

AN INTERACTIVE COMPUTATIONAL APPROACH TO 3D LAYOUT DESIGN

OF SINGLE-FAMILY HOUSES BY EVOLUTIONARY ALGORITHMS

A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND

APPLIED SCIENCES OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

ANIL SAKARYALI

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF ARCHITECTURE

IN ARCHITECTURE

DECEMBER 2017

Approval of the thesis:

AN INTERACTIVE COMPUTATIONAL APPROACH TO 3D LAYOUT DESIGN

OF SINGLE-FAMILY HOUSES BY EVOLUTIONARY ALGORITHMS

Submitted by ANIL SAKARYALI in partial fulfillment of the requirements for the

degree of Master of Architecture in Architecture Department, Middle East

Technical University by,

Prof. Dr. Gülbin Dural Ünver _____________________

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Elvan Altan _____________________

Head of Department, Architecture

Assist. Prof. Dr. Ġpek Gürsel Dino _____________________

Supervisor, Department of Architecture, METU

Examining Committee Members:

Prof. Dr. Zeynep Mennan _____________________

Department of Architecture, METU

Assist. Prof. Dr. Ġpek Gürsel Dino _____________________

Department of Architecture, METU

Prof. Dr. Arzu Gönenç Sorguç _____________________

Department of Architecture, METU

Prof. Dr. Mine Özkar Kabakçıoğlu _____________________

Department of Architecture, ITU

Assist. Prof. Dr. Yasemin Afacan _____________________

Interior Architecture and Environmental Design, Bilkent University

 Date: December 5, 2017

iv

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced

all material and results that are not original to this work.

Name, Last Name: ANIL, SAKARYALI

Signature

v

ABSTRACT

AN INTERACTIVE COMPUTATIONAL APPROACH TO 3D LAYOUT DESIGN

OF SINGLE-FAMILY HOUSES BY EVOLUTIONARY ALGORITHMS

Sakaryalı, Anıl

M.Arch, Department of Architecture

Supervisor: Assist. Prof. Dr. Ġpek Gürsel Dino

December 2017, 184 pages

Customized design is an important feature for single-family houses (SFH).

Differently, current stage of the housing industry is generally limited to the standard

houses by tract developments. In this way, design tools for non-expert users can

provide a strong alternative to the current mode of house production. Certain

generative design tools can provide customized house solutions according to the

requirements of occupants. A certain problem in this case is the presented level of

interaction for the non-expert occupants. A study on the current generative

approaches to non-expert design tools showed that generative approaches present a

limited interaction for the user due to the limits of their solution space and the

required level of expertise for their operation. This research aims to develop a user-

friendly design tool for non-expert designers that can work with appropriate solution

spaces. In this way, this research presents a new evolutionary computational design

tool, Ho-Gen (House Generator), which assists in the design exploration of single-

family house layouts through an interactive work process. Ho-Gen is capable to

generate multi-floor SFH layouts with geometric and topological criteria. Ho-Gen‘s

interactive interface allows the designer to guide the generation process within the

intermediate states to make changes in the problem definition together with the

possibility to modify generated solutions. Ho-Gen is tested with two conceptual SFH

layout problems with a varying number of layout elements in an increasing level of

complexity. The results show that Ho-Gen can generate a variety of valid layouts for

the conceptual stage in architecture.

Keywords: computational layout design, single-family house, design exploration,

interactive genetic algorithm, evolutionary computation

vi

ÖZ

MÜSTAKĠL EV ÖLÇEĞĠNDE BĠNA YERLEġĠMĠ TASARIMINA YARDIMCI

ETKĠLEġĠMLĠ BĠR GENETĠK ALGORĠTMA

Sakaryalı, Anıl

Yüksek Lisans, Mimarlık Bölümü

Tez Yöneticisi: Assist. Prof. Dr. Ġpek Gürsel Dino

Aralık 2017, 184 sayfa

Müsrakil ev tipolojisinde yaratılan mekanın kullanıcıya özgü olması büyük önem

taĢımaktadır. Bunun aksine günümüzde müstakil ev üretimi, mimarların kısıtlı bir

çevreye verebildikleri hizmetten ötürü genellikle müteahhit tarafıdan üstlenen

standart evlere karĢılık gelmektedir. Bu durumda bina kullanıcısına kendi evini

tasarlayabileceği düzeyde destek sunan hesaplamalı tasarım araçlarının geliĢtirilmesi

mevcut duruma güçlü bir alternatif yaratmaktadır. Bu konuda geliĢtirilen mevcut

yöntemlere bakıldığında kullanıcının ihtiyaç verilerinden özgün ev tasarımları ortaya

çıkartabilecek kadar geliĢkin modellere rastlanmıĢtır. Aynı zamanda bahsedilen

modeller gerektirdikleri tasarım bilgisi ve içerdikleri sınırlı çözüm alanı

doğrultusunda sınırlı bir etkileĢim imkanı sunmaktadır. Bu tez, kullanıcının

hesaplamalı bina yerleĢimi sürecinde kontrolünü arttıracak müstakil ev ölçeğinde

çalıĢan etkileĢimli genetik algoritma yöntemini, Ho-Gen‘i tanıtmaktadır. Tasarım

aracı, kullanıcının geometrik ve topolojik girdilerine göre, ayrık müstakil ev

tipolojisine uygun farklı alanlı ve çok katlı kütle modelleri geliĢtirebilmektedir. Ho-

Gen bu kriterlerin yönetimi için etkileĢimli bir arayüz sunmakta ve kullanıcının

programın duraksadığı ara zamanlarda problem tanımını ve çıkan kütle modellerini

değiĢtirmesine olanak vermektedir. GeliĢtirilen model, farklı karmaĢıklık ve ölçekte

iki konsept tasarım probleminde test edilmiĢtir. Ho-Gen, alınan sonuçlara göre

konsept tasarım problemlerine gereken çeĢitlikte ve uygunlukta örnekler vermeyi

baĢarmaktadır.

Anahtar Sözcükler: hesaplamalı bina yerleĢimi, müstakil ev, tasarım araĢtırması,

etkileĢimli genetik algoritma

vii

To my parents.

viii

ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincere gratitude to my thesis

supervisor Assist. Prof. Dr. Ġpek Gürsel Dino, for her guidance, support and patience

during the production of this thesis. Her guidance has deeply affected my

understanding on computational design from the last year of my undergraduate

education and has given me the driving force behind working on this subject.

I would also like to thank to my jury members: Prof. Dr. Zeynep Mennan, Prof. Dr.

Arzu Gönenç Sorguç, Prof. Dr. Mine Özkar Kabakçıoğlu, and Assist. Prof. Dr.

Yasemin Afacan for their comments and discussions through the research process.

I would like to thank to my mother Melek Sakaryalı, for her limitless belief in my

success, emotional support, and patience during the stressful times. I would not be

able reach this degree without her support in every step of my life.

Last but not least, I would like to thank to my girlfriend Gizem Akköse for all her

love, motivation, support, and understanding; my closest friends Nihan Avcı and

Ömer Akyüz for the precious joy they bring into my life; and my colleagues Ġnanç

Eray, Pınar Güvenç, Uğur Ġmamoğlu, and Egemen Onur Kaya for their help in my

hard times.

ix

TABLE OF CONTENTS

ABSTRACT ... v

ÖZ ... vi

ACKNOWLEDGEMENTS ... viii

TABLE OF CONTENTS .. ix

LIST OF TABLES.. xii

LIST OF FIGURES ... xiv

1 INTRODUCTION .. 1

1.1 Motivation ... 1

1.2 Background ... 3

1.3 Problem Statement .. 8

1.4 ―House Generator‖, a New Computational Tool for Non-experts............... 12

1.5 Research Questions ... 13

1.6 Research Outline ... 14

2 LITERATURE REVIEW ... 16

2.1 Computational Tools for the Design of SFH ... 16

2.1.1 Single-Family House .. 16

2.1.2 From Mass Production to Mass Customization 17

2.1.3 Computational Tools for Mass Customization 20

2.2 Computational design tools and automation ... 21

2.2.1 Automation and Occupations ... 22

2.2.2 Automation and Design.. 28

2.3 Computational design tools and user interaction... 33

2.3.1 User-friendly interface and trial-and-error learning 34

2.3.2 Appropriate solution space ... 39

2.4 Computational Approaches to Layout Design Problem 43

2.4.1 Construction methods .. 43

2.4.2 Improvement Methods ... 47

x

2.5 Genetic Algorithms (GA) .. 58

2.5.1 Mechanism of genetic algorithm ... 60

2.5.2 Interactive genetic algorithm ... 62

3 TOOL DEVELOPMENT... 66

3.1 Representation ... 67

3.1.1 Building blocks .. 68

3.1.2 Interrelations .. 69

3.1.3 Initial User Interaction ... 71

3.2 Generation & Guidance ... 75

3.2.1 Genotype and phenotype representation .. 75

3.2.2 Genetic Algorithms .. 79

3.2.3 User Guidance .. 81

3.3 Evaluation.. 82

4 CASE STUDIES .. 93

4.1 Case study inputs ... 95

4.1.1 Case study 1 – Small scale ... 95

4.1.2 Case study 2 – Medium scale... 96

4.2 Case study results .. 99

4.2.1 Case study 1a ... 99

4.2.2 Case study 1b ... 108

4.2.3 Case study 2a ... 113

4.2.4 Case study 2b ... 118

4.2.5 Case study 2c ... 126

5 CONCLUSION .. 130

5.1 Limitations and Future Work .. 134

REFERENCE ... 136

APPENDICES…………………………………………………………………..…144

APPENDIX A .. 145

APPENDIX B .. 153

APPENDIX C .. 166

xi

APPENDIX D .. 174

APPENDIX E .. 182

xii

LIST OF TABLES

Table 1. The layout elements (LEs) in Ho-Gen ... 69

Table 2. Relationship types in Ho-Gen .. 70

Table 3. General inputs. ... 71

Table 4. Main Space Inputs .. 72

Table 5. Stair Inputs ... 73

Table 6. Other Specific Inputs ... 73

Table 7. Evolutionary Inputs .. 74

Table 8. Termination Inputs ... 74

Table 9. Ho-Gen constraints .. 83

Table 10 Case Study Table ... 94

Table 11. Main Space Inputs (Case Study 1) ... 95

Table 12. Patio Inputs (Case Study 1) .. 95

Table 13. Porch Inputs (Case Study 1) ... 96

Table 14. Garage Inputs (Case Study 1) .. 96

Table 15. Space Adjacency Matrix (Case Study 1) .. 96

Table 16. Chimney Adjacency Matrix (Case Study 1) .. 96

Table 17. Main Space Inputs (Case Study 2) ... 97

Table 18. Patio Inputs (Case Study 2) .. 97

Table 19. Porch Inputs (Case Study 2) ... 98

Table 20. Garage Inputs (Case Study 2) .. 98

Table 21. Space Adjacency Matrix (Case Study 2) .. 98

Table 22. Stair Adjacency Matrix (Case Study 2) .. 99

Table 23. Chimney Adjacency Matrix (Case Study 2) .. 99

Table 24. Weighted fitness results for six alternatives - Case study 1 – Compactness

D (Drawn by the author). ... 107

Table 25 Weighted fitness result for six alternatives - Case study 2 – Compactness A.

.. 117

Table 26. Weighted fitness results for six alternatives - Case study 2 – Compactness

C. .. 117

Table 27.Weighted fitness result for six alternatives - Case study 2 – Compactness D.

xiii

 .. 117

Table 28. Weighted fitness results for six alternatives - Case study 2 – Compactness

C. .. 124

xiv

LIST OF FIGURES

Figure 1. Toll Brother's web-based configurator toolkit offers a list of possible

variations (on the left) for the user. Configurator gives simultaneous feedback on the

layout to inform the user about the effects of the changes. ... 5

Figure 2. McLeish's toolkit provides a physical model for the user to arrange

appliances and furniture while seeing the results in 3D perspective in real time (left).

McLeish also takes the advantage of computational critics that checks the layout for

mistakes and present relevant solutions (right). (McLeish, 2003) 7

Figure 3. Duarte's shape grammar despite the hard coded geometric rules can create

a variety of house forms similar in the style of Alvaro Siza‘s Malagueira Housing

project. (Duarte, 2001) ... 8

Figure 5. Schematic description of a simple layout construction algorithm (Drawn by

the author). ... 44

Figure 6. A final layout by SHAPE. (Hassan, Hogg, and Smith, 1986) 46

Figure 7. Schematic description of a simple layout improvement algorithm, where

layout elements a, b and c are to be arranged into a compact building form (Drawn

by the author). .. 48

Figure 8. Example layouts from CRAFT (left) and MULTIPLE (right). (Lee and

Kim, 2000) ... 49

Figure 9. Apartment configuration by Yi and Yi's SA algorithm (Yi and Yi, 2014). . 51

Figure 10. The fitness landscape of design problems is usually multimodal with

multiple peaks. (Russell and Norvig, 1995)... 52

Figure 11. A set of apartment layout solutions generated by Verma and Thakur's

algorithm. (Verma and. Thakur, 2010) ... 54

Figure 12. Perspective views of layout solutions by Doulgerakis‘ algorithm.

(Doulgerakis, 2007) ... 55

Figure 13. Three floors of layout configurations by EPSAP. (Rodrigues, Gaspar, and

Gomes, 2013) ... 56

Figure 14. Hotel room arrangements by GENETICA. (Virirakis, 2003) 57

Figure 15. Abstract paintings by EVOECO. (Feng and Ting, 2014) 59

Figure 16. GA mechanism (Drawn by the author) ... 61

xv

Figure 17. Generated 3D solutions by GADES. (Bentley and Corne, 2002)............. 63

Figure 18. Layout generated from the initial user sketch by the IGA of Michalek.

(Michalek, 2002) .. 64

Figure 19. Framework representing the working principle of Ho-Gen (Drawn by

author). ... 67

Figure 20. An example layout hierarchy in Ho-Gen (Drawn by the author). 68

Figure 21. Main Space Phenotype. (Drawn by the author) .. 75

Figure 22. Stair Phenotype. (Drawn by the author) ... 76

Figure 23. Chimney Phenotype. (Drawn by the author) .. 77

Figure 24. Garage Phenotype. (Drawn by the author) ... 77

Figure 25. Porch Phenotype. (Drawn by the author) ... 78

Figure 26. Patio Phenotype. (Drawn by the author) .. 79

Figure 27. Fitness function equation. (Drawn by the author) 82

Figure 28. Overflow Evaluator (Drawn by the author). ... 84

Figure 29. Intersection evaluator (Drawn by the author). .. 84

Figure 30. Dimension evaluator (By the author). .. 85

Figure 31. Relation evaluator - SP (Drawn by the author). .. 86

Figure 32. Relation evaluator - STA (Drawn by the author). 87

Figure 33. Relation evaluator - CHI (Drawn by the author). 87

Figure 34. Compactness evaluator (Drawn by the author). 88

Figure 34. Cantilever evaluator (Drawn by the author). .. 89

Figure 35. Circulation evaluator (Drawn by the author). ... 89

Figure 36. View evaluator (Drawn by the author). .. 90

Figure 37. View evaluator (Drawn by the author). .. 91

Figure 38. Formula to normalize constraint scores (Drawn by the author). 95

Figure 39. Alternative 1 - Case study 1 – Compactness D - Parallel projection from 4

sides. (Drawn by the author) .. 100

Figure 40. Alternative 1 - Case study 1 – Compactness D - Top view. (Drawn by the

author) .. 100

Figure 41. Alternative 2 - Case study 1 Compactness D - Parallel projection from 4

sides. (Drawn by the author) .. 101

Figure 42. Alternative 2 - Case study 1 – Compactness D - Top view. (Drawn by the

author) .. 101

Figure 43. Alternative 3 - Case study 1 – Compactness D - Parallel projection from 4

xvi

sides. (Drawn by the author) .. 102

Figure 44. Alternative 3 - Case study 1 – Compactness D - Top view. (Drawn by the

author) .. 102

Figure 45. Alternative 4 - Case study 1 – Compactness D - Parallel projection from 4

sides. (Drawn by the author) .. 103

Figure 46. Alternative 4 - Case study 1 – Compactness D - Top view. (Drawn by the

author) .. 103

Figure 47. Alternative 5 - Case study 1 – Compactness D- Parallel projection from 4

sides. (Drawn by the author) .. 104

Figure 48. Alternative 5 - Case study 1 – Compactness D - Top view. (Drawn by the

author) .. 104

Figure 49. Alternative 6 - Case study 1 – Compactness D - Parallel projection from 4

sides. (Drawn by the author) .. 105

Figure 50. Alternative 6 - Case study 1 – Compactness D - Top view. (Drawn by the

author) .. 105

Figure 51. Best total fitness score - Case study 1 – Compactness D. (Drawn by the

author) .. 106

Figure 52. Best evaluator fitness score - Case study 1 –Compactness D. (Drawn by

the author) .. 106

Figure 53. Average total fitness score - Case study 1 – Compactness D. (Drawn by

the author) .. 106

Figure 54. Average evaluator fitness score - Case study 1 – Compactness D. (Drawn

by the author) ... 107

Figure 55. The results of Iteration 1 - Parallel projection from four sides - Case study

1– Interactive run. (Drawn by the author) ... 109

Figure 56. The results of Iteration 1 – Top view - Case study 1 – Interactive run.

(Drawn by the author) .. 109

Figure 57. Given layout arrangement for Iteration 2 - Parallel projection from four

sides - Case study 1 – Interactive run. (Drawn by the author) 110

Figure 58. Given layout arrangement for Iteration 2 – Top View - Case study 1 –

Interactive run. (Drawn by the author) .. 110

Figure 59. The results of Iteration 2 - Parallel projection from four sides - Case study

1 – Interactive run. (Drawn by the author) .. 111

Figure 60. The results of Iteration 2 – Top view - Case study 1b – Interactive run.

xvii

(Drawn by the author) .. 111

Figure 61. The results of Iteration 3 - Parallel projection from four sides - Case study

1 – Interactive run. (Drawn by the author) ... 112

Figure 62. The results of Iteration 3 – Top view - Case study 1 – Interactive run.

(Drawn by the author) .. 112

Figure 63. Alternative 6 - Case study 2 – Compactness A – Parallel projection from 4

sides (Drawn by the author). .. 114

Figure 64. Alternative 6 - Case study 2a – Compactness A – Top view (Drawn by the

author) .. 114

Figure 65. Alternative 5 - Case study 2 – Compactness C – Parallel projection from 4

sides. (Drawn by the author) .. 115

Figure 66. Alternative 5 - Case study 2 – Compactness C – Top view. (Drawn by the

author) .. 115

Figure 67. Alternative 5 - Case study 2 – Compactness D- Parallel projection from 4

sides. (Drawn by the author) .. 116

Figure 68. Alternative 5 - Case study 2 – Compactness D - Top view. (Drawn by the

author) .. 116

Figure 69. Alternative 1 - Case study 2 – Compactness C- Parallel projection from

four sides. (Drawn by the author) .. 119

Figure 70. Alternative 1 - Case study 2 – Compactness C – Top view. (Drawn by the

author) .. 119

Figure 71. Alternative 2 - Case study 2 – Compactness C – Parallel projection from 4

sides. (Drawn by the author) .. 120

Figure 72. Alternative 2 - Case study 2 – Compactness B – Top view. (Drawn by the

author) .. 120

Figure 73. Alternative 3 - Case study 2 – Compactness C – Parallel projection from 4

sides. (Drawn by the author) .. 121

Figure 74. Alternative 3 - Case study 2 – Compactness C – Top view. (Drawn by the

author) .. 121

Figure 75. Alternative 4 - Case study 2 – Compactness C – Parallel projection from 4

sides. (Drawn by the author) .. 122

Figure 76. Alternative 4 - Case study 2 – Compactness C – Top view. (Drawn by the

author) .. 122

Figure 77. Alternative 6 - Case study 2 – Compactness C – Parallel projection from 4

xviii

sides. (Drawn by the author) .. 123

Figure 78. Alternative 6 - Case study 2 – Compactness C– Top view. (Drawn by the

author) .. 123

Figure 79. Best total fitness score - Case study 2 – Compactness C (Drawn by the

author). ... 124

Figure 80. Best fitness score of evaluators - Case study 2 – Compactness C (Drawn

by the author). .. 124

Figure 81. Average total fitness score - Case study 2 – Compactness C (Drawn by the

author). ... 125

Figure 82. Average fitness score of evaluators - Case study 2 – Compactness C

(Drawn by the author). ... 125

Figure 83. Initial sketch layout given to Ho-Gen – fitness: 0.176, Covf:0.019,

Cint:0.068, Cdim:0.516, Crel:0.075, Ccomp:0.451, Ccant:0.000, Ccirc:0.463, Cview:0.000 –

Parallel projection from four sides - Case study 2d – Interactive run. (Drawn by the

author) .. 126

Figure 84. Initial sketch layout given to Ho-Gen – Top View - Case study 2d –

Interactive run. (Drawn by the author) .. 127

Figure 85. Best layout solution for generation 120 – fitness: 0.079, Covf:0.000,

Cint:0.000, Cdim:0.516, Crel:0.024, Ccomp:0.163, Ccant:0.000, Ccirc:0.414, Cview:0.000 –

Parallel projection from four sides - Case study 2d – Interactive run. (Drawn by the

author) .. 127

Figure 86. Best layout solution for generation 120 – Top View - Case study 2d –

Interactive run. (Drawn by the author) .. 128

Figure 87. Best fitness score - Case study 2d (Drawn by the author). 128

Figure 88. Best fitness scores of evaluators - Case study 2d (Drawn by the author).

.. 128

Figure 89. Average fitness score - Case study 2d (Drawn by the author). 129

Figure 90. Average fitness scores of evaluators - Case study 2d (Drawn by the

author). ... 129

Figure 91. Best layout solution for generation 20 – fitness: 0.062, Covf:0.000,

Cint:0.440, Cdim:0.500, Crel:0.000, Ccomp:0.00, Ccant:0.00, Ccirc:0.300, Cview:0.000 –

Parallel projection from four sides - Case study 1 – Compactness D. (Drawn by the

author) .. 145

Figure 92. Best layout solution for generation 20 – Top View - Case study 1–

xix

Compactness D. (Drawn by the author) ... 146

Figure 93. Best layout solution for generation 40 – fitness: 0.047, Covf:0.000,

Cint:0.200, Cdim:0.300, Crel:0.000, Ccomp:0.00, Ccant:0.00, Ccirc:0.172, Cview:0.000 –

Parallel projection from four sides - Case study 1 – Compactness D. (Drawn by the

author) .. 146

Figure 94. Best layout solution for generation 40 – Top View - Case study 1 –

Compactness D. (Drawn by the author) ... 147

Figure 95. Best layout solution for generation 60 – fitness: 0.041, Covf:0.000,

Cint:0.266, Cdim:0.401, Crel:0.000, Ccomp:0.000, Ccant:0.000, Ccirc:0.172, Cview:0.000 –

Parallel projection from four sides - Case study 1 – Compactness D. (Drawn by the

author) .. 147

Figure 96. Best layout solution for generation 60 – Top View - Case study 1 –

Compactness D. (Drawn by the author) ... 148

Figure 97. Best layout solution for generation 80 – fitness: 0.038, Covf:0.000,

Cint:0.241, Cdim:0.383, Crel:0.05, Ccomp:0.000, Ccant:0.000, Ccirc:0.172, Cview:0.000 –

Parallel projection from four sides - Case study 1 – Compactness D. (Drawn by the

author) .. 148

Figure 98. Best layout solution for generation 80 – Top View - Case study 1 –

Compactness D. (Drawn by the author) ... 149

Figure 99. Best layout solution for generation 100 – fitness: 0.037, Covf:0.000,

Cint:0.237, Cdim:0.334, Crel:0.000, Ccomp:0.000, Ccant:0.000, Ccirc:0.172, Cview:0.000 –

Parallel projection from four sides - Case study 1 – Compactness D. (Drawn by the

author) .. 149

Figure 100. Best layout solution for generation 100 – Top View - Case study 1 –

Compactness D. (Drawn by the author) ... 150

Figure 101. Best layout solution for generation 120 – fitness: 0.039, Covf:0.00,

Cint:0.185, Cdim:0.366, Crel:0.000, Ccomp:0.000, Ccant:0.000, Ccirc:0.172, Cview:0.000 –

Parallel projection from four sides - Case study 1 – Compactness D. (Drawn by the

author) .. 150

Figure 102. Best layout solution for generation 120 – Top View - Case study 1 –

Compactness D. (Drawn by the author) ... 151

Figure 103. Best layout solution for generation 140 – fitness: 0.39, Covf:0.00,

Cint:0.000, Cdim:0.395, Crel:0.000, Ccomp:0.118, Ccant:0.00, Ccirc:0.172, Cview:0.000 –

Parallel projection from four sides - Case study 1 – Compactness D. (Drawn by the

xx

author) .. 151

Figure 104. Best layout solution for generation 140 – Top View - Case study 1 –

Compactness D. (Drawn by the author) ... 152

Figure 105. Best layout solution for generation 0 – fitness:0.390, Covf:0.695,

Cint:0.646, Cdim:0.739, Crel:0.160, Ccomp:0.000, Ccant:0.000, Ccirc:0.632, Cview:0.091 –

Parallel projection from four sides - Case study 2 – Compactness A (Drawn by the

author). ... 153

Figure 106. Best layout solution for generation 0 – Top View - Case study 2 –

Compactness A. (Drawn by the author) ... 154

Figure 107. Best layout solution for generation 20 – fitness:0.105, Covf:0.000,

Cint:0.311, Cdim:0.628, Crel:0.007, Ccomp:0.000, Ccant:0.000, Ccirc:0.287, Cview:0.000 –

Parallel projection from four sides - Case study 2 – Compactness A (Drawn by the

author). ... 154

Figure 108. Best layout solution for generation 20 – Top View - Case study 2 –

Compactness A. (Drawn by the author) ... 155

Figure 109. Best layout solution for generation 40 – fitness:0.048, Covf:0.000,

Cint:0.000, Cdim:0.504, Crel:0.001, Ccomp:0.000, Ccant:0.000, Ccirc:0.226, Cview:0.000 –

Parallel projection from four sides - Case study 2 – Compactness A (Drawn by the

author). ... 155

Figure 110. Best layout solution for generation 40 – Top View - Case study 2 –

Compactness A. (Drawn by the author) ... 156

Figure 111. Best layout solution for generation 70 – fitness:0.033, Covf:0.000,

Cint:0.000, Cdim:0.379, Crel:0.000, Ccomp:0.000, Ccant:0.000, Ccirc:0.208, Cview:0.000 –

Parallel projection from four sides - Case study 2 – Compactness A (Drawn by the

author). ... 156

Figure 112. Best layout solution for generation 70 – Top View - Case study 2 –

Compactness A (Drawn by the author). ... 157

Figure 113. Alternative 1 - Case study 2a – Compactness A – Parallel projection from

4 sides (Drawn by the author). ... 157

Figure 114. Alternative 1 - Case study 2a – Compactness A – Top view (Drawn by

the author). ... 158

Figure 115. Alternative 2 - Case study 2a – Compactness A – Parallel projection from

4 sides (Drawn by the author). ... 158

Figure 116. Alternative 2 - Case study 2a – Compactness A – Top view. (Drawn by

xxi

the author) .. 159

Figure 117. Alternative 3 - Case study 2a – Compactness A – Parallel projection from

4 sides (Drawn by the author). ... 159

Figure 118. Alternative 3 - Case study 2a – Compactness A – Top view (Drawn by

the author). ... 160

Figure 119. Alternative 4 - Case study 2a – Compactness A – Parallel projection from

4 sides (Drawn by the author). ... 160

Figure 120. Alternative 4 - Case study 2a – Compactness A – Top view (Drawn by

the author). ... 161

Figure 121. Alternative 5 - Case study 2a – Compactness A – Parallel projection

from 4 sides (Drawn by the author). .. 161

Figure 122. Alternative 5 - Case study 2 – Compactness A – Top view (Drawn by the

author). ... 162

Figure 123. Alternative 6 - Case study 2 – Compactness A – Parallel projection from

4 sides (Drawn by the author). ... 162

Figure 124. Alternative 6 - Case study 2 – Compactness A – Top view (Drawn by the

author) .. 163

Figure 125. Best fitness score of total fitness - Case study 2 – Compactness A

(Drawn by the author). ... 163

Figure 126. Best fitness score of evaluators - Case study 2 – Compactness A (Drawn

by the author). .. 164

Figure 127. Average fitness score for total fitness - Case study 2 – Compactness A

(Drawn by the author). ... 164

Figure 128. Average fitness score of evaluators - Case study 2 – Compactness A

(Drawn by the author). ... 165

Figure 129. Best layout solution for generation 0 – fitness:0.44, Covf:0.43, Cint:0.75,

