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ABSTRACT

DETECTION AND IDENTIFICATION OF GREENHOUSE GASES USING
INFRARED HYPERSPECTRAL IMAGERY

GUR, YUSUF
MSc., Department of Information Systems
Supervisor: Prof. Dr. Yasemin YARDIMCI CETIN

December 2017, 99 pages

Recently, one of the most critical global environment problems is human and
ecological exposure to hazardous wastes from urban, agricultural, industrial and
military activities. These wastes often include greenhouse gases like water vapor,
carbon dioxide, methane, nitrous oxide, ozone and other organic chemicals. To protect
the environment from those gases, hyperspectral imaging can be applied due to its
ability to extract large amount of spatial and spectral information. Detection of gases
emitted into the atmosphere is a widely studied problem. These studies generally use
external information about the scene to determine missing parameters in order to detect
and identify gases. In this study, unsupervised detection and identification possibility
of different greenhouse gases emitted from various sources in selected regions with
infrared hyperspectral imagery will be investigated.

Keywords: Gas Detection, Hyperspectral Imagery, Detection & Identification,
Greenhouse Gases.
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KIZILOTESI HIPERSPEKTRAL GORUNTULEME KULLANILARAK SERA
GAZLARININ TESPITi VE TANIMLANMASI

GUR, YUSUF
Yiiksek Lisans, Bilisim Sistemleri Boliimii
Tez Yoneticisi: Prof. Dr. Yasemin YARDIMCI CETIN

Aralik 2017, 99 sayfa

Son zamanlarda, insanlarin ve ekolojinin maruz kaldig: en kritik kiiresel sorunlardan
birisi yagam alani, tarim, sanayi ve askeri faaliyetlerden kaynaklanan tehlikeli
atiklardir. Bu atiklar genellikle su buhari, karbon dioksit, metan, azot oksit ve ozon
gibi sera gazlar1 ve diger organik kimyasallar icerir. Dogay1 korumak i¢in, bu gazlarin
tespiti ve tanimlanmasi1 amaciyla sahnenin ¢ok miktarda konumsal ve spektral bilgisini
elde etmek i¢in hiperspektral goriintiilemeyi kullanabiliriz. Atmosfere yayilan gazlarin
tespiti cokca calisilmaktadir. Bu ¢alismalarda gazlarin tespit ve tanimlanmasi amaciyla
sahne hakkinda disaridan elde edilen bilgiler ile eksik parametreleri belirlenmeye
calisilmaktadir. Bu c¢alismada, kizilotesi hiperspektral goriintiileri ile secilen
bolgelerdeki, farkli kaynaklardan salinan sera gazlarmin tespiti ve tanimlanmasi
imkani arastirilacaktir.

Anahtar Sozciikler: Gaz Tespiti, Hiperspektral Goriintiileme, Tespit & Tanimlama,
Sera Gazlari.
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CHAPTER 1

INTRODUCTION

1.1. Motivation

The developments in sensor technology have enabled hyperspectral sensors operating
in different regions of the electromagnetic spectrum with high spectral and spatial
resolutions to be utilized in different sectors including quality inspections, remote
sensing and biomedicine. Spatial and spectral resolution of these sensors are improving
continuously, providing detailed information related to the energy absorption,
reflection and emission characteristics of materials present in the scene. In this way,
the energy (light or heat) emission or reflection characteristics of objects in the scene
can be examined in detail as compared to multispectral or panchromatic sensors.

This information density in the spectral domain increases the automatic identification
accuracy of the investigated objects in the scene. In recent years, in addition to solid
and liquid substances, examination of compounds in gaseous-form by hyperspectral
sensors is an emerging research area. Determination and identification of gaseous
compounds especially by infrared hyperspectral imagery is showing high promise. As
different gases depict characteristic energy absorption features in the infrared region,
identification and quantification of the absorption becomes feasible. These
hyperspectral imageries include environmental pollution, greenhouse gases as well as
various gases that can be used in CBRN (Chemical, Biological, Radiological and
Nuclear) assaults. Hyperspectral imagery, especially obtained from infrared bands, are
preferred for gas detection applications as an alternative to in-site analyzes for power
plants, the manufacturing industry and the transportation sector due to cost and time
advantages.

1.2. Scope of the Thesis

Within the scope of this thesis, detection and identification of pollutants and
greenhouse gases with hyperspectral sensors operating in the LWIR and MWIR band
is targeted. In spite of liquids and solids radiate different amount of light in
VNIR/SWIR region; gases depict different characteristic energy absorption features in
the infrared region. Detection, classification and identification of these gases with
remote sensing techniques in addition to traditional on-site inspections methods with
Hyperspectral imagers operating in LWIR and MWIR are intended. The target gases
are Sulfur Hexafluoride (FsS), Ethylene (C2H4), Butane (C4H10), Methanol (CH3OH)
and Carbon Dioxide (CO3). Nitrous Oxide (N2O) a greenhouse gas, is not investigated
as we do not have real hyperspectral remote sensing images including Nitrous Oxide.
The main objective of this study is to detect and identify mentioned gases
automatically on hyperspectral remote sensing images.
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1.3. Outline of the Thesis

This document is organized as five chapters including introduction, background,
methodology, experiments and conclusion. After general information about gas
detection and remote sensing, the aim of this thesis is stated in this chapter. Chapter 2
defines IFTS camera and explains radiance model used in gas detection problems.
Chapter 2 also presents the gas detection and identification studies in the literature.
Chapter 3 explains the proposed gas detection method in detail. Chapter 4 gives
information about data sets and presents the experimental gas detection results by
comparing the proposed algorithm and literature. Finally, the research is concluded
with a summary of our contributions and future works are mentioned in Chapter 5.
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CHAPTER 2

BACKGROUND

2.1. Hyperspectral Imaging

Regular grayscale cameras create images as a function of two spatial coordinates x and
y (Intensity). We see the scenes by combining the intensity of appropriate red, green
and blue spectral bands in the visible spectrum. Therefore, color scenes consist of the
intensity I (X, y, A) depending on two spatial coordinates and spectral band A.
Multispectral and hyperspectral cameras are providing capability of using more
spectral bands for identification of different materials. Actually, there is no explicit
difference between hyperspectral and multispectral imagery (see(Hagen & Kudenov,
2013)). Multispectral imagery has more than three and less than ten spectral bands
whereas, hyperspectral imagery has more than ten spectral bands which are
contiguous. In this thesis, hyperspectral imagery will be used for detection and
identification of gases.

Hyperspectral imaging sensors provide data cubes that includes both spectral and
spatial information of a scene. These data cubes can be used for detection of targets in
many military and civilian applications. Every material reflects, absorbs or emits some
amount of radiation (radiance) that varies along a large number of continuous spectral
bands. It is aimed to detect target materials by using hyperspectral imagery in
appropriate spectral bands. Basically, a hyperspectral imaging systems consist of the
radiation source (generally sun), the atmospheric path, the imaged surface and the
imaging sensor. With considering sun as a radiation source, sun’s emitted energy as a
function of wavelength is termed the solar spectrum. The solar energy propagates from
sun to the target surface through the atmosphere. This energy interacts with the surface
and according to the material it is reflected/transmitted/absorbed. It passes back
through the atmosphere and reaches to the imaging sensor where it is converted to the
digital form as named radiance spectrum (see in Figure 1).
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Figure 1 Hyperspectral Imagery (taken from [Manolakis et. al.])

