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ABSTRACT 
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OF AN OVERCONSTRAINED MECHANICAL FORCE GENERATOR 

 

 

 

Erdinç, Umur 

M.Sc., Department of Mechanical Engineering 

Supervisor  : Prof. Dr. Reşit Soylu 

 

 

December 2017, 216 pages 

 

 

 

In this thesis, dynamical characteristics of existing machines are improved by 

coupling mechanical force generators to the machine.  In short, mechanical force 

generators (MFG) are energy efficient, overconstrained, shaking force and 

shaking moment free planar mechanisms which can be used to generate a desired 

periodic force profile; store excess energy and release it when needed. They can 

reduce the energy consumption of an existing machine, or optimize other 

dynamical characteristics of a machine. 

In chapter 2, dynamic analysis of an overconstrained parallelogram mechanism 

is performed. For this overconstrained mechanism, the “closest” equivalent 

regular mechanism, in terms of a predetermined dynamical feature, is obtained. 

Since it is not overconstrained, dynamic analysis of this equivalent mechanism 

can be performed analytically. This analysis sheds light on the dynamic analysis 

of mechanical force generators. 

In the following chapter, dynamic analyses of mechanical force generators are 

performed using two different methods. The first method is analytical, whereas 
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the second method utilizes a computer simulation software. The results of the 

two methods are compared.  

For a given task of an existing machine, the total energy consumption and/or the 

required maximum actuator power/torque can be minimized by coupling a 

mechanical force generator to the existing machine. An algorithm, which 

determines the force to be generated by the MFG for the aforementioned 

optimizations, is introduced. The design of the MFG which generates this 

desired force is then realized by utilizing a novel, iterative algorithm. Besides 

the kinematic and inertial parameters of the MFG, this design yields the slot 

profiles of the MFG, as well. Effects of certain design parameters are 

investigated and several recommendations regarding practical implementation 

of mechanical force generators are presented. 

The case studies that have been performed in this thesis show that energy 

consumption or maximum actuation power/torque of existing machines can be 

substantially reduced by the utilization of mechanical force generators. Thus, it 

is possible to reduce the initial cost and/or running cost of existing machines. 

 

Keywords: Mechanical Force Generators, Energy Efficient Mechanisms, 

Shaking Force and Moment, Dynamical Performance Optimization, 

Overconstrained Mechanisms 
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Bu çalışmanın amacı; mevcut makinelerin dinamik özelliklerinin, mekanik 

kuvvet jeneratörleri (MKJ) kullanılarak iyileştirilmesidir. Mekanik kuvvet 

jeneratörleri; enerji verimliliğine sahip, fazla kısıtlı düzlemsel mekanizmalardır 

ve yere iletilen sarsma kuvvetleri ile sarsma momentleri sıfırdır. Mekanik kuvvet 

jeneratörleri, istenilen bir periyodik kuvvet profilini üretebilmekte; bir makinede 

anlık olarak fazlalık olan enerjiyi saklayıp, ihtiyaç anında makineye enerji 

sağlayabilmektedir. Bağlandıkları makinenin enerji tüketimini azaltabileceği 

gibi, seçilen bir dinamik özelliğinin iyileştirilmesinde de kullanılabilir. 

Bu çalışmanın ilk aşamasında, mekanik kuvvet jeneratörlerinin kuvvet 

analizinde kullanılmak üzere ön bilgi edinmek için, fazla kısıtlı düzlemsel bir 

paralel kenar mekanizmasın dinamik analizi yapılmıştır.  Fazla kısıtlı bir paralel 

kenar mekanizmasına seçilen dinamik özellik bakımından “en yakın” fazla 

kısıtlı olmayan özdeş paralel kenar mekanizması tespit edilmiştir. Bulunan özdeş 

mekanizma fazla kısıtlı olmadığı için, dinamik analizi analitik yollarla kolaylıkla 

yapılabilmektedir. 
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Çalışmanın ilerleyen aşamalarında, mekanik kuvvet jeneratörlerinin dinamik 

analizleri hem analitik yöntemlerle, hem de mühendislik yazılımlarıyla yapılıp 

elde edilen sonuçlar karşılaştırılmıştır. Mevcut bir makinenin toplam enerji 

tüketimi ve/veya maksimum motor torku/gücü, makineye bir MKJ bağlanarak 

düşürülebilir. Bu amaçla üretilmesi gereken kuvvet profili hesaplanmış ve bu 

kuvvet profilini üretecek MKJ’yi tasarlamak için bir algoritma önerilmiştir. 

Önerilen algoritma ile MKJ’nin kinematik ve atalet parametrelerinin yanı sıra  

slot profili de elde edilebilmektedir. MKJ’nin çeşitli tasarım parametrelerinin 

etkisi incelenmiş ve pratikteki uygulamalarıyla ilgili önerilerde bulunulmuştur. 

Mekanik kuvvet jeneratörleri kullanılarak mevcut makinelerin enerji tüketimi, 

maksimum motor torku/gücü gibi çeşitli değerlerinin ciddi oranda 

düşürülebileceği gözlemlenmişir. Bu sayede, ilk yatırım maliyeti ve/veya 

işletme giderini büyük oranda azaltmak mümkündür.  

 

Anahtar Kelimeler: Mekanik Kuvvet Jeneratörleri, Enerji Verimli 

Mekanizmalar, Sarsma Kuvveti ve Momenti, Dinamik Performans 

Optimizasyonu, Fazla Kısıtlı Mekanizmalar 
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W : Work  

𝐷𝑉⃑⃑ ⃑⃑  ⃑ : Design variables vector 

𝜎 : Parameter that defines the contact surface 

𝜃𝑡 : Angle that defines the slope of the slot 

rf : Radius of friction 

E𝜎=𝑖 : Envelope with 𝜎 = 𝑖 
�̂� : Unit vector that defines the slot shape 

�̂� : Unit vector that defines the slot shape 

𝜎𝜃𝑖
 : Parameter that defines the rolling direction 

𝜖 : Limiting error to stop the iterations 

 

Abbreviations 

MFG : Mechanical force generator 

DOF : Degree of freedom 

P : Prismatic joint 

R : Revolute joint 

CP : Cam joint 

PKE :  Permanently kinematically equivalent 

eqMFG : Equivalent mechanical force generator 

OC : Overconstrained 

reg : Regular 

RPM : Regular parallelogram mechanism 

OPM : Overconstrained parallelogram mechanism 

INL : In-line primitive joint 

INP : In-plane primitive joint 



 

 

xxiii 

PERP : Perpendicular primitive joint 

REV : Revolute joint 

PRIS :   Prismatic joint 

PoC : Point on curve constraint 

SOLD : Solid to solid contact 

CURV : Curve to curve contact 

rms : Root mean square 

ave : Average 

Rel : Relative  
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

Mechanisms are utilized for motion, force, moment or energy transmission [1]. 

One ultimate aim of mechanical engineering is to improve the performance of 

machines most of which will employ some sort of a mechanism.  

Performance of machines can be increased by: 

1. Reducing energy consumption, 

2. Reducing maximum torque of the actuator, 

3. Reducing shaking forces and moments, 

4. Reducing friction. 

Recently, Soylu proposed a novel mechanism called “Mechanical Force 

Generator” (MFG) [2] which is an overconstrained, one degree of freedom, 

planar mechanism. In this study, various applications of mechanical force 

generators will be presented in detail. 
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Figure 1: Mechanical Force Generator [3] 

 

1.1 Balancing of Mechanisms 

When an unbalanced mechanism runs at high speeds, and when it has heavy 

links, shaking forces and shaking moments transmitted to the ground create 

major problems. Firstly, dynamic performance decreases due to unsmooth 

working conditions. Secondly, the life of the mechanism decreases due to 

fatigue. Thirdly, vibration and noise problems appear [4]. In order to solve such 

problems, balancing of the mechanisms comes into prominence. 

It is proper to inspect static balancing first. Static balancing is aimed at obtaining 

a constant potential energy in the system and it is used for a wide range of 

mechanisms. These mechanisms can be either translational or rotational systems. 

The most popular approach for static balancing is to add counterweights and 
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pulleys. By utilizing counterweights, translational systems such as double hung 

windows, elevators etc. are balanced. Some rotational systems such as garage 

doors, dishwasher doors, anglepoise study lamps [5], robotic manipulators [6], 

[7]; Steadicams [8], arm support orthoses [9], [10]; passive exoskeletons [11], 

on the other hand, are balanced by utilizing springs. In general, one can use the 

aforementioned methods (counterweights and springs) to both translational and 

rotational systems. Adding springs generally has the advantage of adding a small 

amount of mass to the system [12]. Note that, springs are practically weightless, 

while counterweights may be heavier than the payload itself [13]. 

Nathan [14] proposed a spring mechanism that generates a constant force. Streit 

and Gilmore [12] utilized (1 to 4) springs to balance rotatable bodies by using 

energy methods. Perfect balancing means that system is balanced at every 

position throughout the range of the motion. Schenk and Herder [15] used energy 

free adjustment for gravity equilibrator by adjusting spring stiffness. Therefore, 

adjusting the mechanism (in order to balance different loads) does not require 

external energy. Gravity equilibrator is a statically balanced system which is 

designed to balance a load or a mass. The spring stiffness is adjusted by changing 

the effective spring length (i.e., number of active coils). Herder et al. [16] utilized 

a storage spring to adjust the balancer spring (that balances a specific load) in an 

energy free manner. Yang and Lan [13] utilized two planar springs (one 

extension spring and one compression spring) to obtain the required torque curve 

for balancing. Their mechanism is also adjustable. Planar springs are used to 

obtain the same effect of large stiffness linear springs within a limited space. 

Herder [17], for instance, used a spring force compensation technique to balance 

the unwanted elasticity (parasitic spring forces). 

For high speed mechanisms, balancing of shaking forces and shaking moments 

are crucial. A mechanism is “reactionless” or “dynamically balanced” if the 

reaction forces (excluding gravity) and the reaction moments at the ground joints 

(shaking forces and moments) are equal to zero at all times (for any motion of 

the mechanism) [18]. In the literature, various methods are proposed to achieve 



 

 

4 

this goal. The most obvious one is mass redistribution of the links. If the total 

center of mass of the mechanism can be made stationary, then shaking force 

balance is achieved. Berkof and Lowen [19] use the “Method of Linearly 

Independent Vectors” for complete shaking force balancing of planar four bar 

and six bar linkages. They redistribute link masses so that the time dependent 

terms in the center of mass equation vanishes. Tepper and Lowen [20] also 

studied this method and further improved it.  

Another alternative for balancing shaking forces and shaking moments is 

addition of gear trains and cams. Feng [21] used mass redistribution together 

with geared inertia counterweights. Kochev [22] used noncircular (cam like) 

gear drives to balance the shaking moments. Arakelian and Briot [23] used a cam 

mechanism carrying a counterweight to cancel the shaking forces and moments.  

In order to balance a mechanism, one may also add extra linkages to the existing 

mechanism. Briot and Arakelian [24] added class two Assur groups to planar 

inline four bar linkages with constant input speed. Bagci [4] used idler 

parallelogram loops to balance the shaking moments. Arakelian and Smith [25] 

used pantograph like linkages to balance the shaking forces and moments. 

Mendoza-Trejo et al. [26] minimized the magnitude of the acceleration of the 

center of mass to reduce the shaking forces. Chaudhary and Saha [27] introduced 

equimomental systems for rigid bodies (in plane motion) by using three point 

masses. Moore et al. [28] used complex variables to model the linkages and 

found the complete set of shaking force and shaking moment balanced planar 

four bar linkages. 

A comprehensive literature survey regarding the balancing of mechanisms can 

be found in [23], [29]. Comparison of several balancing methods applied to a 

rotatable link can be found in [30]. 

Up to this point, planar and single degree of freedom mechanisms have been 

discussed. However, dynamic balancing of spatial multi degree of freedom 
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mechanisms also needs attention. In the literature, there are only a few studies 

about balancing of spatial multi degree of freedom mechanisms due to their 

complexity. Gosselin et al. [31] synthesized 3 DOF reactionless parallel 

mechanisms using dynamically balanced four bar linkages. Fattah and Agrawal 

[32] used auxiliary parallelograms to balance 3 DOF planar parallel 

mechanisms. Arakelian and Smith [33] used inertia flywheels or planetary gear 

trains to balance 3 DOF parallel manipulators. Wu and Gosselin [18] synthesized 

reactionless 6 DOF parallel manipulators using 3 DOF parallelepiped 

mechanisms.  

1.2 Overconstrained Mechanisms 

Overconstrained mechanisms are mechanisms that do not obey the Chebychev–

Grübler–Kutzbach criterion. In other words, their actual degree of freedom is 

larger than the one obtained from the Chebychev–Grübler–Kutzbach criterion. 

Researchers have focused on analyzing such mechanisms for quite a long time, 

and there are lots of studies regarding overconstrained mechanisms. Although 

there are infinitely many overconstrained mechanisms, it is also possible to 

classify overconstrained mechanisms as in [34]. A comprehensive list of 

contributions regarding overconstrained mechanisms can be found in [35] and 

[36]. 

Dynamical analysis of overconstrained mechanisms leads to indeterminate 

problems. Hence, it is required to consider the flexibility of the links and 

compatibility of the displacements. Finite element methods can be utilized to 

handle these indeterminate problems as in [37] and [38]. 

In case of mechanisms with redundant constraints, if all the joints are 

frictionless; and if only position, velocity, acceleration analyses are needed, then 

there is no need to calculate the joint reaction forces. However, in many cases, 
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friction must also be considered. Therefore, calculation of the joint reaction 

forces is necessary [39].  

In [40], the mobility equation is modified and the solvability of joint 

forces/torques of spatial mechanisms is investigated. Wojtyra [39], on the other 

hand, used a rigid body model and presented three different techniques of 

Jacobian matrix analysis to find reaction forces in an overconstrained 

mechanism. Furthermore, Fraczek and Wojtyra included the effects of Coulomb 

friction in the joints [41] and compared three different approaches to handle 

redundant constraints in [42]. Xu et al. [43] proposed a novel method for force 

analysis of the overconstrained lower mobility parallel mechanisms. They used 

flexible links together with rigid links and compared theoretical calculations 

with simulation results by using MSC Adams software. 

1.3 Mechanical Force Generators 

Equations of equilibrium obtained solely from rigid body dynamics are not 

sufficient for the dynamic analysis of overconstrained mechanisms. Since MFG 

is also an overconstrained mechanism, one should consider the flexibility of the 

links for its dynamic analysis. Alternatively, one can use an equivalent 

mechanism for its dynamic analysis, which will be discussed later. 

A schematic view of the MFG is shown in Figure 1. MFG has 9 links which are 

listed below. 

Link 1   : ground link (fixed) 

Links 2 and 4  : T shaped links (2 identical links) 

Links 3 and 5  : plate-like links with slots (2 identical links) 

Links 6, 7, 8 and 9 : rollers (4 identical links) 
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LINK 

NUMBER 

1 2 3 4 5 6 7 8 9 

1  P P P P     

2 P     R   R 

3 P     CP CP   

4 P      R R  

5 P       CP CP 

6  R CP       

7   CP R      

8    R CP     

9  R   CP     

Figure 2: Joints of the MFG [3] 

 

The joints of the MFG are listed in the table in Figure 2. The abbreviations that 

are utilized are given below. 

R : revolute joint 

P : prismatic joint 

CP : cam joint 

Links 2, 3, 4, 5 are connected to the ground by means of prismatic joints. Links 

6, 7, 8, 9 are rollers and connected to links 2 and 4 by revolute joints. These 
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rollers are also connected to links 3 and 5 by means of cam joints. The slots on 

links 3 and 5 are labelled as LOik where i is the link number and k is either L (for 

left hand side) or R (for right hand side). 

Links 3 and 5 are also connected to the ground by means of springs with spring 

constants of ku and kl, where u denotes “upper” and l denotes “lower”. 

The output links of the MFG are links 2 and 4. The output displacement is shown 

with so(t). FR(so) and FL(so) are the forces generated by the MFG. 

In the MFG, one may obtain so(t) as any desired function of si(t), by properly 

designing the link dimensions and the slot shapes. 

In each link of MFG, an Oixiyi coordinate system is attached, where “i” denotes 

the link number. 

The Chebychev–Grübler–Kutzbach criterion, in other words, the mobility 

formula, yields the degree of freedom of a general mechanism via the following 

equation [44]. 

𝐷𝑂𝐹 = 𝜆 ∗ (𝑙 − 𝑗 − 1) + ∑𝑓𝑖

𝑗

𝑖=1

 ( 1 ) 

where 

𝐷𝑂𝐹 is the degree of freedom of a mechanism, 

𝜆 is degree of freedom of the space (which is 6 for spatial mechanisms and 3 for 

planar mechanism), 

𝑙 is number of links (including the fixed link), 

𝑗 is number of joints, 

𝑓𝑖 is the number of degree of freedom of the ith joint. 

MFG has 4 revolute joints (𝑓𝑖 = 1), 4 prismatic joints (𝑓𝑖 = 1) and 4 cam joints 

(𝑓𝑖 = 2). Hence, one obtains: 
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∑𝑓𝑖

𝑗

𝑖=1

= 4 ∗ 1 + 4 ∗ 1 + 4 ∗ 2 = 16 ( 2 ) 

For practical purposes, the MFG mechanism shown in Figure 1 has 0 degrees of 

freedom according to the mobility formula. Since 𝜆 = 3 (planar mechanism), 

𝑙 = 9, 𝑗 = 12, ∑ 𝑓𝑖
𝑗
𝑖=1 = 16; equation ( 1 ) yields 

𝐷𝑂𝐹 = 3 ∗ (9 − 12 − 1) + 16 = 4 ( 3 ) 

These 4 degrees of freedom are the rotations of the rollers around the axes of the 

4 revolute joints (which are considered to be insignificant for a practical 

application). However, the real degree of freedom of the MFG is 5, due to its 

special dimensions. Hence, it is an overconstrained mechanism. The 

aforementioned special dimensions are as follows: 

∠Q2P2A2 = ∠Q2P2D2 = π/2 ( 4 ) 

∠K4L4B4 = ∠K4L4C4 = π/2 ( 5 ) 

 𝑃2𝐴2
̅̅ ̅̅ ̅̅ = 𝑃2𝐷2

̅̅ ̅̅ ̅̅ = 𝐿4𝐵4
̅̅ ̅̅ ̅̅ = 𝐿4𝐶4

̅̅ ̅̅ ̅̅  ( 6 ) 

 ( x2 axis ) ⇔ ( x1 axis  ) ( 7 ) 

( x4 axis ) ⇔ ( x1 axis ) ( 8 ) 

( y3 axis ) ⇔ ( y1 axis ) ( 9 ) 

( y5 axis ) ⇔ ( y1 axis )  ( 10 ) 

r6 = r7 = r8 = r9 ( 11 ) 

xLO3R= f(p) ( 12 ) 

xLO3R = g(p) ( 13 ) 

xLO3L = -f(p) ( 14 ) 

yLO3L = g(p) ( 15 ) 

xLO5R = f(p) ( 16 ) 

yLO5R = -g(p) ( 17 ) 

xLO5L = -f(p) ( 18 ) 

yLO5L = -g(p) ( 19 ) 
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Here, “⇔” symbol means “coincident”. ri stands for radius of the ith joint. xLOik 

and yLOik are the x and y coordinates of the center of a roller that lies on the curve 

LOik. f(p) and g(p) are 2 functions that define the slot shapes. 

If the above requirements are satisfied, the following conditions are also 

satisfied: 

𝑂1𝑂2
̅̅ ̅̅ ̅̅ ̅ = 𝑂1𝑂4

̅̅ ̅̅ ̅̅ ̅ = 𝑠𝑜(𝑡) ( 20 ) 

 𝑂1𝑂3
̅̅ ̅̅ ̅̅ ̅ = 𝑂1𝑂5

̅̅ ̅̅ ̅̅ ̅ = 𝑠𝑖(𝑡) ( 21 ) 

There are also some constraints on the masses and inertias of the links. These 

constraints are given below. 

m2 = m4 ( 22 ) 

m3 = m5 ( 23 ) 

m6 = m7 = m8 = m9 ( 24 ) 

xG3= 0 ( 25 ) 

xG5= 0 ( 26 ) 

xG6 = 0 ( 27 ) 

xG7= 0 ( 28 ) 

xG8= 0 ( 29 ) 

xG9= 0 ( 30 ) 

yG2= 0 ( 31 ) 

yG4= 0 ( 32 ) 

yG6= 0 ( 33 ) 

yG7= 0 ( 34 ) 

yG8= 0 ( 35 ) 

yG9= 0 ( 36 ) 

IG6 = IG7 = IG8 = IG9 ( 37 ) 

Here, 

Gi :  mass center of the ith link 

mi :  mass of the ith link 
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xGi :  x coordinate of mass center of the ith link 

yGi :  y coordinate of mass center of the ith link  

Lastly, the constraints on the applied external forces are as follows: 

(upper spring) ⇔ ( y1 axis ) ( 38 ) 

 (lower spring) ⇔ ( y1 axis ) ( 39 ) 

 𝐹𝑘𝑢
⃑⃑ ⃑⃑ ⃑⃑  = −𝐹𝑘𝑙

⃑⃑ ⃑⃑  ⃑ ( 40 ) 

FR(so) ⇔ ( x1 axis ) ( 41 ) 

FL(so) ⇔ ( x1 axis ) ( 42 ) 

FL(so) = FR(so) ( 43 ) 

Equations ( 4 ) to ( 43 ) are taken from [3]. 

As long as 

 Equations ( 4 ) to ( 43 ) are satisfied, 

 Gravitational acceleration is taken as 0, 

 Frictional properties of the 4 revolute joints in the rollers are identical to each 

other, 

 Frictional properties of the 4 cam joints in the slots are identical to each other, 

all reaction forces and moments at the ground joints will always be zero. 

The aforementioned feature of the MFG implies that the shaking forces and 

moments of the MFG that are transmitted to the ground are all zero and the MFG 

is balanced. [45] 

MFG can be used for the following applications as described in [46]: 

1. MFG can be used as energy efficient energy storage device for regulating the 

power requirement of an existing machine. By this way, it can minimize the 

energy requirement for a specific task. For multiple tasks, multiple MFGs 

can be used with an appropriate clutch system. 
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2. MFG can be used as an energy efficient mechanical force generator for 

improving the dynamic characteristics (shaking force/moment, actuator 

force/torque etc.) of an existing machine. 

3. MFG can be used as all-in-one actuator which includes energy storage 

system and/or mechanical transmission system and/or actuator. 

4. MFG can be used as a stand-alone mechanism for replacing any existing 

planar mechanism with 1 degree of freedom. 

MFG can be connected to either twin machines (as in Figure 3) or a single 

machine (as in Figure 4). Here, twin machines are two identical machines that 

operate synchronously [46]. 

 

 

Figure 3: MFG Connected to Twin Mechanisms [46] 
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Figure 4: MFG connected to a Single Mechanism  [46] 

 

 

Figure 5: Output Merging (and Converting) System  [46] 

 

It is also possible to convert the translating outputs of the MFG to rotational 

outputs; and/or merging the two outputs to a single output by means of an output 

merging (and converting) system as shown in Figure 5 [46]. 

 

Pulleys P3 and P4 can be 

eliminated to reduce 

friction 

(2) (4) 

(3) 

(5) 

P1 P2 

P
4
 P

3
 

Cable 1 Cable 2 

Body B 
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Indeed, there may be other ways to merge or convert the outputs and connect the 

MFG to existing machines. However, they will not be discussed here.  

Since MFG is proposed very recently by Soylu [2], the literature on MFG is very 

scarce. The only study other than [3], [45] and [46] is [47]. In this study 

kinematic and dynamic analyses of the MFG are performed. Applications and 

connection possibilities of the MFG are also discussed.  

In [47], performance optimization of four bar mechanisms (in terms of actuating 

torque and shaking forces and moments) are inspected and compared by 

 connecting a rotational adjusting mechanism to the rocker link of a four bar 

mechanism, 

 connecting a translational adjusting mechanism to the rocker link of a four 

bar mechanism, 

 connecting an MFG to the rocker link of a four bar mechanism 

Performance optimization of slider crank mechanisms are also inspected and 

compared. In this case, an MFG is connected to the slider link. The original slider 

crank and the MFG connected slider crank is inspected in terms of actuating 

torque and shaking forces and moments [47]. 

MFG can act as a double slider mechanism, since both of them have translational 

inputs and translational outputs. Mencek has also compared the performances of 

the MFG and the double slider mechanism, by considering different types of 

motors [47]. 

A physical prototype of the MFG is designed and manufactured by Mencek. This 

MFG prototype is connected to two identical slider crank mechanisms. Main aim 

here is to compare the energy consumptions of the original slider crank 

mechanisms with the MFG connected slider crank mechanisms. However, due 

to some manufacturing problems, this comparison couldn’t be completed 

successfully [47]. 
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1.3.1 Dynamic Analysis of MFG  

Since MFG is an overconstrained mechanism, the number of equations and the 

number of unknowns are not equal in the dynamic analysis. Hence, one obtains 

an indeterminate problem. Therefore, it is convenient to introduce a regular (in 

other words, not overconstrained) MFG which is permanently kinematically 

equivalent (PKE) to the original (overconstrained) MFG [3]. An overconstrained 

mechanism and a regular mechanism are PKE mechanisms if the motions of two 

mechanisms are identical, when the input motions are identical for both 

mechanisms. Furthermore, their dynamic analyses will also be identical under 

certain conditions. More detailed explanations regarding PKE mechanisms can 

be found in [3]. 

MFG can have several PKE mechanisms, in other words, equivalent MFGs 

(eqMFG). “Equivalent mechanical force generator - 1 & 3 (EqMFG1&3)” is 

obtained by replacing the prismatic joint between links 1 and 3 in the original 

MFG. In EqMFG1&3, this prismatic joint is replaced with a cylinder in slot joint 

as shown in Figure 6. Curve C13 of link 3 lies on a circle with radius d1 and center 

U3. EqMFG1&3 and MFG are identical except for the joint between links 1 and 

3.  As opposed to to MFG, EqMFG1&3 is a regular mechanism, not an 

overconstrained mechanism. Hence its degree of freedom is 5. 4 of these degrees 

of freedoms are due to the rotations of the rollers. The remaining 1 degree of 

freedom is due to the motions of all links together. [3] 
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Figure 6: EqMFG1&3 Mechanism [46] 

 

Similarly, EqMFG1&2 can be obtained by replacing the prismatic joint of MFG 

between links 1 and 2 with a cylinder in slot joint. 

More detailed information about eqMFG mechanisms and other versions of 

eqMFG mechanisms can be found in [46]. 

4 algorithms are proposed by Soylu for the dynamic analysis of the EqMFGs 

[45]. Two of these algorithms are for the inverse dynamic analyses, and the 

remaining two are for the forward dynamic analyses. For both the inverse and 

forward dynamic analyses, two cases are considered:  

1. There exists slippage at the slots. 

2. There exists no slippage at the slots. 
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Hence by including the above two cases for both forward and inverse dynamic 

analyses, there are a total of four algorithms. These algorithms are developed for 

EqMFG1&2, but they can also be applied to other versions of EqMFGs, such as 

EqMFG1&3. The inverse dynamic analysis algorithm when there exists no 

slippage at the slots is summarized in Chapter 3. 

1.4 Mechanical Presses and Actuators 

In this study, the MFG will be connected to a mechanical press. Hence, it is 

necessary to review the mechanical press literature. In [48], a comprehensive 

review of the existing press machines are presented. Servo presses and their 

advantages are explained, and mechanisms of presses are classified. To take full 

advantage of the MFG, servo presses are more appropriate. In [49], characteristic 

features of mechanical servo presses and their advantages over other types of 

presses are explained; furthermore, applications of presses are presented. In [50], 

mechanical press types and the press nomenclature are explained. In  [51], design 

rules of presses are explained in a detailed fashion.  

In the literature, it is possible to find sample load data for the press machines for 

various works. For example, one can use [52] for deep drawing, [53] for forging, 

[54] for stamping and [55] for bending sample load data. In this study, MFG will 

be connected to a forging press and the load data given in [53] will be used. 

It is also important to include a motor efficiency model in the analyses of the 

MFG. The main losses in electric motors may be classified as copper losses, iron 

losses, stray load losses and mechanical losses. Among these, the copper losses 

are the most dominant losses [56]. Hence, in this study, a simple efficiency 

model that only includes copper losses will be used.  

In the literature, the efficiency maps of electric motors are obtained by using four 

different methods. These methods are listed below. 
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1. In order to obtain the efficiency map, one can make physical tests. In other 

words, one can change the input voltage and current of a motor and measure 

the output torque and speed of the motor, at a limited number of points. Then, 

one can create a contour plot for efficiency. Some experimental tests are 

presented in [56], [57] and [58]. 

2. In order to obtain the efficiency map, one can virtually model the motor by 

using finite element analysis techniques which are readily available in 

commercial software such as ANSYS Maxwell, etc. [59] 

3. In order to obtain the efficiency map, one can model certain major losses and 

thus create approximate efficiency maps. In [58], two of these approximate 

models are compared with experimental results.  

4. In [59], losses in electric motors are modelled for different Tmωn products 

where, T is the motor torque and ω is the motor speed. “m” and “n” are 

constants which can be any integer from 0 to 3. 

1.5 Scope of the Thesis 

Mechanical force generator is a recently introduced novel concept, and there are 

very few studies related to it. In this study, dynamic analyses of these 

mechanisms will be realized by means of the computer software, MSC Adams; 

and the results will be compared with the results obtained by the dynamic 

analysis algorithm developed in [45]. In order to optimize the dynamic 

performance of an existing mechanism, the optimal force to be applied by an 

MFG will be determined. A simplified dynamic analysis of the MFG will also 

be presented and the slot shape of the MFG will be obtained by an iterative 

algorithm.  

