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ABSTRACT 

 

AN INTEGRATED SYSTEM DESIGN FOR BUILDING INSPECTION BY 
AUTONOMOUS UAVs 

 

 

Küçüksubaşı, Fatih 

M.Sc. in Building Science, Department of Architecture 

Supervisor: Prof. Dr. Arzu Gönenç Sorguç 

 

December 2017, 103 pages 

 

Inspection of buildings throughout their lifecycle is vital in terms of human safety as 

the number of structures increases expeditiously. However, it is not easy to perform 

inspections for all cases. Physical reachability and complexity of the buildings are 

major problems along with the safety of inspectors during on-site operations. In this 

context, Unmanned Aerial Vehicles (UAV) have recently shown great performance 

collecting visual data through autonomous exploration and mapping in building 

inspection. Yet, the number of studies is limited considering the post processing of 

the data and its integration with autonomous UAVs. These will enable huge steps 

onward into full automation of building inspection. In this regard, this work presents 

a decision making tool for revisiting tasks in visual building inspection by 

autonomous UAVs. The tool is an implementation of fine-tuning a pretrained 

Convolutional Neural Network for surface crack detection. It offers an optional 

mechanism for task planning of revisiting pinpoint locations during inspection. It is 

integrated to a quadrotor UAV system that can autonomously navigate in GPS-

denied environments. The UAV is equipped with onboard sensors and computers for 

autonomous localization, mapping and motion planning.  
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Additionally, a Graphical User Interface is developed in order to wrap the high-level 

features of the system for users. The integrated system is tested through simulations 

and real-world experiments. The results show that the system achieves crack 

detection and autonomous navigation in GPS-denied environments for building 

inspection. 

 

 

Keywords: Unmanned Aerial Vehicle, Building Inspection, Task Planning, Crack 

Detection, Autonomous Navigation 
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ÖZ 

 

OTONOM İHA’LARLA YAPI DENETİMİ İÇİN BÜTÜNLEŞİK BİR SİSTEM 

TASARIMI 

 

Küçüksubaşı, Fatih 

Yüksek Lisans, Yapı Bilimleri, Mimarlık Bölümü 

Tez Yöneticisi: Prof. Dr. Arzu Gönenç Sorguç 

 

Aralık 2017, 103 sayfa 

 

Binaların sayısı hızla artarken, insan güvenliği açısından bina denetimi giderek önem 

kazanmaktadır. Bununla birlikte, her yapı için denetim yapmak kolay değildir. 

Binaların fiziki erişilebilirliği ve karmaşıklığı, sahadaki işlemler sırasında 

denetmenlerin güvenliği açısından büyük bir sorundur. Yapı denetiminde otonom 

keşfetme ve haritalama yoluyla görsel veri toplayabilen İnsansız Hava Araçları 

(İHA) son yıllarda son derece yüksek performans göstermektedir. Ancak, bu 

görüntülerin işlenmesi ve otonom İHA'larla entegrasyonu göz önüne alındığında, 

çalışma sayısı sınırlı kalmaktadır. Bunlar gerçekleştiğinde, yapı denetiminin tam 

otomasyonuna yönelik önemli adımlar atılmış olacaktır. Bu bağlamda, bu çalışmada 

otonom İHA’lar ile görsel yapı denetiminde belirlenen konumların yeniden ziyaret 

edilebilmesi için bir karar destek aracı sunulmaktadır. Önceden eğitilmiş bir Yapay 

Sinir Ağı'nın yeniden eğitilmesiyle, araç yüzey çatlaklarını tespit edebilmektedir. 

Noktasal olarak belirlenen konumların denetim sırasında tekrar gözden 

geçirilebilmesi için görev planlamasında kullanımı isteğe bağlı bir yöntem 

sunmaktadır ve GPS erişimsiz ortamlarda otonom olarak gezinebilen dört pervaneli 

bir İHA sistemine entegre edilmiştir.  
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İHA, otonom konumlama, haritalama ve hareket planlaması için bütünleşik 

algılayıcılar ve bilgisayarlarla donatılmıştır. Ayrıca, kullanıcıların sistemin üst düzey 

özelliklerini kontrol edebilmeleri için bir grafik kullanıcı arayüzü geliştirilmiştir. 

Bütünleşik sistem benzetimler ve deneyler ile test edilmiştir. Sonuçlar sistemin bina 

denetimi için GPS erişimsiz ortamlarda otonom seyrüseferi ve çatlak algılamayı 

gerçekleştirdiğini göstermektedir. 

 

 

Anahtar Kelimeler: İnsansız Hava Aracı, Yapı Denetimi, Görev Planlama, Çatlak 

Tespiti, Otonom Seyrüsefer 
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CHAPTER I 

 

 

INTRODUCTION 

 

 

1.1 Motivation 

 

Emergence of the word ‘robot’ had waited until the 1920s even though the history of 

automation can be traced back to ancient times. After the 1950s, robots have been 

utilized mostly to accomplish relatively simple manufacturing tasks in the earlier 

stages of robotics technology. The area of use is expanded in time. Many industries 

have employed industrial robots for automation of many complex tasks as the rapid 

advances takes place both in the technology and the methodology. Pioneered by 

space missions, defense industry and healthcare, robotics becomes one of the 

essential technologies. Furthermore, many distinct types of robots have become a 

part of domestic activities as they are commercialized with affordable prices like 

cleaning robots for household uses. 

 

Besides, mobility of robots had become a subject of the contemporary research as 

the need of achieving in-situ missions emerge. Increasing reachability, working in 

different environments (from underground to space) lead up mobile robotics. Thus, 

mobile robots have extended the bounds of applications. 
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Mobile robots can be classified in terms of the environment in which they take action 

as ground robots, underwater robots and aerial robots. Especially, the use of aerial 

robots has radically increased in recent years in many fields such as; 

photogrammetry, cargo, agriculture, geology, firefighting, forestry etc. The main 

reason of this increase is their unrestricted motion capability in 3D space. They can 

operate through -theoretically- unlimited workspace to perform dedicated actions 

autonomously and/or manually. Additionally, sensors have recently improved their 

ability of taking actions that are difficult/dangerous for humans such as search and 

rescue operations or surveying an area after disasters. 

 

 

 

 

Figure 1.1 Examples of aerial vehicles (TRNDLabs, 2014; IMAGINE DRONE, 

2017; GENERAL ATOMICS, 2007; Viehmeister-Kerner, A., 2017)   
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On the other hand, aerial robots can only involve tasks in built-environments as the 

autonomous navigation extends. Concurrent with the advances in other fields, the 

number of robotics applications for buildings is rapidly increasing throughout 

different phases of buildings’ lifecycle.  

 

Today, robots stand out in construction, monitoring/inspection, and maintenance 

phases of buildings since they provide precision, accuracy, repeatability, safety and 

more. It is now possible to state that these vehicles are keys of the forthcoming era 

for automation in construction and inspection related tasks. It is evident that the 

automation of inspection tasks requires prompt action since it is related to human 

safety. Therefore, the motivation of this study is to put effort on automation of 

building inspection by autonomous aerial vehicles. 

 

1.2 Problem Statement 

 

Inspection or monitoring of buildings throughout their lifecycle is vital in terms of 

human safety as the number of structures increases expeditiously. Studies in this field 

not only have importance in the assessment of various performance indicators, but 

also in extending the life of buildings. In line with this objective, periodic inspections 

are essential for residents’ safety while overloading, disasters and aging have adverse 

effect on structural properties. Law enforcements by governments might be an 

indicator how important building inspection is from the standpoint of safety. 

 

However, it is not easy to perform inspection for all cases. Physical accessibility and 

complexity of the environment are major problems when the part of structure 

subjected to inspection (i.e. airshaft, bridge deck) is hard to be reached by humans. 

High-rise buildings, dams, bridges, chimneys, towers can be given as examples of 

buildings that are hard to access. Another problem is to carry out the inspection 

missions without risking the inspectors’ safety while working in such environments. 
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Inspectors generally use special equipment (Figure 1.2) to reach a location of interest 

and this can lead occupational accidents during operations.  

 

Furthermore, inspection of rapidly increasing building stock is still a labor intensive 

work. For instance, systematic bridge inspections are done periodically in six years 

to detect structural cracks (Metni & Hamel, 2007). Even if the number of bridges is 

considered, inspection demands a very large amount of labor force. 

 

   

 

Figure 1.2 Risky conditions in building inspection 

 

Despite the cutting edge-technology, one of the most preferable inspection methods 

is still based on observing buildings visually which is called visual inspection. It is 

conducted periodically and approximately 95% of the building inspections are based 

on visual inspection (Eschmann, Kuo, Kuo & Boller, 2013). Therefore, automation 

of inspection processes has become requisite since it is safer and easier to bring the 

view of the location of interest to inspector, than the condition in which he/she sets 

foot in that location. 

 

 

 

 



5 
 

In this context, mobile robots have started to succor with their potentials that they 

showed in other fields such as search and rescue operations, space exploration 

missions. Eventually, mobile robots have become means to systematic, efficient and 

safe building inspection such as in Figure 1.3. Ground vehicles had been 

demonstrated in the early stages as an instrument in inspection. Yet, they are bounded 

to limited workspaces since they have to be in contact with surfaces; so, aerial 

vehicles notably increased physical accessibility with their superior degree of 

freedom in 3D space. It may not be ambitious to state that human operated (manual) 

inspections via aerial vehicles are already long-standing. 

 

 

 

Figure 1.3 A wheeled robotic crack detection system for concrete surfaces (Lim, 

La & Sheng, 2014) 
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Today, automation of these manually operated aerial vehicles is one of the main 

research foci of robotics, in building inspection liberating the process from possible 

human error in operations, maintain safety and decrease operational costs. In this 

regard, automation of inspection requires adaptation of Unmanned Aerial Vehicles 

(UAV) with their potentials to building inspection tasks. In this pursuit, huge steps 

are taken as examined later in this dissertation. 

