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ABSTRACT

SPATIAL PROBABILISTIC EVALUATION OF SEABOTTOM SOIL
PROPERTIES AND ITS EFFECT ON FOUNDATION DESIGN

OGUZ, Emir Ahmet
M.Sc., Department of Civil Engineering

Supervisor: Asst. Prof. Dr. Nejan HUVAJ SARIHAN

December 2017, 127 pages

The spatial correlation length (SCL), or the scale of fluctuation, is a parameter for
describing the spatial variability of a soil property and is one of the important
parameters used in random field theory. Studies reporting the SCL of soil properties
of offshore/nearshore soils are rather limited in the literature. In this study, the vertical
SCL is determined using site investigation data from two nearshore and one large
offshore sites in Turkish waters. In nearshore sites, a total of 41 boreholes and Standard
Penetration Tests (SPT) reaching to 35 m depth from seabed, in water depths of up to
26 m; and in the large offshore site, 65 cone penetration test (CPT) soundings (having
10-200 m lengths in seabed) in water depths of up to 64 m, are utilized. Based on
extensive data, the vertical SCL is calculated using four different autocovariance
functions. Among these four functions, the squared exponential function gives the
highest and cosine exponential function gives the smallest SCL values. The vertical

SCL values based on SPT-N value, CPT tip resistance, friction ratio and sleeve friction
Vv



are observed to be within typical ranges reported in the literature for similar soil
groups, both onshore and offshore. The vertical SCL based on SPT-N value is larger
than the SCL based on CPT tip resistance, friction ratio and sleeve friction. The vertical
SCL based on SPT-N is slightly larger in sandy mixture soils as compared to clayey
soils (about 2 m in sand mixtures and about 1.7 m in clays). In CPT data, deep water
(greater than 10 m water depths) clays and sands have greater SCL than shallow water
clays and sands. In both SPT and CPT cases, “constant mean with depth” approach
always gives larger SCL as compared to “depth-dependent mean (or trend)”” approach.
The effects of SCL and coefficient of variation of soil parameters on settlement and
bearing capacity of a shallow strip foundation are demonstrated by using random finite
element analysis tools; RSETL2D and RBEAR2D, where all soil parameters are
assumed to be lognormally distributed. The results of this study add to the limited
database of spatial correlation lengths based on real data and could be useful for future
studies on reliability assessment of nearshore and offshore foundations. Moreover, the
results of random finite element analyses indicate that the variability of soil
parameters, in terms of coefficient of variation and spatial correlation length, has a

significant effect on settlement and bearing capacity of shallow strip footings.

Keywords: variability, spatial correlation length, scale of fluctuation, nearshore-

offshore soils, reliability
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DENIiZ TABANI ZEMIN OZELLIKLERININ MEKANSAL OLASILIKSAL
DEGERLENDIRMESi VE TEMEL TASARIMINDA ETKISi

OGUZ, Emir Ahmet
Yiiksek Lisans, insaat Mithendisligi Boliimii

Tez Yoneticisi: Yrd. Dog. Dr. Nejan HUVAJ SARIHAN

Aralik 2017, 127 sayfa

Mekansal korelasyon mesafesi (MKM), diger bir adiyla dalgalanma 6l¢egi, zeminin
degiskenligini tanimlayan bir parametredir ve rastsal alan teorisinde kullanilan 6nemli
parametrelerden biridir. Agik ve sig denizlerde deniz tabani zeminlerinin MKM
degerini bildiren caligmalar literatiirde olduk¢a simnirli sayidadir. Bu calismada,
Tiirkiye karasularinda iki s1g deniz ve bir a¢ik deniz sahasinda deniz tabani zemin etiid
verileri kullanilarak diigey yonde MKM degerleri belirlenmistir. S1g deniz sahalarinda
maksimum 26 m su derinliklerinde ve deniz tabanindan 35 m zemin derinliklerine inen
41 adet sondaj ve Standard Penetrasyon Deneyi (SPT) verisi, agik deniz sahasinda ise
deniz tabanindan itibaren derinlikleri 10-200 m olan, ve maksimum 64 m su
derinliklerinde 65 adet koni penetrasyon deneyi (CPT) ol¢limleri kullanilmistir.
Kapsamli verilere dayanarak, diisey yonde MKM dort farkli otokovaryans fonksiyonu
kullanilarak elde edilmistir. Bu dort fonksiyon arasinda kare tissel fonksiyon en yiiksek
MKM degerlerini verirken, kosiniis iissel fonksiyon ise en diisik MKM degerlerini
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vermigstir. SPT-N degeri, CPT ug¢ direnci, yanal siirtiinme ve siirtlinme oranindan elde
edilen MKM degerleri, hem karada hem deniz taban1 zeminlerinde benzer zemin
gruplari igin literatiirde belirtilen tipik araliklardadir. SPT-N degerinden elde edilen
MKM, CPT ug direnci, yanal siirtinme ve siirtinme oranindan elde edilen MKM
degerinden biiyiiktiir. SPT-N degerinden elde edilen diisey yonde MKM degeri kumlu
karisim zeminlerde killi zeminlere gore biraz daha yiiksektir (kumlarda yaklasik 2 m,
Killerde ise 1.7 m). CPT verilerinde, a¢ik deniz (10 m’den fazla su derinliginde) killer
ve kum karigimlari, s1g deniz killeri ve kum karisimlarina gore daha yiiksek MKM
degerine sahiptir. SPT ve CPT verilerinin her ikisi kullanildigi durumda da MKM
bulunmasinda “derinlikle sabit ortalama deger” yontemi, “derinlikle degisen ortalama
(trend)” yontemine kiyasla daha fazla MKM degeri vermistir. Bu istatistiksel
calismanin sonuglari, literatiirdeki, az sayidaki, ger¢ek saha verilerine dayal1 s1g ve
acik deniz tabani mekansal korelasyon mesafesi veri tabanina eklenecek ve bu tip
sahalarda yapilacak yapilarin glivenilirlik degerlendirmelerinde yararli olacaktir. Buna
ek olarak, rassal sonlu elemanlar yontemi analizlerinin sonuglari, zemin
parametrelerindeki degiskenligin (varyasyon katsayisi ve mekansal korelasyon
mesafesi) sig siirekli temellerde oturma miktarina ve tasima kapasitesine onemli

etkileri oldugunu gostermektedir.

Anahtar kelimeler: degiskenlik, mekansal korelasyon mesafesi, dalgalanma olgegi,

s1g-a¢ik deniz tabani1 zeminler, giivenilirlik
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CHAPTER 1

INTRODUCTION

1.1.Problem Statement

Deterministic approaches are known to have some limitations, especially in modern
geotechnical engineering practice, since they are not taking into account the
heterogeneous and variable nature of the soils. The soil has both point variability and
spatial variability which should be included in the reliability based designs and risk
assessments. In the last two decades, probabilistic (stochastic) approaches are
becoming more popular, where the variability of the soil can be considered by
representing soil parameters via statistical distributions, using Monte Carlo
simulations or creating random fields to represent the heterogeneity of the soil volume.
Although deterministic approaches provide only a single result, such as the factor of
safety, settlement amount, or ultimate bearing capacity etc., probabilistic approaches
provide results with a range, which can be used in reliability based design allowing the

engineers and decision-makers to quantify the probability of failure and risk.

Variability and uncertainties in soil properties have been a topic of interest for
geotechnical engineers, especially in the recent decades. In conventional geotechnical
design, characteristic/representative value of soil parameters are used leading often to
a Factor of Safety which is unable to give any guidance on variability (Li and Lumb,
1987, Cherubini 2000). Because of the inherent variability of soil properties from site
to site (and within a site), Baecher and Christian (2003) suggested that it is “neither
easy nor wise to apply typical values of soil property ... for a reliability analysis”. The

key issue here is that a single characteristic value is unable to model variability, which



needs at least two numbers (e.g. a mean and a standard deviation). The importance and
the effects of determining the variability in soil properties have been illustrated by
various researchers with examples from actual case studies (Lacasse and Nadim 1996,
Cho and Park 2009, Cho 2010, Zhang and Chen 2012, Carswell et al. 2013, Sarma et
al. 2014, Liu et al. 2015, Jha 2016). Parameters of soil used in any design, such as
foundations, dams, natural slopes, road cuts, embankments, and levees, have
significant uncertainties due to limited site investigations and laboratory tests in
addition to the uncertainties and limitations involved in empirical correlations (Figure
1. 1). Furthermore, there is no way to make enough soil investigations to get
deterministic values for soil parameters at every point (Vanmarcke 1977). For this
reason, in stochastic methods, the variability of soil parameters is defined by a mean,
a standard deviation; and a spatial correlation length (SCL). The importance of SCL
in soils and effects on foundation design problems was brought to the attention of the
geotechnical engineering community in the mid 1990’s by Griffiths and colleagues
(e.g. Griffiths and Fenton 1993, Paice et al. 1996, Griffiths and Fenton 2007, Fenton
and Griffiths 2008, Griffiths et al. 2009) with the development of the Random Finite
Element Method (RFEM). The SCL is the distance over which the soil parameters tend
to be spatially correlated. The SCL may be anisotropic (Cherubini 2000) with a higher
value in the horizontal direction. In this study, however, only the vertical SCL is
studied.
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Figure 1. 1 Schematic presentation of variability in seabed soil properties along an

offshore monopile

2



Lacasse (2013) emphasized that a single value of factor of safety (FS) cannot represent
the safety level of the slopes. The slopes with larger FS may have a greater probability
of failure than the ones with low FS. Figure 1. 2 shows probability density functions
of two slopes with different FS values, and it is seen that higher FS value does not
mean a less probability of failure. There is no direct relationship between FS and
probability of failure for a slope. Likewise, Oguz et al. (2017) reported that
deterministically calculated FS greater than 1.0 does not always mean a “safe slope”,
rather, the safety level is influenced by the level of uncertainty in soil properties,
influenced by the extent and the quality of geotechnical data available. For the critical
failure surface as well, the failure surfaces with higher FS values may have a greater
probability of failure (lower reliability indexes) than deterministically critical failure
surface if soil parameters have high uncertainty (Oguz et al. 2017).

A Low uncertainty
/ FS=1.4,p,=10%yr

High uncertainty
= 1.8, p, = 103yr

Probability density function

Figure 1. 2 Probability density functions of two slopes with different FS values
Lacasse (2013)



1.2.Research Objectives

The objectives of this study can be listed as follows:

I.  ldentifying the typical characteristics, statistical information and variability of
nearshore/offshore sea bottom soils.

ii.  Determination of the spatial correlation length in the vertical direction based
on field tests (SPT and CPT).

I.  Investigation of the effects of variability and SCL of soil parameters on
geotechnical design problems such as settlement, and ultimate bearing capacity

using random finite element method.

The results of the present study add to the database of spatial correlation lengths based
on real data and could be useful for future studies on reliability assessment of offshore
foundations using advanced tools such as the random finite element method. In
addition, this study clearly indicates that spatial variability in soils have significant

effects on the design of foundations.

1.3. Scope

Chapter 2 presents a literature review on spatial correlation length and effects on
design problems. In Chapter 3, the methodology of data evaluation is explained in
details. In addition, treatment of raw data and assumptions made in the analyses are
explained. In Chapter 4, the description of sites, calculated spatial correlation lengths
and soil characteristics are provided. In Chapter 5, the effects of variability of sea
bottom soil are investigated by using software RBEAR2D and RSETL2D (Fenton and
Griffiths 2008) utilizing Random Finite Element Method (RFEM), a combination of
finite element methodology and random field theory. Finally, in Chapter 6, the main
conclusions of this study are drawn, and some recommendations are provided for

future studies.



CHAPTER 2

LITERATURE REVIEW

Dealing with variability and uncertainty is more critical when the site is offshore
because of the high cost of the site investigation in the offshore comparing to the cost
of onshore investigations. The uncertainties of soil are considered in two parts, aleatory
and epistemic uncertainty. The aleatory uncertainty is the inherent soil variability
(natural randomness of soil parameters) and cannot be eliminated while epistemic
uncertainty (measurement errors, statistical uncertainties, model uncertainties) due to
lack of knowledge can be reduced by collecting more data. To represent the inherent
variability of the soil, the mean, variance and scale of fluctuation of the data can be
used to generate a random field in the reliability based approaches. In other words, a
complete representation of the inherent variability of the soil can be achieved by
defining mean, variance (with a proper statistical distribution) and scale of fluctuation.
The mean and variance of the soil parameters are defined as the point variability and
the scale of the fluctuation is the distance over which the soil parameters are similar to

each other.

Lacasse and Nadim (2007) present the geotechnical risk and hazard assessment in their
study and illustrate the importance of probabilistic approach. The risk includes hazard

and corresponding consequences and is formulated as:
R=Hx*C (2.1)

where R is risk, H is hazard and C is the consequence.



The more realistic framework in the risk assessment can be achieved by considering
all uncertainties related to the soil and the structure with a probabilistic approach. By
doing this, the probability of failure or risk can be evaluated and decisions on the
projects can be taken. Figure 2. 1 illustrates that the deterministic factor of safety
cannot be a measure for risk assessment. That is, higher FS (mean FS value of 1.5 in
Figure 2. 1) may have a higher probability of failure when compared to lower FS, if it
has high uncertainty (for example in shear strength) represented by high coefficient of

variation, COV, value.

Mean1 Low mean and nominal safety factor,
4 inal Low uncertainty,
| Nomina Low failure probability

5 | Probability of failure
(F < 1) is shown by the

respecive areas High mean and nominal safety factor,

Mean  High uncertainty,
¢ High failure probability

Probability Density

1.5 2 2.5 3

0 05 1 .
Factor of safety

Figure 2. 1 Factor of safety and probability of failure regions (Lacasse and Nadim
2007)

There are several methods for probabilistic analyses to consider the variability of soil
parameters, such as the first order second-moment approximation (FOSM), first order
reliability method (FORM), Monte Carlo simulation etc. In the study of Lacasse and
Nadim (2007), FOSM method is utilized to calculate the mean and standard deviation
of the factor of safety which is a function of varying input parameters. The general
overview of the processes in both deterministic and probabilistic approaches are
provided in Figure 2. 2. It is seen that, while deterministic approach provides only
factor of safety, probabilistic approach provides probability of failure, reliability index

and parameters which can indicate failure.
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Figure 2. 2 Processes of both deterministic and probabilistic approach (Lacasse and
Nadim 2007)

Lacasse and Nadim (2007) indicated that depending on the variation of the natural soil
properties, aleatory uncertainties may have greater importance than epistemic
uncertainties and handling them may require knowledge of the spatial variation of the
soil parameters. The soil parameters can be described by summation of a trend and
residuals (random component) about the trend. The residuals are assumed to have a
spatial structure. The degree of the spatial structure (correlation) can be estimated by
autocovariance function C(r) where r is the separation distance between two
observation points. Autocorrelation function, the normalized form of autocovariance
function, can be also used to define the degree of correlation. Exponential, squared
exponential and spherical autocovariance functions are widely used in the literature in
soil modelling; however, the second-order autoregressive and cosine of exponential
autocorrelation functions are also utilized in the literature (DeGroot and Baecher 1993,
Akkaya and Vanmarcke 2003, Lacasse and Nadim 2007, Huber 2013).



Probabilistic models considering spatially-varying soil properties are being used in
studies on general foundations of structures (Paice et al. 1996, Griffiths and Fenton
2000, 2001, Griffiths et al. 2002, Popescu et al. 2005, Griffiths et al. 2006, Cassidy et
al. 2013) as well as in offshore foundations, especially in the recent years (Andersen
et al. 2011, Vahdatirad et al. 2011, Andersen et al. 2012, Vahdatirad et al. 2013, Liu
et al. 2015, Nadim 2015, Overgard 2015). Significant economical and risk-associated
benefits, and/or optimized design in terms of higher reliability index, and lower
probability of failure for offshore foundations are provided with the use of spatial
correlation length approach (Lacasse and Nadim 1996, Cho and Park 2009, Cho 2010,
Zhang and Chen 2012, Carswell et al. 2013, Sarma et al. 2014, Liu et al. 2015, Jha
2016). For example, Liu et al. (2015) compared the annual probability of failure
obtained for axial pile capacity with and without accounting for the vertical SCL¢pr—q,
for undrained shear strength for clays and relative density for sands. Based on CPT
cone tip resistance at an offshore piled jacket foundation site in Western Australia, Liu

et al. (2015) calculated the vertical SCL¢pr—q, in the range of 0.1-0.5 m for sands, and

0.05-1.0 m for clays. Taking into account the vertical SCL gave higher annual
reliability index and a lower probability of failure, which led to a more optimal and
cost-effective pile penetration depth. The reduction is reported to be by a factor of 2
or 3 on the annual probability of failure (Liu et al. 2015). Therefore, the quantification
of the vertical SCL is important and useful for reliability-based design of offshore
structures (Cho and Park 2009, Carswell et al. 2013, Liu et al. 2015, Jha 2016).
Although there exist numerous studies investigating the value of vertical SCL of soil
properties (Chiasson et al. 1995, Jaska et al. 1999, Akkaya and Vanmarcke 2003,
Firouzianbandpey et al. 2014), their number is rather limited for offshore / nearshore
sediments (Phoon et al. 2003, Huber 2013, Liu et al. 2015, Zhang et al. 2016).

2.1 Random Finite Element Method

The inherent heterogeneous structure, i.e. the variability of soil can be defined by a
statistical distribution (such as normal distribution, lognormal distribution etc.) at a

point and SCL through distance. While most probable (average) parameter values are



selected and analyses are performed in deterministic approach, large number of
simulations are performed in a single analysis in probabilistic approach. In each
simulation, a soil parameter is randomly selected within its defined range of values.
By doing so, large number of numerical analysis results can be obtained and these
results can be utilized in assessment of probability of failure in reliability-based design.
The above mentioned probabilistic approach can simply be integrated with the finite
element method (FEM) and probabilistic results can be utilized to evaluate reliability
of structures. However, selecting random variables within the statistical distribution
and performing large number of simulations do not represent spatial heterogeneity of
soil volume. To represent the heterogeneity through distance, a random field should

also be created using spatial correlation length and a correlation function.

In the random finite element method, random field for soil properties (such as unit
weight, cohesion, friction angle, Young’s Modulus, Poisson’s ratio etc.) is generated
by utilizing statistical properties; a correlation function with a SCL and then the model
is matched with finite element meshes. Statistical properties utilized in RFEM are the
mean, standard deviation with a distribution model (such as normal, lognormal
distributions) and SCL with a correlation function (Fenton and Griffiths 2008,
Elachachi et al. 2012, Luo et al. 2014, Jha 2016). In this method, probabilistic analyses
are conducted by performing large number of simulations (e.g. Monte Carlo
Simulations) where also heterogeneity of soil is accounted in the analyses. In Figure
2. 3, random fields with different SCL values can be seen, where darker colors indicate
larger values of a soil property compared to the mean value. In Figure 2. 3a, a single
deterministic value of a soil parameter is assigned to the whole finite element model
and SCL is not considered. In Figures 2.3 b-f, random fields are created with different
vertical SCL values in the range of 0.25 m to 10 m (having ratio of horizontal to
vertical SCL of 10) and matched with the finite element model. The random fields
with small SCL values in Figure 2. 3 have rough and frequent changes, and it is seen
that as the SCL value increase, the field starts to have more smooth changes.
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Figure 2. 3 Effect of small and large vertical SCL values on the random field for a
bearing capacity of a foundation generated by RBEAR2D software (Fenton and
Griffiths 2008), where the ratio of horizontal SCL to vertical SCL is 10 (darker

colors indicate larger values of elastic modulus).

2.2 Spatial Variability in Soils and Evaluation of Spatial Correlation Length

SCL, which is also called as the scale of fluctuation, is the distance over which the soil
parameters are positively correlated. That is, the two points in that distance will be
both on the same side, above or below, of the mean. Likewise, SCL is defined as the
distance beyond which soil parameters show no correlation (Hommels et al. 2010). In
this chapter, a brief summary of the studies in the literature is provided.

The SCL concept is first proposed by Vanmarcke (1977) who studied the deviation
from the average which is a part of three major sources of uncertainty; inherent soil
heterogeneity, a limited number of soil samples and measurement error. The inherent
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soil variability can be described by using mean, standard deviation (or coefficient of
variation) and scale of fluctuation instead of treating the soil layer as homogeneous
material with deterministic soil properties. The soil properties, like undrained shear
strength (cu) may show depth-dependent behavior, i.e. having trend with depth. It is
advised that it is better to standardize the soil data which has trend behavior to
investigate the fluctuation around depth-dependent mean. Vanmarcke (1977) provides
spatial averaging process to evaluate the scale of fluctuation where the soil parameter
is averaged through distance and the standard deviation of the averages decreases as
the distance of averaging increases. This decrease is defined by reduction function and
defined by:

T(Az)=2 (2.2)

where iy, is the standard deviation of spatially averaged parameters while % is the
standard deviation of the data. The square of reduction function is called variance
function and as the averaging interval increases, the variance function becomes
inversely proportional to the interval (Vanmarcke 1977). The above mentioned

relationship brings us the scale of fluctuation, &, as follows:
2 Su
Ii(Az) = =~ (2.3)

Vanmarcke (1977) also states that the scale of fluctuation may be evaluated by
correlation functions used to fit to the correlation coefficients. Four different
correlation functions and corresponding scale of fluctuations are provided (Table 2.
1).

Table 2. 1 Autocovariance functions used in this study (Vanmarcke, 1977)

Autocovariance Function Scale of Fluctuation
Exponential : e=(4%/2) 2a
Squared exponential; e~(@z/b)* Vb
Az
Cosine exponential: e ¢ cos(Az/c) ¢
Second order autoregressive: e=@# 9 [1 + (Az/d)] 4d
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Additionally, a practical method to find the scale of fluctuation has been provided in
the study of Vanmarcke (1977) where the scale of fluctuation is found by the average

distance between the intersections of fluctuation and mean. The relation is given by:

dy, = 1.25 % 8, (2.4)
where d,, is the average distance between the intersections of fluctuation and mean.

