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ABSTRACT

EXTENDED KALMAN FILTER BASED MULTI-PURPOSE INERTIAL
SENSOR FIELD CALIBRATION ALGORITHM

YAMAN, LISAN OZAN
M.S., Department of Mechanical Engineering
Supervisor: Assist. Prof. Dr. Kivang AZGIN

December 2017, 140 pages

The Global Satellite Navigation System (GNSS) is widely adopted for common
positioning system due to its precision, cost and effectiveness. Despite its
advantages, GNSS receivers are susceptible to signal degradation both intentional
cases such as jamming/spoofing and unintentional cases like signal blockage in
urban environment due to tall buildings. On the other hand, dead reckoning
navigation system such as Inertial Navigation System (INS) is immune to external
interferences and it can supply continuous navigation solution. However, the
immunity comes with a price of unbounded positioning error growth with time due
to mainly the Inertial Measurement Unit (IMU) sensor errors which continuously
integrated into INS mechanization process. In order to bound inertial navigation
system stand-alone navigation precision below some threshold, commonly GNSS
or any other navigation aiding systems can be integrated with INS. Moreover, the
IMU sensor errors are the crucial source of INS performance degradation factors
and extensive laboratory tests are held by IMU manufacturers to calibrate inertial
sensors for various types of application where the precision is critical. Even IMU is

calibrated in laboratory environment, inertial sensors commonly have residual error



terms left from calibration process. In mass production inertial sensor facilities such
as MEMS products, manufacturers may not calibrate via laboratory processes due
to necessary extensive labor and cost. That is, many low cost inertial sensors
especially belong to automotive grade IMU, born uncalibrated and suffer from error
terms. Therefore, robust algorithms and procedures for calibrating inertial
measurement units especially low cost-low grade group of sensors in the field

without need of precision laboratory equipments are promising.

In this thesis, the development of integrated navigation algorithm that can be used
for multi purpose including inertial sensor field calibration algorithm is carried out.
First of all, the fundamental aspects of inertial navigation system, and its integration
with GNSS receiver is exploited. The idea of calibrating the inertial sensor without
use of extensive laboratory equipment is blended with Extended Kalman Filter
(EKF) based INS/GNSS integration filter. Furthermore, for land vehicle navigation
purpose Zero Velocity Update (ZUPT) and Non-Holonomic motion Constraints
(NHCs) also integrated in the developed algorithm. Single and multi-run simulation
studies are carried out together with static and dynamic field tests to show the
performance of the integration filter. The dynamic calibration procedure deduced
by the simulation study is applied to various MEMS inertial measurement units.
The full verification of modular integrated algorithm is studied via land vehicle

dynamic tests with sub 100 $ IMU and GPS receiver combination.

Keywords: Inertial sensors, Inertial Measurement Unit, Inertial Navigation System,
Global Navigation Satellite System, Kalman filter, Field calibration,

Accelerometer, Gyroscope
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GENISLETILMIS KALMAN FIiLTRESI TABANLI COK AMACLI
ATALETSEL SENSOR SAHA KALIiBRASYON ALGORITMASI

YAMAN, LISAN OZAN
Yiiksek Lisans, Makina Miihendisligi Boliimii
Tez Yoneticisi: Assist. Prof. Dr. Kivang AZGIN

Aralik 2017, 140 sayfa

Konum belirleme sistemleri arasinda performans hassasiyeti, maliyet etkinligi ve
verimlilik konularinda en yaygin kullanima sahip sistem Kiiresel Konumlanma
Sistemidir (KKS). Kiiresel konumlanma sistemi, avantajlarina ragmen sehirlerde
ylksek binalar nedeniyle veya bilingli sinyal karigtirma/sahte sinyal basma gibi
etkenlerden dolay: sinyal erisiminin engellenmesi durumlar ile karsi karsiyadir.
Diger bir yandan, Ataletsel Navigasyon Sistemi (ANS) gibi gozii kapali tahmine
dayanan konum hesabi yontemleri kiiresel konumlama sisteminin aksine dis
girisimlerden  etkilenmemektedir  ve  kesintisiz  navigasyon  ¢iktilar
iiretebilmektedir. Fakat, dis etkilere olan duyarsizlik 6zelligi Ataletsel Olgiim
Birimi (AOB) sensor hatalarinin  devamli ataletsel navigasyon sistemi
mekanizasyon siirecine entegre edilmesiyle zaman igerisinde sinirsiz konum
hatasin1 beraberinde getirmektedir. Ataletsel navigasyon sistemi saf ataletsel
navigasyon ¢0ziimiiniin belirli dogruluk seviyelerinin altinda tutabilmek icin farkl
navigasyon destek sistemleriyle genellikle de kiiresel konumlama sistemi alicisi ile
entegrasyonu gergeklestirilir. Ek olarak, ataletsel 6lglim birimi sensor hatalari

ataletsel navigasyon sistemi performansinin azalmasinda ki en 6nemli kaynagi
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olusturmakta olup, performansin 6nemli oldugu bir¢ok uygulamada ataletsel
sensorlerin kalibre edilmesine yonelik olarak ataletsel 6l¢im birimi reticileri
tarafindan laboratuvar ortaminda kapsamli kalibrasyon testleri
gerceklestirilmektedir. Her ne kadar ataletsel sensorler laboratuvar ortaminda
kalibre edilselerde, hem kullanilan test prosediiriinden hem de kalibre edilen sensor
tiplerine bagli olarak kalibrasyondan artan sensor hatalar1 kalmaktadir. Mikro
Elektro Mekanik Sistemler (MEMS) gibi yiiksek yogunlukta sensor seri tiretim
tesislerinde {ireticiler kapsamli prosediirler ve is giicii ihtiyacindan dolay1
laboratuvar kalibrasyonu testleri ve prosediirlerini gergeklestirmeyebilirler. Bu da
ozellikle otomotif sinifi ataletsel sensorleri gibi birgok diisiik maliyetli sensorlerin
hicbir kalibrasyon sirecine girmeden yiliksek sensor hatalari ile tretilmesi ile
sonuclanmaktadir. Bu sebeple, 6zellikle diisiik maliyetli ve diisiik performansl
ataletsel sensorler icin hassas laboratuvar ekipmanlar1 ve siireglerine bagiml
olmadan sensorleri sahada kalibre etmeye yonelik gurblz algoritmalar ile strecler

blylk umut vadetmektedir.

Bu tezde, sahada ataletsel sensor kalibrasyonu 6zelligini igerisinde bulunduran ve
birden fazla amaca hizmet eden tiimlesik navigasyon algoritmasinin
gelistirilmesine yer verilmistir. Oncelikle ataletsel navigasyon sisteminin énemli
noktalar1 ve kiiresel konumlanma sistemi alicis1 ile entegrasyonu gibi konular ele
almmistir. Kapsamli laboratuvar ekipmanlarina ihtiyag duymadan ataletsel
sensorleri kalibre etme fikri Genisletilmis Kalman Filtresi (EKF) yapisi icerisinde
ataletsel navigasyon sistemi/kiiresel konumlama sistemi entegrasyon algoritmasti ile
timlestirilmistir. Ayrica, kara uygulamalaria yonelik olarak Sifir Hiz Algilama
(ZUPT) ve uygulama platformu hareket smirlarinin algilanmasi (NHCs) gibi
algoritma tabanli navigasyon destek bilgileri gelistirilen tiimlesik algoritma
yapisina entegre edilmistir. Tlimlesik navigasyon algoritmasinin performansini test
etmek amaciyla simiilasyon ortaminda tekli ve ¢oklu simiilasyon caligmalari ile
duragan ve hareketli saha testleri gerceklestirilmistir. Simiilasyon caligmalarinda
elde edilen hareketli kalibrasyon siireci MEMS tabanli ¢esitli ataletsel 6l¢iim

birimleri iizerinde test edilmistir. Modiiler mimaride olusturulan tiimlesik algoritma
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yapisi, 100 dolar seviyesi altinda ataletsel 6l¢iim birimi ve kiiresel konumlanma
sistemi alicis1 kombinasyonu ile kara uygulamasina yonelik saha testlerinde

dogrulanmistir.

Anahtar kelimeler: Ataletsel sensorler, Ataletsel Olgiim Birimi, Ataletsel

Navigasyon Sistemi, Kalman filtresi, Saha Kalibrasyonu, fvmeélcer, Déniidlger
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CHAPTER 1

INTRODUCTION

1.1  Background

Navigation is quite an old skill and defined in The Concise Oxford Dictionary [1]
as “any of several methods of determination or planning a ship’s or aircraft’s
position and course by geometry, astronomy, radio signals, etc.” In the name of
positioning and building navigation system, various kinds of technologies are used
but two of them are used very commonly. “The first is Inertial Navigation Systems
(INS), which are self-contained Dead Reckoning (DR) navigation systems provide
dynamic information through direct measurements from an Inertial Measurement
Unit (IMU)” [2]. The second is Global Positioning System (GPS), which uses
passive ranging radio navigation technique.

Since INS is self-contained system, it has an advantage of being used in any kind
of environment without minding external inteferences. Besides that, INS provides
continuous position, velocity and attitude information to users by using
measurements from three orthogonal placed accelerometers and gyroscopes triads
with initial conditions. However, the performance of INS is time dependent and its
accuracy is degraded due to IMU sensors deterministic and stochastic errors. In
order to endure reasonable accuracy, it is crystal clear to see the necessity of high
performance INS. However, high performance INS is quite costly, bigger in size
and confronted to government export regulations. Therefore, many researches are
based on low cost IMUs to develop accurate navigation system. The most common
use is aiding INS with external sources to aid and bound its time dependent

characteristics. Satellite navigation system is the most popular way of aiding INS

1



due to its time-invariant accuracy. Receiver of satellite navigation system requires
direct line of sight to satellite to provide navigation solution and thus, signal
blockage in urban environment occurs frequently. Besides that, satellite navigation
system is susceptible to electromagnetic signals which make it jammed in some

tactical uses.

During last few decades, Micro-Electro-Mechanical Systems (MEMS) technology
has proven its potential in navigation field. Important advantages of this technology
are low cost, small size and mass. Many researchers are exploited those benefits of
MEMS IMU on their studies. Due to mass production, inappropriate factory
calibration and run to run error variations of MEMS inertial sensors force their users
to recalibrate them before using or estimating inertial sensor errors during the
system is operational. Recent studies show that field calibration methods are quite
beneficial for remedying MEMS IMU sensor errors without worrying about how

they are calibrated in factory.

Shin and EI-Sheimy (2002) [3] developed a calibration method which can be carried
out on field without requiring any laboratory equipment. Since magnitudes of local
gravity and the earth rate are nearly constant on an arbitrary location of the earth,
those quantities are forming the constraints for what inertial sensors measure. This
calibration method can be used for determination of bias, scale factor and cross-
coupling errors for an accelerometer triad but due to weak signal characteristics of

the earth rotation rate, only biases of gyroscopes can be realistically estimated.

Syed et al. (2007) [4] points out that use of the earth rotation rate as a reference for
gyroscope calibration is causing unrealistic scale factor and cross-coupling error
estimations. Therefore, he claims that instead of using the earth rotation rate, using
single axes turn table aids the calibration of the terms that cannot be estimated with

Shin and EI-Sheimy’s method.



Since the method proposed by Syed requires single axis turn table, it’s still not a
pure field calibration method that is independent of any precise mechanical devices
or costly lab equipment. Fong, Ong and Nee (2008) [5] propose that the gravity
vector measurement via calibrated accelerometers must be equal to the computed
gravity vector from the orientation integration algorithm which is using gyroscopes
angular velocity measurements. It is indicated that the proposed method can be used
for determination of scale factor and cross-coupling errors of a gyroscope triad. For
short operation time, bias terms of gyroscopes are assumed to be approximately
constant and the change is insignificant. Therefore, long static time window is
proposed for figuring out bias terms of gyroscope triad and required length of time

is found by drawing the Allan variance plot.

Later, Pretto and Grisetti (2014) [6] developed a semi-automatic IMU calibration
algorithm that extend the study stated by Skog and Handel (2006) [9] and based on
the previous work of Fong, Ong and Nee (2008) [5]. Variance based stationarity
detection filter is used in the calibration algorithm to detect static conditions to

enable algorithm to gain so called automatic detection ability.

1.2 Research Objective

This study focuses on the enhancement of low cost INS/GNSS integrated
navigation system by online calibration of inertial sensor errors. The aim of this
study is to develop, analyze and test the multi-purpose moduler integrated
navigation algorithm which can be also used for calibrating inertial sensors.
Therefore, the major objectives of this research study are as follows;

1. To develop extended Kalman filter (EKF) based INS/GNSS algorithm.
Complete derivation of inertial navigation system (INS) mechanization
equations and EKF based INS/GNSS integration algorithms are carried out.
Aforementioned integration algorithm is developed in MATLAB

environment.



2. To extend the developed algorithm to cover motion based navigation
aid modes for land vehicle apllications.
Mainly for land vehicle navigation (LVN); the non-holonomic constraints
(NHCs), and zero velocity update (ZUPT) are considered and implemented
in the developed algorithm.

3. To develop inertial sensors field calibration algorithm and form a
blended moduler integrated navigation algorithm.
Absolute value of local gravity signal and local gravity vector signals are
taken as reference signals to develop inertial sensor field calibration
algorithm mode of the blended integration filter. In order to analyze the
developed algorithm, single and multi run simulation analysis are carried
out to observe the performance of calibration algorithm for two different
grade of inertial measurement units.

4. To implement the whole analysis to field test.
Field tests consist of static and dynamic tests are carried out to highlight
both the inertial sensor calibration and navigation performance of the
blended multi-purpose integration filter. Low cost inertial measurement unit
and GPS receiver are used to build hardwares for testing the developed
algorithm for land vehicle navigation application. In order to test the
effectiveness and accuracy of the field calibration test, positioning accuracy
is compared with the map. In addition to the proposed field calibration
method, implemented motion based non GNSS aid methods are tested in the
field. During the tests, intentional GNSS outages created and the positioning

accuracy again is compared with the reference.



1.3 Thesis Outline

This thesis contains seven chapters.

Chapter 2 gives main overview of the inertial navigation systems. The fundamentals
of inertial navigation systems are highlighted and discussed, including reference
frames, earth shape, and gravity model. After defining aforementioned terms,
inertial navigation mechanization equations are derived and provided in details. To
develop trajectory generator for pseudo signal generation purpose, inverse
mechanization is carried out and provided in appendix as well. Later on, the
mechanization equations are perturbed to derive and formulate the error dynamics
equations which are later used for system modeling of extended Kalman filter.
Finally, inertial sensor error model is introduced which is based on dominant

deterministic and stochastic properties.

Chapter 3 provides an overview of global satellite navigation system (GNSS). In
this chapter the single point positioning (SPP) via pseudorange and pseudorange
rate model is reviewed. Moreover, complementary nature of INS and GNSS are
illuminated and needs for integration is discussed as well.

In Chapter 4, the detailed derivation and model of the targetted integration
navigation filter is exploited. In other words, the integration algorithm modeling
structure and details for inertial sensors field calibration procedure are taken into
consideration. First, system model and algorithm working flow is highlighted.
Then, the measurement model for INS/GNSS, ZUPT, NHCs, and inertial sensor
field calibration aiding modes are detailly discussed. Moreover, stationary

detection filter used during the study is covered as well.

In Chapter 5, simulation analysis covering single and multi-runs are carried out for
both automotive grade and tactical grade inertial measurement units. Single
simulation run is analyzed in detail to observe the convergence of inertial sensor

error parameter estimate during the calibration procedure. To form a statistical



results indicating the performance of the calibration algorithm, multi run

simulations with gaussian shape distributed inertial sensor errors carried out.

Chapter 6 holds the results of the field tests. The test equipment, logged data, and
the trajectories of field is given. The logged IMU and GPS data are post processed
and the aforementioned field calibration method is applied. In addition to this,
implemented non GNSS aids methods are tested by using the logged data. The
accuracy of developed algorithm is compared with reference and the main

behaviors of the system are tested in GNSS degraded environment.

Finally, Chapter 7 draws the major conclusions of this study and indicates the

recommended topics requiring further analysis.



CHAPTER 2

INERTIAL NAVIGATION

The fundamental operation of inertial navigation systems (INS) govern by the laws
of classical mechanics. If the linear acceleration and angular rotation rate of a body
are measured, those measurement can be used together with mathematical
integration to calculate the change in velocity, position and orientation. What an
inertial navigation system does is exactly the same thing indicated above. Inertial
navigation systems calculate the position, velocity and attitude of a body in space
with respect to some reference system. In other words, inertial navigation system
keeps track of a body orientation, its position and velocity via integration of
acceleration and angular rate measurements together with initial known conditions.
The main component of INS is inertial measurement unit (IMU) which typically
consists of three mutually orthogonal placed accelerometers and gyroscopes.

In this chapter, reference frames are introduced first. Then, parameters related to
the Earth shape and gravity models are provided. Vector rotation concept is briefly
touched and this chapter ends with detailed derivation of mechanization equations

and their perturbed error counterparts.

