
ENVIRONMENTAL APPLICATIONS OF HYPERSPECTRAL ANOMALY AND 
TARGET DETECTION ALGORITHMS 

 

 

 

 

 

 

A THESIS SUBMITTED TO 
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES 

OF 
MIDDLE EAST TECHNICAL UNIVERSITY 

 

 

 

BY 

HİLAL SOYDAN 
 

 

 

 

 

 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 
FOR 

THE DEGREE OF DOCTOR OF PHILOSOPHY 
IN 

MINING ENGINEERING 
 

 
 
 
 
 
 

DECEMBER 2017  



  



Approval of the thesis: 

ENVIRONMENTAL APPLICATIONS OF HYPERSPECTRAL ANOMALY 
AND TARGET DETECTION ALGORITHMS 

 

submitted by HİLAL SOYDAN in partial fulfillment of the requirements for the 
degree of Doctor of Philosophy in Mining Engineering Department, Middle East 
Technical University by, 

 

Prof. Dr. Gülbin Dural Ünver 
Dean, Graduate School of Natural and Applied Sciences 
 
Prof. Dr. Celal Karpuz 
Head of Department, Mining Engineering 
 
Prof. Dr. Celal Karpuz 
Supervisor, Mining Engineering Department, METU 
 

Dr. Alper Koz 
Co-supervisor, Center for Image Analysis, METU 
 

Examining Committee Members: 
 
Prof. Dr. Aydın Alatan 
Electrics and Electronics Eng. Dept., METU 
 
Prof. Dr. Celal Karpuz 
Mining Engineering Dept., METU 
 
Prof. Dr. Bahtiyar Ünver 
Mining Engineering Dept., Hacettepe University 
 
Assist. Prof. Dr. Seniha Esen Yüksel 
Electrics and Electronics Eng. Dept., Hacettepe University 
 
Prof. Dr. Yasemin Yardımcı Çetin 
Informatics Institute, METU  
 
          
                  Date:    13/12/2017



iv 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
I hereby declare that all information in this document has been obtained and 
presented in accordance with academic rules and ethical conduct. I also declare 
that, as required by these rules and conduct, I have fully cited and referenced all 
material and results that are not original to this wok. 
 

 
 
 
 

Name, Last name:   Hilal Soydan 
 
 
 

              Signature            :         



v 
 

ABSTRACT 

 
ENVIRONMENTAL APPLICATIONS OF HYPERSPECTRAL ANOMALY 

AND TARGET DETECTION ALGORITHMS 
 
 

Soydan, Hilal 
Ph.D, Department of Mining Engineering 

Supervisor: Prof. Dr. Celal Karpuz 
 

December 2017, 128 pages 
 
The objective of this thesis study is to understand the capacity of hyperspectral 

anomaly detection and target detection algorithms for contamination mapping, with a 

focus on developing a new methodology for environmental problems related to coal 

mining operations. Considering the data availability, specific chemical structure and 

reflectance properties as well as being one of the common contaminants in mining 

operations, hydrocarbon induced problems are studied for water and soil medium 

separately. Having developed the algorithms and implemented new methodologies, 

the research is focused on understanding the potential of anomaly detection for 

identifying topographical changes in temporal manner and mapping secondary iron 

minerals related to acid mine drainage, which is a commonly encountered problem in 

coal mine sites. On the top of the developed expertise of the definitions and 

mathematical implications of anomaly and target detection algorithms, soils’ spectral 

features with regard to their chemical and physical relation is elaborated. The research 

contributes to literature by presenting the success of hyperspectral anomaly and target 

analysis algorithms to differentiate oil slicks in water medium. In addition to the 

capacity of anomaly and target analysis to determine hydrocarbon induced alterations, 

unmixing techniques are also proved to resolve the characteristic features in relation 

with surface manifestations of hydrocarbon seeps by means of multispectral data sets. 
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This novel approach is adapted to determine the iron oxide mineral contents associated 

with acid mine drainage problems in mining areas with one of the latest imaging 

missions of European Space Agency (ESA), Sentinel-2. The theoretical background 

and experiments on synthetic data to map iron related features so far are combined to 

analyze the downloaded Sentinel-2 image with the help of the developed 

methodologies. 
 
Keywords: Hyperspectral, hydrocarbon, target detection, unmixing, acid mine 
drainage 
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ÖZ 

 
HİPERSPEKTRAL ANOMALİ VE HEDEF TESPİTİ 

ALGORİTMALARININ ÇEVRESEL UYGULAMALARI 
 

 
Soydan, Hilal 

Doktora, Maden Mühendisliği Bölümü 
Tez Yöneticisi: Prof. Dr. Celal Karpuz 

 
Aralık 2017, 128 sayfa 

 

 

Bu tez çalışmasında, kömür madenciliği ile ilgili çevresel problemleri tespit ve 

çözümlemeye  yönelik olarak, hiperspektral anomali tespiti ve imzaya dayalı tespit 

algoritmalarının kirlilik haritalama potansiyelinin değerlendirilmesi amaçlanmıştır. 

Veri elde edilebilirliği, spesifik kimyasal yapısı ve yansıma özellikleri göz önüne 

alınarak, madencilik operasyonlarında da sıkılıkla kirliliğe neden olan hidrokarbon 

kaynaklı sorunlar, hem su hem de toprak ortamında değerlendirilmiştir. Geliştirilen 

yöntemler çerçevesinde, anomali tespit algoritmaları, madencilik faaliyetleri ile ilişkili 

olarak, zamansal anlamda topoğrafya değişimlerini tespit etmede ve kömür 

madenlerinde sıkça karşılaşılan asit kaya drenajı potansiyelinin belirlenmesi amacı ile 

ikincil demir minerallerinin haritalanmasında kullanılmıştır. Araştırma öncelikle 

hiperspektral anomali ve hedef tespit algoritmalarının su üzerinde bulunan ince petrol 

tabaklarının belirleme başarısını ortaya koymuştur. Bununla birlikte, anomali ve hedef 

tespit algoritmalarının hidrokarbon etmenli alterasyonları tespit etme kapasitesine ek 

olarak, hiperspektral ayrıştırma yöntemlerinin sözü edilen yüzeysel değişimleri 

multispektral uydu görüntüleri aracılığı ile ortaya çıkarmadaki performansını açığa 

çıkarmıştır. Bu yenilikçi yaklaşım Avrupa Uzay Ajansı’nın en yeni uydu 

görüntülerinden olan Sentinel 2 üzerinde uygulanarak, demir oksitli minerallerin tespit 
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edilmesinde kullanılmıştır. Şimdiye kadar geliştirilen teoriler ve sentetik görüntüler 

üzerinde denenen yöntemler değerlendirilerek, bu yöntemler kömür madeni çalışma 

alanına ait gerçek görüntüler üzerinde uygulanmıştır. 

 

Anahtar Sözcükler: Hiperspektral, hidrokarbon, hedef tespiti, hiperspektral 

ayrıştırma, asit kaya drenajı 
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CHAPTER 1 

1 INTRODUCTION 

Hyperspectral imaging is practically remote sensing application of near infrared 

spectroscopy via airborne or satellite platforms. The capability of the sensors to 

capture hundreds of contiguous bands ensures that a detailed spectrum for each pixel 

can be derived, which then will be utilized for identification of materials on Earth’s 

crust. The hyperspectral images are usually collected between 400 – 2500 nm in 

electromagnetic spectrum, due to the high atmospheric transmittance percentages in 

that specified region. In spite of the challenges on data acquisition, storage, correction 

in mid-seventies, the advances on the imaging platforms have promoted practical and 

feasible means to analyze the environment in several contexts so far. The extant 

literature of hyperspectral imaging or imaging spectrometry covers agricultural 

applications, military applications, mineral mapping, geological applications, marine 

applications and so forth. Remote sensing analysis, including exploitation of both 

multispectral & hyperspectral imageries, have been successful to determine 

environmental problems form different perspectives by means of the advances on earth 

observation satellites. In the recent two decades, with its potential of spectrally & 

spatially high-resolution image acquisition, hyperspectral images have especially been 

examined to develop new algorithms to determine problematic regions. 

Hyperspectral target detection methods have until now progressed mainly on two paths 

in remote sensing research. The first approach, anomaly detection methods, use the 

difference of a local region with respect to its neighborhood to analyze the image 

without using any prior information of the searched target. The second approach on 

the other hand uses a previously obtained signature of the target, which uniquely 

represents the target’s reflection characteristics with respect to the spectral 

wavelengths. The signature of the target is matched with the pixels of the acquired 

image to decide on the existence and location of the searched target. These two 
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approaches provide crucial information to detect environmental implications of 

pollution in different mediums. 

Contaminations are of a paramount importance to both environment and human health 

welfare in relation to their relative quantities and distribution in the existent 

surrounding. How these contamination agents dissolved or spread in that ambient is 

greatly dependent on the chemical and physical properties. The environmental 

challenges due to high industrialization and the inevitable human interference 

accompanied with that, unveil overwhelming land, water and air problems worldwide. 

These ecosystems are strongly related/integrated with each other and they are 

endangered with the anthropogenic effects in developing countries as well as the 

highly industrialized ones. Regardless of the pollution agent, organic or inorganic, its 

influx to ecosystem changes the ambient medium despite the fact that it can’t be visible 

at the surface. In fact, the invisible pollutions occurring subsurface are detected by 

tracking their surface manifestations or their impact on the existent vegetation, i.e. 

vegetation stress (Winkelmann, 2005). 

In line with the above-mentioned information, Van Der Weerf and his colleges (2016) 

studies on the hydrocarbon contamination due to human induced activities as well as 

natural sources itself. Due to dynamic pressure differences, hydrocarbons migrate 

upwards from reservoirs to surface, inducing negative effects on the surrounding 

media. Some local pollutions because of migrated heavy hydrocarbons as well as 

upwelling gasses, light hydrocarbons, are pointed out as to their pollution potential in 

neighboring soil and water environment. Following their statement, the authors 

remarks the natural seepages not only being related to potential source of hazards, but 

also of an interest for hydrocarbon exploration as well (Van Der Weerf et al., 2016). 

Furthermore, considering the large-scale industrial operations, hydrocarbon 

contaminations can be faced with during production of crude oil from wells, 

transportation with pipelines or vehicles, leakage from underground storage tanks or 

simply accidents of vehicles transporting fuels in worldwide. The surface 

manifestations, of course, vary depending on the source of the contamination, such as 
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while a linear pattern can be observed for a pipeline leak, while point contamination 

can be observed in accidental oil spills or a halo shape is encountered for a natural 

seepage. 

In his thesis study focused on fuel contaminations in soils, Winkelmann (2005) groups 

the sources of contamination as industrial facilities, mining areas, spill site and finally 

burial of wastes. In industrial facilities, as the operations are commenced, may be small 

amounts of pollutants are leaked to soil and water for longer durations, slowly altering 

the ambient conditions. Spill sites, on the other hand, are usually the locations where 

large amounts of contaminant agent is influxed in a very short time, typically as a 

result of an accident. In the case of mining areas, the potential of acid mine generation 

and heavy metal leaching dumps due to acidic environment, mostly in overburden 

dumps, causes the contamination of both soil and water in mining sites that requires 

costly and time-consuming rehabilitation activities. Finally, the waste burial scenes 

are referred as the landfills or burials including commercial, household or industrial 

wastes. 

In the context of mining engineering applications, one of the foremost and abundant 

contamination type is known as Acid Mine Drainage (AMD) generation. According 

to the World Coal Association report (2015), Acid Mine Drainage (AMD) is defined 

as the metal rich water, which is product of successive chemical reactions between 

sulphur bearing minerals and water/oxygen. As the name implies, the water flow is 

acidic and it is generated by typically the exposed pyrite, a sulphur-bearing mineral, 

during coal mining activities. This acidic solution is generated mostly in the form of 

sulfuric acid, accompanied with high quantity of total dissolved solids and heavy metal 

ions that are leached from the surrounding minerals. This runoff penetrates the 

ecosystem through surface and underground water, endangering all living creatures 

around it.  For the case of coal mining areas, as both the coal and host rock contains 

pyrite inherently, regardless of whether the operation is underground or open cast, the 

acid generating potential is considerably high, destroying natural groundwater regime 

and radically alters the nature of groundwater–surface water interactions. During the 
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course of mining operations, especially around underground openings, waste piles or 

open pit walls, or even after rehabilitation, the exposed pyrite can generate acidic 

solutions easily with a perpetual direct/indirect physiochemical process in the 

existence of rainwater or groundwater interaction  (McCarthy, 2001; Keating ,2001, 

Singh, 2006). In addition to acid mine drainage potential, environmental problems 

regarding with polycyclic aromatic hydrocarbons (PAHs) in burnt and unburnt coal 

are takes part in the existing literature. Shafy and Mansour (2016) explains the natural 

sources of PAHs as open burning, natural losses or seepage of petroleum or coal 

deposits, and volcanic activities. These ubiquitous contaminants are related to 

incomplete combustion od organics like coal, oil, petroleum. Achten and Hofman 

(2009) state that there is a lack of literature about the native polycyclic sources of 

hydrocarbons in coals, even if exact source distribution is hardly possible. However, 

it is further elaborated in the study that PAH concentrations in coals depend on the 

original organic matter type together with temperature/pressure conditions during 

coalification. Ribeiro and his colleagues (2012) are also concentrated on coal waste 

material for identification of primary polycyclic aromatic hydrocarbon pollutants, 

proving the petrogenic contribution in unburned samples to total identified content, as 

an environmental contaminant.  

 

According to a recent project conducted within the harmonization with European 

Union Legislations by Ministry of Environmental Affairs of Turkey reveals that, a 

wide-spread Acid Mine Drainage (AMD) problem is observed especially in visited 

lignite mines which are actually designated as in critical conditions. In the scope of the 

project, around 300 mine sites are reported to be visited, and several problems 

regarding with their current state of waste management requiring legislative action are 

identified. Although it is stated that geological factors might mitigate the AMD 

generation in some metal mines, it is emphasized that the problem remains as a highly 

problematic issue, specifically regarding with the coalmines. Considering the coal 

power plants are vital for Turkey’s current and prospective energy policies, it is of a 



5 
 

great importance to match this demand with proper environmental improvement 

policies (Twinning Project Report, 2014).  

In the extant literature of remote sensing applications for detecting contamination 

agents, reflectance signatures of aforementioned pollutants and their usage for 

determining the existing and potential contaminated areas has been investigated 

frequently. While Salem (2001) investigates the potential of hyperspectral images to 

determine oil spill methods in Chesapeake Bay, he emphasizes the spectral similarity 

of oil to materials with similar chemical compositions, such as coal. During his 

analysis, the spectral techniques resulted in a coal storage area in Maryland Power 

Stations, proving his conclusions.  Cloutis (1994) also attempts to differentiate the 

spectral signatures of carbon bearing materials with near infrared spectroscopy. He 

compares four different macro-carbon bearing materials, i.e. oils shale, oil sand, coal 

tar, coal grinded to 2mm within the spectral interval of 0.3 – 2.3 micrometers. The 

reflectance spectrum of coal is described as red sloped, meaning starts to increase 

around 550 nm, similar with oil sand spectrum. However, he mentions the lack of 

absorption of oil shales. This observation is reasoned with the non-existent C-H bands, 

which is congruent with low H-C ratios. The study emphasizes the fact that as the 

degree of aromatization increases, the ultraviolet—visible absorption feature is 

observed to be broader and more intense, particularly when carbon content exceeds 

over 90 percent. Cloutis (2003), further elaborates his research with different coal 

samples, stating the fact that distinct absorption characteristics of coals appears only 

in lowest rank samples around 1.4, 1.9 and 2.1–2.6 micrometer region. Absorptions 

around 1.7 and 2.3-2.5 are attributed the organic combinations and overtone bands (C-

H stretching). For the identification of polycyclic aromatic hydrocarbons, Izawa 

(2014) reports three diagnostic absorption features around 880 nm, 1145 nm and 1687 

nm.  To continue with acid mine drainage potential, secondary iron bearing minerals 

are typically utilized in the literature. Mielke et al. (2004) state that the most common 

secondary iron minerals, which are also associated with mine wastes and acid mine 

generation (i.e. goethite, hematite and jarosite) have also a minimum reflectance 
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absorption around 900 nm, which is explained in detail by Clark, 1999. The ubiquitous 

nature of iron oxides, hydroxides and sulfides make them special for researchers as 

well as their special characteristics in VNIR region.  The larger grain sizes are reported 

to exhibit broader reflections together with a shift to longer wavelengths and 

saturation. The 900 nm absorption feature is emphasized as a common property as to 

iron bearing minerals, which is due to similar electronic absorption features in the 

visible and near-infrared region. 

Traditional techniques for determining the potential contaminated regions requires 

determining  existing risk factors, methodological sample collection and implementing 

the rehabilitation activities with monitoring activities (Winkelmann, 2005). Given the 

information above, this approach is time consuming, labor intensive and highly 

expensive, especially when the contamination is spread over vast areas. Here, near 

infrared spectroscopy and its remote sensing applications present a significantly 

efficient alternative, narrowing the contaminated regions to considerably smaller 

extents and serving as a cost effective tool. The analysis drastically decrease the area 

that is required for sample gathering, dropping the sample collection and analysis 

budgets significantly. 

The objective of this thesis study is to understand the capacity of hyperspectral 

anomaly detection and target detection algorithms for contamination mapping, with a 

driving force on developing a new methodology for environmental problems related 

to coal mining operations. With the limitations of currently available data sets, 

similarities in chemical structure and reflectance properties as well as being one of the 

common contaminants in mining operations, hydrocarbon induced problems are 

studied for water and soil medium separately. Having developed the algorithms and 

implemented new methodologies, the research is focused on understanding the 

potential of anomaly detection methods for topographical change in the abandoned 

mine site study area and mapping secondary iron minerals related to acid mine 

drainage, which is a commonly encountered problem in coal mine sites.  
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Besides the developed expertise of the definitions and mathematical implications of 

anomaly and target detection algorithms, a comprehensive literature study on 

reflectance spectroscopy of soils and how their chemical and physical structure relate 

to diagnostic absorptions is completed for a better understanding. Along with these 

complementary endeavors, this study contributes to the literature as follows: 

 

 It presents the success of hyperspectral anomaly and target detection 

algorithms to differentiate oil slicks in water medium. Both anomaly detection 

methods and target detection algorithms are proven to be successful to 

determine the oil contaminated pixels, even providing information about the 

content, establishing their potential for further studies. 

 

 introduces the capacity of anomaly and target detection methods to determine 

hydrocarbon induced alterations with a novel methodology. Applications of 

hyperspectral detection techniques on multispectral data sets are recognized as 

a resourceful approach, specifically considering the hyperspectral image 

acquisition challenges and limitations. 

 

 discloses the prospective of integrating signature based target detection 

methods with unmixing algorithms for alteration mapping by proposing the 

possibility to take advantage of collected ground truth signatures. Performance 

of the algorithms can be demonstrated based on generated error metrics for 

overall assessments.  

 

 puts forward the capability of the latest imaging missions of European Space 

Agency (ESA), Sentinel-2, for mapping secondary iron minerals with near 

infrared spectroscopy, even for the case studies with small quantities. 

Unmixing and abundance mapping techniques are able to identify the iron-

bearing endmember by means of comparisons with hematite reference spectra. 
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This dissertation consists of the following chapters: 

 A comprehensive literature survey on the basic principles of infrared 

spectrometry (0.4 µm – 2.5 µm ) and its remote sensing applications with a 

focus on anomaly and target detection methods, and environmental 

applications of hyperspectral imaging with a focus on hydrocarbon and mining 

induced anomalies  (Chapter 1). 

 A detailed information about utilized hyperspectral image analysis algorithms 

(Chapter 2): Hyperspectral Anomaly and Target Detection Algorithms 

(Chapter 2.1), Hyperspectral Unmixing Algorithms (Chapter 2.2). 

 An application of anomaly and target detection algorithms to determine oil spill 

positions in Gulf of Mexico, by presenting the details about the methodology 

and utilized data sets (Chapter 3). 

 A study on mapping hydrocarbon induced anomalies on soil surface by means 

of unmixing and target detection method, offering an approach for a complete 

performance evaluation (Chapter 4). 

 An implementation of Reed-Xioli (RX) anomaly detector, to measure its 

ability to designate the topographical changes due to mining operations 

temporally (Chapter 5). 

 An approach to produce secondary iron mineral maps for determining acid 

mine drainage potential and their relation for an abandoned coal mine by using 

Sentinel-2 data (Chapter 6). 

