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ABSTRACT

A NEW MODAL SUPERPOSITION METHOD FOR NONLINEAR
VIBRATION ANALYSIS OF STRUCTURES USING HYBRID MODE
SHAPES

Ferhatoglu, Erhan
MSc., Department of Mechanical Engineering
Supervisor: Prof. Dr. H.Nevzat Ozgiiven

Co-Supervisor : Assoc. Prof. Dr. Ender Cigeroglu
December 2017, 80 pages

In this thesis, a new modal superposition method based on a hybrid mode shape
concept is developed for the determination of steady state vibration response of
nonlinear structures. The method is developed specifically for systems having
nonlinearities where the stiffness of the system may take different limiting values.
Stiffness variation of these nonlinear systems enables one to define different linear
systems corresponding to each value of the limiting equivalent stiffness. Moreover,
the response of the nonlinear system is bounded by the confinement of these linear
systems. In this study, a modal superposition method utilizing novel hybrid mode
shapes which are defined as linear combinations of the modal vectors of the limiting
linear systems is proposed to determine periodic response of nonlinear systems. In
this method the response of the nonlinear system is written in terms of hybrid modes
instead of the modes of the underlying linear system. This provides decrease of the
number of modes that should be retained for an accurate solution, which in turn
reduces the number of nonlinear equations to be solved. In this way, computational
time for response calculation is directly curtailed. In the solution, the equations of
motion are converted to a set of nonlinear algebraic equations by using describing
function approach, and the numerical solution is obtained by using Newton’s method
with arc-length continuation. The method developed is applied on two different
systems: a lumped parameter model and a finite element model. Several case studies

are performed and the accuracy and computational efficiency of the proposed modal



superposition method with hybrid mode shapes are compared with those of the
classical modal superposition method which utilizes the mode shapes of the

underlying linear system.

Keywords: Modal Superposition Method, Hybrid Mode Shapes, Nonlinear
Vibrations, Describing Function Method, Reduced Order Model.
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YAPILARIN DOGRUSAL OLMAYAN TiTRESiM ANALIZi iCiN HiBRIiT
MOD SEKILLERINi KULLANAN YENI BiR MOD SUPERPOZiSYON
YONTEMI

Ferhatoglu, Erhan
Yiiksek Lisans, Makina Miihendisligi Bolimii
Tez Yéneticisi: Prof. Dr. H. Nevzat Ozgiiven
Ortak Tez Yoneticisi: Dog. Dr. Ender Cigeroglu

Aralik 2017, 80 sayfa

Bu tezde, dogrusal olmayan yapilarin kararli hallerindeki titresim cevaplarim
belirlemek i¢in hibrit mod sekli kavramini1 kullanan yeni bir modal siiperpozisyon
yontemi gelistirilmistir. Yontem ozellikle, direngenligi farkli sinirlayict degerler
alabilen dogrusal olmayan elemanlar1 igeren sistemler igin gelistirilmistir. Bu
dogrusal olmayan sistemlerin direngenlik degisimi, her bir sinirlayic1 direngenlik
degerine karsilik gelen farkli dogrusal sistemler tanimlamaya imkan kilar. Buna ek
olarak, dogrusal olmayan sistemin cevabi bu dogrusal sistemlerin kisitlamalariyla
siirlandirilmigtir. Bu ¢alismada, sinirlayict dogrusal sistemlerin modal vektorlerinin
dogrusal kombinasyonu olarak tanimlanan hibrit mod yontemini kullanan modal
siiperpozisyon yontemi Onerilmistir. Yontemde, dogrusal olmayan sistemlerin
cevaplari, altinda yatan dogrusal sistem modlar1 yerine hibrit modlar1 kullanarak
yazilmistir. Bu, dogru bir cevap hesaplamasinda kullanilmasi1 gereken mod sayisini
azaltmasinin yaninda ¢oziilecek dogrusal olmayan denklem sayisini da diisiiriir. Bu
yolla, cevap hesaplama siiresi dogrudan kisaltilir. Coziim igin, hareket denklemleri
tanimlayic1 fonksiyon yontemini kullanarak dogrusal olmayan cebirsel denklem
dizisine donistiriilmiis ve sayisal ¢oziim, Yyay uzunluk takibini kullanarak
Newton’un yontemiyle elde edilmistir. Gelistirilen yontem iki farkli sistem {izerine
uygulanmustir: bir toplanmig parametreli sistem ve bir sonlu elemanlar modeli. Bu

sistemler kullanilarak gesitli 6rnekler sunulmus ve hibrit mod ile 6nerilen modal

vii



stiperpozisyon yonteminin hassaslik seviyesi ve hesaplama verimliligi, esas dogrusal
sistemin modlarini kullanarak ¢6ziime giden modal siiperpozisyon yontemininkilerle

kiyaslanmistir.

Anahtar Sozciikler: Modal Siiperpozisyon Yontemi, Hibrit Mod Sekli, Dogrusal

Olmayan Tiresimler, Tanimlayic1 Fonksiyon Y&ntemi, indirgenmis Model
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CHAPTER 1

INTRODUCTION

1.1. Nonlinearity in Structures

Modal analysis is a well-established and widely used technique for the dynamic
analysis of linear systems. It enables one to obtain dynamic characteristics of very
large structures quite efficiently. However, its direct application to nonlinear systems
is not possible. Therefore, there has been considerable effort to determine dynamic

response of structures where nonlinear effects cannot be ignored.

On the other hand, nonlinearity is an unavoidable phenomenon in the all applications
of real life. Neglecting nonlinearity in structures may be acceptable if it does not
cause drastic changes in dynamic behavior. However, there are frequent occurrences
of nonlinearity that should be considered in the design phase of most of the
engineering structure. For instance, friction at turbine blades, self-excited vibration
phenomenon seen at brake squeal, ground resonance in helicopters, viscoelastic

mounts, systems having gap, contacts and hardening nonlinearities.

Deviation of system behavior from linearity is mostly caused by three nonlinear

effects.

The first one is geometric nonlinearities where the response of the system is under
large deformations. The stiffness of the structure can differ according to the changing
geometric configuration. Hardening phenomenon, which is also referred to as stress
stiffening, is a widely seen example of this nonlinearity type. The system reacts with
high stiffness at large deformation, whereas it exhibits low stiffness at relatively low

displacement values.



Second type of nonlinearity is material nonlinearity. If a system includes an element
showing nonlinear behavior such as rubber which has nonlinear stress-strain curve,

its dynamic response is controlled by nonlinear effects.

The last kind of nonlinearity is due to contacts. Close touch of two bodies leads to
change in stiffness and/or damping. Dry friction is a very-well known nonlinearity of
this type.

These cases and further sources of nonlinear behavior cause systems to deviate
significantly from linearity, which make the determination of dynamic characteristics
troublesome, since nonlinear systems do not exhibit the properties of linear systems.
The main distinctions of nonlinear systems from linear systems can be briefly

summarized as follows:
- The principle of superposition and proportionality do not hold.
- Higher and lower harmonics appear.

- Self-excited oscillations are possible where small initial conditions grow to a

periodic limit cycle.
- Chaotic response can be obtained by deterministic input.
- More than one equilibrium state is possible.

Modelling nonlinearities of real life applications is a challenging issue. In literature,
simple nonlinear element models, which are shown in Figure 1, are used to represent

nonlinearity.
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1.2. Literature Survey

The first attempts to determine response of nonlinear structures were all time-domain
methods, in which the data is taken in the form of time series. Although such
methods give reliable results and are relatively straightforward to apply for the
dynamic response analysis of nonlinear multi degree of freedom (MDOF) systems
[2-4], their application is restricted to small scale problems due to the significant
amount of computational time required. Thus, the major effort has been spent to
make time-domain methods for MDOF nonlinear systems computationally more
efficient [5, 6]. Yet, time domain methods are still restricted to small scale problems.
For large ordered nonlinear systems frequency domain methods were developed
starting from 1980s, and still the major studies on the determination of steady state
response of large ordered nonlinear systems to periodic excitation are the ones using
different forms of harmonic balance method (HBM) which had been successfully
applied to single degree of freedom systems long before [7].

