback control is obtained just like the linear quadratic regulator case
as

u(x) =-R P (x)B" (X)P (X)x (6.5)

6.2 Numerical Simulations

To demonstrate the effectiveness of the SDRE control method, nonlinear
simulations are coded in the Matlab environment for each of the nonlinear formation
equations. The objective in all the cases of two-craft configurations is to bring the
satellites 25 m apart. Table 1 shows the simulation parameters for the two-craft
implementations. For the two-craft numerical simulations, the weighting matrices are
chosen as Q = diag(10°,10°, 10, 0,0,0) and R = diag(102%,102°,1029).

Table 1. Simulation parameters for two-craft implementations.

Parameter Value Unit

m; 150 kg

Lref 25 m
ke 8.99 x 10° Nm?

CZ
Qgarth circutar 7.2915 x 107> ﬂ

S
-Q‘Earth—moon 2661699 X 10_6 ﬂ

S

a 3.190432478

For the planar three-craft formation equations presented in Chap. 4, the objective in
all cases is to bring the satellites to a fixed shape and size. The parameters are given
in Table 2. The weighting matrices for the quadratic performance index of three-craft
formation are chosen as, R = diag(10'?,108,10°),and Q = 10 X I.

The SDRE nonlinear feedback control of the formations is carried out, and the

simulation results are given in the figures and tables.
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Table 2. Simulation parameters for three-craft implementations.

Parameter Value Unit
my 100 kg
m, 100 kg
ms 100 kg
Xy, (case 1) 44.616 m
X1, (case 2) 42.188 m
x,, (case 1) 19.125 m
x,, (case 2) 22.188 m
x3, (case 1) -63.714 m
x3, (case 2) -64.376 m
k. 8.99%+9 Nm?
CZ
H, 350.972 Kgm?
S
q1, 10 uc
9z, 10/7 ucC
qs, -200 ucC

6.2.1 Orbit-Radial Two-craft Coulomb Formation at Earth Circular Orbits

The control objective is to bring the satellites 25 m apart, and also bring the yaw
and pitch angles to the zero. Figure 8 shows that the relative distance between the
satellites settles down to desired distance, and attitudes are also stabilized and
converged to zero. Therefore, the formation is brought back to the equilibrium radial
configuration.

The initial deviation from the nominal state variables is chosen as L = 15m, ¢ =
%i rad, and 8 = %i rad. The simulation results show that all the state variables are

regulated and going back to the equilibrium conditions. Therefore, the feedback
control technique used here proves that even for the big initial errors for the states,
the formation is regulated and stabilized around the equilibrium condition. Reference
[5] shows the results of the linear equations of motion with small deviations from the
nominal trajectory. A nonlinear Lyapunov-based feedback control is simulated in the
literature and the results are given in [45]. In that paper, the only control action is the
Coulomb force and there is no electrical force for changing the attitude of the
formation. Furthermore, the nonlinear equations of motion used in the cited paper are

not coupled and complex as those considered in the current thesis.
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Figure 8. Separation distance, yaw angle, and pitch angle stabilizations using SDRE method for
two-craft Earth circular orbit.

The control input histories shown in Figure 9 indicate that the requested control
levels are reasonable and may be realized by Coulomb forces and electrical thrusters.
The charge product of the two-craft is illustrated in Figure 10. Comparison of the
values obtained in this thesis for Coulomb forces and charge products are in
agreement with those given in [45]. Reference [20] shows numerical results for

along-track and orbit-normal configurations as well.
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Figure 9. Coulomb force and the forces generated by the thrusters in the yaw and pitch

direction using SDRE method for two-craft Earth circular orbit.
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Figure 10. Charge product using SDRE method for two-craft Earth circular orbit.
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6.2.2 Orbit-Radial Two-craft Coulomb Formation at Collinear Libration Points

The initial error from the nominal state variables is chosen as L =5m, ¢ =

%i rad, and 6 = %i rad. The control objective is to bring the satellites 25 m apart,

and also bring the yaw and pitch angles to the zero. Figure 11 shows that the relative

distance between the satellites settles down to desired distance, and attitudes are also

stabilized and converged to zero. Therefore, the formation is brought back to the

equilibrium radial configuration. A linear stability analysis at orbit radial collinear

libration points was studied [8]. Also, the stabilization of the two-craft system in the

presence of the solar radiation pressure using Lyapunov-based feedback control is

addressed in the literature [9].
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t (sec) y 1|:|4

Figure 11. Separation distance, yaw angle, and pitch angle stabilizations using SDRE method

for two-craft collinear libration point.