2.1 Reference Frames

In this study, four different reference frames are used and thus introduced here.
The inertial frame (i-frame) “has its origin at the center of the Earth and axes
which are non-rotating with respect to the fixed stars with its z-axis parallel to spin
axis of the Earth, x-axis pointing towards the mean vernal equinox, and y-axis
completing a right-handed orthogonal frame” [11] which is shown in Figure 2.1.
The inertial frame is commonly referenced as Earth centered inertial (ECI) frame.
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Figure 2.1 The Inertial Frame (Adopted from [12])

The Earth frame (e-frame) is originated at the mass center of the Earth and its axes
are rotating with the Earth. Z-axis is parallel to spin axis of the Earth like the inertial
frame, x-axis points along the intersection of the equator with conventional zero
meridian (CZM), and y-axis completing a right-handed orthogonal frame which is
shown in Figure 2.2. The Earth frame is commonly referenced as Earth centered
Earth fixed (ECEF) frame.

Figure 2.2 The Earth Frame and Navigation Frame (Adopted from [12])



The navigation frame (n-frame) is a local geodetic frame and centered in the
navigation system origin. North, east and down (NED) is commonly used form of
local geodetic frame and it will be used in this study as well. X-axis is toward true
north direction which is increasing latitude direction, y-axis is toward east direction
which is increasing longitude direction, and z-axis is completing a right-handed
orthogonal frame which is shown in Figure 2.2. Throughout this study the
navigation frame axes are aligned with the directions of the WGS-84 Earth ellipsoid

north, east and down directions. The position of a body is represented with geodetic

latitude denoted asLy,., geodetic longitude denoted as4,,, and geodetic height

denoted as hb,e .

The body frame (b-frame) has its origin which is coincident with the navigation
frame. The body frame is also known as vehicle frame and axes are remained fix
with the body or vehicle. X-axis is commonly defined in the forward axis of the
vehicle, z-axis is defined in the vertical down direction, and y-axis is completing a
right-handed orthogonal frame which is shown in Figure 2.3. If the angular rotations
are concerned, x-y-z axes of body frame are equivalent to roll-pitch-yaw axes

respectively.



Figure 2.3 The Body Frame (Bare figure is taken from [13])

The sensor frame (s-frame) has its origin which is coincident with inertial
measurement unit origin that is commonly center point of accelerometer triad. The
sensor frame is right-handed orthogonal frame and its schematic view is shown in
Figure 2.4. During manufacturing of inertial measurement unit, inertial sensors
including accelerometers and gyroscopes cannot exactly aligned with the sensor
frame. Inertial sensor calibration procedures generally carried out in laboratory
environment to find out the cross-coupling error terms of both accelerometer and

gyroscope triad from the sensor frame.

—< )
y : Accelerometer
Q : Gyroscope

ZS

Figure 2.4 The Sensor Frame
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2.2  The Earth Ellipsoidal Model

The model that is representing the Earth surface is quite crucial for navigation
purpose since the navigation solutions especially position are generally desired
relative to the Earth’s surface. Therefore, two main standards namely World
Geodetic System 1984 (WGS-84) [14] and the international terrestrial reference
frame (ITRF) [15] are emerged. Both of those datums are based upon an ellipsoidal

model and their origin is located at the center of mass of the Earth.

“The ellipsoid is commonly defined in terms of the equatorial radius and either
(primary or major) eccentricity of the ellipsoid, e, or the flattening of the ellipsoid,
f.” [16]. Figure 2.5 indicates the cross-section of the Earth’s surface which is
exaggeratedly drawn for better visualization. Definitions of whole parameters
shown in Figure 2.5 are well described in [16].

North pole ‘\“z"‘ Semi-minor axis
A 5
Surface
Ry ree
Semi-ma’ir axis 2:5
~E
Y Freg

A J

R

Equator

Polar axis —
Center

Equatorial plane

South pole

Figure 2.5 Cross-Section of the Earth Ellipsoidal Surface (Adopted from [16])

According to WGS-84, fundamental constants defining the ellipsoid and more are
listed in Table 2.1.
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Table 2.1 WGS-84 Ellipsoid Constants

Name Symbol Value Units
Equatorial radius Ro 6378137.0 m
Polar radius Re 6356752.3142 m
Flattening f 1/298.257223563 -
Eccentricity e 0.0818191908425 -
Angular rate Qie 7.292115 x 10 rad/s
Gravitational constant GM 3.986004418 x 10% md/s?

For any point on the Earth surface, the meridian radius of curvature is defined as
the radius a circle that is osculating in the north-south direction. The transverse
radius of curvature is defined as the radius of the prime vertical. The meridian and

transverse radii are denoted as Rn and Re respectively.

R Rf-¢) -
et sini (L)
R Ry 22

E— -
J1-e?sin?(L,,,)
As seen from Figure 2.1, the Earth is rotating around its z-axis with approximately

constant angular speed of €2;,. Using column matrix notation:

0
©_| 2-3

Wi

Qie

The Earth rotation rate matrix can be represented in the navigation frame by using
the direction cosine matrix (DCM) from the Earth frame to the navigation frame.

Dei
The detailed derivation and explanations related to vector rotation well presented
in the references [16], [17], [18], [19] and [20]

From Figure 2.2, it’s clear that the Earth frame can be transformed to the navigation

ORGLINO! 2-4
e

eli

frame by two successive simple rotations. The first one is to rotate the earth frame

around its z-axis by the geodetic longitude4,,, then rotate the obtained

intermediate frame around its y-axis by — (ﬁ/ 2+ Lb,e).
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Cr =Ry (e )Ry (=(7/2+ L)) 2:5
Where

cos(4y,.) —sin(4,,,) 0
R;(Ay/e) =| sin(4,,.)  cos(4,,.) O 2-6
0 0 1

cos(—(7/2+Ly,)) O sin(—~(z/2+L,,.))
Ry (=(7/2+ L)) = 0 1 0

. 2-7
—sin(—(z/2+L,,.)) 0 cos(—(z/2+Ly,,))
=sin(Ly,e) O _COS(LbIe):l
0 1 0
cos(Ly/e) O —sin(Ly/e)
Expression (2.5) can be written as:
—cos(4,,.)sin(L,,.) —sin(4,,) -—cos(4,,)cos(L,,.)
C, =| —sin(4,..)sin(L,,.) cos(4,,.) —sin(4,.)cos(Ly,.) 2-8

cos(Ly/e) 0 —sin(L,,,)
Since DCM is orthonormal by definition, substitute transpose of expression (2.8)
into (2.4).

T -
o) = (C)T o 29
Qie COS( Lb/e)
o — 0 2-10

eli

-Q, sin(L,,.)
The turn rate of the navigation frame with respect to the Earth frame is commonly
called as the transport rate in the literature. By using the expression in the references
[16], [20] and [21] the skew symmetry matrix form of transport rate is expressed as

follow:

ssm(a{)) =CICS 2-11

The rotation matrix can be expressed in an exponential form and expression (2.5)

can be written as: [21]

Ce — essm(%)%/ee—Ssm(ﬁ)(ﬂ/sz'—b/e) 2-12
n

whereU; 1=12,3 are unit basis vectors. Time derivative of the above expression

is:
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C: _ essm(ﬁ)ﬂu/eib/eSsm(ua)efssm(uiz)(”/erLb/e) _essm(uj)%/eefssm(uiz)(”/%'-b/e)L'b/essm(uz)

2-13
Substitution of (2.13) and transpose of (2.8) into expression (2.11) yields:
Ch = (Ce)T sy CN = essm(g)(ﬁ/%'—b/e)e—ssm(ﬁ)ﬂn/e
e n e
Ssm(a)rgr;i) _ essm(ul)(”/2+%/e)ib/eSsm(ﬁ)efssm(&)(”/ZH—b/e) _ Lb/essm(u_z) 2-14
The column matrix form of the expression (2.14) is obtained as:
sSM(Up)(7/2+Ly/e) 5 : 2-15
wrﬁ?t)e =e : j'b/e%_l—b/e&
O = Ay (COS(7/2 + Ly )Us +Sin(7z/2+ Ly, )uy) — Ly U, 2-16
—sin(Ly/e) cos(Ly/e)
ﬂ‘b/e COS(Lb/e)
: 2-17
a)rg?)e = - I‘b/e
— A6 SIN(Ly )

As explained earlier, the meridian and the transverse radii are hypothetic osculating
circles that are intersecting the Earth surface. The meridian radii can be visualized
as the trajectory where the circular motion in the north-south direction takes place.
In the same manner, cosine latitude of the transverse radii can be visualized as the
similar motion in the east-west direction. respectively. Therefore, the rate of change
of geodetic latitude and longitude can be taken into consideration as two circular
motions with the radii are mentioned above.

(n)

: M 2-18
I—b = b/e,N
: RN + hb/e
' v
Ao = b/eE 2-19
(Re +hy,.) cos(Ly,)

Myje =—Voruo 220

where Vé'}lyi I =N, E, Dare the velocity components of the body with respect to the

Earth frame which is resolved in the navigation frame. N,E,D are abbreviated as
north, south and down respectively.
Finally substitute (2.18), (2.19) and (2.20) into expression (2.17) yields:
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(n)
Vb/e,E

(RE + hb/e)

() Vér;) N 2-21
n e, -
In) o = P L S

™ (Ry +hy/e)
_Vé?)e,E tan(Lb/e)
(RE + hb/e)

2.3 Inertial Navigation Mechanization Equations

Throughout this study the navigation frame is commonly used for both being the
reference frame and the resolution frame. Therefore, mainly the n-frame definitions
and derivations of navigation equations are given in the following pages. The
inertial frame, the Earth frame, and the Wander-Azimuth frame representations are
well presented in [16], [22] and [24]

2.3.1 Attitude Equation

The attitude of a body with respect to any reference frame can be represented by
several means including direction cosine matrix, euler angles, quaternion etc. The
detailed explanations of mentioned attitude representations are given in the
references [16], [25] and [26]. Direction cosine matrix representation is mainly used
throughout this study.

Derivative of the coordinate transformation matrix between body and navigation
frame can be obtained by using the expression (2.11).

Cy =Clssm(af))) 2-22

where o is matrix form of @,;, which is angular velocity vector of a body with

respect to the navigation frame. o) matrix can be written as follow:

(b) _ . (b) (b) (b) -
Qyin = Dyi — Dnje — Wi 2-23

Substitute expression (2.23) into (2.22):
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> b b b -
C) =Clssm(af®) —a® — ™) 2-24

n/e e/l
Cy =Cyssm(af))) —Cossm(af)) + @2 )CrCo 2-25
|3x3
Cy =Cpssm(af) —Cyssm(o) + ) )CrCy 226
ssm(ef+al]))
Cy =Cossm(@f)) - ssm(eff) + @))C; 22

where @) is representing the gyroscope triad readings, @) and of;) are given in

expressions (2.10) and (2.21) respectively.
According to [16], the expression (2.27) can be integrated with truncating the power
series expansion of the exponential terms to first order as follows.

Cp (t+dt) = CJ (t)(I; + ssm(ef)))dt) — ssm(a)) (1) + o) (1))Cy (t)dt 2-28

n/e e/|

2.3.2 Velocity and Position Equations

Any point on the Earth can be represented by a position vector T, which is

originated at the Earth center. The rate of change of position of any point in terms
of latitude, longitude and height above ellipsoid surface is given in the expression
(2.18), (2.19) and (2.20) respectively. For deducing the velocity equation, the
inertial frame derivative of the position vector can be formulated via Coriolis
theorem as follow:

Difyre = Delye + @ X Ty 2-29

Taking the second derivative of the above equation yields:

D, (Dir,,.) = D.(Di, ) + @, ; x (DT, ) 2-30
D-Zf’;,,e:D (D1 + @, ¥y 0) + @y X (D1, + @y 5 X T ) 2-31
DT, = DT, + &, <, + @, x D, . +@,,; x D, . + @, x@,,; < T ,.) 9.3

The Earth rotation rate vector C?)e,i is approximately constant, and thus the rate of

change of the Earth rotation rate (J?e,i is assumed negligible. Therefore, the equation

(2.32) becomes:
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2=
DT, = Drb,e+2a) X DI, + @,y X 05 X T /) 2.33

CoriolisAcceleration  Centrifugd Acceleration

Resolve the above expression in ECEF reference frame:

28 _ P20 (e) (e) (e) (e)
D 1yje = De 1o +25smM(@,i) D, 1o + SSM(@ei 2 fre) 2.34
52 e
2(e) _ i=(e) (€)yp(e) (e) (e) -
D lye =Ty +25sM(@y;i )y +SSM(e@;,i )’ Tore) 2-35

For ease of convenience and sustaining readability, the following notation changes
are made.

20(6) _ (e)
Do = 8y

() _ ()
rb /e Vb/e

:(€) _ A(e)
rb/e — “hle

To relate the expression (2.35) to accelerometers reading, it is necessary to point
out what an accelerometer measures. The answer is straightforwardly a specific
force. Specific force is a non-gravitational force sensed with respect to inertial
frame and it is actually the force what people and accelerometers sense. Therefore,
specific force fb,i is:
fb/i =a, -7, 2-36
where }7b is the acceleration due to gravitational force which does not involve any
centripetal term. The gravitational acceleration can be decomposed as:

= Gy + @,y X @y X Ty 2:37
In this case, 0y is the well-known total gravity and it consists of both centrifugal

component and the gravitational component. Now, substitute the specific force and

the gravity into the expression (2.35):

(e) _ (9) (€)yy,(e) (e) (e) -
fi =8 /e T 2ssm( e/l)vb/e + ssm( e/l) To/e e) 2-38
(e _ f(o (e) (e) (e) () \y/(e) (e) (e)
re = Toi 79~ +ssm(w, e/|) Tore o) —2ssm( ell)vb/e ssm(w, e/n) Ty/e o) 2.39
Be
(e) _ (8 (e) () \y,(8) -
fb/l +0p " Zssm( e/l)vb/e 2-40
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In order to obtain the navigation frame resolution of the linear acceleration term,
the transformation matrix from the Earth frame to the navigation frame can be used.
WP =CIvR, =
The time derivative of the above expression:

(M _@p Vé3)e +Cla®, 2-42

The expression (2.11) can be written as:

C! = ssm(a]))C! 2-43
Substitute (2.43) and (2.38) into (2.42) yields:
(n) _ (n) (e) (e) () \y,(e) (e) (e) -
ab?e Ssm( e?n)Can(je_'_Cn{ab?l Zssm( eil)vb‘je Ssm( e7|) rb_fe} 244
(n) _ (n) }y,(n) (n) (e) e (e)
Qe = ssm(e, e/n)vb/e+ab/| 2C'ssm(e, e/.)C CoVyle
S — %/—J
—ssm((z)(")) laxs 245
(e) (e) (e)
_C Ssm( e7|)C Ssm( e7|)CeC rb/ee
|3><3 |3><3
ag, = —ssm(w) Vo, +ag)) —2C;ssm(wf})Cr Clvg), -+
%,—/
ssm(w -) v{,'}g 2.46
—Clssm(af))CrClssm(w{))CrCl K
%r_J
ssm(es{])) ssm(a{}}) [

ayjy =—ssm(@2)Veje +{ Tyt +9g” +ssm(ey})ssm(a))) e}

e/| e/|

2-47
— 2ssm(@)) vy, — ssm(a@f)) )ssm(@y;) )
ag = fur) + 95" —{ssm(ei])) +2ssm(@ )] 248
The expression (2.48) can be integrated as follows.
VAR (t+ dt) = ViR (0) + (£ + 97 (O —fssmlef) (1) + 2ssm(@ MWD (D)t o

For especially low dynamic applications, the position update shown below can be

done via integrating the expressions (2.18), (2.19) and (2.20) respectively.

L, (t+dt)=1L,,(t)+ a (Vb/e SOk Gy dt)j 2-50
Ry () +hy. (1)
Vore,e (1) + Vore e (t +dt) 2.51
t +dt 1)+
Aore (0 0D =40 (04 ((R 0+ () cos(Lb,ea»J
hye (t +dt) =h, () - (Vb/e o (1) +Vyep (t+ dt)) 2-52
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The flow chart of navigation frame mechanization is shown in the following figure.

