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ABSTRACT

AN INTERACTIVE COMPUTATIONAL APPROACH TO 3D LAYOUT DESIGN
OF SINGLE-FAMILY HOUSES BY EVOLUTIONARY ALGORITHMS

Sakaryali, Anil
M.Arch, Department of Architecture
Supervisor: Assist. Prof. Dr. Ipek Giirsel Dino
December 2017, 184 pages

Customized design is an important feature for single-family houses (SFH).
Difterently, current stage of the housing industry is generally limited to the standard
houses by tract developments. In this way, design tools for non-expert users can
provide a strong alternative to the current mode of house production. Certain
generative design tools can provide customized house solutions according to the
requirements of occupants. A certain problem in this case is the presented level of
interaction for the non-expert occupants. A study on the current generative
approaches to non-expert design tools showed that generative approaches present a
limited interaction for the user due to the limits of their solution space and the
required level of expertise for their operation. This research aims to develop a user-
friendly design tool for non-expert designers that can work with appropriate solution
spaces. In this way, this research presents a new evolutionary computational design
tool, Ho-Gen (House Generator), which assists in the design exploration of single-
family house layouts through an interactive work process. Ho-Gen is capable to
generate multi-floor SFH layouts with geometric and topological criteria. Ho-Gen’s
interactive interface allows the designer to guide the generation process within the
intermediate states to make changes in the problem definition together with the
possibility to modify generated solutions. Ho-Gen is tested with two conceptual SFH
layout problems with a varying number of layout elements in an increasing level of
complexity. The results show that Ho-Gen can generate a variety of valid layouts for

the conceptual stage in architecture.

Keywords: computational layout design, single-family house, design exploration,

interactive genetic algorithm, evolutionary computation
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0z

MUSTAKIL EV OLCEGINDE BINA YERLESIMI TASARIMINA YARDIMCI
ETKILESIMLI BIR GENETIK ALGORITMA

Sakaryali, Anil
Yiiksek Lisans, Mimarlik Boliimii
Tez Yéneticisi: Assist. Prof. Dr. Ipek Giirsel Dino
Aralik 2017, 184 sayfa

Miisrakil ev tipolojisinde yaratilan mekanin kullaniciya 6zgii olmasi biiyiik 6nem
tagimaktadir. Bunun aksine giliniimiizde miistakil ev iiretimi, mimarlarin kisith bir
cevreye verebildikleri hizmetten &tiirii genellikle miiteahhit tarafidan tistlenen
standart evlere karsilik gelmektedir. Bu durumda bina kullanicisina kendi evini
tasarlayabilecegi diizeyde destek sunan hesaplamali tasarim araglarinin gelistirilmesi
mevcut duruma giiclii bir alternatif yaratmaktadir. Bu konuda gelistirilen mevcut
yontemlere bakildiginda kullanicinin ihtiyag verilerinden 6zgiin ev tasarimlar: ortaya
cikartabilecek kadar geliskin modellere rastlanmistir. Ayn1 zamanda bahsedilen
modeller gerektirdikleri tasarim bilgisi ve i¢erdikleri sinirli ¢6zlim alant
dogrultusunda sinirli bir etkilesim imkan1 sunmaktadir. Bu tez, kullanicinin
hesaplamali bina yerlesimi siirecinde kontroliinii arttiracak miistakil ev 6l¢eginde
calisan etkilesimli genetik algoritma yontemini, Ho-Gen’1 tanitmaktadir. Tasarim
aract, kullanicinin geometrik ve topolojik girdilerine gore, ayrik miistakil ev
tipolojisine uygun farkli alanli ve ¢ok katli kiitle modelleri gelistirebilmektedir. Ho-
Gen bu kriterlerin yonetimi i¢in etkilesimli bir arayiiz sunmakta ve kullanicinin
programin duraksadig1 ara zamanlarda problem tanimini ve ¢ikan kiitle modellerini
degistirmesine olanak vermektedir. Gelistirilen model, farkli karmasiklik ve dlgekte
iki konsept tasarim probleminde test edilmistir. Ho-Gen, alinan sonuglara gore
konsept tasarim problemlerine gereken c¢esitlikte ve uygunlukta 6rnekler vermeyi

basarmaktadir.

Anahtar Sozciikler: hesaplamali bina yerlesimi, miistakil ev, tasarim arastirmasi,

etkilesimli genetik algoritma
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The practice of architectural design is constantly changing with the increase in
computational power and the growing extent of research on developing models to
integrate computation into the architectural design process. Computational tools for
architecture have gone beyond their usual use in representation and documentation
which are not directly design related works. Instead, architects take the advantage of
computational support just within the design process as an amplifier of their
cognitive capabilities. Computation helps architects to work with complex data
structures, explore more solutions, and give confident design decisions. Yet, another
group of computational design tools aims to shift the focus from the practice of
architectural design to the practitioner himself/herself. The target audience of such
computational tools is the non-expert designers who are the occupants or future
users. The purpose of such a shift is to provide the necessary support for non-expert
designers to make them capable in using their own creative and personal ideas for
less complex architectural problems. Similarly, this research aims to develop a
computational tool that supports non-experts in the architectural design of single-

family houses (SFH).

SFH is a suitable architectural typology for the design participation of non-experts in
terms of its simplicity and the level of required customization. SFH is a freestanding
building that is occupied by a single family. The design process of SFH is usually
simpler in terms of the size of the architectural program associated with common
domestic needs. Additionally, the design process is very user-centric because of the
importance of occupant’s lifestyle, aesthetic understanding, and cultural background.

This personal information is best known by the occupants themselves. The high level

1



of customization and the relative simplicity of SFH create a potential for a design
participation model. This potential can create a strong alternative to the current state

of the housing market.

Nowadays, owning a private architect designed house is a priority for most people.
Despite of the importance of SFH in architectural history with iconic SFH examples
such as Fallingwater House or Villa Savoye, today architect’s participation in the
housing industry is very limited. The largest portion of SFH industry is currently
held by tract house developers. These developers respond to housing needs usually
with cookie-cutter projects. Such projects are usually related to a monotony of box-
shaped buildings with little or no alteration. Therefore, current state of the housing

industry is away from reflecting the individual taste and needs of their occupants.

Alternatively, a certain number of architectural approaches reveal the advantages of a
bottom-up procedure to housing. During the recent years, the popularity of
participatory design in SFH has been rising due to a number of projects. A significant
example is Quinta Monroy Social Housing® project in Chile by Pritzker winning
architect Alejandro Aravena. In Quinta Monroy, Aravena provides the occupants
only one-half of the house which leaves the occupant the other half to design and
expand over time.” Another prominent example is WikiHouse®, an open source
project that shares construction documents and assembly manuals of a set of houses.
WikiHouse aims to create a new housing industry where occupants or small
communities can build for themselves with abundant materials and prevalent
manufacturing techniques such as CNC.* One other example is the advancing

potential of prefabricated houses with the developments in mass customization

industry. These developments can provide a powerful alternative to the current

! “Quinta Monroy / ELEMENTAL,” ArchDaily, December 31, 2008,
http://www.archdaily.com/10775/quinta-monroy-elemental/.

2 «“Quinta Monroy / ELEMENTAL.”
® «“WikiHouse,” WikiHouse, accessed December 19, 2017, https://wikihouse.cc/.
* «wikiHouse.”



problematic state of SFH industry.

In the abundance of open-source knowledge about construction systems, the
increasing prevalence of mass customization and architects’ growing intent in
participatory design can reverse the top down hierarchy in housing industry. In this
context, an important issue is the capability of future occupants in the design of their
own houses. The growing extent of house options both in open-source and in
prefabricated housing domains are not going reach far away from the current level of
standardization without the proper integration of the occupants in the design process.
Future occupants should find ways to combine, subtract, and reinvent the available
house options in this abundance to reach a level of customization that satisfies their
individual needs. In this context the development of computational tools that

supports the occupants in the design of their own house come into prominence.
1.2 Background

The idea of user-centered architectural design has a rich historical background both
in academic and professional environments. The first collective research on the user
participation in architectural design was realized in “Design Participation”
conference in 1971 with the worldwide attendance of multi-disciplinary
participants.” Developing computational tools to support non-experts in architectural
design was already an issue in “Design Participation” conference that is presented by
architects Yona Friedman and Nicholas Negroponte.® Despite of this early historical
background, it is not possible to come up with a significant project that takes the
advantage of such a model. The recent popularity of such model can be a result of

the technological advancements in manufacturing, construction, and computation.

A user-centered design process requires a high-level customization in the

® Yanki Lee, “Design Participation Tactics: Redefining User Participation in Design,” in Design
Research Society International Conference, 2000, 1.

® Theodora Vardouli, “Who Designs?,” in Empowering Users through Design (Springer, 2015), 23.



manufacturing systems to meet the special needs of the occupants. On the contrary,
the efficiency of the past means of production has depended on standardization.
Mass production achieves high cost efficiency through the rapid manufacturing of
standardized products within specialized factories. This understanding in
manufacturing is still shifting with the developments in mass customization.
Computer-aided manufacturing systems such as laser cutting and 3D printing are
developing in the way to reach the economic efficiency of mass production while
creating an increased variety in the products. Nevertheless, certain challenges are
still evident for mass customization. According to Zha and Lu,” an important
challenge for the mass customization model is the decision process for the level of
variety.® In this way, the process of gathering, analyzing and processing the
information about the requirements and preferences of the customers becomes
important. This process puts multiple parties in between the manufacturers and the
occupants. The information is gathered through market surveys, generalized by data
analysts, and turned into actual design by the architects. Alternatively, developing
“user-friendly” computational tools that empower users to design their own houses
creates a more direct communication between the occupants and the means of

production.

Computational tools completely take away the need for surveys or data analysis
process as the occupants assess their needs on their own. On the other hand, the
exclusion of architects or expert designers does not mean that they have no impact
over the design process. The development of computational tools is itself a design
problem that requires the integration of architects and expert designers. Architects, as
the creator of the toolkits, reflect their subjective opinions over the toolkits by setting
limits over user’s control over the design process. They also specify the possible
actions that the user can interact with tool’s interface. In this way, the working

principle of design toolkits is closely related with developer’s understanding on the

" Xuanfang Zha and Wen F. Lu, “Knowledge Support for Customer-Based Design for Mass
Customization,” in Artificial Intelligence in Design "02 (Springer, Dordrecht, 2002), 407-29,
https://doi.org/10.1007/978-94-017-0795-4 20.

8 Zha and Lu, 407.



design process and the design problem. The subjectivity of these issues brought out
alternative computational tool approaches in terms of the type of user interaction and

design support.

The types of current computational tools can be specified as configurators, drafting
tools, and generative tools. First, configurators present a list of houses for the
occupants that are designed by the prefabricated developers. Users limit these
options with very basic assumptions such as the number of bedrooms. Developers
offer the users small decorative customizations over the selected house. A notable
example of configurators is Postgreen Homes.’ Postgreen Homes offers a web-based
interface for the individual apartments in their multi-family residences. Apartment
types vary according to the project and they present users customization in the
furniture and appliances. Toll Brothers™ is another construction business that offers a
configurator for customization. This configurator is a checklist interface for small

and predefined layout alterations excluding the hard construction work.

Toll Brothers T

Figure 1. Toll Brother's web-based configurator toolkit offers a list of possible
variations (on the left) for the user. Configurator gives simultaneous feedback on the
layout to inform the user about the effects of the changes.

(Retrieved from: https://security.tollbrothers.ml-scp.com/FloorPlan/Details/157298,
Accessed on 26.12.2017.

9 «“Customize a Green, Modern, Affordable Home by Postgreen Homes - CUSTOMIZE - Passive
Houses,” accessed December 25, 2017, http://customize.postgreenhomes.com/?s=0.

10 «“New Construction Homes for Sale | Toll Brothers® Luxury Homes,” accessed December 25, 2017,
https://www.tollbrothers.com/.



Second, drafting tools provide users a simplified and user-friendly CAD or BIM
interface. The occupants, with the help of drafting tools, can design their own house
completely from the beginning or start from an initial layout template. As an
example, Express modular’® offers Project Homestyler, a home editing software that
is supported by Autodesk. The interface works with a library of building, furnishing,
and stylistic objects which the user can pick and arrange on the canvas. Certain
drafting tools provide additional support through knowledge-based systems.
According to Corne and Bentley,'? knowledge-based systems work with a built-in
knowledge base that integrates expert knowledge from the real professionals in the
involved domains. As an example, Williams™ developed a system that trains
computational critics for the design of SFHs. This approach differs from the general
knowledge-based systems because William’s computational critic develops its
knowledge base by learning from a collection of real world house examples together
with an architect.® The architect goes through each example and points out the
mistakes in the layout such as the placement of a component.'®> McLeish™ took the
advantage of William’s computational critics in his participatory design model for a
SFH. McLeish model understands the changes in the layout and updates itself both in

3D and in terms of the computational critics.

11 «Express Modular,” accessed December 10, 2017, http://expressmodular.com/dragonfly editor.php.

2 David Corne and Peter Bentley, Creative Evolutionary Systems, The Morgan Kaufmann Series in
Artificial Intelligence (San Francisco, CA: Morgan Kaufmann, 2002).

3 Reid E. (Reid Edward) Williams, “Training Architectural Computational Critics by Example”
(Massachusetts Institute of Technology, 2003), http://dspace.mit.edu/handle/1721.1/16691.

“ Williams, 27.
5 Williams, 27.

1® Thomas John McLeish, “A Platform for Consumer Driven Participative Design of Open (Source)
Buildings” (Massachusetts Institute of Technology, 2003), http://dspace.mit.edu/handle/1721.1/32250.



Figure 2. McLeish's toolkit provides a physical model for the user to arrange
appliances and furniture while seeing the results in 3D perspective in real time (left).
McLeish also takes the advantage of computational critics that checks the layout for
mistakes and present relevant solutions (right). (McLeish, 2003)

Lastly, generative tools present users a direct design solution or a list of choices to
select from after gathering knowledge about their lifestyle and domestic needs. A
generative system works with an underlying generative logic to create a set of useful
and viable solutions according to the needs of the occupant. For example, Huang and
Klrawczyk17 developed a generative tool that asks occupants a set of general
questions for the required spaces and get to a specific set of questions about the
finishes and appliances in the end. 18 At the end of every level, the occupant is given
a range of alternative solutions that satisty their answers." Shape grammars are
another generative approach for non-expert design tools. A shape grammar consists
of a set of rules to transform an initial geometrical entity in consequent steps.20 An

important example of shape grammar use in non-expert computational tools is

7 Chuen-huei Joseph Huang and Robert Krawczyk, “A Choice Model of Consumer Participatory
Design for Modular Houses,” 2007.

'8 Huang and Krawczyk, 682,684.
¥ Huang and Krawczyk, 681.

2 George Stiny, Shape : Talking about Seeing and Doing (Cambridge, Massachusetts : The MIT
Press, [2006], 2006).



Duarte’s? approach that generates houses in the style of Alvaro Siza’s Malagueira
Housing project. The grammar is capable of creating the same houses that Siza

designed and a wide range of similar alternatives according to user preferences.

1st floor | Terrace

1st floor 2nd floor Terrace

Figure 3. Duarte's shape grammar despite the hard coded geometric rules can create
a variety of house forms similar in the style of Alvaro Siza’s Malagueira Housing
project. (Duarte, 2001)

1.3 Problem Statement

Computational tools for non-experts create an opportunity to abide the limitations of
the current housing market by presenting a co-design environment for the occupants
to develop their own living environments. Despite of the growing extent of
computational tools for non-expert designers, these approaches show certain
limitations in the essential user interaction process. It is logical that these tools
present a certain level of limitation as an expert level of freedom can be
overwhelming for a non-expert user. Nevertheless, such limitations should not

prevent non—expert designers to present their design abilities and creative ideas.

2! José Pinto Duarte, “Customizing Mass Housing : A Discursive Grammar for Siza’s Malagueira
Houses” (Massachusetts Institute of Technology, 2001), http://dspace.mit.edu/handle/1721.1/8189.



According to Von Hippel and Katz,? computational toolkits for non-experts should
present five important qualities: 1. Trial-and-error learning environment for the user,
2. Large enough solution space, 3.User-friendly interface that requires little or no
training, 4. Wide library of modules, and 5. Direct manufacturing without any
alterations.?® This research mainly focuses on the first three articles Von Hippel’s list
because of their problematic state compared to the advances in the remaining
through computational manufacturing and BIM interfaces. In terms of the large
library of modules, BIM interfaces creates enough support while open-source
architecture continues to create a collaborative library of easily manufactured
building systems and appliances. On the other hand, computational manufacturing
gives the possibility to create customized products with a less or no penalty
compared to the mass production facilities. On the contrary, non-expert design tools
show certain limitations in terms of trial-and-error learning, appropriate solution

space, and user-friendly interface.

Computational tools do not present satisfactory user interface models that encourage
the user to learn through a trial-and-error process. Configurators provide a small
amount of choice to non-experts. The extent of user freedom does not get far from
small aesthetic decisions about the harmony of covering materials and economic
decisions about the total coverage of the selected appliances. Conversely, drafting
tools overwhelm the user with the level of freedom. Non-experts cannot be expected
to generate a wide range of alternatives for an effective trial-and-error process.
Generative tools seems to solve this problem by automating the generative process
however, they go through this process in a closed fashion. User does not have much
control or idea during the generation process, thus has a limited knowledge about the

reasons behind the generated solution.

Non-expert design tools have redundant limitations over the solution space. A large

22 Eric Von Hippel and Ralph Katz, “Shifting Innovation to Users via Toolkits,” Management Science
48, no. 7 (2002): 9-13.

% Von Hippel and Katz, 9-13.



solution space is required for computational design tools in order to create the
required level of customization for the user. Configurators provide small extents of
solutions space. A calculation of the total possible combinations by configurators can
bring a large number of alternatives, however the overall impact of such
combinations are inferior. As an example, configurator approaches do not present the
opportunity to configure the dimensions of the layout. On the other hand, the
determinism available in the current generative tools puts serious limits on the
solution space. The low interactivity in current non-expert generative tools requires
the predetermination of many serious design decisions during the development
process. A level of variation is still possible within this determinacy; however, it is
not possible to expect novel solutions. As an example, Duarte’s shape grammar can
create a planned variety of houses according to the user’s needs. However, the user

knows that he/she will end up with an Alvaro Siza house from the start.

The mentioned tools also fall short in terms of providing a user-friendly interface to
the user. As an example, the user should not need to go through an intense amount of
training before using the tool. From another point, the tool should give constructive
criticism upon the actions and decisions of the user to extend his/her vision. One
other useful quality is the flexibility of the tool. The tool’s interface should not be
limiting and easy to configure without the need of a deep computational or
architectural expertise. All type of computational tools gave certain problems in

terms of the mentioned qualities for user-friendly interface.

Configurators work by a simplistic procedure that hardly needs any training.
Nevertheless, this is mostly due to the limited choice available for the user. The type
of support is closer to an online portfolio for the developer rather than a user-friendly

design tool.

Drafting toolkits, on the other hand, present a user-friendly interface for drafting
rather designing. The user can start drafting immediately with the help of modules in
the library. However, developing a full alternative is going to take a large amount of
time for a non-expert. Certain drafting toolkits utilize knowledge-based support for
the users but the type of support presented by knowledge-based systems requires an

expertise to understand and implement. The recommendations provided by such
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systems can be multiple at times because of the large amount of conditional rules in
their domain. This kind of decision making on such conflicting situations is a design
expertise in itself. Another problem about knowledge-based systems is the difficulty
in the development process. Adding new rules to the system requires a high level of

architectural and computational expertise.

As for generative tools, the user interaction can be claimed as user-friendly.
Explaining the requirements in a guided way and selecting from a list of generated
alternatives is a simple and easy process. However, there is a certain point that brings
generative tools and configurators closer. Generative tools offer user a wider range
of control over the solutions and in a way, they generate novel solutions specific to
user’s requirements. Yet, the user is distant from the actual generation process
because of the level of automation. Adding to that, the options presented to the user
is already limited by the developer of the tool. The procedure to learn occupant’s
needs and the ways to provide for those needs is already decided by the developer.
The process is similar to an interview session with a foreign architect that speaks so
little in occupant’s language. The occupant has no other choice than communicating
the requirements in this limited and predetermined sense. The user also has little
option to customize the working principle of generative tool. As an example,
defining a new shape grammar requires a computational and architectural expertise

beyond the level of non-expert.

In a creative process such as designing a house for the self, current computational
tools present certain limitations. There is a need for new computational approaches
that enhance user’s control within the design process. In this way, non-expert users
require user-friendly interfaces in order to start the design process immediately
rather than going through an intense learning process. The provided design process
should not limit the user with a small number of choices. Instead, the user needs to
create the choices by exploring a large solution space. As a non-expert designer, the
user needs a level of guidance to find better paths. However, this assistance should
not be forced. Alternatively, the user needs the freedom to take other paths that can
lead to dead ends. In such instances, the tool should provide ways to modify the
initial problem structure, play with the available solutions, or interact with the

guidance mechanism so that the user can act upon the mistakes immediately and

11



learn from them.

14 “House Generator”, a New Computational Tool for Non-experts

This research targets the development of a computational approach to enhance non-
expert designers’ capability to generate alternative SFH layouts in a more time and
effort efficient way. It presents House Generator (Ho-Gen), a novel genetic algorithm
(GA) with an interactive interface that can generate 3D conceptual layout
alternatives according to the user-defined geometric and topological criteria. Ho-Gen
acknowledges non-expert designers’ requirement for trial-and-error learning,
appropriate solution space, and user-friendly interface thus, presents an interactive

generative approach that is enhanced by genetic algorithms (GA).

Genetic algorithms (GA) are efficient and effective search methods that can work
with large solution spaces. David Goldberg®® highlights GA approaches as some of
the most flexible, efficient, and robust algorithms in computational science. GA do
not require deterministic hard coded rules to generate satisfactory solutions, instead
they use the creative capabilities of evolution. According to a definition by Douglas
Futuyma,25 evolution is a blind process without predefined aims and objectives. As
Futuyma, evolutionary mechanism depends on the mindless process of “natural
selection”.?° Natural selection is a simple process which occurs by the replacement of
less suitable organisms by organisms possessing certain genetic variations that
enhance their reproduction and survival capabilities.27 Evolution, despite of the
simplicity of its mechanism, is the main driving force behind the vast variation in the

natural environment. GA takes the advantage of evolution as a creative mechanism

for the problems of various professions from engineering to architecture. GA

 David Edward Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning
(Boston [u.a.: Addison-Wesley, 2012), 2.

