
EXTENDED KALMAN FILTER BASED MULTI-PURPOSE INERTIAL 

SENSOR FIELD CALIBRATION ALGORITHM 

 

 

 

 

 

 

 

 

A THESIS SUBMITTED TO 

THE GRATUATE SCHOOL OF NATURAL AND APPLIED SCIENCES 

OF 

THE MIDDLE EAST TECHNICAL UNIVERSITY 

 

 

 

 

 

 

 

BY 

 

 

LİSAN OZAN YAMAN 

 

 

 

 

 

 

 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 

FOR 

THE DEGREE OF MASTER OF SCIENCE 

IN 

MECHANICAL ENGINEERING 

 

 

 

 

 

 

 

 

DECEMBER 2017 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Approval of the thesis: 

 

EXTENDED KALMAN FILTER BASED MULTI-PURPOSE INERTIAL 

SENSOR FIELD CALIBRATION ALGORITHM 

 

 

 

Submitted by LİSAN OZAN YAMAN in partial fulfillment of the requirements 

for the degree of Master of Science in Mechanical Engineering Department, 

Middle East Technical University by, 

 

 

Prof. Dr. Gülbin Dural ÜNVER                                                _____________ 

Dean, Graduate School of Natural and Applied Sciences 

 

Prof. Dr. M. A. Sahir ARIKAN                                     _____________ 

Head of the Department, Mechanical Engineering Dept. 

 

Assist. Prof. Dr. Kıvanç AZGIN                          _____________ 

Supervisor, Mechanical Engineering Dept., METU  

 

 

 

Examining Committee Members: 

 

Assoc. Prof. Dr.Yiğit YAZICIOĞLU                                    _____________ 

Mechanical Engineering Dept., METU 

 

Assist. Prof. Dr. Kıvanç AZGIN                          _____________ 

Mechanical Engineering Dept., METU 

 

Assist. Prof. Dr. Kerem BAYAR                                     _____________ 

Mechanical Engineering Dept., METU 

 

Assist. Prof. Dr. Ali Emre TURGUT                                                _____________ 

Mechanical Engineering Dept., METU 

  

Assist. Prof. Dr. Kutluk Bilge ARIKAN                                      _____________ 

Mechanical Engineering Dept., TED University 

 

 

 

                                                                                              Date:   _____________ 

 



iv 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I hereby declare that all information in this document has been obtained and 

presented in accordance with academic rules and ethical conduct. I also 

declare that, as required by these rules and conduct, I have fully cited and 

referenced all material and results that are not original to this work. 

 

 

 

      Name, Last Name    : LİSAN OZAN YAMAN 

 

 

      Signature     :  

 

 



v 

ABSTRACT 

 

 

EXTENDED KALMAN FILTER BASED MULTI-PURPOSE INERTIAL 

SENSOR FIELD CALIBRATION ALGORITHM 

 

 

 

YAMAN, LİSAN OZAN 

M.S., Department of Mechanical Engineering 

Supervisor: Assist. Prof. Dr. Kıvanç AZGIN 

 

December 2017, 140 pages 

 

 

The Global Satellite Navigation System (GNSS) is widely adopted for common 

positioning system due to its precision, cost and effectiveness. Despite its 

advantages, GNSS receivers are susceptible to signal degradation both intentional 

cases such as jamming/spoofing and unintentional cases like signal blockage in 

urban environment due to tall buildings. On the other hand, dead reckoning 

navigation system such as Inertial Navigation System (INS) is immune to external 

interferences and it can supply continuous navigation solution. However, the 

immunity comes with a price of unbounded positioning error growth with time due 

to mainly the Inertial Measurement Unit (IMU) sensor errors which continuously 

integrated into INS mechanization process. In order to bound inertial navigation 

system stand-alone navigation precision below some threshold, commonly GNSS 

or any other navigation aiding systems can be integrated with INS. Moreover, the 

IMU sensor errors are the crucial source of INS performance degradation factors 

and extensive laboratory tests are held by IMU manufacturers to calibrate inertial 

sensors for various types of application where the precision is critical. Even IMU is 

calibrated in laboratory environment, inertial sensors commonly have residual error 
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terms left from calibration process. In mass production inertial sensor facilities such 

as MEMS products, manufacturers may not calibrate via laboratory processes due 

to necessary extensive labor and cost. That is, many low cost inertial sensors 

especially belong to automotive grade IMU, born uncalibrated and suffer from error 

terms. Therefore, robust algorithms and procedures for calibrating inertial 

measurement units especially low cost-low grade group of sensors in the field 

without need of precision laboratory equipments are promising.  

 

In this thesis, the development of integrated navigation algorithm that can be used 

for multi purpose including inertial sensor field calibration algorithm is carried out. 

First of all, the fundamental aspects of inertial navigation system, and its integration 

with GNSS receiver is exploited. The idea of calibrating the inertial sensor without 

use of extensive laboratory equipment is blended with Extended Kalman Filter 

(EKF) based INS/GNSS integration filter. Furthermore, for land vehicle navigation 

purpose Zero Velocity Update (ZUPT) and Non-Holonomic motion Constraints 

(NHCs) also integrated in the developed algorithm. Single and multi-run simulation 

studies are carried out together with static and dynamic field tests to show the 

performance of the integration filter. The dynamic calibration procedure deduced 

by the simulation study is applied to various MEMS inertial measurement units. 

The full verification of modular integrated algorithm is studied via land vehicle 

dynamic tests with sub 100 $ IMU and GPS receiver combination. 

 

 

 

 

Keywords: Inertial sensors,  Inertial Measurement Unit, Inertial Navigation System, 

Global Navigation Satellite System, Kalman filter, Field calibration, 

Accelerometer, Gyroscope 

 

 



vii 

ÖZ 

 

 

GENİŞLETİLMİŞ KALMAN FİLTRESİ TABANLI ÇOK AMAÇLI 

ATALETSEL SENSÖR SAHA KALİBRASYON ALGORİTMASI 

 

 

 

YAMAN, LİSAN OZAN 

Yüksek Lisans, Makina Mühendisliği Bölümü 

Tez Yöneticisi: Assist. Prof. Dr. Kıvanç AZGIN 

 

Aralık 2017, 140 sayfa 

 

 

Konum belirleme sistemleri arasında performans hassasiyeti, maliyet etkinliği ve 

verimlilik konularında en yaygın kullanıma sahip sistem Küresel Konumlanma 

Sistemidir (KKS). Küresel konumlanma sistemi, avantajlarına rağmen şehirlerde 

yüksek binalar nedeniyle veya bilinçli sinyal karıştırma/sahte sinyal basma gibi 

etkenlerden dolayı sinyal erişiminin engellenmesi durumları ile karşı karşıyadır. 

Diğer bir yandan, Ataletsel Navigasyon Sistemi (ANS) gibi gözü kapalı tahmine 

dayanan konum hesabı yöntemleri küresel konumlama sisteminin aksine dış 

girişimlerden etkilenmemektedir ve kesintisiz navigasyon çıktıları 

üretebilmektedir. Fakat, dış etkilere olan duyarsızlık özelliği Ataletsel Ölçüm 

Birimi (AÖB) sensör hatalarının devamlı ataletsel navigasyon sistemi 

mekanizasyon sürecine entegre edilmesiyle zaman içerisinde sınırsız konum 

hatasını beraberinde getirmektedir. Ataletsel navigasyon sistemi saf ataletsel 

navigasyon çözümünün belirli doğruluk seviyelerinin altında tutabilmek için farklı 

navigasyon destek sistemleriyle genellikle de küresel konumlama sistemi alıcısı ile 

entegrasyonu gerçekleştirilir. Ek olarak, ataletsel ölçüm birimi sensör hataları 

ataletsel navigasyon sistemi performansının azalmasında ki en önemli kaynağı 
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oluşturmakta olup, performansın önemli olduğu birçok uygulamada ataletsel 

sensörlerin kalibre edilmesine yönelik olarak ataletsel ölçüm birimi üreticileri 

tarafından laboratuvar ortamında kapsamlı kalibrasyon testleri 

gerçekleştirilmektedir. Her ne kadar ataletsel sensörler laboratuvar ortamında 

kalibre edilselerde, hem kullanılan test prosedüründen hem de kalibre edilen sensör 

tiplerine bağlı olarak kalibrasyondan artan sensör hataları kalmaktadır. Mikro 

Elektro Mekanik Sistemler (MEMS) gibi yüksek yoğunlukta sensör seri üretim 

tesislerinde üreticiler kapsamlı prosedürler ve iş gücü ihtiyacından dolayı 

laboratuvar kalibrasyonu testleri ve prosedürlerini gerçekleştirmeyebilirler. Bu da 

özellikle otomotif sınıfı ataletsel sensörleri gibi birçok düşük maliyetli sensörlerin 

hiçbir kalibrasyon sürecine girmeden yüksek sensör hataları ile üretilmesi ile 

sonuçlanmaktadır. Bu sebeple, özellikle düşük maliyetli ve düşük performanslı 

ataletsel sensörler için hassas laboratuvar ekipmanları ve süreçlerine bağımlı 

olmadan sensörleri sahada kalibre etmeye yönelik gürbüz algoritmalar ile süreçler 

büyük umut vadetmektedir. 

 

Bu tezde, sahada ataletsel sensör kalibrasyonu özelliğini içerisinde bulunduran ve 

birden fazla amaca hizmet eden tümleşik navigasyon algoritmasının 

geliştirilmesine yer verilmiştir. Öncelikle ataletsel navigasyon sisteminin önemli 

noktaları ve küresel konumlanma sistemi alıcısı ile entegrasyonu gibi konular ele 

alınmıştır. Kapsamlı laboratuvar ekipmanlarına ihtiyaç duymadan ataletsel 

sensörleri kalibre etme fikri Genişletilmiş Kalman Filtresi (EKF) yapısı içerisinde 

ataletsel navigasyon sistemi/küresel konumlama sistemi entegrasyon algoritması ile 

tümleştirilmiştir. Ayrıca, kara uygulamalarına yönelik olarak Sıfır Hız Algılama 

(ZUPT) ve uygulama platformu hareket sınırlarının algılanması (NHCs) gibi 

algoritma tabanlı navigasyon destek bilgileri geliştirilen tümleşik algoritma 

yapısına entegre edilmiştir. Tümleşik navigasyon algoritmasının performansını test 

etmek amacıyla simülasyon ortamında tekli ve çoklu simülasyon çalışmaları ile 

durağan ve hareketli saha testleri gerçekleştirilmiştir. Simülasyon çalışmalarında 

elde edilen hareketli kalibrasyon süreci MEMS tabanlı çeşitli ataletsel ölçüm 

birimleri üzerinde test edilmiştir. Modüler mimaride oluşturulan tümleşik algoritma 
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yapısı, 100 dolar seviyesi altında ataletsel ölçüm birimi ve küresel konumlanma 

sistemi alıcısı kombinasyonu ile kara uygulamasına yönelik saha testlerinde 

doğrulanmıştır. 

 

 

 

 

Anahtar kelimeler: Ataletsel sensörler, Ataletsel Ölçüm Birimi, Ataletsel 

Navigasyon Sistemi, Kalman filtresi, Saha Kalibrasyonu, İvmeölçer, Dönüölçer 
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CHAPTER 1 

 

1. INTRODUCTION 

INTRODUCTION 

 

 

 

1.1 Background 

 

Navigation is quite an old skill and defined in The Concise Oxford Dictionary [1] 

as “any of several methods of determination or planning a ship’s or aircraft’s 

position and course by geometry, astronomy, radio signals, etc.” In the name of 

positioning and building navigation system, various kinds of technologies are used 

but two of them are used very commonly. “The first is Inertial Navigation Systems 

(INS), which are self-contained Dead Reckoning (DR) navigation systems provide 

dynamic information through direct measurements from an Inertial Measurement 

Unit (IMU)” [2]. The second is Global Positioning System (GPS), which uses 

passive ranging radio navigation technique. 

 

Since INS is self-contained system, it has an advantage of being used in any kind 

of environment without minding external inteferences. Besides that, INS provides 

continuous position, velocity and attitude information to users by using 

measurements from three orthogonal placed accelerometers and gyroscopes triads 

with initial conditions. However, the performance of INS is time dependent and its 

accuracy is degraded due to IMU sensors deterministic and stochastic errors. In 

order to endure reasonable accuracy, it is crystal clear to see the necessity of high 

performance INS. However, high performance INS is quite costly, bigger in size 

and confronted to government export regulations. Therefore, many researches are 

based on low cost IMUs to develop accurate navigation system. The most common 

use is aiding INS with external sources to aid and bound its time dependent 

characteristics. Satellite navigation system is the most popular way of aiding INS 
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due to its time-invariant accuracy. Receiver of satellite navigation system  requires 

direct line of sight to satellite to provide navigation solution and thus, signal 

blockage in urban environment occurs frequently. Besides that, satellite navigation 

system is susceptible to electromagnetic signals which make it jammed in some 

tactical uses. 

 

During last few decades, Micro-Electro-Mechanical Systems (MEMS) technology 

has proven its potential in navigation field. Important advantages of this technology 

are low cost, small size and mass. Many researchers are exploited those benefits of 

MEMS IMU on their studies. Due to mass production, inappropriate factory 

calibration and run to run error variations of MEMS inertial sensors force their users 

to recalibrate them before using or estimating inertial sensor errors during the 

system is operational. Recent studies show that field calibration methods are quite 

beneficial for remedying MEMS IMU sensor errors without worrying about how 

they are calibrated in factory.  

 

Shin and El-Sheimy (2002) [3] developed a calibration method which can be carried 

out on field without requiring any laboratory equipment. Since magnitudes of local 

gravity and the earth rate are nearly constant on an arbitrary location of the earth, 

those quantities are forming the constraints for what inertial sensors measure. This 

calibration method can be used for determination of bias, scale factor and cross-

coupling errors for an accelerometer triad but due to weak signal characteristics of 

the earth rotation rate, only biases of gyroscopes can be realistically estimated. 