Cdim:0.52, Crel:0.27, Ccomp:0.57, Ccant:0.00, Ccirc:0.60, Cview:0.04 – Parallel projection

from four sides - Case study 2 – Compactness C. (Drawn by the author) 166

Figure 130. Best layout solution for generation 0 – Top View - Case study 2 –

Compactness C. (Drawn by the author) ... 166

Figure 131. Best layout solution for generation 10 – fitness:0.20, Covf:0.27, Cint:0.52,

Cdim:0.52, Crel:0.03, Ccomp:0.22, Cchim:0.39, Ccant:0.00, Ccirc:0.51, Cview:0.00 – Parallel

projection from four sides - Case study 2 – Compactness C. (Drawn by the author)

 .. 167

xxii

Figure 132. Best layout solution for generation 10 – Top View - Case study 2 –

Compactness C. (Drawn by the author) ... 167

Figure 133. Best layout solution for generation 20 – fitness:0.15, Covf:0.09, Cint:0.34,

Cdim:0.39, Crel:0.02, Ccomp:0.27, Ccant:0.00, Ccirc:0.37, Cview:0.00 – Parallel projection

from four sides - Case study 2 – Compactness C. (Drawn by the author) 168

Figure 134. Best layout solution for generation 20 – Top View - Case study 2 –

Compactness C. (Drawn by the author) ... 168

Figure 135. Best layout solution for generation 30 – fitness:0.12, Covf:0.09, Cint:0.19,

Cdim:0.39, Crel:0.01, Ccomp:0.35, Ccant:0.00, Ccirc:0.28, Cview:0.00 – Parallel projection

from four sides - Case study 2 – Compactness C. (Drawn by the author) 169

Figure 136. Best layout solution for generation 30 – Top View - Case study 2 –

Compactness C. (Drawn by the author) ... 169

Figure 137. Best layout solution for generation 40 – fitness:0.08, Covf:0.09, Cint:0.00,

Cdim:0.60, Crel:0.03, Ccomp:0.33, Ccant:0.00, Ccirc:0.26, Cview:0.00 – Parallel projection

from four sides - Case study 2 – Compactness C. (Drawn by the author) 170

Figure 138. Best layout solution for generation 40 – Top View - Case study 2 –

Compactness C. (Drawn by the author) ... 170

Figure 139. Best layout solution for generation 80 – fitness: 0.07, Covf:0.09, Cint:0.00,

Cdim:0.53, Crel:0.01, Ccomp:0.27, Ccant:0.00, Ccirc:0.27, Cview:0.00 – Parallel projection

from four sides - Case study 2 – Compactness C. (Drawn by the author) 171

Figure 140. Best layout solution for generation 80 – Top View - Case study 2 –

Compactness C (Drawn by the author). ... 171

Figure 141. Best total fitness score - Case study 2 – Compactness C(Drawn by the

author). ... 172

Figure 142. Best fitness score of evaluators - Case study 2 – Compactness C (Drawn

by the author). .. 172

Figure 143. Average total fitness score - Case study 2 – Compactness C (Drawn by

the author). ... 173

Figure 144. Average fitness score of evaluators - Case study 2 – Compactness C

(Drawn by the author). ... 173

Figure 145. Best layout solution for generation 0 – fitness:0.390, Covf:0.542,

Cint:0.418, Cdim:0.518, Crel:0.289, Ccomp:0.663, Ccant:0.000, Ccirc:0.368, Cview:0.067 –

Parallel projection from four sides - Case study 2 – Compactness D. (Drawn by the

author) .. 174

xxiii

Figure 146. Best layout solution for generation 0 – Top View - Case study 2 –

Compactness D. (Drawn by the author) ... 175

Figure 147. Best layout solution for generation 10 – fitness:0.258, Covf:0.000,

Cint:0.525, Cdim:0.518, Crel:0.069, Ccomp:0.585, Ccant:0.000, Ccirc:0.375, Cview:0.000 –

Parallel projection from four sides - Case study 2 – Compactness D. (Drawn by the

author) .. 175

Figure 148. Best layout solution for generation 10 – Top View - Case study 2 –

Compactness D. (Drawn by the author) ... 176

Figure 149. Best layout solution for generation 20 – fitness:0.200, Covf:0.000,

Cint:0.381, Cdim:0.518, Crel:0.036, Ccomp:0.611, Ccant:0.000, Ccirc:0.243, Cview:0.007 –

Parallel projection from four sides - Case study 2 – Compactness D. (Drawn by the

author) .. 176

Figure 150. Best layout solution for generation 20 – Top View - Case study 2 –

Compactness D. (Drawn by the author) ... 177

Figure 151. Best layout solution for generation 40 – fitness:0.103, Covf:0.000,

Cint:0.000, Cdim:0.650, Crel:0.030, Ccomp:0.376, Ccant:0.000, Ccirc:0.200, Cview:0.007 –

Parallel projection from four sides - Case study 2 – Compactness D. (Drawn by the

author) .. 177

Figure 152. Best layout solution for generation 40 – Top View - Case study 2 –

Compactness D. (Drawn by the author) ... 178

Figure 153. Best layout solution for generation 60 – fitness:0.089, Covf:0.000,

Cint:0.000, Cdim:0.592, Crel:0.019, Ccomp:0.315, Ccant:0.000, Ccirc:0.200, Cview:0.007 –

Parallel projection from four sides - Case study 2 – Compactness D. (Drawn by the

author) .. 178

Figure 154. Best layout solution for generation 60 – Top View - Case study 2 –

Compactness D. (Drawn by the author) ... 179

Figure 155. Best layout solution for generation 20 – fitness: 0.103, Covf:0.000,

Cint:0.000, Cdim:0.523, Crel:0.037, Ccomp:0.263, Ccant:0.000, Ccirc:0.455, Cview:0.000 –

Parallel projection from four sides - Case study 2d – Interactive run. (Drawn by the

author) .. 179

Figure 156. Best total fitness score - Case study 2 – Compactness D (Drawn by the

author). ... 180

Figure 157. Best evaluator score - Case study 2 – Compactness D (Drawn by the

author). ... 180

xxiv

Figure 158. Average total fitness score - Case study 2 – Compactness D (Drawn by

the author). ... 181

Figure 159. Average evaluator score - Case study 2 – Compactness D (Drawn by the

author). ... 181

Figure 160. Best layout solution for generation 20 – Top View - Case study 2d –

Interactive run. (Drawn by the author) .. 182

Figure 161. Best layout solution for generation 40 – fitness: 0.089, Covf:0.000,

Cint:0.000, Cdim:0.502, Crel:0.031, Ccomp:0.196, Ccant:0.000, Ccirc:0.455, Cview:0.000 –

Parallel projection from four sides - Case study 2d – Interactive run. (Drawn by the

author) .. 182

Figure 162. Best layout solution for generation 40 – Top View - Case study 2d –

Interactive run. (Drawn by the author) .. 183

Figure 163. Best layout solution for generation 80 – fitness: 0.083, Covf:0.000,

Cint:0.000, Cdim:0.552, Crel:0.024, Ccomp:0.163, Ccant:0.000, Ccirc:0.450, Cview:0.000 –

Parallel projection from four sides - Case study 2d – Interactive run. (Drawn by the

author) .. 183

Figure 164. Best layout solution for generation 80 – Top View - Case study 2d –

Interactive run. (Drawn by the author) .. 184

1

CHAPTER 1

INTRODUCTION

1.1 Motivation

The practice of architectural design is constantly changing with the increase in

computational power and the growing extent of research on developing models to

integrate computation into the architectural design process. Computational tools for

architecture have gone beyond their usual use in representation and documentation

which are not directly design related works. Instead, architects take the advantage of

computational support just within the design process as an amplifier of their

cognitive capabilities. Computation helps architects to work with complex data

structures, explore more solutions, and give confident design decisions. Yet, another

group of computational design tools aims to shift the focus from the practice of

architectural design to the practitioner himself/herself. The target audience of such

computational tools is the non-expert designers who are the occupants or future

users. The purpose of such a shift is to provide the necessary support for non-expert

designers to make them capable in using their own creative and personal ideas for

less complex architectural problems. Similarly, this research aims to develop a

computational tool that supports non-experts in the architectural design of single-

family houses (SFH).

SFH is a suitable architectural typology for the design participation of non-experts in

terms of its simplicity and the level of required customization. SFH is a freestanding

building that is occupied by a single family. The design process of SFH is usually

simpler in terms of the size of the architectural program associated with common

domestic needs. Additionally, the design process is very user-centric because of the

importance of occupant‘s lifestyle, aesthetic understanding, and cultural background.

This personal information is best known by the occupants themselves. The high level

2

of customization and the relative simplicity of SFH create a potential for a design

participation model. This potential can create a strong alternative to the current state

of the housing market.

Nowadays, owning a private architect designed house is a priority for most people.

Despite of the importance of SFH in architectural history with iconic SFH examples

such as Fallingwater House or Villa Savoye, today architect‘s participation in the

housing industry is very limited. The largest portion of SFH industry is currently

held by tract house developers. These developers respond to housing needs usually

with cookie-cutter projects. Such projects are usually related to a monotony of box-

shaped buildings with little or no alteration. Therefore, current state of the housing

industry is away from reflecting the individual taste and needs of their occupants.

Alternatively, a certain number of architectural approaches reveal the advantages of a

bottom-up procedure to housing. During the recent years, the popularity of

participatory design in SFH has been rising due to a number of projects. A significant

example is Quinta Monroy Social Housing
1
 project in Chile by Pritzker winning

architect Alejandro Aravena. In Quinta Monroy, Aravena provides the occupants

only one-half of the house which leaves the occupant the other half to design and

expand over time.
2
 Another prominent example is WikiHouse

3
, an open source

project that shares construction documents and assembly manuals of a set of houses.

WikiHouse aims to create a new housing industry where occupants or small

communities can build for themselves with abundant materials and prevalent

manufacturing techniques such as CNC.
4
 One other example is the advancing

potential of prefabricated houses with the developments in mass customization

industry. These developments can provide a powerful alternative to the current

1
 ―Quinta Monroy / ELEMENTAL,‖ ArchDaily, December 31, 2008,

http://www.archdaily.com/10775/quinta-monroy-elemental/.

2
 ―Quinta Monroy / ELEMENTAL.‖

3
 ―WikiHouse,‖ WikiHouse, accessed December 19, 2017, https://wikihouse.cc/.

4
 ―WikiHouse.‖

3

problematic state of SFH industry.

In the abundance of open-source knowledge about construction systems, the

increasing prevalence of mass customization and architects‘ growing intent in

participatory design can reverse the top down hierarchy in housing industry. In this

context, an important issue is the capability of future occupants in the design of their

own houses. The growing extent of house options both in open-source and in

prefabricated housing domains are not going reach far away from the current level of

standardization without the proper integration of the occupants in the design process.

Future occupants should find ways to combine, subtract, and reinvent the available

house options in this abundance to reach a level of customization that satisfies their

individual needs. In this context the development of computational tools that

supports the occupants in the design of their own house come into prominence.

1.2 Background

The idea of user-centered architectural design has a rich historical background both

in academic and professional environments. The first collective research on the user

participation in architectural design was realized in ―Design Participation‖

conference in 1971 with the worldwide attendance of multi-disciplinary

participants.
5
 Developing computational tools to support non-experts in architectural

design was already an issue in ―Design Participation‖ conference that is presented by

architects Yona Friedman and Nicholas Negroponte.
6
 Despite of this early historical

background, it is not possible to come up with a significant project that takes the

advantage of such a model. The recent popularity of such model can be a result of

the technological advancements in manufacturing, construction, and computation.

A user-centered design process requires a high-level customization in the

5
 Yanki Lee, ―Design Participation Tactics: Redefining User Participation in Design,‖ in Design

Research Society International Conference, 2006, 1.

6
 Theodora Vardouli, ―Who Designs?,‖ in Empowering Users through Design (Springer, 2015), 23.

4

manufacturing systems to meet the special needs of the occupants. On the contrary,

the efficiency of the past means of production has depended on standardization.

Mass production achieves high cost efficiency through the rapid manufacturing of

standardized products within specialized factories. This understanding in

manufacturing is still shifting with the developments in mass customization.

Computer-aided manufacturing systems such as laser cutting and 3D printing are

developing in the way to reach the economic efficiency of mass production while

creating an increased variety in the products. Nevertheless, certain challenges are

still evident for mass customization. According to Zha and Lu,
7
 an important

challenge for the mass customization model is the decision process for the level of

variety.
8
 In this way, the process of gathering, analyzing and processing the

information about the requirements and preferences of the customers becomes

important. This process puts multiple parties in between the manufacturers and the

occupants. The information is gathered through market surveys, generalized by data

analysts, and turned into actual design by the architects. Alternatively, developing

―user-friendly‖ computational tools that empower users to design their own houses

creates a more direct communication between the occupants and the means of

production.

Computational tools completely take away the need for surveys or data analysis

process as the occupants assess their needs on their own. On the other hand, the

exclusion of architects or expert designers does not mean that they have no impact

over the design process. The development of computational tools is itself a design

problem that requires the integration of architects and expert designers. Architects, as

the creator of the toolkits, reflect their subjective opinions over the toolkits by setting

limits over user‘s control over the design process. They also specify the possible

actions that the user can interact with tool‘s interface. In this way, the working

principle of design toolkits is closely related with developer‘s understanding on the

7
 Xuanfang Zha and Wen F. Lu, ―Knowledge Support for Customer-Based Design for Mass

Customization,‖ in Artificial Intelligence in Design ’02 (Springer, Dordrecht, 2002), 407–29,

https://doi.org/10.1007/978-94-017-0795-4_20.

8
 Zha and Lu, 407.

5

design process and the design problem. The subjectivity of these issues brought out

alternative computational tool approaches in terms of the type of user interaction and

design support.

The types of current computational tools can be specified as configurators, drafting

tools, and generative tools. First, configurators present a list of houses for the

occupants that are designed by the prefabricated developers. Users limit these

options with very basic assumptions such as the number of bedrooms. Developers

offer the users small decorative customizations over the selected house. A notable

example of configurators is Postgreen Homes.
9
 Postgreen Homes offers a web-based

interface for the individual apartments in their multi-family residences. Apartment

types vary according to the project and they present users customization in the

furniture and appliances. Toll Brothers
10

 is another construction business that offers a

configurator for customization. This configurator is a checklist interface for small

and predefined layout alterations excluding the hard construction work.

Figure 1. Toll Brother's web-based configurator toolkit offers a list of possible

variations (on the left) for the user. Configurator gives simultaneous feedback on the

layout to inform the user about the effects of the changes.

(Retrieved from: https://security.tollbrothers.ml-scp.com/FloorPlan/Details/157298,

Accessed on 26.12.2017.

9
 ―Customize a Green, Modern, Affordable Home by Postgreen Homes - CUSTOMIZE - Passive

Houses,‖ accessed December 25, 2017, http://customize.postgreenhomes.com/?s=0.

10
 ―New Construction Homes for Sale | Toll Brothers® Luxury Homes,‖ accessed December 25, 2017,

https://www.tollbrothers.com/.

6

Second, drafting tools provide users a simplified and user-friendly CAD or BIM

interface. The occupants, with the help of drafting tools, can design their own house

completely from the beginning or start from an initial layout template. As an

example, Express modular
11

 offers Project Homestyler, a home editing software that

is supported by Autodesk. The interface works with a library of building, furnishing,

and stylistic objects which the user can pick and arrange on the canvas. Certain

drafting tools provide additional support through knowledge-based systems.

According to Corne and Bentley,
12

 knowledge-based systems work with a built-in

knowledge base that integrates expert knowledge from the real professionals in the

involved domains. As an example, Williams
13

 developed a system that trains

computational critics for the design of SFHs. This approach differs from the general

knowledge-based systems because William‘s computational critic develops its

knowledge base by learning from a collection of real world house examples together

with an architect.
14

 The architect goes through each example and points out the

mistakes in the layout such as the placement of a component.
15

 McLeish
16

 took the

advantage of William‘s computational critics in his participatory design model for a

SFH. McLeish model understands the changes in the layout and updates itself both in

3D and in terms of the computational critics.

11
 ―Express Modular,‖ accessed December 10, 2017, http://expressmodular.com/dragonfly_editor.php.

12
 David Corne and Peter Bentley, Creative Evolutionary Systems, The Morgan Kaufmann Series in

Artificial Intelligence (San Francisco, CA: Morgan Kaufmann, 2002).

13
 Reid E. (Reid Edward) Williams, ―Training Architectural Computational Critics by Example‖

(Massachusetts Institute of Technology, 2003), http://dspace.mit.edu/handle/1721.1/16691.

14
 Williams, 27.

15
 Williams, 27.

16
 Thomas John McLeish, ―A Platform for Consumer Driven Participative Design of Open (Source)

Buildings‖ (Massachusetts Institute of Technology, 2003), http://dspace.mit.edu/handle/1721.1/32250.

7

Figure 2. McLeish's toolkit provides a physical model for the user to arrange

appliances and furniture while seeing the results in 3D perspective in real time (left).

McLeish also takes the advantage of computational critics that checks the layout for

mistakes and present relevant solutions (right). (McLeish, 2003)

Lastly, generative tools present users a direct design solution or a list of choices to

select from after gathering knowledge about their lifestyle and domestic needs. A

generative system works with an underlying generative logic to create a set of useful

and viable solutions according to the needs of the occupant. For example, Huang and

Krawczyk
17

 developed a generative tool that asks occupants a set of general

questions for the required spaces and get to a specific set of questions about the

finishes and appliances in the end.
 18

 At the end of every level, the occupant is given

a range of alternative solutions that satisfy their answers.
19

 Shape grammars are

another generative approach for non-expert design tools. A shape grammar consists

of a set of rules to transform an initial geometrical entity in consequent steps.
20

 An

important example of shape grammar use in non-expert computational tools is

17
 Chuen-huei Joseph Huang and Robert Krawczyk, ―A Choice Model of Consumer Participatory

Design for Modular Houses,‖ 2007.

18
 Huang and Krawczyk, 682,684.

19
 Huang and Krawczyk, 681.

20
 George Stiny, Shape : Talking about Seeing and Doing (Cambridge, Massachusetts : The MIT

Press, [2006], 2006).

8

Duarte‘s
21

 approach that generates houses in the style of Alvaro Siza‘s Malagueira

Housing project. The grammar is capable of creating the same houses that Siza

designed and a wide range of similar alternatives according to user preferences.

Figure 3. Duarte's shape grammar despite the hard coded geometric rules can create

a variety of house forms similar in the style of Alvaro Siza‘s Malagueira Housing

project. (Duarte, 2001)

1.3 Problem Statement

Computational tools for non-experts create an opportunity to abide the limitations of

the current housing market by presenting a co-design environment for the occupants

to develop their own living environments. Despite of the growing extent of

computational tools for non-expert designers, these approaches show certain

limitations in the essential user interaction process. It is logical that these tools

present a certain level of limitation as an expert level of freedom can be

overwhelming for a non-expert user. Nevertheless, such limitations should not

prevent non–expert designers to present their design abilities and creative ideas.

21
 José Pinto Duarte, ―Customizing Mass Housing : A Discursive Grammar for Siza‘s Malagueira

Houses‖ (Massachusetts Institute of Technology, 2001), http://dspace.mit.edu/handle/1721.1/8189.

9

According to Von Hippel and Katz,
22

 computational toolkits for non-experts should

present five important qualities: 1. Trial-and-error learning environment for the user,

2. Large enough solution space, 3.User-friendly interface that requires little or no

training, 4. Wide library of modules, and 5. Direct manufacturing without any

alterations.
23

 This research mainly focuses on the first three articles Von Hippel‘s list

because of their problematic state compared to the advances in the remaining

through computational manufacturing and BIM interfaces. In terms of the large

library of modules, BIM interfaces creates enough support while open-source

architecture continues to create a collaborative library of easily manufactured

building systems and appliances. On the other hand, computational manufacturing

gives the possibility to create customized products with a less or no penalty

compared to the mass production facilities. On the contrary, non-expert design tools

show certain limitations in terms of trial-and-error learning, appropriate solution

space, and user-friendly interface.

Computational tools do not present satisfactory user interface models that encourage

the user to learn through a trial-and-error process. Configurators provide a small

amount of choice to non-experts. The extent of user freedom does not get far from

small aesthetic decisions about the harmony of covering materials and economic

decisions about the total coverage of the selected appliances. Conversely, drafting

tools overwhelm the user with the level of freedom. Non-experts cannot be expected

to generate a wide range of alternatives for an effective trial-and-error process.

Generative tools seems to solve this problem by automating the generative process

however, they go through this process in a closed fashion. User does not have much

control or idea during the generation process, thus has a limited knowledge about the

reasons behind the generated solution.

Non-expert design tools have redundant limitations over the solution space. A large

22
 Eric Von Hippel and Ralph Katz, ―Shifting Innovation to Users via Toolkits,‖ Management Science

48, no. 7 (2002): 9–13.

23
 Von Hippel and Katz, 9–13.

10

solution space is required for computational design tools in order to create the

required level of customization for the user. Configurators provide small extents of

solutions space. A calculation of the total possible combinations by configurators can

bring a large number of alternatives, however the overall impact of such

combinations are inferior. As an example, configurator approaches do not present the

opportunity to configure the dimensions of the layout. On the other hand, the

determinism available in the current generative tools puts serious limits on the

solution space. The low interactivity in current non-expert generative tools requires

the predetermination of many serious design decisions during the development

process. A level of variation is still possible within this determinacy; however, it is

not possible to expect novel solutions. As an example, Duarte‘s shape grammar can

create a planned variety of houses according to the user‘s needs. However, the user

knows that he/she will end up with an Alvaro Siza house from the start.

The mentioned tools also fall short in terms of providing a user-friendly interface to

the user. As an example, the user should not need to go through an intense amount of

training before using the tool. From another point, the tool should give constructive

criticism upon the actions and decisions of the user to extend his/her vision. One

other useful quality is the flexibility of the tool. The tool‘s interface should not be

limiting and easy to configure without the need of a deep computational or

architectural expertise. All type of computational tools gave certain problems in

terms of the mentioned qualities for user-friendly interface.

Configurators work by a simplistic procedure that hardly needs any training.

Nevertheless, this is mostly due to the limited choice available for the user. The type

of support is closer to an online portfolio for the developer rather than a user-friendly

design tool.

Drafting toolkits, on the other hand, present a user-friendly interface for drafting

rather designing. The user can start drafting immediately with the help of modules in

the library. However, developing a full alternative is going to take a large amount of

time for a non-expert. Certain drafting toolkits utilize knowledge-based support for

the users but the type of support presented by knowledge-based systems requires an

expertise to understand and implement. The recommendations provided by such

11

systems can be multiple at times because of the large amount of conditional rules in

their domain. This kind of decision making on such conflicting situations is a design

expertise in itself. Another problem about knowledge-based systems is the difficulty

in the development process. Adding new rules to the system requires a high level of

architectural and computational expertise.

As for generative tools, the user interaction can be claimed as user-friendly.

Explaining the requirements in a guided way and selecting from a list of generated

alternatives is a simple and easy process. However, there is a certain point that brings

generative tools and configurators closer. Generative tools offer user a wider range

of control over the solutions and in a way, they generate novel solutions specific to

user‘s requirements. Yet, the user is distant from the actual generation process

because of the level of automation. Adding to that, the options presented to the user

is already limited by the developer of the tool. The procedure to learn occupant‘s

needs and the ways to provide for those needs is already decided by the developer.

The process is similar to an interview session with a foreign architect that speaks so

little in occupant‘s language. The occupant has no other choice than communicating

the requirements in this limited and predetermined sense. The user also has little

option to customize the working principle of generative tool. As an example,

defining a new shape grammar requires a computational and architectural expertise

beyond the level of non-expert.

In a creative process such as designing a house for the self, current computational

tools present certain limitations. There is a need for new computational approaches

that enhance user‘s control within the design process. In this way, non-expert users

require user-friendly interfaces in order to start the design process immediately

rather than going through an intense learning process. The provided design process

should not limit the user with a small number of choices. Instead, the user needs to

create the choices by exploring a large solution space. As a non-expert designer, the

user needs a level of guidance to find better paths. However, this assistance should

not be forced. Alternatively, the user needs the freedom to take other paths that can

lead to dead ends. In such instances, the tool should provide ways to modify the

initial problem structure, play with the available solutions, or interact with the

guidance mechanism so that the user can act upon the mistakes immediately and

12

learn from them.

1.4 “House Generator”, a New Computational Tool for Non-experts

This research targets the development of a computational approach to enhance non-

expert designers‘ capability to generate alternative SFH layouts in a more time and

effort efficient way. It presents House Generator (Ho-Gen), a novel genetic algorithm

(GA) with an interactive interface that can generate 3D conceptual layout

alternatives according to the user-defined geometric and topological criteria. Ho-Gen

acknowledges non-expert designers‘ requirement for trial-and-error learning,

appropriate solution space, and user-friendly interface thus, presents an interactive

generative approach that is enhanced by genetic algorithms (GA).

Genetic algorithms (GA) are efficient and effective search methods that can work

with large solution spaces. David Goldberg
24

 highlights GA approaches as some of

the most flexible, efficient, and robust algorithms in computational science. GA do

not require deterministic hard coded rules to generate satisfactory solutions, instead

they use the creative capabilities of evolution. According to a definition by Douglas

Futuyma,
25

 evolution is a blind process without predefined aims and objectives. As

Futuyma, evolutionary mechanism depends on the mindless process of ―natural

selection‖.
26

Natural selection is a simple process which occurs by the replacement of

less suitable organisms by organisms possessing certain genetic variations that

enhance their reproduction and survival capabilities.
27

 Evolution, despite of the

simplicity of its mechanism, is the main driving force behind the vast variation in the

natural environment. GA takes the advantage of evolution as a creative mechanism

for the problems of various professions from engineering to architecture. GA

24
 David Edward Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning

(Boston [u.a.: Addison-Wesley, 2012), 2.

25
 Douglas Futuyma, Evolution (Sinauer, 2013), 282.

26
 Futuyma, 282.

27
 Futuyma, 282.

13

eliminates the need for providing hard coded and deterministic rules for generative

systems, thus provides users an extended solution space to explore and achieve

higher customization.

Ho-Gen acknowledges the initial complexity of design problems and the limitations

in the design capabilities of future users. In this way, GA provide certain advantages.

In his book, Davis argues that GA are very forgiving algorithms that can generate

acceptable solutions despite the mistakes in their implementation and application.
28

Ho-Gen gives possibility to start with vague problem definitions and creates a

chance for the user to intervene in the generative process to modify the problem

definition. Therefore, Ho-Gen aims to support user‘s learning process through trial-

and-error. The user can acquire emergent feedback to the changes in the problem

definition and iterate towards better solutions.

1.5 Research Questions

The research is developed around the following main question:

What is the interactive computational model that can support occupants in the design

process of their single-family house?

The main research question is divided and answered by the following sub-questions:

 What are the processes and potentials of automated generation and user

interaction during the design exploration of single-family house?

 How can non-expert designers interact with computational tools in layout

design exploration?

 What are the specific design requirements of single-family house layouts?

28
 Lawrence Davis, ―Handbook of Genetic Algorithms,‖ 1991; quoted in Peter J. Bentley and David

W. Corne, ―Introduction to Creative Evolutionary Systems,‖ in Creative Evolutionary Systems, ed.

Peter J. Bentley and David W. Corne (Morgan Kaufmann Publishers Inc., 2002), 8.

14

 What are the existing computational approaches to architectural layout

design?

1.6 Research Outline

This research is organized in five chapters. Chapter 2 is dedicated to a Literature

Review. The review starts by presenting single-family house and the changing

dynamics in its production. Additionally, the review discusses the advantages of

computational design tools for non-experts within user-centered mass customization

models. The chapter also examines the models of computational support for non-

expert designers in order to decide upon the degree of designer control and

computational automation. It focuses on the general and architectural layout design

process, and presents past computational approaches to the layout design process.

Finally, a brief description on the history of genetic algorithms (GA) and an extended

study on its computational implementation are given.

Chapter 3 is dedicated to Tool Development. It presents the overall procedure of Ho-

Gen in both user interaction and evolutionary form generation processes.

Representation part explains Ho-Gen‘s interpretation of a SFH layout with both the

elements of SFH layout and their interrelations. User interaction part explains the

communication process between the user and Ho-Gen during the initial problem

definition through present inputs. Generation & Guidance part describes the

genotype and phenotype representations for the layouts that are necessary for the

genetic algorithm procedure. Various ways that the user can interact with the search

process to provide direct user guidance are presented. Lastly, Evaluation part

describes the mathematical model that evaluates layout solutions according to the

user inputs. This part explains the hard and soft constraints and the way they

integrate to the fitness function.

