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ABSTRACT 

 

A NEW MODAL SUPERPOSITION METHOD FOR NONLINEAR 

VIBRATION ANALYSIS OF STRUCTURES USING HYBRID MODE 

SHAPES 

 

 

Ferhatoğlu, Erhan 

MSc., Department of Mechanical Engineering 

Supervisor: Prof. Dr. H.Nevzat Özgüven 

Co-Supervisor : Assoc. Prof. Dr. Ender Ciğeroğlu 

 

December 2017, 80 pages 

 

In this thesis, a new modal superposition method based on a hybrid mode shape 

concept is developed for the determination of steady state vibration response of 

nonlinear structures. The method is developed specifically for systems having 

nonlinearities where the stiffness of the system may take different limiting values. 

Stiffness variation of these nonlinear systems enables one to define different linear 

systems corresponding to each value of the limiting equivalent stiffness. Moreover, 

the response of the nonlinear system is bounded by the confinement of these linear 

systems. In this study, a modal superposition method utilizing novel hybrid mode 

shapes which are defined as linear combinations of the modal vectors of the limiting 

linear systems is proposed to determine periodic response of nonlinear systems. In 

this method the response of the nonlinear system is written in terms of hybrid modes 

instead of the modes of the underlying linear system. This provides decrease of the 

number of modes that should be retained for an accurate solution, which in turn 

reduces the number of nonlinear equations to be solved. In this way, computational 

time for response calculation is directly curtailed. In the solution, the equations of 

motion are converted to a set of nonlinear algebraic equations by using describing 

function approach, and the numerical solution is obtained by using Newton’s method 

with arc-length continuation. The method developed is applied on two different 

systems: a lumped parameter model and a finite element model. Several case studies 

are performed and the accuracy and computational efficiency of the proposed modal 
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superposition method with hybrid mode shapes are compared with those of the 

classical modal superposition method which utilizes the mode shapes of the 

underlying linear system. 

 

Keywords: Modal Superposition Method, Hybrid Mode Shapes, Nonlinear 

Vibrations, Describing Function Method, Reduced Order Model. 
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ÖZ 

 

YAPILARIN DOĞRUSAL OLMAYAN TİTREŞİM ANALİZİ İÇİN HİBRİT 

MOD ŞEKİLLERİNİ KULLANAN YENİ BİR MOD SÜPERPOZİSYON 

YÖNTEMİ 

 

 

Ferhatoğlu, Erhan 

Yüksek Lisans, Makina Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. H. Nevzat Özgüven 

Ortak Tez Yöneticisi: Doç. Dr. Ender Ciğeroğlu 

 

Aralık 2017, 80 sayfa 

 

Bu tezde, doğrusal olmayan yapıların kararlı hallerindeki titreşim cevaplarını 

belirlemek için hibrit mod şekli kavramını kullanan yeni bir modal süperpozisyon 

yöntemi geliştirilmiştir. Yöntem özellikle, direngenliği farklı sınırlayıcı değerler 

alabilen doğrusal olmayan elemanları içeren sistemler için geliştirilmiştir. Bu 

doğrusal olmayan sistemlerin direngenlik değişimi, her bir sınırlayıcı direngenlik 

değerine karşılık gelen farklı doğrusal sistemler tanımlamaya imkan kılar. Buna ek 

olarak, doğrusal olmayan sistemin cevabı bu doğrusal sistemlerin kısıtlamalarıyla 

sınırlandırılmıştır. Bu çalışmada, sınırlayıcı doğrusal sistemlerin modal vektörlerinin 

doğrusal kombinasyonu olarak tanımlanan hibrit mod yöntemini kullanan modal 

süperpozisyon yöntemi önerilmiştir. Yöntemde, doğrusal olmayan sistemlerin 

cevapları, altında yatan doğrusal sistem modları yerine hibrit modları kullanarak 

yazılmıştır. Bu, doğru bir cevap hesaplamasında kullanılması gereken mod sayısını 

azaltmasının yanında çözülecek doğrusal olmayan denklem sayısını da düşürür. Bu 

yolla, cevap hesaplama süresi doğrudan kısaltılır. Çözüm için, hareket denklemleri 

tanımlayıcı fonksiyon yöntemini kullanarak doğrusal olmayan cebirsel denklem 

dizisine dönüştürülmüş ve sayısal çözüm, yay uzunluk takibini kullanarak 

Newton’un yöntemiyle elde edilmiştir. Geliştirilen yöntem iki farklı sistem üzerine 

uygulanmıştır: bir toplanmış parametreli sistem ve bir sonlu elemanlar modeli. Bu 

sistemler kullanılarak çeşitli örnekler sunulmuş ve hibrit mod ile önerilen modal 
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süperpozisyon yönteminin hassaslık seviyesi ve hesaplama verimliliği, esas doğrusal 

sistemin modlarını kullanarak çözüme giden modal süperpozisyon yöntemininkilerle 

kıyaslanmıştır. 

Anahtar Sözcükler: Modal Süperpozisyon Yöntemi, Hibrit Mod Şekli, Doğrusal 

Olmayan Tireşimler, Tanımlayıcı Fonksiyon Yöntemi, İndirgenmiş Model 
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CHAPTER 1 

CHAPTER 

1. INTRODUCTION 

 

1.1. Nonlinearity in Structures 

 

Modal analysis is a well-established and widely used technique for the dynamic 

analysis of linear systems. It enables one to obtain dynamic characteristics of very 

large structures quite efficiently. However, its direct application to nonlinear systems 

is not possible. Therefore, there has been considerable effort to determine dynamic 

response of structures where nonlinear effects cannot be ignored. 

On the other hand, nonlinearity is an unavoidable phenomenon in the all applications 

of real life. Neglecting nonlinearity in structures may be acceptable if it does not 

cause drastic changes in dynamic behavior. However, there are frequent occurrences 

of nonlinearity that should be considered in the design phase of most of the 

engineering structure. For instance, friction at turbine blades, self-excited vibration 

phenomenon seen at brake squeal, ground resonance in helicopters, viscoelastic 

mounts, systems having gap, contacts and hardening nonlinearities.  

Deviation of system behavior from linearity is mostly caused by three nonlinear 

effects. 

The first one is geometric nonlinearities where the response of the system is under 

large deformations. The stiffness of the structure can differ according to the changing 

geometric configuration. Hardening phenomenon, which is also referred to as stress 

stiffening, is a widely seen example of this nonlinearity type. The system reacts with 

high stiffness at large deformation, whereas it exhibits low stiffness at relatively low 

displacement values. 
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Second type of nonlinearity is material nonlinearity. If a system includes an element 

showing nonlinear behavior such as rubber which has nonlinear stress-strain curve, 

its dynamic response is controlled by nonlinear effects.  

The last kind of nonlinearity is due to contacts. Close touch of two bodies leads to 

change in stiffness and/or damping. Dry friction is a very-well known nonlinearity of 

this type. 

These cases and further sources of nonlinear behavior cause systems to deviate 

significantly from linearity, which make the determination of dynamic characteristics 

troublesome, since nonlinear systems do not exhibit the properties of linear systems. 

The main distinctions of nonlinear systems from linear systems can be briefly 

summarized as follows: 

- The principle of superposition and proportionality do not hold. 

- Higher and lower harmonics appear. 

- Self-excited oscillations are possible where small initial conditions grow to a 

periodic limit cycle. 

- Chaotic response can be obtained by deterministic input. 

- More than one equilibrium state is possible. 

Modelling nonlinearities of real life applications is a challenging issue. In literature, 

simple nonlinear element models, which are shown in Figure 1, are used to represent 

nonlinearity. 
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Figure 1 Idealized forms of various types of nonlinearities [1] 
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1.2. Literature Survey 

 

The first attempts to determine response of nonlinear structures were all time-domain 

methods, in which the data is taken in the form of time series. Although such 

methods give reliable results and are relatively straightforward to apply for the 

dynamic response analysis of nonlinear multi degree of freedom (MDOF) systems 

[2-4], their application is restricted to small scale problems due to the significant 

amount of computational time required. Thus, the major effort has been spent to 

make time-domain methods for MDOF nonlinear systems computationally more 

efficient [5, 6]. Yet, time domain methods are still restricted to small scale problems. 

For large ordered nonlinear systems frequency domain methods were developed 

starting from 1980s, and still the major studies on the determination of steady state 

response of large ordered nonlinear systems to periodic excitation are the ones using 

different forms of harmonic balance method (HBM) which had been successfully 

applied to single degree of freedom systems long before [7]. 

In literature, various frequency domain solution methods, particularly to periodic 

external forcing, have been proposed in order to have accurate steady-state response 

with reduced computational effort. Earliest studies in harmonic response analysis of 

MDOF systems have been conducted by Menq et al. [8, 9], Setio et al. [10] and 

Budak and Özgüven [11, 12]. Menq et al. [8] developed receptance method, in which 

the number of nonlinear equations to be solved is reduced to a factor of the number 

of nonlinear elements present in the system by partitioning system degrees of 

freedom (DOFs) into linear and nonlinear DOFs. In [10], Setio et al. worked on the 

nonlinear mode superposition approach aiming to obtain a simple and rapid 

stationary solution which can be applied to real cases of large structures having 

nonlinear stiffness. Authors showed that truncation of infinite modal coordinates to 

only few lower modal coordinates can considerably reduce computational time. 

Budak and Özgüven [11, 12] proposed an approach in which different types of non-

linearities are represented by the same general formulation that enables one to 

express internal nonlinear force vector to write in a multiplication form. Tanrıkulu et 

al. [13] later generalized the approach presented in [12] by using describing functions 
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for the harmonic vibration analysis of MDOF nonlinear systems. Kuran and Özgüven 

[14] proposed a modal superposition method for nonlinear systems and they showed 

that using even one mode at the resonance region gives satisfactory results when 

modes are well separated and nonlinearity does not excite the higher modes of the 

linear system. Chen and Menq [15] also worked on prediction of the resonant 

response of frictionally constrained blade systems by using receptance method. 