? Douglas Futuyma, Evolution (Sinauer, 2013), 282.
2% Futuyma, 282.
2z Futuyma, 282.
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eliminates the need for providing hard coded and deterministic rules for generative
systems, thus provides users an extended solution space to explore and achieve

higher customization.

Ho-Gen acknowledges the initial complexity of design problems and the limitations
in the design capabilities of future users. In this way, GA provide certain advantages.
In his book, Davis argues that GA are very forgiving algorithms that can generate
acceptable solutions despite the mistakes in their implementation and application.?®
Ho-Gen gives possibility to start with vague problem definitions and creates a
chance for the user to intervene in the generative process to modify the problem
definition. Therefore, Ho-Gen aims to support user’s learning process through trial-
and-error. The user can acquire emergent feedback to the changes in the problem

definition and iterate towards better solutions.
15 Research Questions
The research is developed around the following main question:

What is the interactive computational model that can support occupants in the design

process of their single-family house?
The main research question is divided and answered by the following sub-questions:

e What are the processes and potentials of automated generation and user
interaction during the design exploration of single-family house?

e How can non-expert designers interact with computational tools in layout
design exploration?

e What are the specific design requirements of single-family house layouts?

%8 Lawrence Davis, “Handbook of Genetic Algorithms,” 1991; quoted in Peter J. Bentley and David
W. Corne, “Introduction to Creative Evolutionary Systems,” in Creative Evolutionary Systems, ed.
Peter J. Bentley and David W. Corne (Morgan Kaufmann Publishers Inc., 2002), 8.
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e What are the existing computational approaches to architectural layout

design?

1.6 Research Outline

This research is organized in five chapters. Chapter 2 is dedicated to a Literature
Review. The review starts by presenting single-family house and the changing
dynamics in its production. Additionally, the review discusses the advantages of
computational design tools for non-experts within user-centered mass customization
models. The chapter also examines the models of computational support for non-
expert designers in order to decide upon the degree of designer control and
computational automation. It focuses on the general and architectural layout design
process, and presents past computational approaches to the layout design process.
Finally, a brief description on the history of genetic algorithms (GA) and an extended

study on its computational implementation are given.

Chapter 3 1s dedicated to Tool Development. It presents the overall procedure of Ho-
Gen in both user interaction and evolutionary form generation processes.
Representation part explains Ho-Gen’s interpretation of a SFH layout with both the
elements of SFH layout and their interrelations. User interaction part explains the
communication process between the user and Ho-Gen during the initial problem
definition through present inputs. Generation & Guidance part describes the
genotype and phenotype representations for the layouts that are necessary for the
genetic algorithm procedure. Various ways that the user can interact with the search
process to provide direct user guidance are presented. Lastly, Evaluation part
describes the mathematical model that evaluates layout solutions according to the
user inputs. This part explains the hard and soft constraints and the way they

integrate to the fitness function.

Chapter 4 presents Case Studies. This part aims to test Ho-Gen’s performance in
generating optimal layouts. Ho-Gen is tested in five case studies with two levels of
complexity in terms of the number of layout elements and floors together with
varying user requirements. This part presents the definitions of case study problems

and the results of these studies in terms of the solutions generated by Ho-Gen and

14



fitness graphs.

Chapter 5 is the Conclusion part. This part discusses the contribution of this research
in computational design in architecture. The thesis concludes with a brief discussion
on the limitation of Ho-Gen in the conceptual design exploration and future work to

develop Ho-Gen.
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CHAPTER 2

1. LITERATURE REVIEW

2.1 Computational Tools for the Design of SFH

2.1.1 Single-Family House

A house is a residential building for people to live and meet their domestic needs.
The domestic needs of humans are an essential feature in the definition of a house,
which require a complex and multi-dimensional examination process. Marcus?®
defines these needs in the following hierarchy: Shelter, security, comfort, socializing
& self-reflection, and aesthetic requirements. According to this hierarchy, a house
needs to serve people both for their low-level requirements and high-level
requirements. Low-level requirements start from the most general requirements such
as shelter and security. On the other hand, higher-level requirements are personal and

subjective. How well a house fulfills its purpose is related to its success in supplying

low and high-level requirements.

A house, on the lowest level, is an essential necessity for survival, which serves as a
shelter from environmental threats. The structure of this shelter should be stable
enough to resist against physical loads. The outer skin should be well insulated to
keep the indoor temperature within habitable levels. A house is also a secure place
that borders between the occupants and outsiders. These lower-level needs, despite
their importance, hardly define the purpose of house by themselves. Thus, they can

also be supplied by simpler structures such as emergency shelters.

# Clare Cooper Marcus, Easter Hill Village: Some Social Implications of Design (Free Press, 1975).
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House, apart from sheltering needs, is also a cultural issue. The connection between
spaces of inhabitation and life-style is a result of owner’s cultural and traditional
expression.*® These needs start to become evident after the third level of the
hierarchy, comfort. Comfort is a vague term that can refer to environmental comfort
as a technical aspect, or it can also relate to privacy from a socio-cultural
perspective. The later steps of the hierarchy are higher-level needs. Occupants want
to reflect their values and taste onto the spaces they inhabit. As such, a house
becomes a medium of self-expression. Occupants use this medium to show their
status and identity in the society. This reflection is not just for the social
environment. Identity of a place is an essential factor to establish a sense of

belonging with that space.

Single-family house (SFH) is a typology that is defined as a free-standing building
that is occupied by a single family. SFH is an individual property, an empty space
that is open to any collaborative interpretation of the occupants and the architect. A
private house, as the unique representation of its user needs, a “home” that only
serves for the occupants’ individual will, lifestyle, desire, and taste. SFH, together
with its value as a medium that represents its occupant, has been also used by

architects as a way to manifest their architectural ideas and concepts.

2.1.2 From Mass Production to Mass Customization

20" century is a prominent time for manifestations by leading architects in the body

b

of SFHs. Villa Savoye is a representative of Le Corbusier’s “5 points of architecture’
with its pilotis, roof garden, free plan, free facade, and horizontal windows.*!
Farnsworth House is another example where Mies van der Rohe creates a house in

its simplest form only with two horizontal planes for ceiling and floor, eight slender

% Renee Y. Chow, “House Form and Choice,” Traditional Dwellings and Settlements Review, no. 2
(1998): 51.

31 Le Corbusier, Towards a New Architecture (London, Architectural Press [1946], 1946).
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vertical supports, a whole glass plane on the boundary, and nearly no partition walls
except for the core that bounds the wet spaces.32 One other example is Robert
Venturi’s play on “signs” in Venturi House. The exterior of Venturi House calls the
general image of a house with its gable roof, dramatically large chimney, and an arch
over the main door.®® Venturi emphasize these “signs” further by putting a large slit
in the middle of the front fagade, revealing that these elements do not serve for any
structural function. In addition to the more personal ideals of individual architects,
SFH is also used as a general manifestation for the use of mass production in the

construction industry.

Mass production has played an important role in both the increase in number of SFH
and its standardization. SFH is a preferred house type for families, but it is not
feasible on the economic side because of the cost of land and construction expenses.
Henry Ford’s assembly line, which was initially used for automobile manufacture,
introduced mass production techniques to the housing industry in the 20™ century.**
Mass production achieves high cost efficiency through the rapid manufacturing of
standardized products within specialized factories. Tract house developments used
mass production to construct mass housing sites that is made of the same two or
three types of houses. It was also used by housing kit developments that provided the
occupants a do-it-yourself kit to assemble the house themselves. This period resulted
with a great increase in the quantity of SFHs, while also causing a downgrade on the

quality of new houses by the high standardization it blrough‘[.35

2 Werner Blaser, Mies van Der Rohe: Farnsworth House-Weekend House, 1 edition (Basel ; Boston:
Birkhauser, 1999).

¥ Robert Venturi, Complexity and Contradiction in Architecture, The Museum of Modern Art Papers
on Architecture (New York : Museum of Modern Art ; Boston : distributed by New York Graphic
Society, 1977., 1977).

% Duarte, “Customizing Mass Housing.”

* David Gartman, From Autos to Architecture: Fordism and Architectural Aesthetics in the Twentieth
Century (New York: Princeton Architectural Press, 2010).
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Figure 2-1. Levittown is an early mass produced SFH development in USA.
(Retrieved from: http://www.newsday.com/long-island/nassau/levittown-history-in-
photos-1.13458781#16, Accessed on 11.08.2017.)

The problem of standardization in the manufacturing industry has been slowly
resolving with the rise of mass customization. Mass customization is a
manufacturing model that aims to supply modified or completely original products
for specific user needs with efficiency near mass production model. Mass
customization is not a new production model, on the contrary, the term was
originated in 1987 from the book Future Perfect by Stan Davis.*® The manufacturing
capabilities of 1980s, however, was not developed enough to answer such efficiency
in resources and customization. Today with the advances in digital manufacturing
techniques from CNC to 3D printing, it is possible to start the manufacturing process
immediately without the need for a specific setup for every product. Nevertheless,
certain challenges are still evident for mass customization. According to Zha and
Lu,*" an important challenge for the mass customization model is the decision
process for the level of Variety.?’8 Zha and Lue argue that mass customization

companies should supply minimum variety that satisfies an enough range of

% Stanley M. Davis, Future perfect. (Reading, Mass. [u.a.]: Addison-Wesley Publ. Co., 1987).
%7 Zha and Lu, “Knowledge Support for Customer-Based Design for Mass Customization.”
% Zha and Lu, 407.
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customer requirements in order to balance manufacturing expenses.39

2.1.3 Computational Tools for Mass Customization

An important challenge for mass customization is the process to gather, analyze, and
implement the information about the requirements and preferences of the customers.
Von Hippel and Katz*° give a list of four methods for this process in product
development such as market research techniques, lead user idea generation,
configurators, and non-expert tools. First, companies can use market research
techniques to gather the requirements and choices of many customers and use this
information to design standard products that satisfy a public.** Second, companies
can define lead users or the leading customer profiles in the marketing trends and
acquire their design solutions to integrate them into standard products.*? Third,
companies can invite customers to configure their own products from a menu of
predesigned options.*® Last, companies can develop “user-friendly” computational
tools that empower future users’ non-expert design capabilities to let them create
their own custom products.** Within this list of methods, computational tools that

empower users provide certain advantages compared to other three methods.

First, non-expert tools provide the most user centric customization model as they put
the users both in the head of analysis and synthesis processes. This is a significant
advantage for the level of customization required for SFH. SFH is a typology that is
occupied by a single family. SFH is an individual property, an empty space that is
open to any interpretation by the changing lifestyles, values, and tastes. House, apart

from sheltering and functional needs, is also a cultural issue. The connection

% Zha and Lu, 407.

“0 Von Hippel and Katz, “Shifting Innovation to Users via Toolkits,” 16,17.
*! Von Hippel and Katz, 17.

*2 Von Hippel and Katz, 17.

“ Von Hippel and Katz, 16.

“ Von Hippel and Katz, 16.
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between the spaces of inhabitation and lifestyle is a result of owner’s cultural and
traditional expression.45 Second, occupants’ experience in the design process of their
own house creates an additional value for the generated outcome. According to Belk,
people embrace things s as a part of self when they invest their own efforts, time, and
attention in their production.46 The connection between the occupants and SFH is an
important issue as SFH is usually a lifetime investment and the amount of time
owners spend in their house. Third, customized production of houses prevents
overproduction. The design of standard products from a general public opinion
reduces the overall overproduction compared to mass production. Nevertheless, a
risk of excessive production is still possible considering the custom domestic needs
of the occupants. This research will proceed with the model that corresponds to the
development of computational tools for non-expert designers because of the

mentioned advantages.

2.2  Computational design tools and automation

On one hand, design is a natural ability that everyone possesses on a certain extent.*’
People develop necessary design skills to help in their daily tasks such as choosing
outfits or organizing their personal space. Design is also a hobby activity for certain
people. Occupants follow design magazines or websites that provide small tips or
guides that anyone can follow to design a better living space. Naturally, such articles
give occupants certain small points to consider or start with in the complexity of this
design process. However, according to Hubert L. Dreyfus48 the dependence on strict

rules while performing any skill is a general indication of a novice’s attitude. Single-

* R.Y CHOW, “House Form and Choice,” Traditional Dwellings and Settlements Review 9, no. 2
(1998): 51.

 Russell W. Belk, “Possessions and the Extended Self,” Journal of Consumer Research 15, no. 2
(1988): 144.

" Nigel Cross, Designerly Ways of Knowing (London : Springer-Verlag London Limited, 2006.,
2006), 20.

*® Hub+ert L. Dreyfus, “Intelligence Without Representation—Merleau-Ponty’s Critique of Mental
Representation the Relevance of Phenomenology to Scientific Explanation,” Phenomenology and the
Cognitive Sciences 1, no. 4 (2002): 367,368.

21



family house has a simpler functional program compared to institutional or office
buildings. However, it is certainly a harder problem than daily design activities. In
this way, non-expert designers require certain tools that amplify their design abilities.
In this context, it is essential to decide on the ways and the extent of collaboration

with computational tools.

The definition of the extent of support that can be provided by computational tools is
an important decision. This decision is a determinant factor in non-expert’s level of
collaboration within the design process. In the most labor-intensive way for the
occupant, computational design tools can be expected to provide a fully automated
process. This kind of scenario can be thought as working with an automated architect
that generates a single-family house form after learning occupant’s special
requirements and requests. Today, this level of automation is actually a very popular

concept for many occupations.
2.2.1 Automation and Occupations

The replacement of human workforce by computers is a popular subject in many
online articles. A report by Gallup in 2017, as cited in McGrady’s article,* asserts
that 37% of Millennials face the threat of being replaced by automation in their
workplace. According to another study by McKinsey Global Institute, as cited by
2017 article by Whitehouse, Rojanasakul and Sam,* today’s technological
capabilities can fully automate only the five percent of whole occupations, however,
it is possible to automate a third of the total workload within the sixty percent of the

occupations. Such high numbers in these statistics can bring questions regarding the

* Andrew Dugan and Bailey Nelson, “3 Trends That Will Disrupt Your Workplace Forever,”
Gallup.com, June 8, 2017, http://news.gallup.com/businessjournal/211799/trends-disrupt-workplace-
forever.aspx; quoted, in Vanessa McGrady, “New Study: Artificial Intelligence Is Coming For Your
Job, Millennials,” Forbes, June 9, 2017,
https://www.forbes.com/sites/vanessamcgrady/2017/06/09/millennial-jobs/.

% James Manyika et al., “Harnessing Automation for a Future That Works,” New York: McKinsey
Global Institute, 2017; quoted in Mark Whitehouse, Mira Rojanasakul, and Cedric Sam, “Is Your Job
About To Disappear?: Quicktake,” Bloomberg.Com, June 22,2017,
https://www.bloomberg.com/graphics/2017-jobs-automation-risk/.
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possibility of computers outperforming humans.

Indeed, computers already proved their success against humans in certain instances
such as games. Such an event occurred in 1997, when World chess champion Garry
Kasparov lost a chess match against Deep Blue I According to Campbell, Hoane,
and Hsu,> Deep Blue II is the successor hardware and software model of IBM’s
research on developing machines that can play chess. As Campbell et al., Deep Blue
II played chess by ranking possible moves according to a mathematical function that
measures the advantage of positions, but did it in a very fast way that reached up to
126 million moves in the game against Kasparov.>® Naturally, Deep Blue II's chess
strategy is very different from a human player. In the worst-case scenario, Deep Blue
I has to measure every possible move for the position which exceeds the capabilities
of humans. Making a nearly complex calculation for nearly every possible move
while keeping every result in mind to rank and compare is not possible for human
cognition. In this way, Deep Blue II took the advantage of higher data storing and

data processing capabilities of computation.

However, this was also not the peak level in the capabilities of computers against
humans in games. More recently, a computational model by Google, AlphaGO, won
a match against world’s number one GO player Ke J e GOisa very different game
than chess in certain ways which requires different computational strategies
compared to Deep Blue II’s working principle. One study by Burmeister and Wiles,>

examines the differences between GO and chess. According to this study, GO is a

> Murray Campbell, A. Joseph Hoane, and Feng-hsiung Hsu, “Deep Blue,” Artificial Intelligence
134, no. 1 (January 1, 2002): 57, https://doi.org/10.1016/S0004-3702(01)00129-1.

52 Campbell, Hoane, and Hsu, 58.
5 Campbell, Hoane, and Hsu, 60.

> Agence France-Presse, “World’s Best Go Player Flummoxed by Google’s ‘Godlike’ AlphaGo Al,”
The Guardian, May 23, 2017, sec. Technology,
http://www.theguardian.com/technology/2017/may/23/alphago-google-ai-beats-ke-jie-china-go.

% Jay Burmeister and Janet Wiles, “The Challenge of Go as a Domain for Al Research: A Comparison
between Go and Chess,” in Intelligent Information Systems, 1995. ANZIIS-95. Proceedings of the
Third Australian and New Zealand Conference On (IEEE, 1995), 181-186.
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more open game in terms of the number of possible moves that can be played and
positions in a GO game resist to mathematical ways of evaluation.®® In this way,
Deep Blue’s strategy of evaluating a high number of possible moves does not work
for a GO game. However, Google overcome this problem by taking another
direction. An article by two members of AlphaGO’s developer team, Silver and
Hassabis,>’ explains that AlphaGO designate its own rules through learning from real
matches against real players instead of depending on predefined rules. Such
advancements in the development of intelligent machines can form a basis for using

computers for automating occupations.

Yet, game playing no matter its complexity is just a single task compared to the
multifarious variety of duties within occupations. A machine developed for chess can
win games against chess masters; however, it lacks any other capability beyond its
programming. The difficulty of developing machines that can replace human
workforce also varies within different occupations. The previously mentioned news
article by Whitehouse, Rojanasakul and Sam®® shares an interactive graph based on
the statistics provided of U.S. Bureau of Labor Statistics® that compares the
expected automation rate of occupations to their annual earnings. According to the
graph, various occupations face a high risk of automation such as accountants with a
rate of %94 or taxi drivers with %89, while certain occupations are on a safer end
such as architects with 1.8% or graphic designers with %8.2.%° To understand the
reasons behind this degree of difference in the automation expectancies, it is
necessary to explore a field of study with a long-standing background, namely

artificial intelligence (Al).

*® Burmeister and Wiles, 182—84.

% David Silver and Demis Hassabis, “AlphaGo: Mastering the Ancient Game of Go with Machine
Learning,” Research Blog (blog), January 27, 2016,
https://research.googleblog.com/2016/01/alphago-mastering-ancient-game-of-go.html.

% Manyika et al., “Harnessing Automation for a Future That Works™; quoted in Whitehouse,
Rojanasakul, and Sam, “Is Your Job About To Disappear?: Quicktake.”

% Carl Benedikt Frey and Michael A. Osborne, “The Future of Employment: How Susceptible Are
Jobs to Computerisation?,” Technological Forecasting and Social Change 114 (2017): 254-280.

8 Whitehouse, Rojanasakul, and Sam, “Is Your Job About To Disappear?: Quicktake.”
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Stuart Russell and Peter Norvig,61 in their book that presents Al in the very
introductory and undergraduate level, defines Al as the study of building intelligent
entities that can act or think in humanly or rational ways. While the term “humanly”
is more relatable and understandable despite of the complex neurological
mechanisms behind the human acts and thoughts, the term “rational” brings
questions beyond this definition. According to Russell and Norvig,® rationality is an
ideal measure that is constructed by the limited knowledge of the entity for assessing
the performance of doing the “right” thing in a certain context. A calculator is a very
basic example for a rational artificial intelligence despite its outmoded level of
intelligence compared to the novel Al capabilities. The most basic calculator is
capable of making four arithmetical operations, but it always returns the right result
no matter the complexity of given operations. In a way, calculators have no other
option than giving the correct result as their actions are strongly limited by an exact

and strict language of mathematics.

Similarly, occupations that are governed by strict rules and procedures show higher
expectancies on automation. The state of accountants can be a good example in this
sense. Various tasks involved in the practice of accounting are defined by Merriam-
Webster®® dictionary as “...recording and summarizing business and financial
transactions and analyzing, verifying, and reporting the results”. Despite the
multiplicity of tasks, accounting practice is governed by strict standardizations and
principles imposed by such organizations that vary between different countries. For
example, accounting practice in U.S. is governed by Generally Accepted Accounting
Principles (GAAP) which is a collection of concepts, objectives, standards, and

conventions that guides the presentation and preparation process of financial

%1 Stuart J. Russell and Peter Norvig, Artificial Intelligence : A Modern Approach, Prentice Hall Series
in Artificial Intelligence (Englewood Cliffs, N.J. : Prentice Hall, 2010., 1995), 1,2.

%2 Russell and Norvig, 1.

83 «“Accounting,” Merriam-Webster, accessed January 14, 2018, https://www.merriam-
webster.com/dictionary/accounting.
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statements.®* Another task of such organizations, however, is to find ways to reduce
the complexity of these standards.®® A study by Donelson, McInnis, and
Mergenthaler,’® mentions a common criticism towards GAAP because of its
dependence on rules in excessive detail. Apparently, human accountants are having
difficulties in following GAAP rule sets for standard procedures on common tasks.
On the other hand, a rational AI model should not face with much trouble while
following a large database of rules mentioning the “right” thing to do under certain
conditions. Similar to Deep Blue, an accounting Al can surpass humans in the speed
and accuracy for checking rule sets because of their matchless data processing and

storing power.

The popularity of artificial intelligence approaches are not limited to procedurally
governed occupations. The studies on the development of self-driving cars notably
by Waymo67 or Tesla®® have come into such an attention level that caused certain
discussions®® about the replacement of public transportation by driverless
technologies. In a general look, automation can provide better drivers as they take
out the potential of human error in the traffic. A machine can prevent distraction-
based incidents because they do not exhaust unlike humans do. Alternatively,
machines can observe farther or see in better detail with the help of digital cameras

or censors. Adding to that, machines are already better in locating addresses and

84 «About GAAP,” accessed January 14, 2018,
http://www.accountingfoundation.org/cs/ContentServer?c=Page&cid=1176164538898 &d=&pagenam
e=Foundation%2FPage%2FFAFBridgePage.