Chapter 4 presents Case Studies. This part aims to test Ho-Gen‘s performance in

generating optimal layouts. Ho-Gen is tested in five case studies with two levels of

complexity in terms of the number of layout elements and floors together with

varying user requirements. This part presents the definitions of case study problems

and the results of these studies in terms of the solutions generated by Ho-Gen and

15

fitness graphs.

Chapter 5 is the Conclusion part. This part discusses the contribution of this research

in computational design in architecture. The thesis concludes with a brief discussion

on the limitation of Ho-Gen in the conceptual design exploration and future work to

develop Ho-Gen.

16

CHAPTER 2

1. LITERATURE REVIEW

2.1 Computational Tools for the Design of SFH

2.1.1 Single-Family House

A house is a residential building for people to live and meet their domestic needs.

The domestic needs of humans are an essential feature in the definition of a house,

which require a complex and multi-dimensional examination process. Marcus
29

defines these needs in the following hierarchy: Shelter, security, comfort, socializing

& self-reflection, and aesthetic requirements. According to this hierarchy, a house

needs to serve people both for their low-level requirements and high-level

requirements. Low-level requirements start from the most general requirements such

as shelter and security. On the other hand, higher-level requirements are personal and

subjective. How well a house fulfills its purpose is related to its success in supplying

low and high-level requirements.

A house, on the lowest level, is an essential necessity for survival, which serves as a

shelter from environmental threats. The structure of this shelter should be stable

enough to resist against physical loads. The outer skin should be well insulated to

keep the indoor temperature within habitable levels. A house is also a secure place

that borders between the occupants and outsiders. These lower-level needs, despite

their importance, hardly define the purpose of house by themselves. Thus, they can

also be supplied by simpler structures such as emergency shelters.

29
 Clare Cooper Marcus, Easter Hill Village: Some Social Implications of Design (Free Press, 1975).

17

House, apart from sheltering needs, is also a cultural issue. The connection between

spaces of inhabitation and life-style is a result of owner‘s cultural and traditional

expression.
30

 These needs start to become evident after the third level of the

hierarchy, comfort. Comfort is a vague term that can refer to environmental comfort

as a technical aspect, or it can also relate to privacy from a socio-cultural

perspective. The later steps of the hierarchy are higher-level needs. Occupants want

to reflect their values and taste onto the spaces they inhabit. As such, a house

becomes a medium of self-expression. Occupants use this medium to show their

status and identity in the society. This reflection is not just for the social

environment. Identity of a place is an essential factor to establish a sense of

belonging with that space.

Single-family house (SFH) is a typology that is defined as a free-standing building

that is occupied by a single family. SFH is an individual property, an empty space

that is open to any collaborative interpretation of the occupants and the architect. A

private house, as the unique representation of its user needs, a ―home‖ that only

serves for the occupants‘ individual will, lifestyle, desire, and taste. SFH, together

with its value as a medium that represents its occupant, has been also used by

architects as a way to manifest their architectural ideas and concepts.

2.1.2 From Mass Production to Mass Customization

20
th

 century is a prominent time for manifestations by leading architects in the body

of SFHs. Villa Savoye is a representative of Le Corbusier‘s ―5 points of architecture‖

with its pilotis, roof garden, free plan, free facade, and horizontal windows.
31

Farnsworth House is another example where Mies van der Rohe creates a house in

its simplest form only with two horizontal planes for ceiling and floor, eight slender

30
 Renee Y. Chow, ―House Form and Choice,‖ Traditional Dwellings and Settlements Review, no. 2

(1998): 51.

31
 Le Corbusier, Towards a New Architecture (London, Architectural Press [1946], 1946).

18

vertical supports, a whole glass plane on the boundary, and nearly no partition walls

except for the core that bounds the wet spaces.
32

 One other example is Robert

Venturi‘s play on ―signs‖ in Venturi House. The exterior of Venturi House calls the

general image of a house with its gable roof, dramatically large chimney, and an arch

over the main door.
33

 Venturi emphasize these ―signs‖ further by putting a large slit

in the middle of the front façade, revealing that these elements do not serve for any

structural function. In addition to the more personal ideals of individual architects,

SFH is also used as a general manifestation for the use of mass production in the

construction industry.

Mass production has played an important role in both the increase in number of SFH

and its standardization. SFH is a preferred house type for families, but it is not

feasible on the economic side because of the cost of land and construction expenses.

Henry Ford‘s assembly line, which was initially used for automobile manufacture,

introduced mass production techniques to the housing industry in the 20
th

 century.
34

Mass production achieves high cost efficiency through the rapid manufacturing of

standardized products within specialized factories. Tract house developments used

mass production to construct mass housing sites that is made of the same two or

three types of houses. It was also used by housing kit developments that provided the

occupants a do-it-yourself kit to assemble the house themselves. This period resulted

with a great increase in the quantity of SFHs, while also causing a downgrade on the

quality of new houses by the high standardization it brought.
35

32
 Werner Blaser, Mies van Der Rohe: Farnsworth House-Weekend House, 1 edition (Basel ; Boston:

Birkhauser, 1999).

33
 Robert Venturi, Complexity and Contradiction in Architecture, The Museum of Modern Art Papers

on Architecture (New York : Museum of Modern Art ; Boston : distributed by New York Graphic

Society, 1977., 1977).

34
 Duarte, ―Customizing Mass Housing.‖

35
 David Gartman, From Autos to Architecture: Fordism and Architectural Aesthetics in the Twentieth

Century (New York: Princeton Architectural Press, 2010).

19

Figure 2-1. Levittown is an early mass produced SFH development in USA.

(Retrieved from: http://www.newsday.com/long-island/nassau/levittown-history-in-

photos-1.13458781#16, Accessed on 11.08.2017.)

The problem of standardization in the manufacturing industry has been slowly

resolving with the rise of mass customization. Mass customization is a

manufacturing model that aims to supply modified or completely original products

for specific user needs with efficiency near mass production model. Mass

customization is not a new production model, on the contrary, the term was

originated in 1987 from the book Future Perfect by Stan Davis.
36

 The manufacturing

capabilities of 1980s, however, was not developed enough to answer such efficiency

in resources and customization. Today with the advances in digital manufacturing

techniques from CNC to 3D printing, it is possible to start the manufacturing process

immediately without the need for a specific setup for every product. Nevertheless,

certain challenges are still evident for mass customization. According to Zha and

Lu,
37

 an important challenge for the mass customization model is the decision

process for the level of variety.
38

 Zha and Lue argue that mass customization

companies should supply minimum variety that satisfies an enough range of

36
 Stanley M. Davis, Future perfect. (Reading, Mass. [u.a.]: Addison-Wesley Publ. Co., 1987).

37
 Zha and Lu, ―Knowledge Support for Customer-Based Design for Mass Customization.‖

38
 Zha and Lu, 407.

http://www.newsday.com/long-island/nassau/levittown-history-in-photos-1.13458781#16
http://www.newsday.com/long-island/nassau/levittown-history-in-photos-1.13458781#16

20

customer requirements in order to balance manufacturing expenses.
39

2.1.3 Computational Tools for Mass Customization

An important challenge for mass customization is the process to gather, analyze, and

implement the information about the requirements and preferences of the customers.

Von Hippel and Katz
40

 give a list of four methods for this process in product

development such as market research techniques, lead user idea generation,

configurators, and non-expert tools. First, companies can use market research

techniques to gather the requirements and choices of many customers and use this

information to design standard products that satisfy a public.
41

 Second, companies

can define lead users or the leading customer profiles in the marketing trends and

acquire their design solutions to integrate them into standard products.
42

 Third,

companies can invite customers to configure their own products from a menu of

predesigned options.
43

 Last, companies can develop ―user-friendly‖ computational

tools that empower future users‘ non-expert design capabilities to let them create

their own custom products.
44

 Within this list of methods, computational tools that

empower users provide certain advantages compared to other three methods.

First, non-expert tools provide the most user centric customization model as they put

the users both in the head of analysis and synthesis processes. This is a significant

advantage for the level of customization required for SFH. SFH is a typology that is

occupied by a single family. SFH is an individual property, an empty space that is

open to any interpretation by the changing lifestyles, values, and tastes. House, apart

from sheltering and functional needs, is also a cultural issue. The connection

39
 Zha and Lu, 407.

40
 Von Hippel and Katz, ―Shifting Innovation to Users via Toolkits,‖ 16,17.

41
 Von Hippel and Katz, 17.

42
 Von Hippel and Katz, 17.

43
 Von Hippel and Katz, 16.

44
 Von Hippel and Katz, 16.

21

between the spaces of inhabitation and lifestyle is a result of owner‘s cultural and

traditional expression.
45

 Second, occupants‘ experience in the design process of their

own house creates an additional value for the generated outcome. According to Belk,

people embrace things s as a part of self when they invest their own efforts, time, and

attention in their production.
46

 The connection between the occupants and SFH is an

important issue as SFH is usually a lifetime investment and the amount of time

owners spend in their house. Third, customized production of houses prevents

overproduction. The design of standard products from a general public opinion

reduces the overall overproduction compared to mass production. Nevertheless, a

risk of excessive production is still possible considering the custom domestic needs

of the occupants. This research will proceed with the model that corresponds to the

development of computational tools for non-expert designers because of the

mentioned advantages.

2.2 Computational design tools and automation

On one hand, design is a natural ability that everyone possesses on a certain extent.
47

People develop necessary design skills to help in their daily tasks such as choosing

outfits or organizing their personal space. Design is also a hobby activity for certain

people. Occupants follow design magazines or websites that provide small tips or

guides that anyone can follow to design a better living space. Naturally, such articles

give occupants certain small points to consider or start with in the complexity of this

design process. However, according to Hubert L. Dreyfus
48

 the dependence on strict

rules while performing any skill is a general indication of a novice‘s attitude. Single-

45
 R.Y CHOW, ―House Form and Choice,‖ Traditional Dwellings and Settlements Review 9, no. 2

(1998): 51.

46
 Russell W. Belk, ―Possessions and the Extended Self,‖ Journal of Consumer Research 15, no. 2

(1988): 144.

47
 Nigel Cross, Designerly Ways of Knowing (London : Springer-Verlag London Limited, 2006.,

2006), 20.

48
 Hub+ert L. Dreyfus, ―Intelligence Without Representation–Merleau-Ponty‘s Critique of Mental

Representation the Relevance of Phenomenology to Scientific Explanation,‖ Phenomenology and the

Cognitive Sciences 1, no. 4 (2002): 367,368.

22

family house has a simpler functional program compared to institutional or office

buildings. However, it is certainly a harder problem than daily design activities. In

this way, non-expert designers require certain tools that amplify their design abilities.

In this context, it is essential to decide on the ways and the extent of collaboration

with computational tools.

The definition of the extent of support that can be provided by computational tools is

an important decision. This decision is a determinant factor in non-expert‘s level of

collaboration within the design process. In the most labor-intensive way for the

occupant, computational design tools can be expected to provide a fully automated

process. This kind of scenario can be thought as working with an automated architect

that generates a single-family house form after learning occupant‘s special

requirements and requests. Today, this level of automation is actually a very popular

concept for many occupations.

2.2.1 Automation and Occupations

The replacement of human workforce by computers is a popular subject in many

online articles. A report by Gallup in 2017, as cited in McGrady‘s article,
49

 asserts

that 37% of Millennials face the threat of being replaced by automation in their

workplace. According to another study by McKinsey Global Institute, as cited by

2017 article by Whitehouse, Rojanasakul and Sam,
50

 today‘s technological

capabilities can fully automate only the five percent of whole occupations, however,

it is possible to automate a third of the total workload within the sixty percent of the

occupations. Such high numbers in these statistics can bring questions regarding the

49
 Andrew Dugan and Bailey Nelson, ―3 Trends That Will Disrupt Your Workplace Forever,‖

Gallup.com, June 8, 2017, http://news.gallup.com/businessjournal/211799/trends-disrupt-workplace-

forever.aspx; quoted, in Vanessa McGrady, ―New Study: Artificial Intelligence Is Coming For Your

Job, Millennials,‖ Forbes, June 9, 2017,

https://www.forbes.com/sites/vanessamcgrady/2017/06/09/millennial-jobs/.

50
 James Manyika et al., ―Harnessing Automation for a Future That Works,‖ New York: McKinsey

Global Institute, 2017; quoted in Mark Whitehouse, Mira Rojanasakul, and Cedric Sam, ―Is Your Job

About To Disappear?: Quicktake,‖ Bloomberg.Com, June 22, 2017,

https://www.bloomberg.com/graphics/2017-jobs-automation-risk/.

23

possibility of computers outperforming humans.

Indeed, computers already proved their success against humans in certain instances

such as games. Such an event occurred in 1997, when World chess champion Garry

Kasparov lost a chess match against Deep Blue II.
51

 According to Campbell, Hoane,

and Hsu,
52

 Deep Blue II is the successor hardware and software model of IBM‘s

research on developing machines that can play chess. As Campbell et al., Deep Blue

II played chess by ranking possible moves according to a mathematical function that

measures the advantage of positions, but did it in a very fast way that reached up to

126 million moves in the game against Kasparov.
53

 Naturally, Deep Blue II‘s chess

strategy is very different from a human player. In the worst-case scenario, Deep Blue

II has to measure every possible move for the position which exceeds the capabilities

of humans. Making a nearly complex calculation for nearly every possible move

while keeping every result in mind to rank and compare is not possible for human

cognition. In this way, Deep Blue II took the advantage of higher data storing and

data processing capabilities of computation.

However, this was also not the peak level in the capabilities of computers against

humans in games. More recently, a computational model by Google, AlphaGO, won

a match against world‘s number one GO player Ke Jie.
54

 GO is a very different game

than chess in certain ways which requires different computational strategies

compared to Deep Blue II‘s working principle. One study by Burmeister and Wiles,
55

examines the differences between GO and chess. According to this study, GO is a

51
 Murray Campbell, A. Joseph Hoane, and Feng-hsiung Hsu, ―Deep Blue,‖ Artificial Intelligence

134, no. 1 (January 1, 2002): 57, https://doi.org/10.1016/S0004-3702(01)00129-1.

52
 Campbell, Hoane, and Hsu, 58.

53
 Campbell, Hoane, and Hsu, 60.

54
 Agence France-Presse, ―World‘s Best Go Player Flummoxed by Google‘s ‗Godlike‘ AlphaGo AI,‖

The Guardian, May 23, 2017, sec. Technology,

http://www.theguardian.com/technology/2017/may/23/alphago-google-ai-beats-ke-jie-china-go.

55
 Jay Burmeister and Janet Wiles, ―The Challenge of Go as a Domain for AI Research: A Comparison

between Go and Chess,‖ in Intelligent Information Systems, 1995. ANZIIS-95. Proceedings of the

Third Australian and New Zealand Conference On (IEEE, 1995), 181–186.

24

more open game in terms of the number of possible moves that can be played and

positions in a GO game resist to mathematical ways of evaluation.
56

 In this way,

Deep Blue‘s strategy of evaluating a high number of possible moves does not work

for a GO game. However, Google overcome this problem by taking another

direction. An article by two members of AlphaGO‘s developer team, Silver and

Hassabis,
57

 explains that AlphaGO designate its own rules through learning from real

matches against real players instead of depending on predefined rules. Such

advancements in the development of intelligent machines can form a basis for using

computers for automating occupations.

Yet, game playing no matter its complexity is just a single task compared to the

multifarious variety of duties within occupations. A machine developed for chess can

win games against chess masters; however, it lacks any other capability beyond its

programming. The difficulty of developing machines that can replace human

workforce also varies within different occupations. The previously mentioned news

article by Whitehouse, Rojanasakul and Sam
58

 shares an interactive graph based on

the statistics provided of U.S. Bureau of Labor Statistics
59

 that compares the

expected automation rate of occupations to their annual earnings. According to the

graph, various occupations face a high risk of automation such as accountants with a

rate of %94 or taxi drivers with %89, while certain occupations are on a safer end

such as architects with 1.8% or graphic designers with %8.2.
60

 To understand the

reasons behind this degree of difference in the automation expectancies, it is

necessary to explore a field of study with a long-standing background, namely

artificial intelligence (AI).

56
 Burmeister and Wiles, 182–84.

57
 David Silver and Demis Hassabis, ―AlphaGo: Mastering the Ancient Game of Go with Machine

Learning,‖ Research Blog (blog), January 27, 2016,

https://research.googleblog.com/2016/01/alphago-mastering-ancient-game-of-go.html.

58
 Manyika et al., ―Harnessing Automation for a Future That Works‖; quoted in Whitehouse,

Rojanasakul, and Sam, ―Is Your Job About To Disappear?: Quicktake.‖

59
 Carl Benedikt Frey and Michael A. Osborne, ―The Future of Employment: How Susceptible Are

Jobs to Computerisation?,‖ Technological Forecasting and Social Change 114 (2017): 254–280.

60
 Whitehouse, Rojanasakul, and Sam, ―Is Your Job About To Disappear?: Quicktake.‖

25

Stuart Russell and Peter Norvig,
61

 in their book that presents AI in the very

introductory and undergraduate level, defines AI as the study of building intelligent

entities that can act or think in humanly or rational ways. While the term ―humanly‖

is more relatable and understandable despite of the complex neurological

mechanisms behind the human acts and thoughts, the term ―rational‖ brings

questions beyond this definition. According to Russell and Norvig,
62

 rationality is an

ideal measure that is constructed by the limited knowledge of the entity for assessing

the performance of doing the ―right‖ thing in a certain context. A calculator is a very

basic example for a rational artificial intelligence despite its outmoded level of

intelligence compared to the novel AI capabilities. The most basic calculator is

capable of making four arithmetical operations, but it always returns the right result

no matter the complexity of given operations. In a way, calculators have no other

option than giving the correct result as their actions are strongly limited by an exact

and strict language of mathematics.

Similarly, occupations that are governed by strict rules and procedures show higher

expectancies on automation. The state of accountants can be a good example in this

sense. Various tasks involved in the practice of accounting are defined by Merriam-

Webster
63

 dictionary as ―…recording and summarizing business and financial

transactions and analyzing, verifying, and reporting the results‖. Despite the

multiplicity of tasks, accounting practice is governed by strict standardizations and

principles imposed by such organizations that vary between different countries. For

example, accounting practice in U.S. is governed by Generally Accepted Accounting

Principles (GAAP) which is a collection of concepts, objectives, standards, and

conventions that guides the presentation and preparation process of financial

61
 Stuart J. Russell and Peter Norvig, Artificial Intelligence : A Modern Approach, Prentice Hall Series

in Artificial Intelligence (Englewood Cliffs, N.J. : Prentice Hall, 2010., 1995), 1,2.

62
 Russell and Norvig, 1.

63
 ―Accounting,‖ Merriam-Webster, accessed January 14, 2018, https://www.merriam-

webster.com/dictionary/accounting.

26

statements.
64

 Another task of such organizations, however, is to find ways to reduce

the complexity of these standards.
65

 A study by Donelson, McInnis, and

Mergenthaler,
66

 mentions a common criticism towards GAAP because of its

dependence on rules in excessive detail. Apparently, human accountants are having

difficulties in following GAAP rule sets for standard procedures on common tasks.

On the other hand, a rational AI model should not face with much trouble while

following a large database of rules mentioning the ―right‖ thing to do under certain

conditions. Similar to Deep Blue, an accounting AI can surpass humans in the speed

and accuracy for checking rule sets because of their matchless data processing and

storing power.

The popularity of artificial intelligence approaches are not limited to procedurally

governed occupations. The studies on the development of self-driving cars notably

by Waymo
67

 or Tesla
68

 have come into such an attention level that caused certain

discussions
69

 about the replacement of public transportation by driverless

technologies. In a general look, automation can provide better drivers as they take

out the potential of human error in the traffic. A machine can prevent distraction-

based incidents because they do not exhaust unlike humans do. Alternatively,

machines can observe farther or see in better detail with the help of digital cameras

or censors. Adding to that, machines are already better in locating addresses and

64
 ―About GAAP,‖ accessed January 14, 2018,

http://www.accountingfoundation.org/cs/ContentServer?c=Page&cid=1176164538898&d=&pagenam

e=Foundation%2FPage%2FFAFBridgePage.

65
 ―Simplifying and Improving GAAP,‖ accessed January 14, 2018,

http://www.accountingfoundation.org/jsp/Foundation/Page/FAFBridgePage&cid=1176164540272.

66
 Dain C. Donelson, John McInnis, and Richard D. Mergenthaler, ―Explaining Rules-Based

Characteristics in US GAAP: Theories and Evidence,‖ Journal of Accounting Research 54, no. 3

(2016): 827.

67
 ―A New Way Forward for Mobility,‖ Waymo, accessed January 12, 2018,

https://waymo.com/redirect/.

68
 ―Autopilot,‖ accessed January 12, 2018, https://www.tesla.com/autopilot.

69
 ―Forget Self-Driving Cars. Automated Public Transportation Is Coming,‖ Roadshow, accessed

January 12, 2018, https://www.cnet.com/roadshow/news/self-driving-cars-automated-public-

transport-bus/; ―Forget Cars, Self-Driving Shuttles Are the Future of Transportation,‖ WIRED,

accessed January 12, 2018, https://www.wired.com/story/las-vegas-shuttle-crash-self-driving-

autonomous/.

27

finding routes because of the novel capabilities of GPS technology. On the other

hand, driving is a highly intuitive task that is not governed by strict rules unlike

accounting. As Russell and Norvig,
70

 developing an automated taxi driver is a

complex open-ended problem with countless events to consider because of the

combinational possibilities.

As an example, a self-driving car should be able get through a complex process of

making multiple observations and decisions while taking a left on a crowded

crossroad. It has to recognize its destination, direction of road lines, traffic signs, and

vehicles within the traffic. AI also has make certain calculations regarding the

travelling speed of multiple vehicles, and understand their upcoming moves from

certain signs. In many ways, traffic is a complex and unpredictable environment to

develop a definitive list for every possible scenario. A vehicle can violate the laws by

skipping the signal or a driver can accidentally make a move than changes mind.

Also modeling a decision system moves is not convenient considering the

combinations of vehicles and their possible moves. Instead, self-driving cars follow

the procedure of AlphaGO to develop their own rules by machine learning

algorithms.

According to a definition provided by Ethem Alpaydın,
71

 ―Machine learning is

programming computers to optimize a performance criterion using example data or

past experience‖. As Alpaydın, machine learning can be used to develop intelligent

machines for real world tasks that humans cannot define in systematic instructions

because of the tasks‘ realization in an ―unconscious‖ manner.
72

 Waymo, in order to

provide real world experience for their self-driving cars, has fabricated a city in US

to conducts tests.
73

 Although developing a database of rules for self-driving cars is

70
 Russell and Norvig, Artificial Intelligence, 41.

71
 Ethem Alpaydin, Introduction to Machine Learning, 2nd ed. (The MIT Press, 2010), 3.

72
 Alpaydin, 3.

73
 Alexis C. Madrigal, ―Inside Waymo‘s Secret World for Training Self-Driving Cars,‖ The Atlantic,

August 23, 2017, https://www.theatlantic.com/technology/archive/2017/08/inside-waymos-secret-

testing-and-simulation-facilities/537648/.

28

not possible because of the involved level of intuition, the tasks‘ performance

criterion is rather simple. A rational act for a self-driving car, in the most general

sense, is to drive safely between two destinations without causing collusions. This

task can be simulated by real world or virtual applications for the self-driving car to

gain experience.

On the other hand, design related occupations such as architecture have a seriously

low automation expectancy compared to accountants and drivers. Computers,

however, are becoming increasingly essential for architectural practice. Yet, they

serve more as tools for architects rather than being fully autonomous design

machines. Despite of artificial intelligence‘s success on working with complex rule

sets or learning intuitive tasks, full automation of architectural design is still out of

question. Certain problems of architectural design are shared among accounting and

driving as well. Architects also consider a large amount of governmental and

technical engineering oriented standards. Additionally, architecture is also considered

as an intuitive task. However, certain differences within the design practice keeps AI

models away from full automation. Next section examines these relevant problems in

architectural design.

2.2.2 Automation and Design

Nigel Cross
74

 traces the origin of computation in design back to the ―design methods

movement‖ in 1960s that aimed to develop a rational and objective design processes

against the resultant problems of Second World War. As Bayazit,
75

 researchers

involved in design methods were searching for ―rational methods‖ to integrate

―scientific techniques and knowledge‖ to develop a rational base for design

decisions. For example, Christopher Alexander
76

 developed a rational and systematic

74
 Cross, Designerly Ways of Knowing, 95.

75
 Nigan Bayazit, ―Investigating Design: A Review of Forty Years of Design Research,‖ Design Issues

20, no. 1 (January 1, 2004): 19, https://doi.org/10.1162/074793604772933739.

76
 Christopher Alexander, Notes on the Synthesis of Form, vol. 5 (Harvard University Press, 1964), 84.

29

approach to design based on an analysis-synthesis process. For Alexander, design

tasks are complex problems that require a mathematical and logical analysis process

to disintegrate into smaller parts
77

. After such an analysis process that brings the

problem in a manageable simplicity, a designer requires to pass on the synthesis

process where he/she solves disintegrated parts.
78

Yet, design methods movement faced a deep criticism in 1970s in terms of their

overly systematic approach.
79

 A new base of research provided alternative definitions

for design problems in order to differentiate such problems fully scientific and

systematic problems. In this way, Rittel and Webber
80

 defined design problems by

the term ―wicked‖. In the same article, Rittel and Weber give a list of ten properties

that differentiates wicked problems from other ―tame‖ ones.
81

According to three

items within this list, wicked problems lack an exact formulation, they have no

stopping rule, and they cannot be tested with an immediate or ultimate method.
82

The unavailability of exact definitions of design problems have been stated by

multiple researchers. According to Bryan Lawson,
83

 design problems unlike puzzles

or mathematical operations are in absence of clear objectives as well as apparent

difficulties inherent in the process of realizing these objectives. Cross
84

 views design

problems as a variant of ―ill-defined problems‖. An ill-defined problem, for Cross,
85

77
 Alexander, 5:84.

78
 Alexander, 5:84.

79
 Cross, Designerly Ways of Knowing, 96.

80
 Horst WJ Rittel and Melvin M. Webber, ―Dilemmas in a General Theory of Planning,‖ Policy

Sciences 4, no. 2 (1973): 155–69.

81
 Rittel and Webber, 160.

82
 Rittel and Webber, 161–64.

83
 Bryan Lawson, How Designers Think : The Design Process Demystified (Oxford ; Burlington, MA :

Elsevier/Architectural, 2006., 2006), 56.

84
 Nigel Cross, ―Design Cognition: Results from Protocol and Other Empirical Studies of Design

Activity,‖ in Design Knowing and Learning: Cognition in Design Education., ed. Charles M.

Eastman et al. (Oxford, England: Elsevier Science Ltd, 2001), 3, https://doi.org/10.1016/B978-

008043868-9/50005-X.

85
 Cross, 3.

30

is a problem with only an approximate definition that corresponds to a vague

information about the objectives and limitations. This obscurity within the

architectural design problems can be examined within the openness, subjectivity, and

multiplicity of its objectives.

Architectural design, up to a certain extent, is bounded by strict rules and

standardizations. A certain example is building and zoning legislations provided by

higher authorities. Zoning regulations limit the layout of the building with setback

boundaries, or they constraint the total area of the building by the floor area ratio

(FAR). Another example is the functional requirements related to the building

program. The designed space should be suitable activities that are planned to take

place. This suitability is directly related to such points as the number of people that

space serve or the appliances and equipment required for such activities. These kinds

of rules are generally nonnegotiable and required to be met at all costs.

On the other hand, the designed space does not emerge solely from such hard rules

and standards. Otherwise, there will not be any reason to call design activity as a

routine problem solving process with well-defined problems and a series of clear

directions on solution. Design problems, however, require another kind of process

rather than mere problem solving because of their initial vague definition different

from other kinds of problems. Design is a creative process with open definitions that

presents a level of freedom for the designer. Kees Dorst
86

 defines this ―openness‖

with the levels of ―underdetermination‖ that is available in design problems.

According to Dorst,
87

 a large part of design problems is ―underdetermined‖. The

clarification of such problems and the selection of suitable design solutions emerge

together after a multiplicity of proposals by the designer.
88

 Designing a house with

86
 Kees Dorst, ―The Problem of Design Problems,‖ in Expertise in Design (Design Thinking Research

Symposium 6, Sydney, Australia, 2003), 136.

87
 Dorst, 137.

88
 Dorst, 137.

31

low-energy requirements, supposedly, is a determinant design objective which can be

evaluated through technical calculations. However, this objective does not directly

correspond to a fixed number that limits the energy considerations. This objective

value varies in terms of different design problems. The experts can make initial

predictions by calculations that consider certain standard values. Architectural

design, however, also includes certain issues that resist objective estimations in

advance. The dimensional requirements for certain spaces in the house do not

necessarily correspond to exact numeric definitions. The occupants can use such

descriptions as ―cozy‖, ―functional‖, or ―comfortable‖ to define their expectations

from a certain space.