Authors used free and constrained mode shapes in the determination of nonlinear 

system response in order to decrease the computational time further. Cigeroglu et al. 

[16, 17] proposed a modal superposition method for nonlinear forced response 

analysis of bladed disk systems, which decreases the number of nonlinear equations 

to be solved significantly compared to receptance method. Petrov [18] studied the 

effect of number of modes retained in the receptance method, and proposed a model 

reduction technique that allows the calculation of the high-accuracy FRF matrix and 

provides accurate forced response results over a wide frequency range. The nonlinear 

reduced order models presented in [19, 20] make the qualitative and quantitative 

analysis of nonlinear dynamical systems computationally faster and capture response 

amplitudes quite accurately. Jung et al. [21] and Tien et al. [22] presented bilinear 

amplitude approximation method for forced response prediction of nonlinear 

analysis. 

Recent studies on the use of HBM for MDOF nonlinear systems in different areas 

include the application for joints [23, 24], rotor/stator contacts [25], bladed disks 

[26], geometrically nonlinear beams [27] and plates [28]. In order to improve 

usability, performance and robustness, researchers tried to develop several types of 

HBM, including incremental HBM [29], multi-dimensional HBM [30], and the 

adaptive HBM [31]. Apart from HBM, the describing function method (DFM) 

proposed as one of the earliest studies on the harmonic vibration analysis of large 

ordered nonlinear systems [13], also provides a formulation which allows the 

nonlinear internal force vector to be expressed as a multiplication of the so-called 

nonlinearity matrix (which is a function of unknown response amplitude vector) with 

displacement vector. This representation makes it possible to handle nonlinear multi 

degree of freedom systems more easily in several dynamic analysis problems, such 

as in structural modification and dynamic coupling applications. 
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Moreover, Nonlinear Normal Mode (NNM) concept first proposed by Rosenberg 

[32] has received attention in further years [33-42], and recently quite a number of 

new studies have been carried out for the dynamic analysis of nonlinear MDOF 

systems by using NNM approach [43-48]. NNMs can provide effective bases for 

constructing reduced-order models of the dynamics of nonlinear oscillators. Touzé 

[47] showed that using just one NNM in the vicinity of the resonance region captures 

the dynamic behavior accurately. However, calculation of NNM of a MDOF requires 

a tedious work and is very expensive in terms of computational effort. Therefore, 

studies available in the literature that utilize NNM concept focus mostly on the 

analysis of systems with relatively small number of DOFs. 

 

1.3. Objective and Scope of Thesis 

 

Obtaining accurate response by spending less computational effort is a challenging 

issue for dynamic analysis of nonlinear systems having especially high number of 

degree of freedoms. In this thesis, a new modal superposition method is presented to 

improve the performance of capturing dynamic response for nonlinear structures. 

The method is developed specifically for the systems having nonlinearities where the 

stiffness of the system may take different limiting values. 

Hybrid mode shape concept is utilized to obtain system response. In this way, less 

number of modes in nonlinear response calculations is used, which enables us to 

reduce the number of nonlinear equations to be solved, and hence computational 

time. The proposed method is demonstrated on a lumped parameter model and on a 

representative finite element model by performing several case studies. 

For accuracy considerations, proposed modal superposition method with hybrid 

mode shapes is compared with the classical modal superposition method which 

utilizes the mode shapes of the original linear system. 
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1.4. Outline of the Thesis 

 

Chapter 2 reviews the dynamic response analysis of nonlinear systems under 

harmonic excitation. It explains mathematical formulation of nonlinear elements 

based on the describing function method. Classical modal superposition approach, 

which is used to obtain the nonlinear algebraic equations, is given. Lastly, Newton’s 

method with Arc-length continuation is introduced to solve the equations. 

Chapter 3 introduces a new concept for the determination of nonlinear system 

dynamic response. Firstly, limiting cases, which are the different linear systems for 

certain type of nonlinearities, is explained. These limiting cases provide different 

natural frequency and mode shape data. Hybrid mode shape concept is developed 

and explained using modal information for limiting cases. Lastly, a new modal 

superposition approach by using hybrid mode shapes is given. 

Chapter 4 deals with the validation of the proposed method. It is demonstrated on 

two different nonlinear systems. Firstly, it is applied on a lumped parameter model 

having different nonlinear elements. Secondly, dynamic response analysis of a 

realistic finite element model with the proposed method is given. Different case 

studies are performed for both models. Results obtained by using the proposed 

method are compared with those of the classical approach. It is observed from the 

case studies presented that hybrid mode shapes composed of proper combination of 

the modes of limiting linear systems provide satisfactory results by keeping the 

number of modes used in the solution at a minimum. 

Chapter 5 concludes the results obtained in this thesis, emphasis being on the 

contributions and improvements made. It also gives the suggestions for future work 

in order to enhance the method developed in this study. 
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CHAPTER 2 

 

2. DYNAMIC RESPONSE ANALYSIS OF NONLINEAR SYSTEMS 

 

2.1. Nonlinear Vibration Analysis Under Harmonic Excitation 

 

Equation of motion of a nonlinear structure under the action of a periodic external 

forcing can be given as follows 

 

    M x C x H x K x f x f        Ni t  ,  (2.1) 

 

where M , C , H  and K  represent the mass, viscous damping, structural damping, 

and stiffness matrices of the linear system, respectively.  f xN
 and  f t   are vectors 

of the internal nonlinear forcing and external excitation, respectively. Here, x  is the 

vector of displacements and dot denotes differentiation with respect to time and i  is 

the unit imaginary number.  

Response of a nonlinear system to periodic excitation in general can be periodic, 

quasi-periodic or chaotic [49]. However, most of the time response of a nonlinear 

system to periodic excitation can be assumed periodic, some examples of which can 

be seen in [21, 22, 50]. Since the focus of this study is to find the steady-state 

solutions of the nonlinear system, only periodic solutions which are of importance in 

the design of several mechanical systems are considered. If one is interested in the 

stability of the periodic solutions obtained, any method [51], such as Hill’s method 

[25], available in the literature can be used for this purpose. Therefore, external 

forcing and response vectors can be written as follows 

 
*

0

1

f f f


 
hN

im t

m

m

e 
, (2.2) 
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*

0

1

x x x


 
hN

im t

m

m

e 
, (2.3) 

 

where 
*

fm  and 
*

xm  are the thm  harmonic complex amplitude vectors of the external 

forcing and response, respectively. 0f  and 0x  are the bias components of the 

external forcing and nonlinear response vectors, which are real. hN  represents the 

total number of harmonics in the above expressions which is considered to be the 

same for both external forcing and response. 

Similarly, for periodic motion the internal nonlinear forcing vector can be written as 

 

 
*

,0 ,

1

f f f


 
pN

im t

N nl nl m

m

e 
, (2.4) 

 

where, ,0fnl  is the real bias amplitude vector and *

,fnl m
 is the 

thm  harmonic complex 

amplitude vector of the internal nonlinear forcing. 

 

2.2. Expression of Nonlinear Harmonics by Using Describing Function Method  

 

The nonlinear internal forcing vector,  f xN
, can be written as a matrix multiplied 

by displacement vector as 

 

         f x Δ x x Δ x Δ x x    N re imi , (2.5) 

 

if only a single harmonic is used. Here,  Δ x  is the displacement or velocity 

dependent complex nonlinearity matrix,  Δ xre
 and  Δ xim

 are the real and 

imaginary parts, respectively. Elements of the complex nonlinearity matrix can be 

obtained as follows [13] 

     and    Δ Δ



   kk

n

kk kj

j 1
j k

kj kj   , (2.6) 
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where kj  is the harmonic input describing function of a nonlinear element in the 

system and can be described as equivalent complex stiffness for the internal 

nonlinear force, 
kj

Nf  acting between the thk  and the 
thj  coordinates. Single 

harmonic describing function, kj  is given as follows [13] 

 

  
2

0
,     , t 

kj i

kjk

j

N

k

j

i
f eY

Y
d


    


, (2.7) 

 

where 

 

 
for  

for  






 


k j

kj

k

X X k j
Y

X k j
. (2.8) 

 

kX  is the complex displacement amplitude of the 
thk  degree of freedom. 

Substituting Eq.(2.5) into Eq.(2.1) 

 

      M x C x H Δ x K Δ x fim rei t              (2.9) 

 

Considering a single harmonic in the representation of the external forcing and 

response vectors given by Eqs. (2.2) and (2.3), the following set of nonlinear 

equations is obtained 

 

    2 * *
K Δ M H Δ C x f        re imi i    . (2.10) 

 

Since only a single harmonic representation is used, the subscript m  is dropped in 

Eq. (2.10). It can be seen from Eq. (2.9) that real part of the nonlinearity matrix 

changes the overall stiffness matrix of the system; whereas, the imaginary part 

modifies the overall structural damping matrix. 
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2.3. Modal Superposition Approach to Nonlinear Systems 

 

Using expansion theorem, response of the nonlinear system can be written in terms 

of its linear mode shapes as follows [10, 14] 

 

 
*

1

x Φ a


  
N

r

r

r

a  , (2.11) 

 

where Φ  is the mass normalized modal matrix of the linear system excluding the 

nonlinearities, a  is the complex vector of modal coefficients and N  is the number of 

modes used in the expansion. Substituting this equation in Eq. (2.10) and multiplying 

both sides by ΦT  from the left, the following set of nonlinear algebraic equation in 

terms of unknown modal coefficient vector is obtained 

 

    2 *
Ω Φ Δ Φ I Φ H Δ Φ Φ CΦ Φa f       

 
T T T T

re imi i    , (2.12) 

 

where Ω  is the matrix of squares of natural frequencies. In the expansion process, 

the number of modes of the linear system used is much less than the total DOFs of 

the system; therefore, the number of nonlinear equations defined by Eq. (2.12) is 

significantly reduced. Being different from the modal analysis of linear systems, here 

the solution of Eq. (2.12) requires iteration since nonlinearity matrix is response level 

dependent. It should be noted that multiple harmonics can be easily used in the 

modal superposition method where Eq. (2.12) is repeated for each harmonic by 

replacing   with p , where p  corresponds to the harmonic included in the 

solution. 
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2.4.  Solution of Nonlinear Algeabric Equations 

 

A set of n  nonlinear ordinary differential equations, Eq. (2.1), is firstly converted to 

a set of n  nonlinear complex algebraic equations, Eq. (2.12), for the nonlinear 

analysis explained above. The fundamental harmonic response of the structure can be 

determined by using Newton’s Method with Arc-length Continuation. 