% «Simplifying and Improving GAAP,” accessed January 14, 2018,
http://www.accountingfoundation.org/jsp/Foundation/Page/FAFBridgePage&cid=1176164540272.

% Dain C. Donelson, John MclInnis, and Richard D. Mergenthaler, “Explaining Rules-Based
Characteristics in US GAAP: Theories and Evidence,” Journal of Accounting Research 54, no. 3
(2016): 827.

87 «A New Way Forward for Mobility,” Waymo, accessed January 12, 2018,
https://waymo.com/redirect/.

88 «Autopilot,” accessed January 12, 2018, https://www.tesla.com/autopilot.

89 “Forget Self-Driving Cars. Automated Public Transportation Is Coming,” Roadshow, accessed
January 12, 2018, https://www.cnet.com/roadshow/news/self-driving-cars-automated-public-
transport-bus/; “Forget Cars, Self-Driving Shuttles Are the Future of Transportation,” WIRED,
accessed January 12, 2018, https://www.wired.com/story/las-vegas-shuttle-crash-self-driving-
autonomous/.
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finding routes because of the novel capabilities of GPS technology. On the other
hand, driving is a highly intuitive task that is not governed by strict rules unlike
accounting. As Russell and Norvig,”® developing an automated taxi driver is a
complex open-ended problem with countless events to consider because of the

combinational possibilities.

As an example, a self-driving car should be able get through a complex process of
making multiple observations and decisions while taking a left on a crowded
crossroad. It has to recognize its destination, direction of road lines, traffic signs, and
vehicles within the traffic. Al also has make certain calculations regarding the
travelling speed of multiple vehicles, and understand their upcoming moves from
certain signs. In many ways, traffic is a complex and unpredictable environment to
develop a definitive list for every possible scenario. A vehicle can violate the laws by
skipping the signal or a driver can accidentally make a move than changes mind.
Also modeling a decision system moves is not convenient considering the
combinations of vehicles and their possible moves. Instead, self-driving cars follow
the procedure of AlphaGO to develop their own rules by machine learning

algorithms.

According to a definition provided by Ethem Alpaydin,”* “Machine learning is
programming computers to optimize a performance criterion using example data or
past experience”. As Alpaydin, machine learning can be used to develop intelligent
machines for real world tasks that humans cannot define in systematic instructions
because of the tasks’ realization in an “unconscious” manner.’> Waymo, in order to
provide real world experience for their self-driving cars, has fabricated a city in US

to conducts tests.”® Although developing a database of rules for self-driving cars is

"0 Russell and Norvig, Artificial Intelligence, 41.
™ Ethem Alpaydin, Introduction to Machine Learning, 2nd ed. (The MIT Press, 2010), 3.
"2 Alpaydin, 3.

7 Alexis C. Madrigal, “Inside Waymo’s Secret World for Training Self-Driving Cars,” The Atlantic,
August 23, 2017, https://www.theatlantic.com/technology/archive/2017/08/inside-waymos-secret-
testing-and-simulation-facilities/537648/.
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not possible because of the involved level of intuition, the tasks’ performance
criterion is rather simple. A rational act for a self-driving car, in the most general
sense, is to drive safely between two destinations without causing collusions. This
task can be simulated by real world or virtual applications for the self-driving car to

gain experience.

On the other hand, design related occupations such as architecture have a seriously
low automation expectancy compared to accountants and drivers. Computers,
however, are becoming increasingly essential for architectural practice. Yet, they
serve more as tools for architects rather than being fully autonomous design
machines. Despite of artificial intelligence’s success on working with complex rule
sets or learning intuitive tasks, full automation of architectural design is still out of
question. Certain problems of architectural design are shared among accounting and
driving as well. Architects also consider a large amount of governmental and
technical engineering oriented standards. Additionally, architecture is also considered
as an intuitive task. However, certain differences within the design practice keeps Al
models away from full automation. Next section examines these relevant problems in

architectural design.

2.2.2 Automation and Design

Nigel Cross’ traces the origin of computation in design back to the “design methods
movement” in 1960s that aimed to develop a rational and objective design processes
against the resultant problems of Second World War. As Bayazit,75 researchers
involved in design methods were searching for “rational methods” to integrate
“scientific techniques and knowledge” to develop a rational base for design

decisions. For example, Christopher Alexander’® developed a rational and systematic

™ Cross, Designerly Ways of Knowing, 95.

"> Nigan Bayazit, “Investigating Design: A Review of Forty Years of Design Research,” Design Issues
20, no. 1 (January 1, 2004): 19, https://doi.org/10.1162/074793604772933739.

"® Christopher Alexander, Notes on the Synthesis of Form, vol. 5 (Harvard University Press, 1964), 84.
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approach to design based on an analysis-synthesis process. For Alexander, design
tasks are complex problems that require a mathematical and logical analysis process
to disintegrate into smaller parts’’. After such an analysis process that brings the
problem in a manageable simplicity, a designer requires to pass on the synthesis

process where he/she solves disintegrated parts.78

Yet, design methods movement faced a deep criticism in 1970s in terms of their
overly systematic approach.’”® A new base of research provided alternative definitions
for design problems in order to differentiate such problems fully scientific and
systematic problems. In this way, Rittel and Webber® defined desi gn problems by
the term “wicked”. In the same article, Rittel and Weber give a list of ten properties
that differentiates wicked problems from other “tame” ones.** According to three
items within this list, wicked problems lack an exact formulation, they have no

stopping rule, and they cannot be tested with an immediate or ultimate method.®?

The unavailability of exact definitions of design problems have been stated by
multiple researchers. According to Bryan Lawson,® design problems unlike puzzles
or mathematical operations are in absence of clear objectives as well as apparent
difficulties inherent in the process of realizing these objectives. Cross® views design

problems as a variant of “ill-defined problems”. An ill-defined problem, for Cross,*

" Alexander, 5:84.
"8 Alexander, 5:84.
" Cross, Designerly Ways of Knowing, 96.

% Horst W1 Rittel and Melvin M. Webber, “Dilemmas in a General Theory of Planning,” Policy
Sciences 4, no. 2 (1973): 155-69.

81 Rittel and Webber, 160.
8 Rittel and Webber, 161-64.

8 Bryan Lawson, How Designers Think : The Design Process Demystified (Oxford ; Burlington, MA :
Elsevier/Architectural, 2006., 2006), 56.

8 Nigel Cross, “Design Cognition: Results from Protocol and Other Empirical Studies of Design
Activity,” in Design Knowing and Learning: Cognition in Design Education., ed. Charles M.
Eastman et al. (Oxford, England: Elsevier Science Ltd, 2001), 3, https://doi.org/10.1016/B978-
008043868-9/50005-X.
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is a problem with only an approximate definition that corresponds to a vague
information about the objectives and limitations. This obscurity within the
architectural design problems can be examined within the openness, subjectivity, and

multiplicity of its objectives.

Architectural design, up to a certain extent, is bounded by strict rules and
standardizations. A certain example is building and zoning legislations provided by
higher authorities. Zoning regulations limit the layout of the building with setback
boundaries, or they constraint the total area of the building by the floor area ratio
(FAR). Another example is the functional requirements related to the building
program. The designed space should be suitable activities that are planned to take
place. This suitability is directly related to such points as the number of people that
space serve or the appliances and equipment required for such activities. These kinds

of rules are generally nonnegotiable and required to be met at all costs.

On the other hand, the designed space does not emerge solely from such hard rules
and standards. Otherwise, there will not be any reason to call design activity as a
routine problem solving process with well-defined problems and a series of clear
directions on solution. Design problems, however, require another kind of process
rather than mere problem solving because of their initial vague definition different
from other kinds of problems. Design is a creative process with open definitions that
presents a level of freedom for the designer. Kees Dorst® defines this “openness”

with the levels of “underdetermination” that is available in design problems.

According to Dorst,?’ a large part of design problems is “underdetermined”. The
clarification of such problems and the selection of suitable design solutions emerge

together after a multiplicity of proposals by the designer.88 Designing a house with

8 Kees Dorst, “The Problem of Design Problems,” in Expertise in Design (Design Thinking Research
Symposium 6, Sydney, Australia, 2003), 136.

8 Dorst, 137.
% Dorst, 137.
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low-energy requirements, supposedly, is a determinant design objective which can be
evaluated through technical calculations. However, this objective does not directly
correspond to a fixed number that limits the energy considerations. This objective
value varies in terms of different design problems. The experts can make initial
predictions by calculations that consider certain standard values. Architectural
design, however, also includes certain issues that resist objective estimations in
advance. The dimensional requirements for certain spaces in the house do not
necessarily correspond to exact numeric definitions. The occupants can use such
descriptions as “cozy”, “functional”, or “comfortable” to define their expectations

from a certain space.

As Dorst, certain parts of the design problems go beyond this underdetermination.
Design problems are also partially “undetermined” with an amount of space to the
purely subjective intentions of the designe:r.89 Higher-level domestic needs such as
aesthetics cannot be modeled in a pre-descriptive way. There is no evident scientific
fact that supports the beauty of a house over another one. In these cases, architects
are free within the limits of their communication skills to persuade the occupant in

the aesthetics of their house.

In addition to the various levels of openness inherent in design objectives, these
objectives are also endless in numbers. Architectural design is related to a vast
amount of interrelated and multidisciplinary objectives. These objectives may range
from spatial solutions for the required functional program, socio-cultural context,
and economical boundaries to technical aspects like natural and mechanical lighting,
thermal conditions, fluid dynamics, structure, and acoustics. An architect is not
necessarily an expert in all these fields. However, they are still required to have a
general knowledge in these areas to establish the necessary communication between

the involved disciplines.

® Dorst, 137.
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The objectives of architectural design are rarely separate from each other. These
requirements are interrelated in the sense that working on one objective can give way
to problems on other objectives. During the design process, the occupants can ask for
design revisions. This change in the programmatic objective causes changes in other
objectives. For instance, a larger room brings larger loads on the structure, which in
return can cause an increase in the dimension of structural elements. This increase in
the area also changes the cooling or heating requirements of the house which again

lead to changes in the mechanical installments to provide enough capacity.

Alexander’s rational and systematic approach has strong relations with the
multiplicity and the interdependence between the objectives. Alexander’s analysis
method on design problems requires enlisting all the requirements related to the
problem, then establishing an organization in this list through exploring interactions
between these relations.”® Alexander also developed a mathematical method that
structures the group of objectives into clusters that work together by utilizing
statistical and mathematical functions.®’In a way, Alexander’s approach is a divide-
and-conquer model that creates a set of meaningful and operable objectives from a
whole and complex one.

%2 is critical towards the design analysis method of Alexander. Lawson

Bryan Lawson
asserts that Alexander’s method treats every problem equally in the structuring
process which contrasts with general actions of a designelr.g3 According to Lawson,
“Alexander fails to appreciate that some requirements and interactions have much
more profound implications for the form of the solution than do others”.** Such
conflicting situations may require the designer to decide upon the relative

importance of conflicting goals one upon the other. Domestic needs also have a

% Alexander, Notes on the Synthesis of Form, 5:93.
* Alexander, 5:174-91.

92 Lawson, How Designers Think, 76,77.

% Lawson, 77.

% Lawson, 77.
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hierarchy. It is usually simpler to decide about goals in different levels of hierarchy
such as the structural safety over aesthetic intentions. In other times, these decisions
also require the subjective interpretation of the architect to establish the requirements
in a priority. These priorities, similar to the objectives, can also change during the

design process.

Occupants can initially ask for a single-story house because of various reasons such
as age and disabilities. The overall program requirements, however, can exceed the
total area of setback boundaries. Pushing this objective would either require a
decrease in the total area or another site for the house. The architect, instead, can
convince the occupants in the advantage of a second story and the possibility of
using a small elevator. Similarly, the economic constraints on the design process can
be seen as a nonnegotiable at first. Related calculations, however, are usually made
with very simplistic terms within the design process so they lack the precision. An
architect can propose solutions that exceed the economic means, but they can
convince the occupant about the increase in quality of their home by these exceeding
amounts. In these terms, economic boundaries become also a negotiable constraint
that can be evaluated in terms of the other advantages of the solution. Such a level of
flexibility inherent in the design process presents designers a high multiplicity of

solution ways to take which results with a large number of solutions to consider.

2.3 Computational design tools and user interaction

Development of computational tools for the complete automation of architectural
design process is problematic. Beyond the rationally incomputable objectives of
architectural design such as designing aesthetic buildings or designing for
psychological comfort, a rational definition for an architectural design problem is not
existent as well. Indeed, such a process is a part of the creativity inherent in
architectural design. Architects mostly define design problems in their own
subjective way rather than applying a deep analysis on the problematic design
context. Yet, computation’s incapability to provide a fully automated design process
does not necessarily keep them away from architecture. On the contrary, the
collaboration between computation and architects are more apparent than ever.

Today, computers are effective partners for architectural design. Computer-aided
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drafting (CAD) tools provide a precise and quick interface for data-intensive
architectural drawings. Rendering engines enhances the presentation capabilities by
photorealistic design representations. Simulation software provides complex
calculations on the environmental or structural performance of buildings. BIM tools
augment the collaboration of the vast multiplicity of professions involved in the
design process. Naturally, non-expert designers require a broader support than
practicing architects. A simulation on the thermal performance of a building may not
be the most vital aid for a non-expert as they miss the very fundamentals of

architectural design.

Von Hippel and Katz, in a general guideline for the development of tools that support
non-expert users, provided a list of five objectives: 1. Trial-and-error learning
environment for the user, 2. appropriate solution space, 3.User-friendly interface, 4.
Wide library of modules, and 5. direct manufacturing without any alterations.®® This
research is limited with the first three objectives in Von Hippel and Katz’s list. The
development of open source architecture portals and the prevalence of BIM methods
provide the necessary library for the designers. On the other hand, digital
manufacturing technologies are continuing to develop rapidly and becoming
personalized with their easy access. This easy access, in a way, gives everyone the
support to be a manufacturer. The remaining elements correspond to broad
definitions without the actual product to be designed. In this way trial-and-error
learning, appropriate solution space, and user-friendly interface will be examined

together with architectural design and single-family house.
2.3.1 User-friendly interface and trial-and-error learning
This section will examine studies on designer behavior in order to define the

importance of trial-and-error learning and reach the requirements for a user-friendly

interface. A main beneficial outcome of design methods movement’s aim in

% Von Hippel and Katz, “Shifting Innovation to Users via Toolkits,” 9—13.
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integrating rational and objective methods to design process is the enhancing body of
knowledge on designers’ attitude and action within complex design situations. Nigel
Cross® unifies this related body of research under the name “science of design”.
Cross defines “science of design” as “that body of work which attempts to improve
our understanding of design through ‘scientific’ (i.e., systematic, reliable) methods of
investigation”.97 According to Cross, ™ the studies on designing were realized in
many ways from academic reflections on designer’s self-reports to experiment based
methods such as protocol studies. Such studies on designer behavior are not expected
to give assistance in creating a complete rational procedure to tackle design problems
because of the high variety in design problems and the innate subjectivity involved

in the design process. However, this body of knowledge can give an insight about the

general character of design actions which can help in the development of similar

purpose tools to aid non-expert designers.

As a contrast to the deep analysis methods inherent in highly systematic and
objective models for design, designers take another way in the initial stages of this
process. Bryan Lawson”, after a protocol study that targeted to reveal the behavioral
differences in problem solving between architecture and science students, observed
that architectural students generally showed a solution-focused strategy compared to
the problem-focused strategy taken by science students. As Lawson,™® this solution-
focused strategy is an indicator or the synthesis based analysis methods of designers.
Lawson notes that in the obscure context of design where problems are away from
being obvious, designers find their problems through making certain moves such as
using primary generators.’®* A primary generator, as Lawson, is a concept developed

by Jean Darke that corresponds to a general solution concept or a limited definition

% Cross, Designerly Ways of Knowing, 99.
o Cross, 99.

% Cross, 17.

% Lawson, How Designers Think, 42.

100 Lawson, 44.

1011 awson, 56,295.
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of the design problem.102

Donald Schén, in another protocol which studies an architectural design review
between a studio master and a student, exemplifies his theory of “reflection-in-
action”.'® In his study, Schon differentiates the design actions of the novice and
expert designer involved in the study by novice designer’s halt in the failure of her
design idea versus expert’s constant struggle with the problem context through
design moves.'® As Schon, these design moves are the means of communication for
the expert designer to put a conversation with the problem context which in some

k.1% In these certain instances, the

cases, stimulate the design problem to talk bac
expert discovers new things about the problem and shifts the position to consider
new moves on the context.®® Schdn asserts this set of procedure is a general process
for experts in ill-defined and vague problem contexts, no matter the difference in

their design moves or shifting positions. ™’

According to these protocol studies, trial-and-error learning is an essential part of the
design process. The ill-defined nature of design problems resists to deep analysis
methods. In this way, trial-and-error learning starts within the very early and vague
stages of the design process. The subjective decisions on the definition of open-
ended parts and the relative importance of design objectives are taken through a trial-
and-error learning process. This early process includes the development of a large
amount of concepts and alternative solutions. Non-experts, on the other hand, lacks
the required design experience and education to utilize this process as well as an

expert architect.

192 Jane Darke, “The Primary Generator and the Design Process,” Design Studies 1, no. 1 (1979): 36—
44; cited in Lawson, How Designers Think, 46,47.

% Donald A. Schén, The Reflective Practitioner : How Professionals Think in Action / (New York :
Basic Books, ¢1983.), 102-4.

104 Schén, 102.
1% Schén, 94.
108 Schan, 94,95.
97 Schén, 103.
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The ill-defined nature of design problems is just one difficulty that designers come
across during the process. According to Lawson, the inability to define a design
problem in a complete and exact manner causes the designers to work with an
“inexhaustible” list of solutions.®® Even an initial interpretation of the problem
during the design process can bring large amounts of solution candidates. As it can
be seen from the previous examples, the constraints of the design problems are not
overly strict. In this way, the designer can also ignore these limitations based on
his/her persuasion skills on the clients or with the presentation of better design
solutions beyond the limitations. Such level of flexibility causes the designer to work

with a high number of solutions.

For designing, even simpler problems have a large solutions space. As an example,
the very basic houses that only served for the sheltering needs of the society created
a vast amount of residential forms in the past. Sheltering needs, as mentioned
previously in Marcus’'% hierarchy, stays within the most general domestic
requirements of people. Sheltering needs can be associated with less subjectivity in
terms of the decisions of the occupants because the general threat is more or less the
same. On the other hand, material possibilities within the environment pushed people
to build in different ways and forms which resulted with the diverse range of stylistic

variety in houses.

During the design process, architects work with very simple representational means
that are away from the realism of the building’s final form.™™° These representations
include simple bubble diagrams and conceptual mass models to save time for

creating more alternative solutions. As Liu, Chakrabarti, and Blight'*" exploring the

108 1 awson, How Designers Think, 121.
199 Marcus, Easter Hill Village.

19 Gabriela Goldschmidt, “The Dialectics of Sketching,” Creativity Research Journal 4, no. 2
(January 1, 1991): 123-43, https://doi.org/10.1080/10400419109534381.
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widest range of design options is a crucial part of conceptual design process to grow
better design concepts. To assess the quality of a large range of concepts, designers
utilize divergent thinking together with convergent thinking. Divergent thinking
expands the range of design exploration to locate alternative solutions to the
problem; on the contrary, convergent thinking shrinks the range of possibilities by

focusing on better solutions.**?

Designers are required to find a balance between the divergent and convergent
thinking in the design process. Cross,™ associates convergence dominated design
processes with novice behavior. The design process can be limited to an initial good
performing concept to keep things very simple. However, designers work with
complex problems, in this sense one-shot operations hardly generate satisfactory
solutions. A divergence dominated design process, on the other hand, can fail to meet
the detailed examination required for meeting long list of design related objectives in

time.

Despite the unavailability of a fully automated computational method to support
non-experts in the design process, computational tools can still provide support in
these underperforming abilities of non-expert designers. In this way, a user-friendly
interface should enable non-experts to develop and explore a wide range of design
solutions with their inherent design abilities. Such a tool should be forgiving in terms
of the generation of high quality solutions opposed to the occupant’s vague or false
definitions on the design problem. Accordingly, the computational tool should be
able to look over the layout design problem from a wider perspective, including the
multiplicity of objectives as a whole. Additionally, this wider perspective should also
be flexible and open to user’s interpretation during the generation process because of

the openness and subjectivity involved in design problems and objectives.

Y21 ju, Chakrabarti, and Bligh.
3 Cross, Designerly Ways of Knowing.
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2.3.2 Appropriate solution space

The solution space of a computational design tool corresponds to the extent of
alternative solutions that the design tool can generate. The size of this solution space
is an essential factor for controlling the level of customization allowed for the user. A
very small solution space can present a scenario worse than the standard solutions
inherent in housing industry; on the other hand, a very large solution space can lower
the effect of computational exploration and bring inadequate solutions. In this way,
the solution space for a computational design tool should be just right. According to
Cagan, Campbell, Finger, and Tomiyama™* the range of solution candidates is
directly related to the “representation” of computational model. As Cagan et al.'*>,
two important considerations for the development of a representation is the
definition of building blocks and their interrelations. Building blocks are smaller
customizable parts of the generated product. For example, a house can both be
represented as a complex collection of bricks or a simpler combination of wall and
roof systems. The determination of the building blocks for a SFH and therefore an
“appropriate” solution space requires a deeper look in the functions and parts

associated with a SFH.

Functional analysis of SFH

A house should function as a space that supplies occupants’ low and high-level
domestic needs, as discussed in the previous section. It is possible to define these
needs with their corresponding domestic activities. Several domestic activities are
generally available in every house setting as they are closely associated with the
above-mentioned low-level needs. These domestic activities are numerous, such as
recreation, sleeping, eating, cooking, socializing etc. Furthermore, the activities

within a house can vary according to occupants’ lifestyle. As an example, home

14 J Cagan et al., “A Framework for Computational Design Synthesis: Model and Applications,”

JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING 5, no. 3
(September 2005): 172.
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offices can partially act as professional working environments, while also serving for

domestic activities.

In a way, a house should function as a comfortable space that can provide for the
related activities. As Habraken'™ states, when a space is given a certain function, it
should be designed with the capacity that it can allocate a configuration of objects
associated with the related function. In this way, even the general activities can
require different spatial solutions depending on the occupant behavior. The eating
activity of a family of four will certainly require a larger table and more seats than a
family of two. Cultural interpretations of the activities can also have a role in the
required capacity such as the on-the-floor dining arrangement of the Japanese

culture.