The author believes that, MFG will be very beneficial for the dynamic 

optimization of various widely used industrial mechanisms, such as press 

machines, etc. Dynamic optimization can be related to shaking forces/moments, 

the maximum power demand, or the total energy consumption. By utilization of 
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MFG in such industrial machines, one can reduce the size of the actuator and/or 

reduce the energy consumption of the machine. 

The organization of the thesis is given below.  

 In Chapter 2, in order to obtain a preliminary know-how information 

(regarding the dynamic analysis of overconstrained mechanism), the 

parallelogram mechanism will be studied. Dynamic analysis of a 

parallelogram mechanism requires one to consider the flexibilities of the 

links because dynamical analyses of overconstrained mechanisms lead to 

indeterminate problems. Hence, dynamic analysis of the parallelogram 

mechanism will be performed by including the flexibilities of the links. 

Then, by increasing the degree of freedom of an appropriate joint, dynamic 

analysis will be repeated by using only rigid links. An extra translational 

degree of freedom will be added for this purpose. The angle of this 

translational axis will be changed and the effect of different angles will be 

studied.  

 In Chapter 3, dynamic analysis of MFG will be realized by using a 

commercial software, MSC Adams. Secondly, an algorithm proposed by 

Soylu [45] will be implemented by means of a commercial software, 

MATLAB. Results of the two solution methods will then be compared. 

 In Chapter 4, as an example, a press mechanism is studied. Dynamic analysis 

of the press mechanism is performed for various types of loads and the force 

to be provided by an MFG rigidly coupled to the press is included as an 

optimization parameter. When an appropriate MFG is coupled to the press, 

it will be shown that, the energy consumption of the press and the maximum 

power requirement of the actuator of the press may be reduced extensively. 

 In Chapter 5, an algorithm, which yields the slot profile of the MFG, for a 

given motion and generated force, is introduced. Effects of link masses, 

inertias and spring properties on slot profile are discussed. Approximate 
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dynamic analysis of the MFG is performed, by including only two links. As 

an output, the contact surface of the slot is obtained. 
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CHAPTER 2 

 

 

COMPARISON OF REGULAR PARALLELOGRAM 

MECHANISMS AND OVERCONSTRAINED PARALLELOGRAM 

MECHANISM 

 

 

2.1 Introduction 

In this chapter, an overconstrained parallelogram mechanism which is shown in 

Figure 7 and a regular parallelogram mechanism which is shown in Figure 8 will 

be compared in terms of their dynamic properties. Here, a “regular” mechanism 

refers to a mechanism, which is not overconstrained. 

 

 

Figure 7: An Overconstrained Parallelogram Mechanism 

 

In Figure 7, blue numbers refer to the link labels. Note that ground is labeled as 

link 1. Green numbers, on the other hand, refer to joint labels. Joint i-j, for 

instance, refers to the joint between link i and link j. Here, link 5 has 3 joints; 
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with link 2, link 3, and link 4. Other links have 2 joints. Links 2, 3 and 4 are 

directly connected to the ground via the joints 1-2, 1-3, and 1-4. All of the joints 

are revolute joints (R), which have only 1 degree of freedom. 

For the parallelogram mechanism shown in Figure 7 with 𝜆 = 3, 𝑙 = 5, 𝑗 = 6, 

𝑓𝑖 = 1 for all joints, the degree of freedom equation yields 

𝐷𝑂𝐹𝑜𝑐 = 3 ∗ (5 − 6 − 1) + 6 ∗ 1 = 0 ( 44 ) 

Here, 𝐷𝑂𝐹𝑜𝑐 refers to the degree of freedom of the parallelogram mechanism 

shown in Figure 7. However, the actual degree of freedom of the system is 1, 

due to the special dimensions. Hence, it is an overconstrained mechanism, and 

“oc” in the subscript stands for “overconstrained”. The aforementioned special 

dimensions are as follows: 

 Link lengths of link 2, 3 and 4 are equal. 

 Link 2, 3 and 4 are parallel. 

 Distance between joints 1-2 and joint 1-3 is equal to distance between joint 

2-5 and 3-5. 

 The line passing through joint 1-2 and joint 1-3 is parallel to the line passing 

through joint 2-5 and joint 3-5. 

 Distance between joints 1-3 and joint 1-4 is equal to distance between joint 

3-5 and 4-5. 

 The line passing through joint 1-3 and joint 1-4 is parallel to the line passing 

through joint 3-5 and joint 4-5. 

 Joints 1-2, 1-3 and 1-4 are on the same straight line. 

 Joints 2-5, 3-5 and 4-5 are on the same straight line. 

 

 



 

 

23 

 

Figure 8: A Regular Parallelogram Mechanism 

 

In Figure 8, a regular parallelogram mechanism is shown. Here, joint 3-5 (which 

was a revolute joint) is changed with a cylinder in slot joint (Cs).  

For the parallelogram mechanism shown in Figure 8 with 𝜆 = 3, 𝑙 = 5, 𝑗 = 6 

and 𝑓𝑖 = 1 for all 5 R joints and 𝑓𝑖 = 2 for the Cs joint, the degree of freedom 

equation yields 

𝐷𝑂𝐹𝑟𝑒𝑔 = 3 ∗ (5 − 6 − 1) + (5 ∗ 1 + 2) = 1 ( 45 ) 

Here, 𝐷𝑂𝐹𝑟𝑒𝑔 refers to the degree of freedom of the parallelogram mechanism 

shown in Figure 8. Hence, it is a regular mechanism, and “reg” in the subscript 

stands for “regular”. 

For the sake of simplicity, after this point, the regular parallelogram mechanism 

will be called as “RPM” and the overconstrained parallelogram mechanism will 

be called as “OPM”. 

For both the RPM and the OPM, there are 12 equations which are listed below. 

Equations 

1. Force equilibrium of body 2 in the x direction 

2. Force equilibrium of body 2 in the y direction 

3. Moment equilibrium of body 2 
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4. Force equilibrium of body 3 in the x direction 

5. Force equilibrium of body 3 in the y direction 

6. Moment equilibrium of body 3 

7. Force equilibrium of body 4 in the x direction 

8. Force equilibrium of body 4 in the y direction 

9. Moment equilibrium of body 4 

10. Force equilibrium of body 5 in the x direction 

11. Force equilibrium of body 5 in the y direction 

12. Moment equilibrium of body 5 

 

An actuating torque is applied to both mechanisms, in order to obtain the 

predetermined motion. Here, the motion is known, and the actuating torque is 

unknown. 

For the OPM, there are 13 unknowns which are listed below. 

Unknowns for the OPM 

1. Joint reaction force in joint 1-2 in the x direction 

2. Joint reaction force in joint 1-2 in the y direction 

3. Joint reaction force in joint 1-3 in the x direction 

4. Joint reaction force in joint 1-3 in the y direction 

5. Joint reaction force in joint 1-4 in the x direction 

6. Joint reaction force in joint 1-4 in the y direction 

7. Joint reaction force in joint 2-5 in the x direction 

8. Joint reaction force in joint 2-5 in the y direction 

9. Joint reaction force in joint 3-5 in the x direction 

10. Joint reaction force in joint 3-5 in the y direction 

11. Joint reaction force in joint 4-5 in the x direction 

12. Joint reaction force in joint 4-5 in the y direction 

13. Actuating torque which is applied to link 2 

For the RPM, there are 12 unknowns which are listed below. 
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Unknowns for the RPM 

1. Joint reaction force in joint 1-2 in the x direction 

2. Joint reaction force in joint 1-2 in the y direction 

3. Joint reaction force in joint 1-3 in the x direction 

4. Joint reaction force in joint 1-3 in the y direction 

5. Joint reaction force in joint 1-4 in the x direction 

6. Joint reaction force in joint 1-4 in the y direction 

7. Joint reaction force in joint 2-5 in the x direction 

8. Joint reaction force in joint 2-5 in the y direction 

9. Joint reaction force in joint 3-5 (there is a single reaction force for joint 3-5, 

which is perpendicular to the slot axis)  

10. Joint reaction force in joint 4-5 in the x direction 

11. Joint reaction force in joint 4-5 in the y direction 

12. Actuating torque which is applied to link 2 

Therefore, the number of unknowns and the number of equations are equal for 

the RPM. However, the number of unknowns and the number of equations are 

not equal for the OPM. Hence, the equations can be solved only in terms of a 

selected unknown. Alternatively, one may model the links as flexible (rather than 

rigid). In this case, all 13 unknowns of the OPM can be solved using the rigid 

body dynamic equilibrium equations and the equations arising due to 

consistency of the displacements in the flexible links. This can be realized by 

using a finite element method.  

In this chapter, the objective is to examine the two permanently kinematically 

equivalent mechanisms, namely OPM and RPM, in terms of their dynamic 

characteristics. 
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2.2 Method 

The OPM and the RPM will be analyzed by using the commercial software MSC 

Adams. Two mechanisms will be completely equivalent in terms of their link 

lengths, materials, external loads, friction etc.  

Dynamic analysis of OPM will be realized by using flexible links. Dynamic 

analysis of RPM, on the other hand, will be realized by using rigid links. 

Here, the goal is to determine the RPM which is “closest” to the OPM in terms 

of a given dynamic characteristics. In order to achieve this goal, the angle α (see 

Figure 9) will be used as the design parameter. It should be noted that there exists 

infinitely many RPM mechanisms, with different α values, which are 

permanently kinematically equivalent to a given OPM. Hence, there are many 

dynamic characteristics (such as the actuating torque, joint reactions, work done 

in one cycle, etc.) which are affected by the value of α. In this chapter, a primary 

objective will be to compare the actuating torque of an OPM with the actuating 

torque of an RPM for different values of α. In this comparison, the input motions 

of the OPM and RPM; and other parameters that affect the dynamic force 

analysis will be kept to be the same for the OPM and RPM. The effect of α on 

the joint reaction forces of an RPM will also be investigated. Similarly, the effect 

of α on the work done (in one cycle) by an RPM will also be investigated. 
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Figure 9: Angle α, Design Parameter for RPM 

 

Before going into the details, some preliminary information, regarding MSC 

Adams will be given. This information will be used in chapters 2 and 3. 

2.2.1 Joints & Constraints in MSC Adams Environment 

In MSC Adams, by default, each body has 6 degrees of freedom in space. One 

can also constrain a body as a “planar part” in a selected plane. With this option, 

2 rotational and 1 translational degrees of freedom become constrained.  

In order to construct systems, bodies should be somehow connected to each 

other. There are mainly 3 ways of connecting bodies to each other in MSC 

Adams: 

1. Idealized Joints:  Joints that have physical counterparts, such as a revolute 

joint or a translational joint. 

2. Joint Primitives: Joints that place restrictions on a relative motion, such as 

restricting one part to always move on a specified line on another part. Unlike 

the idealized joints, the joint primitives don’t have physical counterparts. 

3. Higher Pair Constraints: Constraints that restrict a curve or a point defined 

on the first part to remain in contact with another curve defined on a second 

part. 
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The aforementioned constrains restrict several degrees of freedom of the related 

parts. Depending on the type of joint used, one to six degrees of freedom may be 

removed. In order to restrict the motion of a part with respect to another part, 

one can also define a contact between two bodies. In this case, no degrees of 

freedoms are removed. However, the contact forces between the two parts 

restrict the relative motion. 

In the following sections, some of the above mentioned joints (and their 

specifications in MSC Adams) will be introduced briefly. 

2.2.1.1 Idealized Joints 

2.2.1.1.1 Revolute Joint 

Revolute joints remove 2 rotational and 3 translational degrees of freedom. 

Hence, only one rotational degree of freedom remains. Friction can be added 

easily. They cannot be used with planar parts to restrict only in-plane 

translations. If they are used with planar parts with λ=3, out of plane rotations 

and translation become restricted two times for each, which results in redundant 

constraints. 

2.2.1.1.2 Translational Joint 

Translational joints remove 3 rotational and 2 translational degrees of freedom. 

Hence, only one translational degree of freedom remains. Friction can be added 

easily. They cannot be used with planar parts to restrict only in-plane translation 

and rotation. If they are used with planar parts with λ=3, out of plane rotations 

and translation become restricted two times for each, and results redundant 

constraints. 



 

 

29 

2.2.1.2 Joint Primitives 

2.2.1.2.1 In-Plane Primitive Joint 

In-plane primitive joints constrain one translational degree of freedom of a body. 

In other words, a specified point on the first part always moves on a plane defined 

on the second part as shown in Figure 10. This type of joint can be used also in 

planar parts with λ=3. Friction cannot be added from the menu. It should be 

introduced and defined as an external force/torque. 

 

 

Figure 10: In-Plane Primitive Joint [60] 

 

2.2.1.2.2 In-Line Primitive Joint 

In-line primitive joints constrain two translational degrees of freedom of a body. 

In other words, a specified point on the first part always moves on a line defined 

on the second part as shown in Figure 11. This type of joint can be used also in 

planar parts with λ=3. Friction cannot be added from the menu. It should be 

introduced and defined as an external force/torque. 

 



 

 

30 

 

Figure 11: In-Line Primitive Joint [60] 

 

For planar parts with λ=3, by using in-line primitive joint, one can compose a 

joint that is equivalent to a revolute joint. Here, the line described for the revolute 

joint is the axis of rotation of the revolute joint and it is perpendicular to the 

plane of the planar part. Being planar part constrains out of plane translation and 

rotations (in total, 1 translation+2 rotations). In-line primitive joint constrains 2 

translations on the plane. Hence, a total of 5 degrees of freedom become 

constrained as in the revolute joint. 

2.2.1.2.3 Perpendicular Primitive Joint 

Perpendicular primitive joints constrain one rotational degree of freedom of a 

body. In other words, a specified line on the first part always stays perpendicular 

to another line defined on the second part as shown in Figure 12. This type of 

joint can also be used in planar parts with λ=3. Friction cannot be added from 

the menu. It should be introduced and defined as an external force/torque. 

 

 

Figure 12: Perpendicular Primitive Joint [60] 
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For planar parts with λ=3, by using an in-plane primitive joint and a 

perpendicular primitive joint together, one can compose a joint that is equivalent 

to a translational joint. Here, being planar part constrains out of plane translation 

and rotations (in total, 1 translation+2 rotations). In-plane primitive joint restricts 

one translational degree of freedom. Perpendicular primitive joint restricts one 

rotational degree of freedom. By using all of these together in a proper manner, 

the only remaining degree of freedom is one translational degree of freedom. 

Hence, a total of 5 degrees of freedom become constrained (like as in the 

translational joint).  

If a perpendicular primitive joint is not added, the degree of freedom of the part 

increases to 2, as in the cylinder in slot joint, which possesses an in-plane rotation 

and an in-plane translation. By this way, one can compose a joint between link 

3 and link 1 (ground joint) in the balanced EqMFG1&3. (See section 3.2) 

2.2.1.3 Higher Pair Constraints 

Although there are other types of higher pair constraints, here, only the point on 

curve constraint will be introduced. 

2.2.1.3.1 Point on Curve Constraint 

Point on curve constraints constrain two translational degrees of freedom of a 

body. In other words, a specified point on the first part always moves on a curve 

defined on the second part as shown in Figure 13. The first part is free to slide 

and roll on the curve specified on the second part. This curve can be planar, 

spatial, open or closed. The first part cannot lift off the second part, in other 

words, it must always lie on the curve. This type of joint can be used also in 

planar parts with λ=3. Friction cannot be added from the menu. It should be 

introduced and defined as an external force/torque. 
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Figure 13: Point on Curve Constraint 

 

Although point on curve constraint looks similar to an in-line primitive joint, 

they are not the same. In an in-line primitive joint, the constraint should be 

described over a straight line. However, in point on curve constraint, the curve 

doesn’t need to be a straight line. Moreover, the curve can be defined in 3 

dimensional space. The advantage of an in-line primitive joint is that it can be 

constructed easily. 

2.2.1.4 Contact 

By using contacts, defining complex joints like a cylinder in slot joint or a cam 

joint and introducing friction to them is possible.  Contacts can restrict the 

motion of a part with respect to another part by creating contact forces, without 

directly removing degree of freedom of a body. 

In contacts, two parts do not need to touch each other necessarily. If there is an 

external effect like gravity, external force or a specific geometry (like a cylinder 

in slot), they may touch each other. If there is no such force, they may not touch 

each other, or they may touch each other only for some specific time interval. 

Although more sophisticated usages are also possible, only the related content 

will be introduced here. In this study, for defining a cylinder in slot joint with 

friction, curve to curve and solid to solid contacts will be used. 
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2.2.1.4.1 Contact Force and Contact Detection Algorithm 

The contact algorithm can be thought as a nonlinear spring-damper system.  

As an example, consider the contact between a sphere and a rectangular prism, 

as shown in Figure 14.  

 

 

Figure 14: Illustration of Contact Detection Algorithm 

 

Although it is exaggerated for illustration purposes, the green volume is the 

volume of intersection. Gray point is the centroid of the volume of intersection. 

Point A is the closest point in the sphere to the centroid of the volume of 

intersection. Point B is the closest point in the rectangular prism to the centroid 

of the volume of intersection. Length of the line AB is defined as the “penetration 

depth”. Contact forces act in the direction of line AB. 

The contact force is defined as follows: 

𝐹 = 𝐾 ∗ (𝑝𝑒𝑛𝑒𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑝𝑡ℎ)𝑛 ( 46 ) 

where 

K: contact stiffness 
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n: exponent 

n should be larger than 1, for stiffening spring characteristics. This exponent 

should normally be set to a number higher than 1.5. According to design studies, 

models run better with  n>2.1. Hence its default value is 2.2 in MSC Adams, and 

thus, in this study 2.2 will be used. 

In general, higher stiffness means more rigid contact. But higher stiffness values 

lead to difficulties in integrations. 

By default, K is 105 N/mm for the parts whose mass is in the order of 1 kg and 

which are made of steel. Since, for the system to be analyzed, masses are in the 

order of 1 kg, K will be taken* as105 N/mm. 

Note that, frictional forces and damping forces may also exist in a contact. 

Again, for the parts whose mass is in the order of 1 kg and which are made of 

steel, damping coefficient can be taken* as 10 (N*s)/mm which is the default 

value. 

MSC Adams solver uses a cubic STEP function to increase the damping 

coefficient from zero, at zero penetration, to full damping when the penetration 

reaches a predefined value. The penetration depth at which MSC Adams solver 

turns on full damping is specified as 10-3 mm.   

*  only for curve to curve contact 



 

 

35 

2.2.1.4.2 Contact Friction 

 

Figure 15: Slip Velocity vs Coefficient of Friction [60] 

 

In Figure 15, slip velocity vs coefficient of friction is shown, where; 

μs : Coefficient of friction (Static) 

μd : Coefficient of friction (Dynamic) 

Vs : Stiction transition velocity 

Vd : Friction transition velocity 

Note that, one should have 0 ≤ Vs ≤ Vd  and 0 ≤ μd ≤ μs. Furthermore, both Vs 

and Vd should be 5 times larger than integrator error, which is the requested 

accuracy of the integrator. This error is 10-3 by default. 

There is no contact stiction in MSC Adams, unlike the friction models in the 

idealized joints. Hence, a slip velocity is necessary to generate frictional forces 

and it is used to compute a coefficient of friction. As the slip velocity decreases 

below the friction transition velocity, the coefficient of friction gradually 

increases from μd to μs. At the stiction transition velocity, the coefficient of 

friction becomes equal to μs. Between the stiction transition velocity and the zero 

slip velocity, the coefficient of friction decreases gradually to zero, as the slip 
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velocity decreases. Therefore, even the no slip condition for contacts includes a 

small slip. If the slip velocity is smaller than the stiction transition velocity, it is 

safe to claim that there is no slip. 

2.2.1.4.3 Contact Types 

Although there are other types of contact, only the “curve to curve” and “solid 

to solid” contacts will be discussed here. 

2.2.1.4.3.1 Curve to Curve Contact 

Contact detection is analytic. Hence solution time is shorter than solid to solid 

contact. The contact forces are also smoother. 

2.2.1.4.3.2 Solid to Solid Contact 

Solid to solid contact is limited to external contact surfaces. Contact detection is 

not analytic. The surfaces are tessellated as in Figure 16. 

 

 

Figure 16: Tessellation [60] 

 

If it is possible, preferring the curve to curve contact is more meaningful and 

advantageous because of the above mentioned benefits. However, for complex 

geometries, solid to solid contact may be necessary. 
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Table 1: Summary of Constraint Types 

Abbreviation Joint Type 

Usable 
for 
Planar 
Parts 
(λ=3)? 

Constrained 
DOF'S 

Total 
Constrained 
DOF's 

INL 
In-Line Primitive 
Joint 

YES 2T 2 

INP 
In-Plane Primitive 
Joint 

YES 1T 1 

PERP 
Perpendicular 
Primitive Joint 

YES 1T 1 

REV Revolute Joint NO 3T+2R 5 

PRIS Prismatic Joint NO 2T+3R 5 

PoC 
Point on Curve 
Constraint 

YES 2T 2 

SOLD 
Solid to Solid 
Contact 

YES   0 

CURV 
Curve to Curve 
Contact 

YES   0 

 

For convenience, all types of constraints that will be utilized in this study are 

presented in Table 1.  

2.3 Model 

The notation to be used in the developed model is presented below. 

µ  : friction coefficient between two contact surfaces for all types of joints 

kL  : spring constant of the load  

α  : angle of the slot in link 3 (see Figure 9) 

t  : time 

tini  : initial time 
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tfin  : final time 

Ɵin(t)  : angular position of link 2 (input) (see Figure 17) 

Tact(t)  : actuating torque acting on link 2 (see Figure 17) 

rpin  : pin radius of the revolute joints 

ρ : density of the material 

E  : modulus of elasticity 

ν  : Poisson's ratio 

M : material 

Steel will be used as the link material. Properties of steel are given below. 

E = 207 GPa 

ρ = 7801 kg/m3 

ν  = 0.29 

In Figure 17, the front view of the OPM which is connected to a compression 

spring, is shown. In the same figure, the “working grid” is also shown. Working 

grid in MSC Adams is an imaginary grid that lies in the x-y plane. In this model, 

the spacing between each point of the working grid is 100 mm. Therefore, the 

length of link 5 is 800 mm. All other dimensions may be determined using the 

working grid. 
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Figure 17: Front View of the OPM 

 

Width of all links are 20 mm. Depth of link 2, 3 and 4 is 10 mm, depth of link 5 

is 30 mm. Depth of the links are defined as the length that is perpendicular to the 

front view shown in Figure 17. Width of the links, on the other hand, can be 

directly seen from the front view in Figure 17. In Figure 18, an isometric view 

of the OPM is shown. 

 

 

Figure 18: Isometric View of the OPM 

Tact 

Ɵin 
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Here, the spring simulates an external load. In reality, instead of the spring, any 

external load could be applied to the mechanism. The spring constant of the 

spring, kL, is 0.5 N/mm. The length of the spring shown in Figure 17 is the free 

length, which is 600 mm. 

OPM is located in a vertical plane, and gravity acts in the –y direction as shown 

in Figure 17. OPM is perfectly symmetrical with respect to the x-y plane. Hence, 

there exists no out-off plane forces. 

OPM is modelled as flexible and all joints are revolute joints with friction. The 

friction coefficient µ is 0.1 (between steel and steel, lubricated). For lubricated 

steel to steel contact, taking µ larger than 0.2 is not reasonable.  Pin radius of the 

revolute joints are taken 5 mm.  

Transition velocity is taken as 10-5 mm/s, which is very small. Hence, only 

sliding friction is considered, whereas, static friction is not taken into account.  

Motion of the OPM is specified via joint 1-2, as shown with a blue arrow in 

Figure 17. The specified motion of the OPM is defined by the 4 equations given 

below. 

Ɵ̈in(t)  = -10o/s2 

Ɵ̇in(0) = 0o/s 

Ɵin(0) = 0o (assume Ɵin shown in Figure 17 is 0o, in other words, initial position)  

tfin=4 s 

Analysis is done in 201 discrete time steps.  

The model for OPM with visible icons is shown in Figure 19. Icons are shown 

for frictions, joints, actuating torque, etc. are shown for better understanding of 

the model. 
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Figure 19: OPM with Visible Icons 

 

RPM is also modelled in a similar manner as shown in Figure 20.  

 

 

Figure 20: RPM with Visible Icons 

 

It should be noted that, there are 3 key differences between PRM and OPM: 

 RPM is modelled as rigid, whereas, OPM is modelled as flexible. 

 In OPM, joint 3-5 is revolute joint. In RPM, joint 3-5 is a cylinder in slot 

joint. In MSC Adams, there is no readily available cylinder in slot joint. 

Hence, the cylinder in slot joint is modelled as explained below. 
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Figure 21: Modeling Cylinder in Slot Joint 

 

Firstly, an imaginary link, link 6, is introduced as shown in Figure 21. A 

revolute joint is used between link 6 and link 5 (joint 5-6). A prismatic joint 

is used between link 3 and link 6 (joint 3-6). Hence, joint 3-5 is modeled as 

combination of 2 one degree of freedom joints. The model will be much more 

accurate if the mass of link 6 is negligible. In this model, density of link 6 is 

106 times smaller than the density of steel, which implies that mass of link 6 

is negligible. 

 In OPM, all revolute joints are modeled as revolute joints. In RPM, however, 

joint 1-3 and joint 1-4 are modeled as in-line primitive joints (𝑓𝑖 = 4). This 

is because, in MSC Adams, there is no revolute joint type for planar 

mechanisms. Revolute joints always remove 5 degrees of freedom even if 

the mechanism is planar. This is due to the fact that MSC Adams always 

takes 𝜆 to be 6 (while calculating the degree of freedom), even if the 

mechanism is a planar mechanism with 𝜆 = 3. Alternatively, one can 

introduce a body as a planar link and restrict the 3 degrees of freedom of the 

body, without changing the degree of freedom of space, 𝜆. Note that, 

differences between in-line primitive joints and revolute joints have already 

been explained in section 2.2.1. Recall that for in-line primitive joints, 

friction is introduced as an external force, i.e., there is no built-in friction 

choice for primitive joints. 
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Remember that, in the RPM model of MSC Adams, 𝑙 = 6, 𝑗 = 7, 𝑓𝑖 = 1 for all 

4 revolute joints and the prismatic joint. 𝑓𝑖 = 4 for in-line primitive joints. 

With 2 in-line primitive joints rather than revolute joints: 

𝐷𝑂𝐹𝑟𝑒𝑔 = 6 ∗ (6 − 7 − 1) + (5 ∗ 1 + 2 ∗ 4) = 1 ( 47 ) 

If revolute joints are used for joints 1-3 and 1-4:  

𝐷𝑂𝐹𝑟𝑒𝑔 = 6 ∗ (5 − 6 − 1) + (7 ∗ 1) = −5 ( 48 ) 

In that case, MSC Adams arbitrarily removes some constraints which is not 

desired. 

Note that, in RPM, one could model each link as a planar link and use only in-

line primitive joints. However, all friction forces should be modelled as external 

torque/forces for this model. Hence, one should use, as much as possible, 

revolute joint models in order to take advantage of the built-in friction model of 

the revolute joints. 

In OPM, there is no degree of freedom problem, because it is modeled as 

flexible. Each joint can be modelled as a revolute joint (which restricts 5 degrees 

of freedom), and the degree of freedom of space, 𝜆, is taken as 6. 

Recall that, the design parameter is angle α, which is the angle of the slot in link 

3, as explained before. 

2.4 Results 

The error at any time t, 𝑒(𝑡), between 2 functions 𝑓1(𝑡) and 𝑓2(𝑡), can be 

described as follows: 

𝑒(𝑡) = 𝑓1(𝑡) − 𝑓2(𝑡) ( 49 ) 

The root mean square error between the initial time 𝑡𝑖𝑛𝑖 and final time 𝑡𝑓𝑖𝑛, on 

the other hand, can be defined as follows: 
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𝑒𝑟𝑚𝑠 = √
∫ 𝑒2(𝑡) ∗ 𝑑𝑡

𝑡=𝑡𝑓𝑖𝑛

𝑡=𝑡𝑖𝑛𝑖

𝑡𝑓𝑖𝑛 − 𝑡𝑖𝑛𝑖
 ( 50 ) 

In general, the smaller 𝑒𝑟𝑚𝑠 is, the “closer” the curves 𝑓1(𝑡) and 𝑓2(𝑡) in the 

interval 𝑡𝑖𝑛𝑖 ≤ 𝑡 ≤ 𝑡𝑓𝑖𝑛. Note that the units of 𝑒𝑟𝑚𝑠 is the same as the units of 

𝑓1(𝑡) and 𝑓2(𝑡). 

The non-dimensional, normalized, form of the root mean square error, on the 

other hand, is defined via the equation  

𝑒𝑛𝑟𝑚𝑠 =
𝑒𝑟𝑚𝑠

max(𝑓1(𝑡), 𝑓2(𝑡)) − min(𝑓1(𝑡), 𝑓2(𝑡))
 ( 51 ) 

where max(𝑓1(𝑡), 𝑓2(𝑡)) is the maximum value of the functions 𝑓1(𝑡) and 𝑓2(𝑡) 

in the interval 𝑡𝑖𝑛𝑖 ≤ 𝑡 ≤ 𝑡𝑓𝑖𝑛. Similarly, min(𝑓1(𝑡), 𝑓2(𝑡)) is the minimum 

value of the functions 𝑓1(𝑡) and 𝑓2(𝑡) in the interval 𝑡𝑖𝑛𝑖 ≤ 𝑡 ≤ 𝑡𝑓𝑖𝑛. Therefore, 

max(𝑓1(𝑡), 𝑓2(𝑡)) − min(𝑓1(𝑡), 𝑓2(𝑡)) may be considered to represent the 

“size” of the union of the ranges of the functions 𝑓1(𝑡) and 𝑓2(𝑡). In this study, 

percent 𝑒𝑛𝑟𝑚𝑠, which is obtained by multiplying  𝑒𝑛𝑟𝑚𝑠 by 100, will be used. 

