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ABSTRACT 

 

SPATIAL PROBABILISTIC EVALUATION OF SEA BOTTOM SOIL 

PROPERTIES AND ITS EFFECT ON FOUNDATION DESIGN 

 

 

OĞUZ, Emir Ahmet 

M.Sc., Department of Civil Engineering 

Supervisor: Asst. Prof. Dr. Nejan HUVAJ SARIHAN 

 

 

December 2017, 127 pages 

 

The spatial correlation length (SCL), or the scale of fluctuation, is a parameter for 

describing the spatial variability of a soil property and is one of the important 

parameters used in random field theory. Studies reporting the SCL of soil properties 

of offshore/nearshore soils are rather limited in the literature. In this study, the vertical 

SCL is determined using site investigation data from two nearshore and one large 

offshore sites in Turkish waters. In nearshore sites, a total of 41 boreholes and Standard 

Penetration Tests (SPT) reaching to 35 m depth from seabed, in water depths of up to 

26 m; and in the large offshore site, 65 cone penetration test (CPT) soundings (having 

10-200 m lengths in seabed) in water depths of up to 64 m, are utilized. Based on 

extensive data, the vertical SCL is calculated using four different autocovariance 

functions. Among these four functions, the squared exponential function gives the 

highest and cosine exponential function gives the smallest SCL values. The vertical 

SCL values based on SPT-N value, CPT tip resistance, friction ratio and sleeve friction 
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are observed to be within typical ranges reported in the literature for similar soil 

groups, both onshore and offshore. The vertical SCL based on SPT-N value is larger 

than the SCL based on CPT tip resistance, friction ratio and sleeve friction. The vertical 

SCL based on SPT-N is slightly larger in sandy mixture soils as compared to clayey 

soils (about 2 m in sand mixtures and about 1.7 m in clays). In CPT data, deep water 

(greater than 10 m water depths) clays and sands have greater SCL than shallow water 

clays and sands. In both SPT and CPT cases, “constant mean with depth” approach 

always gives larger SCL as compared to “depth-dependent mean (or trend)” approach. 

The effects of SCL and coefficient of variation of soil parameters on settlement and 

bearing capacity of a shallow strip foundation are demonstrated by using random finite 

element analysis tools; RSETL2D and RBEAR2D, where all soil parameters are 

assumed to be lognormally distributed. The results of this study add to the limited 

database of spatial correlation lengths based on real data and could be useful for future 

studies on reliability assessment of nearshore and offshore foundations. Moreover, the 

results of random finite element analyses indicate that the variability of soil 

parameters, in terms of coefficient of variation and spatial correlation length, has a 

significant effect on settlement and bearing capacity of shallow strip footings. 

 

Keywords: variability, spatial correlation length, scale of fluctuation, nearshore-

offshore soils, reliability  
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ÖZ 

 

DENİZ TABANI ZEMİN ÖZELLİKLERİNİN MEKANSAL OLASILIKSAL 

DEĞERLENDİRMESİ VE TEMEL TASARIMINDA ETKİSİ 

 

 

OĞUZ, Emir Ahmet 

Yüksek Lisans, İnşaat Mühendisliği Bölümü 

Tez Yöneticisi: Yrd. Doç. Dr. Nejan HUVAJ SARIHAN 

 

 

Aralık 2017, 127 sayfa 

 

Mekansal korelasyon mesafesi (MKM), diğer bir adıyla dalgalanma ölçeği, zeminin  

değişkenliğini tanımlayan bir parametredir ve rastsal alan teorisinde kullanılan önemli 

parametrelerden biridir. Açık ve sığ denizlerde deniz tabanı zeminlerinin MKM 

değerini bildiren çalışmalar literatürde oldukça sınırlı sayıdadır. Bu çalışmada, 

Türkiye karasularında iki sığ deniz ve bir açık deniz sahasında deniz tabanı zemin etüd 

verileri kullanılarak düşey yönde MKM değerleri belirlenmiştir. Sığ deniz sahalarında 

maksimum 26 m su derinliklerinde ve deniz tabanından 35 m zemin derinliklerine inen 

41 adet sondaj ve Standard Penetrasyon Deneyi (SPT) verisi, açık deniz sahasında ise 

deniz tabanından itibaren derinlikleri 10-200 m olan, ve maksimum 64 m su 

derinliklerinde 65 adet koni penetrasyon deneyi (CPT) ölçümleri kullanılmıştır. 

Kapsamlı verilere dayanarak, düşey yönde MKM dört farklı otokovaryans fonksiyonu 

kullanılarak elde edilmiştir. Bu dört fonksiyon arasında kare üssel fonksiyon en yüksek 

MKM değerlerini verirken, kosinüs üssel fonksiyon ise en düşük MKM değerlerini 
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vermiştir. SPT-N değeri, CPT uç direnci, yanal sürtünme ve sürtünme oranından elde 

edilen MKM değerleri, hem karada hem deniz tabanı zeminlerinde benzer zemin 

grupları için literatürde belirtilen tipik aralıklardadır. SPT-N değerinden elde edilen 

MKM, CPT uç direnci, yanal sürtünme ve sürtünme oranından elde edilen MKM 

değerinden büyüktür. SPT-N değerinden elde edilen düşey yönde MKM değeri kumlu 

karışım zeminlerde killi zeminlere göre biraz daha yüksektir (kumlarda yaklaşık 2 m, 

killerde ise 1.7 m). CPT verilerinde, açık deniz (10 m’den fazla su derinliğinde) killer 

ve kum karışımları, sığ deniz killeri ve kum karışımlarına göre daha yüksek MKM 

değerine sahiptir. SPT ve CPT verilerinin her ikisi kullanıldığı durumda da MKM 

bulunmasında “derinlikle sabit ortalama değer” yöntemi, “derinlikle değişen ortalama 

(trend)” yöntemine kıyasla daha fazla MKM değeri vermiştir. Bu istatistiksel 

çalışmanın sonuçları, literatürdeki, az sayıdaki, gerçek saha verilerine dayalı sığ ve 

açık deniz tabanı mekansal korelasyon mesafesi veri tabanına eklenecek ve bu tip 

sahalarda yapılacak yapıların güvenilirlik değerlendirmelerinde yararlı olacaktır. Buna 

ek olarak, rassal sonlu elemanlar yöntemi analizlerinin sonuçları, zemin 

parametrelerindeki değişkenliğin (varyasyon katsayısı ve mekansal korelasyon 

mesafesi) sığ sürekli temellerde oturma miktarına ve taşıma kapasitesine önemli 

etkileri olduğunu göstermektedir.  

 

Anahtar kelimeler: değişkenlik, mekansal korelasyon mesafesi, dalgalanma ölçeği, 

sığ-açık deniz tabanı zeminler, güvenilirlik 
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CHAPTER 1 

 

1. INTRODUCTION 

 

 

1.1.Problem Statement 

 

Deterministic approaches are known to have some limitations, especially in modern 

geotechnical engineering practice, since they are not taking into account the 

heterogeneous and variable nature of the soils. The soil has both point variability and 

spatial variability which should be included in the reliability based designs and risk 

assessments. In the last two decades, probabilistic (stochastic) approaches are 

becoming more popular, where the variability of the soil can be considered by 

representing soil parameters via statistical distributions, using Monte Carlo 

simulations or creating random fields to represent the heterogeneity of the soil volume. 

Although deterministic approaches provide only a single result, such as the factor of 

safety, settlement amount, or ultimate bearing capacity etc., probabilistic approaches 

provide results with a range, which can be used in reliability based design allowing the 

engineers and decision-makers to quantify the probability of failure and risk.  

Variability and uncertainties in soil properties have been a topic of interest for 

geotechnical engineers, especially in the recent decades. In conventional geotechnical 

design, characteristic/representative value of soil parameters are used leading often to 

a Factor of Safety which is unable to give any guidance on variability (Li and Lumb, 

1987, Cherubini 2000). Because of the inherent variability of soil properties from site 

to site (and within a site), Baecher and Christian (2003) suggested that it is “neither 

easy nor wise to apply typical values of soil property … for a reliability analysis”. The 

key issue here is that a single characteristic value is unable to model variability, which  
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needs at least two numbers (e.g. a mean and a standard deviation). The importance and 

the effects of determining the variability in soil properties have been illustrated by 

various researchers with examples from actual case studies (Lacasse and Nadim 1996, 

Cho and Park 2009, Cho 2010, Zhang and Chen 2012, Carswell et al. 2013, Sarma et 

al. 2014, Liu et al. 2015, Jha 2016). Parameters of soil used in any design, such as 

foundations, dams, natural slopes, road cuts, embankments, and levees, have 

significant uncertainties due to limited site investigations and laboratory tests in 

addition to the uncertainties and limitations involved in empirical correlations (Figure 

1. 1). Furthermore, there is no way to make enough soil investigations to get 

deterministic values for soil parameters at every point (Vanmarcke 1977). For this 

reason, in stochastic methods, the variability of soil parameters is defined by a mean, 

a standard deviation; and a spatial correlation length (SCL). The importance of SCL 

in soils and effects on foundation design problems was brought to the attention of the 

geotechnical engineering community in the mid 1990’s by Griffiths and colleagues 

(e.g. Griffiths and Fenton 1993, Paice et al. 1996, Griffiths and Fenton 2007, Fenton 

and Griffiths 2008, Griffiths et al. 2009) with the development of the Random Finite 

Element Method (RFEM). The SCL is the distance over which the soil parameters tend 

to be spatially correlated. The SCL may be anisotropic (Cherubini 2000) with a higher 

value in the horizontal direction. In this study, however, only the vertical SCL is 

studied.  

 

Figure 1. 1 Schematic presentation of variability in seabed soil properties along an 

offshore monopile 
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Lacasse (2013) emphasized that a single value of factor of safety (FS) cannot represent 

the safety level of the slopes. The slopes with larger FS may have a greater probability 

of failure than the ones with low FS. Figure 1. 2 shows probability density functions 

of two slopes with different FS values, and it is seen that higher FS value does not 

mean a less probability of failure. There is no direct relationship between FS and 

probability of failure for a slope. Likewise, Oguz et al. (2017) reported that 

deterministically calculated FS greater than 1.0 does not always mean a “safe slope”, 

rather, the safety level is influenced by the level of uncertainty in soil properties, 

influenced by the extent and the quality of geotechnical data available. For the critical 

failure surface as well, the failure surfaces with higher FS values may have a greater 

probability of failure (lower reliability indexes) than deterministically critical failure 

surface if soil parameters have high uncertainty (Oguz et al. 2017).  

 

Figure 1. 2 Probability density functions of two slopes with different FS values 

Lacasse (2013) 
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1.2.Research Objectives 

 

The objectives of this study can be listed as follows: 

i. Identifying the typical characteristics, statistical information and variability of 

nearshore/offshore sea bottom soils. 

ii. Determination of the spatial correlation length in the vertical direction based 

on field tests (SPT and CPT). 

i. Investigation of the effects of variability and SCL of soil parameters on 

geotechnical design problems such as settlement, and ultimate bearing capacity 

using random finite element method.  

The results of the present study add to the database of spatial correlation lengths based 

on real data and could be useful for future studies on reliability assessment of offshore 

foundations using advanced tools such as the random finite element method. In 

addition, this study clearly indicates that spatial variability in soils have significant 

effects on the design of foundations.  

 

1.3. Scope 

 

Chapter 2 presents a literature review on spatial correlation length and effects on 

design problems. In Chapter 3, the methodology of data evaluation is explained in 

details. In addition, treatment of raw data and assumptions made in the analyses are 

explained. In Chapter 4, the description of sites, calculated spatial correlation lengths 

and soil characteristics are provided. In Chapter 5, the effects of variability of sea 

bottom soil are investigated by using software RBEAR2D and RSETL2D (Fenton and 

Griffiths 2008) utilizing Random Finite Element Method (RFEM), a combination of 

finite element methodology and random field theory. Finally, in Chapter 6, the main 

conclusions of this study are drawn, and some recommendations are provided for 

future studies. 
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CHAPTER 2 

 

2. LITERATURE REVIEW  

 

 

Dealing with variability and uncertainty is more critical when the site is offshore 

because of the high cost of the site investigation in the offshore comparing to the cost 

of onshore investigations. The uncertainties of soil are considered in two parts, aleatory 

and epistemic uncertainty. The aleatory uncertainty is the inherent soil variability 

(natural randomness of soil parameters) and cannot be eliminated while epistemic 

uncertainty (measurement errors, statistical uncertainties, model uncertainties) due to 

lack of knowledge can be reduced by collecting more data. To represent the inherent 

variability of the soil, the mean, variance and scale of fluctuation of the data can be 

used to generate a random field in the reliability based approaches. In other words, a 

complete representation of the inherent variability of the soil can be achieved by 

defining mean, variance (with a proper statistical distribution) and scale of fluctuation. 

The mean and variance of the soil parameters are defined as the point variability and 

the scale of the fluctuation is the distance over which the soil parameters are similar to 

each other. 

Lacasse and Nadim (2007) present the geotechnical risk and hazard assessment in their 

study and illustrate the importance of probabilistic approach. The risk includes hazard 

and corresponding consequences and is formulated as: 

𝑅 = 𝐻 ∗ 𝐶         (2.1) 

where R is risk, H is hazard and C is the consequence.  
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The more realistic framework in the risk assessment can be achieved by considering 

all uncertainties related to the soil and the structure with a probabilistic approach. By 

doing this, the probability of failure or risk can be evaluated and decisions on the 

projects can be taken. Figure 2. 1 illustrates that the deterministic factor of safety 

cannot be a measure for risk assessment. That is, higher FS (mean FS value of 1.5 in 

Figure 2. 1) may have a higher probability of failure when compared to lower FS, if it 

has high uncertainty (for example in shear strength) represented by high coefficient of 

variation, COV, value.  

 

Figure 2. 1 Factor of safety and probability of failure regions (Lacasse and Nadim 

2007) 

 

There are several methods for probabilistic analyses to consider the variability of soil 

parameters, such as the first order second-moment approximation (FOSM), first order 

reliability method (FORM), Monte Carlo simulation etc. In the study of Lacasse and 

Nadim (2007), FOSM method is utilized to calculate the mean and standard deviation 

of the factor of safety which is a function of varying input parameters. The general 

overview of the processes in both deterministic and probabilistic approaches are 

provided in Figure 2. 2. It is seen that, while deterministic approach provides only 

factor of safety, probabilistic approach provides probability of failure, reliability index 

and parameters which can indicate failure.  
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Figure 2. 2 Processes of both deterministic and probabilistic approach (Lacasse and 

Nadim 2007) 

 

Lacasse and Nadim (2007) indicated that depending on the variation of the natural soil 

properties, aleatory uncertainties may have greater importance than epistemic 

uncertainties and handling them may require knowledge of the spatial variation of the 

soil parameters. The soil parameters can be described by summation of a trend and 

residuals (random component) about the trend. The residuals are assumed to have a 

spatial structure. The degree of the spatial structure (correlation) can be estimated by 

autocovariance function C(r) where r is the separation distance between two 

observation points. Autocorrelation function, the normalized form of autocovariance 

function, can be also used to define the degree of correlation. Exponential, squared 

exponential and spherical autocovariance functions are widely used in the literature in 

soil modelling; however, the second-order autoregressive and cosine of exponential 

autocorrelation functions are also utilized in the literature (DeGroot and Baecher 1993, 

Akkaya and Vanmarcke 2003, Lacasse and Nadim 2007, Huber 2013).  
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Probabilistic models considering spatially-varying soil properties are being used in 

studies on general foundations of structures (Paice et al. 1996, Griffiths and Fenton 

2000, 2001, Griffiths et al. 2002, Popescu et al. 2005, Griffiths et al. 2006, Cassidy et 

al. 2013) as well as in offshore foundations, especially in the recent years (Andersen 

et al. 2011, Vahdatirad et al. 2011, Andersen et al. 2012, Vahdatirad et al. 2013, Liu 

et al. 2015, Nadim 2015, Overgard 2015). Significant economical and risk-associated 

benefits, and/or optimized design in terms of higher reliability index, and lower 

probability of failure for offshore foundations are provided with the use of spatial 

correlation length approach (Lacasse and Nadim 1996, Cho and Park 2009, Cho 2010, 

Zhang and Chen 2012, Carswell et al. 2013, Sarma et al. 2014, Liu et al. 2015, Jha 

2016).  For example, Liu et al. (2015) compared the annual probability of failure 

obtained for axial pile capacity with and without accounting for the vertical SCLCPT−qc
 

for undrained shear strength for clays and relative density for sands. Based on CPT 

cone tip resistance at an offshore piled jacket foundation site in Western Australia, Liu 

et al. (2015) calculated the vertical SCLCPT−qc
 in the range of 0.1-0.5 m for sands, and 

0.05-1.0 m for clays. Taking into account the vertical SCL gave higher annual 

reliability index and a lower probability of failure, which led to a more optimal and 

cost-effective pile penetration depth. The reduction is reported to be by a factor of 2 

or 3 on the annual probability of failure (Liu et al. 2015). Therefore, the quantification 

of the vertical SCL is important and useful for reliability-based design of offshore 

structures (Cho and Park 2009, Carswell et al. 2013, Liu et al. 2015, Jha 2016). 

Although there exist numerous studies investigating the value of vertical SCL of soil 

properties (Chiasson et al. 1995, Jaska et al. 1999, Akkaya and Vanmarcke 2003, 

Firouzianbandpey et al. 2014), their number is rather limited for offshore / nearshore 

sediments (Phoon et al. 2003, Huber 2013, Liu et al. 2015, Zhang et al. 2016).  

 

2.1 Random Finite Element Method  

 

The inherent heterogeneous structure, i.e. the variability of soil can be defined by a 

statistical distribution (such as normal distribution, lognormal distribution etc.) at a 

point and SCL through distance. While most probable (average) parameter values are  
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selected and analyses are performed in deterministic approach, large number of 

simulations are performed in a single analysis in probabilistic approach. In each 

simulation, a soil parameter is randomly selected within its defined range of values. 

By doing so, large number of numerical analysis results can be obtained and these 

results can be utilized in assessment of probability of failure in reliability-based design. 

The above mentioned probabilistic approach can simply be integrated with the finite 

element method (FEM) and probabilistic results can be utilized to evaluate reliability 

of structures. However, selecting random variables within the statistical distribution 

and performing large number of simulations do not represent spatial heterogeneity of 

soil volume. To represent the heterogeneity through distance, a random field should 

also be created using spatial correlation length and a correlation function.  

In the random finite element method, random field for soil properties (such as unit 

weight, cohesion, friction angle, Young’s Modulus, Poisson’s ratio etc.) is generated 

by utilizing statistical properties; a correlation function with a SCL and then the model 

is matched with finite element meshes. Statistical properties utilized in RFEM are the 

mean, standard deviation with a distribution model (such as normal, lognormal 

distributions) and SCL with a correlation function (Fenton and Griffiths 2008, 

Elachachi et al. 2012, Luo et al. 2014, Jha 2016). In this method, probabilistic analyses 

are conducted by performing large number of simulations (e.g. Monte Carlo 

Simulations) where also heterogeneity of soil is accounted in the analyses. In Figure 

2. 3, random fields with different SCL values can be seen, where darker colors indicate 

larger values of a soil property compared to the mean value. In Figure 2. 3a, a single 

deterministic value of a soil parameter is assigned to the whole finite element model 

and SCL is not considered. In Figures 2.3 b-f, random fields are created with different 

vertical SCL values in the range of 0.25 m to 10 m (having ratio of horizontal to 

vertical SCL of 10) and matched with the finite element model. The random fields 

with small SCL values in Figure 2. 3 have rough and frequent changes, and it is seen 

that as the SCL value increase, the field starts to have more smooth changes.  
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(a) No SCL 

 
(b) SCLv=0.25 m 

 
(c) SCLv=1 m 

 
(d) SCLv=3 m 

 
(e) SCLv=5 m 

 
(f) SCLv=10 m 

Figure 2. 3 Effect of small and large vertical SCL values on the random field for a 

bearing capacity of a foundation generated by RBEAR2D software (Fenton and 

Griffiths 2008), where the ratio of horizontal SCL to vertical SCL is 10 (darker 

colors indicate larger values of elastic modulus).  

2.2 Spatial Variability in Soils and Evaluation of Spatial Correlation Length  

 

SCL, which is also called as the scale of fluctuation, is the distance over which the soil 

parameters are positively correlated. That is, the two points in that distance will be 

both on the same side, above or below, of the mean. Likewise, SCL is defined as the 

distance beyond which soil parameters show no correlation (Hommels et al. 2010). In 

this chapter, a brief summary of the studies in the literature is provided.  