DeGroot and Baecher (1993) divide the uncertainty of the soil parameters into two;
inherent variability and measurement (sampling and testing) errors. The variability of
the soil can be described by the summation of trend and residual about the trend. The
parameters of the soil at the untested (unsampled zones) locations can be predicted by
understanding the correlation structure of the soil parameters which is not applicable
in the traditional methods. The variability of the soil, the trend and waviness about

trend (fluctuation) is defined as:
Y(x) =T(x) + &(x) (2.5)

where Y (x) is the soil parameters, the T(x) is the trend (mean), and &.(x) is the
residual which has zero mean. The covariance between two observation points can be

described by covariance function:
Cij = E[{(Y(Xp) — T(X)} = {(Y (X)) — T(X)}] (2.6)

where E[] is the expected value. The value of C;; is 1 when the separation distance is

zero and then decreases towards zero with increasing separation distance. In Figure 2.
4, examples of the most commonly used autocovariance functions, and the effect of

autocovariance distance, r,, and variance is illustrated.
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Figure 2. 4 (a) Commonly used autocovariance functions, (b) effect of
autocovariance distance, rq, and variance (Lacasse and Nadim 1996, DeGroot and
Baecher 1993)

DeGroot and Baecher (1993) state three methods to estimate correlation structure of
the soil which are moment estimator (Equation 2.7), inverse estimator from
probabilistic interpolation and maximum likelihood method (Equation 2.8). The last
method, ML, is reported to be the most efficient and best way to obtain the correlation
structure of the soil. Therefore, maximum likelihood method is utilized in order to

estimate trend and autocovariance structure of residuals about trend.

One of the three methods, the method of moments is used to assess the correlation
structure of the soil parameters and defined as:

C(T‘) = ﬁ 711=_17‘(Yl - my) * (Yi+r - my) (2-7)

where Y; is the value of soil parameter at point i, the m,, is the mean of detrended data

and n is the number of points.

Another and most efficient method, the maximum likelihood estimators (MLEs), are

evaluated by maximizing the likelihood function:
1 1 -
LCx/) = Gommepr expl—5 (X — WICT (x— ) (2.8)
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where C is covariance between points, u is the mean vector at the point of interest,
XT = {x,%3,%3 ....., x5} is the observations and ¢T = {u, 0,6} is the distribution

parameter vector.

Phoon and Kulhawy (1999a) state that the statistical variability values reported in the
literature result from different sources of uncertainty although the studies assume only
a single source of uncertainty. It is indicated that there are three major sources of
uncertainty which are illustrated in Figure 2. 5; inherent soil variability (natural soil
formation process), measurement errors (equipment, human effects etc.) and
transformation uncertainty (empirical, or other correlation models). The reported
statistical results can be used for the cases where the same conditions (uncertainties)
are applicable. The measurement errors are removed from the field data in the study
of Phoon and Kulhawy (1999a) and the remaining measurement represents the
inherent soil variability. The study provides scale of fluctuation and coefficient of
variation of the inherent variability, and measurement errors. Statistically evaluated
parameters are undrained shear strength, friction angle, natural water content,
Atterberg limits, dry-saturated unit weights and relative density, and evaluated field
tests are cone penetration test, vane shear test and dilatometer test. Phoon and Kulhawy
(1999a) indicate that the statistical data like COV in the literature includes not only
the inherent variability but also other uncertainties and therefore the reported COV
values are greater than the COV of inherent soil variability.

SOIL ™ IN-SITU ™ TRANSFORMATION — ESTIMATED

MEASUREMENT MODEL SOIL PROPERTY
inherent data statistical model

soil
variability

scatter uncertainty uncertainty

1]

inherent
soil
variability

measurement
error

Figure 2. 5 Uncertainty of soil parameters (Phoon and Kulhawy,1999a)
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The soil variability (Figure 2. 6) is divided into two; trend t(z) and deviation from the

trend w(z) (Phoon and Kulhawy 1999a) and the soil property, é(z), becomes:

§(2) = t(2) + w(2) (2.9)

The fluctuation is considered as statistically homogenous which means that the mean
and standard deviation are constant and the correlation between two measurements is
only related to the distance of separation. The measurements should be detrended to
satisfy statistical homogeneity. It is also highlighted that the duration of the testing
(time frame) is also very important and as time passes, the soil may include additional
variability with time (Phoon and Kulhawy 1999a).

/Ground surface

Layer |
z

Layer j
JScale of fluctuation, Sy
=X

) Deviation from trend, w (z)
—Trend, t {2)

~— Sail property, & (2}

Figure 2. 6 Inherent soil variability (Phoon and Kulhawy,1999a)

Phoon and Kulhawy (1999a) provide an extensive literature review (Table 2. 2)
consisting of ranges and means of scale of fluctuations based on different data sets of
different studies. It is seen that there is only one study for SPT-N blowcount, effective
unit weight and natural water content of clay while several studies exist for others. It
is stated that the sampling distance has a significant effect on scale of fluctuation. The
literature review also shows that the horizontal scale of fluctuation is much greater

than the vertical.
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Table 2. 2 Literature review of spatial correlation length (Phoon and Kulhawy 1999a)

Scale of fluctuation (m)
Property Soil type # é)f Range Mean
studies

Vertical fluctuation

cu (Undrained Shear Strength) Clay 5 0.8-6.1 2.5
e Sand, clay 7 0.1-2.2 0.9
gr Clay 10 0.2-0.5 0.3
cu (Vane Shear Stress) Clay 6 2.0-6.2 3.8
N Sand 1 - 2.4
Wh Clay, 3 1.6-12.7 5.7
loam
WL Clay, 2 1.6-8.7 5.2
loam
v Clay 1 - 1.6
Y Clay, 2 2.4-7.9 5.2
loam
Horizontal fluctuation
Jc Sand, clay 11 3.0-80.0 47.9
gr Clay 2 23.0-66.0 4.5
Su (Undrained Shear Strength) Clay 3 46.0-60.0 50.7
Wh Clay 1 - 170.0

In the study of Jaksa et al. (1999), scale of fluctuation in both vertical and horizontal
direction based on CPT (with 5 mm depth interval) data has been studied. Two field
studies, 222 vertical CPT (5 m depth) and CPT (horizontal) under an embankment,
have been considered. The scale of fluctuations of two different sites, where there
exists stiff overconsolidated clay, have been evaluated by correlation function
proposed by (Vanmarcke 1977) and Bartlett’s approximation. Jaksa et al. (1999) state
that the real correlation structure of the soil cannot be known but can be estimated from
the limited measurements. The autocovariance, c,, (Equation 2.10) and
autocorrelation, py, (Equation 2.11) are used to obtain correlation structure and

defined as follow:
¢ = Cov(Xy, Xpwi) = E[(X; = X) Kppie — X)] (2.10)
pi == (2.11)

Co
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where K is the lag distance, X; is the value of parameter X at the location of i and ¢ is
the autocovariance at zero separation distance. In addition, sample autocorrelation
function (Equation 2.12) which is an important parameter showing the correlation

structure is defined as:

I (X=X) (X iyi=X)
_ i it 2.12
Z:§v=1(Xi_X) ( )

Tk

where k=0, 1, 2, ..., K are the lags, K is the max number of lags and N is the number
of measurement data. After calculation of correlation coefficient, correlation functions
can be utilized to calculate spatial correlation length. Jaksa et al. (1999) also present
an easier method, Bartlett’s approximation to evaluate scale of fluctuation where
Bartlett’s Limit (Equation 2.13) is defined as:

1.96

7| = t =

(2.13)

Jaksa et al. (1999) state that if the data is not stationary, it can be easily converted to
the stationary by standardizing (zero mean and unit standard deviation) or detrending.
Only stiff overconsolidated clay, Keswich Clay, is taken for the evaluation process.
Then, the trend behavior is extracted from the cone tip resistance data which means
that data is converted to stationary data which is then used to evaluate sample
autocorrelation function (ACF). After all, the scale of fluctuation is calculated by
fitting correlation functions and by Bartlett’s approximation (Figure 2. 7). Exponential
(Markov) and squared exponential (Gaussian) are utilized to fit the correlation
coefficient data, 7. In addition, the intersection of ACF and Bartlett’s limits is
investigated and it is reported that the distance of intersection and evaluated scale of
fluctuation with function fitting method have strong relation (Figure 2. 8) and

following relation is provided:

8, = 0.939 * 15 + 14.05 (2.14)
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Figure 2. 7 (a) Fitting autocovariance functions, (b) utilizing Bartlett’s limits (Jaksa
etal. 1999)

Scale of fluctuation (m)

50 100

150

Line of Best Fit
3,=0.939r, + 14.05
2 =0.893

200

250 300

Bartlett’s Distance, r, (mm)

Figure 2. 8 Relation between two methods (Jaksa et al. 1999)
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In the study of Jaksa et al. (1999), the evaluated vertical scale of fluctuations based on
CPT tip resistance have a mean of 0.15 m (0.06-0.24) with a COV of 30% which is
around lower limit of the reported scale of fluctuations in the literature. In addition,
the scale of fluctuations in the horizontal direction is reported to be between 1 m and
2 m. However, the authors warn that reported scale of fluctuations and the real
correlation structure of the soil may not be the same. The scale of fluctuation and
correlation distance are reported to be equivalent where the soil shows strong
correlation and beyond that point the parameters of soil become independent. Jaksa et
al. (1999) draw attention to the point that the sampling distance should be less than the
correlation distance of the soil and advise to consider the reported scale of fluctuations

to decide on the spacing of the field test measurements.

Akkaya and Vanmarcke (2003) state that variability of parameters can be described by
summation of trend and deviation from the trend. The way to describe the variability
is evaluation of mean, standard deviation, and scale of fluctuation which is defined as
the distance where the two points in that distance tend to be on the same side (above
or below) of the trend. In the study of Akkaya and Vanmarcke (2003) the data from
the Texas A&M University National Geotechnical Experimentation Sites (NGES)
have been analyzed and variability of the data has been reported. Both first order
statistics such as mean, standard deviation, skewness, kurtosis, and correlation
structure (scale of fluctuations) of the data are provided. The soil profile at the site and
presence of the trends have been determined by assumptions. The site consists of
mostly clay and sand layers and their scale of fluctuations based on both CPT cone-tip
resistance and CPT sleeve friction are reported. Two different methods which are
calculating the area under the correlation function and fitting a model (exponential,
i.e., Markov) have been utilized to calculate scale of fluctuations by Akkaya and
Vanmarcke (2003). The vertical scale of fluctuations based on CPT cone tip resistance
are reported as 0.61-3.72 m and 0.26-3.14 m for sand and clay sites, respectively.
Likewise, the values based on CPT sleeve friction are reported as 0.36-3.53 m and
0.30-3.62 m for sand and clay sites, respectively. Although the data in the horizontal
direction are limited, the analyses have been performed and the corresponding scale of

fluctuations in the horizontal direction for cone resistance were reported as 2-25 m and
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2.5-30 m for sand and clay sites, respectively. Likewise, the values for sleeve friction
were reported as 7-19 m and 2-14 m. The horizontal scale of fluctuation is found to be
much greater than the vertical scale of fluctuation. Akkaya and Vanmarcke (2003) also

indicate that removing trend (detrending) eliminates the longer fluctuations.

Lloret-Cabot et al. (2014) also indicate that estimation of the scale of fluctuation, i.e.
spatial correlation length, is crucial in the reliability-based designs and therefore it
should be estimated accurately. The degree of soil heterogeneity can be obtained using
SCL which affects the overall response of the structures, piles, soil masses such as
slopes. Lloret-Cabot et al. (2014) investigated a classical approach (function fitting)
and a new approach which combines the classical approach with conditional random
field to calculate scale of fluctuation of the soil by utilizing CPT measurements. A new
approach is described and compared with the conventional method which is fitting a

correlation model to the measurements.

Firouzianbandpey et al. (2014) studied the scale of fluctuation in both vertical and
horizontal directions for sand, silty sand layers based on CPTu measurements at the
site situated in the North of Denmark. The soil site is characterized according to the
data of CPTu by using Robertson classification chart and homogenous sublayers are
determined and correlation structure of these homogenous sublayers are evaluated.
Firouzianbandpey et al. (2014) state that the variability of soil has significant
importance in geotechnical engineering. Mean, standard deviation and recently scale
of fluctuation are used to describe the variability of the soil parameters. There are
several different methods to include the heterogeneity of the soil like local average
subdivision method (Fenton and Vanmarcke 1990) which requires mean, standard
deviation and scale of fluctuation. Instead of maximum likelihood method, fitting
exponential correlation function has been used to evaluate the scale of fluctuation due
to limited data. The data is normalized (detrended) where the deviations from the trend
are divided by standard deviation to obtain a stationary data through distance. The
Markov (exponential) correlation function has been utilized to fit the correlation
coefficients based on normalized tip resistance and sleeve friction with increasing lag
distance. The results of the study indicate that the investigated soil site have quite

different correlation structure in the vertical and horizontal directions (anisotropy), and

20



the scale of fluctuations in the vertical direction and in the horizontal direction are
reported as 0.2-0.5 m and 1.2-2.0 m, respectively. In addition, it is reported that the
scale of fluctuation in the horizontal direction is 2-7 times greater than the vertical
direction due to soil deposition processes. This means that the soil parameters are
correlated over a large distance in the horizontal direction (more homogenous) than
that in the vertical direction.

In Table 2. 3, the summary of spatial correlation lengths in the vertical direction
gathered from the literature are provided. It is seen that the SCL values may change
according to the soil type and measurement type. Even for the same soil type, the

reported SCL values may have different values.

Table 2. 3 Summary of spatial correlation length in the vertical direction from the

literature (number in parenthesis is the mean value)

Reference Vertl(cril) SCL Soil type Remarks
Alonso and Krizek
(1975) and Lumb B Clean sand and sand i
(1975), reported by 0.3-4 fill SPT-N value
Huber (2013)
Vanmarcke (1977) 2.4 Sandy SPT-N value
. Undrained shear
Keaveny et al. 03-10 Offshore _coheswe strength, CU
(1990) soils N
triaxial
. Cone tip
01-22 Sandy silty resistance
0.7-1.1 Clay Cone tip
resistance
Undrained shear
strength
Phoon et al. (1995) 20-6.2 Clay obtained by
vane test,
Undrained shear
strength
08-61 Clay obtained by
various lab tests
Lightly .
Chiasson et al. 2m . overconsolidated and Plez_ocone cone
autocorrelation . o resistance and
(1995) di highly sensitive clay .
istance deposit in-situ vane
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Undrained shear

0.8-6.1 (2.5) Clay strength
0.1-2.2 (0.9) Sand, clay Cone tip
resistance
Corrected cone
0.2-0.5(0.3) Clay tip resistance
Phoon and Kulhawy Undrained shear
(1999a, 1999b) 2.0-6.2 Clay strength from
vane shear test
Natural water
1.6-12.7 (5.7) Clay, loam content
2.4 Sand SPT-N
2.4-7.9 (5.2) Clay, loam Unit weight
Relatively Detrended
homogeneous, stiff, residuals of
Jaska et al. (1999) 0.63-2.55 overconsolidated clay cone tip
known as Keswich resistance
Clay measurements
Cafaro and Cone tip
Cherubini (2002) 0.19-0.72 Clay resistance
0.8-2.0 Superficial soft clay Natural water
content
Valdez-Llamas et al. .
(2003) Deep deposits with Natural water
21 alternating clayey and
: content
sandy soils
0.61-3.72 sand Cone tip
resistance
CPT sleeve
Akkaya and 0.36-3.53 Sand friction
Vanmarcke (2003) 0.26-3.14 Clay rg;;g; :]I(E)e
0.30-3.62 Clay Ch1 sieeve
riction
CPT data, lab-
: measured shear
Phoon et al. (2003) 0.38-0.8 Offshore sediments strength (UC
etc) data
0.13-1.11 Sand, Clay, Silt Cone tip
- (0.70) (Mixture) resistance
Uziellietal. (2005) —5 75 5 60 sand, Clay, Silt CPT friction
(0.36) (Mixture) ratio
Schweiger et al for “materials such as Reports
g ' 1.0-10.0 keuper and middle P

(2007)

trias formations”

literature values
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onshore alluvial

deposits (loose sandy CPT cone tip
. 1.86 soils, cohesive soils, resistance
Liuand Chen (2010) 0.82 medium dense to CPT sleeve
dense sands and clay friction
layers)
4.0-6.2 Ankara Clay Liquid limit, w_
Natural water
Akbas and Kulhawy 2:5-5.5 Ankara Clay content, wy
(2010) 10-3.0 Ankara Clay Undrained shear
strength, sy
3.0-3.8 Ankara Clay SPT-N value
Zhang and Chen
(2012) 1.36-3.01 Sandy SPT-N value
Lloret-Cabot et al. Filled sand in Cone tip
(2014) 0.40-0.44 artificial island resistance
: Normalized
Firouzianbandpey et 0.45-0.50 Clayey silty sand cone resistance
al. (2014) . Normalized
0.2 Clayey silty sand friction ratio
: 0.1-0.5 Offshore sands CPTU cone tip
Liuetal. (2015) 0.05-1.0 Offshore clays resistance
. : Lo Cone tip
Nadim (2015) 0.18 - 0.39 Different soil units .
resistance
Overgard (2015) 04-30 Offshore sand and CPT_cone tip
clay sublayers resistance
0.16—0.32 Very soft clay (sand
(0.23) inclusion)
0.14—1.00 Mud and very soft
(0.37) clay
Shuwang and 0.16—0.57 Very soft clay and Static cone
Linping (2015) (0.37) clay penetration test
0.13—0.32 Cla
(0.24) y
0.10—0.43 .
(0.23) Silty clay
Onshore sandy soils
i (loose to medium .
Bouayad (2017) 0.32-1.32 dense sands, dense CPT_cone tip
(0.78) . . resistance
fine sands and silty
sands)

- UC tests and
Pantelidis and ) :
Christodoulou 0.11-0.29 Onshor(_e two clay I'ght_ dynamic

sites probing (DPL)
(2017) o
In-situ tests
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2.3 Effects of SCL on Reliability-Based Design in Geotechnical Engineering

The effects of spatial correlation length on settlement (Griffiths and Fenton 2009),
bearing capacity (Fenton and Griffiths 2000, Jha 2016), slope stability (Sarma et al.
2014), drilled shafts (Luo et al. 2014), buried pipes (Elachachi et al. 2012), driven piles
(Zhang and Chen 2012) and monopile offshore wind turbine (Carswell et al. 2013)
have been investigated by various researchers. In this section, some of these studies

are summarized.

Fenton and Griffiths (2000) studied the effect of spatial variability of soil parameters
on bearing capacity of a shallow foundation. Elasto-plastic soil model has been utilized
in the random finite element method based program. The effect of SCL (values of 0.5
m,1m,2m,4m,8m,50 m)and COV (values of 0.1, 0.2, 0.5, 1.0, 2.0, 5.0) of soil
parameters have been investigated. The results (Figure 2. 9) indicate that COV and
SCL of soil parameters have a significant influence on the evaluated bearing capacity
and the probability of failure. In Figure 2. 9, it is seen that increasing COV of soil
parameters decreases the mean bearing capacity factor and increases the COV of
bearing capacity factor. In addition, increasing the SCL from 0.5 m to 50 m increases
both the mean and COV of bearing capacity. The decrease of mean bearing capacity
factor is less for larger SCL because the initiation of bearing capacity failure is more

likely for shorter SCL values.

oM O/Me
Figure 2. 9 The mean (a) and variation (b) of bearing capacity factor, N¢ with varying
soil variability and SCL, 6 (Fenton and Griffiths 2000)
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The results of the study (Fenton and Griffiths 2000) indicate that COV of soil
parameters primarily affects the probability of failure while SCL has secondary effects
(Figure 2. 10). It is seen that increasing the SCL value increases the probability at the
left side of the turning point (COV of the bearing capacity) and decreases the
probability at the other side.

