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ABSTRACT 

 

AN INTERACTIVE COMPUTATIONAL APPROACH TO 3D LAYOUT DESIGN 

OF SINGLE-FAMILY HOUSES BY EVOLUTIONARY ALGORITHMS 

 

 

Sakaryalı, Anıl 

M.Arch, Department of Architecture 

Supervisor: Assist. Prof. Dr. Ġpek Gürsel Dino 

December 2017, 184 pages 

 

  

Customized design is an important feature for single-family houses (SFH). 

Differently, current stage of the housing industry is generally limited to the standard 

houses by tract developments. In this way, design tools for non-expert users can 

provide a strong alternative to the current mode of house production. Certain 

generative design tools can provide customized house solutions according to the 

requirements of occupants. A certain problem in this case is the presented level of 

interaction for the non-expert occupants. A study on the current generative 

approaches to non-expert design tools showed that generative approaches present a 

limited interaction for the user due to the limits of their solution space and the 

required level of expertise for their operation. This research aims to develop a user-

friendly design tool for non-expert designers that can work with appropriate solution 

spaces. In this way, this research presents a new evolutionary computational design 

tool, Ho-Gen (House Generator), which assists in the design exploration of single-

family house layouts through an interactive work process. Ho-Gen is capable to 

generate multi-floor SFH layouts with geometric and topological criteria. Ho-Gen‘s 

interactive interface allows the designer to guide the generation process within the 

intermediate states to make changes in the problem definition together with the 

possibility to modify generated solutions. Ho-Gen is tested with two conceptual SFH 

layout problems with a varying number of layout elements in an increasing level of 

complexity. The results show that Ho-Gen can generate a variety of valid layouts for 

the conceptual stage in architecture.  

 

Keywords: computational layout design, single-family house, design exploration, 

interactive genetic algorithm, evolutionary computation 
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ÖZ 

 

 

  

MÜSTAKĠL EV ÖLÇEĞĠNDE BĠNA YERLEġĠMĠ TASARIMINA YARDIMCI 

ETKĠLEġĠMLĠ BĠR GENETĠK ALGORĠTMA  

 

  

Sakaryalı, Anıl 

Yüksek Lisans, Mimarlık Bölümü 

Tez Yöneticisi: Assist. Prof. Dr. Ġpek Gürsel Dino  

Aralık 2017, 184 sayfa 

 

  

Müsrakil ev tipolojisinde yaratılan mekanın kullanıcıya özgü olması büyük önem 

taĢımaktadır. Bunun aksine günümüzde müstakil ev üretimi, mimarların kısıtlı bir 

çevreye verebildikleri hizmetten ötürü genellikle müteahhit tarafıdan üstlenen 

standart evlere karĢılık gelmektedir. Bu durumda bina kullanıcısına kendi evini 

tasarlayabileceği düzeyde destek sunan hesaplamalı tasarım araçlarının geliĢtirilmesi 

mevcut duruma güçlü bir alternatif yaratmaktadır. Bu konuda geliĢtirilen mevcut 

yöntemlere bakıldığında kullanıcının ihtiyaç verilerinden özgün ev tasarımları ortaya 

çıkartabilecek kadar geliĢkin modellere rastlanmıĢtır. Aynı zamanda bahsedilen 

modeller gerektirdikleri tasarım bilgisi ve içerdikleri sınırlı çözüm alanı 

doğrultusunda sınırlı bir etkileĢim imkanı sunmaktadır. Bu tez, kullanıcının 

hesaplamalı bina yerleĢimi sürecinde kontrolünü arttıracak müstakil ev ölçeğinde 

çalıĢan etkileĢimli genetik algoritma yöntemini, Ho-Gen‘i tanıtmaktadır. Tasarım 

aracı, kullanıcının geometrik ve topolojik girdilerine göre, ayrık müstakil ev 

tipolojisine uygun farklı alanlı ve çok katlı kütle modelleri geliĢtirebilmektedir. Ho-

Gen bu kriterlerin yönetimi için etkileĢimli bir arayüz sunmakta ve kullanıcının 

programın duraksadığı ara zamanlarda problem tanımını ve çıkan kütle modellerini 

değiĢtirmesine olanak vermektedir. GeliĢtirilen model, farklı karmaĢıklık ve ölçekte 

iki konsept tasarım probleminde test edilmiĢtir. Ho-Gen, alınan sonuçlara göre 

konsept tasarım problemlerine gereken çeĢitlikte ve uygunlukta örnekler vermeyi 

baĢarmaktadır. 

 

Anahtar Sözcükler: hesaplamalı bina yerleĢimi, müstakil ev, tasarım araĢtırması, 

etkileĢimli genetik algoritma
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

1.1 Motivation 

 

The practice of architectural design is constantly changing with the increase in 

computational power and the growing extent of research on developing models to 

integrate computation into the architectural design process. Computational tools for 

architecture have gone beyond their usual use in representation and documentation 

which are not directly design related works. Instead, architects take the advantage of 

computational support just within the design process as an amplifier of their 

cognitive capabilities. Computation helps architects to work with complex data 

structures, explore more solutions, and give confident design decisions. Yet, another 

group of computational design tools aims to shift the focus from the practice of 

architectural design to the practitioner himself/herself. The target audience of such 

computational tools is the non-expert designers who are the occupants or future 

users. The purpose of such a shift is to provide the necessary support for non-expert 

designers to make them capable in using their own creative and personal ideas for 

less complex architectural problems. Similarly, this research aims to develop a 

computational tool that supports non-experts in the architectural design of single-

family houses (SFH). 

 

SFH is a suitable architectural typology for the design participation of non-experts in 

terms of its simplicity and the level of required customization. SFH is a freestanding 

building that is occupied by a single family. The design process of SFH is usually 

simpler in terms of the size of the architectural program associated with common 

domestic needs. Additionally, the design process is very user-centric because of the 

importance of occupant‘s lifestyle, aesthetic understanding, and cultural background. 

This personal information is best known by the occupants themselves. The high level 
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of customization and the relative simplicity of SFH create a potential for a design 

participation model. This potential can create a strong alternative to the current state 

of the housing market. 

 

Nowadays, owning a private architect designed house is a priority for most people. 

Despite of the importance of SFH in architectural history with iconic SFH examples 

such as Fallingwater House or Villa Savoye, today architect‘s participation in the 

housing industry is very limited. The largest portion of SFH industry is currently 

held by tract house developers. These developers respond to housing needs usually 

with cookie-cutter projects. Such projects are usually related to a monotony of box-

shaped buildings with little or no alteration. Therefore, current state of the housing 

industry is away from reflecting the individual taste and needs of their occupants.  

 

Alternatively, a certain number of architectural approaches reveal the advantages of a 

bottom-up procedure to housing. During the recent years, the popularity of 

participatory design in SFH has been rising due to a number of projects. A significant 

example is Quinta Monroy Social Housing
1
 project in Chile by Pritzker winning 

architect Alejandro Aravena. In Quinta Monroy, Aravena provides the occupants 

only one-half of the house which leaves the occupant the other half to design and 

expand over time.
2
 Another prominent example is WikiHouse

3
, an open source 

project that shares construction documents and assembly manuals of a set of houses. 

WikiHouse aims to create a new housing industry where occupants or small 

communities can build for themselves with abundant materials and prevalent 

manufacturing techniques such as CNC.
4
 One other example is the advancing 

potential of prefabricated houses with the developments in mass customization 

industry. These developments can provide a powerful alternative to the current 

                                                 

 

1
 ―Quinta Monroy / ELEMENTAL,‖ ArchDaily, December 31, 2008, 

http://www.archdaily.com/10775/quinta-monroy-elemental/. 

2
 ―Quinta Monroy / ELEMENTAL.‖ 

3
 ―WikiHouse,‖ WikiHouse, accessed December 19, 2017, https://wikihouse.cc/. 

4
 ―WikiHouse.‖ 
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problematic state of SFH industry. 

 

In the abundance of open-source knowledge about construction systems, the 

increasing prevalence of mass customization and architects‘ growing intent in 

participatory design can reverse the top down hierarchy in housing industry. In this 

context, an important issue is the capability of future occupants in the design of their 

own houses. The growing extent of house options both in open-source and in 

prefabricated housing domains are not going reach far away from the current level of 

standardization without the proper integration of the occupants in the design process. 

Future occupants should find ways to combine, subtract, and reinvent the available 

house options in this abundance to reach a level of customization that satisfies their 

individual needs. In this context the development of computational tools that 

supports the occupants in the design of their own house come into prominence.  

 

1.2 Background 

 

The idea of user-centered architectural design has a rich historical background both 

in academic and professional environments. The first collective research on the user 

participation in architectural design was realized in ―Design Participation‖ 

conference in 1971 with the worldwide attendance of multi-disciplinary 

participants.
5
 Developing computational tools to support non-experts in architectural 

design was already an issue in ―Design Participation‖ conference that is presented by 

architects Yona Friedman and Nicholas Negroponte.
6
 Despite of this early historical 

background, it is not possible to come up with a significant project that takes the 

advantage of such a model. The recent popularity of such model can be a result of 

the technological advancements in manufacturing, construction, and computation. 

 

A user-centered design process requires a high-level customization in the 

                                                 

 

5
 Yanki Lee, ―Design Participation Tactics: Redefining User Participation in Design,‖ in Design 

Research Society International Conference, 2006, 1. 

6
 Theodora Vardouli, ―Who Designs?,‖ in Empowering Users through Design (Springer, 2015), 23. 
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manufacturing systems to meet the special needs of the occupants. On the contrary, 

the efficiency of the past means of production has depended on standardization. 

Mass production achieves high cost efficiency through the rapid manufacturing of 

standardized products within specialized factories. This understanding in 

manufacturing is still shifting with the developments in mass customization. 

Computer-aided manufacturing systems such as laser cutting and 3D printing are 

developing in the way to reach the economic efficiency of mass production while 

creating an increased variety in the products. Nevertheless, certain challenges are 

still evident for mass customization. According to Zha and Lu,
7
 an important 

challenge for the mass customization model is the decision process for the level of 

variety.
8
 In this way, the process of gathering, analyzing and processing the 

information about the requirements and preferences of the customers becomes 

important. This process puts multiple parties in between the manufacturers and the 

occupants. The information is gathered through market surveys, generalized by data 

analysts, and turned into actual design by the architects. Alternatively, developing 

―user-friendly‖ computational tools that empower users to design their own houses 

creates a more direct communication between the occupants and the means of 

production. 

 

Computational tools completely take away the need for surveys or data analysis 

process as the occupants assess their needs on their own. On the other hand, the 

exclusion of architects or expert designers does not mean that they have no impact 

over the design process. The development of computational tools is itself a design 

problem that requires the integration of architects and expert designers. Architects, as 

the creator of the toolkits, reflect their subjective opinions over the toolkits by setting 

limits over user‘s control over the design process. They also specify the possible 

actions that the user can interact with tool‘s interface. In this way, the working 

principle of design toolkits is closely related with developer‘s understanding on the 

                                                 

 

7
 Xuanfang Zha and Wen F. Lu, ―Knowledge Support for Customer-Based Design for Mass 

Customization,‖ in Artificial Intelligence in Design ’02 (Springer, Dordrecht, 2002), 407–29, 

https://doi.org/10.1007/978-94-017-0795-4_20. 

8
 Zha and Lu, 407. 
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design process and the design problem. The subjectivity of these issues brought out 

alternative computational tool approaches in terms of the type of user interaction and 

design support.  

 

The types of current computational tools can be specified as configurators, drafting 

tools, and generative tools. First, configurators present a list of houses for the 

occupants that are designed by the prefabricated developers. Users limit these 

options with very basic assumptions such as the number of bedrooms. Developers 

offer the users small decorative customizations over the selected house. A notable 

example of configurators is Postgreen Homes.
9
 Postgreen Homes offers a web-based 

interface for the individual apartments in their multi-family residences. Apartment 

types vary according to the project and they present users customization in the 

furniture and appliances. Toll Brothers
10

 is another construction business that offers a 

configurator for customization. This configurator is a checklist interface for small 

and predefined layout alterations excluding the hard construction work. 

 

 

 

Figure 1. Toll Brother's web-based configurator toolkit offers a list of possible 

variations (on the left) for the user. Configurator gives simultaneous feedback on the 

layout to inform the user about the effects of the changes. 

(Retrieved from: https://security.tollbrothers.ml-scp.com/FloorPlan/Details/157298, 

Accessed on 26.12.2017. 

                                                 

 

9
 ―Customize a Green, Modern, Affordable Home by Postgreen Homes - CUSTOMIZE - Passive 

Houses,‖ accessed December 25, 2017, http://customize.postgreenhomes.com/?s=0. 

10
 ―New Construction Homes for Sale | Toll Brothers® Luxury Homes,‖ accessed December 25, 2017, 

https://www.tollbrothers.com/. 
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Second, drafting tools provide users a simplified and user-friendly CAD or BIM 

interface. The occupants, with the help of drafting tools, can design their own house 

completely from the beginning or start from an initial layout template. As an 

example, Express modular
11

 offers Project Homestyler, a home editing software that 

is supported by Autodesk. The interface works with a library of building, furnishing, 

and stylistic objects which the user can pick and arrange on the canvas. Certain 

drafting tools provide additional support through knowledge-based systems. 

According to Corne and Bentley,
12

 knowledge-based systems work with a built-in 

knowledge base that integrates expert knowledge from the real professionals in the 

involved domains. As an example, Williams
13

 developed a system that trains 

computational critics for the design of SFHs. This approach differs from the general 

knowledge-based systems because William‘s computational critic develops its 

knowledge base by learning from a collection of real world house examples together 

with an architect.
14

 The architect goes through each example and points out the 

mistakes in the layout such as the placement of a component.
15

 McLeish
16

 took the 

advantage of William‘s computational critics in his participatory design model for a 

SFH. McLeish model understands the changes in the layout and updates itself both in 

3D and in terms of the computational critics. 

 

 

                                                 

 

11
 ―Express Modular,‖ accessed December 10, 2017, http://expressmodular.com/dragonfly_editor.php. 

12
 David Corne and Peter Bentley, Creative Evolutionary Systems, The Morgan Kaufmann Series in 

Artificial Intelligence (San Francisco, CA: Morgan Kaufmann, 2002). 

13
 Reid E. (Reid Edward) Williams, ―Training Architectural Computational Critics by Example‖ 

(Massachusetts Institute of Technology, 2003), http://dspace.mit.edu/handle/1721.1/16691. 

14
 Williams, 27. 

15
 Williams, 27. 

16
 Thomas John McLeish, ―A Platform for Consumer Driven Participative Design of Open (Source) 

Buildings‖ (Massachusetts Institute of Technology, 2003), http://dspace.mit.edu/handle/1721.1/32250. 
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Figure 2. McLeish's toolkit provides a physical model for the user to arrange 

appliances and furniture while seeing the results in 3D perspective in real time (left). 

McLeish also takes the advantage of computational critics that checks the layout for 

mistakes and present relevant solutions (right). (McLeish, 2003) 

 

 

Lastly, generative tools present users a direct design solution or a list of choices to 

select from after gathering knowledge about their lifestyle and domestic needs. A 

generative system works with an underlying generative logic to create a set of useful 

and viable solutions according to the needs of the occupant. For example, Huang and 

Krawczyk
17

 developed a generative tool that asks occupants a set of general 

questions for the required spaces and get to a specific set of questions about the 

finishes and appliances in the end.
 18

 At the end of every level, the occupant is given 

a range of alternative solutions that satisfy their answers.
19

 Shape grammars are 

another generative approach for non-expert design tools. A shape grammar consists 

of a set of rules to transform an initial geometrical entity in consequent steps.
20

 An 

important example of shape grammar use in non-expert computational tools is 

                                                 

 

17
 Chuen-huei Joseph Huang and Robert Krawczyk, ―A Choice Model of Consumer Participatory 

Design for Modular Houses,‖ 2007. 

18
 Huang and Krawczyk, 682,684. 

19
 Huang and Krawczyk, 681. 

20
 George Stiny, Shape : Talking about Seeing and Doing (Cambridge, Massachusetts : The MIT 

Press, [2006], 2006). 
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Duarte‘s
21

 approach that generates houses in the style of Alvaro Siza‘s Malagueira 

Housing project. The grammar is capable of creating the same houses that Siza 

designed and a wide range of similar alternatives according to user preferences. 

 

 

 

Figure 3. Duarte's shape grammar despite the hard coded geometric rules can create 

a variety of house forms similar in the style of Alvaro Siza‘s Malagueira Housing 

project. (Duarte, 2001) 

 

1.3  Problem Statement 

 

Computational tools for non-experts create an opportunity to abide the limitations of 

the current housing market by presenting a co-design environment for the occupants 

to develop their own living environments. Despite of the growing extent of 

computational tools for non-expert designers, these approaches show certain 

limitations in the essential user interaction process. It is logical that these tools 

present a certain level of limitation as an expert level of freedom can be 

overwhelming for a non-expert user. Nevertheless, such limitations should not 

prevent non–expert designers to present their design abilities and creative ideas. 

 

                                                 

 

21
 José Pinto Duarte, ―Customizing Mass Housing : A Discursive Grammar for Siza‘s Malagueira 

Houses‖ (Massachusetts Institute of Technology, 2001), http://dspace.mit.edu/handle/1721.1/8189. 
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According to Von Hippel and Katz,
22

 computational toolkits for non-experts should 

present five important qualities: 1. Trial-and-error learning environment for the user, 

2. Large enough solution space, 3.User-friendly interface that requires little or no 

training, 4. Wide library of modules, and 5. Direct manufacturing without any 

alterations.
23

 This research mainly focuses on the first three articles Von Hippel‘s list 

because of their problematic state compared to the advances in the remaining 

through computational manufacturing and BIM interfaces. In terms of the large 

library of modules, BIM interfaces creates enough support while open-source 

architecture continues to create a collaborative library of easily manufactured 

building systems and appliances. On the other hand, computational manufacturing 

gives the possibility to create customized products with a less or no penalty 

compared to the mass production facilities. On the contrary, non-expert design tools 

show certain limitations in terms of trial-and-error learning, appropriate solution 

space, and user-friendly interface. 

 

Computational tools do not present satisfactory user interface models that encourage 

the user to learn through a trial-and-error process. Configurators provide a small 

amount of choice to non-experts. The extent of user freedom does not get far from 

small aesthetic decisions about the harmony of covering materials and economic 

decisions about the total coverage of the selected appliances. Conversely, drafting 

tools overwhelm the user with the level of freedom. Non-experts cannot be expected 

to generate a wide range of alternatives for an effective trial-and-error process. 

Generative tools seems to solve this problem by automating the generative process 

however, they go through this process in a closed fashion. User does not have much 

control or idea during the generation process, thus has a limited knowledge about the 

reasons behind the generated solution.  

 

Non-expert design tools have redundant limitations over the solution space. A large 
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23
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solution space is required for computational design tools in order to create the 

required level of customization for the user. Configurators provide small extents of 

solutions space. A calculation of the total possible combinations by configurators can 

bring a large number of alternatives, however the overall impact of such 

combinations are inferior. As an example, configurator approaches do not present the 

opportunity to configure the dimensions of the layout. On the other hand, the 

determinism available in the current generative tools puts serious limits on the 

solution space. The low interactivity in current non-expert generative tools requires 

the predetermination of many serious design decisions during the development 

process. A level of variation is still possible within this determinacy; however, it is 

not possible to expect novel solutions. As an example, Duarte‘s shape grammar can 

create a planned variety of houses according to the user‘s needs. However, the user 

knows that he/she will end up with an Alvaro Siza house from the start. 

 

The mentioned tools also fall short in terms of providing a user-friendly interface to 

the user. As an example, the user should not need to go through an intense amount of 

training before using the tool. From another point, the tool should give constructive 

criticism upon the actions and decisions of the user to extend his/her vision. One 

other useful quality is the flexibility of the tool. The tool‘s interface should not be 

limiting and easy to configure without the need of a deep computational or 

architectural expertise. All type of computational tools gave certain problems in 

terms of the mentioned qualities for user-friendly interface. 

 

Configurators work by a simplistic procedure that hardly needs any training. 

Nevertheless, this is mostly due to the limited choice available for the user. The type 

of support is closer to an online portfolio for the developer rather than a user-friendly 

design tool. 

 

Drafting toolkits, on the other hand, present a user-friendly interface for drafting 

rather designing. The user can start drafting immediately with the help of modules in 

the library. However, developing a full alternative is going to take a large amount of 

time for a non-expert. Certain drafting toolkits utilize knowledge-based support for 

the users but the type of support presented by knowledge-based systems requires an 

expertise to understand and implement. The recommendations provided by such 
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systems can be multiple at times because of the large amount of conditional rules in 

their domain. This kind of decision making on such conflicting situations is a design 

expertise in itself. Another problem about knowledge-based systems is the difficulty 

in the development process. Adding new rules to the system requires a high level of 

architectural and computational expertise. 