Apart from spaces with well-defined uses, a space within the house does not
necessarily correspond to just one activity. For instance, bedrooms are associated
with sleeping. On the other hand, bedroom can also stand for a place that serves for
the need of resting and intimacy. The occupant can require an additional living
quarter of their own within their bedroom. Children’s rooms are very multi-
functional in this sense. Children use their rooms as a place for play and study in

addition to sleeping.

There may also be spaces within a house that does not correspond to an activity in a
general way. In this sense, the mere purpose of circulation spaces is to connect
different areas within a home. Halls and corridors provide horizontal circulation,
while stairs and elevators provide vertical circulation for multi-floor houses. The
lack of an overall activity can bring the issues about circulation space as a dull and
soulless spaces, however it is still possible to make circulation spaces contribute

more to the living in house with a few interpretations.

18 N. John Habraken, “The Control of Complexity,” Places 4, no. 2 (1987).
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The function of a house directly depends on the occupant. The scale of certainty of
the spaces within a house can change from project to project. It is possible that the
architect does not communicate directly with the occupants. The client can also be a
contractor company that wants to build a housing site rather than a customized
house. In that sense, the activities of the house cannot be well-defined as in working
with the real occupant. Alternatively, the occupant can require an adaptable house
that can change according to changes in the family’s lifestyle overtime. There are
certain ways to answer these circumstances such as open-plan houses that do not
divide spaces with hard installations rather the user can bring transitory divisions
over time. Tadao Ando’s Walless House is such an example where the architect
proposed movable furniture to make the space adaptable. This study addresses a case

when an architect works on a customized SFH with static spatial requirements.

The functional analysis of SFH, as a customized design product, requires a
meaningful communication with the occupants. Information needs to be gathered
regarding the number of rooms and their sizes such as the size of the family, the type
of fixed installations on the wet spaces, the conditions for overnight guests, or the
type of outdoor spaces etc. The designer and the occupant define a general building
program through the briefing sessions which stands for the number of required

spaces, their sizes, and the relationship in between them.

A house cannot be reduced directly to the sum of the separate spaces for different
domestic activities. Hillier'*” states that human space is more than the properties of
the individual spaces; instead, the configurational aspect of space with the relations
between many spaces makes the space a whole. The relationship between the public
and private spaces, as an example, is an important concern of the configurational
aspect of a house. The availability of sleeping quarters alone does not necessarily
provide privacy alone in itself without the careful placement of this quarter within

the house. Bedrooms are generally separated from the more public living quarters

Y7 Bjll Hillier, “The Art of Place and the Science of Space,” World Architecture 185 (2005): 96-102.
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both physically and visually either by a circulation space or a floor difference. This
configurational aspect includes the neighborhood relations between the spaces,
zoning of certain activities, and the orientation of the spaces within the overall

layout.

Layout design in general

Configuration design is a generic activity that is shared generally by all the design
related professions. Configuration design refers to the assembly of a predefined set
of components into a meaningful and purposeful whole that satisfies certain
predefined conditions.™® This definition provides an overall unifying explanation for
very distinct design problems such as a production facility, a computer chip, a
website, or a house. These configuration problems, despite of the difference in their

scale, require allocating various predefined elements in a limited exterior boundary.

Configuration design can be tackled with a bottom-up approach, as it gathers the
whole from the part. The designer starts from the very basic or the smallest available
elements and produces the layout in different levels of hierarchy. This is similar to
starting the design of a house from considering the arrangement of furnishing,
circulation, and related activities within a room. The form of rooms is the result of
the all furnishing arrangements and the space of activities around them. This process
proceeds into the configuration of rooms within the house after the definition of
room forms. Rooms are arranged with one another according to the flow of
movement between them and the client preferences on their proximity. This process
can go on further to the arrangement of resultant houses within a site boundary if the
designer is building a neighborhood. This configurational design process refers to
building layout design in architecture. Architects conduct layout design in the early
conceptual design phase, usually after the definition of the building program that

stands for area requirement estimations according to the requests of the occupants.

118 Sanjay Mittal and Felix Frayman, “Towards a Generic Model of Configuraton Tasks.,” in ZJCAL,
vol. 89, 1989, 1395-1401.
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24 Computational Approaches to Layout Design Problem

Computational approaches to layout design, started with facility layout problems in
the 1950s.™° Since the late 1950s, engineers and architects developed computational
models to tackle many layout problems whose scale range from computer chips120 to
urban design?!. Layout design approaches mainly diverge in how they define the
layout problem (the solution representation, constraint formulation etc.) and the

search methods they use to compute solutions.

Computational approaches to layout design problems can be classified as
construction and improvement methods. A constructive method starts from scratch
and builds the layout in sequent actions. This action can be the placement of an
individual space in each consecutive step. Improvement approaches, on the other
hand, start with complete solutions and improve this solution in sequent actions. This

action can be the pairwise exchange of layout elements in every phase.
2.4.1 Construction methods

Construction methods work close to state-space search, which is assumed as a
classical search method. It can be defined as “the process of looking for a sequence
of actions that reaches the goal is called search”.*?? Construction methods represent
the search space as a tree of states in between the initial state and goal state. Exact

algorithms and some heuristic algorithms are in this category.

9 Tjalling C. Koopmans and Martin Beckmann, “Assignment Problems and the Location of
Economic Activities,” Econometrica: Journal of the Econometric Society, 1957, 53-76.

120 K azuhiro Ueda, Hitoshi Kitazawa, and Ikuo Harada, “CHAMP: Chip Floor Plan for Hierarchical
VLSI Layout Design,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 4, no. 1 (1985): 12-22.

121 pirouz Nourian, “Configraphics: Graph Theoretical Methods for Design and Analysis of Spatial
Configurations,” A+ BE| Architecture and the Built Environment 6, no. 14 (2016): 1-348.

122 Russell and Norvig, Artificial Intelligence, 66.
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Figure 4. Schematic description of a simple layout construction algorithm (Drawn by
the author).

Exact Algorithms

Exact approaches are precise algorithms that target optimal solutions. A very basic
exact approach is the brute-force search algorithm that can enumerate all layout
options and select the best one. Layout problems are, however, “NP-complete” (non-
deterministic polynomial), which means optimal solutions require extended amounts
of time even for small scale problems, as the solution space grows exponentially

even with a low number of layout elements.'?

Therefore, exact approaches to layout
design problems need either to narrow their search space and simplify the conditions
for the optimal solution or require more sophisticated algorithms than brute-force

search.

'3 Jun H. Jo and John S. Gero, “Space Layout Planning Using an Evolutionary Approach,” Artificial
Intelligence in Engineering 12, no. 3 (1998): 3.
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The automatic furniture layout tool of Abdelmohsen et al.’* is an exact approach
with relaxed conditions and narrow search space. The tool places the furniture
according to specific object-object and object-space relations rather than exhausting
all placement options.? Several other exact layout design approaches use branch
and bound algorithms.126 Branch and bound algorithms make selective enumeration
by pruning certain useless branches within the search tree if the algorithm assess that
it would not produce an optimal solution. This way, branch and bound algorithms
can solve layout problems with a maximum 18 equal area layout elements, however,

they fail to support real life layout problems with unequal area elements.*?’

Real world layout problems include a high level of complexity. Generating an
optimal solution within this complexity is a demanding operation that exceeds the
time-related and computational resources. Designers, instead of optimality, look for
good enough solutions that are “satisficing” within the complex problem contexts.*?
Similarly, computational approaches to layout design should work with

approximations to use the resources in more intelligent search procedures.
Construction Heuristics

Heuristic approaches are approximate methods which do not guarantee to find an

optimal solution, but usually find good enough results that are close to the optimal

124 Sherif Abdelmohsen et al., “A Heuristic Approach for the Automated Generation of Furniture
Layout Schemes in Residential Spaces,” in Design Computing and Cognition '16 (Springer, Cham,
2017), 45975, https://doi.org/10.1007/978-3-319-44989-0_25.

125 Abdelmohsen et al., 499.

126 M.s. Bazaraa, “Computerized Layout Design: A Branch and Bound Approach,” AIIE Transactions
7,n0. 4 (01 1975): 43238, https://doi.org/10.1080/05695557508975028; Ulrich Flemming et al.,
“Hierarchical Generate-and-Test vs Constraint-Directed Search,” in Artificial Intelligence in
Design’92 (Springer, 1992), 817-838, https://link.springer.com/chapter/10.1007/978-94-011-2787-

5 41.

127 Russell D. Meller and Kai-Yin Gau, “The Facility Layout Problem: Recent and Emerging Trends
and Perspectives,” Journal of Manufacturing Systems 15, no. 5 (1996): 351-366.

128 Herbert A. Simon, “Rational Choice and the Structure of the Environment.,” Psychological Review
63, no. 2 (1956): 129.
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solution.*® In the absence of design support by exact approaches, heuristic search
can still provide a layout solution that can provide insight into the design problem

and solution space. Several examples have been developed that makes use of

heuristics.

SHAPE is a construction heuristic that produces unequal area layouts by assigning
smaller grid-like modules for every department.*** SHAPE assigns departments
according to the given major and minor production flows. Most common department
within the production flows is chosen as the center and the others grow from this
initial point. Although SHAPE can operate with a large number of layout elements, it
also produces departments with irregular form. NLT is another constructive approach
that assigns unequal area rectangular shapes for departments.*! NLT uses a multiple

stage framework that handles area requirements and adjacency relations in different

stages.
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Figure 5. A final layout by SHAPE. (Hassan, Hogg, and Smith, 1986)

129 Yehuda E. Kalay, Architecture’s New Media: Principles, Theories, and Methods of Computer-
Aided Design (MIT Press, 2004).

30 Mohsen MD Hassan, Gary L. Hogg, and Donald R. Smith, “SHAPE: A Construction Algorithm for
Area Placement Evaluation,” International Journal of Production Research 24, no. 5 (1986): 1283—
1295.

B! Drew J. Van Camp, Michael W. Carter, and Anthony Vannelli, “A Nonlinear Optimization

Approach for Solving Facility Layout Problems,” European Journal of Operational Research 57, no.
2 (1992): 174-189.
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These approaches, although successful in generating solutions, can grow and
evaluate solutions in a state-by-state procedure. However, design problems are not
solved one by one, but processed in an integrated way. As Lawson™ points out,
“Design solutions are often holistic responses”. In the case of layout problems, the
placement order of spaces does not matter if they take the designer to the same
solution. Thus, the insignificance of the solution path makes construction algorithms
less successful in terms of layout problems. Thus, designers usually work with
completed solutions rather than evaluating them on the way. Improvement methods

offer an effective alternative to these design issues.
2.4.2 Improvement Methods

Improvement methods carry out a local search operation. Local search “evaluates”
and “modifies” one or more solutions rather than analyzing the paths of transfer
options; thus, these methods are advantageous for problems in which only accounts
for the solution not the sequence of actions to reach it.*®® There are heuristic and

metaheuristic improvement methods.

132 Lawson, How Designers Think, 122.
133 Russell and Norvig, Artificial Intelligence, 120.
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Figure 6. Schematic description of a simple layout improvement algorithm, where
layout elements a, b and ¢ are to be arranged into a compact building form (Drawn
by the author).

Improvement Heuristics

CRAFT is an early improvement heuristic approach that produces unequal area
solutions by pairwise exchange operations between two or three layout
elements."**After the exchange operations, CRAFT estimates a cost function to
choose the best exchange operation that caused the largest reduction in cost. This
operation goes on until there is no possible way to cause a reduction by pairwise
exchanges. MULTIPLE develops CRAFT’s algorithm to solve multiple-floor

production facility layouts.135

MULTIPLE improved the number of exchange
operations by introducing space-filling curves and provided an additional cost

function to limit the irregularity of department geometries. A more recent

134 Gordon C. Armour and Elwood S. Buffa, “A Heuristic Algorithm and Simulation Approach to
Relative Location of Facilities,” Management Science, no. 2 (1963): 294.

135 Yavuz A. Bozer, Russell D. Meller, and Steven J. Erlebacher, “An Improvement-Type Layout
Algorithm for Single and Multiple-Floor Facilities,” Management Science, no. 7 (1994): 918.
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improvement heuristic by Guo and Li*% generates sophisticated multi-floor layouts
with horizontal and vertical circulation elements. They used a two-step procedure
where a multi-agent system generates an initial with correct topological relations,

and then another process randomly pushes or pulls the faces of layout elements until

the layout satisfies user-defined geometric criteria.”*’
1
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Figure 7. Example layouts from CRAFT (left) and MULTIPLE (right). (Lee and
Kim, 2000)

According to Kalay, heuristic approaches can solve layout problems that exact
approaches fail, however, they do not generate novel solutions.® Heuristic
approaches are problem specific; they process on problem-specific knowledge to
make intermediate decisions. The limitation of the search space with rule of thumbs
creates faster but also routine solutions. It is also possible for a designer to lack an

initial description for the required problem.

Metaheuristics

Metaheuristics are generic algorithms that can be applied to solve any search

138 7ifeng Guo and Biao Li, “Evolutionary Approach for Spatial Architecture Layout Design
Enhanced by an Agent-Based Topology Finding System,” Frontiers of Architectural Research 6, no. 1
(March 1, 2017): 53-62, https://doi.org/10.1016/j.foar.2016.11.003.

37 Guo and Li, 54,57.
138 Kalay, Architecture’s New Media.

49



problem, if solutions can be easily generated and evaluated. According to a definition
provided by Talbi,**® metaheuristics are “upper level general methodologies
(templates) that can be used as guiding strategies in designing underlying heuristics
to solve specific optimization problems”. Unlike other heuristic approaches,
metaheuristics do not require the definition of any problem specific solution method
that initially limits the search space. The success of metaheuristics, instead, comes
from the balanced exploration and exploitation they put into the search process.'*

There are single solution and population-based metaheuristics.

Single solution metaheuristics start with a single solution and achieve the result by
making alterations on the initial solution. Chao and Liang,"** developed a tabu search
algorithm to solve unequal area multiple-floor facility layout problems. Their tabu
search algorithm is based on swapping certain departments which puts bad swapping
moves in a dynamic tabu list to limit their use for a period. Simulated annealing (SA)
is another single solution metaheuristic that starts with a high exploration rate then
reduces it gradually to escape local optima in the initial phases.**” Yi and Yi,**®
developed a simulated annealing algorithm to assign a collection of three-

dimensional apartment block types in a truncated box boundary.

139 E]-Ghazali Talbi, Metaheuristics : From Design to Implementation (Hoboken, N.J. : John Wiley &
Sons, c2009., 2009), 1.

0 Mauro Birattari et al., “Classification of Metaheuristics and Design of Experiments for the
Analysis of Components,” 2001, http://hdl.handle.net/2013/ULB-
DIPOT:oai:dipot.ulb.ac.be:2013/77018.

"I Lou Y. Liang and Wen C. Chao, “The Strategies of Tabu Search Technique for Facility Layout
Optimization,” Automation in Construction 17, no. 6 (2008): 657-669.

142 Stuart Russell and Peter Norvig, “A Modern Approach,” Artificial Intelligence. Prentice-Hall,
Egnlewood Cliffs 25 (1995): 27.

3 Hwang Yi and Yun Kyu Yi, “Performance Based Architectural Design Optimization: Automated
3D Space Layout Using Simulated Annealing” (2014 ASHRAE/IBPSA-USA Building Simulation
Conference, American Society of Heating, Refrigeration, and Air-Conditioning Engineers
(ASHRAE), 2014), https://experts.illinois.edu/en/publications/performance-based-architectural-
design-optimization-automated-3d-.
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Figure 8. Apartment configuration by Yi and Yi's SA algorithm (Yi and Yi, 2014).

Single solution metaheuristics approaches have an inherent limitation, which is their
inability to operate in search space with multiple local maximum points. This is
because a single solution, unaware of the global context, might not be able to escape
the local maxima and prematurely converge to sub-optimal solutions. Population-
based search, on the other hand, can explore the search space in a more efficient way

by simultaneously exploring many different points in the search space.
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Figure 9. The fitness landscape of design problems is usually multimodal with
multiple peaks. (Russell and Norvig, 1995)

Population-based metaheuristics expand the exploration power further by
incorporating more solutions at the start. Ant colony optimization imitates the swarm
behavior of ants in finding the shortest path to their solution.** Shea, Sedgwick, and
Antonuntto™® implemented ant colony optimization for the design of building
envelopes according to lighting and cost. Evolutionary approaches are several
population-based metaheuristics that imitates Darwin’s theory of evolution. Genetic
programming (GP) and genetic algorithms (GA) are also popular evolutionary
methods in layout design. GA is developed by Holland.™*® GP is developed by
Koza'' as an extension of GA that searches for effective computer programs instead

of direct solutions.

144 Talbi, Metaheuristics.

145 Kristina Shea, Andrew Sedgwick, and Giulio Antonuntto, “Multicriteria Optimization of Paneled
Building Envelopes Using Ant Colony Optimization,” Intelligent Computing in Engineering and
Architecture, 2006, 627-636.

14 John H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with
Applications to Biology, Control, and Artificial Intelligence (MIT press, 1992).

147 John R. Koza et al., “Automated Synthesis of Analog Electrical Circuits by Means of Genetic
Programming,” IEEE Transactions on Evolutionary Computation 1, no. 2 (1997): 109—128.
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EDGE is a GP approach by Jagielski and Gero™® that improved a previous QA
heuristic by Liggett in multiple-floor facility layout problems. Quadratic Assignment
(QA) is a combinational assignment problem that arranges a set of equal sized
facilities to fixed locations. Verma and Thakur*® developed a GA that generates
multiple floor apartment layouts according to adjacency requirements and a
traditional Indian system of layout rules. Dino™° developed Evolutionary
Architectural Space Layout Explorer (EASE). EASE generates 3D architectural
layouts for a given building mass according to various user-defined constraints.'*
EASE uses a specific genotype definition to deal with overlapping and empty areas;

and takes the advantage of additional repair operators to aid convergence.152

148 Romuald Jagielski and John S. Gero, “A Genetic Programming Approach to the Space Layout
Planning Problem,” in CAADFutures 1997: Proceedings of the 7th International Conference on
Computer Aided Architectural Design Futures, CAAD Futures (Kluwer Academic Publishers, 1997),
875-84.

149 Manisha Verma and Manish K. Thakur, “Architectural Space Planning Using Genetic Algorithms,”
in Computer and Automation Engineering (ICCAE), 2010 The 2nd International Conference On, vol.
2 (IEEE, 2010), 268-275, http://ieeexplore.ieee.org/abstract/document/5451497/.

0 Ipek Giirsel Dino, “An Evolutionary Approach for 3D Architectural Space Layout Design
Exploration,” Automation in Construction 69 (2016): 131-150.

3! Dino, 131,132.
52 Dino, 138,140.
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Figure 10. A set of apartment layout solutions generated by Verma and Thakur's
algorithm. (Verma and. Thakur, 2010)

Doulgerakis153

used GP to divide multiple layers of rectangular geometries into
smaller units and then used an agent-based algorithm to assign program elements to
created subdivisions in multiple floors according to the area requirements, which is
called Area Dissection (AD). AD takes an initial floor shape and divides it into
unequal segments. The units are placed within these smaller areas according to their
topological relations and geometric criteria. Knecht and K(')nig154 developed an
approach that utilizes kd algorithm to divide a predefined area and then uses GA to

fit these divisions into topological, rational, and dimensional constraints.

153 A. Doulgerakis, “Genetic Programming + Unfolding Embryology in Automated Layout Planning”
(UCL (University College London), 2007), http://discovery.ucl.ac.uk/4981/.

154 Katja Knecht and Reinhard Kénig, “Generating Floor Plan Layouts with Kd Trees and
Evolutionary Algorithms,” in Generative Art Conf, 2010, 238-253.
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Figure 11. Perspective views of layout solutions by Doulgerakis’ algorithm.
(Doulgerakis, 2007)

Flack™ developed a GA that creates layouts according to topology, area
requirements, and given ratios for individual rooms with Area Positioning (AP). AP
positions fixed or variable geometries in a predefined boundary. This method
increases the control over the geometry of layout elements, so it makes possible to
create specialized layout elements. This specialization makes AP more advantageous
in small-scale layouts as minor differences in the unit geometries contribute more to
the layout exploration. The algorithm can also work with a non-rectilinear geometry
as a boundary. EPSAP is a hybrid approach that uses Evolutionary Search (ES) and
Stochastic Hill Climbing (SHC) to generate multiple floor generic layouts.156 EPSAP
uses a set of repair rules predefined for certain problems that are randomly
implemented. The time requirement of the correction rules is balanced with the use
of a different global search mechanism, ES, which is a simpler version of GA that
produces solutions solely by mutation. EPSAP creates detailed layouts with vertical

and horizontal circulations, windows, and doors. Interactive Layout Recommender

155 Robert W. J. Flack, “Evolution of Architectural Floor Plans” (Brock University, 2011),
http://dr.library.brocku.ca/handle/10464/3409.

1% Eugénio Rodrigues, Adélio Rodrigues Gaspar, and Alvaro Gomes, “An Approach to the Multi-
Level Space Allocation Problem in Architecture Using a Hybrid Evolutionary Technique,”
Automation in Construction 35 (2013): 482—498.
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System (ILRS)157 is another approach by Bahrehmand et al. that generates layout
options from a predefined set of regular and irregular shaped layout units. ILRS
provides a real time rating interface where the user can give any layout a rating from
one to five to increase or decrease its chance of survival in the evolutionary

process.™*®
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Figure 12. Three floors of layout configurations by EPSAP. (Rodrigues, Gaspar, and
Gomes, 2013)

Rosenman®*® developed a GA to create house layouts according to area and
adjacency requirements. The approach uses Hierarchical generation (HG) to produce
layouts gradually from basic elements to complex configurations. Algorithm first
creates rooms from rectangular modules, then these rooms are allocated into zones,
and finally zones are arranged into house layouts. GENETICA is a GP approach that
designs multiple floor hotel layouts with fully furnished hotel rooms.'®® GENETICA

defines layout items, for example doors, beds, sitting arrangements etc. as standard

157 Arash Bahrehmand et al., “Optimizing Layout Using Spatial Quality Metrics and User
Preferences,” Graphical Models 93, no. Supplement C (September 1, 2017): 25-38,
https://doi.org/10.1016/j.gmod.2017.08.003.