P[N, <2072 ]
0.5
|
P[N, <20.7/4]
0.5
|

O /M O/M,

Figure 2. 10 Effect of factor of safety, F, SCL, 6, and COV of soil parameters for (a)
F=2 and (b) F=4 (Fenton and Griffiths 2000)

Cho and Park (2009) state that statistical parameters like mean and variance are only
a point parameter and cannot represent the spatial variability, i.e. the variability of the
soil parameters through the distance. In the study, the bearing capacity of spatially
variable soil, having cross-correlated shear strength parameters, under a strip
foundation has been investigated probabilistically. The probabilistic analysis includes
finite difference method and random field theory where Monte Carlo simulation is
utilized to calculate the probability of failure. The random field is generated as being
anisotropic non-Gaussian by KL expansion where different SCL in the vertical and
horizontal directions are used for soil strength parameters. Then, the bearing capacity
of c-¢ soil is analyzed by assigning controlled displacement to the nodes of strip
footing. The results (Figure 2. 11) show that the mean bearing capacity calculated by
simulations is always less than the deterministic bearing capacity where single values
are used for soil parameters. In addition, the results indicate that the mean bearing
capacity calculated in the simulations increases with the increase in horizontal and
vertical SCL’s because the random field starts to become smooth (i.e. more similar

values of soil properties with distance) as the SCL increases. The effects of SCL in the
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horizontal direction is seen to be less effective comparing to that effect of the SCL in
the vertical direction.
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Figure 2. 11 Effect of horizontal SCL, In, on (a) mean, (b) standard deviation, and (c)
coefficient of variation of bearing capacity; similarly effect of vertical SCL, Iy (d-e-
f) (Cho and Park 2009)

Jha (2016) investigates the effects of anisotropic SCL of undrained shear strength on
the reliability analysis of bearing capacity of strip footing. Random finite element
method and Monte Carlo simulations are utilized to create a random field and capture
the variability of the soil parameter, undrained shear strength. The geometry and
boundary conditions of the model is given in Figure 2. 12. The analyses are performed
by using Abaqus where the soil is modelled as elastic, perfectly plastic constitutive
model and with a Mohr-Coulomb failure criterion.
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10 m

30m

Figure 2. 12 The geometry and boundary conditions (Jha 2016)

The undrained shear strength, cy, of the clay is defined as anisotropic random field
where the mean, COV and SCL are used (Jha 2016). Lognormal distribution is
assigned to the ¢, due to non-negative nature of the parameter. For the correlation
structure of the parameter, 2D exponential correlation model is utilized. The method
of locally averaged random field using the Fourier series-based method is utilized. The
scale of fluctuation of cy in the vertical direction is taken as 0.5 m, 2.5 m, 5.0 m and
horizontal scale of fluctuation is taken from 0.5 m to 100 m. The results of the study
(Figure 2. 13) show that increasing scale of fluctuation of cy leads to increase in COV
of bearing capacity. In addition, normalized mean bearing capacity first decreases and
reaches a minimum value and then increases with the increasing scale of fluctuation.
Jha (2016) indicates that large scale of fluctuations overestimate the required factor of
safety to achieve a specified reliability which means uneconomical, conservative

results.
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Figure 2. 13 Effect of SCL of cy on normalized mean bearing capacity (a-b) and

COV of bearing capacity (c-d) for parameters with a COV of 0.3 and 0.5, (Jha 2016)

Griffiths and Fenton (2009) investigated the settlement under a strip foundation on a
spatially variable soil volume. The comparison between random finite element method
and stochastic finite element method (SFEM) has been made. Young’s modulus, E, is
defined by lognormal distribution with a mean and standard deviation where the spatial
variability is defined by Markov correlation function with a SCL equal in both
horizontal and vertical directions (isotropic SCL for Young’s modulus). The results
indicate that increasing the SCL of E increases the mean settlement and variation of
evaluated settlements of simulations for RFEM (Figure 2. 14). Griffiths and Fenton
(2009) explained the increase of settlement due to the presence of weak regions in the
soil model. When SFEM is utilized, the method underestimates the settlement and
variation of the settlement. Therefore, it is stated that SFEM is not able to model spatial

variability.
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Figure 2. 14 The effects of SCL of E, 0g, on (a) mean settlement and (b) standard
deviation of calculated settlements, and comparison between RFEM and SDEM.
(Griffiths and Fenton 2009)

Zhang and Chen (2012) investigate the SCL based on SPT-N blowcounts and effects
on bearing capacity of driven piles in sand. In addition, spatial correlation between the
SPT-N over the length of the pile and around the end of the pile is evaluated. The
utilized formulation of the pile capacity is a direct method (Equation 2.15), where the

field data is directly used to assign capacity.

Qu = Apfp + Asfs (2.15)

fo = kNp (2.16)
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fs = BN, (2.17)

where A, and A are the cross sectional area of pile end and the shaft area through the
length of pile, respectively, and N, and N;, are average SPT-N blowcounts at the end

of pile and through the pile length.

In the study (Zhang and Chen 2012), the probability of failure is evaluated by
employing the algorithm proposed by Smith (1986) where normalized data is used.
The failure is defined as the case where the load on top of the pile is greater than the
pile capacity. The mean (Equation 2.18) and variance (Equation 2.19) of the pile
capacity are as follow:

E[Qu] = Apymymyp + ULmpmy, (2.18)

var[Q,] = A2[mZvar[N,] + mi,var[k]] + (UL)?[m&var[N,] + m%, var[B]] +

1/2
ApULp(niy(vp) [var[Nb]var [NL]] (2.19)

where the p(y.)vp) IS the correlation coefficient between N, and Ng. The formulation
proposed by Vanmarcke (1977) which includes the variance reduction function is
utilized to calculate the correlation coefficient where the correlation length has a great
importance. In the probabilistic analyses, the correlation length is taken as between 0.5
m and 3.0 m and diameter of pile is taken as 0.3 m, 0.5 m, 0.8 m where the length of
the pile is 20 m. Zhang and Chen (2012) analyzed three tested piles published in the
literature. The correlation length of the cases is found by fitting exponential (Markov)
and squared exponential (Gaussian) models proposed by Vanmarcke (1977) to the
autocorrelation coefficients. The reported correlation distances (by Markov correlation
function) are between 1.36 m-3.01 m for three analyzed test piles. The results of the
study indicate the following:

e The correlation coefficient, py.)vp), increases with increasing correlation length
for the same L/B ratio.
e For the same correlation length and pile diameter, the correlation coefficient

decreases with increasing L/B ratio.
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e As the diameter of pile increases, the overlapping distance, which is the distance
over which the SPT-N values are averaged for the end of the pile and through the

shaft, increases and therefore correlation coefficient increases.

Zhang and Chen (2012) state that ignoring correlation structure leads to an unsafe
design where the probability of failure increases by considering correlation structure.
Likewise, the results of the analyses of three tested piles indicate that spatial
correlation of the SPT-N blowcount has great importance in the evaluation of the
probability of failure of driven piles in sand and ignoring the correlation lead to
underestimated probability of failure.

In the study of Luo et al. (2014), the reliability of drilled shafts (Figure 2. 15) is
evaluated by two different probabilistic approaches and corresponding results are
compared. Two probabilistic approaches are random field theory with Monte Carlo
simulation and variance reduction technique with first order reliability method. Luo et
al. (2014) draws attention to the importance of the spatial variability of soil in the
reliability analyses and states that ignoring spatial variability of the soil may increase

or decrease the reliability of the design.

G

V
s V/A\N
D=8m
¢’ =32°
Yoar = 20kN [ m®
— |-

B=15m

Figure 2. 15 Illustration of the design problem (Luo et al. 2014)

In the study (Luo et al. 2014), effective internal friction angle is modelled with a
random field which is represented by mean, variance and scale of fluctuation. Different
ranges of vertical scale of fluctuation are utilized and effects on the reliability of drilled

shafts are studied where exponential correlation function and Cholesky decomposition
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method are utilized. The results of random field theory (Figure 2. 16) indicate that the
mean of ultimate limit state (ULS) compression capacity of drilled shaft is not affected
by increasing scale of fluctuation. However, COV of the compression capacity and
probability of serviceability failure are affected significantly by increasing scale of
fluctuation. In addition, the probability of failure may increase or decrease according
to the load on top of drilled shafts (Figure 2. 17). Increasing SCL of friction angle for
a given load less than the mean capacity increases the probability of SLS failure, while

for load greater than the mean decreases the probability.
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Figure 2. 16 The effect of SCL of friction angle on (a) mean compression capacity,
(b) coefficient of variation of compression capacity and (c) probability of SLS failure
(Luo et al. 2014)
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Figure 2. 17 Effect of spatial correlation length for different 50-year return period
load (Luo et al. 2014)

Sarma et al. (2014) investigated the effects of the SCL of soil strength parameters on
the response of the soil masses, i.e. slopes where the probability of failure is evaluated.
Traditional methods generally do not include the variability of the soil parameters and
correlation structures, instead, the methods use deterministic (single) values. In
deterministic case, the soil cannot be modelled realistically and evaluated FS based on
deterministic approach cannot represent the real response of the soil mass and cannot
be used in risk assessments. Although there are simple, limit equilibrium-type,
methods to analyze the slope stability, finite element and finite difference methods are
mostly preferred due to stress-strain behavior of the soil to be taken into account. The
FLAC?® (finite difference model) and MATLAB have been utilized where covariance
matrix decomposition method for random field and local averaging theory for

controlling are employed.

Sarma et al. (2014) divides the variability of the parameters into two; trend and
waviness about the trend, and the soil parameters are assumed to be statistically
homogeneous. Covariance function (Equation 2.20-2.21) is utilized to calculate the

correlation coefficient (Equation 2.22) of the data.
Clxy, x2] = Var[X(x1), X (x2)] (2.20)
Clxy, x2] = E[X (x1), X (x2)] — s Ce1) i (2) (2.21)

where x; and x, are position vectors and X is radom variable.
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Clx1,%x2]

p[xl) x2] = m

(2.22)

The large covariance matrixes, C, are decomposed by using Cholesky’s decomposition
method (Equation 2.23). Then, the field is generated by Equation 2.24.

LL™=[C] (2.23)
X(x)=LU (2.24)
where U is n size, number of element or zones, column vector.

In the study of Sarma et al. (2014), the analyzed case (Figure 2. 18) is taken from Chen
(2007) that investigates the safety of the slope. All geometry of the slope and properties
of the soil are kept constant and only the effects of the correlation structure of the soil
Is investigated where internal friction angle and cohesion is considered as a random
field with a cross-correlation coefficient of -0.7. The normal distribution is assigned to
the strength parameters. SCL values of 1 m, 2 m, 3 m, 5m, 7 m, 10 m for soil strength
parameters have been used in the random field for the isotropic case, and the
combination of them is used for the anisotropic case.

20 — 3 8.00E+03

B 1705404

Contour interval= 1.00E+03

¢=12380N/m?
$=20°
v=20kN/m?

Figure 2. 18 (a) Model geometry, (b) generated random field for cohesion, where

SCL of strength parameters is 5 m in both directions (Sarma et al. 2014)

The results of Sarma et al. (2014) show that the probability of failure increases with
the increase of SCL of soil strength parameters and then does not change significantly
beyond a point, for isotropic case (Figure 2. 19). The study also indicates that the

increase of probability of failure is greater for the anisotropic case than that for the
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isotropic. In Table 2. 4, it is seen that increasing the horizontal SCL of strength

parameters increases the probability of failure.
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Figure 2. 19 Effect of SCL of strength parameters on probability of failure (Sarma et
al. 2014)

Table 2. 4 Effect of anisotropy on probability of failure (Sarma et al. 2014)

SCLy (m) | SCLy (m) | Pz (%)
1 5 43.2
1 10 45.1
1 20 46.3
2 10 45.7
2 20 48.5
3 15 47.5
3 30 53.1

Elachachi et al. (2012) studied the failures such as concrete cracking state, having
counter slope and excessive joint opening of buried structures. A model which includes
the soil variability has been developed and serviceability limit state of the structures
are considered. The key parameter for the variability of the soil is the SCL of soil
modulus and Poisson’s ratio which effects the soil-structure interaction. Soil
parameters, soil modulus, Es, and Poisson’s ratio, vs, are defined as random field which
is described by mean, variance and SCL’s. The effects of the SCL of Es and vs are
investigated by considering four different cases, where the ratio between SCL and the
length of the pipe are 0.01, 1, 10, 100 where small values represent a rough field, rapid
fluctuations, and large numbers represent a more smooth field. The results (Figure 2.

20) indicate that the ratio of 0.01 causes more uniform bending stresses under the
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buried pipe (Elachachi et al. 2012). The reason is that the soil volume shows rapid
fluctuations, the case of 0.01 ratio does not lead to change of bending stresses due to
the rigidity of the pipe.
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Figure 2. 20 The cumulative density function for bending stress for different
fluctuation ratio (Elachachi et al. 2012)

The reliability index results show that the index increases as the SCL of Es and vs goes
towards zero and infinity. The increase of the reliability index means the decrease of
probability of failure. Then, it is seen that the structure is safer when the SCL is infinite
or zero because the pipe tolerates the rapid fluctuations, lower SCL, by its rigidity and
the soil becomes homogeneous when the SCL is infinite. The study of Elachachi et al.
(2012) shows the importance of considering SCL of soil parameter which greatly
effects differential settlements, bending stresses and cracking of the pipes. Therefore,
more realistic reliability-based design can be achieved by considering the inherent soil
variability where the correlation length is the key parameter.
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CHAPTER 3

METHODOLOGY

In this study, the variability of sea bottom soils in Turkish waters and the effect of the
spatial variability of soil properties on foundation design are investigated. The
variability is studied by using field data and some limited number of laboratory
experiments such as sieve analysis, Atterberg limits, unconfined compression, triaxial
tests, etc. as much as available. The SCL, the parameter representing the heterogeneous
structure (correlation structure) of the soil medium, is evaluated based on site
investigation data which are collected from several private geotechnical companies.
Collected data include the data from both nearshore and offshore sites at different
water depths. Two different field test data sets are collected; SPT data at nearshore
sites and CPTu data at offshore/nearshore site. The data sampling intervals of SPT and
CPTu are 1.5 m and 0.02 m respectively. The process of the evaluation of data can be

summarized as follows:

i.  The depth versus SPT-N, or depth versus CPT cone tip resistance and friction
ratio etc. data are first digitized.

ii.  The soil layers are classified according to both field measurements and
laboratory tests (where available) and related soil profiles with depth are
obtained.

iii.  According to soil classification, the soils are grouped into broader groups such
as “clays” and “sandy mixtures” etc, for which SCL values based on SPT-N,
CPT-tip resistance, sleeve friction and friction ratio will be calculated layer by
layer.

iv.  The statistical evaluation for different soil groups is performed where statistical
parameters; mean, p, standard deviation, 6 and SCL based on test data are
obtained. The data are analyzed in two methods: (1) having a constant mean of
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soil properties with depth and (2) an increasing mean value of soil properties
with depth, and the SCL are obtained for each method, for each broad soil

group, using four different autocorrelation functions for each layer separately.

The SCL’s are evaluated by a MATLAB code (Appendix A) developed in this study,
which analyzes the data, and fits different autocorrelation functions and reports the
SCL values. Vanmarcke (1977) states that the initial steps of the spatial variability
analysis should be the determination of the existence of a trend (i.e. stationarity or
nonstationarity) and standardizing the data. This check can be done by calculation of
mean first order increment (Equation 3.1) of the data in the vertical direction (Chiasson
etal. 1995). If there is an increase or decrease in values with increasing depth, the data

should be treated nonstationary (“trend approach™):

d(r) = [N(z; + 1) — N(z)] (3.1)

where d () is the mean first order increment, N(z;) is the data, e.g. SPT-N blowcount,
at depth z; and 7 is the spacing.

In this study, the calculated SCL’s for both “constant” and “trend” approaches are
compared. Treating the data as having constant mean and depth-dependent mean are
illustrated in Figure 3. 1. It is clear that these two approaches will result in different
SCL’s and it is reported that removing the trend (detrending) eliminates the longer
fluctuations (Akkaya and VVanmarcke, 2003). That is, the means should be subtracted
from the measurements and then this deviation should be divided by standard deviation
at each depth (Equation 3.2).

N(z)-N(z)

Ne(z) = (3.2)

ON(z)

where the N(z) and N(z) are the real measurement and trend at depth z, and On(z) 1S
the standard deviation of the measurement. By doing this, the data can be treated as
statistically homogeneous which means that the mean (u = 0) and standard deviation
(o = 1) are constant with depth. The similar procedure is called as “detrending” in the
literature (DeGroot and Baecher 1993, Phoon and Kulhawy 1999a, b,
Firouzianbandpey et al. 2014). The only difference between standardizing and

detrending is that standardizing provides unit standard deviation. In this study, in the
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“constant mean” approach, the average of the measurements is taken as the mean of
the data and kept constant with depth. In the “trend approach”, a linear function is
employed as the trend of measurements, and the fluctuations about that trend is
evaluated. Although further sophisticated depth-dependency functions can be fitted to
the data, to use the same type of function for all data and for ease of interpretation, a
linear trend equation with depth in SPT-N and CPT data is found to be sufficient to
represent the depth-dependency.
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y =2.34x - 2.15
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Figure 3. 1 (a) Constant mean and (b) depth-dependent mean approaches

The developed MATLAB code calculates the autocorrelation coefficients (Equation
3.3) of the data and plots these coefficients versus lag distances which is the distance
between two points of concern (sampling interval). It should be noted that the data
sampling interval between observation points has to be constant (Vanmarcke 1977,
Fenton and Griffiths 2008, Liu and Chen 2010, Firouzianbandpey et al. 2014, Lloret-
Cabot et al. 2014, Shuwang 2015, Zhang and Chen 2012). The SCL of test data is

calculated by utilizing autocorrelation functions provided by Vanmarcke (1977)
(Table 2. 1).

Autocorrelation coefficient is:

YR =N (N =Nigso)
py = =L 2?=—1k(1vi_1\:/rsz e k=0,1,2,..,(n—1) (3.3)

where the N; and N; are the real measurement and trend at depth i and N, is the

measurement at depth i+k. The autocorrelation coefficient is constrained by [-1.0, 1.0].
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If the coefficient is positive, both variables tend to be higher and lower together.
However, if the coefficient is negative, high value of one variable tends to be
associated with a low value of the other variable (Kottegoda and Rosso, 2008). In the
literature, the same autocorrelation function is also defined in terms of autocovariance
function. The autocovariance of the data may be calculated by the method of moments
(Equation 3.4) and the autocorrelation coefficients may be calculated by normalizing
with the data variation (Equation 3.5). It is seen that combining Equation 3.4 and
Equation 3.5 results in Equation 3.3.

Autocovariance function:

¢ = Cov(X;, Xivi) = E[(X; — X) Kiwr — X)] (3.4)

Autocorrelation function:

pp =% (3.5)

Co

where K is the lag distance, X; is the value of parameter X at tha location of i and E is
the expectation operator.

The four autocorrelation functions are utilized to fit the data and the SCL value of data
can be obtained by using best-fit parameters (Table 2. 1). In Figure 3. 2, an illustration

of the four autocorrelation functions is provided where SCL value is 1 m.

0.8

Exponential

0.6 — - - Squared Exponential

0.4 + %  ____. Cosine Exponential
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0

Autocorrelation Coefficient

-0.2 -

Lag Distance (m)

Figure 3. 2 lllustration of four autocorrelation functions for SCL=1 m
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The best fit of the function can be obtained by using some basic functions in Matlab

or minimizing the error in Equation 3.6.

E =Y (ps(r) — p(r)’ (3.6)

where pg(t;) is the estimated autocorrelation coefficient by using the data (Eq. 3.3),
p(t;) is the autocorrelation coefficient obtained by an autocorrelation function and n
is the number of data point. If exponential correlation function is utilized, the SCL of
data can be found by finding the root of the derivative of Equation 3.6 which can be
written as (Eq 3.7):

2 = X2 Dk (pg(r) — exp(—2 * [1,]/6)) * exp{~2+ [z|/6)  (37)

In this study, it is seen that if the mean of the measurement, N, is taken as the trend
value in Equation 3.3, there is no need to standardize or detrend the measurements.
That is, the computed SCL for normal data, detrended data (zero mean) and
standardized data (zero mean and unit standard deviation) become the same in case of

taking mean as trend value.

In order to examine the CPT data, two additional functions are added into the
MATLAB code. The purpose of these functions is to classify the soil type and to divide
the data by soil type (boundaries of different layers) and discontinuity with depth. First
of all, Robertson (2010) soil behaviour types chart (Figure 3. 4) is digitized and
functions of each border of soil types are formulated. Then, the CPT with depth data
is classified according to the Robertson's soil behavior types. That is, the CPT tip
resistance and friction ratio data at each depth are compared with the borders and the
corresponding soil behavior types are assigned to each data point (data is available at
2 cm vertical intervals). Afterwards, the data is divided into segments of continuous
data with depth (discontinuities in the data are determined by comparing the difference
between depth data with the frequency of data acquisition). Each data segment is
divided into different soil layers according to Robertson’s soil behavior type. The
Robertson's soil behavior type zones 3 and 4, “Clay - silty clay to clay” and “Silt

mixtures — clayey silt to silty clay”, are evaluated together and named as a broad group
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of “Clays”. Likewise, zones 5, 6 and 7, “Sand mixtures - Silty sand to sandy silt”,
“Sands - clean to silty sand” and “Gravelly sand to dense sand”, are evaluated together
and grouped into a broad group of sandy mixtures and named as “Sands”. The
thickness criterion is selected as 0.5 m (24 data with 0.02 m spacing) and greater
thicknesses are considered as individual soil layers, i.e. SCL value of data is not
calculated for a segment of soil that is less than 0.5 m thick. The classification of each
data point, which is exemplified in Figure 3. 3, are converted into four major soil
behavior types. That is, the zones in Robertson's soil behavior types chart, 1-2, 3-4, 5-
6-7 and 8-9 are converted to (or grouped into) 2, 4, 6, 9, respectively and named as
“modified classification”. The purpose of converting the classification is to simplify
the procedure for the decision of soil layers and to calculate SCL of those broad groups
of soils. The MATLAB code evaluates the modified classification and divides the

segments into different soil layers.
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Figure 3. 3 Robertson (2010)’s soil behaviour classification and modified
classification used in this study, as an example, for (a) sounding-1 and (b) sounding-
2
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Figure 3. 4 Classification of soil behavior type chart (Robertson et al., 1986, updated
by Robertson, 2010).
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CHAPTER 4

CASE STUDIES

Statistical evaluation of soil properties based on nearshore/offshore site investigation
data is rare in Turkey but has significant potential benefits for reliability based design
of nearshore/offshore structures. In this chapter, site investigation data of two near-
shore sites in the southern coast of Turkey and one large area of offshore/nearshore
site on the northwestern part of Turkey are gathered; properties of these see bottom
soils are presented. The data is analyzed, firstly, to understand what types of soils exist
in the seabed, and whether the consistency of clays is soft or stiff, and whether the
sandy soils are in loose or dense state etc. The variability of soil properties in terms of
the mean and standard deviation values of estimated undrained shear strength for clays
or estimated relative density for sands with depth is obtained. The SPT and CPT data
are analyzed, secondly, to obtain the vertical SCL of SPT-N and CPT-cone tip
resistance, side friction and friction ratio using four different autocovariance functions
for each broad soil group. The results of the present study add to the database of SCL’s
based on real data and could be useful for future studies on reliability assessment of

offshore foundations using advanced tools such as the random finite element method.

4.1 Iskenderun and Yumurtalik Sites (Nearshore-SPT data)

4.1.1. Site Description

Site investigation data at two sites obtained from nearshore soils in the Mediterranean
Sea of the southern coasts of Turkey (Figure 4. 1) are used in this study. Summary of
the available data used in this study is presented in Table 4. 1. Both sites are located at
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the intersection of Arabian, African and Anatolian Plates and their geological
formation are similar, which is mainly composed of the weathered Mesozoic
Limestone, Ophiolitic Rocks and Eocene-aged limestones of Amanos Mountain and
sediments transported by alluvial rivers, consisting of gravel, sand and clay that settled

in the Holocene Epoch (Derinsu Site Investigation Reports 2011a-b, 2014 and 2015).