A Gravity
5 . ‘—
IMU Computation
A t
Accel J‘ q J‘ >
Q) AJ
Gyro )xv* 4—‘& Compute o,.C%
" L o
1e C.: ie

Figure 2.6 Navigation Frame Mechanization (Adopted from [L1])

2.4 Inertial Navigation System Error Dynamics

The mechanization equations derived in expressions (2.18), (2.19), (2.20), (2.27),
(2.48) basically utilize inertial data with the supplied initial conditions to obtain
navigation solutions. Thus, only the mechanization does not imply any information
related the error of the deduced solutions. In order to analyze the error feature of
the method used, the perturbation analysis should be carried out. The perturbation
of position, velocity and any other vector can be expressed as

Error = INS indicated quantity - True Counter Part

() _ = _ () 2-53
Hyre = Tore —tore
Three components of the curvilinear position error are
_r 2-54
a—b/e - I—b/e - I—b/e
Mpje = Apre = Aoje 2-55
My =hye —hye 2-56

The velocity and inertial data errors are

(n) _ g (n) 2-57
&b/e =Vore —Vb/e
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&) = ) - &) 258
Swy)s = @), — ), 2-59
Error in the coordinate transformation matrix can be defined as follow [16]

&M —cred 2-60
2.4.1 Attitude Error

The coordinate transformation matrix between body and navigation frame can be

written in terms of 3-2-1 Euler angles sequence as follow

n 2-61
Chp =Rs(Wy,n)R,(6,,0)R (By1)

cos(yy,) —sin(yy,,,) O cos(g,,) 0 sin(g,,) |1 0 0
Cy =|sin(yy,)  cos(y,,) O 0 1 0 0 cos(dyn) —sin(dyn) 262

0 0 1] -sin(@,,) 0 cos(d,,)]|0 sin(d,,) cos(d,)

CoS(¥y)C0OS(6,,,) —Sin(y,,,)cos(d,,,) +sin(4,,,) cos(y,,,)sin(d,,,)
Cy =| cos(8,,,)sin(y,,,)  cos(y,,)Ccos(@,,,) +Sin(w,,,)sin(b,,,)sin(4,,,)
-sin(6,,,) cos(6,,,)sin(@, )

. . . 2-63
sin(y,,,)sin(4,,,) + cos(d,,,) cos(w,,,)sin(&,,,)
—cos(yy,,,)sin(d,,,) +sin(y,,,)sin(6,,,) cos(4,,,)
c0s(8,,,) cos(d,;,)
For small angles
Smallangleassumption - 1 - 51//b/n épb/n
jﬁ(ﬁfﬁf: XKy =\ owy,, 1 = Pyn 2-64
cos@9 =0 _5‘9b/n 5¢b/n 1
&:S'(n) =g + ssm(é‘Pb(?r)]) 2-65
W
Where 8¢ =| &,
5¢b/n
Taking time derivative of the expression (2.60)
2-66

MM = et 4 GreP
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First differentiate the expression (2.65), and then substitute with expression (2.22)

into (2.66) yields

ssm(8F)) = Cr{ssm(af)) — ssm(a))IC?

b
ssm(awé,;)

ssm(dwgy,) ={laa — SSM(3Fy)0)IC ssm(3Fy),)Co

ssm(dwy),) = Cyssm(8¥))Cy — ssm(3¥), )Crssm(sy ;) Cy

~0 (multiplicgion of errorterms)

ssm(aH)) = Cssm(awi))Cy
Sy = Cy g,
Substitute the expression (2.23) into (2.71)

M =Cpawl) —CJawl) —C) ow)

eli nl/e
(n) n (b) =) _ _(b) ~(b) (b)
=== é\Pb/n Cb é‘a)bll C ( e/l e/l) C ( n/e n/e)
p() _ ~n (b) ~b ~(n) _ (n) ~b ~(n) (n)
OMyh =Cy omy) —{Cy (Cr o, Wi e/|)+C C o Whje — n/e)}

Use the expression (2.60)

p() _on (b) b.(b)~b ~(n) _ (n)
é\Pb/n _C &()b/l {C (&: C e/l e/|)

+Cy (& Cray), —C wﬁ?é)}
Use the expression (2.65)

S =CJ sl —{Cy (135 — 5sM( é?’n))cb*é,"? NCYRE
+Cy (135 — sSM(8¥y,1))Cr @7 — C )}

S =Clow) — (&) — o)) + Cossm@¥N)Cr &) — (@) — o)) -
+Cpssm(s¥{))Cr )

S, = CJ 50if) (@5} — o) = (B4, — i) + sSmHD)(@) + BR)

e/| e/| n/e n/e eli n/e

gl

—ssm(&h) )é‘{‘é,”,l

“nli

Neglecting multiplication of error terms

: o -
S¥)) = Cp sy — (@) — ))) — (@) — oq) — ssm(@f)) ¥y

e/l e/l n/e n/e n/l

where
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Qe/i COS(Lb/e) Qe/i COS(Lb/e)
oM _ HpM = 0 _ 0 2-79

Leri = Leri _

- Q,;sin(Ly, ) —Q,;sin(Ly, )
The above expression can be represented as the first order taylor approximation as
follow

e.g:X=X—X
X=X+X=2=2=2 (X)) =f(X+X) === F(X)=f(X)+ f'(X)ox 280

The expression (2.79) becomes

sin(Ly.)
@_%:_Qe/i 0 Aye 2-81
cos(Ly,)
And
\7b(/ne),E Vt(,?l,E
(ﬁE +ﬁb/e) (Re +hy/e)
E’rﬁ?i _a)lgr/ml _ :vb(/ng)LN _ _Vtgr;ze,N 2-82
- T (Ry +hy,.) (Ry +hye)
—Vyoe tan(Eb/e) — Vo, e tan(Ly,,,)
Re+hy) | [ (Re+hy)

Variation of Re and Rn due to latitude error is weak. Therefore their

variations can be neglected.

M), e
(RE + hb/e) 0
N
Wpjy —Whnfe = N - 0 éLb/e
_— — (Ry +hye) Ve
) '
Npje e tan(Ly,) (Rg +h,,.)cos?(L,,.)
(Rg +hy0) |
; 2-83
Ve

(Rg + hb/e)2
(n)
V,

+ b/e,N - a,]b/e
(Ry +hye)
Vk()r;)e,E tan(L,,.)
| (Re +hye)? ]
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2.4.2 Velocity Error

Perturbing the derived velocity mechanization equation (2.48) yields
Vb(/ng ngn) = (fb(/nl) - fb(/nl)) + (g " (n))

—{(ssm(af})) + 2ssm(a{))))V2 — (ssm(ef7) ) + 2ssm(w) )V}

““nle. “eli ““nle.

where
(fb(/nl) - fb(/nl)) Cbn ﬁ - C fb(/b |)
——

xyey
(B - )= &0 cr il -C )

I3X3+ssm(3¥é%)
(fb(/nl) - fb(/n.)) Cy (fb(/bl) - fb(/b.)) ssm(Cy fb(/bl) )oY, b(;]r)1

——
firy +0fs;

Neglecting multiplication of error terms
(fb(/nl) - fb(/nl)) Cy (fb(/bl) - fb(lbl)) ssm(C; fb(/bu))éql o
From gravity model given in Appendix A, the perturbed form of the local

gravity vector can be written as follow. Since the dependency of JLy,

over re_ is so weak, its variation can be neglected.

29 (n)
"'(”) (n) _ 0,D
-0 = 1 My

s/e
{(ssm())) + 2ssm(@{) V2 — (ssm(w(})) + 2ssm(wf)) )V} =
{(ssm(@{)) + 2ssm(@))) (Ve + i) — (ssm(@))) + 2ssm(wf)))ViL}

{(ssm(a{)) + 2ssm(@{))))Vy /s — (ssm(@))) + 2ssm(ef)) )V} =

““nle. “eli ““nle. “eli
—ssm(v{)) (@5 — i) = 2ssm(vi ) (@) — o))+
+(ssm( @, )+2ssm( @) )N,

—— ——

U NG oM +50(M

n/e Tnile e/l eli

Neglecting multiplication of error terms
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{(ssm(a{)) + 2ssm(@{))))Vy72 — (ssm(@))) + 2ssm(@f) Vi } =

““nle “eli ““nle “eli
~ ~ 2-92
—ssm(v{)(@{)) — @f})) = 2ssm(vi) ) (@) — o)) -
+ (ssm(ef7) ) + 2ssm(e))) S,
where
2ssm(v{) ) (@) — o)) =
0 _Vé% D Vé% e | sin(Ly,,.) 2-93
2 Vér/])e D 0 _Vé?)e N 0 (_Qe/i )éLb/e
(n) (n)
_Vbr;e E Vbr;e N 0 COS(Lb/e)
2ssm(v{) ) (@) — &f))) =
-2Q,; COS(Lb/e)Vb/e E 2-94

H (n) (n)
—2Q, ;i sin(Ly o Vpjep + 29, €OS(Ly e )Vpen [Olpe
H (n)
2Q, ;i sin(Ly, o )V e e

0 Vl();]g‘E tan(Ly/e ) _Vl()?e) N
(Reg+hpye) (Ry +hpye)
(n) (n)
(n) (n) () _ | ~Vore.e B (Lyse) —Vb/e,E
(Ssm(a)n/e) + Zssm(a)en ))&/b/e =1 T (Rethy) 0 (Re+hy0)
v v
b/e,N b/e,E 0
(Ry +hpye) (Re+hye)
’ ’ 2-95
0 202, sin(L,,,) 0
i (n)
- ZQe/i Sln(Lb/e) 0 - ZQe/i COS(Lb/e) &/b/e
0 2Q,,, cos(L,,,) 0
(ssm(@{") + 2ssm(w{M )N =
a)n/e we/l “ble
(n) (n)
: (n) Vo /e t@N(Lyse) o () Vb /e, (n)
Qi sin(Ly,e )y e +M(Riw5\/b/e e~ Tyrhor Vol
Vl()’))e‘ tan(Ly /e ) (n) v (n) 2-96
-2Q, sm(Lb/e)é‘/b/eN _W&/b/eN (REm:,e)ﬁVb/eD 2Q, COS(Lb/e)é‘/b/eD
vk, o) v 0 (n)
R Moren + miny More,e + 205 €0S(Ly 1 )Ny
SSm(vble)(wn/e n/e) =
e e
0 _ym v ] (Re +hy.)  (Re +hble)2 ol
b/e,D b/eE S v
(n) 0 _ym _ bleN b/eN 2-97
Vo/en b/eN R +h R an )2 b
v vim 0 (Ry + b/e()) (Ry +1y,e) o
n n
bleE bleN - &/hleEtan(Lb/e) VhleE d—b VhleEtan(Lble)
et —S 72 Iy
(Re +hy,e) (Re +h,,.)cos?(L,,,) * (Re+hy,,) e_

24



ssM(vgye )(@ne — @42) =

2 2
Vé/)e,D m Vér;)e Dvl(nl)e N B Vn(:r/‘)e‘s tan(Lye) ¢ ) _ (Vt(;?)es) (var/‘)e,s) tan(L,,.)
b/eN b/ bleE b/ b
(Ry +hy) (Ry +hy,)? ¢ (Re +hy,.) “" (Re +hy.)cos? (L) ¢ (Re +hy)? ¢
(n) (n) (n) (n) (n) (n) (n) (n)
Vole,0 0} ViJeoVo/e e + Vyren tan(Ly,.) ™ VileoV/ee VyreoVore.e tan(Ly,e) 2-98
b/eE ble bleE ble — ble
(Re +hy,e) (Re +hy)? (Re +hy,,) (Re +hy,.)cos?(Ly,) (Re +hye)?
) ™ 2 ) ™ 2
Vbree S (Vo/ee Vb/en S (Voren &
(R “h ) bleE + (R h )2 bre — (R n ) b/e,N (R h )2 ble
/e et Mye /e ALY

2.4.3 Position Error

Time derivative of the curvilinear positions are given in the expression (2.18),
(2.19) and (2.20). The perturbed forms are expressed as follow

: - : &/ér/]) N Vlg?) N
e = Loje =Ly = = D o, 2-99
) ) ) Ry+h,. (Ry +hb/e)2 )
: ~ I v
5/1b/e = Me _ﬂ’b/e PeE s b/e
(Rg + hb/e)COS(Lb/e) (Rg + hb/e) cos(Ly,.)
2-100
Vir e Sin(Ly,.)
2 b/e
(Rg +hy,.)cos” (L)
: 2-101
b/e hb/e hb/e :_g‘/ér/%,o

2.4.4 State-Space Representation of Error Dynamics

The more appropriate and easy to follow method of grouping the expressions

derived in part 2.4.1, 2.4.2 and 2.4.3 is state-space representation.
[ox]=[FJox]+[U] 2-102
where [ox]is system states, [F] is system internal dynamics matrix

(shortly system matrix and [u]is system input matrix.

' t(;l/g N é?l Osys
&/ér/]q)e = FVP I:vv Fvw ﬁlﬁr}l + C (fb(/bu) - fb(/b|)) 2-103
; ~ (b b
5\Pt57r)1 , Fop Fov  Fuy | 6\1113(?21 C ( tE/u) wt(m))
— —
[x] [F] [] U]
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whole [F; ],

il =P,V,¥ terms are derived in the previous sections.

]

(Rg +h,,)cos?(Ly,,)

(n) (n)
Vble,NVble,E

- ka()n/)e,EQe/i COS(Lb/e) 0

+ zvlgr;)e,NQe/i cos(Ly,e)

0 0 _ Vé?L,N
_ (Ry + hb/e)2
E - Vé?)e,E sin(Ly.) _ Vé?L,E
PP
(Re +hy,)cos®(Ly,.) (Re +hy,)? cos(Ly,,.)
0 0
(Ry +hye)
1
Fov = 0
(Re +hy,.)cos(Ly,)
0 0 -1
[ (Vé'})e,E z (Vt()nl)e,E)z tan(L,,.)

(n) (n)
VorenVbren

(Re +hy,.)°

(n) (n) (n) (n)
_ (VorenVoree taN(Ly;e) +Vyie eVoren

(Rg +h,,.)°

Q. cos(Ly,.) +

(Ry +hye) cos®(Ly,,)
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(Re +h,,.)cos?(Ly,.) 0 2
() . (Re +hy.)
=2V €2 SIN(Ly )
—v®™ Q. sin(L,,.) (Vlgn/)eE 4 (Vlgr})eN : _29<(J|.1[)>
] b/eE eli b/e (RE +hb/e)2 (RN +hb/e)2 rse/e
Y =
o ) o o
o (Ry +hye) (RE( ‘)" hyye) eil) v o (Ry +hyye)
v tan vl tan(l,,,) + vy vy
b/e,E (Lb/e) + ZQe” Sin(l—b/e) b/e,N ( b/e) b/e,D _ b/eE _ ZQE“ COS(Lb/e)
(Re +1yye) o o (Re +hyye) (Re +hyye)
AT 2vyh
- e - 2EE 20, c08(Ly,) 0
(Ry +hyye) (Re +hye)
_ n £ (b)
R =—ssm(Cy f,;7)
B (n)
- Vb/e,E
Q. sin(Ly,) R +h )2
(Ry +hye)
(n)
F _ O _ Vb/e,N
wYp R h 2
( N + b/e)
(n) (n)
Vore,e Ve tan(ly,.)

(RN + hb/e)2 B
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2-105
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0 1
(Re +hy,e)
Fo = 1 0 0 2-110
(Ry +hye)
tan(Ly,.)
L (Re +hy,e) |
Fo = -ss(ai) 2111
where
(n) ]
V,
—_pleE + Qe/i COS(Lb/e)
(RE + hb/e) )
—y\n
o=l +off = e 2112
- N b/e
— Vv tan
b/e,E (Lb/e) _Qe/i Sin(Lb/e)
(Re +hy/e) |

2.5 Inertial Sensors Error Modelling

Both of the accelerometers and gyroscopes suffer from constant error which is
independent from the underlying specific force and angular rate. The constant error
called as bias error is generally splitted into two fundamental part naming
static/fixed/turn-on/repeatable part and dynamic/stability/instability part. Those
names given with slash signs are commonly used interchangeable in literature.
Apart from accelerometer, gyroscopes especially which are having moving parts
such as mechanical, MEMS products suffer from acceleration dependent bias error.
Scale factor error on the other hand is the departure of the sensor input-output
gradient from unity. Besides that, inertial sensors exhibit different scaling error over
the operation range and the variation related to scale factor error is named as
nonlinearity. Both of the error sources aforementioned are illustrated on the figure

below.
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Null uncertainty /
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Band of uncertainty -

Figure 2.7 Scale Factor and Bias Error (Adopted from [27])

Cross-coupling errors in all types of IMU arise from the misalignment of the
sensitive axes of the inertial sensors with respect to the orthogonal axes of the body
frame. The sensitive axes of the inertial sensors frequently do not form orthogonal
triad and this case is valid for both accelerometer and gyroscope triads. As stated
by [9] and common assumptions are;
- One of the inertial sensor axis is assumed coincident with orthogonal IMU
body axes. Generally, x axis of accelerometer is picked as the IMU chassis
x axis which is depicted as sensor frame defined in part 2.1 .
- According to the first statement, y axis of the IMU chassis lies in the plane
spanned by x and y axis of accelerometer triad.
The assumptions given above relate the accelerometer triad to orthogonal IMU
body axis or in other words, sensor frame by pure rotation. For the gyroscope triad,
measurements in the non-orthogonal gyroscope triad frame can be related to
orthogonal IMU via 6 different angle represented in the following figure.
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Figure 2.8 Misalignment of Non-Orthogonal Sensor Triad (Adopted from ()

Apart from the deterministic error terms, all kind of inertial sensors suffer from
random noise due to various sources. Depending on the manufacturing technologies
of inertial sensors, the source of random noise varies.

The relationship between inertial sensors performance parameters and enabling

technologies well tabulated into the following tables.