As Dorst, certain parts of the design problems go beyond this underdetermination.

Design problems are also partially ―undetermined‖ with an amount of space to the

purely subjective intentions of the designer.
89

 Higher-level domestic needs such as

aesthetics cannot be modeled in a pre-descriptive way. There is no evident scientific

fact that supports the beauty of a house over another one. In these cases, architects

are free within the limits of their communication skills to persuade the occupant in

the aesthetics of their house.

In addition to the various levels of openness inherent in design objectives, these

objectives are also endless in numbers. Architectural design is related to a vast

amount of interrelated and multidisciplinary objectives. These objectives may range

from spatial solutions for the required functional program, socio-cultural context,

and economical boundaries to technical aspects like natural and mechanical lighting,

thermal conditions, fluid dynamics, structure, and acoustics. An architect is not

necessarily an expert in all these fields. However, they are still required to have a

general knowledge in these areas to establish the necessary communication between

the involved disciplines.

89
 Dorst, 137.

32

The objectives of architectural design are rarely separate from each other. These

requirements are interrelated in the sense that working on one objective can give way

to problems on other objectives. During the design process, the occupants can ask for

design revisions. This change in the programmatic objective causes changes in other

objectives. For instance, a larger room brings larger loads on the structure, which in

return can cause an increase in the dimension of structural elements. This increase in

the area also changes the cooling or heating requirements of the house which again

lead to changes in the mechanical installments to provide enough capacity.

Alexander‘s rational and systematic approach has strong relations with the

multiplicity and the interdependence between the objectives. Alexander‘s analysis

method on design problems requires enlisting all the requirements related to the

problem, then establishing an organization in this list through exploring interactions

between these relations.
90

 Alexander also developed a mathematical method that

structures the group of objectives into clusters that work together by utilizing

statistical and mathematical functions.
91

In a way, Alexander‘s approach is a divide-

and-conquer model that creates a set of meaningful and operable objectives from a

whole and complex one.

Bryan Lawson
92

 is critical towards the design analysis method of Alexander. Lawson

asserts that Alexander‘s method treats every problem equally in the structuring

process which contrasts with general actions of a designer.
93

 According to Lawson,

―Alexander fails to appreciate that some requirements and interactions have much

more profound implications for the form of the solution than do others‖.
94

 Such

conflicting situations may require the designer to decide upon the relative

importance of conflicting goals one upon the other. Domestic needs also have a

90
 Alexander, Notes on the Synthesis of Form, 5:93.

91
 Alexander, 5:174–91.

92
 Lawson, How Designers Think, 76,77.

93
 Lawson, 77.

94
 Lawson, 77.

33

hierarchy. It is usually simpler to decide about goals in different levels of hierarchy

such as the structural safety over aesthetic intentions. In other times, these decisions

also require the subjective interpretation of the architect to establish the requirements

in a priority. These priorities, similar to the objectives, can also change during the

design process.

Occupants can initially ask for a single-story house because of various reasons such

as age and disabilities. The overall program requirements, however, can exceed the

total area of setback boundaries. Pushing this objective would either require a

decrease in the total area or another site for the house. The architect, instead, can

convince the occupants in the advantage of a second story and the possibility of

using a small elevator. Similarly, the economic constraints on the design process can

be seen as a nonnegotiable at first. Related calculations, however, are usually made

with very simplistic terms within the design process so they lack the precision. An

architect can propose solutions that exceed the economic means, but they can

convince the occupant about the increase in quality of their home by these exceeding

amounts. In these terms, economic boundaries become also a negotiable constraint

that can be evaluated in terms of the other advantages of the solution. Such a level of

flexibility inherent in the design process presents designers a high multiplicity of

solution ways to take which results with a large number of solutions to consider.

2.3 Computational design tools and user interaction

Development of computational tools for the complete automation of architectural

design process is problematic. Beyond the rationally incomputable objectives of

architectural design such as designing aesthetic buildings or designing for

psychological comfort, a rational definition for an architectural design problem is not

existent as well. Indeed, such a process is a part of the creativity inherent in

architectural design. Architects mostly define design problems in their own

subjective way rather than applying a deep analysis on the problematic design

context. Yet, computation‘s incapability to provide a fully automated design process

does not necessarily keep them away from architecture. On the contrary, the

collaboration between computation and architects are more apparent than ever.

Today, computers are effective partners for architectural design. Computer-aided

34

drafting (CAD) tools provide a precise and quick interface for data-intensive

architectural drawings. Rendering engines enhances the presentation capabilities by

photorealistic design representations. Simulation software provides complex

calculations on the environmental or structural performance of buildings. BIM tools

augment the collaboration of the vast multiplicity of professions involved in the

design process. Naturally, non-expert designers require a broader support than

practicing architects. A simulation on the thermal performance of a building may not

be the most vital aid for a non-expert as they miss the very fundamentals of

architectural design.

Von Hippel and Katz, in a general guideline for the development of tools that support

non-expert users, provided a list of five objectives: 1. Trial-and-error learning

environment for the user, 2. appropriate solution space, 3.User-friendly interface, 4.

Wide library of modules, and 5. direct manufacturing without any alterations.
95

 This

research is limited with the first three objectives in Von Hippel and Katz‘s list. The

development of open source architecture portals and the prevalence of BIM methods

provide the necessary library for the designers. On the other hand, digital

manufacturing technologies are continuing to develop rapidly and becoming

personalized with their easy access. This easy access, in a way, gives everyone the

support to be a manufacturer. The remaining elements correspond to broad

definitions without the actual product to be designed. In this way trial-and-error

learning, appropriate solution space, and user-friendly interface will be examined

together with architectural design and single-family house.

2.3.1 User-friendly interface and trial-and-error learning

This section will examine studies on designer behavior in order to define the

importance of trial-and-error learning and reach the requirements for a user-friendly

interface. A main beneficial outcome of design methods movement‘s aim in

95
 Von Hippel and Katz, ―Shifting Innovation to Users via Toolkits,‖ 9–13.

35

integrating rational and objective methods to design process is the enhancing body of

knowledge on designers‘ attitude and action within complex design situations. Nigel

Cross
96

 unifies this related body of research under the name ―science of design‖.

Cross defines ―science of design‖ as ―that body of work which attempts to improve

our understanding of design through ‗scientific‘ (i.e., systematic, reliable) methods of

investigation‖.
97

 According to Cross,
98

 the studies on designing were realized in

many ways from academic reflections on designer‘s self-reports to experiment based

methods such as protocol studies. Such studies on designer behavior are not expected

to give assistance in creating a complete rational procedure to tackle design problems

because of the high variety in design problems and the innate subjectivity involved

in the design process. However, this body of knowledge can give an insight about the

general character of design actions which can help in the development of similar

purpose tools to aid non-expert designers.

As a contrast to the deep analysis methods inherent in highly systematic and

objective models for design, designers take another way in the initial stages of this

process. Bryan Lawson
99

, after a protocol study that targeted to reveal the behavioral

differences in problem solving between architecture and science students, observed

that architectural students generally showed a solution-focused strategy compared to

the problem-focused strategy taken by science students. As Lawson,
100

 this solution-

focused strategy is an indicator or the synthesis based analysis methods of designers.

Lawson notes that in the obscure context of design where problems are away from

being obvious, designers find their problems through making certain moves such as

using primary generators.
101

 A primary generator, as Lawson, is a concept developed

by Jean Darke that corresponds to a general solution concept or a limited definition

96
 Cross, Designerly Ways of Knowing, 99.

97
 Cross, 99.

98
 Cross, 17.

99
 Lawson, How Designers Think, 42.

100
 Lawson, 44.

101
 Lawson, 56,295.

36

of the design problem.
102

Donald Schön, in another protocol which studies an architectural design review

between a studio master and a student, exemplifies his theory of ―reflection-in-

action‖.
103

 In his study, Schön differentiates the design actions of the novice and

expert designer involved in the study by novice designer‘s halt in the failure of her

design idea versus expert‘s constant struggle with the problem context through

design moves.
104

 As Schön, these design moves are the means of communication for

the expert designer to put a conversation with the problem context which in some

cases, stimulate the design problem to talk back.
105

 In these certain instances, the

expert discovers new things about the problem and shifts the position to consider

new moves on the context.
106

 Schön asserts this set of procedure is a general process

for experts in ill-defined and vague problem contexts, no matter the difference in

their design moves or shifting positions.
107

According to these protocol studies, trial-and-error learning is an essential part of the

design process. The ill-defined nature of design problems resists to deep analysis

methods. In this way, trial-and-error learning starts within the very early and vague

stages of the design process. The subjective decisions on the definition of open-

ended parts and the relative importance of design objectives are taken through a trial-

and-error learning process. This early process includes the development of a large

amount of concepts and alternative solutions. Non-experts, on the other hand, lacks

the required design experience and education to utilize this process as well as an

expert architect.

102
 Jane Darke, ―The Primary Generator and the Design Process,‖ Design Studies 1, no. 1 (1979): 36–

44; cited in Lawson, How Designers Think, 46,47.

103
 Donald A. Schön, The Reflective Practitioner : How Professionals Think in Action / (New York :

Basic Books, c1983.), 102–4.

104
 Schön, 102.

105
 Schön, 94.

106
 Schön, 94,95.

107
 Schön, 103.

37

The ill-defined nature of design problems is just one difficulty that designers come

across during the process. According to Lawson, the inability to define a design

problem in a complete and exact manner causes the designers to work with an

―inexhaustible‖ list of solutions.
108

 Even an initial interpretation of the problem

during the design process can bring large amounts of solution candidates. As it can

be seen from the previous examples, the constraints of the design problems are not

overly strict. In this way, the designer can also ignore these limitations based on

his/her persuasion skills on the clients or with the presentation of better design

solutions beyond the limitations. Such level of flexibility causes the designer to work

with a high number of solutions.

For designing, even simpler problems have a large solutions space. As an example,

the very basic houses that only served for the sheltering needs of the society created

a vast amount of residential forms in the past. Sheltering needs, as mentioned

previously in Marcus‘
109

 hierarchy, stays within the most general domestic

requirements of people. Sheltering needs can be associated with less subjectivity in

terms of the decisions of the occupants because the general threat is more or less the

same. On the other hand, material possibilities within the environment pushed people

to build in different ways and forms which resulted with the diverse range of stylistic

variety in houses.

During the design process, architects work with very simple representational means

that are away from the realism of the building‘s final form.
110

 These representations

include simple bubble diagrams and conceptual mass models to save time for

creating more alternative solutions. As Liu, Chakrabarti, and Blight
111

 exploring the

108
 Lawson, How Designers Think, 121.

109
 Marcus, Easter Hill Village.

110
 Gabriela Goldschmidt, ―The Dialectics of Sketching,‖ Creativity Research Journal 4, no. 2

(January 1, 1991): 123–43, https://doi.org/10.1080/10400419109534381.

111
 Y.-C. Liu, A. Chakrabarti, and T. Bligh, ―Towards an ‗Ideal‘Approach for Concept Generation,‖

Design Studies 24, no. 4 (2003): 341–355.

38

widest range of design options is a crucial part of conceptual design process to grow

better design concepts. To assess the quality of a large range of concepts, designers

utilize divergent thinking together with convergent thinking. Divergent thinking

expands the range of design exploration to locate alternative solutions to the

problem; on the contrary, convergent thinking shrinks the range of possibilities by

focusing on better solutions.
112

Designers are required to find a balance between the divergent and convergent

thinking in the design process. Cross,
113

 associates convergence dominated design

processes with novice behavior. The design process can be limited to an initial good

performing concept to keep things very simple. However, designers work with

complex problems, in this sense one-shot operations hardly generate satisfactory

solutions. A divergence dominated design process, on the other hand, can fail to meet

the detailed examination required for meeting long list of design related objectives in

time.

Despite the unavailability of a fully automated computational method to support

non-experts in the design process, computational tools can still provide support in

these underperforming abilities of non-expert designers. In this way, a user-friendly

interface should enable non-experts to develop and explore a wide range of design

solutions with their inherent design abilities. Such a tool should be forgiving in terms

of the generation of high quality solutions opposed to the occupant‘s vague or false

definitions on the design problem. Accordingly, the computational tool should be

able to look over the layout design problem from a wider perspective, including the

multiplicity of objectives as a whole. Additionally, this wider perspective should also

be flexible and open to user‘s interpretation during the generation process because of

the openness and subjectivity involved in design problems and objectives.

112
 Liu, Chakrabarti, and Bligh.

113
 Cross, Designerly Ways of Knowing.

39

2.3.2 Appropriate solution space

The solution space of a computational design tool corresponds to the extent of

alternative solutions that the design tool can generate. The size of this solution space

is an essential factor for controlling the level of customization allowed for the user. A

very small solution space can present a scenario worse than the standard solutions

inherent in housing industry; on the other hand, a very large solution space can lower

the effect of computational exploration and bring inadequate solutions. In this way,

the solution space for a computational design tool should be just right. According to

Cagan, Campbell, Finger, and Tomiyama
114

 the range of solution candidates is

directly related to the ―representation‖ of computational model. As Cagan et al.
115

,

two important considerations for the development of a representation is the

definition of building blocks and their interrelations. Building blocks are smaller

customizable parts of the generated product. For example, a house can both be

represented as a complex collection of bricks or a simpler combination of wall and

roof systems. The determination of the building blocks for a SFH and therefore an

―appropriate‖ solution space requires a deeper look in the functions and parts

associated with a SFH.

Functional analysis of SFH

A house should function as a space that supplies occupants‘ low and high-level

domestic needs, as discussed in the previous section. It is possible to define these

needs with their corresponding domestic activities. Several domestic activities are

generally available in every house setting as they are closely associated with the

above-mentioned low-level needs. These domestic activities are numerous, such as

recreation, sleeping, eating, cooking, socializing etc. Furthermore, the activities

within a house can vary according to occupants‘ lifestyle. As an example, home

114
 J Cagan et al., ―A Framework for Computational Design Synthesis: Model and Applications,‖

JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING 5, no. 3

(September 2005): 172.

115
 Cagan et al., 172.

40

offices can partially act as professional working environments, while also serving for

domestic activities.

In a way, a house should function as a comfortable space that can provide for the

related activities. As Habraken
116

 states, when a space is given a certain function, it

should be designed with the capacity that it can allocate a configuration of objects

associated with the related function. In this way, even the general activities can

require different spatial solutions depending on the occupant behavior. The eating

activity of a family of four will certainly require a larger table and more seats than a

family of two. Cultural interpretations of the activities can also have a role in the

required capacity such as the on-the-floor dining arrangement of the Japanese

culture.

Apart from spaces with well-defined uses, a space within the house does not

necessarily correspond to just one activity. For instance, bedrooms are associated

with sleeping. On the other hand, bedroom can also stand for a place that serves for

the need of resting and intimacy. The occupant can require an additional living

quarter of their own within their bedroom. Children‘s rooms are very multi-

functional in this sense. Children use their rooms as a place for play and study in

addition to sleeping.

There may also be spaces within a house that does not correspond to an activity in a

general way. In this sense, the mere purpose of circulation spaces is to connect

different areas within a home. Halls and corridors provide horizontal circulation,

while stairs and elevators provide vertical circulation for multi-floor houses. The

lack of an overall activity can bring the issues about circulation space as a dull and

soulless spaces, however it is still possible to make circulation spaces contribute

more to the living in house with a few interpretations.

116
 N. John Habraken, ―The Control of Complexity,‖ Places 4, no. 2 (1987).

41

The function of a house directly depends on the occupant. The scale of certainty of

the spaces within a house can change from project to project. It is possible that the

architect does not communicate directly with the occupants. The client can also be a

contractor company that wants to build a housing site rather than a customized

house. In that sense, the activities of the house cannot be well-defined as in working

with the real occupant. Alternatively, the occupant can require an adaptable house

that can change according to changes in the family‘s lifestyle overtime. There are

certain ways to answer these circumstances such as open-plan houses that do not

divide spaces with hard installations rather the user can bring transitory divisions

over time. Tadao Ando‘s Walless House is such an example where the architect

proposed movable furniture to make the space adaptable. This study addresses a case

when an architect works on a customized SFH with static spatial requirements.

The functional analysis of SFH, as a customized design product, requires a

meaningful communication with the occupants. Information needs to be gathered

regarding the number of rooms and their sizes such as the size of the family, the type

of fixed installations on the wet spaces, the conditions for overnight guests, or the

type of outdoor spaces etc. The designer and the occupant define a general building

program through the briefing sessions which stands for the number of required

spaces, their sizes, and the relationship in between them.

A house cannot be reduced directly to the sum of the separate spaces for different

domestic activities. Hillier
117

 states that human space is more than the properties of

the individual spaces; instead, the configurational aspect of space with the relations

between many spaces makes the space a whole. The relationship between the public

and private spaces, as an example, is an important concern of the configurational

aspect of a house. The availability of sleeping quarters alone does not necessarily

provide privacy alone in itself without the careful placement of this quarter within

the house. Bedrooms are generally separated from the more public living quarters

117
 Bill Hillier, ―The Art of Place and the Science of Space,‖ World Architecture 185 (2005): 96–102.

42

both physically and visually either by a circulation space or a floor difference. This

configurational aspect includes the neighborhood relations between the spaces,

zoning of certain activities, and the orientation of the spaces within the overall

layout.

Layout design in general

Configuration design is a generic activity that is shared generally by all the design

related professions. Configuration design refers to the assembly of a predefined set

of components into a meaningful and purposeful whole that satisfies certain

predefined conditions.
118

 This definition provides an overall unifying explanation for

very distinct design problems such as a production facility, a computer chip, a

website, or a house. These configuration problems, despite of the difference in their

scale, require allocating various predefined elements in a limited exterior boundary.

Configuration design can be tackled with a bottom-up approach, as it gathers the

whole from the part. The designer starts from the very basic or the smallest available

elements and produces the layout in different levels of hierarchy. This is similar to

starting the design of a house from considering the arrangement of furnishing,

circulation, and related activities within a room. The form of rooms is the result of

the all furnishing arrangements and the space of activities around them. This process

proceeds into the configuration of rooms within the house after the definition of

room forms. Rooms are arranged with one another according to the flow of

movement between them and the client preferences on their proximity. This process

can go on further to the arrangement of resultant houses within a site boundary if the

designer is building a neighborhood. This configurational design process refers to

building layout design in architecture. Architects conduct layout design in the early

conceptual design phase, usually after the definition of the building program that

stands for area requirement estimations according to the requests of the occupants.

118
 Sanjay Mittal and Felix Frayman, ―Towards a Generic Model of Configuraton Tasks.,‖ in IJCAI,

vol. 89, 1989, 1395–1401.

43

2.4 Computational Approaches to Layout Design Problem

Computational approaches to layout design, started with facility layout problems in

the 1950s.
119

 Since the late 1950s, engineers and architects developed computational

models to tackle many layout problems whose scale range from computer chips
120

 to

urban design
121

. Layout design approaches mainly diverge in how they define the

layout problem (the solution representation, constraint formulation etc.) and the

search methods they use to compute solutions.

Computational approaches to layout design problems can be classified as

construction and improvement methods. A constructive method starts from scratch

and builds the layout in sequent actions. This action can be the placement of an

individual space in each consecutive step. Improvement approaches, on the other

hand, start with complete solutions and improve this solution in sequent actions. This

action can be the pairwise exchange of layout elements in every phase.

2.4.1 Construction methods

Construction methods work close to state-space search, which is assumed as a

classical search method. It can be defined as ―the process of looking for a sequence

of actions that reaches the goal is called search‖.
122

 Construction methods represent

the search space as a tree of states in between the initial state and goal state. Exact

algorithms and some heuristic algorithms are in this category.

119
 Tjalling C. Koopmans and Martin Beckmann, ―Assignment Problems and the Location of

Economic Activities,‖ Econometrica: Journal of the Econometric Society, 1957, 53–76.

120
 Kazuhiro Ueda, Hitoshi Kitazawa, and Ikuo Harada, ―CHAMP: Chip Floor Plan for Hierarchical

VLSI Layout Design,‖ IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems 4, no. 1 (1985): 12–22.

121
 Pirouz Nourian, ―Configraphics: Graph Theoretical Methods for Design and Analysis of Spatial

Configurations,‖ A+ BE| Architecture and the Built Environment 6, no. 14 (2016): 1–348.

122
 Russell and Norvig, Artificial Intelligence, 66.

44

Figure 4. Schematic description of a simple layout construction algorithm (Drawn by

the author).

Exact Algorithms

Exact approaches are precise algorithms that target optimal solutions. A very basic

exact approach is the brute-force search algorithm that can enumerate all layout

options and select the best one. Layout problems are, however, ―NP-complete‖ (non-

deterministic polynomial), which means optimal solutions require extended amounts

of time even for small scale problems, as the solution space grows exponentially

even with a low number of layout elements.
123

 Therefore, exact approaches to layout

design problems need either to narrow their search space and simplify the conditions

for the optimal solution or require more sophisticated algorithms than brute-force

search.

123
 Jun H. Jo and John S. Gero, ―Space Layout Planning Using an Evolutionary Approach,‖ Artificial

Intelligence in Engineering 12, no. 3 (1998): 3.

45

The automatic furniture layout tool of Abdelmohsen et al.
124

 is an exact approach

with relaxed conditions and narrow search space. The tool places the furniture

according to specific object-object and object-space relations rather than exhausting

all placement options.
125

 Several other exact layout design approaches use branch

and bound algorithms.
126

 Branch and bound algorithms make selective enumeration

by pruning certain useless branches within the search tree if the algorithm assess that

it would not produce an optimal solution. This way, branch and bound algorithms

can solve layout problems with a maximum 18 equal area layout elements, however,

they fail to support real life layout problems with unequal area elements.
127

Real world layout problems include a high level of complexity. Generating an

optimal solution within this complexity is a demanding operation that exceeds the

time-related and computational resources. Designers, instead of optimality, look for

good enough solutions that are ―satisficing‖ within the complex problem contexts.
128

Similarly, computational approaches to layout design should work with

approximations to use the resources in more intelligent search procedures.

Construction Heuristics

Heuristic approaches are approximate methods which do not guarantee to find an

optimal solution, but usually find good enough results that are close to the optimal

124
 Sherif Abdelmohsen et al., ―A Heuristic Approach for the Automated Generation of Furniture

Layout Schemes in Residential Spaces,‖ in Design Computing and Cognition ’16 (Springer, Cham,

2017), 459–75, https://doi.org/10.1007/978-3-319-44989-0_25.

125
 Abdelmohsen et al., 499.

126
 M.s. Bazaraa, ―Computerized Layout Design: A Branch and Bound Approach,‖ AIIE Transactions

7, no. 4 (01 1975): 432–38, https://doi.org/10.1080/05695557508975028; Ulrich Flemming et al.,

―Hierarchical Generate-and-Test vs Constraint-Directed Search,‖ in Artificial Intelligence in

Design’92 (Springer, 1992), 817–838, https://link.springer.com/chapter/10.1007/978-94-011-2787-

5_41.

127
 Russell D. Meller and Kai-Yin Gau, ―The Facility Layout Problem: Recent and Emerging Trends

and Perspectives,‖ Journal of Manufacturing Systems 15, no. 5 (1996): 351–366.

128
 Herbert A. Simon, ―Rational Choice and the Structure of the Environment.,‖ Psychological Review

63, no. 2 (1956): 129.

46

solution.
129

 In the absence of design support by exact approaches, heuristic search

can still provide a layout solution that can provide insight into the design problem

and solution space. Several examples have been developed that makes use of

heuristics.

SHAPE is a construction heuristic that produces unequal area layouts by assigning

smaller grid-like modules for every department.
130

 SHAPE assigns departments

according to the given major and minor production flows. Most common department

within the production flows is chosen as the center and the others grow from this

initial point. Although SHAPE can operate with a large number of layout elements, it

also produces departments with irregular form. NLT is another constructive approach

that assigns unequal area rectangular shapes for departments.
131

 NLT uses a multiple

stage framework that handles area requirements and adjacency relations in different

stages.

Figure 5. A final layout by SHAPE. (Hassan, Hogg, and Smith, 1986)

129
 Yehuda E. Kalay, Architecture’s New Media: Principles, Theories, and Methods of Computer-

Aided Design (MIT Press, 2004).

130
 Mohsen MD Hassan, Gary L. Hogg, and Donald R. Smith, ―SHAPE: A Construction Algorithm for

Area Placement Evaluation,‖ International Journal of Production Research 24, no. 5 (1986): 1283–

1295.

131
 Drew J. Van Camp, Michael W. Carter, and Anthony Vannelli, ―A Nonlinear Optimization

Approach for Solving Facility Layout Problems,‖ European Journal of Operational Research 57, no.

2 (1992): 174–189.

47

These approaches, although successful in generating solutions, can grow and

evaluate solutions in a state-by-state procedure. However, design problems are not

solved one by one, but processed in an integrated way. As Lawson
132

 points out,

―Design solutions are often holistic responses‖. In the case of layout problems, the

placement order of spaces does not matter if they take the designer to the same

solution. Thus, the insignificance of the solution path makes construction algorithms

less successful in terms of layout problems. Thus, designers usually work with

completed solutions rather than evaluating them on the way. Improvement methods

offer an effective alternative to these design issues.

2.4.2 Improvement Methods

Improvement methods carry out a local search operation. Local search ―evaluates‖

and ―modifies‖ one or more solutions rather than analyzing the paths of transfer

options; thus, these methods are advantageous for problems in which only accounts

for the solution not the sequence of actions to reach it.
133

 There are heuristic and

metaheuristic improvement methods.

132
 Lawson, How Designers Think, 122.

133
 Russell and Norvig, Artificial Intelligence, 120.

48

Figure 6. Schematic description of a simple layout improvement algorithm, where

layout elements a, b and c are to be arranged into a compact building form (Drawn

by the author).

Improvement Heuristics

CRAFT is an early improvement heuristic approach that produces unequal area

solutions by pairwise exchange operations between two or three layout

elements.
134

After the exchange operations, CRAFT estimates a cost function to

choose the best exchange operation that caused the largest reduction in cost. This

operation goes on until there is no possible way to cause a reduction by pairwise

exchanges. MULTIPLE develops CRAFT‘s algorithm to solve multiple-floor

production facility layouts.
135

 MULTIPLE improved the number of exchange

operations by introducing space-filling curves and provided an additional cost

function to limit the irregularity of department geometries. A more recent

134
 Gordon C. Armour and Elwood S. Buffa, ―A Heuristic Algorithm and Simulation Approach to

Relative Location of Facilities,‖ Management Science, no. 2 (1963): 294.

135
 Yavuz A. Bozer, Russell D. Meller, and Steven J. Erlebacher, ―An Improvement-Type Layout

Algorithm for Single and Multiple-Floor Facilities,‖ Management Science, no. 7 (1994): 918.

49

improvement heuristic by Guo and Li
136

 generates sophisticated multi-floor layouts

with horizontal and vertical circulation elements. They used a two-step procedure

where a multi-agent system generates an initial with correct topological relations,

and then another process randomly pushes or pulls the faces of layout elements until

the layout satisfies user-defined geometric criteria.
137

Figure 7. Example layouts from CRAFT (left) and MULTIPLE (right). (Lee and

Kim, 2000)

According to Kalay, heuristic approaches can solve layout problems that exact

approaches fail, however, they do not generate novel solutions.
138

 Heuristic

approaches are problem specific; they process on problem-specific knowledge to

make intermediate decisions. The limitation of the search space with rule of thumbs

creates faster but also routine solutions. It is also possible for a designer to lack an

initial description for the required problem.

Metaheuristics

Metaheuristics are generic algorithms that can be applied to solve any search

136
 Zifeng Guo and Biao Li, ―Evolutionary Approach for Spatial Architecture Layout Design

Enhanced by an Agent-Based Topology Finding System,‖ Frontiers of Architectural Research 6, no. 1

(March 1, 2017): 53–62, https://doi.org/10.1016/j.foar.2016.11.003.

137
 Guo and Li, 54,57.

138
 Kalay, Architecture’s New Media.

50

problem, if solutions can be easily generated and evaluated. According to a definition

provided by Talbi,
139

 metaheuristics are ―upper level general methodologies

(templates) that can be used as guiding strategies in designing underlying heuristics

to solve specific optimization problems‖. Unlike other heuristic approaches,

metaheuristics do not require the definition of any problem specific solution method

that initially limits the search space. The success of metaheuristics, instead, comes

from the balanced exploration and exploitation they put into the search process.
140

There are single solution and population-based metaheuristics.