 

Syed et al. (2007) [4] points out that use of the earth rotation rate as a reference for 

gyroscope calibration is causing unrealistic scale factor and cross-coupling error 

estimations. Therefore, he claims that instead of using the earth rotation rate, using 

single axes turn table aids the calibration of the terms that cannot be estimated with 

Shin and El-Sheimy’s method. 
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Since the method proposed by Syed requires single axis turn table, it’s still not a 

pure field calibration method that is independent of any precise mechanical devices 

or costly lab equipment. Fong, Ong and Nee (2008) [5] propose that the gravity 

vector measurement via calibrated accelerometers must be equal to the computed 

gravity vector from the orientation integration algorithm which is using gyroscopes 

angular velocity measurements. It is indicated that the proposed method can be used 

for determination of scale factor and cross-coupling errors of a gyroscope triad. For 

short operation time, bias terms of gyroscopes are assumed to be approximately 

constant and the change is insignificant. Therefore, long static time window is 

proposed for figuring out bias terms of gyroscope triad and required length of time 

is found by drawing the Allan variance plot. 

 

Later, Pretto and Grisetti (2014) [6] developed a semi-automatic IMU calibration 

algorithm that extend the study stated by Skog and Handel (2006) [9] and based on 

the previous work of Fong, Ong and Nee (2008) [5]. Variance based stationarity 

detection filter is used in the calibration algorithm to detect static conditions to 

enable algorithm to gain so called automatic detection ability. 

 

1.2 Research Objective 

 

This study focuses on the enhancement of low cost INS/GNSS integrated 

navigation system by online calibration of inertial sensor errors. The aim of this 

study is to develop, analyze and test the multi-purpose moduler integrated 

navigation algorithm which can be also used for calibrating inertial sensors. 

Therefore, the major objectives of this research study are as follows; 

1. To develop extended Kalman filter (EKF) based INS/GNSS algorithm. 

Complete derivation of inertial navigation system (INS) mechanization 

equations and EKF based INS/GNSS integration algorithms are carried out.  

Aforementioned integration algorithm is developed in MATLAB 

environment. 
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2. To extend the developed algorithm to cover motion based navigation 

aid modes for land vehicle apllications. 

Mainly for land vehicle navigation (LVN); the non-holonomic constraints 

(NHCs), and zero velocity update (ZUPT) are considered and implemented 

in the developed algorithm.  

3. To develop inertial sensors field calibration algorithm and form a 

blended moduler integrated navigation algorithm.  

Absolute value of local gravity signal and local gravity vector signals are 

taken as reference signals to develop inertial sensor field calibration 

algorithm mode of the blended integration filter. In order to analyze the 

developed algorithm, single and multi run simulation analysis are carried 

out to observe the performance of calibration algorithm for two different 

grade of inertial measurement units. 

4. To implement the whole analysis to field test. 

Field tests consist of static and dynamic tests are carried out to highlight 

both the inertial sensor calibration and navigation performance of the 

blended multi-purpose integration filter. Low cost inertial measurement unit 

and GPS receiver are used to build hardwares for testing the developed 

algorithm for land vehicle navigation application. In order to test the 

effectiveness and accuracy of the field calibration test, positioning accuracy 

is compared with the map. In addition to the proposed field calibration 

method, implemented motion based non GNSS aid methods are tested in the 

field. During the tests, intentional GNSS outages created and the positioning 

accuracy again is compared with the reference. 
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1.3 Thesis Outline 

 

This thesis contains seven chapters. 

Chapter 2 gives main overview of the inertial navigation systems. The fundamentals 

of inertial navigation systems are highlighted and discussed, including reference 

frames, earth shape, and gravity model. After defining aforementioned terms, 

inertial navigation mechanization equations are derived and provided in details. To 

develop trajectory generator for pseudo signal generation purpose, inverse 

mechanization is carried out and provided in appendix as well. Later on, the 

mechanization equations are perturbed to derive and formulate the error dynamics 

equations which are later used for system modeling of extended Kalman filter. 

Finally, inertial sensor error model is introduced which is based on dominant 

deterministic and stochastic properties. 

 

Chapter 3 provides an overview of global satellite navigation system (GNSS). In 

this chapter the single point positioning (SPP) via pseudorange and pseudorange 

rate model is reviewed. Moreover, complementary nature of INS and GNSS are 

illuminated and needs for integration is discussed as well. 

 

In Chapter 4, the detailed derivation and model of the targetted integration 

navigation filter is exploited. In other words, the integration algorithm modeling 

structure and details for inertial sensors field calibration procedure are taken into 

consideration.  First, system model and algorithm working flow is highlighted. 

Then, the measurement model for INS/GNSS, ZUPT, NHCs, and inertial sensor 

field calibration aiding modes are detailly discussed. Moreover,  stationary 

detection filter used during the study is covered as well.  

 

In Chapter 5, simulation analysis covering single and multi-runs are carried out for 

both automotive grade and tactical grade inertial measurement units. Single 

simulation run is analyzed in detail to observe the convergence of inertial sensor 

error parameter estimate during the calibration procedure. To form a statistical 
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results indicating the performance of the calibration algorithm, multi run 

simulations with gaussian shape distributed inertial sensor errors carried out.  

 

Chapter 6 holds the results of the field tests. The test equipment, logged data,  and 

the trajectories of field is given. The logged IMU and GPS data are post processed 

and the aforementioned field calibration method is applied. In addition to this, 

implemented non GNSS aids methods are tested by using the logged data. The 

accuracy of developed algorithm is compared with reference and the main 

behaviors of the system are tested in GNSS degraded environment. 

 

Finally, Chapter 7 draws the major conclusions of this study and indicates the 

recommended topics requiring further analysis. 
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CHAPTER 2 

 

2. INERTIAL NAVIGATION 

INERTIAL NAVIGATION 

 

 

 

The fundamental operation of inertial navigation systems (INS) govern by the laws 

of classical mechanics. If the linear acceleration and angular rotation rate of a body 

are measured, those measurement can be used together with mathematical 

integration to calculate the change in velocity, position and orientation. What an 

inertial navigation system does is exactly the same thing indicated above. Inertial 

navigation systems calculate the position, velocity and attitude of a body in space 

with respect to some reference system. In other words, inertial navigation system 

keeps track of a body orientation, its position and velocity via integration of 

acceleration and angular rate measurements together with initial known conditions. 

The main component of INS is inertial measurement unit (IMU) which typically 

consists of three mutually orthogonal placed accelerometers and gyroscopes. 

In this chapter, reference frames are introduced first. Then, parameters related to 

the Earth shape and gravity models are provided. Vector rotation concept is briefly 

touched and this chapter ends with detailed derivation of mechanization equations 

and their perturbed error counterparts. 

 

2.1 Reference Frames 

 

In this study, four different reference frames are used and thus introduced here. 

The inertial frame (i-frame) “has its origin at the center of the Earth and axes 

which are non-rotating with respect to the fixed stars with its z-axis parallel to spin 

axis of the Earth, x-axis pointing towards the mean vernal equinox, and y-axis 

completing a right-handed orthogonal frame” [11] which is shown in Figure 2.1. 

The inertial frame is commonly referenced as Earth centered inertial (ECI) frame. 
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Figure 2.1 The Inertial Frame (Adopted from [12]) 

 

The Earth frame (e-frame) is originated at the mass center of the Earth and its axes 

are rotating with the Earth. Z-axis is parallel to spin axis of the Earth like the inertial 

frame, x-axis points along the intersection of the equator with conventional zero 

meridian (CZM), and y-axis completing a right-handed orthogonal frame which is 

shown in Figure 2.2. The Earth frame is commonly referenced as Earth centered 

Earth fixed (ECEF) frame. 

 

Figure 2.2 The Earth Frame and Navigation Frame (Adopted from [12]) 
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The navigation frame (n-frame) is a local geodetic frame and centered in the 

navigation system origin. North, east and down (NED) is commonly used form of 

local geodetic frame and it will be used in this study as well. X-axis is toward true 

north direction which is increasing latitude direction, y-axis is toward east direction 

which is increasing longitude direction, and z-axis is completing a right-handed 

orthogonal frame which is shown in Figure 2.2. Throughout this study the 

navigation frame axes are aligned with the directions of the WGS-84 Earth ellipsoid 

north, east and down directions. The position of a body is represented with geodetic 

latitude denoted as ebL / , geodetic longitude denoted as eb / , and geodetic height 

denoted as ebh / . 

 

The body frame (b-frame) has its origin which is coincident with the navigation 

frame. The body frame is also known as vehicle frame and axes are remained fix 

with the body or vehicle. X-axis is commonly defined in the forward axis of the 

vehicle, z-axis is defined in the vertical down direction, and y-axis is completing a 

right-handed orthogonal frame which is shown in Figure 2.3. If the angular rotations 

are concerned, x-y-z axes of body frame are equivalent to roll-pitch-yaw axes 

respectively. 
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Figure 2.3 The Body Frame (Bare figure is taken from [13]) 

 

The sensor frame (s-frame) has its origin which is coincident with inertial 

measurement unit origin that is commonly center point of accelerometer triad. The 

sensor frame is right-handed orthogonal frame and its schematic view is shown in 

Figure 2.4. During manufacturing of inertial measurement unit, inertial sensors 

including accelerometers and gyroscopes cannot exactly aligned with the sensor 

frame. Inertial sensor calibration procedures generally carried out in laboratory 

environment to find out the cross-coupling error terms of both accelerometer and 

gyroscope triad from the sensor frame.  

 

z
s

x
s

y
s

: Accelerometer

: Gyroscope

 

Figure 2.4 The Sensor Frame 
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2.2 The Earth Ellipsoidal Model 

 

The model that is representing the Earth surface is quite crucial for navigation 

purpose since the navigation solutions especially position are generally desired 

relative to the Earth’s surface. Therefore, two main standards namely World 

Geodetic System 1984 (WGS-84) [14] and the international terrestrial reference 

frame (ITRF) [15] are emerged. Both of those datums are based upon an ellipsoidal 

model and their origin is located at the center of mass of the Earth. 

 

“The ellipsoid is commonly defined in terms of the equatorial radius and either 

(primary or major) eccentricity of the ellipsoid, e, or the flattening of the ellipsoid, 

f.” [16]. Figure 2.5 indicates the cross-section of the Earth’s surface which is 

exaggeratedly drawn for better visualization.  Definitions of whole parameters 

shown in Figure 2.5 are well described in [16]. 

 

Figure 2.5 Cross-Section of the Earth Ellipsoidal Surface (Adopted from [16]) 

 

According to WGS-84, fundamental constants defining the ellipsoid and more are 

listed in Table 2.1. 
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Table 2.1 WGS-84 Ellipsoid Constants 

Name Symbol Value Units 

Equatorial radius R0 6378137.0 m 

Polar radius RP 6356752.3142 m 

Flattening  f 1/298.257223563 - 

Eccentricity  e 0.0818191908425 - 

Angular rate 
ie  

7.292115 x 10-5 rad/s 

Gravitational constant GM 3.986004418 x 1014 m3/s2 

  

For any point on the Earth surface, the meridian radius of curvature is defined as 

the radius a circle that is osculating in the north-south direction. The transverse 

radius of curvature is defined as the radius of the prime vertical. The meridian and 

transverse radii are denoted as RN and RE respectively. 

 
2-1 

 
2-2 

As seen from Figure 2.1, the Earth is rotating around its z-axis with approximately 

constant angular speed of ie . Using column matrix notation: 

 

2-3 

The Earth rotation rate matrix can be represented in the navigation frame by using 

the direction cosine matrix (DCM) from the Earth frame to the navigation frame. 

 2-4 

The detailed derivation and explanations related to vector rotation well presented 

in the references [16], [17], [18], [19] and [20] 

From Figure 2.2, it’s clear that the Earth frame can be transformed to the navigation 

frame by two successive simple rotations. The first one is to rotate the earth frame 

around its z-axis by the geodetic longitude eb / , then rotate the obtained 

intermediate frame around its y-axis by  ebL /2/   .  
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 2-5 

Where 

 

2-6 

 

2-7 

Expression (2.5) can be written as: 

 

2-8 

Since DCM is orthonormal by definition, substitute transpose of expression (2.8) 

into (2.4). 
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The turn rate of the navigation frame with respect to the Earth frame is commonly 

called as the transport rate in the literature. By using the expression in the references 

[16], [20] and [21] the skew symmetry matrix form of transport rate is expressed as 

follow: 
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The rotation matrix can be expressed in an exponential form and expression (2.5) 

can be written as: [21] 
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where 3,2,1iui  are unit basis vectors. Time derivative of the above expression 

is: 
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2-13 

Substitution of (2.13) and transpose of (2.8) into expression (2.11) yields: 

  

 2-14 

The column matrix form of the expression (2.14) is obtained as: 

 2-15 

 2-16 

 

2-17 

 

As explained earlier, the meridian and the transverse radii are hypothetic osculating 

circles that are intersecting the Earth surface. The meridian radii can be visualized 

as the trajectory where the circular motion in the north-south direction takes place. 

In the same manner, cosine latitude of the transverse radii can be visualized as the 

similar motion in the east-west direction. respectively. Therefore, the rate of change 

of geodetic latitude and longitude can be taken into consideration as two circular 

motions with the radii are mentioned above. 

 
2-18 

 
2-19 

 2-20 

where DENiv n

ieb ,,)(

,/  are the velocity components of the body with respect to the 

Earth frame which is resolved in the navigation frame. N,E,D are abbreviated as 

north, south and down respectively. 

Finally substitute (2.18), (2.19) and (2.20) into expression (2.17) yields: 
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2-21 

 

2.3 Inertial Navigation Mechanization Equations 

 

Throughout this study the navigation frame is commonly used for both being the 

reference frame and the resolution frame. Therefore, mainly the n-frame definitions 

and derivations of navigation equations are given in the following pages. The 

inertial frame, the Earth frame, and the Wander-Azimuth frame representations are 

well presented in [16], [22] and [24] 

 

2.3.1 Attitude Equation 

 

The attitude of a body with respect to any reference frame can be represented by 

several means including direction cosine matrix, euler angles, quaternion etc. The 

detailed explanations of mentioned attitude representations are given in the 

references [16], [25] and [26]. Direction cosine matrix representation is mainly used 

throughout this study. 