158 Bahrehmand et al., 31.

19 M. A. Rosenman, “The Generation of Form Using an Evolutionary Approach,” in Evolutionary
Algorithms in Engineering Applications (Springer, 1997), 69-85,
http://link.springer.com/chapter/10.1007/978-3-662-03423-1 4.

180 efteris Virirakis, “GENETICA: A Computer Language That Supports General Formal Expression
with Evolving Data Structures,” IEEE Transactions on Evolutionary Computation 7, no. 5 (2003):
456—48]1.
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units with fixed dimensions. These items are arranged according to “physical space”
which is the real space used by the layout item that cannot be overlapped, and
“functional space” which stands for the space required to use such item.'®! Layouts
are generated through the arrangement of layout items, and then the physical

boundaries are procedurally generated by a CAD application.

Figure 13. Hotel room arrangements by GENETICA. (Virirakis, 2003)

Metaheuristic approaches require an additional generative heuristic for layout design
problem. This research will utilize an AP heuristic because of its advantages in SFH
layouts. AP gives more control on the geometrical representation of layout elements
in the initial state. This control creates a possibility to define layout elements in
various characters such as open spaces or vertical and horizontal circulation spaces.
AP, consequently, requires more computational resources to cope with this variety of
layout elements, however this is not going to be a critical issue in the SFH context
which involves less number of layout elements. The possibility to neglect irregular
forms for layout element is another advantage of AP heuristic. The user can represent

the layout elements within the limits of a geometrical shape such as a rectangle.

Among the evolutionary metaheuristic approaches, GA gathered more attention on

their success on design problems. Goldberg162 sees an evident similarity between the

181 Virirakis.

192 David E. Goldberg, “Genetic Algorithms as a Computational Theory of Conceptual Design,” in
Applications of Artificial Intelligence in Engineering VI (Springer, 1991), 3—16,
https://link.springer.com/chapter/10.1007/978-94-011-3648-8 1.
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design phases and the mechanism of GAs. Rodrigues163 provided the popularity of

GAs in layout problems with a literature survey. Flack'®*

provided the efficiency of
GAs over GPs by the experiments on layout design. Accordingly, this research
develops a GA approach because of its success in coping with vague problem

definitions and locating valid solutions in multimodal search spaces.

2.5 Genetic Algorithms (GA)

d*® to demonstrate the

GA is a search algorithm that is introduced by Hollan
capabilities of adaptation in natural systems and to emulate this process in creating
new artificial systems. GA takes the advantage of two concepts from evolutionary
biology, survival of the fittest, and natural selection, to locate solutions in
multimodal and complex search spaces. GA, similar to evolution, is a blind process
that lacks a reason for the realized actions. On the other hand, GA uses the
information in the past generations to predict new exploration directions with

: 1
improved performance.'®®

GA is beneficial in problems that are too complicated to tackle with fast and abstract
solution methods. In this problem context, GA can be used to generate novel

approaches by an efficient trial-and-error process. They have been successfully

167 68

employed in various interesting fields, such as game AL'®" musical composition,’

163 Eugénio Rodrigues, “Automated Floor Plan Design: Generation, Simulation, and Optimization;
Desenho Automatico de Plantas: Geragdo, Simulacdo e Optimizacao” (Universidade de Coimbra,
2014), http://oatd.org/oatd/record?record=handle%5C%3 A10316%5C%2F25438.

164 Flack, “Evolution of Architectural Floor Plans.”
1% Holland, Adaptation in Natural and Artificial Systems.
1% Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning.

7'N. Cole, S. J. Louis, and C. Miles, “Using a Genetic Algorithm to Tune First-Person Shooter
Bots,” in Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753),
vol. 1, 2004, 139—-145 Vol.1, https://doi.org/10.1109/CEC.2004.1330849.

1% p_ M. Gibson and J. A. Byrne, “NEUROGEN, Musical Composition Using Genetic Algorithms and
Cooperating Neural Networks,” in /1991 Second International Conference on Artificial Neural
Networks, 1991, 309-13.
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or abstract painting.169

Figure 14. Abstract paintings by EVOECO. (Feng and Ting, 2014)

A population of solutions are generated and evaluated in every step to assess their
fitness in the environment. In every generation, a group of less fit solutions dies,
while another group of survived solutions gains a chance to reproduce to fill the gaps
in the population with better solutions. The success of GA depends highly on the

initial user definition that represents the problem.

Evolutionary processes require the definition of solution candidates in both genotype
and phenotype. Genotype definition refers to the underneath genetic structure of the
solution that is put under genetic transformations, whereas phenotype definition

refers to the outer appearance of the solution that is considered for the fitness

1%9 Sheng-Yu Feng and Chuan-Kang Ting, “Painting Using Genetic Algorithm with Aesthetic
Evaluation of Visual Quality,” in Technologies and Applications of Artificial Intelligence (Springer,
2014), 124-135, http://link.springer.com/chapter/10.1007/978-3-319-13987-6_12.

59



evaluations.

2.5.1 Mechanism of genetic algorithm

The evolutionary process requires an initial population of solutions which is usually
generated randomly. A user-defined fitness function evaluates these solutions in
terms of their success in satisfying the user-defined conditions. Parent solutions are
selected from the better performing candidates. Parent solutions are reproduced to
generate a new population of self-similar design solutions. The new entities are
generated by crossover that mixes the genotype of both parents randomly into
offspring solutions. These offspring are mutated to make random changes within

their genetic structure, which is required for securing the genetic variety.

The set of individuals generated in each repetition of this mechanism is named as a
generation. The runtime of a GA is limited with the termination of user-defined
criteria. These criteria can refer to achieving a level of success within the fitness

function, or reaching a maximum number of total generations.
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Figure 15. GA mechanism (Drawn by the author)

The review on past evolutionary approaches to layout problem generally considered
examples with a limited user interaction until now. GA, as a metaheuristic method, is
a black-box algorithm. Black-box algorithms’ solution process is not visible to the
user. User can only interact with the interface in the initial state through the
definition of inputs. Design problems are characteristically “underdetermined”™ "
where the problem definition constantly changes through the observations of the
designer. Although, GA’s generic structure allows the user to modify problem
definition through the observation of results in consequent runs, this can be an

exhaustive process for the user. GA’s capability to explore large solution spaces

. . . . 171
comes with a disadvantage on its use of resources. Skiena™'" asserts that GA uses

0 Dorst, “The Problem of Design Problems.”

"1 Steven S. Skiena, The Algorithm Design Manual, 2nd ed. (Springer Publishing Company,
Incorporated, 2008).
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long periods of time on “nontrivial problems”. GA’s requirement of long periods of
time is problematic because of the latency between the problem definition and
feedback mechanism. Alternatively, a number of interactive approaches were
developed to eliminate distance between the designer and computational models by

increasing user’s effect on the computational process.

2.5.2 Interactive genetic algorithm

The interactivity does not need to cover just the architect but take another way to
directly give the process to the user. This way the designer can design the possible
procedure between the user and the generative mechanism. Such as that approach.
But also this tool should not fall in the pit of a large knowledge domain Interactive
genetic algorithm (IGA) refers to a genetic algorithm with a degree of user aid on
certain parts of the evolutionary mechanism. In the most extreme case, a user can
completely replace the fitness function by means of human evaluation. In this way,
IGAs can be used in problems where an exact mathematical function is not available

172
S,

to evaluate solutions. A notable example is GADE an IGA that can generate 3D

objects based on the aesthetic preferences of the user. GADES requires human
evaluation for each individual in the population and slowly converges into a

population of “interesting solutions”.!"®

172 Bentley and Corne, “Introduction to Creative Evolutionary Systems.”

173 Bentley and Corne, 42.
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Figure 16. Generated 3D solutions by GADES. (Bentley and Corne, 2002)

Numerous layout design approaches take the advantage of IGAs. Rosenman’s
hierarchical generation approach allows users to choose satisfactory layout and
layout elements during the search process.174 The hierarchical structure of the
generation process gives the user the opportunity to evaluate the solutions in
intermediate stages. Room pairs are generated from a population of chosen room
geometries which in the end generate the whole layout. Michalek, Choudary and
Papalambros175 proposed an IGA approach that allows changing the problem
definition together with the geometric modifications on the solutions. User can add,
modify, or delete both constraints and objectives to modify the problem definition.
The user can modify the generated solutions via the user interface and then iterate
over the modified layout. The algorithm also gives permission to guide the search

process by initial layouts. Quiroz, Louis, Banerjee, and Dascalu'’® developed a

174 Rosenman, “The Generation of Form Using an Evolutionary Approach.”

175 Jeremy Michalek, Ruchi Choudhary, and Panos Papalambros, “Architectural Layout Design
Optimization,” Engineering Optimization 34, no. 5 (2002): 461-484.

176 . C. Quiroz et al., “Towards Creative Design Using Collaborative Interactive Genetic
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collaborative IGA for layout design. Users, in this example, guide the evolution of
the population by the selection of generated alternatives in intermediate stages. Users

can only see a limited portion of their own population, instead they are provided with

the population examples from the other user.
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Figure 17. Layout generated from the initial user sketch by the IGA of Michalek.

(Michalek, 2002)

An interactive fitness function, despite the possibility to integrate subjective and
vague criteria, creates an enormous burden on the designer to evaluate a large set of

solutions through generations. Considering that GA’s work with large population

Algorithms,” in 2009 IEEE Congress on Evolutionary Computation, 2009, 1849-56,
https://doi.org/10.1109/CEC.2009.4983166.

64



spaces, the manual evaluation of the user both takes a large amount of time and
causes the designer to lose the ability to compare within the large multiplicity of
solutions. However, the approach of Michalek et al. is found beneficial, because of
its resemblance to the iterative character of the design process. The approach places
the user in an active position by allowing changes on the problem definition as well

direct changes within the search process such as sketch revisions or initial layouts.

To conclude, SFH, despite of its small scale, is an important architectural design
problem that requires the continuous collaboration of the architect and the user.
Alternative spatial solutions that are developed by the architects serve as a medium
for this collaboration in terms of revealing the intentions of both parties.
Architectural layout design is an important part of this process as it uses essential
information about the user’s lifestyle such as area requirements and furniture
organizations for activities and their interrelations. Time restrictions and the limits of
human cognition on the alternative generation process can reduce the affectivity of
layout design generations. Computational layout design methods can enhance
architect’s abilities by the computational data processing and storing capabilities. A
review on the current computational methods shows the affectivity of GA because of
their capability to work with vague problem definitions and finding satisficing
solutions from a vast solution space. However, GA also limits the control of the
designer over the generation process by its black-box working principle. IGA
approaches are found beneficial in terms of the level of designer control during the
search process. This research argues that the reviewed IGA approaches are deficient
in terms of supplying the specific requirements of SFH thus, presents a new

computational approach for the generation of SFH layouts.
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CHAPTER 3

TOOL DEVELOPMENT

In the previous chapter, the potentials and limits of computational layout design
approaches on conceptual SFH problems are discussed. Metaheuristic approaches
and especially GAs are found more advantageous due to their capabilities in
handling the computational complexity of such conceptual problems. GA is a
divergent search method that is advantageous in vague design problems with
multiple solutions and design objectives. On the other hand, the advantages of GA
also make the designer more distant from the design process because of the black-
box formulation of GA. An interactive GA approach is found beneficial in improving
designers’ control over the computational search process. This can allow the designer
to be more active in the design process beyond the definition of inputs and the mere
observation of final solutions. As mentioned in the previous section, an interactive
GA method for SFH layout problems is not encountered in the current literature.
This, therefore, is one of the main contributions of this research to the layout design

research.

Ho-Gen (House Generator) is an interactive computational model and a tool that is
developed to support designers in the layout design of SFH. Ho-Gen can generate
multi-floor and unequal area SFH layouts. Ho-Gen is not expected to generate
complete and detailed layouts, but multiple layout alternatives to facilitate divergent
exploration during conceptual design. Ho-Gen follows the generic representation,
generation, evaluation, and guidance synthesis cycle described by Cagan et. al.*”’
According to Cagan et al.,*"® the “representation” phase corresponds to the decisions

about the search process with the level of detail in solution representations

" Cagan et al., “A Framework for Computational Design Synthesis.”
178 Cagan et al., 172.
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and process or the comprehensiveness of the solutions to be involved in the search
space; “generation” phase creates solutions according to the defined representation,
“evaluation” phase rates the suitability of generated solutions to the user-defined
criteria, and “guidance” phase uses this data to direct the search direction towards

better solutions.

Ho-Gen implements an interactive GA for this synthesis process. The generation and
guidance phases are realized by initialization, selection, crossover, and mutation
algorithms while the user can also interfere with the process and guide the search by
manually generated solutions. The evaluation is realized by a single criterion fitness
function that is made of the weighted sum of geometrical and topological sub-criteria

that are specific to SFH.

Initial Run

Designer phrases a problem ‘

+ in a manner understandable > ‘ User Input

to scarch process.

Representation
Iteration < .
Designer observes the generated Initialization
results and makes alterations on
Yes | Initialize population

' the problem definition or the
generated layout. New layout ‘
is put to the search process layout

Is an initial with similar layouts

with a new set of inputs E\CZ:&C{:B) In(itialize population
: No | with totally random layouts
Q \ 4
-1 Generation | -

Designer G_uidM Evaluation

No Has the termination <
criteria met?

No

< Termination

Figure 18. Framework representing the working principle of Ho-Gen (Drawn by
author).

3.1  Representation
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3.1.1 Building blocks

In Ho-Gen, a building has a hierarchically structured representation. A building is
decomposed into its floors (FLO) and layout elements (LE). LEs can be optionally
clustered into groups by the designer, if necessary. These groups (GRO) represent
LEs that are related to each other and therefore need to be placed in close proximity

with each other in the layout.

v v v ‘

Floor 1 Floor 2 Floor 3 Floor n

v v v v v v

ﬂ LE LE |[GRO| |[LE ‘LE
lLE LE

Figure 19. An example layout hierarchy in Ho-Gen (Drawn by the author).
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Table 1. The layout elements (LEs) in Ho-Gen

Layout .element (LE) Sub-categories | Description
categories
Main Spaces Spaces with SFH functions, i.e. bedroom,
(MS) kitchen etc.
Patio (Pa) Outdoor spaces for open area activities
Spaces (SP)
Porch (Po) Outdoor spaces usually near the entrance.
Garage (G) Indoor car parking.
Stairs (STA) ) Spaces that facilitate the flow of occupants
between floors.
Chimney (CHI) ) Ob) ect description for the fireplace and its
chimney.

Ho-Gen considers several basic assumptions that guide the formation of LEs as well

as their physical characteristics. These assumptions are as follows:

e Spaces in Ho-Gen can be both indoors and outdoors. For instance, an indoor
space is enclosed by surfaces (walls and slabs), or alternatively it can be an
open or semi-open space outside the physical boundaries of the building (i.e.

a porch).
e A LE can span multiple floors (i.e. stairs, double-space living room).

e LEs are theoretically bounded by rectangular prisms (but not necessarily

physically bounded for outdoors spaces).

e For the search space reduction, LEs are allocated onto a grid with a size of

0.5 x 0.5 meters.

3.1.2 Interrelations

SFH involves a smaller amount of layout elements when compared to larger
facilities. The computational complexity involved in a SFH layout task, then, can be

stated as lesser than general because of the smaller amount of possible layout
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combinations. This idea changes dramatically considering the importance of
architectural form for SFH. Certainly, this general privilege on the form for SFH
layout compositions reflects upon every separate relation between layout elements.
This way, the computational complexity involved in SFH layouts should be
evaluated on the quality of relations rather than the quantity. Such complexity
requires the exploration of larger solution spaces because of the formal variation

evident in the topologically identical SFH layouts.

Relationships play a critical role in Ho-Gen. LEs in Ho-Gen relate to each other in
three types (Table 2). In the first type, layout elements form topological relations
with one another. This relationship type is crucial to Ho-Gen, and will be discussed
in Evaluation. In the second type, LEs form groups. Ho-Gen presents the user three
options to define the grouping mechanism. First, the grouping process can be totally
passed by letting every element form a group. Second, the user can initially specify a
group for every LE manually. Third, LEs can be grouped according to their FLO.
Lastly, every LE can be gathered into a total GRO. These floors are topologically
connected by stairs (STA). In addition to that, the user can specify geometrical
criteria that control the interrelation of separate floors with each other. This way, the

final geometry of SFH can vary in the third-dimension as well.

Table 2. Relationship types in Ho-Gen

Relationship types %‘)om- Cardinality Description
Spage-topological LEtoLE | 1-To-1 0- No.adjacency
relations 1 — Adjacent
a- No groups.
Group relations b- User defines group
a. None LE to relations one-by-one.
b. Manual GRO 1-To-Many c- LE’s in FLO make
c. By Floor individual GROs.
d. Total d- Every LE is gathered into
one GRO.
Floor - LE relations ;Eéo 1-To-1 or 1-To- User defines the floor of LE
Many
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3.1.3 Initial User Interaction

The designer interacts with Ho-Gen through a group of inputs that define the layout

problem together with the control mechanism over the generation process. These

inputs can be divided into five groups: general, specific, evaluation, evolutionary,

and termination. General inputs involve global variables that control the layout as a

whole. Specific inputs are specialized inputs to control different types of LEs.

Evaluation inputs include the coefficients that control the weight of different

constraints during the search process. Evolutionary inputs make up the variables for

genetic algorithm. Termination criteria represent the condition that halts the search.

General Inputs

Table 3. General inputs.

Name Type Description
Gip: Main o Specifies the direction for SFH’s main
Direction
Entrance entrance.
Gip: Boundary {dimension, X and Y dimensions for the rectilinear plot
limits dimension} boundary.
Gip: Maximum . ‘ Maximum cantilever distance between the
) Dimension )
cantilever vertical sequences of floors.
Gi: Topological ' the connection and adjacency relations
) Matrix
relations between every separate layout element.
Gig,: Floor Height | Dimension Vertical dimension between floors
Gicp: Chimney ' ' Vertical dimension of the chimney from
. Dimension
Height ground
) ) ] ) Vertical dimension of porch’s ceiling slab
Giy: Porch Height | Dimension

from ground
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Specific Inputs

Table 4. Main Space Inputs

Name Type Description

MS',: Room Text Name of the room for the user to check generated

Name layout solutions.

MS',: Room Dimension | The area amount of the room. Circulation

Area elements are automatically fixed to 0 to minimize
their area.

MS' nin: Dimension | The minimum dimension value for a separate edge

Minimum edge of room geometry. Building regulations usually

_ _ involve standard minimum dimensions for

dimension . . o
residential buildings.

MS' ax: Dimension | The maximum dimension value for a separate

Maximum edge edge of room geometry. User can also specify the

dimension upper bounds of edge dimensions for every layout
element to control geometric ratios. Fixed
automatically to Area / MinE when not specified.

MS';: Room Direction | The direction for the layout element to have an

View unobstructed view.

MS',: Room Ratio The maximum percentage of the gallery space that

Gallery can be occupied by the upper layout elements.

MS't Room Numeric Specifies the floor to place the room

Floor

MS'. Room Numeric Specifies the group that the room belongs

Group
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Table 5. Stair Inputs

Name Type Description
STA'.: Stair Name Text Name of the stair for the user to check
generated layout solutions.
STA 'fnax: Maximum
' _ Dimension | Maximum dimension for the flight width.
Flight Width
STA'finin: Minimum ' _
Flight Width Dimension | Minimum dimension for the flight width.
STA'4: Landing depth | Dimension | The horizontal dimension for stair landing.
1 . .
STA amax: Maximum Degree The maximum angle between the ground
Flight Angle and stair flight.
B
STA amin: Minimum Degree The minimum angle between the ground and
Flight Angle stair flight.
STA'w: Starting floor | Number | The lowest floor that stair contacts.
STA't.: Ending floor Number

The highest floor that stair contacts.

Table 6. Other Specific Inputs

Name Type Description

CHI',,: Minimum edge Dimension Ml-mmum horizontal dimension for
chimney.

4 ) ) . Maximum horizontal dimension for

CHI',o: Maximum edge Dimension )
chimney.

Ga,: Number of cars Number Number of cars to be parked within the
garage.

G.: Length of entrance Dimension | Width of the garage door.

Po',: Porch area Dimension | Area requirement for porch.

Po'... : Porch minimum e dge Dimension The minimum dimension value for a
separate edge of porch geometry.

Poimax: Porch maximum edge Dimension The maximum dimension value for a
separate edge of porch geometry.

Pa'y: Patio area Dimension | Area requirement for patio.

Pal,y,: Patio minimum edge Dimension | 1€ minimum dlmer-151on value for a
separate edge of patio geometry.

P, Patio maximum edge Dimension The maximum dimension value for a

separate edge of patio geometry.
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Evaluation Inputs

Ho-Gen allows the user to prioritize the importance of certain soft criteria over the other. In
this way, user defines the dominance of selected evaluation algorithms by allocating
different coefficient values to the related criteria. It is also possible to disqualify a criterion
totally from the search process by defining its coefficient as zero. Detailed information on

the constraints can be found in Section 3.3.

Evolutionary Inputs

Table 7. Evolutionary Inputs

Name Type Description
E,: Population Specifies the number of layout solutions in a
) Number )
Size generation.
En: Mutation Coefficient | Chance of mutation for a gene after every
Rate [0,1] Crossover.
Eni: Mutation Val Increase in the mutation rate in the case of
alue
Rate Increase stagnation in successive generations.
Eq: Crossover Coefficient ‘ ) )
Rate of population to be generated with mating.
Rate [0,1]

Termination Inputs

Table 8. Termination Inputs

Name Type Description

T:: Time limit Minutes | Runtime limit.

Tmi: Maximum generation | Number | Number of generations for each run.