The nonlinear algebraic equation set given in Eq. (2.12) can be written as a residual 

vector function as 

 

      2,R a Ω Φ Δ Φ I Φ H Δ Φ Φ C ΦaΦ f 0        
 

T T T T

re imi i     . (2.13) 

 

Eq. (2.13) can be expanded in Taylor Series around a  as 

 

 
2( , ) ( , ) ( , ) ( )R a a R a J a a O a        , (2.14) 

 

where J  is the Jacobian Matrix, and it can be calculated as 

 

 
( , )

( , )
R a

J a
a







 , (2.15) 

 

Neglecting higher order terms and taking ( )R a a 0   , at each frequency, k , an 

iterative solution is obtained by using 

 

 
1 1( ( , )) ( , )a a J a R a
   i i i i

k k k k k k  . (2.16) 

 

where a
i

k  
is the complex coefficient vector at 

thk  frequency k  and at 
thi  iteration, 

( , )J a
i

k k  and ( , )R a
i

k k  are the Jacobian Matrix and the residual function evaluated 

at a
i

k and k , respectively. 
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Convergence to correct solution in Newton’s Method is obtained if the given initial 

guess is sufficiently close to the actual solution. However, in nonlinear systems, there 

may be jump phenomena where the Jacobian becomes singular. Then, a new 

parameter, Arc-length parameter, may be added to the unknown vector in order to 

trace the solution in unstable region. This new path following parameter can be 

defined as the radius of a hypothetical n ‐dimensional sphere in which the next 

solution is searched. Since the number of unknowns increases by one with the 

addition of a new parameter, one more equation is needed to solve the system. This 

equation comes from the equation of the n -dimensional sphere centered at the 

previous converged solution point which can be expressed as 

 

 
2( ) sq q  i T i

k k , (2.17) 

 

where s  is the radius of the arc length. Here, q
i

k  is the new vector of unknowns at 

the 
thi  solution point which is given as 

 

 
a

q
 

  
 

i

i k

k i

k
. (2.18) 

 

and 

 

 
1

Δq q q
 i i i

k k k , (2.19) 

 

Therefore the new equation added to the system can be written as 

 

 
2( , ) ( ) s 0h a q q     i i i T i

k k k k , (2.20) 

 

Therefore, Newton’s iteration for the new system of equations becomes 

 1

,

( , ) ( , )

( , )

( , ) ( , ) ( , )

a

R a R a

R aa
q q

h a h a h a

a



  
    

     
    

    i i
k k

i i

i i k k

k k i i

k k



 



  



. (2.21) 
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where the last row of the new Jacobian matrix can be obtained as follows 

 

 
,

( , ) ( , )
2

a

h a h a
q

a

  
       i i

k k

T
i

k



 


. (2.22) 

 

During the solution procedure, first order estimators, which are calculated by using 

the Jacobian inverse found at the previously converged solution, are used. Detailed 

information on Newton’s Method with Arc-length Continuation can be found in [25, 

52, 53]. 



16 

  



17 

CHAPTER 3 

 

3. THEORY OF A NEW MODAL TECHNIQUE FOR DYNAMIC 

ANALYSIS OF NONLINEAR SYSTEMS 

 

3.1.  Limiting Cases 

 

For certain type of nonlinear elements, the nonlinearity matrix may become constant 

at the limiting cases where the displacement amplitudes are smaller or greater than a 

certain value. This occurs if the nonlinearity is piecewise linear as in the case of gap 

nonlinearity or piecewise linear stiffness nonlinearity etc., or if the nonlinearity 

saturates as in the case of dry friction nonlinearity. In such cases, since the 

nonlinearity matrices do not depend on the displacement amplitude, new linear 

systems can be defined as follows 

 

 

   

   

1 1  1

 

M x C x H Δ x K x f

M x C x H Δ x K x f
l

im

im l

i t Condition

i t Condition l

        

        

, (3.1) 

 

 ,K K Δ l re l , (3.2) 

 

where K l  is the stiffness matrix of the 
thl  limiting case. In these equations, ,Δre l  and 

,lΔim  are the real and imaginary parts of the constant nonlinearity matrix for the 
thl  

limiting case. For the sake of simplicity, the number of limiting cases considered in 

the rest of the thesis is taken as two. However, proposed method is applicable to 

systems with limiting cases more than two. Utilizing these new stiffness matrices, a 

new eigenvalue problem can be defined for each case as follows 

 



18 

   ,    1,2K M x 0   l l l l . (3.3) 

 

Solution of this eigenvalue problem gives eigenvalues ,  1,2,...,
il

i n , which are the 

squares of the natural frequencies, and mass normalized modal matrix Φl  of the 
thl  

limiting case. 

For better illustration of limiting cases, consider a two degree of freedom (DOF) 

nonlinear system with a gap element as shown Figure 2(a). When the nonlinear 

element is never in contact with the mass as shown in Figure 2(b) the first limiting 

case is obtained. In this case, the total stiffness between the ground and the first mass 

becomes k  .Solution of the eigenvalue problem for this case gives the eigenvalues 

 
1 21 1

T

   and modal vectors 1Φ  for the first limiting case, respectively. Similarly, 

when the nonlinear element is always in contact with the mass as shown in Figure 

2(c), in the second limiting case, the total stiffness between the ground and the first 

mass becomes  gk k . Eigenvalues and modal vectors obtained for the second case 

are  
1 22 2

T

   and 2Φ  , respectively. 

 

 

Figure 2 A Nonlinear System with Gap Nonlinearity 

 

3.2. Hybrid Mode Shape Concept 

 

The number of linear system modes required in modal superposition method depends 

on how good the linear modes span the nonlinear response space. If the deviation of 

the nonlinear system from the linearized system is small, the number of mode shapes 

(a) (b) (c) 

𝑘 

𝑘 𝑘 
𝑘𝑔 

 𝑚 𝑚 

𝑥1 𝑥2 

𝑘 
𝑚 𝑚 

𝑥1 𝑥2 

𝑘 + 𝑘𝑔 𝑘 
𝑚 𝑚 

𝑥1 𝑥2 
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required can be minimized. For systems with piecewise nonlinear elements such as 

gap nonlinearity, piecewise linear stiffness, etc. and/or saturating nonlinear elements 

such as dry friction nonlinearity, the nonlinearity matrix obtained by DFM 

approaches to a limiting case. Therefore, for such cases, depending on the response 

amplitude it is possible to define different linear systems, mode shapes of which span 

the nonlinear response space better than the mode shapes of the linear system 

obtained by disregarding nonlinear elements. In this thesis, these linear systems are 

referred to as limiting cases or limiting linear cases. It should be noted that, when the 

mode shapes of the linear system used in the modal superposition approach deviate 

less from the nonlinear system modes, i.e. when the mode shape vectors span the 

nonlinear response space better, less number of modes is required to obtain an 

accurate representation of the response of the nonlinear system.  This is in agreement 

with the approach used by Cigeroglu and Özgüven [50]. In [50], authors decompose 

the nonlinear microslip friction element into two parts: a linear stiffness and a 

nonlinear macroslip element. Then they include the linear stiffness part into the 

linear system, which improves the convergence property of the nonlinear solution. 

For the sake of simplicity, only two limiting cases are considered in the rest of the 

thesis. However, the method proposed here is applicable to cases with more than two 

limiting cases as well.  