The control input histories shown in Figure 12 indicate that the requested control

levels are reasonable and may be realized by Coulomb forces and electrical thrusters.

The level of the forces are in agreement with those given in the literature [8, 9]. The
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charge product of the two-craft is illustrated in Figure 13 that is also reasonable. The
numerical simulations for along-tack and orbit-normal configurations are addressed
in [26].
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Figure 12. Coulomb force and the forces generated by the thrusters in the yaw and pitch
direction using SDRE method for two-craft collinear libration point.
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Figure 13. Charge product using SDRE method for two-craft collinear libration point.
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6.2.3 Orbit-Radial Two-craft Coulomb Formation at Triangular Libration Points
The control objective is to bring the satellites 25 m apart from its initial error

which is L = 5 m. Also, stabilize the yaw and pitch angles around zero from their

pi

initial deviations that are y =%irad, and 6 =5 rad, respectively. Figure 14

shows that the relative distance between the satellites settles down to desired
distance, and attitudes are also stabilized and converged to zero. Reference [8] shows
the linearized dynamics and stability analysis of the two-craft at triangular libration
points. The current thesis presents the first nonlinear feedback control method

applied to such a system.
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Figure 14. Separation distance, yaw angle, and pitch angle stabilizations using SDRE method
for two-craft triangular libration point.

The control time histories are given in Figure 15. The charge product of the two-

craft is shown in Figure 16.
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Figure 15. Coulomb force and the forces generated by the thrusters in the yaw and pitch

direction using SDRE method for two-craft triangular libration point.
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Figure 16. Charge product using SDRE method for two-craft triangular libration point.
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6.2.4 Three-craft Coulomb Formation at Deep Space

Two equilibrium cases are considered. In the first one, the equilibrium is said to
be marginally stable, and in the second one it is an unstable equilibrium point [12].
These equilibriums are controlled by using the SDRE control method. Simulation
results of Case 1 are illustrated in the following figures. The plots in Figure 17,
Figure 18, and Figure 19 give the positions of the three spacecraft from center of
mass. The spacecraft all initially are away from the equilibrium condition. 1t may be
observed that they are brought to the equilibrium.

&0

491

48

46

451

44 1 1 1
a 045 1 15 2 25 3
t (sec) 4

Figure 17. Position history of Craftl for Casel.

The control forces are presented in Figure 20. It is showed that the control forces
are reasonable and may be realized by coulomb forces. Angular velocity of the
formation is given in Figure 21. It may be concluded that the angular velocity is also
brought to the equilibrium value as well. The in-plane and out-of-plane linear
stability analysis was performed in the literature [12, 46]. The three-spacecraft
Coulomb formation collinear and triangular shape control problems using Lyapunov-
based method is addressed [11, 47]. The results of the SDRE nonlinear feedback
control method used in the current thesis are in agreement with the cited papers in

the presence of very large initial position errors.
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Figure 19. Position history of Craft2 for Casel.
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Figure 21. Formation angular velocity for Case 1.
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Simulation results for Case 2 are shown below. In this case, the targeted
equilibrium is unstable. The spacecraft start from arbitrary positions. From Figure
22, Figure 23, and Figure 24 it may be observed that all the three spacecraft are
brought to the desire equilibrium position. The control inputs are given in Figure 25,
and it is concluded from the plots that they may easily be realized with coulomb
forces. Figure 26 shows the angular velocity of the formation for case 2. This shows
the angular velocity reaches the desired value, as the spacecraft are brought to their
equilibrium positions. The details of this part are presented in [21].
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Figure 22. Position history of Craftl for Case2.
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Figure 24. Position history of Craft2 for Case2.
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Figure 26. Formation angular velocity for Case 2.
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CHAPTER 7

APPLICATION OF STATE DEPENDENT FACTORIZED
OPTIMAL CONTROL METHODS TO SPACECRAFT
COULOMB FORMATIONS

7.1 Numerical Simulations

In all the cases, the optimization problem represented in Eq. (5.47) is solved in
Matlab using quadprog syntax with interior-point-convex algorithm with Intel Core
15 CPU 2.30 GHz. In the present implementations, the convergence is reached when

g =l I =max, g IxEH ) -xTIe)) § =1...,n}<tol

where ¢ is error and “tol" is a prescribed tolerance.