. . Number of generations to go after
T Stagnation Number

generation stagnation.
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3.2  Generation & Guidance

3.2.1 Genotype and phenotype representation
Main Spaces

Genotype

MSiCX: Coordinate X - MSiC : Coordinate Y - MSidX: Dimension X —
y

MS'4,: DimensionY

Phenotype

Figure 20. Main Space Phenotype. (Drawn by the author)

Stair

Genotype

STA;: Rotation — STA.,: Coordinate X - STA.,: Coordinate Y — STAy,: Flight Width
- STA,: Flight Angle
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Phenotype

Figure 21. Stair Phenotype. (Drawn by the author)

Chimney
Genotype

CHIicx: Coordinate X - CHIiCy: Coordinate Y
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Phenotype

Figure 22. Chimney Phenotype. (Drawn by the author)

Garage
Genotype
Gicxz Coordinate X - Gicy: Coordinate Y

Phenotype

Figure 23. Garage Phenotype. (Drawn by the author)
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Porch
Genotype
Poicxz Coordinate X - Poicy: Coordinate Y - Poidx: Dimension X - Poidy: Dimension Y

Phenotype

Figure 24. Porch Phenotype. (Drawn by the author)

Patio
Genotype

Pa'..: Coordinate X - Paicy: Coordinate Y - Pa'y,: Dimension X - Paidy: Dimension Y

Phenotype
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Figure 25. Patio Phenotype. (Drawn by the author)

3.2.2  Genetic Algorithms

Initiation

Initiation generates several individual solutions according to the user-defined
population size. In a non-interactive run, an initial population is randomly generated.
Random operations are realized within the bounds of initial problem representation.
In an interactive run where the user supplies an initial layout solution, many
individuals that are relative to a user-defined ratio are generated from the mutations

on the initial layout. The rest of the population is again generated randomly.

Selection

In every generation, a portion of population is selected for reproduction to generate
the new generation of solutions. Layouts for reproduction are selected according to
their fitness score. Ho-Gen’s reproduction algorithm requires two solutions in every
generation. This selection process does not directly take the best solutions in the
population as this process can cause an early reduction in the variety of population.
Ho-Gen, alternatively, uses tournament selection which randomly picks a group of
four solutions from the population and selects the best individual among this small
group as the first parent solution. The selection of the second parent repeats the same
process, but this time random selection is realized within a population without first
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parent solution. First parent solution is temporarily removed from the population to
eliminate the risk of self-mating that produces duplicate layouts within the total
generation. Ho-Gen does not create a new population in every generation as this can
cause fit individuals to get lost in the reproduction process. Instead, reproduction
process uses Elitism, which saves 10% of the fittest individuals directly to the new

population.

Crossover

Crossover algorithm is the first part of the reproduction process. Crossover generates
a child from the random genotype combination of two parent solutions. This new
individual carries the properties of its parents however, it still carries a certain level
of difference which increases the exploration space of the algorithm. Ho-Gen uses
uniform crossover which makes a random decision for every gene to decide about its
source. This way, the genotype order of a parent is not purposely carried to the
children. Ho-Gen also favors the fitter parent in gene distribution. In this way, child
solution takes 70% percent of its genes from the fitter parent. The crossover

operation is repeated until reaching the population limit.

Mutation

Mutation algorithm takes the newly generated solution and performs random
changes in their genotype. A random operation between [0,1] is realized for every
gene and the gene is randomized if it is below Ep,. This simple operation is essential
for keeping a level of genetic variety within the population as it avoids early
convergence. As an initial condition, Ho-Gen starts with an E, of %1 but this rate
changes during the run. Ho-Gen checks the best fitness score within every generation
and compares this value to the previous one. If two scores are the same, then Ep, is

increased by %0.01.

Termination

Ho-Gen continues to produce new generations until meeting one of the termination

criteria. These criteria are defined in Table 8. In the termination process, Ho-Gen
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generates the best individual layout of the last generation in Rhinoceros together
with the related fitness graphs. In this context, the user can pass into the user
guidance process to modify the generated solution and the problem definition or
he/she also can start a new Ho-Gen run from the scratch.

3.2.3 User Guidance

Ho-Gen’s interactive engine allows designer to iterate over the results through
modifying the problem definition and reshaping the solutions. The generated
solutions are baked in Rhinoceros by the Grasshopper definition. These baked
geometries are also defined in the Grasshopper definition to keep the algorithm
informed of the user modifications in Rhinoceros’ interface. Grasshopper
simultaneously translates the geometric definition in Rhinoceros to its genotype
definition in GA. The user can also make changes on the problem definition by using
Grasshopper similar to the initial state. This data is also simultaneously translated for

GA. The user can make the following modifications in the intermediate states:

e Changing the components of the design problem. For example, changing the

area requirement of one LE, removing or adding an LE, changing topological

requirements, changing general inputs, or modifying the evaluator weights.

e Adding or removing a LE

e Modifying general inputs

e Modifying topological criteria

e Modifying evaluator weights

e Manual adjustments on the solutions via Rhinoceros to change the scale and

location of LEs. From another perspective, the user can also start with an

initial layout to guide the search process from the start.
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In the end of user guidance phase, GA starts from the initialization phase again. This
time it derives the population from the given layout input. The mechanism is

explained in detail within the initiation phase of genetic algorithm section

3.3 Evaluation

Ho-Gen evaluates the solutions by a single fitness function that corresponds to the
weighted sum of eight evaluator penalties (Table 9). If a solution cannot meet certain
requirements of evaluators, a penalty score that is relative to its degree of violation is
assigned to the solution. Every evaluator penalty is then multiplied by its own user-
defined weight and added to the general fitness function. In this way, fitness score of
the solution corresponds to its degree of incompatibility with the initial requirements.
All the evaluator penalties except for the Cgim and Cyiey correspond to area values.
These penalty values are square rooted in order to equalize their effect with the Cgim
and C,iew evaluators. The fitness function can be described with the following

formula;

Ctotal = (Wovf * \/Covf) + (Wint * \/Cint) + (Wdim * \/Cdim) + (Wcomp *
\/Ccomp) + (Wcant * \/Ccant) + (Wcirc * \/Ccirc) + (Wrel * Crel) + (inew *
CView)

Figure 26. Fitness function equation. (Drawn by the author)
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Table 9. Ho-Gen constraints

Constraint Name

Description

Covit Overflow

constraint

Evaluates the solution by the percentage of total area that is

out of the user-defined bounding geometry.

Cini: Intersection

constraint

Evaluates the solution by the area of intersection between

separate layout elements.

Cgim: Dimension

constraint

Evaluates the solution by the difference between AREA input

and areas of the generated layout elements.

C.oi: Relation

constraint

Evaluates the solution by the distance between generated
layout elements that are specified as related in the topological

inputs.

Ceomp: Compactness

constraint

Evaluates the solution by the difference of arranged group

geometries from a bounding rectangle.

Ceant: Cantilever

constraint

Evaluates the solution by the difference between the given
maximum cantilever and the actual cantilever distance on the

upper floors.

Cgire: Circulation

Evaluates the solution by the area of circulation units,

circulation units are tried to be minimized by area with this

constraint

method
Cyiew: View Evaluates the solution by the length of interruption by the
constraint input side for every layout element with view criteria.
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Overflow evaluator checks every floor for LEs that got out of the predefined

boundary geometry. It assigns the total area outside the boundary geometry as a

penalty.

for each LE:
interL. APPEND(LE)
interL. APPEND(Boundary)

Covf = inter(interL) - Boundary,.,

BOUNDARY

Figure 27. Overflow Evaluator (Drawn by the author).

Intersection evaluator checks every floor for overlaps between LEs. The total area of

intersection in every floor is assigned as a penalty value

C

o
A I=Il
IIIHII T
HEERSINE NEEN

BOUNDARY

for each FLO:
interL =1 ]
totalArea =0
for each LE:
interL. APPEND(LE)
totalArea = totalArea + LE,,
interFloor = totalArea - inter(interL)
Cint= Cint + interFloor
Figure 28. Intersection evaluator (Drawn by the author).
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Dimension evaluator checks how close the SP areas are to the initial user inputs. It

assigns the absolute difference between the two values as a penalty.

for cach SP:
IF SP,.,> 0:
Ciim = Cyim T abS(SPyreq = (SPgimx * SPaimy))

Figure 29. Dimension evaluator (By the author).

Relation evaluator checks how close the distances between LEs are to the initial
topological inputs. The distance calculation process varies with the type of LE under
consideration. SP distances are taken as the shortest distance between their borders.
STA distances are the closest distances between the two corners of both stair flight
edges and the border of the relevant SP. CHI distance is the closest distance between
the center of CHI geometry and the relevant SP border. Relation distances cannot be
negative, so the negative values are replaced by zero. Relation evaluator works
relevant to two types of adjacency. 0 corresponds to NO RELATION between LEs so
this pair is not evaluated. 1 corresponds to CONNECTION between LEs which
requires a certain overlapping between LE borders to place a door. Ho-Gen
automatically considers 1 meter as a standard door dimension and gives the penalty
of 1 for pair of LEs intersect with point intersection. 2 corresponds to ADJACENCY
between LEs which does not require a physical connection but still they require

being in close proximity.
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BOUNDARY

for x in unitTOPO:
for y in x:
distX=abs(SPx.centerX-SPy.centerX)- (SPx.dimX-SPy.dimX)/2
distY=abs(SPx.centerY-SPy.centerY)- (SPx.dimY-SPy.dimY)/2
IF y = CONNECTION:
IF distX=0 AND distY=0:
interRel = interRel +1
IF distX<0: distX = 0 IF distY<O: distY
interRel = interRel + V(distX> + distY?
IF y = ADJACENCY:
IF distX<0: distX = 0 IF distY<O: distY
interRel = interRel + V(distX> + distY?
C,e1 = Cpq 1 interRel

Figure 30. Relation evaluator - SP (Drawn by the author).
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for x in staTOPO:

for y in x:
distX;=abs(STA.p1X-SPy.centerX) - (SPy.dimX)/2
distY =abs(STA.p1Y-SPy.centerY) - (SPy.dimY)/2
distX,=abs(STA.p2X-SPy.centerX) - (SPy.dimX)/2
distY,=abs(STA.p2Y-SPy.centerY) - (SPy.dimY)/2
IF distX<0: distX = 0 IF distY<O0: distY
interRel = interRel + V(distX> + distY?

Cie1= Cq T+ interRel

Figure 31. Relation evaluator - STA (Drawn by the author).

0 —CHI

BOUNDARY

FOR x in chiTOPO:
distX;=abs(CHI.coorX-SPy.centerX) - (SPy.dimX)/2
distY ;=abs(CHI.coorY-SPy.centerY) - (SPy.dimY)/2
IF distX<0: distX = 0 IF distY<O0: distY
interRel = interRel + V(distX? + distY?

Crel = Cro + interRel

Figure 32. Relation evaluator - CHI (Drawn by the author).
Compactness evaluator checks the irregularity of GRO geometries together with the

unoccupied regions within them. The forming process of GROs can be found in
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Table 2. For every layout, a minimum rectangular region is generated that contains
all SPs in a GRO. Evaluator assigns the difference between the area of bounding
rectangular region and the total area of SPs in relative GRO as a penalty. The penalty

cannot be below zero so a negative value is replaced by zero.

GROI

BOUNDARY

FOR each GRO:
groArea =0
FOR each LE in GRO:
groArea = groArea + LE, .,

interGRO = GROyy, - groArea

Ceomp= Coomp T intergrow

Figure 33. Compactness evaluator (Drawn by the author).

Cantilever evaluator checks the relevance of maximum cantilever distances between
succeeding floors to user inputs. Evaluation process repeats for every two sequent
floors. Cantilever evaluator considers the GRO geometries rather than LEs
separately to reduce the time requirement for calculations. First, cantilever evaluator
considers the SPs in separate GROs in the lower floor. These SPs are offset by the
maximum cantilever input and a minimum bounding rectangle is generated.
Evaluator calculates the union area of bounding rectangles of separate GROs.

Second, cantilever evaluator takes into account the SPs in the upper floor and repeats

88



the process without the offsetting. Area calculation is repeated with all bounding
rectangles in the lower and upper floors. The difference between the second and first
result is assigned as the penalty. The penalty cannot be negative, so a negative value

is replaced by zero.

FOR each FLO:
FOR each GRO:

groFloorLow = ]

groFloorHigh = ]

FOR each LE in GRO:
IF LEfoor = FLO: groFloorLow.append(LE(LE.coorX- Giy,, LE.coorY- Gip,
LE.dimX+ 2*Giy, LE.dimY+ 2*Giy,)

ELIF LEgo0:= FLO + 1: groFloorHigh.append(LE)

interCant = inter(groFloorLow + groFloorHigh) -

inter(groFloorLow)
Ceant = Ceant T interCant

Figure 34. Cantilever evaluator (Drawn by the author).

Circulation evaluator checks the area of circulation SPs. Circulation SPs are defined
with zero area value by the user and their area is tried to be minimized by Ho-Gen.

The total area of circulation SPs are given as a penalty.

FOR each SP:
IF SP,., = 0:
Ccirc = Ccirc + (SPdimX * SPdimY)

Figure 35. Circulation evaluator (Drawn by the author).
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View evaluator checks for obstacles in the given direction for SPs. If an initial view
preference exists for one SP, the evaluator draws a rectangle from SPs farthest edge
in that direction until the layout boundary. Any other SP that overlaps with the

generated view rectangle is given a penalty relevant to the obstacle distance.

BOUNDARY

Figure 36. View evaluator (Drawn by the author).
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FOR each SP:
IF dir = NORTH:
coorX = SP.coorX
coorY = SPcoorY + SPdimY
dimX = SPdimX
dimY = boundaryY - (SPcoorY + (SPdimY)
IF dir = EAST:
coorX = SPcoorX + SPdimX
coorY = SPcoorY
dimX = boundaryY — (SPcoorX + SPdimX)
dimY = SPdimY

IF dir = SOUTH:
coorX = SPcoorX
coorY =0
dimX = SPdimX
dimY = SPcoorY
IF dir = WEST:
coorX =0
coorY = SPcoorY
dimX = SPcoorX
dimY = SPdimY
VU = Unit(coorX,coorY,dimX,dimY)
FOR each SP:

distX=abs(SPx.centerX-VU.centerX)- (SPx.dimX-VU.dimX)/2
distY=abs(SPx.centerY-VU.centerY)- (SPx.dimY-VU.dimY)/2
IF distX>0: distX=0, IF distY>0: distY=0

IF dir=SOUTH OR dir=NORTH:

interView = interView - distX

IF dir=EAST OR dir=WEST:

interView = interView - distY

Cview = Cview + interView

Figure 37. View evaluator (Drawn by the author).

The assignment of evaluator weights is an essential process for Ho-Gen to generate

layout solutions according to user requirements. Users define the relative importance

of evaluators through the hierarchy in evaluator weights. Evaluators with

considerably higher weight values correspond to hard sub-criteria. Hard sub-criteria

are basically the red-lines of the design process. Architects, while in the form-finding

process, do not generate every possible configuration such as a layout with
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overlapping spaces. Similarly, Ho-Gen limits the possibility of the generation of
certain instances from the exploration process. Layouts that violate hard sub-criteria

are not killed off, but their penalty values increase.

Design is mostly about dealing with uncertain sub-criteria. Such uncertain sub-
criteria are not strictly imposed rules, but their effect still matters for design. These
criteria are defined as soft sub-criteria. The relative importance of soft sub-criteria
can change with the problem and varying subjective decisions of the user. Such a
layout task can require the area dimensions to match the user inputs while for

another layout task the regularity of the overall form can be the primary concern.

92



CHAPTER 4

CASE STUDIES

In this chapter, Ho-Gen’s performance in generating valid layouts is tested.
Computational formulations to layout design are typically considered as “NP-
complete”. Therefore, finding optimal layout solutions require extended amounts of
time even for small scale problems, as the solution space grows exponentially even
with a low number of layout elements.*”® Thus, Ho-Gen is tested with two case
studies with different levels of complexity in terms of the number of layout elements,
adjacency relations, and user objectives. Every case study is also approached with
different group relations and level of compactness in different parts to evaluate the
effect of Ccomp On the character of the layout solutions. In addition to these non-
interactive case studies, the effects of user interaction on the generation process are

tested in a separate part for every case study.

The main algorithm of HO-Gen is implemented in Rhino Python, while Grasshopper
is used for the initial and intermediate states of user interaction. The user can also
use Rhinoceros’s main drafting interface to modify the generated layouts manually.

Tests were conducted in 2017 by a 2.13 Core Duo computer with 4GB DDR Ram.

The non-interactive parts of the case studies are conducted to evaluate the success of
Ho-Gen in generating alternative layout solutions for the same problem. Thus, the
research presents six alternatives for every case study to observe the level of
difference between the generated solutions. Non-interactive case studies also present

intermediate phases from the generation process of the best layout alternative to

179 Jo and Gero, “Space Layout Planning Using an Evolutionary Approach,” 3.
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show the gradual development of layouts. Table 4-1 shows the general aims of case

studies.

Table 10 Case Study Table

CASE
INTERACTIVITY | COMPACTNESS TARGET
STUDY
-Divergence of results
AUTOMATED D — Layout -Effect of evaluator
1 penalties
User interaction
INTERACTIVE Dand B '
mechanism
A —No groups | -Effect of increased
complexity
-Divergence of results
AUTOMATED ‘

0) C - Floor -Effect of group relations
-Effect of evaluator
penalties

D - Layout
-Convergence of an initial
INTERACTIVE C - Floor
layout sketch

The results of the case studies are presented together with the fitness graphs showing

the development of the layout through generations. This graph does not show the

individual’s direct penalty score. Ho-Gen’s evaluators work within different

numerical ranges because of the magnitude of results. Thus, it is not directly possible

to compare the differences in the evaluator penalties. The penalty scores are

normalized within [0, 1] according to the following formula to make such

comparison possible:
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Cnormal = Cinitial / Cmaximum

Figure 38. Formula to normalize constraint scores (Drawn by the author).

4.1 Case study inputs

4.1.1 Case study 1 — Small scale

First case study is conducted to test the capabilities of Ho-Gen in generating a
diversity of solutions for a simple 2D layout problem. Layout problem consists of a
2-bedroom SFH in a single floor. The main entrance is arranged from the NORTH
direction. A 10 m * 10 m rectangle is given as a boundary. Detailed information

about the inputs is as follows:

Table 11. Main Space Inputs (Case Study 1)

Main Space / Input MSt | MSiin | MSar | MShax | MSy | MS, | MS,
MS' Living Room 0 3 25 8 - - 1
MS” Kitchen 0 |25 |10 |- - - 1
MS® Master Bedroom | 0 2.5 18 5 - - 2
MS"* Bedroom 1 0o |25 |12 |- - - ]2
MS° Bathroom 1 0 1.5 7 - - - 2
MS® Entrance 0 |15 |8 8 - 1 |o
MS’ Circulation 1 0 |1 - 8 - - |2

Table 12. Patio Inputs (Case Study 1)

Patio / Input | Pan, | Pas | Pamax | Pay | Pag
Pa' Patiol |3 25 |8 - |1
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Table 13. Porch Inputs (Case Study 1)

Porch / Input | Pomin | POsr | POmax | Poy | Pog
Po' Porch 1 |3 25 |8 1 |0

Table 14. Garage Inputs (Case Study 1)

Garage / Input | Ga, | Ga, | Pa,g
Ga' Garage 1 | 1 1 0

Table 15. Space Adjacency Matrix (Case Study 1)

21222 2|22/ |2s
MS! r{olojo|1]1|1]0]o0O
MS® olofoloflo]o]o]oO
MS® 02|01 [0]0]0O
Ms? 2101 ]0]0]0O
MS’ 01 [0]0]0
MS° oo 1|1
MS’ 000
Pa' 00
Po' 0
Ga'

Table 16. Chimney Adjacency Matrix (Case Study 1)

SIS|S|5|5|5|5|e|2|8
car' [ o[ 1][ofofo]o|lo]lo|o0]oO

4.1.2 Case study 2 — Medium scale

Second case study is conducted in order to test Ho-Gen’s capability to deal with
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multi-floor layout problems. Multiple floors create a higher complexity for Ho-Gen
because every floor is solved as a separate layout problem. This also reflects to the
time requirements because Ho-Gen evaluates every floor separately. Another reason

is the increase in the population in order to cope with the larger search space.
Layout problem consists of a 3-bedroom SFH in two floors. The main entrance is

arranged from the NORTH direction. A 15 m X 15 m rectangle is given as a

boundary. Detailed information about the inputs is as follows:

Table 17. Main Space Inputs (Case Study 2)

Main Space / Input MS¢ | MSimin | MSar | MShax | MSa | MS, | MS,
MS' LivingRoom [0 |3 25 |8 - 3 0
MS? Kitchen 0 |[25 10 |- - - 0
MS? Master Bedroom | 1 2.5 18 5 - 2 1
MS* Bedroom 1 0 |25 12 |- - - 0
MS° Bedroom 2 1 |25 12 |- - - 1
MS°® Bathroom 1 0 1.5 7 - - - 0
MS’ Bathroom 2 1 1.5 7 - - - 1
MS® Bathroom 3 1 1.5 7 - - - 1
MS’ Entrance 0 1.5 8 8 - 1 0
MS" Circulation1 | 0 1 - 8 - - 0
MS'" Circulation2 | 1 1 - 8 - - 1

Table 18. Patio Inputs (Case Study 2)

Patio / Input | Pan, | Pas | Pamax | Pay | Pag
Pa' Patio 01 | 3 20 |6 - |o
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Table 19. Porch Inputs (Case Study 2)

Porch / Input | Pomin | POsr | POmax | Poy | Pog

Po' Porch 01 | 3 10 |4 1 |0

Po°Porch 02 | 3 10 |4 2 |0

Table 20. Garage Inputs (Case Study 2)
Garage / Input | Ga, | Ga, | Pag
Ga' Garage01 (2 [1 |0
Table 21. Space Adjacency Matrix (Case Study 2)

MS' 1t{ofloloJolofJo|l1][1]lo[1]oOo]o]oO
MS® olololo|o[o[o|lo[o]o]o]1]oO
MS’ ojlofloflo]1][oflofl1]o]o]o]oO
MS’ ojlofl2lo]o[1]o]lo]o][o]oO
MS’ 0O(2l0]0[O0[1|0]O0]O0]O
MS° ojlo|o|1lO0|O[O]O]O
MS’ ojlolo|1|O0o[O0O]O]O
MS® ojlojlo|lo|loOo|O]|oO
MS’ ojlo|o | 1|01
ms" 000|070
ms™ 0000
Pa' 0010
Po' 0|0
Po’ 0
Ga'
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Table 22. Stair Adjacency Matrix (Case Study 2)

v el 22|20l =] o] ]| =

S| S|S|5|=|=2|=5|=|52 &£ 2|3

STAl-a| 0 | 0O | O] O] O] O0O]|O0|0]|O 1 0] 0|0]0]|O0

STAlb| 0O | O | O] O]O]O0O|O0|O0|O0]|O 1 0O0]0]0]O

Table 23. Chimney Adjacency Matrix (Case Study 2)

AR Z R R R R R R Z R R R - %) |l Te | o o | =
S22 |2 =22 =2 =] =2 = |2 S I
CHI' | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4.2 Case study results

4.2.1 Case study 1a

In this case study, the building program is tested as a one whole GRO, which
corresponds to a compact rectangular result. The weights of the evaluators Coys to
Cyiew are 3-8-3-2-3-0-0-1. Ho-Gen is run for 6 times with the given inputs to test the
validity and formal variation of the generated results. During each run, Ho-Gen
bakes the fittest member in every 10 generations. The figures that explain the
development process of the fittest alternative in included in APPENDIX A. The

generated results of six runs are as follows:
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Figure 39. Alternative 1 - Case study 1 — Compactness D - Parallel projection from 4
sides. (Drawn by the author)
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Figure 40. Alternative 1 - Case study 1 — Compactness D - Top view. (Drawn by the
author)
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Figure 41. Alternative 2 - Case study 1 Compactness D - Parallel projection from 4
sides. (Drawn by the author)
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Figure 42. Alternative 2 - Case study 1 — Compactness D - Top view. (Drawn by the
author)
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Figure 43. Alternative 3 - Case study 1 — Compactness D - Parallel projection from 4
sides. (Drawn by the author)
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Figure 44. Alternative 3 - Case study 1 — Compactness D - Top view. (Drawn by the
author)
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Figure 45. Alternative 4 - Case study 1 — Compactness D - Parallel projection from 4
sides. (Drawn by the author)
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Figure 46. Alternative 4 - Case study 1 — Compactness D - Top view. (Drawn by the
author)
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Figure 47. Alternative 5 - Case study 1 — Compactness D- Parallel projection from 4
sides. (Drawn by the author)
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Figure 48. Alternative 5 - Case study 1 — Compactness D - Top view. (Drawn by the
author)
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Figure 49. Alternative 6 - Case study 1 — Compactness D - Parallel projection from 4
sides. (Drawn by the author)
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Figure 50. Alternative 6 - Case study 1 — Compactness D - Top view. (Drawn by the
author)
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Figure 51. Best total fitness score - Case study 1 — Compactness D. (Drawn by the
author)
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Figure 52. Best evaluator fitness score - Case study 1 —Compactness D. (Drawn by
the author)
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Figure 53. Average total fitness score - Case study 1 — Compactness D. (Drawn by
the author)
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Figure 54. Average evaluator fitness score - Case study 1 — Compactness D. (Drawn
by the author)

Table 24. Weighted fitness results for six alternatives - Case study 1 — Compactness
D (Drawn by the author).