The SCL concept is first proposed by Vanmarcke (1977) who studied the deviation 

from the average which is a part of three major sources of uncertainty; inherent soil 

heterogeneity, a limited number of soil samples and measurement error. The inherent 
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soil variability can be described by using mean, standard deviation (or coefficient of 

variation) and scale of fluctuation instead of treating the soil layer as homogeneous 

material with deterministic soil properties. The soil properties, like undrained shear 

strength (cu) may show depth-dependent behavior, i.e. having trend with depth. It is 

advised that it is better to standardize the soil data which has trend behavior to 

investigate the fluctuation around depth-dependent mean. Vanmarcke (1977) provides 

spatial averaging process to evaluate the scale of fluctuation where the soil parameter 

is averaged through distance and the standard deviation of the averages decreases as 

the distance of averaging increases. This decrease is defined by reduction function and 

defined by:  

Γu(∆z)=
ũ∆z

u̅
         (2.2) 

where 𝑢̃∆𝑧 is the standard deviation of spatially averaged parameters while 𝑢̅ is the 

standard deviation of the data.  The square of reduction function is called variance 

function and as the averaging interval increases, the variance function becomes 

inversely proportional to the interval (Vanmarcke 1977). The above mentioned 

relationship brings us the scale of fluctuation, 𝛿𝑢, as follows: 

Γu
2(∆𝑧) =

𝛿𝑢

∆𝑧
         (2.3) 

Vanmarcke (1977) also states that the scale of fluctuation may be evaluated by 

correlation functions used to fit to the correlation coefficients. Four different 

correlation functions and corresponding scale of fluctuations are provided (Table 2. 

1).  

Table 2. 1 Autocovariance functions used in this study (Vanmarcke, 1977) 

Autocovariance Function Scale of Fluctuation 

Exponential : e−(∆z/a) 2a 

Squared exponential: e−(∆z/b)2
 √𝜋𝑏 

Cosine exponential: e−
∆z

𝑐 cos(∆z/c) c 

Second order autoregressive: e−(∆z/d)  [ 1 + (∆z/d)] 4d 
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Additionally, a practical method to find the scale of fluctuation has been provided in 

the study of Vanmarcke (1977) where the scale of fluctuation is found by the average 

distance between the intersections of fluctuation and mean. The relation is given by: 

𝑑̿𝑢 ≈ 1.25 ∗ 𝛿𝑢        (2.4) 

where 𝑑̿𝑢 is the average distance between the intersections of fluctuation and mean.  

DeGroot and Baecher (1993) divide the uncertainty of the soil parameters into two; 

inherent variability and measurement (sampling and testing) errors. The variability of 

the soil can be described by the summation of trend and residual about the trend. The 

parameters of the soil at the untested (unsampled zones) locations can be predicted by 

understanding the correlation structure of the soil parameters which is not applicable 

in the traditional methods. The variability of the soil, the trend and waviness about 

trend (fluctuation) is defined as: 

𝑌(𝑥) = 𝑇(𝑥) + 𝜀r(𝑥)        (2.5) 

where 𝑌(𝑥) is the soil parameters, the 𝑇(𝑥) is the trend (mean), and 𝜀r(𝑥) is the 

residual which has zero mean. The covariance between two observation points can be 

described by covariance function: 

𝐶𝑖𝑗 = 𝐸[{(𝑌(𝑋𝑖) − 𝑇(𝑋𝑖)} ∗ {(𝑌(𝑋𝑗) − 𝑇(𝑋𝑗)}]    (2.6) 

where E[] is the expected value. The value of 𝐶𝑖𝑗 is 1 when the separation distance is 

zero and then decreases towards zero with increasing separation distance. In Figure 2. 

4, examples of the most commonly used autocovariance functions, and the effect of 

autocovariance distance, 𝑟0, and variance is illustrated.   
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Figure 2. 4 (a) Commonly used autocovariance functions, (b) effect of 

autocovariance distance, 𝒓𝟎, and variance (Lacasse and Nadim 1996, DeGroot and 

Baecher 1993) 

DeGroot and Baecher (1993) state three methods to estimate correlation structure of 

the soil which are moment estimator (Equation 2.7), inverse estimator from 

probabilistic interpolation and maximum likelihood method (Equation 2.8). The last 

method, ML, is reported to be the most efficient and best way to obtain the correlation 

structure of the soil. Therefore, maximum likelihood method is utilized in order to 

estimate trend and autocovariance structure of residuals about trend. 

One of the three methods, the method of moments is used to assess the correlation 

structure of the soil parameters and defined as: 

𝐶(𝑟) =
1

𝑛−𝑟
∑ (𝑌𝑖 − 𝑚𝑦) ∗ (𝑌𝑖+𝑟

𝑛−𝑟
𝑖=1 − 𝑚𝑦)     (2.7) 

where 𝑌𝑖 is the value of soil parameter at point 𝑖, the 𝑚𝑦 is the mean of detrended data 

and n is the number of points.  

Another and most efficient method, the maximum likelihood estimators (MLEs), are 

evaluated by maximizing the likelihood function:  

𝐿(𝑥/𝜙) =
1

(2𝜋)𝑛/2|𝐶|1/2
exp {−

1

2
(x − μ)TC−1(x − μ)}   (2.8) 

(a) (b) 

𝜎2𝑒𝑟/𝑟0  

𝜎2𝑒(𝑟/𝑟0)^2  
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where C is covariance between points, 𝜇 is the mean vector at the point of interest, 

𝑋𝑇 = {𝑥1, 𝑥2, 𝑥3 … . . , 𝑥𝑛} is the observations and 𝜙𝑇 = {𝜇, 𝜎, 𝜃} is the distribution 

parameter vector.  

Phoon and Kulhawy (1999a) state that the statistical variability values reported in the 

literature result from different sources of uncertainty although the studies assume only 

a single source of uncertainty. It is indicated that there are three major sources of 

uncertainty which are illustrated in Figure 2. 5; inherent soil variability (natural soil 

formation process), measurement errors (equipment, human effects etc.) and 

transformation uncertainty (empirical, or other correlation models). The reported 

statistical results can be used for the cases where the same conditions (uncertainties) 

are applicable. The measurement errors are removed from the field data in the study 

of Phoon and Kulhawy (1999a) and the remaining measurement represents the 

inherent soil variability. The study provides scale of fluctuation and coefficient of 

variation of the inherent variability, and measurement errors. Statistically evaluated 

parameters are undrained shear strength, friction angle, natural water content, 

Atterberg limits, dry-saturated unit weights and relative density, and evaluated field 

tests are cone penetration test, vane shear test and dilatometer test. Phoon and Kulhawy 

(1999a) indicate that the statistical data like COV in the literature includes not only 

the inherent variability but also other uncertainties and therefore the reported COV 

values are greater than the COV of inherent soil variability. 

 

Figure 2. 5 Uncertainty of soil parameters (Phoon and Kulhawy,1999a) 

SOIL IN-SITU 
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TRANSFORMATION 

MODEL 

ESTIMATED                   

SOIL PROPERTY  

inherent 

soil 

variability 

data 

scatter 

statistical 

uncertainty 

inherent 

soil 

variability 

measurement 

error 
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The soil variability (Figure 2. 6) is divided into two; trend 𝑡(𝑧) and deviation from the 

trend 𝑤(𝑧) (Phoon and Kulhawy 1999a) and the soil property,  𝜉(𝑧), becomes: 

𝜉(𝑧) = 𝑡(𝑧) + 𝑤(𝑧)       (2.9) 

The fluctuation is considered as statistically homogenous which means that the mean 

and standard deviation are constant and the correlation between two measurements is 

only related to the distance of separation. The measurements should be detrended to 

satisfy statistical homogeneity. It is also highlighted that the duration of the testing 

(time frame) is also very important and as time passes, the soil may include additional 

variability with time (Phoon and Kulhawy 1999a).  

 

Figure 2. 6 Inherent soil variability (Phoon and Kulhawy,1999a) 

Phoon and Kulhawy (1999a) provide an extensive literature review (Table 2. 2) 

consisting of ranges and means of scale of fluctuations based on different data sets of 

different studies. It is seen that there is only one study for SPT-N blowcount, effective 

unit weight and natural water content of clay while several studies exist for others. It 

is stated that the sampling distance has a significant effect on scale of fluctuation. The 

literature review also shows that the horizontal scale of fluctuation is much greater 

than the vertical.  
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Table 2. 2 Literature review of spatial correlation length (Phoon and Kulhawy 1999a) 

      Scale of fluctuation (m) 

Property  Soil type  # of 

studies 

Range Mean 

Vertical fluctuation       

cu (Undrained Shear Strength) Clay 5 0.8-6.1 2.5 

qc Sand, clay 7 0.1-2.2 0.9 

qT Clay 10 0.2-0.5 0.3 

cu (Vane Shear Stress) Clay 6 2.0-6.2 3.8 

N Sand 1 - 2.4 

wn Clay, 

loam 

3 1.6-12.7 5.7 

wL Clay, 

loam 

2 1.6-8.7 5.2 

 ͞γ Clay  1 - 1.6 

 γ Clay, 

loam 

2 2.4-7.9 5.2 

Horizontal fluctuation       

qc Sand, clay 11 3.0-80.0 47.9 

qT Clay 2 23.0-66.0 4.5 

su (Undrained Shear Strength) Clay 3 46.0-60.0 50.7 

wn Clay 1 - 170.0 

 

In the study of Jaksa et al. (1999), scale of fluctuation in both vertical and horizontal 

direction based on CPT (with 5 mm depth interval) data has been studied. Two field 

studies, 222 vertical CPT (5 m depth) and CPT (horizontal) under an embankment, 

have been considered. The scale of fluctuations of two different sites, where there 

exists stiff overconsolidated clay, have been evaluated by correlation function 

proposed by (Vanmarcke 1977) and Bartlett’s approximation. Jaksa et al. (1999) state 

that the real correlation structure of the soil cannot be known but can be estimated from 

the limited measurements. The autocovariance, 𝑐𝑘 , (Equation 2.10) and 

autocorrelation, 𝜌𝑘, (Equation 2.11) are used to obtain correlation structure and 

defined as follow: 

𝑐𝑘 = 𝐶𝑜𝑣(𝑋𝑖, 𝑋𝑖+𝑘) = 𝐸[(𝑋𝑖 − 𝑋̿)(𝑋𝑖+𝑘 − 𝑋̿)]    (2.10) 

𝜌𝑘 =
𝑐𝑘

𝑐0
         (2.11) 
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where k is the lag distance, 𝑋𝑖 is the value of parameter X at the location of 𝑖 and 𝑐0 is 

the autocovariance at zero separation distance. In addition, sample autocorrelation 

function (Equation 2.12) which is an important parameter showing the correlation 

structure is defined as:  

𝑟𝑘 =
∑ (𝑋𝑖−𝑋̿)(𝑋𝑖+𝑘−𝑋̿)𝑁−𝑘

𝑖=1

∑ (𝑋𝑖−𝑋̿)
2𝑁

𝑖=1

       (2.12) 

where k=0, 1, 2, …, K are the lags, K is the max number of lags and N is the number 

of measurement data. After calculation of correlation coefficient, correlation functions 

can be utilized to calculate spatial correlation length. Jaksa et al. (1999) also present 

an easier method, Bartlett’s approximation to evaluate scale of fluctuation where 

Bartlett’s Limit (Equation 2.13) is defined as: 

|𝑟𝑘| = ±
1.96

√𝑁
         (2.13) 

Jaksa et al. (1999) state that if the data is not stationary, it can be easily converted to 

the stationary by standardizing (zero mean and unit standard deviation) or detrending. 

Only stiff overconsolidated clay, Keswich Clay, is taken for the evaluation process. 

Then, the trend behavior is extracted from the cone tip resistance data which means 

that data is converted to stationary data which is then used to evaluate sample 

autocorrelation function (ACF). After all, the scale of fluctuation is calculated by 

fitting correlation functions and by Bartlett’s approximation (Figure 2. 7). Exponential 

(Markov) and squared exponential (Gaussian) are utilized to fit the correlation 

coefficient data, 𝑟𝑘. In addition, the intersection of ACF and Bartlett’s limits is 

investigated and it is reported that the distance of intersection and evaluated scale of 

fluctuation with function fitting method have strong relation (Figure 2. 8) and 

following relation is provided: 

𝛿𝑣 = 0.939 ∗ 𝑟𝐵 + 14.05       (2.14) 
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(a) 

(b) 

Figure 2. 7 (a) Fitting autocovariance functions, (b) utilizing Bartlett’s limits (Jaksa 

et al. 1999) 

 

Figure 2. 8 Relation between two methods (Jaksa et al. 1999) 
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Gaussian  
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In the study of Jaksa et al. (1999), the evaluated vertical scale of fluctuations based on 

CPT tip resistance have a mean of 0.15 m (0.06-0.24) with a COV of 30% which is 

around lower limit of the reported scale of fluctuations in the literature. In addition, 

the scale of fluctuations in the horizontal direction is reported to be between 1 m and 

2 m. However, the authors warn that reported scale of fluctuations and the real 

correlation structure of the soil may not be the same. The scale of fluctuation and 

correlation distance are reported to be equivalent where the soil shows strong 

correlation and beyond that point the parameters of soil become independent. Jaksa et 

al. (1999) draw attention to the point that the sampling distance should be less than the 

correlation distance of the soil and advise to consider the reported scale of fluctuations 

to decide on the spacing of the field test measurements.  

Akkaya and Vanmarcke (2003) state that variability of parameters can be described by 

summation of trend and deviation from the trend. The way to describe the variability 

is evaluation of mean, standard deviation, and scale of fluctuation which is defined as 

the distance where the two points in that distance tend to be on the same side (above 

or below) of the trend. In the study of Akkaya and Vanmarcke (2003) the data from 

the Texas A&M University National Geotechnical Experimentation Sites (NGES) 

have been analyzed and variability of the data has been reported. Both first order 

statistics such as mean, standard deviation, skewness, kurtosis, and correlation 

structure (scale of fluctuations) of the data are provided. The soil profile at the site and 

presence of the trends have been determined by assumptions. The site consists of 

mostly clay and sand layers and their scale of fluctuations based on both CPT cone-tip 

resistance and CPT sleeve friction are reported. Two different methods which are 

calculating the area under the correlation function and fitting a model (exponential, 

i.e., Markov) have been utilized to calculate scale of fluctuations by Akkaya and 

Vanmarcke (2003). The vertical scale of fluctuations based on CPT cone tip resistance 

are reported as 0.61-3.72 m and 0.26-3.14 m for sand and clay sites, respectively. 

Likewise, the values based on CPT sleeve friction are reported as 0.36-3.53 m and 

0.30-3.62 m for sand and clay sites, respectively.  Although the data in the horizontal 

direction are limited, the analyses have been performed and the corresponding scale of 

fluctuations in the horizontal direction for cone resistance were reported as 2-25 m and  
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2.5-30 m for sand and clay sites, respectively. Likewise, the values for sleeve friction 

were reported as 7-19 m and 2-14 m. The horizontal scale of fluctuation is found to be 

much greater than the vertical scale of fluctuation. Akkaya and Vanmarcke (2003) also 

indicate that removing trend (detrending) eliminates the longer fluctuations. 

Lloret-Cabot et al. (2014) also indicate that estimation of the scale of fluctuation, i.e. 

spatial correlation length, is crucial in the reliability-based designs and therefore it 

should be estimated accurately. The degree of soil heterogeneity can be obtained using 

SCL which affects the overall response of the structures, piles, soil masses such as 

slopes. Lloret-Cabot et al. (2014) investigated a classical approach (function fitting) 

and a new approach which combines the classical approach with conditional random 

field to calculate scale of fluctuation of the soil by utilizing CPT measurements. A new 

approach is described and compared with the conventional method which is fitting a 

correlation model to the measurements.  

Firouzianbandpey et al. (2014) studied the scale of fluctuation in both vertical and 

horizontal directions for sand, silty sand layers based on CPTu measurements at the 

site situated in the North of Denmark. The soil site is characterized according to the 

data of CPTu by using Robertson classification chart and homogenous sublayers are 

determined and correlation structure of these homogenous sublayers are evaluated. 

Firouzianbandpey et al. (2014) state that the variability of soil has significant 

importance in geotechnical engineering. Mean, standard deviation and recently scale 

of fluctuation are used to describe the variability of the soil parameters. There are 

several different methods to include the heterogeneity of the soil like local average 

subdivision method (Fenton and Vanmarcke 1990) which requires mean, standard 

deviation and scale of fluctuation. Instead of maximum likelihood method, fitting 

exponential correlation function has been used to evaluate the scale of fluctuation due 

to limited data. The data is normalized (detrended) where the deviations from the trend 

are divided by standard deviation to obtain a stationary data through distance. The 

Markov (exponential) correlation function has been utilized to fit the correlation 

coefficients based on normalized tip resistance and sleeve friction with increasing lag 

distance. The results of the study indicate that the investigated soil site have quite 

different correlation structure in the vertical and horizontal directions (anisotropy), and 
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the scale of fluctuations in the vertical direction and in the horizontal direction are 

reported as 0.2-0.5 m and 1.2-2.0 m, respectively. In addition, it is reported that the 

scale of fluctuation in the horizontal direction is 2-7 times greater than the vertical 

direction due to soil deposition processes. This means that the soil parameters are 

correlated over a large distance in the horizontal direction (more homogenous) than 

that in the vertical direction.  

In Table 2. 3, the summary of spatial correlation lengths in the vertical direction 

gathered from the literature are provided. It is seen that the SCL values may change 

according to the soil type and measurement type. Even for the same soil type, the 

reported SCL values may have different values.  

 

Table 2. 3 Summary of spatial correlation length in the vertical direction from the 

literature (number in parenthesis is the mean value) 

Reference 
Vertical SCL 

(m) 
Soil type Remarks 

Alonso and Krizek 

(1975) and Lumb 

(1975), reported by 

Huber (2013) 

0.3 – 4 
Clean sand and sand 

fill 
SPT-N value 

Vanmarcke (1977) 2.4 Sandy SPT-N value 

Keaveny et al. 

(1990) 
0.3 – 1.0 

Offshore cohesive 

soils 

Undrained shear 

strength, CU 

triaxial 

Phoon et al. (1995) 

0.1 – 2.2 Sandy silty 
Cone tip 

resistance 

0.7 – 1.1 Clay 
Cone tip 

resistance 

2.0 – 6.2 Clay 

Undrained shear 

strength 

obtained by 

vane test, 

0.8 – 6.1 Clay 

Undrained shear 

strength 

obtained by 

various lab tests 

Chiasson et al. 

(1995) 

2 m 

autocorrelation 

distance 

Lightly 

overconsolidated and 

highly sensitive clay 

deposit 

Piezocone cone 

resistance and 

in-situ vane 



22 
 

Phoon and Kulhawy 

(1999a, 1999b) 

0.8-6.1 (2.5) Clay 
Undrained shear 

strength 

0.1-2.2 (0.9) Sand, clay 
Cone tip 

resistance 

0.2-0.5 (0.3) Clay 
Corrected cone 

tip resistance 

2.0-6.2 Clay 

Undrained shear 

strength from 

vane shear test 

1.6-12.7 (5.7) Clay, loam 
Natural water 

content 

2.4 Sand SPT-N  

2.4-7.9 (5.2) Clay, loam Unit weight 

Jaska et al. (1999) 0.63-2.55 

Relatively 

homogeneous, stiff, 

overconsolidated clay 

known as Keswich 

Clay 

Detrended 

residuals of 

cone tip 

resistance 

measurements 

Cafaro and 

Cherubini (2002) 
0.19-0.72 Clay 

Cone tip 

resistance 

Valdez-Llamas et al. 

(2003) 

0.8–2.0 Superficial soft clay 
Natural water 

content 

21 

Deep deposits with 

alternating clayey and 

sandy soils 

Natural water 

content 

Akkaya and 

Vanmarcke (2003) 

0.61-3.72 Sand 
Cone tip 

resistance 

0.36-3.53 Sand 
CPT sleeve 

friction 

0.26-3.l4 Clay 
Cone tip 

resistance 

0.30-3.62 Clay 
CPT sleeve 

friction 

Phoon et al. (2003) 0.38-0.8 Offshore sediments 

CPT data, lab-

measured shear 

strength (UC 

etc) data 

Uzielli et al. (2005) 

0.13-1.11 

(0.70) 

Sand, Clay, Silt 

(Mixture) 

Cone tip 

resistance 

0.12-0.60 

(0.36) 

Sand, Clay, Silt 

(Mixture) 

CPT friction 

ratio 

Schweiger et al. 