Single solution metaheuristics start with a single solution and achieve the result by

making alterations on the initial solution. Chao and Liang,
141

 developed a tabu search

algorithm to solve unequal area multiple-floor facility layout problems. Their tabu

search algorithm is based on swapping certain departments which puts bad swapping

moves in a dynamic tabu list to limit their use for a period. Simulated annealing (SA)

is another single solution metaheuristic that starts with a high exploration rate then

reduces it gradually to escape local optima in the initial phases.
142

 Yi and Yi,
143

developed a simulated annealing algorithm to assign a collection of three-

dimensional apartment block types in a truncated box boundary.

139
 El-Ghazali Talbi, Metaheuristics : From Design to Implementation (Hoboken, N.J. : John Wiley &

Sons, c2009., 2009), 1.

140
 Mauro Birattari et al., ―Classification of Metaheuristics and Design of Experiments for the

Analysis of Components,‖ 2001, http://hdl.handle.net/2013/ULB-

DIPOT:oai:dipot.ulb.ac.be:2013/77018.

141
 Lou Y. Liang and Wen C. Chao, ―The Strategies of Tabu Search Technique for Facility Layout

Optimization,‖ Automation in Construction 17, no. 6 (2008): 657–669.

142
 Stuart Russell and Peter Norvig, ―A Modern Approach,‖ Artificial Intelligence. Prentice-Hall,

Egnlewood Cliffs 25 (1995): 27.

143
 Hwang Yi and Yun Kyu Yi, ―Performance Based Architectural Design Optimization: Automated

3D Space Layout Using Simulated Annealing‖ (2014 ASHRAE/IBPSA-USA Building Simulation

Conference, American Society of Heating, Refrigeration, and Air-Conditioning Engineers

(ASHRAE), 2014), https://experts.illinois.edu/en/publications/performance-based-architectural-

design-optimization-automated-3d-.

51

Figure 8. Apartment configuration by Yi and Yi's SA algorithm (Yi and Yi, 2014).

Single solution metaheuristics approaches have an inherent limitation, which is their

inability to operate in search space with multiple local maximum points. This is

because a single solution, unaware of the global context, might not be able to escape

the local maxima and prematurely converge to sub-optimal solutions. Population-

based search, on the other hand, can explore the search space in a more efficient way

by simultaneously exploring many different points in the search space.

52

Figure 9. The fitness landscape of design problems is usually multimodal with

multiple peaks. (Russell and Norvig, 1995)

Population-based metaheuristics expand the exploration power further by

incorporating more solutions at the start. Ant colony optimization imitates the swarm

behavior of ants in finding the shortest path to their solution.
144

 Shea, Sedgwick, and

Antonuntto
145

 implemented ant colony optimization for the design of building

envelopes according to lighting and cost. Evolutionary approaches are several

population-based metaheuristics that imitates Darwin‘s theory of evolution. Genetic

programming (GP) and genetic algorithms (GA) are also popular evolutionary

methods in layout design. GA is developed by Holland.
146

 GP is developed by

Koza
147

 as an extension of GA that searches for effective computer programs instead

of direct solutions.

144
 Talbi, Metaheuristics.

145
 Kristina Shea, Andrew Sedgwick, and Giulio Antonuntto, ―Multicriteria Optimization of Paneled

Building Envelopes Using Ant Colony Optimization,‖ Intelligent Computing in Engineering and

Architecture, 2006, 627–636.

146
 John H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with

Applications to Biology, Control, and Artificial Intelligence (MIT press, 1992).

147
 John R. Koza et al., ―Automated Synthesis of Analog Electrical Circuits by Means of Genetic

Programming,‖ IEEE Transactions on Evolutionary Computation 1, no. 2 (1997): 109–128.

53

EDGE is a GP approach by Jagielski and Gero
148

 that improved a previous QA

heuristic by Liggett in multiple-floor facility layout problems. Quadratic Assignment

(QA) is a combinational assignment problem that arranges a set of equal sized

facilities to fixed locations. Verma and Thakur
149

 developed a GA that generates

multiple floor apartment layouts according to adjacency requirements and a

traditional Indian system of layout rules. Dino
150

 developed Evolutionary

Architectural Space Layout Explorer (EASE). EASE generates 3D architectural

layouts for a given building mass according to various user-defined constraints.
151

EASE uses a specific genotype definition to deal with overlapping and empty areas;

and takes the advantage of additional repair operators to aid convergence.
152

148
 Romuald Jagielski and John S. Gero, ―A Genetic Programming Approach to the Space Layout

Planning Problem,‖ in CAADFutures 1997: Proceedings of the 7th International Conference on

Computer Aided Architectural Design Futures, CAAD Futures (Kluwer Academic Publishers, 1997),

875–84.

149
 Manisha Verma and Manish K. Thakur, ―Architectural Space Planning Using Genetic Algorithms,‖

in Computer and Automation Engineering (ICCAE), 2010 The 2nd International Conference On, vol.

2 (IEEE, 2010), 268–275, http://ieeexplore.ieee.org/abstract/document/5451497/.

150
 Ipek Gürsel Dino, ―An Evolutionary Approach for 3D Architectural Space Layout Design

Exploration,‖ Automation in Construction 69 (2016): 131–150.

151
 Dino, 131,132.

152
 Dino, 138,140.

54

Figure 10. A set of apartment layout solutions generated by Verma and Thakur's

algorithm. (Verma and. Thakur, 2010)

Doulgerakis
153

 used GP to divide multiple layers of rectangular geometries into

smaller units and then used an agent-based algorithm to assign program elements to

created subdivisions in multiple floors according to the area requirements, which is

called Area Dissection (AD). AD takes an initial floor shape and divides it into

unequal segments. The units are placed within these smaller areas according to their

topological relations and geometric criteria. Knecht and König
154

 developed an

approach that utilizes kd algorithm to divide a predefined area and then uses GA to

fit these divisions into topological, rational, and dimensional constraints.

153
 A. Doulgerakis, ―Genetic Programming + Unfolding Embryology in Automated Layout Planning‖

(UCL (University College London), 2007), http://discovery.ucl.ac.uk/4981/.

154
 Katja Knecht and Reinhard König, ―Generating Floor Plan Layouts with Kd Trees and

Evolutionary Algorithms,‖ in Generative Art Conf, 2010, 238–253.

55

Figure 11. Perspective views of layout solutions by Doulgerakis‘ algorithm.

(Doulgerakis, 2007)

Flack
155

 developed a GA that creates layouts according to topology, area

requirements, and given ratios for individual rooms with Area Positioning (AP). AP

positions fixed or variable geometries in a predefined boundary. This method

increases the control over the geometry of layout elements, so it makes possible to

create specialized layout elements. This specialization makes AP more advantageous

in small-scale layouts as minor differences in the unit geometries contribute more to

the layout exploration. The algorithm can also work with a non-rectilinear geometry

as a boundary. EPSAP is a hybrid approach that uses Evolutionary Search (ES) and

Stochastic Hill Climbing (SHC) to generate multiple floor generic layouts.
156

 EPSAP

uses a set of repair rules predefined for certain problems that are randomly

implemented. The time requirement of the correction rules is balanced with the use

of a different global search mechanism, ES, which is a simpler version of GA that

produces solutions solely by mutation. EPSAP creates detailed layouts with vertical

and horizontal circulations, windows, and doors. Interactive Layout Recommender

155
 Robert W. J. Flack, ―Evolution of Architectural Floor Plans‖ (Brock University, 2011),

http://dr.library.brocku.ca/handle/10464/3409.

156
 Eugénio Rodrigues, Adélio Rodrigues Gaspar, and Álvaro Gomes, ―An Approach to the Multi-

Level Space Allocation Problem in Architecture Using a Hybrid Evolutionary Technique,‖

Automation in Construction 35 (2013): 482–498.

56

System (ILRS)
157

 is another approach by Bahrehmand et al. that generates layout

options from a predefined set of regular and irregular shaped layout units. ILRS

provides a real time rating interface where the user can give any layout a rating from

one to five to increase or decrease its chance of survival in the evolutionary

process.
158

Figure 12. Three floors of layout configurations by EPSAP. (Rodrigues, Gaspar, and

Gomes, 2013)

Rosenman
159

 developed a GA to create house layouts according to area and

adjacency requirements. The approach uses Hierarchical generation (HG) to produce

layouts gradually from basic elements to complex configurations. Algorithm first

creates rooms from rectangular modules, then these rooms are allocated into zones,

and finally zones are arranged into house layouts. GENETICA is a GP approach that

designs multiple floor hotel layouts with fully furnished hotel rooms.
160

 GENETICA

defines layout items, for example doors, beds, sitting arrangements etc. as standard

157
 Arash Bahrehmand et al., ―Optimizing Layout Using Spatial Quality Metrics and User

Preferences,‖ Graphical Models 93, no. Supplement C (September 1, 2017): 25–38,

https://doi.org/10.1016/j.gmod.2017.08.003.

158
 Bahrehmand et al., 31.

159
 M. A. Rosenman, ―The Generation of Form Using an Evolutionary Approach,‖ in Evolutionary

Algorithms in Engineering Applications (Springer, 1997), 69–85,

http://link.springer.com/chapter/10.1007/978-3-662-03423-1_4.

160
 Lefteris Virirakis, ―GENETICA: A Computer Language That Supports General Formal Expression

with Evolving Data Structures,‖ IEEE Transactions on Evolutionary Computation 7, no. 5 (2003):

456–481.

57

units with fixed dimensions. These items are arranged according to ―physical space‖

which is the real space used by the layout item that cannot be overlapped, and

―functional space‖ which stands for the space required to use such item.
161

 Layouts

are generated through the arrangement of layout items, and then the physical

boundaries are procedurally generated by a CAD application.

Figure 13. Hotel room arrangements by GENETICA. (Virirakis, 2003)

Metaheuristic approaches require an additional generative heuristic for layout design

problem. This research will utilize an AP heuristic because of its advantages in SFH

layouts. AP gives more control on the geometrical representation of layout elements

in the initial state. This control creates a possibility to define layout elements in

various characters such as open spaces or vertical and horizontal circulation spaces.

AP, consequently, requires more computational resources to cope with this variety of

layout elements, however this is not going to be a critical issue in the SFH context

which involves less number of layout elements. The possibility to neglect irregular

forms for layout element is another advantage of AP heuristic. The user can represent

the layout elements within the limits of a geometrical shape such as a rectangle.

Among the evolutionary metaheuristic approaches, GA gathered more attention on

their success on design problems. Goldberg
162

 sees an evident similarity between the

161
 Virirakis.

162
 David E. Goldberg, ―Genetic Algorithms as a Computational Theory of Conceptual Design,‖ in

Applications of Artificial Intelligence in Engineering VI (Springer, 1991), 3–16,

https://link.springer.com/chapter/10.1007/978-94-011-3648-8_1.

58

design phases and the mechanism of GAs. Rodrigues
163

 provided the popularity of

GAs in layout problems with a literature survey. Flack
164

 provided the efficiency of

GAs over GPs by the experiments on layout design. Accordingly, this research

develops a GA approach because of its success in coping with vague problem

definitions and locating valid solutions in multimodal search spaces.

2.5 Genetic Algorithms (GA)

GA is a search algorithm that is introduced by Holland
165

 to demonstrate the

capabilities of adaptation in natural systems and to emulate this process in creating

new artificial systems. GA takes the advantage of two concepts from evolutionary

biology, survival of the fittest, and natural selection, to locate solutions in

multimodal and complex search spaces. GA, similar to evolution, is a blind process

that lacks a reason for the realized actions. On the other hand, GA uses the

information in the past generations to predict new exploration directions with

improved performance.
166

GA is beneficial in problems that are too complicated to tackle with fast and abstract

solution methods. In this problem context, GA can be used to generate novel

approaches by an efficient trial-and-error process. They have been successfully

employed in various interesting fields, such as game AI,
167

 musical composition,
168

163
 Eugénio Rodrigues, ―Automated Floor Plan Design: Generation, Simulation, and Optimization;

Desenho Automático de Plantas: Geração, Simulação e Optimização‖ (Universidade de Coimbra,

2014), http://oatd.org/oatd/record?record=handle%5C%3A10316%5C%2F25438.

164
 Flack, ―Evolution of Architectural Floor Plans.‖

165
 Holland, Adaptation in Natural and Artificial Systems.

166
 Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning.

167
 N. Cole, S. J. Louis, and C. Miles, ―Using a Genetic Algorithm to Tune First-Person Shooter

Bots,‖ in Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753),

vol. 1, 2004, 139–145 Vol.1, https://doi.org/10.1109/CEC.2004.1330849.

168
 P. M. Gibson and J. A. Byrne, ―NEUROGEN, Musical Composition Using Genetic Algorithms and

Cooperating Neural Networks,‖ in 1991 Second International Conference on Artificial Neural

Networks, 1991, 309–13.

59

or abstract painting.
169

Figure 14. Abstract paintings by EVOECO. (Feng and Ting, 2014)

A population of solutions are generated and evaluated in every step to assess their

fitness in the environment. In every generation, a group of less fit solutions dies,

while another group of survived solutions gains a chance to reproduce to fill the gaps

in the population with better solutions. The success of GA depends highly on the

initial user definition that represents the problem.

Evolutionary processes require the definition of solution candidates in both genotype

and phenotype. Genotype definition refers to the underneath genetic structure of the

solution that is put under genetic transformations, whereas phenotype definition

refers to the outer appearance of the solution that is considered for the fitness

169
 Sheng-Yu Feng and Chuan-Kang Ting, ―Painting Using Genetic Algorithm with Aesthetic

Evaluation of Visual Quality,‖ in Technologies and Applications of Artificial Intelligence (Springer,

2014), 124–135, http://link.springer.com/chapter/10.1007/978-3-319-13987-6_12.

60

evaluations.

2.5.1 Mechanism of genetic algorithm

The evolutionary process requires an initial population of solutions which is usually

generated randomly. A user-defined fitness function evaluates these solutions in

terms of their success in satisfying the user-defined conditions. Parent solutions are

selected from the better performing candidates. Parent solutions are reproduced to

generate a new population of self-similar design solutions. The new entities are

generated by crossover that mixes the genotype of both parents randomly into

offspring solutions. These offspring are mutated to make random changes within

their genetic structure, which is required for securing the genetic variety.

The set of individuals generated in each repetition of this mechanism is named as a

generation. The runtime of a GA is limited with the termination of user-defined

criteria. These criteria can refer to achieving a level of success within the fitness

function, or reaching a maximum number of total generations.

61

Figure 15. GA mechanism (Drawn by the author)

The review on past evolutionary approaches to layout problem generally considered

examples with a limited user interaction until now. GA, as a metaheuristic method, is

a black-box algorithm. Black-box algorithms‘ solution process is not visible to the

user. User can only interact with the interface in the initial state through the

definition of inputs. Design problems are characteristically ―underdetermined‖
170

where the problem definition constantly changes through the observations of the

designer. Although, GA‘s generic structure allows the user to modify problem

definition through the observation of results in consequent runs, this can be an

exhaustive process for the user. GA‘s capability to explore large solution spaces

comes with a disadvantage on its use of resources. Skiena
171

 asserts that GA uses

170
 Dorst, ―The Problem of Design Problems.‖

171
 Steven S. Skiena, The Algorithm Design Manual, 2nd ed. (Springer Publishing Company,

Incorporated, 2008).

62

long periods of time on ―nontrivial problems‖. GA‘s requirement of long periods of

time is problematic because of the latency between the problem definition and

feedback mechanism. Alternatively, a number of interactive approaches were

developed to eliminate distance between the designer and computational models by

increasing user‘s effect on the computational process.

2.5.2 Interactive genetic algorithm

The interactivity does not need to cover just the architect but take another way to

directly give the process to the user. This way the designer can design the possible

procedure between the user and the generative mechanism. Such as that approach.

But also this tool should not fall in the pit of a large knowledge domain Interactive

genetic algorithm (IGA) refers to a genetic algorithm with a degree of user aid on

certain parts of the evolutionary mechanism. In the most extreme case, a user can

completely replace the fitness function by means of human evaluation. In this way,

IGAs can be used in problems where an exact mathematical function is not available

to evaluate solutions. A notable example is GADES,
172

 an IGA that can generate 3D

objects based on the aesthetic preferences of the user. GADES requires human

evaluation for each individual in the population and slowly converges into a

population of ―interesting solutions‖.
173

172
 Bentley and Corne, ―Introduction to Creative Evolutionary Systems.‖

173
 Bentley and Corne, 42.

63

Figure 16. Generated 3D solutions by GADES. (Bentley and Corne, 2002)

Numerous layout design approaches take the advantage of IGAs. Rosenman‘s

hierarchical generation approach allows users to choose satisfactory layout and

layout elements during the search process.
174

 The hierarchical structure of the

generation process gives the user the opportunity to evaluate the solutions in

intermediate stages. Room pairs are generated from a population of chosen room

geometries which in the end generate the whole layout. Michalek, Choudary and

Papalambros
175

 proposed an IGA approach that allows changing the problem

definition together with the geometric modifications on the solutions. User can add,

modify, or delete both constraints and objectives to modify the problem definition.

The user can modify the generated solutions via the user interface and then iterate

over the modified layout. The algorithm also gives permission to guide the search

process by initial layouts. Quiroz, Louis, Banerjee, and Dascalu
176

 developed a

174
 Rosenman, ―The Generation of Form Using an Evolutionary Approach.‖

175
 Jeremy Michalek, Ruchi Choudhary, and Panos Papalambros, ―Architectural Layout Design

Optimization,‖ Engineering Optimization 34, no. 5 (2002): 461–484.

176
 J. C. Quiroz et al., ―Towards Creative Design Using Collaborative Interactive Genetic

64

collaborative IGA for layout design. Users, in this example, guide the evolution of

the population by the selection of generated alternatives in intermediate stages. Users

can only see a limited portion of their own population, instead they are provided with

the population examples from the other user.

Figure 17. Layout generated from the initial user sketch by the IGA of Michalek.

(Michalek, 2002)

An interactive fitness function, despite the possibility to integrate subjective and

vague criteria, creates an enormous burden on the designer to evaluate a large set of

solutions through generations. Considering that GA‘s work with large population

Algorithms,‖ in 2009 IEEE Congress on Evolutionary Computation, 2009, 1849–56,

https://doi.org/10.1109/CEC.2009.4983166.

65

spaces, the manual evaluation of the user both takes a large amount of time and

causes the designer to lose the ability to compare within the large multiplicity of

solutions. However, the approach of Michalek et al. is found beneficial, because of

its resemblance to the iterative character of the design process. The approach places

the user in an active position by allowing changes on the problem definition as well

direct changes within the search process such as sketch revisions or initial layouts.

To conclude, SFH, despite of its small scale, is an important architectural design

problem that requires the continuous collaboration of the architect and the user.

Alternative spatial solutions that are developed by the architects serve as a medium

for this collaboration in terms of revealing the intentions of both parties.

Architectural layout design is an important part of this process as it uses essential

information about the user‘s lifestyle such as area requirements and furniture

organizations for activities and their interrelations. Time restrictions and the limits of

human cognition on the alternative generation process can reduce the affectivity of

layout design generations. Computational layout design methods can enhance

architect‘s abilities by the computational data processing and storing capabilities. A

review on the current computational methods shows the affectivity of GA because of

their capability to work with vague problem definitions and finding satisficing

solutions from a vast solution space. However, GA also limits the control of the

designer over the generation process by its black-box working principle. IGA

approaches are found beneficial in terms of the level of designer control during the

search process. This research argues that the reviewed IGA approaches are deficient

in terms of supplying the specific requirements of SFH thus, presents a new

computational approach for the generation of SFH layouts.

66

CHAPTER 3

TOOL DEVELOPMENT

In the previous chapter, the potentials and limits of computational layout design

approaches on conceptual SFH problems are discussed. Metaheuristic approaches

and especially GAs are found more advantageous due to their capabilities in

handling the computational complexity of such conceptual problems. GA is a

divergent search method that is advantageous in vague design problems with

multiple solutions and design objectives. On the other hand, the advantages of GA

also make the designer more distant from the design process because of the black-

box formulation of GA. An interactive GA approach is found beneficial in improving

designers‘ control over the computational search process. This can allow the designer

to be more active in the design process beyond the definition of inputs and the mere

observation of final solutions. As mentioned in the previous section, an interactive

GA method for SFH layout problems is not encountered in the current literature.

This, therefore, is one of the main contributions of this research to the layout design

research.

Ho-Gen (House Generator) is an interactive computational model and a tool that is

developed to support designers in the layout design of SFH. Ho-Gen can generate

multi-floor and unequal area SFH layouts. Ho-Gen is not expected to generate

complete and detailed layouts, but multiple layout alternatives to facilitate divergent

exploration during conceptual design. Ho-Gen follows the generic representation,

generation, evaluation, and guidance synthesis cycle described by Cagan et. al.
177

According to Cagan et al.,
178

 the ―representation‖ phase corresponds to the decisions

about the search process with the level of detail in solution representations

177
 Cagan et al., ―A Framework for Computational Design Synthesis.‖

178
 Cagan et al., 172.

67

and process or the comprehensiveness of the solutions to be involved in the search

space; ―generation‖ phase creates solutions according to the defined representation,

―evaluation‖ phase rates the suitability of generated solutions to the user-defined

criteria, and ―guidance‖ phase uses this data to direct the search direction towards

better solutions.

Ho-Gen implements an interactive GA for this synthesis process. The generation and

guidance phases are realized by initialization, selection, crossover, and mutation

algorithms while the user can also interfere with the process and guide the search by

manually generated solutions. The evaluation is realized by a single criterion fitness

function that is made of the weighted sum of geometrical and topological sub-criteria

that are specific to SFH.

Figure 18. Framework representing the working principle of Ho-Gen (Drawn by

author).

3.1 Representation

68

3.1.1 Building blocks

In Ho-Gen, a building has a hierarchically structured representation. A building is

decomposed into its floors (FLO) and layout elements (LE). LEs can be optionally

clustered into groups by the designer, if necessary. These groups (GRO) represent

LEs that are related to each other and therefore need to be placed in close proximity

with each other in the layout.

Figure 19. An example layout hierarchy in Ho-Gen (Drawn by the author).

69

Table 1. The layout elements (LEs) in Ho-Gen

Layout element (LE)

categories
Sub-categories Description

Spaces (SP)

Main Spaces

(MS)

Spaces with SFH functions, i.e. bedroom,

kitchen etc.

Patio (Pa) Outdoor spaces for open area activities

Porch (Po) Outdoor spaces usually near the entrance.

Garage (G) Indoor car parking.

Stairs (STA) -
Spaces that facilitate the flow of occupants

between floors.

Chimney (CHI) -
Object description for the fireplace and its

chimney.

Ho-Gen considers several basic assumptions that guide the formation of LEs as well

as their physical characteristics. These assumptions are as follows:

 Spaces in Ho-Gen can be both indoors and outdoors. For instance, an indoor

space is enclosed by surfaces (walls and slabs), or alternatively it can be an

open or semi-open space outside the physical boundaries of the building (i.e.

a porch).

 A LE can span multiple floors (i.e. stairs, double-space living room).

 LEs are theoretically bounded by rectangular prisms (but not necessarily

physically bounded for outdoors spaces).

 For the search space reduction, LEs are allocated onto a grid with a size of

0.5 x 0.5 meters.

3.1.2 Interrelations

SFH involves a smaller amount of layout elements when compared to larger

facilities. The computational complexity involved in a SFH layout task, then, can be

stated as lesser than general because of the smaller amount of possible layout

70

combinations. This idea changes dramatically considering the importance of

architectural form for SFH. Certainly, this general privilege on the form for SFH

layout compositions reflects upon every separate relation between layout elements.

This way, the computational complexity involved in SFH layouts should be

evaluated on the quality of relations rather than the quantity. Such complexity

requires the exploration of larger solution spaces because of the formal variation

evident in the topologically identical SFH layouts.

Relationships play a critical role in Ho-Gen. LEs in Ho-Gen relate to each other in

three types (Table 2). In the first type, layout elements form topological relations

with one another. This relationship type is crucial to Ho-Gen, and will be discussed

in Evaluation. In the second type, LEs form groups. Ho-Gen presents the user three

options to define the grouping mechanism. First, the grouping process can be totally

passed by letting every element form a group. Second, the user can initially specify a

group for every LE manually. Third, LEs can be grouped according to their FLO.

Lastly, every LE can be gathered into a total GRO. These floors are topologically

connected by stairs (STA). In addition to that, the user can specify geometrical

criteria that control the interrelation of separate floors with each other. This way, the

final geometry of SFH can vary in the third-dimension as well.

Table 2. Relationship types in Ho-Gen

Relationship types
From-

To
Cardinality Description

Space-topological

relations
LE to LE 1-To-1

0 – No adjacency

1 – Adjacent

Group relations

a. None

b. Manual

c. By Floor

d. Total

LE to

GRO
1-To-Many

a- No groups.

b- User defines group

relations one-by-one.

c- LE‘s in FLO make

individual GROs.

d- Every LE is gathered into

one GRO.

Floor - LE relations
SP to

FLO
1-To-1 or 1-To-

Many
User defines the floor of LE

71

3.1.3 Initial User Interaction

The designer interacts with Ho-Gen through a group of inputs that define the layout

problem together with the control mechanism over the generation process. These

inputs can be divided into five groups: general, specific, evaluation, evolutionary,

and termination. General inputs involve global variables that control the layout as a

whole. Specific inputs are specialized inputs to control different types of LEs.

Evaluation inputs include the coefficients that control the weight of different

constraints during the search process. Evolutionary inputs make up the variables for

genetic algorithm. Termination criteria represent the condition that halts the search.

General Inputs

Table 3. General inputs.

Name Type Description

Gim: Main

Entrance
Direction

Specifies the direction for SFH‘s main

entrance.

Gib: Boundary

limits

{dimension,

dimension}

X and Y dimensions for the rectilinear plot

boundary.

Gim: Maximum

cantilever
Dimension

Maximum cantilever distance between the

vertical sequences of floors.

Git: Topological

relations
Matrix

the connection and adjacency relations

between every separate layout element.

Gifh: Floor Height Dimension Vertical dimension between floors

Gich: Chimney

Height
Dimension

Vertical dimension of the chimney from

ground

Git: Porch Height Dimension
Vertical dimension of porch‘s ceiling slab

from ground

72

Specific Inputs

Table 4. Main Space Inputs

Name Type Description

MS
i
n: Room

Name

Text Name of the room for the user to check generated

layout solutions.

MS
i
a: Room

Area

Dimension The area amount of the room. Circulation

elements are automatically fixed to 0 to minimize

their area.

MS
i
min:

Minimum edge

dimension

Dimension The minimum dimension value for a separate edge

of room geometry. Building regulations usually

involve standard minimum dimensions for

residential buildings.

MS
i
max:

Maximum edge

dimension

Dimension The maximum dimension value for a separate

edge of room geometry. User can also specify the

upper bounds of edge dimensions for every layout

element to control geometric ratios. Fixed

automatically to Area / MinE when not specified.

MS
i
v: Room

View

Direction The direction for the layout element to have an

unobstructed view.

MS
i
g: Room

Gallery

Ratio The maximum percentage of the gallery space that

can be occupied by the upper layout elements.

MS
i
f: Room

Floor

Numeric Specifies the floor to place the room

MS
i
gr: Room

Group

Numeric Specifies the group that the room belongs

73

Table 5. Stair Inputs

Name Type Description

STA
i
n: Stair Name Text

Name of the stair for the user to check

generated layout solutions.

STA
i
fmax: Maximum

Flight Width
Dimension Maximum dimension for the flight width.

STA
i
fmin: Minimum

Flight Width
Dimension Minimum dimension for the flight width.

STA
i
ld: Landing depth Dimension The horizontal dimension for stair landing.

STA
i
amax: Maximum

Flight Angle
Degree

The maximum angle between the ground

and stair flight.

STA
i
amin: Minimum

Flight Angle
Degree

The minimum angle between the ground and

stair flight.

STA
i
fs: Starting floor Number The lowest floor that stair contacts.

STA
i
fe: Ending floor Number The highest floor that stair contacts.

Table 6. Other Specific Inputs

Name Type Description

CHI
i
min: Minimum edge Dimension

Minimum horizontal dimension for

chimney.

CHI
i
max: Maximum edge Dimension

Maximum horizontal dimension for

chimney.

Gac: Number of cars Number
Number of cars to be parked within the

garage.

Ge: Length of entrance Dimension Width of the garage door.

Po
i
a: Porch area Dimension Area requirement for porch.

Po
i
min: Porch minimum edge Dimension

The minimum dimension value for a

separate edge of porch geometry.

Po
i
max: Porch maximum edge Dimension

The maximum dimension value for a

separate edge of porch geometry.

Pa
i
a: Patio area Dimension Area requirement for patio.

Pa
i
min: Patio minimum edge Dimension

The minimum dimension value for a

separate edge of patio geometry.

Pa
i
max: Patio maximum edge Dimension

The maximum dimension value for a

separate edge of patio geometry.