Hyperspectral sensors provide degraded spatial resolution to improve spectral
resolution. Therefore, it can be easily used if spectral information of target is more
reliable than shape information (see (Manolakis, Marden, & Shaw, 2003)).
Hyperspectral data cubes are three-dimensional data structures formed as spatial-
spatial-spectral components (see Figure 2). We can plot a single pixel on data cube to
get spectral signature or we can visualize a single band to observe specific material
view.

Spectra fora Imageata
single pixel single wavelength
/

Reflectance
Spatial dimension

Wavelength Spatial dimension o
Figure 2 Hyperspectral Data Cube (taken from [Manolakis et. al])

2.2. FTIR

Hyperspectral sensors provide extensive spectral information in the sense of energy
emission and reflection characteristics of the targeted objects in different regions of
the electromagnetic spectrum. This specialty makes them useful for gas detection
applications as well as solid and liquid materials detection issues. Hyperspectral
images especially in infrared spectral region is preferable for gas detection problems
as gases reveal significant emission and absorption characteristics in these regions.

Information about devices used in hyperspectral remote sensing are mentioned in the
literature (see (Hagen & Kudenov, 2013)). Specifically, two types of devices,
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operating in mentioned spectral regions, used for detection of gases can be
distinguished (see (Systems, Measurement, Mariusz Kastek, Tadeusz Pigtkowski,
2011)). One of them is a typical thermal camera additionally equipped with a filter
system, thermal camera with a tunable filter or thermal camera and a set of optical
filters. The other type is based on Fourier spectroscopy principles. Camera plus filters
has constant imaging windows identified by filter amount and has slow operation
period through filter rotation issues as disadvantage; on the contrary, if high spectral
resolution is not required (dedicated for detecting specific gas) it is a cost-effective
solution. Camera with tunable filters has complicated optical design. The product of
its resolution and transmission is higher than camera plus filters but lower than
Fourier-transform devices. Also, its acquisition rate is higher while its spectral
resolution is lower. Fourier-transform devices have comparable resolution with
previous types but it has a complicated data processing technique through mainly used
for research and development systems.

FTIR devices provide high resolution with equal cost and the absence of mismatches
of various color images due to movement of platform in camera with tunable filters.
FTIR technique, used to obtain spectral information, is an interference based technique
that uses a Michelson interferometer for mixing an incoming signal with the same
signal with different discrete time delays and produce an interferogram which is a time
domain waveform related to the power spectrum Fourier transform of the scene. The
schematic diagram regarding to the used layout of a Michelson interferometer used by
Imaging Fourier transform spectroradiometer HyperCam is shown in Figure 3.
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Figure 3 Block diagram of imaging Fourier-transform spectroradiometer. (taken from [Kastek et. al.])
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2.2. Radiance Model
2.2.1. Measured Energy At Sensor

In remote sensing problems, there are three ways for calculating a sensor radiance
according to energy conservation rules in Kirchhoff Law (see Figure,4-6).

Energy Conversation

o d

Target

1=R+t+«

Figure 4 Energy Conversation

Symbol R stands for reflection, symbol t stands for transmission and symbol a stands
for absorption where the absorption/emission ratio is constant and expressed by
emissivity (€).

Solids Gases
) ) e
o o
target target
1=R+ «a 1= t+a
1-R=¢ 1-t=¢
Figure 5 Energy Conversation of Solids Figure 6 Energy Conversation of Gases

The measurements for gas monitoring applications, implemented in a controlled
environment, are capable in obtaining absorbance and transmittance values of target
gases. FTIR cameras only collect radiation from the scene occurred by the energy of
the vibrating gas molecules, so they are not able to measure these values directly and
cannot be directly used in remote sensing applications of gases. We need to obtain the
transmittance or absorbance characteristics of the target gases from the radiance data
of the scene for the remote sensing of gas purposes.

In this thesis, measurement from a ground-based platform is concerned as physical
problem of interest. The model of the gas emission/absorption scene of interest in
Figure 7 is given in the literature(see (Tremblay et al., 2010)).
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Figure 7 The Gas Radiance Model
The general formula given in the literature is
L) = L) + Lp+ g + Laem ), 2.1

where: L(A) is the radiance value of the gaseous pixel, Ly (A) is the self-emitted gas
plume radiance, Ly, 4(2) is the self-emitted background radiance through the plume,
and L, (A) is self-emitted atmospheric effects at wavelength A.

The self-emitted gas plume radiance can be given as:
Ly, = 1) g,MB(A,T,), (2.2)

where: T, (A) is the transmittance of atmosphere between gas plume and camera,
g4(A) is the emissivity value of gas, and B(?\, T ) is the Blackbody Radiance of the
gas at temperature value T, of the gas plume in Kelvin at wavelength A.

The self-emitted background radiance can be given as:
Lprg) = g MBQA, Ty)t:M)T2(A), (2.3)

where: T,(1) is the transmittance of atmosphere between background and gas plume,
€, (A) is the emissivity value of background, and B(A, Ty, ) is the Blackbody Radiance
of the temperature value T, of the background in Kelvin at wavelength A.

According to formulas (2.1 - 2.3) the general radiance formula can be expressed as:
L) = M [egMBA, Ty ) + 2 (M)t (Mey WBM, Ty) | + Lagm 4, Tam ) (2.4)

Beer’s Law

In order to reveal the transmissivity characteristic of the gas, firstly the energy (photon
number) emitted from the light source is measured in the absence of gas (Io), then the
gas sample is released between the light source and the detector and amount of the
energy coming from the light source reaches to the spectrophotometer is measured.
The ratio of these two measurements is called transmissivity.
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Transmissivity = Il (2.5)
0

where: [, is the value measured by the spectrophotometer without the gas sample, and
[ is the value measured when the gas sample is present.

The absorption signature of the gas sample can be obtained by using the obtained
transmissivity data with the following equation,

Absorption = —log(Transmissivity) (2.6)

In addition to all of these, the gas cloud’s transmission 7, can be computed from the
spectral properties of the included chemical species with Beers’ Law,

7g(D) = exp(= X a;(D)C;d) 2.7

where: C; is the average concentration of the targeted chemical compound (i) over the
path length d and a;(A4) is the wavenumber-dependent absorption coefficient.

Likewise, we can compute the gas cloud’s emissivity €;, which is equal to its
absorption, with the following equation.

gg(D) =1— 1, (1) (2.8)

If the plume is optically-thin, the Beer’s law relationship (see (Eq.2.7)), can be
calculated by its first-order linear approximation as given below(see(Niu, Golowich,
Ingle, & Manolakis, 2011)):

gg(M) =1 -1, (2) = 1 - exp(-a;(A)C)
2.11)

Additionally, thermal equilibrium condition is a very common situation in real world
situations (see (Niu, 2013)) as T, of every plume approaches Ty, and they become
equal after sufficient time. Moreover, the atmospheric terms are negligible or same for
all objects in the scene as the objects in scene are relatively close to the camera and
the up welled radiance may be dropped since the term is also minimal(see (Kastek,
Piatkowski, & Polakowski, 2011))

The advantages of these assumptions are both efficient and easy to implement for
understanding the remote sensing of gas problem. With all of the assumption
mentioned above, general equation of gas detection problem (see (Eq.2.4)) becomes:

L) =1, W[A — ;WM CGA)B(A, T, ) + (a;(M)C;d)e, MBA, Ty) ] (2.12)

In gas detection problems, it is important to understand terms given in equation (2.12).
Temperature values of background and gas materials are important as gases appear in
either emission or absorption depending on temperature contrast between the
background and the gas components in the scene. Actually, we receive background
radiance at sensor as disrupted by gases in the scene like given below (see Figure 8-
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10). Scenario 1 demonstrates detection by gas absorption situation (see Figure 8),
scenario 2 demonstrates non-detection situation (see Figure 9) and scenario 3
demonstrates detection by gas emission situation (see Figure 10).
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Figure 8 Detection by Absorption (taken from [Telops Hypercam Training 2014])
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Figure 10 Detection by Emission (taken from [Telops Hypercam Training 2014])

2.3. Literature Survey

In this section, we provide an overview about the gas detection, identification and
quantification methods. Several methods for remote sensing of gas plumes are
presented in the literature. Both active and passive methods are implemented for this
purpose. In all methods, there are some common parts such as the need of temperature,
atmospheric conditions and background reflectance specifications for physical
implementations; on the other hand, machine learning implementations need
information about possible reference signatures and information of the spatial
coordinates of gas pixels.