Table 2.2 Inertial Sensor Enabling Technologies and Performance Parameter (The Upper Tableis

Adopted From [10] and The Lower Tables are Adopted From [23])

IMU technology and IMU performance

Class Position Gyro Accelerometer | Gyro bias | Acc bias
performance |technology |technology
"Military 1nmi/ 24 h |ESG, RLG, Servo <0.005°/h | <30 ug
grade” FOG accelerometer
Navigation 1nmi/h RLG, FOG Servo 0.01°/h 50 pg
grade accelerometer,
Vibrating beam
Tactical >10nmi/h |RLG, FOG Servo 1°/h 1 mg
grade accelerometer,
Vibrating beam,
MEMS
AHRS NA MEMS, RLG, | MEMS 1-10%h 1mg
FOG, Coriolis
Control NA Coriolis MEMS 10 - 1000°/h 10 mg
system
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Characteristic RIG DTG Flex gyroscope DART/ Vibratory RLG FOG
MHD Zyro
g-Independent 0.05-10 0.05-10 1-50 360-1800 360-1800 0.001-10 0.5-50
bias {*/h)
g-Dependent  1-10 0.01-10  1-10 180 36-180 0 =1
bias (*/hig)
Anisoelastic 1-2 0.1-0.5 0.05-0.25 1840 18 0 =01
bias (°/h/g?)
Scale-factor 0.01-0.1 0.01-0.1 0.01-0.1 0.5-0.1 0.2-0.3 5-100 0.05-0.5
non-linearity
(%)
Bandwidth 60 100 100 100/80 500 =200 =100
(Hz)
Maximum =400 1000 =500 800/400  =1000 =1000  =1000
input rate
{OIHS)
Shock Moderate Moderate Moderate Moderate =25000g Good Good
resistance
Characteristic Accelerometer type
Force-feedback Vibrating Vibrating SAW Silicon
pendulous fibre opiic quariz
Input range (g) +100 +20 +200 +100 +=100
Scale-factor 0.1 0.001 0.01 0.1-0.5 0.5-2
stability (%)
Scale-factor 0.05 0.05 0.05 <0.1 0.1-0.4
non-linearity
{% full scale)
Fixed bias (milli-g) 0.1-10 1 0.1-1 =0.5 =25
Threshold (micro-g) 10 1 <10 1-10 1-10
Bandwidth (Hz) 400 100 400 400 400

2.5.1 Accelerometers Error Model

Accelerometer triad sensor model used in this study is given below.

O _

b/i

where

(b)
fb/i

PG
fb/i

o

2

<

=

(b)
D, + (I35 + M) fiyi +W,

True specific force

IMU indicated specific force

Accelerometers Bias

Scale factor and Misalignment (Cross-Coupling) error

2-113

White noise term (Velocity Random Walk is the main contributer)
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a,x a,xy a,xz
Ma = Sa,y Ma yz 2-114
0 0o S,

Dynamic bias and scale-factor non linearity errors can be modelled as
stochastic models described in Appendix B. In this study, they are both
modelled as a random walk process.

b, ; =W, 2-115
wherew, (0,0, )

’ mean %r—‘
vanance
Sai =Ws,, 2-116
where Wsai :( g ’Gszaid)
' mean %r—‘
vanance

2.5.2 Gyroscopes Error Model
Similar to accelerometer case, gyroscope error model is given below.

@) =by + (I + M) + G, £ +w, 2-117
where

% True angular rate

% IMU indicated angular rate

b, Gyroscopes Bias

M, Scale factor and Misalignment (Cross-Coupling) error

G, Acceleration dependent error (g-dependent)

w White noise term (Angular Random Walk is the main contributer)

|
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SG’X MG’XY Mg,xz
_ 2-118
Mg - Mg,yx Sg,y Mg,yz
M g,zX M g.zy SQ z
Bom Bow S 2-119
Gy =|Gyp Gy Gy
Gg,zx Gg,zy Gg,zz
Dynamic bias and scale-factor non linearity errors can be modelled as
exponentially correlated Gauss-Markow process which is explained in
Appendix B.
by ; =W, 2-120
. 2
where W, 1( 0,0y )
mean “~——
vanance
L 2-121
Sgi =W,
. 2
where Ws (0,05 )
mean “——
vanance
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CHAPTER 3

SATELLITE NAVIGATION SYSTEMS

This chapter mainly reviews the fundamental concepts and the basic principle of
operation of the satellite navigation systems. First, the general system overview
related to short history behind the operational satellite navigation systems and their
fundamental components is briefly touched. A description of the satellite system
observables which is actually what is being measured and the various sources of
error buried inside that observables is given. Finally, this chapter ends with the
analytical equations that use the mentioned measurements to form position, velocity

and time solutions.

3.1  Systems Operation Principles

As stated in [28], “GPS positioning is based on the one-way ranging technique: the
time of travel of a signal transmitted by satellites is measured and scaled by speed
of light to obtain the satellite-user distance”. That is the fundamental principle lies
behind the operation concept of GPS is that each satellite sends out navigation
signals, together with a set of its orbital parameters called ephemeris data. This
declaration is in fact valid not only GPS but also for the whole satellite systems.The
satellite system receiver captures these signals and it is able to process and calculate
the user position, velocity and time (PVT) solution. In order to reach that objective,
the receiver also needs the satellite position and velocity values which are obtained
via ephemeris information. Ephemeris is mainly a set of orbital parameters and their
rate of change at a specified system time. Satellites continuously transmit the
ephemeris data inside the navigation message. The transmitted ephemeris
information is regularly updated by the ground stations which monitors the
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satellites. According to the system, ephemeris data or satellite orbital elements are
formed mainly in two ways. First type is that satellite ephemeris includes kepler
parameters and the related orbit perturbation correction parameters. During the time
of this declaration GPS, Galileo and BeiDou satellites transmit ephemeris data
including kepler and the related perturbation parameters. However, Global
Navigation Satellite System (GLONASS) satellites transmit ephemeris that is
containing the position, velocity and acceleration values referenced to ECEF
coordinate system at specified system time. The mentioned parameters which used
to calculate satellite position and velocity from two different ephemeris form is
detailly explained in related ICDs [29,30]. In terms of GPS and GLONASS
satellites, several publishment such as [31] can be followed for computing satellite
position and velocity information from satellite transmitted ephemeris.

The received ranging signals from transmitted satellites are decoded and used as
range measurements between satellites and the receiver. Since within the receiver,
a replica code of satellite-generated one is created, that code is shifted in time until
the correlation is achieved. If both of the satellite and the receiver clocks are
synchronized in a perfect manner, the multiplication of propagation time of the
ranging code by the speed of light results in the true range between the satellite and
the receiver. Generally, the receiver clock has a large bias error deviated from
system time and the perfect synchronization is not possible. Therefore, the
determined range during correlation process is denoted as pseudorange. As declared
in [32], “The measurement is called pseudorange because it is the range determined
by multiplying the signal propagation velocity, c, by the time difference between
two nonsynchronized clocks (the satellite clock and the receiver clock). The
measurement contains (1) the geometric satellite-to-user range, (2) an offset
attributed to the difference between the system time and the user clock, and (3) an
offset between system time and the satellite clock.” Therefore, in order to solve for
the user position, range measurements from at least four distinct satellites are
necessary because the receiver clock offset error is the fourth unknown together

with three dimensional position unknowns.
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3.2

Pseudorange and Delta Range Observables

Before dealing with the error sources inside the observables, the timing relationship

between satellite and the receiver is given as below.

(Ceometic range time equivalent)

‘q At '-»‘
| | |
| | |
at | | . |
i
-~ |
! ! . | - time
T T+t T, utly
5
- ...‘

(Pseudorange time equivalent)

Figure 3.1 Range Measurement Timing Relationships (dopted from [32])

where
T, System time at which the signal left the satellite
T, System time at which the signal reached the user receiver
A Offset of the satellite clock from system time [advance is positive;
retardation (delay) is negative]
t, Offset of the receiver clock from system time
T +& Satellite clock reading at the time that the signal left the satellite
T, +t, User receiver clock reading at the time the signal reached the user
receiver
c Speed of light
Geometricrange  r =c(T, —T,) = cAt 3.1
Pseudorange p=c[(T,+t,)— (T, +&)] -
(ideal) p=r+ct, —&)
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As indicated in the previous section, the pseudorange observables are not the true
geometric ranges and contain error sources. The expression (3.2) is valid for error
free environment which is not valid for the real case. Therefore, the pseudorange

between the satellite and the receiver can be written as follows:

PseUdorange P = r+ C(tu - &) + piono + ptropo + ‘9multipath+ gp,noise 3-3
where
Liono Range error due to delay induced by lonosphere
Propo Range error due to delay induced by Troposphere
Enmultipath Range error due to multipath effect
& Range error due to random noise

p.noise

In addition to pseudorange observable, the doppler measurement can be used to
determine the user velocity. The pseudorange rate observable is given as follows:

Pseudorange rate  p=r+ p,. + € 5 noise

3-4
where
o) Rate of change of geometric range
r Rate of change of pseudorange
Darir Bias error due to receiver clock drift
€ 5 noise Range rate error due to random noise
3.3  Satellite Navigation System Measurement Equations
The true range from user to i satellite is
(e) (e)
r={rg; =
sv/e,i _bl/e 3-5

r =, 0-r20) + (9, @ -r2@) + (2, @ -2

After the corrections related to atmosphere and satellite clock are made, the

pseudorange equation becomes;
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Pi= \/(rs(ve/)e,i (1) - I’b(/eez (1) )2 + (rs(ve/)e,i (2) - I’b(/ee) (2))2 + (rs(ve/)e,i (3) - I‘-b(/eg (3))2 + Ploffset + gp,i 3-6

where
ol Pseudorange measurement from user position to i satellite
ith . . .
ri) @) i satellite position matrix
@ _| @
rsve/e,i - rsve/e,i (2)
)
rsve/e,i (3)
r @) The user position matrix
ﬁ = rb(/eg (2)
o (3)
Potiset = Cl,, The receiver clock offset
& . Range error due to random noise
pii

The equation (3.6) is nonlinear for unknown user position. In order to construct

linear model, it is necessary to linearize it.

et ) =@ -r20) + (2, @-r2@f +(9.@-12E)f 59

Using Taylor series expansion around the approximate user position matrix denoted

as r® and neglecting higher order terms;

h(X) = h(x, + &X)

3-8

h(X) ~ h(x,) +%5x+ HOT
X

Using both expressions (3.7) and (3.8) result in;

h®) = (i, 0 -1 @F + (0, @ -rO@f +(.,@ - @) +--
h(xa)
. {_ ( e @) =1 @) J 0 (1) ( e (2) 1 (2) ] 50 (2) ( (-1 ) J P (3)} >
h(x,) h(x,) h(x,)

dnG)
dx
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By aid of expression (3.9), reformulate the equation (3.6).

p =, O-rPQf +(, @ -rC @) +(2. @-rO @) -

e @-r2M ) o e (D172 - e 3173 ) oo
+{ {h(Xa)J b/e() Ta) b/e(2) Ta) b/e(3) 3-10

+ poffset + gp,i

In more organized way,

Pi—Pa= hil&b(fg @+ hi25rb(2 2+ hi35rb(/ee): (3) + Pottser T €, 3-11

where

@ O-r20fF +(r2,@-r?@f +(r., ) -r2 @)

=l
[ s(ve/)e i (1) (e) CDJ _( s(\f/)e i (1) (e) CDJ
h(X,) P,

(i @-17@) | _ [ -1"(2)
h(x,)

Pa
" (S‘f)e.(:» e (3)} _( i (3 -1, (3)}
c h(x,) P

The expression (3.11) can be put in matrix form by using four pseudorange

measurements.
P1~ Pa h, h, hy; 1 5rb</eg () o1
P2~ Pa| _ hyy hy hy 1 5rb(/eg (2) N o2
Pz~ Pa - hy, hy, hyy 1 5rb(/eg 3 €53 312
LPa~ Pa hyy Dy hys 1] Py €p4
Ap H T T

- ax P

If there is only four pseudorange measurements, one may use below expression for
obtaining solution.

Ax=H7Ap 3-13
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Generally, more than four measurements are available and the expression (3.12)

becomes over-determined. Least square method is commonly used for that case.

AxX=HTH)'H Ap 3-14

The aforementioned calculations with least square method are generally an iterative
method. The solution of expression (3.14) is used to correct the approximate user
position as described below. Later, the same procedure is followed with the new
position and clock offset estimate until the estimated position corrections become
so small compared to the predefined threshold.

Fy/e (1) y/e (1) Ax(1)

Le(2) | =K@ + Ax(2) 315

@] | sNE | [AaxE)

The pseudorange rate is directly the time derivative of pseudorange. Therefore

differentiate the expression (3.6) yields

L, 1 2r$, @ - KON, @ -1 )
2 10, 0O (9. @ - @f + (9@ @
2r9. @ -2 NE0. @) - 12(2) |
e 02 OF + (50 @ -2 @) + (0@ - @F 316
L 215, 3 -2 @Ir. B - 12 3)
2 69, -2 OF + (5. @ -2 @F + (90, @ -2 @F

+ Parin + €4,

1
+_
2

(0.0 20)0 0 -520) (9, @ -2 @) @ -12@)
I Pi Pi

(r9., @ -r2E, @ -120) | 3-17
+ o) + Puarin T €4
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where

o) Pseudorange rate measurement from user position to i
satellite

; ith i i i

re @) i"" satellite velocity matrix
) _| g
r-sve/e,i - rsve/e,i (2)

r'-s(\/e/)e R (3)

oo (1) The user velocity matrix
fore =| Fore (2)

Fore (3)
. Range rate error due to random noise

pii

Similar to pseudorange equation, the equation (3.17) can be linearized by Taylor

series expansion around the approximate user velocity matrix denoted as f* .

£y — Pa =y QD) +h, 55 (2) + hiy 5 (3) + Py + Epi 3-18
where
(19, -2 o)., 0 -1 )
: Pi
9@ -r2@NS @ -1 @) | (19, @) - EI, @ -1 @) 31
Pi Pi

hu: hizyhig are defined in the description part of expression (3.11)

In matrix form;

P1L— P h, h, h; 1 &b(/e g @y Epa
P2 =P _ hy, hy hy 1 5'-_b(/eg (2 Ep2
Pz~ Pa - hyy hy, hyy 1) &52(3) €3 320
| P4 = Pa h,, h, hy 1 | Parin Ep.a
AD H A% v

[N
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The same iterative approach and the least square method solution are exactly the
same as pseudorange measurements counterpart given in expressions (3.13) to
(3.15).

3.4  Complementary Features of Inertial Navigation and Satellite

Navigation Systems

The overview of inertial navigation system and satellite navigation systems are
highlighted in chapter 2 and 3 so far. Since the sampling rate of the inertial sensors
can be high as much as 50-1000 Hz, the INS can be operated at that rate as well.
Oppose to INS, Satellite navigation system receivers cannot usually reach that
much rate of generating navigation solution. In addition to that, INS is a fully self-
contained standalone navigation system and can calculate full navigation solution
including position, velocity and the attitude of the user. Single antenna receivers
are however cannot tell much about the attitude of the user. As briefly mentioned
above, both of the system has strength that can eliminate each other weaknesses.
The complementary features of INS and satellite navigation system make blended
integration schemes outperform the individual standalone system.

The detailed features of both systems are well tabulated below to clearly highlight

the potential benefits of integration.
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Table 3.1 Characteristic Features of GNSS and INS

ovs s

Low data rate (1-10 Hz)

" High data rate (50-1000 Hz)

Supply 3 dimensional position and
velocity (Attitude solution requires
additional hardware and complex

algorithms)

Full navigation solution (3 dimensional

position, velocity and attitude)

Self-contained system (Initial states
are not necessary but clear sky view is

necessary to conserve accuracy level)

Self-contained system (If initial states

are supplied)

Susceptible to interferences (Signal

blockage, jamming and spoofing)

Immune to jamming (Continuous

operation)

Long term accuracy (Time

independent accuracy and stability

level)

Short term accuracy (Unbounded error
growth due to constant integration

process of noisy sensor measurements)
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CHAPTER 4

DEVELOPMENT OF MULTI-PURPOSE INTEGRATED NAVIGATION
SYSTEM MODEL

As stated in the earlier chapter, the development of integrated algorithm which
incorporate different aiding sources is forming one of the main features of this
study. For navigation applications utilizing low cost inertial sensor, the navigation
solution accuracy degrades rapidly due to fact that uncompensated inertial sensor
errors which is common for especially comsumer grade MEMS based inertial
sensors produced with high quantity. Therefore, aiding inertial navigation system
which is based on such sensors with every possible sources to calibrate the inertial
sensors on the field becomes a critical task to maintaining the navigation
performance several order of magnitude better when compared with pure inertial
mean. In this study, especially for land navigation applications, one central
commonly used Extended Kalman Filter structure is used as an integration
algorithm that is blending the inertial navigation system with information and
sources including GPS receiver, motion constraints of platforms, detection of static
conditions together with field calibration of inertial sensor essentially depends upon

magnitude of local gravity.

4.1  Kalman Filtering

“The Kalman filter is essentially a set of mathematical equations that implement a
predictor-corrector type estimator that is optimal in the sense that it minimizes the

estimated error covariance — when some presumed conditions are met.” [33]. Over

50 years of extensive usage and practices among many researches and applications,
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the Kalman filter is one of the most well-known mathematical tools that is
essentially stochastic estimator from noisy measurements made from various types
of sensors in terms of ease of understanding, optimal properties mentioned above,
recursive estimation feature and low level of computation burden. From a very
extensive explanation to application oriented simple examples and intuitive
approaches related to understanding the Kalman filter is referenced in [34], [35],
[36], [37], [38], [39], and [40].

“The Kalman filter estimates a process a form of feedback control: the filter
estimates the process state at some time and then obtains a feedback in the form of
(noisy) measurement. [33]. That is, the estimation process is based upon two
different sets of equations which are named as time update part also known as
predictor equations and measurement update part which includes corrector
equations. The common form of Kalman filter recursive loop is highlighted in the

following figure.