Table 4. 1 Information about the data at two nearshore sites

Number of Water depth Depth of boreholes from
boreholes (m) seabed (m)
Site 1 27 2.81t018.2m 16 to 50.5
(Iskenderun) (average 8.9 m) (average 30.5 m)
Site 2 14 52t025.7m 13.81t035.4
(Yumurtalik) (average 16.1 m) (average 25.2 m)

Iskenderun

Yumurtalik

Figure 4. 1 Locations of Site 1 and Site 2 in the southern coast of Turkey and the

location of boreholes
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At two nearshore sites, SPT was performed by rotary drilling machine which is
mounted on a catamaran barge (Derinsu Site Investigation Reports 2011a-b, 2014 and
2015). During the drilling process, both undisturbed and disturbed soil samples and
rock core samples were obtained. In the laboratory, sieve analysis, hydrometer,
Atterberg limits, in-situ water content, consolidation, triaxial (UU), unconfined
compression, direct shear and point load index tests were performed, although shear
strength tests are limited in number. The results of both laboratory tests, SPT-N values

and field observations are utilized to identify the soil layers and profiles.

All soil units in the coastal regions are mixtures of various materials transported and
accumulated. The majority of the sea-bottom sediments at both sites are composed of
“mixture soils”, that is silty, clayey and sandy materials with different proportions,
which are classified as CL, CH, ML, MH, SM, SC, SW, SP according to Unified Soil
Classification System (USCS). Only in some boreholes uniform clay layers (CL) of
varying thicknesses are identified. Therefore, to determine the vertical SCLgpr_y, the
soil layers are grouped into two broad groups: (1) clay layers (Figure 4. 2b) and (2)
mixture layers, composed of silty, clayey and sandy materials with different
proportions (Figure 4. 2a), gravelly parts are not included in the SCL evaluation in this
study. Results of Atterberg limits tests and sieve analyses at both sites are illustrated

in Figure 4. 2.
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Figure 4. 2 Classification of soils at both sites, (a) sieve analyses, (b) Atterberg limits
test results.
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4.1.2. Evaluation of Spatial Variability

The SPT-N data, site description of the soils in borehole logs and laboratory
classification tests (sieve analysis, hydrometer data, fines content, USCS classification
and Atterberg limits), are used to identify sublayers that can be described as a relatively
homogeneous soil layer. At both sites, the SPT is conducted at 1.5 m vertical spacing.
The data in the same sublayer are counted and presented in Table 4. 2, which also
provides the mean and coefficient of variation of the SPT-N data from two sites.
Identification of relatively homogeneous sublayers and the need for studying the
vertical SCL of each sublayer within itself are also noted by Phoon and Kulhawy
(19994, b), Uzielli et al. (2007), Overgard (2015) and Firouzianbandpey et al. (2014),
among others. After identifying the layers which tend to be sufficiently homogeneous,
these measured data are analyzed to estimate the mean value and standard deviation of
vertical SCL based on SPT data. If the measured data shows a trend, trend analyses
can be conducted by separating the random process into a deterministic trend and a

residual variability around the trend (Overgard, 2015).

Table 4. 2 Variability of SPT-N data for two sites

Number of Mean

Sublayer identification COV (%)

Data SPT-N
Site 1 Mixture Soil (clayey, silty, sandy) 330 17 71
Clay 100 10 80
Site 2 Mixture Soil (clayey, silty, sandy) 89 22 77
Clay 73 8 88

By first eliminating the measurement error in SPT-N, Phoon et al. (1995) report that
COV values of SPT-N are in the range of 25-49% in sandy and silty soils, whereas this
value is 37-57% in clayey soils. Phoon and Kulhawy (1999) indicate that the values of
COV which include both inherent variability and measurement errors are greater than
the COV of inherent variability. In this study, COV of SPT-N data varies between 71
and 88% which is greater than the COV of inherent variability because data includes

the measurement errors.
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A very limited number of laboratory shear strength (UU triaxial) tests are available on
undisturbed samples in cohesive soils. Therefore undrained shear strength (cu) is
determined by utilizing the relationship between SPT-N blowcount and cy (Equation
4.1) depending on plasticity index (Stroud, 1974), acknowledging the limitations of
the method. Figure 4. 3 shows that the c, of clay layers at different boreholes increases
linearly with depth below mudline and Table 4. 3 shows that the rate of increase of cy

with depth at site 1 and site 2 are within reported values in the literature.

¢y = f1 * Ngg (4.1)

where N¢, is the SPT-N value corrected for 60% energy efficiency and field

procedures, and f; is a coefficient depending on the plasticity index of clay.

Undrained shear strength (kPa)
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Figure 4. 3 Undrained shear strength profile at site 1 and site 2 by utilizing empirical
equation of Stroud (1974) and SPT-N data from many boreholes with a few

laboratory test data
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Table 4. 3 Rate of increase of undrained shear strength with depth

Rate of increase of ¢, with

Reference depth (kPa/m) Remarks
2.1 (range: 0.6-4.0, std.dev.:
. 1.0) atsite 1
This study 2.2 (range: 1.7-2.8, std.dev.: clays nearshore Turkey
0.4) at site 2
Basack and 95 i
Purkayastha (2009) '
Cao and Wang (2014) 1.6 marine clays
Hossain et al. (2014) 1.02-2.55 clays at 14 sites, Gulf of
Mexico
Wei et al. (2010),
Kamei and Iwasaki 0.8-35

(1995), Li-Zhong et N _ . )
al. (2008), Terzaghi et for (cy/0y) = 0.12 - 0.35

al. (1996)
* Using buoyant unit weight of 7 to 10 kN/m3

By using empirical equations (Equation 4.2 and 4.3) based on the SPT-N blowcounts,
effective friction angle (Kulhawy and Mayne 1990, Schmertmann 1975) and relative
density (Gibbs and Holtz 1957) are estimated for all borehole soundings where mixture

layers are identified.

N 0.5
DT - (12*0‘120+17) (42)
0.34
¢ =tan~! [———~ (4.3)

12.2+20.3*<M>
Pq

where N is the SPT-N blowcount and gy, is in-situ vertical effective stress (saturated
unit weight is taken as17.5 kN/m®). Additionally, friction angle is obtained by using
the NC (normally consolidated) curve in Figure 4. 4 provided by Stroud (1988).
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The estimated effective friction angle and relative density are provided in Figure 4. 5
and the results are tabulated in Table 4. 4.The relative density results shows that the
upper parts of the soil profile have greater D, than deeper layers which are not realistic.
Therefore, it is concluded that the empirical relative density equation (Gibbs and Holtz
1957) is not proper for the shallow sea bottom sands and it overestimates the Dy values
at the shallow depths because it uses overburden corrected SPT-N, Nieo (in-situ
effective stresses are normalized by 100 kPa). The weighted average relative density
of the mixture layers at both sites is 29% (it is 28% for site 1 and 40% for site 2) and

the mixture marine soils of this region can be classified as loose to medium dense.
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Figure 4. 5 Estimated (a) effective friction angle, (b) relative density, with depth

Table 4. 4 Friction angle and relative density obtained through SPT-N correlations

Friction angle (°) Dr (%)
Schmertmann, 1975 Stroud, 1988 Gibbs and Holtz, 1957
Site 1 Site 2 Site 1 Site 2 Site 1 Site 2
Average 33.6 37.6 31.7 34.2 28.3 39.6
Range  18.0-47.7 20.0-53.6 27.3-41.1 27.8-46.3 9.6-85.9 12.1-100
Stan. Dev. 6.1 8.5 2.9 4.9 11.7 20.1
COV (%) 18.0 22.7 9.0 14.4 41.2 50.7

During standard penetration testing (SPT), disturbed soil samples are obtained from
the field at each SPT depth. In this study, the soils at each borehole (e.g. Figure 4. 6)
are first classified according to the Unified Soil Classification System by using
laboratory test results (sieve analyses, hydrometer test, Atterberg limits) and
observations from the field as reported in borehole logs are interpreted. The layers are
then grouped into two broad groups: (1) mixture layers and (2) clay layers to calculate

corresponding vertical SCLgpr_n. The soil layers that are classified as sandy gravel,
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gravelly sand or fill are eliminated (not included in the analyses) because of the SPT-
N refusal data within these layers. The same type soil layers at the same boreholes are
not lumped together to obtain a single vertical SCLgpr_y. Instead, they are considered
separately and each clay layer has its own vertical SCLgpr_y. In this study, vertical
SCLgpr_n IS not calculated for layers that are less than 7.5 m thickness, because it
would be questionable with a limited number of SPT-N data points within that layer.
26 boreholes at site 1 (average borehole depth of 30.5 m from seabed) and 14 boreholes
at site 2 (average borehole depth of 25.2 m from seabed) are investigated and vertical
SCL’s based on SPT-N blowcounts are reported. It is known that SPT is prone to
measurement errors (equipment-related and operator effects etc.), however this has not
been considered in the current work. Therefore, evaluated vertical spatial correlation
lengths represent not only the inherent variability of soils but also the effect of

measurement errors.
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Figure 4. 6 YDSK-1 borehole at site 1

Exponential and squared-exponential autocorrelation functions are widely used to
calculate SCL in the literature (DeGroot 1996, Akkaya and Vanmarcke 2003, Zhang
and Chen 2012, Huber 2013, Lloret-Cabot et al. 2014, Firouzianbandpey et al. 2014,
Zhang et al. 2016, Peng et al. 2017). In this study, four autocorrelation functions
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proposed by Vanmarcke (1977) (Table 2. 1) have been utilized to see the effects of the
autocorrelation functions on SCL and their corresponding goodness of fit (R-squared)

values.

Figure 4. 7 shows an example plot of autocorrelation coefficients versus lag distance,
the distance between the observation points for borehole YDSK-16 at site 1. The four
autocorrelation functions in Table 2. 1 are utilized to fit the data and
corresponding SCLgpr_n’s and coefficient of determinations of fit are provided in
Table 4. 5. The results indicate that although the coefficient of determination does not
change significantly for “trend” and “constant” approaches, evaluated SCL values

based on SPT-N in the vertical direction do.
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Figure 4. 7 Autocorrelation coefficient vs lag distance for borehole YDSK-16 and

utilized autocorrelation functions (a) “constant approach” (b) “trend approach”
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Table 4. 5 The spatial correlation lengths, SCL based on SPT-N data (both
“constant” and “trend” approaches) for four autocorrelation functions for borehole

YDSK-16

“Constant mean with
“Trend” approach
depth” approach

Correlation Function SCL (m) R? SCL (m) R?
Exponential 6.05 0.75 2.30 0.71
Squared-Exponential 6.49 0.79 2.93 0.76
Cosine-Exponential 5.77 0.84 2.23 0.81
2" Order Autoregressive 6.43 0.78 2.75 0.74

The SPT-N data at both sites are statistically evaluated. Autocorrelation coefficients
and the vertical SCLgpp_p’s are calculated by utilizing four different autocorrelation
functions. The mean values, ranges and the standard deviations of the SCLgpt_p’s With
“trend approach” are tabulated in Table 4. 6, Figure 4. 8a and Figure 4. 8b. In Table 4.
6, the results are reported, for all boreholes, as the mean vertical SCLgpr_y Obtained
by exponential autocovariance function and by all four autocorrelation functions.
Figure 4. 8a shows the SCLgpr_n Of mixture soils and Figure 4. 8b shows that of clay

layers, with four autocorrelation functions, for both sites 1 and 2.

Table 4. 6 The mean, and standard deviation of SCL based on SPT-N data (with

“trend approach”) for clays and mixtures.

Site 1 Site 2
Mixtures Clays Mixtures Clays
Mean (m) 2.19 1.75 1.52 1.67
Four Range 0.07-5.20 0.06-3.19 0.08-4.55 0.06-3.13
Functions Standard 1.26 0.91 1.28 0.91
Deviation (m)
Exponential Mean (m) 1.94 1.45 1.23 1.36
Flt)mction Range 0.07-5.03 0.06-2.66 0.08-4.17 0.06-2.53
only Standard 1.34 0.94 1.30 0.93

Deviation (m)
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The mean vertical SCLgpy_y Of both sites using all four autocovariance functions and

using the “trend approach”, is 1.71 m (+0.86 m standard deviation) for clay layers,

whereas it is 2.02 m (+1.26 m standard deviation) for mixture layers. For mixture

layers, both the mean SCLgpr_y and the standard deviation are slightly larger as

compared to clay layers which are in agreement with literature. The vertical SCL

values based on SPT-N data are within typical ranges reported in the literature for

similar soil groups, both onshore and offshore (Table 2. 3).
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Figure 4. 8 Spatial correlation length based on SPT-N data of (a) all mixture soils, (b)

all clay layers, for both Site 1 and Site 2, using “trend approach”
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In Table 4. 7, the SCL values based on SPT-N data for both “constant and trend
approaches” have been tabulated. It is clearly seen that assuming constant mean with
depth results in larger SCLgpp_n Values compared with “trend approach”. The same
result that detrending eliminates the larger SCL has been reported in the study of
Akkaya and Vanmarcke (2003).

Table 4. 7 The mean, and standard deviation of SCL based on SPT-N data (with both

“constant approach” and “trend approach”) for clays and mixtures.

Constant Approach Trend Approach

Mixtures  Clays  Mixtures  Clays

Four Mean (m) 4.20 3.85 2.03 1.71
Functions Range 0.09-9.59 0.27-6.74 0.07-5.20 0.06-3.19

Standard Deviation (m) 2.14 1.41 1.29 0.89

Exponential Mean (m) 4.04 3.69 1.78 141
Function Range 0.09-8.75 1.03-5.53 0.07-5.03 0.06-3.19

only Standard Deviation (m) 2.05 1.33 1.34 0.89

It is observed that, when calculating the autocorrelation coefficient, the N should be
taken as the trend value at each point. In that case, there is no need to de-trending or
standardizing the data because they all result in the same spatial correlation length. In
the analyses, two different approaches, constant and trend, have been used and as
stated in the study of Akkaya and Vanmarcke (2003), the “trend approach”, where the
fluctuations about the trend are considered, results in shorter fluctuation (shorter SCL).
While the average of SCLgp_y’s with the “trend approach” for clays and mixtures are
1.71 m and 2.02 m, respectively, the SCLgpr_n’s with “constant-mean with depth”
approach are 3.85 m and 4.20 m, for clays and mixtures, respectively. This indicates
that the SCLgpr_n With “constant-mean” approach is at least two times the SCLgpt_n
with “trend approach”. In addition to these, it should be noted that, the order of the
trend function is important, as the order of the polynomial increases the scale of
fluctuation decreases (Phoon 2008). The variation of the residuals about trend line and

calculated spatial correlation lengths are directly related to the flexibility of the trend
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line (degree of polynomial). In this study only a linear, i.e. a first order polynomial,
equation is used for trend calculations.

When all four utilized autocorrelation functions are compared, the results show that
squared exponential (Gaussian) autocorrelation function gives the highest SCL (in
72% of all evaluations) compared to the others; while the exponential (Markov)
autocorrelation function results in the lowest SCL (in 78% of all evaluations). In
addition, the autocorrelation functions, exponential and cosine-exponential mostly

gives closer SCL’s to each other (in 43% of all evaluations).

Cao and Wang (2014) state that selection of the most suitable correlation function is
an important issue and the goodness of fit can be used to help select the most suitable
functions. Table 4. 8 shows the goodness of fit in terms of R? values for all the SPT-N
data reported in the manuscript with their means and ranges. All R? values are in the
range of 0.55 and 0.86 with an average of 0.70. When the goodness of fit is low, the
fitting of data to the autocovariance function has no statistical meaning, and the SCL
obtained could be misleading. Therefore results with a coefficient of determination
smaller than 0.50 are not considered. Considering all boreholes data for the mixture
soils and for the clay soils, the Cosine Exponential Autocorrelation Function gives the
highest R? values (greater than 0.64 with an average of 0.74), i.e. seems like the best

fit among the four types of autocovariance functions.

Table 4. 8 Goodness of fit, represented by R? values, for four different

autocorrelation functions (mean value and range in parenthesis)

Exponential Squared_ Cosine_ Second Ord_er
Exponential Exponential ~ Autoregressive
Mixtures 0.68 0.70 0.74 0.69
(0.55-0.83) (0.56 - 0.83) (0.59-0.85)  (0.56 - 0.83)
Clays 0.68 0.70 0.74 0.69
(0.56 - 0.83) (0.56 - 0.84) (0.59-0.86) (0.56-0.84)
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4.1.1. Concluding Remarks

In this study, the vertical spatial correlation length of SPT-N data is determined using
site investigation data from two sites in the southern coast of Turkey, based on SPT-N
values at 1.5 m depth intervals, from 41 boreholes (depths of 23 m to 60 m from sea
level) at average water depths of 8.9 m and 16.1 m for Site 1 and Site 2, respectively.
At both sites, marine deposits exist where the soil profile generally consists of mixture
layers (clayey, silty and sandy materials with different proportions) and low plasticity
clay layers. At site 1, soft to stiff clay layers exists having the undrained shear strength
(cu) in the range of 5 to 100 kPa. At site 2, clays can be classified as soft to medium
stiff clays with max cy values of 50 kPa. The rate of increase in ¢y with depth is found
as 2.1-2.2 kPa/m (for both sites) by utilizing the relationship between SPT-N
blowcount and undrained shear strength (Stroud 1974). The rate of increase of cy with
depth, at both sites in this study, are within reported values in the literature. For
“mixture” layers at both sites, the mean friction angle is 34° and it is seen that the soils

are mostly in loose to medium-dense state with a mean relative density of about 29%.

Both “constant approach” and “trend approach” are utilized in the evaluation of SCL
based on SPT-N data. It is seen that “constant approach” overestimates the SCLgpr_n
values in cases where there exist a trend with depth. Therefore, it is better to perform
“trend approach” and detrend the data in all cases. Vertical SCL of SPT-N data with
“trend approach” is calculated using four autocovariance functions; namely,
exponential (Markov), squared-exponential (Gaussian), cosine exponential and
second-order autoregressive. Using four autocovariance functions, the mean vertical
SCLgpr_n Values are calculated as 1.72 m (£ 0.89 m standard deviation) for clay layers,
whereas it is 2.03 m (+ 1.28 m standard deviation) for mixture layers. For mixture
layers both the mean SCLgpr_y and the standard deviation are slightly larger compared
to clay layers in “trend approach”. When the SCLgpt_pn Values are evaluated for clays
and mixtures with “constant approach”, the values becomes 3.85 m (+ 1.42 m standard
deviation) and 4.20 m (£ 2.14 m standard deviation) respectively. Similar to “trend
approach”, mixtures have greater mean and standard deviation compared to clays. In

addition, the treating the data results in shorter SCL values which is also stated by
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Akkaya and Vanmarcke (2003). The vertical SCLgpr_yN Values are within typical
ranges reported in the literature for similar soil groups, both onshore and offshore
(Table 2. 3). It is also better to note that the widely-used exponential function almost
always gives the lowest value of spatial correlation length, whereas squared-
exponential (Gaussian) autocorrelation function gives the highest SCL as compared to

the other functions.

Estimation of SCL remains as a significant challenge due to a lack of high-resolution
measurement data in geotechnical practice. Among the in-situ tests, the cone
penetration test data has the highest resolution (typically on the order of a few cm’s).
However, other properties of soil such as water content, unit weight, undrained shear
strength (from laboratory tests), and SPT-N data from the field can also be used to
calculate the SCL, even though they have larger spacing between observation points
(lower resolution) (Table 2. 3). Using the conventional statistical method described in
the thesis, vertical SCL values found based on SPT-N in the literature are 2.4 m
(Vanmarcke, 1977), 0-4 m (Alonso and Krizek 1975 reported in Huber 2013), 0.3 m
(Lumb 1975 reported in Huber 2013), 1.36-1.63 m (Zhang and Chen, 2012), which are

in agreement with the results in this study.

4.2 Yalova Region (CPT Data)

4.2.1. Site Description

The project site is located in Gulf of 1zmit in the Sea of Marmara, on the northwestern
part of Turkey (Figure 4. 9). There exists 65 cone penetration test (CPT) soundings
where water depths are varying from 1.5 m to 64.2 m. The soundings are grouped into
two; shallow water CPT (water depth < 10 m) and deep water CPT (water depth > 10
m). Total of 65 CPT soundings consisting of 45 deep water CPT and 20 shallow water
CPT are analyzed. The average length of the CPT soundings and average water depths
are provided in Table 4. 9. The cone tip resistance and sleeve friction measurements
are taken at each sounding with a 0.02 m vertical spacing (resolution of the

measurement).
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Black Sea

Mediterfanean Sea

Figure 4. 9 Location of the CPT soundings

Table 4. 9 Length of CPT soundings and water depths

Deep water CPT

Shallow water CPT

Total number

45

20

Length (m)

60.7 (20.4-200)

60.8 (9.5-200.6)

Water depth (m)

38.8 (16.7-64.2)

3.5 (1.4-9.5)

The classification of the soil profile is made by Robertson (2010)'s soil behavior types
(Figure 3. 4): the soil profile at the CPT soundings includes clays/clay-silt mixtures
and sands/silty sands according to the soil behavior types. Therefore, soils types are
grouped into two broad groups; “Clays” and “Sands”, and all statistical analyses and
SCL calculations based on CPT data are conducted for these two types of soil groups
separately. Two CPT profiles (tip resistance and friction ratio) are given as an example
of the data, in Figure 4. 10 where the soil behavior type zones 3-4 and 5-6-7 are called

as “Clays” and “Sands” respectively.
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Figure 4. 10 Two representative CPT profiles and soil layers; (a)-(b) and (c)-(d) are

tip resistance and friction ratio of soundings 1 and 2
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4.2.2. Evaluation of Spatial Variability

The data at each CPT sounding are first divided into soil layers and then the data within
these layers are utilized to evaluate the spatial variability. The resolution of gathered
data is 0.02 m in the vertical direction which is very common interval for data
acquisition for cone penetration test. Some examples of the CPT data (both cone tip
resistance and friction ratio) can be seen in Appendix B. Soil properties like undrained
shear strength, cy, and relative density, Dy, are estimated by using empirical equations;

Equation 4.4 and Equation 4.5. The following relationship is utilized to evaluate cy:

Cu — dt—0vo (44)

N

where @t is the measured cone tip resistance, oy is the total in situ vertical stress
(saturated unit weight of all layers is taken as 20 kN/m?®) and Nk is the constant that
can vary from 14 to 20 (Robertson, 2010). In addition, relative density, Dr, is found
by the following relationship (Jamiolkowski et al. 2003):

1

by = (0.0296) In[q./[2.494 (0,”0 (13:12:3»0.46]] (4.5)

where o’vo IS the effective overburden pressure and Ko is the at-rest earth pressure
coefficient. In Figure 4. 11, undrained shear strength (Nk=17) and relative density
(Ko=0.55) profiles are provided for two CPT soundings. The relative density of sands
are mostly less than 50%, and undrained shear strength for clays are less than 100 kPa.
Therefore, the sands are mostly in loose to medium dense state and clays are soft to

medium stiff.
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Figure 4. 11 Two representative undrained shear strength and relative density

profiles; (a) Sounding-1 (b) Sounding-2, where Nk and Ko are taken as 17 and 0.55.

