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ABSTRACT

TIME SERIES ON RIEMANNIAN MANIFOLDS

Ergezer, Hamza

Ph.D., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Kemal Leblebicioğlu

December 2017, 104 pages

In this thesis, feature covariance matrices are utilized to solve several problems re-
lated to time series. In the first part of the thesis, a novel representation is proposed
to represent the time series using feature covariance matrices. By this representation,
time series are carried onto Riemannian manifold space. The proposed representation
is firstly applied to trajectories which are essentially 2D time series. Anomaly detec-
tion and activity perception problems in crowded visual scenes are studied by using
the trajectories. The second utilization of the proposed representation is for classifica-
tion of 1D time series. The feature covariance matrices of overlapping subsequences
are extracted and fed into two well-known classifiers as the input. The last contribu-
tion of the thesis is a rank-based distance measure for high dimensional covariance
matrices. The distance measure is utilized to solve skeletal action recognition prob-
lem. Unlike classical distance measures, the rank-based distance measure enables us
to learn the manifold structure. For this reason, essentially, it can be asserted that the
proposed approach is about manifold learning. Performances of the approaches pro-
posed in this thesis have been compared to most of the state-of-the-art techniques on
publicly available well-known datasets. For all of the studied problems, we achieve
comparable or outperforming results compared to the state-of-the-art techniques.

Keywords: time series representation, feature covariance matrices, Riemannian man-
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ifolds, time series classification, trajectory clustering, anomaly detection, rank-based
distance measure
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ÖZ

RİEMANN MANİFOLDLARI ÜZERİNDE ZAMAN SERİLERİ

Ergezer, Hamza

Doktora, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Kemal Leblebicioğlu

Aralık 2017 , 104 sayfa

Bu tezde, zaman serileri ile ilgili problemleri çözmek için öznitelik kovaryans matris-
leri kullanılmıştır. Tezin ilk bölümünde, zaman serilerinin öznitelik kovaryans matris-
leri kullanılarak temsil edilmesi için yeni bir gösterim önerilmektedir. Bu gösterimle
zaman serileri Riemann manifoldu uzayına taşınır. Önerilen gösterim, öncelikle iki
boyutlu zaman serileri olan yörüngelere uygulanmıştır. Kalabalık görsel sahnelerde
anomali tespiti ve aktivite algılama problemleri yörüngeler kullanılarak incelenmiş-
tir. Önerilen gösterimin ikinci kullanımı bir boyutlu zaman serilerinin sınıflandırılma-
sında gerçekleşmiştir. Örtüşen alt dizilerin öznitelik kovaryans matrisleri çıkarılmış
ve girdi olarak iki iyi bilinen sınıflandırıcıya beslenmiştir. Tezin son katkısı, yüksek
boyutlu kovaryans matrisleri için sıralamaya dayalı bir mesafe ölçüsüdür. Mesafe öl-
çüsü, iskelet hareketi tanıma problemini çözmek için kullanılmıştır. Klasik mesafe
ölçülerinden farklı olarak, sıralamaya dayalı mesafe ölçüsü, manifoldun yapısını öğ-
renmeyi sağlar. Bu nedenle, esas olarak, bir manifold öğrenme yaklaşımının da öne-
rildiği iddia edilebilir. Bu tezde önerilen yaklaşımların performansları, yaygın olarak
bilinen veri kümeleri üzerinde en yeni tekniklerle karşılaştırılmıştır. Çalışılan tüm
problemler için, en yeni tekniklerle karşılaştırıldığında benzer veya daha iyi sonuçlar
elde edilmiştir.

Anahtar Kelimeler: zaman serilerinin gösterimi, öznitelik kovaryans matrisleri, Ri-
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emann manifoldları, zaman serilerinin sınıflandırması, yörünge kümeleme, aykırılık
tespiti, sıraya dayalı uzaklık ölçüsü
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CHAPTER 1

INTRODUCTION

We live in the big data era. Ninety percent of the data in the world today has been

created in last two years alone 1. Every year, together with the size of the data,

the variation in the type of the data also increases. Another important fact is that

the sharing of the data becomes easier, too. We share our photos and videos within

seconds on our mobile phones with lots of other information. Albeit the time series

is just a type of these huge data, the all of the technological developments in creating,

storing and disseminating the digital data affects the time series in the same way.

1.1 Motivation

Time series is a sequence of measurements. By even this short definition, one can

comprehend how crucial is the need for time series analysis and how broad the ap-

plication areas. People analyze the stock prices, customer usages, sensor readings

and many other time series data everyday. Also, data coming from other types of

sources such as videos, implicitly contain the time series data. When we think of the

amount of data available in the digital era as mentioned above, the automatic analy-

sis of the time series will be a more prominent problem. The examples of the time

series focused on this study are shown in Figure 1.1. In the figure at the first row,

a 1D time series is shown. We utilize such time series while studying time series

classification in Chapter 4. The figure at the middle contains the trajectories of the

three objects. We utilize trajectories in Chapter 3 to detect anomalies and to perceive

dominant activities in similar scenarios. The figure at the bottom shows a motion

1 http://www.iflscience.com/technology/how-much-data-does-the-world-generate-every-minute/
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TimeFigure 1.1: Some time series examples from the datasets used in the thesis.

sequence of a skeleton. For each skeleton joint which is shown with the red dots, a

multidimensional time series is extracted. An action is defined as the combination

of these multidimensional time series. These are only the some types of time series

we work on this study. There are many other types of time series and many other

problems that can be covered by automatic analysis of time series.

By time series analysis, people encapsulate some problems such as classification,

forecasting, clustering, anomaly detection. For all of these problems, there are three

major issues to be solved according to [35]: data representation, similarity measure-

ment and an appropriate indexing method. In [15], Bengio et al. begin the paper with

2



the argument that the success of machine learning algorithms generally depends on

data representation. This is obviously a valid argument for time series. Although their

paper focuses on the learning of the representations, the main message we should get

from the paper is that we need good representations for the aforementioned tasks.

Hence, a good representation is the most critical issue while dealing with the prob-

lems related to time series.

Feature covariance matrices or covariance features are utilized in this study to achieve

a good representation for time series. Covariance features carry the characteristics of

a good representation for time series as will be discussed in Chapter 2 in detail. As a

quick summary, it carries the time series data into a lower dimension. It can capture

the local and global shape characteristics. For computationally efficiency, it is shown

that the covariance feature has great success compared to its competitor techniques. It

also handles the unwanted cases such as noisy and missing data. By exploiting these

powerful characteristics, we study some problems in trajectories, 1D time series data,

and skeleton data.

The second issue is similarity measurement while dealing with the problems related

to time series. After representing the time series data with feature covariance matri-

ces, the data is carried onto Riemannian manifold space. In Riemannian manifold

space, the Euclidean distance measure does not provide satisfactory results due to the

nonlinearity of the space. On the other hand, there are well-known distance mea-

sures and divergence functions that utilize the Riemannian property of the manifolds.

While dealing with trajectories and 1D time series, we utilize one of them. However,

for skeletal action recognition problem, we have observed that these well-known dis-

tance measures may fail due to the high dimensionality of the covariance matrices.

For this purpose, a hashing mechanism is exploited to measure the distances between

the covariance matrices derived from skeletons.

At this point, the progress of thesis is given. The starting point of the thesis is trajec-

tories which are basically 2D time series. When we investigate the activity perception

and anomaly detection problems in crowd scenes, we figured out that detection and

tracking of the objects separately are almost impossible. However, trajectories for

some points of the objects or cumulative optical flows of the pixels can be still ex-
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tracted. After these observations, trajectories are utilized as the feature of the objects.

Trajectories are valuable features due to carrying both spatial and temporal informa-

tion of the objects. At this point, feature covariance matrices are utilized to represent

the trajectories. The main motivation behind the selection of the feature covariance

matrices for trajectories as the feature is that they enable us to calculate the differ-

ence between the trajectories of different lengths. By using the feature covariance

matrices, all of the trajectories are expressed as equal-sized covariance matrices. We

try to solve the problems of anomaly detection and activity perception in crowded

scenes through the use of trajectories. In 1D time series case, we apply the proposed

representation for time series classification problem.

After applying the representation in 1D and 2D time series through the pointwise fea-

tures, we investigate the problems which include multidimensional time series. At

this point, we have observed that feature covariance matrices have already been ap-

plied to the skeletal action recognition problem. For this problem, the whole sequence

of joint motions is represented with the feature covariance matrices. This makes the

covariance matrices high-dimensional due to the number of joints and measurements

at 3D coordinates. Therefore, the classical distance measures cannot model this high-

dimensional manifold space. We propose a rank-based distance measure which is

based on a hashing mechanism.

1.2 Contributions

The first contribution of the thesis is a novel representation for time series. The repre-

sentation is based on feature covariance matrices. The representation is also novel in

the sense that it comprises novel pointwise features. The most of the pointwise fea-

tures in the investigated problems have been firstly utilized. Besides, it can be claimed

that it offers a novel distance measuring mechanism for time series by putting a clas-

sical distance measure following the representation. The representation inherently

addresses the several issues such as missing data, time series of different lengths. We

achieve state-of-the-art results by using the representation for all problems in 1D and

2D time series.
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Activity perception and anomaly detection problems are investigated using the pro-

posed representation on trajectories. After representing the trajectories with feature

covariance matrices, the distance between two trajectories is determined with the log-

Euclidean distance measure. In anomaly detection part, a novel data-driven approach

is proposed. The anomaly measure is a sparse combination of the weighted distances

to the nearest neighbors. For activity perception, activities are treated as dominant

motion patterns and therefore, clustering of trajectories is realized for this purpose.

Spectral clustering is applied after a basic transformation of the distance matrix into

the similarity matrix.

The exploitation of the feature covariance matrices for time series classification prob-

lem on 1D time series is another contribution of the study. For 1D time series, the

proposed representation used in trajectories is modified. The modification of the rep-

resentation is two-fold. The first modification is that the feature covariance matrices

are determined for the subsequences. Secondly, the new local and global pointwise

features are introduced. Our main purpose, as in 2D time series, is to evaluate the

feature covariance representation for time series classification problem. Therefore,

in classification stage, firstly, the 1-NN (nearest neighbor) classifier is used. SVM

(support vector machine) classifier is also utilized for the problem. Experiments are

conducted to test the performance of the method using UCR time series repository.

UCR repository includes many types of time series such as motion, electrodiagram

(ECG), image (or shape), sensor readings and synthetic data. The proposed method

mostly outperforms the state-of-the-art methods on UCR repository.

The last contribution is a distance measure for high-dimensional symmetric positive

definite (SPD) matrices. The distance measure is based on rank or ordinal metrics.

Instead of projecting the points on Riemannian manifold space to other spaces, we di-

rectly measure the distances with the entries of covariance matrices by using a hashing

mechanism. We apply the distance measure to the skeletal based action recognition

problem which can be considered as a multidimensional time series classification

problem. Due to the hashing approach, the rank-based distance measure is very fast

compared to the classical distance measure used for SPD matrices. Our results on

several datasets have proven the strength of the proposed distance measure.
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Lastly, a list of the papers published during the study is given below:

• H. Ergezer, K. Leblebicioglu, “Time Series Classification Using Feature Co-

variance Matrices”, Knowledge and Information Systems, accepted, 2017.

• H. Ergezer, K. Leblebicioglu, “Anomaly Detection and Activity Perception Us-

ing Covariance Descriptor for Trajectories”, Workshop on Crowd Understand-

ing, ECCV 2016.

• H. Ergezer, K. Leblebicioglu, “Time Series Classification Using Point-wise

Features”, SIU 2017.

• H. Ergezer, K. Leblebicioglu, “Anomaly Detection in Trajectories”, SIU 2016.

1.3 Outline of the Thesis

A brief literature review about time series representation and the distance measures

for time series are given in Chapter 2. Introductory information about Riemannian

manifolds and distance calculation for SPD matrices are also given in this chapter.

Starting from Chapter 3, we provide the solutions of the problems in trajectories, 1D

time series and skeleton data, respectively. Chapter 3 introduces the application of

the proposed representation on trajectories and solutions to the problems of activity

perception and anomaly detection. The studies on time series classification for 1D

time series are presented in Chapter 4. In chapter 5, a novel distance measure and

its exploitation for skeletal action recognition problem are summarized. The thesis is

summarized with some conclusions and possible future works in Chapter 6.
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CHAPTER 2

LITERATURE REVIEW

The main goal of the chapter is to provide the background material for subsequent

chapters. For this purpose, we give a literature review for representations and distance

measures for time series. For other problems studied in each chapter, literature review

of the problems are included in the relevant chapters.

The outline of the chapter is as follows. First, a brief literature review on represen-

tations and distance measures for time series is given in Section 2.1. In Section 2.2,

the background material for feature covariance matrices is given by describing Rie-

mannian manifolds and distance measures used for symmetric positive definite (SPD)

matrices.

2.1 Literature Review on Time Series

Time series might appear in different problems from various disciplines. Therefore,

in last two decades, the researchers propose several solutions for the problems [89]

such as classification, clustering, anomaly detection and etc.

While dealing with the aforementioned problems for time series, there are two main

approaches. These approaches basically differs from each other by how they mea-

sure the distances between two time series. The first approach is the measuring the

distance directly on time series. The second approach is to represent the time series

by bringing into the discriminative parts implicitly. Therefore, we give a background

material for representations and distance measures for time series.
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2.1.1 Time Series Representations

Time series are high-dimensional data for most of the applications. Working directly

with the raw time series can be computationally expensive and memory inefficient in

some cases. For such cases, we should need a representation or a descriptor for the

data. An ideal representation should have the following characteristics:

• dimensionality reduction,

• capturing local and global shape characteristics,

• computationally inexpensive,

• implicit noise handling,

• low reconstruction error.

We follow the categorization given in [59]. In this taxonomy, the representation tech-

niques for time series can be broadly divided into three categories: nondata adaptive,

data adaptive and model-based.