7.1.1 Orbit-Radial Two-craft Coulomb Formation at Earth Circular Orbits
Case 1. Unconstrained case is implemented here, and the results are given below.
The number of iterations, error and objective function values are presented in
Table 3,
Table 4, and Table 5 for the ASRE-approachel, ASRE-approach2, and SDC-
Direct method, respectively. The objective function value for all the methods are in
agreement with each other.
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Table 3. ASRE-Approachl iterations for two-craft Earth circular orbit Casel.

Iteration Error J
1 1.68E+01 3.02471E+11
2 1.71E+00 2.85011E+11
3 3.05E-01 2.82814E+11
4 2.01E-02 2.82568E+11
5 2.51E-03 2.82524E+11
6 5.81E-04 2.82519E+11
7 9.95E-05 2.82519E+11

Table 4. ASRE-Approach?2 iterations for two-craft Earth circular orbit Casel.

Iteration Error J
1 1.68E+01 3.02472E+11
2 1.71E+00 2.85013E+11
3 3.05E-01 2.82814E+11
4 2.01E-02 2.82569E+11
5 2.51E-03 2.82524E+11
6 5.80E-04 2.82519E+11
7 9.94E-05 2.82519E+11
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Figure 27. Approximate trajectory solutions using SDC Factorized optimal methods for two-
craft Earth circular orbit Casel.
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Table 5. SDC-Direct iterations for two-craft Earth circular orbit Casel.

Iteration Error J
1 1.68E+01 3.02432E+11
2 1.71E+00 2.84974E+11
3 3.04E-01 2.82777E+11
4 1.99E-02 2.82532E+11
5 2.64E-03 2.82487E+11
6 5.69E-04 2.82482E+11
7 1.01E-04 2.82482E+11
8 1.49E-05 2.82482E+11

The approximate trajectory and control solutions are illustrated in Figure 27 and
Figure 28. These are the plots of three techniques that are approximately coincident
to each other. This is a SCP in which the final states are not specified, and it is
shown that the states are stabilized at the end and the formation is going to its
equilibrium condition. Figure 29 shows the charge product of the two-craft.
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Figure 28. Approximate control solutions using SDC Factorized optimal methods for two-craft
Earth circular orbit Casel.

85



_]. T T T T T
-1.5r
o2t
o
=,
o o-25¢
o
=
=
=
& -3r
oy
18]
=
5 -30r
— — - ASFEE Approach 1
T ——— ASRE Approach 2 ||
— 3DC Direct
_45 | | | I I
0.5 1 1.5 2 2.5 3
t (sec) X1D4

Figure 29. Charge product using SDC Factorized optimal methods for two-craft Earth circular
orbit Casel.

Case 2. Here we consider that the states and inputs are constrained as
0<y
0<o
F. <37.4uN
-30uN <F,
-30uN <F,

The results for the constrained case are given in Table 6. It is shown that the
objective function value is increased because of the constraints. The approximate
trajectory and control solutions are given in Figure 30 and Figure 31. In these
figures, dashed lines show the constrained plots. Figure 32 shows the charge product

of the two-craft.
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Table 6. SDC-Direct iterations for two-craft Earth circular orbit Case2.

Iteration Error J
1 3.80E+01 6.12832E+11
2 2.18E+01 3.1057E+11
3 4.38E-01 3.05099E+11
4 4.65E-02 3.05207E+11
5 2.73E-03 3.05229E+11
6 3.79E-04 3.05233E+11
7 5.26E-05 3.05234E+11

Reference [7] addressed the in-plane optimal reconfigurations of the two-craft
Coulomb formation at Earth circular orbits. In the cited paper, the two craft are
reconfigured from one equilibria configuration to another one satisfying the
dynamical constraints. The bounds on the inputs in [7] are the only constraints
considered in that paper. In the current thesis, the SDC-Direct control approach
handles the optimal control problems having bound on the inputs and states together

as those given for case2. Moreover, the current work offers the in-plane and out-of-

plane optimal maneuvers as is shown in Figure 30.
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Figure 30. Approximate trajectory solutions using SDC Direct method for two-craft Earth
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Figure 31. Approximate control solutions using SDC Direct method for two-craft Earth circular
orbit Casel and Case2.
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Figure 32. Charge product using SDC Direct method for two-craft Earth circular orbit Casel

and Case2.