The undrained shear strength, c, profiles for 9 CPT soundings having the highest
water depths with an average of 51.3 m are provided in Figure 4. 12. The upper and
lower limits (14 and 20) for constant N is utilized in Figure 4. 12a while average Nk
value of 17 is employed in Figure 4. 12b. In addition, the summary of cy for these 9
CPT soundings are also tabulated in Table 4. 10 for different Nk values. The results

indicate that the employed Nk value has great importance on the undrained shear

strength value obtained.
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Figure 4. 12 Estimated undrained shear strength profile for nine CPT soundings with
an average water depth of 51.3 m: (a) N«k=14 and 20, (b) Nx=17

Table 4. 10 Summary of undrained shear strength for 9 CPT soundings (average

water depth of 51.3 m)

Undrained Shear Strength (kPa)

Depth From Sea Level (m)=40-52.5

Nk — 20 17 14

Mean 35.68 41.97 50.97
Standard Deviation 33.51 39.43 47.88

cov 93.94 93.94 93.94

Depth From Sea Level (m)=52.5-75

Nk — 20 17 14

Mean 41.78 49.15 59.69
Standard Deviation 25.77 30.32 36.82

cov 61.69 61.69 61.69
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In Table 4. 11, evaluated c, for clays and D, for sands are provided for all soundings.
It is seen that clays at shallow watershave approximately two times greater undrained
shear strength values and lower COV values than clays at deep waters. In addition, the
relative density of sands does not differ at shallow and deep waters. D, values are
generally less than 50 % (medium-dense state) with a COV value of about 60 %. In
the literature, the COV values of ¢, and Dy are reported in the range of 6% to 80% and
11% to 74% respectively (Phoon and Kulhawy 1999a). Therefore the COV values of

this study are within the range of values in the literature.

Table 4. 11 Summary of undrained shear strength and relative density for all shallow

and deep water soundings

Shallow Water Soundings | Deep Water Soundings

Nk— 14 17 20 14 17 20
Mean 121.90 100.39 85.33 | 65.12 53.63 45.58
cu (kPa) Range 3-200  2-164 2-140 | 0-200 0-165  0-140

Standard Dev. | 4321 3558 30.24 | 3842 31.64 26.90
COV (%) | 3544 3544 3544 | 5000 59.00 59.00

Ko— 0.4 0.55 0.7 0.4 0.55 0.7
Mean 46.33 4394 4186 | 50.24 47.85 45.77
Dr (%) Range 5-100 2-98 0-95 | 5-100 2-98 0-96

Standard Dev. | 29.63 29.63 29.63 | 2995 29.95 29.95
COV (%) 63.95 6744 70.78 | 59.61 62.60 65.43

Both “trend with depth approach” and “constant approach” are utilized in the
evaluation of SCL based on CPT data. Cone tip resistance, friction ratio, and sleeve
friction data have been utilized and corresponding SCL values with two approaches
are provided in Table 4. 12 as averages. Detailed results can be seen in Table 4. 13,
Table 4. 14, Table 4. 15 and Table 4. 16. The SCL based on CPT data of clays and
sands for deep water CPT soundings are reported in Table 4. 13 and Table 4. 14
respectively. Likewise, results of shallow water CPT soundings are reported in Table
4. 15 and Table 4. 16 for clays and sands.
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Table 4. 12 Summary of average vertical SCL values based on CPT data
SCL (m)

Shallow
Water
Clays | Sands | Clays | Sands
Cone tip | Constant Approach, Mean | 0.258 0.263 0.262 0.231
resistance | Trend Approach, Mean | 0.148 0.168 0.116 0.133

Deep Water

Al fOL.lr Friction | Constant Approach, Mean | 0.269 0.217 0.251 0.167
autocovariance .
functions Ratio Trend Approach, Mean | 0.172 0.143 0.142 0.112

Sleeve Constant Approach, Mean | 0.250 0.234 0.210 0.216
friction Trend Approach, Mean | 0.147 0.153 0.124 0.115

Based on the statistical evaluation, the following results are obtained:

- All average vertical SCL values based on CPT data, of clays and sands, in
shallow and deep waters, using four different autocovariance functions are in
the range 0of 0.11 m to 0.27 m (Table 4.12). The SCL values of CPT data based
on “constant mean with depth approach” are always slightly larger than those
based on “trend with depth approach”.

- Sands and clays at deep water CPT soundings have slightly larger vertical
SCLcpt than sands and clays at shallow water soundings, in both constant and
trend approach.

- Among four autocorrelation functions, squared exponential function gives the
highest mean SCLcer values in 79% of all evaluations and 2" order
autoregressive function gives the highest in 21% of all evaluations. In addition,
cosine of exponential function always gives the smallest SCLcpt values in both
constant and trend approach.

- Sands have always greater SCLcpt, although slightly, based on cone tip
resistance compared to the values based on friction ratio and sleeve friction.

- In trend approach (where the fluctuations are evaluated about a linear trend
line), friction ratio data gives the highest vertical SCL value than tip resistance
and sleeve friction for clays.

- Based on cone tip resistance, sands have always larger vertical SCL than clays

in trend approach.
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- Clays have always (slightly) greater vertical SCL based on friction ratio than
sands.
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Table 4. 14 The mean, and standard deviation of the vertical SCL based on deep water CPT (with both “constant approach”and “trend

approach”) for sands

70

Deep Water
SCL SANDS
Cone Tip Resistance Friction Ratio Sleeve Friction
“Constant mean . ,» Constant mean ,»  Constant mean v
with depth” _ ﬁMM: with depth” HHM%: with depth” ﬁwﬁmﬁm:
approach PP approach PP approach PP
Mean (m) 0.2607 0.1636 0.2183 0.1411 0.2340 0.1496
. 0.765 0.487 0.728 0.465 0.720 0.448
Exponential
Range 0.027 0.022 0.029 0.028 0.038 0.034
Standard Deviation (m) 0.172 0.090 0.143 0.079 0.149 0.078
Mean (m) 0.278 0.180 0.224 0.151 0.244 0.162
. 0.926 0.579 0.880 0.581 0.874 0.550
Squared-Exponential
Range 0.026 0.027 0.034 0.031 0.042 0.036
Standard Deviation (m) 0.201 0.104 0.159 0.091 0.169 0.088
Mean (m) 0.240 0.153 0.200 0.132 0.217 0.140
. . 0.715 0.455 0.692 0.437 0.668 0.428
Cosine-Exponential
Range 0.016 0.020 0.020 0.018 0.031 0.024
Standard Deviation (m) 0.169 0.092 0.146 0.082 0.151 0.081
Mean (m) 0.274 0.175 0.224 0.149 0.243 0.159
. 0.863 0.535 0.817 0.534 0.813 0.511
2nd Order Autoregressive
Range 0.026 0.025 0.034 0.030 0.042 0.038

Standard Deviation (m) 0.190 0.099 0.153 0.087 0.162 0.085
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Table 4. 16 The mean, and standard deviation of the vertical SCL based on shallow water CPT (with both “constant approach”and

“trend approach”) for sands

Shallow Water

72

SCL SANDS
Cone Tip Resistance Friction Ratio Sleeve Friction
“Constant mean “Trend” “Constant mean “Trend” “Constant mean “Trend”
Correlation Function with depth” with depth” with depth”
approach approach approach
approach approach approach
Mean (m) 0.225 0.127 0.166 0.109 0.214 0.111
. 3.328 2.110 2.336 1.117 4.138 0.915
Exponential

Range 0.039 0.030 0.015 0.013 0.016 0.016
Standard Deviation (m) 0.388 0.158 0.187 0.104 0.400 0.078
Mean (m) 0.247 0.145 0.178 0.121 0.222 0.126
. 3.921 1.910 2.193 1.025 4.429 0.902

Squared-Exponential
Range 0.047 0.036 0.025 0.023 0.026 0.026
Standard Deviation (m) 0.413 0.153 0.176 0.097 0.400 0.074
Mean (m) 0.213 0.121 0.148 0.101 0.206 0.103
. . 3.218 2.345 2.028 1.027 4.139 0.690

Cosine-Exponential
Range 0.034 0.026 0.018 0.017 0.018 0.018
Standard Deviation (m) 0.393 0.167 0.154 0.092 0.419 0.065
Mean (m) 0.240 0.140 0.175 0.118 0.222 0.121
. 3.695 2.106 2.286 1.063 4414 0.907

2nd Order Autoregressive

Range 0.045 0.035 0.021 0.018 0.021 0.022

Standard Deviation (m) 0.407 0.161 0.180 0.100 0.405 0.076




4.2.3. Concluding Remarks

In this part of the study, 65 CPT soundings; 45 deep water CPT and 20 shallow water
CPT are analyzed. The average water depth of shallow and deep water CPT soundings
are 3.5 m and 38.8 m respectively. The average length of the soundings is
approximately 60 m below the seabed. The resolution of the data is 0.02 m with depth.
All CPT data are first classified according to the Robertson (2010)’s soil behavior type
and soil behavior type zones 3-4 and 5-6-7 are grouped together into broad groups of
"clays" and "sands", respectively. All statistical analyses are conducted by the
MATLAB code developed in this study, where soil profile is divided into same soil
layers and the vertical SCL is evaluated by utilizing four autocovariance functions,
using cone tip resistance, sleeve friction and friction ratio, separately.

Undrained shear strength, cy, and relative density, Dy, values are calculated for clays
and sands by using empirical equations. The average ¢y is found as 100 kPa (6=35.6
kPa) for shallow water soundings and 54 kPa (6=31.6 kPa) for deep water soundings
with a constant Nk value of 17. The results also show the importance of choosing the
value of the Nk. The value varies from 14 to 20 and the change in the undrained shear
strength can be as much as 40 kPa, depending on the N value. In addition, it is seen

that Dy is mostly less than 50% meaning that sands are in loose to medium dense state.

Vertical SCLcpr evaluations are conducted with both constant and trend approaches
for deep and shallow CPT soundings separately. All measurements; cone tip
resistance, friction ratio, and sleeve friction have been considered and corresponding
vertical SCL values are reported in Table 4. 12. The results show that trend approach
always results in smaller SCL values, although slightly. In addition, deep water clays
and sands have greater vertical SCLcpr values than shallow water clays, possibly
because of more uniform deposition and formation processes in geological history. All
average SCLcpr values are found to be between 0.17 and 0.27 m for constant approach
and between 0.11 and 0.17 m for trend approach. Detailed results are provided in Table
4. 13, Table 4. 14, Table 4. 15 and Table 4. 16.
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The evaluation of CPT soundings indicates that data of shallow water soundings has
less SCLcpr values, meaning that the data fluctuate more frequently, i.e. a rough
random field. The same result is reported in the study of Cheon and Gilbert (2014) and
it is stated that deeper offshore marine soils have larger SCLcpt’s compared to the
shallower depths. In addition, Nadim (2015) states that although the soil types in the
offshore and nearshore are similar, their spatial properties show significant
differences, i.e. the correlation structures are different. Soil parameters may change
more frequently from point to point in the nearshore while it is more stationary at deep

waters.
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CHAPTER 5

EFFECTS OF VARIABILITY ON BEARING CAPACITY AND
SETTLEMENT

In this chapter, the variability of soil parameters and spatial correlation length are
considered in the foundation design problems by using random finite element method
tools. Both settlement and bearing capacity of shallow strip foundations are
investigated and results are illustrated. The soil parameters can be defined by using
statistical distributions, such as normal and lognormal distributions. Lumb (1966),
Schultze (1971) and JCSS (2001) utilized normal distribution, while other researchers
such as Jiang et al. (2014), Griffiths et al. (2002), Cho (2010) and Tabarroki et al.
(2013) used lognormal distribution because of the non-negative values in soil
parameters (cohesion, friction angle, undrained shear strength, unit weight etc.). It
should be noted that the best and proper statistical distribution of soil parameters can
be a separate study by using the real field and laboratory test data, and the best fitting
distribution type probably depends on the soil property considered and the specific
site. In this chapter, the only purpose is to study the effect of SCL, therefore one of the
widely used statistical distribution types, lognormal distribution, is assigned to the soil

parameters.

5.1 Effects on Initial (Elastic) Settlement

In the shallow and offshore sea, mostly pile foundation is preferred for structures.
However, in this part of the study, only a shallow strip foundation is considered just to
demonstrate the effect of variability and SCL of soil parameters on immediate (elastic)
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settlement. In the finite element model, lower boundary is totally restricted to any
movement (fixed boundary) and vertical deformation is allowed at the side boundaries.
The width of shallow strip foundation, B, is 5 m under a 300 kN/m loading. The
increase in vertical stress due to applied load decreases significantly at a depth of 4B
below the base of foundation, therefore 20 m is taken as the vertical length of the model
underneath the foundation. In addition, the lateral distance from the foundation to the
side boundaries is investigated. It is a common practice to have at least about 3B
horizontal distance between the foundation and the side boundary of the model to
avoid boundary effects completely. After some preliminary runs about the dimensions
of the model, it is seen that when the horizontal distance between the edge of the
foundation and side boundary is as small as 1.5B, the change in the obtained settlement
results is effected by less than 5%. Therefore, in order to decrease run time, the model
size is selected as 20 m - 20 m (Figure 5. 1). The soil is modeled with an elastic model
where the Poisson’s ratio is taken as constant, 0.25, and the elasticity modulus is used
as a random variable for analyses. This analyses only looks into immediate (elastic)
settlement and does not include consolidation settlements. The modulus of elasticity
Is statistically represented by lognormal distribution and SCL of modulus of elasticity
is taken as equal in the both vertical and horizontal direction (isotropic). This
distribution is defined with an average of 10 MPa, and the analysis is performed with
a coefficient of variation of 5%, 22.5%, and 40% to represent different degrees of
variation. All parameters of the model can be seen in Table 5. 1. The RSETL2D
software creates random field using the SCL (equal in the both horizontal and vertical
directions; isotropic SCL) and exponential correlation function for the modulus of
elasticity and maps them to the final elements. Monte Carlo sampling method is
utilized and 2000 simulations are performed for settlement calculations to avoid the
effect of insufficient number of simulations (Pieczynska et al. 2011). In Figure 5. 1,
the random field (SCLy=1 m and SCLn=1 m) generated for the modulus of elasticity

can be seen where the dark color shows high values.

76



Table 5. 1 Parameters used in the bearing capacity model

Soil parameter Unit | Statistical distribution| Value
Elasticity modulus, E MPa Lognormal 10
Poisson ratio - - 0.25

Random field parameters
Spatial correlation length (m) |{0.025-0.05-0.1-0.25-05-1-2-3-4-5
(isotropic) of elastic modulus -6-7-8-9-10-15-20

COV (%) 5-225-40

l Load: 300 kN/m

20m

20m

Figure 5. 1 Geometrical representation of model with random field of cohesion
(SCLv=1 m and SCLx=1 m)

In each simulation of an analysis, a random field is created for the logarithm of
elasticity modulus, E. In addition, the results obtained from each simulation is stored
and a statistical distribution is used to represent the output data. In addition, E value in
each simulation is also stored and at the end, the mean and standard deviation of E
values in an analysis can be calculated. In Figure 5. 2, a random field created for
elasticity modulus and magnified displaced mesh is provided where up =1 %
10%, 05 = 4 * 103 and ngmuiarion = 2000. Also, probability density function of
settlement results (with normal distribution parameters) and all utilized E values (with

lognormal distribution parameters) in a single analysis are provided in Figure 5. 3.
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Figure 5. 2 (a) Generated random field for logarithm of E (SCLe= 4 m) and (b)
magnified displaced mesh
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Figure 5. 3 Probability density function of (a) settlement and (b) effective elastic

modulus with statistical parameters at the center point under the foundation
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The effect of SCL and COV of soil parameters on the settlement is shown in Figure 5.
4. The average of the settlement of 2000 simulations is not affected significantly by
increasing SCL of soil parameters. With the increase of SCLg, relatively higher
increase is observed for higher COV levels (Figure 5. 4a). It is also seen that increase
of COV value of the elasticity modulus has greater effect on elastic settlement than
SCLe. Therefore, it may be concluded that the COV of the soil parameter has primary
effect on the settlement, while SCLe has secondary effects. In 2000 simulation results,
COV of elastic settlement results increased significantly with the increase of SCLg
(Figure 5. 4b); the increase in the COV value of the elasticity modulus also increased
the COV value of the settlement results.

50 T
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=
L 45
=
§40_?@ﬁ;::::—:—:————:————¢ - ¢ -COV=5%
g k- COV= 22.5%
wn
S 35 + —o— COV=40%
= «— Deterministic

3.0 I } } |

0 S 10 15 20
Spatial Correlation Length (m)
14 T

(b)
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S qE) 06 + & g

=] AT e A--- COV=22.5%
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Spatial Correlation Length (m)

Figure 5. 4 The effect of COV of soil parameters and SCLe on (a) mean settlement

and (b) COV of settlement (2000 simulations)
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By creating random field by using mean, standard deviation and SCLE, the reliability
of the foundation can be obtained for serviceability limit state (SLS), maximum
allowable settlement. For this study, serviceability limit is taken as 4.5 cm, as an
example for demonstration purposes, and the probability of exceeding SLS is obtained
for different COV levels and SCLe values (Figure 5. 5). Although deterministic results
indicate that the limit is not exceeded, the probability of exceeding SLS can be as much
as 50%. As the COV and SCL of elastic modulus increase, the range of initial
settlement results widens and the area of probability density function over the values
less than SLS increases. Figure 5. 5 shows that SCLe and COV of soil can have
significant effects on the probability of having greater settlement than the maximum

defined limit.