(2007) 
1.0 – 10.0 

for “materials such as 

keuper and middle 

trias formations” 

Reports 

literature values 
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Liu and Chen (2010) 
1.86 

0.82 

onshore alluvial 

deposits (loose sandy 

soils, cohesive soils, 

medium dense to 

dense sands and clay 

layers) 

CPT cone tip 

resistance 

CPT sleeve 

friction 

Akbas and Kulhawy 

(2010) 

4.0-6.2 Ankara Clay Liquid limit, wL 

2.5-5.5 Ankara Clay 
Natural water 

content, wn 

1.0-3.0 Ankara Clay 
Undrained shear 

strength, su 

3.0-3.8 Ankara Clay SPT-N value 

Zhang and Chen 

(2012) 
1.36-3.01 Sandy SPT-N value 

Lloret-Cabot et al. 

(2014) 
0.40–0.44 

Filled sand in 

artificial island 

Cone tip 

resistance 

Firouzianbandpey et 

al. (2014) 

0.45-0.50 Clayey silty sand 
Normalized 

cone resistance 

0.2 Clayey silty sand 
Normalized 

friction ratio 

Liu et al. (2015) 
0.1-0.5 

0.05-1.0 

Offshore sands 

Offshore clays 

CPTU cone tip 

resistance 

Nadim (2015) 0.18 –  0.39 Different soil units 
Cone tip 

resistance 

Overgard (2015) 0.4 – 3.0 
Offshore sand and 

clay sublayers 

CPT cone tip 

resistance 

Shuwang and 

Linping (2015) 

0.16—0.32 

(0.23) 

Very soft clay (sand 

inclusion) 

Static cone 

penetration test 

0.14—1.00 

(0.37) 

Mud and very soft 

clay 

0.16—0.57 

(0.37) 

Very soft clay and 

clay 

0.13—0.32 

(0.24) 
Clay 

0.10—0.43 

(0.23) 
Silty clay 

Bouayad (2017) 
0.32-1.32 

(0.78) 

Onshore sandy soils 

(loose to medium 

dense sands, dense 

fine sands and silty 

sands) 

CPT cone tip 

resistance 

Pantelidis and 

Christodoulou 

(2017) 

0.11-0.29 
Onshore two clay 

sites 

UC tests and 

light dynamic 

probing (DPL) 

in-situ tests 
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2.3 Effects of SCL on Reliability-Based Design in Geotechnical Engineering 

 

The effects of spatial correlation length on settlement (Griffiths and Fenton 2009), 

bearing capacity (Fenton and Griffiths 2000, Jha 2016), slope stability (Sarma et al. 

2014), drilled shafts (Luo et al. 2014), buried pipes (Elachachi et al. 2012), driven piles 

(Zhang and Chen 2012) and monopile offshore wind turbine (Carswell et al. 2013) 

have been investigated by various researchers. In this section, some of these studies 

are summarized.  

Fenton and Griffiths (2000) studied the effect of spatial variability of soil parameters 

on bearing capacity of a shallow foundation. Elasto-plastic soil model has been utilized 

in the random finite element method based program. The effect of SCL (values of 0.5 

m, 1 m, 2 m, 4 m, 8 m, 50 m) and COV (values of 0.1, 0.2, 0.5, 1.0, 2.0, 5.0) of soil 

parameters have been investigated. The results (Figure 2. 9) indicate that COV and 

SCL of soil parameters have a significant influence on the evaluated bearing capacity 

and the probability of failure. In Figure 2. 9, it is seen that increasing COV of soil 

parameters decreases the mean bearing capacity factor and increases the COV of 

bearing capacity factor. In addition, increasing the SCL from 0.5 m to 50 m increases 

both the mean and COV of bearing capacity. The decrease of mean bearing capacity 

factor is less for larger SCL because the initiation of bearing capacity failure is more 

likely for shorter SCL values.  

 

Figure 2. 9 The mean (a) and variation (b) of bearing capacity factor, Nc with varying 

soil variability and SCL, θ (Fenton and Griffiths 2000) 
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The results of the study (Fenton and Griffiths 2000) indicate that COV of soil 

parameters primarily affects the probability of failure while SCL has secondary effects 

(Figure 2. 10). It is seen that increasing the SCL value increases the probability at the 

left side of the turning point (COV of the bearing capacity) and decreases the 

probability at the other side.  

 

Figure 2. 10 Effect of factor of safety, F, SCL, θ, and COV of soil parameters for (a) 

F=2 and (b) F=4 (Fenton and Griffiths 2000) 

Cho and Park (2009) state that statistical parameters like mean and variance are only 

a point parameter and cannot represent the spatial variability, i.e. the variability of the 

soil parameters through the distance. In the study, the bearing capacity of spatially 

variable soil, having cross-correlated shear strength parameters, under a strip 

foundation has been investigated probabilistically. The probabilistic analysis includes 

finite difference method and random field theory where Monte Carlo simulation is 

utilized to calculate the probability of failure. The random field is generated as being 

anisotropic non-Gaussian by KL expansion where different SCL in the vertical and 

horizontal directions are used for soil strength parameters. Then, the bearing capacity 

of c-φ soil is analyzed by assigning controlled displacement to the nodes of strip 

footing. The results (Figure 2. 11) show that the mean bearing capacity calculated by 

simulations is always less than the deterministic bearing capacity where single values 

are used for soil parameters. In addition, the results indicate that the mean bearing 

capacity calculated in the simulations increases with the increase in horizontal and 

vertical SCL’s because the random field starts to become smooth (i.e. more similar 

values of soil properties with distance) as the SCL increases. The effects of SCL in the 
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horizontal direction is seen to be less effective comparing to that effect of the SCL in 

the vertical direction.  

  

Figure 2. 11 Effect of horizontal SCL, lh, on (a) mean, (b) standard deviation, and (c) 

coefficient of variation of bearing capacity; similarly effect of vertical SCL, lv  (d-e-

f) (Cho and Park 2009) 

Jha (2016) investigates the effects of anisotropic SCL of undrained shear strength on 

the reliability analysis of bearing capacity of strip footing. Random finite element 

method and Monte Carlo simulations are utilized to create a random field and capture 

the variability of the soil parameter, undrained shear strength. The geometry and 

boundary conditions of the model is given in Figure 2. 12. The analyses are performed 

by using Abaqus where the soil is modelled as elastic, perfectly plastic constitutive 

model and with a Mohr-Coulomb failure criterion.  

 

 

 

 

 

 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 
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Figure 2. 12 The geometry and boundary conditions (Jha 2016) 

 

The undrained shear strength, cu, of the clay is defined as anisotropic random field 

where the mean, COV and SCL are used (Jha 2016). Lognormal distribution is 

assigned to the cu due to non-negative nature of the parameter. For the correlation 

structure of the parameter, 2D exponential correlation model is utilized. The method 

of locally averaged random field using the Fourier series-based method is utilized. The 

scale of fluctuation of cu in the vertical direction is taken as 0.5 m, 2.5 m, 5.0 m and 

horizontal scale of fluctuation is taken from 0.5 m to 100 m. The results of the study 

(Figure 2. 13) show that increasing scale of fluctuation of cu leads to increase in COV 

of bearing capacity. In addition, normalized mean bearing capacity first decreases and 

reaches a minimum value and then increases with the increasing scale of fluctuation. 

Jha (2016) indicates that large scale of fluctuations overestimate the required factor of 

safety to achieve a specified reliability which means uneconomical, conservative 

results.  
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Figure 2. 13 Effect of SCL of cu on normalized mean bearing capacity (a-b) and 

COV of bearing capacity (c-d)  for parameters with a COV of 0.3 and 0.5, (Jha 2016) 

 

Griffiths and Fenton (2009) investigated the settlement under a strip foundation on a 

spatially variable soil volume. The comparison between random finite element method 

and stochastic finite element method (SFEM) has been made. Young’s modulus, E, is 

defined by lognormal distribution with a mean and standard deviation where the spatial 

variability is defined by Markov correlation function with a SCL equal in both 

horizontal and vertical directions (isotropic SCL for Young’s modulus). The results 

indicate that increasing the SCL of E increases the mean settlement and variation of 

evaluated settlements of simulations for RFEM (Figure 2. 14). Griffiths and Fenton 

(2009) explained the increase of settlement due to the presence of weak regions in the 

soil model. When SFEM is utilized, the method underestimates the settlement and 

variation of the settlement. Therefore, it is stated that SFEM is not able to model spatial 

variability.   

(a) 

(b) 

(c) 

(d) 
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Figure 2. 14 The effects of SCL of E, θE, on (a) mean settlement and (b) standard 

deviation of calculated settlements, and comparison between RFEM and SDEM. 

(Griffiths and Fenton 2009) 

Zhang and Chen (2012) investigate the SCL based on SPT-N blowcounts and effects 

on bearing capacity of driven piles in sand. In addition, spatial correlation between the 

SPT-N over the length of the pile and around the end of the pile is evaluated.  The 

utilized formulation of the pile capacity is a direct method (Equation 2.15), where the 

field data is directly used to assign capacity.  

𝑄𝑢 = 𝐴𝑏𝑓𝑏 + 𝐴𝑠𝑓𝑆        (2.15) 

𝑓𝑏 = 𝑘𝑁𝑏         (2.16) 

(a) 

(b) 
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𝑓𝑠 = 𝛽𝑁𝐿         (2.17) 

where 𝐴𝑏 and 𝐴𝑠 are the cross sectional area of pile end and the shaft area through the 

length of pile, respectively, and 𝑁𝑏 and 𝑁𝐿 are average SPT-N blowcounts at the end 

of pile and through the pile length.  

In the study (Zhang and Chen 2012), the probability of failure is evaluated by 

employing the algorithm proposed by Smith (1986) where normalized data is used. 

The failure is defined as the case where the load on top of the pile is greater than the 

pile capacity. The mean (Equation 2.18) and variance (Equation 2.19) of the pile 

capacity are as follow: 

𝐸[𝑄𝑢] = 𝐴𝑏𝑚𝑘𝑚𝑁𝑏 + 𝑈𝐿𝑚𝛽𝑚𝑁𝐿      (2.18) 

𝑣𝑎𝑟[𝑄𝑢] = 𝐴𝑏
2[𝑚𝑘

2𝑣𝑎𝑟[𝑁𝑏] + 𝑚𝑁𝑏
2 𝑣𝑎𝑟[𝑘]] + (𝑈𝐿)2[𝑚𝐵

2 𝑣𝑎𝑟[𝑁𝐿] + 𝑚𝑁𝐿
2 𝑣𝑎𝑟[𝛽]] +

𝐴𝑏𝑈𝐿𝜌(𝑁𝐿)(𝑁𝑏)[𝑣𝑎𝑟[𝑁𝑏]𝑣𝑎𝑟[𝑁𝐿]]
1/2

     (2.19) 

where the 𝜌(𝑁𝐿)(𝑁𝑏) is the correlation coefficient between 𝑁𝐿 and  𝑁𝐵. The formulation 

proposed by Vanmarcke (1977) which includes the variance reduction function is 

utilized to calculate the correlation coefficient where the correlation length has a great 

importance. In the probabilistic analyses, the correlation length is taken as between 0.5 

m and 3.0 m and diameter of pile is taken as 0.3 m, 0.5 m, 0.8 m where the length of 

the pile is 20 m. Zhang and Chen (2012) analyzed three tested piles published in the 

literature. The correlation length of the cases is found by fitting exponential (Markov) 

and squared exponential (Gaussian) models proposed by Vanmarcke (1977) to the 

autocorrelation coefficients. The reported correlation distances (by Markov correlation 

function) are between 1.36 m-3.01 m for three analyzed test piles. The results of the 

study indicate the following: 

 The correlation coefficient, 𝜌(𝑁𝐿)(𝑁𝑏), increases with increasing correlation length 

for the same L/B ratio. 

 For the same correlation length and pile diameter, the correlation coefficient 

decreases with increasing L/B ratio.  
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 As the diameter of pile increases, the overlapping distance, which is the distance 

over which the SPT-N values are averaged for the end of the pile and through the 

shaft, increases and therefore correlation coefficient increases. 

 

Zhang and Chen (2012) state that ignoring correlation structure leads to an unsafe 

design where the probability of failure increases by considering correlation structure. 

Likewise, the results of the analyses of three tested piles indicate that spatial 

correlation of the SPT-N blowcount has great importance in the evaluation of the 

probability of failure of driven piles in sand and ignoring the correlation lead to 

underestimated probability of failure.  

In the study of Luo et al. (2014), the reliability of drilled shafts (Figure 2. 15) is 

evaluated by two different probabilistic approaches and corresponding results are 

compared. Two probabilistic approaches are random field theory with Monte Carlo 

simulation and variance reduction technique with first order reliability method. Luo et 

al. (2014) draws attention to the importance of the spatial variability of soil in the 

reliability analyses and states that ignoring spatial variability of the soil may increase 

or decrease the reliability of the design.  

 

Figure 2. 15 Illustration of the design problem (Luo et al. 2014)   

In the study (Luo et al. 2014), effective internal friction angle is modelled with a 

random field which is represented by mean, variance and scale of fluctuation. Different 

ranges of vertical scale of fluctuation are utilized and effects on the reliability of drilled 

shafts are studied where exponential correlation function and Cholesky decomposition 
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method are utilized. The results of random field theory (Figure 2. 16) indicate that the 

mean of ultimate limit state (ULS) compression capacity of drilled shaft is not affected 

by increasing scale of fluctuation. However, COV of the compression capacity and 

probability of serviceability failure are affected significantly by increasing scale of 

fluctuation. In addition, the probability of failure may increase or decrease according 

to the load on top of drilled shafts (Figure 2. 17). Increasing SCL of friction angle for 

a given load less than the mean capacity increases the probability of SLS failure, while 

for load greater than the mean decreases the probability. 

 

  

 

Figure 2. 16 The effect of SCL of friction angle on (a) mean compression capacity, 

(b) coefficient of variation of compression capacity and (c) probability of SLS failure 

(Luo et al. 2014)   
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Figure 2. 17 Effect of spatial correlation length for different 50-year return period 

load (Luo et al. 2014)   

Sarma et al. (2014) investigated the effects of the SCL of soil strength parameters on 

the response of the soil masses, i.e. slopes where the probability of failure is evaluated. 

Traditional methods generally do not include the variability of the soil parameters and 

correlation structures, instead, the methods use deterministic (single) values. In 

deterministic case, the soil cannot be modelled realistically and evaluated FS based on 

deterministic approach cannot represent the real response of the soil mass and cannot 

be used in risk assessments. Although there are simple, limit equilibrium-type, 

methods to analyze the slope stability, finite element and finite difference methods are 

mostly preferred due to stress-strain behavior of the soil to be taken into account. The 

FLAC2D (finite difference model) and MATLAB have been utilized where covariance 

matrix decomposition method for random field and local averaging theory for 

controlling are employed.  

Sarma et al. (2014) divides the variability of the parameters into two; trend and 

waviness about the trend, and the soil parameters are assumed to be statistically 

homogeneous. Covariance function (Equation 2.20-2.21) is utilized to calculate the 

correlation coefficient (Equation 2.22) of the data.  

𝐶[𝑥1, 𝑥2] = 𝑉𝑎𝑟[𝑋(𝑥1), 𝑋(𝑥2)]      (2.20) 

𝐶[𝑥1, 𝑥2] = 𝐸[𝑋(𝑥1), 𝑋(𝑥2)] − 𝜇𝑥(𝑥1)𝜇𝑥(𝑥2)    (2.21) 

where 𝑥1 and 𝑥2 are position vectors and X is radom variable.  
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𝜌[𝑥1, 𝑥2] =
𝐶[𝑥1,𝑥2]

𝜎𝑥(𝑥1)𝜎𝑥(𝑥2)
       (2.22) 

The large covariance matrixes, C, are decomposed by using Cholesky’s decomposition 

method (Equation 2.23). Then, the field is generated by Equation 2.24. 

LLT=[C]         (2.23) 

𝑋(𝑥) = 𝐿𝑈         (2.24) 

where U is n size, number of element or zones, column vector.  

In the study of Sarma et al. (2014), the analyzed case (Figure 2. 18) is taken from Chen 

(2007) that investigates the safety of the slope. All geometry of the slope and properties 

of the soil are kept constant and only the effects of the correlation structure of the soil 

is investigated where internal friction angle and cohesion is considered as a random 

field with a cross-correlation coefficient of -0.7. The normal distribution is assigned to 

the strength parameters. SCL values of 1 m, 2 m, 3 m, 5 m, 7 m, 10 m for soil strength 

parameters have been used in the random field for the isotropic case, and the 

combination of them is used for the anisotropic case.  

 
 

Figure 2. 18 (a) Model geometry, (b) generated random field for cohesion, where 

SCL of strength parameters is 5 m in both directions (Sarma et al. 2014) 

The results of Sarma et al. (2014) show that the probability of failure increases with 

the increase of SCL of soil strength parameters and then does not change significantly 

beyond a point, for isotropic case (Figure 2. 19). The study also indicates that the 

increase of probability of failure is greater for the anisotropic case than that for the 
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isotropic. In Table 2. 4, it is seen that increasing the horizontal SCL of strength 

parameters increases the probability of failure.  

 

Figure 2. 19 Effect of SCL of strength parameters on probability of failure (Sarma et 

al. 2014) 

 

Table 2. 4 Effect of anisotropy on probability of failure (Sarma et al. 2014) 

SCLv (m) SCLh (m) Pf (%) 

1 5 43.2 

1 10 45.1 

1 20 46.3 

2 10 45.7 

2 20 48.5 

3 15 47.5 

3 30 53.1 

 

Elachachi et al. (2012) studied the failures such as concrete cracking state, having 

counter slope and excessive joint opening of buried structures. A model which includes 

the soil variability has been developed and serviceability limit state of the structures 

are considered. The key parameter for the variability of the soil is the SCL of soil 

modulus and Poisson’s ratio which effects the soil-structure interaction. Soil 

parameters, soil modulus, Es, and Poisson’s ratio, υs, are defined as random field which 

is described by mean, variance and SCL’s. The effects of the SCL of Es and υs are 

investigated by considering four different cases, where the ratio between SCL and the 

length of the pipe are 0.01, 1, 10, 100 where small values represent a rough field, rapid 

fluctuations, and large numbers represent a more smooth field. The results (Figure 2. 

20) indicate that the ratio of 0.01 causes more uniform bending stresses under the 
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buried pipe (Elachachi et al. 2012). The reason is that the soil volume shows rapid 

fluctuations, the case of 0.01 ratio does not lead to change of bending stresses due to 

the rigidity of the pipe. 

 

Figure 2. 20 The cumulative density function for bending stress for different 

fluctuation ratio (Elachachi et al. 2012) 

The reliability index results show that the index increases as the SCL of Es and υs goes 

towards zero and infinity. The increase of the reliability index means the decrease of 

probability of failure. Then, it is seen that the structure is safer when the SCL is infinite 

or zero because the pipe tolerates the rapid fluctuations, lower SCL, by its rigidity and 

the soil becomes homogeneous when the SCL is infinite. The study of Elachachi et al. 

(2012) shows the importance of considering SCL of soil parameter which greatly 

effects differential settlements, bending stresses and cracking of the pipes. Therefore, 

more realistic reliability-based design can be achieved by considering the inherent soil 

variability where the correlation length is the key parameter.   
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CHAPTER 3 

 

3. METHODOLOGY 

 

 

In this study, the variability of sea bottom soils in Turkish waters and the effect of the 

spatial variability of soil properties on foundation design are investigated. The 

variability is studied by using field data and some limited number of laboratory 

experiments such as sieve analysis, Atterberg limits, unconfined compression, triaxial 

tests, etc. as much as available. The SCL, the parameter representing the heterogeneous 

structure (correlation structure) of the soil medium, is evaluated based on site 

investigation data which are collected from several private geotechnical companies. 

Collected data include the data from both nearshore and offshore sites at different 

water depths. Two different field test data sets are collected; SPT data at nearshore 

sites and CPTu data at offshore/nearshore site. The data sampling intervals of SPT and 

CPTu are 1.5 m and 0.02 m respectively. The process of the evaluation of data can be 

summarized as follows: 

i. The depth versus SPT-N, or depth versus CPT cone tip resistance and friction 

ratio etc. data are first digitized. 

ii. The soil layers are classified according to both field measurements and 

laboratory tests (where available) and related soil profiles with depth are 

obtained. 

iii. According to soil classification, the soils are grouped into broader groups such 

as “clays” and “sandy mixtures” etc, for which SCL values based on SPT-N, 

CPT-tip resistance, sleeve friction and friction ratio will be calculated layer by 

layer. 

iv. The statistical evaluation for different soil groups is performed where statistical 

parameters; mean, μ, standard deviation, σ and SCL based on test data are 

obtained. The data are analyzed in two methods: (1) having a constant mean of 
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soil properties with depth and (2) an increasing mean value of soil properties 

with depth, and the SCL are obtained for each method, for each broad soil 

group, using four different autocorrelation functions for each layer separately.  