Pogorzala (see (Pogorzala, 2004)) presents an algorithm that identifies the pre-detected
gas pixels in effluent plumes by using linear least-squares regression techniques in
DIRSIG synthetic images for gases including NH3 and Freon-114. DIRSIG images are
generated under the following three assumptions; first of all, the plume is spatially
constructed by using the gas concentration. This concentration follows an exponential
decay it the downwind direction therewithal the width increases as the plume travels
further and follows a Gaussian distribution in the across-track direction. Two steps
methodology used; firstly for unmixing, matrix regression is implemented then for
detection phase unconstrained stepwise linear regression and F-test are conducted.
Vallicres (see (Vallieres et al.,, 2005)) presents detection/identification and
quantification algorithms which are used for hyperspectral imagers that operate in the
thermal infrared region. Telops FIRST-LW Sensor Data with 4 cm™! spectral resolution
is used for gases include CH30OH, SFs, O3z, FREON, CG, NH3;, DMMP, CWA, TEP
and H>O. Three steps methodology used; firstly, data is converted to brightness
temperature map and background sign is removed, then clutter match filter / spectral
angle mapper is implemented on the data and lastly 2-d bi-dimensional convolution
with a boxcar-shaped filtering is used by finishing with thresholding.

Farley (see (Farley et al., 2007)) presents remote sensing of chemical results obtained
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by FIRST (Field-portable Imaging Radiometric Spectrometer Technology)
sensor which is developed by Telops. Telops FIRST-LW Sensor Data with 4 cm
spectral resolution used for gases include SFs, NH3, SFs-NH3 mixed, TEP, DMMP and
SO». Four steps methodology is used; firstly, radiance data is converted to brightness
temperature and background removal algorithm implemented, then clutter matched
filter/spectral angle mapper procedures are used for discriminating gas containing
pixels, then boxcar-shaped filtering is used for 2-d bi-dimensional convolution and
finally, thresholding is applied on resulting data.

Spisz and his friends (see (Spisz et al., 2007)) present a usable standoff
detection/identification algorithm for varied chemical compounds by the use of various
field measurements. Telops FIRST-LW Sensor Data with 4 cm™ spectral resolution
used for gases include AA, SFs, NH3, mix of SF¢ and NH3, Phosgene, TEP and
DMMP. Three steps methodology is used; firstly, pre-release data cube is taken before
the release of gases and implemented principal components analysis to find
background vectors, then match filter and spectral angle mapper scores of data is
computed and finally, for gas detection/identification step-wise regression is
conducted.

Rotman and his friends (see (Sagiv, Rotman, & Blumberg, 2008)) analyzed existing
algorithms and composed a remote sensing application which involves
detection/identification and quantification of different effluent gases on Telops
FIRST-LW Sensor Data with SO2 and CO; gases at distances of 400m and 1700m.
Three steps methodology is used; firstly critical wavelengths are localized, then
correlation coefficient metric is used to detect highly concentrated pixels, then
matched filter is used with the new reference signature for detection of target gases
and finally, a least square model is used for generating relative pixel content by curve
fitting the detected gases signature to the data pixel.

Tremblay (see (Tremblay et al., 2010)) present gas detection/identification and
quantification algorithms used for identifying the gas released by distant stacks and
for quantifying their mass flow rates with an IFTS. They used Telops FIRST-LW
Sensor Data with 4 cm™! spectral resolution for gases released from a chimney. Three
steps methodology is used; firstly, plume free pixels are selected on the center of
chimney to estimate atmospheric parameters, then plume free pixels are selected to
estimate background signature and lastly plume is localized in the image by physical
model given in paper.

Hirsch and Agassi (see (Hirsch & Agassi, 2010)) present a unique algorithm which
does not need clear background information to detect/identify the target gaseous
plumes. Telops FIRST-LW Sensor Data with 4 cm™ spectral resolution for gases
include CHF; and SF¢ which are in about 60m distance is used. Five steps
methodology used; firstly, divisive hierarchical spectral-spatial decomposition with K-
means and spatial segmentation is implemented on data, then each segment’s spectral
analysis is conducted, then a physical model is used for calculating the transmission
of each segment, then correlation between calculated transmission and target gas
signature is calculated and finally, thresholding is applied on calculated correlation
results.

Rotman (see (Feinmesser & Rotman, 2010)) uses Sagiv’s (see(Sagiv et al., 2008))
algorithm and add new procedure to enhance performance. This procedure uses the
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“stepwise regression” method combined with detection/identification methods. Telops
FIRST-LW Sensor Data with 225 spectral bands for gases include CO», F12, F114, H20,
N20, NH3, O3, SOz and NO:» is used. Three steps methodology is used; firstly, in order
to find gases step-wise regression is used, then black body radiation is processed on
signatures and step-wise regression is implemented again, then shift fitting method is
used to identify gases and finally compare results with signatures of target gases.

Kastek and his friends (see (Systems, Measurement, Mariusz Kastek, Tadeusz
Piagtkowski, 2011)) presents a usable method for detecting gases in turbulent stack
plumes by using Telops FIRST-LW Sensor Data with 4 cm™ spectral resolution for
gases include NO», CO; and mix of Propane and Butane. Four steps methodology is
used; firstly, apparent temperature of each pixel is calculated, then for each pixel
Planck’s blackbody curve is generated by using the highest result of temperature
values, then each pixel value is divided by calculated blackbody curve, finally, general

physical model is used for detection of gases.

Rotman and Kuflik (see (Kuflik & Rotman, 2012)) present a study that aims to find
the needed minimal number of spectral bands for detecting a specific gas in a
hyperspectral cube, in order to develop a hyperspectral gas sensor in the future.
Synthetic data is created with CO»> in the study by using three steps; firstly, they created
five different cubes using various triangle shaped background vectors in different
pixels, then created images are multiplied by a random uniformly distributed constant
in the interval (0,1) in order to represent different effects and finally they added a
random normally distributed constant for each pixel. After creating synthetic data
constrained energy minimization and correlation from non-gas pixels are implemented
for detection.

Sabbah and his friends (see (Sabbah et al., 2012)) presents a detection/identification
algorithm that combines spectral and spatial information without the need of
background signature. HI 90 data with methane and SFs gas is used. Five steps
methodology is used; at the beginning, data is converted to brightness temperature
map, then a Gaussian filter with size 3X3 pixels and full width half maximum 5 pixels
is applied, then the temporal averages of each pixel on brightness temperature map is
calculated by using multiple images regarding the same scene, then correlation
coefficient of the gas signatures with the signatures on the image are calculated and
finally, threshold is implemented on results.