Probability of Exceeding SLS (%)

0 5 10 15 20
Spatial Correlation Length (m)

-¢-COV=5% --a--COV=225% —e—COV=40%

Figure 5. 5 Probability of exceeding SCL
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5.2 Effects on Bearing Capacity

The effects of SCL and COV of soil parameters on bearing capacity of shallow
foundation are investigated by using RBEAR2D software (Fenton and Griffiths 2008)
using RFEM. A 4-m wide strip footing located on the ground surface (Figure 5. 6) and
a general, c- ¢ soil is considered in the analyses. 5 levels of COV, between 5% and
40%, for the soil parameters are utilized in the analyses. The model parameters are
given in Table 5. 2. In an analyses, same COV values are applied to all random
variables. Both isotropic and anisotropic SCL analyses are performed where the ratio
of horizontal SCL (dn) to the vertical (dv) is taken as 10 (Baecher and Christian 2003)

in anisotropic case. Soil is modeled with elasto-plastic Von Mises constitutive soil

model.
Table 5. 2 Parameters used in the bearing capacity model
Soil Parameters Statistical Distribution Mean Value
Cohesion (kPa) Lognormal 10
Friction angle (deg.) Lognormal 35
Dilation angle (kPa) Lognormal 5
Elastic modulus (kPa) Lognormal 20000
Poisson's Ratio Deterministic 0.25

Random field parameters

Spatial Correlation Length (m) [0.025-0.05-0.1-0.25-05-1-2-3-4-5-6

of soil parameters -7-8-9-10-15-20
COV (%) 0-5-13.75-225-31.25-40
Correlation coefficient (c-¢) -0.5
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13 m

13 m

1Ty

32m

Figure 5. 6 Representation of model with random field of cohesion (SCLy=10 m and
SCLx=100 m); (a) Geometry of the model, (b) deformed mesh

In the bearing capacity analysis, both anisotropic and isotropic spatial variability are
considered. In Figure 5. 7, random fields for 1 m and 10 m SCL of cohesion in the

vertical direction are provided for both isotropic and anisotropic cases.
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Sy =06n=10 m Sv=10 m, 5h=100 m

Figure 5. 7 Generated random field for isotropic (a-c) and anisotropic (b-d) cases
(model geometry 13 m x 32 m)

Effect of the number of Monte-Carlo simulations is investigated by performing
analyses with simulation numbers from 1 to 10000. The analyses are performed for
COV of 22.5% and SCL of soil parameters are taken as 1, 2 and 3 m in both directions
(isotropic). Figure 5. 8 indicates that the mean bearing capacity converges to a stable
point at about 2000 simulation numbers regardless of the SCL value. Therefore, in all

analyses, the number of simulations is taken as 2000.
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Figure 5. 8 Effect of number of Monte Carlo simulations on the mean bearing
capacity for COV=22.5 % and SCLy=h 1 m, 2 m and 3 m cases.
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The effects of SCL of soil parameters on bearing capacity of shallow strip foundation
are analyzed for 5 level of COV of soil parameters. Both isotropic and anisotropic SCL
cases are investigated and the results are provided in Figure 5. 9 and Figure 5. 10. The
results indicate that, up to a value of SCL, as SCL increases normalized mean bearing
capacity decreases (Figure 5. 9). After a specific value of SCL, as SCL increases
normalized mean bearing capacity increases. The initial decrease may be explained by
the relation between the values of SCL and the dimensions of bearing capacity failure
zone, which depends on the width of the foundation, B. The affected zone is
approximately 1.5B deep and 5B wide underneath the foundation. The bearing failure
initiates due to having weaker zones in the bearing capacity failure zones which is
more likely when SCL is small (i.e. random field is more rough) as compared to 1.5B.
However, further increasing the SCL (relative to 1.5B) causes more smooth changes
of soil parameters within the bearing capacity failure zone, i.e. soil volume starts to
behave like a homogeneous volume. Therefore, it is less likely to have connected weak
zones and greater mean bearing capacities are obtained. Likewise, Jha (2016) reported
that normalized mean bearing capacity first decreases and reaches a minimum value
and then increases with the increasing scale of fluctuation. In addition, the range of the
results increases with increasing SCL of soil parameters because larger zones may be
completely weak, or strong, together underneath the foundation. Therefore, much
larger and much smaller results can be obtained which means COV of the results
increases. Likewise, with the increase of COV of soil parameters, the value of strength
parameters can take much larger and lower values and therefore variability of the
results increases. The results of this study show that the COV of bearing capacity
increases with the increase of SCL values and COV of soil parameters for both
isotropic and anisotropic cases (Figure 5. 10). When isotropic and anisotropic cases
are compared, it is seen that the decrease of mean bearing capacity is a little more in
anisotropic case. In addition, COV of bearing capacity reaches greater amounts in

anisotropic case.
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Figure 5. 10 Effect of SCL of soil parameters on COVhearing capacity for 5 levels of

COV.oil parameters for (a) isotropic case and (b) anisotropic case
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The effect of SCL and COV of soil parameters on the probability of failure under a
given loading is investigated and illustrated in Figure 5. 11. The foundation under a
load that is greater and less than the deterministic bearing capacity of soil volume is
called as “deterministically unsafe” and “deterministically safe” respectively. The
effect of SCL on the probability of failure is found to be opposite for deterministically
safe and unsafe cases. For deterministically safe case, increasing SCL increases the
probability of failure because having larger weaker zones under the foundation
becomes more possible with increasing SCL and larger weaker zones create more
possibility to initiate the bearing failure. On the contrary, increasing SCL decreases
the probability of failure for the deterministically unsafe case. The reason is that
relatively stronger zones are formed by increasing SCL and larger loads can be carried

by the foundation.
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Figure 5. 11 Effect of SCL of soil parameters (8) with different COVsoil parameters levels

on probability of failure at deterministically safe and unsafe conditions for (a)

isotropic case and (b) anisotropic case
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In addition, the mean bearing capacity of 2000 Monte Carlo simulations is found to be

decreasing with increasing variability of soil parameters (Figure 5. 12). The average

bearing capacity can decrease by about 25% of its deterministic value. The results

show that for a given COV %, increasing SCL of soil parameters from 0.025 m to 3.0

m can decrease the mean bearing capacity as much as 11% of its deterministic bearing

capacity.
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Figure 5. 12 Effect of SCL of soil parameters with different COVsoil parameters levels on

mean bearing capacity for (a) isotropic case and (b) anisotropic case

Increasing variability of obtained results given in Figure 5. 10 is also illustrated with

the probability density functions of four cases. In Figure 5. 13, when SCL increases

for the same COVpaameter, the standard deviation of evaluated bearing capacity
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increases and wider range of results are obtained. That is, when SCL increases for the
same COVparameter, larger zones will be correlated to each other (i.e. will have similar
values of soil parameters) underneath the foundation. If high strength values are
assigned to much larger zones, much higher bearing capacity can be obtained.
Similarly, much lower bearing capacity values can also be obtained if larger zones of
low strength values exist. When SCL is kept constant and COV parameter iNcreases from
5% to 40 %, the standard deviation increases. That is, either increasing SCL or
COVoparameter Significantly increases the standard deviation of evaluated bearing
capacity.
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Figure 5. 13 Probability density function of =20 m & 1 m and COVsoil parameters OF
5% and 40% for (a) isotropic case and (b) anisotropic case
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The effect of SCL and COV of soil parameters can be seen in Figure 5. 14. It is seen
that for a given loading, the probability of failure increases as COV of soil parameters
increases. For the same COV levels, increasing the SCL of soil parameters may
increase or decrease the probability of failure according to the safety level which is

also illustrated in Figure 5. 11.
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The effect of SCL and coefficient of variation of soil parameters are investigated by
using RBEAR2D, random finite element method. All analyses are conducted with
2000 Monte-Carlo simulations. The effect of SCL of soil parameters on the probability
of failure, Pt, changes according to the safety level. Increasing SCL increases the Ps of
deterministically safe cases, while it decreases the Ps of deterministically unsafe cases.
Mean bearing capacity decreases with increasing COV of soil parameters. In addition,
the mean bearing capacity may decrease by about 11% of its deterministic bearing
capacity with the increase of SCL. Standard deviation of 2000 bearing capacity
simulations increases by increasing SCL values and therefore probability of failure is
effected significantly.
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CHAPTER 6

CONCLUSIONS AND FUTURE STUDIES

6.1 Summary

Reliability-based design approach is a popular trend in geotechnical engineering field,
especially in the recent decades. In this approach, the probability of failure, probability
of exceeding any limit criteria, reliability index can be obtained as well as the results
obtained in deterministic approaches such as deterministic factor of safety and bearing
capacity etc. In the reliability-based design, variability of soil parameters is included
in the analyses where the variability is represented by mean, standard deviation and
spatial correlation length. In this study, the offshore and nearshore geotechnical site

investigation data are used for 3 sites, and the following issues have been examined:

The types and typical characteristics of sea bottom soils

Ranges of values and statistical evaluation for engineering properties, such as

effective friction angle, relative density, and undrained shear strength

- Spatial correlation length of soils in the vertical direction based on CPT and
SPT data

- The effects of variability of both the coefficient of variability of soil parameters

and SCL of soil parameters on settlement and bearing capacity of shallow strip

foundations

One of the aims of this study is to emphasize the importance of variability of soil and

to demonstrate the importance of probabilistic approach by providing the quantified
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values of soil variability and specific values for settlement and/or bearing capacity
influenced by this variability.

The variability of the soil is investigated by using SPT and CPT data from three
different sites in Turkish waters. The soil profile at the SPT sites is obtained by
evaluating laboratory test results, SPT-N data and field observations while Robertson
(2010)'s soil behavior type chart is utilized for CPT sites. After digitizing the field data
and identifying the soil layers, the statistical evaluation is carried out by a MATLAB
code developed in this study, which finds engineering parameters of the soils at each
data point and calculates SCL of field data in the vertical length by function fitting
method. Four autocovariance functions; exponential, squared exponential, cosine
exponential and second-order autoregressive, are utilized to calculate SCL for different

soil groups.

The importance of variability of soil parameters is illustrated by extensive analysis
where random finite element programs; RSETL2D and RBEAR2D are utilized. The
programs are a combination of random field and finite element method which is
developed by Fenton and Griffiths in 1992. In these programs, random fields of soil
properties are generated by using statistical distribution parameters and the created
random field is matched with finite element meshes. The settlement and bearing
capacity results are obtained with a statistical distribution and related probabilistic
studies are conducted for the probability of failure and exceeding any limit value. The
results of the study emphasize the importance of the variability and probabilistic

approach.

6.2 Conclusions

The results of this study can be summarized as follows:

i.  Based on site investigation data for nearshore sea bottom soils at the Gulf of
Hatay (SPT data): fines are mostly low plasticity clays (CL) and the coarse

fraction is dominantly composed of sand-silt and sand-clay mixtures.
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Due to limited laboratory tests at SPT site, the engineering parameters are
evaluated by using empirical equations. At site 1, soft to stiff clay layers exists
having undrained shear strength (cy) in the range of 5 to 100 kPa. At site 2,
clays can be classified as soft to medium stiff clays with max cy values of 50
kPa. The rate of increase of c, with depth is found as 2.1-2.2 kPa/m which are
in the range of reported values in the literature. The average relative density
of the coarse fraction is found as 29-40 % and the coarse fraction is classified
as loose to medium dense with an average effective friction angle of
approximately 35°.

The SCL in the vertical direction based on SPT data is evaluated for clays and
mixture type of soils separately. When mean is assumed to be constant with
depth, evaluated SCLgpr_n for clays and mixtures are 3.85 m (+1.41 m
standard deviation) and 4.20 m (+£2.14 m standard deviation), respectively. In
addition, if mean of the measurements is assumed to be linearly increasing
with depth, the SCLgpr_y Values become 1.71 m (+0.86 m standard deviation)
for clays and 2.02 (+£1.26 m standard deviation) for mixtures, respectively. The
second approach is recommended to represent true variability. It is known that
SPT is prone to measurement errors (equipment-related and operator effects
etc.), however this has not been considered in the current work. Therefore,
evaluated vertical spatial correlation lengths represent not only the inherent
variability of soils but also the effect of measurement errors.

In the evaluation of SPT data with depth dependent (trend) approach, the
squared exponential (Gaussian) autocorrelation function mostly gives the
highest SCLgpr_n results (in 72% of all evaluations) while exponential
autocorrelation function (Markov) results in generally lowest values (in 78%
of all evaluations).

The CPT soundings (both shallow and deep water soundings) mostly consist
of clays and sands (Robertson (2010)’s soil behavior types 3-4 and 5-6-7,
respectively). The average undrained shear strength of clays at shallow water
soundings is found as 100 kPa (c=35.6 kPa) and the average value of clays at
deep water soundings is found as 54 kPa (6=31.6 kPa). It can be concluded

that clays at shallow water soundings are medium stiff to stiff and at deep

95



Vi.

Vii.

viii.

Xi.

Xil.

water soundings are soft to medium stiff. In addition, sands are mostly in the
medium dense state in both shallow and deep waters.

The vertical SCL based on CPT data is found to be between 0.210 m and 0.269
m for clays and between 0.167 m and 0.263 m for sands by constant approach,
and between 0.116 m and 0.172 m for clays and between 0.112 m and 0.168
m for sands by trend approach for which group of soil.

Sands and clays at deep water CPT soundings have slightly larger vertical
SCLcpt values than sands and clays at shallow water soundings, in both
constant and trend approach. This can possibly be attributed to more uniform
deposition and formation processes in geological history, in deep water
seabeds as compared to shallow waters, for which deposition of more
heterogeneous soils can be expected.

The results indicate that assuming that there exists a trend with depth and
detrending your data (in other words, evaluating the vertical SCL about the
trend) results in smaller SCL values.

When cosine exponential function is utilized to fit the autocorrelation
coefficient data, it gives the highest goodness of fit value.

The importance of sampling interval on the vertical SCL is found to be crucial.
The SCL values based on SPT is found to be always greater than the SCL of
CPT data. Depending on the real correlation structure, the larger sampling
intervals may overestimate the spatial correlation length. It is always better to
have frequent observation points within the SCL.

The effects of variability on settlement and bearing capacity of shallow strip
foundation are investigated by using random finite element tools; RSETL2D
and RBEAR2D. The Monte Carlo simulations are utilized in the analyses. The
effect of simulation number has been investigated and after 2000 simulation
numbers, results converge to a constant value, therefore 2000 simulations is
found to be sufficient.

The effect of COV and SCL of soil parameters has a significant influence in
the settlement. The increase in COV of soil parameters significantly increases
the mean and COV of the settlement results obtained from 2000 simulations.

In addition, increasing SCL has significant effects on settlement results. The
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effect of SCL increases with increasing COV value of soil parameters. For a
given serviceability limit state (SLS), increasing SCL may increase the
probability of exceeding SLS settlement as much as 50%.

xiii.  Bearing capacity analyses show that COV and SCL of soil parameters have
significant influence on the results. The variability has inverse effects on for
deterministically safe and unsafe cases. Increasing COV and SCL increase the
probability of failure for a given loading for deterministically safe cases and
decrease for deterministically unsafe cases.

Xiv.  Mean bearing capacity decrease, [Bearing Capacity With increasing COV value and
SCL value of soil parameters. The COV may decrease the [Bearing Capacity aS
much as 25% of deterministic bearing capacity. In addition, SCL may cause a

decrease by 11% of deterministic bearing capacity.

6.3 Future Work and Recommendation

The following topics can be studied in future studies:

- Evaluation of spatial correlation length of soil parameters in the horizontal
direction and its effects on geotechnical design

- Evaluation of spatial correlation length based on not only field data but also
laboratory tests performed on soil samples obtained with a high resolution
(lower separation distance), and comparison of results

- The methods and techniques to handle inclined soil layers for evaluation spatial
correlation length in the horizontal direction

- Developing more advanced software where the random field is generated for
all separate soil parameters with different statistical parameters and can analyze

any/all geotechnical problems.

97



98



REFERENCES

Akbas, S. O., & Kulhawy, F. H. 2010. Characterization and estimation of geotechnical
variability in Ankara clay: a case history. Geotechnical and Geological Engineering,
28(5), 619-631.

Akkaya, A., and E. H. Vanmarcke. 2003. Estimation of Spatial Correlation of Soil
Parameters Based on Data from the Texas A&M University NGES. Probabilistic Site
Characterization at the National Geotechnical Experimentation Sites, 29-40.
d0i:10.1061/9780784406694.ch03.

Alonso, E. E., and R. J. Krizek. 1975. Stochastic formulation of soil properties. In Proc.
2nd Int. Conf. on Applications of Statistics and Probability in Soil and Structural
Engineering 2:9-32.

Andersen, L.V., M.J. Vahdatirad and J.D. Serensen. 2011. Reliability-Based Assessment
of the Natural Frequency of an Offshore Wind Turbine Founded on a Monopile. Proc.
Thirteenth Intern. Conf. on Civil, Structrl. and Environl. Engrg Compig, B.H.V.
Topping and Y. Tsompanakis, Civil- Comp press, Stirlingshire, Scotland, paper 83.

Andersen, L.V., M.J. Vahdatirad, M.T. Sichani and J.D. Serensen. 2012. Natural
Frequencies of Wind Turbines on Monopile Foundations in Clayey Soils: a
Probabilistic Approach, Comput. Geotech., No. 43, pp. 1-11.

Baecher, G. B., and J. T. Christian. 2003. Reliability and Statistics in Geotechnical
Engineering. Reliability and Statistics in Geotechnical Engineering. John Wiley &
Sons: London and New York. doi:10.1198/tech.2005.s838.

Basack, S., and R. D. Purkayastha. 2009. Engineering Properties of Marine Clays from
the Eastern Coast of India.”Journal of Engineering and Technology Research 1 (6):
109-14.

Bouayad, D. 2017. “ssessment of Sandy Soil Variability Based on CPT Data. Procedia
Engineering, Proc. of the 1st International Conference on the Material Point Method,
175: 310 — 315.d0i:10.1016/j.proeng.2017.01.033.

99



Cafaro, F., and C. Cherubini. 2002. Large Sample Spacing in Evaluation of Vertical
Strength Variability of Clayey Soil. Journal of Geotechnical and Geoenvironmental
Engineering 128 (7): 558-68. doi:10.1061/(ASCE)1090-0241(2002)128:7(558).

Cao, Z., Y. Wang, and M. Asce. 2014. Bayesian Model Comparison and Characterization
of Undrained Shear Strength. Journal of Geotechnical and Geoenvironmental
Engineering 140 (6): 4014018-1-9. doi:10.1061/(ASCE)GT.1943-5606.0001108.

Carswell, W., S. R. Arwade, A. T. Myers, and J. F. Hajjar. 2013. Reliability Analysis of
Monopile Offshore Wind Turbine Support Structures. Safety, Reliability, Risk and
Life-Cycle Performance of Structures and Infrastructures, 223.

Cassidy, M. J., M. Uzielli, and Y. Tian. 2013. Probabilistic Combined Loading Failure
Envelopes of a Strip Footing on Spatially Variable Soil. Computers and Geotechnics
49: 191-205. doi:10.1016/j.compgeo.2012.10.008.

Cheon, J. Y., and R. B. Gilbert. 2014. Modeling Spatial Variability in Offshore
Geotechnical Properties for Reliability-Based Foundation Design. Structural Safety
49. Elsevier Ltd: 18-26. doi:10.1016/j.strusafe.2013.07.008.

Cherubini, C. 2000. Reliability Evaluation of Shallow Foundation Bearing Capacity on
¢’, f” soils. Canadian Geotechnical Journal 37: 264—-269.

Chiasson, P., J. Lafleur, M. Souli¢, and K. T. Law. 1995. Characterizing Spatial
Variability of a Clay by Geostatistics. Canadian Geotechnical Journal 32 (1): 1-10.
d0i:10.1139/t95-001.

Cho, S. E. 2010. Probabilistic Assessment of Slope Stability That Considers the Spatial
Variability of Soil Properties. Journal of Geotechnical and Geoenvironmental
Engineering 136 (7): 975-84. doi:10.1061/(ASCE)GT.1943-5606.0000309.

Cho, S. E., and H. C. Park. 2009. Effect of Spatial Variability of Cross-Correlated Soil
Properties on Bearing Capacity of Strip Footing. International Journal for Numerical
and Analytical Methods in Geomechanics 34: 1-26. doi:10.1002/nag.791.

DeGroot, D.J. 1996. Analyzing spatial variability of in-situ soil properties. In C.D.
Shackleford, P.P. Nelson and M.J.S. Roth (eds.), Uncertainty in the Geologic
Environment: From Theory to Practice, Geotechnical Special Publication No. 58: 210-
238. New York: ASCE.

100



DeGroot, D. J., and G. B. Baecher. 1993. Estimating Autocovariance of In-Situ Soil
Properties. Journal of Geotechnical Engineering 119 (1): 147-66.
d0i:10.1061/(ASCE)0733-9410(1993)119:1(147).

Derinsu Geological and Geotechnical Soil Investigation Report, Iskenderun Harbor,
February 2011a.

Derinsu Geological and Geotechnical Soil Investigation Report, Iskenderun Harbor,
October 2011b.

Derinsu Geological and Geotechnical Soil Investigation Report, Yumurtalik Adana,
March 2014.

Derinsu Geological and Geotechnical Soil Investigation Report, Yumurtalik Adana,
November 2015.

Elachachi, S. M., Breysse, D., & Denis, A. 2012. The effects of soil spatial variability on
the reliability of rigid buried pipes. Computers and Geotechnics, 43, 61-71.

Fenton, G, and D V Griffiths. 2000. Bearing Capacity of Spatially Random ¢ - ¢ Soils.
Proc. 10th Int. Conf. on Computer Methods and Advances in Geomechanics
(IACMAG 01), 1411-15.

Fenton, G. A., & Griffiths, D. V. 2008. Risk Assessment In Geotechnical Engineering,
Hoboken, NJ: John Wiley & Sons.

Fenton G. A. and Vanmarcke E. H. 1990. Simulation of random fields via local average
subdivision. Journal of Engineering Mechanics, Vol. 116, Issue 8, pp. 1733-1749.
Firouzianbandpey, S., D. V. Griffiths, L. B. Ibsen, and L. V. Andersen. 2014. Spatial
Correlation Length of Normalized Cone Data in Sand : Case Study in the North of
Denmark. Canadian Geotechnical Journal 857 (July 2013): 844-57. doi:10.1139/cgj-

2013-0294.

Gibbs, H. J. & Holtz W. G.. 1957. Research on Determining the Density of Sands by
Spoon Penetration Testing, Proc. 4th.ICSMFE, London, 1: 35-39.

Griffiths, D V, and Gordon a Fenton. 1993. Seepage beneath Water Retaining Structures
Founded on Spatially Random Soil. Géotechnique. doi:10.1680/ge0t.1993.43.4.577.

Griffiths, D. V., and G. A. Fenton. 2000. Bearing Capacity of Heterogeneous Soils by
Finite Elements. Proc. of the 5th International Congress on Numerical Methods in
Engineering and Scientific Applications, 27-37.

101



Griffiths D. V., and G. A. Fenton. 2001. Bearing Capacity of Spatially Random Soil: The
Undrained Clay Prandtl Problem Revisited. Géotechnique 51 (4): 351-59.
doi:10.1680/geot.2001.51.4.351.

Griffiths, D.V. and G.A. Fenton. 2007. Probabilistic methods in geotechnical engineering,
CISM Courses and Lectures No. 491, Pub. Springer, Wien, New York.

Griffiths, D. V., and Gordon A. Fenton. 2009. Probabilistic Settlement Analysis by
Stochastic and Random Finite-Element Methods. Journal of Geotechnical and
Geoenvironmental Engineering 135 (11): 1629-37. doi:10.1061/(ASCE)GT.1943-
5606.0000126.

Griffiths, D.V., G. A. Fenton and D. E. Tveten. 2002. Probabilistic geotechnical analysis:
How difficult does it need to be? Proc. of an International Conference on,
“Probabilistics in Geotechnics: Technical and Economic Risk Estimation”, (eds. R.
Poettler et al.), Pub. VGE, Essen, Germany, pp.3-20.

Griffiths, D. V., G. A. Fenton, and H.R. Ziemann. 2006. The Influence of Strength
Variability in the Analysis of Slope Failure Risk. Geomechanics Il Proceeding of the
Second Japan-U.S. Workshop on Testing, Modeling and Simulation, P.V. Lade and T.
Nakai, Eds., Kyoto, Japan, September, 2005. Also in Geotechnical Special Publication
No. 156, ASCE, 113-23. doi:10.1061/40870(216)9.

Griffiths, D. V., J. Huang, and G. A. Fenton. 2009. Influence of Spatial Variability on
Slope Reliability Using 2-D Random Fields. J Geotech Geoenviron, 135 (10): 1367—
78.

Hommels A., Huber M., Molenkamp F., and Vermeer P.A. 2010. Inverse modelling
including spatial variability applied to the construction of a road embankment. In T.
Benz, editor, Proceedings of the 7th European Conference on Numerical Methods in
Geotechnical Engineering, Trondheim, NUMGE, pages 369-374, 2010.