7.1.2 Orbit-Radial Two-craft Coulomb Formation at Collinear Libration Points

The case that is simulated here is unconstrained, and the results are given below.

The number of iterations, error and objective function values are presented in Table
7, Table 8, and Table 9 for the ASRE-approachel, ASRE-approach2, and SDC-

Direct method, respectively. The objective function value for all the methods are in

agreement with each other.

Table 7. ASRE-Approachl iterations for two-craft collinear libration point.

Iteration Error J
1 1.76E+01 3.54963E+11
2 1.85E+00 3.7644E+11
3 1.87E-01 3.71765E+11
4 1.44E-02 3.7218E+11
5 3.17E-03 3.72132E+11
6 3.28E-04 3.72134E+11
7 4.78E-05 3.72134E+11
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Table 8. ASRE-Approach? iterations for two-craft collinear libration point.

Iteration Error J
1 1.76E+01 3.54983E+11
2 1.85E+00 3.76456E+11
3 1.87E-01 3.71781E+11
4 1.44E-02 3.72197E+11
5 3.17E-03 3.72148E+11
6 3.27E-04 3.72151E+11
7 4,77E-05 3.72151E+11

The approximate trajectory and control solutions are illustrated in Figure 33 and
Figure 34. These are the plots of three techniques that are approximately coincident
to each other. This is a SCP in which the final states are not specified, and it is
shown that the states are stabilized at the end and the formation is going to its
equilibrium condition. Figure 35 shows the charge product of the two-craft. An
indirect robust control method was simulated in [48] to investigate the dynamics and

reconfiguration control problem of a two-satellite Coulomb tether formation in the

presence of differential solar drag near Earth—Moon libration point.
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Figure 33. Approximate trajectory solutions using SDC Factorized optimal methods for two-

craft collinear libration point.

Table 9. SDC-Direct iterations for two-craft collinear libration point.

Iteration Error J
1 1.76E+01 3.54927E+11
2 1.85E+00 3.76397E+11
3 1.87E-01 3.71723E+11
4 1.45E-02 3.72138E+11
5 3.18E-03 3.7209E+11
6 3.27E-04 3.72093E+11
7 4.76E-05 3.72093E+11
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Figure 34. Approximate control solutions using SDC Factorized optimal methods for two-craft
collinear libration point.
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Figure 35. Charge product using SDC Factorized optimal methods for two-craft collinear
libration point.

92



7.1.3 Orbit-Radial Two-craft Coulomb Formation at Triangular Libration Points

This is the first work showing the optimal reconfiguration of two-craft formation
at triangular libration point, and no such a work is addressed in the literature.
Unconstrained case is implemented here, and the results are given below. The
number of iterations, error and objective function values are represented in Table 10,
Table 11, and Table 12for the ASRE-approachel, ASRE-approach2, and SDC-Direct
method, respectively. The objective function value for all the methods are in
agreement with each other.

Table 10. ASRE-Approachl iterations for two-craft triangular libration point.

Iteration Error J
1 1.76E+01 3.55272E+11
2 1.87E+00 3.75789E+11
3 2.07E-01 3.71939E+11
4 1.98E-02 3.72138E+11
5 2.11E-03 3.72158E+11
6 3.15E-04 3.72153E+11
7 4.34E-05 3.72154E+11

Table 11. ASRE-Approach?2 iterations for two-craft triangular libration point.

Iteration Error J
1 1.76E+01 3.55292E+11
2 1.87E+00 3.75805E+11
3 2.07E-01 3.71955E+11
4 1.98E-02 3.72154E+11
5 2.10E-03 3.72174E+11
6 3.14E-04 3.72169E+11
7 4.34E-05 3.7217E+11

The approximate trajectory and control solutions are illustrated in Figure 36 and
Figure 37. These are the plots of three techniques that are approximately coincident
to each other. This is a SCP in which the final states are not specified, and it is
shown that the states are stabilized at the end and the formation is going to its

equilibrium condition. Figure 38 shows the charge product of the two-craft.
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Figure 36. Approximate trajectory solutions using SDC Factorized optimal methods for two-
craft triangular libration point.

Table 12. SDC-Direct iterations for two-craft triangular libration point.