Let the root mean square error of the actuating torque be eT,rms. Clearly, 

eT,rms=f[α, µ, kL, Ɵin(t); M, tini, tfin]. In other words, eT,rms is a function of α, µ, kL, 

Ɵin(t); M, tini, tfin. Here, [α, µ, kL, Ɵin(t)] are continuous parameters, whereas, [M, 

tini, tfin] are discrete parameters. One can obtain plots of eT,rms  or eT,nrms  vs 1 or 2 

continuous parameters, while keeping the remaining parameters constant.  

Firstly, Tact of OPM and RPM is compared for several α values, while keeping 

the remaining parameters constant. The remaining parameters are given below. 

[α, µ, kL, Ɵin(t); M, tini, tfin]=[α, 0.1, 0.5 N/mm, (-5o * t2); steel, 0 s, 4 s] 
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Figure 22: Tact [N*mm] vs t [s] for different α values 

 

As can be seen from Figure 22, for all α values, actuating torques are quite close 

to each other. When one zooms into the plots, the differences become more 

observable (see Figure 23). 
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Figure 23: A Closer Look to Tact [N*mm] vs t [s] Graph Between t=3.2 and 

t=3.5 

 

When friction exists, these graphs will differ from each other. Since the pin 

diameter of the revolute joints are much smaller than the lengths of the links, one 

expects that the plots for different α values are close to each other. If the pin 

diameters are comparable to the link lengths, then Tact graphs would be much 

more different.  

Next, the “closeness” of OPM and RPM will be assessed in regard to Tact,OPM(t) 

and Tact,RPM(t). 

Here, Tact,OPM(t) is the actuating torque of the OPM, and Tact,RPM(t) is the 

actuating torque of the RPM. Firstly, the error 𝑒𝑇 is defined by replacing 𝑓1(𝑡) 

and 𝑓2(𝑡) with 𝑒𝑎𝑐𝑡,𝑅𝑃𝑀 and 𝑒𝑎𝑐𝑡,𝑂𝑃𝑀 in equation ( 49 ), i.e., 

𝑒𝑇 = 𝑒𝑎𝑐𝑡,𝑅𝑃𝑀 − 𝑒𝑎𝑐𝑡,𝑂𝑃𝑀 ( 52 ) 

Using 𝑒𝑇, 𝑒𝑇,𝑟𝑚𝑠 can be defined in accordance with equation ( 50 ), i.e., 
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𝑒𝑇,𝑟𝑚𝑠 = √
∫ 𝑒𝑇(𝑡) ∗ 𝑑𝑡

𝑡=𝑡𝑓𝑖𝑛

𝑡=𝑡𝑖𝑛𝑖

𝑡𝑓𝑖𝑛 − 𝑡𝑖𝑛𝑖
 ( 53 ) 

Since time is discrete in the MSC Adams model, the integration in equation ( 53 

) is replaced by a summation, yielding  

𝑒𝑇,𝑟𝑚𝑠 = √
∑ 𝑒𝑇(𝑡) ∗ ∆𝑡

𝑡𝑓𝑖𝑛

𝑡𝑖𝑛𝑖

𝑡𝑓𝑖𝑛 − 𝑡𝑖𝑛𝑖
 ( 54 ) 

with 

∆𝑡 =
4 𝑠

201
 

𝑡𝑖𝑛𝑖 = 0 𝑠 

𝑡𝑓𝑖𝑛 = 4 𝑠 

“201” in ∆𝑡, stands for number of discrete time steps used in the MSC Adams 

analysis.  

Finally, 𝑒𝑇,𝑛𝑟𝑚𝑠 can be defined as shown below:  

𝑒𝑇,𝑛𝑟𝑚𝑠 =
𝑒𝑇,𝑟𝑚𝑠

max (𝑇𝑎𝑐𝑡) − min (𝑇𝑎𝑐𝑡)
 ( 55 ) 

In Figure 25, eT,nrms [N*mm] vs angle α [°] graph is shown. The plot is obtained 

by taking α to be 90°, 75°, 60°, 45°, 30°, 15°, 1°, -15°, -30°, -45°, -60°, -75° and 

-90°. α=0° is not taken as a data point. This is because, at α=0°, Tact,RPM(t) goes 

to infinity.  
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Figure 24: α=0° case for link 3 

 

As shown in Figure 24, the joint reaction force of joint 3-6 (R36) cannot create a 

moment which would rotate link 3 for α=0° (see Figure 8). So R36 goes to infinity 

at α=0°. Hence, the friction force also goes to infinity in joints 3-6 and 1-3. 

Hence, at α=0°, Tact,RPM(t) goes to infinity. Therefore, instead of α=0°, α=1° is 

utilized. 

 

 

Figure 25: eT,nrms [%] vs Angle α [°] 

 

According to Figure 25, minimum eT,nrms is achieved at α=15°, yielding 

eT,nrms=0,246%. Therefore, RPM with α=15° is the closest regular mechanism to 
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OPM (as far as the actuator torques are concerned) when α takes the values 90°, 

75°, 60°, 45°, 30°, 15°, 1°, -15°, -30°, -45°, -60°, -75° and -90°. 

Note that in evaluating eT,nrms, the first data point (t=0 s) is omitted, since in the 

two different models (namely OPM and RPM), the initial behavior of the 

systems are different. (In OPM, initial data starts from 0.)   

In Figure 26, work vs angle α graph is shown for the RPM. As angle α goes to 

0°, work is increasing. Minimum work is achieved at α= ±90°. 

 

 

Figure 26: Work [Joule] Done by RPM vs Angle α [°] 

 

In Figure 27, the x component of the joint reaction force of joint 1-3, in other 

words, R13x is compared between OPM and RPM for α=[90°, 75°, 60°, 45°, 30°, 

15°, 10°, 5°, 1°, -1°, -5°, -10°, -15°, -30°, -45°, -60°, -75°, -90°], while keeping 

the other parameters constant. Again, α=0° is avoided, because of the reason that 

has been explained before. Yet, the data points around α=0° are more intensive 

this time, since they need special attention. 
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Figure 27: R13x [N] vs t [s] for different α values 

 

e13x,nrms [N] vs angle α [°] graph is shown in Figure 28. 

 

Figure 28: e13x,nrms [%] vs Angle α [°] 
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The minimum e13x,nrms which is e13x,rms=4,95%, is achieved at α=-10°. Therefore, 

RPM with α=-10° is the closest one to OPM (in terms of R13x) when α takes the 

values 90°, 75°, 60°, 45°, 30°, 15°, 10°, 5°, 1°, -1°, -5°, -10°, -15°, -30°, -45°, -

60°, -75°, -90°. 

As it can be seen from Figure 27, as opposed to the Tact(t) values, R13x values for 

different α angles differ significantly from each other. In other words, although 

angle α has no significant effect on the actuation torque, it has significant effects 

regarding the joint reaction forces, shaking forces and shaking moments. Note 

that, if α approaches to 0°, R13x values increase substantially. 

So far, the effects of α on eT,nrms have been investigated. Next, the combined 

effects of α and revolute joint friction on eT,nrms will be investigated. 

For revolute joints, the friction torque can be found as below: 

𝑇𝑓 = 𝜇 ∗ 𝑟𝑝𝑖𝑛 ∗ 𝐹𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 ( 56 ) 

where 𝐹𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 is the magnitude of the reaction force developed in the revolute 

joint [44]. Therefore, different friction characteristics can be obtained by 

changing 𝜇 ∗ 𝑟𝑝𝑖𝑛. In this investigation, 8 different friction cases will be 

considered. These cases are listed below. 

Case 1: µ* rpin =0 

Case 2: µ* rpin= 0,25 mm 

Case 3: µ* rpin= 0,5 mm 

Case 4: µ* rpin= 0,75 mm 

Case 5: µ* rpin= 1 mm 

Case 6: µ* rpin= 1,25 mm 

Case 7:  µ* rpin= 1,5 mm 

Case 8: µ* rpin= 1,75 mm 
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Note that, in the previous analyses the friction characteristics was identical with 

case 3, since µ and rpin were taken to be 0.1 and 5 mm, respectively. 

In Figure 29, the variation of eT,nrms [%] with respect to angle α [°] and friction 

(µ* rpin) [mm] is shown. At α=1°, eT,nrms increases rapidly and dominates the 

graph provided that friction increases. Therefore, as angle α goes to 0°, the error 

between RPM and OPM goes beyond acceptable limits.  

In Figure 30, α=1° is omitted to see the rest of the graph more clearly. The 

minimum error is obtained for the frictionless case (case 1). The expected result 

is 0% error. However, since OPM is constructed with flexible links and RPM is 

constructed with rigid links, a small error occurs. It should be noted that, all 

errors for all slot angles (even for α=1° and α=0°) are the same with case 1, 

which is 0,2215%. 

Second smallest error is obtained at α=15° and µ* rpin=0.75 mm, which is 

0.2358%. Actually, in all friction cases, minimum errors are obtained at α=15°, 

which shows that, the results obtained in Figure 25 are quite similar for all 

friction cases. 

The numerical data that leads to Figure 29 and Figure 30 are shown in Table 2. 
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Table 2: eT,nrms [%] vs Angle α [°] vs Friction (µ* rpin ) [mm] 
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Figure 29: eT,nrms [%] vs Angle α [°] vs Friction (µ* rpin ) [mm] 

 

As it can be seen from Figure 29, around α=0°, when friction increases, the 

difference between OPM and RPM increases substantially. 
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Figure 30: eT,nrms [%] vs Angle α [°] vs Friction (µ* rpin ) [mm] (excluding α=1) 

 

Figure 31 shows variation of eT,nrms with respect to friction when α is kept 

constant at α=15°. 

 

 

Figure 31: eT,nrms [%] vs Friction (µ* rpin) [mm] (for α=15) 
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 Compared to the dynamic analysis of the RPM, the dynamic analysis of the 

OPM is much more difficult, because, besides the rigid body dynamic 

equlibrium equations, it is also necessary to consider the displacements that 

arise due to the flexibilities of the links. Clearly, dynamic analysis of the 

OPM can be solved by using a finite element analysis program. 

Alternatively, by using rigid body dynamic equlibrium equations solely, one 

could solve the dynamic analysis of an RPM, with a suitable   value; and 

thus obtain an approximate solution to the dynamic analysis of the OPM. The 

results obtained in this chapter indicate that such an approximation is quite 

valid, at least in the preliminary design stage. Hence, in the following 

chapters, the dynamic analysis of the EqMFG1&3 mechanism will be used to 

approximate the dynamic analysis of the MFG mechanism. 

 In this chapter, Tact and R13x values are compared for the RPM and the OPM. 

For these 2 dynamic properties, RPM with α=15° and RPM with α=-10° are 

the closest mechanisms to OPM respectively, among the considered set of α 

values. However, for different dynamic properties (R13y, R14x, |R13| etc.) 

another α might give closer results to the OPM. Hence, for optimization 

purposes, taking all ground joint reactions together (with or without different 

weighting factors) may be a more proper choice, rather than taking only one 

joint reaction. 

 Besides α, other parameters (such as friction) can also be changed in order 

to obtain the closest RPM to a given OPM.  

 Besides preliminary analysis purposes, one can also use an RPM in order to 

improve one or more of the dynamic properties of a given OPM. For 

example, if one needs to decrease R13x, one can use an RPM with α=90°. As 

can be seen from Figure 27, in this case, the magnitude of R13x decreases 

noticeably. 
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CHAPTER 3 

 

 

COMPARISON OF DYNAMIC ANALYSES OF MFG 

 

 

3.1 Introduction 

In this chapter, inverse dynamic analysis of the balanced EqMFG1&3 mechanism 

(necessary conditions to be balanced is explained in section 1.3) will be 

performed by using two methods and the results will be compared and discussed. 

First, a MATLAB code of the algorithm for the inverse dynamic analysis of the 

balanced EqMFG1&3 mechanism will be written as suggested in [45]. This 

algorithm (when there exist no slippage at the slots) is summarized below. 

1. Make certain assumptions regarding the contact face (either the upper face 

or the lower face of the slot). 

2. Determine the angular displacements of the rollers by using input 

displacement of links 2 and 4. 

3. Solve FR (and FL) and the joint reaction forces between links 2 and 6. If found 

joint reaction forces are smaller than zero, it means that there is a conflict in 

the assumptions, so go to the step 1 and make new assumptions. 

4. Find normal forces acting on the rollers. If found normal forces are in conflict 

with the assumptions, go to the step 1 and make new assumptions. 

5. Determine friction force in between slots and rollers. If found friction forces 

are in conflict with the assumptions, go to the step 1 and make new 

assumptions. 

6. STOP! 
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Then, the dynamic analysis of the balanced EqMFG1&3 will be performed by 

using the MSC Adams software. In MSC Adams, several models will be 

constructed, and the most meaningful model will be chosen for the comparison 

with the MATLAB algorithm.  

3.2 Virtual Model of EqMFG1&3 

In this section, modeling of the balanced EqMFG1&3 will be presented.  

 

 

Figure 32: Front View of the Balanced EqMFG1&3 
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Figure 33: Isometric View of the Balanced EqMFG1&3 

 

Front view of the balanced EqMFG1&3 is shown in Figure 32. Isometric view of 

the balanced EqMFG1&3 is shown in Figure 33. For the sake of simplicity, 

ground is not shown in these figures.  

In MSC Adams, three different models are constructed. The most successful one 

is chosen for the comparison of the results of the MATLAB algorithm for the 

inverse dynamic analysis of the balanced EqMFG1&3 mechanism (which will be 

called as “algorithm” shortly) and the MSC Adams model.  

The dimensions, inertial parameters and other parameters of the balanced 

EqMFG1&3 (that will be used for the comparison) are given below after 

introducing the notation to be used. 

mx   : mass of link x 

Ix   : mass moment of inertia of roller link x about axis of rotation at 

center of mass 



 

 

60 

b1, b2, b3  : dimensions of links 1, 2, 4 which are shown in Figure 1 

rx  : radius of roller link x 

ku  : spring stiffness of the upper spring which is connected to link 3 

kl  : spring stiffness of the lower spring which is connected to link 5 

yu  : free length of the upper spring 

yl  : free length of the lower spring 

a0, a1, a2, a3 : coefficients of the curve that describes the slot shapes 

rb  : common bearing radius of the revolute joints at the centers of 

the rollers 

μs  : coefficient of friction between slot and rollers 

μr  : coefficient of friction at revolute joint bearings 

The numerical values of the data to be used are taken from [47] and given below. 

m2=1.824 kg 

m4=1.824 kg 

m3=3 kg 

m5=3 kg 

m6=0.004 kg 

m7=0.004 kg 

m8=0.004 kg 

m9=0.004 kg 

I6=2*10-7 kg*m2 

I7=2*10-7 kg*m2 
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I8=2*10-7 kg*m2 

I9=2*10-7 kg*m2 

b1=0.3 m 

b2=0.08 m 

b3=0.15 m 

r6=0.01 m 

r7=0.01 m 

r8=0.01 m 

r9=0.01 m 

kl=275 N/m 

ku=275 N/m 

yl=0.115 m 

yu=0.115 m 

a0=0.11 

a1=-0.605 

a2=1.916 

a3=2.177 

rb=0.00125 m 

μs =0.1 

μr =0.1 

Note that, in MSC Adams model, links 2, 3, 4 and 5 are connected to the ground 

from their centers of mass by means of prismatic joint. 
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Slot shapes are defined via the equation y(x) = a0 + a1 *x+ a2 * x2+ a3 * x3 which 

is a third order polynomial where 50 mm ≤ x ≤ 175 mm. For the given 

coefficients above, the slot shape is shown in Figure 34. Note that, slot shape is 

taken from [47]. 

 

 

Figure 34: Slot Profile  

 

Parameters that are of interest are given below: 

s2  : Input displacement of link 2 as shown in Figure 35 

s4  : Input displacement of link 4 as shown in Figure 35 

s3  : Output displacement of link 3 as shown in Figure 35 

θ6  : Angular position of roller link 6 

F26  : Reaction force between link 2 and link 6 

FR  : Actuating force applied to link 2 as shown in Figure 1, FR= FL 

FL  : Actuating force applied to link 4 as shown in Figure 1, FR= FL 

FN6  : Normal force between roller link 6 and the slot of link 3 
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FN7  : Normal force between roller link 7 and the slot of link 3 

FN8  : Normal force between roller link 8 and the slot of link 5 

FN9  : Normal force between roller link 9 and the slot of link 5 

f6  : Friction force between roller link 6 and the slot of link 3 

 

 

Figure 35: EqMFG1&3 Mechanism [46] 

 

Input is given as displacement between link 2 and link 4. Hence, the only input 

is specified as 𝑠24 which is the summation of 𝑠2 and 𝑠4 (𝑠2 = 𝑠4). 

𝑠24 = 𝑠2 + 𝑠4 ( 57 ) 

𝑠2 = 0.02 ∗ 𝑡2 ( 58 ) 

s2 [mm] vs time [s] graph is also given in Figure 36. 
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Figure 36: s2 [mm] vs Time [s] 

 

Gravity is not taken into consideration. Total time duration is taken as 5 seconds 

which is divided into 1000 increments.  

Modeling the cylinder in slot joint is troublesome in MSC Adams. To this 

purpose, 3 different models are suggested.  
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3.2.1 Model 1 with Point on Curve Constraint 

In this model, center of mass of the rollers 6, 7, 8 and 9 are restricted to move on 

the curves which are at the middle of the slots. This is achieved by imposing 

point on curve constraints. All bodies are selected to be planar links with λ=3. 

So, translation of the rollers in the z direction (shown in Figure 32 and Figure 

33) are restricted 2 times. Obviously, one of the constraints is redundant, and 

hence should be removed. MSC Adams automatically detects this situation and 

removes the redundant constraints. Although there are other alternatives which 

do not introduce redundant constraints, modeling all parts as planar links is the 

most meaningful and simple model when the point on curve constraint is used. 

Joints used in model 1 are presented in Table 3. In each row, the connection of 

a link with the remaining links (located on the columns) are presented. In the 

second column, the degree of freedom of the corresponding link is shown. If a 

link is selected to be a “planar” link with λ=3, it is shown in green. 

Each joint is shown only once in black. If any joint is shown for the second time, 

it is shown in red. Hence, the joints in black represent all of the joints without 

any repetitions. Under the abbreviation of each joint, the degree of freedom 

restricted by that joint is given. 
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Table 3: Summary of Joints of Model 1 

LINK 
SPACE 
DOF 

1 2 3 4 5 6 7 8 9 

2 3 
INP PERP 

        
INL 

    
INL 

1 1 2 2 

3 3 
INP 

        
PoC PoC 

    
1 1 1 

4 3 
INP PERP 

          
INL INL 

  
1 1 2 2 

5 3 
INP PERP 

            
PoC PoC 

1 1 1 1 

6 3   
INL PoC 

      
      2 1 

7 3     
PoC INL 

      
    1 2 

8 3       
INL PoC 

  
      2 1 

9 3   
INL 

    
PoC 

  
      2 1 

 

Point on curve constraints normally remove 2 degrees of freedom. However, 

according to the explanation in the first paragraph, they remove only 1 degree of 

freedom here. In order to emphasize this point, their restricted degrees of 

freedom are shown with blue in Table 3.  

In Table 4, the degree of freedom calculation of model 1 is shown. In this table, 

the degree of freedom of bodies, joints and constraints are displayed. 

  



 

 

67 

Table 4: Degree of Freedom Calculation of Model 1 

Item Number DOF per item Resulting DOF 

3 DOF Body 8 3 24 

INL 4 -2 -8 

INP 4 -1 -4 

PERP 3 -1 -3 

PoC 4 -1 -4 

  TOTAL 5 
 

By summing the degree of freedom values in the last column, the degree of 

freedom of model 1 is found to be 5. 4 of these degree of freedoms are associated 

with the rotations of the rollers along their centroidal axes (which are practically 

redundant). The remaining 1 degree of freedom is the actual degree of freedom 

of the mechanism. 

In this model, friction is not included. Hence, rotations of the rollers are 

completely arbitrary.  
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3.2.2 Model 2 with Solid to Solid Contact 

In this model, the joints between links 3, 5 and the rollers 6, 7, 8, 9 are modelled 

by solid to solid contact and link 3 is selected to be planar link with λ=3. A 

summary of the joints of model 2 are presented in Table 5.  

 

Table 5: Summary of Joints of Model 2 

LINK 
SPACE 
DOF 

1 2 3 4 5 6 7 8 9 

2 6 
PRIS 

        
REV 

    
REV 

5 5 5 

3 3 
INP 

        
SURF SURF 

    
1     

4 6 
PRIS 

          
REV REV 

  
5 5 5 

5 6 
PRIS 

            
SOLD SOLD 

5     

6 6   
REV SURF 

      
      5   

7 6     
SURF REV 

      
      5 

8 6       
REV SOLD 

  
      5   

9 6   
REV 

    
SOLD 

  
      5   

 

In Table 6, degree of freedom calculation of model 2 is shown.  
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Table 6: Degree of Freedom Calculation of Model 2 

Item Number DOF per item Resulting DOF 

3 DOF Body 1 3 3 

6 DOF Body 7 6 42 

INP 1 -1 -1 

REV 4 -5 -20 

PRIS 3 -5 -15 

SOLD 4 0 0 

  TOTAL 9 
 

As can be seen in Table 6, the degree of freedom of model 1 is found as 9. 4 of 

these degree of freedoms are associated with the rotations of the rollers along 

their centroidal axes (which are practically redundant). 4 of the degree of 

freedoms seem to be free, but since the contacts restrict the translational motions 

perpendicular to the slots, they are actually not free. Here, the contacts do not 

directly decrease the degree of freedom, but still restrict the motion. The 

remaining 1 degree of freedom is the actual degree of freedom of the mechanism. 

In this model, there exists friction between the rollers and the slots; and between 

the rollers and links 2, 4. Hence, the rotation of rollers are not arbitrary (they 

depend on the friction forces). 

The data used in the Coulomb friction model is given below. 

μs = 0.1 

μd = 0.1 

Vs = 0.1 mm/s 

Vd = 0.1 mm/s 

Equality of the transition velocities implies that; in Figure 15, for velocities 

greater than Vs, the graph is a straight line parallel to the x axis. This is because 

in the MATLAB algorithm, static friction is not taken into consideration.  



 

 

70 

Using too small Vs and Vd values leads to integrator difficulties. Here, 

moderately small values are used. In the results, it is observed that, the slip 

velocities do not even come close to these values. 

For the revolute joint friction, stiction transition velocity is taken as 10-3 mm/s, 

which is very small. Hence, only sliding friction is considered (similar to the 

MATLAB algorithm), i.e., static and dynamic friction coefficients are taken to 

be equal to each other. 

Initially, contact stiffness was taken to be 105 N/mm and the contact damping 

coefficient was taken to be 10 (N*s)/mm. However, because of the integrator 

difficulties in solid to solid contact, they have been changed to 10 N/mm and 1 

(N*s)/mm respectively which are small enough to make the mathematical model 

easier to handle. If large values are used, oscillatory results are obtained. Using 

small values, on the other hand, makes the contact less rigid and increases the 

amount of penetration.  
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3.2.3 Model 3 with Curve to Curve Contact 

In this model, the contact between links 3, 5 and the rollers 6, 7, 8, 9 is modelled 

via curve to curve contact. Furthermore, links 3 and 5 are selected to be planar 

links with λ=3. A summary of the joints used in model 3 are presented in Table 

7. 

 

Table 7: Summary of Joints of Model 3 

LINK 
SPACE 
DOF 

1 2 3 4 5 6 7 8 9 

2 6 
PRIS 

        
REV 

    
REV 

5 5 5 

3 3 
INP 

        
CURV CURV 

    
1     

4 6 
PRIS 

          
REV REV 

  
5 5 5 

5 3 
INP PERP 

            
CURV CURV 

1 1     

6 6   
REV CURV 

      
      5   

7 6     
CURV REV 

      
      5 

8 6       
REV CURV 

  
      5   

9 6   
REV 

    
CURV 

  
      5   

 

In Table 8, degree of freedom calculation of model 3 is shown. 
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Table 8: Degree of Freedom Calculation of Model 3 

Item Number DOF per item Resulting DOF 

3 DOF Body 2 3 6 

6 DOF Body 6 6 36 

INP 2 -1 -2 

PERP 1 -1 -1 

REV 4 -5 -20 

PRIS 2 -5 -10 

CURV 4 0 0 

  TOTAL 9 
 

The degree of freedom of model 1 is found as 9. 4 of these degree of freedoms 

are associated with the rotations of the rollers along their centroidal axes (which 

are practically trivial). 4 of the degree of freedoms seem to be free, but since the 

contacts restrict the translational motions perpendicular to the slots, they are 

actually not free. Here, the contacts do not directly decrease the degree of 

freedom, but still restrict the motion. The last 1 degree of freedom is the actual 

degree of freedom of the mechanism. 

In this model, there exists friction between the rollers and the slots; and between 

the rollers and links 2, 4. Hence, the rotation of the rollers are not arbitrary, but 

depend on the friction forces. 

The parameters used in the Coulomb friction model are given below. 

μs = 0.1 

μd = 0.1 

Vs = 0.1 mm/s 

Vd = 0.1 mm/s 

These parameters are the same as the values that are used in model 2.  
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3.3 Results & Discussion 

In this section, the result obtained by using the three models and the algorithm 

will be compared with each other. Firstly, the correctness of each MSC Adams 

model will be checked. For this purpose, the output displacements (s3) will be 

compared. 

 

 

Figure 37: s3 [mm] vs Time [s] 

 

In Figure 37, output displacement s3 vs time graph is shown. As can be observed 

from the figure, solid to solid contact is significantly different from the 

remaining three. This is because of the large penetration in the solid to solid 

contact model. The penetration reaches to 0.7 mm, which is quite large. 

Normally, it should be much smaller. However, since small contact stiffness 

value is used for the solid to solid contact model, a large penetration is needed 

in order to create the necessary contact force. 

0

2

4

6

8

10

12

14

16

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

s 3
[m

m
] 

Time [s]

s3 [mm] vs Time [s]

MATLAB Algorithm ADAMS Curve Contact

Adams Solid Contact Adams Point on Curve



 

 

74 

 

Figure 38: FN6 [N] vs Time [s] 

 

Secondly, the normal forces acting between the slots and the rollers are 

compared. In Figure 38, FN6 vs time graph is shown. Solid to solid contact is, 

again, significantly different from the others. So, the solid to solid contact model 

deserves a closer attention. 
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Figure 39: Surface Normal Contact Forces [N] vs Time [s] for Solid to Solid 

Contact 

 

In Figure 39, the normal contact force vs time graph is shown (for all of the 

rollers) for the solid to solid contact model. The normal forces for the rollers 8 

and 9 are too oscillatory, although their averages are comparable with the normal 

forces of rollers 6 and 7. This oscillation can be seen easily at t=4 sec. In solid 

to solid contact, contact detection is not analytic as explained before and the 

surfaces are tessellated as in Figure 16. Even in the small contact stiffness case, 

oscillations can be observed. If the contact stiffness is increased, the normal 

forces will become closer to the other models and the difference in Figure 38 

will decrease (at the cost of a significant increase in the amount of oscillations). 

In Figure 40, actuating force vs time graph is shown. Until 4th second, a negative 

actuating force is obtained. This means that, energy will be either consumed due 

to the motor braking or generated due to the regenerative braking. It is because 

of the relation between slot shape and spring. Slots are formed such that, until 
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input such that tension springs shrink. After 4th second, springs apply counter 

force to the input. 

As expected, point on curve model generates (if regenerative braking is used in 

the motors) larger force until 4th second, and consumes less force after 4th second, 

since it doesn’t involve friction. On the other hand, solid to solid contact model 

generates smaller force until 4th second, and consumes larger force after 4th 

second. Lastly, actuation forces for MATLAB algorithm and MSC Adams curve 

to curve contact model are similar. 

 

 

Figure 40: FR [N] vs Time [s] 
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The results presented up to this point indicate that the solid to solid contact model 

is not accurate. Hence, the results related to the solid to solid contact model will 

not be presented after this point. 

Point on curve model, on the other hand, is formed for being a rough guide for 

the other 2 models. Since it does not include friction, it gives approximate 

results. Hence, the results for the point on curve model will also be excluded 

after this point for the sake of conciseness.   

Therefore, in the following graphs, only the MATLAB algorithm and the MSC 

Adams curve to curve contact model will be included. Curve to curve contact 

model seems accurate and easy to handle mathematically, since contact is 

defined analytically. 

In Figure 41, the angular position of roller 6 vs time is shown. For both of the 

models, the angular positions are similar. Hence, it can be concluded that the no 

slip assumption that is used in the MATLAB algorithm is correct, since the 

rotations of the rollers are similar with the MSC Adams model. 

 

 

Figure 41: θ6 [°] vs Time [s] 
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In Figure 42, the reaction force between link 2 and link 6 vs time graph is shown. 

For both the MATLAB algorithm and the MSC Adams curve to curve contact 

model, the reaction forces are similar. In fact, F26 is very close to FN6, since f6 

(friction force between roller 6 and slot of link 3) is very small compared to FN6. 