 

As for generative tools, the user interaction can be claimed as user-friendly. 

Explaining the requirements in a guided way and selecting from a list of generated 

alternatives is a simple and easy process. However, there is a certain point that brings 

generative tools and configurators closer. Generative tools offer user a wider range 

of control over the solutions and in a way, they generate novel solutions specific to 

user‘s requirements. Yet, the user is distant from the actual generation process 

because of the level of automation. Adding to that, the options presented to the user 

is already limited by the developer of the tool. The procedure to learn occupant‘s 

needs and the ways to provide for those needs is already decided by the developer. 

The process is similar to an interview session with a foreign architect that speaks so 

little in occupant‘s language. The occupant has no other choice than communicating 

the requirements in this limited and predetermined sense. The user also has little 

option to customize the working principle of generative tool. As an example, 

defining a new shape grammar requires a computational and architectural expertise 

beyond the level of non-expert. 

 

In a creative process such as designing a house for the self, current computational 

tools present certain limitations. There is a need for new computational approaches 

that enhance user‘s control within the design process. In this way, non-expert users 

require user-friendly interfaces in order to start the design process immediately 

rather than going through an intense learning process. The provided design process 

should not limit the user with a small number of choices. Instead, the user needs to 

create the choices by exploring a large solution space. As a non-expert designer, the 

user needs a level of guidance to find better paths. However, this assistance should 

not be forced. Alternatively, the user needs the freedom to take other paths that can 

lead to dead ends. In such instances, the tool should provide ways to modify the 

initial problem structure, play with the available solutions, or interact with the 

guidance mechanism so that the user can act upon the mistakes immediately and 
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learn from them. 

 

1.4 “House Generator”, a New Computational Tool for Non-experts 

 

This research targets the development of a computational approach to enhance non-

expert designers‘ capability to generate alternative SFH layouts in a more time and 

effort efficient way. It presents House Generator (Ho-Gen), a novel genetic algorithm 

(GA) with an interactive interface that can generate 3D conceptual layout 

alternatives according to the user-defined geometric and topological criteria. Ho-Gen 

acknowledges non-expert designers‘ requirement for trial-and-error learning, 

appropriate solution space, and user-friendly interface thus, presents an interactive 

generative approach that is enhanced by genetic algorithms (GA).  

 

Genetic algorithms (GA) are efficient and effective search methods that can work 

with large solution spaces. David Goldberg
24

 highlights GA approaches as some of 

the most flexible, efficient, and robust algorithms in computational science. GA do 

not require deterministic hard coded rules to generate satisfactory solutions, instead 

they use the creative capabilities of evolution. According to a definition by Douglas 

Futuyma,
25

 evolution is a blind process without predefined aims and objectives. As 

Futuyma, evolutionary mechanism depends on the mindless process of ―natural 

selection‖.
26 

Natural selection is a simple process which occurs by the replacement of 

less suitable organisms by organisms possessing certain genetic variations that 

enhance their reproduction and survival capabilities.
27

 Evolution, despite of the 

simplicity of its mechanism, is the main driving force behind the vast variation in the 

natural environment. GA takes the advantage of evolution as a creative mechanism 

for the problems of various professions from engineering to architecture. GA 
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25
 Douglas Futuyma, Evolution (Sinauer, 2013), 282. 

26
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eliminates the need for providing hard coded and deterministic rules for generative 

systems, thus provides users an extended solution space to explore and achieve 

higher customization. 

 

Ho-Gen acknowledges the initial complexity of design problems and the limitations 

in the design capabilities of future users. In this way, GA provide certain advantages. 

In his book, Davis argues that GA are very forgiving algorithms that can generate 

acceptable solutions despite the mistakes in their implementation and application.
28

 

Ho-Gen gives possibility to start with vague problem definitions and creates a 

chance for the user to intervene in the generative process to modify the problem 

definition. Therefore, Ho-Gen aims to support user‘s learning process through trial-

and-error. The user can acquire emergent feedback to the changes in the problem 

definition and iterate towards better solutions.  

 

1.5 Research Questions 

 

The research is developed around the following main question: 

 

What is the interactive computational model that can support occupants in the design 

process of their single-family house? 

 

The main research question is divided and answered by the following sub-questions: 

 

 What are the processes and potentials of automated generation and user 

interaction during the design exploration of single-family house?  

 How can non-expert designers interact with computational tools in layout 

design exploration? 

 What are the specific design requirements of single-family house layouts? 

                                                 

 

28
 Lawrence Davis, ―Handbook of Genetic Algorithms,‖ 1991; quoted in Peter J. Bentley and David 

W. Corne, ―Introduction to Creative Evolutionary Systems,‖ in Creative Evolutionary Systems, ed. 

Peter J. Bentley and David W. Corne (Morgan Kaufmann Publishers Inc., 2002), 8. 
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 What are the existing computational approaches to architectural layout 

design? 

 

1.6 Research Outline 

 

This research is organized in five chapters. Chapter 2 is dedicated to a Literature 

Review. The review starts by presenting single-family house and the changing 

dynamics in its production. Additionally, the review discusses the advantages of 

computational design tools for non-experts within user-centered mass customization 

models. The chapter also examines the models of computational support for non-

expert designers in order to decide upon the degree of designer control and 

computational automation. It focuses on the general and architectural layout design 

process, and presents past computational approaches to the layout design process. 

Finally, a brief description on the history of genetic algorithms (GA) and an extended 

study on its computational implementation are given. 

 

Chapter 3 is dedicated to Tool Development. It presents the overall procedure of Ho-

Gen in both user interaction and evolutionary form generation processes. 

Representation part explains Ho-Gen‘s interpretation of a SFH layout with both the 

elements of SFH layout and their interrelations. User interaction part explains the 

communication process between the user and Ho-Gen during the initial problem 

definition through present inputs. Generation & Guidance part describes the 

genotype and phenotype representations for the layouts that are necessary for the 

genetic algorithm procedure. Various ways that the user can interact with the search 

process to provide direct user guidance are presented. Lastly, Evaluation part 

describes the mathematical model that evaluates layout solutions according to the 

user inputs. This part explains the hard and soft constraints and the way they 

integrate to the fitness function. 

 

Chapter 4 presents Case Studies. This part aims to test Ho-Gen‘s performance in 

generating optimal layouts. Ho-Gen is tested in five case studies with two levels of 

complexity in terms of the number of layout elements and floors together with 

varying user requirements. This part presents the definitions of case study problems 

and the results of these studies in terms of the solutions generated by Ho-Gen and 
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fitness graphs. 

 

Chapter 5 is the Conclusion part. This part discusses the contribution of this research 

in computational design in architecture. The thesis concludes with a brief discussion 

on the limitation of Ho-Gen in the conceptual design exploration and future work to 

develop Ho-Gen.
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CHAPTER 2 

 

 

1. LITERATURE REVIEW 

 

 

 

2.1 Computational Tools for the Design of SFH 

 

2.1.1 Single-Family House 

 

A house is a residential building for people to live and meet their domestic needs. 

The domestic needs of humans are an essential feature in the definition of a house, 

which require a complex and multi-dimensional examination process. Marcus
29

 

defines these needs in the following hierarchy: Shelter, security, comfort, socializing 

& self-reflection, and aesthetic requirements. According to this hierarchy, a house 

needs to serve people both for their low-level requirements and high-level 

requirements. Low-level requirements start from the most general requirements such 

as shelter and security. On the other hand, higher-level requirements are personal and 

subjective. How well a house fulfills its purpose is related to its success in supplying 

low and high-level requirements.  

 

A house, on the lowest level, is an essential necessity for survival, which serves as a 

shelter from environmental threats. The structure of this shelter should be stable 

enough to resist against physical loads. The outer skin should be well insulated to 

keep the indoor temperature within habitable levels. A house is also a secure place 

that borders between the occupants and outsiders. These lower-level needs, despite 

their importance, hardly define the purpose of house by themselves. Thus, they can 

also be supplied by simpler structures such as emergency shelters.  
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House, apart from sheltering needs, is also a cultural issue. The connection between 

spaces of inhabitation and life-style is a result of owner‘s cultural and traditional 

expression.
30

 These needs start to become evident after the third level of the 

hierarchy, comfort. Comfort is a vague term that can refer to environmental comfort 

as a technical aspect, or it can also relate to privacy from a socio-cultural 

perspective. The later steps of the hierarchy are higher-level needs. Occupants want 

to reflect their values and taste onto the spaces they inhabit. As such, a house 

becomes a medium of self-expression. Occupants use this medium to show their 

status and identity in the society. This reflection is not just for the social 

environment. Identity of a place is an essential factor to establish a sense of 

belonging with that space.  

 

Single-family house (SFH) is a typology that is defined as a free-standing building 

that is occupied by a single family. SFH is an individual property, an empty space 

that is open to any collaborative interpretation of the occupants and the architect. A 

private house, as the unique representation of its user needs, a ―home‖ that only 

serves for the occupants‘ individual will, lifestyle, desire, and taste. SFH, together 

with its value as a medium that represents its occupant, has been also used by 

architects as a way to manifest their architectural ideas and concepts.  

 

2.1.2 From Mass Production to Mass Customization 

 

20
th

 century is a prominent time for manifestations by leading architects in the body 

of SFHs. Villa Savoye is a representative of Le Corbusier‘s ―5 points of architecture‖ 

with its pilotis, roof garden, free plan, free facade, and horizontal windows.
31

 

Farnsworth House is another example where Mies van der Rohe creates a house in 

its simplest form only with two horizontal planes for ceiling and floor, eight slender 

                                                 

 

30
 Renee Y. Chow, ―House Form and Choice,‖ Traditional Dwellings and Settlements Review, no. 2 

(1998): 51. 

31
 Le Corbusier, Towards a New Architecture (London, Architectural Press [1946], 1946). 



 

18 

 

vertical supports, a whole glass plane on the boundary, and nearly no partition walls 

except for the core that bounds the wet spaces.
32

 One other example is Robert 

Venturi‘s play on ―signs‖ in Venturi House. The exterior of Venturi House calls the 

general image of a house with its gable roof, dramatically large chimney, and an arch 

over the main door.
33

 Venturi emphasize these ―signs‖ further by putting a large slit 

in the middle of the front façade, revealing that these elements do not serve for any 

structural function. In addition to the more personal ideals of individual architects, 

SFH is also used as a general manifestation for the use of mass production in the 

construction industry. 

 

Mass production has played an important role in both the increase in number of SFH 

and its standardization. SFH is a preferred house type for families, but it is not 

feasible on the economic side because of the cost of land and construction expenses. 

Henry Ford‘s assembly line, which was initially used for automobile manufacture, 

introduced mass production techniques to the housing industry in the 20
th

 century.
34

 

Mass production achieves high cost efficiency through the rapid manufacturing of 

standardized products within specialized factories. Tract house developments used 

mass production to construct mass housing sites that is made of the same two or 

three types of houses. It was also used by housing kit developments that provided the 

occupants a do-it-yourself kit to assemble the house themselves. This period resulted 

with a great increase in the quantity of SFHs, while also causing a downgrade on the 

quality of new houses by the high standardization it brought.
35
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Figure 2-1. Levittown is an early mass produced SFH development in USA. 

(Retrieved from: http://www.newsday.com/long-island/nassau/levittown-history-in-

photos-1.13458781#16, Accessed on 11.08.2017.) 

 

 

The problem of standardization in the manufacturing industry has been slowly 

resolving with the rise of mass customization. Mass customization is a 

manufacturing model that aims to supply modified or completely original products 

for specific user needs with efficiency near mass production model. Mass 

customization is not a new production model, on the contrary, the term was 

originated in 1987 from the book Future Perfect by Stan Davis.
36

 The manufacturing 

capabilities of 1980s, however, was not developed enough to answer such efficiency 

in resources and customization. Today with the advances in digital manufacturing 

techniques from CNC to 3D printing, it is possible to start the manufacturing process 

immediately without the need for a specific setup for every product. Nevertheless, 

certain challenges are still evident for mass customization. According to Zha and 

Lu,
37

 an important challenge for the mass customization model is the decision 

process for the level of variety.
38

 Zha and Lue argue that mass customization 

companies should supply minimum variety that satisfies an enough range of 
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customer requirements in order to balance manufacturing expenses.
39

 

 

2.1.3 Computational Tools for Mass Customization 

 

An important challenge for mass customization is the process to gather, analyze, and 

implement the information about the requirements and preferences of the customers. 

Von Hippel and Katz
40

 give a list of four methods for this process in product 

development such as market research techniques, lead user idea generation, 

configurators, and non-expert tools. First, companies can use market research 

techniques to gather the requirements and choices of many customers and use this 

information to design standard products that satisfy a public.
41

 Second, companies 

can define lead users or the leading customer profiles in the marketing trends and 

acquire their design solutions to integrate them into standard products.
42

 Third, 

companies can invite customers to configure their own products from a menu of 

predesigned options.
43

 Last, companies can develop ―user-friendly‖ computational 

tools that empower future users‘ non-expert design capabilities to let them create 

their own custom products.
44

 Within this list of methods, computational tools that 

empower users provide certain advantages compared to other three methods. 

 

First, non-expert tools provide the most user centric customization model as they put 

the users both in the head of analysis and synthesis processes. This is a significant 

advantage for the level of customization required for SFH. SFH is a typology that is 

occupied by a single family. SFH is an individual property, an empty space that is 

open to any interpretation by the changing lifestyles, values, and tastes. House, apart 

from sheltering and functional needs, is also a cultural issue. The connection 
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between the spaces of inhabitation and lifestyle is a result of owner‘s cultural and 

traditional expression.
45

 Second, occupants‘ experience in the design process of their 

own house creates an additional value for the generated outcome. According to Belk, 

people embrace things s as a part of self when they invest their own efforts, time, and 

attention in their production.
46

 The connection between the occupants and SFH is an 

important issue as SFH is usually a lifetime investment and the amount of time 

owners spend in their house. Third, customized production of houses prevents 

overproduction. The design of standard products from a general public opinion 

reduces the overall overproduction compared to mass production. Nevertheless, a 

risk of excessive production is still possible considering the custom domestic needs 

of the occupants. This research will proceed with the model that corresponds to the 

development of computational tools for non-expert designers because of the 

mentioned advantages. 

 

2.2 Computational design tools and automation 

 

On one hand, design is a natural ability that everyone possesses on a certain extent.
47

 

People develop necessary design skills to help in their daily tasks such as choosing 

outfits or organizing their personal space. Design is also a hobby activity for certain 

people. Occupants follow design magazines or websites that provide small tips or 

guides that anyone can follow to design a better living space. Naturally, such articles 

give occupants certain small points to consider or start with in the complexity of this 

design process. However, according to Hubert L. Dreyfus
48

 the dependence on strict 

rules while performing any skill is a general indication of a novice‘s attitude. Single-
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family house has a simpler functional program compared to institutional or office 

buildings. However, it is certainly a harder problem than daily design activities. In 

this way, non-expert designers require certain tools that amplify their design abilities. 

In this context, it is essential to decide on the ways and the extent of collaboration 

with computational tools.   

 

The definition of the extent of support that can be provided by computational tools is 

an important decision. This decision is a determinant factor in non-expert‘s level of 

collaboration within the design process. In the most labor-intensive way for the 

occupant, computational design tools can be expected to provide a fully automated 

process. This kind of scenario can be thought as working with an automated architect 

that generates a single-family house form after learning occupant‘s special 

requirements and requests. Today, this level of automation is actually a very popular 

concept for many occupations.  

 

2.2.1 Automation and Occupations 

 

The replacement of human workforce by computers is a popular subject in many 

online articles. A report by Gallup in 2017, as cited in McGrady‘s article,
49

 asserts 

that 37% of Millennials face the threat of being replaced by automation in their 

workplace. According to another study by McKinsey Global Institute, as cited by 

2017 article by Whitehouse, Rojanasakul and Sam,
50

 today‘s technological 

capabilities can fully automate only the five percent of whole occupations, however, 

it is possible to automate a third of the total workload within the sixty percent of the 

occupations. Such high numbers in these statistics can bring questions regarding the 
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possibility of computers outperforming humans.  

 

Indeed, computers already proved their success against humans in certain instances 

such as games. Such an event occurred in 1997, when World chess champion Garry 

Kasparov lost a chess match against Deep Blue II.
51

 According to Campbell, Hoane, 

and Hsu,
52

 Deep Blue II is the successor hardware and software model of IBM‘s 

research on developing machines that can play chess. As Campbell et al., Deep Blue 

II played chess by ranking possible moves according to a mathematical function that 

measures the advantage of positions, but did it in a very fast way that reached up to 

126 million moves in the game against Kasparov.
53

 Naturally, Deep Blue II‘s chess 

strategy is very different from a human player. In the worst-case scenario, Deep Blue 

II has to measure every possible move for the position which exceeds the capabilities 

of humans. Making a nearly complex calculation for nearly every possible move 

while keeping every result in mind to rank and compare is not possible for human 

cognition. In this way, Deep Blue II took the advantage of higher data storing and 

data processing capabilities of computation.  

 

However, this was also not the peak level in the capabilities of computers against 

humans in games. More recently, a computational model by Google, AlphaGO, won 

a match against world‘s number one GO player Ke Jie.
54

 GO is a very different game 

than chess in certain ways which requires different computational strategies 

compared to Deep Blue II‘s working principle. One study by Burmeister and Wiles,
55

 

examines the differences between GO and chess. According to this study, GO is a 
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more open game in terms of the number of possible moves that can be played and 

positions in a GO game resist to mathematical ways of evaluation.
56

 In this way, 

Deep Blue‘s strategy of evaluating a high number of possible moves does not work 

for a GO game. However, Google overcome this problem by taking another 

direction. An article by two members of AlphaGO‘s developer team, Silver and 

Hassabis,
57

 explains that AlphaGO designate its own rules through learning from real 

matches against real players instead of depending on predefined rules. Such 

advancements in the development of intelligent machines can form a basis for using 

computers for automating occupations.  

 

Yet, game playing no matter its complexity is just a single task compared to the 

multifarious variety of duties within occupations. A machine developed for chess can 

win games against chess masters; however, it lacks any other capability beyond its 

programming. The difficulty of developing machines that can replace human 

workforce also varies within different occupations. The previously mentioned news 

article by Whitehouse, Rojanasakul and Sam
58

 shares an interactive graph based on 

the statistics provided of U.S. Bureau of Labor Statistics
59

 that compares the 

expected automation rate of occupations to their annual earnings. According to the 

graph, various occupations face a high risk of automation such as accountants with a 

rate of %94 or taxi drivers with %89, while certain occupations are on a safer end 

such as architects with 1.8% or graphic designers with %8.2.
60

 To understand the 

reasons behind this degree of difference in the automation expectancies, it is 

necessary to explore a field of study with a long-standing background, namely 

artificial intelligence (AI). 
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Stuart Russell and  Peter Norvig,
61

 in their book that presents AI in the very 

introductory and undergraduate level, defines AI as the study of building intelligent 

entities that can act or think in humanly or rational ways. While the term ―humanly‖ 

is more relatable and understandable despite of the complex neurological 

mechanisms behind the human acts and thoughts, the term ―rational‖ brings 

questions beyond this definition. According to Russell and Norvig,
62

 rationality is an 

ideal measure that is constructed by the limited knowledge of the entity for assessing 

the performance of doing the ―right‖ thing in a certain context. A calculator is a very 

basic example for a rational artificial intelligence despite its outmoded level of 

intelligence compared to the novel AI capabilities. The most basic calculator is 

capable of making four arithmetical operations, but it always returns the right result 

no matter the complexity of given operations. In a way, calculators have no other 

option than giving the correct result as their actions are strongly limited by an exact 

and strict language of mathematics.  

 

Similarly, occupations that are governed by strict rules and procedures show higher 

expectancies on automation. The state of accountants can be a good example in this 

sense. Various tasks involved in the practice of accounting are defined by Merriam-

Webster
63

 dictionary as ―…recording and summarizing business and financial 

transactions and analyzing, verifying, and reporting the results‖. Despite the 

multiplicity of tasks, accounting practice is governed by strict standardizations and 

principles imposed by such organizations that vary between different countries. For 

example, accounting practice in U.S. is governed by Generally Accepted Accounting 

Principles (GAAP) which is a collection of concepts, objectives, standards, and 

conventions that guides the presentation and preparation process of financial 
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statements.
64

 Another task of such organizations, however, is to find ways to reduce 

the complexity of these standards.
65

 A study by Donelson, McInnis, and 

Mergenthaler,
66

 mentions a common criticism towards GAAP because of its 

dependence on rules in excessive detail. Apparently, human accountants are having 

difficulties in following GAAP rule sets for standard procedures on common tasks. 