Derivative of the coordinate transformation matrix between body and navigation 

frame can be obtained by using the expression (2.11). 
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where
)(

/

b

nb is matrix form of nb /


which is angular velocity vector of a body with 

respect to the navigation frame. 
)(

/

b

nb matrix can be written as follow: 
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Substitute expression (2.23) into (2.22): 
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 2-24 

 2-25 

 
2-26 

 2-27 

where
)(

/

b

ib is representing the gyroscope triad readings, 
)(

/

n

ie  and 
)(

/

n

en  are given in 

expressions (2.10) and (2.21) respectively. 

According to [16], the expression (2.27) can be integrated with truncating the power 

series expansion of the exponential terms to first order as follows. 

 2-28 

 

2.3.2 Velocity and Position Equations 

 

Any point on the Earth can be represented by a position vector ebr /


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originated at the Earth center. The rate of change of position of any point in terms 
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(2.18), (2.19) and (2.20) respectively. For deducing the velocity equation, the 

inertial frame derivative of the position vector can be formulated via Coriolis 

theorem as follow: 
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Taking the second derivative of the above equation yields: 
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The Earth rotation rate vector ie /
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 2-33 

Resolve the above expression in ECEF reference frame: 

 
2-34 

 2-35 

For ease of convenience and sustaining readability, the following notation changes 

are made. 

  

  

  

To relate the expression (2.35) to accelerometers reading, it is necessary to point 

out what an accelerometer measures. The answer is straightforwardly a specific 

force. Specific force is a non-gravitational force sensed with respect to inertial 

frame and it is actually the force what people and accelerometers sense. Therefore, 

specific force ibf /


 is: 

 2-36 

where b


 is the acceleration due to gravitational force which does not involve any 

centripetal term. The gravitational acceleration can be decomposed as: 

 2-37 

In this case, bg


is the well-known total gravity and it consists of both centrifugal 

component and the gravitational component. Now, substitute the specific force and 

the gravity into the expression (2.35): 
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In order to obtain the navigation frame resolution of the linear acceleration term, 

the transformation matrix from the Earth frame to the navigation frame can be used. 

 2-41 

The time derivative of the above expression: 

 2-42 

The expression (2.11) can be written as: 

 2-43 

Substitute (2.43) and (2.38) into (2.42) yields: 

 2-44 

 

2-45 

 

2-46 

 
2-47 

 2-48 

The expression (2.48) can be integrated as follows. 

 
2-49 

For especially low dynamic applications, the position update shown below can be 

done via integrating the expressions (2.18), (2.19) and (2.20) respectively. 
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The flow chart of navigation frame mechanization is shown in the following figure. 

 

 

Figure 2.6 Navigation Frame Mechanization (Adopted from [11]) 

 

2.4 Inertial Navigation System Error Dynamics 

 

The mechanization equations derived in expressions (2.18), (2.19), (2.20), (2.27), 

(2.48) basically utilize inertial data with the supplied initial conditions to obtain 

navigation solutions. Thus, only the mechanization does not imply any information 

related the error of the deduced solutions. In order to analyze the error feature of 

the method used, the perturbation analysis should be carried out. The perturbation 

of position, velocity and any other vector can be expressed as 

Error = INS indicated quantity - True Counter Part  
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Three components of the curvilinear position error are 
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The velocity and inertial data errors are  
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 2-58 

 2-59 

Error in the coordinate transformation matrix can be defined as follow [16] 

 2-60 

 

2.4.1 Attitude Error 

 

The coordinate transformation matrix between body and navigation frame can be 

written in terms of 3-2-1 Euler angles sequence as follow 
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For small angles 
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First differentiate the expression (2.65), and then substitute with expression (2.22) 

into (2.66) yields 
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Substitute the expression (2.23) into (2.71) 
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Use the expression (2.60)  

 
2-74 

Use the expression (2.65)  
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Neglecting multiplication of error terms  

 2-78 

where 

b

n

ssm

b

nb

b

nb

n

b

n

nb CssmssmCssm

b
nb

})()~({
~

)(

)(

)(

/

)(

/

)(

/

)(
/

  




 

n

b

n

nb

b

n

n

nbx

b

nb CssmCssmIssm )()}({)( )(

/

)(

/33

)(

/  

  


)(0

)(

/

)(

/

)(

/

)(

/ )()()()(

termserroroftionmultiplica

n

b

n

nb

b

n

n

nb

n

b

n

nb

b

n

b

nb CssmCssmCssmCssm



 

b

n

b

nb

n

b

n

nb CssmCssm )()( )(

/

)(

/  

)(

/

)(

/

b

nb

n

b

n

nb C  

)~()~( )(

/

)(

/

)(

/

)(

/

)(

/

)(

/

)(

/

)(

/

)(

/

)(

/

b

en

b

en

n

b

b

ie

b

ie

n

b

b

ib

n

b

n

nb

b

en

n

b

b

ie

n

b

b

ib

n

b

n

nb

CCC

CCC













)}~~
()~~

({ )(

/

)(

/

)(

/

)(

/

)(

/

)(

/

n

en

b

n

n

en

b

n

n

b

n

ie

b

n

n

ie

b

n

n

b

b

ib

n

b

n

nb CCCCCCC  

)}~(

)~({

)(

/

)(

/

)(,

)(

/

)(

/

)(,)(

/

)(

/

n

en

b

n

n

en

b

n

bb

n

n

b

n

ie

b

n

n

ie

b

n

bb

n

n

b

b

ib

n

b

n

nb

CCCC

CCCCC







 

)}~))(((

)~))((({

)(

/

)(

/

)(

/33

)(

/

)(

/

)(

/33

)(

/

)(

/

n

en

b

n

n

en

b

n

b

nbx

n

b

n

ie

b

n

n

ie

b

n

b

nbx

n

b

b

ib

n

b

n

nb

CCssmIC

CCssmICC







 

)(

/

)(

/

)(

/

)(

/

)(

/

)(

/

)(

/

)(

/

)(

/

)(

/

~)(

)~(~)()~(

n

en

b

n

b

nb

n

b

n

en

n

en

n

ie

b

n

b

nb

n

b

n

ie

n

ie

b

ib

n

b

n

nb

CssmC

CssmCC







 

  




)(
/

)(
/

)(
/

)~(

~

)(

/

)(

/

)(

/

)(

/

)(

/

)(

/

)(

/

)(

/

)(

/ )~~()()~()~(

n
nb

n
in

n
in

ssm

n

en

n

ie

n

nb

n

en

n

en

n

ie

n

ie

b

ib

n

b

n

nb ssmC











)(

/

)(

/

)(

/

)(

/

)(

/

)(

/

)(

/

)(

/ )()~()~( n

nb

n

in

n

en

n

en

n

ie

n

ie

b

ib

n

b

n

nb ssmC   



22 

 

2-79 

The above expression can be represented as the first order taylor approximation as 

follow 

 

2-80 

The expression (2.79) becomes 
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And  
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Variation of RE and RN due to latitude error is weak. Therefore their 

variations can be neglected. 
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2.4.2 Velocity Error 

 

Perturbing the derived velocity mechanization equation (2.48) yields 

 

2-84 

where  

 
2-85 

 
2-86 

 
2-87 

Neglecting multiplication of error terms  

 2-88 

From gravity model given in Appendix A, the perturbed form of the local 

gravity vector can be written as follow. Since the dependency of  ebL /

over e

esr /
 is so weak, its variation can be neglected. 
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2-92 

where  
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2-98 

 

2.4.3 Position Error 

 

Time derivative of the curvilinear positions are given in the expression (2.18), 

(2.19) and (2.20). The perturbed forms are expressed as follow 

 
2-99 

 

2-100 

 2-101 

 

2.4.4 State-Space Representation of Error Dynamics 

 

The more appropriate and easy to follow method of grouping the expressions 

derived in part 2.4.1, 2.4.2 and 2.4.3 is state-space representation. 

 2-102 

where  x is system states,  F  is system internal dynamics matrix 

(shortly system matrix and  U is system input matrix. 
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Whole    ,,, VPiiFii  terms are derived in the previous sections.  
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 2-111 

where  

 

2-112 

 

2.5 Inertial Sensors Error Modelling 

 

Both of the accelerometers and gyroscopes suffer from constant error which is 

independent from the underlying specific force and angular rate. The constant error 

called as bias error is generally splitted into two fundamental part naming 

static/fixed/turn-on/repeatable part and dynamic/stability/instability part. Those 

names given with slash signs are commonly used interchangeable in literature. 

Apart from accelerometer, gyroscopes especially which are having moving parts 

such as mechanical, MEMS products suffer from acceleration dependent bias error.  

Scale factor error on the other hand is the departure of the sensor input-output 

gradient from unity. Besides that, inertial sensors exhibit different scaling error over 

the operation range and the variation related to scale factor error is named as 

nonlinearity. Both of the error sources aforementioned are illustrated on the figure 

below. 
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Figure 2.7 Scale Factor and Bias Error (Adopted from [27]) 

 

Cross-coupling errors in all types of IMU arise from the misalignment of the 

sensitive axes of the inertial sensors with respect to the orthogonal axes of the body 

frame. The sensitive axes of the inertial sensors frequently do not form orthogonal 

triad and this case is valid for both accelerometer and gyroscope triads. As stated 

by [9] and common assumptions are; 

- One of the inertial sensor axis is assumed coincident with orthogonal IMU 

body axes. Generally, x axis of accelerometer is picked as the IMU chassis 

x axis which is depicted as sensor frame defined in part 2.1 . 

- According to the first statement, y axis of the IMU chassis lies in the plane 

spanned by x and y axis of accelerometer triad. 

The assumptions given above relate the accelerometer triad to orthogonal IMU 

body axis or in other words, sensor frame by pure rotation. For the gyroscope triad, 

measurements in the non-orthogonal gyroscope triad frame can be related to 

orthogonal IMU via 6 different angle represented in the following figure. 

 



29 

 

Figure 2.8 Misalignment of Non-Orthogonal Sensor Triad (Adopted from [9]) 

 

Apart from the deterministic error terms, all kind of inertial sensors suffer from 

random noise due to various sources. Depending on the manufacturing technologies 

of inertial sensors, the source of random noise varies. 

The relationship between inertial sensors performance parameters and enabling 

technologies well tabulated into the following tables. 

 

Table 2.2 Inertial Sensor Enabling Technologies and Performance Parameter (The Upper Table is 

Adopted From [10] and The Lower Tables are Adopted From [23]) 
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2.5.1 Accelerometers Error Model 

 

Accelerometer triad sensor model used in this study is given below. 

 2-113 

where  

 True specific force 

 IMU indicated specific force 

 Accelerometers Bias 

 Scale factor and Misalignment (Cross-Coupling) error  

 White noise term (Velocity Random Walk is the main contributer) 
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2-114 

 

Dynamic bias and scale-factor non linearity errors can be modelled as 

stochastic models described in Appendix B. In this study, they are both 

modelled as a random walk process. 

 

 
2-115 

where  
),0(:

var

2

,,

iance

b

mean

b daiia
w   

 

 
2-116 

where  
),0(:

var

2

,,

iance

S

mean

S daiia
w   

 

 

2.5.2 Gyroscopes Error Model 

 

Similar to accelerometer case, gyroscope error model is given below. 
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where  

 True angular rate 

 IMU indicated angular rate 

 Gyroscopes Bias 

 Scale factor and Misalignment (Cross-Coupling) error  

 Acceleration dependent error (g-dependent) 

 White noise term (Angular Random Walk is the main contributer) 
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2-118 

 

2-119 

 

Dynamic bias and scale-factor non linearity errors can be modelled as 

exponentially correlated Gauss-Markow process which is explained in 

Appendix B. 
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CHAPTER 3 

 

3. SATELLITE NAVIGATION SYSTEMS 

SATELLITE NAVIGATION SYSTEMS 

 

 

 

This chapter mainly reviews the fundamental concepts and the basic principle of 

operation of the satellite navigation systems. First, the general system overview 

related to short history behind the operational satellite navigation systems and their 

fundamental components is briefly touched. A description of the satellite system 

observables which is actually what is being measured and the various sources of 

error buried inside that observables is given. Finally, this chapter ends with the 

analytical equations that use the mentioned measurements to form position, velocity 

and time solutions. 

 

3.1 Systems Operation Principles 

 

As stated in [28], “GPS positioning is based on the one-way ranging technique: the 

time of travel of a signal transmitted by satellites is measured and scaled by speed 

of light to obtain the satellite-user distance”. That is the fundamental principle lies 

behind the operation concept of GPS is that each satellite sends out navigation 

signals, together with a set of its orbital parameters called ephemeris data. This 

declaration is in fact valid not only GPS but also for the whole satellite systems.The 

satellite system receiver captures these signals and it is able to process and calculate 

the user position, velocity and time (PVT) solution. In order to reach that objective, 

the receiver also needs the satellite position and velocity values which are obtained 

via ephemeris information. Ephemeris is mainly a set of orbital parameters and their 

rate of change at a specified system time. Satellites continuously transmit the 

ephemeris data inside the navigation message. The transmitted ephemeris 

information is regularly updated by the ground stations which monitors the 
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satellites. According to the system, ephemeris data or satellite orbital elements are 

formed mainly in two ways. First type is that satellite ephemeris includes kepler 

parameters and the related orbit perturbation correction parameters. During the time 

of this declaration GPS, Galileo and BeiDou satellites transmit ephemeris data 

including kepler and the related perturbation parameters. However, Global 

Navigation Satellite System (GLONASS) satellites transmit ephemeris that is 

containing the position, velocity and acceleration values referenced to ECEF 

coordinate system at specified system time. The mentioned parameters which used 

to calculate satellite position and velocity from two different ephemeris form is 

detailly explained in related ICDs [29,30]. In terms of GPS and GLONASS 

satellites, several publishment such as  [31] can be followed for computing satellite 

position and velocity information from satellite transmitted ephemeris. 