74

Evaluation Inputs

Ho-Gen allows the user to prioritize the importance of certain soft criteria over the other. In

this way, user defines the dominance of selected evaluation algorithms by allocating

different coefficient values to the related criteria. It is also possible to disqualify a criterion

totally from the search process by defining its coefficient as zero. Detailed information on

the constraints can be found in Section 3.3.

Evolutionary Inputs

Table 7. Evolutionary Inputs

Name Type Description

Ep: Population

Size
Number

Specifies the number of layout solutions in a

generation.

Em: Mutation

Rate

Coefficient

[0,1]

Chance of mutation for a gene after every

crossover.

Emi: Mutation

Rate Increase
Value

Increase in the mutation rate in the case of

stagnation in successive generations.

Es: Crossover

Rate

Coefficient

[0,1]
Rate of population to be generated with mating.

Termination Inputs

Table 8. Termination Inputs

Name Type Description

Tt: Time limit Minutes Runtime limit.

Tml: Maximum generation Number Number of generations for each run.

Tmr: Stagnation

generation
Number

Number of generations to go after

stagnation.

75

3.2 Generation & Guidance

3.2.1 Genotype and phenotype representation

Main Spaces

Genotype

MS
i
cx: Coordinate X - MS

i
cy: Coordinate Y - MS

i
dx: Dimension X –

MS
i
dy: DimensionY

Phenotype

Figure 20. Main Space Phenotype. (Drawn by the author)

Stair

Genotype

STAr: Rotation – STAcx: Coordinate X - STAcy: Coordinate Y – STAfw: Flight Width

- STAa: Flight Angle

76

Phenotype

Figure 21. Stair Phenotype. (Drawn by the author)

Chimney

Genotype

CHI
i
cx: Coordinate X - CHI

i
cy: Coordinate Y

77

Phenotype

Figure 22. Chimney Phenotype. (Drawn by the author)

Garage

Genotype

G
i
cx: Coordinate X - G

i
cy: Coordinate Y

Phenotype

Figure 23. Garage Phenotype. (Drawn by the author)

78

Porch

Genotype

Po
i
cx: Coordinate X - Po

i
cy: Coordinate Y - Po

i
dx: Dimension X - Po

i
dy: Dimension Y

Phenotype

Figure 24. Porch Phenotype. (Drawn by the author)

Patio

Genotype

Pa
i
cx: Coordinate X - Pa

i
cy: Coordinate Y - Pa

i
dx: Dimension X - Pa

i
dy: Dimension Y

Phenotype

79

Figure 25. Patio Phenotype. (Drawn by the author)

3.2.2 Genetic Algorithms

Initiation

Initiation generates several individual solutions according to the user-defined

population size. In a non-interactive run, an initial population is randomly generated.

Random operations are realized within the bounds of initial problem representation.

In an interactive run where the user supplies an initial layout solution, many

individuals that are relative to a user-defined ratio are generated from the mutations

on the initial layout. The rest of the population is again generated randomly.

Selection

In every generation, a portion of population is selected for reproduction to generate

the new generation of solutions. Layouts for reproduction are selected according to

their fitness score. Ho-Gen‘s reproduction algorithm requires two solutions in every

generation. This selection process does not directly take the best solutions in the

population as this process can cause an early reduction in the variety of population.

Ho-Gen, alternatively, uses tournament selection which randomly picks a group of

four solutions from the population and selects the best individual among this small

group as the first parent solution. The selection of the second parent repeats the same

process, but this time random selection is realized within a population without first

80

parent solution. First parent solution is temporarily removed from the population to

eliminate the risk of self-mating that produces duplicate layouts within the total

generation. Ho-Gen does not create a new population in every generation as this can

cause fit individuals to get lost in the reproduction process. Instead, reproduction

process uses Elitism, which saves 10% of the fittest individuals directly to the new

population.

Crossover

Crossover algorithm is the first part of the reproduction process. Crossover generates

a child from the random genotype combination of two parent solutions. This new

individual carries the properties of its parents however, it still carries a certain level

of difference which increases the exploration space of the algorithm. Ho-Gen uses

uniform crossover which makes a random decision for every gene to decide about its

source. This way, the genotype order of a parent is not purposely carried to the

children. Ho-Gen also favors the fitter parent in gene distribution. In this way, child

solution takes 70% percent of its genes from the fitter parent. The crossover

operation is repeated until reaching the population limit.

Mutation

Mutation algorithm takes the newly generated solution and performs random

changes in their genotype. A random operation between [0,1] is realized for every

gene and the gene is randomized if it is below Em. This simple operation is essential

for keeping a level of genetic variety within the population as it avoids early

convergence. As an initial condition, Ho-Gen starts with an Em of %1 but this rate

changes during the run. Ho-Gen checks the best fitness score within every generation

and compares this value to the previous one. If two scores are the same, then Em is

increased by %0.01.

Termination

Ho-Gen continues to produce new generations until meeting one of the termination

criteria. These criteria are defined in Table 8. In the termination process, Ho-Gen

81

generates the best individual layout of the last generation in Rhinoceros together

with the related fitness graphs. In this context, the user can pass into the user

guidance process to modify the generated solution and the problem definition or

he/she also can start a new Ho-Gen run from the scratch.

3.2.3 User Guidance

Ho-Gen‘s interactive engine allows designer to iterate over the results through

modifying the problem definition and reshaping the solutions. The generated

solutions are baked in Rhinoceros by the Grasshopper definition. These baked

geometries are also defined in the Grasshopper definition to keep the algorithm

informed of the user modifications in Rhinoceros‘ interface. Grasshopper

simultaneously translates the geometric definition in Rhinoceros to its genotype

definition in GA. The user can also make changes on the problem definition by using

Grasshopper similar to the initial state. This data is also simultaneously translated for

GA. The user can make the following modifications in the intermediate states:

 Changing the components of the design problem. For example, changing the

area requirement of one LE, removing or adding an LE, changing topological

requirements, changing general inputs, or modifying the evaluator weights.

 Adding or removing a LE

 Modifying general inputs

 Modifying topological criteria

 Modifying evaluator weights

 Manual adjustments on the solutions via Rhinoceros to change the scale and

location of LEs. From another perspective, the user can also start with an

initial layout to guide the search process from the start.

82

In the end of user guidance phase, GA starts from the initialization phase again. This

time it derives the population from the given layout input. The mechanism is

explained in detail within the initiation phase of genetic algorithm section

3.3 Evaluation

Ho-Gen evaluates the solutions by a single fitness function that corresponds to the

weighted sum of eight evaluator penalties (Table 9). If a solution cannot meet certain

requirements of evaluators, a penalty score that is relative to its degree of violation is

assigned to the solution. Every evaluator penalty is then multiplied by its own user-

defined weight and added to the general fitness function. In this way, fitness score of

the solution corresponds to its degree of incompatibility with the initial requirements.

All the evaluator penalties except for the Cdim and Cview correspond to area values.

These penalty values are square rooted in order to equalize their effect with the Cdim

and Cview evaluators. The fitness function can be described with the following

formula:

Ctotal = (Wovf * √Covf) + (Wint * √Cint) + (Wdim * √Cdim) + (Wcomp *

√Ccomp) + (Wcant * √Ccant) + (Wcirc * √Ccirc) + (Wrel * Crel) + (Wview *

Cview)

Figure 26. Fitness function equation. (Drawn by the author)

83

Table 9. Ho-Gen constraints

Constraint Name Description

Covf: Overflow

constraint

Evaluates the solution by the percentage of total area that is

out of the user-defined bounding geometry.

Cint: Intersection

constraint

Evaluates the solution by the area of intersection between

separate layout elements.

Cdim: Dimension

constraint

Evaluates the solution by the difference between AREA input

and areas of the generated layout elements.

Crel: Relation

constraint

Evaluates the solution by the distance between generated

layout elements that are specified as related in the topological

inputs.

Ccomp: Compactness

constraint

Evaluates the solution by the difference of arranged group

geometries from a bounding rectangle.

Ccant: Cantilever

constraint

Evaluates the solution by the difference between the given

maximum cantilever and the actual cantilever distance on the

upper floors.

Ccirc: Circulation

constraint

Evaluates the solution by the area of circulation units,

circulation units are tried to be minimized by area with this

method

Cview: View

constraint

Evaluates the solution by the length of interruption by the

input side for every layout element with view criteria.

84

Overflow evaluator checks every floor for LEs that got out of the predefined

boundary geometry. It assigns the total area outside the boundary geometry as a

penalty.

Figure 27. Overflow Evaluator (Drawn by the author).

Intersection evaluator checks every floor for overlaps between LEs. The total area of

intersection in every floor is assigned as a penalty value

for each FLO:

 interL = []

 totalArea = 0

 for each LE:

 interL.APPEND(LE)

 totalArea = totalArea + LEarea

interFloor = totalArea - inter(interL)

Cint = Cint + interFloor

Figure 28. Intersection evaluator (Drawn by the author).

for each LE:

 interL.APPEND(LE)

interL.APPEND(Boundary)

Covf = inter(interL) - Boundaryarea

85

Dimension evaluator checks how close the SP areas are to the initial user inputs. It

assigns the absolute difference between the two values as a penalty.

for each SP:

IF SParea > 0:

Cdim = Cdim + abs(SParea - (SPdimX * SPdimY))

Figure 29. Dimension evaluator (By the author).

Relation evaluator checks how close the distances between LEs are to the initial

topological inputs. The distance calculation process varies with the type of LE under

consideration. SP distances are taken as the shortest distance between their borders.

STA distances are the closest distances between the two corners of both stair flight

edges and the border of the relevant SP. CHI distance is the closest distance between

the center of CHI geometry and the relevant SP border. Relation distances cannot be

negative, so the negative values are replaced by zero. Relation evaluator works

relevant to two types of adjacency. 0 corresponds to NO RELATION between LEs so

this pair is not evaluated. 1 corresponds to CONNECTION between LEs which

requires a certain overlapping between LE borders to place a door. Ho-Gen

automatically considers 1 meter as a standard door dimension and gives the penalty

of 1 for pair of LEs intersect with point intersection. 2 corresponds to ADJACENCY

between LEs which does not require a physical connection but still they require

being in close proximity.

86

for x in unitTOPO:

 for y in x:

 distX=abs(SPx.centerX-SPy.centerX)- (SPx.dimX-SPy.dimX)/2

 distY=abs(SPx.centerY-SPy.centerY)- (SPx.dimY-SPy.dimY)/2

 IF y = CONNECTION:

 IF distX=0 AND distY=0:

 interRel = interRel +1

 IF distX<0: distX = 0 IF distY<0: distY

 interRel = interRel + √(distX2 + distY2)

 IF y = ADJACENCY:

 IF distX<0: distX = 0 IF distY<0: distY

 interRel = interRel + √(distX2 + distY2)

 Crel = Crel + interRel

Figure 30. Relation evaluator - SP (Drawn by the author).

87

for x in staTOPO:

 for y in x:

 distX1=abs(STA.p1X-SPy.centerX) - (SPy.dimX)/2

 distY1=abs(STA.p1Y-SPy.centerY) - (SPy.dimY)/2

 distX2=abs(STA.p2X-SPy.centerX) - (SPy.dimX)/2

 distY2=abs(STA.p2Y-SPy.centerY) - (SPy.dimY)/2

 IF distX<0: distX = 0 IF distY<0: distY

 interRel = interRel + √(distX2 + distY2)

 Crel = Crel + interRel

Figure 31. Relation evaluator - STA (Drawn by the author).

FOR x in chiTOPO:

 distX1=abs(CHI.coorX-SPy.centerX) - (SPy.dimX)/2

 distY1=abs(CHI.coorY-SPy.centerY) - (SPy.dimY)/2

 IF distX<0: distX = 0 IF distY<0: distY

 interRel = interRel + √(distX2 + distY2)

 Crel = Crel + interRel

Figure 32. Relation evaluator - CHI (Drawn by the author).

Compactness evaluator checks the irregularity of GRO geometries together with the

unoccupied regions within them. The forming process of GROs can be found in

88

Table 2. For every layout, a minimum rectangular region is generated that contains

all SPs in a GRO. Evaluator assigns the difference between the area of bounding

rectangular region and the total area of SPs in relative GRO as a penalty. The penalty

cannot be below zero so a negative value is replaced by zero.

FOR each GRO:

 groArea = 0

 FOR each LE in GRO:

 groArea = groArea + LEarea

interGRO = GROarea - groArea
Ccomp = Ccomp + intergrow

Figure 33. Compactness evaluator (Drawn by the author).

Cantilever evaluator checks the relevance of maximum cantilever distances between

succeeding floors to user inputs. Evaluation process repeats for every two sequent

floors. Cantilever evaluator considers the GRO geometries rather than LEs

separately to reduce the time requirement for calculations. First, cantilever evaluator

considers the SPs in separate GROs in the lower floor. These SPs are offset by the

maximum cantilever input and a minimum bounding rectangle is generated.

Evaluator calculates the union area of bounding rectangles of separate GROs.

Second, cantilever evaluator takes into account the SPs in the upper floor and repeats

89

the process without the offsetting. Area calculation is repeated with all bounding

rectangles in the lower and upper floors. The difference between the second and first

result is assigned as the penalty. The penalty cannot be negative, so a negative value

is replaced by zero.

FOR each FLO:

 FOR each GRO:

 groFloorLow = []

 groFloorHigh = []

 FOR each LE in GRO:

IF LEfloor = FLO: groFloorLow.append(LE(LE.coorX- Gim, LE.coorY- Gim,

LE.dimX+ 2*Gim, LE.dimY+ 2*Gim)

 ELIF LEfloor = FLO + 1: groFloorHigh.append(LE)

 interCant = inter(groFloorLow + groFloorHigh) -

inter(groFloorLow)

 Ccant = Ccant + interCant

Figure 34. Cantilever evaluator (Drawn by the author).

Circulation evaluator checks the area of circulation SPs. Circulation SPs are defined

with zero area value by the user and their area is tried to be minimized by Ho-Gen.

The total area of circulation SPs are given as a penalty.

FOR each SP:

 IF SParea = 0:

 Ccirc = Ccirc + (SPdimX * SPdimY)

Figure 35. Circulation evaluator (Drawn by the author).

90

View evaluator checks for obstacles in the given direction for SPs. If an initial view

preference exists for one SP, the evaluator draws a rectangle from SPs farthest edge

in that direction until the layout boundary. Any other SP that overlaps with the

generated view rectangle is given a penalty relevant to the obstacle distance.

Figure 36. View evaluator (Drawn by the author).

91

FOR each SP:

IF dir = NORTH:

coorX = SP.coorX

coorY = SPcoorY + SPdimY

dimX = SPdimX

dimY = boundaryY - (SPcoorY + (SPdimY)

IF dir = EAST:

coorX = SPcoorX + SPdimX

coorY = SPcoorY

dimX = boundaryY – (SPcoorX + SPdimX)

dimY = SPdimY

IF dir = SOUTH:

coorX = SPcoorX

coorY = 0

dimX = SPdimX

dimY = SPcoorY

IF dir = WEST:

coorX = 0

coorY = SPcoorY

dimX = SPcoorX

dimY = SPdimY

VU = Unit(coorX,coorY,dimX,dimY)

FOR each SP:

distX=abs(SPx.centerX-VU.centerX)- (SPx.dimX-VU.dimX)/2

distY=abs(SPx.centerY-VU.centerY)- (SPx.dimY-VU.dimY)/2

IF distX>0: distX=0, IF distY>0: distY=0

IF dir=SOUTH OR dir=NORTH:

interView = interView - distX

IF dir=EAST OR dir=WEST:

interView = interView - distY

Cview = Cview + interView

Figure 37. View evaluator (Drawn by the author).

The assignment of evaluator weights is an essential process for Ho-Gen to generate

layout solutions according to user requirements. Users define the relative importance

of evaluators through the hierarchy in evaluator weights. Evaluators with

considerably higher weight values correspond to hard sub-criteria. Hard sub-criteria

are basically the red-lines of the design process. Architects, while in the form-finding

process, do not generate every possible configuration such as a layout with

92

overlapping spaces. Similarly, Ho-Gen limits the possibility of the generation of

certain instances from the exploration process. Layouts that violate hard sub-criteria

are not killed off, but their penalty values increase.

Design is mostly about dealing with uncertain sub-criteria. Such uncertain sub-

criteria are not strictly imposed rules, but their effect still matters for design. These

criteria are defined as soft sub-criteria. The relative importance of soft sub-criteria

can change with the problem and varying subjective decisions of the user. Such a

layout task can require the area dimensions to match the user inputs while for

another layout task the regularity of the overall form can be the primary concern.

93

CHAPTER 4

CASE STUDIES

In this chapter, Ho-Gen‘s performance in generating valid layouts is tested.

Computational formulations to layout design are typically considered as ―NP-

complete‖. Therefore, finding optimal layout solutions require extended amounts of

time even for small scale problems, as the solution space grows exponentially even

with a low number of layout elements.
179

 Thus, Ho-Gen is tested with two case

studies with different levels of complexity in terms of the number of layout elements,

adjacency relations, and user objectives. Every case study is also approached with

different group relations and level of compactness in different parts to evaluate the

effect of Ccomp on the character of the layout solutions. In addition to these non-

interactive case studies, the effects of user interaction on the generation process are

tested in a separate part for every case study.

The main algorithm of HO-Gen is implemented in Rhino Python, while Grasshopper

is used for the initial and intermediate states of user interaction. The user can also

use Rhinoceros‘s main drafting interface to modify the generated layouts manually.

Tests were conducted in 2017 by a 2.13 Core Duo computer with 4GB DDR Ram.

The non-interactive parts of the case studies are conducted to evaluate the success of

Ho-Gen in generating alternative layout solutions for the same problem. Thus, the

research presents six alternatives for every case study to observe the level of

difference between the generated solutions. Non-interactive case studies also present

intermediate phases from the generation process of the best layout alternative to

179
 Jo and Gero, ―Space Layout Planning Using an Evolutionary Approach,‖ 3.

94

show the gradual development of layouts. Table 4-1 shows the general aims of case

studies.

Table 10 Case Study Table

CASE

STUDY
INTERACTIVITY COMPACTNESS TARGET

1
AUTOMATED D – Layout

-Divergence of results

-Effect of evaluator

penalties

INTERACTIVE D and B
User interaction

mechanism

2
AUTOMATED

A – No groups -Effect of increased

complexity

-Divergence of results

-Effect of group relations

-Effect of evaluator

penalties

C - Floor

D - Layout

INTERACTIVE C - Floor
-Convergence of an initial

layout sketch

The results of the case studies are presented together with the fitness graphs showing

the development of the layout through generations. This graph does not show the

individual‘s direct penalty score. Ho-Gen‘s evaluators work within different

numerical ranges because of the magnitude of results. Thus, it is not directly possible

to compare the differences in the evaluator penalties. The penalty scores are

normalized within [0, 1] according to the following formula to make such

comparison possible:

95

Cnormal = Cinitial / Cmaximum

Figure 38. Formula to normalize constraint scores (Drawn by the author).

4.1 Case study inputs

4.1.1 Case study 1 – Small scale

First case study is conducted to test the capabilities of Ho-Gen in generating a

diversity of solutions for a simple 2D layout problem. Layout problem consists of a

2-bedroom SFH in a single floor. The main entrance is arranged from the NORTH

direction. A 10 m * 10 m rectangle is given as a boundary. Detailed information

about the inputs is as follows:

Table 11. Main Space Inputs (Case Study 1)

Main Space / Input MSf MSmin MSar MSmax MSat MSv MSg

MS
1
 Living Room 0 3 25 8 - - 1

MS
2

Kitchen 0 2.5 10 - - - 1

MS
3
Master Bedroom 0 2.5 18 5 - - 2

MS
4

Bedroom 1 0 2.5 12 - - - 2

MS
5

Bathroom 1 0 1.5 7 - - - 2

MS
6

Entrance 0 1.5 8 8 - 1 0

MS
7
Circulation 1 0 1 - 8 - - 2

Table 12. Patio Inputs (Case Study 1)

Patio / Input Pamin Paar Pamax Pav Pag

Pa
1
 Patio 1 3 25 8 - 1

96

Table 13. Porch Inputs (Case Study 1)

Porch / Input Pomin Poar Pomax Pov Pog

Po
1
 Porch 1 3 25 8 1 0

Table 14. Garage Inputs (Case Study 1)

Garage / Input Gac Gav Pag

Ga
1
 Garage 1 1 1 0

Table 15. Space Adjacency Matrix (Case Study 1)

M
S

1

M
S

2

M
S

3

M
S

4

M
S

5

M
S

6

M
S

7

P
a1

P
o

1

G
a1

MS
1

 1 0 0 0 1 1 1 0 0

MS
2
 0 0 0 0 0 0 0 0

MS
3
 0 2 0 1 0 0 0

MS
4
 2 0 1 0 0 0

MS
5
 0 1 0 0 0

MS
6
 0 0 1 1

MS
7
 0 0 0

Pa
1
 0 0

Po
1
 0

Ga
1

Table 16. Chimney Adjacency Matrix (Case Study 1)

M
S

1

M
S

2

M
S

3

M
S

4

M
S

5

M
S

6

M
S

7

P
a1

P
o

1

G
a1

CHI
1

0 1 0 0 0 0 0 0 0 0

4.1.2 Case study 2 – Medium scale

Second case study is conducted in order to test Ho-Gen‘s capability to deal with

97

multi-floor layout problems. Multiple floors create a higher complexity for Ho-Gen

because every floor is solved as a separate layout problem. This also reflects to the

time requirements because Ho-Gen evaluates every floor separately. Another reason

is the increase in the population in order to cope with the larger search space.

Layout problem consists of a 3-bedroom SFH in two floors. The main entrance is

arranged from the NORTH direction. A 15 m X 15 m rectangle is given as a

boundary. Detailed information about the inputs is as follows:

Table 17. Main Space Inputs (Case Study 2)

Main Space / Input MSf MSmin MSar MSmax MSat MSv MSg

MS
1
 Living Room 0 3 25 8 - 3 0

MS
2

Kitchen 0 2.5 10 - - - 0

MS
3
Master Bedroom 1 2.5 18 5 - 2 1

MS
4

Bedroom 1 0 2.5 12 - - - 0

MS
5

Bedroom 2 1 2.5 12 - - - 1

MS
6

Bathroom 1 0 1.5 7 - - - 0

MS
7

Bathroom 2 1 1.5 7 - - - 1

MS
8

Bathroom 3 1 1.5 7 - - - 1

MS
9

Entrance 0 1.5 8 8 - 1 0

MS
10

Circulation 1 0 1 - 8 - - 0

MS
11

Circulation 2 1 1 - 8 - - 1

Table 18. Patio Inputs (Case Study 2)

Patio / Input Pamin Paar Pamax Pav Pag

Pa
1
 Patio 01 3 20 6 - 0

98

Table 19. Porch Inputs (Case Study 2)

Porch / Input Pomin Poar Pomax Pov Pog

Po
1
 Porch 01 3 10 4 1 0

Po
2
Porch 02 3 10 4 2 0

Table 20. Garage Inputs (Case Study 2)

Garage / Input Gac Gav Pag

Ga
1
 Garage 01 2 1 0

Table 21. Space Adjacency Matrix (Case Study 2)

M
S

1

M
S

2

M
S

3

M
S

4

M
S

5

M
S

6

M
S

7

M
S

8

M
S

9

M
S

1
0

M
S

1
1

P
a1

P
o

1

P
o

2

G
a1

MS
1
 1 0 0 0 0 0 0 1 1 0 1 0 0 0

MS
2
 0 0 0 0 0 0 0 0 0 0 0 1 0

MS
3
 0 0 0 0 1 0 0 1 0 0 0 0

MS
4
 0 0 2 0 0 1 0 0 0 0 0

MS
5
 0 2 0 0 0 1 0 0 0 0

MS
6
 0 0 0 1 0 0 0 0 0

MS
7
 0 0 0 1 0 0 0 0

MS
8
 0 0 0 0 0 0 0

MS
9
 0 0 0 1 0 1

MS
10

 0 0 0 0 0

MS
11

 0 0 0 0

Pa
1
 0 0 0

Po
1
 0 0

Po
2
 0

Ga
1

99

Table 22. Stair Adjacency Matrix (Case Study 2)

M
S

1

M
S

2

M
S

3

M
S

4

M
S

5

M
S

6

M
S

7

M
S

8

M
S

9

M
S

1
0

M
S

1
1

P
a1

P
o

1

P
o

2

G
a1

STA1-a 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

STA1-b 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Table 23. Chimney Adjacency Matrix (Case Study 2)

M
S

1

M
S

2

M
S

3

M
S

4

M
S

5

M
S

6

M
S

7

M
S

8

M
S

9

M
S

1

0

M
S

1

1

P
a1

P
o

1

P
o

2

G
a1

CHI
1
 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4.2 Case study results

4.2.1 Case study 1a

In this case study, the building program is tested as a one whole GRO, which

corresponds to a compact rectangular result. The weights of the evaluators Covf to

Cview are 3-8-3-2-3-0-0-1. Ho-Gen is run for 6 times with the given inputs to test the

validity and formal variation of the generated results. During each run, Ho-Gen

bakes the fittest member in every 10 generations. The figures that explain the

development process of the fittest alternative in included in APPENDIX A. The

generated results of six runs are as follows:

100

Figure 39. Alternative 1 - Case study 1 – Compactness D - Parallel projection from 4

sides. (Drawn by the author)

Figure 40. Alternative 1 - Case study 1 – Compactness D - Top view. (Drawn by the

author)

101

Figure 41. Alternative 2 - Case study 1 Compactness D - Parallel projection from 4

sides. (Drawn by the author)

Figure 42. Alternative 2 - Case study 1 – Compactness D - Top view. (Drawn by the

author)

102

Figure 43. Alternative 3 - Case study 1 – Compactness D - Parallel projection from 4

sides. (Drawn by the author)

Figure 44. Alternative 3 - Case study 1 – Compactness D - Top view. (Drawn by the

author)

103

Figure 45. Alternative 4 - Case study 1 – Compactness D - Parallel projection from 4

sides. (Drawn by the author)

Figure 46. Alternative 4 - Case study 1 – Compactness D - Top view. (Drawn by the

author)

104

Figure 47. Alternative 5 - Case study 1 – Compactness D- Parallel projection from 4

sides. (Drawn by the author)

Figure 48. Alternative 5 - Case study 1 – Compactness D - Top view. (Drawn by the

author)

105

Figure 49. Alternative 6 - Case study 1 – Compactness D - Parallel projection from 4

sides. (Drawn by the author)

Figure 50. Alternative 6 - Case study 1 – Compactness D - Top view. (Drawn by the

author)

106

Figure 51. Best total fitness score - Case study 1 – Compactness D. (Drawn by the

author)

Figure 52. Best evaluator fitness score - Case study 1 –Compactness D. (Drawn by

the author)

Figure 53. Average total fitness score - Case study 1 – Compactness D. (Drawn by

the author)

107

Figure 54. Average evaluator fitness score - Case study 1 – Compactness D. (Drawn

by the author)

Table 24. Weighted fitness results for six alternatives - Case study 1 – Compactness

D (Drawn by the author).

 Fitness Covf Cint Cdim Crel Ccomp Ccant Ccirc Cview

1 0.023 0.000 0.000 0.391 0.011 0.000 0.000 0.172 0.000

2 0.044 0.000 0.000 0.234 0.000 0.000 0.000 0.244 0.000

3 0.047 0.000 0.000 0.212 0.022 0.236 0.000 0.402 0.000

4 0.033 0.000 0.000 0.027 0.018 0.256 0.000 0.118 0.000

5 0.024 0.000 0.000 0.391 0.000 0.106 0.000 0.198 0.000

6 0.042 0.000 0.000 0.255 0.000 0.000 0.000 0.150 0.000

A closer look into the generated alternatives and the evaluation scores indicate that

Ho-Gen‘s automated run is successful in generating valid alternative solutions for

layouts with high compactness. The variety in the generated solutions is found

successful in terms of the placement of LEs and overall layout form. Alternative 1

(Figure 40) and Alternative 5 (Figure 48), as the first best and second best solutions,

are different in their overall form and orientation. An interesting result of this study

was the Crel penalty in the Alternative 1. Normally Crel is a hard constraint and its

violation should result with an overall bad fitness score. The reason for the Crel

penalty in Alternative 1 can be observed in the best evaluator fitness score graph

(Figure 52). According to the graph, a sudden decrease in Cint score caused a small

increase in Crel. Indeed, alternative 1 is found very organized and regular compared

to the other solutions. In a way, this result verifies the suitability of the fitness

function. Another interesting point is the emergent inner courtyard in Alternative 6

(Figure 50). The inner courtyard was not hard coded within the topologic description

108

of the layout, however, the description was open enough to include such a result

within the solution space.

