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ABSTRACT

CONNECTIONIST MULTI-SEQUENCE MODELLING AND
APPLICATIONS TO MULTILINGUAL NEURAL MACHINE

TRANSLATION

Firat, Orhan
Ph.D., Department of Computer Engineering

Supervisor : Prof. Dr. Fatos T. Yarman Vural

Co-Supervisor : Assist. Prof. Dr. Kyunghyun Cho

July 2017, 157 pages

Deep (recurrent) neural networks has been shown to successfully learn complex map-

pings between arbitrary length input and output sequences, called sequence to se-

quence learning, within the effective framework of encoder-decoder networks. This

thesis investigates the extensions of sequence to sequence models, to handle multiple

sequences at the same time within a single parametric model, and proposes the first

large scale connectionist multi-sequence modeling approach. The proposed multi-

sequence modeling architecture learns to map a set of input sequences into a set

of output sequences thanks to the explicit and shared parametrization of a shared

medium, interlingua.

Proposed multi-sequence modeling architecture is applied to machine translation tasks,

tackling the problem of multi-lingual neural machine translation (MLNMT). We ex-

plore applicability and the benefits of MLNMT, (1) on large scale machine transla-

tion tasks, between ten pairs of languages within the same model, (2) low-resource

language transfer problems, where the data between any given pair is scarce, and

v



measuring the transfer learning capabilities, (3) multi-source translation tasks where

we have multi-way parallel data available, leveraging complementary information be-

tween input sequences while mapping them into a single output sequence and finally

(4) Zero-resource translation task, where we don’t have any available aligned data

between a pair of source-target sequences.

Keywords: Sequence to Sequence, Deep Learning, Neural Machine Translation
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ÖZ

BAĞLANTICI ÇOKLU DİZİ MODELLEME VE ÇOKDİLLİ NÖRAL
MAKİNA ÇEVİRİSİ UYGULAMARI

Firat, Orhan
Doktora, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Fatos T. Yarman Vural

Ortak Tez Yöneticisi : Yrd. Doç. Dr. Kyunghyun Cho

Temmuz 2017, 157 sayfa

Derin (yineleyen) yapay sinir ağları, karmaşık ve farklı uzunluktaki girdi - çıktı dizi-

leri arasındaki ilişkiyi modellemede son dönemde etkin bir yöntem olarak öne çıkmış-

lardır. Bu modelleme, girdi dizisini kodlama, ve kodlanan dizinin çözümlemesi adım-

larını izleyen kodlama-çözümleme ağları ile mümkün hale gelmiştir. Bu tez, kodlama-

çözümleme ağları mimarisini bir ileri adıma taşıyarak, aynı anda birden fazla girdi -

çıktı dizisi arasındaki ilişkiyi modelleyebilen, çok girdi - çoklu çıktı yinelenen yapay

sinir ağları modelini önermektedir. Önerilen çoklu girdi - çoklu çıktı yapay sinir ağı

mimarisi, tek bir parametrik fonksiyon ile, farklı uzunluktaki birden fazla girdi dizi-

sini, yine farklı uzunluktaki birden fazla çıktı dizisine eşlemeyi etkin bir şekilde öğre-

nebilmektedir. Bu karmaşık eşleme fonksiyonu, yine bu tez tarafından önerilen, ortak

paylaşım alanı (interlingua) sayesinde gerçeklenmekte olup, ortak paylaşım alanı olan

dikkat yapay sinir ağı da, bütün girdi-çıktı dizileri arasında paylaşılan parametrik bir

fonksiyon olarak sunulmaktadır. Çoklu girdi - çoklu çıktı dizi eşleme mimarisi, bu tez

kapsamındaki uygulama alanı olarak, çok-dilli makina çevirisi alanına uygulanmıştır.
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Bu kapsamda, önerilen mimari, (1) büyük ölçekli makina çevirisi probleminde, aynı

anda on girdi-çıktı çiftini modelleyebilmekte, (2) yetersiz-veri rejiminde, transfer öğ-

renme kabiliyetine sahip, (3) aynı anda birden fazla girdi dizisini, tek bir çıktı dizisine

eşleyebilen, ve bu maksatla girdi dizileri arasındaki tümleyici bilgiyi kullanabilmekte,

ve (4) hiç-veri rejiminde, aralarında hiç veri bulunmayan bir girdi ve çıktı dizisi ara-

sında da eşleme yapabilme kabiliyetine sahip bir model olarak önerilmektedir.