The received ranging signals from transmitted satellites are decoded and used as 

range measurements between satellites and the receiver. Since within the receiver, 

a replica code of satellite-generated one is created, that code is shifted in time until 

the correlation is achieved. If both of the satellite and the receiver clocks are 

synchronized in a perfect manner, the multiplication of propagation time of the 

ranging code by the speed of light results in the true range between the satellite and 

the receiver. Generally, the receiver clock has a large bias error deviated from 

system time and the perfect synchronization is not possible. Therefore, the 

determined range during correlation process is denoted as pseudorange. As declared 

in [32], “The measurement is called pseudorange because it is the range determined 

by multiplying the signal propagation velocity, c, by the time difference between 

two nonsynchronized clocks (the satellite clock and the receiver clock). The 

measurement contains (1) the geometric satellite-to-user range, (2) an offset 

attributed to the difference between the system time and the user clock, and (3) an 

offset between system time and the satellite clock.” Therefore, in order to solve for 

the user position, range measurements from at least four distinct satellites are 

necessary because the receiver clock offset error is the fourth unknown together 

with three dimensional position unknowns. 
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3.2 Pseudorange and Delta Range Observables 

 

Before dealing with the error sources inside the observables, the timing relationship 

between satellite and the receiver is given as below. 

 

 

Figure 3.1 Range Measurement Timing Relationships (Adopted from [32]) 

 

where  

 System time at which the signal left the satellite 

 System time at which the signal reached the user receiver 

 Offset of the satellite clock from system time [advance is positive; 

retardation (delay) is negative] 

 Offset of the receiver clock from system time 

 Satellite clock reading at the time that the signal left the satellite 

 User receiver clock reading at the time the signal reached the user 

receiver 

 Speed of light 
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As indicated in the previous section, the pseudorange observables are not the true 

geometric ranges and contain error sources. The expression (3.2) is valid for error 

free environment which is not valid for the real case. Therefore, the pseudorange 

between the satellite and the receiver can be written as follows:  

 

Pseudorange 

 
3-3 

where  

 Range error due to delay induced by Ionosphere 

 Range error due to delay induced by Troposphere 

 Range error due to multipath effect 

 Range error due to random noise 

In addition to pseudorange observable, the doppler measurement can be used to 

determine the user velocity. The pseudorange rate observable is given as follows: 

Pseudorange rate  3-4 

where  

 Rate of change of geometric range 

 Rate of change of pseudorange 

 Bias error due to receiver clock drift 

 Range rate error due to random noise 

 

3.3 Satellite Navigation System Measurement Equations 

 

The true range from user to ith satellite is 

 
3-5 

 

After the corrections related to atmosphere and satellite clock are made, the 

pseudorange equation becomes; 
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3-6 

where  

 Pseudorange measurement from user position to ith satellite 

 

ith satellite position matrix 

 

The user position matrix 

 The receiver clock offset 

 Range error due to random noise 

 

The equation (3.6) is nonlinear for unknown user position. In order to construct 

linear model, it is necessary to linearize it. 

 

3-7 

Using Taylor series expansion around the approximate user position matrix denoted 

as 
)(e

ar  and neglecting higher order terms; 

 
3-8 

Using both expressions (3.7) and (3.8) result in; 
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By aid of expression (3.9), reformulate the equation (3.6). 

 

 

3-10 

In more organized way, 

 3-11 

where 

 

 

 

 

 

The expression (3.11) can be put in matrix form by using four pseudorange 

measurements. 

 

3-12 

 

If there is only four pseudorange measurements, one may use below expression for 

obtaining solution. 

 3-13 
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Generally, more than four measurements are available and the expression (3.12) 

becomes over-determined. Least square method is commonly used for that case. 

 3-14 

The aforementioned calculations with least square method are generally an iterative 

method. The solution of expression (3.14) is used to correct the approximate user 

position as described below. Later, the same procedure is followed with the new 

position and clock offset estimate until the estimated position corrections become 

so small compared to the predefined threshold. 

 

3-15 

 

The pseudorange rate is directly the time derivative of pseudorange. Therefore 

differentiate the expression (3.6) yields 
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where  

 Pseudorange rate measurement from user position to ith 

satellite 

 

ith satellite velocity matrix 

 

The user velocity matrix 

 Range rate error due to random noise 

 

Similar to pseudorange equation, the equation (3.17) can be linearized by Taylor 

series expansion around the approximate user velocity matrix denoted as
)(e

ar . 

 3-18 

where 

 

3-19 

321 ,, iii hhh are defined in the description part of expression (3.11) 

In matrix form; 

 

3-20 
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The same iterative approach and the least square method solution are exactly the 

same as pseudorange measurements counterpart given in expressions (3.13) to 

(3.15). 

 

3.4 Complementary Features of Inertial Navigation and Satellite 

Navigation Systems 

 

The overview of inertial navigation system and satellite navigation systems are 

highlighted in chapter 2 and 3 so far.  Since the sampling rate of the inertial sensors 

can be high as much as 50-1000 Hz, the INS can be operated at that rate as well. 

Oppose to INS, Satellite navigation system receivers cannot usually reach that 

much rate of generating navigation solution. In addition to that, INS is a fully self-

contained standalone navigation system and can calculate full navigation solution 

including position, velocity and the attitude of the user. Single antenna receivers 

are however cannot tell much about the attitude of the user. As briefly mentioned 

above, both of the system has strength that can eliminate each other weaknesses. 

The complementary features of INS and satellite navigation system make blended 

integration schemes outperform the individual standalone system.  

The detailed features of both systems are well tabulated below to clearly highlight 

the potential benefits of integration. 
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Table 3.1 Characteristic Features of GNSS and INS 

GNSS INS 

Low data rate (1-10 Hz) High data rate (50-1000 Hz) 

Supply 3 dimensional position and 

velocity (Attitude solution requires 

additional hardware and complex 

algorithms) 

Full navigation solution (3 dimensional 

position, velocity and attitude) 

Self-contained system (Initial states 

are not necessary but clear sky view is 

necessary to conserve accuracy level) 

Self-contained system (If initial states 

are supplied) 

Susceptible to interferences (Signal 

blockage, jamming and spoofing)  

Immune to jamming (Continuous 

operation) 

Long term accuracy (Time 

independent accuracy and stability 

level) 

Short term accuracy (Unbounded error 

growth due to constant integration 

process of noisy sensor measurements) 
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CHAPTER 4 

4. DEVELOPMENT OF MULTI-PURPOSE 

INTEGRATED NAVIGATION SYSTEM MODEL 

DEVELOPMENT OF MULTI-PURPOSE INTEGRATED NAVIGATION 

SYSTEM MODEL 

 

 

 

As stated in the earlier chapter, the development of integrated algorithm which 

incorporate different aiding sources is forming one of the main features of this 

study. For navigation applications utilizing low cost inertial sensor, the navigation 

solution accuracy degrades rapidly due to fact that uncompensated inertial sensor 

errors which is common for especially comsumer grade MEMS based inertial 

sensors produced with high quantity. Therefore, aiding inertial navigation system 

which is based on such sensors with every possible sources to calibrate the inertial 

sensors on the field becomes a critical task to maintaining the navigation 

performance several order of magnitude better when compared with pure inertial 

mean. In this study, especially for land navigation applications, one central 

commonly used Extended Kalman Filter structure is used as an integration 

algorithm that is blending the inertial navigation system with information and 

sources including GPS receiver, motion constraints of platforms, detection of static 

conditions together with field calibration of inertial sensor essentially depends upon 

magnitude of local gravity. 

 

4.1 Kalman Filtering 

 

“The Kalman filter is essentially a set of mathematical equations that implement a 

predictor-corrector type estimator that is optimal in the sense that it minimizes the 

estimated error covariance – when some presumed conditions are met.” [33]. Over 

50 years of extensive usage and practices among many researches and applications, 
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the Kalman filter is one of the most well-known mathematical tools that is 

essentially stochastic estimator from noisy measurements made from various types 

of sensors in terms of ease of understanding, optimal properties mentioned above, 

recursive estimation feature and low level of computation burden. From a very 

extensive explanation to application oriented simple examples and intuitive 

approaches related to understanding the Kalman filter is referenced in [34], [35], 

[36], [37], [38], [39], and [40]. 

 

“The Kalman filter estimates a process a form of feedback control: the filter 

estimates the process state at some time and then obtains a feedback in the form of 

(noisy) measurement.“ [33]. That is, the estimation process is based upon two 

different sets of equations which are named as time update part also known as 

predictor equations and measurement update part which includes corrector 

equations. The common form of Kalman filter recursive loop is highlighted in the 

following figure. 

 

 

Figure 4.1 Kalman Loop (Adopted from [41]) 
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Table 4.1 Kalman Loop Equations 

Time Update Measurement Update 

 

 

  

  

 

4.2 Multi-Purpose Integrated Algorithm Operational Flow 

 

The developed integrated navigation algorithm is simple integration of inertial 

navigation system with multi-measurement model Extended Kalman Filter as 

shown in the following figure. Inertial navigation mechanization process with 

necessary equations are detailly explained in chapter 2. The modular architecture 

concept comes from multi-measurement model including various types of aiding 

information from real or hypotetical sensors or estimated information enable 

integration algorithm to have a flexibility related to increase/decrease number of 

informations obtained from various forms of sources. In other words, the developed 

algorithm is operating on sequential form which is accepting any measurement from 

the modelled sources. 

 

kkk xx ˆˆ
1 



k

T

kkkk QPP 

1
   kkkkkk xHzKxx ˆˆˆ

   kkkk PHKIP

  1  k

T

kkk

T

kkk RHPHHPK



46 

 

Figure 4.2 Multi-Purpose Integrated Algorithm Operational Flowchart 

 

The well-known measurement update process that is given in the Table 4.1 is 

repeated for whole aiding informations if the necessary measurement condition sets 

are satisfied. Such condition check flow is given in the figure below. If the 

mentioned conditions are met, then the measurement update proess of Kalman filter 

takes place. 
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Figure 4.3 Generic Measurement Condition Check 

 

4.3 System Model 

 

As a system model, the standard use of full navigation error states system model 

and full inertial sensor error terms illustrated in part 2.4 and 2.5 respectively. 

From (2.113), the following expression is obtained 

 4-1 

For gyroscope case, using (2.114) in the similar manner yields 

 4-2 

In state-space representation, the above expression can be grouped as  
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4-4 

Now full state-space representation of system model can be obtained by using 

expression (4.3), (4.4), (2.103) with the system states given below. As oppose to 

Chapter 2, abbreviation such as Sa, Sg, Ma, Mg, and Gg are used here to symbolize 

column matrices which should not be  confused with the square matrices that are 

highlighted in part 2.5. 

 4-5 
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4-10 

Bias and scale factor errors of inertial sensors are modelled as random walk which 

is explained in Appendix B. 

For this study, loosely coupled integration is taken into consideration. If tight or 

ultra-tight architectures were used, it would been necessary to add GNSS receiver 

clock offset and drift to system model. For the sake of completeness, the clock offset 

and clock drift is modelled as given below. 

 
4-11 

where w is the receiver clock offset driving noise  

 4-12 

where w is the receiver clock drift driving noise  
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4.4 INS/GNSS Integration 

 

As shown in Table 3.1, the integration of INS/GNSS enables the user to exploit the 

complementary characteristics and gain uninterrupted navigation solution with both 

short and long term accuracy. The common integration schemes of INS and GNSS 

receiver illustrated in the Figure 4.4. For loosely coupled integration, both of the 

inertial navigation system and GNSS receiver navigation filter operates 

individually. GNSS receiver navigation filter outputs are aided to INS in terms of 

position and/or velocity information. As it is stated in the section 3, in order to form 

navigation solution for GNSS navigation filter four individual satellite signals are 

necessary. However, tightly coupled integration scheme uses GNSS receiver raw 

ranging information to aid INS. The last and the most cumbersome integration 

architecture is ultra-tight form (some author uses deep integration) in which GNSS 

receiver and INS devices no longer work as independent systems, GNSS 

measurement are used to estimate INS error and INS measurement to aid GNSS 

receiver tracking loops. 

 

 

Figure 4.4 Loose, Tight and Ultra-Tight INS/GNSS Navigation System 
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4.4.1 INS/GNSS Integration Measurement Model 

 

The two common integration architecture of INS and GNSS receiver  system 

measurement modelling is described below.  

 

4.4.1.1 Loosely Coupled INS/GNSS Measurement Model 

 

Loosely coupled (LC) integration mainly rely on the output of navigation filter of 

GNSS receiver which are generally 3D linear position and linear velocity 

informations. 

 4-13 

For LC, the measurement vector consists of the difference between GNSS receiver 

position, velocity and the INS position, velocity. 
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4.4.1.2 Tightly Coupled INS/GNSS Measurement Model 

 

Apart from loosely coupled integration, tight integration scheme is based on 

exploiting the raw GNSS receiver ranging and range rate informations. Since tight 

integration is not dependent upon the outputs of GNSS receiver navigation filter, 

only one integration algorithm generally Kalman filter can be used. 

  

 

4-19 

 4-20 

 

Expression (4.21) can be linearized around the approximation point via 

using the 1st  order Taylor approximation.  
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From expressions (2.18), (2.19), and (2.20), the relation between cartesian 

and curvilinear position errors which can be approximated as small 

increments can be formed as below. 

 

 

4-25 

 

 
4-26 

 

4-27 

Substitute the expression (4.20) into (4.27) 
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Similar to pseudorange equation given as (4.20), pseudorange rate expression can 

be written as follow, 

 4-30 

 4-31 

Since positiyon error dependence of PRR by LOS is so weak, neglect 

variation of LOS 
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4.5 Zero Velocity Update (ZUPT) 

 

For the land vehicle applications, the platform stops frequently especially in urban 

environment. Therefore, the stationary state of the platform can be detected to aid 

inertial navigation system via using the knowledge of hypothetical zero velocity 

measurement.  