An examination of the average fitness score graph (Figure 53) shows small triangular

differences. These hill-like figures indicate the points of stagnation in the search

process. As mentioned in tool development, stagnation causes an increase in the

mutation rate. Such an increase causes Ho-Gen to explore different solution options

which usually causes the generation of many bad layouts. Therefore, it is possible to

say that the search process has not come across such a long stagnation. Instead, Ho-

Gen run encountered many quick improvements.

4.2.2 Case study 1b

In the interactive scenario, the user was expected to have less information about the

configurational possibilities of the layout problem. Thus, the user has not arranged

any separate groups within the layout at the start. The problem definition is changed

as all LEs form one group. The weights of the evaluators Covf to Cview are 3-8-3-2-3-

0-0-1.

109

Figure 55. The results of Iteration 1 - Parallel projection from four sides - Case study

1– Interactive run. (Drawn by the author)

Figure 56. The results of Iteration 1 – Top view - Case study 1 – Interactive run.

(Drawn by the author)

The user, after observing the results of the initial iteration, finds the bathroom small

and decides that the required bathroom area is not possible with the current

compactness arrangement. Therefore, the user separates the bathroom, corridor,

bedroom, and master bedroom through defining them in a new group. The user also

provides an initial layout to Ho-Gen by making certain arrangements in the current

iteration.

110

Figure 57. Given layout arrangement for Iteration 2 - Parallel projection from four

sides - Case study 1 – Interactive run. (Drawn by the author)

Figure 58. Given layout arrangement for Iteration 2 – Top View - Case study 1 –

Interactive run. (Drawn by the author)

Ho-Gen generated the following layout through 43 generations:

111

Figure 59. The results of Iteration 2 - Parallel projection from four sides - Case study

1 – Interactive run. (Drawn by the author)

Figure 60. The results of Iteration 2 – Top view - Case study 1b – Interactive run.

(Drawn by the author)

After Iteration 2, the user finds the living room too large and away from the initial

inputs. The user decides that the hierarchy between Ccomp and Cdim does not let Ho-

Gen to develop better results in terms of LE dimensions. Thus, the user increases

Wdim by one. Additionally, the user observes that the living room is largely

obstructed by the surrounding LEs which causes a dark space living area throughout

112

the day. The user decides that this problem can be changed by giving living room an

exposure on south direction. Lastly, master bedroom is also given an exposure on

east direction to take the advantage of morning light. Ho-Gen is iterated again with

the mentioned changes on the problem definition.

Figure 61. The results of Iteration 3 - Parallel projection from four sides - Case study

1 – Interactive run. (Drawn by the author)

Figure 62. The results of Iteration 3 – Top view - Case study 1 – Interactive run.

(Drawn by the author)

113

Ho-Gen successfully generated valid results for the changing problem definitions

within the interactive run. Additionally, Ho-Gen showed success in generating a

valid layout similar to the user‘s initial input in Iteration 2. The interactive run also

generated better results in terms of LE dimensions because of user‘s intermediate

interference to the generation process.

4.2.3 Case study 2a

This case study is conducted to test the capabilities of Ccomp and different degrees of

compactness in generating a variety of solutions. In this way, the building program

of case study 2 is tested with three different compactness degrees. Ho-Gen is run 6

times for every compactness degree to test the validity and formal variation of the

generated results. For a detailed look into the generation process, the rest of the

figures are included in Appendix B, Appendix C, and Appendix D.

The case study with compactness degree A is conducted with a population of 2500

individuals. Every run is limited with a total stagnation of 60 generations. An

average run took 1620 seconds. The weights of the evaluators Covf to Cview are 3-5-2-

2-3-1-2-2.

The case study with compactness degree C is conducted with a population of 2500

individuals. Every run is limited with a total stagnation of 60 generations. An

average run took 2056 seconds. The weights of the evaluators Covf to Cview are 3-8-2-

2-3-1-2-2.

The case study with compactness degree D is conducted with a population of 2500

individuals. Every run is limited with a total stagnation of 60 generations. An

average run took 2050 seconds. The weights of the evaluators Covf to Cview are 3-10-

2-2-3-1-2-2.

The best layout alternative for every compactness degree is as follows:

114

Figure 63. Alternative 6 - Case study 2 – Compactness A – Parallel projection from 4

sides (Drawn by the author).

Figure 64. Alternative 6 - Case study 2a – Compactness A – Top view (Drawn by the

author)

115

Figure 65. Alternative 5 - Case study 2 – Compactness C – Parallel projection from 4

sides. (Drawn by the author)

Figure 66. Alternative 5 - Case study 2 – Compactness C – Top view. (Drawn by the

author)

116

Figure 67. Alternative 5 - Case study 2 – Compactness D- Parallel projection from 4

sides. (Drawn by the author)

Figure 68. Alternative 5 - Case study 2 – Compactness D - Top view. (Drawn by the

author)

117

Table 25 Weighted fitness result for six alternatives - Case study 2 – Compactness A.

 Fitness Covf Cint Cdim Crel Ccomp Ccant Ccirc Cview

1 0.046 0.000 0.000 0.388 0.014 0.000 0.000 0.286 0.000

2 0.033 0.000 0.000 0.361 0.005 0.000 0.000 0.294 0.000

3 0.033 0.000 0.000 0.230 0.016 0.000 0.000 0.194 0.000

4 0.026 0.000 0.000 0.230 0.007 0.000 0.000 0.185 0.000

5 0.034 0.000 0.000 0.262 0.013 0.000 0.000 0.256 0.000

6 0.025 0.000 0.000 0.250 0.000 0.000 0.000 0.208 0.000

Table 26. Weighted fitness results for six alternatives - Case study 2 – Compactness

C.

 Fitness Covf Cint Cdim Crel Ccomp Ccant Ccirc Cview

1 0.056 0.000 0.000 0.406 0.013 0.301 0.000 0.222 0.000

2 0.072 0.000 0.184 0.483 0.007 0.000 0.000 0.227 0.000

3 0.054 0.000 0.000 0.509 0.007 0.258 0.000 0.227 0.000

4 0.073 0.111 0.000 0.605 0.033 0.126 0.000 0.309 0.000

5 0.052 0.000 0.000 0.292 0.000 0.352 0.000 0.359 0.000

6 0.057 0.000 0.000 0.287 0.037 0.259 0.000 0.153 0.000

Table 27.Weighted fitness result for six alternatives - Case study 2 – Compactness D.

 Fitness Covf Cint Cdim Crel Ccomp Ccant Ccirc Cview

1 0.092 0.000 0.000 0.664 0.007 0.314 0.000 0.296 0.000

2 0.093 0.000 0.000 0.679 0.018 0.314 0.000 0.294 0.000

3 0.092 0.000 0.000 0.656 0.015 0.342 0.000 0.247 0.000

4 0.092 0.000 0.000 0.716 0.062 0.328 0.000 0.243 0.016

5 0.085 0.000 0.000 0.557 0.019 0.304 0.000 0.188 0.000

6 0.011 0.000 0.000 0.609 0.060 0.306 0.000 0.188 0.000

Different compactness degrees had a positive effect over the variety of results in this

study. Improving the degree of exploration by a small change in the problem

representation is found beneficial. One significant problem about the compactness

degrees is its effect on Cdim penalties. The increase in compactness seems to push

LEs to stretch or tighten in order to comply with the regularity of the layout. This

issue can be problematic in terms of the validity of the layouts.

118

4.2.4 Case study 2b

This case study, similar to case study 1a, tests Ho-Gen‘s capability to generate

diverse and valid results. An additional purpose of case study 2b is to test the effect

of increased layout complexity over the performance of Ho-Gen.

In case study 2b, every floor is defined as a GRO. Ho-Gen is expected to generate

compact floor layouts that are brought together with vertical circulation and

maximum cantilever value.

As a medium scale layout problem, this study is conducted with a population of 2500

individuals. Every run is limited with a total stagnation of 60 generations. An

average run took 2056 seconds. The weights of the evaluators Covf to Cview are 3-8-2-

2-3-1-2-2. Ho-Gen is run for 6 times with the given inputs to test the validity and

formal variation of the generated results. During each run, Ho-Gen bakes the fittest

individual with an interval of 10 generations. This helps to explore the development

of results and the effect of the evaluator weight hierarchy within the run. The figures

that explain the development process of the fittest alternative in included in

APPENDIX C. The generated results of six runs are as follows:

119

Figure 69. Alternative 1 - Case study 2 – Compactness C- Parallel projection from

four sides. (Drawn by the author)

,

Figure 70. Alternative 1 - Case study 2 – Compactness C – Top view. (Drawn by the

author)

120

Figure 71. Alternative 2 - Case study 2 – Compactness C – Parallel projection from 4

sides. (Drawn by the author)

Figure 72. Alternative 2 - Case study 2 – Compactness B – Top view. (Drawn by the

author)

121

Figure 73. Alternative 3 - Case study 2 – Compactness C – Parallel projection from 4

sides. (Drawn by the author)

Figure 74. Alternative 3 - Case study 2 – Compactness C – Top view. (Drawn by the

author)

122

Figure 75. Alternative 4 - Case study 2 – Compactness C – Parallel projection from 4

sides. (Drawn by the author)

Figure 76. Alternative 4 - Case study 2 – Compactness C – Top view. (Drawn by the

author)

123

Figure 77. Alternative 6 - Case study 2 – Compactness C – Parallel projection from 4

sides. (Drawn by the author)

Figure 78. Alternative 6 - Case study 2 – Compactness C– Top view. (Drawn by the

author)

124

Table 28. Weighted fitness results for six alternatives - Case study 2 – Compactness

C.

 Fitness Covf Cint Cdim Crel Ccomp Ccant Ccirc Cview

1 0.056 0.000 0.000 0.406 0.013 0.301 0.000 0.222 0.000

2 0.072 0.000 0.184 0.483 0.007 0.000 0.000 0.227 0.000

3 0.054 0.000 0.000 0.509 0.007 0.258 0.000 0.227 0.000

4 0.073 0.111 0.000 0.605 0.033 0.126 0.000 0.309 0.000

5 0.052 0.000 0.000 0.292 0.000 0.352 0.000 0.359 0.000

6 0.057 0.000 0.000 0.287 0.037 0.259 0.000 0.153 0.000

Figure 79. Best total fitness score - Case study 2 – Compactness C (Drawn by the

author).

Figure 80. Best fitness score of evaluators - Case study 2 – Compactness C (Drawn

by the author).

125

Figure 81. Average total fitness score - Case study 2 – Compactness C (Drawn by the

author).

Figure 82. Average fitness score of evaluators - Case study 2 – Compactness C

(Drawn by the author).

The increased amount of LEs caused an overall improvement in the variety of LE

configurations. However, this also caused a reduction in the effect of search

mechanism. According to average total fitness score graph (

Figure 81) the generation process has come across a long stagnation phase. This

indicates that the overall increase in the automated divergence does not help every

time to locate better solutions. This reduced performance can also be seen in the

weighted fitness score table (Table 27). The penalty scores are relatively higher than

case study 1a.

126

4.2.5 Case study 2c

In case study 2d, Ho-Gen is given an initial layout sketch to develop a similar but

better performing result. Ho-Gen is expected to converge in a smaller time because

of the smaller search space it requires to go through. The problem definition is the

same with case study 2b. The generation process took 1220 seconds. The figures that

explain the development process of the fittest alternative are included in APPENDIX

E. The generated results of six runs are as follows:

Figure 83. Initial sketch layout given to Ho-Gen – fitness: 0.176, Covf:0.019,

Cint:0.068, Cdim:0.516, Crel:0.075, Ccomp:0.451, Ccant:0.000, Ccirc:0.463, Cview:0.000 –

Parallel projection from four sides - Case study 2d – Interactive run. (Drawn by the

author)

127

Figure 84. Initial sketch layout given to Ho-Gen – Top View - Case study 2d –

Interactive run. (Drawn by the author)

Figure 85. Best layout solution for generation 120 – fitness: 0.079, Covf:0.000,

Cint:0.000, Cdim:0.516, Crel:0.024, Ccomp:0.163, Ccant:0.000, Ccirc:0.414, Cview:0.000 –

Parallel projection from four sides - Case study 2d – Interactive run. (Drawn by the

author)

128

Figure 86. Best layout solution for generation 120 – Top View - Case study 2d –

Interactive run. (Drawn by the author)

Figure 87. Best fitness score - Case study 2d (Drawn by the author).

Figure 88. Best fitness scores of evaluators - Case study 2d (Drawn by the author).

129

Figure 89. Average fitness score - Case study 2d (Drawn by the author).

Figure 90. Average fitness scores of evaluators - Case study 2d (Drawn by the

author).

Ho-Gen successfully developed a rough initial sketch into a functional building

layout in lesser time. This time, however, Ho-Gen generated a layout with a worse

fitness score than the non-interactive run. It is possible that the algorithm skipped a

better initial layout option in the beginning because of the initial conditions provided

by the user. Another reason is the higher Cdim penalty of Ho-Gen. An observation on

the result shows that the reasons for the high Cdim penalty are trivial and can easily

be fixed by the user in the end. Yet, Ho-Gen cannot iterate toward solutions with a

better Cdim score. Ho-Gen, expectedly, disregards the LE dimensions to generate

valid layouts at the start. However, it cannot fix it in the later stages because the later

solutions with a better Cdim score violate important evaluators such as Cint or Ccomp.

This issue requires the user interference within the search process to the evaluator

weights.

130

CHAPTER 5

CONCLUSION

The current state of the housing industry demands collaboration models that can

increase the influence of the occupants in the design process. In this way,

computational design tools for non-expert users generate a chance with the

advancement of mass customization in construction and prevalent use of computers.

The current state of non-expert design tools, however, is problematic due to the

support they provide or the expertise they expect. Configurators present a little

amount of choice to users, while drafting tools overwhelm the user with the amount

of control they provide. Generative tools present a higher level of customization in

terms of the solutions because of their dependence on user input. However, they

offer little or no customization for their generative mechanisms which are either too

bounded by the rules of its developer or requires an architectural or computational

expertise. Therefore, the purpose of this study was to develop a new computational

model that can enhance designer‘s control over the generation process.

The research has started with an investigation over the current literature on such

subjects as computational non-expert design tools, design automation, non-expert

and computation interaction, computational layout design, and genetic algorithms. In

the first part of the review, a general research over the computational non-expert

design tools brought out that such tools are popular approaches among the user-

centered models for mass customization. Design companies, rather than funding

market research techniques or lead user idea generation models to acquire a general

standard in terms of the needs of the occupants, provide them the necessary tools for

the design of their own house. The purpose of computational non-expert tools is to

provide a user-friendly interface which requires little or no additional training

beyond user‘s inherent design capabilities and personal requirements.

In the second part of the review, the research has shifted towards the need for

131

interactive interfaces for the development of computational tools. The research has

taken the advantage of recent reports on automation to emphasize the lower rate of

automation expectancy for design related occupations despite the current state of

automation for many occupations. The research has shown that full automation

requires well-defined problems which can be analyzed into clear objectives through

objective and rational methods. On the contrary, the unavailability of such rational

and objective analysis methods for design was explained over the ―design methods

movement‖ of 1960s and the deep criticism towards this movement. Instead, the

research has acknowledged the need for designer‘s subjective interpretation on the

design problem as a way to cope with the vaguely defined design problems with a

high multiplicity of objectives.

The third part has examined the designer strategies to cope with the ill-defined

nature of design problems in order to develop a computational model to support

these activities for non-expert designers. This part revealed the importance of trial-

and-error learning as a way to explore the design problem and the requirement for

generating a high number of alternative solutions to reach better results. The

assessment of an appropriate solution space for the design of SFH brought the

research into layout design problem in architecture.

The forth part has evaluated the computational approaches to layout design problem.

The investigation of the current computational approaches revealed that GA

approaches bring certain advantages for design related problems. GA, as a

metaheuristic, offers a general solution method that requires less problem specific

information on the problem. In this way, metaheuristic approaches provide a general

advantage for non-experts. As the solution method is guided by general rules away

from expert knowledge, non-expert designers can interact with metaheuristics in an

easier way. Another advantage of GA is their population-based working principle

which improves the efficiency of exploration in the high multiplicity of solutions.

In the last section of the review, the research has identified a main problem in GA

approaches. The general user interaction in GA is limited to the initial definition of

variables and the observation of their results. Additionally, GA‘s capabilities in the

exploration of large solution spaces is a computationally demanding process that

132

requires time. The limited interaction together with the large time requirements of

GA causes latency between the problem definition and feedback mechanism. In this

way, alternative interactive models are investigated in order to present a trial-and-

error learning based interface to the user.

Therefore, this research was set out to develop a new computational approach, House

Generator (Ho-Gen), for the interactive generation of 3D layout solutions

specifically for SFH. Ho-Gen utilizes an interactive interface for genetic algorithms

(GA) in order to combine GA‘s creative power in exploring complex problems with

the advanced designer control over the generation mechanism. During a Ho-Gen run,

a user can interfere with the GA run, observe the preliminary results, and alter the

generation process by the following ways:

 Changing the problem definition through manipulating layout components

and their topological relations.

 Making manual changes over the generated layout geometries. The user can

also start with an initial layout in order to focus a significant part within the

design space.

 Changing the evaluator weights to adjust their relative importance within the

overall fitness function.

Ho-Gen is also developed with specific attention to the character of SFH layouts.

Such properties are given as:

 Representing specific layouts elements under a group hierarchy. Groups can

be specifically defined by the user or can be automatically defined under

certain degrees of compactness.

 Defining the location of layout elements through their direction within the

envelope. SFH is a free-standing building that is open on all sides. Designer

can arrange the layout elements according to daylight requirements or other

133

environmental causes. This issue is tried to be implemented through the

VIEW evaluator to give the required view for the layout elements.

 Generating multi-floor layouts with in-between vertical circulation elements.

User can define layout elements in a floor hierarchy. The geometrical relation

in between different floors is controlled by the CANTILEVER evaluator.

 Defining layout elements with different character. Open spaces are

increasingly becoming important parts of SFH. Ho-Gen implements open and

semi-open spaces with PORCH and PATIO components. Horizontal and

vertical circulation elements are added into the overall layout. Some spaces

are given the possibility to be double height spaces.

Ho-Gen is tested with two major layout problems with changing complexity

regarding the number of layout elements, topological and geometric user criteria.

Ho-Gen successfully generated valid layout options for a two floor SFH of 15 layout

elements fewer than thirty minutes, however, tests are realized with a considerably

low-end computer for the time. A better system can significantly reduce the current

time requirements for such a problem. The case studies are also subjected to minor

alterations in terms of group relations and compactness to check their effect on the

variety of results. The generated variety by changing compactness degrees was found

beneficial in terms of the ease of exploring different massing options through simple

alterations. On the other hand, the extra time requirement of Ccomp evaluator brings

the need to develop a more efficient computation method for such action.

Additionally, every case study is tested with an interactive scenario. In the first

scenario, the user started with a less specific problem definition and either added

extra conditions or changed the existing ones through the observations within the

generation process. User also made manual alterations on the generated layout. Ho-

Gen successfully generated quick feedback for the changing problem definitions,

thus allowing the designer to develop the design problem in a systematic and time

efficient manner. The second scenario allowed the designer to sketch a quick initial

layout to guide the generation process. In the end, Ho-Gen generated a layout in the

134

same topological structure with user‘s initial sketch. The generation of the results

took a significantly lower time than the automated results.

5.1 Limitations and Future Work

The major limitation for this research is the insufficient number of interactive case

studies. Despite the initial promise of user interaction such as better Cdim score in

case study 1b and less time requirement in case study 2c, the tests for interactive case

studies should be examined under increased detail. This examination is important for

the decisions about the correct times and ways user interaction. Another limitation

for this research is the lack of case studies with actual non-expert designers. Current

case studies works for the validation of the model description acquired in the

literature review. However, further case studies with non-experts are required to

assess Ho-Gen‘s real performance in the support of occupants. As an example,

testing the arrangement process of the evaluator weights with non-experts is a direct

necessity. The interactive support of Ho-Gen can simplify the trial-and-error learning

process, however, leaving a non-expert with 8 evaluator weights to control can be

problematic at the start. Such problems can make way further simplifications in Ho-

Gen such as providing an early set of evaluator weights based on the problem. In this

way, Ho-Gen requires a real user interface that is both guiding and easy to operate.

One other important limitation of this research is the absence of a deep analysis into

the precedents in single-family house. Such an analysis can help the development of

general design concepts in terms of SFH. These concepts can be about functional

requirements such as a home office setting or a holiday house. The general concepts

can be turned into predefined input sets or combinations to provide a more user-

friendly interface at the start. Occupants can use these concepts to develop early

solutions immediately. One important point for the development of these concepts is

their solution space. The set of inputs that is represented by concepts should not get

too specific in order to keep divergent exploration capabilities.

Future work on the interactive genetic algorithm approach:

 Ho-Gen‘s generation process can be changed into a fully visible interface to

135

its user. User‘s interference to the run can be simplified to a button that halts

the process. Current user interaction is only possible at the end of the search

process. The duration of such process can be defined at the start. However,

this can be problematic for the users that do not know the time requirements

for such search.

 Whole search process can be utilized as a family of results which enables the

user to turn back and try other alternatives.

 Much of the case studies have been done by a low-end computer for the time.

GA approach for Ho-Gen can be developed to decrease the required time for

exploration thus making possible to visualize user input more quickly.

Possible developments on the problem representation:

 The functional analysis can also utilize furnishing of LEs. LE geometries can

be generated by the organization of furnishings, and then these resultant

spaces can be configured similar to the hierarchical generation approaches.

This can also aid the currently shallow state of Cdim. In a way, occupants can

prefer to define a space by its functional setting such as a kitchen counter and

dining table rather than an area value.

 Ho-Gen just considers rectangular geometries on the plan and section;

irregular shapes are not estimated. Many SFH is made of such irregular

shaped LEs consideration of cut angles or a degree of convex geometries can

bring interesting solutions.

136

 REFERENCE

―A New Way Forward for Mobility.‖ Waymo. Accessed January 12, 2018.

https://waymo.com/redirect/.

Abdelmohsen, Sherif, Ayman Assem, Sherif Tarabishy, and Ahmed Ibrahim. ―A

Heuristic Approach for the Automated Generation of Furniture Layout

Schemes in Residential Spaces.‖ In Design Computing and Cognition ’16,

459–75. Springer, Cham, 2017. https://doi.org/10.1007/978-3-319-44989-

0_25.

―About GAAP.‖ Accessed January 14, 2018.

http://www.accountingfoundation.org/cs/ContentServer?c=Page&cid=117616

4538898&d=&pagename=Foundation%2FPage%2FFAFBridgePage.

―Accounting.‖ Merriam-Webster. Accessed January 14, 2018. https://www.merriam-

webster.com/dictionary/accounting.

Alexander, Christopher. Notes on the Synthesis of Form. Vol. 5. Harvard University

Press, 1964.

Alpaydin, Ethem. Introduction to Machine Learning. 2nd ed. The MIT Press, 2010.

Armour, Gordon C., and Elwood S. Buffa. ―A Heuristic Algorithm and Simulation

Approach to Relative Location of Facilities.‖ Management Science, no. 2

(1963): 294.

―Autopilot.‖ Accessed January 12, 2018. https://www.tesla.com/autopilot.

Bahrehmand, Arash, Thomas Batard, Ricardo Marques, Alun Evans, and Josep Blat.

―Optimizing Layout Using Spatial Quality Metrics and User Preferences.‖

Graphical Models 93, no. Supplement C (September 1, 2017): 25–38.

https://doi.org/10.1016/j.gmod.2017.08.003.

Bayazit, Nigan. ―Investigating Design: A Review of Forty Years of Design

Research.‖ Design Issues 20, no. 1 (January 1, 2004): 16–29.

https://doi.org/10.1162/074793604772933739.

Bazaraa, M.s. ―Computerized Layout Design: A Branch and Bound Approach.‖ AIIE

Transactions 7, no. 4 (01 1975): 432–38.

https://doi.org/10.1080/05695557508975028.

Belk, Russell W. ―Possessions and the Extended Self.‖ Journal of Consumer

Research 15, no. 2 (1988): 139–168.

Bentley, Peter J., and David W. Corne. ―Introduction to Creative Evolutionary

137

Systems.‖ In Creative Evolutionary Systems, edited by Peter J. Bentley and

David W. Corne, 1–75. Morgan Kaufmann Publishers Inc., 2002.

Birattari, Mauro, Luis Paquete, Thomas Stützle, and K. Varrentrapp. ―Classification

of Metaheuristics and Design of Experiments for the Analysis of

Components,‖ 2001. http://hdl.handle.net/2013/ULB-

DIPOT:oai:dipot.ulb.ac.be:2013/77018.

Blaser, Werner. Mies van Der Rohe: Farnsworth House-Weekend House. 1 edition.

Basel ; Boston: Birkhauser, 1999.

Bozer, Yavuz A., Russell D. Meller, and Steven J. Erlebacher. ―An Improvement-

Type Layout Algorithm for Single and Multiple-Floor Facilities.‖

Management Science, no. 7 (1994): 918.

Burmeister, Jay, and Janet Wiles. ―The Challenge of Go as a Domain for AI

Research: A Comparison between Go and Chess.‖ In Intelligent Information

Systems, 1995. ANZIIS-95. Proceedings of the Third Australian and New

Zealand Conference On, 181–186. IEEE, 1995.

Cagan, J, Mi Campbell, S Finger, and T Tomiyama. ―A Framework for

Computational Design Synthesis: Model and Applications.‖ JOURNAL OF

COMPUTING AND INFORMATION SCIENCE IN ENGINEERING 5, no. 3

(September 2005): 171–81.

Campbell, Murray, A. Joseph Hoane, and Feng-hsiung Hsu. ―Deep Blue.‖ Artificial

Intelligence 134, no. 1 (January 1, 2002): 57–83.

https://doi.org/10.1016/S0004-3702(01)00129-1.

Chow, R.Y. ―House Form and Choice.‖ Traditional Dwellings and Settlements

Review 9, no. 2 (1998): 51–62.

Cole, N., S. J. Louis, and C. Miles. ―Using a Genetic Algorithm to Tune First-Person

Shooter Bots.‖ In Proceedings of the 2004 Congress on Evolutionary

Computation (IEEE Cat. No.04TH8753), 1:139–145 Vol.1, 2004.

https://doi.org/10.1109/CEC.2004.1330849.

Corne, David, and Peter Bentley. Creative Evolutionary Systems. The Morgan

Kaufmann Series in Artificial Intelligence. San Francisco, CA: Morgan

Kaufmann, 2002.

Cross, Nigel. ―Design Cognition: Results from Protocol and Other Empirical Studies

of Design Activity.‖ In Design Knowing and Learning: Cognition in Design

Education., edited by Charles M. Eastman, W. Michael McCracken, Wendy

C. Newstetter, Charles M. Eastman (Ed), W. Michael McCracken (Ed), and

Wendy C. Newstetter (Ed), 79–103. Oxford, England: Elsevier Science Ltd,

2001. https://doi.org/10.1016/B978-008043868-9/50005-X.

138

———. Designerly Ways of Knowing. London : Springer-Verlag London Limited,

2006., 2006.

―Customize a Green, Modern, Affordable Home by Postgreen Homes -

CUSTOMIZE - Passive Houses.‖ Accessed December 25, 2017.

http://customize.postgreenhomes.com/?s=0.

Darke, Jane. ―The Primary Generator and the Design Process.‖ Design Studies 1, no.

1 (1979): 36–44.

Davis, Lawrence. ―Handbook of Genetic Algorithms,‖ 1991.

Davis, Stanley M. Future perfect. Reading, Mass. [u.a.]: Addison-Wesley Publ. Co.,

1987.

Dino, Ipek Gürsel. ―An Evolutionary Approach for 3D Architectural Space Layout

Design Exploration.‖ Automation in Construction 69 (2016): 131–150.

Donelson, Dain C., John McInnis, and Richard D. Mergenthaler. ―Explaining Rules-

Based Characteristics in US GAAP: Theories and Evidence.‖ Journal of

Accounting Research 54, no. 3 (2016): 827–861.

Dorst, Kees. ―The Problem of Design Problems.‖ In Expertise in Design, 135–147.

Sydney, Australia, 2003.

Doulgerakis, A. ―Genetic Programming + Unfolding Embryology in Automated

Layout Planning.‖ Masters, UCL (University College London), 2007.

http://discovery.ucl.ac.uk/4981/.

Dreyfus, Hubert L. ―Intelligence Without Representation–Merleau-Ponty‘s Critique

of Mental Representation the Relevance of Phenomenology to Scientific

Explanation.‖ Phenomenology and the Cognitive Sciences 1, no. 4 (2002):

367–383.

Duarte, José Pinto. ―Customizing Mass Housing : A Discursive Grammar for Siza‘s

Malagueira Houses.‖ Thesis, Massachusetts Institute of Technology, 2001.

http://dspace.mit.edu/handle/1721.1/8189.