 Conclusions and recommendations for applications of hyperspectral anomaly 

and target detection algorithms on contamination mapping and future research 

visions (Chapter 7). 
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1.1 The Basics of Hyperspectral Imaging Spectroscopy 

Imaging spectroscopy is simply defined as the study focused on light, which is 

reflected or emitted from the materials, and its distinctive characteristics across the 

electromagnetic spectrum (EMS). Remote sensing is mainly concentrated on the 

scattered sunlight from the Earth’s surface, providing invaluable and extensive 

information about the crust in a timely and cost effective manner. With the 

advancements in technology in the last two decades, digital imagers are able to collect 

simultaneous image patches with the same geometric pattern, capturing small areas 

subsequently, enabling to create large extent assembled imageries. Aside from the 

developing satellite technology, the proximal sensing techniques have also been 

utilized to collect laboratory or field samples form the test materials, presenting high 

spectral resolution data across a predetermined wavelength interval, usually between 

0.4 to 2.4 micrometers. Recent advances in satellite systems have introduced cutting 

edge sensors, making available several high spectral-spatial resolution images for 

researchers to elaborate on (MicroImages, 2012). 

 
In his study, Baumgardner (1986) describes the reflective optical radiation as the 

electromagnetic energy propagation within the defined wavelength interval of 0.4 – 3 

micrometers. As in energy balance equation, once the incoming light interacts with the 

surface, the material absorbs some portion of incoming energy, while transmitting 

another. The remaining is the amount of radiation reflected from the surface of interest. 

That is, keeping the energy preservation in mind, the incoming radiation or energy is 

the sum of transmitted energy, absorbed energy and reflected energy from the 

interacted surface. The ratio of reflected radiation to total radiation is named as 

reflectance. 

 

The same conditions are also viable for photons that might originate from the surface 

itself, which is called as emission. All materials emit photons, which are dependent on 

the same physical laws as optical radiation. When a photon interacts with a mineral 

surface, it might be reflected from the grains directly or refracted through the mineral 
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grains, resulting in a scattered output from the surface to the receiver.  The absorption 

processes and their dependent mechanisms leads the researchers to acquire 

information about the materials chemical properties through the reflective or emitted 

light. In line with that information, the capability of the spectrometers to measure 

detailed information across a wider range in electromagnetic radiation presents a great 

knowledge to scientists to carry out extensive research opportunities (Clark, 1999). In 

Figure 1-1, electromagnetic spectrum is given along with the aforementioned energy 

regions. 

 

The capacity of hyperspectral imaging sensors is dependent on four significant 

parameters namely spectral range, spectral sampling, spectral bandwidth and signal to 

ratio. Starting from the last, signal o ratio is simply related to noise created by the 

sensor itself and it is the ratio of the measured radiance to the noise due to instrument 

electronics. The spectral range is the wavelength interval through the measurements 

are conducted. In general, imaging spectrometry instruments take measurements that 

covers the 0.4 – 2.5 micrometer region and spectral sampling is actually the of data 

collection frequency on this defined range. The spectral sampling is critical for 

resolving the absorption parameters for the sample in interest. The last parameter, 

spectral bandwidth, stands for the spectral channel width that is also of a high 

importance for capturing subtle spectral details with the frequency of collecting 

neighboring spectral samples as well. As the bandwidth gets narrower, the more 

detailed the spectrum is resolved by the spectrometer.  
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Figure 1-1 Electromagnetic Spectrum (EMS) (Modified from Velez Reyes, 2007) 

As can be seen in Figure 1.1, the spectral ranges utilized in imaging spectroscopy, 

called as optical infrared region, can be grouped as follows:  

 Visible: 0.4 to 0.7 µm,  

 Near infrared (NIR): 0.7 to 3.0 µm, 

 Mid-wave infrared (MIR): 3.0 to 5 µm,  

 Long-Wave infrared (LWIR): 5 µm to 14 µm 

 

The hyperspectral imaging literature the region between ~0.4 to 1.0-µm wavelength 

range is usually called as visible-near-infrared (VNIR), while the 1.0 to 2.5-µm range 

is  stated as short-wave infrared (SWIR) region,  not in compliance with the general 

terms in use for these regions. The wavelength locations of the mentioned intervals are 

given on atmospheric transmission window for better understanding in Figure 1-2. 
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Figure 1-2 Optical Infrared Region with Atmospheric Transmission Window (İrradiance, 2017) 

When the imaging from the airborne or satellite imageries are in consideration, it is 

imperative to account for the atmospheric absorption of the incoming radiation. The 

atmosphere consists of several gases with specific absorption features such as oxygen 

(0.76 µm), ozone (0.35 µm), carbon dioxide (2.01, 2.06 and 1.6 µm), blocking the 

radiation to be transmitted to earth surface. In addition to the gases, water is also 

another constituent preventing the light transmission through the atmosphere, i.e. 1.4 

µm and 1.9 µm major water absorption bands. In short, each molecule owns a 

particular set of absorption characteristics in different parts of the electromagnetic 

spectrum, which results in only the windows outside the main absorption bands of the 

atmospheric constituents to be available for optical remote sensing purposes. Figure 

1-3 illustrates the atmospheric transmission window together with the data sets utilized 

in the scope of this thesis (Clark, 1999). 

 

Figure 1-3 Atmospheric transmission window with utilized images in this study 
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Hyperspectral imaging provides the opportunity of not only qualitatively but also 

quantitatively evaluate the features related to interactions of light with both organic 

and/or inorganic materials. The resulting interaction is represented with a spectral 

signal, or signature, specified with contiguous energy levels within the defined spectral 

range. This signature demonstrates spectral information about the physical-chemical 

properties, which is strictly related to atomic, molecular and crystal structures, of the 

material in interest. The reflectance spectrum of an investigated material is defined as 

the overall radiation-matter interactions of its constituents within the field of view of 

the sensor in a defined wavelength region. 

 
Figure 1-4 Hyperspectral Data Cube and Spectral Signature (Modified from Elowitz, 2015) 

In the case of inorganic materials such as minerals, in addition to chemical 

composition, crystalline structure also is responsible for the spectral reflectance curve 

characteristics. In fact, certain absorption features are caused due to specific elements, 

their ionic state or chemical bond structure related to the crystalline structure 

(Microimages, 2017).  In his study, Hunt (1977) states that the spectra of minerals are 

caused by several electronic and vibrational processes. He details these processes as 

ionic charge transfers, overtone or combination of vibrational transitions, crystal field 

effects and conduction band transitions in his research attempting to explain the 
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particular features at a specific wavelength location in the reflectance spectrum of a 

mineral. Spectral signatures of some minerals are given in Figure 1-5. 

 

 

Figure 1-5 Spectral signatures of some minerals 

Hunt and Ashley (1979) also specifies the electronic and vibrational processes as the 

reasons for band absorption, particularly related to each mineral. These processes 

mainly involve iron or hydroxyl group minerals, which are exclusively related to the 

mineral constituents of each investigated materials. 

 
According to Hunt and Ashley (1979), the iron-bearing minerals produce absorption 

minimums in VNIR region, around 0.43, 0.65, 0.85, and 0.93 µm. Clay and water 

bearing minerals, on the other hand, exhibit absorption features in SWIR region, 

around 1.4, 1.75, 1.9, 2.2, and 2.35 µm due to vibrational processes. Minerals most 

abundantly presenting these absorption characteristics are listed as hematite, goethite, 

and alunite whereas jarosite, kaolinite, potassium micas, montmorillonite, and gypsum 

are mentioned as frequently possessing these features in their reflectance spectrum. 

All in all, the extant literature proves the viability and reliability of imaging 
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spectroscopy for mineral identification, especially the clay and iron bearing ones. As 

these minerals forms the altered rocks, remote sensing applications of imaging 

spectroscopy presents an invaluable resource in a time and cost efficient manner.  

1.2 Hyperspectral Sensing and Its Remote Sensing Applications 

Remote sensing platforms started to make use of near infrared spectroscopy at 

seventies, due to the capability of sensors to record the incoming radiation from the 

sun to Earth’s crust between 0.2 – 2.5 micrometers, i.e. atmospheric transmission 

window. In spite of the challenges on data acquisition, storage, correction etc., the 

advances on the imaging platforms have promoted improved and feasible means to 

analyze the environment in variant contexts.  

 

The transition of near infrared spectroscopy to airborne or satellite remote sensing 

platforms enabled the acquisition over several hundreds of high resolution contiguous 

bands rather than getting multispectral or panchromatic images from the Earth surface. 

Presenting such a high information, hyperspectral remote sensing data cubes provides 

not only spectral signatures for each pixel, but also makes available an image for each 

spectral band simultaneously. However, the systems comes with its challenges, such 

as data redundancy, data storage problems or complicated pre-processing operations 

depending on the remote sensing platform. What makes it rather difficult to utilize 

hyperspectral imaging instead of near infrared spectroscopy is the dynamic nature of 

the atmosphere and the investigated parameters that can’t be controlled or optimized 

quite easily in comparison with laboratory environment. For this reason, ground truth 

signature collection is of a high importance for quantitative analysis of the target 

materials that additionally will help to analyze the remotely sensed data both 

qualitative and quantitative purposes (Winkelmann, 2005). 
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Figure 1-6 Hyperspectral Data Cube and Reflectance Signature Representation 

Spectral signature is defined as the result of the interactions of light with organic 

and/or inorganic materials, characterized by sequences of recorded energy values in a 

defined wavelength interval with the spectral sampling interval of the investigated 

sensor (Seranti and Bonifazi, 2017). The collected spectral information is the function 

of chemical and physical properties of the material in interest, presenting a reliable 

and time efficient application for remote sensing analysis of Earth surface. The 

detailed information can be utilized up to the research motivation and the scale of the 

collected data by means of economical and time efficient way. 

 

The research topics for the time being is primarily focused on developing automated 

methods and novel approaches for hyperspectral imagery analyses, including 

modelling collected spectral samples, extraction of detailed surface information pf 

Earth crust. Geological exploration that include minerals, rare earth elements and base 

metals detection and mapping, mine waste mapping and monitoring, soil 

characterization and monitoring, digital soil mapping, quantitative soil spectroscopy 

for sustainable management of renewable resources, soil erosion and land degradation 
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mapping are some of the ongoing projects on determination of Earth surface 

compositional information for geosciences (Chabrillat, 2017).  

 

From the perspective of environmental applications of hyperspectal imaging with 

regard to contamination mapping., Winkelmann (2005) classifies the applications 

under main subjects of :  oil spill detection on water, oil contamination mapping of 

soil and detection of geogenic hydrocarbon micro-seepage and macro-seepage in 

hydrocarbon exploration ,analysis of mining operation related contaminations, 

vegetation stress mapping as an indicator for soil contamination that is induced by 

metals, salt and organic contaminants due to hazardous wastes. 

 

In scope of this study, the potential of hyperspectral signature based algorithms and 

anomaly detection techniques to determine the environmental implications of 

contaminations is investigated.  With the existing  data limitations, the applications 

are  performed on an oil spill region, a natural microseep area for methodology 

development, which then implemented to monitor the potential of acid mine drainage 

in a coal mining area. Accordingly, a comprehensive literature survey is conducted on 

hyperspectral signatures of hydrocarbons and their surface implications associated to 

specified spectral behavior.  Based on this line of work, spectral properties of soils 

that will be useful for determining the surface manifestations of altered minerals are 

also elaborated. This conducted survey is linked with the altered iron minerals which 

determines the acid mine drainage potential of the mining sites in detail. 

1.3 Spectral Properties of Soils 

Soil  is the complex mixture of weathered rocks and minerals composing the earth's 

crust, which is extremely variable in its physical and chemical composition. The 

differentiated nature of soils is explained by the variable interaction in a soil-forming 

factors including climate, time, organisms, topography, and parent materials (Ben Dor 

et al., 2009). As mentioned previously, soil’s chemical, physical and mineralogical 
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structure is associated with the wavelength specific absorption across electromagnetic 

radiation (Clark, 1990). In addition to chemical composition of soils, some physical 

parameters are reported to be significantly affecting the soil spectral fingerprint such 

as particle size distribution, moisture or water content, the texture (i.e. silt, sand, clay) 

or soil salinity. 

 

According to study conducted by Baumgardner and his colleges  (1981), soil 

constituents effecting the reflectance properties are listed as moisture, organic matter, 

particle size, iron oxides, , mineral composition, soluble salts and parent rocks. 

Generally speaking, soil reflectance spectra demonstrates a concave shape between the 

wavelengths of 0.4 – 2.5 µm and the reflectance values increase towards SWIR 

wavelength. The most prominent absorption features are the water absorption bands at 

1.4 µm and 1.9 µm. Several minerals can be discriminated between 2.1 µm- 2.5 µm 

due to the inherent vibrational processes, while some small absorption features can be 

observed in VNIR region due to electronic transition in minerals, organic matter 

contents or water absorption bands. Viscarra-Rossel and Chen (2011) also identifies 

the contributing factors to overall soils spectra with the contents of iron oxides, organic 

matter, carbonate, the water amount together with particle size distribution as well. 

Figure 1-7 illustrates some significant absorption features associated with contributing 

soil constituents. 

 

Stoner and Baumgardner (1981) investigates soil reflectance signatures of 240 soil 

samples, collected from 48 different states having 17 different temperature-moisture 

regimes, in order to understand whether they can be grouped under some categories. 

Their research yields to five major spectral signature categories representing all 

collected soil sample compositions as illustrated in Figure 1-8. 

 

Among the parameters that is influential on soil spectra, moisture is one of the 

significant ones with several absorption features in specific locations of 

electromagnetic spectrum. 



19 
 

 

Figure 1-7 Wavelength positions related to some constituents of soil (Viscarre Rossel and Chen, 
2011) 

 
Figure 1-8 Soil Spectral Reflectance Curves (Stoner and Baumgardner, 1981) A: organic affected 

soils, B: minimally altered soils, C: iron-affected soils, D:  iron dominated soils, E: organic dominated 
soils 

Hunt (1977) reported the presence of molecular water with the diagnostic absorption 
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2.2-2.3 µm or 2.3-2.4 µm as to associate with the existence of OH ion bending.  
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Soil organic matter content is also known to lower the overall reflectance of soil 

spectra noticeably as its concentration gets higher. Baumgardner (1970) also mentions 

this effect by stating the fact that this decrease is noticeable only when the organic 

matter content exceeds 2.0%. Iron content is mentioned as another important soil 

component demonstrating absorption features around 0.9 µ in VNIR region due to 

electronic transitions of metal ions (Hunt, 1977). In addition, the absorption feature at 

0.87 pm is indicated as an evident of iron oxide coatings on sand grains in fine sandy 

soils. Iron oxides and hydroxides that are ample in many soils display broad absorption 

features in the visible and near infrared wavelength regions between 0.5 µm and 1.3 

µm.  (Baumgardner, 1985).  

 
Another feature influencing the overall spectra as well as the absorption depth is 

particle size distribution of soils. As the particle size distribution decreases, the overall 

reflectance tend to get higher due to the fact that the smooth surfaces have smaller 

voids (Stoner et al., 1979). Because of the scattering caused by the existing voids, the 

absorption bands demonstrates shallower depths in comparison with the surfaces with 

coarse grains. 

 

Figure 1-9 Mineralogical Composition of Soils, illustrating relative abundance of each mineral 
(Modified from Irons, 1989) 
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Figure 1-9 gives the mineralogical compositions of soils including relative abundance 

information. Quartz, the must ample mineral in soils, unfortunately do not show ant 

absorption features between the interval of 0.4 µm – 2.5 µm region. Other ubiquitous 

minerals like clays, iron oxides, carbonates or feldspar do have specific absorption 

characteristics, mostly identified in SWIR region between 2.2 µm – 2.5 µm OH- ions, 

presenting an opportunity for their identification through hyperspectral analysis. 

Among the others, clay minerals, mica, carbonate, dolomite, gypsum and hematite are 

mostly referred minerals as to their unique absorption features in the 0.4 µm – 2.5 µm 

domain of electromagnetic spectrum. 

1.4 Environmental Applications of Hyperspectral Analysis 

In this subsection, an extensive survey on direct/indirect detection of hydrocarbon 

induced and mining induced anomalies, and their remote sensing applications are 

presented. The previous work conducted in the field of detection and mapping of 

anthropogenic contaminations of ambient media with the help of satellite images and 

hyperspectral images are elaborated. Both direct and indirect detection of hydrocarbon 

pollutions or generation of iron mineral indices in soil and water matrixes are 

considered in addition to the detection of anthropogenic deposits, such as waste 

dumps, overburden dumps, and mine tailings. 

 

The concentration of this literature survey revolves around direct and indirect detection 

of contaminated sites by means of hyperspectral and multispectral images, with a focus 

on hydrocarbon and coal mining related anomalies. For evaluating indirect 

implications of hydrocarbon seepages, considering the limited number of publications 

and our application field, detection of natural hydrocarbon seepages is detailed, as they 

are in some aspects related to soil hydrocarbon contaminations of anthropogenic 

origin. 
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1.4.1 Hyperspectral Sensing of Hydrocarbon-Induced Anomaly Detection 

Tracing the micro- and macro- seepages has been an invaluable approach for the 

exploration of oil and gas reservoirs as can be a tool for identifying large fuel 

contaminated areas. The alterations of surface sediments overlying the gas/oil 

reservoirs due to in situ long term seeps along the mitigation pathways exhibit surface 

anomalies which facilitate the exploration of the reservoirs (Shi et al., 2010). The 

hydrocarbon-induced anomalies are vastly recognized in remote sensing literature, 

indicating the existent absorption features of hydrocarbon bearing minerals in 

electromagnetic spectrum. Knowing the well-known hydrocarbon absorption 

characteristics at 1.73 µm and 2.31 µm, the target region of the hydrocarbon 

microseeps is considered to be differentiated from the background with the spectral 

signatures of the reference valley (Kuhn et al., 2004). Band ratio of the images of 

specified altered minerals, the feature oriented principal components, and the false 

color composites with original bands or band ratios are some of the mostly utilized 

techniques in remote sensing studies for hydrocarbon microseepage mapping. 

However, utilization of only a few bands in these techniques contradicts the idea of 

handling the most information we can get from image for target detection. The high 

dimensionality of spectral data can provide significant evidence for the identification 

of mineral in interest, as in signature based algorithms or even better in unmixing 

techniques.  
 

 

 

 

 

 

 

  
 

Figure 1-10 Generalized form of soil and sediment geochemical alterations (Modified from 
Schumacher, 1996) 
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a. Remote Sensing Literature on Hydrocarbon Induced Alteration 
Detection 

 
Comprehension of the mechanism of the geochemical and geophysical processes as 

well as the microseepage processes with their indicators on soil surface is required to 

identify the abnormalities due to macro/microseepage systems using earth observation 

satellites. In this section, the mechanisms of hydrocarbon microseepage process and 

the related anomalies are summarized. The literature survey indicate the alterations on 

surface sediments and soils overlying the oil/gas reservoirs are traceable with remote 

sensing techniques due to the fact that these variations have particular spectral 

signatures. The applications and their capability for detection of hydrocarbon 

microseeps are elaborated in the second part of this section. 

 

Bacterial or microbial activities are accounted as one of the main reasons of 

hydrocarbon microseepage alterations generating surface oxidation-reduction zones, 

which also facilitate both mineralogical and chemical changes. Schumacher indicates 

that oxidation of hydrocarbons are mostly related to bacteria or microbe activities with 

the reaction of the free oxygen or chemical bound oxygen (i.e. sulfates, nitrates) 

(Schumacher., 1996). In addition, to the alteration of the redox potentials, soil 

alkalinity and acidity changes are reported as causing the mineral alterations.  In his 

study, he refers carbonate cementation, bleached red zones and pyrite mineralization 

as main alteration variations due to hydrocarbon microseepage process, especially for 

red beds or sediments overlying the oil fields. Carbonate minerals, sulfide minerals, 

bleached red beds, clay alteration, existence of some trace elements, change in 

electrochemical characteristics and finally the magnetic minerals are the main 

headings dwelled on regarding with the alterations due to hydrocarbon micro/macro 

seeps. Methane oxidations, interaction of hematite with sulfide minerals, removal of 

hematite and alterations due to the reducing environment can be appointed as the 

leading reasons of the prominent alterations stated earlier, which are simply illustrated  

in Figure 1-11(Schumacher, 1996). 
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Figure 1-11 Hydrocarbon Migration Process (Modified from Schumacher, 1996) 

The mitigation of hydrocarbons through the rock columns are described in Khan and 

Jacobson’s study as the movement of light hydrocarbons vertically through the 

connected fractures or microfracture systems, which might be induced by respective 

reservoirs. The microseepage pathways along these fractures or faults and their vertical 

mitigation routes, namely chimneys, are shown with different stratigraphic layers in 

Figure 1-11. In the study, the capability of hyperspectral sensing to put forward the 

hydrocarbon related abnormalities is stated as a great potential for further studies 

(Khan and Jacobson, 2008). 