 

 

Figure 42: F26 [N] Time [s] 

 

In Figure 43, spring force vs time graph is shown. For both the MATLAB 

algorithm and the MSC Adams curve to curve contact model, the graphs are 

similar.  
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Figure 43: FS [N] vs Time [s] 

 

In Figure 44, power consumption vs time graph is given. For both the MATLAB 

algorithm and the MSC Adams curve to curve contact model, the graphs are 

similar.  
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Figure 44: Power Consumption [(N*mm)/s] vs Time [s] 

 

It is observed that, until the 4th second, the power consumption is negative, 

implying that work is done by the mechanism. After the 4th second, the power 

consumption is positive. Hence, work is done on the system. Note that the power 

consumption of the MATLAB algorithm is found via the equation  

𝑃𝑜𝑤𝑒𝑟 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 =  
2 ∗ ∆𝑠2 ∗ 𝐹𝑅

𝑇𝑖𝑚𝑒 𝑆𝑡𝑒𝑝 𝑆𝑖𝑧𝑒
 ( 59 ) 

where, time step size is 0.005 s. Note that time is discrete, not continuous in the 

analyses. Calculations are made in each 0.005 seconds. 
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Figure 45: Penetration Depth [mm] vs Time [s] 

 

In Figure 45, the penetration depth of the curve to curve contact vs time graph is 

shown. The maximum penetration does not exceed 0.013 mm, which is 

considered to be acceptable. 
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Figure 46: Coefficient of Friction & Slip Velocity [mm/s] vs Time [s] 

 

In Figure 46, the coefficient of friction and the slip velocity vs time graphs are 

shown. They are shown together, because the coefficient of friction is directly 

related to the slip velocity in MSC Adams (see Figure 15). Recall that Vs and Vd 

have been specified to be Vs = Vd = 0.1 mm/s. 

Hence the slip velocity doesn’t even approach to the specified value. Therefore, 

it is safe to say that there is no slip. Moreover, the coefficient of friction is also 

too small. Recall that μs and μd have been specified to be μs = μd = 0.1 . 
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Figure 47: Total Slip [mm] vs Time [s] 

 

In Figure 47, total slip vs time graph is shown. Total slip doesn’t exceed 0.05, 

although the roller moves more than 125 mm. Hence, as concluded before, it is 

safe to say that there is no slip. Remember that this very small amount of slip is 

necessary to create the friction force in MSC Adams. 

In Figure 48, friction force acting on the rollers vs time graph is shown. For both 

the MATLAB algorithm and the MSC Adams curve to curve contact model, the 

graphs are similar. Remember that, F26 is very close to FN6, since f6 (friction 

force between roller 6 and slot of link 3) is very small comparing to FN6.  
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Figure 48: f6 [N] vs Time [s] 

 

In Figure 49, revolute joint friction torque vs time graph is given. The graph is 

obtained from the output of the MSC Adams curve to curve contact model. It 

will be used to calculate the frictional loses. 

 

 

Figure 49: Revolute Joint Friction Torque [N*mm] vs Time [s] 
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In Figure 50, power consumptions of the motion and friction vs time graph is 

shown. Power consumption due to the friction at the 4 revolute joints is obtained 

via the equation 

𝑃𝑜𝑤𝑒𝑟 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 =
4 ∗ ∆𝜃6 ∗  𝑇𝑓6

𝑇𝑖𝑚𝑒 𝑆𝑡𝑒𝑝
 ( 60 ) 

where time step size is taken to be 0.005 s and 𝑇𝑓6 is the revolute joint friction 

torque as shown in Figure 49. There is no power consumption due to the friction 

between the slots and the rollers, since there is no slip at these contacts. 

Furthermore, since the mechanism is balanced, the reaction forces at the ground 

joints are all zero. Hence, there is no frictional losses at these joints as explained 

in section 1.3. 

 

 

Figure 50: Power Consumption [(N*mm)/s] vs Time [s] 
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As it can be seen from Figure 50, power consumed by the friction is very small 

compared to power consumption or generation of the motion. 

To obtain meaningful results, examine this graph by dividing into two parts: 

1. [0 s, 4 s] part at which power consumption is negative. (energy is consumed 

due to braking or regenerated due to regenerative braking) 

2. [4 s, 5 s] part at which power consumption is positive. 

At the first part, friction consumed 6.2% of the energy generated due to 

regenerative braking. At the second part, friction consumes 8.9% of the total 

energy consumed. 

In another task that is inspected by Mencek [47, p. 231], friction consumes 

11.60% of the  total energy consumed. Hence, results of this study and Mencek’s 

study are compatible. In Mencek’s study, the double slider mechanism which 

performs a similar task with the MFG (with translating input and translating 

output), the friction losses are 22.35%. Therefore, one may replace a double 

slider mechanism with an MFG and save energy. 

3.4 Conclusive Remarks 

To conclude, in chapter 3, inverse dynamic analysis of the EqMFG1&3 is made 

with both algorithm proposed by Soylu [45] and MSC Adams model. Results of 

them are in great agreement with each other. So, both of them are verified.  

Curve on curve constraint is the most suitable constraint to model the slots of 

MFG. Hence, one can use curve on curve constraint to simulate the MFG in 

MSC Adams. 

Constructing MSC Adams model is quite harder and more complex than the 

MATLAB algorithm. Hence, one should use the algorithm for simulating MFG 

in general. 
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However, to get more sophisticated results, or to get visual results, one can use 

MSC Adams for simulating MFG. In more complicated cases (for example by 

introducing gravitational acceleration, etc.), MSC Adams can be preferred to 

deal with the complexity.  
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CHAPTER 4 

 

 

OPTIMIZATION OF DYNAMIC PROPERTIES OF A PRESS 

MACHINE 

 

 

4.1 Introduction 

In this chapter, MFG will be used to improve the dynamical behavior of a press 

machine by connecting it to the ram of the press. Note that the MFG can be used 

to 

1. Reduce the overall energy consumption of the press, 

2. Reduce the maximum motor torque or maximum motor power of the press, 

3. Increase the minimum motor torque or minimum motor power of the press 

(when they are negative, in other words, when the system is storing energy), 

4. Reduce the motor torque or motor power (throughout the motion in a root 

mean square sense), 

5. Reduce any one of the reaction forces/moments at the joints of the press. 

Throughout these analyses, a divide and conquer method will be used. Firstly, 

the kinematic and dynamic analyses of the press machine will be performed. 

Using these analyses, the required force (to be applied by the MFG) to optimize 

one of the above mentioned properties will be determined. Secondly, the slot 

profile of the MFG will be determined together with its inertial parameters and 

dimensions. 

Throughout the analyses, the sample crank press data given in [53] will be used. 

The nominal force of this press is 16 MN. In Figure 51, the compression versus 
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force graph for forging a connecting rod is shown. In this graph, 2 lines are fitted 

to the data points (which are obtained by finite element analysis). Note that the 

end of the compression zone corresponds to the bottom dead center. 

 

 

Figure 51:Compression vs Force Graph [53] 

 

The specifications of the crank press are taken as listed below. 

density of the links : 7850 kg/m3 

crank length  : 128.5 mm 

coupler length  : 771 mm 

forging stroke  : 34.5 mm 

crank speed  : 60 rpm (constant) 

Link thicknesses are determined by considering buckling of the beams. The 

safety factor is taken as 1.5 for the load described in Figure 51. For all loads and 

tasks, the same link dimensions will be used. 
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4.1.1 Model of the Electric Motor 

As stated before, MFG may be used to reduce the energy consumption of the 

press. Reduction of the energy consumption can be realized in two different 

ways. 

1. By storing energy when the required actuating torque is negative (i.e., when 

there is a need for braking), 

2. By forcing the electric motor to run in its most efficient zone. 

In order to simulate the second case, one needs to include a model of an electric 

motor with a variable efficiency. 

By making tests, or by using finite element analysis, one can obtain the 

efficiency map of an electric motor on the torque vs speed plane (see section 

1.4). In general, the efficiency map of an electric motor looks like the one in 

Figure 52. 

 

 

Figure 52: A Typical Efficiency Map for an Electric Motor [61] 

 

In this study, in order to obtain the efficiency map, a simplified approach will be 

used. In this approach, only the copper losses of the motor will be taken into 
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account. Possible errors due to this simple model will be discussed in the results 

and discussion section.  

Copper loss can be simply described as below: [59] 

𝐶𝑜𝑝𝑝𝑒𝑟 𝑙𝑜𝑠𝑠 = [𝐼(𝑡)]2 ∗ 𝑅 = 𝐾 ∗ [𝑇𝑚(𝑡)]2 ( 61 ) 

where 

𝐼(𝑡) : current drawn by the motor at time t 

𝑅 : resistance of the motor 

𝐾 : a constant [(Ω ∗ 𝐴2)/(𝑁2 ∗ 𝑚2)] 

𝑇𝑚(𝑡) : motor torque at time t 

In equation ( 61 ), it has been noted that 𝑇𝑚(𝑡) = 𝐾𝑇 ∗ 𝐼(𝑡) where 𝐾𝑇 is the 

torque constant of the motor. Hence, the constant 𝐾 can be obtained in terms of 

𝑅 and 𝐾𝑇, yielding 𝐾 = 𝑅
𝐾𝑇

2⁄  . Alternatively, 𝐾 could be solved from equation 

( 61 ), yielding 

𝐾 =
[𝐼(𝑡)]2 ∗ 𝑅

[𝑇𝑚(𝑡)]2
 ( 62 ) 

Efficiency of an electric motor, on the other hand, is given via the equation 

𝜂(𝑡) =
𝑃𝑜𝑢𝑡(𝑡)

𝑃𝑖𝑛(𝑡)
=

𝑇𝑚(𝑡) ∗ 𝜔𝑚(𝑡)

𝑇𝑚(𝑡) ∗ 𝜔𝑚(𝑡) + 𝐾 ∗ [𝑇𝑚(𝑡)]2
 ( 63 ) 

where 

𝜔𝑚(𝑡) : angular speed of the motor shaft 

𝑃𝑜𝑢𝑡(𝑡): output power 

𝑃𝑖𝑛(𝑡) : input power 

Dividing the right hand side of Equation ( 63 ) by 𝑇𝑚(𝑡), one obtains, 
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𝜂(𝑡) =
𝜔𝑚(𝑡)

𝜔𝑚(𝑡) + 𝐾 ∗ 𝑇𝑚(𝑡)
 ( 64 ) 

where  

𝜂(𝑡) : efficiency of the electric motor 

Hence, efficiency is obtained as a function of angular speed and torque. In Figure 

53, efficiency graphs (in the 𝜔𝑚𝑇𝑚 plane) for 2 different K values are shown. 

The K values used in Figure 53 are arbitrarily selected, in order to see the effect 

of K on the efficiency. Clearly, as K increases, the efficiency decreases at all 

points in the 𝜔𝑚𝑇𝑚 plane. 

 

 

Figure 53: Efficiency Graphs on Rotational Speed vs Torque Plane for 2 

Different K Values 

 

From equation ( 63 ); 

𝑃𝑖𝑛(𝑡) ∗ 𝜂(𝑡) = 𝑃𝑜𝑢𝑡(𝑡) = 𝑇𝑚(𝑡) ∗ 𝜔𝑚(𝑡) ( 65 ) 

Solving 𝑃𝑖𝑛 from equation ( 65 ), one obtains 

𝑃𝑖𝑛(𝑡) = 𝑇𝑚(𝑡) ∗ 𝜔𝑚(𝑡) ∗
1

𝜂(𝑡)
 ( 66 ) 

which, upon substituting equation ( 64 ) yields 

      

K=5 K=1 
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𝑃𝑖𝑛(𝑡) = 𝑇𝑚(𝑡) ∗ 𝜔𝑚(𝑡) + 𝐾 ∗ [𝑇𝑚(𝑡)]2 ( 67 ) 

Now, define the transmission ratio, n, via the equation 

𝑛 =
𝜔𝑚(𝑡)

𝜔(𝑡)
 ( 68 ) 

Alternatively 

𝑛 =
𝑇(𝑡)

𝑇𝑚(𝑡)
 ( 69 ) 

where 

𝜔 : rotational speed of the crank shaft 

𝑇 : torque on the crank shaft 

Substituting equations ( 68 ) and ( 69 ) into equation ( 67 ), one obtains 

𝑃𝑖𝑛(𝑡) = 𝑇(𝑡) ∗ 𝜔(𝑡) + [𝑇(𝑡)]2 ∗ 𝐾 ∗
1

𝑛2
 ( 70 ) 

Now, define a new constant, 𝐾∗, via the equation 

𝐾∗ = 𝐾 ∗
1

𝑛2
 ( 71 ) 

Hence, by substituting equation ( 62 ) into equation ( 71 ), one obtains 

𝐾∗ =
[𝐼(𝑡)]2 ∗ 𝑅

[𝑇𝑚(𝑡)]2 ∗ 𝑛2
 ( 72 ) 

By substituting equation ( 71 ) into ( 70 ), one obtains 

𝑃𝑖𝑛(𝑡) = 𝑇(𝑡) ∗ 𝜔(𝑡) + [𝑇(𝑡)]2 ∗ 𝐾∗ ( 73 ) 

Note that equations ( 71 ) and ( 64 ) yield 

𝜂(𝑡) =
𝜔𝑚(𝑡)

𝜔𝑚(𝑡) + 𝐾∗ ∗ 𝑛2 ∗ 𝑇𝑚(𝑡)
 ( 74 ) 

The power of the selected motor should be more than the maximum power 

requirement, which can be found via equation ( 73 ), where 𝐾∗ is defined in 

equation ( 72 ). The efficiency of the motor (at any point), on the other hand, can 

be obtained from equation ( 74 ). 
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4.2 Kinematic and Dynamic Analyses of the Press Machine 

In this chapter, in order to optimize a dynamic feature of the press, the required 

MFG force profile will be determined. For this purpose, it is necessary to 

perform kinematic and dynamic analyses of the press. The kinematic dimensions 

and the free body diagrams of the links of the press to be analyzed are shown in 

Figure 54. In Figure 54.a, the link numbers are shown with orange. Kinematic 

dimensions are shown with blue. Linear and angular displacements are shown 

with green. The links are shown with black. At the bottom right corner, the 

reference coordinate system is also shown. 
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Figure 54: Press Machine 

d: Free Body Diagram of Link 3 (Coupler) c: Free Body Diagram of Link 4 (Slider/Ram) 
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4.2.1 Kinematic Analysis of the Press Machine 

The details of the kinematic analysis will not be given here, since it is quite trivial 

to perform the kinematic analysis of a press machine (which is actually a slider 

crank mechanism). Hence, only the results of the kinematic analysis will be 

presented. The displacement, velocity and acceleration of the links are given 

below. 

𝜃3 = −arccos (−
𝑏2

𝑏3
cos (𝜃2)) ( 75 ) 

𝑠4 = 𝑏2 sin(𝜃2) + 𝑏3 sin(𝜃3) ( 76 ) 

𝜔3 = −
𝑏2 sin(𝜃2)

𝑏3 sin(𝜃3)
𝜔2 ( 77 ) 

𝑣4 = −𝑏2

sin(𝜃2 − 𝜃3)

sin(𝜃3)
𝜔2 ( 78 ) 

𝛼3 = −
𝑏2

𝑏3 sin(𝜃3)
{
[cos(𝜃2) sin(𝜃3)𝜔2 − sin(𝜃2) cos (𝜃3)𝜔3]𝜔2

sin(𝜃3)

+ sin(𝜃2) 𝛼2} 

( 79 ) 

𝑎4

= {
[(𝜔3 − 𝜔2) cos(𝜃3 − 𝜃2) sin(𝜃3) − 𝜔3 sin(𝜃3 − 𝜃2) cos(𝜃3)]𝜔2

sin(𝜃3)

+ sin(𝜃3 − 𝜃2)𝛼2}
𝑏2

sin(𝜃3)
 

( 80 ) 

𝑎2𝑥 = −
𝑏2

2
𝜔2

2 cos(𝜃2) −
𝑏2

2
𝛼2 sin(𝜃2) ( 81 ) 

𝑎2𝑦 = −
𝑏2

2
𝜔2

2 sin(𝜃2) +
𝑏2

2
𝛼2 cos(𝜃2) ( 82 ) 

𝑎3𝑥 =
𝑏3

2
𝜔3

2 cos(𝜃3) +
𝑏3

2
𝛼3 sin(𝜃3) ( 83 ) 

𝑎3𝑦 = 𝑎4 +
𝑏3

2
𝜔3

2 sin(𝜃3) −
𝑏3

2
𝛼3 cos(𝜃3) ( 84 ) 

where 
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𝜃3 : angular displacement of link 3 (see Figure 54.a) 

𝑠4  :  displacement of link 4 (see Figure 54.a) 

𝜔3  :  angular velocity of link 3 

𝑣4  : velocity of link 4 

𝛼3  : angular acceleration of link 3 (see Figure 54.d) 

𝑎4  : acceleration of the link 4 (see Figure 54.c) 

𝑎2𝑥  : x component of the acceleration of the mass center of link 2 (see Figure 

54.b) 

𝑎2𝑦  : y component of the acceleration of the mass center of link 2 (see Figure 

54.b) 

𝑎3𝑥  : x component of the acceleration of the mass center of link 3 (see Figure 

54.d) 

𝑎3𝑦  : y component of the acceleration of the mass center of link 3 (see Figure 

54.d) 

Note that the positive x and y directions are shown in the coordinate system in 

Figure 54.a. The positive direction for the angular measurements, on the other 

hand, is the counter clockwise direction. 

4.2.2 Dynamic Analysis of the Press Machine 

Free body diagrams of the press machine are shown in Figure 54.b, Figure 54.c, 

Figure 54.d. In the free body diagrams, frictional effects are neglected since it is 

assumed that the revolute joint bearing radii are small and a well lubricated slider 

is used. Hence, in the force analysis, one obtains a linear set of equations which 

can be solved in closed form. Gravity is in the –y direction. 
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In the free body diagrams, external forces and torques (such as the motor torque, 

press force and MFG force) are shown with red. The reaction forces and inertia 

forces are shown with blue. Inertia moments and gravitational forces are shown 

with orange. Linear and angular accelerations are shown with green. The inertia 

forces and moments are shown with dashed lines. The center of masses of the 

links are shown with green points. 

The 8 dynamic equilibrium equations corresponding to link 2, 3 and 4 are given 

by equations ( 85 ) - ( 92 ).  

Equation ( 85 ) is the force equilibrium of link 2 in the x direction. Equation ( 86 

) is the force equilibrium of link 2 in the y direction. Equation ( 87 ) is the 

moment equilibrium of link 2 around its center of mass. Equation ( 88 ) is the 

force equilibrium of link 3 in the x direction. Equation ( 89 ) is the force 

equilibrium of link 3 in the y direction. Equation ( 90 ) is the moment equilibrium 

of link 3 around its center of mass. Equation ( 91 ) is the force equilibrium of 

link 4 in the x direction. Equation ( 92 ) is the force equilibrium of link 4 in the 

y direction. 

The moment equilibrium of link 4, which is the 9th dynamic equilibrium 

equation, is utilized to determine the prismatic joint reaction moment, 𝑀14, 

which is found to be zero. Hence, only 8 equilibrium equations are listed. 

𝑅12𝑥 + 𝑅23𝑥 − 𝑚2𝑎2𝑥 = 0 ( 85 ) 

𝑅12𝑦 + 𝑅23𝑦 − 𝑚2𝑎2𝑦 − 𝑚2𝑔 = 0 ( 86 ) 

𝑇 − 𝐼2𝛼2 − (𝑅23𝑥 − 𝑅12𝑥)
𝑏2

2
sin(𝜃2) + (𝑅23𝑦 − 𝑅12𝑦)

𝑏2

2
cos(𝜃2)

= 0 

( 87 ) 

 

𝑅34𝑥 − 𝑅23𝑥 − 𝑚3𝑎3𝑥 = 0 ( 88 ) 

𝑅34𝑦 − 𝑅23𝑦 − 𝑚3𝑎3𝑦 − 𝑚3𝑔 = 0 ( 89 ) 
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−𝐼3𝛼3 − (𝑅23𝑥 + 𝑅34𝑥)
𝑏3

2
sin(𝜃3) + (𝑅34𝑦 + 𝑅23𝑦)

𝑏3

2
cos(𝜃3)

= 0 

( 90 ) 

 

𝑅14 − 𝑅34𝑥 = 0 ( 91 ) 

𝐹𝑝𝑟𝑒𝑠𝑠 + 𝐹𝑀𝐹𝐺 − 𝑅34𝑦 − 𝑚4𝑎4 − 𝑚4𝑔 = 0 ( 92 ) 

Assuming that the motion of the press is specified, the 8 dynamic equilibrium 

equations involve the 8 unknowns 𝑇, 𝑅12𝑥, 𝑅12𝑦, 𝑅23𝑥, 𝑅23𝑦, 𝑅34𝑥, 𝑅34𝑦 and 𝑅14. 

Here, 𝑇 is the actuation torque and 𝑅ab𝑘 denotes the reaction force (in the k 

direction) between bodies a and b. Furthermore, 𝐹𝑝𝑟𝑒𝑠𝑠 denotes the applied force 

on the ram due to the pressing process and 𝐹𝑀𝐹𝐺  denotes the applied force by 

the MFG. 

4.3 Method 

For programming purposes, a commercial software, MATLAB, is used. In order 

to differentiate and integrate easily, 𝑣4 and 𝐹𝑀𝐹𝐺  are expressed using Fourier 

series. 𝑣4 is written as a 4th order Fourier series since it is observed that a 4th 

order series is sufficient to approximate a given 𝑣4. 

There are several objective functions that can be minimized. These objective 

functions can be combined into a single objective function, 𝑓𝑚𝑖𝑛, which is 

defined below. 

𝑓𝑚𝑖𝑛 = 𝑐𝑚𝑎𝑥 ∗ max(𝑃) − 𝑐𝑚𝑖𝑛 ∗ min(𝑃) + 𝑐𝑒𝑛𝑒𝑟𝑔𝑦 ∗ 𝐸𝑡𝑜𝑡𝑎𝑙

+ 𝑐𝑟𝑚𝑠 ∗ √
∑ (𝑃𝑖 − 𝑐𝑎𝑣𝑒𝑟𝑎𝑔𝑒 ∗ 𝑃𝑎𝑣𝑒)

2𝑠𝑡𝑒𝑝𝑠
𝑖=1

𝑠𝑡𝑒𝑝𝑠
 

( 93 ) 

where 

𝑃  : instantaneous power 
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𝐸𝑡𝑜𝑡𝑎𝑙  : total consumed energy 

𝑠𝑡𝑒𝑝𝑠  : number of discrete time steps used 

𝑐𝑚𝑎𝑥   :weighting coefficient for minimizing the maximum 

instantaneous   power 

𝑐𝑚𝑖𝑛  :weighting coefficient for maximizing the minimum 

instantaneous   power 

𝑐𝑒𝑛𝑒𝑟𝑔𝑦 : weighting coefficient for minimizing the total consumed energy 

𝑐𝑟𝑚𝑠  : weighting coefficient for minimizing, in a root mean square 

sense, the deviation of the instantaneous power from its average 

value 

𝑐𝑎𝑣𝑒𝑟𝑎𝑔𝑒 : user selected coefficient that multiplies the average of power, 

𝑃𝑎𝑣𝑒 

One can change the values of 𝑐𝑚𝑎𝑥 ,   𝑐𝑚𝑖𝑛,   𝑐𝑒𝑛𝑒𝑟𝑔𝑦 , 𝑐𝑟𝑚𝑠 to change the weights 

in the objective function. By changing 𝑐𝑎𝑣𝑒𝑟𝑎𝑔𝑒, one can change 𝑃𝑎𝑣𝑒. In general, 

𝑐𝑎𝑣𝑒𝑟𝑎𝑔𝑒 should be taken as 1. 

Note that, since the specified angular speed of the motor will be constant, power 

is proportional to the actuation torque. Hence, minimization or maximization of 

power corresponds to minimization or maximization of actuator torque. 

Although maximizing the minimum power doesn’t seem to be reasonable, 

maximizing a negative power consumption corresponds to minimizing the 

braking power. 

𝐹𝑀𝐹𝐺  can be expressed in terms of a Fourier series of any order. In this study, 

the optimal order will be determined iteratively by considering the 3rd, 4th, 5th, 

6th and 7th order Fourier series given below. 
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𝐹𝑀𝐹𝐺3
= 𝑎0 + 𝑎1 ∗ cos (

2𝜋𝑡

𝑇
) + 𝑏1 ∗ sin (

2𝜋𝑡

𝑇
) + 𝑎2 ∗ cos (

4𝜋𝑡

𝑇
)

+ 𝑏2 ∗ sin (
4𝜋𝑡

𝑇
) + 𝑎3 ∗ cos (

6𝜋𝑡

𝑇
) + 𝑏3

∗ sin (
6𝜋𝑡

𝑇
) 

( 94 ) 

𝐹𝑀𝐹𝐺4
= 𝑎0 + 𝑎1 ∗ cos (

2𝜋𝑡

𝑇
) + 𝑏1 ∗ sin (

2𝜋𝑡

𝑇
) + 𝑎2 ∗ cos (

4𝜋𝑡

𝑇
)

+ 𝑏2 ∗ sin (
4𝜋𝑡

𝑇
) + 𝑎3 ∗ cos (

6𝜋𝑡

𝑇
) + 𝑏3

∗ sin (
6𝜋𝑡

𝑇
) + 𝑎4 ∗ cos (

8𝜋𝑡

𝑇
) + 𝑏4 ∗ sin (

8𝜋𝑡

𝑇
) 

( 95 ) 

𝐹𝑀𝐹𝐺5
= 𝑎0 + 𝑎1 ∗ cos (

2𝜋𝑡

𝑇
) + 𝑏1 ∗ sin (

2𝜋𝑡

𝑇
) + 𝑎2 ∗ cos (

4𝜋𝑡

𝑇
)

+ 𝑏2 ∗ sin (
4𝜋𝑡

𝑇
) + 𝑎3 ∗ cos (

6𝜋𝑡

𝑇
) + 𝑏3

∗ sin (
6𝜋𝑡

𝑇
) + 𝑎4 ∗ cos (

8𝜋𝑡

𝑇
) + 𝑏4 ∗ sin (

8𝜋𝑡

𝑇
)

+ 𝑎5 ∗ cos (
10𝜋𝑡

𝑇
) + 𝑏5 ∗ sin (

10𝜋𝑡

𝑇
) 

( 96 ) 

𝐹𝑀𝐹𝐺6
= 𝑎0 + 𝑎1 ∗ cos (

2𝜋𝑡

𝑇
) + 𝑏1 ∗ sin (

2𝜋𝑡

𝑇
) + 𝑎2 ∗ cos (

4𝜋𝑡

𝑇
)

+ 𝑏2 ∗ sin (
4𝜋𝑡

𝑇
) + 𝑎3 ∗ cos (

6𝜋𝑡

𝑇
) + 𝑏3

∗ sin (
6𝜋𝑡

𝑇
) + 𝑎4 ∗ cos (

8𝜋𝑡

𝑇
) + 𝑏4 ∗ sin (

8𝜋𝑡

𝑇
)

+ 𝑎5 ∗ cos (
10𝜋𝑡

𝑇
) + 𝑏5 ∗ sin (

10𝜋𝑡

𝑇
) + 𝑎6

∗ cos (
12𝜋𝑡

𝑇
) + 𝑏6 ∗ sin (

12𝜋𝑡

𝑇
) 

( 97 ) 
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𝐹𝑀𝐹𝐺7
= 𝑎0 + 𝑎1 ∗ cos (

2𝜋𝑡

𝑇
) + 𝑏1 ∗ sin (

2𝜋𝑡

𝑇
) + 𝑎2 ∗ cos (

4𝜋𝑡

𝑇
)

+ 𝑏2 ∗ sin (
4𝜋𝑡

𝑇
) + 𝑎3 ∗ cos (

6𝜋𝑡

𝑇
) + 𝑏3

∗ sin (
6𝜋𝑡

𝑇
) + 𝑎4 ∗ cos (

8𝜋𝑡

𝑇
) + 𝑏4 ∗ sin (

8𝜋𝑡

𝑇
)

+ 𝑎5 ∗ cos (
10𝜋𝑡

𝑇
) + 𝑏5 ∗ sin (

10𝜋𝑡

𝑇
) + 𝑎6

∗ cos (
12𝜋𝑡

𝑇
) + 𝑏6 ∗ sin (

12𝜋𝑡

𝑇
) + 𝑎7 ∗ cos (

14𝜋𝑡

𝑇
)

+ 𝑏7 ∗ sin (
14𝜋𝑡

𝑇
) 

( 98 ) 

Firstly, 𝐹𝑀𝐹𝐺  will be expressed in terms of a 3rd order Fourier series which will 

be named as 𝐹𝑀𝐹𝐺3
. A 3rd order Fourier series (see equation ( 94 )) has 7 unknown 

coefficients to be determined. However, one of the coefficients (namely, 𝑏1) is 

used to satisfy the following condition: 

∫ (𝐹𝑀𝐹𝐺 ∗ 𝑣4)𝑑𝑡 = 0
𝑡=𝑇

𝑡=0

 ( 99 ) 

where 

t : time 

T : period of motion 

Assuming that there are no frictional losses in the MFG, the net work done, in 

one period of motion, by 𝐹𝑀𝐹𝐺  will always be zero, which leads to equation ( 99 

). Equation ( 99 ) is satisfied by solving for coefficient 𝑏1 in terms of other 

coefficients. Hence, 𝑏1 becomes a known parameter in terms of other 

coefficients. 

Hence, only 6 of the coefficients of 𝐹𝑀𝐹𝐺3
 are available as design parameters. 