Dugan, Andrew, and Bailey Nelson. ―3 Trends That Will Disrupt Your Workplace

Forever.‖ Gallup.com, June 8, 2017.

http://news.gallup.com/businessjournal/211799/trends-disrupt-workplace-

forever.aspx.

―Express Modular.‖ Accessed December 10, 2017.

http://expressmodular.com/dragonfly_editor.php.

Feng, Sheng-Yu, and Chuan-Kang Ting. ―Painting Using Genetic Algorithm with

Aesthetic Evaluation of Visual Quality.‖ In Technologies and Applications of

139

Artificial Intelligence, 124–135. Springer, 2014.

http://link.springer.com/chapter/10.1007/978-3-319-13987-6_12.

Flack, Robert W. J. ―Evolution of Architectural Floor Plans.‖ Masters, Brock

University, 2011. http://dr.library.brocku.ca/handle/10464/3409.

Flemming, Ulrich, Can A. Baykan, Robert F. Coyne, and Mark S. Fox. ―Hierarchical

Generate-and-Test vs Constraint-Directed Search.‖ In Artificial Intelligence

in Design’92, 817–838. Springer, 1992.

https://link.springer.com/chapter/10.1007/978-94-011-2787-5_41.

―Forget Cars, Self-Driving Shuttles Are the Future of Transportation.‖ WIRED.

Accessed January 12, 2018. https://www.wired.com/story/las-vegas-shuttle-

crash-self-driving-autonomous/.

―Forget Self-Driving Cars. Automated Public Transportation Is Coming.‖ Roadshow.

Accessed January 12, 2018. https://www.cnet.com/roadshow/news/self-

driving-cars-automated-public-transport-bus/.

France-Presse, Agence. ―World‘s Best Go Player Flummoxed by Google‘s ‗Godlike‘

AlphaGo AI.‖ The Guardian, May 23, 2017, sec. Technology.

http://www.theguardian.com/technology/2017/may/23/alphago-google-ai-

beats-ke-jie-china-go.

Frey, Carl Benedikt, and Michael A. Osborne. ―The Future of Employment: How

Susceptible Are Jobs to Computerisation?‖ Technological Forecasting and

Social Change 114 (2017): 254–280.

Futuyma, Douglas. Evolution. Sinauer, 2013.

Gartman, David. From Autos to Architecture: Fordism and Architectural Aesthetics

in the Twentieth Century. New York: Princeton Architectural Press, 2010.

Gibson, P. M., and J. A. Byrne. ―NEUROGEN, Musical Composition Using Genetic

Algorithms and Cooperating Neural Networks.‖ In 1991 Second

International Conference on Artificial Neural Networks, 309–13, 1991.

Goldberg, David E. ―Genetic Algorithms as a Computational Theory of Conceptual

Design.‖ In Applications of Artificial Intelligence in Engineering VI, 3–16.

Springer, 1991. https://link.springer.com/chapter/10.1007/978-94-011-3648-

8_1.

Goldberg, David Edward. Genetic Algorithms in Search, Optimization, and Machine

Learning. Boston [u.a.: Addison-Wesley, 2012.

Goldschmidt, Gabriela. ―The Dialectics of Sketching.‖ Creativity Research Journal

4, no. 2 (January 1, 1991): 123–43.

https://doi.org/10.1080/10400419109534381.

140

Guo, Zifeng, and Biao Li. ―Evolutionary Approach for Spatial Architecture Layout

Design Enhanced by an Agent-Based Topology Finding System.‖ Frontiers

of Architectural Research 6, no. 1 (March 1, 2017): 53–62.

https://doi.org/10.1016/j.foar.2016.11.003.

Habraken, N. John. ―The Control of Complexity.‖ Places 4, no. 2 (1987).

Hassan, Mohsen MD, Gary L. Hogg, and Donald R. Smith. ―SHAPE: A

Construction Algorithm for Area Placement Evaluation.‖ International

Journal of Production Research 24, no. 5 (1986): 1283–1295.

Hillier, Bill. ―The Art of Place and the Science of Space.‖ World Architecture 185

(2005): 96–102.

Holland, John H. Adaptation in Natural and Artificial Systems: An Introductory

Analysis with Applications to Biology, Control, and Artificial Intelligence.

MIT press, 1992.

Huang, Chuen-huei Joseph, and Robert Krawczyk. ―A Choice Model of Consumer

Participatory Design for Modular Houses,‖ 2007.

Jagielski, Romuald, and John S. Gero. ―A Genetic Programming Approach to the

Space Layout Planning Problem.‖ In CAADFutures 1997: Proceedings of the

7th International Conference on Computer Aided Architectural Design

Futures, 875–84. CAAD Futures. Kluwer Academic Publishers, 1997.

Jo, Jun H., and John S. Gero. ―Space Layout Planning Using an Evolutionary

Approach.‖ Artificial Intelligence in Engineering 12, no. 3 (1998): 149–162.

Kalay, Yehuda E. Architecture’s New Media: Principles, Theories, and Methods of

Computer-Aided Design. MIT Press, 2004.

Knecht, Katja, and Reinhard König. ―Generating Floor Plan Layouts with Kd Trees

and Evolutionary Algorithms.‖ In Generative Art Conf, 238–253, 2010.

Koopmans, Tjalling C., and Martin Beckmann. ―Assignment Problems and the

Location of Economic Activities.‖ Econometrica: Journal of the Econometric

Society, 1957, 53–76.

Koza, John R., Forrest H. Bennett, David Andre, Martin A. Keane, and Frank

Dunlap. ―Automated Synthesis of Analog Electrical Circuits by Means of

Genetic Programming.‖ IEEE Transactions on Evolutionary Computation 1,

no. 2 (1997): 109–128.

Lawson, Bryan. How Designers Think : The Design Process Demystified. Oxford ;

Burlington, MA : Elsevier/Architectural, 2006., 2006.

Le Corbusier. Towards a New Architecture. London, Architectural Press [1946],

141

1946.

Lee, Geun-Cheol, and Yeong-Dae Kim. ―Algorithms for Adjusting Shapes of

Departments in Block Layouts on the Grid-Based Plane.‖ Omega 28, no. 1

(February 1, 2000): 111–22. https://doi.org/10.1016/S0305-0483(99)00034-1.

Lee, Yanki. ―Design Participation Tactics: Redefining User Participation in Design.‖

In Design Research Society International Conference, 2006.

Liang, Lou Y., and Wen C. Chao. ―The Strategies of Tabu Search Technique for

Facility Layout Optimization.‖ Automation in Construction 17, no. 6 (2008):

657–669.

Liu, Y.-C., A. Chakrabarti, and T. Bligh. ―Towards an ‗Ideal‘Approach for Concept

Generation.‖ Design Studies 24, no. 4 (2003): 341–355.

Madrigal, Alexis C. ―Inside Waymo‘s Secret World for Training Self-Driving Cars.‖

The Atlantic, August 23, 2017.

https://www.theatlantic.com/technology/archive/2017/08/inside-waymos-

secret-testing-and-simulation-facilities/537648/.

Manyika, James, Michael Chui, Mehdi Miremadi, Jacques Bughin, Katy George,

Paul Willmott, and Martin Dewhurst. ―Harnessing Automation for a Future

That Works.‖ New York: McKinsey Global Institute, 2017.

Marcus, Clare Cooper. Easter Hill Village: Some Social Implications of Design. Free

Press, 1975.

McGrady, Vanessa. ―New Study: Artificial Intelligence Is Coming For Your Job,

Millennials.‖ Forbes, June 9, 2017.

https://www.forbes.com/sites/vanessamcgrady/2017/06/09/millennial-jobs/.

McLeish, Thomas John. ―A Platform for Consumer Driven Participative Design of

Open (Source) Buildings.‖ Thesis, Massachusetts Institute of Technology,

2003. http://dspace.mit.edu/handle/1721.1/32250.

Meller, Russell D., and Kai-Yin Gau. ―The Facility Layout Problem: Recent and

Emerging Trends and Perspectives.‖ Journal of Manufacturing Systems 15,

no. 5 (1996): 351–366.

Michalek, Jeremy, Ruchi Choudhary, and Panos Papalambros. ―Architectural Layout

Design Optimization.‖ Engineering Optimization 34, no. 5 (2002): 461–484.

Mittal, Sanjay, and Felix Frayman. ―Towards a Generic Model of Configuraton

Tasks.‖ In IJCAI, 89:1395–1401, 1989.

―New Construction Homes for Sale | Toll Brothers® Luxury Homes.‖ Accessed

December 25, 2017. https://www.tollbrothers.com/.

142

Nourian, Pirouz. ―Configraphics: Graph Theoretical Methods for Design and

Analysis of Spatial Configurations.‖ A+ BE| Architecture and the Built

Environment 6, no. 14 (2016): 1–348.

―Quinta Monroy / ELEMENTAL.‖ ArchDaily, December 31, 2008.

http://www.archdaily.com/10775/quinta-monroy-elemental/.

Quiroz, J. C., S. J. Louis, A. Banerjee, and S. M. Dascalu. ―Towards Creative Design

Using Collaborative Interactive Genetic Algorithms.‖ In 2009 IEEE Congress

on Evolutionary Computation, 1849–56, 2009.

https://doi.org/10.1109/CEC.2009.4983166.

Renee Y. Chow. ―House Form and Choice.‖ Traditional Dwellings and Settlements

Review, no. 2 (1998): 51.

Rittel, Horst WJ, and Melvin M. Webber. ―Dilemmas in a General Theory of

Planning.‖ Policy Sciences 4, no. 2 (1973): 155–69.

Rodrigues, Eugénio. ―Automated Floor Plan Design: Generation, Simulation, and

Optimization; Desenho Automático de Plantas: Geração, Simulação e

Optimização.‖ Universidade de Coimbra, 2014.

http://oatd.org/oatd/record?record=handle%5C%3A10316%5C%2F25438.

Rodrigues, Eugénio, Adélio Rodrigues Gaspar, and Álvaro Gomes. ―An Approach to

the Multi-Level Space Allocation Problem in Architecture Using a Hybrid

Evolutionary Technique.‖ Automation in Construction 35 (2013): 482–498.

Rosenman, M. A. ―The Generation of Form Using an Evolutionary Approach.‖ In

Evolutionary Algorithms in Engineering Applications, 69–85. Springer, 1997.

http://link.springer.com/chapter/10.1007/978-3-662-03423-1_4.

Russell, Stuart J., and Peter Norvig. Artificial Intelligence : A Modern Approach.

Prentice Hall Series in Artificial Intelligence. Englewood Cliffs, N.J. :

Prentice Hall, 2010., 1995.

Russell, Stuart, and Peter Norvig. ―A Modern Approach.‖ Artificial Intelligence.

Prentice-Hall, Egnlewood Cliffs 25 (1995): 27.

Schön, Donald A. The Reflective Practitioner : How Professionals Think in Action /.

New York : Basic Books, c1983.

Shea, Kristina, Andrew Sedgwick, and Giulio Antonuntto. ―Multicriteria

Optimization of Paneled Building Envelopes Using Ant Colony

Optimization.‖ Intelligent Computing in Engineering and Architecture, 2006,

627–636.

Silver, David, and Demis Hassabis. ―AlphaGo: Mastering the Ancient Game of Go

with Machine Learning.‖ Research Blog (blog), January 27, 2016.

143

https://research.googleblog.com/2016/01/alphago-mastering-ancient-game-

of-go.html.

Simon, Herbert A. ―Rational Choice and the Structure of the Environment.‖

Psychological Review 63, no. 2 (1956): 129.

―Simplifying and Improving GAAP.‖ Accessed January 14, 2018.

http://www.accountingfoundation.org/jsp/Foundation/Page/FAFBridgePage&

cid=1176164540272.

Skiena, Steven S. The Algorithm Design Manual. 2nd ed. Springer Publishing

Company, Incorporated, 2008.

Stiny, George. Shape : Talking about Seeing and Doing. Cambridge, Massachusetts :

The MIT Press, [2006], 2006.

Talbi, El-Ghazali. Metaheuristics : From Design to Implementation. Hoboken, N.J. :

John Wiley & Sons, c2009., 2009.

Ueda, Kazuhiro, Hitoshi Kitazawa, and Ikuo Harada. ―CHAMP: Chip Floor Plan for

Hierarchical VLSI Layout Design.‖ IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems 4, no. 1 (1985): 12–22.

Van Camp, Drew J., Michael W. Carter, and Anthony Vannelli. ―A Nonlinear

Optimization Approach for Solving Facility Layout Problems.‖ European

Journal of Operational Research 57, no. 2 (1992): 174–189.

Vardouli, Theodora. ―Who Designs?‖ In Empowering Users through Design, 13–41.

Springer, 2015.

Venturi, Robert. Complexity and Contradiction in Architecture. The Museum of

Modern Art Papers on Architecture. New York : Museum of Modern Art ;

Boston : distributed by New York Graphic Society, 1977., 1977.

Verma, Manisha, and Manish K. Thakur. ―Architectural Space Planning Using

Genetic Algorithms.‖ In Computer and Automation Engineering (ICCAE),

2010 The 2nd International Conference On, 2:268–275. IEEE, 2010.

http://ieeexplore.ieee.org/abstract/document/5451497/.

Virirakis, Lefteris. ―GENETICA: A Computer Language That Supports General

Formal Expression with Evolving Data Structures.‖ IEEE Transactions on

Evolutionary Computation 7, no. 5 (2003): 456–481.

Von Hippel, Eric, and Ralph Katz. ―Shifting Innovation to Users via Toolkits.‖

Management Science 48, no. 7 (2002): 821–833.

Whitehouse, Mark, Mira Rojanasakul, and Cedric Sam. ―Is Your Job About To

Disappear?: Quicktake.‖ Bloomberg.Com, June 22, 2017.

144

https://www.bloomberg.com/graphics/2017-jobs-automation-risk/.

―WikiHouse.‖ WikiHouse. Accessed December 19, 2017. https://wikihouse.cc/.

Williams, Reid E. (Reid Edward). ―Training Architectural Computational Critics by

Example.‖ Thesis, Massachusetts Institute of Technology, 2003.

http://dspace.mit.edu/handle/1721.1/16691.

Yi, Hwang, and Yun Kyu Yi. ―Performance Based Architectural Design

Optimization: Automated 3D Space Layout Using Simulated Annealing.‖

American Society of Heating, Refrigeration, and Air-Conditioning Engineers

(ASHRAE), 2014. https://experts.illinois.edu/en/publications/performance-

based-architectural-design-optimization-automated-3d-.

Zha, Xuanfang, and Wen F. Lu. ―Knowledge Support for Customer-Based Design for

Mass Customization.‖ In Artificial Intelligence in Design ’02, 407–29.

Springer, Dordrecht, 2002. https://doi.org/10.1007/978-94-017-0795-4_20.

145

APPENDIX A

FIGURES FOR CASE STUDY 1 – COMPACTNESS D

Figure 91. Best layout solution for generation 20 – fitness: 0.062, Covf:0.000,

Cint:0.440, Cdim:0.500, Crel:0.000, Ccomp:0.00, Ccant:0.00, Ccirc:0.300, Cview:0.000 –

Parallel projection from four sides - Case study 1 – Compactness D. (Drawn by the

author)

146

Figure 92. Best layout solution for generation 20 – Top View - Case study 1–

Compactness D. (Drawn by the author)

Figure 93. Best layout solution for generation 40 – fitness: 0.047, Covf:0.000,

Cint:0.200, Cdim:0.300, Crel:0.000, Ccomp:0.00, Ccant:0.00, Ccirc:0.172, Cview:0.000 –

Parallel projection from four sides - Case study 1 – Compactness D. (Drawn by the

author)

147

Figure 94. Best layout solution for generation 40 – Top View - Case study 1 –

Compactness D. (Drawn by the author)

Figure 95. Best layout solution for generation 60 – fitness: 0.041, Covf:0.000,

Cint:0.266, Cdim:0.401, Crel:0.000, Ccomp:0.000, Ccant:0.000, Ccirc:0.172, Cview:0.000 –

Parallel projection from four sides - Case study 1 – Compactness D. (Drawn by the

author)

148

Figure 96. Best layout solution for generation 60 – Top View - Case study 1 –

Compactness D. (Drawn by the author)

Figure 97. Best layout solution for generation 80 – fitness: 0.038, Covf:0.000,

Cint:0.241, Cdim:0.383, Crel:0.05, Ccomp:0.000, Ccant:0.000, Ccirc:0.172, Cview:0.000 –

Parallel projection from four sides - Case study 1 – Compactness D. (Drawn by the

author)

149

Figure 98. Best layout solution for generation 80 – Top View - Case study 1 –

Compactness D. (Drawn by the author)

Figure 99. Best layout solution for generation 100 – fitness: 0.037, Covf:0.000,

Cint:0.237, Cdim:0.334, Crel:0.000, Ccomp:0.000, Ccant:0.000, Ccirc:0.172, Cview:0.000 –

Parallel projection from four sides - Case study 1 – Compactness D. (Drawn by the

author)

150

Figure 100. Best layout solution for generation 100 – Top View - Case study 1 –

Compactness D. (Drawn by the author)

Figure 101. Best layout solution for generation 120 – fitness: 0.039, Covf:0.00,

Cint:0.185, Cdim:0.366, Crel:0.000, Ccomp:0.000, Ccant:0.000, Ccirc:0.172, Cview:0.000 –

Parallel projection from four sides - Case study 1 – Compactness D. (Drawn by the

author)

151

Figure 102. Best layout solution for generation 120 – Top View - Case study 1 –

Compactness D. (Drawn by the author)

Figure 103. Best layout solution for generation 140 – fitness: 0.39, Covf:0.00,

Cint:0.000, Cdim:0.395, Crel:0.000, Ccomp:0.118, Ccant:0.00, Ccirc:0.172, Cview:0.000 –

Parallel projection from four sides - Case study 1 – Compactness D. (Drawn by the

author)

152

Figure 104. Best layout solution for generation 140 – Top View - Case study 1 –

Compactness D. (Drawn by the author)

153

APPENDIX B

FIGURES FOR CASE STUDY 2 – COMPACTNESS A

Figure 105. Best layout solution for generation 0 – fitness:0.390, Covf:0.695,

Cint:0.646, Cdim:0.739, Crel:0.160, Ccomp:0.000, Ccant:0.000, Ccirc:0.632, Cview:0.091 –

Parallel projection from four sides - Case study 2 – Compactness A (Drawn by the

author).

154

Figure 106. Best layout solution for generation 0 – Top View - Case study 2 –

Compactness A. (Drawn by the author)

Figure 107. Best layout solution for generation 20 – fitness:0.105, Covf:0.000,

Cint:0.311, Cdim:0.628, Crel:0.007, Ccomp:0.000, Ccant:0.000, Ccirc:0.287, Cview:0.000 –

Parallel projection from four sides - Case study 2 – Compactness A (Drawn by the

author).

155

Figure 108. Best layout solution for generation 20 – Top View - Case study 2 –

Compactness A. (Drawn by the author)

Figure 109. Best layout solution for generation 40 – fitness:0.048, Covf:0.000,

Cint:0.000, Cdim:0.504, Crel:0.001, Ccomp:0.000, Ccant:0.000, Ccirc:0.226, Cview:0.000 –

Parallel projection from four sides - Case study 2 – Compactness A (Drawn by the

author).

156

Figure 110. Best layout solution for generation 40 – Top View - Case study 2 –

Compactness A. (Drawn by the author)

Figure 111. Best layout solution for generation 70 – fitness:0.033, Covf:0.000,

Cint:0.000, Cdim:0.379, Crel:0.000, Ccomp:0.000, Ccant:0.000, Ccirc:0.208, Cview:0.000 –

Parallel projection from four sides - Case study 2 – Compactness A (Drawn by the

author).

157

Figure 112. Best layout solution for generation 70 – Top View - Case study 2 –

Compactness A (Drawn by the author).

Figure 113. Alternative 1 - Case study 2a – Compactness A – Parallel projection from

4 sides (Drawn by the author).

158

Figure 114. Alternative 1 - Case study 2a – Compactness A – Top view (Drawn by

the author).

Figure 115. Alternative 2 - Case study 2a – Compactness A – Parallel projection from

4 sides (Drawn by the author).

159

Figure 116. Alternative 2 - Case study 2a – Compactness A – Top view. (Drawn by

the author)

Figure 117. Alternative 3 - Case study 2a – Compactness A – Parallel projection from

4 sides (Drawn by the author).

160

Figure 118. Alternative 3 - Case study 2a – Compactness A – Top view (Drawn by

the author).

Figure 119. Alternative 4 - Case study 2a – Compactness A – Parallel projection from

4 sides (Drawn by the author).

161

Figure 120. Alternative 4 - Case study 2a – Compactness A – Top view (Drawn by

the author).

Figure 121. Alternative 5 - Case study 2a – Compactness A – Parallel projection

from 4 sides (Drawn by the author).

162

Figure 122. Alternative 5 - Case study 2 – Compactness A – Top view (Drawn by the

author).

Figure 123. Alternative 6 - Case study 2 – Compactness A – Parallel projection from

4 sides (Drawn by the author).

163

Figure 124. Alternative 6 - Case study 2 – Compactness A – Top view (Drawn by the

author)

Figure 125. Best fitness score of total fitness - Case study 2 – Compactness A

(Drawn by the author).

164

Figure 126. Best fitness score of evaluators - Case study 2 – Compactness A (Drawn

by the author).

Figure 127. Average fitness score for total fitness - Case study 2 – Compactness A

(Drawn by the author).

165

Figure 128. Average fitness score of evaluators - Case study 2 – Compactness A

(Drawn by the author).

166

APPENDIX C

FIGURES FOR CASE STUDY 2 – COMPACTNESS C

Figure 129. Best layout solution for generation 0 – fitness:0.44, Covf:0.43, Cint:0.75,

Cdim:0.52, Crel:0.27, Ccomp:0.57, Ccant:0.00, Ccirc:0.60, Cview:0.04 – Parallel projection

from four sides - Case study 2 – Compactness C. (Drawn by the author)

Figure 130. Best layout solution for generation 0 – Top View - Case study 2 –

Compactness C. (Drawn by the author)

167

Figure 131. Best layout solution for generation 10 – fitness:0.20, Covf:0.27, Cint:0.52,

Cdim:0.52, Crel:0.03, Ccomp:0.22, Cchim:0.39, Ccant:0.00, Ccirc:0.51, Cview:0.00 – Parallel

projection from four sides - Case study 2 – Compactness C. (Drawn by the author)

Figure 132. Best layout solution for generation 10 – Top View - Case study 2 –

Compactness C. (Drawn by the author)

168

Figure 133. Best layout solution for generation 20 – fitness:0.15, Covf:0.09, Cint:0.34,

Cdim:0.39, Crel:0.02, Ccomp:0.27, Ccant:0.00, Ccirc:0.37, Cview:0.00 – Parallel projection

from four sides - Case study 2 – Compactness C. (Drawn by the author)

Figure 134. Best layout solution for generation 20 – Top View - Case study 2 –

Compactness C. (Drawn by the author)

169

Figure 135. Best layout solution for generation 30 – fitness:0.12, Covf:0.09, Cint:0.19,

Cdim:0.39, Crel:0.01, Ccomp:0.35, Ccant:0.00, Ccirc:0.28, Cview:0.00 – Parallel projection

from four sides - Case study 2 – Compactness C. (Drawn by the author)

Figure 136. Best layout solution for generation 30 – Top View - Case study 2 –

Compactness C. (Drawn by the author)

170

Figure 137. Best layout solution for generation 40 – fitness:0.08, Covf:0.09, Cint:0.00,

Cdim:0.60, Crel:0.03, Ccomp:0.33, Ccant:0.00, Ccirc:0.26, Cview:0.00 – Parallel projection

from four sides - Case study 2 – Compactness C. (Drawn by the author)

Figure 138. Best layout solution for generation 40 – Top View - Case study 2 –

Compactness C. (Drawn by the author)

171

Figure 139. Best layout solution for generation 80 – fitness: 0.07, Covf:0.09, Cint:0.00,

Cdim:0.53, Crel:0.01, Ccomp:0.27, Ccant:0.00, Ccirc:0.27, Cview:0.00 – Parallel projection

from four sides - Case study 2 – Compactness C. (Drawn by the author)

Figure 140. Best layout solution for generation 80 – Top View - Case study 2 –

Compactness C (Drawn by the author).

172

Figure 141. Best total fitness score - Case study 2 – Compactness C(Drawn by the

author).

Figure 142. Best fitness score of evaluators - Case study 2 – Compactness C (Drawn

by the author).

173

Figure 143. Average total fitness score - Case study 2 – Compactness C (Drawn by

the author).

Figure 144. Average fitness score of evaluators - Case study 2 – Compactness C

(Drawn by the author).

174

APPENDIX D

FIGURES FOR CASE STUDY 2 – COMPACTNESS D

Figure 145. Best layout solution for generation 0 – fitness:0.390, Covf:0.542,

Cint:0.418, Cdim:0.518, Crel:0.289, Ccomp:0.663, Ccant:0.000, Ccirc:0.368, Cview:0.067 –

Parallel projection from four sides - Case study 2 – Compactness D. (Drawn by the

author)

175

Figure 146. Best layout solution for generation 0 – Top View - Case study 2 –

Compactness D. (Drawn by the author)

Figure 147. Best layout solution for generation 10 – fitness:0.258, Covf:0.000,

Cint:0.525, Cdim:0.518, Crel:0.069, Ccomp:0.585, Ccant:0.000, Ccirc:0.375, Cview:0.000 –

Parallel projection from four sides - Case study 2 – Compactness D. (Drawn by the

author)

176

Figure 148. Best layout solution for generation 10 – Top View - Case study 2 –

Compactness D. (Drawn by the author)

Figure 149. Best layout solution for generation 20 – fitness:0.200, Covf:0.000,

Cint:0.381, Cdim:0.518, Crel:0.036, Ccomp:0.611, Ccant:0.000, Ccirc:0.243, Cview:0.007 –

Parallel projection from four sides - Case study 2 – Compactness D. (Drawn by the

author)

177

Figure 150. Best layout solution for generation 20 – Top View - Case study 2 –

Compactness D. (Drawn by the author)

Figure 151. Best layout solution for generation 40 – fitness:0.103, Covf:0.000,

Cint:0.000, Cdim:0.650, Crel:0.030, Ccomp:0.376, Ccant:0.000, Ccirc:0.200, Cview:0.007 –

Parallel projection from four sides - Case study 2 – Compactness D. (Drawn by the

author)

178

Figure 152. Best layout solution for generation 40 – Top View - Case study 2 –

Compactness D. (Drawn by the author)

Figure 153. Best layout solution for generation 60 – fitness:0.089, Covf:0.000,

Cint:0.000, Cdim:0.592, Crel:0.019, Ccomp:0.315, Ccant:0.000, Ccirc:0.200, Cview:0.007 –

Parallel projection from four sides - Case study 2 – Compactness D. (Drawn by the

author)

179

Figure 154. Best layout solution for generation 60 – Top View - Case study 2 –

Compactness D. (Drawn by the author)

Figure 155. Best layout solution for generation 20 – fitness: 0.103, Covf:0.000,

Cint:0.000, Cdim:0.523, Crel:0.037, Ccomp:0.263, Ccant:0.000, Ccirc:0.455, Cview:0.000 –

Parallel projection from four sides - Case study 2d – Interactive run. (Drawn by the

author)

180

Figure 156. Best total fitness score - Case study 2 – Compactness D (Drawn by the

author).

Figure 157. Best evaluator score - Case study 2 – Compactness D (Drawn by the

author).

181

Figure 158. Average total fitness score - Case study 2 – Compactness D (Drawn by

the author).

Figure 159. Average evaluator score - Case study 2 – Compactness D (Drawn by the

author).

182

APPENDIX E

FIGURES FOR INTERACTIVE CASE STUDY 2

Figure 160. Best layout solution for generation 20 – Top View - Case study 2d –

Interactive run. (Drawn by the author)

Figure 161. Best layout solution for generation 40 – fitness: 0.089, Covf:0.000,

Cint:0.000, Cdim:0.502, Crel:0.031, Ccomp:0.196, Ccant:0.000, Ccirc:0.455, Cview:0.000 –

Parallel projection from four sides - Case study 2d – Interactive run. (Drawn by the

author)

183

Figure 162. Best layout solution for generation 40 – Top View - Case study 2d –

Interactive run. (Drawn by the author)

Figure 163. Best layout solution for generation 80 – fitness: 0.083, Covf:0.000,

Cint:0.000, Cdim:0.552, Crel:0.024, Ccomp:0.163, Ccant:0.000, Ccirc:0.450, Cview:0.000 –

Parallel projection from four sides - Case study 2d – Interactive run. (Drawn by the

author)

184

Figure 164. Best layout solution for generation 80 – Top View - Case study 2d –

Interactive run. (Drawn by the author)