Anahtar Kelimeler: Diziden Diziye Eşleme, Derin Öğrenme, Nöral Makina Çevirisi
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CHAPTER 1

INTRODUCTION

We are not the only smart agents around, far from it. This is what i have

defined as the fourth revolution in our self-understanding. We are not at the

center of the universe (Copernicus), of the biological kingdom (Darwin), or

of the realm of rationality (Freud). After Turing, we are no longer at the

center of the world of information and smart agency either. We share

info-sphere with digital technologies. These are not the children of some

sci-fi super-intelligence, but ordinary artifacts that outperform us in ever

more tasks, despite being no cleverer than a toaster. Their abilities are

humbling and make us reevaluate our intelligence, which remains unique.

We thought we were smart because we could play chess. Now a phone plays

better than a chess master. We thought we were free because we could buy

whatever we wished. Now our spending patterns are predicted, sometimes

even anticipated by devices as thick as a plank.

—LUCIANO FLORIDI

Making sense of sensory information is the main necessity for intelligent agents that

learn from data. The sensory information is almost all the time sequentially ordered

making the learning process more complicated, since it requires a model for the lon-

gitudinal extend of information. Sequence models that are learned from sequential

data is then enables agents to conduct decision making, planning and acting accord-

ingly. But the real-world problems involve not only one sequence of data stream,

rather multiple streams of sequences streaming together. Intelligent agents need to

make sense of these sensory stream of multiple sequences, which means at the end,

modelling the relations between multiple sequences.
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In this thesis, we aim to answer the question "how can we make sense of multiple

sequences and their relations when the amount and structure of the data varies".

From the basic description, in a multi-sequence environment, two sequences are in-

volved. An input stream, and the corresponding output stream. This problem can be

cast as many applications or sub-problems that intelligent agents tackle, mapping an

input sequence into an output sequence. The most common example can be taught

as the translation problem when we are given an input sequence and we are asked to

map it into an output sequence by preserving the semantics between input and output.

Recently, it has been shown that a deep (recurrent) neural network can successfully

learn a complex mapping between variable-length input and output sequences on its

own. Some of the earlier successes in this task have, for instance, been handwrit-

ing recognition [10, 51] and speech recognition [50, 27]. More recently, a general

framework of encoder-decoder networks has been found to be effective at learning

this kind of sequence-to-sequence mapping by using two recurrent neural networks

[24, 118]. Applications on machine translation, which is a natural sequence to se-

quence mapping problem, revealed that, simple encoder-decoder architecture suffers

from a bottle-neck problem, when input and output sequences are long.

In [3], a remedy to this issue was proposed by incorporating an attention mecha-

nism to the basic encoder-decoder network. The attention mechanism in the encoder-

decoder network frees the network from having to map a sequence of arbitrary length

to a single, fixed-dimensional vector. Since this attention mechanism was introduced

to the encoder-decoder network for machine translation, neural machine translation,

which is purely based on neural networks to perform full end-to-end translation, has

become the state of the art, making existing phrase-based statistical machine transla-

tion systems obsolete [65, 52, 86].

But the general problem of multi-sequence modelling is much more complex and

sophisticated than mapping a single input sequence to a single output sequence since

one modality, or one source of information is never enough for the intelligent agents

that have the processing capability both in terms of compute and complexity.

Being able to model multiple sequences and their mutual relations in within a single
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model, is defined as the multi-sequence modeling problem in this thesis.

Test bed to benchmark the proposed multi-sequence modelling architectures is chosen

to be machine translation because of mainly the availability of the data. This allows

us to experiment and control the amount, complexity and complementary nature of

the data.