2.1.1.1 Nondata Adaptive Methods

Nondata adaptive techniques do not include any data-specific parameters. It ap-

plies the same transformation to all time series. Nondata adaptive techniques can

be broadly categorized into two categories: spectral-domain techniques and time-

domain techniques. Spectral-domain techniques generally come from signal process-

ing community. Discrete Fourier transform (DFT), discrete wavelet transform (DWT)

and discrete cosine transform (DCT) are the most well-known examples of spectral

decompositions or transformations. DFT transform the time series using the complex

exponential functions as basis functions. DWT uses scaled and shifted versions of

mother wavelet functions as basis functions. DCT utilizes only cosine function as a

basis function while decomposing the time series.

Time-domain techniques do not transform the data any other domain. The Piecewise

Aggregate Approximation (PAA) proposed in [56] represents the time series with
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the mean values of consecutive fixed-length segments. Lin et al. have proposed

a multiscale extension of PAA in [57]. There are also some other works [6, 30]

suggesting to extract the representations using amplitude levels of the time series.

2.1.1.2 Data Adaptive Methods

Data adaptive techniques transform the data using the parameters depending on the

data. Every nondata adaptive representation can be modified to a data adaptive one by

adding a data-dependent selection step. In general, the methods in this category are

the modifications of the nondata adaptive methods. Similar to DFT or DCT, singular

value decomposition (SVD) transform the data using basis functions. However, the

basis functions in SVD case are eigenvectors of the data. Another analogy can be

established between wavelets and shapelets. Similar to wavelets, shapelets are a small

part of the time series. However, shapelets are extracted using the data and the main

goal is to extract more representative parts of the data.

Another type of data adaptive techniques built a symbolic representation of the data.

The most well-known symbolic representation is Symbolic Aggregate approXima-

tion (SAX) [69]. SAX follows the basic idea of PAA by quantizing the amplitudes of

time series. However, in SAX approach, the quantization levels are data-dependent

and the quantization levels are optimized by considering the most frequent amplitude

levels and alphabet size. The last approach we should mention is the piecewise ap-

proximation of the time series. In these approaches, the time series is represented by

piecewise linear or polynomial approximations. The piecewise functions are deter-

mined according to the subsequence of the time series.

2.1.1.3 Model-based Methods

The model-based approaches assume that the time series are generated by an under-

lying model. The main aim is to find the parameters of the model. Therefore, the

similarity between the time series is built on the similarity of the parameters. Mov-

ing average (MA), autoregressive moving average (ARMA), hidden Markov models

(HMM) and Markov chains (MC) are exemplars of this type of approaches.

9



2.1.2 Distance Measures on Time Series

In this section, we provide an introductory overview of the distance measures for

time series. These measures are applied directly to time series without utilizing any

representation block. The first one is the shift in the time axis. This can be occurred

due to the measurements from the same occasion can be occurred in different time

instants. The second one is the noise on the measurements. A distance measure

should not be susceptible to some noisy inputs and should inherently eliminate these

distortions. Another challenge for a distance measure is the time series of different

lengths. This problem is so usual for real-world applications. Uniform amplitude shift

or bias could be another challenge for some applications. This problem is generally

eliminated by zero-mean normalization. The last challenge is outliers. There could

be some instances that do not fit the sequence of the data. Again, this problem can be

handled by preprocessing the data. However, filtering the data can cause missing the

discriminative information. A scenario that depicts the challenges mentioned above

is given in Figure 2.1. The time series are from Adiac dataset of UCR repository [23]

and belong to same class. The one given above, x1, is more noisy, short in time and

have a constant amplitude bias compared to time series given below. On the other

hand, x2 has two outliers.

The simplest distance measure is the Euclidean distance for given two time series.

However, the Euclidean distance and Lp norms cannot handle the challenges men-

tioned above. In order to handle these challenges, some elastic measures are pro-

posed. We present these measures in the following subsections. First, DTW and its

modified versions are presented. Then, we mention about LCSS, TWED and ERP

which are essentially distance measures proposed for measuring the distances be-

tween strings.

2.1.2.1 Dynamic Time Warping (DTW)

Dynamic Time Warping (DTW) can be considered as the most well-known approach

for calculating the distance between time series. It is mainly proposed to mitigate the

distortions in the time axis. It determines the pairwise points between two sequences
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Figure 2.1: Two time series to show the challenges for distance measures for time
series.

by dynamic programming. Since it is based on dynamic programming, it can be

computationally expensive. Therefore, it should be a constraint on warping window to

reduce computation time [88]. Lastly, we should note that DTW measures a distance-

like quantity between two given sequences, however, it does not guarantee the triangle

inequality.

2.1.2.2 Modified Versions of DTW

DTW is a successful approach for problems dealing with time series in most of the

cases. However, it has modified versions that are proposed to solve some limitations

of DTW. Derivative DTW [61] tries to solve singularity problem where a single point

may map onto the large subsection of the second sequence. For this purpose, DTW

approach is executed on average differences of the original sequences. In more detail,

a point ai is replaced by its average differences with its neighbors, ai−1 and ai+1.

The other version of DTW is weighted DTW [52]. In this approach, it gives weights
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Figure 2.2: Dynamic time warping for time series given in Figure 2.1.

according to the warping distances between the corresponding points. When creat-

ing a distance matrix on which dynamic programming execute, a weighting function

is applied to the distances. A logistic function is utilized to determine the weights

together with a constraining the maximum warping distance.

2.1.2.3 Longest Common Subsequence (LCSS)

Starting from LCSS, the distance measures we will mention hereinafter are based on

edit distance concept. The edit distance is introduced for string matching problem.

The most basic form of the edit distance is LCSS. A threshold parameter is intro-

duced to adapt the edit distance concept to the time series. The threshold parameter

defines the maximum difference between the real-valued time series. The longest

matched subsequence defines the similarity between the two time series. Therefore,

the distance between two time series a and b of length m is given by Equation 2.1

dLCSS(a, b) = 1− LCSS(a, b)

m
(2.1)

2.1.2.4 Edit Distance with Real Penalty

One more step ahead from LCSS is edit distance on real sequences (EDR) [21]. It

uses thresholding mechanism like LCSS but also penalizes the non-matching pairs. A

modification of EDR is edit distance with real penalty (ERP) [22]. Since EDR posits
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Table 2.1: Comparison of the distance measures against some challenges.

Distance
measure

Different
Length

Time Shift
Additive

Noise
Outliers

Lp norms # # # #

DTW ! ! # #

Derivative DTW ! ! ! !

Weighted DTW ! ! ! #

LCSS # # ! #

ERP # # ! #

TWED ! ! ! #

that the matching elements are equal, it does not satisfy the triangular inequality. In

ERP, to satisfy the triangular inequality and achieve a distance metric, authors use

real distances between the matching points. For non-matching elements, like in EDR,

ERP takes a constant penalty term.

2.1.2.5 Time Warp Edit Distance (TWED)

As the name indicates, time warp edit distance [76] combines the characteristics of

LCSS and DTW. As in LCSS, the distance is determined by the length of matching

or common subsequences. Besides, the warping is allowed in time axis as in DTW.

The warping is controlled and penalized by a parameter ν. The effect of ν is a mul-

tiplicative. Depending on the value of ν, TWED goes from unconstrained DTW to

Euclidean (or another Lp-norm) distance. As in other elastic measures in previous

subsections, TWED is implemented by using dynamic programming.

2.2 Covariance Features

One of the major contributions of the thesis is a novel representation for time series.

The proposed representation is based on feature covariance matrices. By using fea-

ture covariance matrices, the time series is represented by a covariance matrix. Since

covariance matrices can be considered as symmetric positive definite (SPD) matri-

ces, they lie on Riemannian manifolds. In this section, we give a brief summary of

13



Riemannian manifolds to provide a background to the reader.

2.2.1 Riemannian Manifolds

As a well known fact, covariance matrices are positive semidefinite matrices, i.e,

aTCa ≥ 0, ∀a ∈ Rn (2.2)

where C ∈ Rnxn is a covariance matrix and a is nonzero vector in Rn. Due to this

well-known fact, covariance matrices have some properties and implicit constraints.

The first property which is important for our study is that they are nonlinear. Fortu-

nately, due to some other properties that they have, they lie on Riemannian manifolds.

The advantage of lying on Riemannian manifolds is that Riemannian manifolds are

locally linear and therefore they have some nice properties. For this reason, in this

section, we give a brief information about the Riemannian manifolds to better under-

standing the theoretical background of the proposed representation.

Riemannian manifolds can be located on the third layer of a manifold hierarchy. In

the first two layers, we have topological manifolds and smooth manifolds. Here,

without diving into details of manifold geometry, our main goal is to give an intuitive

background about manifolds. Topological manifolds are the most relaxed version of

manifolds. They can be thought as the generalization of surfaces in Rn. The surfaces

do not contain any weird parts or holes. In topological manifold layer, there is no

difference between a cube and a sphere. In the layer of smooth manifolds, we leave

cubes behind us. More formally, the structure of the manifolds in this layer is smooth.

There is no essential difference between ellipses and spheres. Because we can not talk

about the notions of angles and distances yet. When we move into the Riemannian

manifold layer, we can talk about the notions of angles and distances. An ellipse and

a sphere are different objects in this layer since the former one has a varying curvature

while the latter has constant curvature.

Although we can talk about the distances and angles for Riemannian manifolds, they

are still nonlinear. Therefore, the Euclidean distance measures do not work well

for Riemannian manifolds. The notions of exponential and logarithmic maps are
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Figure 2.3: Fundemantal concepts of Riemannian geometry: tangent space, exponen-
tial map, geodesic distance and logarithm map.

utilized for this purpose. In Figure 2.3, the concepts of tangent space, exponential

map, geodesic distance and logarithmic map are shown.

Tangent space and its vectors are used to represent the related points on the manifold.

Exponential and logarithm maps are used to transfer the data between tangent spaces

and the manifold or vice versa, respectively. In more detail, exponential one maps a

tangent vector denoted by x in Figure 2.3 to a point on the manifold (Equation 2.3).

On the other hand, logarithm map carries a point onto the tangent space of another

point on the manifold (Equation 2.4).

Exponential Map: expp : TpM →M (2.3)
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Table 2.2: Summary of the distance measures for SPD matrices.

Distance measure Formula
Distance
Metric

AIRM [85] ||log(C
−1/2
1 C2C

−1/2
1 )||F Yes

Log-Euclidean [5] ||log(C1)− log(C2)||F Yes
Stein [92] [log det(1

2
C1 + 1

2
C2)− 1

2
log det(C1C2)]

1/2 Yes
Cholesky ||chol(C1)− chol(C2))|| No
Kullback-Leibler tr(C−1

1 C2 − I)− logdet(C−1
1 C2) No

Logarithm Map: logp : M → TpM (2.4)

By using tangent spaces of two points and the inner product of tangent vectors of these

spaces, we can define the distances. The curve that defines this minimum distance is

the geodesic and the length of the curve is the geodesic distance. As we will see in

the next section, almost all of the distance measures use logarithm operation due to

this reason.

2.2.2 Distance Calculation on Riemannian Manifolds

Feature covariance matrices are utilized in several image processing and computer vi-

sion problems. It has a proven success for these problems. For most of the problems,

the most critical issue is to measure the similarity between the features represented by

the feature covariance matrices. As emphasized in Section 2.2.1, a covariance matrix

is an SPD matrix and lies on Riemannian manifolds. Since Riemannian manifolds

are nonlinear, Euclidean distance or other Lp norms does not give satisfactory results.

For these reasons, a proper distance measure for SPD matrices is one of the items that

should be considered.

A summary of the classical distance measures for SPD matrices are given in Table

2.2. Affine invariant Riemannian metric or shortly Riemannian metric [85] is the

most well-known distance metric. It can be considered as the geodesic distance since

it consists of the operations exponential logarithm maps. The disadvantage of the

AIRM distance is computationally expensive. To overcome the computation needs of

AIRM distance, authors in [5] proposes Log-Euclidean distance measure. The log-
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Euclidean distance measure is also used in this study and gives the best results for all

problems. In order to achieve a faster distance measure, authors propose a distance

metric which is based on Jensen-Bregman log-det divergence [25]. Sra converts the

Jensen-Bregman divergence to a distance metric in [92] by taking the square root of

it.

The classical distance measures have shown great successes in many studies and they

are used as in our study as mentioned in the following chapters. More recently, kernel

methods are proposed to measure the similarity for SPD matrices [50, 51].
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CHAPTER 3

ACTIVITY PERCEPTION AND ANOMALY DETECTION WITH FEATURE

COVARIANCE MATRICES

In this chapter, we study the problems of anomaly detection and activity perception

through the trajectories of objects in crowded scenes. For this purpose, we propose

a novel representation for trajectories via covariance features. Representing trajecto-

ries via feature covariance matrices enables us to calculate the distance between the

trajectories of different lengths. After setting this proposed representation and cal-

culation of distances between trajectories, anomaly detection is achieved by sparse

representations on nearest neighbors and activity perception is achieved by extracting

the dominant motion patterns in the scene through the use of spectral clustering. Con-

ducted experiments show that the proposed method yields results which outperform

or are comparable with state of the art.

3.1 Introduction

Improvements in camera technology make the video surveillance systems easily ac-

cessible. For this reason, application areas of video surveillance systems are broad.

Together with this progress, user expectations have induced new challenges to the

field. The biggest challenge is that automated handling of some tasks became manda-

tory for surveillance systems. Activity perception and anomaly detection are among

those important tasks for surveillance systems. Many approaches have been pro-

posed in the literature for anomaly detection and activity perception in scenes. These

approaches generally differ from each other with respect to the visual features they

utilize. Despite some difficulties in the extraction stage, especially in crowded scenes,
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the trajectory is still one of the most useful features for an object of interest.

The trajectory is a 2D or 3D time series data depending on the application. It car-

ries position information of the moving object with respect to time. Other valuable

information such as velocity can also be derived from trajectory data. Therefore, tra-

jectory data is crucial for several surveillance applications. In maritime surveillance,

the trajectory of a vessel is the biggest clue about its behavior. A hijacked plane can

be identified from its trajectory in aviation surveillance. For video surveillance, tra-

jectories of the objects in the scene give information about motion patterns. Also, the

trajectory of a high-speed car will be different from others and can be identified as

an anomaly. As can be seen from the examples, trajectories are valuable features of

moving objects to handle tasks such as anomaly detection and activity perception.

In this chapter, the proposed representation or descriptor is utilized for trajectories.