 

The robotics community has shown many aspects of autonomous mapping and 

navigation for building inspection. Most of the efforts have been put on research and 

development for flight control, localization, mapping and motion planning. 

Nevertheless, it is a necessity for inspection community to acquire more user-

friendly, practical, time and cost effective solutions that are also responding the 

requirements of inspection operation itself.  

 

Although UAVs have proven autonomous navigation abilities in different 

environments, there are still steps to take in terms of building inspection. For 

instance, human inspectors still take part in inspections at least to analyze the 

obtained data, even if robots are engaged in the processes. Thus, it is important to 

address the phases after data gathering such as close examination of a particular area. 

In many cases, it is a necessity to revisit locations on the building to explore/inspect 

in detail.  

 

Visually locating the defected areas in buildings is not an easy and straightforward 

task. The textures and visual features make hard the perception and recognition in 

the problematic areas. Inside of an industrial boiler, face of a dam, envelope of a 

high-rise or bridge of a deck can be listed as some examples of this scenario. In this 

case, the UAV should autonomously revisit a pin-point location for a close 

examination or even maintenance. 
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In this context, planning of such a revisiting task including post-processing of the 

obtained data comes into prominence regarding the automation of visual building 

inspection. To achieve this, the following research questions should be answered: 

 

 Is it possible within state-of-art techniques and technologies for UAVs to revisit 

predefined locations autonomously in both GPS-denied indoor and outdoor 

environments? 

 

 Can state of the art machine learning strategies be incorporated in evaluation of 

the data and decision making to increase efficiency of visual inspections? 

 

 Can mission/task planning be achieved considering the needs of building 

inspection after imaging/mapping phase? 

 

1.3 Aim and Objectives 

 

Aim of this research is to achieve autonomous navigation and task planning of aerial 

robots, specifically Vertical Take-Off and Landing (VTOL) UAVs, in GPS-denied 

confined environments to be able to perform revisiting locations of interest during 

building inspection operations. In other words, a task planning strategy that enables 

UAVs to autonomously navigate in different environments while proposing a 

decision making tool for evaluation of the acquired data. Objectives in order to 

achieve the aim are listed below. The objectives of autonomous navigation and task 

planning for revisiting are presented separately for the sake of clarity. 
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Autonomous navigation of the UAV can be achieved by; 

 

 Real-time localization of the UAV during flight with an accuracy that does 

not affect the revisiting performance, 

 

 Mapping of the environment in which the UAV operates for global 

localization and motion planning, 

 

 Motion planning with obstacle avoidance to target locations of revisiting, 

 

Task planning for revisiting pinpoint locations can be achieved by; 

 

 High-level framework in order to wrap the autonomous navigation 

capabilities for users while specifying pinpoint locations to revisit. 

 

 A graphical interface for users without a priori robotics knowledge in order 

to plan the task. 

 

Furthermore, a surface crack detection approach from captured images during flights 

as an assistance for decision making is demonstrated.  
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1.4 Contributions 

 

It is endeavored to utilize state of the art technology and methodology throughout 

this study to be able to reduce the risky situations and increase efficiency in visual 

building inspection. The major contribution of this dissertation can be disclosed as a 

complete implementation for autonomous building inspection considering not only 

the mapping phase but also the subsequent close examination phase. An 

autonomously navigating multirotor UAV with ability of revisiting pinpoint 

locations is introduced. A user interface is developed to operate high-level 

functionalities of this system.  

 

In order to demonstrate potential prominent features of the proposed method a 

pretrained CNN is fine-tuned to be able to facilitate decision making for determining 

locations for detailed inspection to identify surface cracks. As a result, the proposed 

approach increments the efforts in automation of building inspection processes. 

 

1.5 Structure of the Dissertation  

 

The subsequent chapters of this dissertation are structured as follows. In Chapter II, 

a brief overview of related work is presented to be able to apprehend the current state 

of the art. The proposed system is explained in Chapter III. The methodological track 

is explained in Chapter IV to reveal assumptions and scientific approach. In Chapter 

V, the experimental configuration and implementations are explained. The findings 

in the case studies are presented and discussed in the following chapter. Finally, the 

dissertation is concluded with highlights and possible future study perspectives 

revealed. 
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CHAPTER II 

 

 

PREVIOUS WORK 

 

 

Research towards autonomous navigation of multirotor Unmanned Aerial Vehicles 

(UAV) has been in progress, together with their utilization in building inspection 

operations. There are works related with UAVs considering both military and civil 

applications, acknowledged as the current state of the art. In order to comprehend the 

subject in a well-structured way, the research on autonomous navigation of UAVs 

can be classified into several subfields as flight control, localization and mapping, 

planning. 

 

Local (attitude) control of multirotor UAVs for stable and accurate flight has been 

one of the main foci of the researches. Yet, concentration of this research is on global 

control of UAVs rather than local control; therefore, relevant subject matters are 

examined in detail. 
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2.1 Simultaneous Localization and Mapping 

 

Simultaneous Localization and Mapping (SLAM) is an essential concept for 

autonomy which enables a mobile robot to synchronously estimate its state (position, 

orientation, velocity etc.) and construct a map (position of landmarks, obstacles) of 

the environment in which it is located. Although localization and mapping is an 

interdependent problem, they are examined separately for the sake of clarity. 

 

2.1.1 Localization 

 

Low-cost UAVs often have color cameras (Máthé & Buşoniu, 2015). The acquired 

images are subjected to computer vision techniques for mapping as well as 

localization.  Taking advantage of these readily available onboard cameras appear 

practical considering the payload limits of UAVs. 

 

For UAV navigation, there are ongoing studies in the field that are recently focused 

on visual-inertial localization since inertial measurements acquired from Inertial 

Measurement Units (IMU) accumulate errors in time that cause drift in estimations 

(Bachrach, 2012). To overcome this problem, exteroceptive sensors such as laser 

scanners, cameras, GPS, ultrasonic sensors are utilized (Weiss, 2012).  

 

As in the case of this thesis, visual-inertial sensor fusion is one of the most common 

methods for state estimation. The underlying reason of this approach is the ability of 

visual pattern/feature recognition of the state of art methods. Bouvrie (2011) 

demonstrated visual-inertial sensor fusion using RGB-D sensor and IMU by iterative 

closest point approach. However, this is computationally demanding approach so, it 

has drawbacks for onboard computing.  
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Bloesch et al. (2014) presented a method for fusing optical flow and inertial 

measurements. They reduced the dimensionality of the state space for fast 

implementation. Loianno, Watterson & Kumar (2016) developed a visual-inertial 

odometry system using Unscented Kalman Filter on SE(3) in order to obtain 

singularity-free representation of a rigid body pose. 

 

Máthé & Buşoniu (2015) distinguish the use of computer vision methods in UAV 

navigation as;  

 

“In UAV navigation, feature detectors and extractors are often used for object 

detection; optical flow techniques are used to distinguish motion in a scene; visual 

servoing is employed to translate image frame motion into UAV displacement; 

whereas 3D reconstruction methods are exploited for navigation and mapping.”  

 

State estimation is an important concept for localization of a robot by generally 

utilizing sensor stream. For multirotor UAVs, state generally composes of position, 

orientation, linear and angular velocities in 3D space. A common approach is to fuse 

the measurements from sensors in order to overcome drift and make the estimations 

more robust while taking advantage of different types of sensors. For this purpose; 

monocular, stereo and depth (RGB-D etc.) cameras are widely used as exteroceptive 

sensors for visual ego motion estimation (Shen, Mulgaonkar, Michael & Kumar, 

2013; Newcombe et al., 2011; Mur-Artal, Montiel & Tardos, 2015; Fang & Zhang, 

2015; Liu, Zhang, Wu & Don, 2014).  

 

Images acquired from cameras are then fused with either IMU, GPS, LIDAR etc. 

data for global localization. Lots of effort is put on using Extended Kalman Filter 

(EKF) and Unscented Kalman Filter (UKF) as the approach for state estimation 

(Heng, Lee, Fraundorfer & Pollefeys, 2011; Shen et al., 2013).  
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EKF and UKF are extended versions of the Kalman Filter (Kalman, 1960) to solve 

nonlinear problems which is the case in quadrotor flights. The variations of Kalman 

Filter are widely used in UAV navigation applications. EKF’s complete picture of 

operation can be seen in Figure 2.1.  

 

Bloesch, Omari, Hutter & Siegwart (2015) used EKF for fusing monocular visual-

inertial odometry by pixel intensity errors of image patches. The work demonstrates 

the approach by directly employing on a UAV. 

 

 

 

Figure 2.1 Operational diagram of Extended Kalman Filter (Fischer, 2004) 
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2.1.2 Mapping 

 

As the vehicle moves especially in large environments, errors in the odometry 

accumulate and cause drifts in state estimation. Therefore, mapping is necessary both 

for planning and (global) localization relative to the environment. Moreover, it is a 

helpful step while considering visualization in building inspection. Today, many 

types of map representations (grid map, point cloud, voxel grid etc.) are employed in 

applications by robotics community.  

 

Vision-based approaches are generally utilized to extract features from the 

environment for global loop-closure detection because it is possible and easier to 

identify distinctiveness via vision (Tapus & Siegwart, 2008). Visual mapping is 

considerably advantageous considering visual building inspection since the map can 

also be used for inspection purposes. Therefore, visual mapping approaches are 

assessed within the scope of this study. 

 

 

 

Figure 2.2 An occupancy grid map representation (Stachniss, 2006) 
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Considering UAVs, the map representation should be 3D rather than 2D as in the 

case of occupancy grid representation (Figure 2.2). Although 2D occupancy grid 

maps are useful for many tasks for ground vehicles, reliable path planning and 

collision avoidance necessitates 3D maps. Two of the most common approaches of 

3D representations are point clouds and 3D voxel grids as illustrated in Figure 2.3. 