1.1 Main Contributions

This thesis proposes the first large scale multi-sequence modelling architecture that

uses a single parametric function to learn the mapping structures between multiple

input sequences and multiple output sequences. This single function is parametrized

with a single neural network, trained by using data that is semantically aligned be-

tween source-target sequences. We propose the notion of the shared medium, im-

plemented as a neural network, that learns the commonalities between any number

of input sequences and any number of output sequences. We show that, the proposed

shared medium can be actualized in machine translation as an interlingua, and display

the benefits of having an interlingua representation or machinery. We first show that,

the proposed shared medium enables a single neural network model to translate from

multiple input languages into multiple output languages, one source-target mapping

at a time. We then illustrate the transfer learning capabilities of the proposed architec-

ture, with the experiments on source-target mappings where the amount of available

training data is low, showcasing the positive language transfer in the proposed ar-

chitecture. Next, we show that the proposed architecture has an elegant and simple

way of mapping semantically similar input sequences into an output sequence, using

multiple sources during test time only. Last, we show that, first time in the literature,

a neural architecture that has the capability of modelling interlingua can do zero-

resource translation, where the model can translate between a source and target pair,

without seeing any source-target pair data during training.
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1.2 Thesis Outline

The rest of this thesis is organized as follows:

• Chapter 2 introduces the basic concepts, building blocks, the structure of the

data and problem definitions.

• Chapter 3 introduces the proposed Multi-way Multilingual Sequence to Se-

quence Mapping architecture along with the Notion of Shared Medium.

• Chapter 4 extends the proposed architecture to be able to do Low-Resource

Translations.

• Chapter 5 introduces different test time processing strategies to make use of

multiple input sequences at the same time, enabling Multi-Source Translation.

• Chapter 6 introduces a simple fine-tuning strategy that enables Zero-Resource

Translation.

• Chapter 7 summarizes the main contributions of the research conducted in this

thesis, it’s impact and proposes several future directions that can be built on top

of this work.
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CHAPTER 2

BACKGROUND: FROM CONNECTIONIST SEQUENCE

MODELLING TO INTERLINGUA

“... the theory to be presented here takes the empiricist, or

connectionist position and has been developed for a hypothetical

nervous system, or machine, called a perceptron. The perceptrop

is designed to illustrate some of the fundamental properties of

intelligent systems in general, without becoming too deeply

enmeshed in the special, and frequently unknown, conditions

which hold for particular biological organisms. The analogy

between the perceptron and biological systems should be readily

apparent to the reader.”

FRANK ROSENBLATT - THE PERCEPTRON, 1958

In this chapter, we overview the fundamental building-blocks of connectionist (or

neural)1 multi- sequence modelling, in a bottom-up fashion, from pieces that can

be used to represent individual sequences, into a final architecture that can model

multiple sequences simultaneously.

First, we look at connectionist sequence models, in particular Recurrent Neural Net-

works (RNN), that form the basis of Sequence to Sequence Models (seq2seq). We

investigate the basic properties of RNN, covering the gradient-based training tech-

nique called back-propagation through time (BPTT), it’s deficiencies to propagate

error signals back in time and Gated Recurrent Units (GRU) which mitigates some of

the deficiencies. We show the use of RNN for Language Modelling (LM), the task of
1 Note that, throughout this thesis, we use the term neural to refer connectionist (and vice-versa), as neural

network models are the most common forms of connectionist approaches.
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predicting the next token given a context of previous sequence of tokens, under the

framework of RNN Language Modelling (RLM-LM) and conditional RNN Language

Modelling (cRNN-LM).

Second, we describe how to combine an RLM with a cRLM, for two sequences

that are semantically similar, a critical approach which is known as Sequence to

Sequence mapping (seq2seq). We explore two architectures for seq2seq, simple

encoder-decoder models and encoder-decoder models with attention, with a special

emphasis on attention mechanism.

Next, we provide background knowledge on Neural Machine Translation (NMT),

which is chosen to be our test-bed in this thesis. We focus on NMT training using

input and output sequence pairs (called parallel corpora), testing methods with Beam-

Search decoding, evaluation metrics to assess goodness of translations BLEU, TER

and TB.

Finally, we give motivation and background to multi-sequence modelling, the end

goal of this thesis. We discuss the possible routes to be taken in order to extend

seq2seq models to multi-task seq2seq models first. We enumerate and analyze the

representation and scalability problems on the path to multi- sequence modelling.