On the other hand, a rational AI model should not face with much trouble while 

following a large database of rules mentioning the ―right‖ thing to do under certain 

conditions. Similar to Deep Blue, an accounting AI can surpass humans in the speed 

and accuracy for checking rule sets because of their matchless data processing and 

storing power. 

  

The popularity of artificial intelligence approaches are not limited to procedurally 

governed occupations. The studies on the development of self-driving cars notably 

by Waymo
67

 or Tesla
68

 have come into such an attention level that caused certain 

discussions
69

 about the replacement of public transportation by driverless 

technologies. In a general look, automation can provide better drivers as they take 

out the potential of human error in the traffic. A machine can prevent distraction-

based incidents because they do not exhaust unlike humans do. Alternatively, 

machines can observe farther or see in better detail with the help of digital cameras 

or censors. Adding to that, machines are already better in locating addresses and 
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finding routes because of the novel capabilities of GPS technology. On the other 

hand, driving is a highly intuitive task that is not governed by strict rules unlike 

accounting. As Russell and Norvig,
70

 developing an automated taxi driver is a 

complex open-ended problem with countless events to consider because of the 

combinational possibilities.  

 

As an example, a self-driving car should be able get through a complex process of 

making multiple observations and decisions while taking a left on a crowded 

crossroad. It has to recognize its destination, direction of road lines, traffic signs, and 

vehicles within the traffic. AI also has make certain calculations regarding the 

travelling speed of multiple vehicles, and understand their upcoming moves from 

certain signs. In many ways, traffic is a complex and unpredictable environment to 

develop a definitive list for every possible scenario. A vehicle can violate the laws by 

skipping the signal or a driver can accidentally make a move than changes mind. 

Also modeling a decision system moves is not convenient considering the 

combinations of vehicles and their possible moves. Instead, self-driving cars follow 

the procedure of AlphaGO to develop their own rules by machine learning 

algorithms.  

 

According to a definition provided by Ethem Alpaydın,
71

 ―Machine learning is 

programming computers to optimize a performance criterion using example data or 

past experience‖. As Alpaydın, machine learning can be used to develop intelligent 

machines for real world tasks that humans cannot define in systematic instructions 

because of the tasks‘ realization in an ―unconscious‖ manner.
72

 Waymo, in order to 

provide real world experience for their self-driving cars, has fabricated a city in US 

to conducts tests.
73

 Although developing a database of rules for self-driving cars is 
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not possible because of the involved level of intuition, the tasks‘ performance 

criterion is rather simple. A rational act for a self-driving car, in the most general 

sense, is to drive safely between two destinations without causing collusions. This 

task can be simulated by real world or virtual applications for the self-driving car to 

gain experience.  

 

On the other hand, design related occupations such as architecture have a seriously 

low automation expectancy compared to accountants and drivers. Computers, 

however, are becoming increasingly essential for architectural practice. Yet, they 

serve more as tools for architects rather than being fully autonomous design 

machines. Despite of artificial intelligence‘s success on working with complex rule 

sets or learning intuitive tasks, full automation of architectural design is still out of 

question. Certain problems of architectural design are shared among accounting and 

driving as well. Architects also consider a large amount of governmental and 

technical engineering oriented standards. Additionally, architecture is also considered 

as an intuitive task. However, certain differences within the design practice keeps AI 

models away from full automation. Next section examines these relevant problems in 

architectural design. 

  

2.2.2 Automation and Design 

 

Nigel Cross
74

 traces the origin of computation in design back to the ―design methods 

movement‖ in 1960s that aimed to develop a rational and objective design processes 

against the resultant problems of Second World War. As Bayazit,
75

 researchers 

involved in design methods were searching for ―rational methods‖ to integrate 

―scientific techniques and knowledge‖ to develop a rational base for design 

decisions. For example, Christopher Alexander
76

 developed a rational and systematic 
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approach to design based on an analysis-synthesis process. For Alexander, design 

tasks are complex problems that require a mathematical and logical analysis process 

to disintegrate into smaller parts
77

. After such an analysis process that brings the 

problem in a manageable simplicity, a designer requires to pass on the synthesis 

process where he/she solves disintegrated parts.
78

 

  

Yet, design methods movement faced a deep criticism in 1970s in terms of their 

overly systematic approach.
79

 A new base of research provided alternative definitions 

for design problems in order to differentiate such problems fully scientific and 

systematic problems. In this way, Rittel and Webber
80

 defined design problems by 

the term ―wicked‖. In the same article, Rittel and Weber give a list of ten properties 

that differentiates wicked problems from other ―tame‖ ones.
81

According to three 

items within this list, wicked problems lack an exact formulation, they have no 

stopping rule, and they cannot be tested with an immediate or ultimate method.
82

  

 

The unavailability of exact definitions of design problems have been stated by 

multiple researchers. According to Bryan Lawson,
83

 design problems unlike puzzles 

or mathematical operations are in absence of clear objectives as well as apparent 

difficulties inherent in the process of realizing these objectives. Cross
84

 views design 

problems as a variant of ―ill-defined problems‖. An ill-defined problem, for Cross,
85
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is a problem with only an approximate definition that corresponds to a vague 

information about the objectives and limitations. This obscurity within the 

architectural design problems can be examined within the openness, subjectivity, and 

multiplicity of its objectives.   

 

Architectural design, up to a certain extent, is bounded by strict rules and 

standardizations. A certain example is building and zoning legislations provided by 

higher authorities. Zoning regulations limit the layout of the building with setback 

boundaries, or they constraint the total area of the building by the floor area ratio 

(FAR). Another example is the functional requirements related to the building 

program. The designed space should be suitable activities that are planned to take 

place. This suitability is directly related to such points as the number of people that 

space serve or the appliances and equipment required for such activities. These kinds 

of rules are generally nonnegotiable and required to be met at all costs.  

 

On the other hand, the designed space does not emerge solely from such hard rules 

and standards. Otherwise, there will not be any reason to call design activity as a 

routine problem solving process with well-defined problems and a series of clear 

directions on solution. Design problems, however, require another kind of process 

rather than mere problem solving because of their initial vague definition different 

from other kinds of problems. Design is a creative process with open definitions that 

presents a level of freedom for the designer. Kees Dorst
86

 defines this ―openness‖ 

with the levels of ―underdetermination‖ that is available in design problems.  

 

According to Dorst,
87

 a large part of design problems is ―underdetermined‖. The 

clarification of such problems and the selection of suitable design solutions emerge 

together after a multiplicity of proposals by the designer.
88

 Designing a house with 
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low-energy requirements, supposedly, is a determinant design objective which can be 

evaluated through technical calculations. However, this objective does not directly 

correspond to a fixed number that limits the energy considerations. This objective 

value varies in terms of different design problems. The experts can make initial 

predictions by calculations that consider certain standard values. Architectural 

design, however, also includes certain issues that resist objective estimations in 

advance. The dimensional requirements for certain spaces in the house do not 

necessarily correspond to exact numeric definitions. The occupants can use such 

descriptions as ―cozy‖, ―functional‖, or ―comfortable‖ to define their expectations 

from a certain space.  

 

As Dorst, certain parts of the design problems go beyond this underdetermination. 

Design problems are also partially ―undetermined‖ with an amount of space to the 

purely subjective intentions of the designer.
89

 Higher-level domestic needs such as 

aesthetics cannot be modeled in a pre-descriptive way. There is no evident scientific 

fact that supports the beauty of a house over another one. In these cases, architects 

are free within the limits of their communication skills to persuade the occupant in 

the aesthetics of their house.  

 

In addition to the various levels of openness inherent in design objectives, these 

objectives are also endless in numbers. Architectural design is related to a vast 

amount of interrelated and multidisciplinary objectives. These objectives may range 

from spatial solutions for the required functional program, socio-cultural context, 

and economical boundaries to technical aspects like natural and mechanical lighting, 

thermal conditions, fluid dynamics, structure, and acoustics. An architect is not 

necessarily an expert in all these fields. However, they are still required to have a 

general knowledge in these areas to establish the necessary communication between 

the involved disciplines.  
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The objectives of architectural design are rarely separate from each other. These 

requirements are interrelated in the sense that working on one objective can give way 

to problems on other objectives. During the design process, the occupants can ask for 

design revisions. This change in the programmatic objective causes changes in other 

objectives. For instance, a larger room brings larger loads on the structure, which in 

return can cause an increase in the dimension of structural elements. This increase in 

the area also changes the cooling or heating requirements of the house which again 

lead to changes in the mechanical installments to provide enough capacity. 

 

Alexander‘s rational and systematic approach has strong relations with the 

multiplicity and the interdependence between the objectives. Alexander‘s analysis 

method on design problems requires enlisting all the requirements related to the 

problem, then establishing an organization in this list through exploring interactions 

between these relations.
90

 Alexander also developed a mathematical method that 

structures the group of objectives into clusters that work together by utilizing 

statistical and mathematical functions.
91

In a way, Alexander‘s approach is a divide-

and-conquer model that creates a set of meaningful and operable objectives from a 

whole and complex one. 

 

Bryan Lawson
92

 is critical towards the design analysis method of Alexander. Lawson 

asserts that Alexander‘s method treats every problem equally in the structuring 

process which contrasts with general actions of a designer.
93

 According to Lawson, 

―Alexander fails to appreciate that some requirements and interactions have much 

more profound implications for the form of the solution than do others‖.
94

 Such 

conflicting situations may require the designer to decide upon the relative 

importance of conflicting goals one upon the other. Domestic needs also have a 
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hierarchy. It is usually simpler to decide about goals in different levels of hierarchy 

such as the structural safety over aesthetic intentions. In other times, these decisions 

also require the subjective interpretation of the architect to establish the requirements 

in a priority. These priorities, similar to the objectives, can also change during the 

design process.  

 

Occupants can initially ask for a single-story house because of various reasons such 

as age and disabilities. The overall program requirements, however, can exceed the 

total area of setback boundaries. Pushing this objective would either require a 

decrease in the total area or another site for the house. The architect, instead, can 

convince the occupants in the advantage of a second story and the possibility of 

using a small elevator. Similarly, the economic constraints on the design process can 

be seen as a nonnegotiable at first. Related calculations, however, are usually made 

with very simplistic terms within the design process so they lack the precision. An 

architect can propose solutions that exceed the economic means, but they can 

convince the occupant about the increase in quality of their home by these exceeding 

amounts. In these terms, economic boundaries become also a negotiable constraint 

that can be evaluated in terms of the other advantages of the solution. Such a level of 

flexibility inherent in the design process presents designers a high multiplicity of 

solution ways to take which results with a large number of solutions to consider. 

 

2.3 Computational design tools and user interaction 

 

Development of computational tools for the complete automation of architectural 

design process is problematic. Beyond the rationally incomputable objectives of 

architectural design such as designing aesthetic buildings or designing for 

psychological comfort, a rational definition for an architectural design problem is not 

existent as well. Indeed, such a process is a part of the creativity inherent in 

architectural design. Architects mostly define design problems in their own 

subjective way rather than applying a deep analysis on the problematic design 

context. Yet, computation‘s incapability to provide a fully automated design process 

does not necessarily keep them away from architecture. On the contrary, the 

collaboration between computation and architects are more apparent than ever. 

Today, computers are effective partners for architectural design. Computer-aided 
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drafting (CAD) tools provide a precise and quick interface for data-intensive 

architectural drawings. Rendering engines enhances the presentation capabilities by 

photorealistic design representations. Simulation software provides complex 

calculations on the environmental or structural performance of buildings. BIM tools 

augment the collaboration of the vast multiplicity of professions involved in the 

design process. Naturally, non-expert designers require a broader support than 

practicing architects. A simulation on the thermal performance of a building may not 

be the most vital aid for a non-expert as they miss the very fundamentals of 

architectural design.  

 

Von Hippel and Katz, in a general guideline for the development of tools that support 

non-expert users, provided a list of five objectives: 1. Trial-and-error learning 

environment for the user, 2. appropriate solution space, 3.User-friendly interface, 4. 

Wide library of modules, and 5. direct manufacturing without any alterations.
95

 This 

research is limited with the first three objectives in Von Hippel and Katz‘s list. The 

development of open source architecture portals and the prevalence of BIM methods 

provide the necessary library for the designers. On the other hand, digital 

manufacturing technologies are continuing to develop rapidly and becoming 

personalized with their easy access. This easy access, in a way, gives everyone the 

support to be a manufacturer. The remaining elements correspond to broad 

definitions without the actual product to be designed. In this way trial-and-error 

learning, appropriate solution space, and user-friendly interface will be examined 

together with architectural design and single-family house. 

 

2.3.1 User-friendly interface and trial-and-error learning 

 

This section will examine studies on designer behavior in order to define the 

importance of trial-and-error learning and reach the requirements for a user-friendly 

interface. A main beneficial outcome of design methods movement‘s aim in 
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integrating rational and objective methods to design process is the enhancing body of 

knowledge on designers‘ attitude and action within complex design situations. Nigel 

Cross
96

 unifies this related body of research under the name ―science of design‖. 

Cross defines ―science of design‖ as ―that body of work which attempts to improve 

our understanding of design through ‗scientific‘ (i.e., systematic, reliable) methods of 

investigation‖.
97

 According to Cross,
98

 the studies on designing were realized in 

many ways from academic reflections on designer‘s self-reports to experiment based 

methods such as protocol studies. Such studies on designer behavior are not expected 

to give assistance in creating a complete rational procedure to tackle design problems 

because of the high variety in design problems and the innate subjectivity involved 

in the design process. However, this body of knowledge can give an insight about the 

general character of design actions which can help in the development of similar 

purpose tools to aid non-expert designers. 

 

As a contrast to the deep analysis methods inherent in highly systematic and 

objective models for design, designers take another way in the initial stages of this 

process. Bryan Lawson
99

, after a protocol study that targeted to reveal the behavioral 

differences in problem solving between architecture and science students, observed 

that architectural students generally showed a solution-focused strategy compared to 

the problem-focused strategy taken by science students. As Lawson,
100

 this solution-

focused strategy is an indicator or the synthesis based analysis methods of designers. 

Lawson notes that in the obscure context of design where problems are away from 

being obvious, designers find their problems through making certain moves such as 

using primary generators.
101

 A primary generator, as Lawson, is a concept developed 

by Jean Darke that corresponds to a general solution concept or a limited definition 
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of the design problem.
102

  

 

Donald Schön, in another protocol which studies an architectural design review 

between a studio master and a student, exemplifies his theory of ―reflection-in-

action‖.
103

 In his study, Schön differentiates the design actions of the novice and 

expert designer involved in the study by novice designer‘s halt in the failure of her 

design idea versus expert‘s constant struggle with the problem context through 

design moves.
104

 As Schön, these design moves are the means of communication for 

the expert designer to put a conversation with the problem context which in some 

cases, stimulate the design problem to talk back.
105

 In these certain instances, the 

expert discovers new things about the problem and shifts the position to consider 

new moves on the context.
106

 Schön asserts this set of procedure is a general process 

for experts in ill-defined and vague problem contexts, no matter the difference in 

their design moves or shifting positions.
107

  

 

According to these protocol studies, trial-and-error learning is an essential part of the 

design process. The ill-defined nature of design problems resists to deep analysis 

methods. In this way, trial-and-error learning starts within the very early and vague 

stages of the design process. The subjective decisions on the definition of open-

ended parts and the relative importance of design objectives are taken through a trial-

and-error learning process. This early process includes the development of a large 

amount of concepts and alternative solutions. Non-experts, on the other hand, lacks 

the required design experience and education to utilize this process as well as an 

expert architect.  
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The ill-defined nature of design problems is just one difficulty that designers come 

across during the process. According to Lawson, the inability to define a design 

problem in a complete and exact manner causes the designers to work with an 

―inexhaustible‖ list of solutions.
108

 Even an initial interpretation of the problem 

during the design process can bring large amounts of solution candidates. As it can 

be seen from the previous examples, the constraints of the design problems are not 

overly strict. In this way, the designer can also ignore these limitations based on 

his/her persuasion skills on the clients or with the presentation of better design 

solutions beyond the limitations. Such level of flexibility causes the designer to work 

with a high number of solutions. 

 

For designing, even simpler problems have a large solutions space. As an example, 

the very basic houses that only served for the sheltering needs of the society created 

a vast amount of residential forms in the past. Sheltering needs, as mentioned 

previously in Marcus‘
109

 hierarchy, stays within the most general domestic 

requirements of people. Sheltering needs can be associated with less subjectivity in 

terms of the decisions of the occupants because the general threat is more or less the 

same. On the other hand, material possibilities within the environment pushed people 

to build in different ways and forms which resulted with the diverse range of stylistic 

variety in houses. 

 

During the design process, architects work with very simple representational means 

that are away from the realism of the building‘s final form.
110

 These representations 

include simple bubble diagrams and conceptual mass models to save time for 

creating more alternative solutions. As Liu, Chakrabarti, and Blight
111

 exploring the 
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widest range of design options is a crucial part of conceptual design process to grow 

better design concepts. To assess the quality of a large range of concepts, designers 

utilize divergent thinking together with convergent thinking. Divergent thinking 

expands the range of design exploration to locate alternative solutions to the 

problem; on the contrary, convergent thinking shrinks the range of possibilities by 

focusing on better solutions.
112

 

 

Designers are required to find a balance between the divergent and convergent 

thinking in the design process. Cross,
113

 associates convergence dominated design 

processes with novice behavior. The design process can be limited to an initial good 

performing concept to keep things very simple. However, designers work with 

complex problems, in this sense one-shot operations hardly generate satisfactory 

solutions. A divergence dominated design process, on the other hand, can fail to meet 

the detailed examination required for meeting long list of design related objectives in 

time. 

 

Despite the unavailability of a fully automated computational method to support 

non-experts in the design process, computational tools can still provide support in 

these underperforming abilities of non-expert designers. In this way, a user-friendly 

interface should enable non-experts to develop and explore a wide range of design 

solutions with their inherent design abilities. Such a tool should be forgiving in terms 

of the generation of high quality solutions opposed to the occupant‘s vague or false 

definitions on the design problem. Accordingly, the computational tool should be 

able to look over the layout design problem from a wider perspective, including the 

multiplicity of objectives as a whole. Additionally, this wider perspective should also 

be flexible and open to user‘s interpretation during the generation process because of 

the openness and subjectivity involved in design problems and objectives. 
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2.3.2 Appropriate solution space 

 

The solution space of a computational design tool corresponds to the extent of 

alternative solutions that the design tool can generate. The size of this solution space 

is an essential factor for controlling the level of customization allowed for the user. A 

very small solution space can present a scenario worse than the standard solutions 

inherent in housing industry; on the other hand, a very large solution space can lower 

the effect of computational exploration and bring inadequate solutions. In this way, 

the solution space for a computational design tool should be just right. According to 

Cagan, Campbell, Finger, and Tomiyama
114

 the range of solution candidates is 

directly related to the ―representation‖ of computational model. As Cagan et al.
115

, 

two important considerations for the development of a representation is the 

definition of building blocks and their interrelations. Building blocks are smaller 

customizable parts of the generated product. For example, a house can both be 

represented as a complex collection of bricks or a simpler combination of wall and 

roof systems. The determination of the building blocks for a SFH and therefore an 

―appropriate‖ solution space requires a deeper look in the functions and parts 

associated with a SFH.  

 

Functional analysis of SFH  

 

A house should function as a space that supplies occupants‘ low and high-level 

domestic needs, as discussed in the previous section. It is possible to define these 

needs with their corresponding domestic activities. Several domestic activities are 

generally available in every house setting as they are closely associated with the 

above-mentioned low-level needs. These domestic activities are numerous, such as 

recreation, sleeping, eating, cooking, socializing etc. Furthermore, the activities 

within a house can vary according to occupants‘ lifestyle. As an example, home 
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offices can partially act as professional working environments, while also serving for 

domestic activities. 

 

In a way, a house should function as a comfortable space that can provide for the 

related activities. As Habraken
116

 states, when a space is given a certain function, it 

should be designed with the capacity that it can allocate a configuration of objects 

associated with the related function. In this way, even the general activities can 

require different spatial solutions depending on the occupant behavior. The eating 

activity of a family of four will certainly require a larger table and more seats than a 

family of two. Cultural interpretations of the activities can also have a role in the 

required capacity such as the on-the-floor dining arrangement of the Japanese 

culture. 

 

Apart from spaces with well-defined uses, a space within the house does not 

necessarily correspond to just one activity. For instance, bedrooms are associated 

with sleeping. On the other hand, bedroom can also stand for a place that serves for 

the need of resting and intimacy. The occupant can require an additional living 

quarter of their own within their bedroom. Children‘s rooms are very multi-

functional in this sense. Children use their rooms as a place for play and study in 

addition to sleeping.  