Messinger (see (Messinger, n.d.)) presents a study that extends O’Donnell’s (see
(O’Donnell, 2004)) work by using real hyperspectral images of complex industrial
facilities. Airborne Hyperspectral Imager (AHI) data for gases including methane,
propane, butane, ethane, sulfur dioxide, ethylene, propylene and benzene is used. Four
steps methodology employed; firstly, MODTRAN software is used for estimating the
surface temperature through the identification of “background” region, then target gas
signatures are calculated for every combination of temperature contrast and
concentration path length, then geometric projection scheme is used for reducing
number of signatures and finally, in attempt to detection maximum distance method
(MaxD) is used.
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CHAPTER 3

METHODOLOGY

In this section, proposed algorithm to be used in this thesis will be mentioned with its
steps.

3.1. Proposed Method

The frequently used gas model given in (Tremblay et al., 2010) is utilized for detection
of gases in the literature. However, some parameters required in the model cannot be
obtained easily in remote sensing applications causing the model to be impractical and
some solutions require user interaction. Therefore, we propose to estimate some of
these parameters in order to improve the reference model.

Proposed method begins with brightness-temperature map generation and Planck
curve computation. Then, current radiance data value is converted to emissivity value
by black-body radiation curve compensation algorithm as preprocessing step discussed
in Section 3.2.1. The method continues with hierarchically clustering and
segmentation discussed in Section 3.2.2. MinCEntropy clustering algorithm is used for
dividing the data into two clusters by distinguishing pixels according to their spectral
similarity with using classification algorithms. This step is followed by a connected
components analysis for segmentation. The iterative clustering and segmentation
process continues until all segments’ sizes are smaller than a threshold determined
before test. As discussed in Section 3.2.3 all segments are considered as potential gas
and background pairs. The gas and background segment pairs highly correlated with
the reference signature are selected as the detected gas emission region. The flowchart
of the proposed system is demonstrated in Figure 11.
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3.1.1. Pre-Processing
3.1.1.1.Brightness Temperature

In the literature, most of the studies use radiance information of hyperspectral data for
gas detection and quantification applications. However Harig and Matz (see (Harig &
Matz, 2001)) suggest that using brightness temperature map of the data instead of
radiance data is more suitable for remote sensing of gas purposes. In the meantime,
radiance spectrum of the hyperspectral data does not have fixed margins as a baseline.
This makes signature based detection algorithms more difficult. On the other hand, the
emission spectra of many surfaces are high and nearly constant in the range of 650 cm™
' — 1500 cm™! so they are almost similar with the spectrum of brightness temperature
and the spectrum of the blackbody of these objects are nearly fixed. Also, the
background spectrum becomes the baseline of the brightness temperature spectrum of
the relevant hyperspectral data. Based on these descriptions, brightness temperature of
the data is generated by the following equation:

C2/1
6113
L

T(A, L) =
In(

(3.1)

+1)

where c¢; and c,: constants, A: wavenumber, L: radiance data.
3.1.1.2.Planck Curve

The theory of heat radiation (see (Planck, 1914)) reveals that the radiance data is
affected by the temperature on thermal radiation in LWIR bands that is entitled as
Planck’s curve and it figures the theoretical blackbody curve obtained from Planck’s
formula given below:

Clﬂ.s

()

where c¢; and c,: constants, A: wavenumber.

B(L,T) = (3.2)

3.1.1.3.Black-Body Radiation Curve Compensation

In order to detect the target gases, we need to compensate the atmospheric effects in
the In order to detect the target gases, we need to compensate the Black-Body
Radiation Curve in regarding to compensate atmospheric effects in the data due to
existence of various gases characteristics in LWIR and MWIR region. For this
purpose, Black-Body Radiation Curve Compensation algorithm (see (Omruuzun &
Yardimeci Cetin, 2015)) will be used. According to mentioned algorithm, a theoretical
black body curve is constructed by the ambient temperature value provided from
hyperspectral imagery header file and this curve is used for eliminating radiance values
changes by means of temperature effects with formula given below:

BBmax
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where ; A: wavenumber and C; : Corrected radiance value at A, BBmax : Maximum
radiance value on the Black-Body curve, B(4,T) : Black-Body radiance value at A,
and S, : Radiance value measured by the hyperspectral sensor at A.

3.1.2. Clustering and Segmentation
3.1.2.1.Clustering By Using minCEntropy

As mentioned in Chapter 2.2, the gaseous pixels radiance in the data cube includes
background emissivity and it is also affected by the temperature of the background.
Therefore, separating background from the emission region becomes crucial in gas
detection problems. We predicate our clustering approach according to a study on
detection of gaseous plumes and background by using hierarchical clustering (see
(Hirsch & Agassi, 2010)). The algorithm divides the data into two clusters in each
iteration, and forwards the clusters to the segmentation step explained in Chapter
3.1.2.2. The segments larger than a predefined threshold are sent back to the clustering
step. This iteration provides using of a fixed number of clusters in the clustering
method. Hirsch et al. implements k-means (see (Zhang & Rudnicky, 2002)) algorithm
for clustering, assumes the data is linearly separable, that selects the central points and
assign the data according to their distances to the centers by using minimization of the
sum of squares of the Euclidean distance between the samples and the cluster centers.
However, this approach is not applicable for real-life problems because of the high
dimensionality of the hyperspectral imagery. Additionally, if k-means algorithm is
executed repeatedly, different results will be obtained. In this thesis for clustering part
minCEntropy (see (Vinh & Epps, 2010)) clustering algorithm, an objective-function-
oriented approach, is being used. MinCEntropy assigns the data according to their
similarity to the cluster members by maximizing of the sum of average similarities
judged by Gaussian kernel between the cluster members and the sample. Main
distinctness of minCEntropy is that it makes no assumption on data distribution used
despite being built upon information measures and suggests heuristic to set the kernel
and quality-diversity trade-off parameter. Results of minCEntropy on the same data
are very decisive and do not change.

3.1.2.2.Segmentation

After clustering the data in each iteration, each cluster is spatially segmented according
to their connectivity (see (Jdhne, 1991)) with the assumption that the real-life gas
emission region, the connected pixels of the gas including pixels, must be in the same
segment. All the segments smaller than the predefined threshold is labeled and
remaining segments are sent back to clustering step. Successive clustering and
segmentation continues iteratively until all the segments found are smaller than the
threshold value. Concurrently, background of the emission is labeled as a segment.

3.1.3. Detection and ldentification

After clustering and segmentation step, detection and identification of target gases
start. Several hypotheses are created by searching all segments as background and gas
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emission region pairs. For each segment, by assuming that segment contains gas and
all the other segments contain background, the transmittance value is calculated with
equation 3.4. Therefore, for each segment segmentCount-1 number of different
transmittance value is calculated with equation 3.4 which is derived from equation
2.12. As the emissivity values of pixels are used in the algorithm, the temperature
related variables are dropped from the formula and equation 3.4 is derived.
Subsequently the correlations between the calculated transmittance values and
reference gas signature is measured (see (Gatti & Donati, 1971)) in order to determine
the most correlated pair with the equation given in 3.5

i)
Ttarget = % (3.4

where 7,4, gee: transmittance value of target segment, £;(2), €;(): emissivity values of
target segment and other segments.

Zx zy(Axy_Z)(Bxy_E)
\/(Zx Zy(Axy_Z)z)(Zx Zy(Bxy_E)z
where A: target segment transmittance value, B: reference gas signature

corr = (3.5)

transmittance value, A and B are mean values of regarding vectors.