At last, we remind Warren Weaver’s Memorandum for Machine Translation (MT),

the description and premise of interlingua along with benefits and caveats for Multi-

lingual Sequence Modelling.

2.1 Connectionist Sequence Modelling

What is connectionism? Connectionism is a wide range of approaches, that try to

model cognition using connectionist networks, also known as neural networks [88].

In a connectionist system, simple processing units (neurons) are connected together

into large complex networks. The processing is then, characterized by the activation

patterns across neurons, and knowledge is stored over the strength of the connections

between neurons (weights), hence the name connectionist [55]. From a statistical

learning perspective, learning itself is then, about operating on the connection weights

and adjusting them according to the task at hand. Since learning complex systems is
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a challenging problem, connectionist approaches put special emphasis on learning

internal (intermediate) representations [5]. Learning multiple levels of intermediate

representations with increasing abstraction and complexity, is now being called deep

learning [46, 108, 78] and constitutes the core methodology we use in this thesis.

From our perspective, connectionist approaches are end-to-end computational models

that focus on using neural networks for function approximation [59] and we use con-

nectionist approaches to discover statistical regularities over (temporal) sequences.

Although connectionism is historically proposed to understand the computations car-

ried out by networks of neurons for mental processes, here in this thesis, we do not

investigate or speculate about the biological plausibility of connectionist models and

draw conclusions about natural neural networks (eg. human brain).

What is sequence modelling? Most of the human behavior revolve around temporal

sequences, due to an artifact of 4th dimension in the universe,2 such as language,

visual understanding, action planning, communication, reasoning and many more.

Having a good statistical model over the events occurring in sequences is then be-

comes crucial for intelligent agents, either natural or artificial.

Let us consider a sequence of events x = x1, x2, . . . , xT occurring in discrete time

steps of length T . Then, having a statistical sequence model over x, is about estimat-

ing how plausible (statistically likely) the sequence is [21], or equivalently, estimating

p(x). Two problems immediately arise, (1) how to factorize p(x) to account for all

the previous context, and (2) how to parametrize such joint probability distribution as

sequence length extends to far in the past, such that T →∞?

What is connectionist sequence modelling? Using (recurrent) neural networks in or-

der to parametrize p(x) is what we refer as connectionist sequence modelling. When

we are concerned about Finding Structure in Time [38] in an end-to-end fashion, with-

out limiting the model to have limited context (or pre-determined markov property),

connectionist sequence models become the weapon of choice for the following rea-

sons. In a connectionist sequence model, the underlying primitives governing the

temporal behavior of the model, are context- sensitive representations of observed

events xi, which are also known as hidden states or activations. This enables the se-

2 A vague claim, assuming unified four-dimensional space-time of general relativity.
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quences to be represented by the sequential trajectories through the activation space.

Being able to form trajectories, allows the model to build simpler internal representa-

tions that are useful to unpack the structure of more complex sequences (encoding).

After our motivational and verbose introduction on connectionist sequence modelling,

let us provide formal description on recurrent neural networks and their linguistic

extension, recurrent neural language models.

2.1.1 Recurrent Neural Networks

Let us consider a discrete sequence of observations x = (x1, x2, . . . , xT ) where T is

the sequence length and each observation xi is a vector representation of input with

dimensionality d, ie. xi ∈ IRd. To have a probabilistic model of the sequence x,

we need to specify a probability distribution over the sequence, in the form of joint

probability of its elements xi as,

p (x) = p(x1, x2, . . . , xT ). (2.1)

We can further rewrite this joint distribution as a product of conditionals, since the

sequences we are interested are in sequential order,

p(x1, x2, . . . , xT ) = p(x1)p(x2|x1)p(x3|x1, x2) · · · p(xT |x<T ) =
T∏
t=1

p(xt|x<t),

(2.2)

where p(xt|x<t) is the conditional probability of the observation xt given all the pre-

vious (preceding) observations x<t in the sequence, as we call context. The decom-

position in Eq. (2.2) exhibits two major difficulties.