For a nonlinear system with two limiting cases, the nonlinear equation of motion 

defined by Eq. (2.9) can be written in the following forms 

 

  1 1 1M x C x H x K x Δ x fi t           , (3.4) 

 

  2 2 2M x C x H x K x Δ x fi t            , (3.5) 

 

where 

 

 1 , 1 1 , 1 2 , 2 2 , 2  ,      ,      ,    K K Δ H H Δ K K Δ H H Δ       re l im l re l im l , (3.6) 

 

 1 , 1 , 1 2 , 2 , 2 1 1 2 2,      ,      ,      Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δl re l im l l re l im l l li i        . (3.7) 
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, ,Δ Δ Δlj re lj im lji   is the complex nonlinearity matrix for the 
thj  limiting case, which 

is constant and does not change with the response. It should be noted that since 

1 1 1 2 2 2H K Δ H K Δ H K Δi i i        , Eq. (3.4) and Eq.(3.5) are identical to 

each other. If 1Δ  is small, less number of mode shapes of limiting case 1 is required 

to approximate the nonlinear dynamics compared to the same accuracy of dynamic 

response obtained by using mode shapes of limiting case 2. It should be noted that at 

the limit where 1Δ 0 , a linear system is obtained and the lowest possible number of 

modes of limiting case 1 can be used to approximate the system response. Similarly, 

if 2Δ  is small, less number of modes of limiting case 2 is required to represent the 

nonlinear response with the same accuracy compared to limiting case 1 which is in 

agreement with the findings of Chen and Menq [15]. However, if the complex 

nonlinearity matrix is not close to any of the limiting cases, the number of modes 

used in the process can be decreased by using a linear combination of the mode 

shapes of the limiting cases and, in this work, it is referred to as hybrid mode shape 

and defined as follows 

 

  2 11Φ Φ Φh     . (3.8) 

 

Here Φh  is the hybrid modal matrix, 1Φ  and 2Φ  are the mass normalized modal 

matrices of the limiting case 1 and 2, respectively and   is a weighting factor 

changing between 0 and 1. If 0  , only mode shapes of limiting case 1 are used 

and if 1  , only the mode shapes of limiting case 2 are used. Proper selection of   

is the key to decrease the number of hybrid modes required in the solution of the 

nonlinear system. It can be seen from Eq. (2.7) that describing function,   , is a 

complex quantity and can be decomposed into real and imaginary parts as  

 

  re imi   . (3.9) 

 

During the solution process, the numerical value of describing function for each 

nonlinearity is recalculated at every iteration step. Comparing the real part of the 
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describing function, i.e. equivalent stiffness, with respect to its limiting value, this 

weighting factor can be defined as follows 

 

 
1




 i

i

Nl
re

i k


 , (3.10) 

 

where 0 1  , ik 
 is the maximum limiting value of the equivalent stiffness of the 

thi  nonlinear element and lN  is the total number of nonlinear elements attached to 

the interested DOF. Here, it is assumed that the maximum limiting value of the 

equivalent stiffness occurs for limiting case 2, and the minimum value occurs for 

limiting case 1. It is important to note that even though hybrid mode shape concept is 

proposed for piecewise linear or saturated nonlinearities for which equivalent 

stiffness converges to a constant value, depending on the vibration amplitude, it can 

as well be defined for any nonlinearity by considering a maximum vibration 

amplitude that may occur in the analysis as the limiting case. For instance, 

nonlinearities showing exponential behavior with respect to displacement or cubic 

stiffness may be given as examples for such cases. Regarding these types of 

nonlinearities, maximum vibration amplitude can be roughly anticipated by 

monitoring linear response of the system before starting nonlinear analysis, and then 

a limiting linear case can be defined by addition of the approximated equivalent 

stiffness of the nonlinearities, i.e. describing functions, for the anticipated response 

of the system. After the construction of limiting cases, hybrid mode shapes are 

determined and proposed approach can be applied for the solution of the nonlinear 

system. 
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3.3.  New Modal Superposition Method Using Hybrid Mode Shapes 

 

Response of a nonlinear system can be written in terms of hybrid mode shapes as 

 

   Φ ax  h

i tt e  . (3.11) 

 

Substituting Eq. (3.11) into Eq. (2.9) and pre-multiply by both sides by Φ
T

h  the 

following equation is obtained 

 

 
   

2

]

[ Φ Φ Φ Φ

Φ Φ Φ Φ Φ

M C

K H Δ a a f





   

   

T T

T

h h h h

h h h h

T T

h

i

i

 
,  (3.12) 

 

where a  is the complex vector of modal coefficients. In this nonlinear equation set, 

the unknowns are the modal coefficients given by vector a . In case multiple 

harmonics are used in HBM, Eq. (3.12) is repeated for each harmonic by simply 

replacing   with p  as described in Section 2.3. It should be noted that hybrid 

mode shapes are not orthogonal with respect to mass and stiffness matrices of the 

original linear system; hence, Eq. (3.12) contains system matrices which do not 

appear in Eq. (2.12). If we expand the first term in Eq. (3.12), the following equation 

is obtained 

 

 
 

   

2

2 2

2 1

1

2

2

1

1

1

1 1

Φ MΦ Φ MΦ Φ MΦ

Φ MΦ Φ MΦ

   

  









T T

h h

T T

T  

   
  (3.13) 

 

Since both limiting linear system modal matrices, i.e. 1Φ  and 2Φ ,  are orthogonal 

with respect to the mass matrix, 1 1Φ MΦ
T

 and 2 2Φ MΦ
T

 are equal to identity matrix. 

Moreover, it should be noted that for a self adjoint system, mass matrix is symmetric 

and therefore, 2 1Φ MΦ
T

 is equal to the transpose of 21Φ MΦ
T

. Therefore, final form 

of Eq. (3.13) is obtained as follows 
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      
2 2

1 12 21 1Φ MΦ I Φ MΦ Φ MΦ       
    

T
T TT

h h     . (3.14) 

 

The same procedure can also be applied to the term that contains the stiffness matrix 

in Eq. (3.13) which gives the following result as  

 

 
   

   

2 2

2

1

1 2

2 2

2

1

1

1

Φ KΦ Ω Ω Φ Φ

Φ KΦ KΦ

ΔK

Φ

   

 
  

 

 

T

T
T T

T

h h  

 
, (3.15) 

 

where 2 1ΔK K K  , 1Ω  and 2Ω  are diagonal matrices composed of squares of 

natural frequencies of the first and the second limiting linear cases, respectively. 

It can be seen from Eqs. (3.14) and (3.15) that system matrices still appear in the 

equation. This might be a problem for realistic finite element models, since very 

large matrices need to be stored and used in the calculations. In order to overcome 

this problem, we define a square matrix Q  such that the following equation is 

satisfied 

 

 12Φ QΦ  . (3.16) 

 

Pre-multiplying both sides of the Eq. (3.16) with the pseudo-inverse of 1Φ , the 

following result is obtained 

 

 21 1 1Φ Φ Φ QΦ
   . (3.17) 

 

If all modes of the first limiting linear system are used, 1 1Φ Φ


 results in identity 

matrix and hence, Q  is obtained as follows 

 

 1 2Q Φ Φ
 . (3.18) 
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It should be noted that contribution of higher modes to system response at lower 

frequencies is negligible and in practical problems only a limited number of mode 

shapes are used in modal superposition approach. This results in a significant 

decrease in the number of nonlinear equations to be solved by omitting the effect of 

higher modes. Therefore, Eq. (3.18) can still be used for the systems having large 

number of DOFs. Substituting Eq. (3.18) into Eq. (3.16) the following result is 

obtained 

 

 12 21Φ ΦΦ Φ
 . (3.19) 

 

By substituting Eq. (3.19) and knowing that 1Φ  is orthogonal with respect to mass 

and stiffness matrices, terms that contain mass and stiffness matrix in Eq. (3.12) can 

be eliminated as follows 

 

 1 1 1 1 12 2 2Φ MΦ Φ MΦΦ Φ Φ Φ
  T T

  (3.20) 

 

 1 1 1 1 12 2 1 2Φ KΦ Φ KΦΦ Φ Φ ΦΩ
  T T

  (3.21) 

 

Substituting Eqs. (3.20) and (3.21) into Eqs. (3.14) and (3.15), mass and stiffness 

matrices in the set of nonlinear algebraic equations given by Eq. (3.12) are 

eliminated and the following final form is obtained 

 

    2
M a C a K H a Φ Δ a Φ a Φ f         T T

h h hi i    (3.22) 

 

where 

 

      
2

212

2

11 1M Φ MΦ I Φ Φ Φ Φ        
 

  
  

T
T

h h       (3.23) 

 
   

   

2 2

2

2 2

1 2

1 1 1 1 2

1

1

K Φ KΦ Ω Ω Φ Φ

ΩΦ Φ Φ

ΔK

ΩΦ 

      

   
  

T

h

T

T

h  

 
  (3.24) 
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 C Φ CΦ Φ MΦ Φ KΦ    T T T

h h h h h h    (3.25) 

 H Φ Φ ΦKHΦ  T T

h h h h   (3.26) 

 

Proportional damping is assumed in this study, where   and   are constants of 

proportionality of mass and stiffness matrices, respectively, and   is the loss factor. 

Set of nonlinear algebraic equations obtained in Eq. (3.22) is going to be solved for 

the complex vector of modal coefficients a  by using Newton’s method with arc-

length continuation as explained in Section 2.4. The number of nonlinear algebraic 

equation is determined by the number of mode shape used in the expansion theorem 

for the single harmonic solution as shown in Eq. (3.11). Hence, the total number of 

nonlinear algebraic equations to be solved can be decreased further by using hybrid 

mode shapes, compared to using modal vectors of the corresponding linear system. 

Then, response amplitude of nonlinear system is obtained with multiplication of 

hybrid mode shapes and modal coefficients. 

It should be noted that proposed method is applicable to any system, being 

independent from whether there exist weak or strong modal interactions. Similar to 

standard modal superposition approach, for strong modal interaction the number of 

mode shapes used increases. However, since the hybrid mode shapes span the 

nonlinear response space better than the linear mode shapes, the number of hybrid 

mode shapes used is always smaller than the number of linear mode shapes used.  
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CHAPTER 4 

 

4. CASE STUDIES 

 

In this section, the application of the method proposed is presented using several case 

studies with different nonlinearities. In the case studies presented, piecewise linear 

stiffness, gap and dry friction nonlinearities (Figure 3) are considered which show 

limiting behaviors. However, in order to show that the method can be easily applied 

to other types of nonlinearities as described in the previous section, a case with cubic 

stiffness is presented as well. Moreover, direct time integration of the nonlinear 

equations by employing equivalent viscous damping in the system for the first case 

study is performed which validates the use of single harmonic term in the harmonic 

balance method. Describing function expressions for nonlinearities considered in the 

thesis are given in the Appendix. 