Maximum correlation value of the pixels is labeled as the detection rate of target gas.
The final detection is implemented with Otsu thresholding (see (Otsu, 1979) ) method
which determines appropriate threshold point TP that maximizes the given expression

by

. _ @o(TP)—u(TP))?
Ratio (TP) = o) R(TP) (3.6)

where w(TP) = Y15, Py, u(TP) = XN 1pi1 Py L= XN, P; while N is the maximum
possible quantization levels. N = 255 for 8-bit image components and P; is the
probability of pixels in the hyperspectral image.
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CHAPTER 4

EXPERIMENTS

In this section, spectral libraries used in this thesis and data cubes used as Data Sets
will be introduced first. Then proposed algorithm results will be presented by
comparing frequently used gas detection results.

4.1. Sources of Data

4.1.1. Spectral Library

In this thesis, the Pacific Northwest National Labs (PNNL) infrared reference database
and the U.S. National Institute of Standards and Technology (NIST) infrared reference
database are used as spectral libraries through they are designed for hyperspectral
imagery, commonly used in hyperspectral community and publicly available at
http://nwir.pnl.gov and http://webbook.nist.gov/chemistry.
In this thesis five gases are chosen based on three criteria:

1. The gas must have samples as detected by the TELOPS Hypercam.
2. The gas must be present in the FTIR datasets provided by UDI.
3. The gas must be present in PNNL/NIST Infrared Spectral Library.

These gases are Sulfur Hexafluoride (FsS), Ethylene (C:Hs4), Butane (CsHio),
Methanol (CH30H) and Carbon Dioxide (CO2). PNNL and NIST spectra of target
gases are given in Figures 12-16. Unfortunately, detection of Nitrous Oxide cannot be
conducted as we do not have real hyperspectral imagery including Nitrous Oxide.
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Figure 13 Ethylene PNNL Absorption Spectra

36



bbsorbance

bbsorbance

Butane Target Spectummn

10}:10 | ; | : :
T .
=T o ]
T I

-2
u} 1000 2000 4000 5000 G000 F000
Wavenumber
Figure 14 Butane PNNL Absorption Spectra
Methanaol Target Spectrurmn
1.8 T T T T T T
o = O s R ]
T T O ]
- Tt | O -
I i ; i
1500 2000 2500 =000 2500 4000

Wavenurmber
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Figure 16 Carbon Dioxide PNNL Absorption Spectra
4.1.2. Data Sets

In this study, existing data sets are provided by UDI which are taken with Telops FTIR
Camera mentioned in Section 2.1.2. There are 6 different data cubes containing
Methanol, Sulphur Hexafluoride-Ethylene, two scenes with CO», one Butane and one
data cube which has same scene as butane containing data cube but no gases exhaled.
Data cube information are obtained from the header files provided by FTIR Camera.

4.1.2.1. Data Cube 1

Spectral Range : 877 cm™-1285 cm’!
Band Number : 124 Bands
Ambient Temperature : 300 °K

Width * Height : 200 * 200 pixel
Spectral Resolution  : 4 cm’!

Distance : ~2-3m

Gas Types : Methanol
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Figure 17 Data Cube 1

Eroad Band Image
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Figure 18 Data Cube 1 Broadband Image

4.1.2.2.Data Cube 2

Spectral Range : 851 cm™-1288 cm’!
Band Number : 171 Bands
Ambient Temperature : 302 °K

Width * Height : 200 * 200 pixel
Spectral Resolution  : 4 cm’!

Distance : ~2-3m

Gas Types : Sulfur - Ethylene
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Figure 19 Data Cube 2

Broad Band Image
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Figure 20 Data Cube 2 Broadband Image

4.1.2.3.Data Cube 3

Spectral Range : 876 cm™'-1285 cm’!
Band Number : 124 Bands
Ambient Temperature: 310 °K

Width * Height : 128 * 128 pixel
Spectral Resolution : 4 cm’!

Distance :~2-3m

Gas Types : Butane
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Figure 21 Data Cube 3

Broad Band Image
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Figure 22 Data Cube 3 Broadband Image

4.1.2.4.Data Cube 4

Spectral Range : 876 cm™'-1285 cm’!
Band Number : 124 Bands

Ambient Temperature : 310 °K

Width * Height : 128 pixel * 128 pixel
Spectral Resolution : 4 cm’!

Distance :~2-3m

Gas Types : No gas
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Broad Band Image
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Figure 24 Data Cube 4 Broadband Image

4.1.2.5.Data Cube 5

Spectral Range 1799 cm™'-3345 cm’!
Band Number : 797 Bands

Ambient Temperature: 291 °K

Width * Height : 320 pixel * 256 pixel
Spectral Resolution : 2,3 cm’!

Distance : Sm

Gas Types : Carbon Dioxide
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Figure 25 Data Cube 5

Broad Band Image

4.1.2.6.Data Cube 6

Spectral Range
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Figure 26 Data Cube 5 Broadband Image
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Figure 27 Data Cube 6

Broad Band Image

1m0
Figure 28 Data Cube 6 Broadband Image

4.2. Experimental Results

In this section proposed method and state of the art method in literature will be
compared visually. Firstly, all the data cubes are processed with the proposed method
by setting cluster size 50,250,500 and 1000 pixels. Then all the data cubes are
processed with the algorithm used frequently in the literature which takes background
region of data cube as an input to implement equation 2.12 on the data cube pixels.
Henceforth, proposed method herein referred to as Algorithm 1; state of the art method
taken from literature herein referred to as Algorithm 2.

The flowchart of the Algorithm 2 is demonstrated in Figure XX. Algorithm 2 firstly
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converts radiance data to brightness temperature map as pre-processing step, then data
and referred gas signature are cropped according to the spectral channels that referred
gas shows distinct characteristics. Afterwards background region is selected by the
user manually to determine background signatures. After all the steps transmittance
values calculated by using equation 2.12. Finally, correlation coefficient is calculated
by using equation 3.5 for each pixel.

) Crop Data according
Brightness- T(AL) . T(AL)
) o Gas' distinct = | Select Background
L Temepgg::ﬁ:ﬂap characteristic | Region Manually
Wavelengths
Tia L)
¥
Calculate
Transmittance
Taatalh)
Referrod G Crop Gas Signature
elerred as TrargetliM)| @ccording to Gas' "
- rget T (A
Signature »| distinct characteristic |— 2o Gas Detoction
Wavelengths

Figure 29 Algorithm 2 Flowchart

For each data set, clustering results and detection results of Algorithm 1 both colored,
Otsu implemented and Histogram of each result, detection results of Algorithm 2 both
colored and Otsu implemented, cropped target gas spectrum, gas and background
including pixels spectrum and transmittance and absorbance values calculated with
equation 2.12 from gas including pixels are presented. In gas detection problems, it is
difficult to determine and get exact ground truth as gas materials propagate in the scene
according to different variables and cannot be observed in IR images or RGB images
directly. Therefore, detection results will be interpreted and compared visually. In
colored images, hot colors represent high detection results therewithal in Otsu
implemented images, light colors represent high detection results.

During the experiments atmospheric transmittance characteristics, a sample given in
Figure 30, is not considered as a variable but especially in carbon dioxide detection
problem it is seen that this variable directly affects the results.

Trams mittance [%]
3
1

0 | | 1 1 1 1 1 |

200 2100 2200 2300 2400 2500 2600 2700 2800 2900
Wawenumbers [cm-1]

Figure 30 Sample Atmospheric Transmittance Spectrum ([taken from Gagnon et al.])
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4.2.1. Dataset 1

In experiment 4.2.1, methanol is oscillated as controlled.

Number of segments according to the threshold values are given below:
Threshold size 50 =>10118 Threshold size 250 => 7095
Threshold size 500 => 6051 Threshold size 1000 => 5080

As seen in detection results, results of algorithm 1 does not significantly differentiate
between 250 segments result and 500 segments result. It can be observed that
algorithm 1 is successful in detection of methanol gas in the scene. When compared
with algorithm 1, algorithm 2 has similar detection results in detection of methanol gas

in the scene.