The SCL’s are evaluated by a MATLAB code (Appendix A) developed in this study, 

which analyzes the data, and fits different autocorrelation functions and reports the 

SCL values. Vanmarcke (1977) states that the initial steps of the spatial variability 

analysis should be the determination of the existence of a trend (i.e. stationarity or 

nonstationarity) and standardizing the data. This check can be done by calculation of 

mean first order increment (Equation 3.1) of the data in the vertical direction (Chiasson 

et al. 1995). If there is an increase or decrease in values with increasing depth, the data 

should be treated nonstationary (“trend approach”): 

𝑑̅(𝜏) =
1

𝑛
∙ [𝑁(𝑧𝑖 + 𝜏) − 𝑁(𝑧𝑖)]      (3.1) 

where 𝑑̅(𝜏) is the mean first order increment, 𝑁(𝑧𝑖) is the data, e.g. SPT-N blowcount, 

at depth 𝑧𝑖 and 𝜏 is the spacing.  

In this study, the calculated SCL’s for both “constant” and “trend” approaches are 

compared. Treating the data as having constant mean and depth-dependent mean are 

illustrated in Figure 3. 1. It is clear that these two approaches will result in different 

SCL’s and it is reported that removing the trend (detrending) eliminates the longer 

fluctuations (Akkaya and Vanmarcke, 2003). That is, the means should be subtracted 

from the measurements and then this deviation should be divided by standard deviation 

at each depth (Equation 3.2). 

𝑁𝐶(𝑧) =
𝑁(𝑧)−𝑁̅(𝑧)

𝜎𝑁(𝑧)
        (3.2) 

where the 𝑁(𝑧) and 𝑁̅(𝑧) are the real measurement and trend at depth z, and 𝜎𝑁(𝑧) is 

the standard deviation of the measurement. By doing this, the data can be treated as 

statistically homogeneous which means that the mean (𝜇 = 0) and standard deviation 

(𝜎 = 1) are constant with depth. The similar procedure is called as “detrending” in the 

literature (DeGroot and Baecher 1993, Phoon and Kulhawy 1999a, b, 

Firouzianbandpey et al. 2014). The only difference between standardizing and 

detrending is that standardizing provides unit standard deviation. In this study, in the 
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“constant mean” approach, the average of the measurements is taken as the mean of 

the data and kept constant with depth. In the “trend approach”, a linear function is 

employed as the trend of measurements, and the fluctuations about that trend is 

evaluated. Although further sophisticated depth-dependency functions can be fitted to 

the data, to use the same type of function for all data and for ease of interpretation, a 

linear trend equation with depth in SPT-N and CPT data is found to be sufficient to 

represent the depth-dependency.  

  

Figure 3. 1 (a) Constant mean and (b) depth-dependent mean approaches 

The developed MATLAB code calculates the autocorrelation coefficients (Equation 

3.3) of the data and plots these coefficients versus lag distances which is the distance 

between two points of concern (sampling interval). It should be noted that the data 

sampling interval between observation points has to be constant (Vanmarcke 1977, 

Fenton and Griffiths 2008, Liu and Chen 2010, Firouzianbandpey et al. 2014, Lloret-

Cabot et al. 2014, Shuwang 2015, Zhang and Chen 2012). The SCL of test data is 

calculated by utilizing autocorrelation functions provided by Vanmarcke (1977) 

(Table 2. 1).  

Autocorrelation coefficient is: 

 

𝜌𝑘 =
∑ (𝑁𝑖−𝑁̅𝑖)(𝑁𝑖+𝑘−𝑁̅𝑖+𝑘)𝑛−𝑘

𝑖=1

∑ (𝑁𝑖−𝑁̅𝑖)2𝑛−𝑘
𝑖=1

  𝑘 = 0, 1, 2, … , (n − 1)   (3.3) 

where the 𝑁𝑖 and 𝑁̅𝑖 are the real measurement and trend at depth i and 𝑁𝑖+𝑘 is the 

measurement at depth i+k. The autocorrelation coefficient is constrained by [-1.0, 1.0]. 
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If the coefficient is positive, both variables tend to be higher and lower together. 

However, if the coefficient is negative, high value of one variable tends to be 

associated with a low value of the other variable (Kottegoda and Rosso, 2008). In the 

literature, the same autocorrelation function is also defined in terms of autocovariance 

function. The autocovariance of the data may be calculated by the method of moments 

(Equation 3.4) and the autocorrelation coefficients may be calculated by normalizing 

with the data variation (Equation 3.5). It is seen that combining Equation 3.4 and 

Equation 3.5 results in Equation 3.3. 

Autocovariance function:  

𝑐𝑘 = 𝐶𝑜𝑣(𝑋𝑖, 𝑋𝑖+𝑘) = 𝐸[(𝑋𝑖 − 𝑋̿)(𝑋𝑖+𝑘 − 𝑋̿)]    (3.4) 

Autocorrelation function: 

𝜌𝑘 =
𝑐𝑘

𝑐0
         (3.5) 

where k is the lag distance, 𝑋𝑖 is the value of parameter X at tha location of 𝑖 and E is 

the expectation operator.  

The four autocorrelation functions are utilized to fit the data and the SCL value of data 

can be obtained by using best-fit parameters (Table 2. 1). In Figure 3. 2, an illustration 

of the four autocorrelation functions is provided where SCL value is 1 m.  

 

 

Figure 3. 2 Illustration of four autocorrelation functions for SCL=1 m 
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The best fit of the function can be obtained by using some basic functions in Matlab 

or minimizing the error in Equation 3.6. 

𝐸 = ∑ (ρs(𝜏𝑖) − ρ(𝜏𝑖))
2𝑛

𝑖=1         (3.6) 

where ρs(𝜏𝑖) is the estimated autocorrelation coefficient by using the data (Eq. 3.3), 

ρ(𝜏𝑖) is the autocorrelation coefficient obtained by an autocorrelation function and n 

is the number of data point. If exponential correlation function is utilized, the SCL of 

data can be found by finding the root of the derivative of Equation 3.6 which can be 

written as (Eq 3.7): 

𝜕𝐸

𝜕𝜃
= − ∑ 2 ∗

𝜏𝑖

𝜃2 ∗ (ρs(𝜏𝑖) − exp {−2 ∗ |𝜏𝑖|/𝜃}) ∗ exp {−2 ∗ |𝜏𝑖|/𝜃}) (3.7) 

In this study, it is seen that if the mean of the measurement, 𝑁̅, is taken as the trend 

value in Equation 3.3, there is no need to standardize or detrend the measurements. 

That is, the computed SCL for normal data, detrended data (zero mean) and 

standardized data (zero mean and unit standard deviation) become the same in case of 

taking mean as trend value.  

In order to examine the CPT data, two additional functions are added into the 

MATLAB code. The purpose of these functions is to classify the soil type and to divide 

the data by soil type (boundaries of different layers) and discontinuity with depth. First 

of all, Robertson (2010) soil behaviour types chart (Figure 3. 4) is digitized and 

functions of each border of soil types are formulated. Then, the CPT with depth data 

is classified according to the Robertson's soil behavior types. That is, the CPT tip 

resistance and friction ratio data at each depth are compared with the borders and the 

corresponding soil behavior types are assigned to each data point (data is available at 

2 cm vertical intervals).  Afterwards, the data is divided into segments of continuous 

data with depth (discontinuities in the data are determined by comparing the difference 

between depth data with the frequency of data acquisition). Each data segment is 

divided into different soil layers according to Robertson’s soil behavior type. The 

Robertson's soil behavior type zones 3 and 4, “Clay - silty clay to clay” and “Silt 

mixtures – clayey silt to silty clay”, are evaluated together and named as a broad group  
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of “Clays”. Likewise, zones 5, 6 and 7, “Sand mixtures - silty sand to sandy silt”, 

“Sands - clean to silty sand” and “Gravelly sand to dense sand”, are evaluated together 

and grouped into a broad group of sandy mixtures and named as “Sands”.  The 

thickness criterion is selected as 0.5 m (24 data with 0.02 m spacing) and greater 

thicknesses are considered as individual soil layers, i.e. SCL value of data is not 

calculated for a segment of soil that is less than 0.5 m thick. The classification of each 

data point, which is exemplified in Figure 3. 3, are converted into four major soil 

behavior types. That is, the zones in Robertson's soil behavior types chart, 1-2, 3-4, 5-

6-7 and 8-9 are converted to (or grouped into) 2, 4, 6, 9, respectively and named as 

“modified classification”. The purpose of converting the classification is to simplify 

the procedure for the decision of soil layers and to calculate SCL of those broad groups 

of soils. The MATLAB code evaluates the modified classification and divides the 

segments into different soil layers. 
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Figure 3. 3 Robertson (2010)’s soil behaviour classification and modified 

classification used in this study, as an example, for (a) sounding-1 and (b) sounding-

2 

1 2 3 4 5 6 7 8 9

40

45

50

55

60

65

70

75

80

85

0 10 20 30 40 50

Soil Behavior Type

D
ep

th
 B

el
o
w

 S
ea

 L
ev

el
 (

m
)

Tip Resistance (MPa)

Classification

Modified Classification

1 2 3 4 5 6 7 8 9

35

40

45

50

55

60

65

70

75

80

0 10 20 30 40 50

Soil Behavior Type

D
ep

th
 B

el
o
w

 S
ea

 L
ev

el
 (

m
)

Tip Resistance (MPa)

Classification

Modified Classification

(a) (b) 



44 
 

 

Figure 3. 4 Classification of soil behavior type chart (Robertson et al., 1986, updated 

by Robertson, 2010). 
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CHAPTER 4 

 

4. CASE STUDIES 

 

 

Statistical evaluation of soil properties based on nearshore/offshore site investigation 

data is rare in Turkey but has significant potential benefits for reliability based design 

of nearshore/offshore structures. In this chapter, site investigation data of two near-

shore sites in the southern coast of Turkey and one large area of offshore/nearshore 

site on the northwestern part of Turkey are gathered; properties of these see bottom 

soils are presented. The data is analyzed, firstly, to understand what types of soils exist 

in the seabed, and whether the consistency of clays is soft or stiff, and whether the 

sandy soils are in loose or dense state etc. The variability of soil properties in terms of 

the mean and standard deviation values of estimated undrained shear strength for clays 

or estimated relative density for sands with depth is obtained. The SPT and CPT data 

are analyzed, secondly, to obtain the vertical SCL of SPT-N and CPT-cone tip 

resistance, side friction and friction ratio using four different autocovariance functions 

for each broad soil group. The results of the present study add to the database of SCL’s 

based on real data and could be useful for future studies on reliability assessment of 

offshore foundations using advanced tools such as the random finite element method. 

 

4.1 Iskenderun and Yumurtalık Sites (Nearshore-SPT data) 

 

4.1.1. Site Description 

 

Site investigation data at two sites obtained from nearshore soils in the Mediterranean 

Sea of the southern coasts of Turkey (Figure 4. 1) are used in this study. Summary of 

the available data used in this study is presented in Table 4. 1. Both sites are located at 
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the intersection of Arabian, African and Anatolian Plates and their geological 

formation are similar, which is mainly composed of the weathered Mesozoic 

Limestone, Ophiolitic Rocks and Eocene-aged limestones of Amanos Mountain and 

sediments transported by alluvial rivers, consisting of gravel, sand and clay that settled 

in the Holocene Epoch (Derinsu Site Investigation Reports 2011a-b, 2014 and 2015). 

Table 4. 1 Information about the data at two nearshore sites 

 
Number of 

boreholes 

Water depth 

(m) 

Depth of boreholes from 

seabed (m) 

Site 1 

(Iskenderun) 
27 

2.8 to 18.2 m 

(average 8.9 m) 

16 to 50.5 

(average 30.5 m) 

Site 2 

(Yumurtalık) 
14 

5.2 to 25.7 m 

(average 16.1 m) 

13.8 to 35.4 

(average 25.2 m) 

 

 

  

Figure 4. 1 Locations of Site 1 and Site 2 in the southern coast of Turkey and the 

location of boreholes 
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At two nearshore sites, SPT was performed by rotary drilling machine which is 

mounted on a catamaran barge (Derinsu Site Investigation Reports 2011a-b, 2014 and 

2015). During the drilling process, both undisturbed and disturbed soil samples and 

rock core samples were obtained. In the laboratory, sieve analysis, hydrometer, 

Atterberg limits, in-situ water content, consolidation, triaxial (UU), unconfined 

compression, direct shear and point load index tests were performed, although shear 

strength tests are limited in number. The results of both laboratory tests, SPT-N values 

and field observations are utilized to identify the soil layers and profiles.  

All soil units in the coastal regions are mixtures of various materials transported and 

accumulated. The majority of the sea-bottom sediments at both sites are composed of 

“mixture soils”, that is silty, clayey and sandy materials with different proportions, 

which are classified as CL, CH, ML, MH, SM, SC, SW, SP according to Unified Soil 

Classification System (USCS). Only in some boreholes uniform clay layers (CL) of 

varying thicknesses are identified. Therefore, to determine the vertical SCLSPT−N, the 

soil layers are grouped into two broad groups: (1) clay layers (Figure 4. 2b) and (2) 

mixture layers, composed of silty, clayey and sandy materials with different 

proportions (Figure 4. 2a), gravelly parts are not included in the SCL evaluation in this 

study. Results of Atterberg limits tests and sieve analyses at both sites are illustrated 

in Figure 4. 2.  

 

 

Figure 4. 2 Classification of soils at both sites, (a) sieve analyses, (b) Atterberg limits 

test results. 

 



48 
 

4.1.2. Evaluation of Spatial Variability  

 

The SPT-N data, site description of the soils in borehole logs and laboratory 

classification tests (sieve analysis, hydrometer data, fines content, USCS classification 

and Atterberg limits), are used to identify sublayers that can be described as a relatively 

homogeneous soil layer. At both sites, the SPT is conducted at 1.5 m vertical spacing. 

The data in the same sublayer are counted and presented in Table 4. 2, which also 

provides the mean and coefficient of variation of the SPT-N data from two sites. 

Identification of relatively homogeneous sublayers and the need for studying the 

vertical SCL of each sublayer within itself are also noted by Phoon and Kulhawy 

(1999a, b), Uzielli et al. (2007), Overgard (2015) and Firouzianbandpey et al. (2014), 

among others. After identifying the layers which tend to be sufficiently homogeneous, 

these measured data are analyzed to estimate the mean value and standard deviation of 

vertical SCL based on SPT data. If the measured data shows a trend, trend analyses 

can be conducted by separating the random process into a deterministic trend and a 

residual variability around the trend (Overgard, 2015). 

 

Table 4. 2 Variability of SPT-N data for two sites 

 Sublayer identification 
Number of 

Data 

Mean 

SPT-N 
COV (%) 

Site 1 
Mixture Soil (clayey, silty, sandy) 330 17 71 

Clay 100 10 80 

Site 2 
Mixture Soil (clayey, silty, sandy) 89 22 77 

Clay 73 8 88 

 

By first eliminating the measurement error in SPT-N, Phoon et al. (1995) report that 

COV values of SPT-N are in the range of 25-49% in sandy and silty soils, whereas this 

value is 37-57% in clayey soils. Phoon and Kulhawy (1999) indicate that the values of 

COV which include both inherent variability and measurement errors are greater than 

the COV of inherent variability. In this study, COV of SPT-N data varies between 71 

and 88% which is greater than the COV of inherent variability because data includes 

the measurement errors. 
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A very limited number of laboratory shear strength (UU triaxial) tests are available on 

undisturbed samples in cohesive soils. Therefore undrained shear strength (cu) is 

determined by utilizing the relationship between SPT-N blowcount and cu (Equation 

4.1) depending on plasticity index (Stroud, 1974), acknowledging the limitations of 

the method. Figure 4. 3 shows that the cu of clay layers at different boreholes increases 

linearly with depth below mudline and Table 4. 3 shows that the rate of increase of cu 

with depth at site 1 and site 2 are within reported values in the literature.  

𝑐𝑢 = 𝑓1 ∗ 𝑁60         (4.1) 

where 𝑁60 is the SPT-N value corrected for 60% energy efficiency and field 

procedures, and 𝑓1 is a coefficient depending on the plasticity index of clay.  

 

 

Figure 4. 3 Undrained shear strength profile at site 1 and site 2 by utilizing empirical 

equation of Stroud (1974) and SPT-N data from many boreholes with a few 

laboratory test data 
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Table 4. 3 Rate of increase of undrained shear strength with depth 

Reference 
Rate of increase of cu with 

depth (kPa/m) 
Remarks 

This study 

2.1 (range: 0.6-4.0, std.dev.: 

1.0) at site 1 

2.2 (range: 1.7-2.8, std.dev.: 

0.4) at site 2 

clays nearshore Turkey 

Basack and 

Purkayastha (2009) 
2.5 - 

Cao and Wang (2014) 1.6 marine clays 

Hossain et al. (2014) 1.02-2.55 
clays at 14 sites, Gulf of 

Mexico 

Wei et al. (2010), 

Kamei and Iwasaki 

(1995), Li-Zhong et 

al. (2008), Terzaghi et 

al. (1996) 

0.8-3.5 

for (𝑐𝑢/𝜎𝑣
′) = 0.12 − 0.35 * 

- 

* Using buoyant unit weight of 7 to 10 kN/m3 

By using empirical equations (Equation 4.2 and 4.3) based on the SPT-N blowcounts, 

effective friction angle (Kulhawy and Mayne 1990, Schmertmann 1975) and relative 

density (Gibbs and Holtz 1957) are estimated for all borehole soundings where mixture 

layers are identified.  

𝐷𝑟 ≈ (
𝑁

12∗𝜎𝑣0
′ +17

)
0.5

        (4.2) 

∅′ = tan−1 [
𝑁

12.2+20.3∗(
𝜎𝑣0

′

𝑃𝑎
)

 ]

0.34

      (4.3) 

where N is the SPT-N blowcount and 𝜎𝑣0
′  is in-situ vertical effective stress (saturated 

unit weight is taken as17.5 kN/m3).  Additionally, friction angle is obtained by using 

the NC (normally consolidated) curve in Figure 4. 4 provided by Stroud (1988).  
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Figure 4. 4 (𝐍𝟏)𝟔𝟎 − ∅′ − 𝐎𝐂𝐑 (overconsolidation ratio) relation (Stroud 1988) 

 

The estimated effective friction angle and relative density are provided in Figure 4. 5 

and the results are tabulated in Table 4. 4.The relative density results shows that the 

upper parts of the soil profile have greater Dr than deeper layers which are not realistic. 

Therefore, it is concluded that the empirical relative density equation (Gibbs and Holtz 

1957) is not proper for the shallow sea bottom sands and it overestimates the Dr values 

at the shallow depths because it uses overburden corrected SPT-N, N1,60 (in-situ 

effective stresses are normalized by 100 kPa). The weighted average relative density 

of the mixture layers at both sites is 29% (it is 28% for site 1 and 40% for site 2) and 

the mixture marine soils of this region can be classified as loose to medium dense. 
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Figure 4. 5 Estimated (a) effective friction angle, (b) relative density, with depth 

 

Table 4. 4 Friction angle and relative density obtained through SPT-N correlations 

 Friction angle (°) Dr (%) 

 Schmertmann, 1975 Stroud, 1988 Gibbs and Holtz, 1957 

 Site 1 Site 2 Site 1 Site 2 Site 1 Site 2 

Average 33.6 37.6 31.7 34.2 28.3 39.6 

Range 18.0-47.7 20.0-53.6 27.3-41.1 27.8-46.3 9.6-85.9 12.1-100 

Stan. Dev. 6.1 8.5 2.9 4.9 11.7 20.1 

COV (%) 18.0 22.7 9.0 14.4 41.2 50.7 

 

During standard penetration testing (SPT), disturbed soil samples are obtained from 

the field at each SPT depth. In this study, the soils at each borehole (e.g. Figure 4. 6) 

are first classified according to the Unified Soil Classification System by using 

laboratory test results (sieve analyses, hydrometer test, Atterberg limits) and 

observations from the field as reported in borehole logs are interpreted. The layers are 

then grouped into two broad groups: (1) mixture layers and (2) clay layers to calculate 

corresponding vertical SCLSPT−N. The soil layers that are classified as sandy gravel, 
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gravelly sand or fill are eliminated (not included in the analyses) because of the SPT-

N refusal data within these layers. The same type soil layers at the same boreholes are 

not lumped together to obtain a single vertical SCLSPT−N. Instead, they are considered 

separately and each clay layer has its own vertical SCLSPT−N. In this study, vertical 

SCLSPT−N is not calculated for layers that are less than 7.5 m thickness, because it 

would be questionable with a limited number of SPT-N data points within that layer.  