 

There may also be spaces within a house that does not correspond to an activity in a 

general way. In this sense, the mere purpose of circulation spaces is to connect 

different areas within a home. Halls and corridors provide horizontal circulation, 

while stairs and elevators provide vertical circulation for multi-floor houses. The 

lack of an overall activity can bring the issues about circulation space as a dull and 

soulless spaces, however it is still possible to make circulation spaces contribute 

more to the living in house with a few interpretations.  
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The function of a house directly depends on the occupant. The scale of certainty of 

the spaces within a house can change from project to project. It is possible that the 

architect does not communicate directly with the occupants. The client can also be a 

contractor company that wants to build a housing site rather than a customized 

house. In that sense, the activities of the house cannot be well-defined as in working 

with the real occupant. Alternatively, the occupant can require an adaptable house 

that can change according to changes in the family‘s lifestyle overtime. There are 

certain ways to answer these circumstances such as open-plan houses that do not 

divide spaces with hard installations rather the user can bring transitory divisions 

over time. Tadao Ando‘s Walless House is such an example where the architect 

proposed movable furniture to make the space adaptable. This study addresses a case 

when an architect works on a customized SFH with static spatial requirements.  

 

The functional analysis of SFH, as a customized design product, requires a 

meaningful communication with the occupants. Information needs to be gathered 

regarding the number of rooms and their sizes such as the size of the family, the type 

of fixed installations on the wet spaces, the conditions for overnight guests, or the 

type of outdoor spaces etc. The designer and the occupant define a general building 

program through the briefing sessions which stands for the number of required 

spaces, their sizes, and the relationship in between them. 

  

A house cannot be reduced directly to the sum of the separate spaces for different 

domestic activities. Hillier
117

 states that human space is more than the properties of 

the individual spaces; instead, the configurational aspect of space with the relations 

between many spaces makes the space a whole. The relationship between the public 

and private spaces, as an example, is an important concern of the configurational 

aspect of a house. The availability of sleeping quarters alone does not necessarily 

provide privacy alone in itself without the careful placement of this quarter within 

the house. Bedrooms are generally separated from the more public living quarters 
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both physically and visually either by a circulation space or a floor difference. This 

configurational aspect includes the neighborhood relations between the spaces, 

zoning of certain activities, and the orientation of the spaces within the overall 

layout.  

 

Layout design in general 

 

Configuration design is a generic activity that is shared generally by all the design 

related professions. Configuration design refers to the assembly of a predefined set 

of components into a meaningful and purposeful whole that satisfies certain 

predefined conditions.
118

 This definition provides an overall unifying explanation for 

very distinct design problems such as a production facility, a computer chip, a 

website, or a house. These configuration problems, despite of the difference in their 

scale, require allocating various predefined elements in a limited exterior boundary. 

 

Configuration design can be tackled with a bottom-up approach, as it gathers the 

whole from the part. The designer starts from the very basic or the smallest available 

elements and produces the layout in different levels of hierarchy. This is similar to 

starting the design of a house from considering the arrangement of furnishing, 

circulation, and related activities within a room. The form of rooms is the result of 

the all furnishing arrangements and the space of activities around them. This process 

proceeds into the configuration of rooms within the house after the definition of 

room forms. Rooms are arranged with one another according to the flow of 

movement between them and the client preferences on their proximity. This process 

can go on further to the arrangement of resultant houses within a site boundary if the 

designer is building a neighborhood. This configurational design process refers to 

building layout design in architecture. Architects conduct layout design in the early 

conceptual design phase, usually after the definition of the building program that 

stands for area requirement estimations according to the requests of the occupants.  
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2.4 Computational Approaches to Layout Design Problem 

 

Computational approaches to layout design, started with facility layout problems in 

the 1950s.
119

 Since the late 1950s, engineers and architects developed computational 

models to tackle many layout problems whose scale range from computer chips
120

 to 

urban design
121

. Layout design approaches mainly diverge in how they define the 

layout problem (the solution representation, constraint formulation etc.) and the 

search methods they use to compute solutions.  

 

Computational approaches to layout design problems can be classified as 

construction and improvement methods. A constructive method starts from scratch 

and builds the layout in sequent actions. This action can be the placement of an 

individual space in each consecutive step. Improvement approaches, on the other 

hand, start with complete solutions and improve this solution in sequent actions. This 

action can be the pairwise exchange of layout elements in every phase. 

 

2.4.1 Construction methods 

 

Construction methods work close to state-space search, which is assumed as a 

classical search method. It can be defined as ―the process of looking for a sequence 

of actions that reaches the goal is called search‖.
122

 Construction methods represent 

the search space as a tree of states in between the initial state and goal state. Exact 

algorithms and some heuristic algorithms are in this category. 
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Figure 4. Schematic description of a simple layout construction algorithm (Drawn by 

the author). 

 

 

Exact Algorithms 

 

Exact approaches are precise algorithms that target optimal solutions. A very basic 

exact approach is the brute-force search algorithm that can enumerate all layout 

options and select the best one. Layout problems are, however, ―NP-complete‖ (non-

deterministic polynomial), which means optimal solutions require extended amounts 

of time even for small scale problems, as the solution space grows exponentially 

even with a low number of layout elements.
123

 Therefore, exact approaches to layout 

design problems need either to narrow their search space and simplify the conditions 

for the optimal solution or require more sophisticated algorithms than brute-force 

search.  
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The automatic furniture layout tool of Abdelmohsen et al.
124

 is an exact approach 

with relaxed conditions and narrow search space. The tool places the furniture 

according to specific object-object and object-space relations rather than exhausting 

all placement options.
125

 Several other exact layout design approaches use branch 

and bound algorithms.
126

 Branch and bound algorithms make selective enumeration 

by pruning certain useless branches within the search tree if the algorithm assess that 

it would not produce an optimal solution. This way, branch and bound algorithms 

can solve layout problems with a maximum 18 equal area layout elements, however, 

they fail to support real life layout problems with unequal area elements.
127

  

 

Real world layout problems include a high level of complexity. Generating an 

optimal solution within this complexity is a demanding operation that exceeds the 

time-related and computational resources. Designers, instead of optimality, look for 

good enough solutions that are ―satisficing‖ within the complex problem contexts.
128

 

Similarly, computational approaches to layout design should work with 

approximations to use the resources in more intelligent search procedures.  

 

Construction Heuristics 

 

Heuristic approaches are approximate methods which do not guarantee to find an 

optimal solution, but usually find good enough results that are close to the optimal 
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solution.
129

 In the absence of design support by exact approaches, heuristic search 

can still provide a layout solution that can provide insight into the design problem 

and solution space. Several examples have been developed that makes use of 

heuristics.  

 

SHAPE is a construction heuristic that produces unequal area layouts by assigning 

smaller grid-like modules for every department.
130

 SHAPE assigns departments 

according to the given major and minor production flows. Most common department 

within the production flows is chosen as the center and the others grow from this 

initial point. Although SHAPE can operate with a large number of layout elements, it 

also produces departments with irregular form. NLT is another constructive approach 

that assigns unequal area rectangular shapes for departments.
131

 NLT uses a multiple 

stage framework that handles area requirements and adjacency relations in different 

stages. 

 

 

 

 

Figure 5. A final layout by SHAPE. (Hassan, Hogg, and Smith, 1986) 
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These approaches, although successful in generating solutions, can grow and 

evaluate solutions in a state-by-state procedure. However, design problems are not 

solved one by one, but processed in an integrated way. As Lawson
132

 points out, 

―Design solutions are often holistic responses‖. In the case of layout problems, the 

placement order of spaces does not matter if they take the designer to the same 

solution. Thus, the insignificance of the solution path makes construction algorithms 

less successful in terms of layout problems. Thus, designers usually work with 

completed solutions rather than evaluating them on the way. Improvement methods 

offer an effective alternative to these design issues.  

 

2.4.2 Improvement Methods 

 

Improvement methods carry out a local search operation. Local search ―evaluates‖ 

and ―modifies‖ one or more solutions rather than analyzing the paths of transfer 

options; thus, these methods are advantageous for problems in which only accounts 

for the solution not the sequence of actions to reach it.
133

 There are heuristic and 

metaheuristic improvement methods. 
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Figure 6. Schematic description of a simple layout improvement algorithm, where 

layout elements a, b and c are to be arranged into a compact building form (Drawn 

by the author).  

 

Improvement Heuristics 

 

CRAFT is an early improvement heuristic approach that produces unequal area 

solutions by pairwise exchange operations between two or three layout 

elements.
134

After the exchange operations, CRAFT estimates a cost function to 

choose the best exchange operation that caused the largest reduction in cost. This 

operation goes on until there is no possible way to cause a reduction by pairwise 

exchanges. MULTIPLE develops CRAFT‘s algorithm to solve multiple-floor 

production facility layouts.
135

 MULTIPLE improved the number of exchange 

operations by introducing space-filling curves and provided an additional cost 

function to limit the irregularity of department geometries. A more recent 
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improvement heuristic by Guo and Li
136

 generates sophisticated multi-floor layouts 

with horizontal and vertical circulation elements. They used a two-step procedure 

where a multi-agent system generates an initial with correct topological relations, 

and then another process randomly pushes or pulls the faces of layout elements until 

the layout satisfies user-defined geometric criteria.
137

 

 

 

 

Figure 7. Example layouts from CRAFT (left) and MULTIPLE (right). (Lee and 

Kim, 2000) 

 

 

According to Kalay, heuristic approaches can solve layout problems that exact 

approaches fail, however, they do not generate novel solutions.
138

 Heuristic 

approaches are problem specific; they process on problem-specific knowledge to 

make intermediate decisions. The limitation of the search space with rule of thumbs 

creates faster but also routine solutions. It is also possible for a designer to lack an 

initial description for the required problem. 

 

Metaheuristics 

 

Metaheuristics are generic algorithms that can be applied to solve any search 
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problem, if solutions can be easily generated and evaluated. According to a definition 

provided by Talbi,
139

 metaheuristics are ―upper level general methodologies 

(templates) that can be used as guiding strategies in designing underlying heuristics 

to solve specific optimization problems‖. Unlike other heuristic approaches, 

metaheuristics do not require the definition of any problem specific solution method 

that initially limits the search space. The success of metaheuristics, instead, comes 

from the balanced exploration and exploitation they put into the search process.
140

 

There are single solution and population-based metaheuristics. 

 

Single solution metaheuristics start with a single solution and achieve the result by 

making alterations on the initial solution. Chao and Liang,
141

 developed a tabu search 

algorithm to solve unequal area multiple-floor facility layout problems. Their tabu 

search algorithm is based on swapping certain departments which puts bad swapping 

moves in a dynamic tabu list to limit their use for a period. Simulated annealing (SA) 

is another single solution metaheuristic that starts with a high exploration rate then 

reduces it gradually to escape local optima in the initial phases.
142

 Yi and Yi,
143

 

developed a simulated annealing algorithm to assign a collection of three-

dimensional apartment block types in a truncated box boundary.  
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Figure 8. Apartment configuration by Yi and Yi's SA algorithm (Yi and Yi, 2014). 

 

 

Single solution metaheuristics approaches have an inherent limitation, which is their 

inability to operate in search space with multiple local maximum points. This is 

because a single solution, unaware of the global context, might not be able to escape 

the local maxima and prematurely converge to sub-optimal solutions. Population-

based search, on the other hand, can explore the search space in a more efficient way 

by simultaneously exploring many different points in the search space.  
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Figure 9. The fitness landscape of design problems is usually multimodal with 

multiple peaks. (Russell and Norvig, 1995) 

 

 

Population-based metaheuristics expand the exploration power further by 

incorporating more solutions at the start. Ant colony optimization imitates the swarm 

behavior of ants in finding the shortest path to their solution.
144

 Shea, Sedgwick, and 

Antonuntto
145

 implemented ant colony optimization for the design of building 

envelopes according to lighting and cost. Evolutionary approaches are several 

population-based metaheuristics that imitates Darwin‘s theory of evolution. Genetic 

programming (GP) and genetic algorithms (GA) are also popular evolutionary 

methods in layout design. GA is developed by Holland.
146

 GP is developed by 

Koza
147

 as an extension of GA that searches for effective computer programs instead 

of direct solutions.  
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EDGE is a GP approach by Jagielski and Gero
148

 that improved a previous QA 

heuristic by Liggett in multiple-floor facility layout problems. Quadratic Assignment 

(QA) is a combinational assignment problem that arranges a set of equal sized 

facilities to fixed locations. Verma and Thakur
149

 developed a GA that generates 

multiple floor apartment layouts according to adjacency requirements and a 

traditional Indian system of layout rules. Dino
150

 developed Evolutionary 

Architectural Space Layout Explorer (EASE). EASE generates 3D architectural 

layouts for a given building mass according to various user-defined constraints.
151

 

EASE uses a specific genotype definition to deal with overlapping and empty areas; 

and takes the advantage of additional repair operators to aid convergence.
152
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Figure 10. A set of apartment layout solutions generated by Verma and Thakur's 

algorithm. (Verma and. Thakur, 2010) 

 

 

Doulgerakis
153

 used GP to divide multiple layers of rectangular geometries into 

smaller units and then used an agent-based algorithm to assign program elements to 

created subdivisions in multiple floors according to the area requirements, which is 

called Area Dissection (AD). AD takes an initial floor shape and divides it into 

unequal segments. The units are placed within these smaller areas according to their 

topological relations and geometric criteria. Knecht and König
154

 developed an 

approach that utilizes kd algorithm to divide a predefined area and then uses GA to 

fit these divisions into topological, rational, and dimensional constraints. 
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Figure 11. Perspective views of layout solutions by Doulgerakis‘ algorithm. 

(Doulgerakis, 2007) 

 

 

Flack
155

 developed a GA that creates layouts according to topology, area 

requirements, and given ratios for individual rooms with Area Positioning (AP). AP 

positions fixed or variable geometries in a predefined boundary. This method 

increases the control over the geometry of layout elements, so it makes possible to 

create specialized layout elements. This specialization makes AP more advantageous 

in small-scale layouts as minor differences in the unit geometries contribute more to 

the layout exploration. The algorithm can also work with a non-rectilinear geometry 

as a boundary. EPSAP is a hybrid approach that uses Evolutionary Search (ES) and 

Stochastic Hill Climbing (SHC) to generate multiple floor generic layouts.
156

 EPSAP 

uses a set of repair rules predefined for certain problems that are randomly 

implemented. The time requirement of the correction rules is balanced with the use 

of a different global search mechanism, ES, which is a simpler version of GA that 

produces solutions solely by mutation. EPSAP creates detailed layouts with vertical 

and horizontal circulations, windows, and doors. Interactive Layout Recommender 
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System (ILRS)
157

 is another approach by Bahrehmand et al. that generates layout 

options from a predefined set of regular and irregular shaped layout units. ILRS 

provides a real time rating interface where the user can give any layout a rating from 

one to five to increase or decrease its chance of survival in the evolutionary 

process.
158

 

 

 

 

Figure 12. Three floors of layout configurations by EPSAP. (Rodrigues, Gaspar, and 

Gomes, 2013) 

 

 

Rosenman
159

 developed a GA to create house layouts according to area and 

adjacency requirements. The approach uses Hierarchical generation (HG) to produce 

layouts gradually from basic elements to complex configurations. Algorithm first 

creates rooms from rectangular modules, then these rooms are allocated into zones, 

and finally zones are arranged into house layouts. GENETICA is a GP approach that 

designs multiple floor hotel layouts with fully furnished hotel rooms.
160

 GENETICA 

defines layout items, for example doors, beds, sitting arrangements etc. as standard 
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units with fixed dimensions. These items are arranged according to ―physical space‖ 

which is the real space used by the layout item that cannot be overlapped, and 

―functional space‖ which stands for the space required to use such item.
161

 Layouts 

are generated through the arrangement of layout items, and then the physical 

boundaries are procedurally generated by a CAD application. 

 

 

Figure 13. Hotel room arrangements by GENETICA. (Virirakis, 2003) 

 

Metaheuristic approaches require an additional generative heuristic for layout design 

problem. This research will utilize an AP heuristic because of its advantages in SFH 

layouts. AP gives more control on the geometrical representation of layout elements 

in the initial state. This control creates a possibility to define layout elements in 

various characters such as open spaces or vertical and horizontal circulation spaces. 

AP, consequently, requires more computational resources to cope with this variety of 

layout elements, however this is not going to be a critical issue in the SFH context 

which involves less number of layout elements. The possibility to neglect irregular 

forms for layout element is another advantage of AP heuristic. The user can represent 

the layout elements within the limits of a geometrical shape such as a rectangle. 

 

Among the evolutionary metaheuristic approaches, GA gathered more attention on 

their success on design problems. Goldberg
162

 sees an evident similarity between the 
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design phases and the mechanism of GAs. Rodrigues
163

 provided the popularity of 

GAs in layout problems with a literature survey. Flack
164

 provided the efficiency of 

GAs over GPs by the experiments on layout design. Accordingly, this research 

develops a GA approach because of its success in coping with vague problem 

definitions and locating valid solutions in multimodal search spaces. 

 

2.5 Genetic Algorithms (GA) 

 

GA is a search algorithm that is introduced by Holland
165

 to demonstrate the 

capabilities of adaptation in natural systems and to emulate this process in creating 

new artificial systems. GA takes the advantage of two concepts from evolutionary 

biology, survival of the fittest, and natural selection, to locate solutions in 

multimodal and complex search spaces. GA, similar to evolution, is a blind process 

that lacks a reason for the realized actions. On the other hand, GA uses the 

information in the past generations to predict new exploration directions with 

improved performance.
166

 

 

GA is beneficial in problems that are too complicated to tackle with fast and abstract 

solution methods. In this problem context, GA can be used to generate novel 

approaches by an efficient trial-and-error process. They have been successfully 

employed in various interesting fields, such as game AI,
167

 musical composition,
168
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or abstract painting.
169

 

 

 

 

 

Figure 14. Abstract paintings by EVOECO. (Feng and Ting, 2014) 

 

 

A population of solutions are generated and evaluated in every step to assess their 

fitness in the environment. In every generation, a group of less fit solutions dies, 

while another group of survived solutions gains a chance to reproduce to fill the gaps 

in the population with better solutions. The success of GA depends highly on the 

initial user definition that represents the problem.  

 

Evolutionary processes require the definition of solution candidates in both genotype 

and phenotype. Genotype definition refers to the underneath genetic structure of the 

solution that is put under genetic transformations, whereas phenotype definition 

refers to the outer appearance of the solution that is considered for the fitness 
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evaluations. 

 

2.5.1 Mechanism of genetic algorithm 

 

The evolutionary process requires an initial population of solutions which is usually 

generated randomly. A user-defined fitness function evaluates these solutions in 

terms of their success in satisfying the user-defined conditions. Parent solutions are 

selected from the better performing candidates. Parent solutions are reproduced to 

generate a new population of self-similar design solutions. The new entities are 

generated by crossover that mixes the genotype of both parents randomly into 

offspring solutions. These offspring are mutated to make random changes within 

their genetic structure, which is required for securing the genetic variety.  

 

The set of individuals generated in each repetition of this mechanism is named as a 

generation. The runtime of a GA is limited with the termination of user-defined 

criteria. These criteria can refer to achieving a level of success within the fitness 

function, or reaching a maximum number of total generations.  
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Figure 15. GA mechanism (Drawn by the author) 

 

 

The review on past evolutionary approaches to layout problem generally considered 

examples with a limited user interaction until now. GA, as a metaheuristic method, is 

a black-box algorithm. Black-box algorithms‘ solution process is not visible to the 

user. User can only interact with the interface in the initial state through the 

definition of inputs. Design problems are characteristically ―underdetermined‖
170

 

where the problem definition constantly changes through the observations of the 

designer. Although, GA‘s generic structure allows the user to modify problem 

definition through the observation of results in consequent runs, this can be an 

exhaustive process for the user. GA‘s capability to explore large solution spaces 

comes with a disadvantage on its use of resources. Skiena
171

 asserts that GA uses 
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long periods of time on ―nontrivial problems‖. GA‘s requirement of long periods of 

time is problematic because of the latency between the problem definition and 

feedback mechanism. Alternatively, a number of interactive approaches were 

developed to eliminate distance between the designer and computational models by 

increasing user‘s effect on the computational process. 

 

2.5.2 Interactive genetic algorithm 

 

The interactivity does not need to cover just the architect but take another way to 

directly give the process to the user. This way the designer can design the possible 

procedure between the user and the generative mechanism. Such as that approach. 