 

 

 

Figure 2.3 Examples of point cloud (left) (MAXED-OUT TEAM, 2014) and 3D 

voxel grid (right) (Robotic Research Team, 2017) 

 

Another important concept in SLAM is called loop closure that enables minimizing 

localization error by the help of landmark recognition because of the interconnected 

character of SLAM problem (Cadena et al., 2016). It helps creating consistent maps. 

Once a location is revisited, landmarks are identified and then the map is 

reconstructed to minimize localization and/or mapping errors. 
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In SLAM applications, bag-of-words (Sivic, & Zisserman, 2003) is a common 

approach for visual mapping (Cummins & Newman, 2008; Botterill, Mills & Green, 

2011; Konolige et al., 2010; Nister & Stewenius, 2006; Angeli, Filliat, Doncieux & 

Meyer, 2008). The bag-of-words uses representation of images with visual words 

taken from so-called vocabulary. Local feature descriptors are extracted and 

quantized into vocabulary in order to compare with the words in the vocabulary later 

on. This provides efficiency and speed especially in large datasets (environments) 

which are the general case in UAV navigation. 

 

A research using appearance-based (visual) localization and mapping is proposed by 

Labbé and Michaud (2014) to solve kidnapped robot problem and/or multi-session 

mapping with an online global loop-closure detection method. They released an open 

source standalone software package named RTAB-Map for SLAM community. This 

graph-based SLAM system considers memory management for online processing 

and is suitable to use with stereo or RGBD camera configuration for both indoor and 

outdoor environments without a dependency of time and size. Hence, this is a suitable 

method both for applicability and robustness in the realm of this thesis. Figure 2.4 

illustrates the loop-closure detection algorithm in RTAB-Map. 
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Figure 2.4 Loop-closure detection pseudo algorithm of RTAB-Map (Labbe & 

Michaud, 2013). 

 

2.2 Planning 

 

Motion and/or path planning for UAVs in cluttered (especially indoor) environments 

is relatively challenging problem than the case of ground robots when one considers 

3D workspace that they should operate. The main objective of a path planning 

problem is generally to compute a complete collision-free trajectory while dealing 

with geometric and physical constraints. Optimality, on the other hand, is a common 

goal to achieve and might be considered for path length and/or time wise 

optimization.  
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In the paper submitted by Yang, Qi, Xiao and Yong (2014), a decent review of 3D 

path planning approaches for UAVs is presented. They classified the algorithms in 

five categories namely; Sampling Based Algorithms, Node Based Optimal 

Algorithms, Mathematic Model Based Algorithms, Bio-inspired Algorithms, Multi-

fusion Based Algorithms. According to the authors, sampling based algorithms 

sample the workspace as nodes, then connect the nearest nodes, or depth-first search 

strategy etc. The next step is to search for an optimal and complete path generally in 

an accepted metric range. This type of algorithms is easy to implement and can be 

used for static and online (real-time) planning. Node based algorithms take nodes 

into account while disregarding regular mapping formation. In general, they deal 

with node information that translates distance into calculation weight. Then, a global 

optimal path is searched. These approaches are suitable to combine with other 

methods and can be used for online planning. Multi-fusion based algorithms are 

combination of different algorithms’ advantageous parts in order to find global 

optimal solutions. These algorithms are dealing with challenges that a single 

algorithm may not manage. For instance, artificial potential field algorithm cannot 

achieve an optimal global solution without navigation function or any other 

approach. The summary of aforementioned algorithms may be seen in Table 2.1.  
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Table 2.1 Summary of path planning algorithms by Yang et al. (2014) 

 

 

 

It is aimed to have real-time onboard planning in this work so, Mathematic Model 

Based Algorithms and Bio-inspired Algorithms are beyond the scope of this research 

since they are offline algorithms. As a matter of fact, planning in confined 3-

dimensional areas is complicated since a robot is restricted in the spaces between 

structural components, or where it is obstructed. To be able to overcome these type 

of problems, global path planning strategies built upon sampling based planning are 

frequently utilized to provide feasible paths. 

 

Mathe and Buşoniu (2015), in their detailed review, discussed that rapidly-exploring 

random tree (RRT) algorithm reduces computational cost. They also examined model 

predictive control (MPC) schemes by addressing several works integrated with other 

approaches such as mixed-integer linear programming (MILP) and Dubins curves. 

This work is important in the implementation phase of this thesis since RRT and 

RRT* are predominately tested. 
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In their work, Bircher et al. (2015) proposed an algorithm for outdoor inspection path 

planning for complex 3D structures. Contrary to finding a minimal set of viewpoints 

in the Art Gallery Problem (AGP) (Toth, O’Rourke & Goodman, 1997), their 

algorithm samples the waypoints so that full coverage is ensured with a short 

connecting path. A triangular mesh representation of the building is already available 

for the algorithm to compute the desired path. Although this study demonstrates a 

full-proof application, it only deals with data acquisition and planning. 

 

 

 

Figure 2.5 The 405m high Central Radio & TV Tower in Beijing inspected by the 

planning approach proposed by Bircher et al. (2015) 
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2.3 Building Inspection Using UAVs  

 

After robotics community achieved autonomous navigation of UAVs, these vehicles 

are implemented to utilize complex tasks such as building inspection. In their work, 

Moranduzzo and Melgani (2014) emphasized that;  

 

“Unmanned aerial vehicles can reach inaccessible and dangerous areas and thus 

avoid endangering the lives of people. Traditional monitoring techniques require 

manual inspections of structures which commonly are expensive and time-

consuming…” 

 

During the last decade, a huge effort is put on employing aerial robots in building 

inspection/monitoring. In 2007, Metni and Hamel presented a micro helicopter 

system using computer vision approaches to be able to inspect bridges. Their focus 

is visual servoing for local control of this system. 

 

 
 

Figure 2.6 Mono camera integrated helicopter developed for bridge inspection 

(Metni & Hamel, 2007) 
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A year later, Rathinam et al. (2008) presented a vision-based tracking system in order 

to monitor infrastructures such as pipelines, roads etc. via fixed-wing type UAV. 

Andre and Simoes, in 2009, developed a manually operated airship for monitoring 

purposes. Serrano (2011) introduced a UAV system for inspecting culverts utilizing 

GPS, LIDAR and IMU. The data acquired from these sensors are fused to estimate 

the state enabling autonomous outdoor navigation. Although these works are 

valuable in terms of demonstrating different use cases of robots in building 

inspection, they focus on navigation and data acquisition. 

 

 
 

Figure 2.7 Image of the quadrotor mounted on a cart for data collection  

(Serrano, 2011) 

 

Eschmann et al. (2013) reported a UAV system equipped with different sensors to 

be able to navigate semi-autonomously with GPS-guided control as well as manually 

controlled by an operator. The pictures taken by the system are stitched to construct 

2D maps and processed for crack inspection when the vehicle comes back to the 

ground station.  
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Figure 2.8 Digital facade reconstruction based on images (Eschmann et al., 2013) 

 

Moranduzzo and Melgani (2014) presented a methodology to monitor the changes 

due to corrosion damages on industrial plants by using UAV. Images acquired at 

different instances are aligned through geometric transformation to highlight the 

changes above a threshold which is automatically determined by assuming damages 

that have usually different aspects with respect to the surrounding structures.  

 

Nikolic et al. (2013) demonstrated a quadrotor MAV integrated with a stereo camera 

configuration that can explore GPS-denied environments. They validated the system 

by autonomous flights inside an industrial boiler. The study is important since it 

demonstrates autonomous indoor navigation for inspection as in the case of this 

thesis. 
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Figure 2.9 Stereo camera integrated quadrotor MAV for industrial boiler 

inspection developed by Nikolic et al. (2013) 

 

Moreover, Høglund’s quadrotor system with IMU and monocular imaging for 

inspection of wind turbines (2014); Araar, Aouf and Dietz’s power pylon detection 

approach (2015); manually operated UAV for 3D map reconstruction by Omari, 

Gohl, Burri, Achtelik and Siegwart (2014); the works of Winkvist, Rushforth and 

Young (2013) and Özaslan, Shen, Mulgaonkar, Michael and Kumar (2015) can be 

listed as further examples of UAV implementations for inspection purposes. 

Although, these studies constitute a basis for the present study, they mostly 

contribute in terms of autonomous navigation for building inspection. 

 

In summary, the use of UAVs in the inspection phases of buildings is demonstrated 

in data (i.e. images, point clouds) acquisition in the literature. However, secondary 

examination (revisiting) is important in periodic inspections in terms of time 

efficiency. The number of researches on this context is limited in the literature. 

Therefore, revisiting locations of interest for detailed inspection by UAVs is aimed 

in this study to be able to extend the studies. 
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CHAPTER III 

 

 

OVERVIEW OF THE SYSTEM 

 

 

In this study, the proposed approach is to expand the area of use of the unmanned 

aerial vehicles for building inspection/monitoring. The aim of this research is to 

achieve autonomous navigation and task planning of UAVs both in GPS-denied 

and/or outdoor environments to be able to perform automated building inspection 

operations. This task planning strategy enables UAVs to autonomously navigate in 

different environments while proposing a decision making tool for evaluation of the 

acquired data. 

 

State of the art technology and methodology are employed to be able to reduce the 

risks and increase efficiency in visual building inspection. The major contribution of 

this dissertation can be stated as a complete implementation for autonomous building 

inspection considering not only the mapping phase but also subsequent phases such 

as revisiting a defected location.  

 

An autonomously navigating quadrotor UAV with ability of revisiting pinpoint 

locations is introduced. SLAM using onboard visual-inertial sensor fusion to explore 

the environment in which the UAV is located; motion planning with obstacle 

avoidance and geometric-visual reconstruction of the environment are implemented 

to accomplish the aim.  
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A CNN is trained to identify cracks to facilitate high-level decision making for 

determining locations that would be revisited. A graphical user interface is 

developed to wrap the functionalities.  