26 boreholes at site 1 (average borehole depth of 30.5 m from seabed) and 14 boreholes 

at site 2 (average borehole depth of 25.2 m from seabed) are investigated and vertical 

SCL’s based on SPT-N blowcounts are reported. It is known that SPT is prone to 

measurement errors (equipment-related and operator effects etc.), however this has not 

been considered in the current work. Therefore, evaluated vertical spatial correlation 

lengths represent not only the inherent variability of soils but also the effect of 

measurement errors.  

 

Figure 4. 6 YDSK-1 borehole at site 1 

Exponential and squared-exponential autocorrelation functions are widely used to 

calculate SCL in the literature (DeGroot 1996, Akkaya and Vanmarcke 2003, Zhang 

and Chen 2012, Huber 2013, Lloret-Cabot et al. 2014, Firouzianbandpey et al. 2014, 

Zhang et al. 2016, Peng et al. 2017). In this study, four autocorrelation functions 
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proposed by Vanmarcke (1977) (Table 2. 1) have been utilized to see the effects of the 

autocorrelation functions on SCL and their corresponding goodness of fit (R-squared) 

values. 

Figure 4. 7 shows an example plot of autocorrelation coefficients versus lag distance, 

the distance between the observation points for borehole YDSK-16 at site 1. The four 

autocorrelation functions in Table 2. 1 are utilized to fit the data and 

corresponding SCLSPT−N’s and coefficient of determinations of fit are provided in 

Table 4. 5. The results indicate that although the coefficient of determination does not 

change significantly for “trend” and “constant” approaches, evaluated SCL values 

based on SPT-N in the vertical direction do.  

 

 

Figure 4. 7 Autocorrelation coefficient vs lag distance for borehole YDSK-16 and 

utilized autocorrelation functions (a) “constant approach” (b) “trend approach” 
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Table 4. 5 The spatial correlation lengths, SCL based on SPT-N data (both 

“constant” and “trend” approaches) for four autocorrelation functions for borehole 

YDSK-16 

 
“Constant mean with 

depth” approach 
“Trend” approach 

Correlation Function 𝑆𝐶𝐿 (m) R2 𝑆𝐶𝐿 (m) R2 

Exponential 6.05 0.75 2.30 0.71 

Squared-Exponential 6.49 0.79 2.93 0.76 

Cosine-Exponential 5.77 0.84 2.23 0.81 

2nd Order Autoregressive 6.43 0.78 2.75 0.74 

 

The SPT-N data at both sites are statistically evaluated. Autocorrelation coefficients 

and the vertical SCLSPT−N’s are calculated by utilizing four different autocorrelation 

functions. The mean values, ranges and the standard deviations of the SCLSPT−N’s with 

“trend approach” are tabulated in Table 4. 6, Figure 4. 8a and Figure 4. 8b. In Table 4. 

6, the results are reported, for all boreholes, as the mean vertical SCLSPT−N obtained 

by exponential autocovariance function and by all four autocorrelation functions. 

Figure 4. 8a shows the SCLSPT−N of mixture soils and Figure 4. 8b shows that of clay 

layers, with four autocorrelation functions, for both sites 1 and 2.  

 

Table 4. 6 The mean, and standard deviation of SCL based on SPT-N data (with 

“trend approach”) for clays and mixtures. 

  Site 1 Site 2 

  Mixtures Clays Mixtures Clays 

Four 

Functions 

Mean (m) 2.19 1.75 1.52 1.67 

Range 0.07-5.20 0.06-3.19 0.08-4.55 0.06-3.13 

Standard 

Deviation (m) 
1.26 0.91 1.28 0.91 

Exponential 

Function 

only 

Mean (m) 1.94 1.45 1.23 1.36 

Range 0.07-5.03 0.06-2.66 0.08-4.17 0.06-2.53 

Standard 

Deviation (m) 
1.34 0.94 1.30 0.93 
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The mean vertical SCLSPT−N of both sites using all four autocovariance functions and 

using the “trend approach”, is 1.71 m (0.86 m standard deviation) for clay layers, 

whereas it is 2.02 m (1.26 m standard deviation) for mixture layers. For mixture 

layers, both the mean SCLSPT−N and the standard deviation are slightly larger as 

compared to clay layers which are in agreement with literature. The vertical SCL 

values based on SPT-N data are within typical ranges reported in the literature for 

similar soil groups, both onshore and offshore (Table 2. 3). 

 

 

Figure 4. 8 Spatial correlation length based on SPT-N data of (a) all mixture soils, (b) 

all clay layers, for both Site 1 and Site 2, using “trend approach” 

0

1

2

3

4

5

6

1 4 7 10 13 16 19 22 25 28 31 34

S
p
at

ia
l 

C
o
rr

el
at

io
n
 L

en
g
th

 (
m

)

Borehole #

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

S
p
at

ia
l 

C
o
rr

el
at

io
n
 L

en
g
th

 (
m

)

Borehole #

Exp SqrExp CosExp Autoreg

Mean Mean of Mean Mmean+Std Mmean-Std

(a) 

(b) 



57 
 

In Table 4. 7, the SCL values based on SPT-N data for both “constant and trend 

approaches” have been tabulated. It is clearly seen that assuming constant mean with 

depth results in larger SCLSPT−N values compared with “trend approach”. The same 

result that detrending eliminates the larger SCL has been reported in the study of 

Akkaya and Vanmarcke (2003). 

Table 4. 7 The mean, and standard deviation of SCL based on SPT-N data (with both 

“constant approach” and “trend approach”) for clays and mixtures. 

  Constant Approach Trend Approach 

    Mixtures Clays Mixtures Clays 

Four Mean (m) 4.20 3.85 2.03 1.71 

Functions Range 0.09-9.59 0.27-6.74 0.07-5.20 0.06-3.19 

  Standard Deviation (m) 2.14 1.41 1.29 0.89 

Exponential 

Function 

only 

Mean (m) 4.04 3.69 1.78 1.41 

Range 0.09-8.75 1.03-5.53 0.07-5.03 0.06-3.19 

Standard Deviation (m) 2.05 1.33 1.34 0.89 

 

It is observed that, when calculating the autocorrelation coefficient, the 𝑁̅ should be 

taken as the trend value at each point. In that case, there is no need to de-trending or 

standardizing the data because they all result in the same spatial correlation length. In 

the analyses, two different approaches, constant and trend, have been used and as 

stated in the study of Akkaya and Vanmarcke (2003), the “trend approach”, where the 

fluctuations about the trend are considered, results in shorter fluctuation (shorter SCL). 

While the average of SCLSPT−N’s with the “trend approach” for clays and mixtures are 

1.71 m and 2.02 m, respectively, the SCLSPT−N’s with “constant-mean with depth” 

approach are 3.85 m and 4.20 m, for clays and mixtures, respectively. This indicates 

that the SCLSPT−N with “constant-mean” approach is at least two times the SCLSPT−N 

with “trend approach”. In addition to these, it should be noted that, the order of the 

trend function is important, as the order of the polynomial increases the scale of 

fluctuation decreases (Phoon 2008). The variation of the residuals about trend line and 

calculated spatial correlation lengths are directly related to the flexibility of the trend 
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line (degree of polynomial). In this study only a linear, i.e. a first order polynomial, 

equation is used for trend calculations.  

When all four utilized autocorrelation functions are compared, the results show that 

squared exponential (Gaussian) autocorrelation function gives the highest SCL (in 

72% of all evaluations) compared to the others; while the exponential (Markov) 

autocorrelation function results in the lowest SCL (in 78% of all evaluations). In 

addition, the autocorrelation functions, exponential and cosine-exponential mostly 

gives closer SCL’s to each other (in 43% of all evaluations).  

Cao and Wang (2014) state that selection of the most suitable correlation function is 

an important issue and the goodness of fit can be used to help select the most suitable 

functions. Table 4. 8 shows the goodness of fit in terms of R2 values for all the SPT-N 

data reported in the manuscript with their means and ranges. All R2 values are in the 

range of 0.55 and 0.86 with an average of 0.70. When the goodness of fit is low, the 

fitting of data to the autocovariance function has no statistical meaning, and the SCL 

obtained could be misleading. Therefore results with a coefficient of determination 

smaller than 0.50 are not considered. Considering all boreholes data for the mixture 

soils and for the clay soils, the Cosine Exponential Autocorrelation Function gives the 

highest R2 values (greater than 0.64 with an average of 0.74), i.e. seems like the best 

fit among the four types of autocovariance functions.  

Table 4. 8 Goodness of fit, represented by R2 values, for four different 

autocorrelation functions (mean value and range in parenthesis) 

 Exponential 
Squared 

Exponential 

Cosine 

Exponential 

Second Order 

Autoregressive 

Mixtures 
0.68 0.70 0.74 0.69 

(0.55 - 0.83) (0.56 - 0.83) (0.59 - 0.85) (0.56 - 0.83) 

Clays 
0.68 0.70 0.74 0.69 

(0.56 - 0.83) (0.56 - 0.84) (0.59 - 0.86) (0.56 - 0.84) 
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4.1.1. Concluding Remarks 

 

In this study, the vertical spatial correlation length of SPT-N data is determined using 

site investigation data from two sites in the southern coast of Turkey, based on SPT-N 

values at 1.5 m depth intervals, from 41 boreholes (depths of 23 m to 60 m from sea 

level) at average water depths of 8.9 m and 16.1 m for Site 1 and Site 2, respectively. 

At both sites, marine deposits exist where the soil profile generally consists of mixture 

layers (clayey, silty and sandy materials with different proportions) and low plasticity 

clay layers. At site 1, soft to stiff clay layers exists having the undrained shear strength 

(cu) in the range of 5 to 100 kPa. At site 2, clays can be classified as soft to medium 

stiff clays with max cu values of 50 kPa. The rate of increase in cu with depth is found 

as 2.1-2.2 kPa/m (for both sites) by utilizing the relationship between SPT-N 

blowcount and undrained shear strength (Stroud 1974). The rate of increase of cu with 

depth, at both sites in this study, are within reported values in the literature. For 

“mixture” layers at both sites, the mean friction angle is 34° and it is seen that the soils 

are mostly in loose to medium-dense state with a mean relative density of about 29%.  

Both “constant approach” and “trend approach” are utilized in the evaluation of SCL 

based on SPT-N data. It is seen that “constant approach” overestimates the SCLSPT−N 

values in cases where there exist a trend with depth. Therefore, it is better to perform 

“trend approach” and detrend the data in all cases. Vertical SCL of SPT-N data with 

“trend approach” is calculated using four autocovariance functions; namely, 

exponential (Markov), squared-exponential (Gaussian), cosine exponential and 

second-order autoregressive. Using four autocovariance functions, the mean vertical 

SCLSPT−N values are calculated as 1.72 m ( 0.89 m standard deviation) for clay layers, 

whereas it is 2.03 m ( 1.28 m standard deviation) for mixture layers. For mixture 

layers both the mean SCLSPT−N and the standard deviation are slightly larger compared 

to clay layers in “trend approach”. When the SCLSPT−N values are evaluated for clays 

and mixtures with “constant approach”, the values becomes 3.85 m ( 1.42 m standard 

deviation) and 4.20 m ( 2.14 m standard deviation) respectively. Similar to “trend 

approach”, mixtures have greater mean and standard deviation compared to clays. In 

addition, the treating the data results in shorter SCL values which is also stated by 
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Akkaya and Vanmarcke (2003). The vertical SCLSPT−N values are within typical 

ranges reported in the literature for similar soil groups, both onshore and offshore 

(Table 2. 3). It is also better to note that the widely-used exponential function almost 

always gives the lowest value of spatial correlation length, whereas squared-

exponential (Gaussian) autocorrelation function gives the highest SCL as compared to 

the other functions.  

Estimation of SCL remains as a significant challenge due to a lack of high-resolution 

measurement data in geotechnical practice. Among the in-situ tests, the cone 

penetration test data has the highest resolution (typically on the order of a few cm’s). 

However, other properties of soil such as water content, unit weight, undrained shear 

strength (from laboratory tests), and SPT-N data from the field can also be used to 

calculate the SCL, even though they have larger spacing between observation points 

(lower resolution) (Table 2. 3). Using the conventional statistical method described in 

the thesis, vertical SCL values found based on SPT-N in the literature are 2.4 m 

(Vanmarcke, 1977), 0-4 m (Alonso and Krizek 1975 reported in Huber 2013), 0.3 m 

(Lumb 1975 reported in Huber 2013), 1.36-1.63 m (Zhang and Chen, 2012), which are 

in agreement with the results in this study.  

 

4.2 Yalova Region (CPT Data) 

 

4.2.1. Site Description  

 

The project site is located in Gulf of Izmit in the Sea of Marmara, on the northwestern 

part of Turkey (Figure 4. 9). There exists 65 cone penetration test (CPT) soundings 

where water depths are varying from 1.5 m to 64.2 m. The soundings are grouped into 

two; shallow water CPT (water depth < 10 m) and deep water CPT (water depth > 10 

m). Total of 65 CPT soundings consisting of 45 deep water CPT and 20 shallow water 

CPT are analyzed. The average length of the CPT soundings and average water depths 

are provided in Table 4. 9. The cone tip resistance and sleeve friction measurements 

are taken at each sounding with a 0.02 m vertical spacing (resolution of the 

measurement). 
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Figure 4. 9 Location of the CPT soundings 

Table 4. 9 Length of CPT soundings and water depths 

 Deep water CPT Shallow water CPT 

Total number 45 20 

Length (m) 60.7 (20.4-200) 60.8 (9.5-200.6) 

Water depth (m) 38.8 (16.7-64.2) 3.5 (1.4-9.5) 

 

The classification of the soil profile is made by Robertson (2010)'s soil behavior types 

(Figure 3. 4): the soil profile at the CPT soundings includes clays/clay-silt mixtures 

and sands/silty sands according to the soil behavior types. Therefore, soils types are 

grouped into two broad groups; “Clays” and “Sands”, and all statistical analyses and 

SCL calculations based on CPT data are conducted for these two types of soil groups 

separately. Two CPT profiles (tip resistance and friction ratio) are given as an example 

of the data, in Figure 4. 10 where the soil behavior type zones 3-4 and 5-6-7 are called 

as “Clays” and “Sands” respectively.  
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Figure 4. 10 Two representative CPT profiles and soil layers; (a)-(b) and (c)-(d) are 

tip resistance and friction ratio of soundings 1 and 2 
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4.2.2. Evaluation of Spatial Variability  

 

The data at each CPT sounding are first divided into soil layers and then the data within 

these layers are utilized to evaluate the spatial variability. The resolution of gathered 

data is 0.02 m in the vertical direction which is very common interval for data 

acquisition for cone penetration test. Some examples of the CPT data (both cone tip 

resistance and friction ratio) can be seen in Appendix B. Soil properties like undrained 

shear strength, cu, and relative density, Dr, are estimated by using empirical equations; 

Equation 4.4 and Equation 4.5. The following relationship is utilized to evaluate cu: 

 

𝑐𝑢 =
𝑞𝑡−𝜎𝑣0

𝑁𝑘
          (4.4) 

 

where qt is the measured cone tip resistance, σv is the total in situ vertical stress 

(saturated unit weight of all layers is taken as 20 kN/m3) and Nk is the constant that 

can vary from 14 to 20 (Robertson, 2010). In addition, relative density, Dr, is found 

by the following relationship (Jamiolkowski et al. 2003): 

 

𝐷𝑟 = (
1

0.0296
) ln [𝑞𝑡/[2.494 (𝜎′

𝑣0 (
1+2𝐾0

3∗100
))

0.46

]]    (4.5) 

 

where σ’v0 is the effective overburden pressure and K0 is the at-rest earth pressure 

coefficient. In Figure 4. 11, undrained shear strength (Nk=17) and relative density 

(K0=0.55) profiles are provided for two CPT soundings. The relative density of sands 

are mostly less than 50%, and undrained shear strength for clays are less than 100 kPa. 

Therefore, the sands are mostly in loose to medium dense state and clays are soft to 

medium stiff.  
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Figure 4. 11 Two representative undrained shear strength and relative density 

profiles; (a) Sounding-1 (b) Sounding-2, where Nk and K0 are taken as 17 and 0.55. 

 

The undrained shear strength, cu, profiles for 9 CPT soundings having the highest 

water depths with an average of 51.3 m are provided in Figure 4. 12. The upper and 

lower limits (14 and 20) for constant Nk is utilized in Figure 4. 12a while average Nk 

value of 17 is employed in Figure 4. 12b. In addition, the summary of cu for these 9 

CPT soundings are also tabulated in Table 4. 10 for different Nk values. The results 

indicate that the employed Nk value has great importance on the undrained shear 

strength value obtained. 
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Figure 4. 12 Estimated undrained shear strength profile for nine CPT soundings with 

an average water depth of 51.3 m: (a) Nk=14 and 20, (b) Nk=17 

Table 4. 10 Summary of undrained shear strength for 9 CPT soundings (average 

water depth of 51.3 m) 

Undrained Shear Strength (kPa) 

Depth From Sea Level (m)=40-52.5 

Nk → 20 17 14 

Mean 35.68 41.97 50.97 

Standard Deviation 33.51 39.43 47.88 

COV 93.94 93.94 93.94 

Depth From Sea Level (m)=52.5-75 

Nk → 20 17 14 

Mean 41.78 49.15 59.69 

Standard Deviation 25.77 30.32 36.82 

COV 61.69 61.69 61.69 
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In Table 4. 11, evaluated cu for clays and Dr for sands are provided for all soundings. 

It is seen that clays at shallow watershave approximately two times greater undrained 

shear strength values and lower COV values than clays at deep waters. In addition, the 

relative density of sands does not differ at shallow and deep waters. Dr values are 

generally less than 50 % (medium-dense state) with a COV value of about 60 %. In 

the literature, the COV values of cu and Dr are reported in the range of 6% to 80% and 

11% to 74% respectively (Phoon and Kulhawy 1999a). Therefore the COV values of 

this study are within the range of values in the literature.  

Table 4. 11 Summary of undrained shear strength and relative density for all shallow 

and deep water soundings 

  Shallow Water Soundings Deep Water Soundings 

cu (kPa) 

Nk→ 14 17 20 14 17 20 

Mean 121.90 100.39 85.33 65.12 53.63 45.58 

Range 3-200 2-164 2-140 0-200 0-165 0-140 

Standard Dev.  43.21 35.58 30.24 38.42 31.64 26.90 

COV (%) 35.44 35.44 35.44 59.00 59.00 59.00 

Dr (%) 

K0→ 0.4 0.55 0.7 0.4 0.55 0.7 

Mean 46.33 43.94 41.86 50.24 47.85 45.77 

Range 5-100 2-98 0-95 5-100 2-98 0-96 

Standard Dev.  29.63 29.63 29.63 29.95 29.95 29.95 

COV (%) 63.95 67.44 70.78 59.61 62.60 65.43 

 

Both “trend with depth approach” and “constant approach” are utilized in the 

evaluation of SCL based on CPT data. Cone tip resistance, friction ratio, and sleeve 

friction data have been utilized and corresponding SCL values with two approaches 

are provided in Table 4. 12 as averages. Detailed results can be seen in Table 4. 13, 

Table 4. 14, Table 4. 15 and Table 4. 16. The SCL based on CPT data of clays and 

sands for deep water CPT soundings are reported in Table 4. 13 and Table 4. 14 

respectively. Likewise, results of shallow water CPT soundings are reported in Table 

4. 15 and Table 4. 16 for clays and sands.  
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Table 4. 12 Summary of average vertical SCL values based on CPT data 

   SCL (m) 

   Deep Water 
Shallow 

Water 

   Clays Sands Clays Sands 

All four 

autocovariance 

functions 

Cone tip 

resistance 

Constant Approach, Mean 0.258 0.263 0.262 0.231 

Trend Approach, Mean 0.148 0.168 0.116 0.133 

Friction 

Ratio 

Constant Approach, Mean 0.269 0.217 0.251 0.167 

Trend Approach, Mean 0.172 0.143 0.142 0.112 

Sleeve 

friction 

Constant Approach, Mean 0.250 0.234 0.210 0.216 

Trend Approach, Mean 0.147 0.153 0.124 0.115 

 

Based on the statistical evaluation, the following results are obtained: 

- All average vertical SCL values based on CPT data, of clays and sands, in 

shallow and deep waters, using four different autocovariance functions are in 

the range of 0.11 m to 0.27 m (Table 4.12). The SCL values of CPT data based 

on “constant mean with depth approach” are always slightly larger than those 

based on “trend with depth approach”.  

- Sands and clays at deep water CPT soundings have slightly larger vertical 

SCLCPT than sands and clays at shallow water soundings, in both constant and 

trend approach.  

- Among four autocorrelation functions, squared exponential function gives the 

highest mean SCLCPT values in 79% of all evaluations and 2nd order 

autoregressive function gives the highest in 21% of all evaluations. In addition, 

cosine of exponential function always gives the smallest SCLCPT values in both 

constant and trend approach.  