These 6 design parameters will be used to minimize the objective function 𝑓𝑚𝑖𝑛 

given by equation ( 93 ). For the numerical minimization, “fminsearch” 

command of MATLAB, which uses Nelder-Mead simplex algorithm (see [62] 
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[63]),  is used. Using 100 arbitrary selected initial guesses, the optimal values of 

a0, a1, a2, a3, b2, b3 (which are designated by a0’, a1’, a2’, a3’, b2’, b3’) are 

determined. Next, 𝐹𝑀𝐹𝐺  is represented as a 4th order series (see equation ( 95 )), 

which is designated as 𝐹𝑀𝐹𝐺4
. In order to determine the optimal values of the 8 

design parameters, (namely a0’, a1’, a2’, a3’, a4’, b2’, b3’, b4’) 200 initial guesses 

are utilized. 100 of these guesses are obtained by using the optimal design 

parameters that have been already determined for 𝐹𝑀𝐹𝐺3
 plus 100 arbitrarily 

selected a4’, b4’ pairs. In this manner, the result of the optimization via 𝐹𝑀𝐹𝐺3
 is 

taken advantage of. The remaining 100 initial guesses for the 8 design 

parameters are arbitrarily selected. The minimum of 𝑓𝑚𝑖𝑛 obtained from the 200 

initial guesses is taken to be the new minimum of 𝑓𝑚𝑖𝑛 (by using 𝐹𝑀𝐹𝐺4
). The 

same procedure is repeated to determine more accurate 𝑓𝑚𝑖𝑛 values by 

considering 𝐹𝑀𝐹𝐺5
, 𝐹𝑀𝐹𝐺6

 and 𝐹𝑀𝐹𝐺7
 (see Figure 55). At the end of the procedure, 

the minimum of 𝑓𝑚𝑖𝑛 is taken to be the minimum obtained via 𝐹𝑀𝐹𝐺7
.  
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Figure 55: Iterative Method to Find FMFG 
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4.3.1 Sample Work Cases 

In this section, 5 different tasks will be considered. Force vs compression 

distance graph of Task-A is shown in Figure 51. 

Force vs compression distance graph of Task-B is shown in Figure 56. Between 

0-29 mm penetration, the force in Task-B is 100 times smaller than the force in 

Task-A. After 29 mm penetration, the slope doesn’t change in Task-B (unlike 

Task-A). In other words, slope is constant in Task-B.  

 

 

Figure 56: Force vs Compression Graph for Task-A & Task-B 
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Figure 57: Motor Torque vs Time Graph for Task-A 

 

 

Figure 58: Motor Torque vs Time Graph for Task-B 

 

In Figure 57 and Figure 58, motor torque vs time graphs are shown for Task-A 

and Task-B. Note that inertial parameters and motor speed was introduced in 

section 4.1 (Remember that motor speed is 60 rpm, i.e., constant.). As can be 

observed from the graphs, in Task-A, the inertial and gravitational forces are too 

small with respect to the press force. Hence, except for the press compression 

zone, the motor torque is nearly a straight line. However, in Task-B, the inertial 
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and gravitational forces are somewhat comparable with the press compression 

forces. 

In the third task, there is no press force. Hence, the only forces that are taken 

into account are the inertial and gravitational forces. This scenario will be named 

as “Task-C”. Motor torque vs time graph for Task-C is given in Figure 59. 

 

 

Figure 59: Motor Torque vs Time Graph for Task-C 

 

These three scenarios are distinct as far as the ratio of work forces to the inertial 

and gravitational forces are concerned. For Task-A, this ratio is very large. For 

Task-B, this ratio is small. For Task-C, on the other hand, this ratio is 0. 
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Figure 60: Angular Position, Angular Velocity, Press Force and Kinetic Energy 

Graphs for Task-D 

 

4th task is defined with variable crank speed. In this task, crank starts to rotate 

with zero angular velocity and makes half turn rotation (180o). Then it stops and 

comes back to initial position by rotating in the opposite direction. Press force, 

crank angle, crank angular velocity and total kinetic energy graphs are given in 

Figure 60. This task is named as Task-D and it demonstrates a general servo 

motor case, since it has variable speed. Moreover, it is possible to store the 

kinetic energy in the MFG, rather than losing it during braking. 

Finally, 5th task is defined by changing only the press force of Task-D, i.e., 

except for the press force, they are defined as completely same. Press force, 

crank angle, crank angular velocity and total kinetic energy graphs are given in 

Figure 61. This task is named as Task-E. 

In Task-E, the inertial and gravitational forces are too small with respect to the 

press force. However, in Task-D, the inertial and gravitational forces are 

comparable to the press force. 
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Figure 61: Angular Position, Angular Velocity, Press Force and Kinetic Energy 

Graphs for Task-E 

 

4.3.2 Motor Selection 

4.3.2.1 Motor Selection for Task-A 

Maximum power consumption in Task-A is 1.72 MW. Hence, the electric motor 

that will be used for this task should be chosen accordingly. It is assumed that 

this press is a servo crank press, and no flywheel is used. There are 2 reasons for 

not using a flywheel in these analyses: 

1. In servo presses, there are no flywheels, electric motor is directly connected 

to the gearbox. 

2. MFG can replace a flywheel since it can store mechanical energy in an 

efficient manner. 

For the given task, a DC motor from Siemens DC motor catalogue, namely, the 

1GG5 635-5EV40-2XV5 motor, is selected [64, p. 3.76] This motor has a rated 

power of 1.61 MW.  Hence, it is assumed that it can deliver 1.72 MW 
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instantaneously. The properties of the motor at the rated point and the resistance, 

R, of the motor are listed below. 

𝐼 = 2350 A 

𝑇𝑚 = 41200 Nm 

𝜔𝑚 = 374 rpm 

𝑅 = 12.3 mΩ 

Since 𝜔 = 60 rpm = constant for the task, equation ( 68 ) yields 

𝑛 =
374

60
= 6.23 

Hence equation ( 72 ) yields 

𝐾1.61𝑀𝑊
∗ =

23502 ∗ 12.3 ∗ 10−3

412002 ∗ 6.232
= 1.0299 ∗ 10−6

A2 ∗ Ω

Nm2
 

The rated efficiency of this motor according to the motor catalogue is: 

𝜂1.61𝑀𝑊,𝑐𝑎𝑡𝑎𝑙𝑜𝑔𝑢𝑒 = 94% 

However, since a simple efficiency model is used to determine the efficiency 

map, efficiency at the rated point should also be calculated according to this 

simple efficiency model. Hence, from equation ( 74 ) one obtains 

𝜂1.61𝑀𝑊,𝑟𝑎𝑡𝑒𝑑 = 96.1% 

Clearly, 𝜂1.61𝑀𝑊,𝑟𝑎𝑡𝑒𝑑 is quite close to 𝜂1.61𝑀𝑊,𝑐𝑎𝑡𝑎𝑙𝑜𝑔𝑢𝑒. Therefore, it can be 

concluded that the simplified efficiency mapping model is reasonable to use. 

Note that at 1.72 MW power (with 60 RPM speed), the efficiency decreases to 

95.8% (according to the equation ( 74 )), i.e., 

𝜂1.61𝑀𝑊@1.72𝑀𝑊 = 95.8% 

For Task-A the same press machine will now be actuated by 2 identical and 

smaller motors. Note that, for high capacity presses, multiple servo motors can 
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be used [48]. In general, the efficiency of “small” motors are less than the 

efficiency of “large” motors. Hence, the effects of the efficiency of the motor on 

the results will be investigated. From the same Siemens catalogue [64, p. 3.73], 

the motor 1GG5 634-5EG40-2XV5 is chosen. This motor has rated power of 

860 kW. Hence, the two motors provide 1.72 MW power, which is exactly the 

desired value. 𝐾∗ and the efficiency values of  the motor are given below. 

𝐾860𝑘𝑊
∗ = 3.1313 ∗ 10−6

A2 ∗ Ω

Nm2
 

𝜂860𝑘𝑊,𝑐𝑎𝑡𝑎𝑙𝑜𝑔𝑢𝑒 = 92% 

𝜂860𝑘𝑊,𝑟𝑎𝑡𝑒𝑑 = 93.6% 

As can be seen from the comparison of 𝜂1.61𝑀𝑊@1.72𝑀𝑊 and 𝜂860𝑘𝑊,𝑟𝑎𝑡𝑒𝑑, the 

first motor (1GG5 635-5EV40-2XV5) is more efficient than the second motor 

(1GG5 634-5EG40-2XV5).  

Efficiency maps of the two motors are shown in Figure 62 and Figure 63. For 

the sake of simplicity, only rotational speeds between 6 rad/s and 7 rad/s are 

shown. The black dotted lines indicate the working zone. Since the rotational 

speed is fixed at 60 RPM, the working zone is a line, not a curve. Note that, for 

the 860 kW motor, the maximum torque value is half of the maximum torque 

value of 1.61 MW motor, since 2 motors are used. 

As can be observed from these graphs, the optimization algorithm will basically 

try to decrease the actuating torque; since the lower the torque is, the higher the 

efficiency will be. 
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Figure 62: Efficiency Map of 1.61 MW Motor 
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Figure 63: Efficiency Map of 860 kW Motor 

 

Since torque is supplied by 2 motors, equation ( 73 ) should be modified for the 

860 kW motors, yielding 

𝑃𝑖𝑛,𝑡𝑜𝑡𝑎𝑙 = 2 ∗ 𝑃𝑖𝑛,𝑚𝑜𝑡𝑜𝑟 ( 100 ) 

where 

𝑃𝑖𝑛,𝑡𝑜𝑡𝑎𝑙 : total input power 

𝑃𝑖𝑛,𝑚𝑜𝑡𝑜𝑟 : input power for single motor 

Since each motor supplies half of the required torque, the input power for a single 

motor is defined as:  

𝑃𝑖𝑛,𝑚𝑜𝑡𝑜𝑟 =
𝑇

2
∗ 𝜔 + (

𝑇

2
)
2

∗ 𝐾∗ ( 101 ) 

Hence, equations ( 100 ) and ( 101 ) yield 
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𝑃𝑖𝑛,𝑡𝑜𝑡𝑎𝑙 = 𝑇 ∗ 𝜔 + 𝑇2 ∗
𝐾∗

2
 ( 102 ) 

Now, defining 𝐾∗∗ via the equation 

𝐾∗∗ =
𝐾∗

2
 ( 103 ) 

Equation ( 102 ) yields 

𝑃𝑖𝑛,𝑡𝑜𝑡𝑎𝑙 = 𝑇 ∗ 𝜔 + 𝑇2 ∗ 𝐾∗∗ ( 104 ) 

Hence, throughout the analysis, 

𝐾860𝑘𝑊
∗∗ =

𝐾860𝑘𝑊
∗

2
= 1.56565 ∗ 10−6

A2 ∗ Ω

Nm2
 

will be used. 

4.3.2.2 Motor Selection for Task-B 

Maximum power consumption of Task-B is 7.69 kW. The first motor to be used 

is the 1.61 MW motor that is used for Task-A (1GG5 635-5EV40-2XV5). The 

second motor is chosen to be LSK 1124 M 03 from the Leroy Somer catalogue 

[65, p. 87]. This motor has a rated power of 8 kW at 440 V. 

𝐾∗ and the efficiency values of the  motor are given below. 

𝐾8𝑘𝑊
∗ = 1.2925 ∗ 10−3

A2 ∗ Ω

Nm2
 

𝜂8𝑘𝑊,𝑐𝑎𝑡𝑎𝑙𝑜𝑔𝑢𝑒 = 78% 

𝜂8𝑘𝑊,𝑟𝑎𝑡𝑒𝑑 = 79.3% 

However, since the maximum power consumption of Task-B is 7.69 kW, rather 

than 8 kW, the efficiency of the 8 kW motor at the maximum torque point is: 

𝜂8𝑘𝑊@7.69𝑘𝑊 = 79.9% 
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Clearly, this motor is much smaller and less efficient than the large 1.61 MW 

motor (1GG5 635-5EV40-2XV5). Its efficiency map and working zone is shown 

in Figure 64. 

 

 

Figure 64: Efficiency Map of 8 kW Motor 

 

As it can be seen from Figure 62; the 1.61 MW motor will work with a very large 

efficiency (larger than 99%), hence there is no need to show its efficiency map 

for Task-B. 

4.3.2.3 Motor Selection for Task-C 

Maximum power consumption of Task-C is 534 W, hence the 8 kW motor (LSK 

1124 M 03) is suitable for Task-C. A smaller motor will not be selected for this 
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task, because, the aim of analyzing Task-C is to see the energy storage capability 

of the MFG, rather than forcing the motor to run at more efficient points. 

4.3.2.4 Motor Selection for Task-D 

Maximum power consumption of Task-E is 4.95 kW, hence the 8 kW motor 

(LSK 1124 M 03) is also suitable for this task. Note that plugging type braking 

(see section 4.3.3) is assumed for this motor. Hence, the motor is always 

consuming energy and never regenerates energy. 

4.3.2.5 Motor Selection for Task-E 

Maximum power consumption of Task-D is 36.6 kW. The 8 kW motor (LSK 

1124 M 03) will be used for this task. The aim here is to decrease the maximum 

power requirement of the task and to see that this motor would be enough for 

Task-D. Note that plugging type braking is assumed for this motor. Hence, the 

motor is always consuming energy and never regenerates energy. 

4.3.3 Types of Electric Motors 

In the simulations, three different kinds of electric motors will be used. 

4.3.3.1 Regenerating Braking Electric Motor 

During braking (in other words, when power is generated or power consumption 

is negative), the motor operates as a generator. During the electric energy 

generation, there may be some losses. Hence, the regeneration efficiency is 

described as: 
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𝜂𝑟𝑒𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 =
𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦

𝐴𝑏𝑠𝑜𝑟𝑏𝑒𝑑 𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 𝐷𝑢𝑟𝑖𝑛𝑔 𝐵𝑟𝑎𝑘𝑖𝑛𝑔
 ( 105 ) 

In the simulations, 𝜂𝑟𝑒𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 will be taken as 50% and 90%. By using 2 

different values, it will be possible to see the effect of 𝜂𝑟𝑒𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛. 

4.3.3.2 Dynamic Braking 

During braking, excessive mechanical energy is converted to heat. Hence power 

consumption is zero during braking. For programming purposes, the 

regeneration efficiency for dynamic braking will be defined as; 

𝜂𝑟𝑒𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 0 

4.3.3.3 Plugging Type Braking 

During braking, motor tends to operate in the reverse direction and draws 

additional current. Hence, during braking motor consumes energy. For 

programming purposes, the regeneration efficiency will be defined for plugging 

type braking as; 

𝜂𝑟𝑒𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = −1 

4.4 Results & Discussion 

4.4.1 Minimizing the Maximum Power Consumption 

By minimizing the maximum instantaneous power consumption, one can use 

smaller electric motors and decrease the amount of capital investment. 

For the aim for minimizing the maximum power consumption, 𝑐𝑚𝑎𝑥 in equation 

( 93 ) will be taken as 1, and the remaining weighting coefficients will be taken 
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as 0. For minimizing the maximum power consumption, only Task-A will be 

considered. 

 

 

Figure 65: Torque & Power Consumption vs Time Graph for 3rd Order Fourier 

Series for Minimizing Maximum Power 

 

 

Figure 66: Objective Function vs Iteration Number Graph for 3rd Order Fourier 

Series for Minimizing Maximum Power 
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Figure 67: Torque & Power Consumption vs Time Graph for 4th Order Fourier 

Series for Minimizing Maximum Power 

 

 

Figure 68: Objective Function vs Iteration Number Graph for 4th Order Fourier 

Series for Minimizing Maximum Power 
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Figure 69: Torque & Power Consumption vs Time Graph for 5th Order Fourier 

Series for Minimizing Maximum Power 

 

 

Figure 70: Objective Function vs Iteration Number Graph for 5th Order Fourier 

Series for Minimizing Maximum Power 
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Figure 71: Torque & Power Consumption vs Time Graph for 6th Order Fourier 

Series for Minimizing Maximum Power 

 

 

Figure 72: Objective Function vs Iteration Number Graph for 6th Order Fourier 

Series for Minimizing Maximum Power 
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Figure 73: Torque & Power Consumption vs Time Graph for 7th Order Fourier 

Series for Minimizing Maximum Power 

 

 

Figure 74: Objective Function vs Iteration Number Graph for 7th Order Fourier 

Series for Minimizing Maximum Power 

 

In Figure 65, Figure 67, Figure 69, Figure 71 and Figure 73; torque vs time, 

power consumption vs time and MFG force vs time graphs (for Fourier series of 

orders 3, 4, 5, 6 and 7) are shown for the aim of minimizing the instantaneous 

maximum power consumption. As it can be seen from the figures, torque and 
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power consumption graphs are exactly same, the only change being in the units. 

Power is 2π times larger than the torque where 2π rad/s (=60 rpm) is the constant 

angular speed of the crankshaft. 

In Figure 66, Figure 68, Figure 70, Figure 72, Figure 74; objective function vs 

iteration number graphs are shown for the aim of minimizing the maximum 

power consumption. 

In Figure 66, there are 100 iterations since there are 100 initial guesses for 

finding 𝐹𝑀𝐹𝐺3
. The smallest value of the objective function is shown with a black 

dot. Hence, that result is the best among all other initial guesses (in terms of 

minimizing the maximum power consumption). Therefore, as described in 

Figure 55; a0, a1, a2, a3, b2, b3 that correspond to the dotted point are the optimal 

values of the design parameters. 𝐹𝑀𝐹𝐺3
 is found by using these optimal design 

parameters. Note that b1 is dictated by the condition that is given in equation ( 

99 ). Hence, it is not a free parameter to choose. 

As described in Figure 55, for finding 𝐹𝑀𝐹𝐺4
, there are 100 initial guesses (the 

first 100 initial guesses in Figure 68) that use the same a0, a1, a2, a3, b2, b3 values 

as in 𝐹𝑀𝐹𝐺3
; and 100 other initial guesses (the second 100 initial guesses in 

Figure 68)  that are completely arbitrary. As shown in Figure 68, the best result 

is achieved by using the first 100 initial guesses, implying that a0, a1, a2, a3, b2, 

b3 coefficients of the optimal 𝐹𝑀𝐹𝐺3
 are useful since they lead to the minimum 

value of the objective function. That is quite reasonable, since the numerical 

algorithm starts with the 6 coefficients that are already tested and found to be the 

best in the previous run, and searches for only 2 extra coefficients. In the second 

100 initial guesses, the numerical algorithm searches for 8 coefficients, the 

optimal values of which are more difficult to determine. 

The same method is used for finding 𝐹𝑀𝐹𝐺5
, 𝐹𝑀𝐹𝐺6

 and 𝐹𝑀𝐹𝐺7
. Referring to 

Figure 70, one notes that the best result is found in the second 100 initial guesses. 

In other words, this time completely arbitrary set of initial guesses leads to the 
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minimum of the objective function. This, in fact, justifies the necessity of the 

second 100 initial guesses (which are completely arbitrary). 

Note that, execution time to find 𝐹𝑀𝐹𝐺3
 is around 2 minutes and execution time 

to find 𝐹𝑀𝐹𝐺7
 is around 25 minutes. 

In order to evaluate the quality of the optimization, the parameter 𝜉, defined via 

the equation 

𝜉 =
𝑓𝑚𝑖𝑛 𝑤𝑖𝑡ℎ 𝑀𝐹𝐺 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

𝑓𝑚𝑖𝑛 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑀𝐹𝐺 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑
 ( 106 ) 

will be used. Hence, as 𝜉 decreases, the quality of the optimization increases. 

 

Table 9: ξ Values for Different Fourier Series Orders for Minimizing 

Maximum Power 

Fourier Series Order 𝜉 

3 0.5556 

4 0.5441 

5 0.4897 

6 0.4333 

7 0.3989 

 

In Table 9 and Figure 75, 𝜉 values for different Fourier series orders are shown. 

As expected, 𝜉 decreases as the order of the Fourier series increases. In other 

words, the optimization quality increases. Using a 3rd order Fourier series, the 

maximum power consumption decreases to 55.56% of the original power 

consumption. On the other hand, if a 7th order Fourier series is employed, the 

maximum power consumption decreases to 39.89% of the original power 

consumption. Hence, a much smaller electric motor can be used for the same 

operation. 
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Figure 75: 𝜉 vs Fourier Series Order Graph 

 

It should be noted that, as the order of the Fourier series increases, 𝜉 is expected 

to decrease until the graph becomes tangent to a horizontal asymptote. 

4.4.2 Minimizing the Total Energy Consumption 

Another objective of the optimization is minimizing the total energy 

consumption. In order to realize this objective, 𝑐𝑒𝑛𝑒𝑟𝑔𝑦 in equation ( 93 ) will be 

taken as 1, and the remaining weighting coefficients will be taken as 0. 

MFG can minimize the total energy consumption in the following two ways. 

 By forcing the electric motor to run at the more efficient points (in the 

efficiency map), 

and/or 
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 By storing the mechanical energy in the MFG when there is a need for 

“braking” the system, and by releasing this energy to the system (press 

machine in this case) when it is consumed. 

Note that, lower limit for the energy consumption is the energy demand of the 

task. In other words, energy consumption of the electric motor cannot be 

decreased below the energy demand of the task. Moreover, total energy 

consumption of the electric motor for 1 period of the task will be investigated 

throughout this chapter. 

In order to minimize the total energy consumption, 4 cases will be considered. 

In each case, several electric motors (with different efficiencies) will be utilized. 

For minimizing the total energy consumption, the number of initial guesses are 

increased in order to get better results. 500, 500, 200, 100, 100 initial guesses 

are used for Fourier series of orders 3, 4, 5, 6, 7 respectively. Recall that 100 

initial guesses have been utilized, for Fourier series of any order, for minimizing 

the maximum instantaneous power. 

𝜉 values for each task and motor type; and for each Fourier series order are 

presented in Table 10. The 7th order Fourier series results are written in bold 

characters. Note that the properties of the fictitious motor used for task A will be 

given later. 
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Table 10: ξ Values for Different Fourier Series Orders for Minimizing Total 

Energy Consumption 

Motor & Task Type 

Regeneration Efficiency 

Fourier 
Order 

-1.0 0.0 0.5 0.9 

Plugging 
Type 

Braking 

Dynamic 
Braking 

Regenerative 
Braking 

1610 kW 
Task-A 

0.9972 0.9986 0.9993 0.9999 3 

0.9972 0.9986 0.9993 0.9997 4 

0.9972 0.9986 0.9993 0.9960 5 

0.9972 0.9986 0.9990 0.9920 6 

0.9972 0.9986 0.9936 0.9894 7 

2 x 860 kW 
Task-A 

0.9972 0.9986 0.9993 0.9999 3 

0.9972 0.9986 0.9993 0.9980 4 

0.9972 0.9986 0.9993 0.9910 5 

0.9972 0.9986 0.9993 0.9861 6 

0.9972 0.9986 0.9989 0.9830 7 

Fictitious Motor 
Task-A 

0.9973 0.9987 0.9994 0.9966 3 

0.9973 0.9987 0.9994 0.9857 4 

0.9973 0.9987 0.9965 0.9736 5 

0.9973 0.9975 0.9846 0.9653 6 

0.9973 0.9830 0.9739 0.9599 7 

1610 kW 
Task-B 

0.6804 0.8108 0.8962 0.9787 3 

0.6799 0.8099 0.8957 0.9786 4 

0.6796 0.8098 0.8956 0.9785 5 

0.6795 0.8097 0.8955 0.9785 6 

0.6795 0.8097 0.8955 0.9785 7 

8  kW 
Task-B 

0.7256 0.8453 0.9187 0.9365 3 

0.7244 0.8443 0.8916 0.8996 4 

0.7240 0.8211 0.8573 0.8767 5 

0.7119 0.7950 0.8341 0.8584 6 

0.6820 0.7778 0.8212 0.8518 7 

8  kW 
Task-C 

0.008733 0.002331 0.004474 0.011569 3 

0.002889 0.000999 0.001055 0.000605 4 

0.002146 0.000117 0.000774 0.000387 5 

0.001354 0.000085 0.000317 0.000234 6 

0.000190 0.000079 0.000157 0.000144 7 

8  kW Task-D 0.8542    7 

8  kW Task-E 0.6318    7 
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To visualize the results, each task will be investigated on bar graphs. Torque and 

force graphs (as in section 4.4.1) will not be given for each task in this section 

for the sake of readability. Only ξ results will be discussed for each task. 

4.4.2.1 Task-A 

 

Figure 76: 𝜉 Values for Different Types of Motors & Regeneration Efficiencies 

for Task-A 

 

In Figure 76, 𝜉 values for different types of motors and regeneration efficiencies 

for Task-A are shown. As it is explained in section 4.3.2.1, the 1.61 MW motor 

is more efficient than the 860 kW motors. Their 𝐾∗, 𝐾∗∗ and efficiencies at 1.72 

MW (60 RPM) are: 

𝐾1.61𝑀𝑊
∗ = 1.0299 ∗ 10−6

A2 ∗ Ω

Nm2
 

𝜂1.61𝑀𝑊@1.72𝑀𝑊 = 95.8% 

𝐾860𝑘𝑊
∗∗ = 1.56565 ∗ 10−6

A2 ∗ Ω

Nm2
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𝜂860𝑘𝑊,𝑟𝑎𝑡𝑒𝑑 = 93.6% 

It should be noted that, the results are not easily distinguishable since their 𝐾∗ 

and 𝐾∗∗ values are too close to each other. So, a fictitious motor with  

𝐾𝑓𝑖𝑐𝑡𝑖𝑣𝑒
∗ = 3.1313 ∗ 10−6

A2 ∗ Ω

Nm2
 

𝜂𝑓𝑖𝑐𝑡𝑖𝑣𝑒@1.72𝑀𝑊 = 88% 

is also included into the analyses. This fictitious motor has distinctly less 

efficiency than the other two motors. By introducing such a motor, the effect of 

motor efficiency can be seen clearly. 𝐾∗ of this fictitious motor is equal to 

𝐾860𝑘𝑊
∗  (which is for single motor). So, one can consider the fictitious motor as 

the same 860 kW motor (in terms of electrical parameters like current or 

resistance), but can run at 1.72 MW for an instant as a single motor. 

Among these three motors, 1.62 MW motor is the most efficient one. 860 kW 

motor with a double motor arrangement is the second efficient one. Fictitious 

motor is the least efficient one.   

From Figure 76, it is obvious that, for plugging type braking motors, decrease in 

power consumption is very small for all 3 motors. Power saving is as small as 

0.28%.  Another important observation is that, the decrease in energy 

consumption is nearly the same for all 3 motors. 

For the fictitious motor, as the regeneration efficiency increases, 𝜉 decreases, 

i.e., energy saving increases. This trend is also valid for higher efficiency 

motors (1.61 MW motor and 2 x 860 kW), but it is barely distinguishable. 

As a summary, for the tasks that necessitate much larger load forces (than 

inertial and gravitational forces), i.e., as in high tonnage presses; 

 Utilization of the MFG saves more energy for less efficient motors. This is 

an expected result. If a high efficiency motor is used, utilization of the MFG 
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would save less energy. Because, even without the utilization of MFG, the 

motor runs in an efficient zone. 

 Efficiency of “bigger” (high power) motors are generally high. Hence, 

utilization of the MFG would save more energy in “smaller” motors.  

 For plugging type braking motors, energy saving is low. 

 As the regeneration efficiency of the motor increases, ratio of the energy 

saving increases.  

4.4.2.2 Task-B 

 

Figure 77: 𝜉 Values for Different Types of Motors & Regeneration Efficiencies 

for Task-B 

 

In Figure 77, 𝜉 values for different types of motors and regeneration efficiencies 

for Task-B are shown. As it is explained in section 4.3.2.2, the 1.61 MW motor 

is much more efficient than the 8 kW motor, for this task. Actually, using the 

1.61 MW motor is unnecessary for such a task, since maximum power demand 

is much less than the motor’s power. However it is still a reasonable example, 
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since it is always possible to perform a relatively small task on a large capacity 

press. 

For Task-B, which includes comparable, yet larger forces than inertial and 

gravitational forces (like general industrial applications), the following 

comments can be made. 

 For plugging type braking, energy savings are close for both high and low 

efficiency motors and the saving is more than 30%. 

 For dynamic braking, energy savings are 19.03% and 22.22% for high 

efficiency and low efficiency motors respectively. 

 As the regeneration efficiency increases, ratio of the energy savings 

decreases. 

 In general, if low efficiency motors are used, energy saving is larger. Note 

that, this comment is similar to the comment that has been made for Task-A. 

4.4.2.3 Task-C 

 

Figure 78: 𝜉 Values for Different Regeneration Efficiencies for Task-C (8 kW 

Motor) 
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In Figure 78, 𝜉 values for different types of motors and regeneration efficiencies 

for Task-C are shown. In this task, only the 8 kW motor is used. As it is obvious, 

all 𝜉 values are very small. Hence, more than 99.9% of energy is saved for all 

motor types. Remember that friction is neglected. Hence if friction exists at the 

press mechanism, some energy would be consumed for friction, meaning that 

energy saving would be less. However, even with friction, a great amount of 

energy would be saved.  

Considering the second graph of Figure 79, it seems that the power requirement 

of the task is nearly equally distributed to the positive and negative sides of the 

x-axis. Hence, the excessive energy at power generation (i.e., negative power 

consumption) can be stored in the MFG. This stored energy can be released when 

power input is needed (during the positive power consumption zone). After 

connecting the MFG, actuating torque is decreased drastically, as it can be seen 

from first graph of Figure 79. 
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Figure 79: Torque & Power Consumption vs Time Graph for 7th Order Fourier 

Series for Minimizing Energy Consumption (Dynamic Braking 8 kW Motor) 

 

For this kind of a task (i.e., for tasks with a high percentage of negative power 

consumption), MFG can be used to store the braking energy in order to release 

it whenever needed. Flywheels can also store excessive mechanical energy, but 

they introduce a lot of practical constraints, and they have few design 

parameters. MFG’s, on the other hand, have many design parameters. Hence, 

they may be designed for the exact need. Furthermore, with variable speeds, 

flywheels are difficult to use. Gearboxes should be introduced into the system to 
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realize a limited number of speeds. With MFG’s, infinitely many number of 

speeds can be achieved. In this sense, MFG’s are ideal candidates (in order to 

improve the dynamic characteristics of the machine) to use with servo motors 

with variable speeds. 

4.4.2.4 Task-D 

 

Figure 80: Power Consumption vs Time and Generated MFG Force vs Time 

Graph for Task-D 

 

In Figure 80, power consumption vs time and generated MFG force vs time 

graphs are shown for Task-D. Recall that velocity is not constant in Task-D. The 

crank makes a half rotation and then returns to its initial position. Hence, the 

total kinetic energy increases to its maximum value and decreases to zero for 2 

times in each period, as shown in Figure 60. Clearly, this kinetic energy is 

dissipated. However, this energy can be stored with the utilization of an MFG. 