. . Ao
Enter prior estimate Xy and
its error covariance Py

Compute Kalman gain:

/ Ke = Py (PR + R \ L_— o

Project ahead: Update estimate with
A_ N )
Xpa1 = 0pky , Mmeasurement Z:

P;_+1 =¢hpk ¢E+nk Xk=xk+|(k .(zk—Hkxk)

AN
" on, xl' waa
Compute error covariance

for updated estimate: -

P, = (1 - K, H)P}

Figure 4.1 Kalman Loop (Adopted from [41])
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Table 4.1 Kalman Loop Equations

Time Update Measurement Update
R =D R K, =P H(H,P H] +R,)"
Pk:—l:q)kpkq)k-r +Q X, Z)A(I;WLKk(Zk_Hk)A(Iz)

P =(| _Kka)Pk_

4.2  Multi-Purpose Integrated Algorithm Operational Flow

The developed integrated navigation algorithm is simple integration of inertial
navigation system with multi-measurement model Extended Kalman Filter as
shown in the following figure. Inertial navigation mechanization process with
necessary equations are detailly explained in chapter 2. The modular architecture
concept comes from multi-measurement model including various types of aiding
information from real or hypotetical sensors or estimated information enable
integration algorithm to have a flexibility related to increase/decrease number of
informations obtained from various forms of sources. In other words, the developed
algorithm is operating on sequential form which is accepting any measurement from
the modelled sources.
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Inertial Sensor
Error
Compensation

INS

INS Initial
Conditions | *****

inertial Sensor Erfor Feed

Feed

(EKF
4
Time Update
=
/GNSS Receiver R 3 ZUPT a NHCs (anary Calibration ‘gcondary Calibration| )
Measurement Measurement Y k Measurement Measurement Y Measurement Y
Update Update Update Update Update N
c b s s _.:_.>
Cona e fr—r s Conatin et
No No No No \‘|'/ No
Yes ‘ Yes ‘ Yes Yes ‘ Yes
" Measurement ) ( Measurement ) Measurement Measurement Measurement
Bypass Bypass Bypass Bypass Bypass
\YMK( Update LWX) Update tdi Update L Update \% Update
y S y

Y
Any
Measurement
Update ?
Yes

Feed Back

Figure 4.2 Multi-Purpose Integrated Algorithm Operational Flowchart

The well-known measurement update process that is given in the Table 4.1 is
repeated for whole aiding informations if the necessary measurement condition sets
are satisfied. Such condition check flow is given in the figure below. If the

mentioned conditions are met, then the measurement update proess of Kalman filter

takes place.
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Is
Measurement

Condition
Met ?

I/ Is Measuremant-Condltlon Met ? ™

Update Mode Yes: Y Conditonte.
L4 on is
Selected 7 AEhre Met

Figure 4.3 Generic Measurement Condition Check
4.3  System Model

As a system model, the standard use of full navigation error states system model
and full inertial sensor error terms illustrated in part 2.4 and 2.5 respectively.

From (2.113), the following expression is obtained
?b(/bi) - fb(/bi) = ba + Ma fb(/bi) +W, 41
For gyroscope case, using (2.114) in the similar manner yields

=~ (b) () ~ (b) (b) -
Wy i — Wy =&+Mga’b/i+eg fori "‘% 4-2

In state-space representation, the above expression can be grouped as

a,Xx

ba,x fb(jbi),x O O S
for = far =|b,, [+] O £, 0 |S
baz

ay
(b)

0 O fb/i,x Sa,z

by A" Sa

(b) (b)
fb/i,y fb/i,z 0 M a,xy Wa,x 4-3
(b)

+ O O fb/i,z M a,xz + Wa,y

0 0 0 M., w,,
— —

A” M, Wa
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bg,x Sg,x
~(b) (b) ~ (b)
@y)i — Wy by, [+] O Wy i x 0 Sgy
(b)
bg,z O 0 wb/ix Sg,z
— —
bg G* Sy
Mg.xy
M
(b) (b) 9.xz
Dyriy Dyl 0 0 0 0 M
0 0 (b) (b) 0 0 g.yx
+ Oyix  Dyji, M +-e-
(b) (b) g9,y
0 0 0 0 Dorix Doriy | p
g,2x
o
_Mglv_
- -
Mq o 4-4
Gy
Gg,xy
Gg,xz
(b) (b) (b) 7
fb/i,x fb/i,y fb/i,z O 0 0 O O O Gg,yx Wg,x
(b) (b) (b)
+| O 0 0 forix  forty  Toriz 0 0 0 Gy |+ w,
(b) (b) (b)
O 0 0 O O 0 fb/i,x fb/i,y fb/i,z Gg,yz Wg,z
" G —
< g,2X Wy
Gg,zy
G'g,zz
L |
G

9

Now full state-space representation of system model can be obtained by using
expression (4.3), (4.4), (2.103) with the system states given below. As oppose to
Chapter 2, abbreviation such as Sa, Sg, Ma, Mg, and Gy are used here to symbolize
column matrices which should not be confused with the square matrices that are
highlighted in part 2.5.

: 4-5
[5¢] = [F x|+ [GIw]
.
T T T T T T T T T T
[5)(] = lgr/])e &/é?l é‘Pb(% ba bg Sa M a Sg M g Gg 4-6
—_ = Y e T e e e
1x3 1x3 1x3 1x3 1x3 1x3 1x3 1x3 1x6 1x9 _|1x39
4-7
~(n) _ 0] )
b/e |:PP b/e + I:PV é‘lb/e
5\'/(”) B (n) E &/(n) F é\P(n) C“(F(b) f (b) 4-8
bie = Fup Ppre + Ry Myje + Fy 0y 0 + Cy\ )i — Ty
() _ (n) (n) (n) n (= (b) (b) 4-9
OMyje = Fup Myje + Foy Myje + Foy Oyh +Cy) (a)b/i _a)b/i)
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Bias and scale factor errors of inertial sensors are modelled as random walk which
is explained in Appendix B.

For this study, loosely coupled integration is taken into consideration. If tight or
ultra-tight architectures were used, it would been necessary to add GNSS receiver
clock offset and drift to system model. For the sake of completeness, the clock offset

and clock drift is modelled as given below.

d . 4-11
a( offset) = 5pdrift +W, o fiset
where w is the receiver clock offset driving noise

d .. 4-12
a (5,0d rift) =W

where w is the receiver clock drift driving noise
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4.4  INS/GNSS Integration

As shown in Table 3.1, the integration of INS/GNSS enables the user to exploit the
complementary characteristics and gain uninterrupted navigation solution with both
short and long term accuracy. The common integration schemes of INS and GNSS
receiver illustrated in the Figure 4.4. For loosely coupled integration, both of the
inertial navigation system and GNSS receiver navigation filter operates
individually. GNSS receiver navigation filter outputs are aided to INS in terms of
position and/or velocity information. As it is stated in the section 3, in order to form
navigation solution for GNSS navigation filter four individual satellite signals are
necessary. However, tightly coupled integration scheme uses GNSS receiver raw
ranging information to aid INS. The last and the most cumbersome integration
architecture is ultra-tight form (some author uses deep integration) in which GNSS
receiver and INS devices no longer work as independent systems, GNSS
measurement are used to estimate INS error and INS measurement to aid GNSS

receiver tracking loops.

Doppler Frequency feedback
(only for Ultra €tight systems)
i
RF Acquisition integrate La

Fromt O Loops and [ (4}
End Demodulator ity Ng
L v

coupl > Filter

Filter & "
N
P. V., Atthude

; Strapdown
b Mechanization
Gyro | Accelerometer
Bas

and Scale factor Errors

Figure 4.4 Loose, Tight and Ultra-Tight INS/GNSS Navigation System
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4.4.1 INS/GNSS Integration Measurement Model

The two common integration architecture of INS and GNSS receiver

measurement modelling is described below.

4.4.1.1 Loosely Coupled INS/GNSS Measurement Model

system

Loosely coupled (LC) integration mainly rely on the output of navigation filter of

GNSS receiver which are generally 3D linear position and linear velocity

informations.

o =Hox+n

4-13

For LC, the measurement vector consists of the difference between GNSS receiver

position, velocity and the INS position, velocity.

(n) W)
57— Poreanss ~ Pore | HS
oL =|""m Sm | Hox+n

Vb/e,GNss —Vore

(n) _ nM (n) (n) —ym (n)
Pose.anss = Pore 77,00 Vbreanss = Vore tym
"M _ H() (n) gm _ 0 (n)
Pore = Pore + Bypre Vore = Vore + Mpje
[, () (n)
5 o, ars ~ Pole
= (n) _ &/(n)
I, orss — Lble
H = - |3x3 03x3 03x3 O3x3 03x3 03x3 03x3 03x3 03x6
L “3x3 3x3 3x3 3x3 3x3 3x3 3x3 3x3 3x6
0 —1 0 0 0 0 0 0 0
(n)
_ pé?e)‘GNSS
m=|"m

(n)
Vb/e,GNsS
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4.4.1.2 Tightly Coupled INS/GNSS Measurement Model

Apart from loosely coupled integration, tight integration scheme is based on
exploiting the raw GNSS receiver ranging and range rate informations. Since tight
integration is not dependent upon the outputs of GNSS receiver navigation filter,

only one integration algorithm generally Kalman filter can be used.

oL=H&X+n
_pGNSS,i — P |
st=| . 4-19
Ponss,i — Li
Ponssi = P + Poprset + T peres: 4-20
5 rs(\/e/)e i rbs?
-~ e e 2 e e e e 2
5=, -T2 0OF +(2, @-72@f + (. @ -7 O)
h(x) 4-21
Expression (4.21) can be linearized around the approximation point via
using the 1t order Taylor approximation.
1% orderTaylor
(%) = h(x+ 3) > >msh(®) = () + T
proximaton
IBi - \/( s(vel)e i (1) - rb(/ei (1)) ( s(vel)e i (2) - rb(/ei (2)) ( s(vel)e i (3) - rb(let)e (3))
h(x)=p;
(e) _r® (e) _r® (e) _r®
+ { {rsvle i @ To/e @ j&b(/eg - ( Fviei (2 To/e (2 Jé‘rb(/ei ) - ( i ©) y/e ©) Jé.rb(/ei (3)} 4-22
i i Pi
ERON
dx
- . . 4-23
Pi =P~ (Loss(vzb,i T 5rb(/e)
4-24

52



( r-s(ve/)e,i (1) - r-b(/e ()e (1) J

Pi
(rx,’e,i (2) -1 (2)j
Pi
[ ri5hei (3) 17, <3>j
L pi _
From expressions (2.18), (2.19), and (2.20), the relation between cartesian

LOSE), = where LOS: Line of sight vector

and curvilinear position errors which can be approximated as small

increments can be formed as below.

(Ry +hye) 0 0
n n 4-25
5rb(/e) = 0 (Rg +h,,.)cos(L,,.) O t()/)e
0 0 -1
5 =p - (ciLost),, Jeio® === 5 = p - (Losy), Jcrciony 4%
I3x3
(Ry +hye) 0 0
p=p - (Loss(\?/)b,i)T 0 (Rg +h,,.)cos(L,,,) O é?l 421
0 0 -1
Substitute the expression (4.20) into (4.27)
Penssi =P = P+ Pofieer R/
(Ry +hy,e) 0 0 4-28
% _(LOSS(\?/)b,i 0 (Re +hy,)cos(Ly,.) 0 [5p),
0 0 -1
(Ry +hye) 0 0
o =(Los@ J| 0 (Re+hy)cos(ly.) O |l - 429
0 0 -1

+ éaoffset + anNSS,i
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Similar to pseudorange equation given as (4.20), pseudorange rate expression can
be written as follow,

pGNSS,i = Ibi + 6pdriﬂ + anNSS,i 30

e e e 4-31
5= 000 (0, - %)
Since positiyon error dependence of PRR by LOS is so weak, neglect

variation of LOS

= _ |, (e) (e) (e)
pPi= (usv/b,i)r(vsv/e (Vb/e + &/b/e))

: © © _y© () © 4-32
=~ e e e e e
Pi :(usv/b,i)T<st/e _Vb/e) ( sv/bl)Tﬁ‘/b/e
Pi
=~ _ (n) (n)
P = (CnuS\r)/bl)TC &/br;e
( SV/bl) C C ‘Wt(x'/]e)z 4-33
|3x3
-~ . (n) (n)
Pi = Pi ( sC/blT&/b?e
- 4-34
: _ : . (n) (n)
Ponssi — Pi = Pi + OPurin T 17 pers: _(Pi ( Usy7b, .)Tﬁ/b?e)
4-35

op; = ( :E\T)b i )r &/é?)e + OPurine + T perss.
45  Zero Velocity Update (ZUPT)
For the land vehicle applications, the platform stops frequently especially in urban
environment. Therefore, the stationary state of the platform can be detected to aid

inertial navigation system via using the knowledge of hypothetical zero velocity

measurement.
45.1 Zero Velocity Update Measurement Model

When the static state of vehicle is captured, it can be used to prevent velocity error

growth. The measurement model expression for ZUPT is given below.
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N

Lext = [Vt(:?l ZUPT ] l:o3x1 + 77(?n)> } 4-36

Vib/e,zUPT

Z= |_Vb(/n 3] l\ﬂ + ) 4-37
L=2,-1= Hox+7

H= [03x3 - |3x3 03x33] 4-38
52 = 5x U

[Vér/?e ZUPT Vb/e ] [03x3 — I3y 3x33][5x] |: be;ZUPTi| 4-39

4.6  Non-Holonomic Constraints (NHCs)

Non-holonomic constraints refer the fact that unless the vehicle jumps off the
ground or slides to the ground, the velocity of the vehicle in the plane perpendicular
to the forward direction (x-axis) is almost zero.

For land vehicle, two non-holonomic constraints can be considered to aid inertial
navigation system. Forward direction of land platforms usually aligned with the
velocity vector unless the vehicle makes sharp turns. Therefore, a land platform can
be approximated as a train on a rail. That is if the vehicle making its turns delicately

then the velocity in the lateral direction (y-axis) can be taken as close to zero.
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4.5 Lateral Motion Constaint 2D Sketch

As it can be imagined from the sketch given below, when the platform accelerates
or decelerates, it will high likely experience a pitching motion. Thus, if the speed
of vehicle is almost constant or not changing drastically, velocity in vertical
direction (z-direction) can be taken close to zero. In order to obtain better
visualization, z-axis is drawn vertically up which is contradicting with the vehicle

body frame definition made in Chapter 2.

*f 7 V-4
; £ 3
| \ A [
L. —| -2 g —rX g X
oG cxmomiil o= A
Constant Velocity Accelerating Decelerating

4.6 Vertical Motion Constaint 2D Sketch

Whole discussion aforementioned can be wrapped up as if the platform is not under
high dynamic maneuvers and speed changes, two motion constraints can be

accepted as a hypothetical velocity measurements.
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4.6.1 Non-Holonomic Constraints Measurement Model

Non-holonomic constraints exploit the fact that the land vehicle generally moves in
the forward direction. Movements such as jump, fall, side-slip etc. are quite

uncommon.

_ gy _ -
Zet = VpjenHC = 0+7 0 4-40

Vble,y,NHC

0+7

For the expression below, IMU sensor coordinate axis is assumed to be aligned with
the vehicle body axis.
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4.7 Field Calibration of Inertial Sensor

Inertial sensor field calibration model is based on two different algorithmic process.
First of all, the known magnitude of local gravity is exploited to compensate
accelerometer triad error parameters under the name of primary calibration model.
When the primary calibration is finished, the calibrated accelerometer triad readings
are used as local gravity vector measurements. Lateron, the attitude computation
algorithm which is actually readily avaliable as part of INS starts computing the
body attitude. The gravity vector computed via attitude integration algorithm is
discriminated with the compensated accelerometer measurements to estimate and

calibrate the gyroscope triad errors in the name of secondary calibration model.
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4.7.1 Primary Calibration Measurement Model

When the inertial measurement unit in static condition, the regardless of the

orientation the total magnitude of accelerometer reading is ideally equals to

magnitude of gravity. In other words, the primary calibration measurement model

is use the known magnitude of local gravity to compensate accelerometer bias, scale

factor and cross-coupling errors. Moreover, the stationary condition implies that

total angular rate can be measured by gyroscope triad must equal to the Earth

rotation rate. Therefore, as long as the inertial measurement unit remains in static

condition, gyroscope bias and acceleration dependent bias error can be calibrated.

f

weos(L) W}
-wsin(L) (QJ/

Figure 4.7 Representation of Local Gravity Vector and The Earth Rate

Zext :|glocal|
Z= |glocal| = h(Xa +§X)

By using first order Taylor approximation

X, = X, +X

oh(x,)

h(X,)=h(x, +x)=h(x, )+ e

X

~ ~

(% )= G (0% = T2 06+ 2,7 00) + 22 ()

58

4-44

4-45

4-46

4-47



The accelerometer triad error model equation given as expression (2.113) is

substitude into the equation above.

(b)_ (b)
T =ba + (13 +S, + M) T +w,

6h(Xa)_ f~b(/bi),x(xa) 6h(Xa)_ b/| (X) ﬁh(Xa)_ bli,x (X)fblly( 2) 448
b h(x,) S h(x,) = oM h(x,)

a,Xx a,x a,xy

The measurement model can be formed as

qL=1,,—-7=HX+n

oh(x
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Similar to the measurement model of absolute magnitude of local gravity,

magnitude of the Earth rate is used as a measurement.