Iteration Error J
1 1.76E+01 3.565235E+11
2 1.87E+00 3.75746E+11
3 2.07E-01 3.71898E+11
4 1.99E-02 3.72097E+11
5 2.11E-03 3.72116E+11
6 3.16E-04 3.72112E+11
7 4.33E-05 3.72112E+11
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Figure 37. Approximate control solutions using SDC Factorized optimal methods for two-craft
triangular libration point.
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Figure 38. Charge product using SDC Factorized optimal methods for two-craft triangular
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CHAPTER 8

APPLICATION OF STATE DEPENDENT FACTORIZED
OPTIMAL CONTROL METHODS TO VAN DER POL
OSCILLATOR AND LOW-THRUST RENDEZVOUS
PROBLEMS

Two sample problems with nonlinear dynamics are considered to apply and verify
the proposed SDC Direct method. In all the cases, the optimization problem
represented in Eq. (5.47) is solved in Matlab using quadprog syntax with interior-
point-convex algorithm with Intel Core i5 CPU 2.30 GHz. In the present

implementations, the convergence is reached when

g =l I =max g XTI -xTIE)1j =1....n}<tol  (8.1)

where ¢ is error and “tol" is a prescribed tolerance.

8.1 Problem 1: Van der Pol Oscillator
This problem is taken from [35, 38]. Van der Pol oscillator is a second order
dynamical system
X=X,
X, =—(X7 =1)x,—x,+U

Initial states are X;(0)=1, and X,(0)=0, and the final time is defined as t; =5.

The weighting matrices are Q =1, and R =1, and the corresponding objective

function is
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J =%Ios(xf+x§+u2)dt

For SDC factorization the state and input matrices are chosen in the form of

A {_(uilxz) ﬂ’B :m

In this example, the whole procedure of the proposed method will be shown step
by step. Since n =m, the technique represented in Section 5.2.3 has to be

considered. In order to use Chebyshev polynomials, the time interval [0,5] is

transformed to [-1,1] using the transformation time 7=2t/t, =1. The TVLQR

approximations are written as

X)) = x5 (t)

X2(t) = _(1+X10X 20)X1[1](t)+X£l](t)+u[l](t) &2

X-1[k+1](t) — X£k+l](t)

[k + + + +: (83)
XEIE) == (L x xS O )OO +ut )

Transforming the Egs. (8.2)-(8.3) to Chebyshev time domain, the equations are

written as

K () =X P o)
2 (8.4)
K00 = (L)) X P 0) +0 ()

R () = o)
2 (8.5)
RE(E) = (L@ ) ) +x ) +u ()]

For the first iteration, the Eq. (8.4) is used, and the Eq. (8.5) is implemented for
the next iterations. First, the state X, is approximated by Chebyshev polynomials.

Second, the state X, will be obtained from the derivative of X;. Third, by double

differentiation of X, the X, will be obtained as shown in the following
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K1) = LK (0)) (86)

K1(2) =S ()] 87)

To this end, the input U is evaluated from the second equation of Egs. (8.4) and

(8.5). Two different subproblems are considered.

8.1.1 Soft Constrained Problem
This is a SCP in which the final states are not specified, X; =free . Three

different cases are solved and discussed. For case 1, both states and control are
unconstrained and a solution for this case is available in [38]. Then, the input is
constrained in case 2 and states are still unconstrained. Lastly, in case 3 both states
and controls are constrained.

Case 1. In this case, it is assumed that there would be no constraints on the states
and inputs. Table 13 represents the results for two different degrees of Chebyshev
polynomials, N =8 and N =12. The number of iterations, the value of errors, and
the objective function values are given. For both Chebyshev degree values, the
optimization problem is terminated after 5 iterations and the value of the objective
function is in agreement with that given in [38] which is 1.4493959719 for N =15.
Looking at the results in Table 13, it seems that for the unconstrained case,
increasing the Chebyshev polynomial degree does not improve the objective value.

Figure 39 shows the approximate trajectory and control solutions.

Table 13. SDC-Direct method iterations for Problem1-SCP-Casel.

N=8 N=12
Iteration Error J Iteration Error J
1 1.079319e+00 1.685824e+00 1 1.079237e+00 1.685822e+00
2 4.782503e-02 1.427952e+00 2 4.862783e-02 1.427863e+00
3 2.664431e-03 1.435632e+00 3 3.662316e-03  1.435654e+00
4 1.504402e-04 1.435544e+00 4 2.548840e-04 1.435615e+00
5 1.176594e-05 1.435522e+00 5 4.028370e-05 1.435570e+00
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Figure 39. Problem1-SCP-Casel (N = 12): Approximate trajectory and control solutions.