 

Another study conducted by van der Meer et al. (2002) concentrates on the surface 

indicators of hydrocarbons as well as their recognition by earth observation satellites. 

Reservoir leaks are classified regarding to their visibility to human eye as macroseeps 

and microseeps, earlier is the visible.  The seepages are also divided into two groups 

regarding with their formation as active and passive. Subsurface leaks of the reservoirs 

with low and high molecular hydrocarbons in large amounts of are named as active, 

whereas the intermittent/minor leaks with low molecular weight hydrocarbons are 

passive. The study also emphasizes the significance of the generation of gasses, i.e. 

methane, butane, carbon dioxide, to alter the minerals usually confronted in the 

hydrocarbon microseep areas. These gasses are mitigated through the fractures or 

microfracture systems with effusion, diffusion or vertical ascent of hydrocarbons with 

low molecular weights which are explained with the chemical and hydrodynamic 

potential variations in the system (Van der Meer, 2006). 

 

               Alteration      Alteration 
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The surface manifestations of hydrocarbons are classified into four categories, which 

are halo anomalies, fault related anomalies, local trappings, and no anomaly. In halo 

anomalies, the edges commonly include high concentration of hydrocarbons, while the 

center contains low hydrocarbon levels. The faults or major cracks are basically gates 

for the mitigation of hydrocarbon from the gas/oil reservoirs. The final abnormality, 

local trappings, are formed due to the existence of localized subsurface barriers that is 

also described as a facilitator for methane separation with bacterial activities. The 

bacterial findings are also pointed out to lead the generation of hydrogen sulfides and 

carbon dioxide in deep oil fields, which also increases the acidity of the environment 

for mineral alterations. To investigate the behavior of the change in mineral signatures, 

the montmorillonite spectral signature, as one of the most common clay minerals in 

altered zones, with differing organic compounds are presented to observe the changes 

in absorptions and reflectance trend. The study emphasizes the fact that hydrocarbon 

seepage related indicators on the surface can be sensed by analyzing the absorption 

features regarding with the alterations, especially at a given specific wavelength 

intervals defined for bleached red bands, clay mineral alterations and carbonate 

precipitations is emphasized. 

 

In the view of the given literature, the mineral alterations related to the hydrocarbon 

macro/micro seeps, which are generated by near surface oxidation-reduction zones due 

to microbial, bacterial activities, low molecular weight hydrocarbon seeps and the 

gases enable the traceability of hydrocarbon induced soil & sediment manifestations. 

The vertical movement of the seeps is assisted with the existing subsurface faults or 

microfractures which also can alter the ascend direction. This vertical movement of 

hydrocarbon through the fracture systems, i.e. chimneys, lead some anomalies usually 

visible as halos, fault related abnormalities or local trappings usually containing 

bacterial activities. Bearing in mind the given indicators, researchers are encouraged 

to investigate new methodologies and innovative technologies to explore the oil/gas 

resources, one of them is being the remote sensing analysis. 
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According to conducted studies, making use of the satellite imageries for oil/gas 

reservoir exploration has been highly popular offering a great potential to analyze 

information about macro- and micro-seepage related surface manifestations. 

Hyperspectral sensors, in particular, have a greater capability comprising subtle 

responses across electromagnetic spectrum with higher spectral&spatial resolutions. 

The ability and utilization of cutting edge sensors enable the recognition of the 

alteration zones as well as the mentioned anomalies in hydrocarbon micro- and 

macroseepage regions, offering an economical & fast analysis for oil exploration. Next 

part of the literature study focuses on the remote sensing applications for hydrocarbon 

macro- and micro- seepage detection. 

b. Detection of Hydrocarbon Induced Anomalies with Remote Sensing 
Remote sensing analysis on hydrocarbon induced anomalies are applied with simple 

band ratioing or generation of  some color composites to highlight the searched 

indicator (Shi et al., 2010), producing mineral indexes for altered layers (Kuhn et al., 

2004), or simply calculating principal components analysis (Crosta et al., 2003; 

Petrovic et al., 2008; Freeman, 2010). In addition to the advances on the techniques 

for geochemical/geophysical analysis, the developments in earth observation satellites 

have increased the technical capabilities of the sensors as much as the attention on the 

algorithms to be developed benefitting from them. Fusion of several images from 

different sensors, pansharpening and classification algorithms can be regarded as some 

of the state of art techniques improved with the advanced technology. In compliance 

with that, the research on supervised and unsupervised detection algorithms on 

satellite/airborne images have started to get significant attention in the last decade. 

Crosta technique, which is regarded as a corner stone for mapping mineral alteration, 

is basically one of the methodologies referred in several studies (Crosta et al., 2003). 

This technique identifies the significant bands for the searched target considering its 

spectral fingerprint. Then, the eigenvalue statistics are calculated for the selected bands 

using principal component analysis. The most relevant principal component is  
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Figure 1-12 Hydrocarbon Index (Kuhn et al., 2004) 

determined by observing the eigenvector loadings, which is exhibited by the highest 

opposition values regarding with the diagnostic characteristics of the target mineral. 

That is to say, the opposite signs of eigenvectors stand for the abundance of the target 

minerals that can be exhibited as dark or bright pixels according to the diagnostic 

behavior of the target and specified bands (Crosta et al., 2003). 

 

One of the baseline studies to detect hydrocarbons is the research conducted by Kühn 

and his colleges (Kuhn et al., 2004) to identify a hydrocarbon index with HyMap 

imagery. In the research, the specific absorption features of the hydrocarbon bearing 

materials are stated as 1.73 µm and 2.31 µm. The index is generated in the form of 

Normalized Difference Vegetation Index (NDVI) with the unique characteristics of 

specific absorption band of hydrocarbons @1.73 µm. The hydrocarbon index, HI, is 

defined as:  

HI= ( AB   )
AC

AC RR
 

 + BA RR   

where i  and iR  stand for wavelength and radiance values respectively as illustrated 

in Figure 1-12. This index not only can be applied to reflectance images but also 

radiance ones which favors its common utilization. The oil contaminated regions as 

well as hydrocarbon bearing materials can be detected efficiently without a prior 

atmospheric correction operation as well. Judging from the index equation, it is 

obvious that the higher the index gets, the higher the hydrocarbon content is. As the 

hydrocarbon content ascends, the A, B, C index points are expected to form a triangle 

B 

C 

A 

HI 
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rather than a triangle, suggesting the absorption depth is proportional to the amount of 

existent hydrocarbons (Figure 1-12). The index performance is suggested to be 

affected by the flight altitude, radiometric quality and spatial resolution of the 

hyperspectral sensor in consideration (Kuhn et al., 2004). 

 

A study conducted by Shi and his colleges utilized ASTER data to designate 

hydrocarbon microseepage induced anomalies with the application of band ratios & 

color composites, also supported by the laboratory analysis of collected samples (Shi 

et al., 2010). The altered rocks are differentiated by calculating the ratio of band four 

to band nine of ASTER image, which is also supported by the ratio of band two to 

band one highlighting the unaltered class. The study often makes use of RGB false 

color composite images to interpret the microseepage related alterations in the study 

area. The value of interpreting ASTER data to determine the microseepage induced 

alterations such as iron oxide bearing rocks, carbonate bearing rocks, and bleached 

beds, which points out the deep hydrocarbon bearing systems, is emphasized in the 

conducted study. 

 

The research conducted by Petrovic and his colleagues applies classification and 

fusion techniques to determine the alterations regarding to hydrocarbon microseeps. 

Bleached beds, high clay contents,, abnormality in weathering patterns and finally 

carbonate precipitations are the designated abnormalities in the field. The classified 

ASTER data is fused with the radar image to delineate the anomalies, which also is 

confirmed by the geochemical analysis proving the presence of bleaching zones as 

well as the other alterations in the study area (Petrovic et al., 2008). Moving from this 

point, as a representative research of signature based algorithms using USGS library 

to map hydrocarbon related alteration minerals, Freeman performed several 

experiments utilizing Spectral Angle Mapper (SAM) and Spectral Feature Fitting 

(SFF) methods to determine the algorithms performance as well as the most promising 

mineral indicator with the present signatures. According to the study, SAM algorithm 

performs better than SFF to designate the hydrocarbon microseepage related 
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alterations and jarosite is determined as the most promising mineral as hydrocarbon 

indicator among all the searched endmembers which are siderite, kaolinite, alunite & 

calcite (Freeman, 2003).  

1.4.2 Hyperspectral Sensing of Coal Mining Induced Contaminations 

Active or abandoned, mining is regarded as one of most profoundly influencing 

industrial operations the environment. Although the environmental impacts of mining 

activities vary with regard to the type of the mineral and the selected mining method, 

deposition of gangue/waste minerals, mine effluents and leachates released from the 

waste piles during and after the operations can be mentioned as some of the most 

common effects (EO-Miners, 2013). Disposing the waste material improperly might 

contaminate not only surface drainage routes but also can leach to ground water table, 

which also might have been disturbed by the operations, creating a basis for polluted 

and extremely acidic waters. In addition, the percolation of water through these waste 

piles induces an acceleration in total dissolved solids rate, which include carbonate, 

calcium, bicarbonates and sulfates, contaminating waters to such an extent that it can’t 

be used even for industrial or agricultural purposes (EO-Miners, 2013; Johnston et al., 

2008). 

 

Coal mining, as typical in all mining activities, causes drastic landscape alterations by 

presenting large-scale surface openings, i.e. open pits, subsidence in underground 

operations, waste dumps, storage areas, which can change water courses inevitably. 

Along with the change in landscape and water routes, acid mine drainage presents 

itself as a severe byproduct in the presence of pyrite mineral within the chemical 

structure of coal seams.  The reaction of pyrite to exposed water and air causes sulfuric 

acid generation in addition to high dissolved iron contents. This acidity facilitate the 

dissolution of other heavy metals in the environment, escalating the toxicity levels of 

enclosed water bodies. Unless preventive measures are taken, this system will 

increasingly contaminate the surrounding habitat as soon as the calcite or other 
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carbonate minerals are dissipated (Keating, 2001). The impact of mentioned problems 

can create long-term environmental and socio-economic outcomes, which requires 

tremendously complicated and expensive remediation plans. Thus, coal-mining sites 

ought to be managed appropriately to achieve lasting stability and to minimize any 

water and soil pollution 

 

One of the prominent studies on spectral reflectance properties of macro carbon-

bearing materials is conducted by Cloutis and his colleagues (1994). The study 

concentrates on spectral behavior of several carbon bearing samples including 

carbides, graphite as well as oil shales, oil sands, coal and coal tar between the range 

of 0.3 – 2.3 micrometers. The comparison between the collected spectra reveals that  

reflectance spectrum of coal is red sloped demonstrating similarity with oil sand 

spectrum, but not with the oil shales. The lack of absorption features in coal spactra, 

differing from oil shales, is explained with the absence of C-H band, which is in fact 

in congruent with calculated low H-C ratios of coal samples. It’s another significant 

result that as the aromatization of coal increases, the observed absorption bands are 

flattened, causing basically a flat line. Cloutis (2004), further elaborates his research 

with different coal samples, stating the fact that distinct absorption characteristics of 

coals appears only in lowest rank samples around 1.4, 1.9 and 2.1–2.6 micrometer 

region. Absorptions around 1.7 and 2.3-2.5 are attributed the organic combinations 

and overtone bands (C-H  stretching). Figure 1-13 gives the observed spectra for coal 

and related samples with their detailed explanations. 
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 (a) (b) 

Figure 1-13 a) Absolute spectra of powdered samples of macromolecular organic bearing minerals 
(COAL01 [coal], Oils10(Oil Shale), TAR17 [Oil sand], CTE191 [Coal tar] (Cloutis et al., 1994) 

b) Reflectance spectra (0.3–2.6 mm) of a number of coal samples. From top to bottom at 2 mm: 
COAL10 (lignite), COAL14 (high volatility C/B bituminous), COAL21 (low volatility bituminous), 

and COAL22 (anthracite) (Cloutis, 2003) 

In relation to the research on near infrared spectral characteristics of coal samples, 

their chemical structure and constituents, one of the most prominent studies for the 

evaluation of environmental impacts of mining operations using airborne 

hyperspectral sensors is the European Union (EU) MINEO project (MINEO, 2003), 

namely “Assessing and monitoring the environmental impact of mining activities in 

Europe using advanced earth observation techniques”. In this extensive research, 

several types of mines were investigated to elaborate on the levels of contamination, 

determine the wind directions, potential acid mine drainage producing minerals, water 

drainage systems, slope stability problems or to monitor the subsidence mitigation 

processes (MINEO, 2003). Another EU project (EO-Miners, 2013), which focuses on 

the sustainable exploitation of minerals resources, was also started in 2009. Three 

0.30 

CTE101 

  COAL01

OILS10 

TAR17 

0.9 1.2 1.5 1.8 2.1 2.40
Wavelength (µm) 

Re
fle

ct
an

ce
 

Wavelength (µm)

Re
fle

ct
an

ce



32 
 

mining fields, two coal mines (Sokolov and Whitbank)  and one gold mine (Makmal), 

are studied to collect ground truth field samples as well as field spectral data to produce 

physical soil property maps and acid mine drainage producing mineral maps 

(especially secondary iron oxide minerals) by analyzing HyMap hyperspectral images. 

The project aimed to produce indicators to recommend new policies as well as pointing 

out the required changes on the current ones in both corporate and government levels 

for the sustainable mining purposes (EO-Miners, 2013). 

 
Both of these forthcoming, comprehensive projects makes use of satellite data 

collected by conventional sensors (Landsat, SPOT and ASTER, Worldview-2) and 

airborne data  acquired by hyperspectral airborne surveys, LIDAR survey, thermal 

infrared surveys.  Furthermore, in situ measurements including field spectrometers 

gathering data in VNIR, SWIR, and TIR regions of electromagnetic spectrum, in situ 

point measurements (pH, temperature), street dust sampling and analysis, information 

and/or measurements about vegetation, soils, surface and groundwater, dust are also 

performed. Given the extensive methodology of the projects and the utilized tools, 

both financial and application challenges, demanding the support of policy changes, 

especially for country scale investigations, considering the exorbitant sums associated 

with it. 

 

In the scope of environmental effects of mining wastes, Turkish government 

conducted a project called ‘’ Technical Assistance for Mining Waste Management’’ 

project during 2012-2014, which is conducted under the harmonization with European 

Union Legislations (i.e. Twining Projects), on environmental protection in order to 

prepare the necessary regulations with regard to the mining waste management. The 

project has covered almost 300 mines, spread all around Turkey. 

 

The objective of a twinning project is to support new EU member states and EU 

candidate countries in adopting community law and in establishing the necessary 

administrative capacities. Experts from the administrative authorities of the EU 
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Member States pass on their know-how and experience in implementing community 

law to colleagues in their respective partner country within the framework of the EU's 

Instrument for Pre-Accession (IPA) and the European Neighborhood Policy 

Instrument (ENPI). The Resident Twinning Advisor (RTA) is the referred as the 

backbone of any project and works in the partner authority throughout the entire 

project, usually one to two years, and supports colleagues on site in achieving concrete 

project objectives. 

 

The membership requirement of “Mining Waste Directive” states that “Member states 

shall ensure that an Inventory of closed waste facilities, including abandoned waste 

facilities which cause serious negative environmental impacts or have the potential of 

becoming in the medium or short term a serious threat to human health or to the 

environment is drawn up and periodically updated.” 

 

This unique project, unlike most of the countries, has conducted 300 mine site visits, 

collected extensive field information including sampling in order to establish a country 

wide risk-based inventory to technically support the implementation of EU 

legislations.  Within each commodity group, scores were assigned to each mine waste 

site based on the following criteria: 

 Active or abandoned site  

 Host rock geology 

 Largest mine waste dimension  

 Type of environmental receptor 

 Distance to nearest environmental receptor 

 Presence or otherwise of a pit lake 
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A risk score is calculated based on the total sum of the aforementioned criteria and 

their correspondence scores. For instance, if the mine site exhibits acid mine drainage 

during the site visits, the highest score is noted.  

 
It is important to note that as all the mine regions are classified as in potential danger 

in the report prepared within this project. Based on this outcome, the results of the 

projects was not announced by the government of Turkey. The analysis results were 

planned to be publicly available in the beginning, though because of the contradictions 

they were not utilized and were not released to public. 

 

 

 
Figure 1-14 Photographs Taken from the coal mine sites of Acid Rock Drainage (Çanakkale-

Balıkesir) (Twinning Project Report, 2014) 

Some of the results achieved at the end of the project are as follows: 

 Extractive industries may alter the composition of the landscape, disrupting 

land use and drainage patterns, contaminating soil and water resources, 

removing habitats for wildlife, and generate huge amounts of waste. This 
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particular waste must be managed in specialized facilities in accordance with 

specific rules.  

 Regarding the observed land degradations, it is concluded that the competent 

authorities should pay more attention particularly at lignite mines and small 

mines. In addition, there was some obvious land degradation at some iron and 

chrome mines both at abandoned or inactive ones. While coal power plants are 

essential for Turkish energy supply an environmental improvement at lignite 

mines should also be matched to this demand. 

 An unexpected experience of the site visits is the observed lack of wide-spread 

Acid Mine Drainage (AMD) problems. Due to favorable geological conditions, 

especially at the visited copper and gold mines, there was very limited acid 

mine leachate generation and associated environmental degradation.   

 The most critical areas were lignite mines where AMD phenomena is abundant 

such as those observed during the Çanakkale and Balıkesir Trips. 

 There is room for lot of improvement of mine waste facility management but 

the 300 mine site visits have confirmed the most important and urgent actions 

have to do with the improvement of the legislative environment and the proper 

improvement of the constructive relationship between the competent authority 

and private mine operating sector. 

 Finally, it is suggested that the Turkish Mine Bureau MIGEM should also have 

local/provincial officers. This would enable a better daily communication 

between the operators and the authorities including keeping the mine site 

management information updated, providing due training and knowledge 

transfer to the mine managers and monitoring mine site development waste 

management. This organization scheme is expected to minimize the current 

information scarcity in the sector.  
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Within the scope of this dissertation, an abandoned lignite mine site located in Central 

Anatolia in the province of Çankırı, Turkey is selected. The region has been of an 

interest in the last decade due to its availability for site visits and data collection as an 

non-operating mine, avoiding the potential conflict with authorities. The abandoned 

mine site possesses major environmental problems such as non-rehabilitated open pits 

(Figure 1-15), uncontrolled excavated areas and voids, abandoned buildings, disturbed 

drainage networks, dumpsites with steep angles and most importantly acid mine 

drainage generation (Figure 1-16). That’s why, this region is studied in Chapter 5 and 

Chapter 6 for analyzing the topographical changes as well its AMD generation 

potential in detail. 

 

 
Figure 1-15 Open pit area, Çankırı, Ovacık Mine (Soydan, 2013) 

 
Figure 1-16 Acid Mine Drainage in Çankırı, Ovacık Mine (Soydan, 2013) 
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CHAPTER 2 

2 HYPERSPECTRAL IMAGE ANALYSIS ALGORITHMS 

In this chapter, the utilized algorithms within the scope of thesis study is presented in 

detail. In the Section 2.1, a general information about hyperspectral anomaly and target 

detection algorithms is reported, including mathematical definitions of applied 

methods of RX and Kernel RX algorithm, Desired Target Detection Algorithm, 

Spectral Match Filter, Correlation and Normalize Correlation Algorithms. This section 

is followed by the unmixing methods (Section 2.2), which includes the detailed 

definitions of Fast Autonomous Spectral Endmember Determination (N-FINDR), 

Vertex Component Analysis (VCA), Minimum Volume Simplex Analysis (MVSA) 

and finally A Simplex Identification via Split Augmented Lagrangian (SISAL). 