In literature, various frequency domain solution methods, particularly to periodic
external forcing, have been proposed in order to have accurate steady-state response
with reduced computational effort. Earliest studies in harmonic response analysis of
MDOF systems have been conducted by Menq et al. [8, 9], Setio et al. [10] and
Budak and Ozgiiven [11, 12]. Menq et al. [8] developed receptance method, in which
the number of nonlinear equations to be solved is reduced to a factor of the number
of nonlinear elements present in the system by partitioning system degrees of
freedom (DOFs) into linear and nonlinear DOFs. In [10], Setio et al. worked on the
nonlinear mode superposition approach aiming to obtain a simple and rapid
stationary solution which can be applied to real cases of large structures having
nonlinear stiffness. Authors showed that truncation of infinite modal coordinates to
only few lower modal coordinates can considerably reduce computational time.
Budak and Ozgiiven [11, 12] proposed an approach in which different types of non-
linearities are represented by the same general formulation that enables one to
express internal nonlinear force vector to write in a multiplication form. Tanrikulu et

al. [13] later generalized the approach presented in [12] by using describing functions



for the harmonic vibration analysis of MDOF nonlinear systems. Kuran and Ozgiiven
[14] proposed a modal superposition method for nonlinear systems and they showed
that using even one mode at the resonance region gives satisfactory results when
modes are well separated and nonlinearity does not excite the higher modes of the
linear system. Chen and Meng [15] also worked on prediction of the resonant
response of frictionally constrained blade systems by using receptance method.
Authors used free and constrained mode shapes in the determination of nonlinear
system response in order to decrease the computational time further. Cigeroglu et al.
[16, 17] proposed a modal superposition method for nonlinear forced response
analysis of bladed disk systems, which decreases the number of nonlinear equations
to be solved significantly compared to receptance method. Petrov [18] studied the
effect of number of modes retained in the receptance method, and proposed a model
reduction technique that allows the calculation of the high-accuracy FRF matrix and
provides accurate forced response results over a wide frequency range. The nonlinear
reduced order models presented in [19, 20] make the qualitative and quantitative
analysis of nonlinear dynamical systems computationally faster and capture response
amplitudes quite accurately. Jung et al. [21] and Tien et al. [22] presented bilinear
amplitude approximation method for forced response prediction of nonlinear

analysis.

Recent studies on the use of HBM for MDOF nonlinear systems in different areas
include the application for joints [23, 24], rotor/stator contacts [25], bladed disks
[26], geometrically nonlinear beams [27] and plates [28]. In order to improve
usability, performance and robustness, researchers tried to develop several types of
HBM, including incremental HBM [29], multi-dimensional HBM [30], and the
adaptive HBM [31]. Apart from HBM, the describing function method (DFM)
proposed as one of the earliest studies on the harmonic vibration analysis of large
ordered nonlinear systems [13], also provides a formulation which allows the
nonlinear internal force vector to be expressed as a multiplication of the so-called
nonlinearity matrix (which is a function of unknown response amplitude vector) with
displacement vector. This representation makes it possible to handle nonlinear multi
degree of freedom systems more easily in several dynamic analysis problems, such

as in structural modification and dynamic coupling applications.



Moreover, Nonlinear Normal Mode (NNM) concept first proposed by Rosenberg
[32] has received attention in further years [33-42], and recently quite a number of
new studies have been carried out for the dynamic analysis of nonlinear MDOF
systems by using NNM approach [43-48]. NNMs can provide effective bases for
constructing reduced-order models of the dynamics of nonlinear oscillators. Touzé
[47] showed that using just one NNM in the vicinity of the resonance region captures
the dynamic behavior accurately. However, calculation of NNM of a MDOF requires
a tedious work and is very expensive in terms of computational effort. Therefore,
studies available in the literature that utilize NNM concept focus mostly on the

analysis of systems with relatively small number of DOFs.

1.3. Objective and Scope of Thesis

Obtaining accurate response by spending less computational effort is a challenging
issue for dynamic analysis of nonlinear systems having especially high number of
degree of freedoms. In this thesis, a new modal superposition method is presented to
improve the performance of capturing dynamic response for nonlinear structures.
The method is developed specifically for the systems having nonlinearities where the

stiffness of the system may take different limiting values.

Hybrid mode shape concept is utilized to obtain system response. In this way, less
number of modes in nonlinear response calculations is used, which enables us to
reduce the number of nonlinear equations to be solved, and hence computational
time. The proposed method is demonstrated on a lumped parameter model and on a

representative finite element model by performing several case studies.

For accuracy considerations, proposed modal superposition method with hybrid
mode shapes is compared with the classical modal superposition method which

utilizes the mode shapes of the original linear system.



1.4. Outline of the Thesis

Chapter 2 reviews the dynamic response analysis of nonlinear systems under
harmonic excitation. It explains mathematical formulation of nonlinear elements
based on the describing function method. Classical modal superposition approach,
which is used to obtain the nonlinear algebraic equations, is given. Lastly, Newton’s
method with Arc-length continuation is introduced to solve the equations.

Chapter 3 introduces a new concept for the determination of nonlinear system
dynamic response. Firstly, limiting cases, which are the different linear systems for
certain type of nonlinearities, is explained. These limiting cases provide different
natural frequency and mode shape data. Hybrid mode shape concept is developed
and explained using modal information for limiting cases. Lastly, a new modal

superposition approach by using hybrid mode shapes is given.

Chapter 4 deals with the validation of the proposed method. It is demonstrated on
two different nonlinear systems. Firstly, it is applied on a lumped parameter model
having different nonlinear elements. Secondly, dynamic response analysis of a
realistic finite element model with the proposed method is given. Different case
studies are performed for both models. Results obtained by using the proposed
method are compared with those of the classical approach. It is observed from the
case studies presented that hybrid mode shapes composed of proper combination of
the modes of limiting linear systems provide satisfactory results by keeping the

number of modes used in the solution at a minimum.

Chapter 5 concludes the results obtained in this thesis, emphasis being on the
contributions and improvements made. It also gives the suggestions for future work

in order to enhance the method developed in this study.






CHAPTER 2

DYNAMIC RESPONSE ANALYSIS OF NONLINEAR SYSTEMS

2.1. Nonlinear Vibration Analysis Under Harmonic Excitation

Equation of motion of a nonlinear structure under the action of a periodic external

forcing can be given as follows
M-%X+C-X+iH-x+K-x+f (x)=f(t), (2.1)

where M, C, H and K represent the mass, viscous damping, structural damping,

and stiffness matrices of the linear system, respectively. f, (x) and f(t) are vectors

of the internal nonlinear forcing and external excitation, respectively. Here, x is the
vector of displacements and dot denotes differentiation with respect to time and i is

the unit imaginary number.

Response of a nonlinear system to periodic excitation in general can be periodic,
quasi-periodic or chaotic [49]. However, most of the time response of a nonlinear
system to periodic excitation can be assumed periodic, some examples of which can
be seen in [21, 22, 50]. Since the focus of this study is to find the steady-state
solutions of the nonlinear system, only periodic solutions which are of importance in
the design of several mechanical systems are considered. If one is interested in the
stability of the periodic solutions obtained, any method [51], such as Hill’s method
[25], available in the literature can be used for this purpose. Therefore, external

forcing and response vectors can be written as follows

Np, )
f=f,+> fe™, (2.2)
m=1



N, _
X=X+ > X", (2.3)

m=1
where f and x_ are the m™ harmonic complex amplitude vectors of the external
forcing and response, respectively. f, and X, are the bias components of the

external forcing and nonlinear response vectors, which are real. N, represents the

total number of harmonics in the above expressions which is considered to be the

same for both external forcing and response.

Similarly, for periodic motion the internal nonlinear forcing vector can be written as

N, _
fN = nt,O + Zf;,melmwt ' (24)
m=1

where, f,,, is the real bias amplitude vector and f;, . is the m" harmonic complex

amplitude vector of the internal nonlinear forcing.

2.2. Expression of Nonlinear Harmonics by Using Describing Function Method

The nonlinear internal forcing vector, f, (x) can be written as a matrix multiplied

by displacement vector as

fy (X)=A(x)-x :(Are (x)+iA,, (X))-X, (2.5)
if only a single harmonic is used. Here, A(x) is the displacement or velocity

dependent complex nonlinearity matrix, A,(x) and A, (x) are the real and

imaginary parts, respectively. Elements of the complex nonlinearity matrix can be

obtained as follows [13]

A =Vi +kaj and Ay =-vy, (2.6)
=1

jk

10



where v,; is the harmonic input describing function of a nonlinear element in the
system and can be described as equivalent complex stiffness for the internal
nonlinear force, fJ acting between the k™ and the jth coordinates. Single
harmonic describing function, v,; is given as follows [13]

i 2z

Vi

i~y o f (Vg w)edy, v=ot, (2.7)
kj

where

X, —X. for k= j
f{ T ke 28)
X, for k=]
X, is the complex displacement amplitude of the k™ degree of freedom.
Substituting Eq.(2.5) into Eqg.(2.1)
M-X+C-x+i(H+A,, ) x+(K+A,)-x=f(t) (2.9)

Considering a single harmonic in the representation of the external forcing and
response vectors given by Egs. (2.2) and (2.3), the following set of nonlinear
equations is obtained

[(K+Are)—a)2M+i(H+Aim)+ia)C]-x*=f*. (2.10)

Since only a single harmonic representation is used, the subscript m is dropped in
Eg. (2.10). It can be seen from Eq. (2.9) that real part of the nonlinearity matrix
changes the overall stiffness matrix of the system; whereas, the imaginary part

modifies the overall structural damping matrix.
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2.3. Modal Superposition Approach to Nonlinear Systems

Using expansion theorem, response of the nonlinear system can be written in terms

of its linear mode shapes as follows [10, 14]

N
X =>a¢ =0-a, (2.11)
r=1

where @ is the mass normalized modal matrix of the linear system excluding the
nonlinearities, a is the complex vector of modal coefficients and N is the number of
modes used in the expansion. Substituting this equation in Eq. (2.10) and multiplying
both sides by ®" from the left, the following set of nonlinear algebraic equation in

terms of unknown modal coefficient vector is obtained

[(2+@7A,@)- " 1+i®7 (H+A,, )P +io® CO|-a=0Tf",  (212)

where Q is the matrix of squares of natural frequencies. In the expansion process,
the number of modes of the linear system used is much less than the total DOFs of
the system; therefore, the number of nonlinear equations defined by Eq. (2.12) is
significantly reduced. Being different from the modal analysis of linear systems, here
the solution of Eq. (2.12) requires iteration since nonlinearity matrix is response level
dependent. It should be noted that multiple harmonics can be easily used in the
modal superposition method where Eq. (2.12) is repeated for each harmonic by

replacing « with pw, where p corresponds to the harmonic included in the

solution.