 

In order to validate and verify the methods by testing, a commercial quadrotor UAV 

is integrated with onboard sensors. Software is implemented by both using open 

source libraries and packages supported by the community and by developing the 

new ones in the scope of this study. Figure 3.1 presents a schema of the software 

architecture for the overall system. All the computations for autonomous navigation 

are done onboard apart from GUI that runs image classifier on a ground station 

computer. The software developed in the scope of this work is open-source and can 

be reached online1. 

 

 

 

Figure 3.1 Schematic of the high-level software architecture 
 

 

                                                            
1 https://github.com/fatihksubasi/orko 
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Low-level (attitude and velocity) control of the vehicle is achieved by the flight 

controller of the quadrotor platform. SLAM and motion planning strategies are 

implemented with modified open source software. RGB-D camera is used as the 

main source for the visual odometry and mapping processes. It is fused with onboard 

IMU and ultrasonic sensor for state estimations. The details of the autonomous 

navigation framework can be found in the next chapter. 

 

Besides, a CNN is deployed as an image classifier for the crack detection on concrete 

surfaces. It presents an optional support mechanism for task planning of revisiting 

locations during inspection. It is built on top of autonomous navigation capability of 

the UAV with a user interface. 

 

A GUI is developed to launch high-level planning of the tasks for flights. It runs on 

a ground station computer and demonstrates the capabilities of the system and 

enables users to use it without a priori knowledge of robotics. Figure 3.2 illustrates 

its workflow. It wraps functional callbacks for planning, motion control and other 

features for visualization purposes such as live video stream. 

 

 

Figure 3.2 Workflow of the GUI developed for task planning 
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The step-by-step workflow of the proposed task planning approach is presented 

below as illustrated in Figure 3.2: 

 

1. The GUI shows the images captured during flight for the user to choose as a 

revisiting location. Since these images are previously matched with 

locations, each image corresponds a location (position and orientation) in the 

algorithm. 

2. (Optional) If the user decides to utilize the crack detection approach that is 

introduced as a support for decision making of locations to revisit, the crack 

detector processes the images. 

3. If Step-2 is executed, the GUI visualizes the new set of images in which 

cracks are identified. 

4. After a location for revisiting is determined by its corresponding image, the 

GUI sends this goal to the motion planner. 

5. It receives an obstacle-free optimal trajectory as the form of waypoints if 

available. 

6. An algorithm calculates the required velocities between these waypoints for 

the UAV to cover the path. If the task is executed or there is no feasible 

motion plan available, the GUI reports feedback. 
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CHAPTER IV 

 

 

DEVELOPMENT AND INTEGRATION OF THE SYSTEM 

 

In this chapter, the theoretical background is addressed and the materials and the 

methods used in the implementation of the system are presented. Hardware 

components and features of the system, followed by software integration and 

development are explained. 

 

4.1. Hardware 

 

The hardware used in the research is presented in this section. It includes the UAV 

platform, sensors, onboard computer and ground station employed both in 

simulations and real-world tests. 

 

4.1.1 UAV 

 

DJI Matrice 100 (2014) developer platform is used as the aerial platform. It is a 

vertical take-off and landing (VTOL) quadrotor vehicle with reconfigurable 

hardware installation capability. The UAV meets the requirements of this research 

since it has an onboard low-level flight controller that handles attitude control.  
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Its Robot Operating System (ROS) integrated software development kit (SDK) 

(2017) enables attitude, velocity and position control of the quadrotor. Moreover, the 

SDK sends onboard sensor stream (IMU, GPS etc.) over ROS.  

 

 

 

Figure 4.1 DJI Matrice 100 (2014) 

 

4.1.2 Sensors 

 

An onboard visual sensing system composed of five units of low resolution stereo 

camera and one processor named Guidance (Zhou et al., 2015) is integrated. The 

processor makes obstacle avoidance possible by fusing stereo camera data, IMU and 

ultrasonic sensors. It also works seamlessly with N1 flight controller of Matrice 100.  

 

Microsoft Kinect v1 (2010) is utilized both for mapping and localization as the 

onboard RGB-D sensor. Kinect is a widely used and open sourced hardware. It is 

composed of an RGB camera and infrared depth camera with 43° vertical by 57° 

horizontal field of view at 30 frames per second.   
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Figure 4.2 Microsoft Kinect components (Microsoft, n.d.) 

 

A low cost, lightweight step-down voltage regulator is integrated to reduce the 

voltage supplied by Matrice 100 power source (20-26.1 V) so that Kinect’s input 

voltage requirement (12 V) can be satisfied. 

 

4.1.3 Onboard Computer 

 

Onboard computer is one of the most important components for fully-autonomous 

UAVs since all the computations regarding SLAM and planning tasks are done 

onboard.  

 

DJI Manifold (2015) is a lightweight onboard computer that is compatible with 

Matrice 100 platform. Its power consumption is relatively low (~15 W) which is a 

critical specification in terms of increasing flight time of a limited power-supplied 

UAV. Manifold has a quad-core, 4-plus-1 ARM processor, NVIDIA Kepler-based 

GeForce graphics processor, 2GB memory with customized version of Linux Ubuntu 

14.04LTS. It is also equipped with a wireless connection chip and antennas for 

communication purposes. 

 



34 
 

 

 

Figure 4.3 DJI Manifold (2015) 

 

4.1.4 Ground Station 

 

Two ground station computers are utilized in order to perform simulations and 

communicate with the onboard computer during testing phases. For simulations, a 

desktop workstation which has 16 core Intel Xeon CPU at 3.5GHz, NVIDIA Quadro 

M4000 GPU and 64GB memory. It operates with Linux Ubuntu 14.04 LTS operating 

system. Another computer with quad-core Intel Core i7 CPU at 2.7GHz and 6GB 

memory is used in testing phases as the ground station so that the communication 

over ROS can be achieved. The latter also runs the developed interface that is 

explained in the next sections.  
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Figure 4.4 Fully integrated UAV used in the implementation of this research 

 

4.2 ROS 

 

Most of the implementation throughout this study is done using Robot Operating 

System. Therefore, an overview of ROS is presented in this section. ROS is a widely-

used open source middleware for robotic software applications. It presents easy-to-

integrate tools, libraries and conventions developed by the robotics community.  

 

“...ROS was built from the ground up to encourage collaborative robotics software 

development. For example, one laboratory might have experts in mapping indoor 

environments, and could contribute a world-class system for producing maps. 

Another group might have experts at using maps to navigate, and yet another group 

might have discovered a computer vision approach that works well for recognizing 

small objects in clutter. ROS was designed specifically for groups like these to 

collaborate and build upon each other's work…” (Open Source Robotics Foundation, 

2007) 
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Furthermore, ROS enables distributed and modular software design that increases 

flexibility. It offers inter-process communication (message passing) at the lowest 

level so that one does not need to reimplement this type of a time-consuming basic 

task. The ROS communication protocol supports: 

  

 Publish/subscribe anonymous message passing 

 Data recording 

 Request remote calls (services) 

 Distributed parameter system 

 Message definitions for robots 

 Robot geometry library 

 Robot description language 

 Diagnostics 

 State estimation 

 Localization, Mapping 

 Navigation 

  

ROS also provides several tools for debugging, plotting, visualization and 

simulation. Its distributed architecture comprises of master, nodes, topics, messages, 

services and parameters. Master helps nodes to find each other. Nodes are 

executables that communicate with each other. Nodes can publish or subscribe to 

topics which are buses to exchange messages. Messages are ROS data type protocols. 

Services provide a different way for nodes to communicate. When a node runs as a 

server, it can be sent requests and received responses rather than streaming messages 

as in the case of topics. 
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Figure 4.5 Example of distributed ROS Network (Blasco, 2012) 

 

In consideration of these features, ROS Indigo on Ubuntu 14.04 LTS is used during 

the implementation phase of this work. ROS packages and nodes referred through 

this dissertation have been employed and developed to be able to take the advantage 

of modular software elements presented by the robotics community. The software 

architecture is deployed using ROS framework. 

 

Table 4.1 presents a brief of the software used in this research. The table shows the 

software that are uniquely developed in the scope of this work along with available 

open source software that are adopted. 
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Table 4.1 Summary of the software packages used in this work 

 

Software 

Module 
Available Open Sources 

Developments in the Scope of This 

Work  

Local 

(attitude) 

control 

- Velocity control service 

of DJI SDK 

- Development of a node to translate the 

velocity commands for the UAV 

(Appendix A) 

Visual 

odometry 

- RGB-D odometry node 

of RTAB-Map 

- Development of a node is for setting 

visual odometry to the output of the 

sensor fusion in case that visual 

odometry gets lost 

Sensor 

fusion 

- EKF node of 

robot_localization 

package 

- Downward facing ultrasonic sensor for 

indoor height estimations 

Mapping 
- Mapping node of 

RTAB-Map 
 

Motion 

planning 

- MoveIt! with OMPL 

backend  

- Tonioni’s (2013) 

approach for quadrotor 

motion planning in 

MoveIt! 

- Modification of the physical model of 

the UAV for collision detection in 

motion planning 

- Development of the interoperability of 

the motion planner and the task planner 

(Appendix B) 

Crack 

detection 

- Pretrained InceptionV3 

CNN model 

- Fine-tuning the CNN using Keras with 

TensorFlow backend  

- Development of an testing algorithm 

for detecting cracks in the images 

(Appendix E) 

Task 

Planning 
 

- Development of a node for matching 

the images with their corresponding 

locations (Appendix D) 
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Software 

Module 
Available Open Sources 

Developments in the Scope of This 

Work  

- Development of an algorithm for 

revisiting locations of interest. It sends 

the goal to the motion planner and 

computes the velocities from the 

corresponding trajectory. It runs as the 

backend of the GUI 

GUI  
- Development of the original GUI 

(Appendix C) 

 

4.3 Localization and Mapping 

 

Localization of a mobile robot in the environment it operates is one of the 

fundamentals of autonomous navigation. This requires a representation (map) of the 

environment for the robot to localize itself relative to this representation. In this 

section, a collection of tools, algorithms and approaches are presented in order to 

overcome SLAM problem in the scope of this research. The problem is addressed in 

two fundamental concepts as state estimation and mapping, respectively.  