Case 2. Here we consider that the states are unconstrained and there is constraint
on input which is defined as
0<u<0.75

The iterations, errors, and values of objective functions are given in Table 14. For
N =8, the solution is obtained after 10 iterations and for the case when N =12,
after 7 iterations the problem is solved. Therefore, it may be concluded that for the
case with constraints on inputs, the performance of the algorithm is improved by
increasing the degree of Chebyshev polynomials. Moreover, by increasing the
Chebyshev polynomial degree, the value of the objective function is decreased. The
optimal trajectory and control solutions are shown in Figure 40 for case 1 and case 2

together.
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Table 14. SDC-Direct method iterations for Problem1-SCP-Case2.

N=8 N=12
Iteration Error J Iteration Error J

1 1.668749e+00 3.211873e+00 1 1.451901e+00 3.088773e+00
2 1.444115e+00 1.588960e+00 2 1.269662e+00 1.559349e+00
3 5.368128e-02 1.606897e+00 3 4.048383e-02 1.584761e+00
4 1.837529¢e-02 1.641353e+00 4 1.046905e-02 1.603692e+00
5 3.591689¢e-03 1.644906e+00 5 2.010635e-03 1.605551e+00
6 2.828636e-03 1.643633e+00 6 4.903323e-04  1.605002e+00
7 1.530721e-04 1.643527e+00 7 9.863860e-05 1.604865e+00
8 1.570586e-04 1.643605e+00 8

9 1.167622e-04 1.643596e+00 9

10 9.830951e-06 1.643612e+00 10

)(.I. Xz. u

time (s)

Figure 40. Problem1-SCP-Casel (N = 12): Approximate trajectory and control solutions.

Case 3. In this case, it is considered to have constraints on both the states and the

input. These constraints are defined as

0<u<0.75

0<x,<1
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-0.38<x,

The state constraints added to the problem result in more iterations and bigger

objective function value for case 3. By considering the results in Table 15, it may be

again concluded that the results are improved by increasing the Chebyshev

polynomial degree for constrained case.

Plots of the cases 1 and 3 are showed in Figure 41. It shows that the constraints on

the states and control are satisfied and the optimal solutions are changed after

applying the constraints.

Table 15. SDC-Direct method iterations for Problem1-SCP-Case3.

N=8 N=12
Iteration Error J Iteration Error J

1 1.762806e+00 5.741236e+00 1 5.878951e+00 9.450530e+01
2 1.303140e+00 2.206247e+00 2 3.879162e+00 9.934352e+00
3 4.327738e-01 1.836886e+00 3 1.987615e+00 1.756250e+00
4 7.568154e-02 1.862552e+00 4 2.819701e-02 1.786414e+00
5 8.307684e-03 1.882555e+00 5 8.817573e-03  1.801913e+00
6 2.916821e-03 1.891366e+00 6 2.809343e-03 1.808637e+00
7 6.889621e-04 1.892950e+00 7 1.023038e-03  1.810733e+00
8 1.223139e-03 1.892241e+00 8 7.394046e-04 1.811066e+00
9 6.099517e-04 1.891546e+00 9 9.837200e-05 1.811003e+00
10 5.788571e-04 1.891260e+00

11 5.118347e-04 1.891195e+00

12 1.621073e-04 1.891218e+00

13 1.334805e-05 1.891245e+00
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Figure 41. Problem1-SCP-Cases 1 and 3 (N =12): Approximate trajectory and control solutions.

8.1.2 Hard Constrained Problem

This is a HCP in which the final states are fully specified; X1(5)=—1, and

X 2(5) =0. For this problem, the case with constraints on input is analyzed. Consider

the constraint is defined as
—0.75<u <£0.75

Figure 42 shows the approximate trajectory and control for unconstrained and
constrained cases. It is shown that the initial and final state conditions are satisfied.
Moreover, Figure 42 displays that the bounds on control are met, and the new state
trajectories are showed after considering the input constraint. A comparison of
iteration numbers and the objective function values is represented in Table 16 for
different values of Chebyshev polynomial degrees. Again, it may be concluded that

the results are improved by increasing the Chebyshev polynomial degree. For the
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constrained case, a solution exists in [35] and the objective functions of the current

paper are in agreement with that given in [35] which is 2.1389 for N = 12.