The amount of potentially storable energy is 51.9 J * 2 =  103.8 J for each period. 

Total potential energy of the press also changes. Maximum potential energy is 

161.8 J and maximum mechanical energy achieved in one period is 165.3 J. 

Potential, kinetic and total mechanical energy of the press is shown in Figure 81. 
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Total energy consumption during one period, on the other hand, is 874 J. Here, 

energy consumption can be decreased due to three reasons: 

 The electric motor can be forced to run at a more efficient point by the 

MFG. 

 Excessive kinetic energy can be stored in the MFG. 

 Potential energy can be stored in the MFG. 

 

 

Figure 81: Mechanical Energy vs Time Graph for Task-D and Task-E 

 

Table 11: Energy Table for Task-D 

  
without 
MFG 

with 
MFG Difference 

Energy Consumed in the Motor due to the Losses [J] 77.0 22.5 54.5 

Mechanical Energy Output of the Motor [J] 797.0 724.0 73 

Total Electrical Energy Input [J] 874.0 746.5 127.5 

Efficiency for 1 Period 91.19% 96.98%   

 

After utilization of the MFG, the total energy consumption is decreased by 

14.58%. In this case, most of the energy (73 J) is saved due to the reduction in 

the mechanical energy demand. In other words, a significant amount of kinetic 
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energy and/or potential energy is stored in the MFG. At the same time, the motor 

is forced to run at a more efficient zone and the efficiency for 1 period is 

increased from 91.19% to 96.98%. The maximum power consumption of the 

motor is also reduced (from 4.95 kW to 1.25 kW). 

The difference in the energy consumption for the cases with and without utilizing 

the MFG is 127.5 Joule for 1 second. Hence, if one assumes that this task is 

performed continuously for 1 year (24 hours x 365 days), 1.1169 megawatt-

hours of energy saving is achieved. 

To conclude, it is shown that, MFG may be used to store the excessive kinetic 

and potential energy and thus, it decreases the energy consumption significantly. 

4.4.2.5 Task-E 

 

Figure 82: Power Consumption vs Time and Generated MFG Force vs Time 

Graph for Task-E 

 

In Figure 82, power consumption vs time and generated MFG force vs time 

graphs are shown for Task-E. The total energy consumption during one period 

is 8.77 kJ.  
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Table 12: Energy Table for Task-E 

  
without 
MFG 

with 
MFG Difference 

Energy Consumed in the Motor due to the Losses [J] 4069.7 916.1 3153.561 

Mechanical Energy Output of the Motor [J] 4700.6 4624.8 75.8 

Total Electrical Energy Input [J] 8770.3 5540.9 3229.4 

Efficiency for 1 Period 53.60% 83.47%   

 

After utilization of the MFG, total energy consumption is decreased by 36.82%. 

In this case, most of the energy is saved due to the fact that the motor runs at 

more efficient zone (after the utilization of the MFG). Efficiency for 1 period is 

increased from 53.60% to 83.47%. However, some amount of energy is also 

saved due to the savings in the mechanical energy consumption. This mechanical 

energy is very close to the mechanical energy saving in Task-D. This is because, 

for both tasks, the same press is used with the same velocity profiles.  

Without utilization of an MFG, of course, using the aforementioned 8 kW motor 

(LSK 1124 M 03) is not meaningful, since its efficiency is quite low for this task 

and the initial maximum power demand is 36.60 kW.  However, with the 

utilization of an MFG, the maximum power consumption reduces to 7.89 kW, 

and hence, using this motor becomes reasonable. Furthermore, there is a major 

energy saving.  

4.4.3 Conclusion 

In this section, a general conclusion will be given for all tasks. 

In Figure 78, there is no exact trend regarding the regeneration efficiencies. This 

is because of the numerical minimization that is used. Since a limited number of 

initial guesses are used, it is not possible to obtain the exact trend because the 

objective function has many local minima and each time, the optimization 

algorithm converges to one of these local minima. 
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Clearly, as the number of initial guesses increases, the results would be more 

accurate, revealing the exact trend. In this study, the number of initial guesses 

have not been increased any further, since the execution time required grows too 

much. Furthermore, the trend between different regeneration efficiencies for 

Task-C is not important. Because, in all cases, the energy saving is very close to 

100%. 

Again, in Figure 76, the trend between the 860 kW motor and the 1.61 MW 

motor is not clear. For 𝜂𝑟𝑒𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 0.5, MFG with a 1.61 MW motor saved 

more energy. For 𝜂𝑟𝑒𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 0.9, MFG with 860 kW motors saved more 

energy. However, the energy savings are close to each other. So the trend is not 

clear and the relationship between the two arrangements is not dependable, due 

to the limited number of initial guesses. As the number of initial guesses 

increases, the exact trend may become clear. Without increasing the number of 

initial guesses, another motor (fictitious motor), with distinguishably less 

efficiency, is added to get the exact trend. 

Note that, for the aforementioned cases, using a low order Fourier series may be 

another reason for not obtaining the exact trend. When the order of the Fourier 

series is increased, one will obtain more dependable results. 

In all cases, friction is neglected to get a linear set of equations. By this way, 

analytic results are found. Friction may be introduced and an iterative method 

may be used for the dynamic analysis. But it will make optimization much harder 

as far as the execution time is concerned. This is why friction is neglected. This 

assumption in such a press mechanism is quite reasonable. Because, friction in 

revolute joints can be neglected since the bearing radii are small. The only 

remaining and significant friction is the slider friction. Since coupler to crank 

ratio is large (It is larger than 4 for crank presses [51, p. 51] and for this case, it 

is taken as 6.), the lateral force on the slider is small. Hence, with the help of a 

good lubrication, it would not create large frictional forces. 
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In this chapter, the required MFG force profile (to improve any one of the 

dynamic characteristics of the press machine) is determined. As an outcome, the 

success rate of this improvement is measured. In order to obtain the derivatives 

and the integrals easily, the MFG force is expressed as a Fourier series. The order 

is increased up to 7. If the order is increased more, different (possibly more 

successful) results may be obtained. 

As mentioned in section 4.1.1, the efficiency map of an electric motor is similar 

to the one shown in Figure 52. Since, obtaining this efficiency map is out of the 

scope of this study, a simple efficiency model is used. 

For small rotational speeds of the motor (near the vertical axis of the efficiency 

map), efficiency is low in both efficiency models. However for small torque 

values (near the horizontal axis of the efficiency map), the efficiency decreases 

in the real case (see Figure 52), but it increases in the proposed simple model 

(see Figure 53). Hence, in the energy consumption optimization, algorithm tries 

to decrease the actuation torque in order to increase the motor efficiency. 

However, this is not in accordance with the real case. In reality, the motor torque 

may be decreased until a certain point (to increase the efficiency); but after a 

certain torque value, a decrease in torque will result in reduction in the 

efficiency. Therefore, an optimum torque value (rather than a minimum torque 

value) should be reached in reality. 

Nevertheless, the energy saving percentages indicate the success of the MFG in 

energy saving. Moreover, if the real efficiency data is supplied by means of tests 

or finite element models, further realistic optimizations may be performed. 

Hence, regardless of the accuracy of the simplified efficiency model of the 

electric motors, it is obvious that MFG may have a great impact on the energy 

saving.  

Besides the tasks with constant speeds (Tasks A, B, C), tasks with variable speed 

(Tasks D, E) have also been introduced. It is observed that the excessive potential 
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and kinetic energy can be stored in the MFG and a significant amount of energy 

saving can be obtained. 

To conclude, MFG may be used to; 

1. Decrease the size (and cost) of the electric motor by decreasing the maximum 

power requirement of the motor, 

2. Decrease the total energy consumption. 

MFG can also be used for decreasing the RMS value of the actuating torque, for 

decreasing the shaking forces or moments; or for a combination of the 

aforementioned objectives. 
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CHAPTER 5 

 

 

DYNAMIC ANALYSIS OF MFG & SLOT PROFILE 

DETERMINATION 

 

 

5.1 Introduction 

In this chapter, the slot shape of the MFG will be determined for a specified 

𝐹2(𝑡) and 𝑠2(𝑡) (see Figure 83). Contact envelope of the slot will be identified 

via force analysis. Factors affecting the slot shape will also be discussed. 

5.2 Determination of the MFG Slot Profile 

Throughout the analysis, the following assumptions will me made: 

1. Gravity is into the paper as shown in Figure 83. So, it will not appear in the 

calculations. 

2. There exists no slippage between the rollers and the slots. Hence, the degree 

of freedom of the MFG is 1; and the frictional forces between the slots and 

the rollers do no work. 

3. Friction at the 4 revolute joints (connecting the 4 rollers to links 3 and 5) are 

negligible. 

4.  𝐹2, which is the force applied on links 2 and 4, satisfies the following 

condition: 

∫ [𝐹2(𝑡) ∗ �̇�2(𝑡)]𝑑𝑡 = 0
𝑡=𝑇

𝑡=0

 ( 107 ) 
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where T is the period of the cyclic motion of the MFG. 

 

 

Figure 83: Mechanical Force Generator [3] 

 

Work-energy equation for the MFG shown in Figure 83 is given by the equation 

𝑈𝑖−𝑎 = 𝑇𝑎 − 𝑇𝑖 = ∆𝑇 ( 108 ) 

where 

i : initial position of the MFG, i.e., position at time=0 

a : any position of the MFG, i.e., position at time=t 

𝑈𝑖−𝑎  : work done, on the MFG, by all external forces acting on the system from 

time=0 to time=t,  i.e., work done by the spring force 𝐹3 and the applied 

force 𝐹2. Here, it should be recalled that frictional effects at the 4 revolute 

joints are neglected. 
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𝑇𝑎 , 𝑇𝑖 : kinetic energies of the MFG at time=t and t=0, respectively 

Here, it is important to note that, regardless of the motion of the MFG, the mass 

center of the MFG is stationary, i.e., it is always located at O1 (see Figure 1). 

Hence, regardless of the direction of the gravitational acceleration, the change in 

potential energy of the MFG (due to gravity) will always be zero for any 2 

positions of the MFG. 

Since only 𝐹3(𝑡) and 𝐹2(𝑡) contribute to 𝑈𝑖−𝑎, one can express 𝑈𝑖−𝑎 as in the 

following form. 

𝑈𝑖−𝑎 = (𝑈𝑖−𝑎)𝐹3
+ (𝑈𝑖−𝑎)𝐹2

  ( 109 ) 

where 

(𝑈𝑖−𝑎)𝐹3
 : work done on the MFG by 𝐹3  

(𝑈𝑖−𝑎)𝐹2
 : work done on the MFG by 𝐹2 

(𝑈𝑖−𝑎)𝐹3
= −2 ∗ ∫ 𝐹3(𝑡)𝑑𝑠3

𝑠3=𝑠3(𝑡)

𝑠3=(𝑠3)0

 ( 110 ) 

where (𝑠3)0 is defined to be initial value of 𝑠3 at 𝑡 = 0, in other words, 𝑠3(0). 

In equation ( 110 ), there is a minus, because directions of 𝐹3 and 𝑑𝑠3 are 

opposite. Again in equation ( 110 ), the multiplier 2 exists, because there are 2 

springs. The spring force 𝐹3(𝑡) is modelled to be compressive and is given via 

the equation 

𝐹3(𝑡) = 𝑘 ∗ [𝐿 + 𝑠3(𝑡)] ( 111 ) 

where k is the spring constant and L is defined by the equation  

𝐿 = 𝑙𝑓𝑟𝑒𝑒 − 𝑏1 + 𝑏3 ( 112 ) 

Here, 𝑙𝑓𝑟𝑒𝑒 is the free length of the springs. 

Substituting equations ( 111 ) and ( 112 ) into ( 110 ), one obtains 
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(𝑈𝑖−𝑎)𝐹3
= −2 ∗ ∫ 𝑘 ∗ [𝐿 + 𝑠3(𝑡)]𝑑𝑠3

𝑠3=𝑠3(𝑡)

𝑠3=(𝑠3)0

 ( 113 ) 

which yields 

(𝑈𝑖−𝑎)𝐹3
= −2

∗ [(𝑘 ∗ 𝐿) ∗ 𝑠3(𝑡) + (0.5 ∗ 𝑘) ∗ 𝑠3(𝑡)
2 − (𝑘 ∗ 𝐿)

∗ (𝑠3)0 − (0.5 ∗ 𝑘) ∗ (𝑠3)0
2] 

( 114 ) 

(𝑈𝑖−𝑎)𝐹2
, on the other hand, is given by 

(𝑈𝑖−𝑎)𝐹2
= 2 ∗ ∫ [𝐹2(𝑡) ∗ �̇�2(𝑡)]𝑑𝑡

𝑡=𝑡

𝑡=0

 ( 115 ) 

The multiplier “2” exists in equation ( 115 ), because there are two 𝐹2 forces 

(applied to links 2 and 4). 

By substituting equations ( 114 ) and ( 115 ) into equation ( 109 ), one obtains 

𝑈𝑖−𝑎 = 2 ∗ {∫ [𝐹2(𝑡) ∗ �̇�2(𝑡)]𝑑𝑡
𝑡=𝑡

𝑡=0

− [(𝑘 ∗ 𝐿) ∗ 𝑠3(𝑡) + (0.5 ∗ 𝑘) ∗ 𝑠3(𝑡)
2 − (𝑘 ∗ 𝐿)

∗ (𝑠3)0 − (0.5 ∗ 𝑘) ∗ (𝑠3)0
2]} 

( 116 ) 

The kinetic energies, 𝑇𝑎 and 𝑇𝑖, on the other hand, can be computed as follows: 

𝑇𝑎 = 2 ∗ (𝑇2)𝑎 + 2 ∗ (𝑇3)𝑎 + 4 ∗ (𝑇6)𝑎 ( 117 ) 

where 

2 ∗ (𝑇2)𝑎 : total kinetic energy of links 2 and 4 at time=t 

2 ∗ (𝑇3)𝑎 : total kinetic energy of links 3 and 5 at time=t 

4 ∗ (𝑇6)𝑎 : total kinetic energy of the 4 rollers at time=t 

Hence, 
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𝑇𝑎 = 2 ∗ {
1

2
∗ 𝑚2 ∗ [�̇�2(𝑡)]

2} + 2 ∗ {
1

2
∗ 𝑚3 ∗ [�̇�3(𝑡)]

2} + 4

∗ {
1

2
∗ 𝑚6 ∗ [�̇�2(𝑡)]

2 +
1

2
∗ 𝐼6 ∗ [�̇�6(𝑡)]

2
} 

( 118 ) 

which, upon simplification, yields 

𝑇𝑎 = [𝑚2 + 2 ∗ 𝑚6] ∗ [�̇�2(𝑡)]
2 + [𝑚3] ∗ [�̇�3(𝑡)]

2 + [2 ∗ 𝐼6]

∗  [�̇�6(𝑡)]
2
 

( 119 ) 

where 

m2, m3, m6 : masses of links 2, 3, 6 (note the symmetry of the links) 

I6  : mass moment of inertia of link 6 with respect to its center of 

mass 

Similar to equation ( 119 ), one obtains 𝑇𝑖 as follows: 

𝑇𝑖 = [𝑚2 + 2 ∗ 𝑚6] ∗ [(�̇�2)0]
2 + [𝑚3] ∗ [(�̇�3)0]

2 + [2 ∗ 𝐼6]

∗  [(�̇�6)0
]
2

 
( 120 ) 

where 

(�̇�2)0 : value of �̇�2(𝑡) at time=0, i.e., �̇�2(0) 

(�̇�3)0  : value of �̇�3(𝑡) at time=0, i.e., �̇�3(0) 

(�̇�6)0
   : value of �̇�6(𝑡) at time=0, i.e., �̇�6(0) 

Substituting equations ( 116 ), ( 119 ), ( 120 ) into equation ( 108 ) the work-

energy equation yields 
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2 ∗ {∫ [𝐹2(𝑡) ∗ �̇�2(𝑡)]𝑑𝑡
𝑡=𝑡

𝑡=0

− [(𝑘 ∗ 𝐿) ∗ 𝑠3(𝑡) + (0.5 ∗ 𝑘) ∗ 𝑠3(𝑡)
2 − (𝑘 ∗ 𝐿)

∗ (𝑠3)0 − (0.5 ∗ 𝑘) ∗ (𝑠3)0
2]}

= [𝑚2 + 2 ∗ 𝑚6] ∗ [�̇�2(𝑡)]
2 + [𝑚3] ∗ [�̇�3(𝑡)]

2 + [2

∗ 𝐼6] ∗  [�̇�6(𝑡)]
2
− [𝑚2 + 2 ∗ 𝑚6] ∗ [(�̇�2)0]

2

− [𝑚3] ∗ [(�̇�3)0]
2 − [2 ∗ 𝐼6] ∗  [(�̇�6)0

]
2

 

( 121 ) 

which may be arranged as: 

∫ [𝐹2(𝑡) ∗ �̇�2(𝑡)]𝑑𝑡
𝑡=𝑡

𝑡=0

+ [0.5 ∗ 𝑚2 + 𝑚6] ∗ {[(�̇�2)0]
2 − [�̇�2(𝑡)]

2}

+ [0.5 ∗ 𝑚3] ∗ {[(�̇�3)0]
2 − [�̇�3(𝑡)]

2} + [𝐼6]

∗ { [(�̇�6)0
]
2

− [�̇�6(𝑡)]
2
}

= [(𝑘 ∗ 𝐿) ∗ 𝑠3(𝑡) + (0.5 ∗ 𝑘) ∗ 𝑠3(𝑡)
2 − (𝑘 ∗ 𝐿)

∗ (𝑠3)0 − (0.5 ∗ 𝑘) ∗ (𝑠3)0
2] 

( 122 ) 

Now, define the left hand side of equation ( 122 ) as 𝑊(𝑡). Hence, the work-

energy equation can be written in the following form: 

𝑊(𝑡) = [(𝑘 ∗ 𝐿) ∗ 𝑠3(𝑡) + (0.5 ∗ 𝑘) ∗ 𝑠3(𝑡)
2 − (𝑘 ∗ 𝐿) ∗ (𝑠3)0

− (0.5 ∗ 𝑘) ∗ (𝑠3)0
2] 

( 123 ) 

In equation ( 123 ), 𝑊(𝑡) is defined as: 

𝑊(𝑡) ≜ ∫ [𝐹2(𝑡) ∗ �̇�2(𝑡)]𝑑𝑡
𝑡=𝑡

𝑡=0

+ [0.5 ∗ 𝑚2 + 𝑚6]

∗ {[(�̇�2)0]
2 − [�̇�2(𝑡)]

2} + [0.5 ∗ 𝑚3]

∗ {[(�̇�3)0]
2 − [�̇�3(𝑡)]

2} + [𝐼6]

∗ { [(�̇�6)0
]
2

− [�̇�6(𝑡)]
2
} 

( 124 ) 

which, after taking time derivatives, yields 
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�̇�(𝑡) = [𝐹2(𝑡) ∗ �̇�2(𝑡)] − [𝑚2 + 2 ∗ 𝑚6] ∗ [�̇�2(𝑡) ∗ �̈�2(𝑡)] − [𝑚3]

∗ [�̇�3(𝑡) ∗ �̈�3(𝑡)] − [2 ∗ 𝐼6] ∗ [�̇�6(𝑡) ∗ �̈�6(𝑡)] 
( 125 ) 

 �̈�(𝑡) = [�̇�2(𝑡) ∗ �̇�2(𝑡) + 𝐹2(𝑡) ∗ �̈�2(𝑡)] − [𝑚2 + 2 ∗ 𝑚6] ∗

{[�̈�2(𝑡)]
2 + �̇�2(𝑡) ∗ 𝑠2(𝑡)} − [𝑚3] ∗ {[�̈�3(𝑡)]

2 + �̇�3(𝑡) ∗ 𝑠3(𝑡)} −

[2 ∗ 𝐼6] ∗ {[�̈�6(𝑡)]
2
+ �̇�6(𝑡) ∗ 𝜃6(𝑡)} 

( 126 ) 

Now rewrite 𝑊(𝑡) in the following form: 

𝑊(𝑡) = 𝑊2(𝑡) + 𝑊3(𝑡) + 𝑊6(𝑡) ( 127 ) 

where 

𝑊2(𝑡) ≜ ∫ [𝐹2(𝑡) ∗ �̇�2(𝑡)]𝑑𝑡 + [0.5 ∗ 𝑚2 + 𝑚6]
𝑡=𝑡

𝑡=0

∗ {[(�̇�2)0]
2 − [�̇�2(𝑡)]

2} 

( 128 ) 

𝑊3(𝑡) ≜ [0.5 ∗ 𝑚3] ∗ {[(�̇�3)0]
2 − [�̇�3(𝑡)]

2} ( 129 ) 

 𝑊6(𝑡) ≜ [𝐼6] ∗ { [(�̇�6)0
]
2

− [�̇�6(𝑡)]
2
} ( 130 ) 

It should be noted that 𝐹2(𝑡) and 𝑠2(𝑡) are specified. Hence, the unknown 

functions to be found are: 

 a periodic function 𝑠3(𝑡) with period T 

 a periodic function 𝜃6(𝑡) with period T 

The ultimate aim, on the other hand, is to find the slot coordinates 𝑥𝑠(𝑡) and 

𝑦𝑠(𝑡) which are the coordinates of the center of roller 6 with respect to O3x3y3 

the coordinate system shown in Figure 83. Using the loop closure equations, 

𝑥𝑠(𝑡) and 𝑦𝑠(𝑡) can be found as: 

𝑥𝑠(𝑡) = 𝑠2(𝑡) ( 131 ) 

 𝑦𝑠(𝑡) = 𝑏2 − 𝑠3(𝑡) ( 132 ) 

First and second time derivatives of 𝑥𝑠(𝑡) and 𝑦𝑠(𝑡), on the other hand, are: 

�̇�𝑠(𝑡) = �̇�2(𝑡) ( 133 ) 

 �̇�𝑠(𝑡) = −�̇�3(𝑡) ( 134 ) 
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 �̈�𝑠(𝑡) = �̈�2(𝑡) ( 135 ) 

 �̈�𝑠(𝑡) = −�̈�3(𝑡) ( 136 ) 

Here, it should be noted that since 𝐹2(𝑡) and 𝑠2(𝑡) are known, and since they 

are expressed by using Fourier series, the integral in equation ( 124 ) can 

always be evaluated in closed form. 

The work-energy equation given by equation ( 123 ) can be rearranged in the 

form 

(0.5 ∗ 𝑘) ∗ 𝑠3(𝑡)
2 + (𝑘 ∗ 𝐿) ∗ 𝑠3(𝑡) + 𝑐(𝑡) = 0 ( 137 ) 

where 

𝑐(𝑡) = −(𝑘 ∗ 𝐿) ∗ (𝑠3)0 − (0.5 ∗ 𝑘) ∗ (𝑠3)0
2 − 𝑊(𝑡) ( 138 ) 

Clearly, equation ( 137 ) is a quadratic equation in 𝑠3(𝑡). Hence, the two roots 

of this equation can be obtained via the equation: 

[𝑠3(𝑡)]1,2 =
−𝑘 ∗ 𝐿 ± √𝑘2 ∗ 𝐿2 − 2 ∗ 𝑘 ∗ 𝑐(𝑡)

𝑘
 ( 139 ) 

Since the spring constant k is larger than 0, equation ( 139 ) yields 

[𝑠3(𝑡)]1,2 =
−𝑘 ∗ 𝐿 ± √𝑘 ∗ √𝑘 ∗ 𝐿2 − 2 ∗ 𝑐(𝑡)

𝑘
 ( 140 ) 

which, when simplified, becomes 

[𝑠3(𝑡)]1,2 = −𝐿 ±
√𝑘 ∗ 𝐿2 − 2 ∗ 𝑐(𝑡)

√𝑘
 ( 141 ) 

In order to determine which of the 2 solutions corresponds to the given initial 

condition (𝑠3)0, one may proceed as follows: 

[𝑠3(0)]1 = −𝐿 +
√𝑘 ∗ 𝐿2 − 2 ∗ 𝑐(0)

√𝑘
 ( 142 ) 

Substitute equation ( 138 ) into ( 142 ) to get: 
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[𝑠3(0)]1

= −𝐿 +
√𝑘 ∗ 𝐿2 + 2 ∗ (𝑘 ∗ 𝐿) ∗ (𝑠3)0 + (𝑘) ∗ (𝑠3)0

2 + 2 ∗ 𝑊(0)

√𝑘
 

( 143 ) 

By substituting t=0 into equation ( 124 ); 

𝑊(0) = 0 ( 144 ) 

Now, substitute equation ( 144 ) into ( 143 ) and simplify, to get 

[𝑠3(0)]1 = 𝑠3(0) ( 145 ) 

Similarly, it can be shown that 

[𝑠3(0)]2 = −2 ∗ 𝐿 − 𝑠3(0) ( 146 ) 

Hence, [𝑠3(0)]1 always satisfies the initial condition, whereas [𝑠3(0)]2 does 

not. Hence, the solution for 𝑠3(𝑡) is given by [𝑠3(𝑡)]1, yielding 

𝑠3(𝑡) = −𝐿 +
√𝑘 ∗ 𝐿2 − 2 ∗ 𝑐(𝑡)

√𝑘
 ( 147 ) 

Substituting 𝑐(𝑡) from equation ( 138 ) and simplifying, one obtains: 

𝑠3(𝑡) = −𝐿 +
√𝑅(𝑡)

√𝑘
 ( 148 ) 

where 

𝑅(𝑡) ≜ 𝑘 ∗ [𝐿 + (𝑠3)0]
2 + 2 ∗ 𝑊(𝑡) ( 149 ) 

Now, define 𝑅𝑚𝑖𝑛 as follows: 

𝑅𝑚𝑖𝑛 ≜ 𝑘 ∗ [𝐿 + (𝑠3)0]
2 + 2 ∗ 𝑊𝑚𝑖𝑛 ( 150 ) 

where 

𝑊𝑚𝑖𝑛 = [𝑊(𝑡)]0≤𝑡≤𝑇
Min  ( 151 ) 

From equation ( 148 ), it is clear that in order for 𝑠3(𝑡) to be a real number, 𝑅(𝑡) 

must be greater than or equal to zero. This must be true for all t values in the 

interval 0 ≤ 𝑡 ≤ 𝑇. Hence, 𝑠3(𝑡) will always be a real number in the interval 

0 ≤ 𝑡 ≤ 𝑇 if and only if 
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𝑅𝑚𝑖𝑛 ≥ 0 ( 152 ) 

Equation ( 152 ) is the condition to be satisfied by the design variables k, L, 

(𝑠3)0, 𝑚2, 𝑚3, 𝑚6, 𝐼6, 𝑟6 such that 𝑠3(𝑡) given by equation ( 148 ) is real valued 

for all times. 

First and second time derivatives of 𝑠3(𝑡) can be found as follows: 

�̇�3(𝑡) =
�̇�(𝑡)

√𝑘 ∗ √𝑅(𝑡)
 ( 153 ) 

�̈�3(𝑡) =
�̈�(𝑡) ∗ 𝑅(𝑡) − [�̇�(𝑡)]

2

√𝑘 ∗ [𝑅(𝑡)]
3
2

 ( 154 ) 

Using equation ( 148 ) in equation ( 111 ), one can also find the spring force 

𝐹3(𝑡) as: 

𝐹3(𝑡) = √𝑘 ∗ √𝑅(𝑡) ( 155 ) 

Once 𝑠3(𝑡) is determined for a specified 𝑠2(𝑡), �̇�3(𝑡) can be obtained by 

differentiation (see equation ( 153 )). �̇�2(𝑡) can also be obtained by taking 

derivative of the specified 𝑠2(𝑡). Hence, once �̇�2(𝑡) and �̇�3(𝑡) are known, �̇�6(𝑡) 

can be determined by using the fact that there exists no slippage between the 

rollers and the slots. Next, the method used to determine �̇�6(𝑡) will be given. 

When there is no slippage between rollers and the slots, one must have [45]: 

[𝑉𝑐6
𝑡 (𝑡)]

𝑟𝑒𝑙
= 0 ( 156 ) 

Here, [𝑉𝑐6
𝑡 (𝑡)]

𝑟𝑒𝑙
 is the relative velocity of the contact point C on the roller with 

respect to the contact point C on the slot (see Figure 83). 

But from equation ( 10 ) of [45]: 

[𝑉𝑐6
𝑡 (𝑡)]

𝑟𝑒𝑙
= cos(𝜃𝑡(𝑡)) ∗ �̇�2(𝑡) + 𝑟6 ∗ �̇�6(𝑡) ∗ 𝜎 − sin(𝜃𝑡(𝑡)) ∗

�̇�3(𝑡)  
( 157 ) 
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where the parameter 𝜎, which is +1 or -1, defines whether the contact between 

the roller and the slot is at the outer envelope or the inner envelope. 𝜃𝑡(𝑡), on the 

other hand, is described in Figure 84. 