12



2.4. Solution of Nonlinear Algeabric Equations

A set of n nonlinear ordinary differential equations, Eq. (2.1), is firstly converted to
a set of n nonlinear complex algebraic equations, Eg. (2.12), for the nonlinear
analysis explained above. The fundamental harmonic response of the structure can be

determined by using Newton’s Method with Arc-length Continuation.

The nonlinear algebraic equation set given in Eq. (2.12) can be written as a residual

vector function as
R(a,0)=[(Q+®7A,®)-o’I+i®" (H+A,,)®+io® CP|-a-®'f =0. (2.13)
Eq. (2.13) can be expanded in Taylor Series around a as
R(a+Aa, w) = R(a, ) + J(a, ) - Aa+0(Aa?), (2.14)
where J is the Jacobian Matrix, and it can be calculated as

OR(a,w)

J(a,w) = a

(2.15)

Neglecting higher order terms and taking R(a+Aa) =0 , at each frequency, ,, an

iterative solution is obtained by using
3" =3, -(@, o))" R@, o). (2.16)

where a, is the complex coefficient vector at k™ frequency m, and at i" iteration,
J(a,,®,) and R(a;,m,) are the Jacobian Matrix and the residual function evaluated

at a and o, , respectively.
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Convergence to correct solution in Newton’s Method is obtained if the given initial
guess is sufficiently close to the actual solution. However, in nonlinear systems, there
may be jump phenomena where the Jacobian becomes singular. Then, a new
parameter, Arc-length parameter, may be added to the unknown vector in order to

trace the solution in unstable region. This new path following parameter can be
defined as the radius of a hypothetical n-dimensional sphere in which the next
solution is searched. Since the number of unknowns increases by one with the
addition of a new parameter, one more equation is needed to solve the system. This
equation comes from the equation of the n-dimensional sphere centered at the

previous converged solution point which can be expressed as
(Agy)" -Aq, =7, (2.17)

where s is the radius of the arc length. Here, g, is the new vector of unknowns at

the i" solution point which is given as

q :{ak} (2.18)
Oy

and

Aq, =q, —q; ", (2.19)
Therefore the new equation added to the system can be written as
h(a,. ®,) = (Aq,)" - Agy —s* =0, (2.20)

Therefore, Newton’s iteration for the new system of equations becomes

oR(a,w) OJR(a,w)

qL+l — QL _ 8a 8(0 x R(aik1a)ik) ) (221)
oh(a,0) oh(a ) h(@, o))
oa ow a, ol

14



where the last row of the new Jacobian matrix can be obtained as follows

B =[2aq, ] (2.22)

e

{8h(a, ®) oh(a, a))}
oa ow

During the solution procedure, first order estimators, which are calculated by using
the Jacobian inverse found at the previously converged solution, are used. Detailed
information on Newton’s Method with Arc-length Continuation can be found in [25,
52, 53].
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CHAPTER 3

THEORY OF ANEW MODAL TECHNIQUE FOR DYNAMIC
ANALYSIS OF NONLINEAR SYSTEMS

3.1. Limiting Cases

For certain type of nonlinear elements, the nonlinearity matrix may become constant
at the limiting cases where the displacement amplitudes are smaller or greater than a
certain value. This occurs if the nonlinearity is piecewise linear as in the case of gap
nonlinearity or piecewise linear stiffness nonlinearity etc., or if the nonlinearity
saturates as in the case of dry friction nonlinearity. In such cases, since the
nonlinearity matrices do not depend on the displacement amplitude, new linear

systems can be defined as follows

M-%+C-X+i(H+A,, )-x+K,-x=f(t) Condition 1
' : , (3.1)
M-%+C-x+i(H+A,, )-x+K,-x=f(t) Condition |

im

K, =K+A,,, (3.2)

where K| is the stiffness matrix of the 1" limiting case. In these equations, A,,, and

A, are the real and imaginary parts of the constant nonlinearity matrix for the |

limiting case. For the sake of simplicity, the number of limiting cases considered in
the rest of the thesis is taken as two. However, proposed method is applicable to
systems with limiting cases more than two. Utilizing these new stiffness matrices, a
new eigenvalue problem can be defined for each case as follows

17



(K, —4M)-x, =0, 1=12. (3.3)

Solution of this eigenvalue problem gives eigenvalues 4, , i=12,...,n, which are the

squares of the natural frequencies, and mass normalized modal matrix @, of the 1"

limiting case.

For better illustration of limiting cases, consider a two degree of freedom (DOF)
nonlinear system with a gap element as shown Figure 2(a). When the nonlinear
element is never in contact with the mass as shown in Figure 2(b) the first limiting
case is obtained. In this case, the total stiffness between the ground and the first mass

becomes k .Solution of the eigenvalue problem for this case gives the eigenvalues
(211 A, )T and modal vectors @, for the first limiting case, respectively. Similarly,

when the nonlinear element is always in contact with the mass as shown in Figure
2(c), in the second limiting case, the total stiffness between the ground and the first

mass becomes k +k . Eigenvalues and modal vectors obtained for the second case

are (4, 4, )T and @, , respectively.

(a) (b) (c)
% A %f\/vkw A %’]ﬁ/j-/\]/% v
m NVWW m m "WV m m ANV m
k L x; L x, L x, L x, L x, Lx,

Figure 2 A Nonlinear System with Gap Nonlinearity

3.2. Hybrid Mode Shape Concept

The number of linear system modes required in modal superposition method depends
on how good the linear modes span the nonlinear response space. If the deviation of

the nonlinear system from the linearized system is small, the number of mode shapes

18



required can be minimized. For systems with piecewise nonlinear elements such as
gap nonlinearity, piecewise linear stiffness, etc. and/or saturating nonlinear elements
such as dry friction nonlinearity, the nonlinearity matrix obtained by DFM
approaches to a limiting case. Therefore, for such cases, depending on the response
amplitude it is possible to define different linear systems, mode shapes of which span
the nonlinear response space better than the mode shapes of the linear system
obtained by disregarding nonlinear elements. In this thesis, these linear systems are
referred to as limiting cases or limiting linear cases. It should be noted that, when the
mode shapes of the linear system used in the modal superposition approach deviate
less from the nonlinear system modes, i.e. when the mode shape vectors span the
nonlinear response space better, less number of modes is required to obtain an
accurate representation of the response of the nonlinear system. This is in agreement
with the approach used by Cigeroglu and Ozgiiven [50]. In [50], authors decompose
the nonlinear microslip friction element into two parts: a linear stiffness and a
nonlinear macroslip element. Then they include the linear stiffness part into the
linear system, which improves the convergence property of the nonlinear solution.
For the sake of simplicity, only two limiting cases are considered in the rest of the
thesis. However, the method proposed here is applicable to cases with more than two

limiting cases as well.

For a nonlinear system with two limiting cases, the nonlinear equation of motion

defined by Eq. (2.9) can be written in the following forms

M-X+C-X+iH,-x+ K -Xx+A, -x=f(t), (3.4)
M-X+C-X+iH, -x+K, -x+A, -x=f(t), (3.5)

where
Ki=K+A. Hi=H+A,, K,=K+A,, H,=H+A;,, (3.6)
Ap=Apn+iAin A=A +iA . A =A-A;, A, =A-A,. (37)
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A=A A, is the complex nonlinearity matrix for the j™ limiting case, which

relj
is constant and does not change with the response. It should be noted that since

iH +K, +A, =1H,+K, +A, =iH+K+A, Eq. (3.4) and Eq.(3.5) are identical to

each other. If A, is small, less number of mode shapes of limiting case 1 is required

to approximate the nonlinear dynamics compared to the same accuracy of dynamic
response obtained by using mode shapes of limiting case 2. It should be noted that at

the limit where A, =0, a linear system is obtained and the lowest possible number of

modes of limiting case 1 can be used to approximate the system response. Similarly,

if A, is small, less number of modes of limiting case 2 is required to represent the

nonlinear response with the same accuracy compared to limiting case 1 which is in
agreement with the findings of Chen and Menq [15]. However, if the complex
nonlinearity matrix is not close to any of the limiting cases, the number of modes
used in the process can be decreased by using a linear combination of the mode
shapes of the limiting cases and, in this work, it is referred to as hybrid mode shape

and defined as follows

D =a®,+(1-a)®,. (3.8)