 

4.3.1 State Estimation 

 

The state comprises of relative position, orientation and linear-angular velocities in 

3D considering UAVs. Global state estimation in an environment is essential both 

for localization and control of the UAV. 
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Transformation between coordinate frames can be stated as one of the essentials of 

state estimation so that relative pose (position and orientation) can be computed. The 

required transformations for autonomous navigation in this implementation can be 

seen in Figure 4.6. Real-time conversions are computed using tf package of ROS. 

 

  

 

Figure 4.6 ROS tf tree of the implementation 
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The ‘map’ frame is the frame where representation of environment of interest placed 

and it is the reference frame. The ‘odom’ frame, on the other hand, is the localization 

(odometry) frame calculated using the measurements from the sensors. ‘base_link’ 

frame denotes the quadrotor UAV’s base. Thus, the transformation between 

base_link and camera_link is static since camera is rigidly attached to the vehicle. 

The transformations between ‘map’ and ‘odom’ frames are calculated and 

broadcasted at approximately 20 Hz by RTAB-Map ROS node (2013) which is 

denoted by ‘/slam/mapping’. The transformations between ‘odom’ and ‘base_link’ 

are computed by robot_localization (2013) ROS node. These two nodes are clarified 

in the next sections. 

 

As emphasized in the previous chapter, inertial measurements are generally 

insufficient for global (position) control of UAVs because of drift phenomenon. 

Therefore, it is necessary for the system to navigate utilizing other sensors to fuse the 

data. In the extent of this research, cameras are employed as visual sensors so that 

visual-inertial state estimation can be obtained. In this context, computing visual 

odometry is necessary. 

 

4.3.1.1 Visual Odometry 

 

Odometry is the data estimating change in position over time and visual odometry is 

a computer vision technique to estimate the state using sequential images. Visual 

odometry outperforms especially in GPS-denied environments. A classification of 

visual odometry can be addressed by the camera types as monocular and stereo. 

There is an ongoing trade-off between those. However, both monocular and stereo 

approaches have advantages and disadvantages over each other.  
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In monocular visual odometry, motion scale is unobservable while stereo approach 

presents metric results. On the other hand, for relatively long distances, stereo 

odometry results in a similar manner with the monocular case. Thus, stereo approach 

is a decent choice for relatively near-field image capturing as in the case of building 

inspection.  

 

In the implementation of this work, a consumer grade RGB-D camera is employed 

for visual odometry since depth information requirement of stereo approach is 

already satisfied so that no extra computation cost needed. 

 

 

 

Figure 4.7 General visual odometry pipeline (Scaramuzza, n.d.) 
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In the present study, RTAB-Map’s visual odometry node is utilized since it is easy-

to-integrate and robust. The node supports both RGB-D and stereo cameras. It 

provides Frame to Map and Frame to Frame odometry strategy options. Additionally, 

pose estimation strategy can be selected as either Kalman or Particle filtering.  

 

After the image rectification and the depth registration, RGB and depth images 

captured by the onboard camera are fed to the visual odometry node at an adaptive 

frequency so that computational cost is minimized. Transformations are also 

predicted based on previous motion as an extra layer for consistency. The state 

initialized aligning with ground to correct the camera angle and height. FAST and 

BRIEF feature detection algorithms are combined because it is computation-wise 

efficient than the other available algorithms in RTAB-Map such as SURF and SIFT 

(Labbe, 2014).  

 

The visual odometry data obtained by this method is used as a complement to inertial 

measurements acquired from the onboard IMU. In the next section, this sensor fusion 

framework is described. 

 

4.3.1.2 Sensor Fusion 

 

Elmenreich (2002) defines sensor fusion as:  

 

“... is the combining of sensory data or data derived from sensory data such that the 

resulting information is in some sense better than would be possible when these 

sources were used individually.” 
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As discussed earlier, state estimation using only inertial measurements are prone to 

drift. On the other hand, orientation estimations (especially roll and pitch angles) of 

visual odometry have poor performance than inertial measurements. Thus, visual 

sensor data is fused with inertial measurements to make estimations more robust and 

reliable. Visual-Inertial navigation principles are applied throughout this work. For 

sensor fusion purposes, a ROS node named robot_localization is employed. The node 

has applications of both Extended Kalman Filter (EKF) and Unscented Kalman Filter 

(UKF). However, EKF approach is preferred in this implementation due to its lower 

computational cost. The node presents many parameters to configure the filter as 

needed.  

 

In the extent of this study, the robot_localization node broadcasts the state estimates 

(position, orientation and velocities) to the ROS network at 50 Hz in the 

implementation. It is also responsible for transformations between ‘odom’ and 

‘base_link’ frames. Linear velocities (in x and y directions) from visual odometry 

and orientations (roll and pitch) from inertial measurements are used.  

Yaw angle computed by fusing the yaw rate measurements coming from both of 

these sensors since gyros are prone to have error in absolute yaw information because 

of the perpendicular direction of gravity to the yaw direction. Yaw angle of IMUs 

are generally prone to have error (Neto, Mendes & Moreira, 2015). 

 

In z direction (height), downward facing Guidance stereo kit’s ultrasonic sensor is 

utilized since it provides more accurate estimates in this direction than visual 

odometry. This is demonstrated in the next chapters. Figure 4.8 shows the 

corresponding data from which the filter is fused. 
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Figure 4.8 Sensor fusion dataflow 

 

In case that visual odometry gets lost (i.e. because of poor feature correspondence or 

lighting), a node (odometry_correction) is created so that visual odometry is 

instantaneously set to the filter’s estimation. Even if this approach may cause drift in 

position estimation, it helps the robot gets long-term autonomy if visual odometry 

recovers in short-term.  

 

4.3.2 Mapping 

 

While visual-inertial odometry only aims to the local consistency, the complete 

SLAM framework ensures the global consistency. This requires mapping with loop-

closure detection so that errors accumulated in odometry can be compensated. 

Several map representation applications are already investigated in the previous 

chapter. Here, a graph-based mapping approach is used presented along with 

extended implementations considering the requirements of the objectives. 
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In this thesis, a graph-based mapping approach is employed with RTAB-Map’s 

(Real-Time Appearance-Based Mapping) ROS node. It has an “approach based on 

an incremental appearance-based loop closure detector. The loop closure detector 

uses a bag-of-words approach to determinate how likely a new image comes from a 

previous location or a new location. When a loop closure hypothesis is accepted, a 

new constraint is added to the map’s graph, then a graph optimizer minimizes the 

errors in the map. A memory management approach is used to limit the number of 

locations used for loop closure detection and graph optimization, so that real-time 

constraints on large-scale environments are always respected.” (Labbé, n.d.)  

 

RTAB-Map is also advantageous in online large-scale and long-term operations 

since it has a loop-closure detection approach based on a memory management 

mechanism. Thus, it is convenient to use RTAB-Map for building inspection 

operations as building inspection generally requires large-scale maps. It is also easy-

to-implement using ROS and proven for RGB-D mapping.  

 

In this work, RTAB-Map is also used for mapping purposes. It subscribes the visual-

inertial odometry information at 50 HZ broadcasted by sensor fusion node and 

publishes registered point cloud data of the environment. Combination of FAST and 

BRIEF feature detection algorithms as in visual odometry is also adopted in mapping 

for consistency.  

 

Rectified RGB images and registered depth images captured by the onboard camera 

are then fed into the mapping node at 2 Hz for loop closure detection and point cloud 

generation. ‘map’ to ‘odom’ coordinate frame transformations are calculated by this 

node so that ‘map’ to ‘base_link’ transformations eventually are linked. This also 

implies that a complete SLAM pipeline is accomplished after these steps.  
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Furthermore, an ROS node presented in Appendix D is developed in order to match 

images with poses (position and orientation) where the UAV had been visited during 

inspection for possible revisiting in future missions. This algorithm subscribes to 

both visual-inertial odometry and RGB image topics. Then, it matches them using 

Approximate Time Synchronizer message filter of ROS in a predefined period. The 

images saved with their corresponding poses in favor of the task planner that is 

described in the next sections. 

 

4.4 Planning 

 

SLAM processes described in the previous section manage how to estimate both the 

state of the UAV and the environment in which it operates. Moreover, it should be 

noted that low-level (attitude) control of the vehicle is out of scope of this 

implementation since it is handled by the onboard controller (N1 controller) of the 

employed UAV. Thus; stable control of roll, pitch and yaw axes is already achieved.  

 

On the other hand, planning of movement of the vehicle with obstacle avoidance 

during building inspection tasks is the main objective of this work along with the 

planning of the task itself. Thus, the high-level planning problem boils down to two-

fold quests as; path (trajectory) planning considering motion constraints and 

task/mission planning. 
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4.4.1 Motion Planning 

 

A path planning strategy in 3D space considering the objectives of this study should 

be taken into account along with the motion and geometric constraints of the UAV. 

Obstacle avoidance while in action, on the other hand, is important in terms of safety 

of both humans and the robot.   

 

In this context, a motion planning framework, Moveit!, is adopted in this work since 

it is easy-to-integrate using ROS and provides flexibility in terms of several path 

planning strategies in application such as; Rapidly Exploring Random Trees (RRT), 

Probabilistic Roadmap (PRM), Kinodynamic Motion Planning by Interior-Exterior 

Cell Exploration (KPIECE), Expensive Space Trees (EST) and their variations.  