It is clear that 

tan(𝜃𝑡(𝑡)) =
�̇�𝑠(𝑡)

�̇�𝑠(𝑡)
 ( 158 ) 

Substituting equations ( 133 ) and ( 134 ) into ( 158 ), one obtains 

tan(𝜃𝑡(𝑡)) =
−�̇�3(𝑡)

�̇�2(𝑡)
 ( 159 ) 

Hence, 𝜃𝑡(𝑡) can be found via the equation 

𝜃𝑡(𝑡) = 𝑎𝑡𝑎𝑛2[�̇�2(𝑡), −�̇�3(𝑡)] ( 160 ) 

Substituting equation ( 157 ) into equation ( 156 ) and solving for �̇�6(𝑡) one 

obtains: 

�̇�6(𝑡) =
1

𝑟6 ∗ 𝜎
∗ [sin(𝜃𝑡(𝑡)) ∗ �̇�3(𝑡) − cos(𝜃𝑡(𝑡)) ∗ �̇�2(𝑡)] ( 161 ) 

5.2.1 Iterative Algorithm to Determine the MFG Slot Profile 

When 𝐹2(𝑡) and 𝑠2(𝑡) are specified, the slot profiles of the MFG may be 

obtained by using an iterative, but efficient, algorithm. The notation to be used 

in the iterative algorithm is as follows: 

𝑠3@𝑖(𝑡) : 𝑠3(𝑡) at the ith iteration 

𝜃6@𝑖(𝑡) : 𝜃6(𝑡) at the ith iteration 

(�̇�3@𝑖)0 : �̇�3@𝑖(𝑡) |𝑡=0, in other words, initial value of �̇�3@𝑖(𝑡) at the ith 

iteration 

(�̇�6@𝑖)0
 : �̇�6@𝑖(𝑡) |𝑡=0

, in other words, initial value of �̇�6@𝑖(𝑡)  at the ith 

iteration 
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𝑊@𝑖(𝑡) : 𝑊(𝑡) at the ith iteration 

𝑊3@𝑖(𝑡) : 𝑊3(𝑡) at the ith iteration 

𝑊6@𝑖(𝑡) : 𝑊6(𝑡) at the ith iteration 

𝐷𝑉⃑⃑ ⃑⃑  ⃑
@𝑖

≜ [{𝑘@𝑖, 𝐿@𝑖, (𝑠3@𝑖)0}, {𝑚2@𝑖,𝑚3@𝑖, 𝑚6@𝑖, 𝐼6@𝑖 }, {𝑟6@𝑖, 𝜎@𝑖}] 
( 162 ) 

where 

𝐷𝑉⃑⃑ ⃑⃑  ⃑
@𝑖    :design variables vector at the ith iteration 

𝑘@𝑖    :spring constant at the ith iteration 

𝐿@𝑖 :value of L at the ith iteration (see equation ( 112 )) 

(𝑠3@𝑖)0   :value of (𝑠3)0 at the ith iteration 

𝑚2@𝑖, 𝑚3@𝑖, 𝑚6@𝑖, 𝐼6@𝑖 :values of 𝑚2, 𝑚3, 𝑚6, 𝐼6 at the ith iteration 

𝑟6@𝑖    :value of roller radius 𝑟6 at the ith iteration 

𝜎@𝑖 :value of 𝜎 at the ith iteration where 𝜎 is either +1 

or -1. Later on, it is shown that, 𝜎@𝑖 may be taken 

to be +1 without any loss of generality (see 

equation ( 179 )). 

Next, the equations that will be utilized in the iterative algorithm are introduced. 

Referring to equation ( 127 ): 

𝑊@𝑖(𝑡) = 𝑊2(𝑡) + 𝑊3@𝑖(𝑡) + 𝑊6@𝑖(𝑡) ( 163 ) 

Referring to equation ( 129 ): 

𝑊3@𝑖(𝑡) = [0.5 ∗ 𝑚3@𝑖] ∗ {[(�̇�3@𝑖)0]
2 − [�̇�3@𝑖(𝑡)]

2} ( 164 ) 

Referring to equation ( 130 ): 

 𝑊6@𝑖(𝑡) = [𝐼6@𝑖] ∗ { [(�̇�6@𝑖)0
]
2

− [�̇�6@𝑖(𝑡)]
2
} ( 165 ) 
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Referring to equation ( 148 ): 

𝑠3@(𝑖+1)(𝑡) = −𝐿@𝑖 +
√𝑅@𝑖(𝑡)

√𝑘@𝑖

 ( 166 ) 

Referring to equation ( 153 ): 

�̇�3@(𝑖+1)(𝑡) =
�̇�@𝑖(𝑡)

√𝑘@𝑖 ∗ √𝑅@𝑖(𝑡)
 ( 167 ) 

where �̇�@𝑖(𝑡) can be found by numerically derivating 𝑊@𝑖(𝑡) with respect to 

time or analytically (see equation ( 125 )). 

Referring to equation ( 160 ): 

𝜃𝑡@𝑖(𝑡) = 𝑎𝑡𝑎𝑛2[�̇�2(𝑡), −�̇�3@𝑖(𝑡)] ( 168 ) 

Referring to equation ( 161 ): 

�̇�6@𝑖(𝑡) =
1

𝑟6@𝑖 ∗ 𝜎@𝑖

∗ [sin(𝜃𝑡@𝑖(𝑡)) ∗ �̇�3@𝑖(𝑡) − cos(𝜃𝑡@𝑖(𝑡)) ∗ �̇�2(𝑡)] 

( 169 ) 

Referring to equation ( 149 ): 

𝑅@𝑖(𝑡) = 𝑘@𝑖 ∗ [𝐿@𝑖 + (𝑠3@𝑖)0]
2 + 2 ∗ 𝑊@𝑖(𝑡) ( 170 ) 

The root mean square error (𝑒3@𝑖)𝑟𝑚𝑠 is defined via the equation 

(𝑒3@𝑖)𝑟𝑚𝑠 ≜ √∫ [𝑒3@𝑖(𝑡)]2𝑑𝑡
𝑇

0

𝑇
 ( 171 ) 

where 

𝑒3@𝑖(𝑡) ≜ 𝑠3@(𝑖+1)(𝑡) − 𝑠3@𝑖(𝑡) ( 172 ) 

for 0 ≤ 𝑡 ≤ 𝑇. 

Next, the steps of the algorithm are given. 
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1. Define discrete time vector 𝑡 as “ ≔ 0: ∆𝑡: 𝑡𝑓𝑖𝑛𝑎𝑙 ”. Here, ∆𝑡 is the step size 

for discrete time values and 𝑡𝑓𝑖𝑛𝑎𝑙 is the final value of the time which is the 

period, T. 

2. Set iteration number “i:=0”. 

3. Set “ 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 ≔ 𝑡𝑟𝑢𝑒 ”. (Note that “ 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 ” is a variable which is 

assigned as either “ 𝑡𝑟𝑢𝑒 ” or “ 𝑓𝑎𝑙𝑠𝑒 ”.) 

4. Define �̇�3@0(𝑡) and �̇�6@0(𝑡) via the equations 

�̇�3@0(𝑡) = 0 ( 173 ) 

�̇�6@0(𝑡) = 0 ( 174 ) 

Note that �̇�3@0(𝑡) and �̇�6@0(𝑡) are defined for 𝑡 = 0: ∆𝑡: 𝑡𝑓𝑖𝑛𝑎𝑙. Hence, they are 

vectors of size (
𝑡𝑓𝑖𝑛𝑎𝑙

∆𝑡
+ 1). 

5. Make a selection for 𝐷𝑉⃑⃑ ⃑⃑  ⃑
@0 where 𝐷𝑉⃑⃑ ⃑⃑  ⃑

@𝑖 is defined via the equation ( 162 ). 

6. Find 𝑅@0(𝑡) from equation ( 170 ). 

7. While “ 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 = 𝑡𝑟𝑢𝑒 ” apply steps 7.1 to 7.10. 

7.1. If  

(𝑅@𝑖)𝑚𝑖𝑛 < 0 ( 175 ) 

modify 𝐷𝑉⃑⃑ ⃑⃑  ⃑
@𝑖 to get 𝐷𝑉⃑⃑ ⃑⃑  ⃑

@𝑖
𝑚𝑜𝑑 (where superscript “mod” denotes 

modified”) such that; 

(𝑅@𝑖
𝑚𝑜𝑑)

𝑚𝑖𝑛
≥ 0 ( 176 ) 

where (𝑅@𝑖
𝑚𝑜𝑑)

𝑚𝑖𝑛
 is found by using 𝐷𝑉⃑⃑ ⃑⃑  ⃑

@𝑖
𝑚𝑜𝑑. Once equation ( 176 ) is 

satisfied, set (𝑅@𝑖)𝑚𝑖𝑛 and 𝐷𝑉⃑⃑ ⃑⃑  ⃑
@𝑖 as follows: 

(𝑅@𝑖)𝑚𝑖𝑛 = (𝑅@𝑖
𝑚𝑜𝑑)

𝑚𝑖𝑛
 ( 177 ) 

𝐷𝑉⃑⃑ ⃑⃑  ⃑
@𝑖 = 𝐷𝑉⃑⃑ ⃑⃑  ⃑

@𝑖
𝑚𝑜𝑑 ( 178 ) 

while finding 𝐷𝑉⃑⃑ ⃑⃑  ⃑
@𝑖
𝑚𝑜𝑑, it seems reasonable that one changes (or 

modifies) the value of 𝑘@𝑖 and/or 𝐿@𝑖 , although any component of 

𝐷𝑉⃑⃑ ⃑⃑  ⃑
@𝑖 could be changed. Also, one would like to satisfy equation ( 175 
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) or ( 176 ) such that (𝑅@0)𝑚𝑖𝑛 or (𝑅@0
𝑚𝑜𝑑)

𝑚𝑖𝑛
 is “as small as possible”. 

Because a smaller (𝑅@0)𝑚𝑖𝑛 value yields a “smaller” MFG mechanism. 

7.2. Determine 𝑊2(𝑡), 𝑊3@𝑖(𝑡) and 𝑊6@𝑖(𝑡) via equations ( 128 ), ( 164 ) 

and ( 165 ), respectively. 

7.3. Determine 𝑊@𝑖(𝑡) via equation ( 163 ). 

7.4. Determine 𝑅@𝑖(𝑡) via equation ( 170 ). 

7.5. Determine 𝑠3@(𝑖+1)(𝑡), which is a vector of size (
𝑡𝑓𝑖𝑛𝑎𝑙

∆𝑡
+ 1),  via 

equation ( 166 ). 

7.6. Determine �̇�3@(𝑖+1)(𝑡) via equation ( 167 ). 

7.7. Determine 𝜃𝑡@𝑖(𝑡) and �̇�6@𝑖+1(𝑡), which is a vector of size (
𝑡𝑓𝑖𝑛𝑎𝑙

∆𝑡
+ 1),  

via equations ( 168 ) and ( 169 ), respectively. Also, note that �̇�6@𝑖(𝑡) is 

always squared (see equation ( 165 )). Hence, 𝜎@𝑖 which is +1 or -1, 

does not affect 𝑊6@𝑖(𝑡). Hence, one may, without loss of generality, use  

𝜎@𝑖 = +1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 𝑣𝑎𝑙𝑢𝑒𝑠 ( 179 ) 

7.8. Determine (𝑒3@𝑖)𝑟𝑚𝑠 via equation ( 171 ). 

7.9. If the condition 

(𝑒3@𝑖)𝑟𝑚𝑠 ≤ 𝜖 ( 180 ) 

is satisfied, set “ 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 ≔ 𝑓𝑎𝑙𝑠𝑒 ”. The solution has converged. 

Return 𝑠3@(𝑖+1)(𝑡) as the solution for 𝑠3(𝑡) and 𝐷𝑉⃑⃑ ⃑⃑  ⃑
@𝑖 as the solution 

for the design variables vector 𝐷𝑉⃑⃑ ⃑⃑  ⃑. Note that, 𝜖 is a user specified error 

limit to stop the iterations. 

7.10. If equation ( 180 ) is not true, 

𝐷𝑉⃑⃑ ⃑⃑  ⃑
@𝑖+1 = 𝐷𝑉⃑⃑ ⃑⃑  ⃑

@𝑖 ( 181 ) 

 

 and increase i by 1 ( 𝑖 ≔ 𝑖 + 1 ). Go the step 7.1. 
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Once the algorithm converges, one obtains 𝑠3(𝑡) and 𝐷𝑉⃑⃑ ⃑⃑  ⃑. Then by using 𝑠3(𝑡), 

one can determine 𝑥𝑠(𝑡), 𝑦𝑠(𝑡),  𝐹3(𝑡) via equations ( 131 ), ( 132 ) and ( 155 ), 

respectively. 

5.3 Dynamic Analysis of MFG 

In this section, dynamic analysis of the MFG will be realized. This analysis will 

be more simplified than the dynamic analysis realized by Soylu [45]. In the force 

analysis, the forces f6, F26,x, F26,y and FN6 will be determined (see Figure 84 and 

Figure 85). Here, f6 is the friction force developed at the contact point between 

roller 6 and the slot in body 3; F26,x and F26,y are the reaction forces due to the 

revolute joint at the center of roller 6; and finally FN6 is the normal force 

developed between roller 6 and the slot in body 3. Once f6, F26,x, F26,y and FN6 

are determined, the frictional forces, revolute joint reactions and normal forces 

associated with the remaining rollers (i.e., links 7, 8, 9) can be obtained due to 

symmetry. 

 

 

Figure 84: Free Body Diagram of Link 3 
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Figure 85: Free Body Diagram of Link 6 (Roller) 

 

In order to solve the 4 unknown forces mentioned in the previous paragraph, it 

is sufficient to consider the free body diagrams of links 3 and 6 (see Figure 84 

and Figure 85). For link 3, only the force equilibrium in the y direction will be 

considered, since the force equilibrium in the x direction and the moment 

equilibrium are trivial due to the symmetry of the forces and due to the fact that 

the 4 joint reactions at the 4 joints that connect the mechanism to the ground are 

all zero. For link 6 (roller), all 3 equilibrium equations (i.e., force equilibrium in 

the x and y directions and moment equilibrium) will be written. 

For link 3, the force equilibrium equation in the y direction is given below. 

−𝐹𝑆,𝑢 − 2 ∗ 𝐹𝑁6 ∗ cos(𝜃𝑡) − 2 ∗ 𝑓6 ∗ sin(𝜃𝑡) = 𝑚3 ∗ 𝑎3 ( 182 ) 
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Here,  

𝐹𝑆,𝑢  : upper spring force acting on link 3 

𝐹𝑁6 : normal force between the slot and the roller 

𝜃𝑡 : slope of the slot ( −90° ≤ θt ≤ +90° ) 

𝑓6 : friction force between the slot and the roller 

𝑚3 : mass of link 3 

𝑎3 : linear acceleration of link 3 (defined as positive in +y direction) 

Gravitational forces are not included in the equations since gravity is defined as 

perpendicular to the paper. In equation ( 182 ), only 𝐹𝑁6 and 𝑓6 are used. 𝐹𝑁7 and 

𝑓7 are not used because they are identical to 𝐹𝑁6 and 𝑓6, respectively. 

For link 6 (roller), the force equilibrium equation the in x direction is given 

below. 

𝐹26,𝑥 + 𝑓6 ∗ cos(𝜃𝑡) − 𝐹𝑁6 ∗ sin(𝜃𝑡) = 𝑚6 ∗ 𝑎2 ( 183 ) 

where 𝑎2 is the linear acceleration of link 2 in +x direction, which is identical to 

the acceleration of the center of mass of link 6 in +x direction; 𝐹26,𝑥 is the x 

component of the reaction force between links 2 and 6. 

For link 6 (roller), force equilibrium in y direction is given below. 

𝐹26,𝑦 + 𝑓6 ∗ sin(𝜃𝑡) + 𝐹𝑁6 ∗ cos(𝜃𝑡) = 0 ( 184 ) 

where 𝐹26,𝑦 is the y component of the reaction force between links 2 and 6. Note 

that, the right hand side of equation ( 184 ) is 0. This is because, the roller does 

not move in the y direction. Hence, the acceleration of the center of mass of the 

roller in the y direction is zero. Hence, the corresponding equation has no 

acceleration term. 

𝑇6 shown in Figure 85 is the friction torque and is defined below. 
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𝑇6 = 𝜎𝜃6
∗ 𝑟𝑓 ∗ √𝐹26,𝑥

2 + 𝐹26,𝑦
2  ( 185 ) 

where 𝑟𝑓 is the radius of friction, which is defined below. 

𝑟𝑓 = 𝑟𝑝𝑖𝑛 ∗ 𝜇𝑝𝑖𝑛 ( 186 ) 

𝑟𝑝𝑖𝑛 is the pin radius in revolute joints which connects rollers with links 2 and 4. 

𝜇𝑝𝑖𝑛 is the friction coefficient in the revolute joints. 

𝜎𝜃6
 used in equation ( 185 ) is defined below. 

𝜎𝜃6
=

{
 
 

 
 

+1        𝑖𝑓 �̇�6 < 0

                            𝑖𝑓 �̇�6 = 0, �̈�6 < 0

−1        𝑖𝑓 �̇�6 > 0

                            𝑖𝑓 �̇�6 = 0, �̈�6 > 0

                 0         𝑖𝑓 �̇�6 = 0, �̈�6 = 0

 ( 187 ) 

For link 6 (roller), moment equilibrium around point O
6
 (center of mass) is as 

follows:  

𝑇6 + 𝜎 ∗ 𝑓6 ∗ 𝑟𝑟𝑜𝑙𝑙𝑒𝑟 = 𝐼6 ∗ �̈�6 ( 188 ) 

where  

𝑟𝑟𝑜𝑙𝑙𝑒𝑟 : roller radius 

𝐼6 : inertia of the link 6 around point O
6
 (center of mass) 

�̈�6 : angular acceleration of link 6 around point O
6
 (center of mass) 

𝜎 in equation ( 188 ) is either +1 (for the case shown in Figure 85) or -1. Its value 

depends on the side of the contact in the slot. It should be taken as either +1 or -

1 at the start of the calculations which will be crosschecked later.  

In Figure 86, slot envelopes are shown for both 0° ≤ θt ≤ 90° and −90° ≤ θt ≤

0° cases. �̂�6 is the unit vector for defining the slope of the slot (θt). �̂�6 is the unit 

vector that is obtained by rotating �̂�6 by −90°.  
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First envelope, which will be called “envelope with 𝜎 = +1” and abbreviated to 

“E𝜎=+1”, is located at the �̂�6 side. At the opposite side to �̂�6 and E𝜎=+1, the 

second envelope is located, which is “envelope with 𝜎 = −1” and abbreviated 

to “E𝜎=−1”. 

 

 

Figure 86: Explanation of Slot Envelopes 

 

For an arbitrary slot shape, two envelopes are shown in Figure 87. 
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Figure 87: Sketch of Slot Envelopes for an Arbitrary Slot Shape 

 

Substituting equations ( 185 ) and ( 186 ) into ( 188 ); 

𝜎𝜃6
∗ 𝑟𝑝𝑖𝑛 ∗ 𝜇𝑝𝑖𝑛 ∗ √𝐹26,𝑥

2 + 𝐹26,𝑦
2 + 𝜎 ∗ 𝑓6 ∗ 𝑟𝑟𝑜𝑙𝑙𝑒𝑟 = 𝐼6 ∗ �̈�6 ( 189 ) 

There are four equations (equations ( 182 ), ( 183 ), ( 184 ) and ( 189 )) and four 

unknowns (𝑓6 , 𝐹26,𝑥 , 𝐹26,𝑦 , 𝐹𝑁6) to solve. Hence, this set of equations can be 

solved analytically.  

From equation ( 182 ), 𝑓6 can be written in terms of 𝐹𝑁6: 

𝑓6(𝐹𝑁6) =
−𝐹𝑆,𝑢 − 2 ∗ 𝐹𝑁6 ∗ cos(𝜃𝑡) − 𝑚3 ∗ 𝑎3

2 ∗ sin(𝜃𝑡)
 ( 190 ) 

From equation ( 183 ), 𝐹26,𝑥 can be written in terms of 𝐹𝑁6 and 𝑓6: 

𝐹26,𝑥(𝐹𝑁6, 𝑓6) = 𝑚6 ∗ 𝑎2 − 𝑓6 ∗ cos(𝜃𝑡) + 𝐹𝑁6 ∗ sin(𝜃𝑡) ( 191 ) 

From equation ( 184 ), 𝐹26,𝑦 can be written in terms of 𝐹𝑁6 and 𝑓6: 

𝐹26,𝑦(𝐹𝑁6, 𝑓6) = 𝑚6 ∗ 𝑎3 − 𝑓6 ∗ sin(𝜃𝑡) − 𝐹𝑁6 ∗ cos(𝜃𝑡) ( 192 ) 

Hence, 𝑓6 , 𝐹26,𝑥 and 𝐹26,𝑦  can be written in terms of 𝐹𝑁6. 

Equation ( 189 ) can be rearranged as below. 

E𝜎=+1 

E𝜎=−1 

Center Line 
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𝐹26,𝑥
2 + 𝐹26,𝑦

2 = (
𝐼6 ∗ �̈�6 − 𝜎 ∗ 𝑓6 ∗ 𝑟𝑟𝑜𝑙𝑙𝑒𝑟

𝜎𝜃6
∗ 𝑟𝑝𝑖𝑛 ∗ 𝜇𝑝𝑖𝑛

)

2

 ( 193 ) 

Equation ( 193 ) can be written in terms of only 𝐹𝑁6, by using equations ( 190 ), 

( 191 ), ( 192 ) as follows: 

𝑎 ∗ 𝐹𝑁6
2 + 𝑏 ∗ 𝐹𝑁6 + 𝑐 = 0 ( 194 ) 

For the ease of readability; coefficients a, b and c will not be written explicitly 

here, since they are too long to write. However, they have been found by using 

the Mathematica software and this output is used in the MATLAB software (see 

APPENDIX). 

According to equation ( 194 ), one may have two distinct roots, one repeated 

root, or no roots. Once 𝐹𝑁6 is found, one can easily find 𝑓6 , 𝐹26,𝑥 and 𝐹26,𝑦 by 

using equations ( 190 ), ( 191 ), ( 192 ). 

Once 𝐹𝑁6 is found, one can crosscheck the following fact: 

𝜎 = 𝑠𝑖𝑔𝑛(𝐹𝑁6) ( 195 ) 

One should also crosscheck whether equation ( 187 ) is fulfilled or not. 

5.4 Sample Tasks to Be Used for the Analyses 

Slot shapes will be determined for four different tasks. Each dataset includes the 

force (𝐹2(𝑡)) and the displacement (𝑠2(𝑡)) data). 

Firstly, the notation to be used will be introduced.  

𝐹2(𝑡)  : Force applied on MFG 

𝐹𝑀𝐹𝐺(𝑡) : Force generated by MFG 

Hence, their directions are opposite, i.e., 

𝐹2(𝑡) = −𝐹𝑀𝐹𝐺(𝑡) ( 196 ) 

𝑃𝑀𝐹𝐺,𝑖𝑛(t) : Power input to MFG 
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𝑃𝑀𝐹𝐺(𝑡) : Power output of MFG  

where 

𝑃𝑀𝐹𝐺,𝑖𝑛(t) = 𝐹2(𝑡) ∗ �̇�2(𝑡)  ( 197 ) 

 𝑃𝑀𝐹𝐺(𝑡) = 𝐹𝑀𝐹𝐺(𝑡) ∗ �̇�2(𝑡) ( 198 ) 

By using equations ( 196 ), ( 197 ) and ( 198 ) together; 

𝑃𝑀𝐹𝐺,𝑖𝑛(t) = −𝑃𝑀𝐹𝐺(𝑡) ( 199 ) 

Furthermore, 

𝑀�̇�(𝑡) = 𝑃𝑀𝐹𝐺,𝑖𝑛(t) = −𝑃𝑀𝐹𝐺(𝑡) ( 200 ) 

where 𝑀�̇�(𝑡) is the time rate of change of total mechanical energy of the MFG. 

The first task (Task-1) corresponds to minimizing the maximum power 

consumption which is examined in section 4.4.1. Hence, 𝐹2(𝑡) is taken as the 

opposite of the MFG force that is shown in Figure 73. 𝑠2(𝑡) is obtained by 

redefining 𝑠4(𝑡)𝑚𝑎𝑐ℎ𝑖𝑛𝑒 as follows: 

𝑠2(𝑡) = 𝑠4(𝑡)𝑚𝑎𝑐ℎ𝑖𝑛𝑒 + 𝑠2,𝑠ℎ𝑖𝑓𝑡 ( 201 ) 

where 

𝑠4(𝑡)𝑚𝑎𝑐ℎ𝑖𝑛𝑒 : 𝑠4(𝑡) of the press machine (see equation ( 76 )) 

𝑠2,𝑠ℎ𝑖𝑓𝑡  : shift in the displacement 

Note that, here, two press machines are used as twin machines. Hence, a single 

MFG is connected to two press machines from links 2 and 4 of the MFG, as 

shown in Figure 3. −𝐹𝑀𝐹𝐺(𝑡) is directly taken as 𝐹2(𝑡), according to the equation 

( 196 ). 𝑠2(𝑡) and 𝐹2(𝑡) graphs of Task-1 are given in Figure 88. 
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Figure 88: s2(t) and F2(t) graphs of Task-1 

 

Task-2 is constructed with the same 𝑠2(𝑡) of Task-1 and opposite of 𝐹2(𝑡) of 

Task-1. In other words, the direction of the applied force is inverted for Task-2. 

By inverting the direction of the applied force on the MFG, it is possible to see 

the resulting change in the slot profile.  𝑠2(𝑡) and 𝐹2(𝑡) graphs of Task-2 are 

given in Figure 89. 

 

 

Figure 89: s2(t) and F2(t) graphs of Task-2 
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Task-3 is a new and special task. Consider a conveyor as shown in Figure 90. 

The conveyor always moves in the same direction. The part of the MFG that is 

shown in Figure 90 may be link 2 of the MFG, or it may be another link that 

merges the outputs of links 2 and 4 as explained in section 1.3. In this case study, 

it is either link 2 or link 4 of the MFG. Hence, a single MFG is connected to two 

different conveyors, which are twin machines like the ones in Figure 3. 

 

 

Figure 90: Conveyor & MFG Engagement 

 

The MFG can be engaged to the conveyor by the help of the pins shown in Figure 

90. The period of the total motion is 8 seconds. Corresponding displacement vs 

time graph is shown in Figure 91. In the first 4 seconds, MFG is engaged to the 

conveyor and the conveyor moves together with the MFG. Between the 4th and 

5th seconds, MFG disengages from the conveyor while both the MFG and 

conveyor are stationary.  Between the 5th and 7th seconds, MFG moves back to 

the initial position while the conveyor is stationary. Between the 7th and 8th 

seconds, MFG engages to the conveyor while both the MFG and conveyor are 

stationary.  After the 8th second, the period ends and the same motion starts as 

explained above. 

 

Conveyor 

MFG 
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Figure 91: Displacement vs Time Graph 

 

In this study, for the ease of analytic calculations, the displacement s2(t) is 

approximated by a Fourier series of order 20. Hence, its derivatives can be easily 

found analytically. Furthermore, this s2(t) can be used after redefining it by 

addition of 𝑠2,𝑠ℎ𝑖𝑓𝑡 (similar to equation ( 201 )). 

In Figure 92, mass vs time graph of the overall system is shown. 

 

 

Figure 92: Mass vs Time Graph 

 

Here, the mass of the conveyor is 20 kg, and the mass of the engagement system 

(pins, etc.) is 3 kg (which excludes the mass of link 2 of MFG). Hence, MFG 
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carries the engagement mass of 3 kg at all times. In the first 4 seconds of each 

period, MFG also carries the conveyor mass which is 20 kg (yielding a total of 

23 kg). The force that should be generated by MFG is found as below. 

𝐹𝑀𝐹𝐺(𝑡) = {
(𝑚𝑐𝑜𝑛𝑣𝑒𝑦𝑜𝑟 + 𝑚𝑒𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡) ∗ �̈�2(𝑡) 𝑓𝑜𝑟 0 ≤ 𝑡 < 4

(𝑚𝑒𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡) ∗ �̈�2(𝑡)                         𝑓𝑜𝑟 4 ≤ 𝑡 < 8
 ( 202 ) 

where  

𝑚𝑐𝑜𝑛𝑣𝑒𝑦𝑜𝑟 : mass of the conveyor 

𝑚𝑒𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡 : mass of the engagement 

�̈�2(𝑡)  : linear acceleration of link 2 of MFG 

𝐹𝑀𝐹𝐺(𝑡) is expressed as a 20th order Fourier series (see Figure 93). 

 

 

Figure 93: Force vs Time Graph 

 

Corresponding 𝑠2(𝑡) and 𝐹2(𝑡) graphs of Task-3 are given in Figure 94. 
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Figure 94: s2(t) and F2(t) graphs of Task-3 

 

Lastly, Task-4 is constructed with the same 𝑠2(𝑡) of Task-3 and the opposite of 

the 𝐹2(𝑡) of Task-3. In other words, the direction of the applied force (that is 

given in Figure 93) is inverted for Task-4. By inverting the direction of the 

applied force on the MFG, it is possible to see the resulting change in the slot 

profile. Corresponding 𝑠2(𝑡) and 𝐹2(𝑡) graphs of Task-4 are given in Figure 95. 

 

 

Figure 95: s2(t) and F2(t) graphs of Task-4  
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5.5 Results & Discussion 

5.5.1 Task-1 

For Task-1, the design variables that are obtained via the iterative algorithm are 

listed below.  

𝑏1 = 1.5 m 

𝑏3 = 0.8 m 

𝑏2 = 0.5 m 

(𝑠3)0  = 0.2 m 

𝑠2,𝑠ℎ𝑖𝑓𝑡  = 1 m 

𝑘 = 2000 N/mm  

𝑙𝑓𝑟𝑒𝑒  = 1 m 

𝑚2 = 500 kg  

𝑚3 = 500 kg  

𝑚6 = 2 kg 

𝑟6 = 0.005 m 

In order to the stop iterations, 𝜖 = 0.001 mm must be reached. This value makes 

the results of the iterations precise enough. 

Some of the selected design variables are quite large. However, considering the 

capacity of the press machine, they are all reasonable. The spring is a 

compression spring. In Figure 96, the slot profile for Task-1 is shown. The initial 

point is shown with a dot. The roller moves in the direction which is shown with 

two arrows. In both ends of the slot profile, the slot slopes are equal for the two 

tangents (which are shown with two double arrows on the right-hand side of the 
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slot profile; for the sake of simplicity, no arrows are put on the left-hand side). 