Hossain, M. S., J. Zheng, D. Menzies, L. Meyer, and M. F. Randolph. 2014. Spudcan
Penetration Analysis for Case Histories in Clay. Journal of Geotechnical and
Geoenvironmental Engineering 140 (1): 4014034. doi:10.1061/(ASCE)GT.1943-
5606.0001133.

Huber, M. 2013. Soil variability and its consequences in geotechnical engineering. PhD.
Thesis in Institute of Geotechnical Engineering of Stuttgart University, Stuttgart,

Germany.

102



Jaksa, M. B., W. S. Kaggwa, and P. I. Brooker. 1999. Experimental evaluation of the
scale of fluctuation of a stiff clay, In Proc. 8th Int. Conf. on the Application of Statistics
and Probability, 1:415-422, December 1999, Sydney, AA Balkema, Rotterdam.

Jamiolkowski, M., Lo Presti, D. C. F., & Manassero, M. 2003. Evaluation of relative
density and shear strength of sands from CPT and DMT. In Soil behavior and soft
ground construction (pp. 201-238).

JCSS Probabilistic Model Code (2001).

Jha, S. K. 2016. Reliability-Based Analysis of Bearing Capacity of Strip Footings
Considering Anisotropic Correlation of Spatially VVarying Undrained Shear Strength.
International Journal of Geomechanics, 6016003. doi:10.1061/(ASCE)GM.1943-
5622.0000638.

Jiang S. H., Li D. Q., Cao Z. J., Zhou C. B. and Phoon K. K. 2014. Efficient System
Reliability Analysis of Slope Stability in Spatially Variable Soils Using Monte Carlo
Simulation. Journal of Geotechnical and Geoenvironmental Engineering, Vol. 141,
Issue 2, 04014096.

Kamei, T., and K. Iwasaki. 1995. Evaluation of Undrained Shar Strength of Cohesive
Soils Uing a Flat Dilatometer. Soils and Doundations 35 (2): 111-16.

Keaveny, J. M., F. Nadim, and S. Lacasse. 1990. Autocorrelation functions for offshore
geotechnical data. Proc. ICOSSAR 1990. International Conference on Structural
Safety and Reliability. Perth, Australia, 263-270

Kottegoda, N. T., and R. Rosso. 2008. Applied Statistics for Civil and Environmental
Engineers. Blackwell.

Kulhawy, F. H., B. Birgisson, and M. D. Grigoriu. 1992. Reliability based foundation
design for transmission line structures: Transformation models for in-situ tests. Report
EL-5507(4). Palo Alto, CA: Electric Power Research Institute.

Kulhawy, F. H., & Mayne, P. W. 1990. Manual on estimating soil properties for
foundation design (No. EPRI-EL-6800). Electric Power Research Inst., Palo Alto, CA
(USA); Cornell Univ., Ithaca, NY (USA). Geotechnical Engineering Group.

Lacasse, S. and F. Nadim. 1996. Uncertainties in characterizing soil properties. In
Uncertainty in the Geologic Environment: From Theory to Practice. Geotechnical
Special Publication No. 58, ASCE: Madison, WI, 49-75.

103



Lacasse, S. 2013. 8th Terzaghi Oration. Protecting Society from Landslides — the Role of
the Geotechnical Engineer. 18th International Conference on Soil Mechanics and
Geotechnical Engineering - Challenges and Innovations in Geotechnics, 15-34.

Li, K. S., and P. Lumb. 1987. Probabilistic design of slopes. Can. Geotech. J., 24, 520
531.

Liu, C.-N., and C.-H. Chen. 2010. Estimating Spatial Correlation Structures Based on
CPT Data. Georisk: Assessment and Management of Risk for Engineered Systems and
Geohazards 4 (2): 99-108. doi:10.1080/17499511003630504.

Liu, Z., S. Lacasse, F. Nadim, M. Vanneste, and G. Yetginer. 2015. Accounting for the
Spatial Variability of Soil Properties in the Reliability-Based Design of Offshore Piles.
In Frontiers in Offshore Geotechnics 111, 978-1.

Lloret-Cabot, M., G. A. Fenton, and M. A. Hicks. 2014. On the Estimation of Scale of
Fluctuation in Geostatistics. Georisk: Assessment and Management of Risk for
Engineered Systems and Geohazards 8 (2): 129-40.
d0i:10.1080/17499518.2013.871189.

Luo, Z., Wang, L., Khoshnevisan S., Juang C. H. Effect of spatial variability on the
reliability-based design of drilled shafts. Proceedings of the Geo-Congress 2014,GSP
(Geotechnical Special Publication);234, 23-26 Feb 2014, Atlanta, Georgia, 3274-
3282.

Lumb P. 1966. The variability of natural soils. Canadian Geotechnical Journal, Vol. 3,
Issue 2, pp. 74-97.

Lumb, P.. 1975. Spatial variability of soil properties. In Proceedings of the 2nd
International Conference on Application of Statistics and Probability to Soil and
Structural Engineering, Aachen, 2:397-421.

Nadim, F.. 2015. Accounting for Uncertainty and Variability in Geotechnical
Characterization of Offshore Sites. d0i:10.3233/978-1-61499-580-7-23.

Oguz, E. A., Yagizer, Y., and Huvaj, N. 2017. Probabilistic Slope Stability Analyses :
Effects of the Coefficient of Variation and the Cross-Correlation of Shear Strength
Parameters. Geotechnical Frontiers 2017, 363—71. doi:10.1061/9780784480458.036.

Overgard, Ida Elise. Reliability-based Design of a Monopile Foundation for Offshore
Wind Turbines based on CPT Data. Master's thesis, Norwegian University of Science

and Technology, June 2015.

104



Paice, G. M., D. V. Griffiths, and G. A. Fenton. 1996. Finite Element Modeling of
Settlements on Spatially Random Soil. Journal of Geotechnical Engineering 122 (9).
d0i:10.1061/(ASCE)0733-9410(1996)122.

Pantelidis, L., and P. Christodoulou. 2017. Spatial Correlation Length of Clay Soils in
Practice and Its Influence in Probabilistic Bearing Capacity Analysis. Proc. Geo-Risk
2017, 487-96.

Peng, X. Y., L. L. Zhang, D. S. Jeng, L. H. Chen, C. C. Liao, and H. Q. Yang. 2017.
Effects of Cross-Correlated Multiple Spatially Random Soil Properties on Wave-
Induced Oscillatory Seabed Response. Applied Ocean Research 62. Elsevier B.V.: 57—
69.

Phoon K-K. 2008. Reliability-based Design in Geotechnical Engineering: Computations
and Applications. Taylor and Francis: New York, NY.

Phoon, K.-K., and F. H. Kulhawy. 1999a. Characterization of Geotechnical Variability.
Canadian Geotechnical Journal 36 (4): 612—24. doi:10.1139/t99-038.

Phoon, K.-K., and F. H. Kulhawy. 1999b. Evaluation of Geotechnical Property
Variability. Canadian Geotechnical Journal 36 (4): 625-39. doi:10.1139/t99-039.

Phoon, K.-K., F. H. Kulhawy, andM.D. Grigoriu.1995. Reliability-based design of
foundations for transmission line structures. Electric Power Research Institute, Palo
Alto, Calif., Report TR-105000.

Phoon, K.-K., S.-T. Quek, and P. An. 2003. Identification of Statistically Homogeneous
Soil Layers Using Modified Bartlett Statistics. Journal of Geotechnical and
Geoenvironmental Engineering 129 (7): 649-59. do0i:10.1061/(ASCE)1090-
0241(2003)129:7(649).

Pieczynska, J, W Puta, D V Griffiths, and G a Fenton. 201 1. Probabilistic Characteristics
of Strip Footing Bearing Capacity Evaluated by Random Finite Element Method. Civil
Engineering, 1673-82.

Popescu, R., G. Deodatis, and A. Nobahar. 2005. Effects of Random Heterogeneity of
Soil Properties on Bearing Capacity. Probabilistic Engineering Mechanics 20 (4): 324—
41. doi:10.1016/j.probengmech.2005.06.003.

Robertson, P.K., Campanella, R.G., Gillespie, D. and Greig, J. 1986. Use of piezometer
cone data. Use of In-Situ Tests in Geotechnical Engineering (GSP 6), ASCE, Reston,
VA: 1263-1280.

105



Sarma, C. P., A. M. Krishna, and A. Dey. 2014. Probabilistic Slope Stability Analysis
Considering Spatial Variability of Soil Properties : Influence of Correlation Length. In
Computer Methods and Recent Advances in Geomechanics, 1125-30.

Schmertmann, J. H.. 1975. Measurement of in situ shear strength. SOA Report, In Proc.,
ASCE Spec. Conf. on In Situ Measurement of Soil Properties, Raleigh, NC, 2: 57-138.

Schultze E. 1971. Frequency distributions and correlations of soil properties. First
International Conference on Applications of Statistics and Probability to Soil and
Structural Engineering Proceedings. Hong Kong University Press, pp. 372-387.

Schweiger, H. F., G. M. Peschl, and R. Pottler. 2007. Application of the Random Set
Finite Element Method for Analysing Tunnel Excavation. Georisk: Assessment and
Management of Risk for Engineered Systems and Geohazards 1 (1): 43-56.
d0i:10.1080/17499510701204141.

Shuwang, Y., and G. Linping. 2015. Calculation of Scale of Fluctuation and Variance
Reduction Function. Transactions of Tianjin University 21 (1): 41-49.

Shuwang, Y., and G. Linping. 2015. “Calculation of Scale of Fluctuation and Variance
Reduction Function.” Transactions of Tianjin University 21 (1): 41-49.

Stroud M. A.. 1988. The standard penetration test — its implication and interpretation.
Penetration Testing in the UK, Thomas Telford, London.

Stroud, M. A.. 1974. The standard penetration test in insensitive clays and soft rocks. In
Proc. of the European Symposium on Pentration Testing ESOPT, Stockholm 1974.
Stockholm, National Swedish Building Research, 367-375.

Tabarroki M., Ahmad F., Banaki R., Jha S. and Ching J. 2013. Determining the factors
of safety of spatially variable slopes modeled by random fields. Journal of
Geotechnical and Geoenvironmental Engineering. Vol. 139, Issue 12, pp. 2082-2095.

Terzaghi, K., R. B. Peck, and G. Mesri. 1996. Soil Mechanics in Engineering Practice,
John Wiley & Sons.

Uzielli, M., G. Vannucchi, and K.-K. Phoon. 2005. Random Field Characterisation of
Stress-Normalised Cone Penetration Testing Parameters. Géotechnique 55 (1): 3—20.
doi:10.1680/geot.55.1.3.58591.

Uzielli, M., S. Lacasse, F. Nadim, and K.-K. Phoon. 2007. Soil Variability Analysis for
Geotechnical Practice. Characterization and Engineering Properties of Natural Soils,
no. December: 1653-1752. doi:10.1201/NOEQ0415426916.ch3.

106



Vahdatirad, M. J., L. V. Andersen, J. Clausen, and J. D. Serensen. 2011. The dynamic
stiffness of surface footings for offshore wind turbines: reliability based assessment.
In Proceedings of 13th international conference on civil, structural and environmental
engineering computing (eds B. H. V. Topping and Y. Tsompanakis), paper 82.
Stirlingshire, Scotland, UK: Civil-Comp Press.

Vahdatirad, M. J., L. V. Andersen, L. B. Ibsen, J. Clausen, and J. D. Serensen. 2013.
Probabilistic Three-Dimensional Model of an Offshore Monopile Foundation:
Reliability Based Approach. In International Conference on Case Histories in
Geotechnical Engineering. 7.

Valdez-Llamas, Y. P., G. Auvinet, and J. Nufiez. 2003. Spatial variability of the marine
soil in the Gulf of Mexico. In: Proceedings of the Offshore Technology Conference,
Houston, Texas, OTC 15266.

Vanmarcke, E. H. 1977. Probabilistic Modelling of Soil Profiles. Journal Of The
Geotechnical Engineering Division, ASCE, 1227-46.

Wei, L., R.. Pant, and M. Tumay. 2010. A Case Study of Undrained Shear Strength
Evaluation from In Situ Tests in Soft Louisiana Soils. Soil Behavior and Geo-
Micromechanics, 35-42. doi:10.1061/41101(374)6.

Zhang, L., and J.-J. Chen. 2012. Effect of Spatial Correlation of Standard Penetration Test
(SPT) Data on Bearing Capacity of Driven Piles in Sand. Canadian Geotechnical
Journal 49 (4): 394-402. d0i:10.1139/t2012-005.

Zhang, L. L., Y. Cheng, J. H. Li, X. L. Zhou, D. S. Jeng, and X. Y. Peng. 2016. Wave-
Induced Oscillatory Response in a Randomly Heterogeneous Porous Seabed. Ocean
Engineering 111: 116-27. doi:10.1016/j.0oceaneng.2015.10.016.

107



108



APPENDICES

APPENDIX A

MATLAB CODE

Al Main Body of the Script

%The code analyses the data and evaluate spatial correlation length.
clear

cle

%The excel files in the current folder is found.

folder= pwd;

filetype="*.xIsx"; % or xIs

f=fullfile(folderfiletype);

d=dir(f);

d=struct2cell(d);

names=d(1,);

%Spacing of the CPT data should be defined.

Spacing=0.02;

%Defining the limit data number and tolerance for division of data.
DataLimit=24;

MeanTol=0.2;

%Read Water Depths from the same folder.

WaterDepthFileName = "WaterDepth.txt';

A= importdata(WaterDepthFileName);

for NumFile=1:size(names,2)

%The workspace is cleaned except some variables

clearvars -except names NumpFile filetype Spacing DataLimit MeanTol A
%The excel file is defined.

fileName=char(names(NumpFile));
fileName=fileName(1:end-size(filetype,2)+1);

[status,sheets] = xlIsfinfo(fileName);

for s = 1:numel(sheets)

%Reading of excel sheet.
ExcelData=xlsread(num2str(fileName),s);

%Sleeve Friction is added.
ExcelData(:,4)=[ExcelData(:,2).*ExcelData(:,3)./100];
%Classification is made..

109



[ExcelData]=Classification(ExcelData);

%Dividing the Excel Data (both the whole into segments and segments
%into different soil layers).
[PiecewiseExcelData]=division_v3(ExcelData, Spacing, DataLimit, MeanTol);

%Storing water depth of current sounding.

for i=1:size(A.data,1)

if size(fileName,2)==size(cell2mat(A.textdata(i)),2)
if cell2mat(A.textdata(i))==fileName
WaterDepth=A.data(i);

end

end

end

%Evaluation of Dr for sands and Cu for clays.
[PiecewiseExcelDataDrCu]=DrCu(PiecewiseExcelData,WaterDepth,NumFile,fileName);

%Calculating spatial correlation length.
[SCL]=SCL_CPT_V2(PiecewiseExcelData, Spacing,DataLimit);

%empty cells are deleted.

Delete=[];

for d=1:size(SCL,1)
if size(SCL{d},1)==0

Delete(end+1)=d;

end

end
SCL(Delete,:)=[];

%Writing Excel File
WriteExcel(SCL,NumFile,fileName);

end
end

A.2. Functions of Main Script

function[AllData]=Classification(Data)

%ocone resistance and friction ratio is defined.
c_res=Data(:,2)*10;
f_rat=Data(:,3);

%Borders of Robertson's soil behavior type chart is defined.

f1=-1.9602.*f _rat.*4+6.2054.*f rat."3 -2.9064.*f rat."2 -9.4567.*f rat+11.229;
f2=0.0056.*f_rat."3 - 0.0254.*f rat."2 + 0.3901.*f_rat + 0.5072;
f3=0.0855.*f_rat."4 - 0.705.*f_rat."3 + 2.9103.*f_rat."2 - 0.6976.*f_rat + 3.9826;
f4=0.76514.*f rat."4-4.0449.*f rat.*3+9.6011.*f rat."2+2.9771.*f rat+6.7018;
f5=37689.*f_rat."6 - 967763.*f_rat."5 + 1E+07.*f_rat."4 - 6E+07.*f_rat."3 + 2E+08*f_rat."2 -
3E+08.*f rat + 2E+08;

f6=9.8386.*f_rat."3 - 7.2942.*f rat."2 + 40.17.*f_rat+ 21.077;
f7=1071.9.*f_rat."3 - 895.91.*f rat."2 + 610.49.*f rat+ 87.311,

f8=91.297.*f rat."4 - 1091.3.*f _rat."3 + 4902.5.*f_rat."2 - 9934.1*f rat + 7911.4;
f9=0.1325.*f_rat."4 - 4.0772.*f_rat."3 + 47.081.*f_rat."2 - 243.98*f rat + 541.81,;
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%The value of cone resistance is compared with the border values.
for i = 1:size(f_rat)

if f_rat(i) < 0.323564
if c_res(i) < f1(i)
result(i,1) = 1;
elseif (f1(i) < c_res(i)) && (c_res(i) < f6(i))
result(i,1) = 5;
elseif (f6(i) < c_res(i)) && (c_res(i) < f7(i))
result(i,1) = 6;
else result(i,1) = 7;
end
end

if (0.323564 < f_rat(i)) && (f_rat(i) < 0.738356)
if c_res(i) < f1(i)
result(i,1) = 1;
elseif (f1(i) < c_res(i)) && (c_res(i) < f4(i))
result(i,1) = 4;
elseif (f4(i) < c_res(i)) && (c_res(i) < f6(i))
result(i,1) = 5;
elseif (f6(i) < c_res(i)) && (c_res(i) < f7(i))
result(i,1) = 6;
else result(i,1) = 7;
end
end

if (0.738356 < f_rat(i))&& (f_rat(i) < 1.03349)
if c_res(i) < f1(i)
result(i,1) = 1;
elseif (f1(i) < c_res(i)) && (c_res(i) < f3(i))
result(i,1) = 3;
elseif (f3(i) < c_res(i)) && (c_res(i) < f4(i))
result(i,1) = 4;
elseif (f4(i) < c_res(i)) && (c_res(i) < f6(i))
result(i,1) = 5;
elseif (fo(i) < c_res(i)) && (c_res(i) < f7(i))
result(i,1) = 6;
else result(i,1) = 7;
end
end

if (1.03349 < f_rat(i))&& (f_rat(i) < 1.41258)
if c_res(i) < f1(i)
result(i,1) = 1;
elseif (f1(i) < c_res(i)) && (c_res(i) < f3(i))
result(i,1) = 3;
elseif (f3(i) < c_res(i)) && (c_res(i) < f4(i))
result(i,1) = 4;
elseif (f4(i) < c_res(i)) && (c_res(i) < f6(i))
result(i,1) = 5;
else result(i,1) = 6;
end
end

if (1.41258 < f_rat(i)) && (f_rat(i) < 1.66491)
if c_res(i) < f1(i)
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result(i,1) = 1;

elseif (f1(i) < c_res(i)) && (c_res(i) < f3(i))
result(i,1) = 3;

elseif (f3(i) < c_res(i)) && (c_res(i) < f4(i))
result(i,1) = 4;

elseif (f4(i) < c_res(i)) && (c_res(i) < f6(i))
result(i,1) = 5;

elseif (f6(i) < c_res(i)) && (c_res(i) < f8(i))
result(i,1) = 6;

else result(i,1) = 8;

end

end

if (1.66491 <f _rat(i)) && (f_rat(i) < 1.69284)
if c_res(i) < f1(i)
result(i,1) = 1;
elseif (f1(i) < c_res(i)) && (c_res(i) < f2(i))
result(i,1) = 2;
elseif (f2(i) < c_res(i)) && (c_res(i) < f3(i))
result(i,1) = 3;
elseif (f3(i) < c_res(i)) && (c_res(i) < f4(i))
result(i,1) = 4;
elseif (f4(i) < c_res(i)) && (c_res(i) < f6(i))
result(i,1) = 5;
elseif (f6(i) < c_res(i)) && (c_res(i) < f8(i))
result(i,1) = 6;
else result(i,1) = 8;
end
end

if (1.69284 < f_rat(i)) && (f_rat(i) < 2.48835)
if c_res(i) < f2(i)
result(i,1) = 2;
elseif (f2(i) < c_res(i)) && (c_res(i) < f3(i))
result(i,1) = 3;
elseif (f3(i) < c_res(i)) && (c_res(i) < fA(i))
result(i,1) = 4;
elseif (f4(i) < c_res(i)) && (c_res(i) < f6(i))
result(i,1) = 5;
elseif (f6(i) < c_res(i)) && (c_res(i) < f8(i))
result(i,1) = 6;
else result(i,1) = 8;
end
end

if (2.48835 < f_rat(i)) && (f_rat(i) < 3.8313)
if c_res(i) < f2(i)
result(i,1) = 2;
elseif (f2(i) < c_res(i)) && (c_res(i) < f3(i))
result(i,1) = 3;
elseif (f3(i) < c_res(i)) && (c_res(i) < f4(i))
result(i,1) = 4;
elseif (f4(i) < c_res(i)) && (c_res(i) < f8(i))
result(i,1) = 5;
else result(i,1) = 8;
end
end
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if (3.8313 < f_rat(i)) && (f_rat(i) < 4.84993)
if c_res(i) < f2(i)
result(i,1) = 2;
elseif (f2(i) < c_res(i)) && (c_res(i) < f3(i))
result(i,1) = 3;
elseif (f3(i) < c_res(i)) && (c_res(i) < 9(i))
result(i,1) = 4;
elseif (f9(i) < c_res(i)) && (c_res(i) < f5(i))
result(i,1) = 9;
else result(i,1) = 8;
end
end

if (4.84993 < f rat(i)) && (f_rat(i) < 5.98554)
if c_res(i) < f2(i)
result(i,1) = 2;
elseif (f2(i) < c_res(i)) && (c_res(i) < f3(i))
result(i,1) = 3;
elseif (f3(i) < c_res(i)) && (c_res(i) < f9(i))
result(i,1) = 4;
else result(i,1) = 9;
end
end

if (5.98554 < f_rat(i))&& ( f_rat(i) < 10)
if c_res(i) < f2(i)
result(i,1) = 2;
elseif (f2(i) < c_res(i)) && (c_res(i) < fo(i))
result(i,1) = 3;
else result(i,1) = 9;
end
end

% %This part is only for warning purpose (optional)
% if (f_rat(i) > 10)

%  result(i,1) = 999999;

% end

i=i+l;
end

AllData=[Data result];

end

function [PiecewiseExcelDataNew]=division_v3(ExcelData, Spacing, DataLimit, MeanTol)

%Modified classification data is added.
Classification=ExcelData(:,end);
Classification(Classification==3)=4;
Classification(Classification==5 | Classification==7)=6;
Classification(Classification==1)=2;
Classification(Classification==8)=9;
ExcelData(:,end+1)=Classification;
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%Definition of some parameters.
PiecewiseExcelData={};
PiecewiseExcelDataNew={};
NumOfMatrix=[];

LB=0;

LowerBound=0;
UpperBound=0;

%Dividing the data.
for i=1:size(ExcelData,1)-1
if (ExcelData(i+1,1)- ExcelData(i,1))> Spacing+0.000000001

%Boundaries of matrix is found.
LB=i-UpperBound;
UpperBound=Upper;
LowerBound=Upper-LB+1;

%The matrix is ddivided into pieces.