But also this tool should not fall in the pit of a large knowledge domain Interactive 

genetic algorithm (IGA) refers to a genetic algorithm with a degree of user aid on 

certain parts of the evolutionary mechanism. In the most extreme case, a user can 

completely replace the fitness function by means of human evaluation. In this way, 

IGAs can be used in problems where an exact mathematical function is not available 

to evaluate solutions. A notable example is GADES,
172

 an IGA that can generate 3D 

objects based on the aesthetic preferences of the user. GADES requires human 

evaluation for each individual in the population and slowly converges into a 

population of ―interesting solutions‖.
173
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Figure 16. Generated 3D solutions by GADES. (Bentley and Corne, 2002) 

 

 

Numerous layout design approaches take the advantage of IGAs. Rosenman‘s 

hierarchical generation approach allows users to choose satisfactory layout and 

layout elements during the search process.
174

 The hierarchical structure of the 

generation process gives the user the opportunity to evaluate the solutions in 

intermediate stages. Room pairs are generated from a population of chosen room 

geometries which in the end generate the whole layout. Michalek, Choudary and 

Papalambros
175

 proposed an IGA approach that allows changing the problem 

definition together with the geometric modifications on the solutions. User can add, 

modify, or delete both constraints and objectives to modify the problem definition. 

The user can modify the generated solutions via the user interface and then iterate 

over the modified layout. The algorithm also gives permission to guide the search 

process by initial layouts. Quiroz, Louis, Banerjee, and Dascalu
176

 developed a 
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collaborative IGA for layout design. Users, in this example, guide the evolution of 

the population by the selection of generated alternatives in intermediate stages. Users 

can only see a limited portion of their own population, instead they are provided with 

the population examples from the other user. 

 

 

 

Figure 17. Layout generated from the initial user sketch by the IGA of Michalek. 

(Michalek, 2002) 

 

 

An interactive fitness function, despite the possibility to integrate subjective and 

vague criteria, creates an enormous burden on the designer to evaluate a large set of 

solutions through generations. Considering that GA‘s work with large population 
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spaces, the manual evaluation of the user both takes a large amount of time and 

causes the designer to lose the ability to compare within the large multiplicity of 

solutions. However, the approach of Michalek et al. is found beneficial, because of 

its resemblance to the iterative character of the design process. The approach places 

the user in an active position by allowing changes on the problem definition as well 

direct changes within the search process such as sketch revisions or initial layouts. 

 

To conclude, SFH, despite of its small scale, is an important architectural design 

problem that requires the continuous collaboration of the architect and the user. 

Alternative spatial solutions that are developed by the architects serve as a medium 

for this collaboration in terms of revealing the intentions of both parties. 

Architectural layout design is an important part of this process as it uses essential 

information about the user‘s lifestyle such as area requirements and furniture 

organizations for activities and their interrelations. Time restrictions and the limits of 

human cognition on the alternative generation process can reduce the affectivity of 

layout design generations. Computational layout design methods can enhance 

architect‘s abilities by the computational data processing and storing capabilities. A 

review on the current computational methods shows the affectivity of GA because of 

their capability to work with vague problem definitions and finding satisficing 

solutions from a vast solution space. However, GA also limits the control of the 

designer over the generation process by its black-box working principle. IGA 

approaches are found beneficial in terms of the level of designer control during the 

search process. This research argues that the reviewed IGA approaches are deficient 

in terms of supplying the specific requirements of SFH thus, presents a new 

computational approach for the generation of SFH layouts. 
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CHAPTER 3 

 

 

TOOL DEVELOPMENT 

 

 

In the previous chapter, the potentials and limits of computational layout design 

approaches on conceptual SFH problems are discussed. Metaheuristic approaches 

and especially GAs are found more advantageous due to their capabilities in 

handling the computational complexity of such conceptual problems. GA is a 

divergent search method that is advantageous in vague design problems with 

multiple solutions and design objectives. On the other hand, the advantages of GA 

also make the designer more distant from the design process because of the black-

box formulation of GA. An interactive GA approach is found beneficial in improving 

designers‘ control over the computational search process. This can allow the designer 

to  be more active in the design process beyond the definition of inputs and the mere 

observation of final solutions. As mentioned in the previous section, an interactive 

GA method for SFH layout problems is not encountered in the current literature. 

This, therefore, is one of the main contributions of this research to the layout design 

research.  

 

Ho-Gen (House Generator) is an interactive computational model and a tool that is 

developed to support designers in the layout design of SFH. Ho-Gen can generate 

multi-floor and unequal area SFH layouts. Ho-Gen is not expected to generate 

complete and detailed layouts, but multiple layout alternatives to facilitate divergent 

exploration during conceptual design. Ho-Gen follows the generic representation, 

generation, evaluation, and guidance synthesis cycle described by Cagan et. al.
177

 

According to Cagan et al.,
178

 the ―representation‖ phase corresponds to the decisions 

about the search process with the level of detail in solution representations 
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and   process  or the comprehensiveness of the solutions to be involved in the search 

space; ―generation‖ phase creates solutions according to the defined representation, 

―evaluation‖ phase rates the suitability of generated solutions to the user-defined 

criteria, and ―guidance‖ phase uses this data to direct the search direction towards 

better solutions.  

 

Ho-Gen implements an interactive GA for this synthesis process. The generation and 

guidance phases are realized by initialization, selection, crossover, and mutation 

algorithms while the user can also interfere with the process and guide the search by 

manually generated solutions. The evaluation is realized by a single criterion fitness 

function that is made of the weighted sum of geometrical and topological sub-criteria 

that are specific to SFH. 

 

 

 

 

Figure 18. Framework representing the working principle of Ho-Gen (Drawn by 

author). 

 

 

3.1 Representation 
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3.1.1 Building blocks 

 

In Ho-Gen, a building has a hierarchically structured representation. A building is 

decomposed into its floors (FLO) and layout elements (LE). LEs can be optionally 

clustered into groups by the designer, if necessary. These groups (GRO) represent 

LEs that are related to each other and therefore need to be placed in close proximity 

with each other in the layout.  

 

 

 

 

Figure 19. An example layout hierarchy in Ho-Gen (Drawn by the author). 
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Table 1. The layout elements (LEs) in Ho-Gen 

 

Layout element (LE) 

categories 
Sub-categories  Description  

Spaces (SP) 

 

Main Spaces 

(MS) 

Spaces with SFH functions, i.e. bedroom, 

kitchen etc. 

Patio (Pa) Outdoor spaces for open area activities 

Porch (Po) Outdoor spaces usually near the entrance. 

Garage (G) Indoor car parking. 

Stairs (STA) - 
Spaces that facilitate the flow of occupants 

between floors. 

Chimney (CHI) - 
Object description for the fireplace and its 

chimney. 

 

 

Ho-Gen considers several basic assumptions that guide the formation of LEs as well 

as their physical characteristics. These assumptions are as follows:  

 

 Spaces in Ho-Gen can be both indoors and outdoors. For instance, an indoor 

space is enclosed by surfaces (walls and slabs), or alternatively it can be an 

open or semi-open space outside the physical boundaries of the building (i.e. 

a porch).  

 A LE can span multiple floors (i.e. stairs, double-space living room).  

 LEs are theoretically bounded by rectangular prisms (but not necessarily 

physically bounded for outdoors spaces). 

 For the search space reduction, LEs are allocated onto a grid with a size of 

0.5 x 0.5 meters.  

 

3.1.2 Interrelations 

 

SFH involves a smaller amount of layout elements when compared to larger 

facilities. The computational complexity involved in a SFH layout task, then, can be 

stated as lesser than general because of the smaller amount of possible layout 
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combinations. This idea changes dramatically considering the importance of 

architectural form for SFH. Certainly, this general privilege on the form for SFH 

layout compositions reflects upon every separate relation between layout elements. 

This way, the computational complexity involved in SFH layouts should be 

evaluated on the quality of relations rather than the quantity. Such complexity 

requires the exploration of larger solution spaces because of the formal variation 

evident in the topologically identical SFH layouts. 

 

Relationships play a critical role in Ho-Gen. LEs in Ho-Gen relate to each other in 

three types (Table 2). In the first type, layout elements form topological relations 

with one another. This relationship type is crucial to Ho-Gen, and will be discussed 

in Evaluation. In the second type, LEs form groups. Ho-Gen presents the user three 

options to define the grouping mechanism. First, the grouping process can be totally 

passed by letting every element form a group. Second, the user can initially specify a 

group for every LE manually. Third, LEs can be grouped according to their FLO. 

Lastly, every LE can be gathered into a total GRO. These floors are topologically 

connected by stairs (STA). In addition to that, the user can specify geometrical 

criteria that control the interrelation of separate floors with each other. This way, the 

final geometry of SFH can vary in the third-dimension as well.  

 

 

Table 2. Relationship types in Ho-Gen 

 

Relationship types  
From-

To 
Cardinality  Description  

Space-topological 

relations 
LE to LE 1-To-1 

0 – No adjacency 

1 – Adjacent 

Group relations 

a. None 

b. Manual 

c. By Floor 

d. Total 

LE to 

GRO 
1-To-Many 

a- No groups. 

b- User defines group 

relations one-by-one. 

c- LE‘s in FLO make 

individual GROs. 

d- Every LE is gathered into 

one GRO.  

Floor - LE relations 
SP to 

FLO 
1-To-1 or 1-To-

Many 
User defines the floor of LE 
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3.1.3 Initial User Interaction  

 

The designer interacts with Ho-Gen through a group of inputs that define the layout 

problem together with the control mechanism over the generation process. These 

inputs can be divided into five groups: general, specific, evaluation, evolutionary, 

and termination. General inputs involve global variables that control the layout as a 

whole. Specific inputs are specialized inputs to control different types of LEs. 

Evaluation inputs include the coefficients that control the weight of different 

constraints during the search process. Evolutionary inputs make up the variables for 

genetic algorithm. Termination criteria represent the condition that halts the search.  

 

 

General Inputs 

 

Table 3. General inputs. 

 

Name Type Description 

Gim: Main 

Entrance 
Direction 

Specifies the direction for SFH‘s main 

entrance. 

Gib: Boundary 

limits 

{dimension, 

dimension} 

X and Y dimensions for the rectilinear plot 

boundary. 

Gim: Maximum 

cantilever 
Dimension 

Maximum cantilever distance between the 

vertical sequences of floors. 

Git: Topological 

relations 
Matrix 

the connection and adjacency relations 

between every separate layout element. 

Gifh: Floor Height Dimension Vertical dimension between floors 

Gich: Chimney 

Height 
Dimension 

Vertical dimension of the chimney from 

ground 

Git: Porch Height Dimension 
Vertical dimension of porch‘s ceiling slab 

from ground 
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Specific Inputs 

 

Table 4. Main Space Inputs 

 

Name Type Description 

MS
i
n: Room 

Name 

Text Name of the room for the user to check generated 

layout solutions.  

MS
i
a: Room 

Area 

Dimension The area amount of the room. Circulation 

elements are automatically fixed to 0 to minimize 

their area. 

MS
i
min: 

Minimum edge 

dimension 

Dimension The minimum dimension value for a separate edge 

of room geometry. Building regulations usually 

involve standard minimum dimensions for 

residential buildings.  

MS
i
max: 

Maximum edge 

dimension 

Dimension The maximum dimension value for a separate 

edge of room geometry. User can also specify the 

upper bounds of edge dimensions for every layout 

element to control geometric ratios. Fixed 

automatically to Area / MinE when not specified. 

MS
i
v: Room 

View 

Direction The direction for the layout element to have an 

unobstructed view. 

MS
i
g: Room 

Gallery 

Ratio The maximum percentage of the gallery space that 

can be occupied by the upper layout elements. 

MS
i
f: Room 

Floor 

Numeric Specifies the floor to place the room 

MS
i
gr: Room 

Group 

Numeric Specifies the group that the room belongs 
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Table 5. Stair Inputs 

 

Name Type Description 

STA
i
n: Stair Name Text 

Name of the stair for the user to check 

generated layout solutions.  

STA
i
fmax: Maximum 

Flight Width 
Dimension Maximum dimension for the flight width. 

STA
i
fmin: Minimum 

Flight Width 
Dimension Minimum dimension for the flight width. 

STA
i
ld: Landing depth Dimension The horizontal dimension for stair landing. 

STA
i
amax: Maximum 

Flight Angle 
Degree 

The maximum angle between the ground 

and stair flight. 

STA
i
amin: Minimum 

Flight Angle 
Degree 

The minimum angle between the ground and 

stair flight. 

STA
i
fs: Starting floor Number The lowest floor that stair contacts. 

STA
i
fe: Ending floor Number The highest floor that stair contacts. 

 

 

Table 6. Other Specific Inputs 

 
Name Type Description 

CHI
i
min: Minimum edge Dimension 

Minimum horizontal dimension for 

chimney. 

CHI
i
max: Maximum edge Dimension 

Maximum horizontal dimension for 

chimney. 

Gac: Number of cars Number 
Number of cars to be parked within the 

garage. 

Ge: Length of entrance Dimension Width of the garage door. 

Po
i
a: Porch area Dimension Area requirement for porch. 

Po
i
min: Porch minimum edge Dimension 

The minimum dimension value for a 

separate edge of porch geometry. 

Po
i
max: Porch maximum edge Dimension 

The maximum dimension value for a 

separate edge of porch geometry. 

Pa
i
a: Patio area Dimension Area requirement for patio. 

Pa
i
min: Patio minimum edge Dimension 

The minimum dimension value for a 

separate edge of patio geometry. 

Pa
i
max: Patio maximum edge Dimension 

The maximum dimension value for a 

separate edge of patio geometry. 
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Evaluation Inputs 

 

Ho-Gen allows the user to prioritize the importance of certain soft criteria over the other. In 

this way, user defines the dominance of selected evaluation algorithms by allocating 

different coefficient values to the related criteria. It is also possible to disqualify a criterion 

totally from the search process by defining its coefficient as zero. Detailed information on 

the constraints can be found in Section 3.3. 

 

Evolutionary Inputs 

 

 

Table 7. Evolutionary Inputs 

 

Name Type Description 

Ep: Population 

Size 
Number 

Specifies the number of layout solutions in a 

generation. 

Em: Mutation 

Rate  

Coefficient 

[0,1] 

Chance of mutation for a gene after every 

crossover. 

Emi: Mutation 

Rate Increase 
Value 

Increase in the mutation rate in the case of 

stagnation in successive generations. 

Es: Crossover 

Rate 

Coefficient 

[0,1] 
Rate of population to be generated with mating. 

 

 

Termination Inputs 

 

 

Table 8. Termination Inputs 

 

Name Type Description 

Tt: Time limit Minutes Runtime limit. 

Tml: Maximum generation Number Number of generations for each run. 

Tmr: Stagnation 

generation 
Number 

Number of generations to go after 

stagnation. 
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3.2 Generation & Guidance 

 

3.2.1 Genotype and phenotype representation 

 

Main Spaces 

 

Genotype 

 

MS
i
cx: Coordinate X - MS

i
cy: Coordinate Y - MS

i
dx: Dimension X –  

MS
i
dy: DimensionY 

 

Phenotype 

 

 

 

 

Figure 20. Main Space Phenotype. (Drawn by the author) 

 

 

Stair 

 

Genotype 

 

STAr: Rotation – STAcx: Coordinate X - STAcy: Coordinate Y – STAfw: Flight Width 

- STAa: Flight Angle 
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Phenotype 

 

 

 

 

Figure 21. Stair Phenotype. (Drawn by the author) 

 

 

Chimney 

 

Genotype 

 

CHI
i
cx: Coordinate X - CHI

i
cy: Coordinate Y 
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Phenotype 

 

 

Figure 22. Chimney Phenotype. (Drawn by the author) 

 

Garage 

 

Genotype 

 

G
i
cx: Coordinate X - G

i
cy: Coordinate Y 

 

Phenotype 

 

 

 

 

Figure 23. Garage Phenotype. (Drawn by the author) 
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Porch 

 

Genotype 

 

Po
i
cx: Coordinate X - Po

i
cy: Coordinate Y - Po

i
dx: Dimension X - Po

i
dy: Dimension Y 

 

Phenotype 

 

 

 

 

Figure 24. Porch Phenotype. (Drawn by the author) 

 

 

Patio 

 

Genotype 

 

Pa
i
cx: Coordinate X - Pa

i
cy: Coordinate Y - Pa

i
dx: Dimension X - Pa

i
dy: Dimension Y 

 

 

 

 

 

 

 

Phenotype 
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Figure 25. Patio Phenotype. (Drawn by the author) 

 

 

3.2.2 Genetic Algorithms 

 

Initiation 

 

Initiation generates several individual solutions according to the user-defined 

population size. In a non-interactive run, an initial population is randomly generated. 

Random operations are realized within the bounds of initial problem representation. 

In an interactive run where the user supplies an initial layout solution, many 

individuals that are relative to a user-defined ratio are generated from the mutations 

on the initial layout. The rest of the population is again generated randomly. 

 

Selection 

 

In every generation, a portion of population is selected for reproduction to generate 

the new generation of solutions. Layouts for reproduction are selected according to 

their fitness score. Ho-Gen‘s reproduction algorithm requires two solutions in every 

generation. This selection process does not directly take the best solutions in the 

population as this process can cause an early reduction in the variety of population. 

Ho-Gen, alternatively, uses tournament selection which randomly picks a group of 

four solutions from the population and selects the best individual among this small 

group as the first parent solution. The selection of the second parent repeats the same 

process, but this time random selection is realized within a population without first 
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parent solution. First parent solution is temporarily removed from the population to 

eliminate the risk of self-mating that produces duplicate layouts within the total 

generation. Ho-Gen does not create a new population in every generation as this can 

cause fit individuals to get lost in the reproduction process. Instead, reproduction 

process uses Elitism, which saves 10% of the fittest individuals directly to the new 

population. 

 

Crossover 

 

Crossover algorithm is the first part of the reproduction process. Crossover generates 

a child from the random genotype combination of two parent solutions. This new 

individual carries the properties of its parents however, it still carries a certain level 

of difference which increases the exploration space of the algorithm. Ho-Gen uses 

uniform crossover which makes a random decision for every gene to decide about its 

source. This way, the genotype order of a parent is not purposely carried to the 

children. Ho-Gen also favors the fitter parent in gene distribution. In this way, child 

solution takes 70% percent of its genes from the fitter parent. The crossover 

operation is repeated until reaching the population limit. 

 

Mutation 

 

Mutation algorithm takes the newly generated solution and performs random 

changes in their genotype. A random operation between [0,1] is realized for every 

gene and the gene is randomized if it is below Em. This simple operation is essential 

for keeping a level of genetic variety within the population as it avoids early 

convergence. As an initial condition, Ho-Gen starts with an Em of %1 but this rate 

changes during the run. Ho-Gen checks the best fitness score within every generation 

and compares this value to the previous one. If two scores are the same, then Em is 

increased by %0.01. 

 

Termination 

 

Ho-Gen continues to produce new generations until meeting one of the termination 

criteria. These criteria are defined in Table 8. In the termination process, Ho-Gen 
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generates the best individual layout of the last generation in Rhinoceros together 

with the related fitness graphs. In this context, the user can pass into the user 

guidance process to modify the generated solution and the problem definition or 

he/she also can start a new Ho-Gen run from the scratch. 

 

3.2.3 User Guidance 

 

Ho-Gen‘s interactive engine allows designer to iterate over the results through 

modifying the problem definition and reshaping the solutions. The generated 

solutions are baked in Rhinoceros by the Grasshopper definition. These baked 

geometries are also defined in the Grasshopper definition to keep the algorithm 

informed of the user modifications in Rhinoceros‘ interface. Grasshopper 

simultaneously translates the geometric definition in Rhinoceros to its genotype 

definition in GA. The user can also make changes on the problem definition by using 

Grasshopper similar to the initial state. This data is also simultaneously translated for 

GA. The user can make the following modifications in the intermediate states: 

 

 Changing the components of the design problem. For example, changing the 

area requirement of one LE, removing or adding an LE, changing topological 

requirements, changing general inputs, or modifying the evaluator weights. 

 

 Adding or removing a LE 

 

 Modifying general inputs 

 

 Modifying topological criteria 

 

 Modifying evaluator weights 

 

 Manual adjustments on the solutions via Rhinoceros to change the scale and 

location of LEs. From another perspective, the user can also start with an 

initial layout to guide the search process from the start. 
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In the end of user guidance phase, GA starts from the initialization phase again. This 

time it derives the population from the given layout input. The mechanism is 

explained in detail within the initiation phase of genetic algorithm section 

 

3.3 Evaluation 

 

Ho-Gen evaluates the solutions by a single fitness function that corresponds to the 

weighted sum of eight evaluator penalties (Table 9). If a solution cannot meet certain 

requirements of evaluators, a penalty score that is relative to its degree of violation is 

assigned to the solution. Every evaluator penalty is then multiplied by its own user-

defined weight and added to the general fitness function. In this way, fitness score of 

the solution corresponds to its degree of incompatibility with the initial requirements. 