Zog = |Qe/i| 4-51

_‘ eli

= h(x, + ) 4-52

By using first order Taylor approximation
X, =X, +0X

X

e\ 3 ah(x,)
h(X,)=h(x, +x)=h(x_)+ F

~(b) 2

\/a)b/.x () +a), (X )+, (%) 4-53

eli

When the inertial measurement unit in static condition, following reductions can be
performed. Since the Earth rate is so weak, for static conditions scale factor and
cross-coupling errors arised in gyroscopes do not cause any substantial angular rate
error when compared to bias error. Therefore, the reduction done in equation (4.54)

IS quite acceptable in stationary cases.
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4.7.2 Secondary Calibration Measurement Model

The secondary calibration is based on using the calibrated accelerometer signal
from the primary calibration model to form gravity vector. The gravity vector
obtained by attitude integration algorithm which is directly done via inertial
navigation system attitude update part is compared with the reference gravity vector
provided by the calibrated accelerometers. In other words, the gravity vector
computed via calibrated accelerometers is used as a measurement to estimate

gyroscope scale factor and cross-coupling errors.
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Substitude expressions (2.60) and (2.65) into the above equation yields
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The difference between the measurement and the equation (4.63) is given as
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If the primary calibration is done, the reduced equation can be

approximated as
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4.8  Stationary Detection

The primary calibration and zero velocity update measurement models are purely
depend on the detection of static conditions. For this purpose, the mean quadratic
deviations of inertial sensors readings are used as static case detection filter. When
the inertial measurement unit in is in stationary case, variance of both the
accelerometer and gyroscope readings do not excess certain limits.

Empirical acceleration and angular rate thresholds are used to for this specific
purpose. References such as [42], [43], and [44] illustrate practical uses of

stationary detection methods.
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4-66
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Where ¢ is representing the moving average of inertial sensor data for N point

data window.
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CHAPTER 5

ASSESSMENT OF THE FIELD CALIBRATION VIA SIMULATION
ANALYSIS

The integration algorithm stated in part 4 is developed in MATLAB Simulink
environment together with trajectory generator and sensor models. The top level
Simulink block diagram is given in the following figure with key explanations
described in the Table 5.1.

T

Figure 5.1 Top Level View of The Developed Simulation
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Table 5.1 Simulation Block Description

Model Block Identifer

Explanations and Details

Trajectory Generation
(Magenta Block)

Ideal error-free data of accelerometer and
gyroscope triads are calculated together with error-
free 6 DOF trajectory informations. The details are

given in the appendix C.

Inertial Measurement Unit

(Upper Green Block)

Ideal inertial sensors readings are deflected with
error parameters given in Table 5.2 according

expressions given in the part 2.5.

GNSS Receiver
(Lower Green Block)

Three dimensional ideal linear position and
velocity data generated via trajectory generation
block is perturbed by error counter-part modelled
as Gauss-Markov process and random walk
model  of

respectively. The mathematical

stochastic processes are highlighted in appendix B.

Multi-Purpose Intengration
Algorithm
(Orange Block)

The developed integrated algortihm which is

detailly explained and formulated in chapter 4.

Results and Plots
(Gray Block)

It is used as data comparison, record and some

other trivial plot functions.

The simulated rotational trajectory is used as a reference signal to generate stimulus

ideal inertial data. After a myriad of trials, the proposed calibration routine is simple

rotation around all three axis of inertial measurement unit and the simulated sample

ideal inertial signals are given below. Three simple rotation is simulated within in

total 270 second and it is doubled in which the secondary calibration algorithm is

used in the second part of the simulation while the primary calibration begins with

the simulation. For both of the single and multi-run analysis, magnitude of local

gravity is assumed to be perfectly known and no error model is established which

is in fact not completely reflecting the real case.

64




Modelled Ideal A Reading

°

=== accX True
=== accY True

Time (second)

o

)

&

Modelled Ideal Accelerometer Reading (matarlsacondzj
B
Ll e

Modelled Ideal Gy pe R

g

g

-50

@

100 L | | 1 |
0 100 200 300 400 500 600

Time (second)

Modelled Ideal Gyroscope Reading (deg/second)

Figure 5.2 Simulated Ideal Accelerometer and Gyroscope Readings

The generated rotational trajectory is fed to inertial measurement unit model to
simulate real inertial sensor data via applying sensor errors for two different grade
of IMU which is tabulated in the Table 5.2. All values given in the Table 5.2 are

modelled as 1 sigma (standard deviation).

Table 5.2 Simulated IMU Technical Specifications

Automotive Grade IMU | Tactical Grade IMU
(Control-System Grade)
Bias 50 .
g | Img]
| .
= Scale Factor
L 10000 300
2 | [pom]
(@) - "
5 Misalignment
§ (Cross-coupling) 10 0.5
[mrad]
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Velocity Random

Walk (VRW) 0.0083 0.0003302
[meter/s?/sqrt(Hz)]
Bias
200 1
[degree/hr]
Scale Factor
10000 150
[ppm]
E Misalignment
S
|_ .
2 (Cross-coupling) 10 0.5
§ [mrad]
o
s G-Dependent Bias
O] 100 -
[degree/hour/g]
Angular  Random
Walk (ARW) 0.500 0.125

[degree/sqrt(hr)]

Simulation study is carried out via a single run and multi-run (Monte-Carlo)

analysis.

51  Single-Run Analysis

The developed algorithm is tested for its inertial sensor calibration feature in
MATLAB environment via using automotive (commercial) grade IMU
specifications. Square root of normalized variance of whole sensor error states are
plotted and analyzed as a measure of algorithm convergence merit. The filter
estimate of sensor errors are also plotted in the same figures to further clarify the

performance of calibration.
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Figure 5.3 The Filter Accelerometer Bias Estimate and Its Square Root of Normalized
Variance

As clearly seen from Figure 5.3 and Figure 5.4, the normalized variance of
accelerometer triad bias and scale factor error estimates quickly fall below 10
percent of the inital uncertanity value within 150 second of simulation. That is,
accelerometer triad bias and scale factor error estimates are reasonable close to the
modelled value when three of whole accelerometer sensors at least a period of time

pointing locally up and down.

67



Square root of Normalized Variance of Accelerometer Scale Factor Estimate Accelerometer Scale Factor Estimate

accXScaleFactor
=== = accYScaleFactor
accZScaleFactor

1.2

o
o

o
o

Square root of Normalized Variance

o
S

-2000 -

Accelerometer Scale Factor Estimate (ppm)

H
5 4000 1

H
0.2f h

—— accXScaleFactor
== accYScaleFactor

T S accZScaleFactor
S
s Modelled Error

0 L L 8000 L L I L
0 100 200 300 400 500 600 0 100 200 300 400 500 600

Time (second) Time (second)

-6000 -

Figure 5.4 The Filter Accelerometer Scale Factor Estimate and Its Square Root of
Normalized Variance

As the orientation of the accelerometer triad changes, the cross-coupling error
estimates approaches the modelled ones which is given in the Figure 5.5. When the
Figure 5.1 and Figure 5.5 are evaluated together, it is necessary to orient each of
accelerometer sensitive axis to locally up and down more than several times to
lower the uncertainity of integration filter cross-coupling error estimates. For
accelerometer calibration, it can be clearly deduced from this single simulation
analysis that as long as each axis of the accelerometer triad roughly aligned with
the local up/down direction, the major part of bias and scale factor errors are
estimated when the uncertainty of the estimate concerned. However, since the
second order inertial sensor error sources are not modelled and the assumption of
perfectly known gravity is made, there will be performance degradation when

stepped outside from the simulation world.
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Figure 5.5 The Filter Accelerometer Cross Coupling Error Estimate and Its Square Root of
Normalized Variance
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Figure 5.6 The Filter Gyroscope Bias Estimate and Its Square Root of Normalized Variance

For the gyroscope triad, bias and g-dependent bias error estimating process begin

with the primary calibration algorithm which also begins with the simulation start
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while scale factor and cross-coupling errors are estimated during the secondary
calibration process. Both of bias and g-dependent bias terms are estimating all
through the simulation length while it can be clearly seen from Figure 5.7 that scale
factor error is directly observed when there is rotation around the related gyroscope
unit. That is also true for the cross-coupling error estimates and their normalized

variance values computed from integration filter.
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Figure 5.7 The Filter Gyroscope Scale Factor Estimate and Its Square Root of Normalized
Variance

Figure 5.7 and figure 5.8 can be interpreted as the scale factor and the cross-
coupling error estimations are high likely discriminated from each other by the

estimation process.
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Figure 5.8 The Filter Gyroscope Cross Coupling Error Estimate and Its Square Root of
Normalized Variance

Unlike to accelerometer case, the uncertainty of cross-coupling error estimate of
gyroscope triad fall more than %10 of the initial value when a simple rotation is

performed around each of the gyroscopes sensitive axis.
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Figure 5.9 The Filter Gyroscope G-Dependent Bias Estimate and Its Square Root of
Normalized Variance
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Figure 5.10 is representing the modelled accelerometer triad and compensated
accelerometer triad readings during the whole simulation. As it is highligted in the

Figure 5.3 to Figure 5.5, obvious calibration result is obtained.
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Figure 5.10 Simulated Uncalibrated and Calibrated Accelerometer Data

Examining the figures from 5.1 to figure 5.10 and wrapping up the single simulation
analysis with simple rotational routine, the following outcomes can be deduced.
Accelerometer triad:

- As long as the magnitude of local gravity is known accurate enough, major
part of bias and scale factor errors are compensated effectively if all axis of
sensor array point locally up/down direction at least a single time.

- Single simulation run indicates that cross-coupling error estimate may be
improved further if the rotation routine is made with repeated action.

Gyroscope triad:

- Since the Earth rate is very weak signal especially for low grade gyroscopes,
the noise in the sensor output becomes critical factor in the bias estimation
process. Therefore, it can be pointed out that depending upon the sensor
grade, noise suppressing techniques such as moving data average with

emprically detected window size should be practiced.
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- It can be inferred from figure 5.7 and figure 5.8, if the bias terms of
gyroscope triad compensated, scale factor and cross-coupling errors are
effectively calibrated with a simple rotational process around the sensitive

axis of calibration intended gyroscope.

5.2  Multi-Run Analysis

In order to generalize the performance of the algorithm in a statistical manner,
multi-run analysis is carried out. The single run analysis stated in part 5.1 is repeated
1000 times for two different grades of inertial measurement unit. Besides, whole
inertial sensor errors are normally distributed for each simulation run. When the
simulations are finished, the histogram graphs of both of the modelled inertial
sensor errors and residual terms left from calibration algorithm are plotted and the
results are tabulated in this section.

In order not to pollute with a myriad of figures, only bias and scale factor errors of
the x-axis of automotive grade inertial sensors plots are given below and the rest is

listed in Appendix D.
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Figure 5.11 Automotive Grade X Accelerometer Modelled and Residual Bias Error
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The statistical results related to multi-run analysis are well tabulated in the

following tables. In these tables, mean and standard deviation of modelled and
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Figure 5.14 Automotive Grade X Gyroscope Modelled and Residual Scale Factor

residual error left from estimation process given.

Table 5.3 Multi-Run Analysis Results for Accelerometer Triad

Automotive Grade IMU Tactical Grade IMU
Modelled Error | Residual Error | Modelled Error | Residual Error
Mean Std Mean Std Mean Std Mean Std
Bax [mg] 1.1456 | 50.924 | 0.0233 | 0.092 0.0229 | 1.0185 | 0.0000 | 0.0036
4 Bay [mg] -2.2110 | 49.186 | 0.0068 | 0.345 | -0.0442 | 0.9837 | 0.0000 | 0.0038
2
Baz [mg] -2.3847 | 48.944 | -0.0997 | 0.412 | -0.0477 | 0.9789 | -0.0001 | 0.0035
- Sax [ppm] -526.46 | 9836.7 | -101.88 | 141.72 | -15.794 | 295.101 | 0.0732 | 4.273
ERE:
g & Say [ppm] 43.70 | 10003.0 | 199.74 | 255.85 1.311 | 300.091 | 0.0498 | 4.446
- |2
° g Saz [ppm] 39331 | 9991.4 | 283.69 | 283.44 | 11.799 | 299.743 | 0.7189 | 4.067
-
qé Maxy [mrad/ 0.4022 | 10.019 | -0.0017 | 0.0553 | 0.0201 | 0.5010 | -0.0006 | 0.0076
o
= (arcsec)] (81.44) | (2028) | (-0.344) | (11.21) | (4.072) | (101.4) | (-0.115) | (1.537)
E L ?ﬂ
9 S £ | Maxz [mrad/ 0.3494 | 10.205 | 0.0341 | 0.1648 | 0.0175 | 0.5102 | -0.0001 | 0.0122
< | E §
g § (arcsec)] (70.74) | (2066) | (6.906) | (33.37) | (3.537) | (103.3) | (-0.021) | (2.479)
] [l
s 3
s §
= | Mayz [mrad/ 0.1276 | 10.107 | 0.0399 | 0.0914 | 0.0064 | 0.5054 | -0.0001 | 0.0197
(arcsec)] (25.85) | (2046) | (8.099) | (18.51) | (1.293) | (102.3) | (-0.191) | (3.985)
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For both of automotive and tactical grade IMUs, the accelerometer error estimates
are quite match with the modelled values during multi-run simulations. Moreover,
it can be seen from both Figure 5.11, Figure 5.13, accelerometer related figures in
Appendix D and the table above, all of the accelerometer errors calibrated well and
two to three orders of magnitude enhancement can be accomplished compared to
the modelled sensor errors. Although the degree of improvement is nearly same for
different grades of inertial sensors, there will be expectation for performance
degradation in the estimation process for real cases due to the assumption of error-
free gravity model. Since the main motivation of this work is more concentrated on
the low cost inertial sensors, the well-known and commonly used gravity model
such as normal gravity, J2, J4, etc. are quite adequete for the field calibration
process. The reference [45] depicts comparison among the popular gravity models
used commonly by navigation society. As it is highlighted in the references such
as [46] and [47], the common form of simple gravity models such as ellipsoid
gravity model differ from the actual gravity less around 100 mgal (approximately
0.1 mg) which is shown in gravity disturbance figures shown below . Gravity
disturbance is defined as the difference between the actual gravity value for any
arbitrary point on the Earth with the ellipsoid gravity model indicated value for the
same location. As seen from the sample figures below, the gravity signal obtained
from the ellipsoid gravity model is actually highly accurate reference signals for

low cost, especially uncompensated accelerometers.
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For gyroscope case, the field calibration algorithm results in nearly two order of
magnitude enhancement for gyroscope main sensor errors except from g-dependent
bias error for automotive grade typical uncompensated modelled gyroscope values.
Acceleration dependent error of gyroscopes can be improved around an order of
magnitude but as it is seen from Figure 5.9, further orientation change with repeated
action to align the sensitive axis of each sensor inside the gyroscope triad with local
down direction may increase the performance of estimation process. Besides from
low grade inertial sensor, for tactical grade gyroscope specifications several order
of magnitude increase in scale factor and cross-coupling errors can be seen from
Table 5.4 which can be also seen from the figures given in Appendix D. Apart from
scaling errors the bias error estimate of tactical grade gyroscope can be improved
about several times better than the modelled error in which the noise level of
gyroscope signal becomes the limiting factor. The gained experience from

simulation studies indicate that in order to obtain better estimation performance for
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especially gyroscope bias error, long period of averaging time becomes necessary
to suppress the noise effect of sensor signal. In other words, moving from low grade
gyroscope to high grades toward navigation grade and further, the averaging time

for bias estimation proportionally increase the duration of field calibration process.