Two different systems are used in the case studies presented. The first system is a 20-

DOF lumped parameter model; whereas, the second system is a finite element model 

of a realistic structure with 5400 DOFs.  

 

 

Figure 3 Internal Nonlinear Force of Nonlinearities with respect to Displacement 
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4.1. Lumped Parameter Model 

The 20-DOF linear lumped parameter system used in the following case studies is 

shown in Figure 4. Parameters used in the model are          ⁄    

                ⁄ . 

 

 

Figure 4 20-DOF Linear System 

 

The system is excited by two different external forces applied to the 6
th

 DOF and the 

12
th

 DOF which are defined as  15sin t N and  5sin 2t  N, respectively. 

Four case studies are presented by using this lumped parameter system. Two 

nonlinear elements are inserted into the linear system in the first three case studies 

and one nonlinear element is attached for the last case study. The nonlinearity types 

and their locations are given in Table 1. 

 

Table 1 Nonlinear Element Types Used in the Case Studies 

Nonlinearity Type Quantity 
Insertion 

DOFs 
Properties 

Piecewise Linear 

Stiffness 
2 

7-ground, 

11-ground 

 1        ⁄   2         ⁄  

          

Dry Friction 2 
5-10, 

10-ground 

         ⁄            ⁄  

  1       2      

  1        2      

  1        2      

Gap and Dry 

Friction 
1, 1 

11-ground, 

1-ground 

         ⁄            

          ⁄         

Cubic Stiffness 1 12-ground      
      

 

𝑘 

 
𝑘 

 

𝑘 

 

𝑘 

 

        

𝑥19 𝑥20 𝑥2 𝑥1 

𝑚 𝑚 𝑚 𝑚 
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4.1.1.  Case Study 1: Piecewise Linear Stiffness Element 
 

For piecewise nonlinear element, two limiting equivalent stiffness values can be 

defined. The first one occurs when the vibration amplitude is smaller than the 

breakaway amplitude (limiting case 1) resulting to an equivalent stiffness of  1 and 

the second one occurs when the vibration amplitude is very large (limiting case 2) 

such that the region with stiffness  1 is relatively very small; hence, the nonlinear 

element acts almost as a linear element of stiffness  2 (see Figure 3). Therefore, 

adding these equivalent stiffness values to the original system, it is possible to define 

two additional linear systems. In order to obtain mode shapes of the limiting cases, 

mathematical expression of describing function is also needed which is given in the 

Appendix. After solving the eigenvalue problems, hybrid mode shapes can be 

calculated by using Eq. (3.8). 

Figure 5 shows the response of the 9
th

 DOF of the linear system (i.e. system with no 

nonlinear element is connected) and that of the nonlinear system using all modal 

information (i.e. without applying a reduction). It is clearly seen that nonlinearity 

strongly affects the response at the first and the second resonance regions where 

hardening effects and jump phenomena are observed around the resonance frequency 

values. 

In Figure 6a, Figure 6b and Figure 6c, responses of the 9
th

 DOF around the first 

resonance region are given by using modes of the linear system corresponding to 

limiting case 1, limiting case 2, and hybrid mode shapes, respectively. It is observed 

from the results obtained that using even a single hybrid mode shape gives very 

accurate results throughout the frequency range considered. Similar accuracy can be 

obtained by using 12 modes of limiting case 1 and 4 modes of limiting case 2. It can 

be seen from the results that, for this particular case, using the modes of limiting case 

2 performs much better than using the modes of limiting case 1; however, modal 

superposition method utilizing hybrid mode shapes significantly outperforms both 

approaches.  
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Figure 5 Displacement amplitude of the 9
th

 DOF with respect to frequency 
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Figure 6 Effect of modes used on the displacement amplitude of the 9

th
 DOF around 

the first resonance 
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The second resonance region is also shown in Figure 7a, Figure 7b and Figure 7c. 

Using a single hybrid mode shape again gives very accurate results compared to 

traditional modal superposition approach. It should be noted that, since similar 

results are also obtained for other DOFs, only the response of the 9
th

 DOF is 

presented here. 

In order to quantify errors for the comparison of the results, three different error 

criteria are defined. The first one is integral error, which is defined as follows 

   
1 2

2
  

f

i
obt excIntegral Error x x d




 , (4.1) 

 

where obtx , excx , i  and f  represent the displacement amplitude by using limited 

number of mode shapes, exact nonlinear displacement amplitude, initial and final 

frequencies of the frequency range of interest. Secondly, amplitude error, which is 

the error between the maximum displacement amplitude obtained by using limited 

number of mode shapes and the exact maximum displacement amplitude in the 

frequency range of interest is defined. Mathematically it is given as 

 max max

max

10 0


 
exc obt

exc

x x
Amplitude Error

x
. (4.2) 

 

The last one is frequency error, which is the error between the resonance frequency 

values corresponding to the maximum displacement amplitude obtained in each 

approach. It is expressed as follows 

 max max

max

10 0


 
exc obt

exc
Frequency Error

 


. (4.3) 

 

All errors calculated for Case Study 1 are given in Table 2 and Table 3. Performance 

of hybrid mode shapes observed in Figure 6 and Figure 7 can be quantified from the 

error values given in Table 2 and Table 3 which show the capability of the modal 

superposition method with hybrid mode shapes. 
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Figure 7 Effect of modes used on the displacement amplitude of the 9
th

 DOF around 

the second resonance 

 

Table 2 Error analysis for the 9
th

 DOF around the first resonance 

Number of Mode Shapes Integral Error Amplitude Error (%) Frequency Error (%) 

LC1 – 1 Mode 61.3 128 9.7 

LC1 – 3 Modes 17.2 4.7 1.7 

LC1 – 6 Modes 15.7 6.3 1.4 

LC1 – 12 Modes 8.2 1.8 0.4 

LC2 – 1 Mode 19.5 28.6 1.0 

LC2 – 2 Modes 7.0 7.1 0.2 

LC2 – 3 Modes 4.9 2.5 0.2 

LC2 – 4 Modes 4.7 0.7 0.1 

1 Hybrid Mode 4.7 1.9 0.2 
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Table 3 Error analysis for the 9
th

 DOF around the second resonance 

Number of Mode Shapes Integral Error Amplitude Error (%) Frequency Error (%) 

LC1 – 1 Mode 6.0 27.2 0.2 

LC1 – 2 Modes 10.2 21.0 1.8 

LC1 – 3 Modes 9.9 18.3 1.9 

LC1 – 4 Modes 5.4 1.2 1.1 

LC2 – 1 Mode 5.3 8.9 0.1 

LC2 – 2 Modes 1.1 5.7 0.03 

LC2 – 3 Modes 1.0 3.6 0.05 

LC2 – 4 Modes 0.7 0.3 0.05 

1 Hybrid Mode 3.3 0.9 0.00009 

2 Hybrid Modes 0.8 0.5 0.06 

 

Apart from frequency domain solutions, a time-domain numerical integration of the 

equations of motion is performed to demonstrate the validity of the harmonic 

response assumption. Moreover, amplitude values obtained in frequency domain can 

also be verified with time-domain solution by calculating dynamic response at 

several excitation frequency values. It should be noted that in the case studies 

presented in this thesis proportional structural damping is assumed, and therefore 

structural damping values need to be converted to equivalent forms of proportional 

viscous damping to perform direct time integration. 

In the lumped parameter model with piecewise linear stiffness nonlinearity, the 

structural damping in the system is replaced with equivalent viscous damping. The 

displacement time response of the 9
th

 DOF is given in Figure 8 and Figure 9, which 

show that the system response is harmonic. The solution is obtained by using all of 

the modes of the system in order to obtain exact solution. The frequency of the 

excitation force is 20.5 Hz corresponding to resonance. Moreover, in Figure 10 the 

response amplitude obtained by time integration and single-harmonic HBM are 

compared. It is observed that the response of the system is harmonic and using a 

single-harmonic term it can be captured accurately for the case study considered.  
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Figure 8 Displacement time response of 9
th

 DOF 

 

Figure 9 Displacement time response of 9
th

 DOF 



37 

 

Figure 10 Displacement amplitude of the 9
th

 DOF with respect to frequency 

 

The main aim of this thesis is to develop a method which uses less number of mode 

shapes than the number of linear mode shapes used in the standard modal 

superposition approach for the determination of periodic solutions of a nonlinear 

system. Therefore, it is assumed that the response of the nonlinear system is periodic. 

In the case studies, single-harmonic HBM is used; however, if single harmonic does 

not give accurate result multiple harmonics can be used. Either single-harmonic or 

multi-harmonics are used in the solution; the number of hybrid modes used in the 

modal superposition method is significantly less than the linear ones. 
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4.1.2. Case Study 2: Dry Friction Element 

 

For dry friction nonlinearity, two limiting cases can be defined. For very large 

displacement amplitudes, since majority of a cycle is covered by slip state, limiting 

equivalent stiffness due to friction is zero which makes the system equivalent to the 

linear system without any dry friction damper. This is referred to as limiting case 1. 

On the other hand, if the displacement amplitude is very small, dry friction element 

is always in stick state which results in a limiting equivalent stiffness of    and this 

case is considered as limiting case 2. 