All the evaluator penalties except for the Cdim and Cview correspond to area values. 

These penalty values are square rooted in order to equalize their effect with the Cdim 

and Cview evaluators. The fitness function can be described with the following 

formula: 

 

 

Ctotal = (Wovf * √Covf) + (Wint * √Cint) + (Wdim * √Cdim) + (Wcomp * 

√Ccomp) + (Wcant * √Ccant) + (Wcirc * √Ccirc) + (Wrel * Crel) + (Wview * 

Cview) 

 

Figure 26. Fitness function equation. (Drawn by the author) 
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Table 9. Ho-Gen constraints 

 

Constraint Name Description 

Covf: Overflow 

constraint 

Evaluates the solution by the percentage of total area that is 

out of the user-defined bounding geometry. 

Cint: Intersection 

constraint 

Evaluates the solution by the area of intersection between 

separate layout elements. 

Cdim: Dimension 

constraint 

Evaluates the solution by the difference between AREA input 

and areas of the generated layout elements. 

Crel: Relation 

constraint 

Evaluates the solution by the distance between generated 

layout elements that are specified as related in the topological 

inputs. 

Ccomp: Compactness 

constraint 

Evaluates the solution by the difference of arranged group 

geometries from a bounding rectangle. 

Ccant: Cantilever 

constraint 

Evaluates the solution by the difference between the given 

maximum cantilever and the actual cantilever distance on the 

upper floors. 

Ccirc: Circulation 

constraint 

Evaluates the solution by the area of circulation units, 

circulation units are tried to be minimized by area with this 

method 

Cview: View 

constraint 

Evaluates the solution by the length of interruption by the 

input side for every layout element with view criteria. 
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Overflow evaluator checks every floor for LEs that got out of the predefined 

boundary geometry. It assigns the total area outside the boundary geometry as a 

penalty.  

 

 

 

 

Figure 27. Overflow Evaluator (Drawn by the author). 

 

 

Intersection evaluator checks every floor for overlaps between LEs. The total area of 

intersection in every floor is assigned as a penalty value 

 

 

for each FLO: 

 interL = [ ] 

 totalArea = 0 

 for each LE: 

  interL.APPEND(LE)  

  totalArea = totalArea + LEarea 

interFloor = totalArea - inter(interL) 

Cint = Cint + interFloor 

Figure 28. Intersection evaluator (Drawn by the author). 

for each LE: 

 interL.APPEND(LE)  

interL.APPEND(Boundary) 

Covf = inter(interL) - Boundaryarea  
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Dimension evaluator checks how close the SP areas are to the initial user inputs. It 

assigns the absolute difference between the two values as a penalty.  

 

 

for each SP: 

IF SParea > 0: 

Cdim = Cdim + abs(SParea - (SPdimX * SPdimY)) 

 

Figure 29. Dimension evaluator (By the author). 

 

 

Relation evaluator checks how close the distances between LEs are to the initial 

topological inputs. The distance calculation process varies with the type of LE under 

consideration. SP distances are taken as the shortest distance between their borders. 

STA distances are the closest distances between the two corners of both stair flight 

edges and the border of the relevant SP. CHI distance is the closest distance between 

the center of CHI geometry and the relevant SP border. Relation distances cannot be 

negative, so the negative values are replaced by zero. Relation evaluator works 

relevant to two types of adjacency. 0 corresponds to NO RELATION between LEs so 

this pair is not evaluated. 1 corresponds to CONNECTION between LEs which 

requires a certain overlapping between LE borders to place a door. Ho-Gen 

automatically considers 1 meter as a standard door dimension and gives the penalty 

of 1 for pair of LEs intersect with point intersection. 2 corresponds to ADJACENCY 

between LEs which does not require a physical connection but still they require 

being in close proximity. 
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for x in unitTOPO: 

 for y in x: 

  distX=abs(SPx.centerX-SPy.centerX)- (SPx.dimX-SPy.dimX)/2 

  distY=abs(SPx.centerY-SPy.centerY)- (SPx.dimY-SPy.dimY)/2 

  IF y = CONNECTION: 

   IF distX=0 AND distY=0: 

    interRel = interRel +1 

   IF distX<0: distX = 0 IF distY<0: distY 

   interRel = interRel + √(distX2 + distY2) 

  IF y = ADJACENCY: 

   IF distX<0: distX = 0 IF distY<0: distY 

   interRel = interRel + √(distX2 + distY2) 

  Crel = Crel + interRel 

 

Figure 30. Relation evaluator - SP (Drawn by the author). 
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for x in staTOPO: 

 for y in x: 

  distX1=abs(STA.p1X-SPy.centerX) - (SPy.dimX)/2 

  distY1=abs(STA.p1Y-SPy.centerY) - (SPy.dimY)/2 

  distX2=abs(STA.p2X-SPy.centerX) - (SPy.dimX)/2 

  distY2=abs(STA.p2Y-SPy.centerY) - (SPy.dimY)/2 

  IF distX<0: distX = 0 IF distY<0: distY 

  interRel = interRel + √(distX2 + distY2) 

                Crel = Crel + interRel 

 

Figure 31. Relation evaluator - STA (Drawn by the author). 

 

 

 
FOR x in chiTOPO: 

  distX1=abs(CHI.coorX-SPy.centerX) - (SPy.dimX)/2 

  distY1=abs(CHI.coorY-SPy.centerY) - (SPy.dimY)/2 

  IF distX<0: distX = 0 IF distY<0: distY 

  interRel = interRel + √(distX2 + distY2) 

                Crel = Crel + interRel 

 

Figure 32. Relation evaluator - CHI (Drawn by the author). 

Compactness evaluator checks the irregularity of GRO geometries together with the 

unoccupied regions within them. The forming process of GROs can be found in 
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Table 2. For every layout, a minimum rectangular region is generated that contains 

all SPs in a GRO. Evaluator assigns the difference between the area of bounding 

rectangular region and the total area of SPs in relative GRO as a penalty. The penalty 

cannot be below zero so a negative value is replaced by zero.  

 

 

 

 
FOR each GRO: 

 groArea = 0 

 FOR each LE in GRO:  

  groArea = groArea + LEarea 

interGRO = GROarea - groArea 
Ccomp = Ccomp + intergrow 

 

 

Figure 33. Compactness evaluator (Drawn by the author). 

 

 

Cantilever evaluator checks the relevance of maximum cantilever distances between 

succeeding floors to user inputs. Evaluation process repeats for every two sequent 

floors. Cantilever evaluator considers the GRO geometries rather than LEs 

separately to reduce the time requirement for calculations. First, cantilever evaluator 

considers the SPs in separate GROs in the lower floor. These SPs are offset by the 

maximum cantilever input and a minimum bounding rectangle is generated. 

Evaluator calculates the union area of bounding rectangles of separate GROs. 

Second, cantilever evaluator takes into account the SPs in the upper floor and repeats 
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the process without the offsetting. Area calculation is repeated with all bounding 

rectangles in the lower and upper floors. The difference between the second and first 

result is assigned as the penalty. The penalty cannot be negative, so a negative value 

is replaced by zero. 

 

 

 
FOR each FLO: 

 FOR each GRO: 

  groFloorLow = [ ] 

  groFloorHigh = [ ] 

  FOR each LE in GRO: 

IF LEfloor = FLO: groFloorLow.append(LE(LE.coorX- Gim,  LE.coorY- Gim, 

LE.dimX+ 2*Gim, LE.dimY+ 2*Gim) 

   ELIF LEfloor = FLO + 1: groFloorHigh.append(LE) 

  interCant = inter(groFloorLow + groFloorHigh) - 

inter(groFloorLow) 

               Ccant = Ccant + interCant 

 

Figure 34. Cantilever evaluator (Drawn by the author). 

 

 

Circulation evaluator checks the area of circulation SPs. Circulation SPs are defined 

with zero area value by the user and their area is tried to be minimized by Ho-Gen. 

The total area of circulation SPs are given as a penalty. 

 

FOR each SP: 

 IF SParea = 0: 

  Ccirc = Ccirc + (SPdimX * SPdimY) 

 

Figure 35. Circulation evaluator (Drawn by the author). 

 

 



 

90 

 

View evaluator checks for obstacles in the given direction for SPs. If an initial view 

preference exists for one SP, the evaluator draws a rectangle from SPs farthest edge 

in that direction until the layout boundary. Any other SP that overlaps with the 

generated view rectangle is given a penalty relevant to the obstacle distance. 

 

 

 

 

Figure 36. View evaluator (Drawn by the author). 
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FOR each SP: 

IF dir = NORTH: 

coorX = SP.coorX 

coorY = SPcoorY + SPdimY 

dimX = SPdimX 

dimY = boundaryY - (SPcoorY + (SPdimY) 

IF dir = EAST: 

coorX = SPcoorX + SPdimX 

coorY = SPcoorY 

dimX = boundaryY – (SPcoorX + SPdimX) 

dimY = SPdimY 

IF dir = SOUTH: 

coorX = SPcoorX 

coorY = 0 

dimX = SPdimX 

dimY = SPcoorY 

IF dir = WEST: 

coorX = 0 

coorY = SPcoorY 

dimX = SPcoorX 

dimY = SPdimY 

VU = Unit(coorX,coorY,dimX,dimY) 

FOR each SP: 

distX=abs(SPx.centerX-VU.centerX)- (SPx.dimX-VU.dimX)/2 

distY=abs(SPx.centerY-VU.centerY)- (SPx.dimY-VU.dimY)/2 

IF distX>0: distX=0, IF distY>0: distY=0 

IF dir=SOUTH OR dir=NORTH: 

interView = interView - distX 

IF dir=EAST OR dir=WEST: 

interView = interView - distY 

Cview = Cview + interView 

 

 

Figure 37. View evaluator (Drawn by the author). 

 

 

The assignment of evaluator weights is an essential process for Ho-Gen to generate 

layout solutions according to user requirements. Users define the relative importance 

of evaluators through the hierarchy in evaluator weights. Evaluators with 

considerably higher weight values correspond to hard sub-criteria. Hard sub-criteria 

are basically the red-lines of the design process. Architects, while in the form-finding 

process, do not generate every possible configuration such as a layout with 
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overlapping spaces. Similarly, Ho-Gen limits the possibility of the generation of 

certain instances from the exploration process. Layouts that violate hard sub-criteria 

are not killed off, but their penalty values increase.  

 

Design is mostly about dealing with uncertain sub-criteria. Such uncertain sub-

criteria are not strictly imposed rules, but their effect still matters for design. These 

criteria are defined as soft sub-criteria. The relative importance of soft sub-criteria 

can change with the problem and varying subjective decisions of the user. Such a 

layout task can require the area dimensions to match the user inputs while for 

another layout task the regularity of the overall form can be the primary concern. 
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CHAPTER 4 

 

 

CASE STUDIES 

 

 

 

In this chapter, Ho-Gen‘s performance in generating valid layouts is tested. 

Computational formulations to layout design are typically considered as ―NP-

complete‖. Therefore, finding optimal layout solutions require extended amounts of 

time even for small scale problems, as the solution space grows exponentially even 

with a low number of layout elements.
179

 Thus, Ho-Gen is tested with two case 

studies with different levels of complexity in terms of the number of layout elements, 

adjacency relations, and user objectives. Every case study is also approached with 

different group relations and level of compactness in different parts to evaluate the 

effect of Ccomp on the character of the layout solutions. In addition to these non-

interactive case studies, the effects of user interaction on the generation process are 

tested in a separate part for every case study. 

 

The main algorithm of HO-Gen is implemented in Rhino Python, while Grasshopper 

is used for the initial and intermediate states of user interaction. The user can also 

use Rhinoceros‘s main drafting interface to modify the generated layouts manually. 

Tests were conducted in 2017 by a 2.13 Core Duo computer with 4GB DDR Ram. 

 

The non-interactive parts of the case studies are conducted to evaluate the success of 

Ho-Gen in generating alternative layout solutions for the same problem. Thus, the 

research presents six alternatives for every case study to observe the level of 

difference between the generated solutions. Non-interactive case studies also present 

intermediate phases from the generation process of the best layout alternative to 

                                                 

 

179
 Jo and Gero, ―Space Layout Planning Using an Evolutionary Approach,‖ 3. 
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show the gradual development of layouts. Table 4-1 shows the general aims of case 

studies. 

 

 

Table 10 Case Study Table 

 

CASE 

STUDY 
INTERACTIVITY COMPACTNESS TARGET 

1 
AUTOMATED D – Layout 

-Divergence of results 

-Effect of evaluator 

penalties 

INTERACTIVE D and B 
User interaction 

mechanism 

2 
AUTOMATED 

A – No groups -Effect of increased 

complexity 

-Divergence of results 

-Effect of group relations 

-Effect of evaluator 

penalties 

C - Floor 

D - Layout 

INTERACTIVE C - Floor 
-Convergence of an initial 

layout sketch 

 

 

The results of the case studies are presented together with the fitness graphs showing 

the development of the layout through generations. This graph does not show the 

individual‘s direct penalty score. Ho-Gen‘s evaluators work within different 

numerical ranges because of the magnitude of results. Thus, it is not directly possible 

to compare the differences in the evaluator penalties. The penalty scores are 

normalized within [0, 1] according to the following formula to make such 

comparison possible: 
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Cnormal = Cinitial / Cmaximum 

 

Figure 38. Formula to normalize constraint scores (Drawn by the author). 

 

4.1 Case study inputs 

 

4.1.1 Case study 1 – Small scale  

 

First case study is conducted to test the capabilities of Ho-Gen in generating a 

diversity of solutions for a simple 2D layout problem. Layout problem consists of a 

2-bedroom SFH in a single floor. The main entrance is arranged from the NORTH 

direction. A 10 m * 10 m rectangle is given as a boundary. Detailed information 

about the inputs is as follows: 

 

 

Table 11. Main Space Inputs (Case Study 1) 

 

Main Space / Input MSf MSmin MSar MSmax MSat MSv MSg 

MS
1
 Living Room 0 3 25 8 - - 1 

MS
2 

Kitchen 0 2.5 10 - - - 1 

MS
3 
Master Bedroom 0 2.5 18 5 - - 2 

MS
4 

Bedroom 1 0 2.5 12 - - - 2 

MS
5 

Bathroom 1 0 1.5 7 - - - 2 

MS
6 

Entrance 0 1.5 8 8 - 1 0 

MS
7 
Circulation 1 0 1 - 8 - - 2 

 

 

Table 12. Patio Inputs (Case Study 1) 

 

Patio / Input Pamin Paar Pamax Pav Pag 

Pa
1
 Patio 1 3 25 8 - 1 
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Table 13. Porch Inputs (Case Study 1) 

 

Porch / Input Pomin Poar Pomax Pov Pog 

Po
1
 Porch 1 3 25 8 1 0 

 

 

 

Table 14. Garage Inputs (Case Study 1) 

 

Garage / Input Gac Gav Pag 

Ga
1
 Garage 1 1 1 0 

 

 

Table 15. Space Adjacency Matrix (Case Study 1) 

 

 

M
S

1
 

M
S

2
 

M
S

3
 

M
S

4
 

M
S

5
 

M
S

6
 

M
S

7
 

P
a1

 

P
o

1
 

G
a1

 

MS
1 

 1 0 0 0 1 1 1 0 0 

MS
2
   0 0 0 0 0 0 0 0 

MS
3
    0 2 0 1 0 0 0 

MS
4
     2 0 1 0 0 0 

MS
5
      0 1 0 0 0 

MS
6
       0 0 1 1 

MS
7
        0 0 0 

Pa
1
         0 0 

Po
1
          0 

Ga
1
           

 

 

Table 16. Chimney Adjacency Matrix (Case Study 1) 
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M
S
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M
S
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M
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P
o

1
 

G
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CHI
1 

0 1 0 0 0 0 0 0 0 0 

 

4.1.2 Case study 2 – Medium scale 

 

Second case study is conducted in order to test Ho-Gen‘s capability to deal with 
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multi-floor layout problems. Multiple floors create a higher complexity for Ho-Gen 

because every floor is solved as a separate layout problem. This also reflects to the 

time requirements because Ho-Gen evaluates every floor separately. Another reason 

is the increase in the population in order to cope with the larger search space. 

  

Layout problem consists of a 3-bedroom SFH in two floors. The main entrance is 

arranged from the NORTH direction. A 15 m X 15 m rectangle is given as a 

boundary. Detailed information about the inputs is as follows: 

 

 

Table 17. Main Space Inputs (Case Study 2) 

 

Main Space / Input MSf MSmin MSar MSmax MSat MSv MSg 

MS
1
 Living Room 0 3 25 8 - 3 0 

MS
2 

Kitchen 0 2.5 10 - - - 0 

MS
3 
Master Bedroom 1 2.5 18 5 - 2 1 

MS
4 

Bedroom 1 0 2.5 12 - - - 0 

MS
5 

Bedroom 2 1 2.5 12 - - - 1 

MS
6 

Bathroom 1 0 1.5 7 - - - 0 

MS
7 

Bathroom 2 1 1.5 7 - - - 1 

MS
8 

Bathroom 3 1 1.5 7 - - - 1 

MS
9 

Entrance 0 1.5 8 8 - 1 0 

MS
10 

Circulation 1 0 1 - 8 - - 0 

MS
11 

Circulation 2 1 1 - 8 - - 1 

 

 

Table 18. Patio Inputs (Case Study 2) 

 

Patio / Input Pamin Paar Pamax Pav Pag 

Pa
1
 Patio 01 3 20 6 - 0 

 

 

 

 

 

 

 



 

98 

 

Table 19. Porch Inputs (Case Study 2) 

 

Porch / Input Pomin Poar Pomax Pov Pog 

Po
1
 Porch 01 3 10 4 1 0 

Po
2 
Porch 02 3 10 4 2 0 

 

 

 

Table 20. Garage Inputs (Case Study 2) 

 

Garage / Input Gac Gav Pag 

Ga
1
 Garage 01 2 1 0 

 

 

Table 21. Space Adjacency Matrix (Case Study 2) 
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  1 0 0 0 0 0 0 1 1 0 1 0 0 0 

MS
2
   0 0 0 0 0 0 0 0 0 0 0 1 0 

MS
3
    0 0 0 0 1 0 0 1 0 0 0 0 

MS
4
     0 0 2 0 0 1 0 0 0 0 0 

MS
5
      0 2 0 0 0 1 0 0 0 0 

MS
6
       0 0 0 1 0 0 0 0 0 

MS
7
        0 0 0 1 0 0 0 0 

MS
8
         0 0 0 0 0 0 0 

MS
9
          0 0 0 1 0 1 

MS
10

           0 0 0 0 0 

MS
11

            0 0 0 0 

Pa
1
             0 0 0 

Po
1
              0 0 

Po
2
               0 

Ga
1
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Table 22. Stair Adjacency Matrix (Case Study 2) 
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STA1-a 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

STA1-b 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

 

 

 

 

Table 23. Chimney Adjacency Matrix (Case Study 2) 
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 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

4.2 Case study results 

 

4.2.1 Case study 1a 

 

In this case study, the building program is tested as a one whole GRO, which 

corresponds to a compact rectangular result. The weights of the evaluators Covf  to 

Cview are 3-8-3-2-3-0-0-1. Ho-Gen is run for 6 times with the given inputs to test the 

validity and formal variation of the generated results. During each run, Ho-Gen 

bakes the fittest member in every 10 generations. The figures that explain the 

development process of the fittest alternative in included in APPENDIX A. The 

generated results of six runs are as follows:



 

100 

 

 

 

Figure 39. Alternative 1 - Case study 1 – Compactness D - Parallel projection from 4 

sides. (Drawn by the author) 

 

 

 

 

Figure 40. Alternative 1 - Case study 1 – Compactness D - Top view. (Drawn by the 

author) 
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Figure 41. Alternative 2 - Case study 1 Compactness D - Parallel projection from 4 

sides. (Drawn by the author) 

 

 

 

 

Figure 42. Alternative 2 - Case study 1 – Compactness D - Top view. (Drawn by the 

author) 
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Figure 43. Alternative 3 - Case study 1 – Compactness D - Parallel projection from 4 

sides. (Drawn by the author) 

 

 

 
 

Figure 44. Alternative 3 - Case study 1 – Compactness D - Top view. (Drawn by the 

author) 
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Figure 45. Alternative 4 - Case study 1 – Compactness D - Parallel projection from 4 

sides. (Drawn by the author) 

 

 

 
 

Figure 46. Alternative 4 - Case study 1 – Compactness D - Top view. (Drawn by the 

author) 
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Figure 47. Alternative 5 - Case study 1 – Compactness D- Parallel projection from 4 

sides. (Drawn by the author) 

 

 

 
 

Figure 48. Alternative 5 - Case study 1 – Compactness D - Top view. (Drawn by the 

author) 
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Figure 49. Alternative 6 - Case study 1 – Compactness D - Parallel projection from 4 

sides. (Drawn by the author) 

 

 

 
 

Figure 50. Alternative 6 - Case study 1 – Compactness D - Top view. (Drawn by the 

author) 
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Figure 51. Best total fitness score - Case study 1 – Compactness D. (Drawn by the 

author) 

 

 

 
 

Figure 52. Best evaluator fitness score - Case study 1 –Compactness D. (Drawn by 

the author) 

 

 

 
 

Figure 53. Average total fitness score - Case study 1 – Compactness D. (Drawn by 

the author) 
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Figure 54. Average evaluator fitness score - Case study 1 – Compactness D. (Drawn 

by the author) 

 

 

Table 24. Weighted fitness results for six alternatives - Case study 1 – Compactness 

D (Drawn by the author). 