Table 16. SDC-Direct method iterations for Problem1-HCP.

N=8 N=12
Iteration Error J Iteration Error J
1 1.000000e+00 3.130124e+00 1 1.002810e+00 3.249518e+00
2 3.895121e-01 2.144377e+00 2 4.464654e-01 2.116291e+00
3 5.353388e-02 2.146860e+00 3 7.396758e-02 2.126974e+00
4 1.596711e-02 2.173787e+00 4 1.329232e-02  2.147969e+00
5 4.461313e-03 2.179621e+00 5 3.651116e-03  2.151620e+00
6 4.701491e-04 2.179486e+00 6 5.547349e-04  2.151385e+00
7 1.388092e-04 2.179309e+00 7 1.700663e-04 2.151145e+00
8 1.524415e-05 2.179304e+00 8 1.336576e-04 2.151128e+00
9 7.448995e-06 2.151141e+00
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Figure 42. Problem1-HCP (N = 12): Approximate trajectory and control solutions.
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8.2 Problem 2: Low-Thrust Rendezvous

This problem [28, 49], considers the planar, relative motion of two particles in a
central gravity field expressed in a rotating frame with normalized units: the length
unit is equal to the orbital radius, the time unit is such that the orbital period is 27,

and the gravitational parameter is equal to 1. In these dynamics, the state is
x:(x1x2x3x4); X, represents the radial displacement, X, represents the tangential
displacement, X represents the radial velocity deviations, and X, represents the

tangential velocity deviations. The control U :(uluz), is made of by the radial and

tangential accelerations, respectively. The first order system dynamics are written in

the form
X, = X,
X, = X,
. 1
X; = 2X,+ [ ——3j(1+x1)+u
: 1
X, = _2X3+(1_FJX2+UZ

with 1 =y/(x,+1) +x2 . The initial condition is X,=(0.2,0.2,0.10.1), and

t;=0, t, =1 Since n=m, the technique introduced in Section 5.2.3 is

implemented. For the SDC factorization form, the A and B matrices are chosen as

0 0 1 0

0 0 o0 1
A=A(X)= (1—%)(

i+1] 0 0 2|,B=
r X

1

0 (1—%) 20
r

o » O O
O O O

The objective function is defined as

_1 T 1 tf T
=X (& )Sx(tf)+ELO u” udt
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while weighting matrices are Q=0, and R=1,. Based on the specification of

final states, two different subproblems are considered.

8.2.1 Soft Constrained Problem

Here the final states are free (SCP), and the weighting matrix for final state
conditions is defined as S=diag(2515,10,10). Three different cases are

implemented and the results are given and discussed.

Case 1. This case considers the results of the unconstrained case. Approximate
trajectory and control for SDC Direct method are displayed in Figure 43 (dashed
lines). The initial state conditions are satisfied and the optimal trajectories and
controls are showed. The iterations and objective function values are given in Table
17 for two different degrees of Chebyshev polynomials. The objective function value
is the same for both values of N, and these results are in agreement with the

solution given in [28] which has the objective function of 0.5660 after 6 iterations.

Table 17. SDC-Direct method iterations for Problem2-SCP-Casel.

N=8 N=12
Iteration Error J Iteration Error J
1 3.426168e-01 5.693359¢-01 1 3.426165e-01  5.693359¢e-01
2 1.426767e-03 5.659849¢-01 2 1.425440e-03  5.659849¢e-01
3 1.286568e-05 5.659615e-01 3 1.284486e-05 5.659615e-01
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Figure 43. Problem2-SCP-Cases 1 and 2 (N = 12): Approximate trajectory and control
solutions.
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Case 2. Now for the input constrained case, the bounds on the controls are

considered as

-1<u,£0,-1<u, <0

Figure 43 displays the optimal state trajectories and controls with the solid lines.
It shows that the input constraints are satisfied and the new plots are the results of
these constraints. Table 18 gives the error and objective function values showing an

improvement by increasing the Chebyshev polynomial degree.

Table 18. SDC-Direct method iterations for Problem2-SCP-Case2.