Here @, is the hybrid modal matrix, ®, and ®, are the mass normalized modal

matrices of the limiting case 1 and 2, respectively and « is a weighting factor
changing between 0 and 1. If « =0, only mode shapes of limiting case 1 are used
and if ¢ =1, only the mode shapes of limiting case 2 are used. Proper selection of «
is the key to decrease the number of hybrid modes required in the solution of the
nonlinear system. It can be seen from Eq. (2.7) that describing function, v , is a

complex quantity and can be decomposed into real and imaginary parts as

V=V, +iv,,. (3.9)

During the solution process, the numerical value of describing function for each

nonlinearity is recalculated at every iteration step. Comparing the real part of the
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describing function, i.e. equivalent stiffness, with respect to its limiting value, this

weighting factor can be defined as follows

NI 1%
a= Z k’j , (3.10)
i=1

where 0<a <1, k7, is the maximum limiting value of the equivalent stiffness of the

i" nonlinear element and N, is the total number of nonlinear elements attached to

the interested DOF. Here, it is assumed that the maximum limiting value of the
equivalent stiffness occurs for limiting case 2, and the minimum value occurs for
limiting case 1. It is important to note that even though hybrid mode shape concept is
proposed for piecewise linear or saturated nonlinearities for which equivalent
stiffness converges to a constant value, depending on the vibration amplitude, it can
as well be defined for any nonlinearity by considering a maximum vibration
amplitude that may occur in the analysis as the limiting case. For instance,
nonlinearities showing exponential behavior with respect to displacement or cubic
stiffness may be given as examples for such cases. Regarding these types of
nonlinearities, maximum vibration amplitude can be roughly anticipated by
monitoring linear response of the system before starting nonlinear analysis, and then
a limiting linear case can be defined by addition of the approximated equivalent
stiffness of the nonlinearities, i.e. describing functions, for the anticipated response
of the system. After the construction of limiting cases, hybrid mode shapes are
determined and proposed approach can be applied for the solution of the nonlinear

system.
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3.3.  New Modal Superposition Method Using Hybrid Mode Shapes

Response of a nonlinear system can be written in terms of hybrid mode shapes as
X(t)=®, -ae". (3.11)

Substituting Eq. (3.11) into Eq. (2.9) and pre-multiply by both sides by ®," the

following equation is obtained

[0 - ®, M®, +iw - ®,CD, + | (3.12)
@ (K+iH)®, +® 'A(a)®, ]-a=D,  -f

where a is the complex vector of modal coefficients. In this nonlinear equation set,
the unknowns are the modal coefficients given by vector a. In case multiple
harmonics are used in HBM, Eq. (3.12) is repeated for each harmonic by simply
replacing @ with pw as described in Section 2.3. It should be noted that hybrid
mode shapes are not orthogonal with respect to mass and stiffness matrices of the
original linear system; hence, Eq. (3.12) contains system matrices which do not
appear in Eq. (2.12). If we expand the first term in Eqg. (3.12), the following equation
is obtained

O 'MD, =(1-a) - O MO, +a* - ®,'M®, + (3.13
(1-a)a- 0 M®, +(1-a)a-©, M®, '

Since both limiting linear system modal matrices, i.e. ®, and ®,, are orthogonal

with respect to the mass matrix, ®,'M®, and ®,"M®, are equal to identity matrix.
Moreover, it should be noted that for a self adjoint system, mass matrix is symmetric
and therefore, ®,"M®, is equal to the transpose of @,"M®, . Therefore, final form

of Eq. (3.13) is obtained as follows
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®, M, =[ (1-a) +a2}-1+(1—a)a-[(I)lTM(I)2 (o M®,) } (3.14)

The same procedure can also be applied to the term that contains the stiffness matrix
in EQ. (3.13) which gives the following result as

@K, =(1-a) @ +a’(Q,-®,AK®D, )+
R (3.15)
(1—a)a-[<D1TK(I)2 +(®,'K®,) }

where AK=K,-K,, Q, and €, are diagonal matrices composed of squares of

natural frequencies of the first and the second limiting linear cases, respectively.

It can be seen from Egs. (3.14) and (3.15) that system matrices still appear in the
equation. This might be a problem for realistic finite element models, since very
large matrices need to be stored and used in the calculations. In order to overcome
this problem, we define a square matrix Q such that the following equation is
satisfied

D,=0,-Q. (3.16)

Pre-multiplying both sides of the Eq. (3.16) with the pseudo-inverse of ®,, the

following result is obtained
DD, =0"D-Q. (3.17)

If all modes of the first limiting linear system are used, ®,"®, results in identity

matrix and hence, Q is obtained as follows

Q=0,'D,. (3.18)
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It should be noted that contribution of higher modes to system response at lower
frequencies is negligible and in practical problems only a limited number of mode
shapes are used in modal superposition approach. This results in a significant
decrease in the number of nonlinear equations to be solved by omitting the effect of
higher modes. Therefore, Eqg. (3.18) can still be used for the systems having large
number of DOFs. Substituting Eg. (3.18) into Eq. (3.16) the following result is

obtained
D, =DD'D,. (3.19)

By substituting Eq. (3.19) and knowing that @, is orthogonal with respect to mass

and stiffness matrices, terms that contain mass and stiffness matrix in Eq. (3.12) can

be eliminated as follows
O,'M®D, =0 MO, D, =0,' D, (3.20)
D' KD, =0 KO,®,'D,=Q 0, ', (3.21)

Substituting Egs. (3.20) and (3.21) into Egs. (3.14) and (3.15), mass and stiffness
matrices in the set of nonlinear algebraic equations given by Egq. (3.12) are

eliminated and the following final form is obtained
~w’M-a+ioC-a+(K+iH)-a+®,'A(a)®,-a=®, -f (3.22)
where

M=, M, =[ (1-a) +a2]1+(1—a)a.[q>l+q>2 (o, )T} (3.23)

K=®, Ko, =(1-a) -Q +a*(Q,-®,AK®D, )+
. (3.24)
(1-a)a -[Qld)l*tl)z +H0',) }
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C=®,'CO, =x- @, MD, +7-® KD, (3.25)

H=® H®, =y & Kb, (3.26)

Proportional damping is assumed in this study, where « and ¢ are constants of

proportionality of mass and stiffness matrices, respectively, and » is the loss factor.

Set of nonlinear algebraic equations obtained in Eq. (3.22) is going to be solved for
the complex vector of modal coefficients a by using Newton’s method with arc-
length continuation as explained in Section 2.4. The number of nonlinear algebraic
equation is determined by the number of mode shape used in the expansion theorem
for the single harmonic solution as shown in Eq. (3.11). Hence, the total number of
nonlinear algebraic equations to be solved can be decreased further by using hybrid
mode shapes, compared to using modal vectors of the corresponding linear system.
Then, response amplitude of nonlinear system is obtained with multiplication of

hybrid mode shapes and modal coefficients.

It should be noted that proposed method is applicable to any system, being
independent from whether there exist weak or strong modal interactions. Similar to
standard modal superposition approach, for strong modal interaction the number of
mode shapes used increases. However, since the hybrid mode shapes span the
nonlinear response space better than the linear mode shapes, the number of hybrid

mode shapes used is always smaller than the number of linear mode shapes used.
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CHAPTER 4

CASE STUDIES

In this section, the application of the method proposed is presented using several case
studies with different nonlinearities. In the case studies presented, piecewise linear
stiffness, gap and dry friction nonlinearities (Figure 3) are considered which show
limiting behaviors. However, in order to show that the method can be easily applied
to other types of nonlinearities as described in the previous section, a case with cubic
stiffness is presented as well. Moreover, direct time integration of the nonlinear
equations by employing equivalent viscous damping in the system for the first case
study is performed which validates the use of single harmonic term in the harmonic
balance method. Describing function expressions for nonlinearities considered in the

thesis are given in the Appendix.

Two different systems are used in the case studies presented. The first system is a 20-
DOF lumped parameter model; whereas, the second system is a finite element model
of a realistic structure with 5400 DOFs.

Figure 3 Internal Nonlinear Force of Nonlinearities with respect to Displacement
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4.1. Lumped Parameter Model

The 20-DOF linear lumped parameter system used in the following case studies is
shown in Figure 4. Parameters used in the model are k = 30000N/m, m =

0.1kg, h = 1500 N/m.

h h h h

= B =
AAAM AN

k
k I—) X4 k I—) Xy I—) X19 I—) X20 k

Figure 4 20-DOF Linear System

The system is excited by two different external forces applied to the 6™ DOF and the

12" DOF which are defined as 15sin(wt)N and 5sin(«t+7/2) N, respectively.

Four case studies are presented by using this lumped parameter system. Two
nonlinear elements are inserted into the linear system in the first three case studies
and one nonlinear element is attached for the last case study. The nonlinearity types

and their locations are given in Table 1.