%0Overcoming the 1 row data problem.

if size(PiecewiseExcelData,1)>0 && size(cell2mat(PiecewiseExcelData(end)),1)==1
LowerBound=LowerBound+1;

end

if LowerBound==UpperBound
PiecewiseExcelData(size(PiecewiseExcelData,1)+1,:)={ExcelData(LowerBound+1,:)};
else

PiecewiseExcelData(size(PiecewiseExcelData,1)+1,:)={ExcelData(LowerBound:UpperBound,:)};

end

else
Upper=i+1;

end

end

%The last piece is added.
PiecewiseExcelData(end+1,:)={ExcelData(UpperBound+1:end,:)};

%Examining the matrix piece by piece.
for i=1:size(PiecewiseExcelData,1)

Changes=[];

Divide=cell2mat(PiecewiseExcelData(i));

%Jump rows of classification data is stored.
for j=1:size(Divide,1)-1
if Divide(j,6)~=Divide(j+1,6)
Changes(1:2,end+1)=[j;Divide(j,6)] ;
end
end

ChangesNew=Changes;

if size(Changes,2)==0

%0Overcoming the 1 row data problem.

if size(Divide,1)>1
PiecewiseExcelDataNew(size(PiecewiseExcelDataNew,1)+1,:)={Divide(2:end,:)};
else

PiecewiseExcelDataNew(size(PiecewiseExcelDataNew,1)+1,:)={Divide};
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end
NumOfMatrix(end+1)=1;

else
%Erasing the jump rows, if the data limit is not satisfied.

if size(Changes)>=2
for j=2:size(Changes,2)
if (Changes(1,j)-Changes(1,j-1))<DataLimit
if j==2 && Changes(1,j-1)>DataLimit
ChangesNew(:,j)=zeros;
else
ChangesNew(:,j-1:j)=zeros;
end
end
end
end

if size(Changes,2)==1 && ((ChangesNew(1,1)-Divide(1,1)<DataLimit) || Divide(1,end)-
ChangesNew(1,end)<DataLimit)
ChangesNew=[];
end

if size(Changes,2)>2
m=size(Changes,2);
if Changes(1,m)-Changes(1,m-1)>DataLimit
ChangesNew(:,m-1)=Changes(:,m-1);
end
end

if Changes(1,1)<DataLimit
ChangesNew(:,1)=[0 07"
end

if size(ChangesNew,2)>0

if size(Divide,1)-Changes(1,end)<DataLimit
ChangesNew(:,end)=[0 0]

end

end

% Erasing zero columns.

if size(ChangesNew,2)>=1
ChangesNew(:,ChangesNew(1,:)==0)= [I;
end

% Muissing last row is added.
if size(ChangesNew,2)>0 && size(Changes,2)>2
if Changes(1, end)-Changes(1, end-1)<DataLimit && size(Divide,1)-Changes(1,
end)>DataLimit
if ChangesNew(2,end)~=Changes(2,end)
ChangesNew(1:2,end+1)=Changes(1:2,end);
end
end
end

%Erasing the first row, if the conditions are not satisfied.
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if size(ChangesNew,2)==1 && ChangesNew(2,1)==Divide(end,end) && size(Divide,1)-
Changes(1,end)>DataLimit

ChangesNew(:,1)=[;

end

% Erasing the last row, if the conditions are not satisfied.

if size(ChangesNew,2)>0 && size(Changes,2)>2

if ChangesNew(2,end)~=Changes(2,1) && Changes(1,end-1)-Changes(1,end-2)>DataLimit
ChangesNew(:,end)=[];

end

end

ChangesNew=[[1;Divide(1,6)] ChangesNew [size(Divide,1);Divide(end,6)]];

%For 3 jJump changes, the data is erased if left and rigth data
%are same.
if size(ChangesNew,2)==3
if ChangesNew(2,2)==ChangesNew(2,1) && ChangesNew(2,2)==ChangesNew(2,3)
ChangesNew(:,2)=[];
end
end

%For 4 jump changes, if datalimit is not satisfied, middle 2 jump
%is erased.
if size(ChangesNew,2)==4
if ChangesNew(1,3)-ChangesNew(1,2)<DataLimit
ChangesNew(:,2:3)=[];
end
end

%Some small adjustments by considering the mean of soil type
%zones.
Store=ones(size(ChangesNew));
for n=2:size(ChangesNew,2)-1
if abs(mean(Divide(ChangesNew(1,n-1):ChangesNew(1,n),6))-
mean(Divide(ChangesNew(1,n):ChangesNew(1,n+1),6)))<MeanTol
Store(:,n)=[0 07]’;
end
end

ChangesNew=Store.*ChangesNew;

% Erasing zero columns.

if size(ChangesNew,2)>=1
ChangesNew(:,ChangesNew(1,:)==0)=[];
end

NumOfMatrix(end+1)=(size(ChangesNew,2)-1);
%Erasing the segments into soil layers according to the jumpes.
for k=2:size(ChangesNew,2)

PiecewiseExcelDataNew(size(PiecewiseExcelDataNew,1)+1,:)={Divide((ChangesNew(1,k-
1)+1):ChangesNew(1,k),:)};

end

end
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end

%The original data that is lost is being retrieved.

Location=[1];

for i=2:size(NumOfMatrix,2)

Location(end+1)=sum(NumOfMatrix(1:i-1))+1;

end

m=0;

for i=1:size(Location ,2)

m=m+1;

First=[cell2mat(PiecewiseExcelData(m)) ] ;

First=First(1,:);

PiecewiseExcelDataNew(Location(i))={[First ;
cell2mat(PiecewiseExcelDataNew(Location(i)))1};

end

%When 2 same row exist, one of them is erased.
for i=1:size(PiecewiseExcelDataNew,1)
control=cell2mat(PiecewiseExcelDataNew(i));
if size(control,1)>1
if control(1,1)==control(2,1)
control(1,:)=[1;
PiecewiseExcelDataNew(i)={control};
end
end
end

end

function[PiecewiseExcelDataDrCu]=DrCu(PiecewiseExcelData,WaterDepth,NumFile,fileName)

PiecewiseExcelDataDrCu={},
Row=3;

for i=1:size(PiecewiseExcelData,1)
Data=cell2mat(PiecewiseExcelData(i));
UWeightS=20;

UWeightw=10;

Nk1=14;

Nk2=20;

Nk3=17;

K01=0.4;

K02=0.7;

K03=0.55;

[M,F] = mode(Data(:,6));
Ratio=100*F/size(Data,1);

%Calculation of Cu for clays.

if M==

Class=M*ones(size(Data,1),1);
TStress=Data(:,1).*UWeightS+(-WaterDepth) *UWeightW;
Cul=((Data(:,2)*1000)-TStress)./Nk1;
Cu2=((Data(:,2)*1000)-TStress)./Nk2;
Cu3=((Data(:,2)*1000)-TStress)./Nk3;
PiecewiseExcelDataDrCu{i}=[Data Cul Cu2 Cu3 Class];
end
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%Calculation of Dr for sands.

if M==6

Class=M*ones(size(Data,1),1);

EStress=Data(:,1).*(UWeightS-UWeightW);
Dr1=(1/0.0296)*log(Data(:,2)./(2.494*(EStress.*((1+2*K01)/300)).0.46));
Dr2=(1/0.0296)*log(Data(:,2)./(2.494*(EStress.*((1+2*K02)/300)).0.46));
Dr3=(1/0.0296)*log(Data(:,2)./(2.494*(EStress.*((1+2*K03)/300)).20.46));

% Dr2=(1/2.93)*log((1000.*Data(:,2))./(205*(EStress.*((1+2*K0)/3)).”0.51));
PiecewiseExcelDataDrCu{i}=[Data Dr1 Dr2 Dr3 Class];

end

if M==2 || M==9
Class=M*ones(size(Data,1),1);
PiecewiseExcelDataDrCu{i}=[Data];
end

%Writing to excel file.

ifi>1
Row=Row+size(PiecewiseExcelDataDrCu{i-1},1)+1;
end

RowAdd=num2str(Row);

StartColumn1="A’;

Start= strcat(StartColumnl,RowAdd);
ResultsFileName="'ResultsDrCu’;
Sheet=NumFile;
Temp=PiecewiseExcelDataDrCu(i);
xlswrite(ResultsFileName, Temp{1},Sheet,Start)

end

%Writing headings to excel sheets.

fileName={fileName, "WaterDepth', WaterDepth};
xlswrite(ResultsFileName,fileName,Sheet,'A1");

Heading={'Depth (m)','Tip Resistance (MPa)','FR (%)','Sleeve Friction
(MPa)','Classification’,'Arranged Classification','Dr1(0.4) or Cul (14)','Dr2(0.7) or
Cu2(20)','Dr3(0.55) or Cu3(17)','Layer Name'};
xlswrite(ResultsFileName,Heading,Sheet,'A2";

warning('off', MATLAB:xIswrite:AddSheet")

end

function[SCL]=SCL_CPT_V2(PiecewiseExcelData, Spacing, DataLimit)
z=Spacing;

SCL={};

for i=1:size(PiecewiseExcelData,1)

B=cell2mat(PiecewiseExcelData(i));

if size(B,1)>DataLimit

%The name of soil layer is obtained.
[M,F] = mode(B(:,6));
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Ratio=100*F/size(B,1);

for Focus=2:size(B,2)-2

%Workspace is cleared except some parameters.
clearvars -except B Focus i PiecewiseExcelData SCL Spacing z DataLimit M F Ratio

x=B(:,Focus);
y=B(:,1);
A=[xVy];

%First Part-"constant approach"”. Mean of data is assumed to be constant
%through depth.

meanCPT=mean(A(:,1));

difl=(A(:,1)-meanCPT);

for k=0:size(A,1)-1 ;

difl12=zeros((size(A,1)-k),1);

for m=1:size(A,1)-k
dif2(m,:)=(A((m+Kk),1)-meanCPT);
dif12(m,:)=dif1(m).*dif2(m);

end

autoCor(k+1,:)=sum(dif12,1)/sum((dif1.~2),1);

lagDis(k+1,:)=k*z;

end

% figure

% scatter(lagDis,autoCor);

% str=sprintf(‘Constant Approach Case %d', s);

% title([{fileName}; {str}]);

% hold on

% xlabel('Lag Distance (m)");

% ylabel('Autocorrelation Function');

% grid,;

% set(gcf, 'color','w");

%Ultilizing four autocovariance function and evaluating spatial correlation
%length.

syms a X

f=exp(-x/a) ;

summ=0;

for k=1:size(lagDis,1)

x0=lagDis(k);

subs(f,x,x0);
summ=summ-+(autoCor(k)-subs(f,x,x0))"2;
end

err=sqrt(summ);

egnF = matlabFunction(err);
a_exp=fminbnd(eqnF,lagDis(1), lagDis(end));
corrLengthExpConstant=2*a_exp;
curveValuel=exp(-(1/a_exp).*lagDis);
R1Constant=1-sum((autoCor-curveValuel).”2)/sum((autoCor-mean(autoCor))."2);
% k=lagDis(1):0.1:lagDis(end);

% l=exp(-(1/a_exp).*K);

% plot(k,I,'--";

% hold on
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syms a x
f=exp(-(x/a)"2) ;

summ=0;

for k=1:size(lagDis,1)

x0=lagDis(K);

subs(f,x,x0);

summ=summ-+(autoCor(k)-subs(f,x,x0))"2;

end

err=sqrt(summy);

eqnF = matlabFunction(err);

a_sgr=fminbnd(egnF,lagDis(1), lagDis(end));
corrLengthSqrConstant=a_sqr*sqrt(pi);

curveValue2=exp(-(lagDis./a_sqr)."2);
R2Constant=1-sum((autoCor-curveValue2).”2)/sum((autoCor-mean(autoCor))."2);
% k=IlagDis(1):0.1:lagDis(end);

% l=exp(-(k/a_sqr)."2);

% plot(k,l,":k";

% hold on

syms a X
f=exp(-x/a).*cos(x/a) ;

summ=0;

for k=1:size(lagDis,1)

X0=lagDis(k);

subs(f,x,x0);

summ=summ-+(autoCor(k)-subs(f,x,x0))"2;

end

err=sqrt(summ);

egnF = matlabFunction(err);

a_Autoreg=fminbnd(egnF,lagDis(1), lagDis(end));
corrLengthExpCosConstant=a_Autoreg;
curveValue3=exp(-(lagDis)/a_Autoreg).*cos((lagDis)/a_Autoreg);
R3Constant=1-sum((autoCor-curveValue3).”2)/sum((autoCor-mean(autoCor))."2);
% k=IlagDis(1):0.1:lagDis(end);

% l=exp(-k/a_Autoreg).*cos(k/a_Autoreg);

% plot(k,I,"-.");

% hold on

syms a X

f=exp(-x/a).*(1+x/a) ;

summ=0;

for k=1:size(lagDis,1)

x0=lagDis(k);

subs(f,x,x0);
summ=summ-+(autoCor(k)-subs(f,x,x0))"2;

end

err=sqgrt(summ);

egnF = matlabFunction(err);
a_4=fminbnd(eqnF,lagDis(1), lagDis(end));
corrLengthSecOrAutoregressionConstant=4*a_4;
curveValued=exp(-(lagDis)./a_4).*(1+(lagDis)./a_4);
R4Constant=1-sum((autoCor-curveValue4).”2)/sum((autoCor-mean(autoCor))."2);
% k=lagDis(1):0.1:lagDis(end);

% l=exp(-k/a_4).*(1+k/a_4);

% plot(k,1);
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% hold on
% legend('Data’,'Exponential’,'Squared Exponential’,'Cosine of Exponential’,'Second Order
Autoregressive');

%Second part-"Trend Approach”. The mean of data is assumed to have a trend
%with depth.

nValue=A(:,1);
depth=A(:,2);

p = polyfit(A(:,2),A(;,1),1);  %the ax+b linear function is fitted to the data.
aTrend=p(1);

bTrend=p(2);

curveValueData=aTrend.*depth+bTrend;
RTrend=1-sum((nValue-curveValueData).*2)/sum((nValue-mean(nValue))."2);

meanCPT=p(1).*depth+p(2);
difl=(A(:,1)-meanCPT);

for k=0:size(A,1)-1 ;
dif12=zeros((size(A,1)-k),1);

for m=1:size(A,1)-k
dif2(m,:)=(A((m+Kk),1)-meanCPT(m+k));
dif12(m,:)=dif1(m).*dif2(m);

end

autoCor(k+1,:)=sum(dif12,1)/sum((dif1.72),1);

lagDis(k+1,:)=k*z;

end

% figure

% scatter(lagDis,autoCor);

% str=sprintf('Trend Approach Case %d', s);

% title([{fileName}; {str}]);

% hold on

% xlabel('Lag Distance (m)");

% ylabel('Autocorrelation Function');

% grid,;

% set(gcf,'color','w');

%Utilizing four autocovariance function and evaluating spatial correlation
%length.

syms a x
f=exp(-x/a) ;

summ=0;

for k=1:size(lagDis,1)

x0=lagDis(k);

subs(f,x,x0);

summ=summ-+(autoCor(k)-subs(f,x,x0))"2;

end

err=sqgrt(summ);

egnF = matlabFunction(err);

a_exp=fminbnd(eqgnF, lagDis(1), lagDis(end));

corrLengthExpTrend=2*a_exp;

curveValuel=exp(-(1/a_exp).*lagDis);
R1Trend=1-sum((autoCor-curveValuel)."2)/sum((autoCor-mean(autoCor))."2);
% k=lagDis(1):0.1:lagDis(end);

% l=exp(-(1/a_exp).*K);
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% plot(k,l,"--";
% hold on

syms a x
f=exp(-(x/a)"2) ;

summ=0;

for k=1:size(lagDis,1)

x0=IlagDis(k);

subs(f,x,x0);

summ=summ-+(autoCor(Kk)-subs(f,x,x0))"2;

end

err=sqrt(summy);

eqnF = matlabFunction(err);

a_sgr=fminbnd(egnF,lagDis(1), lagDis(end));
corrLengthSqrTrend=a_sqr*sqrt(pi);

curveValue2=exp(-(lagDis./a_sqr).”2);
R2Trend=1-sum((autoCor-curveValue2).2)/sum((autoCor-mean(autoCor)).*2);
% k=lagDis(1):0.1:lagDis(end);

% l=exp(-(k/a_sqr)."2);

% plot(k,1,"k");

% hold on

syms a x
f=exp(-x/a).*cos(x/a) ;

summ=0;

for k=1:size(lagDis,1)

X0=lagDis(k);

subs(f,x,x0);

summ=summ-+(autoCor(k)-subs(f,x,x0))"2;

end

err=sqrt(summ);

eqnF = matlabFunction(err);

a_Autoreg=fminbnd(egnF,lagDis(1), lagDis(end));
corrLengthExpCosTrend=a_Autoreg;
curveValue3=exp(-(lagDis)/a_Autoreg).*cos((lagDis)/a_Autoreg);
R3Trend=1-sum((autoCor-curveValue3).*2)/sum((autoCor-mean(autoCor)).*2);
% k=lagDis(1):0.1:lagDis(end);

% l=exp(-k/a_Autoreg).*cos(k/a_Autoreg);

% plot(k,I,"-.");

% hold on

syms a X
f=exp(-x/a).*(1+x/a) ;

summ=0;

for k=1:size(lagDis,1)

x0=lagDis(k);

subs(f,x,x0);

summ=summ-+(autoCor(Kk)-subs(f,x,x0))"2;

end

err=sqgrt(summ);

egnF = matlabFunction(err);

a_4=fminbnd(egnF,lagDis(1), lagDis(end));
corrLengthSecOrAutoregressionTrend=4*a_4;
curveValued=exp(-(lagDis)./a_4).*(1+(lagDis)./a_4);
R4Trend=1-sum((autoCor-curveValue4).”2)/sum((autoCor-mean(autoCor))."2);
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% k=IlagDis(1):0.1:lagDis(end);

% l=exp(-k/a_4).*(1+k/a_4);

% plot(k,I);

% hold on

% legend('Data’,'Exponential’,'Squared Exponential’,'Cosine of Exponential’,'Second Order
Autoregressive');

SCL{i,Focus-1}={"'Depths',y(1),y(end)...

;'Column’,Focus,"...

;'Constant Approach',","...

;'Correlation Function','Spatial Correlation Length','R-Squared'...
;'Exponential’,corrLengthExpConstant,R1Constant...

;'Squared exponential',corrLengthSgrConstant,R2Constant...

;'Cosine of Exponential',corrLengthExpCosConstant,R3Constant...

;'Second Order Autoregressive',corrLengthSecOrAutoregressionConstant,R4Constant...
;'Trend Approach',","...

;'Trend Line Inclination and R-Squared',aTrend,RTrend ...

;'Correlation Function','Spatial Correlation Length','R-Squared'...
;'Exponential’,corrLengthExpTrend,R1Trend...

;'Squared exponential',corrLengthSqrTrend,R2Trend...

;'Cosine of Exponential',corrLengthExpCosTrend,R3Trend...

;'Second Order Autoregressive',corrLengthSecOrAutoregressionTrend,R4Trend...
;'Classification',M,Ratio };

warning('off', MATLAB:xIswrite:AddSheet');

end
end
end
end

function []=WriteExcel(SCL,NumFile,fileName)

Sheet=NumFile;
Row=3;

%The row number of SCL is analysed by for loop.
for i=1:size(SCL,1)

%The starting row is defined.
ifi>1
Row=Row+size(SCL{1},1)+1;
end

%The starting Column is defined.
RowAdd=num2str(Row);
StartColumnl="A";

Startl = strcat(StartColumnl1,RowAdd);
StartColumn2="E’;

Start2 = strcat(StartColumn2,RowAdd);
StartColumn3="l’;

Start3 = strcat(StartColumn3,RowAdd);

StartCell={Start1,Start2, Start3};
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%The cell of SCL is written to excel file
ResultsFileName='ResultsCPT";

for j=1:3

Temp=SCL(i,j);

xlswrite(ResultsFileName, Temp{1},Sheet,StartCell{j})
end

end
%Name of boring is written.
StartName="A1";
fileName={fileName};
xlswrite(ResultsFileName,strcat(fileName),Sheet,StartName)

end
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B.1.

APPENDIX B

FIELD DATA

Examples of SPT Data at Shallow Water
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B.2.

Depth below sea bottom (m)

100

120

— Tip resistance

Examples of CPT Data at Deep Water Locations

Tip Resistance (MPa)

40
i s
T w2
Vo )
R e —
4 T
012345678910

Friction Ratio, FR

Depth below sea bottom (m)

40

60

80

100

120

— Tip resistance

Tip Resistance (MPa)

12345678910
Friction Ratio, FR