First, how are we going to parametrize each individual conditional, p(xt|x<t), as

sequence length T grows arbitrarily large. In other words, how to take into account the

context?3 A simple relaxation, which connectionist models do not have and therefore
3 Note that, we only focus on parametric models and non-parametric approaches are beyond the scope of this

thesis.
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not used in this thesis, is resorting to an n-th order Markovian assumption, where

dependency beyond a predetermined context-window n is ignored, formally:

T∏
t=1

p(xt|x<t) ≈
T∏
t=1

p(xt|xt−n, . . . , xt−1). (2.3)

From our perspective, sequence modelling is about capturing the long-term depen-

dencies in the sequential data [8]. Considering only a pre-determined subset of input

observations (as in an n-th order Markovian model) invalidates the premise of captur-

ing the long-term dependencies in the data, and therefore we approach the problem

as a credit assignment problem [91], and let the model learn the extent of these de-

pendencies by making use of algorithms such as backpropagation [106].

The second problem is about modelling arbitrary length sequences. How can we

generalize to the sequences which are in different lengths, in other words how to

handle varying sequence lengths of different examples when we do not know the

sequence lengths in advance? Let T (j) and T (k) be the sequence lengths of sequences

x(j) and x(k), where |x(j)| = T (j) and |x(k)| = T (k), as | · | is the cardinality operator.

Problem emerges with the question, how to formulate Eq. (2.2) with varying T such

that T (j) 6= T (k) when j 6= k?

Since we care about modelling arbitrary length sequences, without having any as-

sumptions about the structure of the data, and without any Markovian restrictions, we

need to address both problems mentioned above.

Recurrent Neural Networks [106, 38] allow representing arbitrary length sequences,

while paying attention to the structured properties of the elements in each sequence

without any Markov property (or can be stated as infinite Markov property)[21]. RNN

directly models the original conditional probabilities in Eq (2.2) and work for any

number of context inputs, naturally addressing both problems.

Given an input sequence x = (x1, . . . , xT ), an RNN consists of (1) an internal mem-

ory ht, which evolves over time, (2) a recursive function f which operates on the

input sequence one by one and the internal memory ht and finally (3) an (optional)

output function g which predicts the conditional probabilities given the state or inter-
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Figure 2.1: Abstract view of an RNN (left) and the same RNN, unrolled over time

(right).

nal memory at time t. Let us now elaborate the details of each component.

The internal memory, (hidden) representation or (hidden) state ht, is usually kept as a

real valued vector and contains a trace of recent events (how things are at the moment

given the entire context). In other words, ht summarizes the history from x1 up to

xt. The initial state (or condition) h0 depends on the particular application, but in this

Section, we assume the initial memory is set to zero.4

Before giving the details about the internals of RNN, let us define the the computa-

tional graph abstraction we employ in this thesis to represent mathematical expres-

sions, and neural networks in particular. A computational graph is a directed acyclic

graph, where mathematical operations, inputs and variables are represented by the

nodes, and edges represent the flow of intermediate values and weights of the graph.

The directed nature of a computational graph enforces the order of computation, and

in neural network context, has two modes. The forward mode, (forward propagation

or forward pass) computes the output of the computational graph give all it’s inputs.

The backward mode (back-propagation or backward pass), executes the flow of error

signals computed at the output of the computational graph. An example computa-

tional graph can be seen in Fig. 2.1 right panel.

Graphically, an abstract RNN can be expressed as a computational graph, with an

input layer, a hidden layer and an output layer, see Fig. 2.1 left panel. The difference

between a feed-forward neural network and an RNN is the additional connections
4 Further in the sequence-to-sequence models we will revisit the initial conditions, and explain how to

give/learn contextual biases from other sequences.
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between hidden layers at the same level (hidden-to-hidden connections). In Fig. 2.1

left, a compact representation of an RNN is given. In order to execute the mathe-

matical expression represented by this RNN, we first unroll the computational graph

over time, where all the input, hidden and output nodes are replicated to span all the

inputs xi to compute all the outputs yi. An unrolled RNN is illustrated in Fig. 2.1

right panel.

In the core of an RNN, resides the parametric recursive function f . Given an initial

state h0 and a sequence of input vectors x = (x1, x2, . . . , xT ), and the parameters θ,

the recurrence relation of f can be expressed as follows:

ht = f(xt,ht−1; θ) (2.4)

= f(xt, f(xt−1,ht−2); θ)

· · ·

= f(xt, xt−1, . . . , x1,h0; θ).