Fitness Covf Cint Cdim Crel Ccomp Ccant Ccirc Cview
0.023 | 0.000 | 0.000 | 0.391 | 0.011 | 0.000 | 0.000 | 0.172 | 0.000
0.044 | 0.000 | 0.000 | 0.234 | 0.000 | 0.000 | 0.000 | 0.244 | 0.000
0.047 | 0.000 | 0.000 | 0.212 ] 0.022 | 0.236 | 0.000 | 0.402 | 0.000
0.033 | 0.000 | 0.000 | 0.027 | 0.018 | 0.256 | 0.000 | 0.118 | 0.000
0.024 | 0.000 | 0.000 | 0.391 | 0.000 | 0.106 | 0.000 | 0.198 | 0.000
0.042 | 0.000 | 0.000 | 0.255 | 0.000 | 0.000 | 0.000 | 0.150 | 0.000

AN DN | B |W[N|—

A closer look into the generated alternatives and the evaluation scores indicate that
Ho-Gen’s automated run is successful in generating valid alternative solutions for
layouts with high compactness. The variety in the generated solutions is found
successful in terms of the placement of LEs and overall layout form. Alternative 1
(Figure 40) and Alternative 5 (Figure 48), as the first best and second best solutions,
are different in their overall form and orientation. An interesting result of this study
was the Cy penalty in the Alternative 1. Normally C, is a hard constraint and its
violation should result with an overall bad fitness score. The reason for the Cy
penalty in Alternative 1 can be observed in the best evaluator fitness score graph
(Figure 52). According to the graph, a sudden decrease in C;, score caused a small
increase in C,. Indeed, alternative 1 is found very organized and regular compared
to the other solutions. In a way, this result verifies the suitability of the fitness
function. Another interesting point is the emergent inner courtyard in Alternative 6

(Figure 50). The inner courtyard was not hard coded within the topologic description
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of the layout, however, the description was open enough to include such a result

within the solution space.

An examination of the average fitness score graph (Figure 53) shows small triangular
differences. These hill-like figures indicate the points of stagnation in the search
process. As mentioned in tool development, stagnation causes an increase in the
mutation rate. Such an increase causes Ho-Gen to explore different solution options
which usually causes the generation of many bad layouts. Therefore, it is possible to
say that the search process has not come across such a long stagnation. Instead, Ho-

Gen run encountered many quick improvements.

4.2.2 Case study 1b

In the interactive scenario, the user was expected to have less information about the
configurational possibilities of the layout problem. Thus, the user has not arranged
any separate groups within the layout at the start. The problem definition is changed
as all LEs form one group. The weights of the evaluators Cqy to Cyiey are 3-8-3-2-3-
0-0-1.
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Figure 55. The results of Iteration 1 - Parallel projection from four sides - Case study
1- Interactive run. (Drawn by the author)

BOUNDA

Figure 56. The results of Iteration 1 — Top view - Case study 1 — Interactive run.
(Drawn by the author)

The user, after observing the results of the initial iteration, finds the bathroom small
and decides that the required bathroom area is not possible with the current
compactness arrangement. Therefore, the user separates the bathroom, corridor,
bedroom, and master bedroom through defining them in a new group. The user also
provides an initial layout to Ho-Gen by making certain arrangements in the current

iteration.
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Figure 57. Given layout arrangement for Iteration 2 - Parallel projection from four
sides - Case study 1 — Interactive run. (Drawn by the author)
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Figure 58. Given layout arrangement for Iteration 2 — Top View - Case study 1 —
Interactive run. (Drawn by the author)

Ho-Gen generated the following layout through 43 generations:
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Figure 59. The results of Iteration 2 - Parallel projection from four sides - Case study
1 — Interactive run. (Drawn by the author)

UNDA

Figure 60. The results of Iteration 2 — Top view - Case study 1b — Interactive run.
(Drawn by the author)

After Iteration 2, the user finds the living room too large and away from the initial
inputs. The user decides that the hierarchy between Ccomp and Cgim does not let Ho-
Gen to develop better results in terms of LE dimensions. Thus, the user increases
Wiim by one. Additionally, the user observes that the living room is largely

obstructed by the surrounding LEs which causes a dark space living area throughout
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the day. The user decides that this problem can be changed by giving living room an
exposure on south direction. Lastly, master bedroom is also given an exposure on

east direction to take the advantage of morning light. Ho-Gen is iterated again with

the mentioned changes on the problem definition.

Figure 61. The results of Iteration 3 - Parallel projection from four sides - Case study
1 — Interactive run. (Drawn by the author)
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Figure 62. The results of Iteration 3 — Top view - Case study 1 — Interactive run.
(Drawn by the author)
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Ho-Gen successfully generated valid results for the changing problem definitions
within the interactive run. Additionally, Ho-Gen showed success in generating a
valid layout similar to the user’s initial input in Iteration 2. The interactive run also
generated better results in terms of LE dimensions because of user’s intermediate

interference to the generation process.

4.2.3 Case study 2a

This case study is conducted to test the capabilities of Ccomp and different degrees of
compactness in generating a variety of solutions. In this way, the building program
of case study 2 is tested with three different compactness degrees. Ho-Gen is run 6
times for every compactness degree to test the validity and formal variation of the
generated results. For a detailed look into the generation process, the rest of the

figures are included in Appendix B, Appendix C, and Appendix D.

The case study with compactness degree A is conducted with a population of 2500
individuals. Every run is limited with a total stagnation of 60 generations. An
average run took 1620 seconds. The weights of the evaluators Coyt to Cyjew are 3-5-2-

2-3-1-2-2.

The case study with compactness degree C 1s conducted with a population of 2500
individuals. Every run is limited with a total stagnation of 60 generations. An
average run took 2056 seconds. The weights of the evaluators C,yf to Cyjey are 3-8-2-

2-3-1-2-2.

The case study with compactness degree D is conducted with a population of 2500
individuals. Every run is limited with a total stagnation of 60 generations. An
average run took 2050 seconds. The weights of the evaluators Cyyf to Cyjew are 3-10-

2-2-3-1-2-2.

The best layout alternative for every compactness degree is as follows:
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Figure 63. Alternative 6 - Case study 2 — Compactness A — Parallel projection from 4
sides (Drawn by the author).
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Figure 64. Alternative 6 - Case study 2a — Compactness A — Top view (Drawn by the
author)
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Figure 65. Alternative 5 - Case study 2 — Compactness C — Parallel projection from 4
sides. (Drawn by the author)
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Figure 66. Alternative 5 - Case study 2 — Compactness C — Top view. (Drawn by the
author)
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Figure 67. Alternative 5 - Case study 2 — Compactness D- Parallel projection from 4
sides. (Drawn by the author)
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Figure 68. Alternative 5 - Case study 2 — Compactness D - Top view. (Drawn by the
author)
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Table 25 Weighted fitness result for six alternatives - Case study 2 — Compactness A.

Fitness Covf Cint Cdim Crel Ccomp Ccant Ccirc Cview
0.046 | 0.000 | 0.000 | 0.388 | 0.014 | 0.000 | 0.000 | 0.286 | 0.000
0.033 | 0.000 | 0.000 | 0.361 | 0.005 | 0.000 | 0.000 | 0.294 | 0.000
0.033 | 0.000 | 0.000 | 0.230 | 0.016 | 0.000 | 0.000 | 0.194 | 0.000
0.026 | 0.000 | 0.000 | 0.230 | 0.007 | 0.000 | 0.000 | 0.185 | 0.000
0.034 | 0.000 | 0.000 | 0.262 | 0.013 | 0.000 | 0.000 | 0.256 | 0.000
0.025 ] 0.000 | 0.000 | 0.250 | 0.000 | 0.000 | 0.000 | 0.208 | 0.000

AN DN B [WIN|—

Table 26. Weighted fitness results for six alternatives - Case study 2 — Compactness
C.

Fitness Covf Cint Cdim Crel Ccomp Ccant Ccirc Cview
0.056 | 0.000 | 0.000 | 0.406 | 0.013 | 0.301 | 0.000 | 0.222 | 0.000
0.072 | 0.000 | 0.184 | 0.483 | 0.007 | 0.000 | 0.000 | 0.227 | 0.000
0.054 | 0.000 | 0.000 | 0.509 | 0.007 | 0.258 | 0.000 | 0.227 | 0.000
0.073 | 0.111 | 0.000 | 0.605 | 0.033 | 0.126 | 0.000 | 0.309 | 0.000
0.052 | 0.000 | 0.000 | 0.292 | 0.000 | 0.352 | 0.000 | 0.359 | 0.000
0.057 | 0.000 | 0.000 | 0.287 | 0.037 | 0.259 | 0.000 | 0.153 | 0.000

AN DN | B[N

Table 27.Weighted fitness result for six alternatives - Case study 2 — Compactness D.

Fitness Covf Cint Cdim Crel Ccomp Ccant Ccirc Cview
0.092 | 0.000 | 0.000 | 0.664 | 0.007 | 0.314 | 0.000 | 0.296 | 0.000
0.093 | 0.000 | 0.000 | 0.679 | 0.018 | 0.314 | 0.000 | 0.294 | 0.000
0.092 | 0.000 | 0.000 | 0.656 | 0.015 | 0.342 | 0.000 | 0.247 | 0.000
0.092 | 0.000 | 0.000 | 0.716 | 0.062 | 0.328 | 0.000 | 0.243 | 0.016
0.085 | 0.000 | 0.000 | 0.557 ] 0.019 | 0.304 | 0.000 | 0.188 | 0.000
0.011 ] 0.000 | 0.000 | 0.609 | 0.060 | 0.306 | 0.000 | 0.188 | 0.000

AN DN | B[N

Different compactness degrees had a positive effect over the variety of results in this
study. Improving the degree of exploration by a small change in the problem
representation is found beneficial. One significant problem about the compactness
degrees is its effect on Cgyin, penalties. The increase in compactness seems to push
LEs to stretch or tighten in order to comply with the regularity of the layout. This

issue can be problematic in terms of the validity of the layouts.

117



4.2.4 Case study 2b

This case study, similar to case study la, tests Ho-Gen’s capability to generate
diverse and valid results. An additional purpose of case study 2b is to test the effect

of increased layout complexity over the performance of Ho-Gen.

In case study 2b, every floor is defined as a GRO. Ho-Gen is expected to generate
compact floor layouts that are brought together with vertical circulation and

maximum cantilever value.

As a medium scale layout problem, this study is conducted with a population of 2500
individuals. Every run is limited with a total stagnation of 60 generations. An
average run took 2056 seconds. The weights of the evaluators Cyyf to Cyiey are 3-8-2-
2-3-1-2-2. Ho-Gen is run for 6 times with the given inputs to test the validity and
formal variation of the generated results. During each run, Ho-Gen bakes the fittest
individual with an interval of 10 generations. This helps to explore the development
of results and the effect of the evaluator weight hierarchy within the run. The figures
that explain the development process of the fittest alternative in included in

APPENDIX C. The generated results of six runs are as follows:
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Figure 69. Alternative 1 - Case study 2 — Compactness C- Parallel projection from
four sides. (Drawn by the author)
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Figure 70. Alternative 1 - Case study 2 — Compactness C — Top view. (Drawn by the
author)
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Figure 71. Alternative 2 - Case study 2 — Compactness C — Parallel projection from 4
sides. (Drawn by the author)
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Figure 72. Alternative 2 - Case study 2 — Compactness B — Top view. (Drawn by the
author)
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Figure 73. Alternative 3 - Case study 2 — Compactness C — Parallel projection from 4
sides. (Drawn by the author)
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Figure 74. Alternative 3 - Case study 2 — Compactness C — Top view. (Drawn by the
author)
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Figure 75. Alternative 4 - Case study 2 — Compactness C — Parallel projection from 4
sides. (Drawn by the author)

Losvaces

STAIR

ENTRANCE BEDROOM2

MASTER

BEDROOM
CRCLTZ BATHZ

CRCLTI BEDROOMI

KITCHEN

BOUNDARY BOUNDARY

Figure 76. Alternative 4 - Case study 2 — Compactness C — Top view. (Drawn by the
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Table 28. Weighted fitness results for six alternatives - Case study 2 — Compactness

C.
Fitness Covf Cint Cdim Crel Ccomp Ccant Ccirc CView
1{0.056 | 0.000 | 0.000 | 0.406 | 0.013 | 0.301 | 0.000 | 0.222 | 0.000
210.072 |0.000 | 0.184 | 0.483 | 0.007 | 0.000 | 0.000 | 0.227 | 0.000
310.054 | 0.000|0.000 | 0.509 | 0.007 | 0.258 | 0.000 | 0.227 | 0.000
410.073 | 0.111 | 0.000 | 0.605 | 0.033 | 0.126 | 0.000 | 0.309 | 0.000
510.052 |0.000 | 0.000 | 0.292 | 0.000 | 0.352 | 0.000 | 0.359 | 0.000
6 (0.057 |0.000 | 0.000 | 0.287 | 0.037 | 0.259 | 0.000 | 0.153 | 0.000
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Figure 79. Best total fitness score - Case study 2 — Compactness C (Drawn by the

author).

0.80
075 | |
070 | ‘
0.65| | |
0.60 | |\ I
O'E’SH Ml
0.50 tﬂ“ i "\u
0.&5“.‘1‘\

!
0.40 f‘\‘| Y ;L\
0.35 imie

0.30 ‘
0.25|‘| ) "I"\ﬂ
0.20 | | F;'\ | ‘\‘I“"
o5 LM ik
010 | “g
MR

.05 NI M
VI AW

iUl

DIMENSION

CIRCULATION

COMPACTNESS

RELATION

RF|
INTERSECTION
CANTILEVER
VIEW

30

40

50

60

70 80

90

[
100

1o 120

130 140

150

160

Figure 80. Best fitness score of evaluators - Case study 2 — Compactness C (Drawn

by the author).
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Figure 81. Average total fitness score - Case study 2 — Compactness C (Drawn by the
author).

0.70
0.65
0.60.
055\ X
0.50 '\‘ \\ DIMENSION
0.45 |

b (I
0.400 | U\

V1A L]
0.35| M

| N
0301} \ P e et e - COMPACTRERS
0.25 % | T

4 i N mig s~ INTERSECTION
0.20\ NS L T BImIR e
oas | N \ LT \ R
\ e RIS = . OVERFLOW
0.0\ R e e S| ] A R P i ﬂk_ H =TT
0.05 ML _VV'»-*J/’\*'/ L et T e R R
a0 NN e e o O 002 1 1 1 A A -
10 26 30 &0 50 &0 70 80 90 100 10 120 130 140 150 160

Figure 82. Average fitness score of evaluators - Case study 2 — Compactness C
(Drawn by the author).

The increased amount of LEs caused an overall improvement in the variety of LE
configurations. However, this also caused a reduction in the effect of search
mechanism. According to average total fitness score graph (

Figure 81 ) the generation process has come across a long stagnation phase. This
indicates that the overall increase in the automated divergence does not help every
time to locate better solutions. This reduced performance can also be seen in the
weighted fitness score table (Table 27). The penalty scores are relatively higher than

case study la.
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4.2.5 Case study 2¢

In case study 2d, Ho-Gen is given an initial layout sketch to develop a similar but
better performing result. Ho-Gen is expected to converge in a smaller time because
of the smaller search space it requires to go through. The problem definition is the
same with case study 2b. The generation process took 1220 seconds. The figures that
explain the development process of the fittest alternative are included in APPENDIX

E. The generated results of six runs are as follows:

GARAGE

MASTER
BEDROOM

B BEDROOM2
MASTER
BEDROOM

BEDROOM2
N BEDRoo
BEDROOM BEDROOM gy

BEDROOM2

_

Figure 83. Initial sketch layout given to Ho-Gen — fitness: 0.176, C,,:0.019,
Cint:0.068, Cyim:0.516, Cre1:0.075, Ceomp:0.451, Ceant:0.000, Ceire:0.463, Cyiew:0.000 —
Parallel projection from four sides - Case study 2d — Interactive run. (Drawn by the
author)
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Figure 84. Initial sketch layout given to Ho-Gen — Top View - Case study 2d —
Interactive run. (Drawn by the author)
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Figure 85. Best layout solution for generation 120 — fitness: 0.079, C,y£:0.000,
Cint:0.000, Cgim:0.516, Cre1:0.024, Ceomp:0.163, Ceant:0.000, Ceire:0.414, Cyiew:0.000 —
Parallel projection from four sides - Case study 2d — Interactive run. (Drawn by the
author)
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Figure 86. Best layout solution for generation 120 — Top View - Case study 2d —
Interactive run. (Drawn by the author)
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Figure 87. Best fitness score - Case study 2d (Drawn by the author).
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Figure 88. Best fitness scores of evaluators - Case study 2d (Drawn by the author).
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Figure 89. Average fitness score - Case study 2d (Drawn by the author).
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Figure 90. Average fitness scores of evaluators - Case study 2d (Drawn by the
author).

Ho-Gen successfully developed a rough initial sketch into a functional building
layout in lesser time. This time, however, Ho-Gen generated a layout with a worse
fitness score than the non-interactive run. It is possible that the algorithm skipped a
better initial layout option in the beginning because of the initial conditions provided
by the user. Another reason is the higher Cgin, penalty of Ho-Gen. An observation on
the result shows that the reasons for the high Cgin penalty are trivial and can easily
be fixed by the user in the end. Yet, Ho-Gen cannot iterate toward solutions with a
better Cgim score. Ho-Gen, expectedly, disregards the LE dimensions to generate
valid layouts at the start. However, it cannot fix it in the later stages because the later
solutions with a better Cgim score violate important evaluators such as Cin or Ceomp.
This issue requires the user interference within the search process to the evaluator

weights.
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CHAPTER 5

CONCLUSION

The current state of the housing industry demands collaboration models that can
increase the influence of the occupants in the design process. In this way,
computational design tools for non-expert users generate a chance with the
advancement of mass customization in construction and prevalent use of computers.
The current state of non-expert design tools, however, is problematic due to the
support they provide or the expertise they expect. Configurators present a little
amount of choice to users, while drafting tools overwhelm the user with the amount
of control they provide. Generative tools present a higher level of customization in
terms of the solutions because of their dependence on user input. However, they
offer little or no customization for their generative mechanisms which are either too
bounded by the rules of its developer or requires an architectural or computational
expertise. Therefore, the purpose of this study was to develop a new computational

model that can enhance designer’s control over the generation process.

The research has started with an investigation over the current literature on such
subjects as computational non-expert design tools, design automation, non-expert
and computation interaction, computational layout design, and genetic algorithms. In
the first part of the review, a general research over the computational non-expert
design tools brought out that such tools are popular approaches among the user-
centered models for mass customization. Design companies, rather than funding
market research techniques or lead user idea generation models to acquire a general
standard in terms of the needs of the occupants, provide them the necessary tools for
the design of their own house. The purpose of computational non-expert tools is to
provide a user-friendly interface which requires little or no additional training

beyond user’s inherent design capabilities and personal requirements.

In the second part of the review, the research has shifted towards the need for
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interactive interfaces for the development of computational tools. The research has
taken the advantage of recent reports on automation to emphasize the lower rate of
automation expectancy for design related occupations despite the current state of
automation for many occupations. The research has shown that full automation
requires well-defined problems which can be analyzed into clear objectives through
objective and rational methods. On the contrary, the unavailability of such rational
and objective analysis methods for design was explained over the “design methods
movement” of 1960s and the deep criticism towards this movement. Instead, the
research has acknowledged the need for designer’s subjective interpretation on the
design problem as a way to cope with the vaguely defined design problems with a

high multiplicity of objectives.