A feature vector is defined for each point of the trajectory and a feature matrix is

obtained by concatenating these vectors. The proposed descriptor is the covariance

of the feature matrix. By representing trajectories via feature covariance matrices,

essentially, a novel distance measure is introduced for trajectories. This measure is

capable of calculating the distance between the trajectories of different lengths. Since

covariance matrices lie on Riemannian manifolds, a distance metric which is capa-

ble of measuring geodesic distance is utilized while calculating the distance between

the trajectories. Another contribution in this chapter is the achievement of anomaly

detection by sparse representations on nearest neighbors. The proposed anomaly de-

tection approach based on sparse representation optimizes the number and weights

of the nearest neighbors while setting up an anomaly measure. Activity perception is

achieved by spectral clustering of trajectories. Distances determined through the co-

variance matrices are transformed to similarities to build a similarity graph. Activity

perception is then treated to extract the dominant motion patterns in the scene through

the use of spectral clustering.

Organization of the chapter is as follows. A brief literature review of the activity

perception and anomaly detection in visual scenes is given in Section 3.2. In Section

3.3, the proposed representation for trajectories is introduced. Anomaly detection ap-

proach based on the sparse representation of nearest neighbors is described in Section
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3.4. Activity perception through clustering of trajectories using spectral clustering al-

gorithm is presented in Section 3.5. Experimental results on both synthetic and real

datasets are given in Section 3.6.

3.2 Related Work

Feature covariance matrices are firstly proposed and used as descriptors in [100].

The covariance descriptor basically enables to determine the distance between two

instances by representing the instances by their features and their covariance matrix

of the feature matrices. After it is proposed in [100] for object detection and classifi-

cation, covariance descriptor is exploited to solve several computer vision problems

such as visual tracking [87], action recognition [40, 16, 102], and saliency detection

[33]. In all of these works, covariance descriptor is utilized as region descriptor. Some

optical flow components are included in the feature vector, however, in none of them,

covariance descriptor is used to describe a 2D time series.

The trajectory is a spatiotemporal feature for a moving object and carries information

about its journey in the scene. Hence, it is important to get information about the

activities and it is used for activity perception in previous works [12, 105, 80]. While

analyzing trajectories, the critical point is the selection of proper distance measure.

Several distance measures [12, 60, 45, 17, 26, 7] for trajectories have been proposed

so far. Two excellent review papers [79, 113] compare different distance measures

for trajectories.

Anomaly detection and activity perception are two important problems for surveil-

lance systems. In recent years, there are many successful works that handle these

problems for realistic scenarios. For anomaly detection, in [75], authors use a mix-

ture of temporal and spatial models to detect the anomalies and in [68], they extend

the models to multiple scales to detect anomalies at different spatial and temporal

scales. A Gaussian Mixture Model (GMM) based probabilistic model is fit to particle

trajectories which are extracted by particle advection in [108]. Trajectories that do

not fit this model are labeled as anomalies. Aside from computer vision community,

there are other works focusing on anomaly detection on trajectories. Laxhammar et.
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al. [65] apply their anomaly detector called conformal anomaly detector to the tra-

jectories. In [26], a 1-class Support Vector Machine (SVM) is utilized to detect the

anomalous trajectories. The most interesting part of the study is the introduction of

a faster solution for SVM training in the presence of outliers. An outlier detection

method which is based on the concept of discords is introduced in [58]. Discord for

an instance is another instance that has the maximum Euclidean distance to its nearest

neighbor.

Nonparametric Bayesian models are widely used for activity perception in recent

years. Starting from the pioneering work [106], there are significant works [44, 63] in

this path. In [106], nonparametric Bayesian models are adapted to activity perception

in visual scenes by modeling the motions in the scene as visual words, short video

clips as documents and activities as topics. Follow-up works [44, 63] adapt Markov

models to learn the temporal dependencies between activities.

There is a recent approach [94] that considers the trajectories on Riemannian mani-

folds. The method is based on a representation called transported square-root vector

field (TSRVF) and L2 norm on the space of TSRVFs. Authors have also applied their

methods to visual speech recognition problem in [95]. In this method, trajectories are

mapped into a tangent space by parametrization via its TSVRF. TSVRF formulation

includes the derivative and square root of the derivative of the parametrized version

of the trajectory. To conclude, the method has a similar idea with our method; how-

ever, in our method feature covariance matrices are exploited to map the trajectories

to Riemannian manifolds.

3.3 Trajectory Representation by Feature Covariance Matrices

Trajectories can be considered as time series of 2D coordinates. For a visual scene,

there might be lots of trajectories of different lengths. In order to analyze these tra-

jectories, first, a similarity or a distance function should be defined. In this study,

we propose to describe the trajectories with covariance matrices of their features. By

doing so, all trajectories are transferred to space of Riemannian manifolds and simi-

larities between them are calculated in this set.
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Figure 3.1: Representation of trajectories using feature covariance matrices.

A 2D trajectory can be defined as a sequential concatenation of K points or more

formally as a Kx2 matrix, [x1 y1,...,xK yK], as shown in Figure 3.1. In this figure,

a trajectory from synthetic dataset [26] is shown as a sample. The lengths of the

trajectories are 16 in the dataset. A feature vector is formed for all points in the

trajectory except the first point. For such a case, F matrix will be 15x5 including

feature vectors of all trajectories and the resulting covariance matrix will be 5x5.

In order to represent a trajectory with feature covariance matrices, first, a point of a

trajectory can also be defined by its features

f = [x y vx vy t] (3.1)

where x and y define the position, vx and vy are velocities in x and y directions re-

spectively and t is the time index. During experiments, several features including

cumulative sum, acceleration etc. have been examined to increase the performance.

However, the best performance values are obtained with feature set defined in Equa-

tion 3.1. For the whole trajectory, feature matrix can be defined similarly as
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x2 y2 vx2 vy2 t2

.

.

.

xK yK vxK vyK tK


(3.2)

Feature covariance matrix is determined as

C =
1

K

K∑
k=1

(Fk − µ)(Fk − µ)T (3.3)

where µ is the mean vector of all instances in matrix F . At this point, a small mul-

tiple of the identity matrix is added to covariance matrices. This regularization is

performed to ensure the positive definiteness of the covariance matrix. Positive defi-

niteness is important for the distance metric which involves a logarithm operation.

It should be noted that for all trajectories of different lengths, we end up with a 5x5

covariance matrix. This enables us to determine the similarity between the trajectories

of different lengths. After covariance representation, trajectories are carried onto

Riemannian manifolds. The critical point from now on is to calculate the distances

between the trajectories on Riemannian manifolds.

A distance measure that approximate the geodesic distance between two points on

Riemannian manifolds must be used. For this purpose, as previous works [100, 87,

40] that utilize covariance matrices suggested, Euclidean distance metrics must be

avoided. We use the log-Euclidean metric which was first proposed in [5] between

covariance matrices. Compared to other distance metrics [37] and divergence func-

tions [20], the best performance is achieved by using log-Euclidean metric in this

study. Log-Euclidean metric is, in principle, based on matrix logarithms. The de-

termination of the log-Euclidean metric starts with the eigenvalue decomposition of

covariance matrices.

C = V QV T (3.4)

After this eigenvalue decomposition, matrix logarithm is obtained as
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log(C) , V Q̃V T (3.5)

where Q̃ is a diagonal matrix obtained from Q by replacing Q’s diagonal entries by

their logarithms. The distance between covariance matrices is calculated via Frobe-

nius norm of the distance matrix logarithms.

ρ(C1, C2) = ‖log(C1)− log(C2)‖F (3.6)

Now, we can calculate all the distances between trajectories via feature covariance

matrices. In subsequent sections, anomaly detection and activity perception prob-

lems will be based on these distances. Anomaly detection is carried out by a novel

approach based on a sparse representation of nearest neighbors. Activity perception

is achieved by forming a similarity matrix from pairwise distances and utilizing this

in spectral clustering.

3.4 Anomaly Detection on Trajectories

In this work, trajectories are utilized as the feature of objects in the scene. Therefore,

in order to detect the anomalous motions of the objects, anomalous trajectories are

determined within the set of all trajectories. An anomalous trajectory can be described

as a sample that does not fit motion patterns in the scene. Based on this definition,

the nearest neighbor approach can be considered as the simplest solution for anomaly

detection. The distance to the nearest neighbor can be a good measure for some

cases while deciding anomalies. However, depending on the structure of the data

and amount of anomalous observations, distance to the nearest neighbor might not be

a good alternative. We propose a method which considers the distances to a set of

nearest neighbors and tries to optimize the weights and number of nearest neighbors.

A scenario is depicted in Figure 3.2 to explain the necessity of the algorithm. For

some anomalies, the nearest neighbor or a weighted sum of nearest neighbors might

not be a good anomaly measure. Anomalies are shown inside the red dashed ellipse.

For anomalies in the orange circle, the distance to third nearest neighbor should be

included in the anomaly measure.
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Figure 3.2: A scenario to explain the necessity of sparse anomaly detection algorithm.

After the representation of trajectories via covariance matrices and calculation of dis-

tances between trajectories, anomaly detection is carried out by using a measure com-

prising distances to nearest neighbors. For this purpose, we select nearest neighbors

through a sparse representation. In this approach, an anomaly measure is calculated

via the weighted sum of distances to nearest neighbors for each sample. Our goal is to

optimize the number of the neighbors and their weights while deciding if an instance

is anomaly or not.

At this point, the remedy can be considered as dictionary learning on trajectories.

Dictionary learning approaches search the sparsest representation of basis vectors

that makes the reconstruction error minimum. There are also some previous works

[93, 24] that propose approaches for dictionary learning on Riemannian manifolds.

However, in these works, the main goal is to retrieve a more accurate form of nearest

neighbor. In our case, we try to optimize the weights and number of nearest neighbors

for anomaly detection. Therefore, we follow a different strategy for this purpose after

the determining the distances using log-Euclidean measure.

In sparse anomaly detection approach, the data is assumed to be offline and available

to be divided into uniform parts. In particular, we exploit some part of the data for

training and derive optimal weights of nearest neighbors from this subset. A same

number of data samples are taken into the testing process. Anomaly measure is com-

posed of distances to K nearest neighbors for each sample in the training set of M
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samples.

Ai = w1d1 + ...+ wKdK (3.7)

where di,..., dK are distances to K nearest neighbors. Equation 3.7 can be written in

a matrix form

Ai =
[
w1 ... wK

]
d1
...

dK

 = WDi (3.8)

and finally when all instances are considered

A = WD (3.9)

whereA is a 1xM vector consisting of anomaly measures for all instances, W is a 1xK

vector consisting of weights of K nearest neighbors and D is the matrix that contains

distances to the K nearest distances for all samples.

At this point, we use the anomaly labels of the training samples. Our weigths should

be such that it supress the non-anomalous samples whereas they boosts anomaly mea-

sure for the anomalous samples. Besides, since there might be several combinations

of weighted neighbors for each instance, a minimum number of neighbors should be

used. Therefore, combining with previous observations, the optimization problem

can be summarized as

W = argmin
W

{λ|W |0 + |Ltr −W ∗D|2} (3.10)

where Ltr is the label vector in the training set. Since L0 norm is a nonconvex func-

tion, the L1 norm is the first alternative to L0 norm. However, with L1 norm, we

still does not guarantee the positive weights in our problem. For this purpose, we

put a constraint for non-negative weigths. Then the final optimization becomes a

constrained optimization as in Equation 3.11.
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W = argmin
W

{λ|W |1 + |Ltr −W ∗D|2}

subject to wi ≥ 0

(3.11)

In our experiments, we show that anomaly detection with sparse representation gives

better results than the single use of nearest neighbors or equally weighted of them.

3.5 Activity Perception via Trajectories

Activity perception is the second problem for which the proposed representation is

exploited. An activity can be considered as a set of similar trajectories. Clustering is

the direct solution for the identification of these sets or activities. Therefore, activity

perception is handled with clustering of trajectories.

Describing trajectories through the utilization of feature covariance matrices enables

us to construct a similarity matrix between trajectories of different lengths. This

similarity matrix can be used to build an undirected graph which allows extracting

the motion patterns in the scene. Spectral clustering methods are popular since they

are capable of handling non-convex patterns in the data. As in [84], the similarity

matrix is built using the distances derived with feature covariance matrices

sij = e−d
2
ij/2σ

2

(3.12)

where dij is the distance between the trajectories i and j. Spectral clustering is

achieved by the clustering of eigenvectors of a matrix called Laplacian. In its un-

normalized formulation, Laplacian is the difference between the degree matrix and

the similarity matrix.

L = D − S (3.13)

where D is a diagonal matrix which contains the sum of each row of similarity matrix

(or column depending on its symmetry). Laplacian matrix is normalized as in [84] to

handle the clusters of different sizes.

L = I −D−1/2SD−1/2 (3.14)
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where L is the normalized Laplacian and D is degree matrix. Clusters are determined

by applying the k-means algorithm on eigenvectors of normalized Laplacian.

3.6 Experiments

During experiments, a synthetic dataset and three real datasets are exploited. Syn-

thetic dataset firstly introduced in [58] is used. The real datasets are UCSD anomaly

detection [75, 68], MIT Parking Lot [105] and Train Station (Grand Central) [116].

Anomaly detection on trajectories is carried out on both synthetic and three real

datasets to evaluate the performance of the proposed representation. On the other

hand, for activity perception, we use only the synthetic dataset and MIT Parking Lot

dataset. It is better to mention about two practical details before experimental results.

First, the regularization parameter mentioned after Equation 4.3 is selected as 0.005 in

all experiments. Secondly, in all real datasets, a size threshold is applied to eliminate

small tracks.

3.6.1 Results on Synthetic Dataset

The synthetic dataset generated in [26] is firstly exploited for anomaly detection.

The performance of the proposed approach is compared to previous works given in

[26, 65, 58]. The synthetic dataset includes 1000 subsets and in each subset, there

are 260 trajectories. In each subset, last 10 trajectories are anomalous. Comparative

results are given in Table 3.1 for the dataset and a sample result is shown in Figure

3.4. As can be seen in Table 3.1, the proposed representation has outperformed the

state-of-the-art techniques just by utilizing the distance to the nearest neighbor only.