- Sands have always greater SCLCPT, although slightly, based on cone tip 

resistance compared to the values based on friction ratio and sleeve friction. 

- In trend approach (where the fluctuations are evaluated about a linear trend 

line), friction ratio data gives the highest vertical SCL value than tip resistance 

and sleeve friction for clays. 

- Based on cone tip resistance, sands have always larger vertical SCL than clays 

in trend approach.  
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- Clays have always (slightly) greater vertical SCL based on friction ratio than 

sands. 
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4.2.3. Concluding Remarks 

 

In this part of the study, 65 CPT soundings; 45 deep water CPT and 20 shallow water 

CPT are analyzed. The average water depth of shallow and deep water CPT soundings 

are 3.5 m and 38.8 m respectively. The average length of the soundings is 

approximately 60 m below the seabed. The resolution of the data is 0.02 m with depth. 

All CPT data are first classified according to the Robertson (2010)’s soil behavior type 

and soil behavior type zones 3-4 and 5-6-7 are grouped together into broad groups of 

"clays" and "sands", respectively. All statistical analyses are conducted by the 

MATLAB code developed in this study, where soil profile is divided into same soil 

layers and the vertical SCL is evaluated by utilizing four autocovariance functions, 

using cone tip resistance, sleeve friction and friction ratio, separately.  

Undrained shear strength, cu, and relative density, Dr, values are calculated for clays 

and sands by using empirical equations. The average cu is found as 100 kPa (σ=35.6 

kPa) for shallow water soundings and 54 kPa (σ=31.6 kPa) for deep water soundings 

with a constant Nk value of 17. The results also show the importance of choosing the 

value of the Nk. The value varies from 14 to 20 and the change in the undrained shear 

strength can be as much as 40 kPa, depending on the Nk value. In addition, it is seen 

that Dr is mostly less than 50% meaning that sands are in loose to medium dense state.  

Vertical SCLCPT evaluations are conducted with both constant and trend approaches 

for deep and shallow CPT soundings separately. All measurements; cone tip 

resistance, friction ratio, and sleeve friction have been considered and corresponding 

vertical SCL values are reported in Table 4. 12. The results show that trend approach 

always results in smaller SCL values, although slightly. In addition, deep water clays 

and sands have greater vertical SCLCPT values than shallow water clays, possibly 

because of more uniform deposition and formation processes in geological history. All 

average SCLCPT values are found to be between 0.17 and 0.27 m for constant approach 

and between 0.11 and 0.17 m for trend approach. Detailed results are provided in Table 

4. 13, Table 4. 14, Table 4. 15 and Table 4. 16. 
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The evaluation of CPT soundings indicates that data of shallow water soundings has 

less SCLCPT values, meaning that the data fluctuate more frequently, i.e. a rough 

random field. The same result is reported in the study of Cheon and Gilbert (2014) and 

it is stated that deeper offshore marine soils have larger SCLCPT’s compared to the 

shallower depths. In addition, Nadim (2015) states that although the soil types in the 

offshore and nearshore are similar, their spatial properties show significant 

differences, i.e. the correlation structures are different. Soil parameters may change 

more frequently from point to point in the nearshore while it is more stationary at deep 

waters.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



75 
 

 

CHAPTER 5 

 

5. EFFECTS OF VARIABILITY ON BEARING CAPACITY AND 

SETTLEMENT 

 

 

In this chapter, the variability of soil parameters and spatial correlation length are 

considered in the foundation design problems by using random finite element method 

tools. Both settlement and bearing capacity of shallow strip foundations are 

investigated and results are illustrated. The soil parameters can be defined by using 

statistical distributions, such as normal and lognormal distributions. Lumb (1966), 

Schultze (1971) and JCSS (2001) utilized normal distribution, while other researchers 

such as Jiang et al. (2014), Griffiths et al. (2002), Cho (2010) and Tabarroki et al. 

(2013) used lognormal distribution because of the non-negative values in soil 

parameters (cohesion, friction angle, undrained shear strength, unit weight etc.). It 

should be noted that the best and proper statistical distribution of soil parameters can 

be a separate study by using the real field and laboratory test data, and the best fitting 

distribution type probably depends on the soil property considered and the specific 

site. In this chapter, the only purpose is to study the effect of SCL, therefore one of the 

widely used statistical distribution types, lognormal distribution, is assigned to the soil 

parameters.  

 

 

5.1  Effects on Initial (Elastic) Settlement 

 

In the shallow and offshore sea, mostly pile foundation is preferred for structures. 

However, in this part of the study, only a shallow strip foundation is considered just to 

demonstrate the effect of variability and SCL of soil parameters on immediate (elastic) 
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settlement. In the finite element model, lower boundary is totally restricted to any 

movement (fixed boundary) and vertical deformation is allowed at the side boundaries. 

The width of shallow strip foundation, B, is 5 m under a 300 kN/m loading. The 

increase in vertical stress due to applied load decreases significantly at a depth of 4B 

below the base of foundation, therefore 20 m is taken as the vertical length of the model 

underneath the foundation. In addition, the lateral distance from the foundation to the 

side boundaries is investigated. It is a common practice to have at least about 3B 

horizontal distance between the foundation and the side boundary of the model to 

avoid boundary effects completely. After some preliminary runs about the dimensions 

of the model, it is seen that when the horizontal distance between the edge of the 

foundation and side boundary is as small as 1.5B, the change in the obtained settlement 

results is effected by less than 5%. Therefore, in order to decrease run time, the model 

size is selected as 20 m - 20 m (Figure 5. 1). The soil is modeled with an elastic model 

where the Poisson’s ratio is taken as constant, 0.25, and the elasticity modulus is used 

as a random variable for analyses. This analyses only looks into immediate (elastic) 

settlement and does not include consolidation settlements. The modulus of elasticity 

is statistically represented by lognormal distribution and SCL of modulus of elasticity 

is taken as equal in the both vertical and horizontal direction (isotropic). This 

distribution is defined with an average of 10 MPa, and the analysis is performed with 

a coefficient of variation of 5%, 22.5%, and 40% to represent different degrees of 

variation. All parameters of the model can be seen in Table 5. 1. The RSETL2D 

software creates random field using the SCL (equal in the both horizontal and vertical 

directions; isotropic SCL) and exponential correlation function for the modulus of 

elasticity and maps them to the final elements. Monte Carlo sampling method is 

utilized and 2000 simulations are performed for settlement calculations to avoid the 

effect of insufficient number of simulations (Pieczynska et al. 2011). In Figure 5. 1, 

the random field (SCLv=1 m and SCLh=1 m) generated for the modulus of elasticity 

can be seen where the dark color shows high values. 
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Table 5. 1 Parameters used in the bearing capacity model 

Soil parameter Unit Statistical distribution Value 

Elasticity modulus, E MPa Lognormal 10 

Poisson ratio - - 0.25 

Random field parameters  
Spatial correlation length (m) 

(isotropic) of elastic modulus 

0.025 - 0.05 - 0.1 - 0.25 - 0.5 - 1 - 2 - 3 - 4 - 5 

- 6 - 7 - 8 - 9 - 10 - 15 - 20 

COV (%) 5 - 22.5 - 40 

 

 

Figure 5. 1 Geometrical representation of model with random field of cohesion 

(SCLv=1 m and SCLh=1 m)  

 

In each simulation of an analysis, a random field is created for the logarithm of 

elasticity modulus, E. In addition, the results obtained from each simulation is stored 

and a statistical distribution is used to represent the output data. In addition, E value in 

each simulation is also stored and at the end, the mean and standard deviation of E 

values in an analysis can be calculated. In Figure 5. 2, a random field created for 

elasticity modulus and magnified displaced mesh is provided where 𝜇𝐸 = 1 ∗

104, 𝜎𝐸 = 4 ∗ 103 𝑎𝑛𝑑 𝑛𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 2000. Also, probability density function of 

settlement results (with normal distribution parameters) and all utilized E values (with 

lognormal distribution parameters) in a single analysis are provided in Figure 5. 3.  

20 m 

20 m 

Load: 300 kN/m 

5 m 

x 
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Figure 5. 2  (a) Generated random field for logarithm of E (SCLE= 4 m) and (b) 

magnified displaced mesh 

 

 

Figure 5. 3 Probability density function of (a) settlement and (b) effective elastic 

modulus with statistical parameters at the center point under the foundation 
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20 m 

 

Load: 300 kN/m 
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The effect of SCL and COV of soil parameters on the settlement is shown in Figure 5. 

4. The average of the settlement of 2000 simulations is not affected significantly by 

increasing SCL of soil parameters. With the increase of SCLE, relatively higher 

increase is observed for higher COV levels (Figure 5. 4a). It is also seen that increase 

of COV value of the elasticity modulus has greater effect on elastic settlement than 

SCLE. Therefore, it may be concluded that the COV of the soil parameter has primary 

effect on the settlement, while SCLE has secondary effects. In 2000 simulation results, 

COV of elastic settlement results increased significantly with the increase of SCLE 

(Figure 5. 4b); the increase in the COV value of the elasticity modulus also increased 

the COV value of the settlement results.   

 

 

Figure 5. 4 The effect of COV of soil parameters and SCLE on (a) mean settlement 

and (b) COV of settlement (2000 simulations) 
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By creating random field by using mean, standard deviation and SCLE, the reliability 

of the foundation can be obtained for serviceability limit state (SLS), maximum 

allowable settlement. For this study, serviceability limit is taken as 4.5 cm, as an 

example for demonstration purposes, and the probability of exceeding SLS is obtained 

for different COV levels and SCLE values (Figure 5. 5). Although deterministic results 

indicate that the limit is not exceeded, the probability of exceeding SLS can be as much 

as 50%. As the COV and SCL of elastic modulus increase, the range of initial 

settlement results widens and the area of probability density function over the values 

less than SLS increases. Figure 5. 5 shows that SCLE and COV of soil can have 

significant effects on the probability of having greater settlement than the maximum 

defined limit.  

 

 

Figure 5. 5 Probability of exceeding SCL  
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5.2  Effects on Bearing Capacity 

 

The effects of SCL and COV of soil parameters on bearing capacity of shallow 

foundation are investigated by using RBEAR2D software (Fenton and Griffiths 2008) 

using RFEM. A 4-m wide strip footing located on the ground surface (Figure 5. 6) and 

a general, c- 𝜙 soil is considered in the analyses. 5 levels of COV, between 5% and 

40%, for the soil parameters are utilized in the analyses. The model parameters are 

given in Table 5. 2. In an analyses, same COV values are applied to all random 

variables. Both isotropic and anisotropic SCL analyses are performed where the ratio 

of horizontal SCL (δh) to the vertical (δv) is taken as 10 (Baecher and Christian 2003) 

in anisotropic case. Soil is modeled with elasto-plastic Von Mises constitutive soil 

model. 

Table 5. 2 Parameters used in the bearing capacity model 

 

Soil Parameters Statistical Distribution Mean Value 

Cohesion (kPa) Lognormal 10 

Friction angle (deg.) Lognormal 35 

Dilation angle (kPa) Lognormal 5 

Elastic modulus (kPa) Lognormal 20000 

Poisson's Ratio Deterministic 0.25 

Random field parameters   

Spatial Correlation Length (m) 

of soil parameters 

0.025 - 0.05 - 0.1 - 0.25 - 0.5 - 1 - 2 - 3 - 4 - 5 - 6 

- 7 - 8 - 9 -10 - 15 - 20 

COV (%) 0 - 5 - 13.75 - 22.5 - 31.25 - 40 

Correlation coefficient (c-ϕ) -0.5 
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Figure 5. 6 Representation of model with random field of cohesion (SCLv=10 m and 

SCLh=100 m); (a) Geometry of the model, (b) deformed mesh 

 

In the bearing capacity analysis, both anisotropic and isotropic spatial variability are 

considered. In Figure 5. 7, random fields for 1 m and 10 m SCL of cohesion in the 

vertical direction are provided for both isotropic and anisotropic cases.  
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δv = δh=1 m 

 
δv = 1 m, δh=10 m 

 
δv = δh=10 m 

 
δv = 10 m, δh=100 m 

Figure 5. 7 Generated random field for isotropic (a-c) and anisotropic (b-d) cases 

(model geometry 13 m x 32 m) 

Effect of the number of Monte-Carlo simulations is investigated by performing 

analyses with simulation numbers from 1 to 10000. The analyses are performed for 

COV of 22.5% and SCL of soil parameters are taken as 1, 2 and 3 m in both directions 

(isotropic). Figure 5. 8 indicates that the mean bearing capacity converges to a stable 

point at about 2000 simulation numbers regardless of the SCL value. Therefore, in all 

analyses, the number of simulations is taken as 2000.  

 

Figure 5. 8 Effect of number of Monte Carlo simulations on the mean bearing 

capacity for COV=22.5 % and SCLv=h 1 m, 2 m and 3 m cases. 
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The effects of SCL of soil parameters on bearing capacity of shallow strip foundation 

are analyzed for 5 level of COV of soil parameters. Both isotropic and anisotropic SCL 

cases are investigated and the results are provided in Figure 5. 9 and Figure 5. 10. The 

results indicate that, up to a value of SCL, as SCL increases normalized mean bearing 

capacity decreases (Figure 5. 9). After a specific value of SCL, as SCL increases 

normalized mean bearing capacity increases. The initial decrease may be explained by 

the relation between the values of SCL and the dimensions of bearing capacity failure 

zone, which depends on the width of the foundation, B. The affected zone is 

approximately 1.5B deep and 5B wide underneath the foundation. The bearing failure 

initiates due to having weaker zones in the bearing capacity failure zones which is 

more likely when SCL is small (i.e. random field is more rough) as compared to 1.5B. 

However, further increasing the SCL (relative to 1.5B) causes more smooth changes 

of soil parameters within the bearing capacity failure zone, i.e. soil volume starts to 

behave like a homogeneous volume. Therefore, it is less likely to have connected weak 

zones and greater mean bearing capacities are obtained. Likewise, Jha (2016) reported 

that normalized mean bearing capacity first decreases and reaches a minimum value 

and then increases with the increasing scale of fluctuation. In addition, the range of the 

results increases with increasing SCL of soil parameters because larger zones may be 

completely weak, or strong, together underneath the foundation. Therefore, much 

larger and much smaller results can be obtained which means COV of the results 

increases. Likewise, with the increase of COV of soil parameters, the value of strength 

parameters can take much larger and lower values and therefore variability of the 

results increases. The results of this study show that the COV of bearing capacity 

increases with the increase of SCL values and COV of soil parameters for both 

isotropic and anisotropic cases (Figure 5. 10). When isotropic and anisotropic cases 

are compared, it is seen that the decrease of mean bearing capacity is a little more in 

anisotropic case. In addition, COV of bearing capacity reaches greater amounts in 

anisotropic case.  
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Figure 5. 9 Effect of SCL of soil parameters on mean bearing capacity for 5 levels of 

COVsoil parameters for (a) isotropic case and (b) anisotropic case 
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Figure 5. 10 Effect of SCL of soil parameters on COVbearing capacity for 5 levels of 

COVsoil parameters for (a) isotropic case and (b) anisotropic case 
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The effect of SCL and COV of soil parameters on the probability of failure under a 

given loading is investigated and illustrated in Figure 5. 11. The foundation under a 

load that is greater and less than the deterministic bearing capacity of soil volume is 

called as “deterministically unsafe” and “deterministically safe” respectively. The 

effect of SCL on the probability of failure is found to be opposite for deterministically 

safe and unsafe cases. For deterministically safe case, increasing SCL increases the 

probability of failure because having larger weaker zones under the foundation 

becomes more possible with increasing SCL and larger weaker zones create more 

possibility to initiate the bearing failure. On the contrary, increasing SCL decreases 

the probability of failure for the deterministically unsafe case. The reason is that 

relatively stronger zones are formed by increasing SCL and larger loads can be carried 

by the foundation. 
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Figure 5. 11 Effect of SCL of soil parameters (δ) with different COVsoil parameters levels 

on probability of failure at deterministically safe and unsafe conditions for (a) 

isotropic case and (b) anisotropic case 
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In addition, the mean bearing capacity of 2000 Monte Carlo simulations is found to be 

decreasing with increasing variability of soil parameters (Figure 5. 12). The average 

bearing capacity can decrease by about 25% of its deterministic value. The results 

show that for a given COV %, increasing SCL of soil parameters from 0.025 m to 3.0 

m can decrease the mean bearing capacity as much as 11% of its deterministic bearing 

capacity. 

 

 

Figure 5. 12 Effect of SCL of soil parameters with different COVsoil parameters levels on 

mean bearing capacity for (a) isotropic case and (b) anisotropic case 
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increases and wider range of results are obtained. That is, when SCL increases for the 

same COVparameter, larger zones will be correlated to each other (i.e. will have similar 

values of soil parameters) underneath the foundation. If high strength values are 

assigned to much larger zones, much higher bearing capacity can be obtained. 

Similarly, much lower bearing capacity values can also be obtained if larger zones of 

low strength values exist. When SCL is kept constant and COVparameter increases from 

5% to 40 %, the standard deviation increases. That is, either increasing SCL or 

COVparameter significantly increases the standard deviation of evaluated bearing 

capacity.  

 

 

Figure 5. 13 Probability density function of δ=20 m & 1 m and COVsoil parameters of 

5% and 40% for (a) isotropic case and (b) anisotropic case 
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The effect of SCL and COV of soil parameters can be seen in Figure 5. 14. It is seen 

that for a given loading, the probability of failure increases as COV of soil parameters 

increases. For the same COV levels, increasing the SCL of soil parameters may 

increase or decrease the probability of failure according to the safety level which is 

also illustrated in Figure 5. 11. 

 

 
Figure 5. 14 Effect of spatial correlation length (δ) with different COV soil 

parameters levels on probability of failure under different load 
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The effect of SCL and coefficient of variation of soil parameters are investigated by 

using RBEAR2D, random finite element method. All analyses are conducted with 

2000 Monte-Carlo simulations. The effect of SCL of soil parameters on the probability 

of failure, Pf, changes according to the safety level. Increasing SCL increases the Pf  of 

deterministically safe cases, while it decreases the Pf of deterministically unsafe cases. 

Mean bearing capacity decreases with increasing COV of soil parameters. In addition, 

the mean bearing capacity may decrease by about 11% of its deterministic bearing 

capacity with the increase of SCL. Standard deviation of 2000 bearing capacity 

simulations increases by increasing SCL values and therefore probability of failure is 

effected significantly. 
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CHAPTER 6 

 

6. CONCLUSIONS AND FUTURE STUDIES 

 

 

6.1 Summary 

 

Reliability-based design approach is a popular trend in geotechnical engineering field, 

especially in the recent decades. In this approach, the probability of failure, probability 

of exceeding any limit criteria, reliability index can be obtained as well as the results 

obtained in deterministic approaches such as deterministic factor of safety and bearing 

capacity etc. In the reliability-based design, variability of soil parameters is included 

in the analyses where the variability is represented by mean, standard deviation and 

spatial correlation length. In this study, the offshore and nearshore geotechnical site 

investigation data are used for 3 sites, and the following issues have been examined:  

- The types and typical characteristics of sea bottom soils 

- Ranges of values and statistical evaluation for engineering properties, such as 

effective friction angle, relative density, and undrained shear strength  

- Spatial correlation length of soils in the vertical direction based on CPT and 

SPT data  

- The effects of variability of both the coefficient of variability of soil parameters 

and SCL of soil parameters on settlement and bearing capacity of shallow strip 

foundations 

One of the aims of this study is to emphasize the importance of variability of soil and 

to demonstrate the importance of probabilistic approach by providing the quantified 



94 
 

values of soil variability and specific values for settlement and/or bearing capacity 

influenced by this variability. 

The variability of the soil is investigated by using SPT and CPT data from three 

different sites in Turkish waters. The soil profile at the SPT sites is obtained by 

evaluating laboratory test results, SPT-N data and field observations while Robertson 

(2010)'s soil behavior type chart is utilized for CPT sites. After digitizing the field data 

and identifying the soil layers, the statistical evaluation is carried out by a MATLAB 

code developed in this study, which finds engineering parameters of the soils at each 

data point and calculates SCL of field data in the vertical length by function fitting 

method. Four autocovariance functions; exponential, squared exponential, cosine 

exponential and second-order autoregressive, are utilized to calculate SCL for different 

soil groups.  

The importance of variability of soil parameters is illustrated by extensive analysis 

where random finite element programs; RSETL2D and RBEAR2D are utilized. The 

programs are a combination of random field and finite element method which is 

developed by Fenton and Griffiths in 1992. In these programs, random fields of soil 

properties are generated by using statistical distribution parameters and the created 

random field is matched with finite element meshes. The settlement and bearing 

capacity results are obtained with a statistical distribution and related probabilistic 

studies are conducted for the probability of failure and exceeding any limit value. The 

results of the study emphasize the importance of the variability and probabilistic 

approach.  