Response of the 10
th

 DOF around the resonance frequency is given in Figure 11. It 

can be seen from the figure that dry friction element reduces the vibration amplitude 

of the linear system significantly; hence, it is working effectively where the damper 

experiences both stick and slip regions in one cycle and its motion cannot be 

captured by modes of either of the limiting cases alone. In Figure 12a, Figure 12b, 

and Figure 12c, response of the 10
th

 DOF is calculated by using modes of limiting 

case 1, limiting case 2 and hybrid mode shapes. It is seen from the displacement 

results obtained and the error values given in Table 4 that using only 2 hybrid mode 

shapes, very accurate results are obtained compared to the results obtained by using 4 

modes of limiting case 1 and 16 modes of limiting case 2. It should be also noted 

that, since only two hybrid mode shapes are used, the number of nonlinear equations 

solved is reduced significantly which has a drastic effect in the calculation times as 

well, in addition to improved accuracy. Similar results are also obtained for the other 

resonance regions and DOFs. 
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Figure 11 Displacement amplitudes of the 10
th

 DOF vs. frequency 
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Figure 12 Effect of modes used on the displacement amplitude of the 10

th
 DOF 

around the first resonance for the first slip force values 
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Table 4 Error analysis for the 10
th

 DOF around the first resonance for the first slip 

force values 

Number of Mode Shapes Integral Error Amplitude Error (%) Frequency Error (%) 

LC1 – 1 Mode 9.6 31.7 4.7 

LC1 – 2 Modes 5.4 19.5 2.4 

LC1 – 3 Modes 1.9 6.5 0.6 

LC1 – 4 Modes 1.9 6.7 0.6 

LC2 – 1 Mode 13.7 2.1 9.4 

LC2 – 4 Modes 9.5 26.8 5.4 

LC2 – 8 Modes 6.2 8.3 3.4 

LC2 – 16 Modes 2.4 4.9 1.0 

1 Hybrid Mode 4.4 19.1 2.0 

2 Hybrid Modes 1.9 0.6 0.6 

 

Additionally, the previous case study is repeated for two different slip force values in 

order to show how the number of modes retained in the modal superposition method 

changes depending on the parameters of the nonlinear elements. The results obtained 

and the error values calculated for these cases are given in Figure 13 and Table 5, 

and in Figure 14 and Table 6, respectively. Studying the results presented in the 

previous and these additional cases, it can be concluded that, as the slip force 

increases, the solution approaches to the fully stuck linear response, in which the 

number of mode shapes of the original linear system needs to be increased from 4 to 

8. On the other hand, less number of modes of the second limiting case, i.e. linear 

system including contact stiffness of the friction damper, is required to obtain the 

same accuracy, where the number of modes retained decreases from 16 to 4. This is 

an expected result since the nonlinear response is bounded by the two linear 

responses corresponding to the two limiting cases. It should be noted that if linear 

modes are used in the modal superposition method, the number of modes retained 

changes as the parameters of the nonlinearities vary; whereas for all cases, only 2 

hybrid mode shapes are always sufficient to obtain similar accuracy, and this number 

is significantly less than the number of the linear modes used in the three cases 

presented. 
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Figure 13 Effect of modes used on the displacement amplitude of the 10
th

 DOF 

around the first resonance for the second slip force values 

 

Table 5 Error analysis for the 10
th

 DOF around the first resonance for the second slip 

force values 

Number of Mode Shapes Integral Error Amplitude Error (%) Frequency Error (%) 

LC1 – 6 Modes 1.3 1.9 0.6 

LC2 – 10 Modes 0.8 4.0 0.4 

2 Hybrid Modes 1.5 2.5 0.4 
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Figure 14 Effect of modes used on the displacement amplitude of the 10
th

 DOF 

around the first resonance for the third slip force values 

 

Table 6 Error analysis for the 10
th

 DOF around the first resonance for the third slip 

force values 

Number of Mode Shapes Integral Error Amplitude Error (%) Frequency Error (%) 

LC1 – 8 Modes 1.5 0.3 0.9 

LC2 – 4 Modes 0.8 4.2 0.5 

2 Hybrid Modes 1.2 2.6 0.2 

 

In order to observe how the weighting factor   changes as a function of frequency, 

its variation is given in Figure 15 for the three different slip loads used in the case 

studies. As explained previously, limiting case 1 is equivalent to linear system with 

no nonlinear element which corresponds to the case where the displacement 

amplitudes are high and the majority of a cycle is governed by slip state. Therefore, 

for such cases weighting factor should be equal to zero, since the modes of limiting 

case 1 are the exact basis for the response. On the other hand, limiting case 2 is the 
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case where dry friction element sticks, which occurs at small displacement 

amplitudes. For such cases, since the modes of limiting case 2 are the exact basis for 

the response, weighting factor should be equal to 1. For any other nonlinear case, the 

weighting factor takes a value in between 0 to 1. It can be seen from Figure 15 that 

weighting factor equals to 1 away from the resonance region, since the displacement 

amplitude is small as a result of which nonlinear element is in fully stuck state. 

However, when the response amplitude gets larger, slip starts and the weighting 

factor starts to decrease from 1, and it takes its minimum value at the maximum 

displacement amplitude value at resonance frequency. Moreover, since percentage of 

a cycle governed by slip state increases as the slip force decreases, the weighting 

factor becomes smaller and it deviates from 1 in a wider frequency range. 

 

Figure 15 Variation of weighting factor   with respect to frequency 

 

4.1.3. Case Study 3: Gap and Dry Friction Elements Together 
 

In this case study, gap and dry friction nonlinear elements are used simultaneously. 

Here, it is specifically intended to increase the nonlinear effect in the system by 

coupling different types of nonlinearities. As a result of this, it becomes very hard to 
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capture the nonlinear response by using small number of the modes. In this case, 

there exist two limiting cases. The first one is the original linear system in which the 

limiting equivalent stiffness is zero, i.e. no nonlinear element exists in the system. On 

the other hand, limiting case 2 corresponds to the case where the effect of both 

contact stiffness of the dry friction and stiffness element of gap element are taken 

into account. 

In Figure 16, nonlinear response of the 12
th

 DOF is given. The strong nonlinear 

effects present in the system can clearly be seen in this figure. Figure 17a, Figure 17b 

and Figure 17c show the response of the same DOF calculated by using modes of 

limiting case 1, modes of limiting case 2 and hybrid mode shapes. It is seen that 

utilizing only a single hybrid mode shape gives very accurate results. In order to 

obtain similar accuracy 12 modes of limiting case 2 are required in the modal 

superposition approach, and the nonlinear dynamics cannot be captured accurately 

even using 12 modes of limiting case 1. Error values in terms of each error criterion 

are given in Table 7 which clearly shows that utilizing a single hybrid mode shape 

outperforms the use of 12 modes of both limiting cases. Moreover, in addition to the 

error values, computational time required by each method is given in the final 

column of Table 7. The analyses are performed on a computer with Intel(R) Xeon(R) 

CPU E5-1620 v2 @3.70 GHz processor, 16GB or RAM and 64-bit operating system. 

Analyses are repeated five times and average of these five calculations is recorded as 

the computational time. It can be seen that the computational time increases as the 

number of mode shapes used in the modal superposition approach increases, as 

expected. But the increase in the computational time is more than the increase in the 

number of nonlinear equations, due to the quadratic increase in the memory 

requirements, Jacobian matrix evaluations and matrix calculations required in the 

solution process. This increase in computational time becomes more drastic if 

multiple harmonics are used in the calculations. For this particular case, modal 

superposition method with hybrid mode shapes decreased the computational time 

required approximately 85%. 
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Figure 16 Displacement amplitudes of the 12
th

 DOF vs. frequency 
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Figure 17 Effect of number of modes used on the displacement amplitude of the 12

th
 

DOF around the first resonance 
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Table 7 Error analysis for the 12
th

 DOF around the first resonance 

Number of  

Mode Shapes 

Integral  

Error 

Amplitude  

Error (%) 

Frequency  

Error (%) 

Computational 

Time [s] 

Exact Solution - - - 18.6 

LC1 – 1 Mode 41.5 6.7 2.7 1.49 

LC1 – 3 Modes 25.4 7.8 1.0 2.55 

LC1 – 6 Modes 20.3 2.7 0.7 4.21 

LC1 – 12 Modes 11.8 2.1 0.2 10.26 

LC2 – 1 Mode 40.6 21.5 2.3 1.16 

LC2 – 3 Modes 32.0 8.1 1.6 2.23 

LC2 – 6 Modes 23.3 7.0 0.9 4.07 

LC2 – 12 Modes 15.5 0.5 0.4 10.11 

1 Hybrid Mode 8.2 0.7 0.05 1.53 

 

4.1.4. Case Study 4: Cubic Stiffness Element 
 

In this case study, cubic stiffness nonlinearity, which does not possess limiting or 

saturating behavior, is used in order to demonstrate the applicability of the proposed 

method for nonlinearities for which a limiting system cannot be defined physically. It 

should be noted that as the displacement amplitude increases, the nonlinear stiffness 

does not show a saturating behavior for cubic stiffness. However, the response of the 

nonlinear system is limited for a case depending on the forcing amplitude and 

frequency range of interest. Hence, even though the equivalent stiffness is an 

unbounded function of displacement amplitude, since the amplitude is bounded so as 

the equivalent stiffness associated with the nonlinearity. Therefore, if the maximum 

displacement amplitude can be estimated, the second limiting case can be defined for 

these types of nonlinearities. For cubic stiffness, the nonlinear internal force and the 

corresponding describing function for single harmonic input is given as 

 3 23
,    

4
N c cf k x k A   . (4.4) 

where A  is the amplitude of the single harmonic motion. Describing function given 

in Eq. (4.4) is the equivalent stiffness of the cubic stiffness nonlinearity and if the 

maximum displacement amplitude can be estimated roughly, the second limiting case 

can be obtained by adding this equivalent stiffness to the original linear system. In 
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this case study, two different values of maximum displacement amplitude are 

considered. In one of them the maximum amplitude of the exact nonlinear solution, 

i.e. 27.5mm, is used and in the second one the maximum amplitude of the linear 

system, i.e. 35mm, is used to determine the mode shapes of limiting case 2. The 

results obtained for this case study is given in Figure 18. It can be seen from the 