Table 5.4 Multi-Run Analysis Results for Gyroscope Triad

Automotive Grade IMU Tactical Grade IMU

Modelled Error | Residual Error | Modelled Error | Residual Error

Mean Std Mean | Std Mean Std Mean Std

Bgx [°/hr] -0.2201 | 198.66 | -4.3182 | 3.787 | -0.0011 | 0.9933 | -0.0131 | 0.2329
8 Bgy [°/hr] 48621 | 19594 | 0.8005 | 4.768 | 0.0243 | 09797 | 0.0223 | 0.4874
o

Bgz [°/hr] 43174 | 2017 | -3.5579 | 3.680 | -0.0216 | 1.0085 | -0.0158 | 0.2417
s Sgx [ppm] 217.79 | 9850.2 | 253.19 | 248.85 | -3.2668 | 147.753 | 0.6285 | 17.744
E Sgy [ppm] 25330 | 94014 | -43.09 | 276.08 | -3.5296 | 141.021 | -1.5150 | 28.165
ﬁ Sgz [ppm] 86719 | 10069 | 219.48 | 237.11 | -1.3008 | 151.040 | 0.7212 | 18.821

Mgxy [mrad/ | 03176 | 10123 | 0.2525 | 0.2262 | 00159 | 0.5062 | 0.0005 | 0.0205

(arcsed)] (64.32) | (2050) | (51.13) | (45.80) | (3.216) | (102.5) | (0.107) | (4.150)

Mgxz [mrad/ | -0.0717 | 10143 | 02443 | 02659 | -0.0036 | 0.5071 | 0.0020 | 0.0235

(arcsec)] (-14.53) | (2053) | (49.48) | (53.85) | (-0.726) | (102.7) | (0.407) | (4.749)
. T Mgyx [mrad/ | -0.6554 | 9.867 | -0.1323 | 03864 | -0.0328 | 0.4934 | -0.0027 | 0.0382
E § (arcsec)] (-132.7) | (1998) | (-26.79) | (78.23) | (-6.636) | (99.9) | (-0.545) | (7.733)
-‘_% 3 Mgyz [mrad/ | -02942 | 9.900 | 00272 | 03231 | -0.0147 | 0.4950 | -0.0014 | 0.0371
'§ 5 (arcsec)] (-59.57) | (2005) | (5.504) | (65.43) | (-2.978) | (100.2) | (-0.285) | (7.521)

Mgzx [mrad/ -0.2824 | 10.503 | 0.2372 | 0.3022 | -0.0141 | 0.5251 | 0.0015 | 0.0250

(-57.18) | (2127) | (48.02) | (61.19) | (-2.859) | (106.3) | (0.311) | (5.068)

Gyroscope Triad

(arcsec)]

Mgzy [mrad/ -0.3198 | 10.126 | 0.1394 | 0.2313 | -0.0160 | 0.5063 | 0.0010 | 0.0210

(arcsed)] (-64.75) | (2050) | (28.22) | (46.85) | (-3.238) | (102.5) | (0.196) | (4.258)

Gexx [°/hr/g] | 2570 | 91388 | -8.424 | 5645

Gexy [°/hr/g] | 0144 | 92356 | 0233 | 3.650

Ggxz [°/hr/g] | 4756 | 90891 | 0.695 | 3.560

Ggyx [°/hr/g] 0.083 91.034 | -0.538 2.984

Gayy [°/hr/g] | 0747 | 88295 | 65639 | 7.207

Ggyz[°/hr/g] | -2808 | 89164 | 0371 | 4.206

Ggzx [°/hr/g] | 4547 | 89792 | -0443 | 2.587

Ggzy [°/hr/g] -3.494 89.372 | -0.092 3.728

Ggzz [O/hr/g] 1.070 90.745 | -7.459 7.732

Gyroscopes Acceleration Dependent Error
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CHAPTER 6

FIELD TESTS

Outcomes of the simulation studies defined in chapter 5 are quite promising and
thus application of the simulated work becomes necessary for further clarification.
Therefore, field tests are carried out by using very low cost equipment which is
described in part 6.1 to fortify the theoretical work and developed algorithm in
terms of both field calibration feature and inertial navigation system aiding modes
other than GNSS receiver. The reason of using cheap inertial measurement unit
comes from the fact that it is overlapping with the main motivation of this research
which is calibration of the low cost inertial sensor on the field. On top of that, during
the field tests non-GPS/GNSS aid mode which is referred to combination of ZUPT

and NHCs is tested as well.

6.1  Test Hardware and Equipment

Hardwares used in testing process include Ardupilot APM 2.5 for IMU labeled as
MPU 6000 onboard and Ublox M8N as a GPS receiver. During both static and
dynamic tests, both of the inertial sensors and GPS receiver data are recorded in
flash memory of Ardupilot which is later on exported to personal computer. The
exported data is post-processed in MATLAB environment. Besides, the power
input of the APM unit is supplied from labtop USB COM port via mini USB
interface cable.
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Table 6.1 Main Test Hardware

Arduino, ArduPilot (APM 2.5) =25 $
- MPU 6000 Evaluation Board
» 3 Axis Gyroscopes
» 3 Axis Accelerometers

» 3 Axis Magnetometers

Inertial Measurement

Unit

Ublox MBN =30 $

GPS Receiver

Figure 6.2 Ublox M8N GPS Receiver

In order to establish field calibration procedure with the proposed rotational process
that is dealt with during simulation study, low cost fixture is built from furniture
connection parts from local store around 5 $ cost. The calibration fixture is actually
assembled from four “L” shape and a flat aluminum furniture connection parts
which are bolted together. The unit under test is sticked to the flat surface with

double sided tape.

Figure 6.3 Low-Cost Calibration Fixture
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Apart from MPU 6000 inertial measurement unit which is built in ArduPilot APM
2.5 card, two different relatively costly IMUs compared to APM undergo the same
field calibration routine to assess the performance gain for various inertial sensor
hardware. The inertial sensors data are collected from those units via the
connector/cable and necessary software which are supplied in the related

development Kit.

VectorNav VN-200 = 2600 $ Xsens Mti-G-710 = 3800 €
(GPS integrated INS)

(GPS integrated INS)

Fixture

Figure 6.4 VN-200 with Calibration Fixture Figure 6.5 Mti-G-710 with Calibration

6.2 Field Calibration Process and Performance Tests

After the simulation studies related to the field calibration algorithm, orientation
procedure mainly consists of three simple rotation around each of the IMU sensor
axes.

The proposed simple rotation based calibration process is given in the following
figure. In other words, the handmade calibration fixture is rotated at roughly around
45 degrees orientation poses around all three of the IMU in which each of the
inertial sensors at least rotated once around the axis perpendicular to locally
up/down direction. The calibration process is repeated for three different IMUs

described in the previous section.
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=== Rotation Around Body X Axis

=) Rotation Around Body Y Axis

=== Rotation Around Body Z Axis

Figure 6.6 Calibration Routine

6.2.1 Static Tests
6.2.1.1 Ardupilot MPU-6000 Case

The above calibration routine given in the Figure 6.6 is based upon simple
orthogonal rotation from all three axis of inertial sensors. The logged data from
three different inertial measurement units are post processed with the developed
algorithm. Later on, the calibrated and uncalibrated inertial sensor readings are fed
into inertial mechanization equations which is inherently built in the integrated
algorithm to see whether the field calibration process increase the navigation
performance. The initial position is taken from GPS measurement and the initial
attitude information is obtained from accelerometer levelling. The levelling process

is given in the references [48], and [49].
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The calibrated and uncalibrated raw readings from ArduPilot accelerometer are

given in the following figure.

Calibrated and Uncalibrated Accelerometer Readings

~——— AccX Uncalib

===~ AccY Uncalib
AccZ Uncalib

~—— AccX Calib
AccY Calib

Y- 10 o
ey AccZ Calib
x

Acceleration (meter/second?)
°

[ 50 100 150 200 250 300 350 400
Time (second)

Figure 6.7 Ardupilot MPU-6000 Calibrated and Uncalibrated Accelerometer Data

The horizontal and vertical positioning errors are plotted for raw inertial sensor
readings, only gyroscope calibrated and full calibrated inertial sensor readings.

As it can be seen from figure below, the accelerometer errors are the dominant
source of the positioning error. From Figure 6.7, it is crystal clear to notice that
around 100 mg misreading of gravity magnitude in accelerometer-z sensor which

in turn leading to more than a km vertical positioning error under just 60 seconds.
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Figure 6.8 Ardupilot MPU-6000 Horizontal and Vertical Positioning Error

6.2.1.2 VN-200 Case

The same test is carried out for both of the VN-200 and Mti-710-G units. Calibrated

and uncalibrated raw accelerometer readings of VN-200 are given below.

Calibrated and U A Readi
15— e
i —— AceX Uncalib
L ) AccY Uncalib
i AccZ Uncalib
i —— AceX Calib
1 ) 93 2
| umos | Boa frag e AccY Calib
10— i = B AccZ Calib
i !
= |
o 8 |
T i
€
o
o
@ [
@
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A0 = =t
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v.-9855 Y. 985
45 | L 1 | ! | L |
50 100 150 200 250 300 350 400 450

Time (second)

Figure 6.9 VN-200 Calibrated and Uncalibrated Accelerometer Data
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Calibrated and uncalibrated raw gyroscope readings of VN-200 are given below.
The gyroscope data before calibration and the calibrated gyroscope data are plotted
only for VN-200 case because of the fact that the high amount of angular rate bias
error in sensor readings which is obviously illustrated in the figure below. Although
the bias error of gyroscope-z is around 1 degree per second level, it does not cause
static positioning error due to fact that it is responsible for heading angle error
acumulation. However, comparably high amount of angular rate bias error in one

of the horizontal gyroscope cause main portion of horizontal positioning error
shown in the Figure 6.11.

Calibrated and Uncalibrated Gyroscope Readings (Full-View)
100 —

I A =

GyroZ Uncalib |
~—— GyroX Calib

Gyroscope (degree/second)
o

<=~ GyroY Calib
L L L L | | - -~ GyroZ Calib |
-100
0 50 100 150 200 250 300 350 400 450
Time (second)

—— GyroX Uncalib|
----- GyroY Uncalib |
GyroZ Uncalib
Calibrated and Uncalibrated Gyroscope Readings (Close-View) ~—— GyroX Calib
==+~ GyroY Calib
- - -~ GyroZ Calib

-
- o
—

Gyroscope (degree/second)
o

0 50 100 150 200 250 300 350 400 450
Time (second)

Figure 6.10 VN-200 Calibrated and Uncalibrated Gyroscope Data
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Horizontal Position Error

Vertical Position Error
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Figure 6.11 VN-200 Horizontal and Vertical Positioning Error

6.2.1.3 Mti-710G Case

The same field calibration attitude orientation routine given in the Figure 6.6 is
applied to Mti-710-G as well and the positioning error graphs are given below. The
results are quite similar to VN-200 case which is the main sources of static
positioning error of pure inertial navigation system solution induced by bias error

of gyroscopes in the horizontal plane.
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Figure 6.12 Mti-710G Horizontal and Vertical Positioning Error

Static tests conducted with three different MEMS IMU and more than an order of
magnitude of positioning accuracy gain is achieved via field calibration process.
That is, the field calibration orientation routine rotated to arbitrary angles by hand
demonstrate its effectiveness in static positioning performance which is in fact
directly related to how well inertial sensor errors are compensated.

6.2.2 Dynamic Tests

In addition to static tests applied for various inertial measurement units, dynamic
test for land vehicle application is taken into consideration. Integration with GPS
receiver and aiding modes other than GPS receiver are tested during dynamic tests.
Both of ArduPilot and the GPS receiver mounted on the main part of the calibration

fixture that are sticked to the dashboard of a car.
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Figure 6.13 Dynamic Test Hardware and Dashboard View 1

Figure 6.14 Dynamic Test Hardware and Dashboard View 2

The dynamic test process is done for two different trajectory in EImadag which is
one of the state of Ankara. The mentioned trajectories are plotten from the data
obtained by Google Earth application. During the dynamic tests, the data obtained
from ArduPilot inertial sensor readings and uBlox GPS receiver data are fed to the
developed integrated algorithm while various form of aiding modes are active.
Besides that, intensional GPS receiver track losses are created to further investigate
the performance increase with algorithm aiding modes.
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Trajectory 2

Trajectory 1
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Figure 6.15 Dynamic Test Trajectories

6.2.2.1 Trajectory 1

The 2D/3D positioning, NED velocity and Euler angles calculated from the

integrated algorithm with various forms of algorithm modes are given in the Figure

6.16 to Figure 6.20.
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Figure 6.16 Trajectory 1, 2D-3D Position Data

As it is previously seen from the static tests highligted in part 6.2.1.1, errors in
uncompensated inertial sensor especially accelerometers cause so called “garbage”
navigation velocity and positioning solution which is obviously indicated in the
velocity comparison plot given below. The field calibration algorithm remedies
especially for vertical channel navigation accuracy illusturated in the Table 6.2 with
several orders of magnitude increase in positioning and velocity solution accuracy.
However, whether or not the field calibration is done, the navigation accuracy
obtained is not enough and the stand alone INS solution cannot be used for long
period of time. On the other hand the non-GNSS abbreviated as “NG” aiding modes
highly increase the accuracy of navigation outputs which is tabulated in the Table
6.2 and the performance increase is also seen from the Figure 6.16 and Figure 6.17.
Together with the inertial sensor field calibration procedure, the “NG” aiding
results in below 20 meter horizontal positioning and below 80 meter vertical
positioning accuracy within nearly 10 minutes of typical land vehicle test scenerio

in urban environment.
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Figure 6.17 Trajectory 1, NED (North-East-Down) Velocity Data
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Figure 6.18 Trajectory 1, Euler Angle Data
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Performance table belongs to whole test scenerios related to trajectory 1 is given

below. The Figure 6.19 and Figure 6.20 is representing the positioning solution

performance of integrated algorithm with different types of algorithm modes while

the GPS receiver aid is inactive. The power of field calibration algorithm is

straightforwardly distinguished from Figure 6.20 that is the more than an order of

magnitude increase in performance is achived. Apart from the field calibration

process, the non-GNSS aid modes also yield the similar performance gain with the

short term pure inertial solution obtained from the field calibrated inertial sensors.

Table 6.2 Trajectory 1 Navigation Performance Table

Position Accuracy

Velocity Accuracy

Rotational Accuracy

(meter) (meter/second) (degree)
GPS Operational Horizontal | Vertical | Horizontal | Vertical Roll / Pitch / Yaw
Aid Modes
None INS+CIMU 6188.15 315.94 37.64 1.06 0.49/0.52/2.49
None INS+CIMU+ 18.33 71.94 0.69 0.43 0.19/0.30/1.75
NG
4 None | INS 6978.13 71771.49 3221 343.22 0.80/0.96/7.73
> None INS+NG 66.27 101.90 1.35 0.61 0.34/1.34/4.38
% Full INS 1.61 4.19 0.37 0.87 0.31/0.36/1.06
%‘ Partial | INS+CIMU 3431 10.41 1.38 0.19 0.11/0.08/0.60
= Partial | INS+CIMU+ 27.74 8.88 111 0.23 0.11/0.11/1.13
NG
Partial | INS 159.43 803.34 7.35 32.82 0.32/0.65/1.54
Partial | INS+NG 19.22 17.42 1.05 1.01 0.24/0.46/1.44
Notes

All calculations are compared with (Full GPS Aided INS + CIMU) solution

None GPS aid is not used at all

Full GPS aid is fully used throughout trajectory

Partial Intentional GPS signal loss assumed

INS Inertial Navigation System

CIMU Calibrated Inertial Measurement Unit (Field calibration is done)
NG Non-GPS/GNSS modes active
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Figure 6.19 Trajectory 1, 2D-3D Position Data for Intentional GPS Loss Case
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6.2.2.2 Trajectory 2

The 2D/3D positioning, NED velocity and Euler angles calculated from the
integrated algorithm with various forms of algorithm modes are given in the Figure
6.21 to Figure 6.25.
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Figure 6.21 Trajectory 2, 2D-3D Position Data

Similar to trajectory 1 case, pure inertial navigation solution with uncompensated
inertial sensor data cause highly degraded navigation velocity and positioning
solution. On the other hand the non-GNSS aiding modes again highly increase the
accuracy of navigation outputs which is tabulated in the Table 6.3 and the
performance increase is also seen from the Figure 6.21 and Figure 6.22. Together
with the inertial sensor field calibration procedure, the “NG” aiding results in below
30 meter horizontal positioning and below 6 meter vertical positioning accuracy

within nearly 10 minutes of typical land vehicle test scenerio in urban environment.
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Performance table related to whole test scenerios related to trajectory 2 is given

below. Similar to trajectory 1, the Figure 6.24 and Figure 6.25 is representing the

positioning solution performance of integrated algorithm with different types of

algorithm modes while the GPS receiver aid is inactive. Performance gain in terms

of navigation accuracy due to field calibration is again significant which is quite

similar to outcomes of trajectory 1. The power of field calibration algorithm is

straightforwardly distinguished from Figure 6.25 that is the more than an order of

magnitude increase in performance is achived. Similar to the trajectory 1, the non-

GNSS aid modes also yield the comparabely higher performance gain with the short

term pure inertial solution obtained from the field calibrated inertial sensors.

Table 6.3 Trajectory 2 Navigation Performance Table

Position Accuracy

Velocity Accuracy

Rotational Accuracy

(meter) (meter/second) (degree)
GPS Operational Horizontal | Vertical Horizontal Vertical Roll / Pitch / Yaw
Aid Modes
None INS+CIMU 6811.25 1275.34 40.08 5.73 0.69/0.62/1.33
None INS+CIMU+ 27.12 16.63 0.86 0.08 0.09/0.10/1.26
NG
None INS 8559.36 84280.23 70.39 379.38 1.08/1.11/10.01
(E‘ None INS+NG 32.55 21.41 1.03 0.34 0.24/0.40/5.44
8 Full INS 1.609 4.45 0.38 0.92 0.31/0.31/2.04
% Partial INS+CIMU 95.94 41.34 2.65 0.94 0.22/0.16/0.48
= Partial | INS+CIMU+ 28.73 5.99 0.99 0.09 0.08/0.08/0.31
NG
Partial INS 450.49 2223.17 11.56 56.91 0.95/0.91/2.13
Partial | INS+NG 30.05 19.62 1.73 0.81 0.28/0.49/2.57
Notes
All calculations are compared with (Full GPS Aided INS + CIMU) solution
None GPS aid is not used at all
Full GPS aid is fully used throughout trajectory
Partial Intentional GPS signal loss assumed
INS Inertial Navigation System
CIMU Calibrated Inertial Measurement Unit (Field calibration is done)
NG Non-GPS/GNSS modes active
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Figure 6.24 Trajectory 2, 2D-3D Position Data for Intentional GPS Loss Case
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CHAPTER 7

DISCUSSION AND CONCLUSION

In this research,

The basis of inertial navigation and its integration with other aiding is
studied and analyzed.

EKF based field calibration algorithm is developed, analyzed in simulation
environment and tested with real hardware.