 

6.2 Conclusions 

 

The results of this study can be summarized as follows: 

i. Based on site investigation data for nearshore sea bottom soils at the Gulf of 

Hatay (SPT data): fines are mostly low plasticity clays (CL) and the coarse 

fraction is dominantly composed of sand-silt and sand-clay mixtures.  
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ii. Due to limited laboratory tests at SPT site, the engineering parameters are 

evaluated by using empirical equations. At site 1, soft to stiff clay layers exists 

having undrained shear strength (cu) in the range of 5 to 100 kPa. At site 2, 

clays can be classified as soft to medium stiff clays with max cu values of 50 

kPa. The rate of increase of cu with depth is found as 2.1-2.2 kPa/m which are 

in the range of reported values in the literature. The average relative density 

of the coarse fraction is found as 29-40 % and the coarse fraction is classified 

as loose to medium dense with an average effective friction angle of 

approximately 35°.  

iii. The SCL in the vertical direction based on SPT data is evaluated for clays and 

mixture type of soils separately. When mean is assumed to be constant with 

depth, evaluated SCLSPT−N for clays and mixtures are 3.85 m (1.41 m 

standard deviation) and 4.20 m (2.14 m standard deviation), respectively. In 

addition, if mean of the measurements is assumed to be linearly increasing 

with depth, the SCLSPT−N values become 1.71 m (0.86 m standard deviation) 

for clays and 2.02 (1.26 m standard deviation) for mixtures, respectively. The 

second approach is recommended to represent true variability. It is known that 

SPT is prone to measurement errors (equipment-related and operator effects 

etc.), however this has not been considered in the current work. Therefore, 

evaluated vertical spatial correlation lengths represent not only the inherent 

variability of soils but also the effect of measurement errors. 

iv. In the evaluation of SPT data with depth dependent (trend) approach, the 

squared exponential (Gaussian) autocorrelation function  mostly gives the 

highest SCLSPT−N results (in 72% of all evaluations) while exponential 

autocorrelation function (Markov) results in generally lowest values (in 78% 

of all evaluations).  

v. The CPT soundings (both shallow and deep water soundings) mostly consist 

of clays and sands (Robertson (2010)’s soil behavior types 3-4 and 5-6-7, 

respectively). The average undrained shear strength of clays at shallow water 

soundings is found as 100 kPa (σ=35.6 kPa) and the average value of clays at 

deep water soundings is found as 54 kPa (σ=31.6 kPa). It can be concluded 

that clays at shallow water soundings are medium stiff to stiff and at deep 
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water soundings are soft to medium stiff. In addition, sands are mostly in the 

medium dense state in both shallow and deep waters.  

vi. The vertical SCL based on CPT data is found to be between 0.210 m and 0.269 

m for clays and between 0.167 m and 0.263 m for sands by constant approach, 

and between 0.116 m and 0.172 m for clays and between 0.112 m and 0.168 

m for sands by trend approach for which group of soil. 

vii. Sands and clays at deep water CPT soundings have slightly larger vertical 

SCLCPT values than sands and clays at shallow water soundings, in both 

constant and trend approach. This can possibly be attributed to more uniform 

deposition and formation processes in geological history, in deep water 

seabeds as compared to shallow waters, for which deposition of more 

heterogeneous soils can be expected.  

viii. The results indicate that assuming that there exists a trend with depth and 

detrending your data (in other words, evaluating the vertical SCL about the 

trend) results in smaller SCL values.  

ix. When cosine exponential function is utilized to fit the autocorrelation 

coefficient data, it gives the highest goodness of fit value.  

x. The importance of sampling interval on the vertical SCL is found to be crucial. 

The SCL values based on SPT is found to be always greater than the SCL of 

CPT data. Depending on the real correlation structure, the larger sampling 

intervals may overestimate the spatial correlation length. It is always better to 

have frequent observation points within the SCL. 

xi. The effects of variability on settlement and bearing capacity of shallow strip 

foundation are investigated by using random finite element tools; RSETL2D 

and RBEAR2D. The Monte Carlo simulations are utilized in the analyses. The 

effect of simulation number has been investigated and after 2000 simulation 

numbers, results converge to a constant value, therefore 2000 simulations is 

found to be sufficient. 

xii. The effect of COV and SCL of soil parameters has a significant influence in 

the settlement. The increase in COV of soil parameters significantly increases 

the mean and COV of the settlement results obtained from 2000 simulations. 

In addition, increasing SCL has significant effects on settlement results. The 
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effect of SCL increases with increasing COV value of soil parameters. For a 

given serviceability limit state (SLS), increasing SCL may increase the 

probability of exceeding SLS settlement as much as 50%.  

xiii. Bearing capacity analyses show that COV and SCL of soil parameters have 

significant influence on the results. The variability has inverse effects on for 

deterministically safe and unsafe cases. Increasing COV and SCL increase the 

probability of failure for a given loading for deterministically safe cases and 

decrease for deterministically unsafe cases.  

xiv. Mean bearing capacity decrease, μBearing Capacity with increasing COV value and 

SCL value of soil parameters. The COV may decrease the μBearing Capacity as 

much as 25% of deterministic bearing capacity. In addition, SCL may cause a 

decrease by 11% of deterministic bearing capacity. 

 

6.3 Future Work and Recommendation 

 

The following topics can be studied in future studies: 

- Evaluation of spatial correlation length of soil parameters in the horizontal 

direction and its effects on geotechnical design  

- Evaluation of spatial correlation length based on not only field data but also 

laboratory tests performed on soil samples obtained with a high resolution 

(lower separation distance), and comparison of results 

- The methods and techniques to handle inclined soil layers for evaluation spatial 

correlation length in the horizontal direction  

- Developing more advanced software where the random field is generated for 

all separate soil parameters with different statistical parameters and can analyze 

any/all geotechnical problems.  
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APPENDICES 

 

APPENDIX A 

 

 

MATLAB CODE 

 

 

A.1. Main Body of the Script 

 

%The code analyses the data and evaluate spatial correlation length. 

clear 

clc 

%The excel files in the current folder is found.  

folder= pwd; 

filetype='*.xlsx';  % or xls 

f=fullfile(folder,filetype); 

d=dir(f); 

d=struct2cell(d); 

names=d(1,:); 

%Spacing of the CPT data should be defined.   

Spacing=0.02; 

%Defining the limit data number and tolerance for division of data. 

DataLimit=24; 

MeanTol=0.2; 

%Read Water Depths from the same folder. 

WaterDepthFileName = 'WaterDepth.txt'; 

A= importdata(WaterDepthFileName); 

for NumFile=1:size(names,2) 

     

    %The workspace is cleaned except some variables 

    clearvars -except  names NumFile filetype Spacing DataLimit MeanTol A       

    %The excel file is defined. 

    fileName=char(names(NumFile)); 

    fileName=fileName(1:end-size(filetype,2)+1); 

    [status,sheets] = xlsfinfo(fileName);    

    

    for s = 1:numel(sheets) 

         

        %Reading of excel sheet. 

        ExcelData=xlsread(num2str(fileName),s); 

        %Sleeve Friction is added. 

        ExcelData(:,4)=[ExcelData(:,2).*ExcelData(:,3)./100]; 

        %Classification is made.. 
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        [ExcelData]=Classification(ExcelData); 

                 

        %Dividing the Excel Data (both the whole into segments and segments 

        %into different soil layers). 

        [PiecewiseExcelData]=division_v3(ExcelData, Spacing, DataLimit, MeanTol); 

          

         

        %Storing water depth of current sounding.  

        for i=1:size(A.data,1) 

        if size(fileName,2)==size(cell2mat(A.textdata(i)),2) 

        if cell2mat(A.textdata(i))==fileName  

        WaterDepth=A.data(i); 

        end 

        end 

        end 

               

        %Evaluation of Dr for sands and Cu for clays. 

        [PiecewiseExcelDataDrCu]=DrCu(PiecewiseExcelData,WaterDepth,NumFile,fileName); 

                

        %Calculating spatial correlation length.  

        [SCL]=SCL_CPT_V2(PiecewiseExcelData, Spacing,DataLimit);      

         

        %empty cells are deleted.  

                Delete=[]; 

             for d=1:size(SCL,1) 

                 if size(SCL{d},1)==0 

                      Delete(end+1)=d; 

                 end 

             end 

                SCL(Delete,:)=[]; 

  

        %Writing Excel File  

        WriteExcel(SCL,NumFile,fileName);     

         

    end         

end 

 

A.2. Functions of Main Script 

 

function[AllData]=Classification(Data) 

  

%cone resistance and friction ratio is defined.      

c_res=Data(:,2)*10; 

f_rat=Data(:,3); 

  

%Borders of Robertson's soil behavior type chart is defined.  

f1=-1.9602.*f_rat.^4+6.2054.*f_rat.^3 -2.9064.*f_rat.^2 -9.4567.*f_rat+11.229; 

f2=0.0056.*f_rat.^3 - 0.0254.*f_rat.^2 + 0.3901.*f_rat + 0.5072; 

f3=0.0855.*f_rat.^4 - 0.705.*f_rat.^3 + 2.9103.*f_rat.^2 - 0.6976.*f_rat + 3.9826; 

f4=0.76514.*f_rat.^4-4.0449.*f_rat.^3+9.6011.*f_rat.^2+2.9771.*f_rat+6.7018; 

f5=37689.*f_rat.^6 - 967763.*f_rat.^5 + 1E+07.*f_rat.^4 - 6E+07.*f_rat.^3 + 2E+08*f_rat.^2 - 

3E+08.*f_rat + 2E+08; 

f6=9.8386.*f_rat.^3 - 7.2942.*f_rat.^2 + 40.17.*f_rat+ 21.077; 

f7=1071.9.*f_rat.^3 - 895.91.*f_rat.^2 + 610.49.*f_rat+ 87.311; 

f8=91.297.*f_rat.^4 - 1091.3.*f_rat.^3 + 4902.5.*f_rat.^2 - 9934.1*f_rat + 7911.4; 

f9=0.1325.*f_rat.^4 - 4.0772.*f_rat.^3 + 47.081.*f_rat.^2 - 243.98*f_rat + 541.81; 
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%The value of cone resistance is compared with the border values.  

    for i = 1:size(f_rat) 

  

if f_rat(i) < 0.323564 

    if c_res(i) < f1(i) 

        result(i,1) = 1; 

    elseif (f1(i) < c_res(i)) && (c_res(i) < f6(i)) 

        result(i,1) = 5; 

    elseif (f6(i) < c_res(i)) && (c_res(i) < f7(i)) 

        result(i,1) = 6; 

    else result(i,1) = 7;          

    end 

end 

  

if (0.323564 < f_rat(i)) && (f_rat(i) < 0.738356) 

    if c_res(i) < f1(i) 

        result(i,1) = 1; 

    elseif (f1(i) < c_res(i)) && (c_res(i) < f4(i)) 

        result(i,1) = 4; 

    elseif (f4(i) < c_res(i)) && (c_res(i) < f6(i)) 

        result(i,1) = 5; 

    elseif (f6(i) < c_res(i)) && (c_res(i) < f7(i)) 

        result(i,1) = 6; 

    else result(i,1) = 7;         

    end 

end 

  

if (0.738356 < f_rat(i))&& (f_rat(i) < 1.03349) 

    if c_res(i) < f1(i) 

        result(i,1) = 1; 

    elseif (f1(i) < c_res(i)) && (c_res(i) < f3(i)) 

        result(i,1) = 3; 

    elseif (f3(i) < c_res(i)) && (c_res(i) < f4(i)) 

        result(i,1) = 4; 

    elseif (f4(i) < c_res(i)) && (c_res(i) < f6(i)) 

        result(i,1) = 5; 

    elseif (f6(i) < c_res(i)) && (c_res(i) < f7(i)) 

        result(i,1) = 6; 

    else result(i,1) = 7;         

    end 

end 

  

if (1.03349 < f_rat(i))&& (f_rat(i) < 1.41258) 

    if c_res(i) < f1(i) 

        result(i,1) = 1; 

    elseif (f1(i) < c_res(i)) && (c_res(i) < f3(i)) 

        result(i,1) = 3; 

    elseif (f3(i) < c_res(i)) && (c_res(i) < f4(i)) 

        result(i,1) = 4; 

    elseif (f4(i) < c_res(i)) && (c_res(i) < f6(i)) 

        result(i,1) = 5; 

    else result(i,1) = 6;   

    end  

end 

  

if (1.41258 < f_rat(i)) && (f_rat(i) < 1.66491) 

    if c_res(i) < f1(i) 
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        result(i,1) = 1; 

    elseif (f1(i) < c_res(i)) && (c_res(i) < f3(i)) 

        result(i,1) = 3; 

    elseif (f3(i) < c_res(i)) && (c_res(i) < f4(i)) 

        result(i,1) = 4; 

    elseif (f4(i) < c_res(i)) && (c_res(i) < f6(i)) 

        result(i,1) = 5; 

    elseif (f6(i) < c_res(i)) && (c_res(i) < f8(i)) 

        result(i,1) = 6; 

    else result(i,1) = 8;               

    end 

end 

  

if (1.66491 < f_rat(i)) && (f_rat(i) < 1.69284) 

    if c_res(i) < f1(i) 

        result(i,1) = 1; 

    elseif (f1(i) < c_res(i)) && (c_res(i) < f2(i)) 

        result(i,1) = 2; 

    elseif (f2(i) < c_res(i)) && (c_res(i) < f3(i)) 

        result(i,1) = 3; 

    elseif (f3(i) < c_res(i)) && (c_res(i) < f4(i)) 

        result(i,1) = 4; 

    elseif (f4(i) < c_res(i)) && (c_res(i) < f6(i)) 

        result(i,1) = 5; 

    elseif (f6(i) < c_res(i)) && (c_res(i) < f8(i)) 

        result(i,1) = 6; 

    else result(i,1) = 8; 

    end 

end 

  

if (1.69284 < f_rat(i)) && (f_rat(i) < 2.48835) 

    if c_res(i) < f2(i) 

        result(i,1) = 2; 

    elseif (f2(i) < c_res(i)) && (c_res(i) < f3(i)) 

        result(i,1) = 3; 

    elseif (f3(i) < c_res(i)) && (c_res(i) < f4(i)) 

        result(i,1) = 4; 

    elseif (f4(i) < c_res(i)) && (c_res(i) < f6(i)) 

        result(i,1) = 5; 

    elseif (f6(i) < c_res(i)) && (c_res(i) < f8(i)) 

        result(i,1) = 6; 

    else result(i,1) = 8; 

    end 

end 

  

if (2.48835 < f_rat(i)) && (f_rat(i) < 3.8313) 

    if c_res(i) < f2(i) 

        result(i,1) = 2; 

    elseif (f2(i) < c_res(i)) && (c_res(i) < f3(i)) 

        result(i,1) = 3; 

    elseif (f3(i) < c_res(i)) && (c_res(i) < f4(i)) 

        result(i,1) = 4; 

    elseif (f4(i) < c_res(i)) && (c_res(i) < f8(i)) 

        result(i,1) = 5; 

    else result(i,1) = 8; 

    end 

end 
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if (3.8313 < f_rat(i)) && (f_rat(i) < 4.84993) 

    if c_res(i) < f2(i) 

        result(i,1) = 2; 

    elseif (f2(i) < c_res(i)) && (c_res(i) < f3(i)) 

        result(i,1) = 3; 

    elseif (f3(i) < c_res(i)) && (c_res(i) < f9(i)) 

        result(i,1) = 4; 

    elseif (f9(i) < c_res(i)) && (c_res(i) < f5(i)) 

        result(i,1) = 9; 

    else result(i,1) = 8; 

    end 

end 

  

if (4.84993 < f_rat(i)) && (f_rat(i) < 5.98554) 

    if c_res(i) < f2(i) 

        result(i,1) = 2; 

    elseif (f2(i) < c_res(i)) && (c_res(i) < f3(i)) 

        result(i,1) = 3; 

    elseif (f3(i) < c_res(i)) && (c_res(i) < f9(i)) 

        result(i,1) = 4; 

    else result(i,1) = 9; 

    end 

end 

  

if (5.98554 < f_rat(i))&& ( f_rat(i) < 10) 

    if c_res(i) < f2(i) 

        result(i,1) = 2; 

    elseif (f2(i) < c_res(i)) && (c_res(i) < f9(i)) 

        result(i,1) = 3; 

    else result(i,1) = 9; 

    end      

end 

  

% %This part is only for warning purpose (optional) 

% if ( f_rat(i) > 10) 

%     result(i,1) = 999999; 

% end 

  

i = i+1; 

    end 

  

AllData=[Data result]; 

  

end 

 

 

function [PiecewiseExcelDataNew]=division_v3(ExcelData, Spacing, DataLimit, MeanTol) 

  

  

        %Modified classification data is added.  

        Classification=ExcelData(:,end); 

        Classification(Classification==3)=4; 

        Classification(Classification==5 | Classification==7)=6;         

        Classification(Classification==1)=2;    

        Classification(Classification==8)=9; 

        ExcelData(:,end+1)=Classification; 
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        %Definition of some parameters.  

        PiecewiseExcelData={}; 

        PiecewiseExcelDataNew={}; 

        NumOfMatrix=[]; 

        LB=0; 

        LowerBound=0; 

        UpperBound=0;        

     

        %Dividing the data. 

        for i=1:size(ExcelData,1)-1                        

            if (ExcelData(i+1,1)- ExcelData(i,1))> Spacing+0.000000001 

               

                %Boundaries of matrix is found. 

                LB=i-UpperBound; 

                UpperBound=Upper;               

                LowerBound=Upper-LB+1; 

                 

                %The matrix is ddivided into pieces. 

                %Overcoming the 1 row data problem.   

                if size(PiecewiseExcelData,1)>0 && size(cell2mat(PiecewiseExcelData(end)),1)==1 

                    LowerBound=LowerBound+1; 

                end 

                                 

                if LowerBound==UpperBound 

                PiecewiseExcelData(size(PiecewiseExcelData,1)+1,:)={ExcelData(LowerBound+1,:)};     

                else 

                

PiecewiseExcelData(size(PiecewiseExcelData,1)+1,:)={ExcelData(LowerBound:UpperBound,:)}; 

                end 

            else  

                Upper=i+1;                

            end             

        end 

               %The last piece is added. 

                PiecewiseExcelData(end+1,:)={ExcelData(UpperBound+1:end,:)};  

         

        %Examining the matrix piece by piece. 

    for i=1:size(PiecewiseExcelData,1) 

        Changes=[];   

        Divide=cell2mat(PiecewiseExcelData(i)); 

         

         %Jump rows of classification data is stored. 

            for j=1:size(Divide,1)-1                    

               if Divide(j,6)~=Divide(j+1,6)              

                  Changes(1:2,end+1)=[j;Divide(j,6)] ;                

               end                                             

            end 

                        

            ChangesNew=Changes;          

             

            

            if size(Changes,2)==0 

                 

                %Overcoming the 1 row data problem.   

                if size(Divide,1)>1 

                PiecewiseExcelDataNew(size(PiecewiseExcelDataNew,1)+1,:)={Divide(2:end,:)};   

                else 

                PiecewiseExcelDataNew(size(PiecewiseExcelDataNew,1)+1,:)={Divide};     
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                end 

                NumOfMatrix(end+1)=1;   

                 

            else 

                                  

            %Erasing the jump rows, if the data limit is not satisfied.       

             

            if size(Changes)>=2 

            for j=2:size(Changes,2)                

                if (Changes(1,j)-Changes(1,j-1))<DataLimit  

                    if j==2 && Changes(1,j-1)>DataLimit  

                        ChangesNew(:,j)=zeros;                                                                    

                        else                             

                            ChangesNew(:,j-1:j)=zeros;                       

                    end 

                end 

            end          

           end 

             

            if size(Changes,2)==1 && ((ChangesNew(1,1)-Divide(1,1)<DataLimit) || Divide(1,end)-

ChangesNew(1,end)<DataLimit) 

                ChangesNew=[];                

            end 

                      

               if size(Changes,2)>2 

                  m=size(Changes,2); 

                       if Changes(1,m)-Changes(1,m-1)>DataLimit 

                          ChangesNew(:,m-1)=Changes(:,m-1); 

                       end  

               end 

       

            if Changes(1,1)<DataLimit 

               ChangesNew(:,1)=[0 0]';                

            end 

             

            if size(ChangesNew,2)>0 

            if size(Divide,1)-Changes(1,end)<DataLimit 

                ChangesNew(:,end)=[0 0]';                 

            end 

            end 

             

            % Erasing zero columns. 