2.1 Hyperspectral Anomaly and Target Detection Methods 

Target detection for remote sensing applications has been a great focus area in the last 

decade with the developments in hyperspectral imaging systems. Hyperspectral 

sensors provide contiguous spectral bands over electromagnetic spectrum with narrow 

wavelength intervals in spectral domain as well as high pixel resolutions in spatial 

domain, enabling to identify the searched targets in several contexts. The capability of 

sensors delivering detailed information about a pixel within a data cube enable the 

scientists to differentiate the focused object from the surrounding area (Monalokis et 

al., 2012). These developments have provided new applications ranging from 

vegetation, geological, mineralogical detection to defense and military object 

detection. Environmental assessment using hyperspectral target detection stand as a 

challenge for the scientists with its potential impacts on communities and species 

living nearby, especially where such a large amount of oil mitigation is in 

consideration. The oil contaminated wetlands on coastal regions, the distress on 

vegetation and polluted soil require a quick and comprehensive evaluation as it may 
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affect environmental and public health in a short span of time (Salem and Kafatos, 

2001). 

 
 As mentioned earlier, target detection techniques in hyperspectral image analysis have 

been regarded with respect to the existence of a pre-knowledge about the searched 

target. The target detection methods without any information of the object of interest 

are mainly falls into the group of anomaly detection methods (Monalokis et al., 2012; 

Alam and Sidike, 2012), which are searching for the anomalies in an acquired image. 

Statistically, anomaly can be defined as the data or observation which does not fit into 

the general characteristics of a given data set. Matteoli (2007) defines the anomaly 

detection concept as a binary classification problem in which the target is scarcely 

populated. However, the background clutter is heterogeneous and highly populated, 

which makes the classification error calculation impractical, as it would mean to label 

almost each pixel in the image. No matter what the application is, the investigated 

target is scarce, constituting very small portion of the data set justifying the primary 

definition of the author. 

 

Among these methods, Reed-Xioloi (RX) method has taken a significant attention in 

the literature with its pioneer aspect and simplicity (Nasrabadi, 2014; Malpica et al., 

2011). The algorithm is considered to be a benchmark as an anomaly detector, on 

which several modifications have been implemented so far. The method produces 

Mahalanobis metrics to describe the similarity between the target pixel and the 

background to differentiate the abnormal objects. The RX method, which uses the 

whole image as a background, is then improved by defining the background within a 

local neighborhood surrounding each pixel, called as local RX. In later approaches, 

Kernel based RX methods defining the similarity of two pixels by using nonlinear 

mapping techniques, namely ‘kernel trick’, have shown significant performance gains 

in terms of detection rates (Zare-Baghbidi and Humayouni, 2013). 

A visual describing the logic behind the sliding window operation in local-RX 

algorithm is drawn for a case of multispectral data cube in Figure 2-1. Here, the outer 
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window is utilized to model the background cloud while the inner window is 

appropriately selected in consideration with the searched target size. It should be noted 

that both of these window sizes have a significant role in the performance of local-RX 

method (Nasrabadi, 2014; Zare-Baghbidi and Humayouni, 2013). While larger 

windows might cause to miss the searched target, smaller one can lead to abundant 

high scores revealing the local variances in the window other than the target, i.e. false 

positives.  
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Figure 2-1 Double-concentric window for spectral anomaly detection 

 

The aforementioned second approach uses a previously obtained signature of the 

target, which uniquely represents the target’s reflection characteristics with respect to 

the spectral wavelengths. In order to conclude whether an acquired hyperspectral 

image involves a desired target, each pixel of the hyperspectral image is matched with 

the target signature and classified as a target or background. The existing approaches 

in the literature mostly achieve this task in two ways. The first approach treats each 

pixel without explicitly considering the background during the modelling and 

matching operation. Normalized cross correlation and spectral matched filter are 

typical representatives of this approach (Du et al., 2003; Ren and Chang, 2013; 

Matteoli, 2017). The second approach takes also the background into account by 
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modelling a target pixel as a linear mixture of target spectral signature and background 

spectral signature. The main methods in this group involve orthogonal subspace 

projection (OSP), adaptive matched subspace detection (AMSD), and desired target 

detection and classification algorithm (DTDCA). The second group methods using the 

background has provided a better detection accuracy compared to the first group (Ren 

and Chang, 2013; Du et al., 2003). Among these methods using background modelling, 

DTDCA has also verified as an effective method in the literature with its superior 

detection performances and more flexible background generation algorithm requiring 

no prior information about the acquired scene (Ren and Chang, 2013). 

 
 

Spectral mixture analysis is a technique to resolve the constituent endmembers of a 

pixel spectrum based on the assumption that the overall spectra represents the 

combination of two or more samples in the observation pixel. This method is important 

to identify the spectral components of each pixel, known as endmembers, to produce 

corresponding abundance maps with inversion process. According to Keshava and 

Mustard (2002), the spectral unmixing technıques are grouped into two classes, which 

are linear and non-linear. The linear unmixing approaches assumes that the 

constituents of each pixels are spatially discrete and isolated from each other, while 

the non-linear unmixing presume all components are mixed with each other, 

presenting a greater challenge for their corresponding spectral extraction. It’s 

imperative to note that the success of linear unmixing algorithms is extremely related 

to the accuracy of identification of all members, which is a part of the challenge, 

keeping in mind how complicated the mixing of surface can become. The validity of 

linear unmixing models are reported to be roughly about 3 – 5 % of absolute abundance 

of a material (Keshava and Mustard, 2002). 
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2.1.1 Anomaly Detection Algorithms 

 
2.1.1.1 RX Algorithm 
 
RX algorithm makes use of the Mahalanobis distance metric to calculate the likelihood 

ratios by normalizing the difference between the test pixel and the background to 

allocate the abnormalities in the acquired scene. Mahalanobis metric is utilized to 

determine the distance between the point cloud consisting of background pixels and 

the target pixel. Different from the Euclidean distance, the Mahalanobis distance takes 

also the shape of the clouds described with the covariance matrix into account 

(Malpica et al., 2011, Zare-Baghbidi and Humayouni, 2013). Given a pixel of the 

hyperspectral data cube, x , the RX algorithm describes the abnormality of the pixel as: 

)()()( 1  
  xxx t

RX  
 

where   and   are defined as the estimated mean and covariance matrix of the 

background samples. Given the Equation (1), the algorithm calculates the abnormality 

of each pixel of the hyperspectral data cube and decides on the regions of anomalies.   

The RX method, which uses the whole image as a background, is then improved by 

defining the background within a local neighborhood surrounding each pixel. While 

the first case is regarded as the global RX method, the second case with the local 

neighborhood is called as local-RX in the literature.  

 

2.1.1.2 Kernel RX Algorithm 
 
Given two sets of observation belonging to different classes might not be linearly 

separable in many cases in pattern recognition. A suitable nonlinear transform, denoted 

as  , applied to the observed data can make these given sets separable. However, this 

nonlinear transform (  ) is not always computationally feasible for a direct 

implementation. 

The main idea in Kernel RX is to be able to find a suitable kernel function, ),( yxk , 

which enables to find the Mahalanobis distance between the target pixel and the 



42 
 

background in the transformed space without needing to convert these pixels into that 

domain. Given a transformed version of a pixel of the hyperspectral data cube, )(r , 

the Kernel RX algorithm describes the abnormality of the pixel in the transformed 

domain as: 

)ˆ)((ˆ)ˆ)(())(( 1


 bbbRX rCtrr


   

where 


b

ˆ  and  

b
Ĉ  are defined as the mean  and covariance matrix of the background 

samples in the transformed domain. 

In this study, we use the Gaussian Kernel for the implementation of kernel RX due to 

its superior performance reported in the literature. For a given two hyperspectral 

pixels, the Gaussian Kernel is defined as:  

 
)/||exp(||),( 2 cyxyxk   

where c is a real constant. 

2.1.2 Signature Based Detection Algorithms 

 
2.1.2.1 Spectral Matched Filter 
 
Matched filter is a well-known algorithm in hyperspectral image processing which 

uses the spectral signature of a desired target for detection. The filter is designed to 

minimize the average power of the filter output for the background components while 

maximizing the output of the filter for the target signature. The solution for such a 

problem description is given as: 

s1
s

Ts

s1
sw 


  

where w  is the vector corresponding to matched filter coefficients, s  is the spectral 

signature of the target, and 
s  is the covariance matrix of the hyperspectral data. Given 

the Equation (4), the algorithm calculates the output of the matched filter for each pixel 

of the hyperspectral data cube and examine the output for the desired target.  
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2.1.2.2 Desired Target Detection and Classification Algorithm 
 
Desired Target Detection and Classification Algorithm (DTDCA) (Ren, & Chang 

2003, Du et al., 2003) models the background for the given hyperspectral image and 

eliminates the background components from the hyperspectral pixels. A matching is 

then performed between the remaining terms on the pixels and the spectral signature 

of the target for detection.  

The algorithm models a hyperspectral pixel (r) as a linear mixture of target spectral 

signature, background components and noise: 

 
nKtr p    

 
In the equation, t  is the target signature and K  is the background matrix, whose 

columns consist of undesired background spectral signatures extracted from 

hyperspectral data cube.  

In the first stage of the DTDCA algorithm, a background matrix from the hyperspectral 

image is generated and used to eliminate background components from the measured 

pixels, r (Du et al., 2003). In order to eliminate the background components from the 

pixels, the pixels given in Equation (5) are multiplied with an annihilator matrix, KP , 

which is expressed as: 
#KKIPK   

 
where #K is the pseudo inverse of K  and I  is the identity matrix. After such a 
multiplication, Equation (5) returns into the following form: 
 

nPtPrP KpKK    
 

In the second stage of the DTDCA algorithm, the measured pixels, whose background 
components are eliminated, are matched with the target signature for detection.   
 
2.1.2.3 Correlation/Normalized Correlation  
 
Correlation and normalized correlation (NC) algorithms are applied to reveal the 

relation between the target spectra and the hyperspectral pixels. The algorithm matches 



44 
 

the test pixel in interest with each pixel of the data set with correlation or normalized 

correlation algorithms. The correlation between two hyperspectral vectors are given 

below. 





p

1j
jyjxyxCorr )()(),(  

Where x corresponds to the spectral signature of the target and y represents each 

hyperspectral pixel of the tested image. p stands for the number of hyperspectral bands.  

In the case of normalized correlation, the correlation equation is normalized with the 

norm of the vectors x and y: 
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The resulting matrixes are mapped to a 2D image to show the detected area for the 

searched target. 

2.1.2.4 Spectral Angle Mapping (SAM) 
 
Spectral Angle Mapping (SAM) is an algorithm, which utilizes multi-dimensional n-

D angle to match the target pixels to reference spectra. The method calculates a 

spectral similarity metric by simply calculating the angles between the spectra, which 

have the vector dimension of number of bands. For an n-D data cube, the spectral angel 

is calculated as follows: 
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where s is target signature, r is reference signature. The algorithm attenuates 

illumination and albedo effects by concentrating on the trend of both spectra. 
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2.2 Unmixing Algorithms 

 
Identification of hyperspectral pixel composition by defining the material signatures 

and their fractions has been a challenge for scientists in the last decade. An observed 

pixel of a hyperspectral data usually contains several materials or endmembers, which 

cause the scattered energy to show a mixed signature. Depending on the spatial 

resolution, a hyperspectral pixel of low-resolution image mostly requires unmixing to 

determine its components. Unmixing a hyperspectral pixel means to identify the 

components in each pixel, their spectral signatures with the corresponding abundance 

fractions. The combination of the statistically dependent signatures of the 

comprehended materials is either linear or non-linear fashion, which promote the 

unmixing techniques on high dimensional hyperspectral data sets (Li and Bioucas-

Dias, 2008). 

Among the proposed techniques, geometrical algorithms have been widely studied 

benefiting the convex nature of hyperspectral vectors. The aim of these methods is to 

extract endmembers located at the vertices of hyperspectral data by constraining the 

summation of abundance fractions to one with the assumption of the fractions are all 

positive.  In such a fitting, the vertices of a simplex set, which covers the hyperspectral 

vectors, represent the endmembers for the hyperspectral data cube by taking advantage 

of the hyperspectral convex nature of the observed pixels (Li & Bioucas-Dias, 2008). 

The hyperspectral pixels inside this simplex are modeled as the linear combination of 

the representing endmembers.  

 

The geometrical methods at this stage are separated into two categories with respect 

to the existence of the pure pixels in the data set. If there is at least one pure pixel for 

each endmember, the unmixing method outputs the vectors in the data set 

corresponding to vertices of the data simplex as endmembers (Li & Bioucas-Dias, 

2008; Bioucas-Dias, 2009). In the case that pure pixel assumption is not fulfilled, 

which is usually encountered as spatial resolution decreases, the unmixing operation 

is comparably more challenging as all endmembers might not be represented with pure 
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pixels in the data set. As an alternative approach, fitting a minimum volume to the 

hyperspectral observation pixels is pursued to resolve this challenge. 

2.2.1 Fast Autonomous Spectral Endmember Determination (N-FINDR) 

 
N-FINDR method is one of the pioneer methods that achieve the unmixing of 

hyperspectral pixels by assuming the existence of pure pixels in the observed data. The 

method specifically interprets the pure pixels as the vertices of an N-dimensional 

scatter plot of observed pixels forming a convex cone. The volume of the simplex 

formed with such a selection of pure pixels as vertices is assumed as the largest 

possible volume that can be generated from the observed data (Winter, 1999).  

In order to find the maximum volume simplex, N-FINDR first models the 

hyperspectral pixels as a linear combination of the endmembers:  

 

  nsmy jii   1
k

js  

Where   np
N RyyY  ,,1  is matrix holding the spectral vectors p

i Ry  for 

ni ,,2,1   in its columns of a hyperspectral data cube. The linear mixing model is 

defined as   pp
p RmmM  ,,1   is the mixing matrix. imand p  stands for the ith 

endmember signature and number of endmembers respectively. npRS   is the 

abundance matrix, where ijS  stands for the fraction of ith endmember at jth pixel. The 

abundance fractions should be greater than zero and sum to 1 for each pixel, which is 

called as the probability simplex. The hyperspectral vectors iy belong to a simplex set 

inside the vertices  im  for pi ,,1  . Assuming the linear mixture model, the 

abundance proportions of a pixel ( js ) sum to one.  

 
N-FINDR algorithm approximates the volume of a simplex as a proportion of the 

determinant of matrix of endmembers. The algorithm tries to find the maximum 
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volume which covers the maximum number of hyperspectral pixels  with the constraint 

that the vertices of the simplex are the endmembers corresponding to purest pixels. 

The algorithm starts with a random set of pixels selected as the vertices and calculates 

the volume for the selection. This selection is updated when a larger volume is 

obtained until all the pixels are exhausted in the observed data.  

 

The first advantage of N-FINDR is reported as the identification of pure pixels without 

any prior information, which simplifies the scope of the problem to a specific feature 

space. It also removes the obligation to perform atmospheric correction for radiance 

to reflectance conversion. On the down side, if there is not a complete pure endmember 

in the data cube, the algorithm assigns the least pixel as an approximation for the 

endmember. Another disadvantage arises when there is a mixed pixel with a higher 

brightness, which causes the iterations to be stuck in such points (Winter, 1999).  

2.2.2 Vertex Component Analysis (VCA) 

 
Vertex component analysis (VCA) is another pure pixel based method that requires 

the existence of at least one pure pixel for each endmember (Nascimento, 2015). The 

main difference of VCA algorithm compared to NFIDNR is to include a scaling factor, 
 , into the modelling of observed hyperspectral pixels to account for the illumination 

differences due to surface topology:   
nMnxr    

 

where r, x, and n corresponds to the same terminology given for Eqn. (1). 

In the given equations for (1) and (2), while the geometric place of an observation set,

 0,11,:   TL
x MxRxS , corresponds to a simplex in an L-dimensional 

space, the geometric place of the observations with a scaling factor of  , 

 0,0,11,:   TL
p MrRrC  is located in a convex cone. Therefore, 

the VCA algorithm first performs a perspective projection to project the observed date 
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to locate on a hyperplane, 1ur T . The rescaled data after such a projection forms a 

simplex  p
TL

p CrurryRyS  ,/: . The u vector for the scaling is selected 

such that the 0ur T . In other words, the direction of u should not be orthogonal to 

any observation pixel to perform perspective projection. After the first projection of 

data, the VCA algorithm selects the extreme of the projected data as an endmember 

and then again projects the data onto an orthogonal direction to the selected 

endmember to extract the subsequent endmember as an extreme of the projected data. 

The algorithm runs iteratively in order to locate the endmembers to the extreme points 

of projection until all endmembers are elaborated. VCA method makes a significant 

contribution to literature as it accounts for the illumination changes for topographical 

variations and is found to give better or near performances compared to N-FINDR 

algorithm.  

2.2.3 Minimum Volume Simplex Analysis (MVSA) 

 
MVSA is proposed to unmix hyperspectral pixels for the cases when there is not any 

pure pixel in the observation set formed of only one material for each endmember. The 

idea of MVSA (Li and Bioucas-Dias, 2008) is to fit a minimum volume simplex to 

hyperspectral data set with a constraint that the abundance fractions of the 

endmembers forming each hyperspectral pixel has to be greater than zero and sum to 

one.  The algorithm, as in the other geometric techniques, is founded on a linear model, 

where the signatures of the endmembers are linearly weighted with the abundance 

fraction matrix to constitute each hyperspectral pixel. The algorithm softens the 

positivity constraint of the abundance fractions by also allowing negative values to 

make the algorithm robust to outliers. However, the negativity is penalized with a 

hinge function which forces the negative abundance fractions to be as close as to zero. 

The algorithm initially assigns the endmembers as the endmembers resulted from the 

VCA algorithm to avoid convergence to a local minima, although such a selection 

might be far from optimal.  
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Let   np
N RyyY  ,,1   is matrix holding the spectral vectors p

i Ry  for 

ni ,,2,1   in its columns of a hyperspectral data cube. The linear mixing model is 

defined as 

MSY        0:. Sts   T
n

T
p S 11   

Where   pp
p RmmM  ,,1   is the mixing matrix. im and p  stands for the ith 

endmember signature and number of endmembers respectively. npRS   is the 

abundance matrix, where ijS  stands for the fraction of ith endmember at jth pixel. The 

abundance fractions should be greater than zero and sum to 1 for each pixel, which is 

called as the probability simplex. The hyperspectral vectors ݕ belong to a simplex set 

inside the vertices  im  for pi ,,1  . 

The optimization problem for MVSA algorithm is defined as finding the matrix of M 

which minimizes the simplex volume covering all the hyperspectral pixels in the 

observation set. The simplex volume in such a problem is approximated by the 

determinant of the matrix, M.  With the given constraint of probability simplex in (1), 

the problem is given as:  

|)det(|minarg* MM M  
0:. QYts   T

n
T
p QY 11   

where 1 MQ .  
After the modifications on the constraints, the optimization equation turns to the 

maximization of *Q  : 

|))det(|(logmaxarg* QQ Q  

0:. QYts   m
T
p qQ1  

 
where )det(

1)det( MQ   and 1)(1  p
T
Nm Yq . 
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2.2.4 A Simplex Identification via Split Augmented Lagrangian (SISAL) 

 
SISAL algorithm is again a minimum volume line of attack algorithm. Apart from the 

MVSA method, the positivity constraint are replaced by soft constraints called “hinge 

type” constraints. The hard positivity constraint enforces pixel vectors to be included 

the convex hull formed by endmember signatures. The hinge type soft constraint is 

applied with a regularization parameter, to penalize the high negative values. This 

constraint provides a robust algorithm for noise, outliers or poor initializations. The 

obtained problem is solved by a sequence of augmented Lagrangian optimizations 

(Bioucas-Dias, 2009). The algorithm is stated to outperform the other state of art 

techniques like minimum volume simplex analysis (MVSA) regarding with the run 

time.  

 

Given the l as the number of spectral bands and p  is the endmember number, with 

spectral signatures of l
i Rm  for pi ,,2,1   where the algorithm necessitates the 

endmember number to be less than the number of the spectral bands )..( plei   The 

algorithm is also founded on linear unmixing model, with the given constraints for 

minimum volume simplex algorithm, where the abundance fractions for each pixel are 

non-negative and sum to 1. 

MSY    n
pSS  

Where Y  is the spectral vectors, M is the mixing matrix holding endmember spectra 

and S  is the abundance matrix. The volume minimization considering the p-

dimensional basis )..( lpei   , M is assumed as square and given )det(M is 

proportional to the volume of the simplex, the minimization function is: 

 
|)det(|minarg* MM M  

0:. QYts   T
n

T
pQY 11   

where 1 MQ . 
 

|))det(|log(minarg* MQ Q   
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0:. QYts   T
n

T
pQY 11   

where )det(
1)det( MQ  . 