As can be seen from the recurrence relation, the information is contained in the cur-

rent memory (or hidden state) and each new input is processed in the context of the

full history of the previous inputs. This simple connectionist network, trained prop-

erly, can learn statistical regularities over temporal sequences, in other words can find

structure in time [38].

As mentioned above, learning in connectionist models is about adjusting the connec-

tion weights, namely, the parameters θ in our definition. The simplest parametrization

of function f can be done with transformations of input xt and hidden state ht−1 with

parameters θ = {W,U} and an additional element-wise non-linear function σ, such

as logistic sigmoid 1
1+e−z or hyperbolic-tangent ez−e−z

ez+e−z , as z being the input of the

transfer function:

ht = f(xt,ht−1; θ) = σ(Wxt + Uht−1), (2.5)

where W ∈ Rdh×d and U ∈ Rdh×dh , as dh is the dimensionality of the internal
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memory (hidden state) and d is dimensionality of the input. This parametrization is

known as Elman Network [38] in the literature and usually called as vanilla-RNN.

Please see Fig. 2.2 for a graphical depiction.

After having defined the internal memory ht and the recursive function f , an RNN

can also be equipped with an optional output function g, to predict the conditional

probabilities in Eq. (2.2), parametrized with the weight matrix V ∈ Rdh×do:

yt = p(xt|x<t) = g(ht; V), (2.6)

where do is the dimensionality of the output vector yt. Note that, here we abuse the

notation for the sake of generality and use yt to refer p(xt|x<t), since the output yt, as

we will use shortly is not always a proper probability distribution. In order to make

output yt a proper distribution, function g is usually taken as a softmax activation

function [11], after the transformation with V to predict the output probabilities yt.

We will revisit and detail the output function g in Language Modelling Section.

The most commonly used RNN achitectures are transducers (Elman networks) and

encoders [45], which we also use extensively throughout this thesis. A transducer is

a type of RNN, which produces an output yi for each input xi it reads, see Fig. 2.2.

Transducers land in naturally to be used for language modelling [89], but also exten-

sively employed for many other sequence labelling problems [48]. An encoder on

the other hand, does not predict an output for each input xi it reads, but processes the

entire sequence one by one using Eq. (2.5) until the end of the sequence xt, and the

hidden state at position t, namely ht is used as a summarization/encoding of the whole

sequence x. Encoding the temporal information of an arbitrary length sequence into

a fixed-sized vector ht is quite practical for abstractive summarization [107] and also

being used as the encoders for multi-sequence modelling in this thesis.

Before going into the details of how we train an RNN using backpropagation, it is

worth mentioning the computational powers of RNNs. We have the motivation to

build generic multi-sequence modelling architectures and we want to be sure about

the expressive power of underlying individual sequence models. RNNs are abstract

machines, meaning that, for any computable function by a Turing machine, there

12



Figure 2.2: A Simple Elman-Recurrent Neural Network consists of three layers. From

bottom-up, (1) Input layer, where discrete sequence of observations xt are fed into the

network with transformation matrix W, one token per time step. (2) Hidden layer,

where the function f recurses over each transformed input xt and previous hidden

state ht−1 to compute the hidden state ht at time step t with the associated recurrent

weight matrix U. (3) Output layer, a sequence of outputs yt, emitted one per each

input observation xt, with the transformation of hidden state ht using output layer

weight matrix V. Notice that, the sequence of hidden states from h0 up to ht traverses

a trajectory in an intrinsic state space of RNN (also known as the phase space for

dynamical systems [121]), and each hidden state hi summarizes the previous context

up to i.

exists a finite sized RNN that can compute it, making RNNs Turing complete. [115,

116, 114] Why do we care about the Turing completeness of RNNs that we use?