N=28 N=12
Iteration Error J Iteration Error J
1 3.003979e-01 6.233571e-01 1 3.057933e-01 6.211742e-01
2 1.911900e-03 6.208723e-01 2 1.876686e-03  6.186383e-01
3 6.134384e-05 6.208419e-01 3 1.782679e-04 6.185371e-01
4 4.832861e-05 6.185349¢e-01

Case 3. For this case, the states X; and X, and the controls are constrained as

-1<u, £0,-1<u, <0
-0.1<x,<01

-01<x,<01

Again, for two different Chebyshev degrees, the objective function values are
given in Table 19. In addition, for this case it may be understood that the
performance of the solution can be better by increasing Chebyshev degree. The state
and control trajectories are shown in Figure 44 for unconstrained and constrained
cases, which demonstrates that the initial state conditions and state constraints are
satisfied, and the control trajectories display the justification of the constrained

controls.
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Table 19. SDC-Direct method iterations for Problem2-SCP-Case3

N=38 N=12
Iteration Error J Iteration Error J
1 1.999999%¢-01 7.224606e-01 1 2.000000e-01  7.166547e-01
2 1.701514e-03 7.197011e-01 2 1.708269e-03  7.143159¢e-01
3 1.045409e-04 7.196854e-01 3 3.645138e-04  7.145929e-01
1.630952¢e-06 7.196859%¢e-01 4 1.107111e-05 7.145841e-01
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Figure 44. Problem2-SCP-Cases 1 and 2 (N = 12): Approximate trajectory and control
solutions.

8.2.2 Hard Constrained Problem
The final states are specified for this type of problem (HCP), and those are given
as X, =(0,0,0,0). The weighting matrix for final state conditions is considered as

S =0. The unconstrained and constrained results are discussed as following.
Case 1. Unconstrained case is implemented here, and the results are given in
Table 20 and are showed with dashed lines in Figure 45. The objective function

value is in agreement with that given in [28] which is 0.9586 for 5 iterations.

Table 20. SDC-Direct method iterations for Problem2-HCP-Casel.

N=38 N=12
Iteration Error J Iteration Error J
1 4.731670e-01 9.629775e-01 1 4.731672e-01  9.629775e-01
2 9.376290e-04 9.584905e-01 2 9.395097e-04  9.584905e-01
3 2.924892e-06 9.584936e-01 3 2.971336e-06  9.584936e-01
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Figure 45. Problem2-HCP-Cases 1 and 2 (N = 12): Approximate trajectory and control
solutions with SDC Direct method.
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Case 2. For this case, just the inputs are constrained as

-1<u, £2,-2<u, <0

Table 21 represents the number of iterations, errors, and objective function
values, and the optimal trajectories are displayed in Figure 45. Notice that for

N =8 no optimal solution satisfying the constraints was found.

Table 21. SDC-Direct method iterations for Problem2-HCP-Case?2.

N=12
Iteration Error J
1 5.546035e-01 1.072986e+00
2 3.402995e-03 1.069829e+00
3 2.085145e-04 1.069635e+00
4 7.464199e-05 1.069662e+00
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CHAPTER 9

CONCLUSION AND FUTURE WORKS

The present work introduces a method to solve constrained nonlinear optimal
control problems using state dependent coefficient factorization and Chebyshev
polynomials named as SDC-Direct method. In this thesis, nonlinear feedback control
and optimal maneuvers of formation attitude and relative position of a two-craft and
three-craft Coulomb formations utilizing coulomb forces as well as thrusters are
addressed at Earth circular orbits, Earth-moon libration points, and deep space. The
SDRE control method is used for nonlinear feedback control of all the cases. The
nonlinear optimal control is realized using the ASRE approaches and the SDC-Direct
method. The effectiveness of the approaches in reconfiguring the formation and
comparison of them is demonstrated through the nonlinear simulations. For
comparison of the SDC-Direct technique with the other approaches in the literature,
the Van der pol oscillator and low-thrust rendezvous problem are studied and the
results show that the proposed method is in agreement with those given in literature.

The future work may be extended to deriving the equations of motion of the two-
craft Coulomb formation using the quaternions instead of Euler angles to describe
the attitude motion of the system. Then, the nonlinear feedback control methods and
SDC-factorized optimal controls may be applied to the new equations and compare
the results. The proposed SDC-Direct method may be extended to the tracking
optimal control problems. Moreover, the idea of the SDC-factorized optimal control
methods may be combined with the Model Predictive Control (MPC) method to find

some new algorithms and implementations in real-time optimal control problems.
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