This is a non-convex optimization problem with convex constraints. The optimization 

problem finally turns to: 

 
)|||||)det(|log(minarg*

hQ QYMQ   
TT

p aQts 1:.  
 

where 
ij

ijh XhX )|(||||| and  0,max)( xxh   called hinge function. The term of 

hQY |||| penalizes the negative component of QY , proportional to their magnitude. 
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CHAPTER 3 

3 APPLICATIONS OF ANOMALY AND TARGET DETECTION 
ALGORITHMS TO DETERMINE OIL SPILLS 

Remote sensing for environmental assessment of oil spills is one of the developing 

paths in hyperspectral image analysis, which enable the designation of oil-

contaminated regions. Multispectral and hyperspectral data present a great capability 

to discriminate oil contaminated regions by making the use of visible infrared (VIS) 

and short wave infrared (SWIR) bands. The extraction of pixel spectra of an oil-

contaminated region from the high dimensional hyperspectral data cube provides the 

characteristics of the oil polluted area and can be utilized to identify the target over a 

vast region (Roper and Dutta, 2006). This phenomenon is also valid for the 

determination of the oil slick over water that is a major support for the environmental 

management to assess the mitigation of the oil spill and to take necessary precautions. 

 

 A detailed literature on the detection of oils spill by remote sensing techniques (i.e. 

hydrocarbons) is given in Chapter 1.4.1 (b). The necessity to determine the level of oil 

contamination in marine environment is highly significant considering its potential to 

spread over vast areas as well as reaching the coastal regions. In the case of an 

emergence of contamination on water medium, it’s imperative to generate a 

remediation plan as soon as possible, which surely requires the determination of the 

extent and propagation direction in a timely manner. Salem and Kafatos (2002) 

conducted one of the earliest studies on investigating oil spills in water medium by 

utilizing hyperspectral remote sensing. Their study focuses on Chesapeake Bay area 

which has suffered from oil spill contamination events several times. The airborne 

imaging spectro-radiometer for Applications (AISA) is utilized to determine spillages 

in the bay area, to predict the spread direction and flow rate and to identify the severity 

of the spills on the coastline. Spectral angle mapping (SAM) technique is performed 

to match the extracted oil signature to image pixels, followed with a thresholding 
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operation. In the study, the ground truthing is implemented with the help of pictures 

taken on the day of the event and the capability of spectrum matching over supervised 

classification is emphasized for determining oil slicks over the water surface. The 

pioneering studies conducted by Salem and his colleges have encouraged researchers 

to investigate novel methodologies to determine oil slicks over the complex water 

medium.  With the advancements on the hyperspectral sensors, target detection and 

anomaly detection algorithms for identifying oil slicks on ocean surface has been 

focused by several researchers, especially after the oil platform explosion in Gulf of 

Mexico, 2010 (Alam and Sidike, 2012; Zare-Baghbidi and Humayouni, 2013). 

Following these studies, hyperspectral unmixing algorithms are applied on 

hyperspectral images collected over oil-polluted water medium, which is also 

supported by laboratory measurements to build a database for different type of oils 

such as crude oils, heavy fuel oils or light petroleum products. The findings indicate 

the complexity of extracting endmembers in the real case marine environment due to 

susceptibility of spectrum to change depending on the sea bottom or sea state 

conditions. It’s further mentioned that the methodology is successful to determine oils 

spills for the studied areas, only being successful to map abundance fractions on 

currently contaminated regions where only one endmember corresponds to oily areas.  

 

With regard to the extant literature, this chapter focuses on measuring the performance 

of focused target detection and anomaly detection algorithms for the case of Gulf of 

Mexico (Alam and Sidike, 2012; Zare-Baghbidi and Humayouni, 2013). The ability 

of the algorithms in determining the oily regions as well as removal of existing noise 

on raw data is thoroughly assessed. For this purpose, the algorithms are run without 

any preprocessing operations.  

3.1 Utilized Data and Methodology  

In the experiment, we utilize two hyperspectral data sets. The first set, AVIRIS Data 

set, is collected by NASA after the Deep Horizon Oil platform explosion between May 
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and October, 2010, in the Gulf of Mexico (AVIRIS, 2015). The radiance spectra 

collected with AVIRIS instrument, which is the first operational hyperspectral sensor, 

is aimed to be utilized for examining the constituents of the Earth's surface and 

atmosphere according to the specific absorption and scattering properties of molecules. 

The imagery has a high spatial resolution of 7.6 m with 224 bands between 360–2500 

nm.  

 

In order to perform a comparison with the literature, the same hyperspectral data sets 

in the experiments utilized in the research paper of Zare-Baghbidi and Humayouni 

(2013) are selected. This study utilizes three different anomaly detection techniques,  

to identify several targets in interest, including detection of oil spills in Gulf of Mexico.  

The utilized AVIRIS image is acquired from the Gulf of Mexico on May 17, 2010 

(Ren and Chang, 2003) in radiance units. For comparison purposes, this image is 

downloaded from AVIRIS Data Portal https://aviris.jpl.nasa.gov/alt_locator/, which is 

a publicly available resource for AVIRIS data. A focus region with a spatial size of 

179 × 199 has been clipped from the image for the implementation of the methods in 

consideration with the subset area in Baghbidi and Humayouni (2013).  

 

As the second data set in the experiments, we utilize hyperspectral data obtained from 

Gulf of Mexico with SPECTIR sensor on June 6, 2010 in radiance units. The data is 

publicly available in http://www.spectir.com/free-data-samples/.The data cube has a 

comparatively higher spatial resolution of 2.2 m with 360 spectral bands between 360–

2500 nm (SPECTIR, 2015). 

 

This study incorporates two different approaches, namely anomaly detection methods 

and signature based target detection methods, utilized in hyperspectral image analysis 

to investigate the oil spill coverage occurred after the explosion of Deepwater Horizon 

oil platform in April 2010. Utilizing the abovementioned data sets, the methods for 

anomaly detection are selected as RX, Local-RX, and Gaussian Kernel-RX algorithms, 

whereas the spectral matched filter (SMF) and desired target detection and 
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classification algorithm (DTDCA) are utilized for signature based target detection 

methods. The performance of the selected methods is evaluated with respect to the 

localization of the targets, noise elimination capability and quantification of the present 

target abundance with a proper contrast.  

3.2 Experimental Results and Comparisons 

We implement the three anomaly detection methods and two signature based target 

detection methods on the mentioned two data sets. The utilized data are inputted to the 

algorithms without any preprocessing and dimension reduction operation to fairly 

examine the performance of oil spill detection with the raw hyperspectral radiance data 

among different methods. As there is no provided ground truth for the data sets, the 

obtained results are visually evaluated with respect to the localization of the targets, 

noise elimination capability, and quantification of the present target abundance with a 

proper contrast. Both anomaly detectors and signature-based methods are compared 

with each other as well as within themselves.  

 

For a better understanding, the original data sets and their corresponding anomaly 

detection algorithm outputs in the study of Zare-Baghbidi and Humayouni (2013) are 

given in Figure 3-1 and Figure 3-2. In reference to these outputs, the performance 

evaluation of the applied algorithms in our study is implemented taking into account 

the delineated oil spill pixels, which are shown in white color in the output images of 

Zare-Baghbidi and Humayouni (2013), as well.  

 

 
Figure 3-1 AVIRIS image and anomaly detection algorithm outputs (Zare-Baghbidi and Humayouni, 

2013) 
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Figure 3-2 SPECTIR image and anomaly detection algorithm outputs (Baghbidi and Humayouni, 

2013) 

 

 
 (a) (b) (c) 

 
 (d) (e) (f) 
Figure 3-3 Algorithm Results on SPECTIR Imagery a) True Color Composite b) Global RX c) Local 

RX d) Gaussian RX e) SMF f) DTDCA 
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 (a) (b) (c) 

 
 (d) (e) (f) 

Figure 3-4 Algorithm Results on AVIRIS Imagery a) True Color Composite b) Global RX c) Local 
RX d) Gaussian RX e) SMF f) DTDCA 

Figure 3-3 and Figure 3-4 illustrate the results of the implemented algorithms in this 

study for AVIRIS and SPECTIR data sets, respectively. Among the presented results 

for the three anomaly detection algorithms (Figure 3-3 - (b, c, d) and Figure 3-4 -(b, c, 

d)), the results for the global RX is suffering from noisy components both emerging in 

the form of individual spikes and vertical lines. As some of the hyperspectral bands 

could be very noisy, the effect of these bands to the global RX algorithm is severely 

degrading the performance. This degradation is partially suppressed for the case of 

local RX with the eliminated vertical lines on the results, although the spike noises can 

still be observed. The Gaussian RX, on the other hand, eliminates both the vertical 

lines and spike noises. However, the disadvantage of Gaussian RX besides its high 

computational time is its inability to properly catch the right contrast for the target 

abundance at every time. The proper visualization of the target abundance on the 

obtained results requires a fine tuning of the parameters utilized in the Gaussian RX, 

such as the size of the kernel window as well as the variance of the fitted distribution.     

 

Signature based target detection methods on the other hand (Figure 3-3-(e, f) and 

Figure 3-4-(e, f)) have revealed a significant performance in noise elimination 

compared to the anomaly detection methods. Both the vertical lines and the spike 
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noises are eliminated on the illustrated outputs. In addition, the visual interpretation of 

the outputs also reveal that signature based algorithms provide a good contrast 

regarding the quantity of oil slicks for both images as illustrated in Figure 3-5- (a, b). 

Going from blue to the red color, the change in the abundance of the oily regions is 

well observed on the output images.  It is also concluded that among the signature 

based target detection methods, DTDCA is better than the SMF method in both 

locating the oil spill regions and showing its abundance with a good contrast.  

 

 

 
(a) 

 
(b) 

Figure 3-5 SMF (left image) and DTDCA (right image) Results on (a) SPECTIR Imagery and  

(b) AVIRIS Imagery 
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 (a) (b) 

Figure 3-6 DTDCA Error Metrics (a) SPECTIR (b) AVIRIS 

In Figure 3-6, we present the change of the error terms with the numbers of iteration 

in DTDCA algorithm for both imageries. The error term is saturated after reaching to 

a point, which indicates that the given number of iteration is sufficient to filter out the 

target oil components from the water forming the background in the acquired scenes. 

To further elaborate on the delineated oil spill pixels, after a thresholding operation, 

the radiance signatures of water surface with and without oils is plotted. By this way, 

discriminative features of oil radiance spectral fingerprints are investigated. Figure 3-7 

illustrates the regions of oil spills in white color. 

 

 
 

 
 
 
 
 
 
 
 
 
 
 

(a) (b) 
Figure 3-7 Oil bearing pixels, shown in white color, after thresholding operation (a) SPECTIR (b) 
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The plotted signatures reveals the higher capability of SPECTIR data to resolve the 

spectrum due to its high spectral resolution. It resolves the features of the signatures 

in a more detailed manner compared to AVIRIS extracted signatures. Although it’s 

hard to differentiate specific absorption features of oil bearing pixels due to water, 

carbon dioxide and ozone absorptions in the radiance signature, relatively higher 

radiance values, particularly in VNIR region, are observed in the signatures extracted 

for both images, especially in SPECTIR data cube. Having said that, the absorption 

depth of the pixels with oil content is expectedly deeper than the regular water radiance 

spectrum.  Furthermore, it is important to note that the radiance signatures of oil-

bearing pixels and the non-oil bearing ones are gathered within their belonging groups, 

which actually proves their separability from each other. The two groups are more 

distinctive in SPECTIR data showing a significantly different trajectory, which is not 

the case for AVIRIS image. The signatures have a common continuum unlike the 

SPECTIR ones that is attributed to the lower spectral and spatial resolutions of the 

AVIRIS data cube. All of these outputs supports the susceptibility of oil spectrum 

depending on its thickness, sea bottom and sea state conditions. 

 
Figure 3-8 Radiance signatures of pixels with and without oil content (SPECTIR) 
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Figure 3-9 Radiance signatures of pixels with and without oil content (AVIRIS) 

 
According to the overall experimental comparisons, the results indicate the superiority 

of signature based methods over anomaly detectors in eliminating the noise, detecting 

the contaminated regions, and showing the abundance of pollution. In particular, 

DTDCA algorithm gives the best results among all the compared methods with its 

background elimination algorithm, which effectively filters out the undesired 

components from the observed data before the matching with the target signature. 
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CHAPTER 4 

4 MAPPING HYDROCARBON INDUCED ANOMALIES WITH 
HYPERSPECTRAL TECHNIQUES 

In this section, signature based detection algorithms and hyperspectral unmixing 

methods in detection of hydrocarbon microseepage anomalies are compared. Among 

the unmixing algorithm outputs, the extracted signature, i.e. endmember that is 

angularly closest to the reference spectra is selected and its abundance map is utilized 

as a baseline for performance comparison. The experiments indicate that SISAL 

algorithms give out the closest signature to reference/ground truth spectra between the 

designated band intervals of hydrocarbon signatures with an error value of 0.05, 

outperforming all unmixing algorithms, MVSA, VCA and N-FINDR respectively. 

Knowing the fact that the extracted signature is angularly closest to the reference 

hydrocarbon spectral samples, the abundance map of SISAL is employed as a baseline 

to measure the similarity among the other algorithms, with Euclidean metrics 

accordingly. The experiments support the findings and assessment of the first phase of 

the study with the results of DTDCA and MF outperforms the traditional Crosta 

techniques by locating the microseepage patterns along the mitigation pathways with 

a better contrast, following the success of unmixing algorithms. On the other hand, 

pure pixel based unmixing algorithms, N-FINDR and VCA, as well as Correlation and 

Normalized Correlation have not been able to map the searched target with a visible 

distinction, with an exemption of VCA merely highlighting the main pathway of the 

hydrocarbon seepage.  It is concluded that unmixing algorithms can be more effective 

than signature based algorithms and conventional methods for the detection of 

microseepage-induced anomalies. 

 
As mentioned earlier, to map hydrocarbon microseepage regions utilizing two main 

sets of algorithms, signature based algorithms and unmixing algorithms. Signature 

based algorithms require a prior knowledge about the spectral characteristics of the 
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target, which can either be a single spectrum or a subspace defining it, in order to 

determine the possible locations. Unmixing algorithms, on the other hand, are 

unsupervised techniques that are used to identify the components in each observation 

pixel of a data cube, their spectral signatures with the corresponding abundance 

fractions. In this paper, ASD spectrometer data collected from the field (Avcıoğlu, 

2010) and an ASTER image of the study area located in the Southeastern Anatolia, are 

compiled for the analysis. After the atmospheric correction of the image, the spectral 

signatures collected from the field are resampled to be used for running the algorithms. 

As a baseline for the comparisons, first the well-known traditional technique for 

hydrocarbon-induced alteration mapping called Crosta technique is implemented.  The 

Crosta technique utilizes principal component transformation to obtain eigenvectors 

to highlight the target material in consideration with its spectral properties. This 

baseline method is compared with signature based target detection methods which are 

selected as vector correlation, normalized correlation (NC), spectral matched filter 

(Hwon & Nasrabadi, 2004) and desired target detection algorithm (DTDCA) (Ren & 

Chang, 2003). From the simplest to the most sophisticated, while correlation and 

normalized correlation is calculating vector similarities between the ASD signatures 

and captured pixel spectra, spectral matched filter and DTDCA utilize also the 

background information by using the covariance and the spectral signatures of the 

background. In addition to the supervised signature based methods, four different 

hyperspectral unmixing algorithms are applied to the data cube for hydrocarbon 

induced alteration mapping. As an unsupervised approach, unmixing algorithms result 

in several abundance maps together with their spectral signatures (i.e. endmembers), 

providing another measure to evaluate the performances of the resultant maps. N-

FINDR (Winter, 1999), Vertex Component Analysis (VCA) (Nascimento, 2005), 

Minimum Volume Simplex Algorithm (MVSA) (Li & Bioucas-Dias, 2008) and 

Simplex Identification via Split Augmented Lagrangian (SISAL) (Bioucas-Dias, 

2009) are the hyperspectral unmixing methods applied in this research. Not only 

applications of advanced spectral signature algorithms but also hyperspectral 

unmixing techniques in the context of microseepage induced anomaly detection 
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contribute to the literature significantly with this novel methodology. The in-group and 

between group comparisons of these methods further serve as an improvement of 

hydrocarbon microseepage mapping, with an overall performance evaluation between 

the state of art algorithms and traditional Crosta technique. 

4.1 Utilized Data and Methodology 

In this section, we aim to evaluate the performances of signature-based algorithms and 

hyperspectral unmixing methods to map hydrocarbon microseepage related 

alterations. The selected data for the analysis is the multispectral ASTER image of the 

region. Only the visible and shortwave infrared region of the image is utilized, with a 

prior resampling of the SWIR bands to 15-meter resolution. Following that, the image 

is atmospherically corrected and clipped to the study region, Gemrik Anticline. In the 

first part of the study, besides the signature based algorithms, we apply the well-known 

traditional CROSTA technique to map the hydrocarbon microseep regions, which also 

was applied in a previous study as a baseline (Avcioglu, 2010). In the second part, the 

unmixing algorithms are also applied to the atmospherically corrected dataset to 

determine the success of the endmembers extracted from this multispectral scene to 

delineate the hydrocarbon microseepage regions. The endmembers, which are 

restricted to the maximum band number of the data cube, are utilized to produce 

abundance maps. The acquired endmembers are compared with the spectral signature 

of the reference microseep regions collected during the fieldwork using spectral angle 

mapping algorithm (Avcioglu, 2010). As a result of this comparison, angularly closest 

endmember to the ASD reference spectrum, which is resampled to ASTER resolution, 

is assigned as the one corresponding to hydrocarbon microseeps. The error terms are 

also regarded as a performance indicator. The abundance map corresponding to the 

minimum error endmember is employed as a reference to comprehend the performance 

of the signature based algorithms as well.  
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4.2 Experimental Results  

In this study, we investigate the performance of two groups of algorithms, i.e. signature 

based methods and unmixing techniques, to determine their performance for 

hydrocarbon microseepage mapping. In the following subheadings, we evaluate the 

algorithms outputs within their belonging groups as well as between groups for 

mapping the hydrocarbon microseepage locations in our study area.  

a) Comparative Results – Signature Based Methods 
 

For a fair comparison in the experiments, no post processing operation was applied on 

the resulting target abundance maps. In order to differentiate the target pixels and get 

a better visualization of the microseepage regions, color map ‘jet’ with an increasing 

content of the target from blue to red is utilized. The collected spectral signatures form 

the reference valley is shown in Figure 4-1 (a), with the resampled ones to ASTER 

spectral resolution in Figure 4-1 (b).  

 

Figure 4-2 (a, b, c, d, e, f) shows the algorithm outputs for each of the method with the 

reference valley of the collected spectral samples. The outputs of the signature-based 

algorithms seem to be compatible with the traditional technique CROSTA except for 

the correlation/normalized correlation results. According to the acquired microseepage 

maps, the hydrocarbon locations are much more profound in signature-based 

techniques with an enhanced contrast, presenting an extra information about the 

content of microseeps as well. Considering the distinguishability of the searched target 

from the background, DTDCA is regarded as a much more reliable algorithm as it 

removes the background components from the test pixels before the matching 

operation compared to SMF. As mentioned earlier, the correlation algorithm is only 

successful at separating the anticline from the whole region that covers the delineated 

patterns by the compared techniques. Unfortunately, normalized correlation removes 

the target region completely, even for the case of anticline region. 
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Figure 4-1 a) Spectral Signatures of Hydrocarbon Microseepage Samples Collected with ASD b) 
Signature Resampled to ASTER Spectral Resolution 

  
                           a) Reference Valley  b) Crosta   c)  DTDCA 

 
d) SMF    e) Correlation         f) Normalized Correlation 

Figure 4-2 Signature Based Target Detection Algorithm Outputs 

The implementation of the signature-based algorithms gives encouraging results for 

hydrocarbon microseepage detection with signature based target detection methods. 