 

 Fitness Covf Cint Cdim Crel Ccomp Ccant Ccirc Cview 

1 0.023 0.000 0.000 0.391 0.011 0.000 0.000 0.172 0.000 

2 0.044 0.000 0.000 0.234 0.000 0.000 0.000 0.244 0.000 

3 0.047 0.000 0.000 0.212 0.022 0.236 0.000 0.402 0.000 

4 0.033 0.000 0.000 0.027 0.018 0.256 0.000 0.118 0.000 

5 0.024 0.000 0.000 0.391 0.000 0.106 0.000 0.198 0.000 

6 0.042 0.000 0.000 0.255 0.000 0.000 0.000 0.150 0.000 

 

 

A closer look into the generated alternatives and the evaluation scores indicate that 

Ho-Gen‘s automated run is successful in generating valid alternative solutions for 

layouts with high compactness. The variety in the generated solutions is found 

successful in terms of the placement of LEs and overall layout form. Alternative 1 

(Figure 40) and Alternative 5 (Figure 48), as the first best and second best solutions, 

are different in their overall form and orientation. An interesting result of this study 

was the Crel penalty in the Alternative 1. Normally Crel is a hard constraint and its 

violation should result with an overall bad fitness score. The reason for the Crel 

penalty in Alternative 1 can be observed in the best evaluator fitness score graph 

(Figure 52). According to the graph, a sudden decrease in Cint score caused a small 

increase in Crel. Indeed, alternative 1 is found very organized and regular compared 

to the other solutions. In a way, this result verifies the suitability of the fitness 

function. Another interesting point is the emergent inner courtyard in Alternative 6 

(Figure 50). The inner courtyard was not hard coded within the topologic description 
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of the layout, however, the description was open enough to include such a result 

within the solution space. 

 

An examination of the average fitness score graph (Figure 53) shows small triangular 

differences. These hill-like figures indicate the points of stagnation in the search 

process. As mentioned in tool development, stagnation causes an increase in the 

mutation rate. Such an increase causes Ho-Gen to explore different solution options 

which usually causes the generation of many bad layouts. Therefore, it is possible to 

say that the search process has not come across such a long stagnation. Instead, Ho-

Gen run encountered many quick improvements. 

 

4.2.2 Case study 1b 

 

In the interactive scenario, the user was expected to have less information about the 

configurational possibilities of the layout problem. Thus, the user has not arranged 

any separate groups within the layout at the start. The problem definition is changed 

as all LEs form one group. The weights of the evaluators Covf to Cview are 3-8-3-2-3-

0-0-1.
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Figure 55. The results of Iteration 1 - Parallel projection from four sides - Case study 

1– Interactive run. (Drawn by the author) 

 

 

 

 

Figure 56. The results of Iteration 1 – Top view - Case study 1 – Interactive run. 

(Drawn by the author) 

 

 

The user, after observing the results of the initial iteration, finds the bathroom small 

and decides that the required bathroom area is not possible with the current 

compactness arrangement. Therefore, the user separates the bathroom, corridor, 

bedroom, and master bedroom through defining them in a new group. The user also 

provides an initial layout to Ho-Gen by making certain arrangements in the current 

iteration. 
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Figure 57. Given layout arrangement for Iteration 2 - Parallel projection from four 

sides - Case study 1 – Interactive run. (Drawn by the author) 

 

 

 

 

Figure 58. Given layout arrangement for Iteration 2 – Top View - Case study 1 – 

Interactive run. (Drawn by the author) 

 

Ho-Gen generated the following layout through 43 generations: 
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Figure 59. The results of Iteration 2 - Parallel projection from four sides - Case study 

1 – Interactive run. (Drawn by the author) 

 

 

 

 

Figure 60. The results of Iteration 2 – Top view - Case study 1b – Interactive run. 

(Drawn by the author) 

 

After Iteration 2, the user finds the living room too large and away from the initial 

inputs. The user decides that the hierarchy between Ccomp and Cdim does not let Ho-

Gen to develop better results in terms of LE dimensions. Thus, the user increases 

Wdim by one. Additionally, the user observes that the living room is largely 

obstructed by the surrounding LEs which causes a dark space living area throughout 
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the day. The user decides that this problem can be changed by giving living room an 

exposure on south direction. Lastly, master bedroom is also given an exposure on 

east direction to take the advantage of morning light. Ho-Gen is iterated again with 

the mentioned changes on the problem definition. 

 

 

 
 

Figure 61. The results of Iteration 3 - Parallel projection from four sides - Case study 

1 – Interactive run. (Drawn by the author) 

 

 

 
 

Figure 62. The results of Iteration 3 – Top view - Case study 1 – Interactive run. 

(Drawn by the author) 
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Ho-Gen successfully generated valid results for the changing problem definitions 

within the interactive run. Additionally, Ho-Gen showed success in generating a 

valid layout similar to the user‘s initial input in Iteration 2. The interactive run also 

generated better results in terms of LE dimensions because of user‘s intermediate 

interference to the generation process.  

 

4.2.3 Case study 2a 

 

This case study is conducted to test the capabilities of Ccomp and different degrees of 

compactness in generating a variety of solutions. In this way, the building program 

of case study 2 is tested with three different compactness degrees. Ho-Gen is run 6 

times for every compactness degree to test the validity and formal variation of the  

generated results. For a detailed look into the generation process, the rest of the 

figures are included in Appendix B, Appendix C, and Appendix D.  

 

The case study with compactness degree A is conducted with a population of 2500 

individuals. Every run is limited with a total stagnation of 60 generations. An 

average run took 1620 seconds. The weights of the evaluators Covf to Cview are 3-5-2-

2-3-1-2-2. 

 

The case study with compactness degree C is conducted with a population of 2500 

individuals. Every run is limited with a total stagnation of 60 generations. An 

average run took 2056 seconds. The weights of the evaluators Covf to Cview are 3-8-2-

2-3-1-2-2. 

 

The case study with compactness degree D is conducted with a population of 2500 

individuals. Every run is limited with a total stagnation of 60 generations. An 

average run took 2050 seconds. The weights of the evaluators Covf to Cview are 3-10-

2-2-3-1-2-2. 

 

The best layout alternative for every compactness degree is as follows:
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Figure 63. Alternative 6 - Case study 2 – Compactness A – Parallel projection from 4 

sides (Drawn by the author). 

 

 

 
 

Figure 64. Alternative 6 - Case study 2a – Compactness A – Top view (Drawn by the 

author) 
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Figure 65. Alternative 5 - Case study 2 – Compactness C – Parallel projection from 4 

sides. (Drawn by the author) 

 

 

 
 

Figure 66. Alternative 5 - Case study 2 – Compactness C – Top view. (Drawn by the 

author) 
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Figure 67. Alternative 5 - Case study 2 – Compactness D- Parallel projection from 4 

sides. (Drawn by the author) 

 

 

 
 

Figure 68. Alternative 5 - Case study 2 – Compactness D - Top view. (Drawn by the 

author) 
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Table 25 Weighted fitness result for six alternatives - Case study 2 – Compactness A. 

 

 Fitness Covf Cint Cdim Crel Ccomp Ccant Ccirc Cview 

1 0.046 0.000 0.000 0.388 0.014 0.000 0.000 0.286 0.000 

2 0.033 0.000 0.000 0.361 0.005 0.000 0.000 0.294 0.000 

3 0.033 0.000 0.000 0.230 0.016 0.000 0.000 0.194 0.000 

4 0.026 0.000 0.000 0.230 0.007 0.000 0.000 0.185 0.000 

5 0.034 0.000 0.000 0.262 0.013 0.000 0.000 0.256 0.000 

6 0.025 0.000 0.000 0.250 0.000 0.000 0.000 0.208 0.000 

 

 

Table 26. Weighted fitness results for six alternatives - Case study 2 – Compactness 

C. 

 

 Fitness Covf Cint Cdim Crel Ccomp Ccant Ccirc Cview 

1 0.056 0.000 0.000 0.406 0.013 0.301 0.000 0.222 0.000 

2 0.072 0.000 0.184 0.483 0.007 0.000 0.000 0.227 0.000 

3 0.054 0.000 0.000 0.509 0.007 0.258 0.000 0.227 0.000 

4 0.073 0.111 0.000 0.605 0.033 0.126 0.000 0.309 0.000 

5 0.052 0.000 0.000 0.292 0.000 0.352 0.000 0.359 0.000 

6 0.057 0.000 0.000 0.287 0.037 0.259 0.000 0.153 0.000 

 

 

Table 27.Weighted fitness result for six alternatives - Case study 2 – Compactness D. 

 

 Fitness Covf Cint Cdim Crel Ccomp Ccant Ccirc Cview 

1 0.092 0.000 0.000 0.664 0.007 0.314 0.000 0.296 0.000 

2 0.093 0.000 0.000 0.679 0.018 0.314 0.000 0.294 0.000 

3 0.092 0.000 0.000 0.656 0.015 0.342 0.000 0.247 0.000 

4 0.092 0.000 0.000 0.716 0.062 0.328 0.000 0.243 0.016 

5 0.085 0.000 0.000 0.557 0.019 0.304 0.000 0.188 0.000 

6 0.011 0.000 0.000 0.609 0.060 0.306 0.000 0.188 0.000 

 

 

Different compactness degrees had a positive effect over the variety of results in this 

study. Improving the degree of exploration by a small change in the problem 

representation is found beneficial. One significant problem about the compactness 

degrees is its effect on Cdim penalties. The increase in compactness seems to push 

LEs to stretch or tighten in order to comply with the regularity of the layout. This 

issue can be problematic in terms of the validity of the layouts.  
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4.2.4 Case study 2b 

 

This case study, similar to case study 1a, tests Ho-Gen‘s capability to generate 

diverse and valid results. An additional purpose of case study 2b is to test the effect 

of increased layout complexity over the performance of Ho-Gen. 

 

In case study 2b, every floor is defined as a GRO. Ho-Gen is expected to generate 

compact floor layouts that are brought together with vertical circulation and 

maximum cantilever value.  

 

As a medium scale layout problem, this study is conducted with a population of 2500 

individuals. Every run is limited with a total stagnation of 60 generations. An 

average run took 2056 seconds. The weights of the evaluators Covf to Cview are 3-8-2-

2-3-1-2-2. Ho-Gen is run for 6 times with the given inputs to test the validity and 

formal variation of the generated results. During each run, Ho-Gen bakes the fittest 

individual with an interval of 10 generations. This helps to explore the development 

of results and the effect of the evaluator weight hierarchy within the run. The figures 

that explain the development process of the fittest alternative in included in 

APPENDIX C. The generated results of six runs are as follows: 
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Figure 69. Alternative 1 - Case study 2 – Compactness C- Parallel projection from 

four sides. (Drawn by the author) 

 

 

,  

 

Figure 70. Alternative 1 - Case study 2 – Compactness C – Top view. (Drawn by the 

author) 
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Figure 71. Alternative 2 - Case study 2 – Compactness C – Parallel projection from 4 

sides. (Drawn by the author) 

 

 

    
 

Figure 72. Alternative 2 - Case study 2 – Compactness B – Top view. (Drawn by the 

author) 
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Figure 73. Alternative 3 - Case study 2 – Compactness C – Parallel projection from 4 

sides. (Drawn by the author) 

 

 

 
 

Figure 74. Alternative 3 - Case study 2 – Compactness C – Top view. (Drawn by the 

author) 

 

 

 

 



 

122 

 

 
 

Figure 75. Alternative 4 - Case study 2 – Compactness C – Parallel projection from 4 

sides. (Drawn by the author) 

 

 

 
 

Figure 76. Alternative 4 - Case study 2 – Compactness C – Top view. (Drawn by the 

author) 
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Figure 77. Alternative 6 - Case study 2 – Compactness C – Parallel projection from 4 

sides. (Drawn by the author) 

 

 

 
 

Figure 78. Alternative 6 - Case study 2 – Compactness C– Top view. (Drawn by the 

author) 
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Table 28. Weighted fitness results for six alternatives - Case study 2 – Compactness 

C. 

 

 Fitness Covf Cint Cdim Crel Ccomp Ccant Ccirc Cview 

1 0.056 0.000 0.000 0.406 0.013 0.301 0.000 0.222 0.000 

2 0.072 0.000 0.184 0.483 0.007 0.000 0.000 0.227 0.000 

3 0.054 0.000 0.000 0.509 0.007 0.258 0.000 0.227 0.000 

4 0.073 0.111 0.000 0.605 0.033 0.126 0.000 0.309 0.000 

5 0.052 0.000 0.000 0.292 0.000 0.352 0.000 0.359 0.000 

6 0.057 0.000 0.000 0.287 0.037 0.259 0.000 0.153 0.000 

 

 

 
 

Figure 79. Best total fitness score - Case study 2 – Compactness C (Drawn by the 

author). 

 

 

 
 

Figure 80. Best fitness score of evaluators - Case study 2 – Compactness C (Drawn 

by the author). 
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Figure 81. Average total fitness score - Case study 2 – Compactness C (Drawn by the 

author). 

 

 

 
 

Figure 82. Average fitness score of evaluators - Case study 2 – Compactness C 

(Drawn by the author). 

 

The increased amount of LEs caused an overall improvement in the variety of LE 

configurations. However, this also caused a reduction in the effect of search 

mechanism. According to average total fitness score graph ( 

Figure 81 ) the generation process has come across a long stagnation phase. This 

indicates that the overall increase in the automated divergence does not help every 

time to locate better solutions. This reduced performance can also be seen in the 

weighted fitness score table (Table 27). The penalty scores are relatively higher than 

case study 1a. 
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4.2.5 Case study 2c 

 

In case study 2d, Ho-Gen is given an initial layout sketch to develop a similar but 

better performing result. Ho-Gen is expected to converge in a smaller time because 

of the smaller search space it requires to go through. The problem definition is the 

same with case study 2b. The generation process took 1220 seconds. The figures that 

explain the development process of the fittest alternative are included in APPENDIX 

E. The generated results of six runs are as follows: 

 

 

 

Figure 83. Initial sketch layout given to Ho-Gen – fitness: 0.176, Covf:0.019, 

Cint:0.068, Cdim:0.516, Crel:0.075, Ccomp:0.451, Ccant:0.000, Ccirc:0.463, Cview:0.000 – 

Parallel projection from four sides - Case study 2d – Interactive run. (Drawn by the 

author) 
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Figure 84. Initial sketch layout given to Ho-Gen – Top View - Case study 2d – 

Interactive run. (Drawn by the author) 

 

 

 

Figure 85. Best layout solution for generation 120 – fitness: 0.079, Covf:0.000, 

Cint:0.000, Cdim:0.516, Crel:0.024, Ccomp:0.163, Ccant:0.000, Ccirc:0.414, Cview:0.000 – 

Parallel projection from four sides - Case study 2d – Interactive run. (Drawn by the 

author) 
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Figure 86. Best layout solution for generation 120 – Top View - Case study 2d – 

Interactive run. (Drawn by the author) 

 

 

 

 

Figure 87. Best fitness score - Case study 2d (Drawn by the author). 

 

 

 
 

Figure 88. Best fitness scores of evaluators - Case study 2d (Drawn by the author). 
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Figure 89. Average fitness score - Case study 2d (Drawn by the author). 

 

 

 
 

Figure 90. Average fitness scores of evaluators - Case study 2d (Drawn by the 

author). 

 

 

Ho-Gen successfully developed a rough initial sketch into a functional building 

layout in lesser time. This time, however, Ho-Gen generated a layout with a worse 

fitness score than the non-interactive run. It is possible that the algorithm skipped a 

better initial layout option in the beginning because of the initial conditions provided 

by the user. Another reason is the higher Cdim penalty of Ho-Gen. An observation on 

the result shows that the reasons for the high Cdim penalty are trivial and can easily 

be fixed by the user in the end. Yet, Ho-Gen cannot iterate toward solutions with a 

better Cdim score. Ho-Gen, expectedly, disregards the LE dimensions to generate 

valid layouts at the start. However, it cannot fix it in the later stages because the later 

solutions with a better Cdim score violate important evaluators such as Cint or Ccomp. 

This issue requires the user interference within the search process to the evaluator 

weights.
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CHAPTER 5 

 

 

CONCLUSION 

 

 

 

The current state of the housing industry demands collaboration models that can 

increase the influence of the occupants in the design process. In this way, 

computational design tools for non-expert users generate a chance with the 

advancement of mass customization in construction and prevalent use of computers. 

The current state of non-expert design tools, however, is problematic due to the 

support they provide or the expertise they expect. Configurators present a little 

amount of choice to users, while drafting tools overwhelm the user with the amount 

of control they provide. Generative tools present a higher level of customization in 

terms of the solutions because of their dependence on user input. However, they 

offer little or no customization for their generative mechanisms which are either too 

bounded by the rules of its developer or requires an architectural or computational 

expertise. Therefore, the purpose of this study was to develop a new computational 

model that can enhance designer‘s control over the generation process. 

 

The research has started with an investigation over the current literature on such 

subjects as computational non-expert design tools, design automation, non-expert 

and computation interaction, computational layout design, and genetic algorithms. In 

the first part of the review, a general research over the computational non-expert 

design tools brought out that such tools are popular approaches among the user-

centered models for mass customization. Design companies, rather than funding 

market research techniques or lead user idea generation models to acquire a general 

standard in terms of the needs of the occupants, provide them the necessary tools for 

the design of their own house. The purpose of computational non-expert tools is to 

provide a user-friendly interface which requires little or no additional training 

beyond user‘s inherent design capabilities and personal requirements. 

 

In the second part of the review, the research has shifted towards the need for 
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interactive interfaces for the development of computational tools. The research has 

taken the advantage of recent reports on automation to emphasize the lower rate of 

automation expectancy for design related occupations despite the current state of 

automation for many occupations. The research has shown that full automation 

requires well-defined problems which can be analyzed into clear objectives through 

objective and rational methods. On the contrary, the unavailability of such rational 

and objective analysis methods for design was explained over the ―design methods 

movement‖ of 1960s and the deep criticism towards this movement. Instead, the 

research has acknowledged the need for designer‘s subjective interpretation on the 

design problem as a way to cope with the vaguely defined design problems with a 

high multiplicity of objectives. 

 

The third part has examined the designer strategies to cope with the ill-defined 

nature of design problems in order to develop a computational model to support 

these activities for non-expert designers. This part revealed the importance of trial-

and-error learning as a way to explore the design problem and the requirement for 

generating a high number of alternative solutions to reach better results. The 

assessment of an appropriate solution space for the design of SFH brought the 

research into layout design problem in architecture. 

 

The forth part has evaluated the computational approaches to layout design problem. 

The investigation of the current computational approaches revealed that GA 

approaches bring certain advantages for design related problems. GA, as a 

metaheuristic, offers a general solution method that requires less problem specific 

information on the problem. In this way, metaheuristic approaches provide a general 

advantage for non-experts. As the solution method is guided by general rules away 

from expert knowledge, non-expert designers can interact with metaheuristics in an 

easier way. Another advantage of GA is their population-based working principle 

which improves the efficiency of exploration in the high multiplicity of solutions. 

 

In the last section of the review, the research has identified a main problem in GA 

approaches. The general user interaction in GA is limited to the initial definition of 

variables and the observation of their results. Additionally, GA‘s capabilities in the 

exploration of large solution spaces is a computationally demanding process that 
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requires time. The limited interaction together with the large time requirements of 

GA causes latency between the problem definition and feedback mechanism. In this 

way, alternative interactive models are investigated in order to present a trial-and-

error learning based interface to the user. 

 

Therefore, this research was set out to develop a new computational approach, House 

Generator (Ho-Gen), for the interactive generation of 3D layout solutions 

specifically for SFH. Ho-Gen utilizes an interactive interface for genetic algorithms 

(GA) in order to combine GA‘s creative power in exploring complex problems with 

the advanced designer control over the generation mechanism. During a Ho-Gen run, 

a user can interfere with the GA run, observe the preliminary results, and alter the 

generation process by the following ways: 

 

 Changing the problem definition through manipulating layout components 

and their topological relations. 