Single-run and multi-run simulation analysis for both tactical and
automotive grade IMU show the tremendous increase in the performance.
Very low cost (sub 100$) GPS aided INS is developed and tested during
static and dynamic tests.

Three different inertial measurement unit is tested with the developed
calibration algorithm and the static positioning tests show the performance
improvement of the method.

Land vehicle based dynamic tests for two different trajectories are carried
out.

During the dynamic tests, non-GNSS aid such as non-holonomic constraints
and zero velocity update modes are tested.

Dynamic tests indicate that use of non-GNSS aid is way more superior to
the pure inertial mean whether the IMU is calibrated or not.

If the calibration procedure is carried out together with the non-GNSS aid
modes, it is shown that the very low cost IMU and GPS receiver can be used
to build integrated navigation system for land applications with accuracy of
positioning can be useful (< 50 meters) for couple of minutes of receiver

unavailability.

99



It is shown that the field calibration process enables the calibration of
inertial sensors without the need of accurate, expensive laboratory
equipment and the extensive labor of laboratory works.

Application of the field calibration process toward the highly accurate
inertial measurement units (ranging from tactical grade to navigation and
further grades) left for future studies. Apart from that, the sensitivity
analysis related to relationship between field calibration performance and
gravity model error topic needs high amount of attention. In this study,
commonly used simple gravity models are taken as error-free models which
is exactly opposing the reality. However, the accuracy of those simple
models is quite adequate for field calibration of low grades especially
uncompansated inertial sensors.

It is deduced that simple non-accurate and low cost rotary platforms can be
used for calibrating numbers of IMU at the same time with the embedded
version of the field calibration algorithm. In other words, inertial sensor
calibration for mass production facilities can be done without requiring any
rigorous calibration processes and manpower especially for low
performance uncompansated IMUSs.

The comparison of calibration performance of the field calibration
algorithm with the classical laboratory calibration methods for various types
of IMUs is left for future work. The study made in this research will be
highly beneficial for going forward through that aim.

The multi-measurement model Kalman filter is tested to be easy to
implement method for fusing data from various sources. The modularity of
the developed filter structure is highly flexible for employing various types
sensor to be data fused together. This feature is an another main objective
left for future study to work and blend different data sources for different
application fields covering navigation applications for land, sea, and air to

yield better performance compared to the stand-alone cases.
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APPENDIX A

GRAVITY MODEL

As explained in reference [16] Somigliana gravity model described below is used

in this study. Any other gravity model such as J2-J4 gravity model can be used as

well.
0 B
g (L,,.) =| 0 |*(9.7803253359 (1 +0-001931853sin" (L, .)) A1
; 1 \/1—ezsin2(Lb,e)
Yo (Lyse) = 9o (Lyse) + (s5SM(@i))*Ce sy A72
Re cos(Ly,/.) cos(4,.)

E

15 =| Recos(Lye)sin(Ay) |, [i5| = Rey/cos(Lye) + @—€2)sin*(Ly) 73
(1—€*)Re sin(L,.)

N = (‘g‘)z N A-7-4
Vig (Lpje) = (‘[ES‘ h,.) Yo (Lose)
gN(Lb/e’hb/e):yINB(Lb/e)_(SS”](a)_II'\—:I))ZCgE A-T-5
RE COS(Lb/e)COS(j'b/e)
s =|  Recos(Ly.)sin(4,.) AT

(1—e*)Re +h,,.)sin(L,.)
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APPENDIX B

STOCHASTIC PROCESSES

Various types of stochastic processes are well documented in Gelb [50], Priestley
[51], and their application in inertial navigation is studied and reported in Jekeli
[52], Grewal et al. [53], Rogers [54]. Also El-Diasty et al [55], Nassar [56],
Flenniken et al [57], and Wall and Bevly [58] are key papers that describe the
practical implementation for these stochastic processes. According to [calibration
and stoch proc,56], the following terms should be defined
- Continous time signals are signals that are described by an analytical
function of time
- Discrete time signals are signals that have values only at discrete instants of
time. Sampling a contionus-time signal generates a discrete signal
- Stationary stochastic process is a process whose joint probability
distribution does not change when shifted in time or space.
- Autocorrelation function of a discrete signal is the expected value of the
product of a random signal with a time-shifted version of itself.
In this part, only three stochastic models are stated which are names as;
- Random constant
- Random walk

- Gauss-Markov

B.1 Random Constant (RC) Model

A random constant or bias can be described as an unpredictable random quantitiy
with a constant value through the following differential equation is continuous time
domain [52]
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x=0 B-1
In discrete time, the process is represented by the following equation:

X = X B-2
B.2 Random Walk (RW) Model

A random walk (RW) process is a zero-mean Gaussian stochastic process with
stationary independent increments i.e, in a RW process the difference (x; — xj_1)
is a purely random sequence wy. A RW can be described through the following
differential equation in continuous time domain [52]

X=W B-3
In discrete time, process can be described through the following equation [53]

X, = X4 + W, B-4
B.3 Gauss-Markov Model

Gauss-Markov (GM) random processes are stationary processes that have
exponential autocorrelation functions. The GM process is important because it is
able to represent a large number of physical processes with reasonable accuracy and
has a relatively simple mathematical formulation [50]. For a random process x with
zero mean, mean squared error o2, and correlation time T,, the first-order GM
model is described by the following continuos-time equation [50]

, 1
X=——X+W B-5

C

The first-order GM process is discrete time can be written as [53]

—At

—At B-6
— T
X, =€ X, +W,
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APPENDIX C

TRAJECTORY GENERATION

In this study, the main purpose of trajectory generation process is generating inertial
measurement unit stimulus data which are perfect accelerometer triad and perfect
gyroscope triad measurement from defined both linear and rotational trajectory. In
order to accomplish that aim, the reverse procedure of inetial navigation

mechanization is used. In order to visualize and define trajectory in navigation

reference frame, it’s necessary to supply time series of body linear acceleration a’ /e
and body angular rotation around navigation reference frame w? /n data resolved in

body axis together with initial geographic location, body linear velocity and
orientation.
From equation (2.23) , it is straightforward to deduce gyroscope readings from

given body rotation wp .

_ (b) (b)
Whn = Wi = Whje — Deyi

c-1
o)) = o) +C) &) +C} )
f]) and wf)) are given in expressions (2.10) and (2.21) respectively.
For accelerometer readings, the expression (2.48) is manipulated as follows
aj), = 57 + 95" —{ssm(e{},) + 2ssm(w ] ) VS
C-2

£ =CJ' (@) - g +{ssm(@f)) + 2ssm(@R) W)

n/e e/l

The similar approach given in the expression (2.41) is used between body and

navigation frames to obtain aj ..
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(n) _ n,,(b) -
Vb/e C Vb/e C-3

The time derivative of the above expression:

b b -
al) =Covi +Cra) c-4
Where
Cy =ssm(af)))Cy C-5

Substitude (C-5) into the expression (C-4) results in the following expression

aé?i —ssm(a)é”))C véb) +C/ ag?;

(—;
(n)

Vbie C'6

(n) _ (n) y,,(n) (b)
Spe = Ssm(a)b/n)vb/e+c Aje

The inverse inertial navigation mechanization based trajectory generation can be
recursively processed as given below.

1. Update wy . and wg,; by using prior Ly e, Ap e, hy e and vg¢.

2. Update Cy via integrating expression (C-5) by using updated wy, /., wg,; and
given wp .

3. Calculate wf,’/i via expression (C-1) by using updated Cy', wy /e, we,; and
given wp .

4. Calculate aj, via expression (C-6) by using prior vy, updated Cy, given

wg/n and ag/e.
5. Update vy, via integrating the updated aj, .
6. Update Lye, Ap/e, by Via integrating the updated vy
7. Calculate fb”/i via expression (C-2) by using updated Cy', Ly /e, Ap/es hp e

n n n n
Vh/er W /er Weyi and A /e-
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APPENDIX D

MC FIGURES
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APPENDIX E

HARDWARE SPECIFICATIONS

E.l Ardupilot MPU-6000

Technical specifications of gyroscopes built-in MPU-6000 given below.

Gyroscope Specifications
VDD = 2.375V-3 .46V, VLOGIC (MPU-6050 only) = 1.8V+5% or VDD, T = 25°C

PARAMETER CONDITIONS MIN TYP MAX UNITS NOTES
GYROSCOPE SENSITIVITY
Full-Scale Range FS_SEL=0 +250 ols
FS_SEL=1 +500 °ls
FS_SEL=2 =1000 ls
FS_SEL=3 2000 °ls
Gyroscope ADC Word Length 16 bits
Sensitivity Scale Factor FS_SEL=0 13 LSBI("fs)
FS_SEL=1 65.5 LSB/(*fs)
FS_SEL=2 328 LSB/(*fs)
FS_SEL=3 164 LSB/(*fs)
Sensitivity Scale Factor Tolerance 25°C -3 +3 %
Sensitivity Scale Factor Vanation Over *2 %
Temperature
Nonlinearity Best fit straight line; 25°C 02 %
Cross-Axis Sensitivity +2 %
GYROSCOPE ZERO-RATE OUTPUT (ZRO)
Initial ZRO Tolerance 25°C +20 °ls
ZRO Variation Over Temperature -40°C to +B5°C +20 ols
Power-Supply Sensitivity (1-10Hz) Sine wave, 100mVpp; VDD=2.5V 0.2 °ls
Power-Supply Sensitivity (10 - 250Hz) Sine wave, 100mVpp; VDD=2.5V 02 “ls
Power-Supply Sensitivity (250Hz - 100kHz) Sine wave, 100mVpp; VDD=2.5V 4 °ls
Linear Acceleration Sensitivity Static 041 “Isig
SELF-TEST RESPONSE
Relative Change from factory trim -14 14 % 1
GYROSCOPE NOISE PERFORMANCE FS_SEL=0
Total RMS Noise DLPFCFG=2 (100Hz) 0.05 °ls-ms
Low-frequency RMS noise Bandwidth 1Hz to10Hz 0033 °ls-ms
Rate Noise Spectral Density At 10Hz 0.005 °Is/ v Hz
GYROSCOPE MECHANICAL
FREQUENCIES
X-Axis 30 a3 36 kHz
Y-Axis 27 30 33 kHz
Z-Axis 24 27 30 kHz
LOW PASS FILTER RESPONSE
Programmable Range 5 256 Hz
OUTPUT DATA RATE
Programmable 4 8,000 Hz
GYROSCOPE START-UP TIME DLPFCFG=0
ZRO Setiling (from power-on) to +1%s of Final 30 ms

1. Please refer to the following document for further information on Self-Test: MPU-6000/MPU-6050 Register Map

and Descriptions
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Accelerometer Specifications

VDD = 2.375V-3.46V, VLOGIC (MPU-6050 only) = 1.8V£5% or VDD, T, = 25°C

PARAMETER CONDITIONS MIN TYP MAX | UNITS NOTES
ACCELEROMETER SENSITIVITY
Full-Scale Range AFS_SEL=0 2 g
AFS_SEL=1 4 g
AFS_SEL=2 +8 o]
AFS_SEL=3 +16 o]
ADC Word Length Oufput in two's complement format 16 bits
Sensitivity Scale Factor AFS_SEL=0 16,384 LSBlg
AFS_SEL=1 8,192 LSBlg
AFS_SEL=2 4,096 LSBlg
AFS_SEL=3 2,048 LSBlg
Initial Calibration Tolerance +3 %
Sensitivity Change vs. Temperature AFS_SEL=0, -40°C fo +85°C +0.02 %" C
Nonlinearity Best Fit Straight Line 0.5 %
Cross-Axis Sensitivity +2 %
ZERO-G OUTPUT
Initial Calibration Tolerance XandY axes +50 mg 1
Z axis +80 mg
Zero-G Level Change vs. Temperature | X and Y axes, 0°C to +70°C +35
Z axis, 0°C o +70°C +650 mg
SELF TEST RESPONSE
Relative Change from factory trim -14 14 % 2
NOISE PERFORMANCE
Power Speciral Density @10Hz, AFS_SEL=0 & ODR=1kHz 400 ugl v Hz
LOW PASS FILTER RESPONSE
Programmable Range 5 260 | Hz
OUTPUT DATA RATE
Programmable Range 4 1,000 | Hz
INTELLIGENCE FUNCTION
INCREMENT 32 mglLSB

1. Typical zero-g initial calibration tolerance value after MSL3 preconditioning
2. Please refer to the following document for further information on Self-Test: MPU-6000/MPU-6050 Register Map

and Descriptions
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E.2 VN-200

Technical specifications of VN-200 given below.

_——————
GPS
TECHNICAL SPECIFICATIONS

Navigation
Horizontal Position Acouracy: 2.5m RMS
Horizontal Position Accuracy (w/SBAS): 20mRMS
Vertical Position Accuracy 5.0mRMS
Vertical Position Accuracy (w/Barometer): 2.5 mRMS
s $0.05m/s
Dynamic Accuracy (Heading, True Inestial): 0.3 °RMS
(Pitch/Roll): 0.1°RMS
Static Acouracy (Heading, Magnetic)* 2.0 ° RMS
Static Acouracy (Pitch/Roll): 0.5°RMS
<005°
E <0.1°
Max Output Rate (IMU Data)™: 1kHz
Max Output Rate (Navigation Data): 400 Hz
Gyro
Range: 2000 °/s
In-Run Bias Stability: <10°/hr
Lineasity. <0.1%FS
Noise Density: 0.0035 °/s /\Hz
Bandwidth: 256 Hz
Alignment Error: *005°
Accelerometer
Linearity: <05%
Noise Density: 0.14 mg/\Hz
Bandwidth: 260 Hz
Aignment Eror: $0.05°
Magnetometer
Range: 125 Gauss
Linearity: <0.1%
Noise Density: 140 pGauss/VHz
Bandwidth: 200 Hz
Alignment Emor +005°

Receiver Type: 50 Channels, L1
GPS C/ACode

Solution Update Rate: SHz

Time-to-First-Fix (Cold/Warm Start): 36s

Time-to-First-Fix (Hot Start): <1s

Altitude Limit: 50,000 m

Velocity Limit: 500 m/s

Pressure Sensor

Range: 10 to 1200 mbar

Resolution: 0.042 mbar

Accuracy. +1.5 mbar

Emor Band: 2.5 mbar

Bandwidth: 200 Hz

Environment

Operating Temp: -40°Cto +85°C

Storage Temp: -40°Cio +85°C

Electrical: SMD Rugged

Input Voltage: 32V55V  33V17v

Current Draw?: 105mA@33V BOmA@S5V

Max Power Consumption® 445 mW 500 mW

Digital Interface: Seral TTIL, SP1 ' Serial T, RS-232

Physical: SMD Rugged

Size: 24x22x3mm  36x33x9.5mm

Weight 4g 16¢

Connector: 30-pin LGA 10-pin Harwin

GPS Antenna Connector:  UFL MMCX

' With preper magnetic declinstion. suitable magaetic eméroameat and

valid hasd/soR iren calibeatioa.
? Detasit 500 H

? Notinclediag active anteana power consumption.

Figure E.1 VN-200 Technical Specifications
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E.3 Mti-710G

Technical specifications of gyroscopes built-in Mti-710G given below.

Gyroscopes

The main difference between the MTi 10-series and the MTi 100-series is the type of gyroscopes
used. The two different specifications are listed below. A full range of 1000 /s is available upon
request.

Gyroscopes in MTi 10-senies: MTi-10, MTi-20, MTi-30
Gyroscopes in MTi 100-series: MTi-100, MTi-200, MTi-300, MTi-G-700, MTi-G-710

Rate of turn Typical Max Typical Max
Standard full range [deg/s] 450 - 450 -
Bias repeatability (1yr) | [deg/s] 02 05 0.2 05
In-run bias stability [deg/h] 18 - 10 -
Bandwidth (-3dB) [Hz] 415 N/A 415 N/A
Noise density [deg/s/VHz] 0.03 0.05 0.01 0.015
g-sensitivity [deg/s/g] 0.006 0.02 0.003 0.015
(calibrated)

Nan-orthogonality [deg] 0.05 - 0.05 -
Non-linearity [% FS] 0.03 0.1 0.01 -
A/D resolution [bits] 16 N/A 16 N/A

Technical specifications of accelerometers and magnetometer built-in Mtil-710G

given below.

Accelerometers and magnetometer

The MTi 10-series and MTi 100-series use the same accelerometers and magnetometer. The output
of the magnetometer is in arbitrary units (a.u.), one a.u. is the magnetic field strength during calibration
at Xsens’ calibration lab. This is approximately 40 uT. An accelerometer range of 15g is available as
well.

Accelerometers/magnetometer: all products: MTi-10, MTi-20, MTi-30, MTi-100, MTi-200, MTi-300,
MTi-G-700, MTi-G-710

Acceleration Typical Max
Standard full range [m/s2] 50 -
Bias repeatability (1 yr) [m/s2] 0.03 0.05
In-run bias stability [ugl 40 -
Bandwidth (-3dB) [Hz] 375 N/A
Noise density [ug/vHz] 80 150
Non-orthogonality [deg] 0.05 0.05
Non-linearity [% FS] 0.03 0.5
AJ/D resolution [bits] 16 N/A

Magnetic field
Full range™ [uT] - 80
Noise density [uGauss/vHz] 200 -
Non-linearity [% FS] 0.1 -
AJ/D resolution [bits] 12 N/A
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