The synthetic dataset is also exploited while evaluating the performance of sparse

anomaly detection. Sparse anomaly detection is implemented through running of

Monte Carlo simulations in the synthetic dataset. In each run, we select 100 sets for

training from the whole dataset including 1000 sets. The remainder of the dataset

is used for testing. Sparse representation or the weights of the nearest neighbors are

applied to the testing set. As shown in Table 3.1, the best results are obtained with

the combination of proposed trajectory representation and sparse anomaly detector.
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Figure 3.3: Representative images from the datasets used in the experiments. The
synthetic dataset, two scenes from UCSD dataset, Grand Central and MIT parking lot
datasets are given in upper left, upper right, bottom right and bottom left, respectively.

Table 3.1: Accuracies of anomaly detection methods for the synthetic dataset built
in [26]. The proposed representation outperforms the state-of-the-art techniques with
use of anomaly measures, nearest neighbors (NN) and sparse representation (SR).
Sparse representation also gives better results compared to single use of nearest neigh-
bor.

Method Accuracy
1-Class SVM [26] 0.9630
Conformal Anomaly Detector [65] 0.9709
Discords [58] 0.9706
Proposed representation w/ NN 0.9805
Proposed representation w/ SR 0.9827
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Figure 3.4: A sample result for anomaly detection in the synthetic dataset. Ten sam-
ples are shown for each cluster of normal trajectories. Anomalous trajectories are
indicated with bold magenta lines.

The synthetic dataset is also utilized for the activity perception part. The previously

mentioned 250 non-anomalous trajectories in the dataset belong to five equal size

clusters. Similarity matrix shown in Figure 3.6 is used to obtain the clustering result

shown in Figure 3.5. Similarity matrix shown in Figure 3.6 also gives an idea about

the usefulness of the representation. Correct clustering rate is 0.9055 for the whole

dataset which contains 1000 subsets of 260 trajectories.

3.6.2 Results on Real Datasets

Before going into details, it is better to give the reasoning of missing of quantita-

tive results. There is no ground truth data for anomalies or activities in MIT Parking

Lot [105] and Train Station (Grand Central) [116] datasets. In UCSD case [75, 68],

anomaly ground data are frame based and not appropriate for our approach. There-

fore, quantitative results cannot be produced for these datasets.

In UCSD dataset, there are sequences of two scenes. For these scenes, training and

test sequences are also provided. Anomalies are motions of non-pedestrian objects

such as cars, skaters and bicyclists. A critical issue for UCSD anomaly detection

dataset is the extraction of trajectories. For this purpose, KLT tracker used in [115] is

exploited to extract the trajectories. After extraction of trajectories for both training
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Figure 3.5: Clustering result for a set of trajectories in the synthetic dataset.
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Figure 3.6: Similarity matrix of trajectories given in Figure 3.5. Five clusters can be
observed together with the anomalies which lie in the last rows and columns.
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Figure 3.7: Ten most anomalous trajectories in Train Station dataset.

and test sequences, a covariance matrix for each trajectory is calculated. The covari-

ance matrix of each trajectory in the test sequences is compared with all covariance

matrices of the trajectories in the training set. Training dataset is not sufficiently large

to calculate a sparse representation for this dataset. Therefore, a predefined anomaly

measure which is the combination of three nearest neighbors are used in experiments.

For some test sequences from two scenes of the dataset, the most anomalous trajec-

tories are shown in Figure 3.8. In Figure Figure 3.8, images in the first two rows

indicate the most anomalous trajectories in the folders of Test014, Test019, Test022,

Test024 of UCSDped1 scene and the ones in the third and fourth rows are for Test003,

Test005, Test006, Test009 of UCSDped2 scene. Starting points are shown with green

star and end points with red star, respectively.

Train Station (Grand Central) [116] dataset is also used to detect anomalous trajec-

tories. The dataset provides directly the extracted trajectories. Anomaly detection is

again based on distance to three nearest neighbors. In Figure 3.7, ten most anoma-

lous trajectories are shown on the background image provided with the dataset. It

should be noticed that starting and ending points for anomalous trajectories are not

the normal entrance and exit points.
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The next dataset utilized is MIT Parking Lot dataset [105]. This dataset comprises

trajectories captured from a parking lot containing trajectories of cars and people.

There are certain motion patterns in the scene and the dataset is exploited to de-

tect these motion patterns or activities. In this study, the dataset is used for both of

anomaly detection and activity perception. Anomaly detection is again based on dis-

tance to three nearest neighbors. Anomaly detection results are shown in Figure 3.9.

Some sharp trajectories which are caused by an error in extraction stage are labeled

as an anomaly. Activity perception is carried out by a forming a similarity matrix

and applying spectral clustering. In the dataset, there are 40453 trajectories and spec-

tral clustering might not be computationally manageable when applied to the whole

dataset. However, aforementioned size limit makes the spectral clustering feasible.

The activity perception results are given in Figure 3.10. The number of clusters is set

to eight to achieve these results in the final k-means step of spectral clustering. Obvi-

ously, some clusters contain more than one meaningful motion pattern. It is observed

that these motion patterns are extracted when the number of clusters is set to a bigger

number. A potential improvement lies in this part of the study. A clustering algorithm

without specifying the number of clusters and still works on similarity matrices will

be a good alternative to spectral clustering.

3.7 Conclusion

In this study, we propose a novel approach by describing trajectories with feature

covariance matrices. We study the problems of anomaly detection and clustering

for trajectories in this context. Feature covariance matrices enable us to measure

the similarity between trajectories of different lengths. Also, conducted experiments

show that covariance descriptor for trajectories yields satisfactory results compared

to the state of the art.

We have also introduced a sparse anomaly detector to decide the number and the

weights of the nearest neighbors that should be used. This sparse representation can

be applied to other similar problems. The only requirement is to have a training

dataset for which annotated anomaly data is given.
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Figure 3.8: Some examples of anomaly detection results in UCSD dataset. Results
lied in the rows are from two different scenes in the dataset.
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Figure 3.9: Some anomalous trajectories from MIT Parking Lot dataset. These
anomalous trajectories might be result of problems in extraction stage.
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Figure 3.10: Trajectory patterns in MIT Parking Lot dataset.
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The whole study has been conducted with the assumption that crowd density allows

extracting trajectories for each object. In dense crowd scenarios, other approaches

such as particle advection used in [108] might be more feasible to obtain trajectories.

There is a possible improvement in activity perception part of this study. Instead of

standard spectral clustering approach for which the number of clusters must be given,

another clustering approach on distance matrix calculated with the representation can

be used.

A representation is proposed for time series of 2D data in this study. A possible ex-

tension of this work is the shape classification problem. Although there is no time

information and invariance on rotation and scale could be problematic, feature co-

variance matrices can be used to describe 2D shapes.
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CHAPTER 4

TIME SERIES CLASSIFICATION WITH FEATURE COVARIANCE

MATRICES

In this chapter, a novel approach utilizing feature covariance matrices is proposed for

time series classification. In order to adapt the feature covariance matrices for time

series classification, a feature vector is defined for each point in a time series. The

feature vector comprises local and global information such as value, derivative, rank,

deviation from the mean, time index of the point and cumulative sum up to the point.

Instead of representing the whole time series with a single covariance matrix, time se-

ries is divided into overlapping subsequences. Extracted feature vectors for the time

instances are concatenated to construct feature matrices for the overlapping subse-

quences. Covariance of the feature matrices are used to describe the subsequences.

After the determination of feature covariance matrices for both training and test sam-

ples, distances are calculated by using log-Euclidean distance measure. Our main

purpose in this work is to introduce and evaluate the feature covariance representa-

tion for time series classification problem. Therefore, in classification stage, first,

1-NN classifier is used. SVM classifier is also utilized for the problem. Conducted

experiments on UCR time series dataset show that the proposed method yields results

which mostly outperform well-known methods such as DTW, shapelets and other

state-of-the-art techniques.

4.1 Introduction

Time series analysis has received great interest over the past decades from several

disciplines including biology, medicine, economics, etc. In tandem with the increas-
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ing availability of digital data, it is highly possible that this problem will gain much

more attention. Time series classification is one of the most important problems in

time series analysis [89, 35]. There are two main issues in time series classification

as in other time series analysis problems: representation of time series and similarity

between time series [89, 35].

Time series classification can be treated as a supervised learning problem. From

this perspective, aforementioned common issues related to time series analysis cor-

respond to a feature extraction step and an appropriate classification approach. The

feature extraction step is needed to extract the discriminative part of the time series

as in problems in computer vision [77] and speech recognition [8]. The time se-

ries is then represented with the extracted features for further tasks such as indexing,

clustering and classification. In addition, by representing the data in a feature space,

dimensionality reduction can also be achieved for most of the cases.

In the last two decades, several feature extraction methods [77, 73, 64, 100, 13, 27]

have been proposed for detection and classification problems in images and videos.

Although some visual features are utilized for the problems in time series domain

[98, 96, 86], feature extraction methods have not become popular yet when time se-

ries classification is considered. There are recent studies [114, 10] applying well-

known features in computer vision to the time series classification problem; however,

some important techniques remain untouched for the time series domain. Covariance

descriptor, which is the utilized technique in this study, is one of them that can be

efficiently applied to time series classification problem.

Previously, covariance descriptor has been used to describe regions for images [100,

99, 87, 33] and video blocks in capturing different types of actions [40]. Covariance

descriptor is exploited as a high-level feature in all these applications. It captures the

pairwise correlations of the basic image or video features. Similarly, for representing

the time series, it captures the pairwise correlations between the pointwise features.

Covariance descriptor presents a compact representation due to its symmetry. It pro-

vides a low-dimensional and fixed-size covariance matrix which is independent of the

length of time series. Also, it is robust to noisy inputs since it includes an inherent

averaging in covariance computation.
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In this chapter, we propose a novel approach for time series classification problem.

In previous chapter, feature covariance matrices were used to represent trajectories

which are basically 2D time series. It was shown that representing trajectories via

feature covariance matrices outperforms the state-of-the-art methods for anomaly de-

tection and activity perception problems. We utilize the same representation for time

series classification problem by adapting it to subsequences and defining novel point-

wise features. First, feature covariance matrices are determined for overlapping sub-

sequences of both test and training samples. Overlapping subsequences are selected

in order to cover all discriminative portions of the time series. While building co-

variance descriptor, a feature vector is defined for each point in the subsequence.

Feature vectors are then combined to determine the feature matrix. Covariance of the

feature matrix is utilized to represent the subsequence. In classification stage, two

well-known classifiers are utilized. For 1-NN classifier, the distance between training

samples and a test sample is determined by using Log-Euclidean distance metric. For

SVM classifier, the upper (or lower) triangular part of the covariance matrices of the

subsequences are concatenated. Comparative experiments using 43 different datasets

are conducted. We achieve mostly outperforming results compared to well-known

methods such as DTW, shapelet transform and state-of-the-art methods [114, 14].

The proposed approach is also very efficient in computation time compared to other

methods. The computation time efficiency is due to the fact that overall method is

simply based on a feature covariance representation.

The main contribution of the chapter is our novel time series classification approach

which is based on covariance descriptor. To the best of our knowledge, this is the

first method where each point of the time series is used for representation and feature

extraction. Another important contribution is that a novel distance measure is pro-

posed for time series. The distance obtained by covariance descriptor can be applied

to time series of different lengths. Lastly, our results are mostly outperforming the

well-known and state-of-the-art methods.

The remainder of this chapter is organized as follows. A summary of previous works

on time series classification is provided in the next section. Section 4.3 presents the

proposed representation based on covariance descriptor and how it is applied to time

series classification. How we utilize two classifiers is summarized in Section 4.4.
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Conducted experiments are given in Section 4.5. Conclusions and possible future

work are provided in Section 4.6.

4.2 Related Work

There are several previous works that address the time series classification problem. A

review of representations and distance measures for time series is provided in [107].

In our perspective, time series classification is a supervised learning problem. As

other supervised learning problems, time series classification is conceived as a two-

fold problem in this work: representation and classification. However, there are many

studies handling time series classification problem from different perspectives. Stud-

ies are divided into three categories according to how they approach the problem.

The first category includes the distance-based approaches [60, 61, 52]. In the sec-

ond category, approaches seek a better representation for time series [110, 43, 81,

69, 14, 114, 10]. Approaches in the last category mostly focus on the classification

part of the problem and apply various classification methods like random forests [29],

ensembling [9, 70, 39].

The most direct solution for time series classification problem is measuring the Eu-

clidean distance between time instances and applying nearest neighbor classifier.

However, this solution is susceptible to time distortions such as shifting, stretching

and contracting. Dynamic time warping (DTW)[60] is used to mitigate these distor-

tions. DTW measures the similarity between time series by searching the optimum

map over the points in a time series. In [61], authors propose a modification of origi-

nal DTW methodology to handle the singularities by utilizing first-order differences.

On the other hand, a weighted version of DTW is used to give different weights to

warping distances in [52]. In a very recent work [55], DTW distance is utilized as

a feature for time series classification. Lastly, Wang et al. compare the several dis-

tance measures including DTW and its modified versions and report their time series

classification performances in [107].

Representation-based approaches are divided into three subcategories: shapelet trans-

form, bag-of-words and feature-based approaches. Shapelet is a discriminative sub-
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sequence of time series. The main idea behind the approach is to find a subsequence

which has a smaller distance to one class of time series compared to other ones. The

first shapelet-based approach was proposed in [110] to reduce computation complex-

ity of preceding methods and get more insights about data. In this pioneering work

of Ye and Keogh [110], the discovery of the shapelets is embedded into a decision

tree classifier. Mueen et al. [81] propose logical shapelets to reduce the computation

time of shapelet discovery. They discover the conjunction or disjunction of shapelets

instead of discovering a single shapelet. However, the method is still based on an

enumerative search. The approach proposed in [43] finds top k shapelets in a single

run and utilizes the transformed data onto these top k shapelets while classifying the

time series. In a more recent study [9], the data after shapelet transformation are one

of the blocks fed into an ensemble classifier.