 

“Moveit! is state of the art software for mobile manipulation, incorporating the latest 

advances in motion planning, manipulation, 3D perception, kinematics, control and 

navigation. It provides an easy-to-use platform for developing advanced robotics 

applications, evaluating new robot designs and building integrated robotics products 

for industrial, commercial, R&D and other domains.” (Sucan & Chitta, 2011) 
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Figure 4.9 High-level system architecture for the primary ROS node 

(move_group) of MoveIt! (Sucan, & Chitta, n.d.) 

 

Figure 4.9 shows the system architecture of the ROS node of MoveIt!. It subscribes 

point cloud (map) topic in order to plan a collision-free paths. The joint states topic 

in this implementation is the visual-inertial state estimation of the quadrotor since 

the planning is computed between base_link and map_link. Robot State Publisher 

broadcasts static transforms between camera_link and base_link. The ROS node 

looks for URDF (Unified Robot Description Format) and SRDF (Semantic Robot 

Description Format) files that contain the robot’s physical parameters including a 

mesh representation. This data is used in search of collision-free paths along with the 

3D voxel grid representation of the environment. MoveIt! also presents a multi-

domain interface for users.  
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MoveIt! uses Open Motion Planning Library (OMPL) (Sucan & Chitta, 2012) as the 

back-end for motion planning. OMPL is an open-source motion planning library. It 

provides sampling-based motion planners such as RRT, PRM, KPIECE and their 

variations.  

 

Moreover, benchmarking of these planners available for a set of planning problems 

as described in Moll, Sucan and Kavraki’s research (2015). It is valuable to determine 

the most convenient planner for the requirements of such a problem as in this work 

by the help of this benchmark results. Figure 4.10 shows the benchmarking results 

of available OMPL planners in MoveIt! package. It can be claimed that EST planner 

outperforms for the given abstract problem. However, as Tonioni (2013) stated, 

RRT* gives the best performance considering optimality and motion constraints for 

a  quadrotor UAV motion planning problem. The performance of these planning 

algorithms is evaluated in detail in the case studies section of the dissertation. 

 

 

Figure 4.10 Benchmarking results of available OMPL planners in MoveIt! (Moll, 

Sucan & Kavraki, 2015) 
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On the other hand, MoveIt! is originally a mobile manipulation software package 

that only supports robot arms and not suitable for a quadrotor motion planning 

problem. Tonioni (2013) solves this problem by defining a floating joint between 

ground (map_link) and quadrotor base (base_link). This solution enables Moveit! to 

plan collision-free paths for an aerial robot, so; it is adopted in this work. 

 

In the implementation, the motions are planned assuming the environments as static, 

even though real-time obstacle avoidance takes place. This assumption as the motion 

plans are computed in static buildings.  

 

After planning motions, move_group node provides the trajectory as set of 

waypoints. Another node (‘velocity_controller’), which is developed in the scope of 

this work, computes the velocity commands for the vehicle to pursue. The algorithm 

in the node simply divides the trajectory segments between waypoints to the time 

that is computed by the move_group node. The broadcasted velocities, then, moves 

the UAV since DJI SDK allows velocity control of the vehicle in body or ground 

frame over ROS.  

 

Furthermore, real-time obstacle avoidance is achieved using the onboard sensors 

(Guidance modules) by the help of flight controller’s native capability since they are 

placed top, bottom, front, back, right and left of the UAV. The vehicle 

instantaneously stops if it encounters an obstacle along the trajectory, which was not 

available in mapping session. Thus, another layer of safety is added. 
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4.4.2 Task Planning 

 

The major contribution of this work stands in task planning of an autonomous 

navigating mobile robot considering building inspection/monitoring. The task 

planning approach addresses a task planner which might help performing repetitive 

revisiting locations of interest during building inspection operations. Along with the 

autonomous exploration capability that the robotics community provided, it presents 

a complete autonomous framework for application of aerial robots in building 

inspection. The proposed revisiting approach produces effective solutions in the case 

of revisiting a desired pin-point location either at the time of first inspection or at a 

later time to be able to have a second look and/or maintenance purposes. 

 

Although numerous tasks can be listed in inspection/monitoring phases, this study 

focuses on one of them in order to verify the proposed approach. In this context, 

identifying surface cracks is an exemplary task in which professionals aim frequently 

during visual building inspection operations. Therefore, the cracks from captured 

images are identified with an algorithm as the backbone of task planner. Moreover, 

a graphical user interface is developed in order to present these capabilities in a more 

user-friendly way. 
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4.4.2.1 Crack Detection 

 

Although crack detection is not the main aim of this study. It is implemented as a 

demonstration of a decision making tool for revisiting defected locations during 

building inspection since crack detection is one of the most common objectives in 

building inspection. For example, systematic bridge inspections are done 

periodically in six years to detect cracks (Metni & Hamel, 2007). 

 

Non-automated crack detection techniques depend on human workers. However, 

these are labor intensive, human error-prone, subjective and require expertise. Thus, 

research has focused on computer vision techniques for crack detection.  

 

The traditional computer vision techniques generally consist of two steps: hand 

engineered feature extraction and classification of the features. But one main 

disadvantage of these methods is that they are generally not able to generalize crack 

detection task in real-world conditions due to diversity in surface texture (i.e. brick, 

pavement) or variation in lighting (Pauly et al., 2017). Moreover, these techniques 

fail in the presence of non-crack features such as joints (Gopalakrishnan et al., 2017). 

 

In this context, Convolutional Neural Networks (CNN) are one of the most 

commonly used architectures since they can overcome most of the contemporary 

challenges in crack detection (Pauly et al., 2017). They are getting more accurate 

and robust for image classification in recent years. Hence, CNNs are prominent 

architectures for surface crack detection. 
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A convolutional neural network (CNN) consists of one or more convolutional layers 

(usually a sub-sampling step) and then accompanied by fully connected layers. The 

architecture of a CNN is designed so that the 2D architecture of images can be used. 

It is managed through local connections and associated weights followed by pooling. 

CNNs are easy to train and apply through open source libraries and implementations. 

On the other hand, training a CNN from scratch is rather hard and time consuming 

since it requires large datasets. Hence, a common practice, namely Transfer 

Learning, has emerged. In Transfer Learning, a pretrained network on a large dataset 

(e.g. ImageNet, which contains 1.2 million images with 1000 categories) is used as 

an initialization or a fixed feature extractor for the newly created network.  

 

Fine-tuning is one of the methods in Transfer Learning. This strategy is especially 

useful when relatively small datasets are available. Therefore, this technique is 

suitable for the implementation of interest since there is no large dataset available. 

Hence, it is employed as a complementary of CNN in this study. 

 

Training the CNN 

 

In the scope of this dissertation, Transfer Learning approach is adopted in order to 

identify surface cracks from acquired images. This approach is suitable in the realm 

of this study since there is no large datasets available in terms of number of images. 

It is also appropriate in the sense of time effectiveness because pretrained networks 

already form a basis for training.  

 

In this regard, InceptionV3 (Szegedy et al., 2016) network model with ImageNet 

weights is fine-tuned in the present study since it has relatively high performance in 

top-1 validation accuracy than most of the top scoring single-model architectures 

(Figure 4.11).  
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Fine-tuning is achieved using Keras with TensorFlow backend for the 

implementation. “Keras is a high-level neural networks API, written in Python and 

capable of running on top of TensorFlow, CNTK, or Theano. It was developed with 

a focus on enabling fast experimentation.” (2014). Graphics Processing Units (GPU) 

are utilized in the training sessions to be able to reduce the time spent. A modified 

version (Varga, 2016) of ‘Fine-tune Inception v3 on a new set of classes’ example 

is used for training of the CNN. 

 

 

 

Figure 4.11 Single-crop top-1 validation accuracies for top scoring single-model 

architectures (Canziani, Paszke & Culurciello, 2016). 

 

Before the training, two classes are determined as ‘Crack’ and ‘NonCrack’ for the 

classifier. The dataset for training the network is collected from different buildings 

in Middle East Technical University campus and contains 582 images with cracks 

and 458 images without cracks (Figure 4.12). The network had poor performance on 

brick wall images in the first implementation. Therefore, 64 images of brick walls 
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are added to the ‘NonCrack’ dataset so that the network is able to identify brick 

texture. Data augmentation function of Keras is used to increase the number of data. 

The images in the dataset is augmented by flipping horizontally and shifting width 

and height by 0.125. 

 

 

Figure 4.12 Sample of images used in training of the CNN (images with cracks at 

left, images without cracks at right) 

 

Figure 4.13 illustrates the training and the validation accuracies over each epoch. The 

training accuracy of the model jumps over 90% after 5 epochs. After 20 epochs, the 

training and the validation accuracies converge to approximately 98%. Figure 4.14 

shows the training and the validation losses over each epoch. The losses converge to 

0.05 after 20 epochs. These results clearly show that using InceptionV3 as the 

pretrained CNN is suitable for such a crack detection application. 
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Figure 4.13 Model accuracy vs. epoch number in training and validation sets 

 

Figure 4.14 Model loss vs. epoch number in training and validation sets 
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Validation 

 

After the training session, cross validation of the model is conducted by processing 

a dataset that contains different images than the training dataset. The cross validation 

dataset consists of 64095 images in total. 19368 of these have surface cracks while 

there are no cracks in the rest. The fine-tuned model accurately predicts 62417 from 

the 64095 image. The accuracy is 97.382% in the cross validation. 

 

Additionally, a testing algorithm (Appendix E) is developed considering the needs 

of this application. First, it loads the trained model with its weights. Then, it 

processes the images captured during flight whether cracks are present or not. Images 

classified as ‘Crack’ are moved to another directory in ground station for the GUI to 

visualize so that it helps making decisions for selecting locations to revisit. 