 

 Making manual changes over the generated layout geometries. The user can 

also start with an initial layout in order to focus a significant part within the 

design space. 

 

 Changing the evaluator weights to adjust their relative importance within the 

overall fitness function. 

 

Ho-Gen is also developed with specific attention to the character of SFH layouts. 

Such properties are given as: 

 

 Representing specific layouts elements under a group hierarchy. Groups can 

be specifically defined by the user or can be automatically defined under 

certain degrees of compactness. 

 

 Defining the location of layout elements through their direction within the 

envelope. SFH is a free-standing building that is open on all sides. Designer 

can arrange the layout elements according to daylight requirements or other 
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environmental causes. This issue is tried to be implemented through the 

VIEW evaluator to give the required view for the layout elements. 

 

 Generating multi-floor layouts with in-between vertical circulation elements. 

User can define layout elements in a floor hierarchy. The geometrical relation 

in between different floors is controlled by the CANTILEVER evaluator. 

 

 Defining layout elements with different character. Open spaces are 

increasingly becoming important parts of SFH. Ho-Gen implements open and 

semi-open spaces with PORCH and PATIO components. Horizontal and 

vertical circulation elements are added into the overall layout. Some spaces 

are given the possibility to be double height spaces. 

 

Ho-Gen is tested with two major layout problems with changing complexity 

regarding the number of layout elements, topological and geometric user criteria. 

Ho-Gen successfully generated valid layout options for a two floor SFH of 15 layout 

elements fewer than thirty minutes, however, tests are realized with a considerably 

low-end computer for the time. A better system can significantly reduce the current 

time requirements for such a problem. The case studies are also subjected to minor 

alterations in terms of group relations and compactness to check their effect on the 

variety of results. The generated variety by changing compactness degrees was found 

beneficial in terms of the ease of exploring different massing options through simple 

alterations. On the other hand, the extra time requirement of Ccomp evaluator brings 

the need to develop a more efficient computation method for such action. 

 

Additionally, every case study is tested with an interactive scenario. In the first 

scenario, the user started with a less specific problem definition and either added 

extra conditions or changed the existing ones through the observations within the 

generation process. User also made manual alterations on the generated layout. Ho-

Gen successfully generated quick feedback for the changing problem definitions, 

thus allowing the designer to develop the design problem in a systematic and time 

efficient manner. The second scenario allowed the designer to sketch a quick initial 

layout to guide the generation process. In the end, Ho-Gen generated a layout in the 
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same topological structure with user‘s initial sketch. The generation of the results 

took a significantly lower time than the automated results.  

 

5.1 Limitations and Future Work 

 

The major limitation for this research is the insufficient number of interactive case 

studies. Despite the initial promise of user interaction such as better Cdim score in 

case study 1b and less time requirement in case study 2c, the tests for interactive case 

studies should be examined under increased detail. This examination is important for 

the decisions about the correct times and ways user interaction. Another limitation 

for this research is the lack of case studies with actual non-expert designers. Current 

case studies works for the validation of the model description acquired in the 

literature review. However, further case studies with non-experts are required to 

assess Ho-Gen‘s real performance in the support of occupants. As an example, 

testing the arrangement process of the evaluator weights with non-experts is a direct 

necessity. The interactive support of Ho-Gen can simplify the trial-and-error learning 

process, however, leaving a non-expert with 8 evaluator weights to control can be 

problematic at the start. Such problems can make way further simplifications in Ho-

Gen such as providing an early set of evaluator weights based on the problem. In this 

way, Ho-Gen requires a real user interface that is both guiding and easy to operate. 

 

One other important limitation of this research is the absence of a deep analysis into 

the precedents in single-family house. Such an analysis can help the development of 

general design concepts in terms of SFH. These concepts can be about functional 

requirements such as a home office setting or a holiday house. The general concepts 

can be turned into predefined input sets or combinations to provide a more user-

friendly interface at the start. Occupants can use these concepts to develop early 

solutions immediately. One important point for the development of these concepts is 

their solution space. The set of inputs that is represented by concepts should not get 

too specific in order to keep divergent exploration capabilities. 

 

Future work on the interactive genetic algorithm approach: 

 

 Ho-Gen‘s generation process can be changed into a fully visible interface to 
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its user. User‘s interference to the run can be simplified to a button that halts 

the process. Current user interaction is only possible at the end of the search 

process. The duration of such process can be defined at the start. However, 

this can be problematic for the users that do not know the time requirements 

for such search.  

 

 Whole search process can be utilized as a family of results which enables the 

user to turn back and try other alternatives. 

 

 Much of the case studies have been done by a low-end computer for the time. 

GA approach for Ho-Gen can be developed to decrease the required time for 

exploration thus making possible to visualize user input more quickly. 

 

Possible developments on the problem representation: 

 

 The functional analysis can also utilize furnishing of LEs. LE geometries can 

be generated by the organization of furnishings, and then these resultant 

spaces can be configured similar to the hierarchical generation approaches. 

This can also aid the currently shallow state of Cdim. In a way, occupants can 

prefer to define a space by its functional setting such as a kitchen counter and 

dining table rather than an area value.  

 

 Ho-Gen just considers rectangular geometries on the plan and section; 

irregular shapes are not estimated. Many SFH is made of such irregular 

shaped LEs consideration of cut angles or a degree of convex geometries can 

bring interesting solutions.
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APPENDIX A 

 

 

FIGURES FOR CASE STUDY 1 – COMPACTNESS D 

 

 

 

 

 

Figure 91. Best layout solution for generation 20 – fitness: 0.062, Covf:0.000, 

Cint:0.440, Cdim:0.500, Crel:0.000, Ccomp:0.00, Ccant:0.00, Ccirc:0.300, Cview:0.000 – 

Parallel projection from four sides - Case study 1 – Compactness D. (Drawn by the 

author)
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Figure 92. Best layout solution for generation 20 – Top View - Case study 1– 

Compactness D. (Drawn by the author) 

 

 

 

 

Figure 93. Best layout solution for generation 40 – fitness: 0.047, Covf:0.000, 

Cint:0.200, Cdim:0.300, Crel:0.000, Ccomp:0.00, Ccant:0.00, Ccirc:0.172, Cview:0.000 – 

Parallel projection from four sides - Case study 1 – Compactness D. (Drawn by the 

author) 
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Figure 94. Best layout solution for generation 40 – Top View - Case study 1 – 

Compactness D. (Drawn by the author) 

 

 

 

 

Figure 95. Best layout solution for generation 60 – fitness: 0.041, Covf:0.000, 

Cint:0.266, Cdim:0.401, Crel:0.000, Ccomp:0.000, Ccant:0.000, Ccirc:0.172, Cview:0.000 – 

Parallel projection from four sides - Case study 1 – Compactness D. (Drawn by the 

author) 
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Figure 96. Best layout solution for generation 60 – Top View - Case study 1 – 

Compactness D. (Drawn by the author) 

 

 

 

 

Figure 97. Best layout solution for generation 80 – fitness: 0.038, Covf:0.000, 

Cint:0.241, Cdim:0.383, Crel:0.05, Ccomp:0.000, Ccant:0.000, Ccirc:0.172, Cview:0.000 – 

Parallel projection from four sides - Case study 1 – Compactness D. (Drawn by the 

author) 
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Figure 98. Best layout solution for generation 80 – Top View - Case study 1 – 

Compactness D. (Drawn by the author) 

 

 

 

 

Figure 99. Best layout solution for generation 100 – fitness: 0.037, Covf:0.000, 

Cint:0.237, Cdim:0.334, Crel:0.000, Ccomp:0.000, Ccant:0.000, Ccirc:0.172, Cview:0.000 – 

Parallel projection from four sides - Case study 1 – Compactness D. (Drawn by the 

author) 
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Figure 100. Best layout solution for generation 100 – Top View - Case study 1 – 

Compactness D. (Drawn by the author) 

 

 

 

 

Figure 101. Best layout solution for generation 120 – fitness: 0.039, Covf:0.00, 

Cint:0.185, Cdim:0.366, Crel:0.000, Ccomp:0.000, Ccant:0.000, Ccirc:0.172, Cview:0.000 – 

Parallel projection from four sides - Case study 1 – Compactness D. (Drawn by the 

author) 
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Figure 102. Best layout solution for generation 120 – Top View - Case study 1 – 

Compactness D. (Drawn by the author) 

 

 

 

 

Figure 103. Best layout solution for generation 140 – fitness: 0.39, Covf:0.00, 

Cint:0.000, Cdim:0.395, Crel:0.000, Ccomp:0.118, Ccant:0.00, Ccirc:0.172, Cview:0.000 – 

Parallel projection from four sides - Case study 1 – Compactness D. (Drawn by the 

author) 
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Figure 104. Best layout solution for generation 140 – Top View - Case study 1 – 

Compactness D. (Drawn by the author)  
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APPENDIX B 

 

 

FIGURES FOR CASE STUDY 2 – COMPACTNESS A 

 

 

 

 

 

Figure 105. Best layout solution for generation 0 – fitness:0.390, Covf:0.695, 

Cint:0.646, Cdim:0.739, Crel:0.160, Ccomp:0.000, Ccant:0.000, Ccirc:0.632, Cview:0.091 – 

Parallel projection from four sides - Case study 2 – Compactness A (Drawn by the 

author). 
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Figure 106. Best layout solution for generation 0 – Top View - Case study 2 – 

Compactness A. (Drawn by the author) 

 

 

 

 

Figure 107. Best layout solution for generation 20 – fitness:0.105, Covf:0.000, 

Cint:0.311, Cdim:0.628, Crel:0.007, Ccomp:0.000, Ccant:0.000, Ccirc:0.287, Cview:0.000 – 

Parallel projection from four sides - Case study 2 – Compactness A (Drawn by the 

author). 
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Figure 108. Best layout solution for generation 20 – Top View - Case study 2 – 

Compactness A. (Drawn by the author) 

 

 

 

 

Figure 109. Best layout solution for generation 40 – fitness:0.048, Covf:0.000, 

Cint:0.000, Cdim:0.504, Crel:0.001, Ccomp:0.000, Ccant:0.000, Ccirc:0.226, Cview:0.000 – 

Parallel projection from four sides - Case study 2 – Compactness A (Drawn by the 

author). 
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Figure 110. Best layout solution for generation 40 – Top View - Case study 2 – 

Compactness A. (Drawn by the author) 

 

 

 

 

Figure 111. Best layout solution for generation 70 – fitness:0.033, Covf:0.000, 

Cint:0.000, Cdim:0.379, Crel:0.000, Ccomp:0.000, Ccant:0.000, Ccirc:0.208, Cview:0.000 – 

Parallel projection from four sides - Case study 2 – Compactness A (Drawn by the 

author). 
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Figure 112. Best layout solution for generation 70 – Top View - Case study 2 – 

Compactness A (Drawn by the author). 

 

 

 

Figure 113. Alternative 1 - Case study 2a – Compactness A – Parallel projection from 

4 sides (Drawn by the author). 
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Figure 114. Alternative 1 - Case study 2a – Compactness A – Top view (Drawn by 

the author). 

 

 

 

Figure 115. Alternative 2 - Case study 2a – Compactness A – Parallel projection from 

4 sides (Drawn by the author). 
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Figure 116. Alternative 2 - Case study 2a – Compactness A – Top view. (Drawn by 

the author) 

 

 

 

 

Figure 117. Alternative 3 - Case study 2a – Compactness A – Parallel projection from 

4 sides (Drawn by the author). 
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Figure 118. Alternative 3 - Case study 2a – Compactness A – Top view (Drawn by 

the author). 

 

 

 

 

Figure 119. Alternative 4 - Case study 2a – Compactness A – Parallel projection from 

4 sides (Drawn by the author). 
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Figure 120. Alternative 4 - Case study 2a – Compactness A – Top view (Drawn by 

the author). 

 

 

 

 

Figure 121. Alternative 5 - Case study 2a – Compactness A – Parallel projection 

from 4 sides (Drawn by the author). 
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Figure 122. Alternative 5 - Case study 2 – Compactness A – Top view (Drawn by the 

author). 

 

 
 

Figure 123. Alternative 6 - Case study 2 – Compactness A – Parallel projection from 

4 sides (Drawn by the author). 
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Figure 124. Alternative 6 - Case study 2 – Compactness A – Top view (Drawn by the 

author) 

 

 

 

 

 

Figure 125. Best fitness score of total fitness - Case study 2 – Compactness A 

(Drawn by the author). 
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Figure 126. Best fitness score of evaluators - Case study 2 – Compactness A (Drawn 

by the author). 

 

 

 

 

Figure 127. Average fitness score for total fitness - Case study 2 – Compactness A 

(Drawn by the author). 
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Figure 128. Average fitness score of evaluators - Case study 2 – Compactness A 

(Drawn by the author). 
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APPENDIX C 

 

 

FIGURES FOR CASE STUDY 2 – COMPACTNESS C 

 

 

 

 

 

Figure 129. Best layout solution for generation 0 – fitness:0.44, Covf:0.43, Cint:0.75, 

Cdim:0.52, Crel:0.27, Ccomp:0.57, Ccant:0.00, Ccirc:0.60, Cview:0.04 – Parallel projection 

from four sides - Case study 2 – Compactness C. (Drawn by the author) 

 

 

    

 

Figure 130. Best layout solution for generation 0 – Top View - Case study 2 – 

Compactness C. (Drawn by the author) 
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Figure 131. Best layout solution for generation 10 – fitness:0.20, Covf:0.27, Cint:0.52, 

Cdim:0.52, Crel:0.03, Ccomp:0.22, Cchim:0.39, Ccant:0.00, Ccirc:0.51, Cview:0.00 – Parallel 

projection from four sides - Case study 2 – Compactness C. (Drawn by the author) 

 

 

   
 

Figure 132. Best layout solution for generation 10 – Top View - Case study 2 – 

Compactness C. (Drawn by the author) 
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Figure 133. Best layout solution for generation 20 – fitness:0.15, Covf:0.09, Cint:0.34, 

Cdim:0.39, Crel:0.02, Ccomp:0.27, Ccant:0.00, Ccirc:0.37, Cview:0.00 – Parallel projection 

from four sides - Case study 2 – Compactness C. (Drawn by the author) 

 

 

   
 

Figure 134. Best layout solution for generation 20 – Top View - Case study 2 – 

Compactness C. (Drawn by the author) 
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Figure 135. Best layout solution for generation 30 – fitness:0.12, Covf:0.09, Cint:0.19, 

Cdim:0.39, Crel:0.01, Ccomp:0.35, Ccant:0.00, Ccirc:0.28, Cview:0.00 – Parallel projection 

from four sides - Case study 2 – Compactness C. (Drawn by the author) 

 

 

   

 

Figure 136. Best layout solution for generation 30 – Top View - Case study 2 – 

Compactness C. (Drawn by the author) 
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Figure 137. Best layout solution for generation 40 – fitness:0.08, Covf:0.09, Cint:0.00, 

Cdim:0.60, Crel:0.03, Ccomp:0.33, Ccant:0.00, Ccirc:0.26, Cview:0.00 – Parallel projection 

from four sides - Case study 2 – Compactness C. (Drawn by the author) 

 

 

     
 

Figure 138. Best layout solution for generation 40 – Top View - Case study 2 – 

Compactness C. (Drawn by the author) 
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Figure 139. Best layout solution for generation 80 – fitness: 0.07, Covf:0.09, Cint:0.00, 

Cdim:0.53, Crel:0.01, Ccomp:0.27, Ccant:0.00, Ccirc:0.27, Cview:0.00 – Parallel projection 

from four sides - Case study 2 – Compactness C. (Drawn by the author) 

 

 

   
 

Figure 140. Best layout solution for generation 80 – Top View - Case study 2 – 

Compactness C (Drawn by the author). 
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Figure 141. Best total fitness score - Case study 2 – Compactness C(Drawn by the 

author). 

 

 

 
 

Figure 142. Best fitness score of evaluators - Case study 2 – Compactness C (Drawn 

by the author). 
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Figure 143. Average total fitness score - Case study 2 – Compactness C (Drawn by 

the author). 

 

 

 
 

Figure 144. Average fitness score of evaluators - Case study 2 – Compactness C 

(Drawn by the author). 
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APPENDIX D 

 

 

FIGURES FOR CASE STUDY 2 – COMPACTNESS D 

 

 

 

 
 

Figure 145. Best layout solution for generation 0 – fitness:0.390, Covf:0.542, 

Cint:0.418, Cdim:0.518, Crel:0.289, Ccomp:0.663, Ccant:0.000, Ccirc:0.368, Cview:0.067 – 

Parallel projection from four sides - Case study 2 – Compactness D. (Drawn by the 

author) 
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Figure 146. Best layout solution for generation 0 – Top View - Case study 2 – 

Compactness D. (Drawn by the author) 

 

 

 
 

Figure 147. Best layout solution for generation 10 – fitness:0.258, Covf:0.000, 

Cint:0.525, Cdim:0.518, Crel:0.069, Ccomp:0.585, Ccant:0.000, Ccirc:0.375, Cview:0.000 – 

Parallel projection from four sides - Case study 2 – Compactness D. (Drawn by the 

author) 
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Figure 148. Best layout solution for generation 10 – Top View - Case study 2 – 

Compactness D. (Drawn by the author) 

 

 
 

Figure 149. Best layout solution for generation 20 – fitness:0.200, Covf:0.000, 

Cint:0.381, Cdim:0.518, Crel:0.036, Ccomp:0.611, Ccant:0.000, Ccirc:0.243, Cview:0.007 – 

Parallel projection from four sides - Case study 2 – Compactness D. (Drawn by the 

author) 
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Figure 150. Best layout solution for generation 20 – Top View - Case study 2 – 

Compactness D. (Drawn by the author) 

 

 

 
 

Figure 151. Best layout solution for generation 40 – fitness:0.103, Covf:0.000, 

Cint:0.000, Cdim:0.650, Crel:0.030, Ccomp:0.376, Ccant:0.000, Ccirc:0.200, Cview:0.007 – 

Parallel projection from four sides - Case study 2 – Compactness D. (Drawn by the 

author) 
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Figure 152. Best layout solution for generation 40 – Top View - Case study 2 – 

Compactness D. (Drawn by the author) 

 

 

 
 

Figure 153. Best layout solution for generation 60 – fitness:0.089, Covf:0.000, 

Cint:0.000, Cdim:0.592, Crel:0.019, Ccomp:0.315, Ccant:0.000, Ccirc:0.200, Cview:0.007 – 

Parallel projection from four sides - Case study 2 – Compactness D. (Drawn by the 

author) 
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Figure 154. Best layout solution for generation 60 – Top View - Case study 2 – 

Compactness D. (Drawn by the author) 

 

 

 

 

 

Figure 155. Best layout solution for generation 20 – fitness: 0.103, Covf:0.000, 

Cint:0.000, Cdim:0.523, Crel:0.037, Ccomp:0.263, Ccant:0.000, Ccirc:0.455, Cview:0.000 – 

Parallel projection from four sides - Case study 2d – Interactive run. (Drawn by the 

author) 
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Figure 156. Best total fitness score - Case study 2 – Compactness D (Drawn by the 

author). 

 

 

 
 

Figure 157. Best evaluator score - Case study 2 – Compactness D (Drawn by the 

author). 
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Figure 158. Average total fitness score - Case study 2 – Compactness D (Drawn by 

the author). 

 

 

 
 

Figure 159. Average evaluator score - Case study 2 – Compactness D (Drawn by the 

author). 
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APPENDIX E 

 

 

FIGURES FOR INTERACTIVE CASE STUDY 2 

 

 

 

   

 

Figure 160. Best layout solution for generation 20 – Top View - Case study 2d – 

Interactive run. (Drawn by the author) 

 

 

Figure 161. Best layout solution for generation 40 – fitness: 0.089, Covf:0.000, 

Cint:0.000, Cdim:0.502, Crel:0.031, Ccomp:0.196, Ccant:0.000, Ccirc:0.455, Cview:0.000 – 

Parallel projection from four sides - Case study 2d – Interactive run. (Drawn by the 

author) 
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Figure 162. Best layout solution for generation 40 – Top View - Case study 2d – 

Interactive run. (Drawn by the author) 

 

 

 

Figure 163. Best layout solution for generation 80 – fitness: 0.083, Covf:0.000, 

Cint:0.000, Cdim:0.552, Crel:0.024, Ccomp:0.163, Ccant:0.000, Ccirc:0.450, Cview:0.000 – 

Parallel projection from four sides - Case study 2d – Interactive run. (Drawn by the 

author) 
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Figure 164. Best layout solution for generation 80 – Top View - Case study 2d – 

Interactive run. (Drawn by the author) 