DTDCA and SMF algorithms stand as the most promising ones regarding with the 

outputs of the traditional technique CROSTA and correlation/normalized correlation 

methods. 
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b) Comparative Results -Unmixing Methods 
 

A comparison and performance evaluation of selected unmixing algorithms is 

presented. Pure pixel based algorithms, N- FINDR and Vertex Component Analysis 

(VCA) as well as the algorithms selected for the cases of the violation of pure pixel 

assumption, the Minimum Volume Simplex Analysis (MVSA) and Simplex 

Identification via Split Augmented Lagrangian (SISAL) are evaluated for their 

capability to delineate microseepage regions. As stated earlier, unmixing algorithms 

results in endmembers (i.e. spectral profiles of each constituent) as well as the 

regarding abundance maps for each endmember. As a result of the unmixing 

application, the acquired nine endmembers are analyzed to differentiate the angularly 

closest signature to collected spectra from the field to select the microseepage related 

endmember, using spectral angle mapping method. This method results in the errors 

between each endmember and the reference signature collected from the microseepage 

field. For this particular case, we propose a methodology to track the errors regarding 

with a certain interval of the shortwave infrared region of ASTER image, knowing the 

fact that the hydrocarbon absorption bands are closely related to that region, especially 

considering the absorption band of 1.73µm which is a unique characteristics band for 

the calculation of hydrocarbon index (Kuhn et al., ). Figure 4-3 illustrates the output 

endmembers of each unmixing algorithm with the reference signature collected from 

the field and the spectral range evaluated to measure the algorithm outputs.  

 

 
Figure 4-3 Endmember outputs corresponding the microseepage regions  
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Although the trend of the extracted spectral signatures especially differs in visible 

region, the algorithm outputs show a significant compatibility along the SWIR Bands 

4-7, covering the range of 1650-2260 nanometers for all endmembers corresponding 

to microseepage regions. This inference is supported with spectral angle mapping 

techniques mentioned earlier, resulting in the error terms related to the microseepage 

endmember of each unmixing algorithm and reference spectrum. In addition to 

delineating a specific region along a known path of seepage of all algorithm abundance 

fractions, the error terms calculated using the reference signature and microseepage 

endmembers point out the outperforming unmixing algorithm among the others. Table 

1 shows the error terms of each endmember with reference spectrum, minimum values 

corresponding to microseepage fraction in the study area. The results reveal that 

SISAL algorithm outperforms all algorithms with a minimum error term of 0,05 

compared to the utilized unmixing techniques. The abundance fractions corresponding 

to microseepage endmember of each unmixing algorithm is also given in Figure 4-4. 

As a representative sample, all abundance maps corresponding to each endmember of 

SISAL algorithm is illustrated in Appendix A. 

 

Table 4-1 Error terms calculated using the reference signature and extracted endmembers with SAM 
algorithm 

ALGORITHMS 

ENDMEMBERS 
1 2 3 4 5 6 7 8 9 

NFINDR 0.23 0.24 0.16 0.19 0.15 0.14* 0.28 0.17 0.23 

VCA 0,24 0,15 0,19 0,15 0,22 0,18 0,28 0,13* 0,17 

MVSA 2,98 0,08* 0,22 0,63 2,66 0,73 0,37 0,12 0,18 

SISAL 1,65 0,12 0,21 0,05* 2,73 0,30 2,58 0,14 1,25 
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 a. NFINDR b. VCA c. MVSA d. SISAL 
 

Figure 4-4 Abundance fractions corresponding to microseepage endmember of each unmixing 
algorithm 

All unmixing algorithms except for the N-FINDR technique highlight the fractions 

related to microseepage regions along the known path of seepage. The red pixels depict 

the highly concentrated regions with a decreased content to blue color.  N-FINDR 

algorithm promotes the anticline region, which is highly distinguishable with visible 

spectrum. Comparing the other three techniques, the lineament of microseepage can 

be traced along a path in Gemrik anticline with high contents. The output fractions of 

MVSA and SISAL algorithm seem vastly compatible with difference in contents, 

pointing out the same lineaments. The VCA algorithm, on the other hand, eliminates 

the background other than MVSA & SISAL, highlighting only the pure pixels covering 

the main microseepage path. 

c) Signature Based Methods vs. Unmixing Algorithms  
 
The algorithm results have been compared within each group in Section 5.1 and 

Sectıon 5.2 so far. This part of the study aims to perform an assessment considering 

all acquired outputs to make a fair comparison. According to the in group assessments 

of  signature based techniques, Spectral Match Filter (SMF) and Desired Target 

Detection Algorithm (DTDCA) give outputs that are highly similar with the traditional 

Crosta technique visually. We utilize the ASD spectra of the collected samples as a 

ground truth to select a baseline map among unmixing algorithm outputs with the help 

of angular metrics. Moving from this point, a simple Euclidean metric, L2 Norm, is 

selected to measure the similarity of each image pair, SISAL abundance map as the 

NFINDR VCA MVSA

 

 
SISAL
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baseline, as well as comparing both foreground and background discrimination of 

acquired outputs; foreground being the microseep regions. The expected metric should 

be minimized for the similar outputs indicating the compatibility between foreground 

and background. 

 

 
a.           b.         c. 

 
d.             e.        f. 

Figure 4-5 The algorithm outputs a) Crosta b) SMF c) DTDCA d)VCA e)MVSA f)SISAL 

Table 4-2 Root Mean Square Error Metrics between SISAL and other algorithms 

 CROSTA DTDCA SMF VCA MVSA N-FINDR 

SISAL 0.1950 0.1391 0.1927 0.3550 0.0942 0.2948 

 

 
Table 4-2 demonstrates the results of the error metrics. Evaluating the acquired outputs 

of unmixing algorithms, the error term related to the VCA algorithm is the highest 

amongst the other results. This expected effect is interpreted as a result of pure pixel 

assumption of the VCA algorithm, which ignores composite spectrum to select the 

endmembers. The same interpretations are also viable for the N-FINDR algorithm, 

which has the second highest error values. The error value for the MVSA is the closest 

to the SISAL among all the algorithms, which is proportional to its spectral angle error 

to ground truth signature. When all applied unmixing abundance maps are 

investigated, it is concluded that the pure pixel based algorithms output pixels, 

efficiently pointing out the microseepage pathway along the syncline path, as it is 
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executed with pure pixel endmembers. This pathway is identified as a common 

lineament for all algorithms. The SISAL and the MVSA are much more efficient in 

mapping the abundances of the hydrocarbon seeps with minimum spectral errors 

within the range of designated band intervals. These two methods also have a potential 

to highlight the other anomaly pixels rather than the migration pathway along the 

anticline, as they are operated when the pure pixel assumption is violated. The 

signature based target detection algorithms, which are visually compatible with 

unmixing algorithm results with some variances in the study area, have well-matched 

error metrics with the visual assessments as well. The DTDCA is regarded as the most 

successful algorithms among the signature based techniques, followed by the SMF and 

Crosta subsequently. The background elimination of the DTDCA supports these 

findings with the removal of background components before the signature matching 

operation. 

 

The experiments indicate that advanced spectral detection techniques have a great 

potential to reveal hydrocarbon microseepage induced anomalies. The presented 

results of signature based target detection techniques, as an in-group assessment, 

successfully highlight the hydrocarbon microseepage locations other than the 

correlation and the normalized correlation algorithms. Compatibility of signature 

based target detection algorithm results is observed with the traditional Crosta 

technique for allocating the microseep regions with a better contrast, which provides 

better understanding about the content of the searched target. The results have also 

shown a good match with the field based research performed by Avcıoğlu (2010), 

which forms a base for the utilization of signature based techniques in the region. The 

unmixing algorithms, giving an opportunity for performance evaluation as well as 

additional abundance maps, give more resourceful results compared to the signature 

based target detection methods. The implemented algorithms in this study also 

delineate the prominent clay alterations, which were emphasized in the study of 

Avcıoğlu (2010). Having the bands abundantly utilized for mapping clay alteration in 

mind (Band 4 to Band 7 corresponding to 1600-2285 nm), SISAL algorithm is 
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regarded to present the most trustworthy results, with the closest endmember to 

reference signature in the specified band intervals among all the algorithms. According 

to the RMSE values and the endmember trends, SISAL is followed by the MVSA 

technique, which can also be seen visually. Furthermore, the N-FINDR and the VCA 

algorithms are found to be successful only for promoting the pixels in the anticline 

region, blurring the background other than the anticline. These results are explained 

by the fact that both algorithms belong to pure pixel based group, which exploit overall 

pixel spectrum to select endmember representing the microseepage-induced 

alterations. This study presents the capability of hyperspectral unmixing techniques, 

which are performed without any prior knowledge of the searched target spectra (i.e. 

endmember), on a multispectral data cube not only to resolve the hydrocarbon induced 

components but also to produce abundance maps with related error metrics. It is further 

inferred that the proposed methodology reveals a comprehensive understanding of 

output maps with the additional error calculation stage.
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CHAPTER 5 

5 MAPPING TOPOGRAPHICAL ANOMALIES FOR AN ABANDONED 
COAL MINE  

Coal production and utilization has been a significant factor on environmental 

pollution. Carbon dioxide emissions due to burning coal is one of the forthcoming 

problems regarding with it. According to the yearly report of Turkey Electricity 

Generation Company report published in 2012, fossil fuel related carbon dioxide 

emissions have increased % 115 in the last 39 years, reaching at levels of thirty million 

tons. Coal’s share within this emission has also amplified % 152 corresponding 

thirteen million tons, which is % 43 of the total carbon dioxide emission. Together 

with the air pollution levels, soil pollution is another impact of coal mining operations 

and thermal plants. The researchers has been studying on this important issue, 

especially with the state of art technologies in recent years. The correlation between 

the coal mining activities and heavy metal contaminations (cadmium, copper, lead, 

zinc) around the mine site as well as contamination in stream sediments are presented 

in the literature (Li et al., 2014; Wong, 2003). The acidic mine effluents carrying high 

levels of cationic ions such as calcium, magnesium, potassium or heavy metals 

dominated precipitations around the abandoned coal mining area in spite of the 

reclamation activities.  

 

At the end of 2012, the power generation by coal power plants is reported to be 12.5 

GW and it corresponds too % 22 of the total power generated in Turkey. The local coal 

production provides 8613 MW energy, which cover 15,3 %  of the reported value 

(Electricity Generation Company Reports, 2012). Unfortunately, the physical or 

chemical properties of produced coals in Turkey has not been collected and stored in 

government organizations properly. That’s why, a database regarding to the 

characteristics of each establishment could not be attained or generated. However, 
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considering its share in energy production, the requirement for matching the 

environmental legislations on the supervision of mining activities stands as a must. 

 
The environmental sustainability of mining operations, which is a great challenge that 

comprises of minimizing the impacts on the surrounding environment, requires state 

of the art methodologies and tools to reduce the anticipated effects. The main purpose 

of this section is to determine the anomalies regarding with the coal mining operations 

in an abandoned coal mine site in central Anatolia by multi-temporal image analysis 

of Landsat 4-5 surface reflectance data. A well-known anomaly detection algorithm, 

Reed-Xioli (RX), which calculates square of Mahalanobis metrics to calculate the 

likelihood ratios by normalizing the difference between the test pixel and the 

background to allocate anomaly pixels, is implemented across the time series. The 

performance of the algorithm is also quantified with Receiver Operating 

Characteristics (ROC) curves and precision-recall graphs to quantify its capability on 

Landsat Thematic Mapper (TM) multispectral image series. 

 

Despite having a great potential to reveal detailed information on earth surface, 

availability of hyperspectral scenes for public use can be either extremely hard or quite 

costly. As the acquisition of hyperspectral images is challenging or comparably 

expensive, this study is motivated to determine the performance of well-known 

hyperspectral anomaly detection algorithm, Reed-Xioli (RX), on multispectral images 

of Landsat 4-5 Surface Reflectance data, which are currently provided as new products 

by Unites States Geological Survey (USGS). In the scope of the methodology, 

available and reliable images before-during-post mining activities are downloaded 

considering the noise & cloud covers of each of them. An intermittent temporal series 

of reflectance imagery set between the years of 1985-2011 are utilized for the analysis.  
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5.1 Utilized  Data and Methodology 

Landsat Thematic Mapper 4 and 5 (TM4 and TM5) multispectral data sets are selected 

for tracing temporal change in the abandoned coal-mining region. The study area is 

located in Central Anatolia, in the city of Çankırı. Mining operations have lasted 18 

years starting from 1987, which were completely ceased in the late 90s. In addition, 

having known the operational life of the mine and there were no actions taken in the 

region for mine reclamation & rehabilitation, this mine site is a good candidate which 

would serve to the purpose of this research. United States Geological Survey (USGS) 

started to release higher-level products of Landsat 4-5 scenes at the end of 2014, which 

was acquired between 1982-2012, including surface reflectance products, Top-of-

Atmosphere reflectance and NDVI images. Availability of this application ready 

historical dataset is regarded as invaluable for pursuing the motivation of this study in 

order to be able to monitor the transformation in the terrestrial environment of mine 

site. The surface reflectance data is publicly available via 

http://earthexplorer.usgs.gov/, while the users have to fill out an order form to acquire 

TOA reflectance and NDVI images through https://espa.cr.usgs.gov/ . The technical 

properties of utilized Landsat TM images are given in Table 1 (Taylor, 2017). 

 

Landsat TM surface reflectance data is delivered without the Band 6, which covers the 

thermal region among the other bands. After the acquisition of images, the delivered 

bands are stacked to form the data cubes of six bands (Bands of 1-2-3-4-5-7), and the 

focus area around the abandoned coal mining site is subsetted from the whole region. 

Both global RX and local RX anomaly detection algorithms are implemented across 

the time series to identify the pixels standing out against the defined background. The 

high score anomaly pixels in the output image sets are selected using multi-

thresholding technique based on the Otsu method as the technique presents extra 

information of segmentation metric for performance evaluation. After generating the 

high score anomaly score matrixes for each year, the common indexed anomaly pixels 

are plotted to make an inference about their attained scores across the years. 

Furthermore, in order to measure the performance of the algorithms, Receiver 
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Operator Characteristics Curves (ROC Curve) and Precision-Recall Curves (Davis and 

Goadrich, 2006) are plotted temporally. Figure 5-1 illustrates the followed steps of 

methodology in detail. 

 

LANDSAT 4-5 
Surface 

Reflectance 
Images

 LAYER STACKING (VNIR/SWIR) 
AND 

SPATIAL SUBSETTING

HYPERSPECTRAL ANOMALY 
DETECTION (REED-XIOLI /RX )

ALGORITHM

MULTI-THRESHOLDING TO 
DETERMINE ANOMALOUS PIXELS 

ON LANDSAT TM IMAGES 
(INTERMITTENT DATA BTW 1987 

&2011)

ANOMALY PIXELS DUE TO MINING 
ACTIVITY

2D PLOTS OF ANOMALY VALUES OF 
COMMON PIXELS ACROSS THE YEARS

ROC CURVE AND PRECISION-RECALL 
GRAPH FOR PERFORMANCE 

EVALUATION

 
Figure 5-1 The Flowchart of the Methodology 

5.2 Experimental Results and Comparisons 

The algorithm computes anomaly scores of each pixel vector of the data cube and 

highlights the irregularities with respect to point cloud in consideration. The global 

RX method models the background by including all observation pixels, that would 

mostly regarded as insufficient to catch the anomalies. Moving from this point, a local 

definition for background modeling with a double concentric window to single out 

distinguished pixels is proposed for a better performance. In this case, the background 

pixels are selected within a certain boundary covering around the test pixel. A double 

concentric sliding window is created for defining either of the variables, i.e. test pixel 

and background matrix. The proposed application to compute local neighborhood to 

find anomaly pixels is called as local-RX algorithms in the literature (Nasrabadi, 

2014). 

  
In line with this information, algorithm performances are calculated utilizing well-

known ROC Curve and Precision-Recall plots (Davis and Goadrich, 2006). ROC 

curves and precision-recall graphs are commonly utilized for evaluating binary 

classification problems in machine learning. The former depicts the relation between 

the number of pixels classified correctly and the number of falsely classified negative 
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observations; while the latter shows the relation between the number of instances 

classified correctly and number of correctly classified samples out of the positive 

sample set. These two methods can be used interchangeably, though the precision 

recall curves are referred as providing more trustworthy results with a highly skewed 

data set (Davis and Goadrich, 2006). It is also noted that these two graphs are highly 

interconnected, which means a dominating curve in ROC space is only possible when 

it shows the same tendency in precision-recall space. The required counts of the 

selected anomaly pixels for each year based on whether or not they fall in mine layout 

regions are computed according to the equations given below. 

 
TruePositiveRate=TruePos/(TruePos+FalseNeg) 

 
FalsePositiveRate=FalsePos/(FalsePos+TrueNeg) 

 

Precision=TruePos/(TruePos+FalsePos) 

 
Recall=TruePosRate=TruePos/(TruePos+FalseNeg) 

 
The experimental results in time series reveal high score anomalies quite compatible 

with the mine development. According to the visual comparisons, the anomaly scores 

are allocated in the open-pit, coal storage, excavations & area of disturbances of the 

land as well as the dumpsites throughout multi-temporal images, which reveal the 

differentiations on earth surface across the years. The annual change rates of the 

anomaly pixel values are also found to relate to the nature of alterations in the land, as 

the pre-mining images ensures to evaluate the deviations of the expected anomaly 

scores in the land even before the mining operations start. Global RX algorithm outputs 

visualized with a jet color map, scores increasing from blue to red, is presented in 

Figure 5-2. Although the detected high score pixels can vary across the temporal scale, 

it can be visually interpreted that they tend to stabilize starting from the end of 90s, 

coinciding the end of active mining activities. With the knowledge of each image is 

acquired in different seasons of the year and times of the day, this variation, which 
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would potentially create a basis for dynamic threshold requirement, is presumed 

earlier.  

 
Figure 5-2 RX Anomaly Algorithm Outputs in Multi-Temporal Landsat Images 

The high score anomaly pixels in the global RX output image sets are selected using 

multi-thresholding technique with the help of Otsu method, which also provides an 

additional segmentation metric to indicate the effectiveness of applied threshold value 

for each image in time series. The calculated mean threshold value computed with 

Otsu method for the time series is 0.20, with an overall effectiveness of 0.60. Figure 

5-3 shows a high resolution image of the mine site with its layout (Figure 5-3.a), 

together with the selected high score pixels as a result of the thresholding operation in 

image 2011 (Figure 5-3.b).  

 

The pixels over the selected average threshold value are successfully pointed out in 

the experiments, which then utilized to form anomaly matrices regarding with each 

year. With the score values increasing from blue to red, the chosen pixels are marked 

with a red circle in Figure 4.b.  Furthermore, in order to interpret the rate of change in 

the anomaly values in time series, common indexed scores are stored in a new variable 

and plotted against each other. For a better understanding, 2011 image is selected as 

baseline representing the latest condition of mine site and it is compared with the 
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anomaly scores in each image within the temporal scale. Four plots exemplifying the 

relations within the mine life is carefully chosen among the data set for demonstrative 

purposes (Figure 5). Although the calculated anomaly scores may differ in temporally, 

it is observed that they tend to show a linear behavior as of the mining operations are 

ceased in the late 90s. This relation is completely random with the anomaly scores 

before and during the mining operations. Moving from this point, the coefficient of 

determination values of each pair of anomaly scores is calculated to quantify the 

relationship within the time series. These scores also support the tendency of the 

common anomalies getting a linear trend during the last decade, after the mining 

activities are finished. 

 

 
(a)                                         (b) 

Figure 5-3 a) True Color Image - 2011 b) Global RX Output with high score anomaly pixels- 2011 

Furthermore, ROC curves and precision-recall graphs of anomaly output maps across 

the years are drawn respectively, which can be seen in Figure 5-4. The figure illustrates 

the performance graphs for the last 6 years (2002-2011) for a better visualization. The 

success rate incrementally increases along the focused timeline, reaching positive 

trends only after the mining operations end. The arrow direction points the escalation 

in the success of the algorithms as the years increase from 2002 to 2011, form light 

blue to dark.  
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In evaluating these performance curves, ideally the precision recall graph is expected 

to get closer to upper right corner, while ROC curve is to upper left. As we investigate 

the graphs closely, the improvement of the algorithms is prominent in the time series. 

The latest image, 2011, has the most successful rates in accordance with the both 

performance evaluators, demonstrating highest lines in both ROC curve and precision 

recall graphs. The overall increasing tendency in performance rates can vastly be 

attributed to the land use stability reached after the mining activities were stopped. As 

the operations going on, the calculated anomaly scores and their locations change on 

yearly basis as the mine development progress continues, which is also recognized in 

anomaly score scatter plots of different image pairs. 

 

 
Figure 5-4 ROC Curves of Anomaly Detection Outputs 

In the selected subset area focusing on the mine site, the experiments with local RX 

algorithm unfortunately generate salt and pepper effect in anomaly outputs, with pixels 

highlighted in almost every applied window size. This is most probably due to the 

existence of several local maxima points in the input data sets that could not be 

repressed in 30-meter spatial resolution Landsat 4-5 pixels. In the light of this 

information, these results are not included as a part of experimental results section. 