Because we view each generated (naturally or artificially) sequence as a function and

sequence modelling as a function approximation [21]. If we cannot approximate the

underlying function of the sequence, the road to multi-sequence modelling will be

ill conditioned. We should also remind a very important point that Expressivity 6=
Trainability, stated by Edward Grefesente. 5

5 http://videolectures.net/deeplearning2016_grefenstette_augmented_rnn/

13

http://videolectures.net/ deeplearning2016_grefenstette_augmented_rnn/


Back Propagation Through Time

The common approach for training connectionist models is using stochastic gradient

descent algorithm (SGD) [79] which relies on estimating the gradients of the loss

function L with respect to the model parameters θ, formally ∇θL. A videly used

version of SGD, "mini-batch" SGD follows the steps below.6

Algorithm 1 "Mini-Batch" Stochastic Gradient Descent
Given starting point of θ, loss function L, learning rate η, datasetD and mini-batch

size m

repeat until convergence or stopping criterion is satisfied

1: Sample. Randomly choose m examples from D.

2: Compute. Steepest descent direction∇θL(i), for each chosen example i.

3: Update. θnew := θ − η
∑m

i=1∇θL(i)/m

In this section, we focus on estimating the gradient of the loss function with respect to

the model parameters ∇θL, efficiently using back propagation through time (BPTT)

algorithm [92, 104, 128], namely the Step 2 in Algorithm 1.

Let us first describe our loss function to be optimized. Given an input sequence

x = (x1, . . . , xT ) where each xi is a real valued vector, such that xi ∈ Rd and a true

label (ground truth) output sequence y = (y1, . . . , yT ) we want to train a transducer

RNN, practically, optimize the model parameters θ = {W,U,V} that minimizes the

empirical loss L over the dataset D = {x(m),y(m)}Mn=1 with N examples.7

As we can observe from Eq. (2.5) and Eq. (2.6), an RNN emits an output ŷi at each

time step i. We then use local prediction ŷi and true label yi to define local loss

Llocal(ŷi, yi). Finally our total loss L is the sum of all local losses Llocal.8 Note that,

for a classification task, Llocal can be defined as cross entropy loss or for regression

Llocal can be squared error. Let us pick the cross entropy loss 9 and equip function g

in Eq. (2.6) with a softmax activation. 10 Putting it all together:

6 Here we do not describe mini-batch (or vanilla)-SGD because of its commonality, but we will describe a
particular variant of SGD which uses a slightly more sophisticated step rule, in the following section.

7 Notice that, we threat a full sequence as one training example.
8 We use Lt to refer Llocal(ŷt, yt) for brevity.
9 Cross entropy loss between yi and ŷi is defined as −yilog(ŷi)

10 A softmax activation is a normalized exponential function which can be interpreted as a proper probability
distribution [9].
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ht = σ(Wxt + Uht−1) (2.7)

ŷt = softmax(Vht) (2.8)

Llocal(ŷt, yt) = −ytlog(ŷt) (2.9)

L(ŷ,y) =
∑
t

Llocal(ŷt, yt) = −
∑
t

ytlog(ŷt) (2.10)

Given the total loss, L(ŷ,y) our goal is to calculate the gradients of this loss with

respect to the model parameters θ, formally, ∇θL = { ∂L
∂W

, ∂L
∂U
, ∂L
∂V
}. We sum up the

local losses at each time step t, we also sum up (accumulate) all the gradients at each

time step for a training example, such that ∂L
∂V

=
∑

t
∂Lt
∂V

.

Similar to thestandard backpropagation algorithm, BPTT also relies on chain rule and

reverse mode differentiation, and in practice, BPTT is an extension of standard back-

propagation applied to unrolled computational graphs, shown in Fig. 2.2. Starting

from the local loss Lt at time step t, let us calculate all the gradients. For ∂Lt
∂V

, the

gradient of the local loss function Lt with respect to output layer parameter matrix V,

we simply apply the chain rule:

∂Lt
∂V

=
∂Lt
∂ŷt

∂ŷt
∂V

=
∂Lt
∂ŷt

∂ŷt
∂zt

∂zt
∂V

,

where zt is the softmax pre-activation in Eq. (2.6), namely, zt = Vht. It is easy to see

that the gradient ∂Lt
∂V

depends only on the current time step variables, ŷt, yt, zt, thus

easy to calculate.