 

4.5.1 Zero Velocity Update Measurement Model 

 

When the static state of vehicle is captured, it can be used to prevent velocity error 

growth. The measurement model expression for ZUPT is given below. 
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4.6 Non-Holonomic Constraints (NHCs) 

 

Non-holonomic constraints refer the fact that unless the vehicle jumps off the 

ground or slides to the ground, the velocity of the vehicle in the plane perpendicular 

to the forward direction (x-axis) is almost zero. 

For land vehicle, two non-holonomic constraints can be considered to aid inertial 

navigation system. Forward direction of land platforms usually aligned with the 

velocity vector unless the vehicle makes sharp turns. Therefore, a land platform can 

be approximated as a train on a rail. That is if the vehicle making its turns delicately 

then the velocity in the lateral direction (y-axis) can be taken as close to zero. 
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4.5 Lateral Motion Constaint 2D Sketch 

 

As it can be imagined from the sketch given below, when the platform accelerates 

or decelerates, it will high likely experience a pitching motion. Thus, if the speed 

of vehicle is almost constant or not changing drastically, velocity in vertical 

direction  (z-direction) can be taken close to zero. In order to obtain better 

visualization, z-axis is drawn vertically up which is contradicting with the vehicle 

body frame definition made in Chapter 2. 

 

 

4.6 Vertical Motion Constaint 2D Sketch 

 

Whole discussion aforementioned can be wrapped up as if the platform is not under 

high dynamic maneuvers and speed changes, two motion constraints can be 

accepted as a hypothetical velocity measurements. 
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4.6.1 Non-Holonomic Constraints Measurement Model 

 

Non-holonomic constraints exploit the fact that the land vehicle generally moves in 

the forward direction. Movements such as jump, fall, side-slip etc. are quite 

uncommon. 
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For the expression below, IMU sensor coordinate axis is assumed to be aligned with 

the vehicle body axis. 
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4.7 Field Calibration of Inertial Sensor 

 

Inertial sensor field calibration model is based on two different algorithmic process. 

First of all, the known magnitude of local gravity is exploited to compensate 

accelerometer triad error parameters under the name of primary calibration model. 

When the primary calibration is finished, the calibrated accelerometer triad readings 

are used as local gravity vector measurements. Lateron, the attitude computation 

algorithm which is actually readily avaliable as part of INS starts computing the 

body attitude. The gravity vector computed via attitude integration algorithm is 

discriminated with the compensated accelerometer measurements to estimate and 

calibrate the gyroscope triad errors in the name of secondary calibration model.  
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4.7.1 Primary Calibration Measurement Model 

 

When the inertial measurement unit in static condition, the regardless of the 

orientation the total magnitude of accelerometer reading is ideally equals to 

magnitude of gravity. In other words, the primary calibration measurement model 

is use the known magnitude of local gravity to compensate accelerometer bias, scale 

factor and cross-coupling errors. Moreover, the stationary condition implies that 

total angular rate can be measured by gyroscope triad must equal to the Earth 

rotation rate. Therefore, as long as the inertial measurement unit remains in static 

condition, gyroscope bias and acceleration dependent bias error can be calibrated. 

 

 

Figure 4.7 Representation of Local Gravity Vector and The Earth Rate 
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By using first order Taylor approximation  
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The accelerometer triad error model equation given as expression (2.113) is 

substitude into the equation above. 
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The measurement model can be formed as 

  xHzzz ext
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Similar to the measurement model of absolute magnitude of local gravity, 

magnitude of the Earth rate is used as a measurement. 
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By using first order Taylor approximation  
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When the inertial measurement unit in static condition, following reductions can be 

performed. Since the Earth rate is so weak, for static conditions scale factor and 

cross-coupling errors arised in gyroscopes do not cause any substantial angular rate 

error when compared to bias error. Therefore, the reduction done in equation (4.54) 

is quite acceptable in stationary cases. 
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  xHzzz ext
~

 
 

 
 

22/2 PP
a

aieP xHx
x

xh
xhz 


 






 
4-56 

 






















)(

)(
~

)(~

)(

)(
~

)(~

)(

)(
~

)(~

)(

)(
~

)(~

)(

)(
~

)(~

)(

)(
~

)(~

)(

)(
~

)(~

)(

)(
~

)(~

)(

)(
~

)(~
0

)(

)(~

)(

)(~

)(

)(~
0

)(

,/

)(

,/

)(

,/

)(

,/

)(

,/

)(

,/

)(

,/

)(

,/

)(

,/

)(

,/

)(

,/

)(

,/

)(

,/

)(

,/

)(

,/

)(

,/

)(

,/

)(

,/

181

)(

,/

)(

,/

)(

,/

1212

a

a

b

ziba

b

zib

a

a

b

yiba

b

zib

a

a

b

xiba

b

zib

a

a

b

ziba

b

yib

a

a

b

yiba

b

yib

a

a

b

xiba

b

yib

a

a

b

ziba

b

xib

a

a

b

yiba

b

xib

a

a

b

xiba

b

xib

x

a

a

b

zib

a

a

b

yib

a

a

b

xib

x
a

P

xh

xfx

xh

xfx

xh

xfx

xh

xfx

xh

xfx

xh

xfx

xh

xfx

xh

xfx

xh

xfx

xh

x

xh

x

xh

x

x

xh
H















 
4-57 

 

        xHz   

  


























2

1

2

1

2

1

P

P

P

P

P

P
x

H

H

z

z










 

4-58 

 

4.7.2 Secondary Calibration Measurement Model 

 

The secondary calibration is based on using the calibrated accelerometer signal 

from the primary calibration model to form gravity vector. The gravity vector 

obtained by attitude integration algorithm which is directly done via inertial 

navigation system attitude update part is compared with the reference gravity vector 

provided by the calibrated accelerometers. In other words, the gravity vector 

computed via calibrated accelerometers is used as a measurement to estimate 

gyroscope scale factor and cross-coupling errors. 
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Substitude expressions (2.60) and (2.65) into the above equation yields 
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The difference between the measurement and the equation (4.63) is given as 
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If the primary calibration is done, the reduced equation can be 

approximated as 
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4.8 Stationary Detection 

 

The primary calibration and zero velocity update measurement models are purely 

depend on the detection of static conditions. For this purpose, the mean quadratic 

deviations of inertial sensors readings are used as static case detection filter. When 

the inertial measurement unit in is in stationary case, variance of both the 

accelerometer and gyroscope readings do not excess certain limits.  

Empirical acceleration and angular rate thresholds are used to for this specific 

purpose. References such as [42], [43], and [44] illustrate practical uses of 

stationary detection methods. 
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Where   is representing the moving average of inertial sensor data for N point 

data window.  
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CHAPTER 5 

5. ASSESSMENT OF THE FIELD CALIBRATION 

VIA SIMULATION ANALYSIS 

ASSESSMENT OF THE FIELD CALIBRATION VIA SIMULATION 

ANALYSIS 

 

 

 

The integration algorithm stated in part 4 is developed in MATLAB Simulink 

environment together with trajectory generator and sensor models. The top level 

Simulink block diagram is given in the following figure with key explanations 

described in the Table 5.1. 

 

Figure 5.1 Top Level View of The Developed Simulation 
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Table 5.1 Simulation Block Description 

Model Block Identifer Explanations and Details 

Trajectory Generation 

(Magenta Block) 

Ideal error-free data of accelerometer and 

gyroscope triads are calculated together with error-

free 6 DOF trajectory informations. The details are 

given in the appendix C. 

Inertial Measurement Unit 

(Upper Green Block) 

Ideal inertial sensors readings are deflected with 

error parameters given in Table 5.2 according 

expressions given in the part 2.5. 

GNSS Receiver 

(Lower Green Block) 

Three dimensional ideal linear position and 

velocity data generated via trajectory generation 

block is perturbed by error counter-part modelled 

as Gauss-Markov process and random walk 

respectively. The mathematical model of 

stochastic processes are highlighted in appendix B. 

Multi-Purpose Intengration 

Algorithm 

(Orange Block) 

The developed integrated algortihm which is 

detailly explained and formulated in chapter 4. 

Results and Plots 

(Gray Block) 

It is used as data comparison, record and some 

other trivial plot functions. 

 

The simulated rotational trajectory is used as a reference signal to generate stimulus 

ideal inertial data. After a myriad of trials, the proposed calibration routine is simple 

rotation around all three axis of inertial measurement unit and the simulated sample 

ideal inertial signals are given below. Three simple rotation is simulated within in 

total 270 second and it is doubled in which the secondary calibration algorithm is 

used in the second part of the simulation while the primary calibration begins with 

the simulation. For both of the single and multi-run analysis, magnitude of local 

gravity is assumed to be perfectly known and no error model is established which 

is in fact not completely reflecting the real case. 
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Figure 5.2 Simulated Ideal Accelerometer and Gyroscope Readings 

 

The generated rotational trajectory is fed to inertial measurement unit model to 

simulate real inertial sensor data via applying sensor errors for two different grade 

of IMU which is tabulated in the Table 5.2. All values given in the Table 5.2 are 

modelled as 1 sigma (standard deviation). 

 

Table 5.2 Simulated IMU Technical Specifications 

 Automotive Grade IMU 

(Control-System Grade) 

Tactical Grade IMU 
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Bias 

[mg] 
50 1 

Scale Factor 

[ppm] 
10000 300 

Misalignment 

(Cross-coupling) 

[mrad] 

10 0.5 
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Velocity Random 

Walk (VRW) 

[meter/s2/sqrt(Hz)] 

0.0083 0.0003302 

G
y
ro

sc
o
p

e 
T

ri
a
d

 

Bias 

[degree/hr] 
200 1 

Scale Factor 

[ppm] 
10000 150 

Misalignment 

(Cross-coupling) 

[mrad] 

10 0.5 

G-Dependent Bias  

[degree/hour/g] 
100 - 

Angular Random 

Walk (ARW) 

[degree/sqrt(hr)] 

0.500 0.125 

 

Simulation study is carried out via a single run and multi-run (Monte-Carlo) 

analysis. 

 

5.1 Single-Run Analysis 

 

The developed algorithm is tested for its inertial sensor calibration feature in 

MATLAB environment via using automotive (commercial) grade IMU 

specifications. Square root of normalized variance of whole sensor error states are 

plotted and analyzed as a measure of algorithm convergence merit. The filter 

estimate of sensor errors are also plotted in the same figures to further clarify the 

performance of calibration. 
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Figure 5.3 The Filter Accelerometer Bias Estimate and Its Square Root of Normalized 

Variance 

 

As clearly seen from Figure 5.3 and Figure 5.4, the normalized variance of 

accelerometer triad bias and scale factor error estimates quickly fall below 10 

percent of the inital uncertanity value within 150 second of simulation. That is, 

accelerometer triad bias and scale factor error estimates are reasonable close to the 

modelled value when three of whole accelerometer sensors at least a period of time 

pointing locally up and down.  
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Figure 5.4 The Filter Accelerometer Scale Factor Estimate and Its Square Root of 

Normalized Variance 

 

As the orientation of the accelerometer triad changes, the cross-coupling error 

estimates approaches the modelled ones which is given in the Figure 5.5. When the 

Figure 5.1 and Figure 5.5 are evaluated together, it is necessary to orient each of 

accelerometer sensitive axis to locally up and down more than several times to 

lower the uncertainity of integration filter cross-coupling error estimates. For 

accelerometer calibration, it can be clearly deduced from this single simulation 

analysis that as long as each axis of the accelerometer triad roughly aligned with 

the local up/down direction, the major part of bias and scale factor errors are 

estimated when the uncertainty of the estimate concerned. However, since the 

second order inertial sensor error sources are not modelled and the assumption of 

perfectly known gravity is made, there will be performance degradation when 

stepped outside from the simulation world. 
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Figure 5.5 The Filter Accelerometer Cross Coupling Error Estimate and Its Square Root of 

Normalized Variance 

 

 

Figure 5.6 The Filter Gyroscope Bias Estimate and Its Square Root of Normalized Variance 

 

For the gyroscope triad, bias and g-dependent bias error estimating process begin 

with the primary calibration algorithm which also begins with the simulation start 
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while scale factor and cross-coupling errors are estimated during the secondary 

calibration process. Both of bias and g-dependent bias terms are estimating all 

through the simulation length while it can be clearly seen from Figure 5.7 that scale 

factor error is directly observed when there is rotation around the related gyroscope 

unit. That is also true for the cross-coupling error estimates and their normalized 

variance values computed from integration filter. 

 

 

Figure 5.7 The Filter Gyroscope Scale Factor Estimate and Its Square Root of Normalized 

Variance 

 

Figure 5.7 and figure 5.8 can be interpreted as the scale factor and the cross-

coupling error estimations are high likely discriminated from each other by the 

estimation process. 
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Figure 5.8 The Filter Gyroscope Cross Coupling Error Estimate and Its Square Root of 

Normalized Variance 

 

Unlike to accelerometer case, the uncertainty of cross-coupling error estimate of 

gyroscope triad fall more than %10 of the initial value when a simple rotation is 

performed around each of the gyroscopes sensitive axis. 

 

 

Figure 5.9 The Filter Gyroscope G-Dependent Bias Estimate and Its Square Root of 

Normalized Variance 
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Figure 5.10 is representing the modelled accelerometer triad and compensated 

accelerometer triad readings during the whole simulation. As it is highligted in the 

Figure 5.3 to Figure 5.5, obvious calibration result is obtained. 

 

 

Figure 5.10 Simulated Uncalibrated and Calibrated Accelerometer Data 

 

Examining the figures from 5.1 to figure 5.10 and wrapping up the single simulation 

analysis with simple rotational routine, the following outcomes can be deduced. 

Accelerometer triad: 

- As long as the magnitude of local gravity is known accurate enough, major 

part of bias and scale factor errors are compensated effectively if all axis of 

sensor array point locally up/down direction at least a single time. 