4.2.1.1.Algorithm 1

Table 1 Data cube 1 minCEntropy Results Comparison

50 100 150 200

Figure 31 Data cube 1 minCEntropy Results Figure 32 Data cube 1 minCEntropy Results
with Threshold 50 with Threshold 250

20 : i ] ; SR 4500
5000 W0 L
60 R g X % 3500
80 ‘ : 3000
3000 100
120
(2o 140
160
180

200

50 100 150 200
Figure 33 Data cube 1 minCEntropy Results Figure 34 Data cube 1 minCEntropy Results
with Threshold 500 with Threshold 1000
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Table 2 Data cube 1 Detection Results Comparison

50 100 150 200 50 100 150 200

Figure 35 Data cube 1 Detection Results with Figure 36 Data cube 1 Detection Results with
Threshold 50 Threshold 250

50 100 150 200

Figure 37 Data cube 1 Detection Results with Figure 38 Data cube 1 Detection Results with
Threshold 500 Threshold 1000

Table 3 Data cube 1 Detection Results Comparison (Otsu)

Figure 39 Data cube 1 Detection Results with Threshold 50 (Otsu)
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Figure 41 Data cube 1 Detection Results with Threshold 250 (Otsu)
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Figure 42Data cube 1 Detection Results with Threshold 250 (Histogram)
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Figure 43 Data cube 1 Detection Results with Threshold 500 (Otsu)
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Figure 45 Data cube 1 Detection Results with Threshold 1000 (Otsu)
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Figure 46 Data cube 1 Detection Results with Threshold 1000 (Histogram)

4.2.1.2.Algorithm 2

20 40 60 80 100 120 140 160 180 200

Figure 47 Data cube 1 Detection Results with Algorithm 2

Figure 48 Data cube 1 Detection Results with Algorithm 2 (Otsu)
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4.2.1.3.Cropped Target Gas Spectrum
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Figure 49 Cropped Target Gas Spectrum
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4.2.1.4.Background-Gas Including Pixel Spectrums
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Figure 50 Background&Gas Including Pixel Spectrums
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4.2.1.5.Calculated Transmittance and Absorbance Values of Gas Including Pixels
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Figure 51 Data cube 1 Calculated Gas
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4.2.2. Data set?2

In experiment 4.2.2, Sulfur Hexafluoride and Ethylene are oscillated as controlled.
Number of segments according to the threshold values are given below:

Threshold size 50 => 6056 Threshold size 250 =>3971
Threshold size 500 =>3476 Threshold size 1000 =>3007

As seen in detection results, Algorithm 1 results does not significantly differentiate
between 250 segments result and 500 segments result for Sulfur Hexafluoride and
Ethylene. It can be observed that algorithm 1 is successful in detection of both Sulfur
Hexafluoride and Ethylene gases in the scene. When compared with algorithm 1,
algorithm 2 is not as successful as algorithm 1 as hot colors scattered too much in
detection of both Sulfur Hexafluoride and Ethylene gases in the scene.

4.2.2.1.Algorithm 1

Table 4 Data cube 2 minCEntropy Results Comparison

Figure 53 Data cube 2 minCEntropy Results Figure 54 Data cube 2 minCEntropy Results
with Threshold 50 with Threshold 250

50 100 150 200

Figure 55 Data cube 2 minCEntropy Results Figure 56 Data cube 2 minCEntropy Results
with Threshold 500 with Threshold 1000
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Table 5 Data cube 2 Detection Results Comparison (Sulfur)

50 100 150 200 50 100 150

Figure 57 Data cube 2 Detection Results with Figure 58 Data cube 2 Detection Results with
Threshold 50 (Sulfur) Threshold 250 (Sulfur)

50 100 150 200
50 100 150 200

Figure 59 Data cube 2 Detection Results with

Threshold 500 (Sulfur) Figure 60 Data cube 2 Detection Results with

Threshold 1000 (Sulfur)

Table 6 Data cube 2 Detection Results Comparison (Otsu) (Sulfur)

Figure 61 Data cube 2 Detection Results with Threshold 50 (Otsu) (Sulfur)
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Figure 63 Data cube 2 Detection Results with Threshold 250 (Otsu) (Sulfur)
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Figure 64 Data cube 2 Detection Results with Threshold 250 (Histogram) (Sulfur)
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Figure 65 Data cube 2 Detection Results with Threshold 500 (Otsu) (Sulfur)

1400

1200

1000

800 - : g

600 - il -1 o : A =

400 -

200 Dl
¢
A ﬂ|
odman ,ﬂﬁ
0 0.1

0.2

Figure 67 Data cube 2 Detection Results with Threshold 1000 (Otsu) (Sulfur)
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Figure 68 Data cube 2 Detection Results with Threshold 1000 (Histogram) (Sulfur)

Table 7 Data cube 2 Detection Results Comparison (Ethylene)

50 100 150 200 50 100 150 200

Figure 69 Data cube 2 Detection Results with Figure 70 Data cube 2 Detection Results with
Threshold 50 (Ethylene) Threshold 250 (Ethylene)

50 100 150 200 50 100 150 200

Figure 71 Data cube 2 Detection Results with Figure 72 Data cube 2 Detection Results with
Threshold 500 (Ethylene) Threshold 1000 (Ethylene)
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Table 8 Data cube 2 Detection Results Comparison (Otsu) (Ethylene)
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Figure 75 Data cube 2 Detection Results with Threshold 250 (Otsu) (Ethylene)
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Figure 78 Data cube 2 Detection Results with Threshold 500 (Histogram) (Ethylene)
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Figure 79 Data cube 2 Detection Results with Threshold 1000 (Otsu) (Ethylene)
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Figure 80 Data cube 2 Detection Results with Threshold 1000 (Histogram) (Ethylene)

60



4.2.2.2.Algorithm 2
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Figure 81 Data cube 1 Detection Results with Algorithm 2 Sulfur Hexafluoride
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Figure 83 Data cube 2 Detection Result:

Figure 84 Data cube 2 Detection Results with Algorithm 2 Ethylene (Otsu)
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4.2.2.3.Cropped Target Gas Spectrum
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Figure 85 Cropped Target Gas Spectrum Sulfur Hexafluoride
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Figure 86 Cropped Target Gas Spectrum Ethylene

62



4.2.2.4.Background-Gas Including Pixel Spectrums
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Figure 87 Background&Gas Including Pixel Spectrums
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4.2.2.5.Calculated Transmittance and Absorbance Values of Gas Including Pixels
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Figure 88 Data cube 2 Calculated Gas
Transmittance Sulfur Hexafluoride
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Figure 90 Data cube 2 Calculated Gas
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4.2.3. Data Set 3
In experiment 4.2.3, Butane is oscillated from a cylinder.

Number of segments according to the threshold values are given in below:
Threshold size 50 => 3389 Threshold size 250 => 1741
Threshold size 500 => 1266 Threshold size 1000 => 693

As seen in detection results, Algorithm 1 results does not significantly differentiate
between 250 segments result and 500 segments result for Butane. It can be observed
that algorithm 1 is successful in detection of Butane gas in the scene. When compared
with algorithm 1, algorithm 2 has similar detection results in detection of Butane gas
in the scene.