 

In order to validate the acquired outputs, a new unsupervised probabilistic algorithm 

based on calculation of local mutual information over the joint superpixels, obtained 

by an over-segmentation process, is utilized (Taşkesen et al., 2017). The algorithm is 

applied on co-registered image sets to produce change maps by making use of mutual 

information calculation on joint histograms. Despite the low spatial resolution of 
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Landsat data, the algorithm is able to identify the open pit area, dumpsite, abandoned 

openings and coal storage unit by assigning higher scores (white pixels, shown in red 

squares) on the image couple of before (1985)  and after (2011) the mining operations. 

 

   
Figure 5-5 Landsat True Color (321) Image and Unsupervised Change Detection Output  

(Taşkesen et al., 2017) 

To sum up, this study is an attempt to resolve the deviations due to mining activities 

in an abandoned coal mining area in central Anatolia, demonstrating the changes on 

earth surface over a time spectrum with the help of newly released Landsat 4-5 

Reflectance data provided by USGS, by ruling out the illumination effects for change 

detection. The conducted experiments reveal especially the profound land use – land 

cover change in the field in time series, pointing out some critical regions that need an 

immediate rehabilitation action. Presenting such an invaluable potential to observe the 

anomalies in a multi-temporal fashion, Landsat reflectance images seem to be 

resourceful in determining the abnormalities with a great contrast despite its spatial 

resolution limitations. From the point of mine development process as well as the post-

mining monitoring activities, remote sensing analysis provides an opportunity to 

record the change during the mine life. This potential is even more significant in the 

case of abandoned mine sites in order to be able to prepare well-grounded reclamation 

plans. 
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CHAPTER 6 

6 MAPPING SECONDARY IRON MINERALS FOR DETERMINING ACID 
MINE DRAINAGE POTENTIAL FOR AN ABANDONED COAL MINE 

Sentinel 2 is a multispectral imaging satellite launched by European Space Agency  

(ESA) in 23 June 2015 for the purpose of supporting Copernicus Land Monitoring 

studies. It consists of 13 spectral bands, including three different spatial resolution 

band groups, i.e. four bands – 10 meters, six bands – 20 meters and three bands – 60 

meters. It is planned to be complimentary to Landsat and Spot Missions with its 

coverage and high frequency image acquisition in differing scales. Its application field 

has already covered spatial planning, monitoring land resources, soil and water as well 

as observing coastal areas and so on.  The availability of high-frequency/high 

resolution temporal data provides the opportunity to produce land-cover maps, land-

change detection maps and monitoring geophysical variables in a determined time 

sequences (Sentinel 2 User Handbook, 2015). 

 

Among the other products, Sentinel 2A - Level-1C product, which is utilized in the 

scope of this thesis, is provided as ortho-images in Universal Transverse Mercator 

(UTM) Projection and World Geodetic System 84 (WGS84) datum. The Level-1C 

product is delivered with cartographic coordinates, each coordinate referring to upper 

left corner of the pixel in interest, orthorectified by digital elevation models. The 

delivered per pixel radiometric measure is Top Of Atmosphere (TOA) reflectance, 

accompanied with required parameter for reflectance to radiance conversion. As 

mentioned earlier, Level-1C products comprised of three different ground sampling 

distances (10, 20 and 60 m) contingent with differing inherent spectral band resolution 

(Sentinel 2 User Handbook, 2015). Spatial and radiometric resolutions of Sentinel 2A 

is given below in Table 6. 
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Table 6-1 Sentinel 2A Spectral Band Properties 

Spatial 
Resolution (m) 

Band 
Number 

S2A 
Central 

Wavelength Bandwidth

10 

2 496.6 98 
3 560 45 
4 664.5 38 
8 835.1 145 

20 

5 703.9 19 
6 740.2 18 
7 782.5 28 
8a 864.8 33 
11 1613.7 143 
12 2202.4 242 

60 
1 443.9 27 
9 945 26 
10 1373.5 75 

 

Multispectral images and hyperspectral images are both capable of mapping specific 

absorption features in the spectrum, depending on the spectral resolution, the location 

of the multispectral bands in question and the bandwidth of the absorption 

characteristics. This capability leads researchers to focus on new methodologies to 

map diagnostic mineral absorption features as well as identification of minerals 

utilizing band ratios, producing new indexes. Sentinel 2 spectral band are designed to 

covering narrower widths in order to avoid the contamination due to atmospheric 

effects, most importantly water vapor. In addition, the band 8a, having a 33 nm width, 

is specifically designed to detect the iron oxide contents, whose diagnostic absorption 

is a reflectance minimum congruent with this band, around 900 nm (Sentinel 2 User 

Handbook, 2015). 

 

According to Murphy et al. (2014), iron-bearing minerals exhibit diagnostic absorption 

features around 900 nm due to crystal field or electronic absorption characteristics of 

ferric ions. The electrical processes of transition metals (i.e., Fe, Cu, Co, and Cr), 

which actually demonstrates the energy state of orbital electrons, induces the 

observable absorption characteristics in the region of 0.4 µm to 1.3 µm (i.e. electronic 
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region). On the other hand, OH-, H2O, NH4+, SO4 –  ions are responsible for the 

absorption features in the vibrational region, which is between 1.3-2 µm in the 

electromagnetic spectrum (Hunt, 1977; Swayze et al., 2000). 

 

Hunt (1977) explains further that the most frequently exhibited features in the visible 

and near-infrared (VNIR) region spectra of minerals, rocks and soils are indicators of 

iron in different forms. As common in all transition elements, the energy levels of an 

ion located in a solid changes depending on its interaction with the surrounding crystal 

field. Here, the valence state of the ion (Fe2+ or Fe3+), coordination number and the 

occupied symmetry of the site determines the position of the aforementioned energy 

levels (Hunt, 1977). Stoner et al. (1979) also specify the existence of broad bands at 

0.7 and 0.9 µm due to high concentrations of ferric iron existence, with an additional 

remark about a comparative decrease in content as the bandwidth gets sharper. 

 

Mielke et al. (2004) state that the most common secondary iron minerals, which are 

also associated with mine wastes and acid mine generation (i.e. goethite, hematite and 

jarosite) have also a minimum reflectance absorption around 900 nm, which is 

explained in detail by Clark, 1999. The ubiquitous nature of iron oxides, hydroxides 

and sulfides make them special for researchers as well as their special characteristics 

in VNIR region.  As can be seen in Figure 6-1, larger grain sizes exhibit broader 

reflections together with a shift to longer wavelengths and saturation. The 900 nm 

absorption feature is emphasized as a common property as to iron bearing minerals, 

which is due to similar electronic absorption features in the visible and near-infrared. 

 

Spectral signature examples secondary iron minerals are given in Figure 6-2, showing 

the absorption feature at 900 nm. Although hematite seems to have a sharper 

absorption feature compared to others, particle size distribution might influence this 

differentiation. Ferrihydrite is also an iron oxide, with similar overall characteristics 

to Orange precipitate in the reflectance spectrum, before continuum removal or 

scaling. 
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Figure 6-1 Hematite Spectra and 900 nm Absorption Feature for Different Grain Sizes (Clark, 1999) 

 
Figure 6-2 Spectral Fingerprints of Secondary Iron Minerals (Clark, 1999) 

In addition,  Figure 6-2 also illustrates the jarosite, an iron sulfate,  having a narrow 

absorption near 0.43 µm, with another diagnostic absorption feature at 2.27 µm 

because of a mixing effect of OH stretch and Fe-OH bend.  

 

Coal mining operations are regarded as one of the most significant sources of acid 

mine drainage (AMD) or acid rock drainage (ARD) among the other mining activities, 
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due to the inherent iron sulfate contents. According to the conducted studies by Rose 

et al. (2013), the sulfuric acid generation caused by sulfide mineral oxidations (more 

commonly pyrite) together with iron sulfates is regarded as the main reason for the 

toxic drainage in the mining area. The oxidation reactions are triggered in the existence 

of water and oxygen to generate acidic drainage, which are then transported depending 

on the topographical conditions. The primary sources of AMD are mentioned as mine 

rock dumps, mine tailings, open pit and underground mining areas and drains 

originating from overburden piles even in rehabilitated areas (Akçıl ve Koldaş, 2005). 

It’s also important to note that the aforementioned reactions are facilitated and 

accelerated by bacteria present in the environment, affecting the rate of acidic drainage 

generation drastically. According to Dold (2010), pyrite oxidation takes place in 

certain stages, which is also effective for secondary iron minerals’ formation, 

determined by the geochemical conditions of the environment. This sequence occurs 

with the metastable secondary products ferrihydrite, and goethite, followed by more 

stable secondary jarosite, and hematite depending on the geochemical conditions 

(Bigham et al., 1996). The chemical equations take place in the following order: 

 
FeS2 + 7/2 O2 + H2O → Fe2+ + 2SO42- + 2H+ (Oxidation of the sulfur) 

 
Fe2+ + 1/4 O2 + H+ ⇔ Fe3+ + 1/2 H2O (Oxidation of ferrous irons) 

 
FeS2 + 14 Fe3+ + 8H2O → 15 Fe2+ + 2SO42- + 16H+ (Hydrolysis and precipitation of 

ferric complexes and minerals) 
 
After the oxidation of the sulfide minerals in the first stage, the ferrous ions are 

oxidized to produce ferric ions, which actually will be primary oxidant of pyrite in the 

third stage. These reactions are accelerated in acidic environment, especially with the 

pH values lower than 3 (Dold, 2010). Furthermore, the metal ions in the system also 

hydrolyzed in the surrounding acidic environment, because the water molecules start 

to act as proton acceptors. Espana et al. (2005), also emphasizes the presence of iron 

and aluminum bearing minerals such as schwertmannite, jarosite, ferrihydrite, 

goethite, hematite, basaluminite, jurbanite, gibbsite in the acid mine drainage systems, 
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as indications of the growth kinetics of hematite and goethite that are much smaller 

than schwertmannite, ferrihydrite and jarosite. 

6.1 Utilized Data and Methodology 

The objective of this study is to develop a new methodology to produce Fe-bearing 

mineral indicator maps to determine potential acid mine producing regions in an 

abandoned coal mining area, with the help of Sentinel 2 imagery. Among the 

mentioned secondary iron minerals (i.e. goethite, jarosite, ferrihydrite, hematite etc.), 

hematite is selected as the mineral indicator to be focused as it’s the only one revealed 

during laboratory testing. It is obvious that mapping pyrite minerals would be much 

more direct, but considering its lack of distinctive spectral fingerprints hampered by 

secondary mineral coatings, the direct detection with spectral techniques is not 

possible. The distinguishing characteristics of iron oxides, hydroxides or sulfates make 

them favorable for spectral detection that can be used as indicators for tracing acid 

mine drainage sources. 

 

In this research hyperspectral unmixing algorithms are performed to produce 

secondary iron mineral (hematite) indicator maps which is detected in the soil samples 

collected from the study area. It’s important to note that these samples are not collected 

from the sources of AMD or river beds, as they were collected for investigating 

chemical and physical properties of the soil in the same mining area, for a previous 

study (Soydan, 2013). Nevertheless, detection of hematite still provides sufficient 

evidence for a possible risk or existence of AMD in the mining field.  

 

The methodology consists of two major steps:  

i- Investigating the applicability of 900 nm absorption feature by validation 

both with the hematite signature acquired from USGS Spectral Library and 

collected ASD Spectral Signatures.  
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ii- Application of two geometric unmixing algorithms to Sentinel-2 Image  

 

The details of the followed procedure which is also demonstrated in Figure 6-3, is 

listed below in two main stages (1-6) and (7-10). In the first stage (1-6), the steps 

for parabola fitting are given, and the second stage consists of the steps of 

application of unmixing algorithm.  

 

1. Sentinel-2 Images are downloaded through glovis.usgs.gov 

2. The data is resampled to three different spatial resolutions, which are 5, 30 and 

60 meters. 

3. The fırst nine VNIR bands are stacked for the further analysis on the data cube. 

4. The hematite signature is downloaded from USGS Spectral library. The 

absorption feature around 900 nm is remodeled given the methodology in van 

der Werff and van der Meer (2015). 

5. The spectral samples collected from the field are also examined for the 

absorption parameter and the fit of the suggested model by van der Werff and 

van der Meer (2015). 

6. The fitted model is revised iteratively according to the previous steps. 

7. The unmixing algorithms, SISAL and MVSA are applied on the satellite data. 

8. The resulting nine endmembers are investigated for the diagnostic absorption 

band of hematite, which corresponds to the spectral region 750 – 950 nm 

region, with Spectral Angle Mapping (SAM) Algorithm.  

9. The abundance maps are produced for the output endmembers with an 

additional vegetation mask application step, as in van der Werff and van der 

Meer (2015) to be on the safe side. 

10. The abundance map corresponding to the minimum SAM error in the 

absorption region is designated as the target map. 

The selection of SISAL and MVSA ((Li & Bioucas-Dias, 2008; Bioucas-Dias, 

2009) is due to their comparative success to other unmixing and signature based 

methods for hydrocarbon induced alteration detection in Chapter 4. 
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Figure 6-3 Flowchart of the Methodology 

6.1.1 Validation with ASD Library Spectra and Laboratory Analysis 

 
Band 8a of Sentinel-2 image is specifically designed to capture the iron bearing 

secondary mineral absorption feature with its narrow bandwidth and band center 

located at 865 nm. The proposed model is mainly working as the band ratio images, 

making use of the prior and latter bands around the absorption feature, but providing 

a continuum along the defined wavelength interval as in hyperspectral sensing.  

 

The validation is performed by both using USGS Hematite spectra and ASD spectra 

collected from the region by following the model proposed by van der Werff and van 

der Meer (2015). In their study, the authors propose to fit a second-degree polynomial 

for identifying the minimum of the spectrum as well as its depth. The convexity of the 

fitted parabola proves the existence of the absorption and produces the minimum 

wavelength/feature depth parameters for a synthetic Sentinel-2 image of The Cabo de 

Gata volcanic field, covering a region of metamorphic minerals such as kaolinite, 

alunite or iron rich montmorillonites. 

In order to determine the absorption feature, the authors applies the parabola fitting 

technique to calculate the minimum iron absorption feature using the following 

equations: 

 
 cbxaxwx  2 ,

a
bw

2min    

where  
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wx is interpolated reflectance value at position x 
 
x is wavelength position in nm; 
 
a and b are coefficients of the parabola function, and 
 
wmin  is the interpolated wavelength position at minimum reflectance. 
 
The USGS validation is replicated by utilizing the same set of secondary iron bearing 

minerals, which are reported to be associated with acid mine drainage in mine sites. 

As mentioned earlier, the results of hematite is given for convenience, considering the 

XRD laboratory experiment results. For the purposes of the study, the location of 

minimum absorption feature is regarded adequate and effective.  

 

Figure 6-4, gives the USGS hematite spectra resampled to Sentinel-2 spectral 

resolution with the fitted parabola: 

 

 
 

Figure 6-4 Hematite Spectral Signature with Fitted Model 

Hematite 
Min.Wavelength 

835.92 
 
As explained in Stoner et al. (1979) the existence of broad bands reaching from 0.7 to 

0.9 µm also points out the high content ferric iron. As the absorption feature gets 

narrower, the relative concentration is decreased. Considering that the focus of the 

study is an abandoned cola mining area rather than a metal mine or mine tailing, the 

absorption band is expected to be relatively narrow in reference to pure hematite 

spectral fingerprint. For this reason, the validation operation is implemented on the 

spectra of soil samples collected from the abandoned mine field.  
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Figure 6-5 illustrates ASD Spectra of Soil Samples on which XRD Analysis Performed 

on six soil samples. Table 6-2 demonstrates the results of the XRD analysis on these 

samples. The iron absorption feature is distinguished even visually in the four samples 

for which XRD analysis proved the presence of hematite. The absorption 

characteristics of the  iron bearing samples are utilized to adjust the parabola model to 

Band 7, Band 8a and Band 9 for optimized fitting. As in the study of van der Werff 

and van der Meer (2015), the minimum wavelengths are observed between 800 – 900 

nm intervals for the hematite bearing spectra, while the other two samples exhibit a 

straight line rather than a parabola, which confirms the lack of the mineral. The 

difference in the optimized  bands with regard to van der Werff and van der Meer 

(2015)’s study is attributed to the fact that the content of iron bearing minerals in the 

study area is comparatively far less than pure mineral spectra or a metal mine.  

 

 
 

 
Figure 6-5 ASD Spectra of Soil Samples on which XRD Analysis Performed 
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Table 6-2 XRD Laboratory Experiment Results 

  
 XRD Mineral Loboratory Experiment Results 
Sample 5  Smectite, Chlorite, Feldspar, Serpentine, Quartz, Hematite 
Sample 7 Smectite, Chlorite, Illite, Quartz, Amphibole, Hematite 
Sample 10 Chlorite, Quartz, Mica (Illite), Feldspar, Serpentine, Hematite 
Sample 18 Chlorite, Quartz, Feldspar, Serpentine, Mica, Calcite 
Sample 23 Chlorite, Quartz, Feldspar, Mıca, Dolomite 
Sample 31  Chlorite, Mica(Illite), Smectite, Calcite, Feldspar, Hematite 

 
In Figure 6-6 and Figure 6-7 below, the XRD laboratory analysis outputs and the 

models with parabola fitting are given. According to the experimental results, the 

hematite mineral is proven to be differentiated taking the 700-900 nm iron absorption 

band in consideration. Given the validation of the model, compiled with both spectrally 

resampled library spectra and ASD spectra, the potential of Sentinel-2 images to map 

secondary iron minerals are confirmed in the context of identifying potential acid mine 

drainage localities in the abandoned coal mine site. 

 

 

a) Samples with secondary iron minerals (Hematite) 

 
b) Samples without secondary iron minerals 

Figure 6-6 XRD Results of Soil Samples 
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Figure 6-7 The Parabola Model Fitted to ASD Spectral Samples of Soils 

The fact that resampled spectral samples exhibit the iron absorption characteristics in 

VNIR region encourages advanced applications for feature mapping using Sentinel-2 

satellite images. Accordingly, Sentinel-2 image of the mine area, which is publicly 

available via glovis.usgs.gov is downloaded for further analysis. In the next section, 

the experimental results will be elaborated by following the two major stages of 

methodology, which are validation of USGS hematite signature and spectra of 
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collected samples, and creating abundance maps by means of unmixing algorithms. 

The details for each major stage is listed in Section 6.1. 

6.2 Experimental Results of  Implementation of Unmixing Algorithms 

 
The aim of implementing the unmixing algorithms is to attempt to extract the spectral 

endmember, which has the iron absorption feature. This endmember is then utilized 

for abundance mapping that corresponds to hematite bearing locations.  

 

The downloaded Sentinel-2 image is resampled to three different spatial resolutions, 

in compliance with its inherent bands before inputting to unmixing algorithms. With 

this operation, it is aimed to observe the effect of varying ground sampling distances 

on produced maps. As described earlier in Section 6.1, the acquired endmembers are 

investigated for the iron absorption feature in VNIR region by utilizing Spectral Angle 

Mapping (SAM) algorithm. The abundance map corresponding to endmember, which 

has the minimum error, is selected as the secondary iron mineral bearing (hematite) 

target map. 

 

According to the resulting error terms, Sisal algorithms  consistently performs better 

as shown in Table 6-3, for each resolution in comparison with MVSA technique as 

shown in Table 6-4. It’s evident from the both algorithm results that minimum error is 

achieved for the endmember acquired from the 5 meter resolution data set. Although 

an incremental escalation in error terms is observed for MVSA outputs as the spatial 

resolution increases, for SISAL outputs this consistency is lacked. However, in overall 

assessments, with error terms lower than 0.1, SISAL results in better outputs, 

exhibiting the high similarity in the tendency of the reference spectrum and extracted 

endmembers. This relative superior performance of SISAL to MVSA can be due to is 

the replacement of positivity constraint with “hinge type” soft constraints. 
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Having decided which endmember resulted in high similarity with reference spectrum, 

the parabola fitting technique is additionally performed on each endmember, just to 

determine the compatibility of minimum wavelength of the simulated model with the 

USGS hematite signature.  