Another representation-based approach for time series classification is based on bag-

of-words or bag-of-features models. Bag-of-words models are used in several tasks

including the examples of image retrieval [111], object detection [78] and music clas-

sification [38]. An approach called symbolic aggregate approximation (SAX) [69]

that attacks several time series data mining problems follows a similar path for time

series classification. In this approach, words are generated using the symbols for

fixed-size windows and time series is represented by these words. Authors use differ-

ent distance measures for different time series data mining problems. In [14], some

features such as mean, deviation and slope of the fitted regression line are put in a bag

to represent a randomly selected subsequence. After extracting features for subse-

quences, random forest classifier is used to generate the codebooks for subsequences

and classify the time series.

Feature-based approaches generally consist of two steps: extraction of local or global

features and a classifier. The classifier is trained using the extracted features from a

training set. Some recent works adapt the proven descriptors in computer vision to the

time series [114, 10, 97]. Histogram of gradient (HOG) descriptor [27] is applied to

1D time series and is utilized in time series classification in [114]. In [114], there are

also descriptors which are used to represent the subsequences. The fused descriptor

is the input of a Fisher vector encoding followed by a linear kernel SVM. Scale-

invariant feature transform (SIFT) [73] is another popular descriptor used in several
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computer vision problems. It is applied to time series classification with a bag-of-

features approach in [10]. A more recent work [55] uses the DTW distance measure

as a feature. A time series is represented in terms of its DTW distances from each

of the training examples. Our approach can also be categorized as a feature-based

approach. It learns covariance features of subsequences from a training set and inputs

these covariance matrices to a classifier to decide the class of test samples.

For the classification part of the problems, most of the well-known classifiers such as

SVM [114], random forests [54], NN [88] are used for time series classification prob-

lem. In [4], the authors present a benchmark of approaches for time series forecasting.

Since regression and classification are very similar problems, the approaches and their

results mentioned in [4] provide a vision for time series classification problem. On

the other side, there are some recent works [9, 70, 39] that utilize the ensembling

strategy. Thirty-five classifiers constructed in time, frequency and shapelet transfor-

mations are combined in [9]. Classifiers are combined according to their training set

cross-validation accuracy. In [39], authors exploit the training set to achieve the most

informative features from thousands of interpretable features. The most informative

features for each class in a time series are found using greedy feature selection with

a linear classifier. Another ensemble method proposed in [70] combines the basic

distance measures including two aforementioned variants of DTW and edit distance-

based measures. As expected, all three methods that exploit the ensemble strategy

achieve significantly better results compared to other methods.

4.3 Representation of Time Series by Feature Covariance Matrices

In our previous work [34], feature covariance matrices were used to represent tra-

jectories in image sequences, which are basically 2D time series. It was shown that

representing trajectories via feature covariance matrices provided state-of-the-art re-

sults for anomaly detection and activity perception problems. Similarly, in this work,

feature covariance matrices are used to represent 1D time series. A set of analogies

is built up between computer vision and time series domains, such that the concept

of time series-subsequence-point triplet of a time series signal is inherited from the

concept of an image-region-pixel triplet in computer vision. More clearly, covariance
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descriptor is used to represent an image region [99] or a video block [40] in com-

puter vision problems. In a similar fashion, in this study, it is utilized to represent the

subsequences of a time series as shown in Figure 4.1. Covariance descriptor is built

by determining the covariance of a feature matrix comprising feature vectors defined

for each point in the subsequence. Analogous to the selection of regions in computer

vision problems [100, 99], overlapping subsequences are selected so that discrimina-

tive portions of the data are not missed. A parallel analogy is pursued in the selection

of pointwise features. Pointwise features that are used to represent time series are

analogous to pixel features such as pixel value, pixel coordinates, optical flow, etc.

Covariance descriptor is based on the covariance of feature matrices. Covariance ma-

trices are semi-positive definite matrices. As other semi-positive definite matrices,

covariance matrices lie on Riemannian manifold space. Therefore, before getting

into the details of the proposed approach, we provide a brief summary of Rieman-

nian manifolds. Riemannian manifolds are located in the third layer of a manifold

hierarchy. Topological manifolds are locally Euclidean spaces which are located in

the first layer of the hierarchy. In the second layer, differentiable (or smooth) mani-

folds are located. Differentiable manifolds are topological manifolds, for which some

calculus operations such as the derivative can be defined. Riemannian manifolds are

differentiable manifolds, for which distance metrics and angles can be defined.

The critical point is the calculation of distances between covariance matrices while

using them for a classification problem. Before explaining the distance measure, a

more illustrative definition of the Riemannian manifold can be given as follows: A

Riemannian manifold is a differentiable manifold equipped with the inner product on

tangent space at each point. The distance measure is based on exponential and loga-

rithmic maps between two points on Riemannian manifolds. It should be noted that

these definitions are introductory basics about manifold geometry. More information

on Riemannian manifolds can be found in [66] and in the second chapter of [36].

Time series can be considered as a sequential concatenation of several points. Each

point has its own features such as value, slope, distance to mean, time index, etc.

These can be used for the classification problem since they carry important informa-

tion about the series. Moreover, the change of these pointwise features with respect
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to each other carries another important information about time series. The main idea

behind the use of covariance matrix as a descriptor is that it captures these pairwise

correlations between the pointwise features.

Time series can be defined as a sequential combination of M points or formally as

a vector of length M ([x1,. . . ,xM ]). Feature candidates can be merged in a feature

vector for a point in time series. Let the number of features, {si}, defined for a point

be K. The feature vector for Nth point of the subsequence can be shown as

fN = [sN1, . . . , sNK ] (4.1)

When feature vectors are combined for all points, we end up with a feature matrix F ,

F =



s11 . . . s1K

.

.

.

sM1 . . . sMK


(4.2)

The covariance of the feature matrix is calculated as

C =
1

M − 1

M−1∑
i=1

(Fi − µ)(Fi − µ)T (4.3)

where µ is the mean vector of feature vectors {f1, . . . , fM} .

This general representation is adapted for time series classification problem by divid-

ing the time series into L overlapping subsequences each of them has a length M . A

point in a subsequence is defined by its features, namely its value, derivative, cumula-

tive sum, the difference between mean, rank and time index. The features carry both

local and global information about the point. Value, derivative and time index features

are local features since they depend only on the point itself and in certain cases on its

adjacent point. On the other hand, cumulative sum, the difference between mean and

rank depend on almost all points in the subsequence, and hence, they can be called as

global features. The feature vector with these pointwise features is formed as
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f = [xT dT csT dmT rT T ] (4.4)

where xT is the value, dT is the derivative at a specific point at time T

dT = xT − xT−1 (4.5)

The third feature in the feature vector is cumulative sum up to a point and is given by

Eq. (4.6) at point T

csT =
T∑
t=1

x(t) (4.6)

The next pointwise feature is the difference between the mean of the subsequence and

value at point T . This pointwise feature indicates the distinctiveness of the point in

the subsequence, and it is calculated as

dmT = x(T )− 1

M

M∑
t=1

x(t) (4.7)

where M is the length of subsequence. The feature of rank, rT , is the Nth biggest

value of the subsequence. We have also inserted time directly to the feature vector

to show us how other features change in time. It should be noted that the time fea-

ture is normalized within the subsequence. For each subsequence, time index starts

from 2, due to the calculation of the derivative, and goes up to M. Throughout the

experiments, the effects of several other features including the second derivative, the

difference between the maximum etc., are evaluated as well. However, the best clas-

sification performance is obtained with the proposed feature set. Besides, a detailed

analysis of the effects of selected pointwise features is given in Section 4.5. After

determination of all pointwise features for a whole subsequence, feature matrix is

defined by
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F =



x2 d2 cs2 dm2 r2 2

.

.

.

xM dM csM dmM rM M


(4.8)

Covariance of the feature matrix defined in Eq. 4.8 is utilized to represent each sub-

sequence of time series. By doing so, time series are carried onto the Riemannian

manifold space. Each subsequence of the time series corresponds to a point in the

manifold. The covariance of the feature matrix is calculated as in Eq. 4.3. At this

point, a small multiple of the identity matrix is added to covariance matrices for all

subsequences in test and training sets. This regularization is performed to ensure the

positive definiteness of the covariance matrix. Positive definiteness is crucial for the

distance metric which involves a logarithm operation.

The covariance descriptor brings some advantages for time series classification prob-

lem. The covariance matrix enables us to combine multiple feature vectors. The

dimension of the covariance matrix depends only on the dimension of the feature

vector, f , given in Eq. 4.4. The covariance matrix C is a d × d matrix when f is

d-dimensional. Also, due to its symmetry, C has only (d2 + d)/2 independent values.

As stated before, dimension reduction is one of the main goals of feature extraction.

When compared to the dimension of time series or even the dimension of the subse-

quences, C lies in a lower dimensional space. Last but not least, the novel part of the

representation with covariance matrix is that it maps the time series into a fixed-size

vector space, which is independent of the series’ length.

4.4 Time Series Classification with Feature Covariance Matrices

After representing 1D time series with feature covariance matrices, two well-known

classification techniques are utilized. First, the 1-NN classifier is utilized by consid-

ering it one of the simplest classification methods. The main goal of the utilization of

the 1-NN classifier is to evaluate the effectiveness of the proposed representation and

isolate the performance of the overall method from the performance of the classifier.
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Figure 4.2: Block diagram of the overall approach for time series classification with

1-NN classifier.

After determining the satisfactory results with the 1-NN classifier, SVM classifier is

used as a more complex classification technique. In this section, we give the details

about how classifiers are applied to the problem.

4.4.1 Classification with 1-NN classifier

For 1-NN classifier, the most crucial step is the calculation of the distances between

the covariance matrices of training samples and a test sample. As stated before, a

distance measure that approximate the geodesic distance between two points on Rie-

mannian manifolds must be used. For this purpose, similarly to [100, 87, 40] that

utilize covariance matrices, Euclidean distance metrics must be avoided. We use the

log-Euclidean metric which was firstly proposed in [5]. Compared to other distance

metrics [37] and divergence functions [20], log-Euclidean metric gives the best per-

formance in our experiments.

Log-Euclidean distance metric is based on matrix logarithm operation. Matrix loga-

rithm operation maps covariance matrices from a Riemannian manifold to Euclidean

space. The determination of the log-Euclidean metric starts with the eigenvalue de-

composition of the covariance matrix.

C = V DV T (4.9)

After this eigenvalue decomposition, matrix logarithm is obtained as

log(C) , V D̃V T (4.10)
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where D̃ is a diagonal matrix obtained from D by replacing its diagonal entries by

their logarithms. The distance between two covariance matrices is calculated via

Frobenius norm of the distance between matrix logarithms.

ρ(Cik, Cjk) = ‖log(Cik)− log(Cjk)‖F (4.11)

where i and j indicate train and test instances of kth subsequence of time series.

Now, we have all the distances between subsequences via their feature covariance

matrices. The distance between the whole time series is determined by averaging the

distances between subsequences.

ρ(Ti, Tj) =
1

L

L∑
k=1

ρ(Cik, Cjk) (4.12)

where L is the number of subsequences. Here, the average value of the distances

between the subsequences is used as the distance between two time series. Also,

there are other options like taking minimum or maximum of the distances as the

final distance. However, averaging the distances hinders the domination of a single

subsequence.

After obtaining the final distance between time series, 1-NN classification is applied

to determine the class of a test sample. In other words, the class of a sample in the test

set is assigned to the class of its nearest neighbor in the training set using the distance

measure explained above.

4.4.2 Classification with SVM classifier

SVM classifier is generally the first solution that comes to mind for a classification

problem. In our case, after determining the covariance matrices of the subsequences,

the critical question is how we build the model. There are some recent studies [11, 90]

that aim kernel learning over the manifolds. However, there is a more direct way.

Utilizing symmetric property of covariance matrices, lower (or upper) diagonal parts

of the covariance matrices are fed into the SVM classifier as in [11]. In a more formal

definition, for a time series dataset for which the number of subsequences is L and

the dimension of the feature vector is d, the dimension of the input vector fed into
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the SVM classifier is L ∗ d(d+1)
2

. Again, as in [11], the non-diagonal elements are

multiplied with
√

2 to keep the equality of norms.

SVM is originally a binary classification technique. There are some approaches while

utilizing SVM in a multi-class classification problem. One-versus-all (or one-against

all) is one of these approaches. In this work, we utilize one-versus-all approach for

time series classification. In this approach, for each class, a classifier is trained. For

the ith classifier, let the positive examples be all the points in class i, and let the

negative examples be all the points not in class i. In order to make a decision for

an unseen sample x, we take the corresponding classifier which reports the highest

confidence score

y = arg max
i=1,...,N

fi(x) (4.13)

where fi(x) is theith classifier and N is the number of classifiers or classes.

4.5 Experiments

In this section, we evaluate the performance of the proposed approach by using the

datasets in the UCR repository [23, 1]. The UCR repository consists of a diverse set of

85 datasets which grouped into six different types. This diversity in the type of UCR

datasets leads to high variability in series length and character as depicted in Figure

4.4 and summarized in Table 4.1. Due to this variability, the number of subsequences,

overlap ratio between the subsequences and the regularization constant have been

obtained for each dataset by cross-validation. For this purpose, for both classifier,

the original training set is split into equally sized validation and training sets. This

procedure is performed 100 times by randomly selecting validation and training sets

from the original training set. The optimum parameters are based on the average

classification errors acquired in these simulations. All the other parameters are kept

fixed for training and test sets in a dataset. Lastly, for SVM classifier, LIBSVM [2] is

utilized during the experiments.

In our experiments, we have utilized 43 of these 85 datasets for which the clas-
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Figure 4.4: Five samples from UCR time series dataset. Diversity in length and

variability for the datasets can be observed.

sification results of all the compared methods have been previously published. In

the following subsection, we first compare the performance of the proposed method

with well-known and the state-of-the-art methods and show that the proposed method

mostly outperforms the compared methods. In the second subsection, an analysis is

presented with different combinations of pointwise features. The computational com-

plexity of the proposed method is analyzed and compared with another feature-based

method given in [114] in the last subsection.