Table 1 Nonlinear Element Types Used in the Case Studies

Nonlinearity Type Quantity Ingg::l:n Properties
Piecewise Linear ) 7-ground, k; =2000N/m,k, = 10000N/m
Stiffness 11-ground 6 =0.002m
k; = 5000 N/m,k; = 10000 N/m
. 5-10, uN; = 5N, uN, = 10N
Dry Friction 2 10-ground uN, = 10N, uN, = 15N
uN; = 20N, uN, = 25N
Gap and Dry 11 11-ground, k = 10000N/m,S§ = 0.005m
Friction ' 1-ground k; = 10000 N/m,uN = 35N
Cubic Stiffness 1 12-ground k. = 10’N/m3
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4.1.1. Case Study 1: Piecewise Linear Stiffness Element

For piecewise nonlinear element, two limiting equivalent stiffness values can be
defined. The first one occurs when the vibration amplitude is smaller than the
breakaway amplitude (limiting case 1) resulting to an equivalent stiffness of k; and
the second one occurs when the vibration amplitude is very large (limiting case 2)
such that the region with stiffness k; is relatively very small; hence, the nonlinear
element acts almost as a linear element of stiffness k, (see Figure 3). Therefore,
adding these equivalent stiffness values to the original system, it is possible to define
two additional linear systems. In order to obtain mode shapes of the limiting cases,
mathematical expression of describing function is also needed which is given in the
Appendix. After solving the eigenvalue problems, hybrid mode shapes can be
calculated by using Eqg. (3.8).

Figure 5 shows the response of the 9" DOF of the linear system (i.e. system with no
nonlinear element is connected) and that of the nonlinear system using all modal
information (i.e. without applying a reduction). It is clearly seen that nonlinearity
strongly affects the response at the first and the second resonance regions where
hardening effects and jump phenomena are observed around the resonance frequency

values.

In Figure 6a, Figure 6b and Figure 6¢, responses of the 9" DOF around the first
resonance region are given by using modes of the linear system corresponding to
limiting case 1, limiting case 2, and hybrid mode shapes, respectively. It is observed
from the results obtained that using even a single hybrid mode shape gives very
accurate results throughout the frequency range considered. Similar accuracy can be
obtained by using 12 modes of limiting case 1 and 4 modes of limiting case 2. It can
be seen from the results that, for this particular case, using the modes of limiting case
2 performs much better than using the modes of limiting case 1; however, modal
superposition method utilizing hybrid mode shapes significantly outperforms both

approaches.
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Figure 5 Displacement amplitude of the 9" DOF with respect to frequency
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Figure 6 Effect of modes used on the displacement amplitude of the 9" DOF around
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The second resonance region is also shown in Figure 7a, Figure 7b and Figure 7c.
Using a single hybrid mode shape again gives very accurate results compared to
traditional modal superposition approach. It should be noted that, since similar
results are also obtained for other DOFs, only the response of the 9™ DOF is
presented here.

In order to quantify errors for the comparison of the results, three different error

criteria are defined. The first one is integral error, which is defined as follows

[on y2
Integral Error = (J' (Yoo = Xere )2 da)) : (4.1)

where X, X..,» @ and o, represent the displacement amplitude by using limited

obt 7 “Yexc ?
number of mode shapes, exact nonlinear displacement amplitude, initial and final
frequencies of the frequency range of interest. Secondly, amplitude error, which is
the error between the maximum displacement amplitude obtained by using limited
number of mode shapes and the exact maximum displacement amplitude in the

frequency range of interest is defined. Mathematically it is given as

exc obt

max_—_ “max
c

Amplitude Error = x100. (4.2)

max

The last one is frequency error, which is the error between the resonance frequency
values corresponding to the maximum displacement amplitude obtained in each

approach. It is expressed as follows

exc a)obt
max max
exc

max

Frequency Error = x100. (4.3)

All errors calculated for Case Study 1 are given in Table 2 and Table 3. Performance
of hybrid mode shapes observed in Figure 6 and Figure 7 can be quantified from the
error values given in Table 2 and Table 3 which show the capability of the modal

superposition method with hybrid mode shapes.
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Figure 7 Effect of modes used on the displacement amplitude of the 9" DOF around
the second resonance

Table 2 Error analysis for the 9" DOF around the first resonance

Number of Mode Shapes Integral Error Amplitude Error (%) Frequency Error (%)

LC1 -1 Mode 61.3 128 9.7
LC1 - 3 Modes 17.2 4.7 1.7
LC1 - 6 Modes 15.7 6.3 1.4

LC1 - 12 Modes 8.2 1.8 0.4

LC2 -1 Mode 19.5 28.6 1.0
LC2 — 2 Modes 7.0 7.1 0.2
LC2 — 3 Modes 4.9 2.5 0.2
LC2 — 4 Modes 4.7 0.7 0.1
1 Hybrid Mode 4.7 1.9 0.2
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Table 3 Error analysis for the 9™ DOF around the second resonance

Number of Mode Shapes Integral Error Amplitude Error (%) Frequency Error (%)

LC1 -1 Mode 6.0 27.2 0.2
LC1 - 2 Modes 10.2 21.0 1.8
LC1 — 3 Modes 9.9 18.3 1.9
LC1 - 4 Modes 5.4 1.2 1.1
LC2 -1 Mode 5.3 8.9 0.1
LC2 — 2 Modes 1.1 5.7 0.03
LC2 — 3 Modes 1.0 3.6 0.05
LC2 — 4 Modes 0.7 0.3 0.05

1 Hybrid Mode 3.3 0.9 0.00009
2 Hybrid Modes 0.8 0.5 0.06

Apart from frequency domain solutions, a time-domain numerical integration of the
equations of motion is performed to demonstrate the validity of the harmonic
response assumption. Moreover, amplitude values obtained in frequency domain can
also be verified with time-domain solution by calculating dynamic response at
several excitation frequency values. It should be noted that in the case studies
presented in this thesis proportional structural damping is assumed, and therefore
structural damping values need to be converted to equivalent forms of proportional

viscous damping to perform direct time integration.

In the lumped parameter model with piecewise linear stiffness nonlinearity, the
structural damping in the system is replaced with equivalent viscous damping. The
displacement time response of the 9" DOF is given in Figure 8 and Figure 9, which
show that the system response is harmonic. The solution is obtained by using all of
the modes of the system in order to obtain exact solution. The frequency of the
excitation force is 20.5 Hz corresponding to resonance. Moreover, in Figure 10 the
response amplitude obtained by time integration and single-harmonic HBM are
compared. It is observed that the response of the system is harmonic and using a

single-harmonic term it can be captured accurately for the case study considered.
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Figure 9 Displacement time response of 9" DOF
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Figure 10 Displacement amplitude of the 9™ DOF with respect to frequency

The main aim of this thesis is to develop a method which uses less number of mode
shapes than the number of linear mode shapes used in the standard modal
superposition approach for the determination of periodic solutions of a nonlinear
system. Therefore, it is assumed that the response of the nonlinear system is periodic.
In the case studies, single-harmonic HBM is used; however, if single harmonic does
not give accurate result multiple harmonics can be used. Either single-harmonic or
multi-harmonics are used in the solution; the number of hybrid modes used in the

modal superposition method is significantly less than the linear ones.
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4.1.2. Case Study 2: Dry Friction Element

For dry friction nonlinearity, two limiting cases can be defined. For very large
displacement amplitudes, since majority of a cycle is covered by slip state, limiting
equivalent stiffness due to friction is zero which makes the system equivalent to the
linear system without any dry friction damper. This is referred to as limiting case 1.
On the other hand, if the displacement amplitude is very small, dry friction element
is always in stick state which results in a limiting equivalent stiffness of k; and this

case is considered as limiting case 2.

Response of the 10" DOF around the resonance frequency is given in Figure 11. It
can be seen from the figure that dry friction element reduces the vibration amplitude
of the linear system significantly; hence, it is working effectively where the damper
experiences both stick and slip regions in one cycle and its motion cannot be
captured by modes of either of the limiting cases alone. In Figure 12a, Figure 12b,
and Figure 12c, response of the 10" DOF is calculated by using modes of limiting
case 1, limiting case 2 and hybrid mode shapes. It is seen from the displacement
results obtained and the error values given in Table 4 that using only 2 hybrid mode
shapes, very accurate results are obtained compared to the results obtained by using 4
modes of limiting case 1 and 16 modes of limiting case 2. It should be also noted
that, since only two hybrid mode shapes are used, the number of nonlinear equations
solved is reduced significantly which has a drastic effect in the calculation times as
well, in addition to improved accuracy. Similar results are also obtained for the other
resonance regions and DOFs.
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Figure 12 Effect of modes used on the displacement amplitude of the 10" DOF
around the first resonance for the first slip force values
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Table 4 Error analysis for the 10™ DOF around the first resonance for the first slip
force values

Number of Mode Shapes Integral Error Amplitude Error (%) Frequency Error (%)