Table 6-3 Spectral Angle Errors [Extracted Endmembers (SISAL) and USGS Hematite Spectra]  

 SISAL ENDMEMBERS 
SAM Errors 1 2 3 4 5 6 7 8 9 
Sentinel-5m 0.455 2.759 2.441 0.493 0.388 0.056* 0.383 0.482 0.428 
Setinel-30m 0.323 0.503 0.405 0.075* 2.879 0.463 0.435 0.433 2.352 
Sentinel-60m 2.672 0.450 0.462 0.428 0.489 0.450 0.132 0.060* 0.442 

 

Table 6-4 Spectral Angle Errors [Extracted Endmembers (MVSA) and USGS Hematite Spectra]  

 MVSA ENDMEMBERS 
SAM Errors 1 2 3 4 5 6 7 8 9 
Sentinel-5m 0.422 0.426 0.536 2.853 0.370 0.390 0.105* 0.452 2.386 
Setinel-30m 0.483 0.395 0.185* 0.407 0.397 0.444 2.964 0.575 2.404 
Sentinel-60m 0.508 0.234* 2.791 0.440 1.146 0.538 0.438 0.332 1.605 

 
Unfortunately, unmixing algorithms applied on the Sentinel-2 multispectral data cube 

are not able to resolve overall spectrum completely. However, these algorithms 

consistently demonstrated the ability to capture the spectral variation between 660 – 

945 nm in one of the endmembers, which is related to secondary iron bearing minerals. 

Besides, calculated minimum wavelength positions are located between 800- 900 nm 

as one would expect to be consistent with the model parameter descriptions by van der 

Werff and van der Meer (2015), as well as the replicated output with the method in 

consideration. This analysis resulted in 835.92 nm as the minimum wavelength for 

USGS hematite mineral spectra. Figure 6-8 illustrates the extracted endmembers for 

each spatial resolution for SISAL and MVSA algorithms in the first column and iron 

absorption band related interval in the second (right) column. This portion 

demonstrated in the second column in Figure 6-8 is then used in Figure 6-9 to show 

parabola fitting for capturing absorption feature due to iron content for each 

endmember. 
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Figure 6-8 Hematite spectra resampled to Sentinel-2 resolution with the endmembers with minimum 
errors (Left column: Overall spectrum, Right column: Iron absorption bands, 745-945 nm) 

 

 
 (a) (b) 

 
 (c) (d) 

 
 (e) (f) 
 

Figure 6-9 Parabola fitting techniques for capturing absorption feature due to iron content for each 
endmember  Left Column: Sisal Endmembers, Right Column: Mvsa Endmembers a) 5-m b) 30-m c) 

60-m 
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Table 6-5 Minimum Wavelengths For Extracted Endmembers 

 SISAL MVSA 
ENDMEMBERS Min.Wavelength Min.Wavelength 
Sentinel-5m 880.74 869.42 
Setinel-30m 851.21 832.34 
Sentinel-60m 860.53 842.17 

 

The abundance mapping for the selected endmembers is performed with fully 

constrained least squares on pixels, which takes non-negativity and sum to one 

constraints into consideration (A representative sample illustrating all abundance maps 

of SISAL-30 meter outputs, without NDVI application, is given in Appendix B). That 

is, each pixel’s assigned abundance value should be positive and added to a total value 

one. The abundance maps are produced for both methods and each resolution one by 

one with an attempt to investigate the compatibility between the algorithm outputs. 

Another motivation is, again, to understand the spatial resolution effect on the 

generated outputs, how they relate to each other and pattern consistency keeping the 

mine layout in mind. 

 
Focusing on the complications due to vegetation mentioned in van der Werff and van 

der Meer (2015) and the impurities it might cause in pixels, Normalized Difference 

Vegetation Index (NDVI) mask is applied to exclude any effect on produced target 

abundance map considering the incapability of the unmixing algorithms to resolve 

overall spectrum. The vegetation index is defined as follows: the pixels having and 

index between 0 – 0.3 is preserved in the target maps as suggested in van der Werff 

and van der Meer (2015).  

 
 

VNIRNIR
VIRNIRNDVI




 ; 
4Band8Band
4Band8BandNDVI




   

 
It’s important to note that the dump sites which were afforested during an unfinished 

rehabilitation activity had to be excluded due to high vegetation indices, although their 

assigned pixel values are at the higher upper quantile of the histogram. The estimated 

content is distributed between 0 – 0.1 for the maps of 5-meter resolution, 0 – 0.07 for 
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the maps of 30-meter resolution and 0 – 0.15 for the maps of 60-meter resolution for 

both algorithms. The resulting maps for 5-meter and 30 meter ground sampling 

distance show high compatibility, demonstrating a linear behavior with each other. 

However, the outputs for 60-meter resolution doesn’t show this correlation. In 

addition, the visual assessments prove that the pixels of higher content show a high 

compatibility with each other as well. 

 

The results indicate the variation of pixel contents are also matching with each other, 

especially for the higher spatial resolutions. That’s why, they are regarded as more 

trustworthy than the 60-m outputs. Furthermore, given the calculated minimum 

absorption location of each extracted endmember, 30-m outputs seem to be closer to 

the hematite reference spectra’s compiled minimum wavelength, which makes them a 

better approximation for the calculated iron contents. Figure 6-13 illustrates the 

examined algorithm outputs, content increasing from blue to red together with the total 

iron amounts of oil samples collected from the region. The laboratory measurements 

of the soil samples for heavy metals are conducted with Inductive Coupled Plasma 

(ICP) analysis. In addition iron content, several heavy metals (i.e. copper, manganese, 

zinc, lead, nickel chromium, arsenic and molybdenum) are also measured to calculate 

the enrichment ratios regarding these trace elements.  

 
The mine layout consists of three dumpsites, open pit and abandoned excavations and 

coal storage area, which is shown in Figure 6-10. The main streams passing through 

the mining area are also shown in the mine layout, following a path from west to east. 

Within the perspective of this research, the total iron amounts are also illustrated with 

graduated symbols. According to the measured contents, it’s obvious that the iron 

amount is higher in the samples collected around the units of mine layout, while it is 

quite low in the samples outside of it. The increase in content along the accumulated 

main stream should also be noted. 
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Figure 6-10 Mine layout with total iron content  

As mentioned earlier, in addition to iron content, ICP analysis is conducted to measure 

some trace metals as well. For evaluating their current levels and contamination 

potential, the measured minimum values for each of them are regarded as background. 

After calculating the mean values, the enrichment ratio is calculated by simply 

dividing it to minimum (background). The results indicate the significant deviation of 

average iron amounts from the minimum, which is followed by the lead levels. The 

copper, manganese, nickel, chromium and arsenic have twice as much the measured 

minimum amount as well. In Appendix C, the detailed information of each sample is 

given in detail. In Figure 6-11, the calculated enrichment factors are illustrated.  
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Figure 6-11 Enrichment factors of measured heavy metals 

 

(a) (b)  (c) 
 

Figure 6-12 Unmixing algorithm output plots (a) 5-m (b) 30-m(c) 60-m 

Figure 6-13 illustrates the algorithm outputs with the prepared mine layout. The pixels 

with red (darker) color shows the high hematite content. In line with the measured iron 

levels, relatively higher amounts of hematite is observed at the lower edges of 

dumpsites and coal storage area along with the main streams. Both unmixing method 

gives out compatible result for differing spatial resolutions that declines as the spatial 

resolution decreases (Figure 6-12). 
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Figure 6-13 Abundance Maps Representing the Iron Bearing Spectral Endmember (First Row: 5-m, 

Second Row: 30-m, Third Row: 60-m) 

In this section, a new methodology for mapping secondary iron minerals is proposed 

with Sentinel-2 image. During the validation procedure, both XRD laboratory analysis 

and the parabola fitting technique by van der Werff and van der Meer (2015) are 

performed for determining the minerals associated for mine waste monitoring, inspired 

by Mielke et al., 2014 and van der Werff and van der Meer (2015). Conducted 

laboratory experiments prove the presence of hematite in the collected soil samples, 

which makes hematite mineral of a target interest. The hematite signature downloaded 

from the USGS is utilized as the spectral fingerprint to replicate the parabola fitting 

algorithm proposed by van der Werff and van der Meer (2015), which then further 

applied to the spectral samples of collected soil samples. After the validation process, 

Low  H൴gh
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the spectral unmixing algorithms are applied to the Sentinel-2 images of differing 

ground sampling distances, in order to select the endmember exhibiting the same 

spectral absorption feature around 900 nm with hematite. Spectral angle mapping 

algorithm is compiled to measure the trend of the characteristic absorption future for 

each endmember and reference spectrum, to select the one with minimum error. The 

resulting endmember with minimum error metrics is utilized to produce the 

corresponding hematite abundance maps. Considering any effect due to vegetation 

affecting the success of the algorithms, an NDVI mask is also applied for being on the 

safe side on the generated outcomes.  The methodology, applied to Sentinel-2 VNIR 

5m – 30m and 60 m data cubes, reveals hematite compatible contents for the applied 

unmixing techniques of SISAL and MVSA. Both techniques perform better for the 

images of 5-m and 30-m spatial resolution with a higher compatibility. 

 

To conclude, Sentinel-2 imagery proves its capability not only for mapping iron related 

parameters, but also its potential for generating iron content maps, which is highly 

significant for mine monitoring activities. Hyperspectral unmixing algorithms are 

found to be successful to extract the endmember exhibiting the well-known iron 

absorption parameter around 900 nm during the experiments with the multispectral 

Sentinel -2 imagery. The high revisit time of the satellite, its availability together with 

its optimized band for capturing the iron absorption stand as an invaluable source for 

future research. 
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CHAPTER 7 

7 CONCLUSION AND RECOMMENDATIONS 

7.1 Conclusions 

In this thesis, hyperspectral anomaly detection and target detection algorithms for 

contamination mapping, with a driving force on developing a new methodology for 

environmental problems related to coal mining operations is investigated. Considering 

the data limitations and the resemblance of chemical structures of hydrocarbons and 

carbon bearing materials, the algorithm performances are tested and optimized for 

detecting oil spills and hydrocarbon induced surface alterations. In the view of the 

developed methodologies and their ability to discriminate hydrocarbon induced 

abnormalities both in water and soil media, the global anomaly detection algorithm’s 

performance for designating topographical changes in the landscape is examined in a 

temporal manner. In order to understand whether the utilized techniques have the 

ability to reveal the secondary iron minerals inducing the existing acid mine drainage 

problems in the study area, unmixing algorithms are applied to a new satellite image, 

Sentinel-2, which points out the hematite minerals in the mine site. Accordingly, the 

unmixing outputs are compared with each other to disclose their compatibility with 

each other by means of the multispectral Sentinel-2 image of different ground 

sampling distances. 

 

Following key conclusions can be drawn from this study: 

 

 For oil spill detection on water surface, anomaly detection methods are able to 

highlight the target pixels without removing the noise components, except for 

Gaussian-RX (GRX) algorithm. However, it has the disadvantage of high 

computational times and not properly catching the right contrast for the target 

abundance at every time. A fine-tuning, such as the size of the kernel window 
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and distribution variation parameter, is required to be optimized for proper 

visualization with Gaussian RX algorithm. 

 Signature based methods, on the other hand, eliminates all noises providing a 

good contrast to highlight the quantity of oil slicks for both hyperspectral 

images. In the algorithm outputs, the change in the abundance of the oily 

regions is well observed.  It is also concluded that among the signature based 

target detection methods, Desired Target Detection Algorithm (DTDCA) 

performs better than the Spectral Match Filter (SMF) method in both locating 

the oil spill regions and showing its abundance with a good contrast. This 

outcome is reasoned with the removal of the undesirable signals prior to 

matching operation in DTDCA. 

 Unmixing algorithms applied for determining hydrocarbon-induced alterations 

on ASTER image reveals its effectiveness to delineate surface alterations in 

the study area. With their capacity to extract the representative endmembers, 

unmixing algorithms present the ability for ground truth comparisons with the 

reference spectra collected from the field as well as validation.  

 Among the four different algorithms applied for hydrocarbon alteration 

mapping, SISAL and MVSA outperforms pure-pixel based N-FINDR and 

VCA algorithm due to the low spectral/spatial resolution of ASTER data set. 

Despite suppressing out the background pixels, pure pixel based methods are 

able to point out the microseepage pathway along the syncline path. This is due 

their assumption that there is at least one pure pixel representing each 

endmember in the image.  

 The calculated error metrics is of a paramount value to make overall 

assessments about in-group and between group performances. This metric 

discloses the high performance of DTDCA algorithm in comparison to other 
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signature based and traditional methods, even better than pure-pixel based 

algorithms.   

 The Global RX algorithm applied on Landsat reflectance images on the 

abandoned coal mining area demonstrates its capacity to produce change maps, 

putting forward the major mine layout components such as the open-pit, coal 

storage area, excavations & area of disturbances of the land as well as the 

dumpsites throughout multi-temporal images. In spite of the variations of high 

score pixels across the temporal scale, it can be interpreted via ROC curves 

that they tend to stabilize after the end of active mining activities. From the 

perspective of mine development process as well as the post-mining 

monitoring activities, the analysis provides an opportunity to record the change 

during the mine life, by ruling out the illumination factors of the acquired 

images. This potential is even more significant in the case of abandoned mine 

sites in order to be able to prepare well-grounded reclamation plans. 

 The methodology proposed by making use of Sentinel-2 image for mapping 

secondary iron minerals (which are related to acid mine drainage problems in 

mining sites) establishes the capacity of unmixing algorithms to differentiate 

the iron absorption feature among the extracted endmembers. The ability of the 

methodology for not only mapping iron related parameters, but also generating 

iron content maps is regarded as highly critical for mine monitoring activities. 

In addition to its specific band for capturuing iron absorption feature, he 

frequent data acquisition and public availability makes Sentinel – 2 data 

appealing for upcoming researches. 

 In evaluating the masked abundance map, which corresponds to iron bearing 

endmember, total iron contents measured in laboratory environment with ICP 

analysis are mapped in graduated symbols. After the geo-registration process, 

the compatibility between the high content pixels of Sentinel – 2 abundance 

maps and the total iron levels is observed. In addition, it is important to note 
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that higher iron amounts are observed within the mine layout, which is simply 

proved by the calculated enrichment factors. 

 Keeping in mind the prediction and validation issues in geo-information 

analysis, this study contributes to literature by setting a benchmark in a time 

and cost effective fashion, minimizing the labor-intensive field works.  

7.2 Recommendations 

Although the dissertation makes a significant contribution to the literature to 

comprehend the detection techniques by means of integrating hyperspectral and 

multispectral image analysis, several improvements can be made by the following: 

 By making use of the publicly available Sentinel – 2 data, a new project 

adapting the proposed methodology for mapping iron bearing minerals can be 

implemented over the lignite mines with acid mine drainage problem (referred 

in Ministry of Environmental Affairs report). 

 Considering the major data availability obstacle for this study, and lack of 

budgets, a hyperspectral scene of the focused mine area could not be acquired. 

If possible, it is recommended to obtain a hyperspectral image to analyze the 

algorithm performances. The laboratory measurements conducted within this 

thesis are of a significant resource if such a goal is pursued. 

 Depending on a regular access to a spectrometer, analytical observations of the 

contaminant agent in interest in a controlled environment is strongly suggested. 

With the existence of both reference spectra and hyperspectral images, a proper 

approach for separating the contaminant’s fingerprint would be more efficient 

and successful. 
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 As more practical and efficient means for contamination mapping, using 

portable spectrometers to gather information from the area of interest provides 

significant evidence for detecting hot spots that requires further investigation. 

 By setting benchmarks with the collected spectral data, a more practical and 

time efficient monitoring can be implemented for both oil spill and acid mine 

drainage sites, that might be an aid for preventing propagation of existing 

contamination agents. 
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APPENDIX A 

 
 
 

A. SISAL ALGORITHM - REPRESENTATIVE ABUNDANCE MAPS 
FOR HYDROCARBON MICROSEEPAGE – (ASTER) 
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APPENDIX B 
 
 
 

B. TRACE ELEMENT LEVELS OF COLLECTED SOIL SAMPLES 

 
 

 

 
 
 
 
 
 
 
  

X Y Z

Iro
n 

(IC
P)

Co
pp

er
 (I

CP
)

Zin
c (

IC
P)

M
an

ga
ne

se
  

(IC
P)

Le
ad

 (I
CP

)

Ni
ck

el 
(IC

P)

Ch
ro

m
iu

m
 (I

CP
)

Ar
se

ni
c (

IC
P)

M
ol

yb
de

nu
m

 
(IC

P)

34.07838 40.76637 1234.7 23012.40 32.03 49.68 829.08 1.59 359.40 274.68 11.84 6.49
34.07734 40.76550 1245 20237.05 25.74 42.15 377.45 1.54 170.62 118.39 4.33 3.24
34.07781 40.76341 1262 19165.45 28.11 45.87 824.05 3.91 64.41 55.19 2.46 2.79
34.07327 40.76340 1299 19997.10 39.30 49.95 811.19 3.37 137.68 72.52 <DL 1.88
34.07216 40.76344 1297 24235.65 70.92 67.98 458.22 5.68 155.26 116.47 5.43 2.29
34.07093 40.76425 1304 21087.95 31.05 49.90 476.35 4.38 126.65 86.89 5.15 2.55
34.07072 40.76470 1310 20014.20 26.01 43.38 452.28 2.16 138.19 120.55 3.18 2.94
34.07036 40.76558 1297 21244.45 32.64 54.37 567.49 4.70 135.09 88.28 4.73 2.53
34.06914 40.76527 1290 22526.35 34.56 56.38 550.89 5.27 154.58 104.66 5.11 2.59
34.06777 40.76439 1290 19768.00 47.61 71.45 294.75 3.74 187.66 109.32 1.36 2.48
34.06838 40.76322 1301 20987.00 30.17 48.77 556.55 4.80 134.86 96.97 4.08 2.42
34.06910 40.76302 1295 19510.400 34.31 50.04 462.20 3.85 139.64 76.54 1.47 1.94
34.07858 40.76609 1233.6 21991.650 37.36 57.84 451.33 4.64 167.46 110.40 3.12 2.58
34.07589 40.76390 1272 23269.750 49.52 63.84 593.07 6.93 137.55 95.90 5.68 2.55
34.07309 40.76341 1291.5 21387.350 30.69 53.21 587.75 3.44 140.89 133.27 4.32 2.82
34.07033 40.76333 1279 21824.650 44.02 56.88 609.84 5.03 133.77 85.20 2.25 3.08
34.07079 40.76264 1302 20626.200 27.32 49.19 476.74 3.11 151.96 130.87 4.22 3.24
34.07127 40.76483 1312.8 22125.350 27.87 58.47 431.90 52.39 163.76 124.99 5.83 3.12
34.07541 40.76499 1287.3 24545.700 42.13 72.24 645.57 6.12 146.52 126.11 6.58 2.70
34.07627 40.76773 1264 23440.600 43.21 67.4 513.30 6.51 130.05 96.56 7.07 2.75
34.07623 40.76802 1264.3 22044.400 46.8 63.25 302.66 6.63 129.41 80.61 3.12 2.78
34.07281 40.76255 1302 24345.000 34.19 53.99 279.36 3.11 135.53 188.9 4.92 2.22
34.07719 40.76731 1258.2 21964.200 35.75 57.35 469.96 5.14 143.48 113.63 1.83 2.21
34.07790 40.76591 1236 22455.000 38.55 61.05 554.39 4.2 181.91 139.62 3.61 2.48
34.07778 40.76328 1269 18914.750 12.5 34.3 475.63 <DL 89.48 147.41 3 2.46
34.08076 40.76225 1273 21610.450 24.23 47.79 523.78 1.8 162.4 154.55 3.39 2.54
34.07948 40.76436 1280.5 22649.200 42.63 65.48 581.19 6.38 127.91 88.33 <DL 2.69
34.07887 40.76803 1290.1 2255.900 40.98 62.98 270.43 9.75 87.55 69.29 6.79 2.49
34.07669 40.76965 1281.3 23092.750 33.19 55.55 471.72 4.44 129.68 132 5.96 2.45
34.07378 40.77141 1299.6 18854.850 28.58 31.92 168.73 2.4 75.07 79.35 6.04 2.87
34.07220 40.77304 1298.9 19372.600 29.27 45.06 541.99 3.17 133.49 95.38 <DL 2.14
34.06964 40.77111 1297.2 22419.150 40.26 58.07 521.11 4.79 174.88 118.76 2.84 2.63
34.06929 40.76795 1265.2 19939.850 27.82 51.23 501.73 4.02 127.1 87.26 3 2.42
34.06942 40.76806 1261.8 20567.550 27.65 48.47 466.69 2.87 161.9 122.04 2.97 2.38
34.07101 40.76740 1268 22611.700 34.84 55.74 719.11 3.56 170.32 129.35 4.48 3.08
34.06815 40.76624 1268.4 20879.150 23.04 48.72 396.4 2.18 153.14 118.6 2.31 2.85
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