 

It is important to state that the surface crack detection is not the main aim of this 

study. It is rather a demonstration of a decision making tool for revisiting defected 

locations during building inspection. Hence, it is prone to be developed more in 

future studies. 
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4.4.2.2 Graphical User Interface 

 

Kivy (2011) is employed for the development of the Graphical User Interface. Kivy 

is an open source, cross-platform Python library that is widely used for GUI 

development. The GUI has three tabs; namely, Home, Mapping, and Revisiting. In 

Home screen, it offers high-level commands for the UAV such as; takeoff, landing. 

Moreover, the system including all the ROS nodes can be launched by a switch. A 

toggle button provides live video stream from onboard camera. Instructions for usage 

of the GUI settles in the home screen in order to give a brief for users. Figure 4.15 

shows the Home screen of the GUI. 

 

 

 

Figure 4.15 Home screen of the developed GUI 
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There are two main modes of the Aerial Inspection Planner application as mapping 

and revisiting; although, only revisiting mode is implemented since exploration 

(mapping) missions are out of the scope of this work. In the Revisiting screen (Figure 

4.16), the captured images appear in the sequence of the vehicle’s route during flight. 

A button calls the function to process all images captured for crack detection with 

the approach described when it is pressed. After this operation, the images with 

detected cracks reappear in the screen. This provides a first screening before users 

may determine a location for revisiting. The images can be explored and viewed by 

the help of a slider or directly inserting the number of the image of interest. Picking 

an image out is picking the corresponding (goal) position for revisiting. ‘Start 

Mission’ button triggers the callback functions of motion planning and flight 

controller; thus, sends the vehicle to the goal. ‘Stop Mission’ button, which is a sort 

of emergency button, stops the vehicle immediately and it hovers at that location.  

 

 

Figure 4.16 Revisiting screen of the developed GUI 
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CHAPTER V 

 

 

CASE STUDIES 

 

 

This chapter presents the results obtained through tests of the proposed system. 

Computer simulations and real-world tests are conducted in order to validate and 

verify the hardware and the methods used. The findings are compared ground truth 

information as long as it is available.  

 

5.1 Simulations 

 

In this study, simulations are carried out to confirm the localization and mapping 

performance of the system. In this regard, the test environment constructed in 

simulations is developed to be similar to the environment in which the system 

actually works. For this purpose, Gazebo simulator which can natively communicate 

with ROS is used to construct an indoor environment. The constructed environment 

mimicking an indoor space is employed for visual-inertial navigation of the system 

to analyze mapping and state estimation performances, respectively. 
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Figure 5.1 shows the indoor environment used in simulations. Two connected spaces 

in the environment is enclosed by 3x1x3 m (height x width x length) brick walls 

which have important texture to test. In this way, the effects on the localization and 

mapping performance of repetitive monotone patterns can be easily observed 

because the loop-closures are harder when repetitive patterns are present in the 

environment.  

 

 

 

Figure 5.1 Indoor environment used in the simulations 
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On the other hand, since there is no GPS data in the simulations, the system must be 

completely dependent on visual-inertial state estimation. The visual data is taken 

from the model obtained by modeling Kinect, so it is a reliable simulation in this 

sense. The hector_quadrotor ROS package (Meyer, Sendobry, Kohlbrecher, 

Klingauf & Von Stryk, 2012) is used for the flight controller model. As in the system 

that is actually integrated, the flight controller here is also driven by velocity 

commands. hector_quadrotor package also provides IMU data and UAV's ground 

truth state estimates. The ground truth data is useful in evaluating the results later.  

 

5.1.1 Mapping 

 

After the simulation environment is established, the tests are performed to evaluate 

the performance of the mapping approach. Although mapping is not the main 

objective of what is proposed in this thesis, it is defined as a prerequisite for revisiting 

a defected location since revisit is a secondary detailed inspection phase. For this 

reason, exploration of the environment in which any location will be revisited is 

necessary for detection of defect locations. The tests also form a basis for real-world 

experiments. 

  

First, an exploration (of the environment) session is conducted by manually operating 

the quadrotor UAV by covering the space, a 3D voxel grid map is constructed with 

the mapping approach (RTAB-Map) as discussed in the previous chapter. This map 

can be seen in Figure 5.2.  
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Figure 5.2 3D voxel grid map created after the mapping session 

 

The performance of the mapping is checked by comparing it with the original 

environment in the simulations. The simulation environment (ground truth map) and 

the reconstructed map by the mapping approach in this work can be seen in Figure 

5.3. Two different evaluations have been considered, global consistency and local 

accuracy are evaluated, respectively. 
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Figure 5.3 The simulation environment (left) and the reconstructed map in the test 

(right) 

 

For the assessment of global consistency, the reconstructed map is compared to the 

original map. In this context, it is seen that the map overlaps with the environment 

created in simulation (Figure 5.3). All surfaces and objects have been successfully 

reconstructed. However, in some places it is observed that the point cloud cannot be 

completed. As illustrated in Figure 5.2, this problem occurs in regions marked in 

yellow. In addition, the point cloud of the region behind the object marked with red 

is not obtained due to being out of side. 

  

Local accuracy is assessed by comparing the measured values of a point cloud of an 

object to the actual values in the simulation environment. The table in the simulation 

shown by red circle in Figure 5.2 is selected for this operation. The width and the 

depth measurements of this table are used. The lengths required to be 1.5 x 0.8 x 1.0 

m [width x depth x height] have been reconstructed as 1.52 x 0.82 x 0.99 m. 
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5.1.1.1 Discussion 

 

In the map reconstructed through simulations, there are misalignments due to point 

cloud stitching that is marked by yellow in Figure 5.2 although the dimensions of the 

map are quite accurate in terms of autonomous navigation purposes. This may be due 

to the fact that some fields do not coincide the field of view (FOV) during mapping. 

For this reason, the upper parts of the brick walls may not have been reconstructed 

as point clouds. 

  

In conclusion, the resolution and accuracy of the 3D map obtained in simulations is 

sufficient for autonomous navigation. The risk of crashing is very low given the 

system's obstacle avoidance feature. This leads to the conclusion that the mapping 

process is successful in accordance with the requirements of this study. 

 

5.1.2 State Estimation 

 

The second test is performed to evaluate the state estimation performance of the 

system in the same simulation environment used in the mapping tests. As explained 

in the previous sections, state estimation is crucial for autonomous navigation of the 

UAV. On the other hand, it has an additional importance in the scope of this thesis 

for revisiting a pinpoint location which is the main aim because it is one of the basic 

requirements for the UAV to be able to identify precisely the locations visited and 

then relocate them. 
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In order to evaluate the state estimation performance of the system, the position 

(global x-y-z) and orientation (yaw) estimates are compared with the corresponding 

ground truth values. The ground truth values are obtained from the simulation 

environment. Visual odometry and visual-inertial odometry results are plotted along 

with ground truth values (Figure 5.5, 5.6, 5.7, 5.8). The estimates are closely 

following the actual measurements during the route covered in the simulation (Figure 

5.4).  

 

 

 

Figure 5.4 Ground truth trajectory vs. Estimated trajectories 
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Figure 5.5 Ground truth vs. Visual-inertial position estimation in global x-direction 

 

 

 

Figure 5.6 Ground truth vs. Visual-inertial position estimation in global y-direction 
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Figure 5.7 Ground truth vs. Visual-inertial position estimation in global z-direction 

 

 

 

Figure 5.8 Ground truth vs. Visual-inertial yaw angle estimation 
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5.1.2.1 Discussion 

 

The importance of visual-inertial state estimation for GPS-denied environments is 

described in the previous chapters. The results obtained in the tests conducted in this 

context are presented comparing the ground truth values. 

  

The maximum deviations (errors) in state estimates are presented in Table 5.1 in 

order to comprehend in a clearer way. It can be observed that visual-inertial odometry 

has superior performance than visual odometry as expected. The values in the table 

show that the maximum error along the estimated trajectory is under 0.1 m. This 

value is relatively negligible considering the building scale so, the performance of 

the state estimation can be evaluated as sufficient in terms of building inspection. 

 

Table 5.1 Maximum errors in state estimations  

 

 Visual Odometry Max. 

Error 

Visual-Inertial State 

Estimation Max. Error 

Global x-direction 0.146157218669 m 0.14588655685 m 

Global y-direction 0.0648243906416 m 0.0521918003553 m 

Global z-direction 0.0580570380627 m 0.0546632381688 m 

Yaw angle  0.237239904855 rad 0.022748689915 rad 
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According to the table, although the maximum deviations in the x, y and z directions 

are close to each other, the errors in the yaw angle are slightly dramatic compared to 

them. This expected behaviour shows the importance of fusing inertial measurements 

with visual odometry since yaw angle of IMUs are generally prone to have error due 

to the fact that the gravity measured by accelerometers cannot be used to help to 

estimate it (Neto, Mendes & Moreira, 2015). Fortunately, visual-inertial sensor 

fusion improves the yaw estimations as well. 

 

Simulations enable evaluation of SLAM performance of the proposed approach 

before conducting real-world experiments. It can be verified that the visual-inertial 

approach is valid and the employed open source software gives sufficient results 

regarding revisiting operations for building inspection. 

 

5.2 Real-World Test: Indoor Experiments 

 

The second test case is conducted indoor to be able to verify the fully integrated 

system. After verifying the state estimation and mapping performances in 

simulations, experiments are performed in a GPS-denied environment for evaluation 

of the integrated system.  

 

The experiments are conducted in the workshop of Design Factory in Middle East 

Technical University that can be seen in Figure 5.9. Although the same software 

architecture with simulations is adopted during indoor experiments, there are 

additional steps as listed below for physical world experiments in order to satisfy the 

hardware requirements.  
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 The first step is to install freenect package as the driver of the RGB-D camera 

in order to process depth image registration and RGB image rectification. 

Then, the other nodes that subscribe the visual data can access the processed 

images.  

 

 The second step is to develop a node that translates the planned velocity 

commands for the velocity control format of the DJI SDK. The simplified 

ROS network diagram of the integrated system can be seen in Figure 5.10. 