LC1 -1 Mode 9.6 31.7 4.7
LC1 -2 Modes 54 19.5 2.4
LC1 - 3 Modes 1.9 6.5 0.6
LC1 -4 Modes 1.9 6.7 0.6
LC2 -1 Mode 13.7 2.1 94
LC2 — 4 Modes 9.5 26.8 54
LC2 — 8 Modes 6.2 8.3 34
LC2 — 16 Modes 2.4 4.9 1.0
1 Hybrid Mode 4.4 19.1 2.0
2 Hybrid Modes 1.9 0.6 0.6

Additionally, the previous case study is repeated for two different slip force values in
order to show how the number of modes retained in the modal superposition method
changes depending on the parameters of the nonlinear elements. The results obtained
and the error values calculated for these cases are given in Figure 13 and Table 5,
and in Figure 14 and Table 6, respectively. Studying the results presented in the
previous and these additional cases, it can be concluded that, as the slip force
increases, the solution approaches to the fully stuck linear response, in which the
number of mode shapes of the original linear system needs to be increased from 4 to
8. On the other hand, less number of modes of the second limiting case, i.e. linear
system including contact stiffness of the friction damper, is required to obtain the
same accuracy, where the number of modes retained decreases from 16 to 4. This is
an expected result since the nonlinear response is bounded by the two linear
responses corresponding to the two limiting cases. It should be noted that if linear
modes are used in the modal superposition method, the number of modes retained
changes as the parameters of the nonlinearities vary; whereas for all cases, only 2
hybrid mode shapes are always sufficient to obtain similar accuracy, and this number
is significantly less than the number of the linear modes used in the three cases

presented.
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Figure 13 Effect of modes used on the displacement amplitude of the 10" DOF
around the first resonance for the second slip force values

Table 5 Error analysis for the 10™ DOF around the first resonance for the second slip
force values

Number of Mode Shapes Integral Error Amplitude Error (%) Frequency Error (%)

LC1 - 6 Modes 1.3 1.9 0.6
LC2 — 10 Modes 0.8 4.0 0.4
2 Hybrid Modes 15 2.5 0.4
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Figure 14 Effect of modes used on the displacement amplitude of the 10" DOF
around the first resonance for the third slip force values

Table 6 Error analysis for the 10" DOF around the first resonance for the third slip
force values

Number of Mode Shapes Integral Error Amplitude Error (%) Frequency Error (%)

LC1 - 8 Modes 15 0.3 0.9
LC2 — 4 Modes 0.8 4.2 0.5
2 Hybrid Modes 1.2 2.6 0.2

In order to observe how the weighting factor a changes as a function of frequency,
its variation is given in Figure 15 for the three different slip loads used in the case
studies. As explained previously, limiting case 1 is equivalent to linear system with
no nonlinear element which corresponds to the case where the displacement
amplitudes are high and the majority of a cycle is governed by slip state. Therefore,
for such cases weighting factor should be equal to zero, since the modes of limiting

case 1 are the exact basis for the response. On the other hand, limiting case 2 is the
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case where dry friction element sticks, which occurs at small displacement
amplitudes. For such cases, since the modes of limiting case 2 are the exact basis for
the response, weighting factor should be equal to 1. For any other nonlinear case, the
weighting factor takes a value in between 0 to 1. It can be seen from Figure 15 that
weighting factor equals to 1 away from the resonance region, since the displacement
amplitude is small as a result of which nonlinear element is in fully stuck state.
However, when the response amplitude gets larger, slip starts and the weighting
factor starts to decrease from 1, and it takes its minimum value at the maximum
displacement amplitude value at resonance frequency. Moreover, since percentage of
a cycle governed by slip state increases as the slip force decreases, the weighting

factor becomes smaller and it deviates from 1 in a wider frequency range.
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Figure 15 Variation of weighting factor o with respect to frequency

4.1.3. Case Study 3: Gap and Dry Friction Elements Together

In this case study, gap and dry friction nonlinear elements are used simultaneously.
Here, it is specifically intended to increase the nonlinear effect in the system by

coupling different types of nonlinearities. As a result of this, it becomes very hard to
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capture the nonlinear response by using small number of the modes. In this case,
there exist two limiting cases. The first one is the original linear system in which the
limiting equivalent stiffness is zero, i.e. no nonlinear element exists in the system. On
the other hand, limiting case 2 corresponds to the case where the effect of both
contact stiffness of the dry friction and stiffness element of gap element are taken

into account.

In Figure 16, nonlinear response of the 12" DOF is given. The strong nonlinear
effects present in the system can clearly be seen in this figure. Figure 17a, Figure 17b
and Figure 17c show the response of the same DOF calculated by using modes of
limiting case 1, modes of limiting case 2 and hybrid mode shapes. It is seen that
utilizing only a single hybrid mode shape gives very accurate results. In order to
obtain similar accuracy 12 modes of limiting case 2 are required in the modal
superposition approach, and the nonlinear dynamics cannot be captured accurately
even using 12 modes of limiting case 1. Error values in terms of each error criterion
are given in Table 7 which clearly shows that utilizing a single hybrid mode shape
outperforms the use of 12 modes of both limiting cases. Moreover, in addition to the
error values, computational time required by each method is given in the final
column of Table 7. The analyses are performed on a computer with Intel(R) Xeon(R)
CPU E5-1620 v2 @3.70 GHz processor, 16GB or RAM and 64-bit operating system.
Analyses are repeated five times and average of these five calculations is recorded as
the computational time. It can be seen that the computational time increases as the
number of mode shapes used in the modal superposition approach increases, as
expected. But the increase in the computational time is more than the increase in the
number of nonlinear equations, due to the quadratic increase in the memory
requirements, Jacobian matrix evaluations and matrix calculations required in the
solution process. This increase in computational time becomes more drastic if
multiple harmonics are used in the calculations. For this particular case, modal
superposition method with hybrid mode shapes decreased the computational time
required approximately 85%.
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Table 7 Error analysis for the 12" DOF around the first resonance

Number of Integral Amplitude Frequency  Computational

Mode Shapes Error Error (%) Error (%) Time [s]
Exact Solution - - - 18.6
LC1 -1 Mode 41.5 6.7 2.7 1.49
LC1 - 3 Modes 25.4 7.8 1.0 2.55
LC1 - 6 Modes 20.3 2.7 0.7 4.21
LC1 - 12 Modes 11.8 2.1 0.2 10.26
LC2 -1 Mode 40.6 215 2.3 1.16
LC2 — 3 Modes 32.0 8.1 1.6 2.23
LC2 — 6 Modes 23.3 7.0 0.9 4.07
LC2 - 12 Modes 15.5 0.5 04 10.11
1 Hybrid Mode 8.2 0.7 0.05 1.53

4.1.4. Case Study 4: Cubic Stiffness Element

In this case study, cubic stiffness nonlinearity, which does not possess limiting or
saturating behavior, is used in order to demonstrate the applicability of the proposed
method for nonlinearities for which a limiting system cannot be defined physically. It
should be noted that as the displacement amplitude increases, the nonlinear stiffness
does not show a saturating behavior for cubic stiffness. However, the response of the
nonlinear system is limited for a case depending on the forcing amplitude and
frequency range of interest. Hence, even though the equivalent stiffness is an
unbounded function of displacement amplitude, since the amplitude is bounded so as
the equivalent stiffness associated with the nonlinearity. Therefore, if the maximum
displacement amplitude can be estimated, the second limiting case can be defined for
these types of nonlinearities. For cubic stiffness, the nonlinear internal force and the

corresponding describing function for single harmonic input is given as

f ook, v:%kcAz. (4.4)

N c

where A is the amplitude of the single harmonic motion. Describing function given
in Eq. (4.4) is the equivalent stiffness of the cubic stiffness nonlinearity and if the
maximum displacement amplitude can be estimated roughly, the second limiting case

can be obtained by adding this equivalent stiffness to the original linear system. In
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this case study, two different values of maximum displacement amplitude are
considered. In one of them the maximum amplitude of the exact nonlinear solution,
I.e. 27.5mm, is used and in the second one the maximum amplitude of the linear
system, i.e. 35mm, is used to determine the mode shapes of limiting case 2. The
results obtained for this case study is given in Figure 18. It can be seen from the
results that using limiting case 2 obtained from the exact nonlinear maximum
amplitude gives very accurate results. A single hybrid mode is sufficient to obtain
better accuracy than using 12 modes of the linear system without any nonlinear
element. However, before solving the system it is not possible to know the maximum
amplitude of the linear system. The second maximum amplitude estimation has an
error of approximately 27%. By using limiting case 2 corresponding to this
maximum displacement amplitude, similar accuracy as in the case of 12 linear modes
is obtained by utilizing only 2 hybrid mode shapes. Therefore, it can be concluded
that even in the presence of significant error in the estimation of the maximum
displacement amplitude, the modal superposition method with hybrid mode shapes
outperforms the modal superposition method utilizing the mode shapes of the linear
system. The error values and the computational time spent for each case given in
Table 8 also verify the conclusions obtained. It should be noted that it is also possible
to use a two-step solution methodology for these types of nonlinearities. Firstly,
maximum linear displacement amplitude can be used to obtain equivalent stiffness of
limiting case 2 in order to get an estimation of the maximum nonlinear displacement
amplitude by using a single hybrid mode. Then, this estimated nonlinear
displacement amplitude can be used to improve the estimation of limiting case 2 and
hence the hybrid mode shapes. The nonlinear system is re-solved by using the
improved hybrid mode shapes which gives very accurate results by using the

minimum number of hybrid modes.
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Table 8 Error analysis for the 12" DOF around the first resonance