Table 4.1: Information about the datasets used in experiments

Dataset
No.of

Classes

Train

Size

Test

Size
Length Type

50 Words 50 450 455 270 Image

Adiac 37 390 391 176 Image

Beef 5 30 30 470 Spectro

CBF 3 30 900 128 Simulated

ChlorineCon 3 467 3840 166 Simulated

CinCECGTorso 4 40 1380 1639 ECG

Coffee 2 28 28 286 Spectro

CricketX 12 390 390 300 Motion

CricketY 12 390 390 300 Motion

CricketZ 12 390 390 300 Motion

DiatomSizeR 4 16 306 345 Image

54



ECG200 2 100 100 96 ECG

ECGFiveDays 2 23 861 136 ECG

FaceAll 14 560 1690 131 Image

FaceFour 4 24 88 350 Image

FacesUCR 14 200 2050 131 Image

Fish 7 175 175 463 Image

GunPoint 2 50 150 150 Motion

Haptics 5 155 308 1092 Motion

InlineSkate 7 100 550 1882 Motion

ItalyPower 2 67 1029 24 Sensor

Lightning2 2 60 61 637 Sensor

Lightning7 7 70 73 319 Sensor

MALLAT 8 55 2345 1024 Simulated

MedicalImages 10 381 760 99 Image

MoteStrain 2 20 1252 84 Sensor

OSULeaf 6 200 242 427 Image

OliveOil 4 30 30 570 Spectro

SonyAI 2 20 601 70 Sensor

SonyAI-II 2 27 953 65 Sensor

StarLightC 3 1000 8236 1024 Sensor

SwedishLeaf 15 500 625 128 Image

Symbols 6 25 995 398 Image

Trace 4 100 100 275 Sensor

TwoLeadECG 2 23 1139 82 ECG

TwoPatterns 4 1000 4000 128 Simulated

SynthControl 6 300 300 60 Simulated

UWaveX 8 896 3582 315 Motion

UWaveY 8 896 3582 315 Motion

UWaveZ 8 896 3582 315 Motion

Wafer 2 1000 6174 152 Sensor
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WordSynonyms 25 267 638 270 Image

Yoga 2 300 3000 426 Image

4.5.1 Comparative Results

The performance of the proposed method is compared to four different methods. Two

well-known methods, dynamic time warping (DTW) and shapelet transform (ST),

are selected for comparison similarly to state-of-the-art studies [114, 14]. These two

methods provide the best classification performance for some of the selected datasets

in the repository. The other two methods are feature-based methods [114, 14] and

chosen due to their similarities with the proposed approach. Below, a brief expla-

nation on the reported performance of each compared method is provided. We pre-

ferred not to include the Euclidean distance measure in the results because of its low

performance for all datasets compared to the state-of-the-art methods including the

proposed method.

DTW: In this work, the results of the version of DTW with warping window [88] are

used. DTW competes with the state-of-the-art methods with the 1-NN classifier. The

reported classification success of this combination has the best performing results for

some of the datasets as can be seen in Table 4.2.

Shapelet Transform (ST): The results of shapelet transform are based on the results

given in University of East Anglia website.1 The classification result of ECG200

dataset is missing for this approach. Therefore, all comparisons with the shapelet

approach are evaluated for 42 datasets only.

TSBF: In [14], authors report their results for both uniform and random selection of

features in 45 datasets. Their results show that random selection of features gives

better results for most of the datasets. Therefore, we take the results with randomly

selected features similarly to other methods [114, 9] that compare their methods with

TSBF.

HOG1D+DTW-MDS: Provided that the approach presented in [114] is achieved by
1 https://www.uea.ac.uk/computing/machine-learning/shapelets/shapelet-results
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combining a set of features, the authors presented their results for each combination

separately. The best results are achieved for the case where all features are used. The

results of this combination for 43 datasets are selected for comparison.

Table 4.2: Misclassification rates of the methods for a subset of the datasets in UCR

repository.

Dataset DTW ST TSBF HOG1D CovNN CovSVM

50 Words 0.242 0.281 0.209 0.402 0.222 0.200

Adiac 0.391 0.435 0.245 0.320 0.217 0.164

Beef 0.467 0.167 0.287 0.367 0.100 0.067

CBF 0.004 0.003 0.009 0.000 0.000 0.000

ChlorineCon 0.350 0.300 0.336 0.307 0.294 0.255

CinCECGT 0.070 0.154 0.262 0.249 0.003 0.000

Coffee 0.179 0.000 0.004 0.000 0.000 0.000

CricketX 0.236 0.218 0.278 0.195 0.244 0.236

CricketY 0.197 0.236 0.259 0.205 0.210 0.251

CricketZ 0.180 0.228 0.263 0.185 0.239 0.215

DiatomSizeR 0.065 0.124 0.126 0.016 0.052 0.043

ECG200 0.310 - 0.145 0.060 0.080 0.070

ECGFiveDays 0.203 0.001 0.183 0.012 0.116 0.002

FaceAll 0.192 0.263 0.234 0.082 0.194 0.199

FaceFour 0.114 0.057 0.051 0.034 0.023 0.000

FacesUCR 0.088 0.087 0.090 0.090 0.066 0.066

Fish 0.160 0.023 0.080 0.034 0.074 0.051

GunPoint 0.087 0.020 0.011 0.007 0.000 0.000

Haptics 0.588 0.523 0.488 0.471 0.558 0.520

InlineSkate 0.613 0.615 0.603 0.551 0.598 0.600

ItalyPower 0.045 0.048 0.096 0.070 0.035 0.030

Lightning2 0.131 0.344 0.257 0.148 0.131 0.148

Lightning7 0.288 0.260 0.262 0.205 0.178 0.151

MALLAT 0.086 0.060 0.037 0.035 0.042 0.035
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MedicalImages 0.253 0.396 0.269 0.230 0.262 0.258

MoteStrain 0.134 0.109 0.135 0.090 0.074 0.084

OliveOil 0.167 0.100 0.090 0.167 0.033 0.033

OSULeaf 0.384 0.285 0.329 0.120 0.281 0.273

SonyRobot 0.305 0.067 0.175 0.042 0.107 0.118

SonyRobotII 0.141 0.115 0.196 0.084 0.084 0.078

StarLightC 0.095 0.024 0.022 0.040 0.027 0.027

SwedishLeaf 0.157 0.093 0.075 0.061 0.066 0.046

Symbols 0.062 0.114 0.034 0.036 0.030 0.022

SynthCtrl 0.017 0.017 0.008 0.007 0.000 0.000

Trace 0.010 0.020 0.020 0.000 0.000 0.000

TwoLeadECG 0.132 0.004 0.046 0.007 0.182 0.029

TwoPatterns 0.002 0.059 0.001 0.004 0.042 0.024

UWaveX 0.227 0.216 0.164 0.280 0.206 0.213

UWaveY 0.301 0.303 0.249 0.399 0.272 0.280

UWaveZ 0.322 0.273 0.217 0.321 0.265 0.267

Wafer 0.005 0.002 0.004 0.001 0.002 0.002

WordSyn 0.252 0.403 0.302 0.483 0.282 0.332

Yoga 0.155 0.195 0.149 0.182 0.134 0.175

In this section, we compare the performance of the proposed method with other ap-

proaches. The performance of 1-NN and SVM classifiers are reported excluding the

other one. Hereinafter, we use CovNN and CovSVM for the union of the covari-

ance representation with 1-NN and SVM classifiers, respectively. Firstly, as can be

seen in Table 4.2, CovNN provides the best classification performance in 19 of 43

datasets. For 4 of these 19 datasets, the proposed method has identical classification

performance with some of the compared methods. For the rest of the repository, the

compared methods, DTW, ST, TSBF and HOG-1D+DTW-MDS provide the best clas-

sification performance for 4, 4, 6 and 15 of the datasets, respectively (including the

ties). The scatter plots are provided in Figure 4.5 for pairwise evaluation of CovNN

with the compared methods. CovNN individually outperforms DTW, ST, TSBF and
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HOG1D+DTW-MDS in 34, 33, 34 and 22 datasets, respectively. The numbers of

the datasets for which other methods have better results are 8, 9, 9 and 18 for the

same order of the methods. CovNN has the best and same performance as DTW and

HOG-1D+DTW-MDS for 1 and 3 of the datasets, respectively.

CovSVM provides the best classification performance in 20 of 43 datasets. For 4

of these 19 datasets, the proposed method has identical classification performance

with some of the compared methods. For the rest of the repository, the compared

methods, DTW, ST, TSBF and HOG-1D+DTW-MDS provide the best classification

performance for 4, 4, 6 and 14 of the datasets, respectively (including the ties). The

scatter plots are provided in Figure 4.6 for pairwise evaluation of CovSVM with

the compared methods. CovSVM individually outperforms DTW, ST, TSBF and

HOG1D+DTW-MDS in 35, 34, 35 and 25 datasets, respectively. The numbers of

the datasets for which other methods have better results are 8, 8, 8 and 15 for the

same order of the methods. CovSVM has the best and same performance as HOG-

1D+DTW-MDS for 3 of the datasets.

Another critical performance parameter is the rank of the proposed approach among

other methods. The rank is crucial in the sense that it indicates the consistency of the

performance of a method among various results. For this purpose, we calculate the

average rank of CovNN and CovSVM in a pool with other 4 methods. As mentioned

before, the result of ST is missing for ECG200 dataset and therefore this dataset is

excluded for this analysis. As can be seen in Figure 4.7, CovNN and CovSVM sig-

nificantly outperform the compared four methods. The average ranks of the CovNN

and CovSVM are 2.07 and 1.92, whereas the ranks of the nearest competitors are 2.52

and 2.59, respectively.

As can be derived from the comparison with the other methods, CovSVM has better

performance than CovNN. A pairwise comparison between CovNN and CovSVM is

performed on 43 datasets. The scatter plot for the comparison between CovNN and

CovSVM is provided in Figure 4.8. The number of the datasets for which CovSVM

has better results is 24, whereas CovNN is better for 12 datasets. For remaining 7

datasets, CovNN and CovSVM have equal classification accuracies. As a general

observation, CovNN and CovSVM have similar performances. They perform well in
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Figure 4.5: Comparison of CovNN with other methods on 43 datasets based on
the results presented in Table 4.2. CovNN is better than DTW, ST, TSBF and
HOG1D+DTW-MDS for 34, 33, 34 and 22 of the 43 datasets, respectively.
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Figure 4.6: Comparison of CovSVM with other methods on 43 datasets based on
the results presented in Table 4.2. CovSVM is better than DTW, ST, TSBF and
HOG1D+DTW-MDS for 35, 34, 35 and 25 of the 43 datasets, respectively.
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(b) Critical difference diagram for CovSVM

Figure 4.7: Critical difference diagrams for the proposed approach with two classi-
fiers and compared approaches.

the datasets where the covariance representation performs well.

When we conducted a more detailed analysis of the performance of the proposed

method, it has been observed that the proposed method with both classifiers performs

well except for the motion data. In the UCR repository, there are six different types of

data as listed in Table 4.1. These types are image outline, motion, ECG, spectro, sen-

sor reading and simulated. There are 11 motion datasets (CricketX, CricketY, Crick-

etZ, GunPoint, Haptics, InlineSkate, ToeSegmentation1, ToeSegmentation2, UWaveX,

UWaveY, UWaveZ). For 9 of them, except ToeSegmentation1 and ToeSegmentation2,

we have already presented the results in Table 4.2. CovNN and CovSVM have the

best result for only GunPoint. For remaining 2 datasets, among the compared meth-

ods, only DTW and Shapelet Transform have the results. TSBF and HOG1D have not

reported their results in these datasets. We obtained the error rates for these 2 datasets

and reported in Table 4.3.

As can be seen from Table 4.3, CovNN and CovSVM do not have the best clas-

sification accuracies in these 2 datasets. When we analyze the motion datasets in

62



0.4 0.5 0.6 0.7 0.8 0.9 1

0.4

0.5

0.6

0.7

0.8

0.9

1

Accuracies of NN

A
cc

ur
ac

ie
s 

of
 S

V
M

Figure 4.8: Comparison of NN and SVM classifiers on 43 datasets based on the results
presented in Table 4.2.

UCR repository, we have observed that the motion data might be shifted in the time

domain. In more detail, same portions of the motions can occur in different time in-

tervals. These time intervals are generally close; however, in some circumstances, the

proposed method cannot handle such situations.

To the best of our knowledge, in time series classification literature, there is only one

study [9] which outperforms our results in UCR datasets. The work in [9] outperforms

the proposed method in 24 of the 43 datasets. On the other hand, the proposed method

outperforms [9] for 17 datasets and presents identical performance for 2 datasets. On

the other hand, covariance representation with SVM classifier has better classification

accuracies for 19 of 42 datasets. For 21 datasets, the method given in [3] outperforms

the combination of covariance representation and SVM classifier. For 2 datasets, we

have a tie. We want to remind that the classification accuracy for ECG200 dataset

has not been reported in [3]. These results show that the proposed method gives

classification accuracies that are comparable to a state-of-the-art ensemble method.

It should be reminded that the main purpose of this work is to introduce a novel

representation for time series and present its results with basic classifiers.
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Table 4.3: Error rates for remaining motion datasets.

Dataset DTW ST CovNN CovSVM
ToeSeg1 0.250 0.044 0.1711 0.206
ToeSeg2 0.092 0.146 0.1231 0.146

4.5.2 Analysis on Pointwise Features

In the previous subsection, classification performances of CovNN and CovSVM are

presented using the complete set of pointwise features as given in Eq. 4.4. In Eq.

4.4, we define a feature vector of six pointwise features. As already mentioned, the

covariance descriptor is based on the second-order correlations between the point-

wise features. Therefore, this feature vector represents the information of the relative

changes within the time series. The value, derivative and time index are local fea-

tures, and the rank, cumulative sum and the difference between the mean are global

features. Using the local features, we emphasize on the characteristics of a point

locally. Therefore, in the proposed approach, we consider the local features as the

core features, by which the time series is principally represented as in our previous

work [34]. In addition to the local features, we add the global (or auxiliary) features

into the feature vector in this work. The global features are derived from the whole

subsequence and give information about the prominence of the point within the sub-

sequence. In the following, an analysis is performed to capture the performance of

the proposed method with reference to a different combination of global (auxiliary)

features by concatenating them to the complete set of local (core) features.