- Single simulation run indicates that cross-coupling error estimate may be 

improved further if the rotation routine is made with repeated action. 

Gyroscope triad: 

- Since the Earth rate is very weak signal especially for low grade gyroscopes, 

the noise in the sensor output becomes critical factor in the bias estimation 

process. Therefore, it can be pointed out that depending upon the sensor 

grade, noise suppressing techniques such as moving data average with 

emprically detected window size should be practiced. 
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- It can be inferred from figure 5.7 and figure 5.8, if the bias terms of 

gyroscope triad compensated, scale factor and cross-coupling errors are 

effectively calibrated with a simple rotational process around the sensitive 

axis of calibration intended gyroscope. 

 

5.2 Multi-Run Analysis 

 

In order to generalize the performance of the algorithm in a statistical manner, 

multi-run analysis is carried out. The single run analysis stated in part 5.1 is repeated 

1000 times for two different grades of inertial measurement unit. Besides, whole 

inertial sensor errors are normally distributed for each simulation run. When the 

simulations are finished, the histogram graphs of both of the modelled inertial 

sensor errors and residual terms left from calibration algorithm are plotted and the 

results are tabulated in this section. 

In order not to pollute with a myriad of figures, only bias and scale factor errors of 

the x-axis of automotive grade inertial sensors plots are given below and the rest is 

listed in Appendix D. 

 

 

Figure 5.11 Automotive Grade X Accelerometer Modelled and Residual Bias Error  
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Figure 5.12 Automotive Grade X Gyroscope Modelled and Residual Bias Error 

 

 

Figure 5.13 Automotive Grade X Accelerometer Modelled and Residual Scale Factor 
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Figure 5.14 Automotive Grade X Gyroscope Modelled and Residual Scale Factor 

 

The statistical results related to multi-run analysis are well tabulated in the 

following tables. In these tables, mean and standard deviation of modelled and 

residual error left from estimation process given. 

 

Table 5.3 Multi-Run Analysis Results for Accelerometer Triad 

 

 Automotive Grade IMU Tactical Grade IMU 

 Modelled Error Residual Error Modelled Error Residual Error 

 Mean Std Mean Std Mean Std Mean Std 

A
cc

el
er

o
m

et
er

 T
ri

ad
 

B
ia

s 

Bax [mg] 1.1456 50.924 0.0233 0.092 0.0229 1.0185 0.0000 0.0036 

Bay [mg] -2.2110 49.186 0.0068 0.345 -0.0442 0.9837 0.0000 0.0038 

Baz [mg] -2.3847 48.944 -0.0997 0.412 -0.0477 0.9789 -0.0001 0.0035 

Sc
al

e 
Fa

ct
o

r Sax [ppm] -526.46 9836.7 -101.88 141.72 -15.794 295.101 0.0732 4.273 

Say [ppm] 43.70 10003.0 199.74 255.85 1.311 300.091 0.0498 4.446 

Saz [ppm] 393.31 9991.4 283.69 283.44 11.799 299.743 0.7189 4.067 

M
is

al
ig

n
m

en
t 

(C
ro

ss
-c

o
u

p
lin

g)
 

Maxy [mrad/ 

(arcsec)] 

0.4022 

(81.44) 

10.019 

(2028) 

-0.0017 

(-0.344) 

0.0553 

(11.21) 

0.0201 

(4.072) 

0.5010 

(101.4) 

-0.0006 

(-0.115) 

0.0076 

(1.537) 

Maxz [mrad/ 

(arcsec)] 

0.3494 

(70.74) 

10.205 

(2066) 

0.0341 

(6.906) 

 

0.1648 

(33.37) 

0.0175 

(3.537) 

0.5102 

(103.3) 

-0.0001 

(-0.021) 

0.0122 

(2.479) 

Mayz [mrad/ 

(arcsec)] 

0.1276 

(25.85) 

10.107 

(2046) 

0.0399 

(8.099) 

0.0914 

(18.51) 

0.0064 

(1.293) 

0.5054 

(102.3) 

-0.0001 

(-0.191) 

0.0197 

(3.985) 
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For both of automotive and tactical grade IMUs, the accelerometer error estimates 

are quite match with the modelled values during multi-run simulations. Moreover, 

it can be seen from both Figure 5.11, Figure 5.13, accelerometer related figures in 

Appendix D and the table above, all of the accelerometer errors calibrated well and 

two to three orders of magnitude enhancement can be accomplished compared to 

the modelled sensor errors. Although the degree of improvement is nearly same for 

different grades of inertial sensors, there will be expectation for performance 

degradation in the estimation process for real cases due to the assumption of error-

free gravity model. Since the main motivation of this work is more concentrated on 

the low cost inertial sensors, the well-known and commonly used gravity model 

such as normal gravity, J2, J4, etc. are quite adequete for the field calibration 

process. The reference [45] depicts comparison among the popular gravity models 

used commonly by navigation society.  As it is highlighted in the references such 

as [46] and [47], the common form of simple gravity models such as ellipsoid 

gravity model differ from the actual gravity less around 100 mgal (approximately 

0.1 mg) which is shown in gravity disturbance figures shown below . Gravity 

disturbance is defined as the difference between the actual gravity value for any 

arbitrary point on the Earth with the ellipsoid gravity model indicated value for the 

same location. As seen from the sample figures below, the gravity signal obtained 

from the ellipsoid gravity model is actually highly accurate reference signals for 

low cost, especially uncompensated accelerometers. 
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5.15 Gravity Disturbances Around Sample Trajectories (The Upper Figure is Adopted From [46] and The Lower 

Figures are Adopted From [47]) 

For gyroscope case, the field calibration algorithm results in nearly two order of 

magnitude enhancement for gyroscope main sensor errors except from g-dependent 

bias error for automotive grade typical uncompensated modelled gyroscope values. 

Acceleration dependent error of gyroscopes can be improved around an order of 

magnitude but as it is seen from Figure 5.9, further orientation change with repeated 

action to align the sensitive axis of each sensor inside the gyroscope triad with local 

down direction may increase the performance of estimation process. Besides from 

low grade inertial sensor, for tactical grade gyroscope specifications several order 

of magnitude increase in scale factor and cross-coupling errors can be seen from 

Table 5.4 which can be also seen from the figures given in Appendix D. Apart from 

scaling errors the bias error estimate of tactical grade gyroscope can be improved 

about several times better than the modelled error in which the noise level of 

gyroscope signal becomes the limiting factor. The gained experience from 

simulation studies indicate that in order to obtain better estimation performance for 
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especially gyroscope bias error, long period of averaging time becomes necessary 

to suppress the noise effect of sensor signal. In other words, moving from low grade 

gyroscope to high grades toward navigation grade and further, the averaging time 

for bias estimation proportionally increase the duration of field calibration process. 

 

Table 5.4 Multi-Run Analysis Results for Gyroscope Triad 

 

 Automotive Grade IMU Tactical Grade IMU 

 Modelled Error Residual Error Modelled Error Residual Error 

 Mean Std Mean Std Mean Std Mean Std 

G
y

ro
sc

o
p

e
 T

ri
a

d
 

B
ia

s 

Bgx [°/hr] -0.2201 198.66 -4.3182 3.787 -0.0011 0.9933 -0.0131 0.2329 

Bgy [°/hr] 4.8621 195.94 0.8005 4.768 0.0243 0.9797 0.0223 0.4874 

Bgz [°/hr] -4.3174 201.7 -3.5579 3.680 -0.0216 1.0085 -0.0158 0.2417 

S
ca

le
 F

a
ct

o
r Sgx [ppm] -217.79 9850.2 253.19 248.85 -3.2668 147.753 0.6285 17.744 

Sgy [ppm] -253.30 9401.4 -43.09 276.08 -3.5296 141.021 -1.5150 28.165 

Sgz [ppm] -86.719 10069 219.48 237.11 -1.3008 151.040 0.7212 18.821 

M
is

a
li

g
n

m
e

n
t 

(C
ro

ss
-c

o
u

p
li

n
g

) 

Mgxy [mrad/ 

(arcsec)] 

0.3176 

(64.32) 

10.123 

(2050) 

0.2525 

(51.13) 

0.2262 

(45.80) 

0.0159 

(3.216) 

0.5062 

(102.5) 

0.0005 

(0.107) 

0.0205 

(4.150) 

Mgxz [mrad/ 

(arcsec)] 

-0.0717 

(-14.53) 

10.143 

(2053) 

0.2443 

(49.48) 

0.2659 

(53.85) 

-0.0036 

(-0.726) 

0.5071 

(102.7) 

0.0020 

(0.407) 

0.0235 

(4.749) 

Mgyx [mrad/ 

(arcsec)] 

-0.6554 

(-132.7) 

9.867 

(1998) 

-0.1323 

(-26.79) 

0.3864 

(78.23) 

-0.0328 

(-6.636) 

0.4934 

(99.9) 

-0.0027 

(-0.545) 

0.0382 

(7.733) 

Mgyz [mrad/ 

(arcsec)] 

-0.2942 

(-59.57) 

9.900 

(2005) 

0.0272 

(5.504) 

0.3231 

(65.43) 

-0.0147 

(-2.978) 

0.4950 

(100.2) 

-0.0014 

(-0.285) 

0.0371 

(7.521) 

Mgzx [mrad/ 

(arcsec)] 

-0.2824 

(-57.18) 

10.503 

(2127) 

0.2372 

(48.02) 

0.3022 

(61.19) 

-0.0141 

(-2.859) 

0.5251 

(106.3) 

0.0015 

(0.311) 

0.0250 

(5.068) 

Mgzy [mrad/ 

(arcsec)] 

-0.3198 

(-64.75) 

10.126 

(2050) 

0.1394 

(28.22) 

0.2313 

(46.85) 

-0.0160 

(-3.238) 

0.5063 

(102.5) 

0.0010 

(0.196) 

0.0210 

(4.258) 

G
y
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sc

o
p
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A
cc

e
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o
n

 D
e

p
e

n
d

e
n

t 
E

rr
o

r Ggxx [°/hr/g] 2.570 91.388 -8.424 5.645 - - - - 

Ggxy [°/hr/g] 0.144 92.356 0.233 3.650 - - - - 

Ggxz [°/hr/g] -4.756 90.891 0.695 3.560 - - - - 

Ggyx [°/hr/g] 0.083 91.034 -0.538 2.984 - - - - 

Ggyy [°/hr/g] 0.747 88.295 -6.639 7.297 - - - - 

Ggyz [°/hr/g] -2.808 89.164 0.371 4.206 - - - - 

Ggzx [°/hr/g] -4.547 89.792 -0.443 2.587 - - - - 

Ggzy [°/hr/g] -3.494 89.372 -0.092 3.728 - - - - 

Ggzz [°/hr/g] 1.070 90.745 -7.459 7.732 - - - - 



79 

CHAPTER 6 

 

6. FIELD TESTS 

FIELD TESTS 

 

 

 

Outcomes of the simulation studies defined in chapter 5 are quite promising and 

thus application of the simulated work becomes necessary for further clarification. 

Therefore, field tests are carried out by using very low cost equipment which is 

described in part 6.1 to fortify the theoretical work and developed algorithm in 

terms of both field calibration feature and inertial navigation system aiding modes 

other than GNSS receiver. The reason of using cheap inertial measurement unit 

comes from the fact that it is overlapping with the main motivation of this research 

which is calibration of the low cost inertial sensor on the field. On top of that, during 

the field tests non-GPS/GNSS aid mode which is referred to combination of ZUPT 

and NHCs is tested as well.  

 

6.1 Test Hardware and Equipment 

 

Hardwares used in testing process include Ardupilot APM 2.5 for IMU labeled as 

MPU 6000 onboard and Ublox M8N as a GPS receiver. During both static and 

dynamic tests, both of the inertial sensors and GPS receiver data are recorded in 

flash memory of Ardupilot which is later on exported to personal computer. The 

exported data is post-processed in MATLAB environment. Besides, the power 

input of the APM unit is supplied from labtop USB COM port via mini USB 

interface cable. 
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Table 6.1 Main Test Hardware 
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Arduino, ArduPilot (APM 2.5) = 25 $ 

- MPU 6000 Evaluation Board 

 3 Axis Gyroscopes 

 3 Axis Accelerometers 

 3 Axis Magnetometers 
 

Figure 6.1 Ardupilot APM 2.5 
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Ublox M8N = 30 $ 

 

Figure 6.2 Ublox M8N GPS Receiver 

 

In order to establish field calibration procedure with the proposed rotational process 

that is dealt with during simulation study, low cost fixture is built from furniture 

connection parts from local store around 5 $ cost. The calibration fixture is actually 

assembled from four “L” shape and a flat aluminum furniture connection parts 

which are bolted together. The unit under test is sticked to the flat surface with 

double sided tape. 

 

 

Figure 6.3 Low-Cost Calibration Fixture  
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Apart from MPU 6000 inertial measurement unit which is built in ArduPilot APM 

2.5 card, two different relatively costly IMUs compared to APM undergo the same 

field calibration routine to assess the performance gain for various inertial sensor 

hardware. The inertial sensors data are collected from those units via the 

connector/cable and necessary software which are supplied in the related 

development kit. 

 

VectorNav VN-200 = 2600 $ 

(GPS integrated INS) 

Xsens Mti-G-710 = 3800 € 

(GPS integrated INS) 

 

Figure 6.4 VN-200 with Calibration Fixture 

 

Figure 6.5 Mti-G-710 with Calibration 

Fixture 

 

6.2 Field Calibration Process and Performance Tests 

 

After the simulation studies related to the field calibration algorithm, orientation 

procedure mainly consists of three simple rotation around each of the IMU sensor 

axes. 