This is due to the smoothness of 𝑠3 and 𝑠2 curves. If one of them was not 

continuous or non-smooth at any point, there would be sharp edges in the slot 

shape, and the slopes of two tangent lines would not be equal at the two ends.  

 

 

Figure 96: Slot Profile for Task-1 

 

At the end of the 5th iteration, 𝜖 = 0.001 mm is reached and the slot profile is 

obtained. In Figure 97, the slot profile with envelopes is shown. The width of 

the slot is 1 cm, since the roller diameter is 1 cm. 
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Figure 97: Slot Profile with Envelopes for Task-1 

 

5.5.2 Task-2 

Recall that, direction of 𝐹2(𝑡) is the opposite of Task-1. 𝑠2(𝑡) and the magnitude 

of 𝐹2(𝑡), on the other hand, are the same as Task-1. For Task-2, 𝑙𝑓𝑟𝑒𝑒 is 

determined to be 0.8 m. All of the remaining design variables are the same as 

Task-1.  
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Figure 98: Slot Profile for Task-2 

 

In Figure 98, the slot profile for Task-2 is shown. Initial point is shown with a 

dot. The roller moves in the direction shown with an arrow.  

At the end of the 6th iteration, 𝜖 = 0.001 mm is reached and the slot profile is 

obtained. In Figure 99, the slot profile with the envelopes is shown. The width 

of the slot is 1 cm, since the roller diameter is 1 cm. Note that, the intersection 

of the two slots (in the middle of the figure) will be investigated later. 
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Figure 99: Slot Profile with Envelopes for Task-2 

 

The slot profile of Task-2 is roughly symmetrical with the slot profile of Task-1 

(with respect to a horizontal line). This is due to the fact that 𝐹2(𝑡) is inverted.  

In Figure 100, the following quantities are plotted: 

KE24  : total kinetic energies of links 2 and 4 

KE35  : total kinetic energies of links 3 and 5 

KErollers : total kinetic energies of the rollers 

SE  : total spring energies of the springs 

ME  : total mechanical energies of all links and springs 

WMFG  : work done by the MFG 

WMFG is defined as below. 
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𝑊𝑀𝐹𝐺(𝑡) = ∫ [2 ∗ 𝐹𝑀𝐹𝐺 ∗ �̇�2(𝑡)]𝑑𝑡
𝑡=𝑡

𝑡=0

 ( 203 ) 

Clearly, 

−𝑊𝑀𝐹𝐺(𝑡) = 𝑀𝐸(𝑡) − 𝑀𝐸(0) ( 204 ) 

where 

𝑀𝐸(𝑡) = 𝐾𝐸24(𝑡) + 𝐾𝐸35(𝑡) + 𝐾𝐸𝑟𝑜𝑙𝑙𝑒𝑟𝑠(𝑡) + 𝑆𝐸(𝑡) ( 205 ) 

and 

𝐾𝐸24 = 2 ∗ (
1

2
∗ 𝑚2 ∗ �̇�2

2) ( 206 ) 

𝐾𝐸35 = 2 ∗ (
1

2
∗ 𝑚3 ∗ �̇�3

2) ( 207 ) 

 𝐾𝐸𝑟𝑜𝑙𝑙𝑒𝑟𝑠 = 4 ∗ (
1

2
∗ 𝑚6 ∗ �̇�2

2 +
1

2
∗ 𝐼6 ∗ �̇�6

2) ( 208 ) 

 𝑆𝐸 = 2 ∗ (
1

2
∗ 𝑘 ∗ (𝐿 + 𝑠3)) ( 209 ) 

As seen in Figure 100, the biggest contributors to the mechanical energy are the 

springs in Task-2. If the masses of the links are increased, their contributions to 

the total mechanical energy increase (This aspect will be examined for Task-4 

in section 5.5.4.1.). 
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Figure 100: Energy Graphs for Task-2 

 

In Figure 101, time rate of change of energy graphs are shown for Task-2. In 

Figure 102, the contributions of links to the total mechanical energy are shown. 

As expected from the results of Figure 100, the springs are by far the biggest 

contributors. The second biggest contributors are the links 3 and 5. Although 

their masses are equal to the masses of links 2 and 4; links 3 and 5 contribute to 

the total mechanical energy much more. This is due to the difference in the 

velocity profiles (Links 3 and 5 reach higher speeds.). For another MFG, links 2 

and 4 may contribute to the mechanical energy more than the contribution made 

by links 3 and 5. Contribution of the rollers to the mechanical energy are lower 

than the contributions of all other links, since their masses are too small with 

respect to the masses of the other links. 

Note that, at 0.25 s and 0.75 s (at both ends of the slot), since all the links stop 

for an instant, kinetic energies of all links decrease to 0. At these instants, energy 

is stored only in the springs. 
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Figure 101: Time Rate of Change of Energy Graphs for Task-2 

 

 

Figure 102: Contributions of Links to Total Mechanical Energy for Task-2 



 

 

179 

In Figure 103, the ratios of the time rate of change of energies to the time rate of 

change of the total mechanical energy for Task-2 are shown for all links and 

springs. Since MĖ is 0 at some points, there are peaks at these points (because of 

division by 0). 

 

 

Figure 103: Ratios of the Time Rate of Change of to the Time Rate of Change 

of the Energies to Total Mechanical Energy for Task-2 

 

The maxima and minima of the energies and the time rate of change of energies 

for Task-2 are presented in Table 13. 
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Table 13: Presentation of the Results for Task-2 

  

Unit Maximum Minimum Total Change 

ME Joule 480471.5 62203.3 418268.2 

KE24 Joule 335.0 0.0 335.0 

KE35 Joule 6555.6 0.0 6555.6 

KErollers Joule 27.6 0.0 27.6 

SE Joule 480471.5 61950.7 418520.8 

PMFG Watt 4903530.0 -1372744.9 6276274.9 

KĖ24 Watt 2368.6 -2368.6 4737.2 

KĖ35 Watt 178397.0 -131561.6 309958.6 

KĖrollers Watt 687.0 -546.6 1233.6 

SĖ Watt 5002454.6 -1379273.7 6381728.3 

5.5.2.1 Force Analysis for Task-2 

Force analysis of MFG for Task-2 is performed according to the explanations in 

section 5.3. 

According to equation ( 194 ), one may have two distinct roots for 𝐹𝑁6, one 

repeated root, or no roots at all. However, the 𝐹𝑁6 values that are obtained should 

be inserted into equation ( 189 ) to see whether they satisfy the equation or not, 

since there is a square root in this equation. 

Equation ( 189 ) can be rearranged as follows: 

𝜎𝜃6
∗ 𝑟𝑝𝑖𝑛 ∗ 𝜇𝑝𝑖𝑛 ∗ √𝐹26,𝑥

2 + 𝐹26,𝑦
2 + 𝜎 ∗ 𝑓6 ∗ 𝑟𝑟𝑜𝑙𝑙𝑒𝑟 − 𝐼6 ∗ �̈�6 = 0 ( 210 ) 
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In order to satisfy the equation, the right hand side should be equal to zero. 

In Figure 104, the left hand side of equation ( 210 ) is shown for the two distinct 

roots of 𝐹𝑁6. For every time instant, only one of the roots satisfy the equation. 

Hence, for each time instant, only one of the roots (which makes equation ( 210 

) equal to zero) is taken as the answer.  

 

 

Figure 104: Value of Equation ( 210 ) 

 

In Figure 105, 𝐹𝑁6 vs time graph for the two distinct roots of 𝐹𝑁6 is shown. As 

explained above, for each time instant, 𝐹𝑁6 will be chosen from these two roots 

which makes equation ( 210 ) equal to zero. Once 𝐹𝑁6 is found, one can 

determine 𝑓6, 𝐹26,𝑥 and 𝐹26,𝑦 by using equations ( 190 ), ( 191 ) and ( 192 ). 
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Figure 105: FN6 vs Time Graph for the 2 Distinct Roots 

 

 

Figure 106: FN6, f6, F26x
, F26y

 vs Time Graphs 
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In Figure 106, 𝐹𝑁6, f6, 𝐹26𝑥
, 𝐹26𝑦

 vs time graphs are shown. 

At t=0.25 s and t=0.75 s, the rollers reach the two end points of the slots; stop 

and change direction. Since the direction of the motion is changed, the direction 

of the friction force 𝑓6 also changes. That explains the jumps in the 𝐹𝑁6, 𝑓6, 𝐹26𝑥
 

graphs. In the 𝐹26𝑦
 graph, there is no jump, because it is directly correlated with 

the spring force (and the inertias). 

Now, recall the no slip assumption. For no slip, one must have: 

𝑓6 ≤ 𝐹𝑁6 ∗ 𝜇𝑠𝑙𝑜𝑡 ( 211 ) 

where 𝜇𝑠𝑙𝑜𝑡 is the friction coefficient between the slot and the roller. 

By rearranging equation ( 211 ), one obtains 

𝑓6
𝐹𝑁6

≤ 𝜇𝑠𝑙𝑜𝑡 ( 212 ) 

Hence, for the no slip case, equation ( 212 ) should be satisfied at all times. For 

Task-2, it is found that: 

𝑚𝑎𝑥 (
𝑓6
𝐹𝑁6

) = 0.01263 

Hence, any 𝜇𝑠𝑙𝑜𝑡 value higher than 0.01228 will be sufficient for the no slip 

condition. This value is quite small and nearly for all materials, the friction 

coefficient would be higher than that. 

Once 𝐹𝑁6 is found, one can crosscheck whether equation ( 195 ) is satisfied or 

not. Here, the initial guess was 𝜎 = −1. Hence,  

𝜎 = 𝑠𝑖𝑔𝑛(𝐹𝑁6) equality is satisfied (if 𝜎 was taken as +1, 𝐹𝑁6 would be negative, 

hence it would not satisfy the equality). That means, roller contact is at E𝜎=−1 

for every time instant (it is an expected result, since the spring is in compression). 

In other words, roller contact for rollers 6 and 7 is always at the upper side (+y 

direction side) of the slot (see Figure 87). This information is important in order 

to design the MFG physically.  



 

 

184 

 

Figure 107: Physical Justification of Slot Profile 

 

Since the roller always contacts the upper side of the slot, at the intersection 

(marked as point 1), at the left-hand side of the slot (marked as point 2) and at 

the right-hand side of the slot (marked as point 3) (see Figure 107). The roller 

can move in the wrong direction. In order to solve this problem, one can locate 

arms (like “doors”, shown with thick lines) and connect them to revolute joints 

(shown with points). These arms can rotate only in a single direction. In this 

case, arm 1 and arm 2 can turn counterclockwise around their revolute joints, 

and arm 3 can turn clockwise around its revolute joint. In Figure 107, these arms 

are shown at their closed positions. At the revolute joints, one can also employ 

torsional springs to ensure that these arms will come back to their initial (closed) 

positions once opened. 

Note that, the slot shape may be more complicated with more than one 

intersections, or it may be simpler, without any intersections.  

1 

2 

3 
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In Figure 108, a possible slot shape for another task and the direction of motion 

of the roller is shown. If 𝜎 = −1 at all times (same as Task-2), only one arm at 

the intersection would be sufficient. At both ends, roller would find its path 

without the help of an arm. 

 

 

Figure 108: Slot Shape for Another Task 

 

Indeed, there may be other ways for practical implementation of intersecting 

slots. For example, one can utilize two different slots in parallel, but not 

coincident, planes.  

Note that, the cross check for equation ( 187 ) is also fulfilled for Task-2. 

1 



 

 

186 

5.5.3 Task-3 

For Task-3, the design variables that are obtained via the iterative algorithm are 

listed below.  

𝑏1 = 0.8 m 

𝑏3 = 0.4 m 

𝑏2 = 0.3 m 

(𝑠3)0  = 0.15 m 

𝑠2,𝑠ℎ𝑖𝑓𝑡  = 0.2 m 

𝑘 = 120 N/m  

𝑙𝑓𝑟𝑒𝑒  = 0.5 m 

𝑚2 = 2 kg  

𝑚3 = 2 kg  

𝑚6 = 0.1 kg 

𝑟6 = 0.005 m 

At the end of the 8th iteration, 𝜖 = 0.001 mm is reached and the slot profile is 

obtained. In Figure 109, the slot profile for Task-3 is shown. The initial point is 

shown with a dot. The roller moves in the direction shown with an arrow.  

In Figure 110, the slot profile with the envelopes is shown. The width of the slot 

is 1 cm, since the roller diameter is 1 cm. 
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Figure 109: Slot Profile for Task-3 

 

 

Figure 110: Slot Profile with Envelopes for Task-3 
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5.5.4 Task-4 

Recall that, the direction of 𝐹2(𝑡) is the opposite of Task-3. 𝑠2(𝑡) and the 

magnitude of 𝐹2(𝑡), on the other hand, are the same as Task-3. For Task-4, 𝑙𝑓𝑟𝑒𝑒 

is selected as 0.3 m and 𝑘 is selected as 200 N/m. All the remaining design 

variables are the same as Task-3.  

 

Figure 111: Slot Profile for Task-4 

 

In Figure 111, the slot profile for Task-4 is shown. The initial point is shown 

with a dot. The roller moves in the direction shown with an arrow.  
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Table 14:Iteration Number vs RMS Error Table for Task-4 

Iteration Number RMS Error [mm] 

1 1.00731 

2 0.01708 

3 0.00057 

 

This slot profile is obtained at the end of 3 iterations. In other words, at the end 

of the 3rd iteration, 𝜖 = 0.001 mm is reached. Note that, in general, the algorithm 

has a very fast convergence rate (execution time to find the slot shape is around 

2 minutes). For instance, for Task-4, the iteration number vs RMS error values 

are shown in Table 14. The plots of all three slot profiles (which correspond to 

the three iterations) will not be presented here, since the RMS errors are very 

small for all iterations and hence, it is not possible to distinguish the difference 

between the three slots. 

In Figure 112, the slot profile with the envelopes is shown. The width of the slot 

is 1 cm, since the roller diameter is 1 cm. 
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Figure 112: Slot Profile with Envelopes for Task-4 

 

The slot profile of Task-4 is roughly symmetrical with the slot profile of Task-3 

(with respect to a horizontal line). This is due to the fact that 𝐹2(𝑡) is inverted. 

However, due to the change in the spring stiffness, the new slot profile is rescaled 

in y direction. 

Considering undercutting, the radius of curvature of the slot profile should be 

larger than the radius of the roller [44]. For Task-4, the minimum radius of 

curvature of the slot is 133 times larger than the roller radius. Hence, 

undercutting does not occur. 

In Figure 113, the roller positions are shown for different time values for Task-

4. Between the 4th and 5th seconds; and between the 7th and 8th seconds, the roller 

does not move. This is expected because Task-4 is a rise-dwell-return-dwell type 

task (see the displacement profile shown in Figure 91).  



 

 

191 

 

Figure 113: Roller Positions for Different Times for Task-4 

 

In Figure 114, the energy graphs for Task-4 are shown. In Figure 115, the time 

rate of change of energy graphs are shown for Task-4. In Figure 116, the 

contributions of links to the total mechanical energy for Task-4 are shown.  

As it is seen in Figure 114 and Figure 116, the biggest contributors to the 

mechanical energy are the springs. However, between the 5th and 7th seconds, 

the contributions of links 2 and 4 to mechanical energy are higher than the 

springs. Although links 2, 4, 3 and 5 have the same masses, contributions of links 

3 and 5 to the mechanical energy are much smaller than the contributions of links 
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2 and 4 to the mechanical energy. Recall that, in Task-2, contributions of links 3 

and 5 were larger than the contributions of links 2 and 4. This is due to the 

different velocity profiles of the two tasks. Since kinetic energy is proportional 

to the square of the velocity, the velocity difference of the links impacts the 

contributions significantly.  

 

 

Figure 114: Energy Graphs for Task-4 
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Figure 115: Time Rate of Change of Energy Graphs for Task-4 

 

 

Figure 116: Contributions of Links to Total Mechanical Energy for Task-4 
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Figure 117: Ratios of the Time Rate of Change of to the Time Rate of Change 

of the Energies to Total Mechanical Energy for Task-4 

 

In Figure 117, the ratios of the time rate of change of energies to the time rate of 

change of the total mechanical energy for Task-4 are shown. Note that between 

the 4th and 5th, and the 7th and 8th seconds, MĖ is zero. Hence, the ratios have 

peaks at these regions (because of division by 0).  

Recall that, 𝐹𝑀𝐹𝐺(𝑡) is approximated by a 20th order Fourier series. Between the 

4th and 5th, and the 7th and 8th seconds, its value should be zero. But, since it is 

approximated, there are small oscillations at these time intervals, as it can be 

seen in Figure 93. That explains the oscillations in the graphs given in Figure 

117. Practically, the oscillations of the 𝐹𝑀𝐹𝐺(𝑡) do not affect the results. One 

may take 𝐹𝑀𝐹𝐺(𝑡) to be directly as zero in these intervals. 
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The maximums and minimums of the energies and the time rate of change of 

energies for Task-4 are presented in Table 15. 

 

Table 15: Presentation of the Results for Task-4 

  

Unit Maximum Minimum Total Change 

ME Joule 6.249 0.500 5.749 

KE24 Joule 1.997 0.000 1.997  

KE35 Joule 0.024 0.000 0.024  

KErollers Joule 0.300 0.000 0.300  

SE Joule 5.674 0.500 5.174  

PMFG Watt 6.137 -6.134 12.271  

KĖ24 Watt 4.102 -4.102 8.204  

KĖ35 Watt 0.050 -0.051 0.101  

KĖrollers Watt 0.615 -0.615 1.230  

SĖ Watt 5.320 -5.320 10.640  

5.5.4.1 Effect of Link Masses and Spring Constants 

In order to investigate the effects of the link masses and the spring constants on 

the slot shape, and their contribution to the energies; four different cases will be 

considered for Task-4: 

Task-4, Case-a : The aforementioned design variables for Task-4, i.e., 

     𝑘 = 200 N/m, 𝑚2 = 2 kg, 𝑚3 = 2 kg 
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Task-4, Case-b : 𝑘 = 800 N/m, 𝑚2 = 2 kg, 𝑚3 = 2 kg 

Task-4, Case-c : 𝑘 = 200 N/m, 𝑚2 = 3 kg, 𝑚3 = 2 kg 

Task-4, Case-d : 𝑘 = 200 N/m, 𝑚2 = 2 kg, 𝑚3 = 3 kg 

Note that in Case-b, Case-c and Case-d; all other design variables are the same 

as Case-a. Case-a will not be discussed again, since it has been discussed before. 

5.5.4.1.1 Case-b 

 

Figure 118: Slot Profile for Case-b 



 

 

197 

 

Figure 119: Energy Graphs for Case-b 

 

 

Figure 120: Contributions of Links to Total Mechanical Energy for Case-b 
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5.5.4.1.2 Case-c 

 

Figure 121: Slot Profile for Case-c 

 

Figure 122: Energy Graphs for Case-c 
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Figure 123: Contributions of Links to Total Mechanical Energy for Case-c 
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5.5.4.1.3 Case-d 

 

Figure 124: Slot Profile for Case-d 

 

Figure 125: Energy Graphs for Case-d 
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Figure 126: Contributions of Links to Total Mechanical Energy for Case-d 

5.5.4.2 Conclusions for Different Cases 

Results of the various cases of Task-4 are presented in Figure 111 to Figure 126. 

 Increase in the spring constant (as in Case-b) makes the slot shape narrower 

in the y direction, as it can be seen in Figure 111 and Figure 118. Here, a 

narrow slot shape implies a slot shape with a smaller “max(y)-min(y)” value, 

where y is the coordinate of slot in the y axis. An optimum spring constant 

can be determined by considering ease of manufacturing of the links and the 

availability of springs in the market. If the slot shape becomes too narrow in 

the y direction, the upper and lower slots will intersect (which is a 

problematic result). If the slot shape becomes too wide, then the sizes of links 

3 and 5 will become too large. 
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An increase in the spring constant increases the spring energy and decreases 

the kinetic energies of links 3 and 5. This decrease is due to a decrease in �̇�3 

(since slot becomes narrower in y direction). �̇�2 or 𝑠2 are not affected by this, 

as 𝑠2 is input and stays the same. Moreover, the kinetic energies of the rollers 

and links 2 and 4 also stay the same, since they are related to 𝑠2. The total 

mechanical energy increases, since the increase in the spring energy is much 

higher than the decrease in the kinetic energies of links 3 and 5. However, 

WMFG is not changed, since there is no change in its definition as shown in 

equation ( 203 ). 

 An increase in the masses of links 2 and 4 (Case-c), obviously increases the 

kinetic energies of links 2 and 4. Hence, the contributions of links 2 and 4 to 

the total mechanical energy increase as it can be seen from Figure 114, 

Figure 116, Figure 122 and Figure 123. This increase is only due to the mass 

increase. In other words, �̇�2 has no change, thus it has no effect on this energy 

increase. An increase in the masses of links 2 and 4 changes the slot shape 

significantly, as it can be seen in Figure 111 and Figure 121. 

Change in slot the shape affects �̇�3 (its maximum value is decreased). Hence, 

the kinetic energies of links 3 and 5 and their contributions to the total 

mechanical energy decreases. But this decrease is very small, since the 

contribution of links 3 and 5 were too small initially.  

According to equations ( 203 ) and ( 204 ), the mechanical energy graph can 

shift upwards or downwards (as in Case-b), but it cannot change its pattern 

completely, as long as �̇�2 and 𝐹𝑀𝐹𝐺  that appear in equation ( 203 ) do not 

change (they are the same for all cases presented here). The shift of the 

mechanical energy graph can be measured with 𝑀𝐸(0), which is the initial 

mechanical energy. Considering equations ( 204 ) to ( 209 ) along with 

Figure 114, only the spring energy affects 𝑀𝐸(0), since �̇�2(0) and �̇�3(0) are 

0. For Case-c and Case-d, since the spring constants stay the same, the 

mechanical energy graphs do not change. Considering the contributions of 

links 2 and 4 to the mechanical energy increase at some time interval, 
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especially in between 5th and 7th seconds (and contributions of links 3 and 5 

to the mechanical energy decrease very slightly), contribution of springs to 

the mechanical energy must decrease at the corresponding time intervals. 

Since the spring constant stays the same, the only free parameter is the 

deflection of the spring. Hence, 𝑠3(𝑡) changes and this change affects the 

slot shape. 

 An increase in the masses of links 3 and 5 (Case-d), increases the kinetic 

energies of link 3 and 5. However, since their contributions are too small 

initially, this increase practically changes nothing. On the other hand, if their 

contribution was large enough, then their mass increase would affect the 

energies and the slot shape as shown in Case-c. 
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CHAPTER 6 

 

 

CONCLUSIONS 

 

 

 

This study examines the dynamic performance improvement of mechanisms by 

coupling mechanical force generators. 

In chapter 1, mechanical force generators are introduced. A literature survey 

regarding overconstrained mechanisms, balancing of mechanisms, mechanical 

presses and the efficiency maps of electric motors is presented. 

In chapter 2, the parallelogram mechanism is investigated. Since it is an 

overconstrained mechanism, in order to perform dynamic analysis, one should 

consider the flexibilities of the links. Another alternative approach is to increase 

the degree of freedom of the mechanism by 1, by increasing the degree of 

freedom of an appropriate joint. In this modification, one has free parameters 

that may be changed at will. In chapter 2, the effects of these free parameters are 

examined. This comparison is important and gives preliminary information for 

the following chapters, since the same modification may also be realized for the 

mechanical force generators. It is expected that, the results of the dynamic 

analyses of the modified equivalent mechanical force generators are close to the 

original mechanical force generator. However, the results of the dynamic 

analyses of the original parallelogram mechanism and the modified 

parallelogram mechanisms are slightly different. Note that these differences are 

small enough so that one may use the results of the modified mechanism, rather 

than the original mechanism. 
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In chapter 3, the dynamic analysis of the mechanical force generator is 

performed by utilizing two different methods. The first method is using the 

dynamic analysis algorithm which is proposed by Soylu in [45]. The second 

method uses a commercial software, MSC Adams. Different models of the same 

mechanism are generated by using different joints or contacts. The effect of these 

different joints and contacts are examined and compared with the algorithm. At 

the end, the most successful model to describe the mechanism is selected. The 

results are compared with the results of the algorithm. It is observed that they 

are consistent with each other. 

In chapter 4, five different mechanical press tasks have been considered. 

Kinematic and dynamic analyses of the press mechanisms have been realized. 

The force applied by the mechanical force generator is also included in the 

dynamic analyses and left as a design function. Several different electric motors 

are chosen and used for the analyses. The efficiency maps of the motors are also 

considered in the analyses. Required force to be applied by the mechanical force 

generator that is coupled to the system is determined for various optimization 

purposes. Mainly two objectives are considered, namely minimizing the 

maximum power consumption and minimizing the total energy consumption 

during the task. Maximum power consumption of the press machine is reduced 

by 60.11%. Hence, it is shown that, a much smaller motor can be used for the 

same task. For the second objective, total energy consumption during the task is 

reduced by various amounts. The saving in energy depends on the task and the 

electric motor type. In tasks that include only inertial and gravitational forces, 

the reduction in energy consumption is close to 100%, since the mechanical force 

generator stores all the energy when there is a need for “braking”, and releases 

it when it is needed. In these analyses, the friction is neglected. Even when the 

friction is included, one may end up with a significant amount of energy saving. 

This is due to the fact that, the mechanical force generator acts like a spring with 

a variable stiffness and a kinetic energy storage device with variable inertia. 
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Hence, mechanical force generators are much more efficient than regular springs 

and flywheels. 

In chapter 5 in order to determine the slot profile of the mechanical force 

generator, an iterative algorithm is proposed. Using this algorithm, slot profiles 

are found for four different cases. Effects of the mass of each link and the spring 

constant on the slot profile are investigated. Dynamic analysis of the mechanical 

force generator is performed by using a simpler method than the one presented 

in [45], and contact surface of the rollers are determined. Some 

recommendations regarding the practical usage of the mechanical force 

generator are also made. The slot profile for a rise-dwell-return-dwell task is also 

determined. Hence, it is possible to observe the resulting slot profile for tasks 

which include intermittent displacement input. 

The main results of this study are listed below: 

 Overconstrained mechanisms can be modeled as regular mechanisms by 

replacing one or more joints with a higher degree of freedom joint(s). These 

modified regular mechanisms can lead to identical dynamic properties as the 

original mechanism. 

 MFGs can be efficiently used to optimize one (or more than one) dynamic 

characteristics of an existing machine. For instance, one can minimize the 

energy consumption of an existing machine. Furthermore, when a suitable 

MFG is coupled to an existing machine, it is possible to use “smaller and less 

powerful” actuators to execute a given task. 

 MFG acts as a linear spring with a variable stiffness. Masses and inertias of 

the links of the MFG also contribute to the total mechanical energy. The 

contributions (to the total mechanical energy) of the link masses, inertias and 

springs can be adjusted by changing the masses, inertias and spring 

parameters (spring constant, free length of the spring, etc.) of the MFG. 

These changes also affect the slot shape of the MFG. 
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APPENDIX 

 

 

COEFFICIENTS USED IN THE DYNAMICAL ANALYSIS OF THE 

MFG 

 

 

 

c_coef=(F_Su^2)/4 + (m6^2) * s2dd^2 - (F_Su*m3*s3dd)/2 - F_Su*m6*s3dd + 

((m3^2)*(s3dd^2))/4 + m3*m6*(s3dd^2) + (m6^2)*(s3dd^2) - 

((I6^2)*((tetha6dd)^2))/((r_fr^2)*(sigma_rf^2)) - F_Su*m6*s2dd*cot(tetha_t) + 

m3*m6*s2dd*s3dd*cot(tetha_t) + (1/4)*(F_Su^2)*((cot(tetha_t))^2) - 

(1/2)*F_Su*m3*s3dd*((cot(tetha_t))^2) + (1/4)*(m3^2)*(s3dd^2)*((cot(tetha_t))^2) 

+ (F_Su*I6*r6*sigma*tetha6dd*csc(tetha_t))/((r_fr^2)*(sigma_rf^2)) - 

(I6*m3*r6*s3dd*sigma*tetha6dd*csc(tetha_t))/((r_fr^2)*(sigma_rf^2)) - 

((F_Su^2)*(r6^2)*(sigma^2)*((csc(tetha_t))^2))/(4*(r_fr^2)*(sigma_rf^2)) + 

(F_Su*m3*(r6^2)*s3dd*(sigma^2)*((csc(tetha_t))^2))/(2*(r_fr^2)*(sigma_rf^2)) - 

((m3^2)*(r6^2)*(s3dd^2)*(sigma^2)*((csc(tetha_t))^2))/(4*(r_fr^2)*(sigma_rf^2)) 

 

b_coef=-F_Su*cos(tetha_t) + m3*s3dd*cos(tetha_t) - 

(2*I6*r6*sigma*tetha6dd*cot(tetha_t))/((r_fr^2)*(sigma_rf^2)) + 

2*m6*s2dd*cos(tetha_t)*cot(tetha_t) - F_Su*cos(tetha_t)*((cot(tetha_t))^2) + 

m3*s3dd*cos(tetha_t)*((cot(tetha_t))^2) + 

(F_Su*(r6^2)*(sigma^2)*cot(tetha_t)*csc(tetha_t))/((r_fr^2)*(sigma_rf^2)) - 

(m3*(r6^2)*s3dd*(sigma^2)*cot(tetha_t)*csc(tetha_t))/((r_fr^2)*(sigma_rf^2)) + 

2*m6*s2dd*sin(tetha_t) 
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a_coef=2*((cos(tetha_t))^2) - 

((r6^2)*(sigma^2)*((cot(tetha_t))^2))/((r_fr^2)*(sigma_rf^2)) + 

((cos(tetha_t))^2)*((cot(tetha_t))^2) + ((sin(tetha_t))^2) 