4.2.3.1.Algorithm 1

Table 9 Data cube 3 minCEntropy Results Comparison

20 40 60 80 100 120

Figure 92 Data cube 3 minCEntropy Results Figure 93 Data cube 3 minCEntropy Results
with Threshold 50 with Threshold 250
20 40 80 80 100 120 ‘ 20 40 60 80 100 120
Figure 94 Data cube 3 minCEntropy Results Figure 95 Data cube 3 minCEntropy Results
with Threshold 500 with Threshold 1000
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Table 10 Data cube 3 Detection Results Comparison

07
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02

0.1

20 40 60 80 100 120 20 40 60 80 100 120

Figure 96 Data cube 3 Detection Results with Figure 97 Data cube 3 Detection Results with
Threshold 50 Threshold 250

20 40 60 80 100 120 20 40 60 80 100 120

Figure 98 Data cube 3 Detection Results with Figure 99 Data cube 3 Detection Results with
Threshold 500 Threshold 1000

Table 11 Data cube 3 Detection Results Comparison (Otsu)

Figure 100 Data cube 3 Detection Results with Threshold 50 (Otsu)
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Figure 101 Data cube 3 Detection Results with Threshold 50 (Histogram)

Figure 102 Data cube 3 Detection Results with Threshold 250 (Otsu)
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Figure 103 Data cube 3 Detection Results with Threshold 250 (Histogram)
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Figure 106 Data cube 3 Detection Results with Threshold 1000 (Otsu)
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Figure 107 Data cube 3 Detection Results with Threshold 1000 (Histogram)

4.2.3.2.Algorithm 2
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Figure 108 Data cube 3 Detection Results with Algorithm 2
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Figure 109 Data cube 3 Detection Results with Algorithm 2 (Otsu)
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4.2.3.3.Cropped Target Gas Spectrum
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Figure 110 Cropped Target Gas Spectrum Butane
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4.2.3.4.Background-Gas Including Pixel Spectrums
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Figure 111 Background&Gas Including Pixel Spectrums

4.2.3.5.Calculated Transmittance and Absorbance Values of Gas Including Pixels
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4.2.4. Datasetd

In experiment 4.2.4, same scene condition is used as experiment 4.2.3; but there is not
any gas oscillated from a cylinder.

Number of segments according to the threshold values are given below:
Threshold size 50 => 3445 Threshold size 250 => 1652
Threshold size 500 => 1270 Threshold size 1000 => 751

As seen in detection results, Algorithm 1 results do not significantly differentiate
between 250 segments result and 500 segments result for Butane. It can be observed
that both algorithm 1 and algorithm 2 does not detect any butane gas in the scene as it
should be. This situation proves that both detection results are reliable as in the same
scene conditions they can detect if gas is oscillated or not.

4.2.4.1.Algorithm 1

Table 12 Data cube 4 minCEntropy Results Comparison

20 40 60 80 100 120 20 40 60 80 100 120

Figure 114 Data cube 4 minCEntropy Results Figure 115 Data cube 4 minCEntropy Results
with Threshold 50 with Threshold 250

20 40 60 80 100 120 20 40 60 80 100 120

Figure 116 Data cube 4 minCEntropy Results Figure 117 Data cube 4 minCEntropy Results
with Threshold 500 with Threshold 1000
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Table 13 Data cube 4 Detection Results Comparison

20 40 60 80 100 120 20 40 60 100 120

Figure 118 Data cube 4 Detection Results with Figure 119 Data cube 4 Detection Results with
Threshold 50 Threshold 250
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Figure 120 Data cube 4 Detection Results with  Figure 121 Data cube 4 Detection Results with
Threshold 500 Threshold 1000

Table 14 Data cube 4 Detection Results Comparison (Otsu)
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Figure 122 Data cube 4 Detection Results with Threshold 50 (Otsu)
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Figure 125 Data cube 4 Detection Results with Threshold 250 (Histogram)
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Figure 128 Data cube 4 Detection Results with Threshold 1000 (Otsu)
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Figure 129 Data cube 4 Detection Results with Threshold 1000 (Histogram)

4.2.4.2.Algorithm 2

Figure 130 Data cube 4 Detection Results with Algorithm 2
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Figure 131 Data cube 4 Detection Results with Algorithm 2 (Otsu)
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4.2.4.3.Cropped Target Gas Spectrum
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4.2.4.4.Background-Gas Including Pixel Spectrums
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4.2.4.5.Calculated Transmittance and Absorbance Values of Gas Including Pixels
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4.2.5. Dataset 5
In experiment 4.2.5, carbon dioxide is oscillated from a cylinder.

Number of segments according to the threshold values are given below:
Threshold size 50 =>10335 Threshold size 250 => 8930
Threshold size 500 => 8875 Threshold size 1000 => 8830

It can be observed that algorithm 1 results are unsatisfactory in detection of carbon
dioxide gas in general. On the other hand, better results achieved according to the 500
segments and 1000 segments results. When compared with algorithm 1, algorithm 2
has similar results in detection of carbon dioxide gas in the scene but detected segments
are scattered excessively. It is evaluated that the reason of detection failure is about
the carbon dioxide characteristics. Atmosphere initially has widely carbon dioxide and
also atmospheric transmittance values are almost zero on the spectral bands (2300 cm’
I'— 2400 cm™), given in figure 29, that carbon dioxide depicts distinguishing
characteristics therefore it gets difficult to differentiate the gas from background. Even
tough Algorithm 1 results are consistent with reality it needs to be improved.

4.2.5.1.Algorithm 1

Table 15 Data cube 5 minCEntropy Results Comparison

50 100 150 200 50 100 150 200

Figure 136 Data cube 5 minCEntropy Results Figure 137 Data cube 5 minCEntropy Results
with Threshold 50 with Threshold 250

50 100 150 200 50 100 150 200

Figure 138 Data cube 5 minCEntropy Results Figure 139 Data cube 5 minCEntropy Results
with Threshold 500 with Threshold 1000
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Table 16 Data cube 5 Detection Results Comparison
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Figure 140 Data cube 5 Detection Results with  Figure 141 Data cube 5 Detection Results with
Threshold 50 Threshold 250
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Figure 142 Data cube 5 Detection Results with ~ Figure 143 Data cube 5 Detection Results with
Threshold 500 Threshold 1000

Table 17 Data cube 5 Detection Results Comparison (Otsu)

Figure 144 Data cube 5 Detection Results with Threshold 50 (Otsu)
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Figure 146 Data cube 5 Detection Results with Threshold 250 (Otsu)
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Figure 148 Data cube 5 Detection Results with Threshold 500 (Otsu)
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Figure 150 Data cube 5 Detection Results with Threshold 1000 (Otsu)
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Figure 151 Data cube 5 Detection Results with Threshold 1000 (Histogram)
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4.2.5.2.Algorithm 2
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Figure 152 Data cube 5 Detection Results with Algorithm 2
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Figure 153 Data cube 5 Detection Results with Algorithm 2 (Otsu)

4.2.5.3.Cropped Target Gas Spectrum
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4.2.5.4 Background-Gas Including Pixel Spectrums
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4.2.5.5.Calculated Transmittance and Absorbance Values of Gas Including Pixels
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4.2.6. Data set 6
In experiment 4.2.6, carbon dioxide is oscillated from a car exhaust.

Number of segments according to the threshold values are given below:

Threshold size 50 => 6286 Threshold size 250  => 3488
Threshold size 500 => 2432 Threshold size 1000 => 1749

As seen in detection results, Algorithm 1 results do not significantly differentiate
according to the segment sizes. It can be observed that algorithm 1 is unsuccessful in
detection of carbon dioxide gas in the scene. When compared with algorithm 1,
algorithm 2 is also unsuccessful but better than algorithm 1 results in detection of
carbon dioxide gas in the scene. It can be observed that target gas is detected with high
false alarm rate. It is evaluated that the reason of detection failure is about the carbon
dioxide characteristics. Atmosphere initially has widely carbon dioxide and also
atmospheric transmittance values are almost zero on the spectral bands (2300 cm™ —
2400 cm™), given in figure 29, that carbon dioxide depicts distinguishing
characteristics therefore it gets difficult to differentiate the gas from background. Also,
the temperature difference which directly effects the detection rate can be very low.