The proposed simple rotation based calibration process is given in the following 

figure. In other words, the handmade calibration fixture is rotated at roughly around 

45 degrees orientation poses around all three of the IMU in which each of the 

inertial sensors at least rotated once around the axis perpendicular to locally 

up/down direction. The calibration process is repeated for three different IMUs 

described in the previous section. 
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Figure 6.6 Calibration Routine 

 

6.2.1 Static Tests 

6.2.1.1 Ardupilot MPU-6000 Case 

 

The above calibration routine given in the Figure 6.6 is based upon simple 

orthogonal rotation from all three axis of inertial sensors. The logged data from 

three different inertial measurement units are post processed with the developed 

algorithm. Later on, the calibrated and uncalibrated inertial sensor readings are fed 

into inertial mechanization equations which is inherently built in the integrated 

algorithm to see whether the field calibration process increase the navigation 

performance. The initial position is taken from GPS measurement and the initial 

attitude information is obtained from accelerometer levelling. The levelling process 

is given in the references [48], and [49]. 
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The calibrated and uncalibrated raw readings from ArduPilot accelerometer are 

given in the following figure. 

 

 

Figure 6.7 Ardupilot MPU-6000 Calibrated and Uncalibrated Accelerometer Data 

 

The horizontal and vertical positioning errors are plotted for raw inertial sensor 

readings, only gyroscope calibrated and full calibrated inertial sensor readings. 

As it can be seen from figure below, the accelerometer errors are the dominant 

source of the positioning error. From Figure 6.7, it is crystal clear to notice that 

around 100 mg misreading of gravity magnitude in accelerometer-z sensor which 

in turn leading to more than a km vertical positioning error under just 60 seconds. 
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Figure 6.8 Ardupilot MPU-6000 Horizontal and Vertical Positioning Error 

 

6.2.1.2 VN-200 Case 

 

The same test is carried out for both of the VN-200 and Mti-710-G units. Calibrated 

and uncalibrated raw accelerometer readings of VN-200 are given below. 

 

Figure 6.9 VN-200 Calibrated and Uncalibrated Accelerometer Data 
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Calibrated and uncalibrated raw gyroscope readings of VN-200 are given below. 

The gyroscope data before calibration and the calibrated gyroscope data are plotted 

only for VN-200 case because of the fact that the high amount of angular rate bias 

error in sensor readings which is obviously illustrated in the figure below. Although 

the bias error of gyroscope-z is around 1 degree per second level, it does not cause 

static positioning error due to fact that it is responsible for heading angle error 

acumulation. However, comparably high amount of angular rate bias error in one 

of the horizontal gyroscope cause main portion of horizontal positioning error 

shown in the Figure 6.11. 

 

 

Figure 6.10 VN-200 Calibrated and Uncalibrated Gyroscope Data 
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Figure 6.11 VN-200 Horizontal and Vertical Positioning Error 

 

6.2.1.3 Mti-710G Case 

 

The same field calibration attitude orientation routine given in the Figure 6.6 is 

applied to Mti-710-G as well and the positioning error graphs are given below. The 

results are quite similar to VN-200 case which is the main sources of static 

positioning error of pure inertial navigation system solution induced by bias error 

of gyroscopes in the horizontal plane.  
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Figure 6.12 Mti-710G Horizontal and Vertical Positioning Error 

 

Static tests conducted with three different MEMS IMU and more than an order of 

magnitude of positioning accuracy gain is achieved via field calibration process. 

That is, the field calibration orientation routine rotated to arbitrary angles by hand 

demonstrate its effectiveness in static positioning performance which is in fact 

directly related to how well inertial sensor errors are compensated. 

 

6.2.2 Dynamic Tests 

 

In addition to static tests applied for various inertial measurement units, dynamic 

test for land vehicle application is taken into consideration. Integration with GPS 

receiver and aiding modes other than GPS receiver are tested during dynamic tests. 

Both of ArduPilot and the GPS receiver mounted on the main part of the calibration 

fixture that are sticked to the dashboard of a car. 
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Figure 6.13 Dynamic Test Hardware and Dashboard View 1 

 

 

Figure 6.14 Dynamic Test Hardware and Dashboard View 2 

 

The dynamic test process is done for two different trajectory in Elmadag which is 

one of the state of Ankara. The mentioned trajectories are plotten from the data 

obtained by Google Earth application. During the dynamic tests, the data obtained 

from ArduPilot inertial sensor readings and uBlox GPS receiver data are fed to the 

developed integrated algorithm while various form of aiding modes are active. 

Besides that, intensional GPS receiver track losses are created to further investigate 

the performance increase with algorithm aiding modes. 
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Figure 6.15 Dynamic Test Trajectories 

 

6.2.2.1 Trajectory 1 

 

The 2D/3D positioning, NED velocity and Euler angles calculated from the 

integrated algorithm with various forms of algorithm modes are given in the Figure 

6.16 to Figure 6.20.  
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Figure 6.16 Trajectory 1, 2D-3D Position Data 

 

As it is previously seen from the static tests highligted in part 6.2.1.1, errors in 

uncompensated inertial sensor especially accelerometers cause so called “garbage” 

navigation velocity and positioning solution which is obviously indicated in the 

velocity comparison plot given below. The field calibration algorithm remedies 

especially for vertical channel navigation accuracy illusturated in the Table 6.2 with 

several orders of magnitude increase in positioning and velocity solution accuracy. 

However, whether or not the field calibration is done, the navigation accuracy 

obtained is not enough and the stand alone INS solution cannot be used for long 

period of time. On the other hand the non-GNSS abbreviated as “NG” aiding modes 

highly increase the accuracy of navigation outputs which is tabulated in the Table 

6.2 and the performance increase is also seen from the Figure 6.16 and Figure 6.17. 

Together with the inertial sensor field calibration procedure, the “NG” aiding 

results in below 20 meter horizontal positioning and below 80 meter vertical 

positioning accuracy within nearly 10 minutes of typical land vehicle test scenerio 

in urban environment. 
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Figure 6.17 Trajectory 1, NED (North-East-Down) Velocity Data 

 

 

Figure 6.18 Trajectory 1, Euler Angle Data 
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Performance table belongs to whole test scenerios related to trajectory 1 is given 

below. The Figure 6.19 and Figure 6.20 is representing the positioning solution 

performance of integrated algorithm with different types of algorithm modes while 

the GPS receiver aid is inactive. The power of field calibration algorithm is 

straightforwardly distinguished from Figure 6.20 that is the more than an order of 

magnitude increase in performance is achived. Apart from the field calibration 

process, the non-GNSS aid modes also yield the similar performance gain with the 

short term pure inertial solution obtained from the field calibrated inertial sensors. 

 

Table 6.2 Trajectory 1 Navigation Performance Table 

 Position Accuracy 

(meter) 

Velocity Accuracy 

(meter/second) 

Rotational Accuracy 

(degree) 

 GPS 

Aid 

Operational 

Modes 

Horizontal Vertical Horizontal Vertical Roll / Pitch / Yaw 

 

T
ra
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c
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ry
 1

 

None INS+CIMU 6188.15 315.94 37.64 1.06 0.49 / 0.52 / 2.49 

None INS+CIMU+

NG 

18.33 71.94 0.69 0.43 0.19 / 0.30 / 1.75 

None INS 6978.13 71771.49 32.21 343.22 0.80 / 0.96 / 7.73 

None INS+NG 66.27 101.90 1.35 0.61 0.34 / 1.34 / 4.38 

Full INS 1.61 4.19 0.37 0.87 0.31 / 0.36 / 1.06 

Partial INS+CIMU 34.31 10.41 1.38 0.19 0.11 / 0.08 / 0.60 

Partial INS+CIMU+

NG 

27.74 8.88 1.11 0.23 0.11 / 0.11 / 1.13 

Partial INS 159.43 803.34 7.35 32.82 0.32 / 0.65 / 1.54 

Partial INS+NG 19.22 17.42 1.05 1.01 0.24 / 0.46 / 1.44 

Notes 

All calculations are compared with (Full GPS Aided INS + CIMU) solution 

None GPS aid is not used at all 

Full GPS aid is fully used throughout trajectory 

Partial Intentional GPS signal loss assumed 

INS Inertial Navigation System 

CIMU Calibrated Inertial Measurement Unit (Field calibration is done) 

NG Non-GPS/GNSS modes active 
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Figure 6.19 Trajectory 1, 2D-3D Position Data for Intentional GPS Loss Case 

 

 

Figure 6.20 Trajectory 1, Horizontal and Vertical Positioning Error Data for Intentional 

GPS Loss Case 
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6.2.2.2 Trajectory 2 

 

The 2D/3D positioning, NED velocity and Euler angles calculated from the 

integrated algorithm with various forms of algorithm modes are given in the Figure 

6.21 to Figure 6.25.  

 

 

Figure 6.21 Trajectory 2, 2D-3D Position Data 

 

Similar to trajectory 1 case, pure inertial navigation solution with uncompensated 

inertial sensor data cause highly degraded navigation velocity and positioning 

solution. On the other hand the non-GNSS aiding modes again highly increase the 

accuracy of navigation outputs which is tabulated in the Table 6.3 and the 

performance increase is also seen from the Figure 6.21 and Figure 6.22. Together 

with the inertial sensor field calibration procedure, the “NG” aiding results in below 

30 meter horizontal positioning and below 6 meter vertical positioning accuracy 

within nearly 10 minutes of typical land vehicle test scenerio in urban environment. 
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Figure 6.22 Trajectory 2, NED (North-East-Down) Velocity Data 

 

 

Figure 6.23 Trajectory 2, Euler Angle Data 
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Performance table related to whole test scenerios related to trajectory 2 is given 

below. Similar to trajectory 1, the Figure 6.24 and Figure 6.25 is representing the 

positioning solution performance of integrated algorithm with different types of 

algorithm modes while the GPS receiver aid is inactive. Performance gain in terms 

of navigation accuracy due to field calibration is again significant which is quite 

similar to outcomes of trajectory 1. The power of field calibration algorithm is 

straightforwardly distinguished from Figure 6.25 that is the more than an order of 

magnitude increase in performance is achived. Similar to the trajectory 1, the non-

GNSS aid modes also yield the comparabely higher performance gain with the short 

term pure inertial solution obtained from the field calibrated inertial sensors. 

 

Table 6.3 Trajectory 2 Navigation Performance Table 

 Position Accuracy 

(meter) 

Velocity Accuracy 

(meter/second) 

Rotational Accuracy 

(degree) 

 GPS 

Aid 

Operational 

Modes 

Horizontal Vertical Horizontal Vertical Roll / Pitch / Yaw 

T
ra

je
c
to

ry
 2

 

None INS+CIMU 6811.25 1275.34 40.08 5.73 0.69 / 0.62 / 1.33 

None INS+CIMU+

NG 

27.12 16.63 0.86 0.08 0.09 / 0.10 / 1.26 

None INS 8559.36 84280.23 70.39 379.38 1.08 / 1.11 / 10.01 

None INS+NG 32.55 21.41 1.03 0.34 0.24 / 0.40 / 5.44 

Full INS 1.609 4.45 0.38 0.92 0.31 / 0.31 / 2.04 

Partial INS+CIMU 95.94 41.34 2.65 0.94 0.22 / 0.16 / 0.48 

Partial INS+CIMU+

NG 

28.73 5.99 0.99 0.09 0.08 / 0.08 / 0.31 

Partial INS 450.49 2223.17 11.56 56.91 0.95 / 0.91 / 2.13 

Partial INS+NG 30.05 19.62 1.73 0.81 0.28 / 0.49 / 2.57 

Notes 

All calculations are compared with (Full GPS Aided INS + CIMU) solution 

None GPS aid is not used at all 

Full GPS aid is fully used throughout trajectory 

Partial Intentional GPS signal loss assumed 

INS Inertial Navigation System 

CIMU Calibrated Inertial Measurement Unit (Field calibration is done) 

NG Non-GPS/GNSS modes active 
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Figure 6.24 Trajectory 2, 2D-3D Position Data for Intentional GPS Loss Case 

 

 

Figure 6.25 Trajectory 2, Horizontal and Vertical Positioning Error Data for Intentional 

GPS Loss Case 
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CHAPTER 7 

 

7. DISCUSSION AND CONCLUSION 

DISCUSSION AND CONCLUSION 

 

 

 

In this research, 

- The basis of inertial navigation and its integration with other aiding is 

studied and analyzed. 

- EKF based field calibration algorithm is developed, analyzed in simulation 

environment and tested with real hardware. 

- Single-run and multi-run simulation analysis for both tactical and 

automotive grade IMU show the tremendous increase in the performance. 

- Very low cost (sub 100$) GPS aided INS is developed and tested during 

static and dynamic tests. 

- Three different inertial measurement unit is tested with the developed 

calibration algorithm and the static positioning tests show the performance 

improvement of the method. 

- Land vehicle based dynamic tests for two different trajectories are carried 

out. 

- During the dynamic tests, non-GNSS aid such as non-holonomic constraints 

and zero velocity update modes are tested. 

- Dynamic tests indicate that use of non-GNSS aid is way more superior to 

the pure inertial mean whether the IMU is calibrated or not. 

- If the calibration procedure is carried out together with the non-GNSS aid 

modes, it is shown that the very low cost IMU and GPS receiver can be used 

to build integrated navigation system for land applications with accuracy of 

positioning can be useful (< 50 meters) for couple of minutes of receiver 

unavailability. 
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- It is shown that the field calibration process enables the calibration of 

inertial sensors without the need of accurate, expensive laboratory 

equipment and the extensive labor of laboratory works. 

- Application of the field calibration process toward the highly accurate 

inertial measurement units (ranging from tactical grade to navigation and 

further grades) left for future studies. Apart from that, the sensitivity 

analysis related to relationship between field calibration performance and 

gravity model error topic needs high amount of attention. In this study, 

commonly used simple gravity models are taken as error-free models which 

is exactly opposing the reality. However, the accuracy of those simple 

models is quite adequate for field calibration of low grades especially 

uncompansated inertial sensors. 

- It is deduced that simple non-accurate and low cost rotary platforms can be 

used for calibrating numbers of IMU at the same time with the embedded 

version of the field calibration algorithm. In other words, inertial sensor 

calibration for mass production facilities can be done without requiring any 

rigorous calibration processes and manpower especially for low 

performance uncompansated IMUs.   