When overall accuracy in all of 43 datasets is considered, the feature vector that

includes all pointwise features as defined in Eq. 4.4 gives the best results as listed

in Table 4.5. However, the feature vector of six pointwise features does not give

the best results for some datasets as can be seen in Figures 4.9 and 4.10. For 1-

NN and SVM classifiers, better results are achieved in 15 and 14 of 43 datasets,

respectively, when some of the global features are omitted. This result implies that the

covariance representation may show better performance with an appropriate selection

of pointwise features for other time series analysis problems. In CovNN case, when

the best performing feature set is selected separately for each dataset, the average

rank moves from 2.07 to 2. The number of datasets for which the proposed approach
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Table 4.4: Analysis on global pointwise features. Average accuracies for seven com-
binations of pointwise features are listed. Abbreviations stand for LF: three Local
Features together, CS: Cumulative Sum, DM: Difference between Mean.

NN SVM

Features
Average

Accuracy
Standard
Deviation

Average
Accuracy

Standard
Deviation

LF+Rank 0.838 0.153 0.842 0.152
LF+CS 0.832 0.147 0.848 0.149
LF+DM 0.834 0.151 0.835 0.155
LF+Rank+CS 0.855 0.139 0.867 0.141
LF+Rank+DM 0.837 0.154 0.839 0.154
LF+CS+DM 0.830 0.146 0.850 0.146
LF+Rank+CS+DM 0.858 0.137 0.867 0.143

Table 4.5: Analysis on local pointwise features. Average accuracies for seven combi-
nations of pointwise features are listed. GF stands for global features.

NN SVM

Features
Average

Accuracy
Standard
Deviation

Average
Accuracy

Standard
Deviation

GF+Value 0.830 0.155 0.828 0.160
GF+Diff 0.848 0.148 0.852 0.146
GF+Time 0.839 0.149 0.842 0.152
GF+Value+Diff 0.848 0.147 0.857 0.144
GF+Value+Time 0.839 0.149 0.845 0.152
GF+Diff+Time 0.857 0.140 0.865 0.140
GF+Value+Diff+Time 0.858 0.137 0.871 0.140

has the best performance remains as 18. On the other side, for CovSVM, when the

best performing feature set is selected separately for each dataset, the average rank

moves from 1.93 to 1.86. The number of datasets for which the proposed approach

has the best performance increases from 20 to 21. Moreover, for both classifiers, we

observe a correlation between the number of features used and the stability of the

performance when we observe the standard deviations of the classification accuracies

(see the last column of Table 4.5). The minimum standard deviation is achieved when

the complete set of (six) features are utilized.
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4.5.3 Analysis on Computational Complexity

In the first subsection, we compare the proposed method with well-known and state-

of-the-art methods. It has been shown that the proposed method mostly outperforms

the compared methods. In the previous subsection, we show that better results can

be acquired with a different selection of pointwise features. In this subsection, we

analyze the computational complexity of the CovNN and CovSVM and compare it

with the HOG-1D+DTW-MDS method given in [114].The reasons why we choose

of HOG-1D+DTW-MDS for comparison are that it is the closest competitor and is

feature-based similarly to the proposed method. In Figure 4.13, the total computa-

tional times reported separately for each dataset are given for CovNN, CovSVM and

HOG-1D+DTW-MDS. Since there are remarkable differences in total computational

times between our method and compared method, the computational times are de-

picted using a log-axis. The reported computation times are obtained in MATLAB

2016a with a desktop machine with 4 cores, Intel i5-6500 CPU, 8GB RAM.

The reported values for HOG1D+DTW-MDS [114] are obtained by running the pub-

licly available code2. The code does not include some steps such as determination

of DTW-MDS features in the method. For this reason, the computational time for

the StarLightCurves dataset is not reported. Therefore, the comparison for the com-

putational times is based on 42 datasets. The reported computational times for our

approach include all the calculations from start to finish for both classifiers.

As can be seen from Figure 4.13, CovNN finishes the classification within 10 sec-

onds for most of the datasets. Moreover, for 12 datasets, it takes less than one second.

Therefore, y-axis starts 10−1 in Figure 4.13. In the maximum case, the proposed

method takes less than five minutes which occurs on yoga dataset. 1-NN classifica-

tion takes 92.1 percent of the total calculation time on average. The average com-

putational time for the proposed method is 46.6 seconds, while it is 4674 seconds

for HOG1D+DTW-MDS. Consequently, it can be asserted that CovNN is 100 times

faster than HOG1D+DTW-MDS technique. These results indicate that the proposed

method is not only significantly accurate in classification, but also computationally

efficient when compared to its competitor.

2 https://github.com/jiapingz/TSClassification, lastly accessed in 04/09/2016
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For CovSVM case, the computational times are still better than the work given in

[114]. It is even better than CovNN in average. It begins to become faster when

datasets become larger. This is due to the use of LIBSVM. Since LIBSVM is writ-

ten in C++, it is normal to handle the larger datasets faster. The average time of

CovSVM is about 6.98 seconds. When we examine the results more closely, we see

that classification takes about %6.73 of the total time. Since we use MATLAB for

1-NN classifier, it takes so much time compared to the use of LIBSVM.

4.6 Conclusion

A novel approach is proposed for time series classification. Moreover, a novel dis-

tance calculation approach for time series is proposed by combining the covariance

descriptor with a distance metric defined for covariance matrices. Conducted ex-

periments on UCR time series datasets show that the proposed method yields results

which are mostly outperforming some established methods such as DTW and shapelet

transform and some state-of-the-art techniques such as TSBF and HOG-1D+DTW-

MDS. Besides, in terms of computation time, the proposed method is very efficient

when compared to a similar feature-based technique.

In addition to these satisfactory results with an efficient computation time, some chal-

lenging issues for time series such as missing data can also be addressed by using the

covariance descriptor. Although the datasets in UCR repository do not include any

missing data or time series of different lengths, these two issues can occur in a real

time series classification problem. The covariance descriptor of the data with missing

points will be again a square matrix with a length of number of features used. The

missing points are inherently occupied in feature vectors since time index is used as a

feature. Besides, the distance calculation between the time series of different lengths

is generally problematic. In the proposed approach, invariant of the lengths of the

time series, the dimensions of covariance matrices remain the same. Therefore, the

proposed method is capable of measuring the distance between time series of different

lengths.

A possible future work can be the comparison of the proposed method with standard
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methods after creating a dataset which includes missing points and time series of

different lengths. Moreover, the proposed method can be utilized in other time series

analysis problems such as anomaly detection and clustering.
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CHAPTER 5

SKELETAL ACTION RECOGNITION WITH RANK DISTANCE

In this chapter, we study the problem of action recognition using skeletal data ex-

tracted from depth cameras. The problem is treated as a multidimensional time series

classification problem. As in previous chapters, we utilize feature covariance matri-

ces to represent the time series data. Feature covariance matrices are previously used

to solve the action recognition problem [49, 19, 104, 18].

Different from previous problems dealt with in previous chapters, the feature covari-

ance matrices have relatively higher dimensions. This is because of the approach in

the construction of the feature covariance matrix. This increase in the dimension leads

to search a new distance measure for the feature covariance matrices. The novelty of

this chapter comes at this point: we propose a new distance measure for feature co-

variance matrices and in general for SPD matrices. Several experiments have been

conducted on state-of-the-art action recognition datasets. The use of the proposed

distance measure gives outperforming results compared to other widely used distance

measures [5, 85, 92].

5.1 Introduction

With the improvements on the depth camera technology, approaches developed for

the depth cameras are getting more attention every day. There are two fundamental

modalities of the data grabbed from depth cameras. The first one is RGB data as

in standard cameras. The second one is the depth information. The human skeleton

data is derived from these common modalities. Although it is a derived information,

it is utilized to recognize human poses, gestures, motions and activities. For these
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applications, there are some approaches to represent 3D skeleton data. In a recent

review paper [41], methods for the human representations based on 3D skeleton data

are summarized. As shown in Figure 1 of the paper, the number of publications on

skeletal human representation increases every year. Our observation is that the main

reason for this increase is the action recognition problem.

5.2 Related Work

In this section, we give a brief overview of the approaches proposed for skeletal action

recognition. For a review of the distance measures used for SPD matrices, we refer

to Chapter 2.

It is better to start with methods that use feature covariance matrices as the represen-

tation of skeletal information. In [49], Hussein et al. build a hierarchy of covariance

matrices on parts of the entire sequence. In [104], instead of calculating the co-

variance matrix directly, the inner product of the feature matrix is calculated after a

passing a kernel function. The action recognition results are reported together with

the results of other applications which utilizes covariance representation. In [19], a

very similar approach is utilized, however, they decompose the covariance expres-

sion and use kernel trick for feature matrices. In [112], Gram and Hankel matrices

are used to embed the joint trajectories a Riemannian manifold. There are also some

recent works [46, 47] that aim to learn the nonlinear structure of the data and exploit

the skeletal action recognition problem as a test bed.

The former methods are generally implementation of the classical methods in ma-

chine learning or computer vision for the skeletal action recognition problem. In

[67], authors build a graph to model dynamics of the actions and use a bag of 3D

points for representing the features. Spatiotemporal features are fused in [118] by us-

ing random forests. Similar to HOG features, in [109], the histogram of 3D locations

of the joints are assigned to the related bins. An HMM is used as the classification

method.

LSTM based approaches [71, 117, 72] are arising with the increase of the size of the

data. These algorithms need the large datasets. Although there are some datasets
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that can be called as large size like HDM05 [82], in [91], a very large-scale RGB+D

action recognition dataset introduced. The authors also introduce a form of LSTM

called part-aware LSTM for action recognition.

5.3 Representation of Skeletal Data with Feature Covariance Matrices

In the skeletal action recognition problem, the skeletons have J joints and the action

sequence has N frames. If we use 3D coordinates of the joints there will be a 3JxN

feature matrix. Such a feature matrix is given in Equation 5.1. Other derived point-

wise features such as 3D velocities as mentioned in previous chapters can be inserted

into the feature matrix. Most of the results are achieved by using a feature matrix of

6JxN. For such cases, the covariance matrix will be of order 6Jx6J. Such an inser-

tion increases the dimension of covariance matrices and makes the classical distance

measures less usable.

F =



x1(t = 1) x1(t = 2) . . . x1(t = N)

y1(t = 1) y1(t = 2) . . . y1(t = N)

z1(t = 1) z1(t = 2) . . . z1(t = N)

x2(t = 1) x2(t = 2) . . . x2(t = N)

y2(t = 1) y2(t = 2) . . . y2(t = N)

z2(t = 1) z2(t = 2) . . . z2(t = N)
...

... . . .
...

xJ(t = 1) xJ(t = 2) . . . xJ(t = N)

yJ(t = 1) yJ(t = 2) . . . yJ(t = N)

zJ(t = 1) zJ(t = 2) . . . zJ(t = N)



(5.1)

Feature covariance matrix is determined as in Equation 5.2

C =
1

K

K∑
k=1

(Fk − µ)(Fk − µ)T (5.2)

After that, we obtain the distances between the samples of training and test sets. The

classification is done through the distance matrices. At this point, as in previous
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Figure 5.1: An example of WTA hashing with 6-dimensional input vectors, K = 4,
and θ = (1, 4, 2, 5, 0, 3).

chapters, we firstly utilize kNN classifier to evaluate the performance of the distance

measure. Then, we use SVM classifier as in previous approaches [104, 19].

5.4 Action Recognition with Rank Distance Measure

As detailed in the previous section, the feature covariance matrices become high di-

mensional for action recognition problem. Previous works utilize the classical dis-

tance measures for measuring the distance between two covariance matrices. As the

dimension of the covariance matrices increase, the modeling of the manifold structure

will become an issue. For this purpose, some recent works try to learn the manifold

structure [31, 46], and some other works handle the problem as a distance learning

problem [48]. We follow a different way to measure the distance between two high-

dimensional covariance matrices.

Rank metric is used to measure distances between high dimensional data. It gives

very promising results in [28, 53] where it is used to calculate the distances between

feature descriptors. Its computational speed is also satisfactory since it uses hashing

mechanism. The authors named the hash functions they utilize as “Winner Take All”

(WTA) since it takes the index of the maximum of the permuted values.
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Figure 5.2: General flow diagram of the skeletal action recognition approach.

In order to determine the distances between covariance matrices via rank-distance

measure, we use the vectorized form of the upper (or lower) diagonal part of covari-

ance matrices. Using same permutations for all covariance matrices, we construct the

codes shown in Figure 5.1 by following the algorithm given in Algorithm 1. In [53],

there is also another version of the WTA hash on polynomial kernels. It does not give

better results compared to the original WTA hash given in Algorithm 1.

Input: A set of m permutations Θ, window size K, vectorized form of upper

(or lower) triangular part of covariance matrix, X .

Output: Sparse code

1. For each permutation θi in Θ

a. Permute elements of C according to θi to get C ′ .

b. Initialize ith sparse code cxi to 0.

c. Set cxi to the index of the maximum value in X ′(1, . . . , K).

i. For j = 0 to K − 1

A. If X ′(j) > X
′
(cxi) then cxi = j

2. CX = [cx0 , cx1 , . . . , cxm−1 ], C contains m codes, each taking a value between

0 and K − 1.

Algorithm 1: WTA hashing of covariance matrices
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5.5 Experiments

In order to test the rank-based distance measure, we first compare it with well-known

distance measures using a synthetic dataset. The synthetic dataset is generated by

exploiting the software supplemented in [42]. Two datasets [67, 103] are utilized to

evaluate the performance of the rank-based distance measure on the action recog-

nition problem. Before going into details of the results, it is better to give a brief

information about the datasets.

Synthetic Data: Synthetic data is generated in such a way that it includes 4 classes.

The number of training and testing samples are selected as 50 for each class. We

create synthetic SPD matrices of dimensions of 10, 20, 30, 40, 50, 100 and 200 in

order to compare the distance measure with the classical distance measures.

MSR-DailyActivity3D: MSR-DailyActivity3D dataset is generated using Microsoft

Kinect. The dataset contains 320 sequences of 16 action classes. In each class, there

are 20 sequences. The number of joints is 20. For this dataset, usually, the perfor-

mances are reported using the velocities. Therefore, the dimension of the feature

covariance matrices is 120x120. For the separation of the training and test sets, a

cross-subject setting is used as in previous works [104, 101]. In the cross-subject

setting, odd-indexed subjects are selected for training whereas even-indexed subjects

are used for the testing.