Integral ~ Amplitude Frequenc Computational

Number of Mode Shapes Errgor Errgr (%) Err?Jr (%3/ T!Ome [s]
Exact Solution - - - 11.4
LC1 -2 Modes 88.4 18.1 10.4 1.44
LC1 -4 Modes 50.6 7.5 3.8 2.00
LC1 - 8 Modes 29.6 2.6 1.4 4.15
LC1 - 12 Modes 25.0 2.1 1.0 6.21
1 Hybrid Mode (35mm) 24.9 3.3 1.0 1.27
2 Hybrid Modes (35mm) 22.9 2.8 0.9 1.69
1 Hybrid Mode (27.5mm)  12.0 0.9 0.2 1.25

4.2. Finite Element Model

Application of the proposed method is also shown on a large scale finite element
model (FEM). A cantilever beam having extensions in all three perpendicular axes is
modeled using a commercial finite element software as shown in Figure 19, where
the finite element model has 5400 number of degrees of freedom. This structure is
considered due to the fact that several modes of the system affect each other. The
results obtained for a wide frequency range showed that the nonlinearities considered
affect several modes of the system; however, for brevity only the results around
specific resonance frequencies are given in the thesis. The first 30 modes of the finite
element model are used to calculate the system response in the frequency range of

interest for comparison purposes.

Three different harmonic excitation forces are applied to the model at excitation
point as shown in Figure 19. The first force is applied in the X direction with 5N
amplitude, whereas the second and the third ones are applied in the direction of Y
and Z with 30N amplitude. It should be noted that with this type of forcing more
modes of the system are expected to be excited which will be a good example to
show the performance of the modal superposition approach with hybrid mode

shapes.
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Response Node

Figure 19 Finite Element Model

Three case studies are presented by using this finite element model. 15 nonlinear
elements are inserted into the system. The first two case studies include one of the
two nonlinearity types; whereas, the last one has two different types of nonlinear
elements simultaneously. These elements are placed to different locations of the
finite element model so that capturing the nonlinear dynamics of the system requires
high number of modes in the modal superposition approach. The nonlinearity types

and their properties are given in Table 9.

Table 9 Nonlinear Element Types Used in the Case Studies

Non_ll_;?;:rlty Quantity  Insertion DOFs Properties
- Different locations k; = 500 N/m,uN = 0.75N,
Dry Friction 15 of FEM - ground (same for all)
Gap 15 Different locations k = 1000N/m & = 0.004m
of FEM - ground (same for all)
Gap and Dry 5 10 Different locations k= 1000N/m § = 0.004 m
Friction ’ of FEM - ground ky; =500N/m,uN = 0.75N
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4.2.1. Case Study 5: Dry Friction Element

Response of the X component of interested point around the first resonance
frequency is given in Figure 20. It is clearly seen from the figure that response of the
point changes significantly due to nonlinear effects of dry friction. In Figure 21a,
Figure 21b and Figure 21c, response of the selected point is computed by using
modes of limiting case 1, limiting case 2 and hybrid mode shapes, respectively. It is
seen from the obtained results that using even 1 hybrid mode shape gives very
accurate results than the 4 mode shapes of limiting case 1 and limiting case 2. If 2
hybrid mode shapes are used the results become better as can be also seen from the
error values given in Table 10. It can also be noted that nonlinear response follows
the fully stuck response and around the resonance region it deviates from the fully
stuck linear response, i.e. limiting case 2, as shown in Figure 21. Moreover, the
nonlinear response is significantly different from the response of the free linear
system, i.e. limiting case 1. Therefore, as expected, using four mode shapes of
limiting case 2 captures the response of the nonlinear system better than utilizing

four mode shapes of limiting case 1.

Moreover, variation of weighting factor « is also given in Figure 22 for dry friction
nonlinearity. It can be seen from Figure 22 that weighting factor equals to 1 away
from the resonance region, since the displacement amplitude is small as a result of
which nonlinear element is in fully stuck state, as expected. It takes smaller values
when slip starts as explained in Section 4.1.2. Increasing the number of hybrid mode
shapes also affects the variation of the weighting factor, which improves the

accuracy of the solution.
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Figure 20 Displacement amplitude of X component of response node with respect to
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Figure 21 Effect of number of modes used on the displacement amplitude of the
response node in X-direction around the first resonance

55



Table 10 Error analysis for the response node around the first resonance

Number of Mode Shapes Integral Error Amplitude Error (%) Frequency Error (%)

LC1 -1 Mode 1.8 6.5 1.8
LC1 -2 Modes 1.2 9.3 2.2
LC1 - 3 Modes 0.7 6.1 1.0
LC1 -4 Modes 0.5 4.7 0.3
LC2 -1 Mode 0.9 4.3 11
LC2 -2 Modes 0.1 2.9 0.001
LC2 — 3 Modes 0.3 3.4 0.4
LC2 — 4 Modes 0.3 2.0 0.4
1 Hybrid Mode 0.5 0.9 0.3
2 Hybrid Modes 0.08 2.0 0.1
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0.8 —
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Y 0.6 7 —— 1 Mode of Hybrid Mode Shapes
:é’ | 2 Modes of Hybrid Mode Shapes
204
0.2 —
0.0 T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
Frequency [Hz]

Figure 22 Variation of weighting factor « with respect to frequency
4.2.2. Case Study 6: Gap Element

For gap nonlinearity, two limiting cases can be defined as discussed in Section 3.1.
The first one corresponds to the case where all the gaps are open (limiting case 1)
resulting in zero equivalent stiffness, which corresponds to the linear system without

any nonlinear elements, and the second one is obtained when the vibration amplitude
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is large enough (limiting case 2) such that all the gap elements are observed as if they

are always in contact (See Figure 2).

Figure 23 shows the displacement amplitude of X component of response node for
the underlying linear system and that of the nonlinear system using 30 modes of the
linear system. The effect of the gap element is clearly seen from the Figure 23, which
shifts the resonance frequency considerably. It is seen from Figure 24 and the error
values given in Table 11 that using even 2 hybrid modes gives more accurate results
as the modal superposition method that uses 4 modes of limiting case 1 or 2. The
accuracy of the nonlinear response obtained by using 2 hybrid mode shapes is very
similar to the base nonlinear response obtained by using 30 modes of the linear

system.

—— Linear Response
50 — Nonlinear Response

Displacement Amplitude of X Component of Response Point [mm]
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Frequency [Hz]

Figure 23 Displacement amplitude of X component of response node with respect to
frequency around the first resonance region
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Figure 24 Effect of number of modes used on the displacement amplitude of the
response node in X-direction around the first resonance

Table 11 Error analysis for the response node around the first resonance

Number of Mode Shapes Integral Error Amplitude Error (%) Frequency Error (%)

LC1 -1 Mode 51.1 61.9 4.8
LC1 -2 Modes 25.5 2.4 1.5
LC1 - 3 Modes 8.8 4.7 0.2
LC1 — 4 Modes 134 6.8 0.3
LC2 -1 Mode 27.9 53.2 1.1
LC2 — 2 Modes 24.9 27.8 1.3
LC2 — 3 Modes 17.6 0.9 0.6
LC2 — 4 Modes 6.2 15.0 0.01
1 Hybrid Mode 13.6 8.3 0.3
2 Hybrid Modes 9.3 2.6 0.2

The results of FE case study with gap nonlinearity at two additional nodes as shown
in Figure 25 are also given in Figure 26 and Figure 27. It can be seen that hybrid

mode shape approach gives similar results and solution follows the same pattern for
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different response points. Error values given in Table 12 and Table 13 also show the
same argument. For other case studies and for different response nodes, similar

results can be obtained. However, for brevity, the results for other response nodes are

not shown.
1
Additional
Response Nodes
Excitation
Node
Figure 25 FE Model with additional response nodes
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Figure 26 Displacement amplitude of X component of the 1% point vs. frequency
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Table 12 Error analysis for the 1% point around the first resonance

Number of Mode Shapes Integral Error Amplitude Error (%) Frequency Error (%)

LC1 -4 Modes 32.3 59 0.3
LC2 — 4 Modes 11.6 12.8 0.01
1 Hybrid Mode 32.5 5.0 0.3
2 Hybrid Modes 14.3 1.9 0.06
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Figure 27 Displacement amplitude of X component of the 2" point vs. frequency

Table 13 Error analysis for the 2™ point around the first resonance

Number of Mode Shapes Integral Error Amplitude Error (%) Frequency Error (%)

LC1 -4 Modes
LC2 — 4 Modes
1 Hybrid Mode
2 Hybrid Modes

32.9 5.9 0.3
11.6 12.9 0.01
32.6 5.0 0.3
14.3 1.9 0.06
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Furthermore, in order to show that method proposed is also applicable for a wide
frequency range of interest in which the nonlinearity affects the response at several
modes, and not just at one mode, as shown in Figure 23, additional analyses that
illustrate the frequency response curve in a much wider frequency band have been
performed. However, the effect of nonlinearity at each mode is a function of the
displacement amplitude (of the nonlinear DOFs) at the interested mode which
depends on the forcing amplitude as well. For this purpose, two additional point
forces which have 6N and 3N magnitude values in Y and Z directions are exerted at
the tip of the model as shown in Figure 28 in order to increase the vibration

amplitude at nonlinear DOFs in a wide frequency range.