- The comparison of calibration performance of the field calibration 

algorithm with the classical laboratory calibration methods for various types 

of IMUs is left for future work. The study made in this research will be 

highly beneficial for going forward through that aim. 

- The multi-measurement model Kalman filter is tested to be easy to 

implement method for fusing data from various sources. The modularity of 

the developed filter structure is highly flexible for employing various types 

sensor to be data fused together. This feature is an another main objective 

left for future study to work and blend different data sources for different 

application fields covering navigation applications for land, sea, and air to 

yield better performance compared to the stand-alone cases. 
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APPENDIX A 

 

A. GRAVITY MODEL 

GRAVITY MODEL 

 

 

 

As explained in reference [16] Somigliana gravity model described below is used 

in this study. Any other gravity model such as J2-J4 gravity model can be used as 

well. 

  
A-7-1 

 

 

 

 

A-7-2 

 

A-7-3 

 A-7-4 

 A-7-5 

 
A-7-6 

 

 

 

 

 

)
)(sin1

))(sin001931853.01(
7803253359.9(*

1

0

0

)(

/

22

/

2

/0

eb

eb
eb

N

Le

L
Lg























E

ES

N

E

N

IEeb

N

eb

N rCssmLgL 2

/0/0 ))(()()(  

)(sin)1()(cos,

)sin()1(

)sin()cos(

)cos()cos(

/

222

/

2

/

2

//

//

ebebE

E

ES

ebE

ebebE

ebebE

E

ES LeLRr

LRe

LR

LR

r 



















 



)(
)(

)(
)( /02

/

2

/ eb

N

eb

E

ES

E

ES

eb

N

IB L
hr

r
L 




E

EB

N

E

N

IEeb

N

IBebeb

N rCssmLhLg 2

/// ))(()(),(  





















)sin())1((

)sin()cos(

)cos()cos(

//

2

//

//

ebebE

ebebE

ebebE

E

EB

LhRe

LR

LR

r 





108 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



109 

APPENDIX B 

 

B. STOCHASTIC PROCESSES 

STOCHASTIC PROCESSES 

 

 

 

Various types of stochastic processes are well documented in Gelb [50], Priestley 

[51], and their application in inertial navigation is studied and reported in Jekeli 

[52], Grewal et al. [53], Rogers [54]. Also El-Diasty et al [55], Nassar [56], 

Flenniken et al [57], and Wall and Bevly [58] are key papers that describe the 

practical implementation for these stochastic processes. According to [calibration 

and stoch proc,56], the following terms should be defined  

- Continous time signals are signals that are described by an analytical 

function of time 

- Discrete time signals are signals that have values only at discrete instants of 

time. Sampling a contionus-time signal generates a discrete signal 

- Stationary stochastic process is a process whose joint probability 

distribution does not change when shifted in time or space. 

- Autocorrelation function of a discrete signal is the expected value of the 

product of a random signal with a time-shifted version of itself. 

In this part, only three stochastic models are stated which are names as; 

- Random constant 

- Random walk 

- Gauss-Markov 

 

B.1 Random Constant (RC) Model 

 

A random constant or bias can be described as an unpredictable random quantitiy 

with a constant value through the following differential equation is continuous time 

domain [52] 
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B-1 

In discrete time, the process is represented by the following equation: 

  
B-2 

a  

B.2 Random Walk (RW) Model 

 

A random walk (RW) process is a zero-mean Gaussian stochastic process with 

stationary independent increments i.e, in a RW process the difference (𝑥𝑘 − 𝑥𝑘−1) 

is a purely random sequence 𝑤𝑘. A RW can be described through the following 

differential equation in continuous time domain [52] 

  
B-3 

a In discrete time, process can be described through the following equation [53] 

  
B-4 

a  

B.3 Gauss-Markov Model 

 

Gauss-Markov (GM) random processes are stationary processes that have 

exponential autocorrelation functions. The GM process is important because it is 

able to represent a large number of physical processes with reasonable accuracy and 

has a relatively simple mathematical formulation [50]. For a random process 𝑥 with 

zero mean, mean squared error 𝜎2, and correlation time 𝑇𝑐, the first-order GM 

model is described by the following continuos-time equation [50] 

  B-5 

The first-order GM process is discrete time can be written as [53] 

   B-6 
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APPENDIX C 

 

C. TRAJECTORY GENERATION 

TRAJECTORY GENERATION 

 

 

 

In this study, the main purpose of trajectory generation process is generating inertial 

measurement unit stimulus data which are perfect accelerometer triad and perfect 

gyroscope triad measurement from defined both linear and rotational trajectory. In 

order to accomplish that aim, the reverse procedure of inetial navigation 

mechanization is used. In order to visualize and define trajectory in navigation 

reference frame, it’s necessary to supply time series of body linear acceleration 𝑎𝑏/𝑒
𝑏  

and body angular rotation around navigation reference frame 𝜔𝑏/𝑛
𝑏  data resolved in 

body axis together with initial geographic location, body linear velocity and 

orientation. 

From equation (2.23) , it is straightforward to deduce gyroscope readings from 

given body rotation 𝜔𝑏/𝑛
𝑏 . 

 

 

 

C-1 
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n

ie  and 
)(

/

n

en  are given in expressions (2.10) and (2.21) respectively. 

For accelerometer readings, the expression (2.48) is manipulated as follows 

 

C-2 

 

The similar approach given in the expression (2.41) is used between body and 

navigation frames to obtain 𝑎𝑏/𝑒
𝑛 . 
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 C-3 

The time derivative of the above expression: 

 C-4 

 

Where 

 C-5 

Substitude (C-5) into the expression (C-4) results in the following expression 

 

 

 

C-6 

 

The inverse inertial navigation mechanization based trajectory generation can be 

recursively processed as given below. 

1. Update 𝜔𝑛/𝑒
𝑛  and 𝜔𝑒/𝑖

𝑛  by using prior 𝐿𝑏/𝑒 , 𝜆𝑏/𝑒 , ℎ𝑏/𝑒 and 𝑣𝑏/𝑒
𝑛 . 

2. Update 𝐶𝑏
𝑛 via integrating expression (C-5) by using updated 𝜔𝑛/𝑒

𝑛 , 𝜔𝑒/𝑖
𝑛  and 

given 𝜔𝑏/𝑛
𝑏 . 

3. Calculate 𝜔𝑏/𝑖
𝑏  via expression (C-1) by using updated 𝐶𝑏

𝑛, 𝜔𝑛/𝑒
𝑛 , 𝜔𝑒/𝑖

𝑛  and 

given 𝜔𝑏/𝑛
𝑏 . 

4. Calculate 𝑎𝑏/𝑒
𝑛  via expression (C-6) by using prior 𝑣𝑏/𝑒

𝑛 , updated 𝐶𝑏
𝑛, given 

𝜔𝑏/𝑛
𝑏  and 𝑎𝑏/𝑒

𝑏 . 

5. Update 𝑣𝑏/𝑒
𝑛  via integrating the updated 𝑎𝑏/𝑒

𝑛 . 

6. Update 𝐿𝑏/𝑒 , 𝜆𝑏/𝑒 , ℎ𝑏/𝑒 via integrating the updated 𝑣𝑏/𝑒
𝑛 . 

7. Calculate 𝑓𝑏/𝑖
𝑏  via expression (C-2) by using updated 𝐶𝑏

𝑛, 𝐿𝑏/𝑒 , 𝜆𝑏/𝑒 , ℎ𝑏/𝑒, 

𝑣𝑏/𝑒
𝑛 , 𝜔𝑛/𝑒

𝑛 , 𝜔𝑒/𝑖
𝑛  and 𝑎𝑏/𝑒

𝑛 . 
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APPENDIX D 

 

D. MC FIGURES 

MC FIGURES 

 

 

 

D.1 Automotive Grade 

 

 

Figure D.7.1 Automotive Grade Y Accelerometer Modelled and Residual Bias Error 
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Figure D.7.2 Automotive Grade Z Accelerometer Modelled and Residual Bias Error 

 

 

Figure D.7.3 Automotive Grade Y Gyroscope Modelled and Residual Bias Error 
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Figure D.7.4 Automotive Grade Z Gyroscope Modelled and Residual Bias Error 

 

 

Figure D.7.5 Automotive Grade Y Accelerometer Modelled and Residual Scale Factor 
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Figure D.7.6 Automotive Grade Z Accelerometer Modelled and Residual Scale Factor 

 

 

Figure D.7.7 Automotive Grade Accelerometer Maxy Modelled and Residual Cross Coupling 

Error 



117 

 

Figure D.7.8 Automotive Grade Accelerometer Maxz Modelled and Residual Cross Coupling 

Error 

 

 

 

Figure D.7.9 Automotive Grade Accelerometer Mayz Modelled and Residual Cross Coupling 

Error 
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Figure D.7.10 Automotive Grade Y Gyroscope Modelled and Residual Scale Factor 

 

 

Figure D.7.11 Automotive Grade Z Gyroscope Modelled and Residual Scale Factor 
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Figure D.7.12 Automotive Grade Gyroscope Mgxy Modelled and Residual Cross Coupling 

Error 

 

 

Figure D.7.13 Automotive Grade Gyroscope Mgxz Modelled and Residual Cross Coupling 

Error 
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Figure D.7.14 Automotive Grade Gyroscope Mgyx Modelled and Residual Cross Coupling 

Error 

 

 

Figure D.7.15 Automotive Grade Gyroscope Mgyz Modelled and Residual Cross Coupling 

Error 
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Figure D.7.16 Automotive Grade Gyroscope Mgzx Modelled and Residual Cross Coupling 

Error 

 

 

Figure D.7.17 Automotive Grade Gyroscope Mgzy Modelled and Residual Cross Coupling 

Error 
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Figure D.7.18 Automotive Grade Gyroscope Ggxx Modelled and Residual G-Dependent Bias 

Error 

 

 

Figure D.7.19 Automotive Grade Gyroscope Ggxy Modelled and Residual G-Dependent Bias 

Error 
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Figure D.7.20 Automotive Grade Gyroscope Ggxz Modelled and Residual G-Dependent Bias 

Error 

 

 

Figure D.7.21 Automotive Grade Gyroscope Ggyx Modelled and Residual G-Dependent Bias 

Error 
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Figure D.7.22 Automotive Grade Gyroscope Ggyy Modelled and Residual G-Dependent Bias 

Error 

 

 

Figure D.7.23 Automotive Grade Gyroscope Ggyz Modelled and Residual G-Dependent Bias 

Error 
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Figure D.7.24 Automotive Grade Gyroscope Ggzx Modelled and Residual G-Dependent Bias 

Error 

 

 

Figure D.7.25 Automotive Grade Gyroscope Ggzy Modelled and Residual G-Dependent Bias 

Error 
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Figure D.7.26 Automotive Grade Gyroscope Ggzz Modelled and Residual G-Dependent Bias 

Error 

 

D.2 Tactical Grade 

 

 

Figure D.7.27 Tactical Grade X Accelerometer Modelled and Residual Bias Error 
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Figure D.7.28 Tactical Grade Y Accelerometer Modelled and Residual Bias Error 

 

 

Figure D.7.29 Tactical Grade Z Accelerometer Modelled and Residual Bias Error 
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Figure D.7.30 Tactical Grade X Gyroscope Modelled and Residual Bias Error 

 

 

Figure D.7.31 Tactical Grade Y Gyroscope Modelled and Residual Bias Error 
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Figure D.7.32 Tactical Grade Z Gyroscope Modelled and Residual Bias Error 

 

 

Figure D.7.33 Tactical Grade X Accelerometer Modelled and Residual Scale Factor 
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Figure D.7.34 Tactical Grade Y Accelerometer Modelled and Residual Scale Factor 

 

 

Figure D.7.35  Tactical Grade Z Accelerometer Modelled and Residual Scale Factor 
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Figure D.7.36 Tactical Grade Accelerometer Maxy Modelled and Residual Cross Coupling 

Error 

 

 

Figure D.7.37 Tactical Grade Accelerometer Maxz Modelled and Residual Cross Coupling 

Error 
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Figure D.7.38 Tactical Grade Accelerometer Mayz Modelled and Residual Cross Coupling 

Error 

 

 

Figure D.7.39 Tactical Grade X Gyroscope Modelled and Residual Scale Factor 
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Figure D.7.40 Tactical Grade Y Gyroscope Modelled and Residual Scale Factor 

 

 

 

Figure D.7.41 Tactical Grade Z Gyroscope Modelled and Residual Scale Factor 
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Figure D.7.42 Tactical Grade Gyroscope Mgxy Modelled and Residual Cross Coupling Error 

 

 

Figure D.7.43  Tactical Grade Gyroscope Mgxz Modelled and Residual Cross Coupling Error 
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Figure D.7.44 Tactical Grade Gyroscope Mgyx Modelled and Residual Cross Coupling Error 

 

 

Figure D.7.45  Tactical Grade Gyroscope Mgyz Modelled and Residual Cross Coupling Error 
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Figure D.7.46 Tactical Grade Gyroscope Mgzx Modelled and Residual Cross Coupling Error 

 

 

Figure D.7.47 Tactical Grade Gyroscope Mgzy Modelled and Residual Cross Coupling Error 
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APPENDIX E 

 

E. HARDWARE SPECIFICATIONS 

HARDWARE SPECIFICATIONS 

 

 

 

E.1 Ardupilot MPU-6000 

 

Technical specifications of gyroscopes built-in MPU-6000 given below. 

 

 

Technical specifications of accelerometer built-in MPU-6000 given below. 
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E.2 VN-200 

 

Technical specifications of VN-200 given below. 

 

Figure E.1 VN-200 Technical Specifications 
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E.3 Mti-710G 

 

Technical specifications of gyroscopes built-in Mti-710G given below. 

 

Technical specifications of accelerometers and magnetometer built-in Mtil-710G 

given below. 

 