MSR-Action3D: As MSR-DailyActivity3D, MSR-Action3D dataset is generated from

depth sequences grabbed by Microsoft Kinect. The dataset contains 567 sequences

of 20 action types, 10 people (subjects) and each subject performs each action 2 or

3 times. However, as in [101], 23 sequences are removed from the dataset due to

missing data they contain. For this dataset, The number of joints is 20 and usually,

the performances are reported using the velocities. Therefore, the dimension of the

feature covariance matrices is 120x120. As in MSR-DailyActivity3D, the separation

of the training and testing sets is based on the index of the subjects.

We use kNN and SVM classifiers in action recognition problem. Since the number of

training samples is not adequate in MSR-DailyActivity3D, we use a 1-NN classifier.

On the other hand, for MSR-Action3D, we have more training samples, we use kNN
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classifier with k = 3. The main reason behind the use of kNN classifier is to isolate

the performance of the classifier. In other words, we only measure the performance

of the distance measure as far as we can. A nonlinear SVM is used as in [104, 19]

to compare the rank-based distance measure with some works that propose different

scheme for calculating the covariance matrices or covariance-like matrices.

The only paramater that should be optimized in our tests is the window size of the

maximum operation. We perform a cross-validation for the action recogntion datasets

and set the value of the window size parameter as K=4. All the reported values for

classification accuracies are achieved by setting the number of permutations as 10000.

We give an analysis about how the number of permutations effects the classification

accuracy in Section 5.5.3. The other parameters such as used in SVM classifier are

kept fixed. Lastly, we should note that all the results obtained using the rank-based

distance are determined by using Monte-carlo simulations since the permutations are

random.

5.5.1 Comparison with Other Distance Measures

In order to calculate the rank-based distance measure with other distance measures,

we measure the classification performances on datasets. The synthetic dataset and

two action datasets are exploited for this purpose. kNN classifier is used in all the

experiments after distances obtained between training and test sets.

Table 5.1: The comparison of the rank based distance measure with well-known dis-
tance measures on a synthetic data.

Dimension AIRM LogEuc Rank Stein
10 1 1 0.95 1
20 0.815 0.78 0.92 0.8
30 0.635 0.645 0.96 0.62
40 0.49 0.475 0.92 0.51
50 0.42 0.44 0.945 0.385

100 0.330 0.360 0.830 0.355
200 0.290 0.310 0.550 0.250

We firstly exploit the synthetic dataset for comparing the rank-based distance with

the classical distance measures. The dimensions of the created datasets are from
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Figure 5.3: Analysis on how classification accuracies change with respect to the di-
mension of covariance matrices.

10 to 200 as can be seen in Table 5.1 and Figure 5.3. For the synthetic datasets of

different dimensions, we report the classification accuracies of the 1-NN classifier fed

by the distances. When the dimension of the covariance matrices is low, the classical

distance measures give better results compared to the rank-based distance measure.

When the dimension of the data increases, the advantage of the rank-based distance

measure arises. the difference between the rank-based distance and classical measures

become dramatic when the dimension of the covariance matrices is getting higher.

After the synthetic dataset, a similar comparison is realized on the real skeletal action

recognition datasets. For MSR-DailyActivity3D dataset, we utilize 1-NN classifier

due to the inadequate number of training samples per class. For MSR-Action3D,

kNN classifier with k = 3 is utilized. In real datasets, the results are given in Table

5.2. The first observation is that the performances of AIRM and Stein metrics are

very poor. The closest competitor is log-Euclidean distance measure. This result is

consistent with the results obtained in previous chapters.

Table 5.2: Classification accuracies of different distance measures using the kNN
classifier on MSR-Action3D and MSR-DailyActivity3D datasets.

Distance Measure MSR-Action3D MSR-DailyActivity3D
AIRM 0.677 0.806

LogEuc 0.808 0.844
Rank 0.933 0.914
Stein 0.600 0.575
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Table 5.3: Comparison of the action recognition results with the techniques based on
covariance matrix and other state-of-the-art approaches.

Method MSR-Action3D
MSR-

DailyActivity3D
Cov-LogEuc 0.923 0.856

Cov-JH-SVM [74] 0.804 0.755
KerCov [19] 0.962 0.963

Ker-RP-POL [104] 0.962 0.969
Ker-RP-RBF [104] 0.969 0.963

Cov-Rank-NN 0.933 0.914
Cov-Rank-SVM 0.960 0.949

5.5.2 Action Recognition Results

In this section, the rank-based distance measure is tested on skeletal action recogni-

tion datasets by using a nonlinear SVM classifier as in previous works [104, 19]. We

also report the results obtained with log-Euclidean distance measure. As can be seen

from Table 5.3, the rank-based distance measure provides comparable results in two

datasets. From the table, we can also observe that the advantage of SVM classifier.

For SVM classifier, Libsvm toolbox is not used. Instead of Libsvm, the toolbox given

in [3] is used. The results obtained with this toolbox are slightly better than the results

obtained with Libsvm.

For action recognition, we use the scheme given in Figure 5.2. In Table 5.3, we

report the results of both classifiers. We also report the results of the combination of

the log-Euclidean distance measure and SVM classifier. The work in [74] follows a

similar approach. It uses the combination of Bregman divergence and SVM classifier.

Lastly, we obtain again better results compared to the results obtained with the log-

Euclidean distance measure. The confusion matrices for MSR-Action3D and MSR-

DailyActivity3D datasets are shown in Figure 5.4 and Figure 5.5, respectively.

5.5.3 Analysis on Number of Permutations

We have analyzed the effect of the number of permutations for classification accuracy.

For this purpose, on the MSR-Action3D and MSR-DailyActivity3D datasets, classi-
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Figure 5.4: Confusion matrix for MSR-Action3D dataset.
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Table 5.4: Classification accuracies with respect to the number of permutations for
the MSR-Action3D and MSR-DailyActivity3D datasets using kNN classifier.

Number of
Permutations

MSR-
Action3D

MSR-
DailyActivity3D

10 0.179 0.560
20 0.392 0.674
50 0.587 0.739

100 0.771 0.816
200 0.832 0.844
500 0.896 0.879

1000 0.922 0.891
2000 0.932 0.896
5000 0.932 0.904
10000 0.939 0.914

fication accuracies are observed for several number of permutations. The results are

given in Table 5.4 and shown in Figure 5.6 and Figure 5.7. As a benchmark, we show

the results of the log-Euclidean and other distance measures on the figures. As can

be seen from the table and figures, the rank-distance measure outperforms the log-

Euclidean distance measure using only 200 permutations. When compared to Stein

metric and AIRM, the rank-based distance provides better classification accuracies

using only 100 permutations.

Another observation for the rank-based distance is that 10000 permutations are enough

to reach steady state. While obtaining the results, as mentioned before, the value of

window size of the maximum operation,K, is set to 4. In other words, it is enough to

take 10000 permutations from infinite permutations for a feature vector which has a

dimension of 120.

5.5.4 Analysis on Computational Complexity

Since the rank-based distance measure utilizes hash functions, its computational com-

plexity is very low compared to the classical distance measures. In this section, we

give a comparison of the computational times of classical distance measures and rank-

based distance measure on the MSR-Action3D dataset. The computation times are

obtained in MATLAB2017a and in a machine that has 8GB memory. Just as a re-
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Figure 5.6: Analysis of the effect of number of permutations on the classification
accuracy for MSR-Action3D dataset.
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Figure 5.7: Analysis of the effect of number of permutations on the classification
accuracy for MSR-DailyActivity3D dataset.
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Table 5.5: Computation times of distances between training and test sets for different
distance measures on MSR-Action3D dataset.

Distance Measure Computation Time (seconds)
AIRM 94.39

LogEuc 7.1
Rank 5.2
Stein 21.38

minder, MSR-Action3D dataset consists of 284 training and 260 test samples after

eliminating some noisy samples.

The rank-based distance is also computationally efficient as can be seen from Table

5.5. The performance of the distance measures in computation time is similar to the

performance in the classification. The only change in the ranking is between Stein

and AIRM. Since AIRM calculates the generalized eigenvalues between covariance

matrices each time, it becomes computationally inefficient. It can be assumed that the

computation time of the rank distance is only dependent on permutation number since

the actual distance calculation between the codes is achieved through the Hamming

distance.

5.6 Conclusion

In this chapter, we study the problem of action recognition on skeletal data. The novel

part of the chapter is the utilization of the rank-based distance measure for covariance

matrices. The performance of the proposed measure is validated with a comparison

of other distance measures on a synthetic dataset and state-of-the-art skeletal action

recognition datasets. It can be claimed that the rank-based distance measure enables

to learn the manifold structure of the data. Therefore, there are problems that can be

attacked by using the proposed distance measure.

The only disadvantage of the rank-based distance measure is that its results are not de-

terministic. This is due to usage of random permutations. This can be handled by the

learning of the favorable permutations from the training set during cross-validation.

We can take the permutations that it provides higher classification accuracies during
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cross-validation as favorable permutations.

During the analysis of the rank-based distance measure, we also realize a benchmark

study for other distance measures used for SPD matrices in this chapter. Among three

metrics, log-Euclidean distance measure has the best performance for high dimen-

sional SPD matrices. It was the distance measure that we utilized in previous chap-

ters. It is also observed that the log-Euclidean distance measure is also the faster than

the other distance measures, namely, Stein and affine-invariant Riemannian metric.

This is due to the fact that its formula that does not contain any terms two covariance

matrices together. It makes possible to calculate the matrix logarithms separately for

training and test samples. The Frobenius norm is another factor for the speed of the

log-Euclidean metric. However, it is not faster than the rank-based distance measure.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

In this thesis, we mainly address the problems related to time series. The starting

point of the thesis is the analysis of crowded scenes. For this purpose, we propose

a novel representation for trajectories. The representation is based on feature covari-

ance matrices of pointwise features. By this representation, we carry the time series

into a Riemannian manifold space. We utilize the representation for solving the prob-

lems of anomaly detection and activity perception. For 1D time series, we attack the

problem of time series classification. At this time, instead of representing the whole

time series with a single covariance matrix, time series is divided into overlapping

subsequences. Lastly, we apply feature covariance matrices for whole 3D time series

as in previous chapters. In this part of the study, we propose a novel distance metric

which is based on the rank measures of covariance matrices.

6.1 Conclusion

A novel approach is proposed by describing time series with feature covariance ma-

trices. 2D time series or trajectories is the first application of this representation. For

each point of the trajectory, simple pointwise features such as position and velocity

are utilized to describe the whole trajectory. After representing trajectories, the prob-

lems of anomaly detection and activity perception are investigated to measure the

strength of the representation. Conducted experiments show that covariance descrip-

tor for trajectories yields satisfactory results compared to the state of the art. We have

also introduced a sparse anomaly detector to decide the number and the weights of the

nearest neighbors that should be used. This sparse representation can be applied to
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other similar problems. The only requirement is to have a training dataset for which

annotated anomaly data is given.

The proposed representation is adapted to solve the classification of 1D time series.

Feature covariance matrices are calculated for the subsequences and new pointwise

features are defined for 1D time series. Conducted experiments on UCR time series

datasets show that the proposed method yields results which are mostly outperform-

ing some established methods such as DTW and shapelet transform and some state-

of-the-art techniques such as TSBF and HOG-1D+DTW-MDS. Besides, in terms of

computation time, the proposed method is very efficient when compared to a simi-

lar feature-based technique. In addition to these satisfactory results with an efficient

computation time, some challenging issues for time series such as missing data can

also be addressed by using the covariance representation. Although the datasets in

UCR repository do not include any missing data or time series of different lengths,

these two issues can occur in a real time series classification problem. The covari-

ance representation of the data with missing points will be again a square matrix with

a length of number of features used. The missing points are inherently occupied in

feature vectors since time index is used as a feature. Besides, the distance calculation

between the time series of different lengths is generally problematic. In the proposed

approach, invariant of the lengths of the time series, the dimensions of covariance

matrices remain the same. Therefore, the proposed method is capable of measuring

the distance between time series of different lengths.

Rank-based distance measure gives promising results on skeletal action recogntion

problem. It is compared with the classical distance metrics used for SPD matrices.

It outperforms the classical distance measures when the dimension of the covariance

matrices are high. Therefore, it can be applied on several problems that use covari-

ance matrices or SPD matrices. On the other hand, the rank-based distance measure

is not just a distance measure. It encodes the SPD matrices by using a hashing mech-

anism. It can be used as a manifold learning approach and can be applied into several

problems. Also, it can be used as a dimensionality reduction approach on manifolds.
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6.2 Future Work

Rank-based distance measure gives promising results in determining the similarity

of two high-dimensional covariance matrices. In the rank-based distance measure,

instead of random permutations, we can also use a learning mechanism. By such

an approach, we learn the discriminative parts of the covariance matrices and model

the manifold. There are also other applications such as DTI imaging [32], image set

classification [48] and face recognition [42] like skeleton based action recognition

problem.

Covariance matrix representation is a proven approach for action recognition prob-

lem. It gives satisfactory results with some modifications in several works [49, 19,

104]. On the other hand, RNN-based or more specifically LSTM-based methods also

give satisfactory results. The combination of these two approaches could be a good

future work. In more detail, instead of feeding 3D coordinates into LSTM networks

directly such as in [71], covariance matrices can be fed into LSTM networks. Also,

different RNN or more specifically LSTM architectures [83, 62] can be utilized for

such a future work. The benchmark of these architectures is another candidate for a

future work.

Taking into account the popularity of deep learning in recent years, RNN or LSTM

based approaches can be applied to the problem of time series classification. How-

ever, for such a purpose, the datasets used in the data mining community are not too

large. Therefore, creating such a large dataset must be the first step of deep learning

based approaches. Another possible future work can be a benchmark study of the

time series classification approaches on noisy and missing data. The datasets that

will be used for the benchmark study should also contain the time series of different

lengths. Moreover, the proposed method can be utilized in other time series analysis

problems such as anomaly detection and clustering.

All the approaches developed in this study can be considered as offline. In other

words, we need to have some batch data to determine the feature covariance matrices.

At next time step, to update the feature covariance matrices, we should process all the

data except the earliest one. An updating mechanism for feature covariance matrices
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could have several applications including the problems investigated in this study.
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