Additional Excitation
Excitation and Force Node
Response Node

Figure 28 FE Model with additional excitation forces

The response of the interested node covering the first four modes is given in Figure
29, where the detailed results comparing the performance of the hybrid and linear
mode shapes used are given in Figure 30 - Figure 33 and Table 14 - Table 17. It is
clearly seen that modal superposition method with hybrid mode shapes performs as
expected and the number of hybrid mode shapes used is significantly smaller than the

linear modes available for the system.
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Table 14 Error analysis for the response node around the first resonance

Number of Mode Shapes Integral Error Amplitude Error (%) Frequency Error (%)

LC1 -4 Modes 215 0.6 0.2
LC2 — 4 Modes 25.9 1.7 0.3
1 Hybrid Mode 16.9 1.7 0.1
E
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Figure 31 Displacement amplitude of X component of response node with respect to
frequency around the second resonance

Table 15 Error analysis for the response node around the second resonance

Number of Mode Shapes Integral Error Amplitude Error (%) Frequency Error (%)

LC1 -4 Modes 7.8 3.0 0.1
LC2 — 4 Modes 10.0 55 0.2
1 Hybrid Mode 2.1 1.0 0.01
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Figure 32 Displacement amplitude of X component of response node with respect to
frequency around the third resonance

Table 16 Error analysis for the response node around the third resonance

Number of Mode Shapes Integral Error Amplitude Error (%) Frequency Error (%)

LC1 -4 Modes 11.5 5.2 0.2
LC2 — 4 Modes 11.8 6.4 0.2
1 Hybrid Mode 6.0 2.5 0.05
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Figure 33 Displacement amplitude of X component of response node with respect to
frequency around the fourth resonance

Table 17 Error analysis for the response node around the fourth resonance

Number of Mode Shapes Integral Error Amplitude Error (%) Frequency Error (%)

LC1 -4 Modes 0.3 15 0.002
LC2 — 4 Modes 0.2 0.6 0.0009
1 Hybrid Mode 0.5 1.2 0.003

4.2.3. Case Study 7: Gap and Dry Friction Elements Together

In this case study, gap and dry friction nonlinear elements are used together in order
to increase nonlinear effects. Limiting cases are the same as the ones defined in
Section 4.1.3. In Figure 34, X component of linear and nonlinear response of the

selected node is given in which the effects of strong nonlinearity in the system can be
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clearly seen. It is seen from Figure 35 and the error values given in Table 18 that
using 2 hybrid modes gives very accurate results, which can be obtained if 8 modes
of limiting case 1 or limiting case 2 are used. This observation is very important
since the model contains relatively high number of DOFs. Therefore, it can be
concluded that computational effort can be drastically reduced by using the modal
superposition method with hybrid mode shapes proposed in this study. Moreover,
computational time for each case is also presented in Table 18 which is calculated as
described in Section 4.1.3. Utilizing a single hybrid mode shape results in
approximately 82% decrease in the computational time; whereas, if two hybrid

modes are used the computational saving is approximately 72%.

—— Linear Response
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Figure 34 Displacement amplitude of X component of response node with respect to
frequency around first resonance region
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Figure 35 Effect of number of modes used on the displacement amplitude of the

response node in X-direction around the first resonance

Table 18 Error analysis for the response node around the first resonance

Number of Integral Amplitude Frequency = Computational

Mode Shapes Error Error (%) Error (%) Time [s]
Exact Soln. (30 Modes) - - - 1063
LC1 -1 Mode 27.7 20.7 2.7 50.1
LC1 -2 Modes 13.6 7.7 0.8 713
LC1 -4 Modes 9.7 6.5 0.3 137.3
LC1 - 8 Modes 3.1 0.7 0.04 282.3
LC2 -1 Mode 23.7 37.7 2.0 375
LC2 - 2 Modes 21.7 11.9 1.9 67.7
LC2 — 4 Modes 4.0 13.1 0.004 124.8
LC2 - 8 Modes 0.8 1.2 0.003 279.8
1 Hybrid Mode 3.5 0.9 0.06 48.4
2 Hybrid Modes 1.7 0.4 0.02 78.1
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CHAPTER 5

DISCUSSION AND CONCLUSION

In this study, a new modal superposition approach based on hybrid mode shapes is
proposed to obtain steady state response of nonlinear structures. For certain types of
nonlinear elements, the equivalent stiffness of the nonlinearity saturates, in other
words it has limiting values. Thus, it is possible to define limiting linear systems
where the nonlinear system behaves as if it is linear, since the equivalent stiffness of
the nonlinearity does not change with system response. It should be noted that even
though the nonlinearity does not possess a limiting equivalent stiffness, the limiting
linear case can be defined for any type of nonlinearity by restricting the maximum
vibration amplitude. Therefore, at this limiting case, the response of the nonlinear
system can be obtained completely by using the mode shapes of the limiting linear
systems. On the other hand, for other cases, the response of the nonlinear system is in
between these limiting cases and none of the linear system modes can capture it
accurately. Hence, hybrid mode shapes are defined as a linear combination of the
mode shapes of the linear systems corresponding to each limiting linear case. The
contribution of each linear mode to the hybrid mode shape is determined by
comparing the ratio of the equivalent stiffness of nonlinear elements to the equivalent
stiffness of limiting linear system for the interested DOF. As a result of this, hybrid
mode shapes span the nonlinear response space better than the linear mode shapes
and, in the limiting cases, they are identical to the mode shapes of the limiting linear
systems. Therefore, using hybrid mode shapes in modal superposition method leads
to accurate solution of the nonlinear system by using less number of mode shapes
than the number of mode shapes used in the traditional modal superposition method.
This decreases the computational time significantly and increases the stability of the
nonlinear solver due to the decrease in the number of nonlinear equations, which is

very important for large nonlinear systems.
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In the case studies presented, piecewise linear stiffness, gap element and dry friction
element are the nonlinearities used for which limiting linear behaviors can be easily
defined. Additionally, cubic element is another nonlinearity considered where it does
not possess limiting or saturating behavior. A 20-DOF lumped parameter model and
a finite element model having many DOFs with different number of nonlinear
elements attached are considered in the case studies. It is observed that modal
superposition method with hybrid mode shapes proposed in this study give very
satisfactory results compared to the mode shapes of the linear system obtained by
disregarding the nonlinear elements. In the case studies considered, use of one or two
hybrid mode shapes is sufficient to obtain very accurate results. However, in order to
have similar accuracy, depending on the case study, the number of mode shapes of
the linear system should be increased at least 2 to 16 times, which results in 4 to 32
times more number of nonlinear equations if single harmonic solution is used. It
should be noted that, since computation of hybrid mode shapes do not require
additional calculation, computational time of both methods are identical if the same
number of modes are used. Consequently, use of hybrid mode shapes decreases the
number of nonlinear equations significantly, which reduces the computational time
substantially and also increases the stability of nonlinear solvers used in the solution.
Therefore, the new modal superposition method with hybrid mode shapes serves as a

very suitable reduction method for the dynamic analysis of nonlinear structures.

As a future work, the same method can be extended for multi harmonic vibration
response of nonlinear systems. In this case, hybrid mode shapes may also be used as
basis function in the modal superposition method for higher harmonics. In addition to
this, instead using a linear fit to calculate the hybrid mode shapes different fitting
functions can be used to determine the hybrid mode shapes. This will increase the
complexity of the method and gain in speed should justify the increase in

complexity.
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APPENDIX A

For the nonlinearities considered in this study, internal nonlinear force and the

corresponding harmonic input describing functions [13] for an input motion of

X(t) = Asin(et)are given here.

Piecewise Linear Stiffness Element:

kX X(t) <0 &Xx(t) > -0
fy (X) =1 kx+(k,—k,)5 x(t)> o
kX (k, —K,)5 X(t) <=5
K, A<o
MWEJ () ]+k2 Azs
V4 A A

where

T

. (O

Gap Element:

B 0 X(t) <o
fiu (%) _{k(x—é) X(t) =5

0 A<d

v=<k|x o 2ko
_ | — = —_ . >
72'[2 Q-+ Acos(w)} oy Cos(go) A>06

where

T

)
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Dry Friction Element:

A>x({t) =0
A>x({t)=>-o
-02>2X(t)>-A
o=Xx(t)=>-A

UN
—uN +k, (x+0)
—uN
—uN +k, (x—=0)

fy (X)=

K,

K

T

2

where
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