The third part has examined the designer strategies to cope with the ill-defined
nature of design problems in order to develop a computational model to support
these activities for non-expert designers. This part revealed the importance of trial-
and-error learning as a way to explore the design problem and the requirement for
generating a high number of alternative solutions to reach better results. The
assessment of an appropriate solution space for the design of SFH brought the

research into layout design problem in architecture.

The forth part has evaluated the computational approaches to layout design problem.
The investigation of the current computational approaches revealed that GA
approaches bring certain advantages for design related problems. GA, as a
metaheuristic, offers a general solution method that requires less problem specific
information on the problem. In this way, metaheuristic approaches provide a general
advantage for non-experts. As the solution method is guided by general rules away
from expert knowledge, non-expert designers can interact with metaheuristics in an
easier way. Another advantage of GA is their population-based working principle

which improves the efficiency of exploration in the high multiplicity of solutions.

In the last section of the review, the research has identified a main problem in GA
approaches. The general user interaction in GA is limited to the initial definition of
variables and the observation of their results. Additionally, GA’s capabilities in the

exploration of large solution spaces is a computationally demanding process that
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requires time. The limited interaction together with the large time requirements of
GA causes latency between the problem definition and feedback mechanism. In this
way, alternative interactive models are investigated in order to present a trial-and-

error learning based interface to the user.

Therefore, this research was set out to develop a new computational approach, House
Generator (Ho-Gen), for the interactive generation of 3D layout solutions
specifically for SFH. Ho-Gen utilizes an interactive interface for genetic algorithms
(GA) in order to combine GA’s creative power in exploring complex problems with
the advanced designer control over the generation mechanism. During a Ho-Gen run,
a user can interfere with the GA run, observe the preliminary results, and alter the

generation process by the following ways:

¢ Changing the problem definition through manipulating layout components

and their topological relations.

e Making manual changes over the generated layout geometries. The user can
also start with an initial layout in order to focus a significant part within the

design space.

e Changing the evaluator weights to adjust their relative importance within the

overall fitness function.

Ho-Gen is also developed with specific attention to the character of SFH layouts.

Such properties are given as:

e Representing specific layouts elements under a group hierarchy. Groups can
be specifically defined by the user or can be automatically defined under

certain degrees of compactness.

e Defining the location of layout elements through their direction within the
envelope. SFH is a free-standing building that is open on all sides. Designer

can arrange the layout elements according to daylight requirements or other
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environmental causes. This issue is tried to be implemented through the

VIEW evaluator to give the required view for the layout elements.

e Generating multi-floor layouts with in-between vertical circulation elements.
User can define layout elements in a floor hierarchy. The geometrical relation

in between different floors is controlled by the CANTILEVER evaluator.

e Defining layout elements with different character. Open spaces are
increasingly becoming important parts of SFH. Ho-Gen implements open and
semi-open spaces with PORCH and PATIO components. Horizontal and
vertical circulation elements are added into the overall layout. Some spaces

are given the possibility to be double height spaces.

Ho-Gen is tested with two major layout problems with changing complexity
regarding the number of layout elements, topological and geometric user criteria.
Ho-Gen successfully generated valid layout options for a two floor SFH of 15 layout
elements fewer than thirty minutes, however, tests are realized with a considerably
low-end computer for the time. A better system can significantly reduce the current
time requirements for such a problem. The case studies are also subjected to minor
alterations in terms of group relations and compactness to check their effect on the
variety of results. The generated variety by changing compactness degrees was found
beneficial in terms of the ease of exploring different massing options through simple
alterations. On the other hand, the extra time requirement of Ccomp €valuator brings

the need to develop a more efficient computation method for such action.

Additionally, every case study is tested with an interactive scenario. In the first
scenario, the user started with a less specific problem definition and either added
extra conditions or changed the existing ones through the observations within the
generation process. User also made manual alterations on the generated layout. Ho-
Gen successfully generated quick feedback for the changing problem definitions,
thus allowing the designer to develop the design problem in a systematic and time
efficient manner. The second scenario allowed the designer to sketch a quick initial

layout to guide the generation process. In the end, Ho-Gen generated a layout in the
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same topological structure with user’s initial sketch. The generation of the results

took a significantly lower time than the automated results.

5.1 Limitations and Future Work

The major limitation for this research is the insufficient number of interactive case
studies. Despite the initial promise of user interaction such as better Cgip, score in
case study 1b and less time requirement in case study 2c, the tests for interactive case
studies should be examined under increased detail. This examination is important for
the decisions about the correct times and ways user interaction. Another limitation
for this research is the lack of case studies with actual non-expert designers. Current
case studies works for the validation of the model description acquired in the
literature review. However, further case studies with non-experts are required to
assess Ho-Gen'’s real performance in the support of occupants. As an example,
testing the arrangement process of the evaluator weights with non-experts is a direct
necessity. The interactive support of Ho-Gen can simplify the trial-and-error learning
process, however, leaving a non-expert with 8 evaluator weights to control can be
problematic at the start. Such problems can make way further simplifications in Ho-
Gen such as providing an early set of evaluator weights based on the problem. In this

way, Ho-Gen requires a real user interface that is both guiding and easy to operate.

One other important limitation of this research is the absence of a deep analysis into
the precedents in single-family house. Such an analysis can help the development of
general design concepts in terms of SFH. These concepts can be about functional
requirements such as a home office setting or a holiday house. The general concepts
can be turned into predefined input sets or combinations to provide a more user-
friendly interface at the start. Occupants can use these concepts to develop early
solutions immediately. One important point for the development of these concepts is
their solution space. The set of inputs that is represented by concepts should not get

too specific in order to keep divergent exploration capabilities.

Future work on the interactive genetic algorithm approach:

e Ho-Gen’s generation process can be changed into a fully visible interface to
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its user. User’s interference to the run can be simplified to a button that halts
the process. Current user interaction is only possible at the end of the search
process. The duration of such process can be defined at the start. However,

this can be problematic for the users that do not know the time requirements

for such search.

Whole search process can be utilized as a family of results which enables the

user to turn back and try other alternatives.

Much of the case studies have been done by a low-end computer for the time.
GA approach for Ho-Gen can be developed to decrease the required time for

exploration thus making possible to visualize user input more quickly.

Possible developments on the problem representation:

The functional analysis can also utilize furnishing of LEs. LE geometries can
be generated by the organization of furnishings, and then these resultant
spaces can be configured similar to the hierarchical generation approaches.
This can also aid the currently shallow state of Cgim. In a way, occupants can
prefer to define a space by its functional setting such as a kitchen counter and

dining table rather than an area value.

Ho-Gen just considers rectangular geometries on the plan and section;
irregular shapes are not estimated. Many SFH is made of such irregular
shaped LEs consideration of cut angles or a degree of convex geometries can

bring interesting solutions.
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APPENDIX A

FIGURES FOR CASE STUDY 1 - COMPACTNESS D
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Figure 91. Best layout solution for generation 20 — fitness: 0.062, Cqy:0.000,
Cint:0.440, Cgim:0.500, Cre1:0.000, Ceomp:0.00, Ceani:0.00, Ceire:0.300, Cyiew:0.000 —
Parallel projection from four sides - Case study 1 — Compactness D. (Drawn by the
author)
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Figure 92. Best layout solution for generation 20 — Top View - Case study 1—
Compactness D. (Drawn by the author)
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Figure 93. Best layout solution for generation 40 — fitness: 0.047, Cqy:0.000,
Cint:0.200, Cgim:0.300, Cre1:0.000, Ceomp:0.00, Ceani:0.00, Ceirc:0.172, Cyiew:0.000 —
Parallel projection from four sides - Case study 1 — Compactness D. (Drawn by the
author)
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Figure 94. Best layout solution for generation 40 — Top View - Case study 1 —
Compactness D. (Drawn by the author)
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Figure 95. Best layout solution for generation 60 — fitness: 0.041, Cqy:0.000,
Cint:0.266, Cgim:0.401, Cr1:0.000, Ceomp:0.000, Ceant:0.000, Ceire:0.172, Cyiew:0.000 —
Parallel projection from four sides - Case study 1 — Compactness D. (Drawn by the
author)
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Figure 96. Best layout solution for generation 60 — Top View - Case study 1 —
Compactness D. (Drawn by the author)
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Figure 97. Best layout solution for generation 80 — fitness: 0.038, Cqyy:0.000,
Cint:0.241, Cyim:0.383, Cre1:0.05, Ceomp:0.000, Ceani:0.000, Ceire:0.172, Cyiew:0.000 —
Parallel projection from four sides - Case study 1 — Compactness D. (Drawn by the
author)
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Figure 98. Best layout solution for generation 80 — Top View - Case study 1 —
Compactness D. (Drawn by the author)
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Figure 99. Best layout solution for generation 100 — fitness: 0.037, C,y£:0.000,
Cint:0.237, Cim:0.334, Cr1:0.000, Ccomp:0.000, Ceant:0.000, Ceire:0.172, Cyiew:0.000 —
Parallel projection from four sides - Case study 1 — Compactness D. (Drawn by the
author)
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Figure 100. Best layout solution for generation 100 — Top View - Case study 1 —
Compactness D. (Drawn by the author)

MASTER
) P
m T B 2ATH{ 5EpRo0M
_-

— -

MASTER -
BEDROOM

PORCH
LIVING [ .
ROOM e
-
.
e
=
aEm =
KITCHEN
’ LIVING PORCH

LIVING
rooM

PORCH
D
T (4:.,0
D e

BEDROOM

oD

Figure 101. Best layout solution for generation 120 — fitness: 0.039, Cqy:0.00,
Clnt:0.185, Cdlm:0.366, Crel:0.000, Ccomp:0.000, Ccant:0.000, Ccirc:0.172, CVleW:O.OOO -
Parallel projection from four sides - Case study 1 — Compactness D. (Drawn by the
author)
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Figure 102. Best layout solution for generation 120 — Top View - Case study 1 —
Compactness D. (Drawn by the author)
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Figure 103. Best layout solution for generation 140 — fitness: 0.39, C,y:0.00,
Clnt:0.000, Cdlm:0.395, Cre]:0.000, Ccomp:o.llg, Ccant:0.00, Ccirc:0.172, CVleW:O.OOO -
Parallel projection from four sides - Case study 1 — Compactness D. (Drawn by the
author)
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Figure 104. Best layout solution for generation 140 — Top View - Case study 1 —
Compactness D. (Drawn by the author)
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APPENDIX B

FIGURES FOR CASE STUDY 2 - COMPACTNESS A
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Figure 105. Best layout solution for generation 0 — fitness:0.390, Cy:0.695,
Cint:0.646, Ciim:0.739, Cre1:0.160, Ceomp:0.000, Cean:0.000, Ceir:0.632, Cyiew:0.091 —
Parallel projection from four sides - Case study 2 — Compactness A (Drawn by the
author).
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Figure 106. Best layout solution for generation 0 — Top View - Case study 2 —
Compactness A. (Drawn by the author)
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Figure 107. Best layout solution for generation 20 — fitness:0.105, C,y:0.000,
Cin:0.311, Cgim:0.628, Ce1:0.007, Ceomp:0.000, Cean:0.000, Ceirc:0.287, Cyiew:0.000 —
Parallel projection from four sides - Case study 2 — Compactness A (Drawn by the
author).
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Figure 108. Best layout solution for generation 20 — Top View - Case study 2 —
Compactness A. (Drawn by the author)
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Figure 109. Best layout solution for generation 40 — fitness:0.048, Cqy:0.000,
Cint:0.000, Cgim:0.504, Cr1:0.001, Ceomp:0.000, Ceant:0.000, Ceire:0.226, Cyiew:0.000 —
Parallel projection from four sides - Case study 2 — Compactness A (Drawn by the
author).
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Figure 110. Best layout solution for generation 40 — Top View - Case study 2 —
Compactness A. (Drawn by the author)
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Figure 111. Best layout solution for generation 70 — fitness:0.033, Cy:0.000,
Cint:0.000, Cgim:0.379, Cre1:0.000, Ceomp:0.000, Ceant:0.000, Ceire:0.208, Cyiew:0.000 —
Parallel projection from four sides - Case study 2 — Compactness A (Drawn by the
author).
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Figure 112. Best layout solution for generation 70 — Top View - Case study 2 —
Compactness A (Drawn by the author).
@D

MASTER
BEDROOM

| . BEDROOMI

BEDROOMI
-

KITCHEN

aD

BEDROOMI MASTER 2
CRCLTZ BEDROOM CRCLTI

Tl
== CRCLT2

7
BEDROOM| @ g e

BATHI -
.

S
= @D
s
- STAIR
BEDROOM! L ..‘_\ MASTER
. - e BEDROOMZ - . 5:=0=00m

BEDROOMI

CRCLTI CRCLT2

MASTER

BEDRO CRCLTI

" KITCHEN - . = @

Figure 113. Alternative 1 - Case study 2a — Compactness A — Parallel projection from
4 sides (Drawn by the author).
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Figure 114. Alternative 1 - Case study 2a — Compactness A — Top view (Drawn by
the author).
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Figure 115. Alternative 2 - Case study 2a — Compactness A — Parallel projection from
4 sides (Drawn by the author).
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Figure 116. Alternative 2 - Case study 2a — Compactness A — Top view. (Drawn by
the author)
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Figure 117. Alternative 3 - Case study 2a — Compactness A — Parallel projection from
4 sides (Drawn by the author).
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Figure 118. Alternative 3 - Case study 2a — Compactness A — Top view (Drawn by
the author).
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Figure 119. Alternative 4 - Case study 2a — Compactness A — Parallel projection from
4 sides (Drawn by the author).
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Figure 120. Alternative 4 - Case study 2a — Compactness A — Top view (Drawn by
the author).
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Figure 121. Alternative 5 - Case study 2a — Compactness A — Parallel projection
from 4 sides (Drawn by the author).
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Figure 122. Alternative 5 - Case study 2 — Compactness A — Top view (Drawn by the
author).
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Figure 123. Alternative 6 - Case study 2 — Compactness A — Parallel projection from
4 sides (Drawn by the author).
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Figure 124. Alternative 6 - Case study 2 — Compactness A — Top view (Drawn by the
author)
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Figure 125. Best fitness score of total fitness - Case study 2 — Compactness A
(Drawn by the author).
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Figure 126. Best fitness score of evaluators - Case study 2 — Compactness A (Drawn
by the author).
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Figure 127. Average fitness score for total fitness - Case study 2 — Compactness A
(Drawn by the author).
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Figure 128. Average fitness score of evaluators - Case study 2 — Compactness A
(Drawn by the author).
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APPENDIX C

FIGURES FOR CASE STUDY 2 - COMPACTNESS C
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Figure 129. Best layout solution for generation 0 — fitness:0.44, Cy:0.43, Cin:0.75,
Caim:0.52, Ce1:0.27, Ceomp:0.57, Ceant:0.00, Ceirc:0.60, Ciew:0.04 — Parallel projection
from four sides - Case study 2 — Compactness C. (Drawn by the author)
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Figure 130. Best layout solution for generation 0 — Top View - Case study 2 —
Compactness C. (Drawn by the author)
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Figure 131. Best layout solution for generation 10 — fitness:0.20, Cyy:0.27, Cip:0.52,
Ciim:0.52, C1:0.03, Ceomp:0.22, Cehim:0.39, Ceant:0.00, Ceirc:0.51, Cyiew:0.00 — Parallel
projection from four sides - Case study 2 — Compactness C. (Drawn by the author)
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Figure 132. Best layout solution for generation 10 — Top View - Case study 2 —
Compactness C. (Drawn by the author)
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Figure 133. Best layout solution for generation 20 — fitness:0.15, Cqy£:0.09, Ciy:0.34,
Caim:0.39, Cre1:0.02, Ceomp:0.27, Ceant:0.00, Ceire:0.37, Cyiew:0.00 — Parallel projection
from four sides - Case study 2 — Compactness C. (Drawn by the author)
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Figure 134. Best layout solution for generation 20 — Top View - Case study 2 —
Compactness C. (Drawn by the author)
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Figure 135. Best layout solution for generation 30 — fitness:0.12, Cyy:0.09, Cip:0.19,
Caim:0.39, Cr1:0.01, Ceomp:0.35, Ceant:0.00, Ceirc:0.28, Cyiew:0.00 — Parallel projection
from four sides - Case study 2 — Compactness C. (Drawn by the author)
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Figure 136. Best layout solution for generation 30 — Top View - Case study 2 —
Compactness C. (Drawn by the author)
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Figure 137. Best layout solution for generation 40 — fitness:0.08, Coy£:0.09, Ciy:0.00,
Cim:0.60, Cre1:0.03, Ceomp:0.33, Ceant:0.00, Ceirc:0.26, Cyiew:0.00 — Parallel projection
from four sides - Case study 2 — Compactness C. (Drawn by the author)
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Figure 138. Best layout solution for generation 40 — Top View - Case study 2 —
Compactness C. (Drawn by the author)
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Figure 139. Best layout solution for generation 80 — fitness: 0.07, Coy:0.09, Ci,:0.00,
Caim:0.53, Cre1:0.01, Ceomp:0.27, Ceant:0.00, Ceire:0.27, Cyiew:0.00 — Parallel projection
from four sides - Case study 2 — Compactness C. (Drawn by the author)
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Figure 140. Best layout solution for generation 80 — Top View - Case study 2 —
Compactness C (Drawn by the author).
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Figure 141. Best total fitness score - Case study 2 — Compactness C(Drawn by the
author).
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Figure 142. Best fitness score of evaluators - Case study 2 — Compactness C (Drawn
by the author).
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Figure 143. Average total fitness score - Case study 2 — Compactness C (Drawn by

the author).
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Figure 144. Average fitness score of evaluators - Case study 2 — Compactness C

(Drawn by the author).
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APPENDIX D

FIGURES FOR CASE STUDY 2 - COMPACTNESS D

LIVING
B rooM
- BATHZ

-

PORCH2

-

BATH2

PATIOI BEDROOMI

BEDROOM| PATIOI
PORCHI

BEDROOM2

T

;
- BEDROOM2 BATH3
D @D
BATH2 -

BEDROOM |
MASTER
BEDROOM

BEDROOMI w

Figure 145. Best layout solution for generation 0 — fitness:0.390, C,,1:0.542,
Cint:0.418, Cim:0.518, Cre1:0.289, Ceomp:0.663, Ceant:0.000, Ceir:0.368, Cyiew:0.067 —
Parallel projection from four sides - Case study 2 — Compactness D. (Drawn by the
author)

174



PORCHI

MASTER
BEDROOM

™ .
LIVING LIVING
ROOM |  CRCSTAIR B poom

BEDROOM2

CRCLTI

BOUNDARY BOUNDARY

Figure 146. Best layout solution for generation 0 — Top View - Case study 2 —
Compactness D. (Drawn by the author)
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Figure 147. Best layout solution for generation 10 — fitness:0.258, Cqy:0.000,
Cint:0.525, Cgim:0.518, Cre1:0.069, Ceomp:0.585, Ceant:0.000, Cire:0.375, Cyiew:0.000 —
Parallel projection from four sides - Case study 2 — Compactness D. (Drawn by the
author)
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Figure 148. Best layout solution for generation 10 — Top View - Case study 2 —
Compactness D. (Drawn by the author)
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Figure 149. Best layout solution for generation 20 — fitness:0.200, C,y:0.000,
Cint:0.381, Cyim:0.518, Cre1:0.036, Ceomp:0.611, Cean:0.000, Ceire:0.243, Cyiew:0.007 —
Parallel projection from four sides - Case study 2 — Compactness D. (Drawn by the
author)
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Figure 150. Best layout solution for generation 20 — Top View - Case study 2 —
Compactness D. (Drawn by the author)
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Figure 151. Best layout solution for generation 40 — fitness:0.103, Co,£:0.000,
Clnt:0.000, Cdlm:0.650, Cre]:0.030, Ccomp:0.376, Ccant:0.000, CcirC:O.ZOO, CVICW:O'OO7 -
Parallel projection from four sides - Case study 2 — Compactness D. (Drawn by the
author)
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Figure 152. Best layout solution for generation 40 — Top View - Case study 2 —
Compactness D. (Drawn by the author)
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Figure 153. Best layout solution for generation 60 — fitness:0.089, C,y:0.000,
Cint:0.000, Cyim:0.592, Cre1:0.019, Ceomp:0.315, Ceant:0.000, Ceire:0.200, Cyiew:0.007 —
Parallel projection from four sides - Case study 2 — Compactness D. (Drawn by the
author)
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Figure 154. Best layout solution for generation 60 — Top View - Case study 2 —
Compactness D. (Drawn by the author)
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Figure 155. Best layout solution for generation 20 — fitness: 0.103, C,,£:0.000,
Cint:0.000, Cim:0.523, Cre1:0.037, Ceomp:0.263, Ceant:0.000, Cire:0.455, Cyiew:0.000 —
Parallel projection from four sides - Case study 2d — Interactive run. (Drawn by the
author)
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Figure 156. Best total fitness score - Case study 2 — Compactness D (Drawn by the
author).
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Figure 157. Best evaluator score - Case study 2 — Compactness D (Drawn by the
author).
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Figure 158. Average total fitness score - Case study 2 — Compactness D (Drawn by

the author).
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Figure 159. Average evaluator score - Case study 2 — Compactness D (Drawn by the

author).
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APPENDIX E

FIGURES FOR INTERACTIVE CASE STUDY 2
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Figure 160. Best layout solution for generation 20 — Top View - Case study 2d —
Interactive run. (Drawn by the author)
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Figure 161. Best layout solution for generation 40 — fitness: 0.089, Cy:0.000,
Clnt:0.000, Cdlm:0.502, Crel:0.031, Ccomp:0.196, Ccant:0.000, Ccirc:0.455, CVleW:O'OOO -
Parallel projection from four sides - Case study 2d — Interactive run. (Drawn by the
author)
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Figure 162. Best layout solution for generation 40 — Top View - Case study 2d —
Interactive run. (Drawn by the author)
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Figure 163. Best layout solution for generation 80 — fitness: 0.083, C,,:0.000,
Cint:0.000, Cgim:0.552, Cre1:0.024, Ceomp:0.163, Ceant:0.000, Cire:0.450, Cyiew:0.000 —
Parallel projection from four sides - Case study 2d — Interactive run. (Drawn by the
author)
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Figure 164. Best layout solution for generation 80 — Top View - Case study 2d —
Interactive run. (Drawn by the author)
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