results that using limiting case 2 obtained from the exact nonlinear maximum 

amplitude gives very accurate results. A single hybrid mode is sufficient to obtain 

better accuracy than using 12 modes of the linear system without any nonlinear 

element. However, before solving the system it is not possible to know the maximum 

amplitude of the linear system. The second maximum amplitude estimation has an 

error of approximately 27%. By using limiting case 2 corresponding to this 

maximum displacement amplitude, similar accuracy as in the case of 12 linear modes 

is obtained by utilizing only 2 hybrid mode shapes. Therefore, it can be concluded 

that even in the presence of significant error in the estimation of the maximum 

displacement amplitude, the modal superposition method with hybrid mode shapes 

outperforms the modal superposition method utilizing the mode shapes of the linear 

system. The error values and the computational time spent for each case given in 

Table 8 also verify the conclusions obtained. It should be noted that it is also possible 

to use a two-step solution methodology for these types of nonlinearities. Firstly, 

maximum linear displacement amplitude can be used to obtain equivalent stiffness of 

limiting case 2 in order to get an estimation of the maximum nonlinear displacement 

amplitude by using a single hybrid mode. Then, this estimated nonlinear 

displacement amplitude can be used to improve the estimation of limiting case 2 and 

hence the hybrid mode shapes. The nonlinear system is re-solved by using the 

improved hybrid mode shapes which gives very accurate results by using the 

minimum number of hybrid modes. 
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Figure 18 Effect of number of modes used on the displacement amplitude of the 12

th
 

DOF around the first resonance 
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Table 8 Error analysis for the 12
th

 DOF around the first resonance 

Number of Mode Shapes 
Integral  

Error 

Amplitude  

Error (%) 

Frequency  

Error (%) 

Computational 

Time [s] 

Exact Solution - - - 11.4 

LC1 – 2 Modes 88.4 18.1 10.4 1.44 

LC1 – 4 Modes 50.6 7.5 3.8 2.00 

LC1 – 8 Modes 29.6 2.6 1.4 4.15 

LC1 – 12 Modes 25.0 2.1 1.0 6.21 

1 Hybrid Mode (35mm) 24.9 3.3 1.0 1.27 

2 Hybrid Modes (35mm) 22.9 2.8 0.9 1.69 

1 Hybrid Mode (27.5mm) 12.0 0.9 0.2 1.25 

 

4.2. Finite Element Model 

 

Application of the proposed method is also shown on a large scale finite element 

model (FEM). A cantilever beam having extensions in all three perpendicular axes is 

modeled using a commercial finite element software as shown in Figure 19, where 

the finite element model has 5400 number of degrees of freedom. This structure is 

considered due to the fact that several modes of the system affect each other. The 

results obtained for a wide frequency range showed that the nonlinearities considered 

affect several modes of the system; however, for brevity only the results around 

specific resonance frequencies are given in the thesis. The first 30 modes of the finite 

element model are used to calculate the system response in the frequency range of 

interest for comparison purposes. 

Three different harmonic excitation forces are applied to the model at excitation 

point as shown in Figure 19. The first force is applied in the X direction with 5N 

amplitude, whereas the second and the third ones are applied in the direction of Y 

and Z with 30N amplitude. It should be noted that with this type of forcing more 

modes of the system are expected to be excited which will be a good example to 

show the performance of the modal superposition approach with hybrid mode 

shapes. 

 



52 

 

Figure 19 Finite Element Model 

 

Three case studies are presented by using this finite element model. 15 nonlinear 

elements are inserted into the system. The first two case studies include one of the 

two nonlinearity types; whereas, the last one has two different types of nonlinear 

elements simultaneously. These elements are placed to different locations of the 

finite element model so that capturing the nonlinear dynamics of the system requires 

high number of modes in the modal superposition approach. The nonlinearity types 

and their properties are given in Table 9. 

 

Table 9 Nonlinear Element Types Used in the Case Studies 

Nonlinearity 

Type 
Quantity Insertion DOFs Properties 

Dry Friction 15 
Different locations 

of FEM - ground 

        ⁄            
(same for all) 

Gap 15 
Different locations 

of FEM - ground 
        ⁄            

(same for all) 

Gap and Dry 

Friction 
5, 10 

Different locations 

of FEM - ground 

        ⁄            

        ⁄           

 

  

Excitation and 

Response Node 
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4.2.1. Case Study 5: Dry Friction Element 

 

Response of the X component of interested point around the first resonance 

frequency is given in Figure 20. It is clearly seen from the figure that response of the 

point changes significantly due to nonlinear effects of dry friction. In Figure 21a, 

Figure 21b and Figure 21c, response of the selected point is computed by using 

modes of limiting case 1, limiting case 2 and hybrid mode shapes, respectively. It is 

seen from the obtained results that using even 1 hybrid mode shape gives very 

accurate results than the 4 mode shapes of limiting case 1 and limiting case 2. If 2 

hybrid mode shapes are used the results become better as can be also seen from the 

error values given in Table 10. It can also be noted that nonlinear response follows 

the fully stuck response and around the resonance region it deviates from the fully 

stuck linear response, i.e. limiting case 2, as shown in Figure 21. Moreover, the 

nonlinear response is significantly different from the response of the free linear 

system, i.e. limiting case 1. Therefore, as expected, using four mode shapes of 

limiting case 2 captures the response of the nonlinear system better than utilizing 

four mode shapes of limiting case 1. 

Moreover, variation of weighting factor   is also given in Figure 22 for dry friction 

nonlinearity. It can be seen from Figure 22 that weighting factor equals to 1 away 

from the resonance region, since the displacement amplitude is small as a result of 

which nonlinear element is in fully stuck state, as expected. It takes smaller values 

when slip starts as explained in Section 4.1.2. Increasing the number of hybrid mode 

shapes also affects the variation of the weighting factor, which improves the 

accuracy of the solution. 
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Figure 20 Displacement amplitude of X component of response node with respect to 

frequency around the first resonance region 
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Figure 21 Effect of number of modes used on the displacement amplitude of the 

response node in X-direction around the first resonance 
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Table 10 Error analysis for the response node around the first resonance 

Number of Mode Shapes Integral Error Amplitude Error (%) Frequency Error (%) 

LC1 – 1 Mode 1.8 6.5 1.8 

LC1 – 2 Modes 1.2 9.3 2.2 

LC1 – 3 Modes 0.7 6.1 1.0 

LC1 – 4 Modes 0.5 4.7 0.3 

LC2 – 1 Mode 0.9 4.3 1.1 

LC2 – 2 Modes 0.1 2.9 0.001 

LC2 – 3 Modes 0.3 3.4 0.4 

LC2 – 4 Modes 0.3 2.0 0.4 

1 Hybrid Mode 0.5 0.9 0.3 

2 Hybrid Modes 0.08 2.0 0.1 

 

 

Figure 22 Variation of weighting factor   with respect to frequency 

 

4.2.2. Case Study 6: Gap Element 

 

For gap nonlinearity, two limiting cases can be defined as discussed in Section 3.1. 

The first one corresponds to the case where all the gaps are open (limiting case 1) 

resulting in zero equivalent stiffness, which corresponds to the linear system without 

any nonlinear elements, and the second one is obtained when the vibration amplitude 
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is large enough (limiting case 2) such that all the gap elements are observed as if they 

are always in contact (See Figure 2). 

Figure 23 shows the displacement amplitude of X component of response node for 

the underlying linear system and that of the nonlinear system using 30 modes of the 

linear system. The effect of the gap element is clearly seen from the Figure 23, which 

shifts the resonance frequency considerably. It is seen from Figure 24 and the error 

values given in Table 11 that using even 2 hybrid modes gives more accurate results 

as the modal superposition method that uses 4 modes of limiting case 1 or 2. The 

accuracy of the nonlinear response obtained by using 2 hybrid mode shapes is very 

similar to the base nonlinear response obtained by using 30 modes of the linear 

system. 

 

Figure 23 Displacement amplitude of X component of response node with respect to 

frequency around the first resonance region 
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Figure 24 Effect of number of modes used on the displacement amplitude of the 

response node in X-direction around the first resonance 

 

Table 11 Error analysis for the response node around the first resonance 

Number of Mode Shapes Integral Error Amplitude Error (%) Frequency Error (%) 

LC1 – 1 Mode 51.1 61.9 4.8 

LC1 – 2 Modes 25.5 2.4 1.5 

LC1 – 3 Modes 8.8 4.7 0.2 

LC1 – 4 Modes 13.4 6.8 0.3 

LC2 – 1 Mode 27.9 53.2 1.1 

LC2 – 2 Modes 24.9 27.8 1.3 

LC2 – 3 Modes 17.6 0.9 0.6 

LC2 – 4 Modes 6.2 15.0 0.01 

1 Hybrid Mode 13.6 8.3 0.3 

2 Hybrid Modes 9.3 2.6 0.2 

 

The results of FE case study with gap nonlinearity at two additional nodes as shown 

in Figure 25 are also given in Figure 26 and Figure 27. It can be seen that hybrid 

mode shape approach gives similar results and solution follows the same pattern for 
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different response points. Error values given in Table 12 and Table 13 also show the 

same argument. For other case studies and for different response nodes, similar 

results can be obtained. However, for brevity, the results for other response nodes are 

not shown. 