4.2.6.1.Algorithm 1

Table 18 Data cube 6 minCEntropy Results Comparison
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Figure 158 Data cube 6 minCEntropy Results Figure 159 Data cube 6 minCEntropy Results

with Threshold 50 with Threshold 250
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Figure 160 Data cube 6 minCEntropy Results Figure 161 Data cube 6 minCEntropy Results

with Threshold 500 with Threshold 1000
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Table 19 Data cube 6 Detection Results Comparison
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Figure 162 Data cube 6 Detection Results with ~ Figure 163 Data cube 6 Detection Results with
Threshold 50 Threshold 250

08

07

0.6

0.5

04

0.3

02

01

20 40 60 80 100 120 140 160

Figure 164 Data cube 6 Detection Results with ~ Figure 165 Data cube 6 Detection Results with
Threshold 500 Threshold 1000

Table 20 Data cube 6 Detection Results Comparison (Otsu)

Figure 166 Data cube 6 Detection Results with Threshold 50 (Otsu)
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Figure 168 Data cube 6 Detection Results with Threshold 250 (Otsu)
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Figure 170 Data cube 6 Detection Results with Threshold 500 (Otsu)
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4.2.6.2.Cropped Target Gas Spectrum
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4.2.6.3.Background-Gas Including Pixel Spectrums
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4.2.6.4.Calculated Transmittance and Absorbance Values of Gas Including Pixels

Foundsd Targat Signsturs Foundsc! Targst Signature

e . az - . :
Foundsd Tau DalaCoracted Founded Epsilon DataConected
16 4 o ; - -
B g 02 !
E 12 g 04
T 06
%o moo 0 a0 2o a0 meo 200 2mea 2% koo mon o ame a0 s a0 200 2sea 2%
Wavenumbar Wavenumoer
10 Target Signature Target Signaturs
3 ; 1.0005 r
. coz , coz
. 2 09985
§ 18 0909
E o5 B “ oses
0 1 09975
Pfoo 2100 mon a0 200 sso om0 2ic0 e 2eo0 "% aon  2ao0  2s0  savo ason  seno oo 2moo  aeoo
Wavenumber Wavenumbor
Figure 178 Data cube 6 Calculated Gas Figure 179 Data cube 6 Calculated Gas
Transmittance Absorbance

93



94



CHAPTER 5

CONCLUSION

Target spectral signature for solid and liquids substances are searched on datacubes by
resolving the degradation although target gas substances' spectral signatures are not
searched directly. The decompositions on the signatures of the materials on the back
of the gas are identified in order to determine which gas can cause those
decompositions. This decomposition can be in both directions (absorption or emission)
according to the temperature differences between gas cloud and background.

It is also possible that this decomposition has a constantly different effect on the same
background even if we include the assumption that the temperature of the gases gets
equal to the atmospheric temperature as they move away from the source, and that it
falls exponentially in its construction as they move away from the source.

In addition, the same gas can be seen on different background signatures in the same
scene which makes the problem even more complicated and making it very difficult.
Finally, the atmospheric effects are negatively affecting the detection rate as the target
gases can be present in atmosphere initially and transmittance of the atmosphere can
be very low in the bands that target gases depicts its characteristics.

Although many studies in the literature have mentioned that atmospheric effects are
eliminated by various algorithms and that atmospheric effects can be ignored in the
near distance, these algorithms require many parameters besides the captured image.
For modeling of the atmosphere at the time datacube is obtained, getting the
temperature, humidity, gas availability, etc. parameters on the same time has great
importance.

In this thesis, as different from studies in the literature a new method is suggested for
detection and identification of target gases automatically in hyperspectral imagery
without any assumption of variables in the scene or the size/position of plume. Despite
previous studies make assumptions about temperature equalities like gas temperature
and ambient temperature is equal, we do not deal with this equality by using BB
Radiation Curve Compensation algorithm to drop the temperature variables for
detecting target gases on image. After this preprocessing step, hierarchical spectral-
spatial clustering is implemented to decompose the data into small segments for
detection and identification of the plumes if present in the scene. By using all other
segments in order to calculate the possible gas transmittance for a segment, we do not
deal of separate background and gas regions. It is a fully automatic method to detect
gases in the scene. The datacubes are processed with various different gas signatures
and it is seen that false alarm rate for detecting the wrong gas in the scene is
comparably low.

The other distinguishing specialty is implementing the Otsu thresholding (see (Otsu,
1979)) with 3 level on the resulting detection data which separate data in more than
two class in order to get better results. As the first thresholding provide separating the
data according to maximum variance difference, second thresholding differentiate gas
including region from the background region with high accuracy.

The data set provided by UDI using Telops FTIR Hypercam is used to test the proposed
algorithm. Algorithm is implemented on 6 different hyperspectral images. One image
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includes methanol gas, one image includes sulfur-ethylene gases mixture, two image
includes carbon dioxide gas, one image includes butane gas and last image does not
include any gas. One of the other greenhouse gas Nitrous Oxide cannot be tested since
we do not have a hyperspectral image including Nitrous Oxide.

Proposed algorithm had prospering and decisive results except carbon dioxide gas.
Even though the effect of atmospheric temperature on the hyperspectral image is
eliminated by the applied black-body radiation curve compensation algorithm, the
temperature difference between the background and the gas temperature still has a
great effect on gas detection. Because of this, we consider that the target gas cannot be
detected in CO> containing image which has a car on the scene in addition the
atmospheric transmittance gets nearly zero where CO» depicts its characteristics.

5.1. Future Works

As future works, carbon dioxide and other greenhouse gases which is not tested can
be studied on new hyperspectral images with various different scene compositions.
Also For detection of carbon dioxide, unsupervised atmospheric compensation can be
implemented on those hyperspectral images as the major limitation on detecting those
gases is atmospheric effects on the data. After atmospheric compensation, quantitative
analysis of greenhouse gases on hyperspectral imagery will be conducted.

Also, in order to measure the results metrically, data that has ground truth can be used
for getting F-measure results. This can be provided by fully controlled environment
and fully controlled oscillation.

For the final detection results we implemented Otsu thresholding twice on detection
result data. Another method can be utilized for obtaining more prospering results by
testing more hyperspectral images.
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APPENDICES

APPENDIX A

GLOSSARY

Radiance:

Radiant intensity measured in a specific direction per unit projected area. Measured
in watts/steradian/m2.

Reflectance:

The ratio of a given wavelength of light reflected by a surface to the light incident on
a surface, expressed as a percentage.

Blackbody:

Blackbody is a body whose absorbs all radiation incident upon it. Blackbody
radiation at a given wavelength depends only on the temperature and a blackbody
emits more radiation than any other type of an object at the same temperature;

Planck Function:

Planck Function gives the intensity (or radiance) emitted by a blackbody having a
given temperature.

Brightness Temperature:

Brightness Temperature is defined as the temperature of a blackbody that emits the
same intensity as measured. For a blackbody: brightness temperature = kinetic
temperature ( Tb=T)

Transmittance:

The fraction of radiation that remains after the radiation has traveled a certain path in
the medium.

Emissivity:
The ratio of the emission of a real body to the emission of the blackbody is called
(specific) emissivity € and depends on the wavelength.
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