 

 

 

Figure 5.9 Workshop of METU Design Factory where indoor tests are conducted 
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Figure 5.10 Dataflow of the implemented ROS network 



74 
 

The industrial space where the experiments are conducted is appropriate for testing 

performances of the state estimation and the planning strategies of the system since 

repetitive elements (i.e. aluminum joineries) are placed. There is also small number 

of patterns/landmarks on the floor of the space so that the possibility of failure in 

state estimations is higher. These two complications make the case more compelling 

in terms of stability and robustness of the SLAM. 

 

5.2.1 Mapping 

 

The first phase of this test case is mapping phase. A low resolution point cloud 

representation is presented in Figure 5.11. The environment is partially mapped since 

it is sufficient for the evaluation of the system. For mapping of the environment, the 

UAV is covered a trajectory (Figure 5.11). The trajectory is determined to explore 

the part of the environment in which the motions are planned (Figure 5.12). 

Additionally, the trajectory contains overlapping positions so that loop closures can 

be detected.  

 

 

 

Figure 5.11 The reconstructed map of the test environment 
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Figure 5.12 The part of the map in which motions are planned 

 

It can be noted that the algorithm matches the images to their corresponding locations 

at 2 Hz in this test. For further studies, it is recommended to adjust this frequency to 

available hardware considering the FOV of the camera and flight speed. The 

frequency should be adjusted so that it ensures any image frame coincides with its 

adjacent frame when a constant velocity of the UAV is set. A simpler solution might 

be to not set a frequency in the algorithm. This provides that the system acquires as 

many images as it can in terms of computational power although this causes a large 

number of data that should be post processed. 
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5.2.1.1 Discussion 

 

In real-world conditions, lighting conditions of the environment is critical in terms 

of visual odometry and mapping. In this context, RGB-D cameras are sensitive to 

sunlight since they are generally equipped with infrared sensors. It is observed that 

direct or indirect sunlight might affect the visual data. Stereo or monocular cameras 

can be considered as alternatives to overcome this issue. However, they demand 

more computational resource since depth should be computed onboard.  

 

The maps are reconstructed as point clouds and 3D voxel maps (octomap). The 

mapping resolution is adjustable in the method used but it is highly dependent on 

computational power. The resolution of the map in the simulations is higher than the 

one in real-world experiments because the ground station has more powerful than the 

onboard computer in terms of computation. It is possible to increase the resolution 

of the maps by offline post-processing the data gathered on a ground station 

computer.  

 

5.2.2 Crack Detection 

 

After the mapping, the integrated system is tested. The test case is demonstration of 

a revisiting task. For this purpose, the images acquired during the mapping phase are 

processed with the image classifier developed to detect cracks on walls of the 

environment.  

 

The node that is developed for matching the images with their corresponding 

locations acquires 20 images (Figure 5.13) in mapping phase. 13 of these images are 

replaced with images that contain cracks (Figure 5.14) since there are no surface 

cracks available in the test environment.  
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The registered locations (positions) are kept same as in mapping but only the images 

are changed. In this way, the developed task planning pipeline as well as the crack 

detection approach can be tested. 

 

 

 

Figure 5.13 Several images acquired during mapping phase of the indoor 

experiments 
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Figure 5.14 Examples of images containing cracks that are replaced with acquired 

images 
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Then, these 20 images are fed into the CNN in order to identify the cracks. After 

processing, the CNN classifies 16 of the images as cracks although the actual cracks 

exist on 13 of the data. Several other elements such as windows and radiator mislead 

the CNN as in the extra 3 images which can be seen in Figure 5.15. However, the 

other 13 images are those which have cracks. 

 

 

 

Figure 5.15 The images that are misclassified as containing cracks by the CNN 

 

5.2.3 Motion Planning 

 

After the crack detection, one of these crack images that corresponds to the location 

shown in Figure 5.16 is selected as the goal position for revisiting. The goal position 

is selected so that the most complicated motion plan possible in the test environment 

can be achieved.  



80 
 

Because increasing the number of obstacles and creating narrow passages challenge 

sampling based motion planning algorithms. Thus, the distance between the start and 

the goal positions is set to be as away as possible in the map. Moreover, the walls 

and the windows exist between them as obstacles so that the UAV should takeoff 

and move around the junction of the two walls for obstacle avoidance during motion. 

 

 

 

Figure 5.16 Start and goal positions of the motion planning problem. (The red 

rectangle encapsulates the start position while the yellow circle indicates the goal) 
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Once the goal location is determined by the GUI, it is necessary to plan the path and 

the motion. The criteria for motion planning can be listed as: 

 

 A complete path including the start and the goal positions, 

 An obstacle-free path, 

 An optimal path in terms of length, 

 A path computed within the specified time (20 sec.), 

 A plan considering the motion constraints of the UAV (i.e. not exceeding roll 

and pitch limits that may cause overturn and crash) 

 

Considering these criteria, several path planning algorithms available in MoveIt! are 

tested for the motion planning problem between start and goal positions. PRM*, RRT 

and RRT* algorithms compute solutions while EST, SPL, LBKPIECE, PRM, 

BKPIECE algorithms are not able to solve the task.  

 

The solution of the PRM* algorithm (Figure 5.17) is not acceptable in terms of both 

the optimality and the motion constraints since it requires large roll degrees in the 

motion that may cause overturn. The trajectory planned by RRT (Figure 5.18) has a 

sudden jump in the motion which is not possible for the UAV to execute. On the 

other hand, RRT* (Figure 5.19) computes a trajectory that satisfies the criteria. The 

trajectory is collision-free and smooth as well as optimal in terms of length. 

Therefore, the motion planner is set to use RRT* as the main algorithm in the plans. 
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Figure 5.17 Path planned by PRM*. (Red circle shows the large roll angle that 

may cause overturn) 

 

 
Figure 5.18 Path planned by RRT. (The sudden jump is shown by a red circle) 
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Figure 5.19 Path planned by RRT* (The path is collision-free, smooth and optimal 

in length) 

 

After the trajectory has been calculated according to the criteria, the UAV has taken 

action to follow the waypoints and the task can be executed by the end of this 

operation. 

 

5.2.3.1 Discussion 

 

This section presents the analysis of the motion planning performances of the system. 

It is found out that fusing the measurements from ultrasonic sensor for height 

estimation (in z-direction) gives better results than the respective data of visual 

odometry. However, this might lead significant errors for relatively high altitudes 

since ultrasonic sensors have range limits (i.e. 20 m for this case).  
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In the motion plans, sampling based path planning algorithms are evaluated. 

Optimality objective in motion planning is determined as the path length so that the 

planner should find the obstacle-free shortest path available. Among the tested 

planning algorithms, only RRT* gives an acceptable solution considering geometric 

constraints and the optimality objective as Tonioni (2013) claimed. Thus, RRT* is 

selected as the motion planning algorithm for further applications. 

 

The revisiting accuracy is strongly dependent on the hardware since a commercial 

onboard flight controller is used in the present work. Therefore, performance analysis 

of the revisiting accuracy could not be conducted due to the hardware limitations in 

this study. 

 

Consequently, it can be stated that autonomous navigation and planning performance 

of the UAV has promising results considering building inspection operations. 
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CHAPTER VI 

 

 

CONCLUSION 

 

 

In this study, autonomous navigation and planning of unmanned aerial vehicles are 

investigated in the pursuit of automation of building inspection/monitoring 

operations. An integrated system is designed in order to address the further 

requirements of inspection missions by UAVs. While the robotics community has 

mostly focused on exploration (mapping) of the buildings, this work puts effort on 

revisiting a damaged location. For this purpose, surface cracks are identified as 

structural defects to be detected since crack detection is one of the common 

objectives during building inspection. 

 

In this context, the related work is overviewed and background of the methodology 

is presented. Then, the materials and methods used in the implementation is 

described in detail. In the implementation, a commercial quadrotor platform is 

equipped with onboard sensors and computers. Visual-inertial sensor fusion 

approach is adopted for state estimations. Onboard RGB-D camera, IMU and 

ultrasonic sensor are utilized in SLAM processes. Although there are numerous 

sensors (LIDAR, sonar etc.) used by the robotics community, visual cameras are 

preferred in this study since they are also utilized for visual inspection. All the 

computations except high-level task planning are achieved by onboard computer. 
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Furthermore, a decision-making tool for task planning is developed in order to 

address revisiting locations of interest after exploration of the environment. It is built 

on top of autonomous navigation and motion planning ability of the UAV. It can be 

claimed that this approach should increase the efficiency of task planning in building 

inspections considering crack detection. A GUI is developed in order to wrap the 

functionality of the system. The GUI presents high-level commands  

 

After the system integration, validation and verification of the system is tested 

through simulations and real-world experiments. The results of mapping, state 

estimation and planning are evaluated in the previous chapter. The overall system 

demonstrates promising performance regarding its application of building inspection 

processes. It is important to remark that the maps constructed in the experiments are 

for autonomous navigation; so, the accuracy and resolution are adequate for 

localization and planning. More accurate maps can be reconstructed for applications 

that demand high-quality visuals. Although the performance of the crack detection 

approach is sufficient, it is highly dependent on training datasets. Therefore, larger 

and diverse datasets can increase reliability.  

 

Consequently, this work contributes to the full automation of building inspection and 

achieves an integrated system that offers a decision making tool integrated to 

autonomously navigating UAVs.  

 

In future, this study can be extended for a multi-agent system that achieves the 

missions in a more efficient way. The presented task planning strategy can also be 

extended to identify different types of defects. The Graphical User Interface can be 

enhanced to visualize defected locations on a 3D model leading to a more user-

friendly interface. 
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Appendix A: The Velocity Controller Algorithm 
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Appendix B: The Revisit Motion Planning Algorithm 
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Appendix C: The Graphical User Interface Algorithm 
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Appendix D: The Image-Location Matching Algorithm 
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Appendix E: The Image Classification Algorithm for Crack Detection 

 

 