 

Figure 25 FE Model with additional response nodes 

 
Figure 26 Displacement amplitude of X component of the 1

st
 point vs. frequency 

Additional 

Response Nodes 

1 

2 

Excitation 

Node 
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Table 12 Error analysis for the 1
st
 point around the first resonance 

Number of Mode Shapes Integral Error Amplitude Error (%) Frequency Error (%) 

LC1 – 4 Modes 32.3 5.9 0.3 

LC2 – 4 Modes 11.6 12.8 0.01 

1 Hybrid Mode 32.5 5.0 0.3 

2 Hybrid Modes 14.3 1.9 0.06 

 

 

Figure 27 Displacement amplitude of X component of the 2
nd

 point vs. frequency 

 

Table 13 Error analysis for the 2
nd

 point around the first resonance 

Number of Mode Shapes Integral Error Amplitude Error (%) Frequency Error (%) 

LC1 – 4 Modes 32.9 5.9 0.3 

LC2 – 4 Modes 11.6 12.9 0.01 

1 Hybrid Mode 32.6 5.0 0.3 

2 Hybrid Modes 14.3 1.9 0.06 
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Furthermore, in order to show that method proposed is also applicable for a wide 

frequency range of interest in which the nonlinearity affects the response at several 

modes, and not just at one mode, as shown in Figure 23, additional analyses that 

illustrate the frequency response curve in a much wider frequency band have been 

performed. However, the effect of nonlinearity at each mode is a function of the 

displacement amplitude (of the nonlinear DOFs) at the interested mode which 

depends on the forcing amplitude as well. For this purpose, two additional point 

forces which have 6N and 3N magnitude values in Y and Z directions are exerted at 

the tip of the model as shown in Figure 28 in order to increase the vibration 

amplitude at nonlinear DOFs in a wide frequency range. 

 

Figure 28 FE Model with additional excitation forces 

 

The response of the interested node covering the first four modes is given in Figure 

29, where the detailed results comparing the performance of the hybrid and linear 

mode shapes used are given in Figure 30 - Figure 33 and Table 14 - Table 17. It is 

clearly seen that modal superposition method with hybrid mode shapes performs as 

expected and the number of hybrid mode shapes used is significantly smaller than the 

linear modes available for the system. 

Additional Excitation 

Force Node Excitation and 

Response Node 
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Figure 29 Displacement amplitude of X component of response node with respect to 

frequency 

 
Figure 30 Displacement amplitude of X component of response node with respect to 

frequency around the first resonance 
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Table 14 Error analysis for the response node around the first resonance 

Number of Mode Shapes Integral Error Amplitude Error (%) Frequency Error (%) 

LC1 – 4 Modes 21.5 0.6 0.2 

LC2 – 4 Modes 25.9 1.7 0.3 

1 Hybrid Mode 16.9 1.7 0.1 
 

 

Figure 31 Displacement amplitude of X component of response node with respect to 

frequency around the second resonance 

 

Table 15 Error analysis for the response node around the second resonance 

Number of Mode Shapes Integral Error Amplitude Error (%) Frequency Error (%) 

LC1 – 4 Modes 7.8 3.0 0.1 

LC2 – 4 Modes 10.0 5.5 0.2 

1 Hybrid Mode 2.1 1.0 0.01 
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Figure 32 Displacement amplitude of X component of response node with respect to 

frequency around the third resonance 

 

Table 16 Error analysis for the response node around the third resonance 

Number of Mode Shapes Integral Error Amplitude Error (%) Frequency Error (%) 

LC1 – 4 Modes 11.5 5.2 0.2 

LC2 – 4 Modes 11.8 6.4 0.2 

1 Hybrid Mode 6.0 2.5 0.05 
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Figure 33 Displacement amplitude of X component of response node with respect to 

frequency around the fourth resonance 

 

Table 17 Error analysis for the response node around the fourth resonance 

Number of Mode Shapes Integral Error Amplitude Error (%) Frequency Error (%) 

LC1 – 4 Modes 0.3 1.5 0.002 

LC2 – 4 Modes 0.2 0.6 0.0009 

1 Hybrid Mode 0.5 1.2 0.003 

 

4.2.3. Case Study 7: Gap and Dry Friction Elements Together 

 

In this case study, gap and dry friction nonlinear elements are used together in order 

to increase nonlinear effects. Limiting cases are the same as the ones defined in 

Section 4.1.3. In Figure 34, X component of linear and nonlinear response of the 

selected node is given in which the effects of strong nonlinearity in the system can be 
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clearly seen. It is seen from Figure 35 and the error values given in Table 18 that 

using 2 hybrid modes gives very accurate results, which can be obtained if 8 modes 

of limiting case 1 or limiting case 2 are used. This observation is very important 

since the model contains relatively high number of DOFs. Therefore, it can be 

concluded that computational effort can be drastically reduced by using the modal 

superposition method with hybrid mode shapes proposed in this study. Moreover, 

computational time for each case is also presented in Table 18 which is calculated as 

described in Section 4.1.3. Utilizing a single hybrid mode shape results in 

approximately 82% decrease in the computational time; whereas, if two hybrid 

modes are used the computational saving is approximately 72%. 

 

 

Figure 34 Displacement amplitude of X component of response node with respect to 

frequency around first resonance region 
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Figure 35 Effect of number of modes used on the displacement amplitude of the 

response node in X-direction around the first resonance 

 

Table 18 Error analysis for the response node around the first resonance 

Number of  

Mode Shapes 

Integral  

Error 

Amplitude  

Error (%) 

Frequency  

Error (%) 

Computational 

Time [s] 

Exact Soln. (30 Modes) - - - 1063 

LC1 – 1 Mode 27.7 20.7 2.7 50.1 

LC1 – 2 Modes 13.6 7.7 0.8 71.3 

LC1 – 4 Modes 9.7 6.5 0.3 137.3 

LC1 – 8 Modes 3.1 0.7 0.04 282.3 

LC2 – 1 Mode 23.7 37.7 2.0 37.5 

LC2 – 2 Modes 21.7 11.9 1.9 67.7 

LC2 – 4 Modes 4.0 13.1 0.004 124.8 

LC2 – 8 Modes 0.8 1.2 0.003 279.8 

1 Hybrid Mode 3.5 0.9 0.06 48.4 

2 Hybrid Modes 1.7 0.4 0.02 78.1 
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CHAPTER 5 

 

5. DISCUSSION AND CONCLUSION 

 

In this study, a new modal superposition approach based on hybrid mode shapes is 

proposed to obtain steady state response of nonlinear structures. For certain types of 

nonlinear elements, the equivalent stiffness of the nonlinearity saturates, in other 

words it has limiting values. Thus, it is possible to define limiting linear systems 

where the nonlinear system behaves as if it is linear, since the equivalent stiffness of 

the nonlinearity does not change with system response. It should be noted that even 

though the nonlinearity does not possess a limiting equivalent stiffness, the limiting 

linear case can be defined for any type of nonlinearity by restricting the maximum 

vibration amplitude. Therefore, at this limiting case, the response of the nonlinear 

system can be obtained completely by using the mode shapes of the limiting linear 

systems. On the other hand, for other cases, the response of the nonlinear system is in 

between these limiting cases and none of the linear system modes can capture it 

accurately. Hence, hybrid mode shapes are defined as a linear combination of the 

mode shapes of the linear systems corresponding to each limiting linear case. The 

contribution of each linear mode to the hybrid mode shape is determined by 

comparing the ratio of the equivalent stiffness of nonlinear elements to the equivalent 

stiffness of limiting linear system for the interested DOF. As a result of this, hybrid 

mode shapes span the nonlinear response space better than the linear mode shapes 

and, in the limiting cases, they are identical to the mode shapes of the limiting linear 

systems. Therefore, using hybrid mode shapes in modal superposition method leads 

to accurate solution of the nonlinear system by using less number of mode shapes 

than the number of mode shapes used in the traditional modal superposition method. 

This decreases the computational time significantly and increases the stability of the 

nonlinear solver due to the decrease in the number of nonlinear equations, which is 

very important for large nonlinear systems. 
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In the case studies presented, piecewise linear stiffness, gap element and dry friction 

element are the nonlinearities used for which limiting linear behaviors can be easily 

defined. Additionally, cubic element is another nonlinearity considered where it does 

not possess limiting or saturating behavior. A 20-DOF lumped parameter model and 

a finite element model having many DOFs with different number of nonlinear 

elements attached are considered in the case studies. It is observed that modal 

superposition method with hybrid mode shapes proposed in this study give very 

satisfactory results compared to the mode shapes of the linear system obtained by 

disregarding the nonlinear elements. In the case studies considered, use of one or two 

hybrid mode shapes is sufficient to obtain very accurate results. However, in order to 

have similar accuracy, depending on the case study, the number of mode shapes of 

the linear system should be increased at least 2 to 16 times, which results in 4 to 32 

times more number of nonlinear equations if single harmonic solution is used. It 

should be noted that, since computation of hybrid mode shapes do not require 

additional calculation, computational time of both methods are identical if the same 

number of modes are used. Consequently, use of hybrid mode shapes decreases the 

number of nonlinear equations significantly, which reduces the computational time 

substantially and also increases the stability of nonlinear solvers used in the solution. 

Therefore, the new modal superposition method with hybrid mode shapes serves as a 

very suitable reduction method for the dynamic analysis of nonlinear structures. 

As a future work, the same method can be extended for multi harmonic vibration 

response of nonlinear systems. In this case, hybrid mode shapes may also be used as 

basis function in the modal superposition method for higher harmonics. In addition to 

this, instead using a linear fit to calculate the hybrid mode shapes different fitting 

functions can be used to determine the hybrid mode shapes. This will increase the 

complexity of the method and gain in speed should justify the increase in 

complexity. 
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APPENDIX A 

 

For the nonlinearities considered in this study, internal nonlinear force and the 

corresponding harmonic input describing functions [13] for an input motion of 

   sinx t A t are given here. 

 

Piecewise Linear Stiffness Element: 
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Dry Friction Element:  
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