  

            if size(ChangesNew,2)>=1 

            ChangesNew(:,ChangesNew(1,:)==0)= []; 

            end 

                           

           % Missing last row is added. 

           if size(ChangesNew,2)>0 && size(Changes,2)>2 

           if Changes(1, end)-Changes(1, end-1)<DataLimit && size(Divide,1)-Changes(1, 

end)>DataLimit  

               if ChangesNew(2,end)~=Changes(2,end)  

                   ChangesNew(1:2,end+1)=Changes(1:2,end);                            

               end                          

           end 

           end 

          

            %Erasing the first row, if the conditions are not satisfied.  
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            if size(ChangesNew,2)==1 && ChangesNew(2,1)==Divide(end,end) && size(Divide,1)-

Changes(1,end)>DataLimit 

            ChangesNew(:,1)= []; 

            end 

            

            % Erasing the last row, if the conditions are not satisfied.  

            if size(ChangesNew,2)>0 && size(Changes,2)>2 

            if ChangesNew(2,end)~=Changes(2,1) && Changes(1,end-1)-Changes(1,end-2)>DataLimit 

            ChangesNew(:,end)=[]; 

            end 

            end 

  

            ChangesNew=[[1;Divide(1,6)] ChangesNew [size(Divide,1);Divide(end,6)]]; 

            

           

          %For 3 jump changes, the data is erased if left and rigth data 

          %are same.        

          if size(ChangesNew,2)==3 

                  if ChangesNew(2,2)==ChangesNew(2,1) && ChangesNew(2,2)==ChangesNew(2,3)  

                  ChangesNew(:,2)=[]; 

              end 

          end 

           

          %For 4 jump changes, if datalimit is not satisfied, middle 2 jump 

          %is erased.                

          if size(ChangesNew,2)==4              

              if ChangesNew(1,3)-ChangesNew(1,2)<DataLimit  

                  ChangesNew(:,2:3)=[]; 

              end              

          end 

           

          %Some small adjustments by considering the mean of soil type 

          %zones.  

          Store=ones(size(ChangesNew)); 

          for n=2:size(ChangesNew,2)-1       

            if abs(mean(Divide(ChangesNew(1,n-1):ChangesNew(1,n),6))- 

mean(Divide(ChangesNew(1,n):ChangesNew(1,n+1),6)))<MeanTol 

             Store(:,n)=[0 0]';              

            end         

          end 

           

           ChangesNew=Store.*ChangesNew; 

            

            % Erasing zero columns. 

            if size(ChangesNew,2)>=1 

            ChangesNew(:,ChangesNew(1,:)==0)= []; 

            end 

           

           

           

            NumOfMatrix(end+1)=(size(ChangesNew,2)-1); 

            %Erasing the segments into soil layers according to the jumpes.         

            for k=2:size(ChangesNew,2) 

                

PiecewiseExcelDataNew(size(PiecewiseExcelDataNew,1)+1,:)={Divide((ChangesNew(1,k-

1)+1):ChangesNew(1,k),:)};   

            end   

           end                                              
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    end 

         

            %The original data that is lost is being retrieved.     

            Location=[1]; 

            for i=2:size(NumOfMatrix,2) 

            Location(end+1)=sum(NumOfMatrix(1:i-1))+1; 

            end 

            m=0; 

            for i=1:size(Location ,2) 

            m=m+1; 

            First=[cell2mat(PiecewiseExcelData(m)) ] ; 

            First=First(1,:); 

            PiecewiseExcelDataNew(Location(i))={[First ; 

cell2mat(PiecewiseExcelDataNew(Location(i)))]}; 

            end 

         

          %When 2 same row exist, one of them is erased. 

          for i=1:size(PiecewiseExcelDataNew,1)             

           control=cell2mat(PiecewiseExcelDataNew(i)); 

           if size(control,1)>1 

            if control(1,1)==control(2,1) 

               control(1,:)=[]; 

               PiecewiseExcelDataNew(i)={control}; 

            end 

           end               

          end   

  

end 

 

 

function[PiecewiseExcelDataDrCu]=DrCu(PiecewiseExcelData,WaterDepth,NumFile,fileName) 

  

PiecewiseExcelDataDrCu={}; 

Row=3; 

  

for i=1:size(PiecewiseExcelData,1) 

Data=cell2mat(PiecewiseExcelData(i)); 

UWeightS=20; 

UWeightW=10; 

Nk1=14; 

Nk2=20; 

Nk3=17; 

K01=0.4; 

K02=0.7; 

K03=0.55; 

[M,F] = mode(Data(:,6)); 

Ratio=100*F/size(Data,1); 

  

%Calculation of Cu for clays.  

if M==4 

Class=M*ones(size(Data,1),1); 

TStress=Data(:,1).*UWeightS+(-WaterDepth)*UWeightW; 

Cu1=((Data(:,2)*1000)-TStress)./Nk1; 

Cu2=((Data(:,2)*1000)-TStress)./Nk2; 

Cu3=((Data(:,2)*1000)-TStress)./Nk3; 

PiecewiseExcelDataDrCu{i}=[Data Cu1 Cu2 Cu3 Class]; 

end 
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%Calculation of Dr for sands.  

if M==6 

Class=M*ones(size(Data,1),1); 

EStress=Data(:,1).*(UWeightS-UWeightW); 

Dr1=(1/0.0296)*log(Data(:,2)./(2.494*(EStress.*((1+2*K01)/300)).^0.46)); 

Dr2=(1/0.0296)*log(Data(:,2)./(2.494*(EStress.*((1+2*K02)/300)).^0.46)); 

Dr3=(1/0.0296)*log(Data(:,2)./(2.494*(EStress.*((1+2*K03)/300)).^0.46)); 

% Dr2=(1/2.93)*log((1000.*Data(:,2))./(205*(EStress.*((1+2*K0)/3)).^0.51)); 

PiecewiseExcelDataDrCu{i}=[Data Dr1 Dr2 Dr3 Class]; 

end 

  

if M==2 || M==9 

Class=M*ones(size(Data,1),1); 

PiecewiseExcelDataDrCu{i}=[Data]; 

end 

  

  

%Writing to excel file. 

if i>1 

Row=Row+size(PiecewiseExcelDataDrCu{i-1},1)+1; 

end 

RowAdd=num2str(Row); 

StartColumn1='A'; 

Start= strcat(StartColumn1,RowAdd); 

ResultsFileName='ResultsDrCu'; 

Sheet=NumFile; 

Temp=PiecewiseExcelDataDrCu(i); 

xlswrite(ResultsFileName,Temp{1},Sheet,Start) 

  

end 

  

%Writing headings to excel sheets.  

fileName={fileName, 'WaterDepth', WaterDepth}; 

xlswrite(ResultsFileName,fileName,Sheet,'A1'); 

Heading={'Depth (m)','Tip Resistance (MPa)','FR (%)','Sleeve Friction 

(MPa)','Classification','Arranged Classification','Dr1(0.4) or Cu1 (14)','Dr2(0.7) or 

Cu2(20)','Dr3(0.55) or Cu3(17)','Layer Name'}; 

xlswrite(ResultsFileName,Heading,Sheet,'A2'); 

warning('off','MATLAB:xlswrite:AddSheet') 

  

end 

 

 

function[SCL]=SCL_CPT_V2(PiecewiseExcelData, Spacing, DataLimit) 

  

  

z=Spacing; 

SCL={}; 

  

for i=1:size(PiecewiseExcelData,1) 

  

B=cell2mat(PiecewiseExcelData(i)); 

  

if size(B,1)>DataLimit 

  

%The name of soil layer is obtained. 

[M,F] = mode(B(:,6)); 
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Ratio=100*F/size(B,1); 

     

  

for Focus=2:size(B,2)-2 

  

%Workspace is cleared except some parameters. 

clearvars -except B Focus i PiecewiseExcelData SCL Spacing z DataLimit M F Ratio 

   

x=B(:,Focus); 

y=B(:,1); 

A=[x y]; 

  

%First Part-"constant approach". Mean of data is assumed to be constant 

%through depth. 

  

meanCPT=mean(A(:,1)); 

dif1=(A(:,1)-meanCPT);  

for k=0:size(A,1)-1  ; 

     dif12=zeros((size(A,1)-k),1); 

for m=1:size(A,1)-k     

   dif2(m,:)=(A((m+k),1)-meanCPT);   

   dif12(m,:)=dif1(m).*dif2(m);              

end 

autoCor(k+1,:)=sum(dif12,1)/sum((dif1.^2),1); 

lagDis(k+1,:)=k*z; 

end 

% figure 

% scatter(lagDis,autoCor); 

% str=sprintf('Constant Approach  Case %d', s); 

% title([{fileName}; {str}]); 

% hold on 

% xlabel('Lag Distance (m)'); 

% ylabel('Autocorrelation Function'); 

% grid; 

% set(gcf,'color','w'); 

  

%Utilizing four autocovariance function and evaluating spatial correlation 

%length.  

  

syms a x 

f=exp(-x/a) ; 

summ=0; 

for k=1:size(lagDis,1) 

 x0=lagDis(k); 

subs(f,x,x0); 

summ=summ+(autoCor(k)-subs(f,x,x0))^2;    

end 

err=sqrt(summ); 

eqnF = matlabFunction(err); 

a_exp=fminbnd(eqnF,lagDis(1),  lagDis(end)); 

corrLengthExpConstant=2*a_exp;  

curveValue1=exp(-(1/a_exp).*lagDis); 

R1Constant=1-sum((autoCor-curveValue1).^2)/sum((autoCor-mean(autoCor)).^2); 

% k=lagDis(1):0.1:lagDis(end); 

% l=exp(-(1/a_exp).*k); 

% plot(k,l,'--'); 

% hold on 
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syms a x 

f=exp(-(x/a)^2) ; 

summ=0; 

for k=1:size(lagDis,1) 

 x0=lagDis(k); 

subs(f,x,x0); 

summ=summ+(autoCor(k)-subs(f,x,x0))^2;    

end 

err=sqrt(summ); 

eqnF = matlabFunction(err); 

a_sqr=fminbnd(eqnF,lagDis(1),  lagDis(end)); 

corrLengthSqrConstant=a_sqr*sqrt(pi);  

curveValue2=exp(-(lagDis./a_sqr).^2); 

R2Constant=1-sum((autoCor-curveValue2).^2)/sum((autoCor-mean(autoCor)).^2); 

% k=lagDis(1):0.1:lagDis(end); 

% l=exp(-(k/a_sqr).^2); 

% plot(k,l,':k'); 

% hold on 

  

  

syms a x 

f=exp(-x/a).*cos(x/a) ; 

summ=0; 

for k=1:size(lagDis,1) 

 x0=lagDis(k); 

subs(f,x,x0); 

summ=summ+(autoCor(k)-subs(f,x,x0))^2;    

end 

err=sqrt(summ); 

eqnF = matlabFunction(err); 

a_Autoreg=fminbnd(eqnF,lagDis(1),  lagDis(end)); 

corrLengthExpCosConstant=a_Autoreg; 

curveValue3=exp(-(lagDis)/a_Autoreg).*cos((lagDis)/a_Autoreg); 

R3Constant=1-sum((autoCor-curveValue3).^2)/sum((autoCor-mean(autoCor)).^2); 

% k=lagDis(1):0.1:lagDis(end); 

% l=exp(-k/a_Autoreg).*cos(k/a_Autoreg); 

% plot(k,l,'-.'); 

% hold on 

  

  

syms a x 

f=exp(-x/a).*(1+x/a) ; 

summ=0; 

for k=1:size(lagDis,1) 

 x0=lagDis(k); 

subs(f,x,x0); 

summ=summ+(autoCor(k)-subs(f,x,x0))^2;    

end 

err=sqrt(summ); 

eqnF = matlabFunction(err); 

a_4=fminbnd(eqnF,lagDis(1),  lagDis(end)); 

corrLengthSecOrAutoregressionConstant=4*a_4; 

curveValue4=exp(-(lagDis)./a_4).*(1+(lagDis)./a_4); 

R4Constant=1-sum((autoCor-curveValue4).^2)/sum((autoCor-mean(autoCor)).^2); 

% k=lagDis(1):0.1:lagDis(end); 

% l=exp(-k/a_4).*(1+k/a_4); 

% plot(k,l); 
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% hold on 

% legend('Data','Exponential','Squared Exponential','Cosine of Exponential','Second Order 

Autoregressive');  

  

  

%Second part-"Trend Approach". The mean of data is assumed to have a trend 

%with depth.  

                      

nValue=A(:,1); 

depth=A(:,2); 

  

p = polyfit(A(:,2),A(:,1),1);       %the ax+b linear function is fitted to the data.   

aTrend=p(1); 

bTrend=p(2); 

curveValueData=aTrend.*depth+bTrend; 

RTrend=1-sum((nValue-curveValueData).^2)/sum((nValue-mean(nValue)).^2); 

  

meanCPT=p(1).*depth+p(2); 

dif1=(A(:,1)-meanCPT);  

  

for k=0:size(A,1)-1  ; 

     dif12=zeros((size(A,1)-k),1); 

for m=1:size(A,1)-k     

   dif2(m,:)=(A((m+k),1)-meanCPT(m+k));       

   dif12(m,:)=dif1(m).*dif2(m);     

end 

autoCor(k+1,:)=sum(dif12,1)/sum((dif1.^2),1); 

lagDis(k+1,:)=k*z; 

end 

% figure 

% scatter(lagDis,autoCor); 

% str=sprintf('Trend Approach  Case %d', s); 

% title([{fileName}; {str}]); 

% hold on 

% xlabel('Lag Distance (m)'); 

% ylabel('Autocorrelation Function'); 

% grid; 

% set(gcf,'color','w'); 

  

%Utilizing four autocovariance function and evaluating spatial correlation 

%length.  

  

syms a x 

f=exp(-x/a) ; 

summ=0; 

for k=1:size(lagDis,1) 

 x0=lagDis(k); 

subs(f,x,x0); 

summ=summ+(autoCor(k)-subs(f,x,x0))^2;    

end 

err=sqrt(summ); 

eqnF = matlabFunction(err); 

a_exp=fminbnd(eqnF, lagDis(1),  lagDis(end)); 

corrLengthExpTrend=2*a_exp;  

curveValue1=exp(-(1/a_exp).*lagDis); 

R1Trend=1-sum((autoCor-curveValue1).^2)/sum((autoCor-mean(autoCor)).^2); 

% k=lagDis(1):0.1:lagDis(end); 

% l=exp(-(1/a_exp).*k); 
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% plot(k,l,'--'); 

% hold on 

  

  

syms a x 

f=exp(-(x/a)^2) ; 

summ=0; 

for k=1:size(lagDis,1) 

 x0=lagDis(k); 

subs(f,x,x0); 

summ=summ+(autoCor(k)-subs(f,x,x0))^2;    

end 

err=sqrt(summ); 

eqnF = matlabFunction(err); 

a_sqr=fminbnd(eqnF,lagDis(1),  lagDis(end)); 

corrLengthSqrTrend=a_sqr*sqrt(pi);  

curveValue2=exp(-(lagDis./a_sqr).^2); 

R2Trend=1-sum((autoCor-curveValue2).^2)/sum((autoCor-mean(autoCor)).^2); 

% k=lagDis(1):0.1:lagDis(end); 

% l=exp(-(k/a_sqr).^2); 

% plot(k,l,':k'); 

% hold on 

  

  

syms a x 

f=exp(-x/a).*cos(x/a) ; 

summ=0; 

for k=1:size(lagDis,1) 

 x0=lagDis(k); 

subs(f,x,x0); 

summ=summ+(autoCor(k)-subs(f,x,x0))^2;    

end 

err=sqrt(summ); 

eqnF = matlabFunction(err); 

a_Autoreg=fminbnd(eqnF,lagDis(1),  lagDis(end)); 

corrLengthExpCosTrend=a_Autoreg; 

curveValue3=exp(-(lagDis)/a_Autoreg).*cos((lagDis)/a_Autoreg); 

R3Trend=1-sum((autoCor-curveValue3).^2)/sum((autoCor-mean(autoCor)).^2); 

% k=lagDis(1):0.1:lagDis(end); 

% l=exp(-k/a_Autoreg).*cos(k/a_Autoreg); 

% plot(k,l,'-.'); 

% hold on 

  

  

syms a x 

f=exp(-x/a).*(1+x/a) ; 

summ=0; 

for k=1:size(lagDis,1) 

 x0=lagDis(k); 

subs(f,x,x0); 

summ=summ+(autoCor(k)-subs(f,x,x0))^2;    

end 

err=sqrt(summ); 

eqnF = matlabFunction(err); 

a_4=fminbnd(eqnF,lagDis(1),  lagDis(end)); 

corrLengthSecOrAutoregressionTrend=4*a_4; 

curveValue4=exp(-(lagDis)./a_4).*(1+(lagDis)./a_4); 

R4Trend=1-sum((autoCor-curveValue4).^2)/sum((autoCor-mean(autoCor)).^2); 
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% k=lagDis(1):0.1:lagDis(end); 

% l=exp(-k/a_4).*(1+k/a_4); 

% plot(k,l); 

% hold on 

% legend('Data','Exponential','Squared Exponential','Cosine of Exponential','Second Order 

Autoregressive');  

  

             

SCL{i,Focus-1}={'Depths',y(1),y(end)... 

;'Column',Focus,''... 

;'Constant Approach','',''... 

;'Correlation Function','Spatial Correlation Length','R-Squared'... 

;'Exponential',corrLengthExpConstant,R1Constant... 

;'Squared exponential',corrLengthSqrConstant,R2Constant... 

;'Cosine of Exponential',corrLengthExpCosConstant,R3Constant... 

;'Second Order Autoregressive',corrLengthSecOrAutoregressionConstant,R4Constant... 

;'Trend Approach','',''... 

;'Trend Line Inclination and R-Squared',aTrend,RTrend ... 

;'Correlation Function','Spatial Correlation Length','R-Squared'... 

;'Exponential',corrLengthExpTrend,R1Trend... 

;'Squared exponential',corrLengthSqrTrend,R2Trend... 

;'Cosine of Exponential',corrLengthExpCosTrend,R3Trend... 

;'Second Order Autoregressive',corrLengthSecOrAutoregressionTrend,R4Trend... 

;'Classification',M,Ratio }; 

  

  

warning('off','MATLAB:xlswrite:AddSheet');  

  

end 

end 

end 

end 

 

 

function []=WriteExcel(SCL,NumFile,fileName) 

  

Sheet=NumFile; 

Row=3; 

  

%The row number of SCL is analysed by for loop. 

for i=1:size(SCL,1) 

  

    %The starting row is defined. 

    if i>1 

    Row=Row+size(SCL{1},1)+1; 

    end 

  

    %The starting Column is defined. 

    RowAdd=num2str(Row); 

    StartColumn1='A'; 

    Start1 = strcat(StartColumn1,RowAdd); 

    StartColumn2='E'; 

    Start2 = strcat(StartColumn2,RowAdd); 

    StartColumn3='I'; 

    Start3 = strcat(StartColumn3,RowAdd); 

  

    StartCell={Start1,Start2, Start3}; 
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   %The cell of SCL is written to excel file 

    ResultsFileName='ResultsCPT'; 

    for j=1:3 

    Temp=SCL(i,j); 

    xlswrite(ResultsFileName,Temp{1},Sheet,StartCell{j}) 

    end 

  

end 

  

    %Name of boring is written. 

    StartName='A1'; 

    fileName={fileName}; 

    xlswrite(ResultsFileName,strcat(fileName),Sheet,StartName) 

  

end 
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APPENDIX B 

 

 

FIELD DATA 

 

B.1. Examples of SPT Data at Shallow Water 

 

 

0

10

20

30

40

50

60

0 20 40 60 80 100

D
ep

th
 F

ro
m

 S
ea

 L
ev

el
 (

m
)

SPT-N

Water
Fill (Coarse 

Material)

Medium Dense 

Silty Sand

Stiff Silty Sandy 

Clay

Dense Sand

Very Stiff Clay

Stiff Sandy Clay



126 
 

 

 

 

 

 

 

0

10

20

30

40

50

60

0 20 40 60 80

D
ep

th
 F

ro
m

 S
ea

 L
ev

el
 (

m
)

SPT-N

Water

Medium Dense 

Sand

Stiff Silty Clay

Mixture of Clay-Sand-

Gravel/ Stiff to very Stiff

Medium Dense 

Clayey Sand

0

10

20

30

40

50

0 20 40 60 80 100

D
ep

th
 F

ro
m

 S
ea

 L
ev

el
 (

m
)

SPT-N

Water

Medium Dense 

Silty Sand 

Dense Sandy Gravel

Mixture of Clay-

Sand-Gravel/ 

Very Stiff



127 
 

 

B.2. Examples of CPT Data at Deep Water Locations 
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