The calculation gets slightly more tedious for the gradients ∂Lt
∂U

and ∂Lt
∂W

, because of

the recurrence. For the recurrent weight matrix U, corresponding gradient is calcu-

lated as:

∂Lt
∂U

=
∂Lt
∂ŷt

∂ŷt
∂ht

∂ht
∂U

.

The crucial point in the above equation, the hidden state ht depends on ht−1 and U,

because of the recurrence in Eq. (2.5). Since we use U at each time step up to t, we
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have to backpropagate gradients from t through the network all the way back to t = 0,

which yields:

∂Lt
∂U

=
t∑

k=1

∂Lt
∂ŷt

∂ŷt
∂ht

∂ht
∂hk

∂hk
∂U

. (2.11)

In Eq. (2.11), it is worth mentioning that the term ∂ht
∂hk

itself expands with the chain

rule, giving our final gradient in the form:

∂Lt
∂U

=
t∑

k=1

∂Lt
∂ŷt

∂ŷt
∂ht

(
t∏

j=k+1

∂hj
∂hj−1

)
∂hk
∂U

. (2.12)

The gradient ∂Lt
∂W

is very similar to Eq. (2.12) therefore we skip the derivations for ∂Lt
∂W

.

Luckily, all the modern neural network libraries [120, 1] provide efficient automatic

differentiation support that prevents us to manually implement the above gradients

for BPTT.

Gated Recurrent Units

Training recurrent neural networks using BPTT suffers from two major problems.

Vanishing and exploding gradients [56, 8]. These problems can prevent the model

to capture long-term dependencies severely, sometimes even halts the training com-

pletely. Let us take a look at the term ∂hj
∂hj−1

in Eq. (2.12), which appears to be a

Jacobian matrix.11 In BPTT, we multiply this Jacobian matrix over and over again

along the longest credit assignment path. It has been shown that [101], when the 2-

norm of this Jacobian is greater than 1, gradients tend to explode and exponentially

vanish when 2- norm of this Jacobian is smaller than 1. 12

Dealing with the gradient vanishing problem is still an open research question, but

here we mention one particular remedy, a specialized hidden unit that is designed to

assist the gradient flow back in time, called Gated Recurrent Units (GRU) [24, 29].

11 Computed by the derivative of a vector function with respect to a vector.
12 2-norm of a matrix ‖ ∂hj

∂hj−1
‖ corresponds to its largest eigenvalue.

16



The main idea behind GRU is creating backward shortcut connections across non-

consecutive time steps (units that are not connected directly). During BPTT, these

shortcut connections will help the error signals skip some connections if necessary,

practically preserving gradients across time. Important question is that, how do we

decide this necessity. GRU employs internal parametric functions to decide when to

carry the information or when to stop. Additional parametric functions (gates) are

trained along with the model itself using BPTT. Gating functions are implemented as

simple feed-forward neural networks but their outputs are always maintained to be be-

tween 0-1 (hopefully close to either one of them), casting them as soft multiplicative

gates.

GRU introduces an additive leaky integration function, and two internal gates, namely,

reset (r) and update (u) gates, with and internal hidden state of dimensionality dh,

r ∈ [0; 1]dh , u ∈ [0; 1]dh . Formally, GRU replaces Eq. (2.5):

ht = u� ht−1 + (1− u)� h̃t, (2.13)

h̃t = tanh (Wxt + r � (Uht−1)) , (2.14)

r = σ (Wrxt + Urht−1) , (2.15)

u = σ (Wuxt + Uuht−1) . (2.16)

GRU first computes a proposal hidden state h̃t for time step t, by looking at current

input xt and also previous hidden state ht−1, see Eq (2.14). However, the difference

with the standard recurrent unit in Eq. (2.5) is that, GRU gates the information coming

from the previous hidden state ht−1 with the reset gate r, see Eq. (2.15), practically

applying an element-wise multiplication (indicated by �).13. The proposal hidden

state h̃t is, then, linearly interpolated with the previous hidden state ht−1. This inter-

polation is also gated with another gate, called the update gate u, effectively to control

the ratio of a blend between proposal hidden state h̃t and previous hidden state ht−1

(see Eq. (2.13) and (2.16)). With the help of update and reset gates, GRU can learn to

keep it’s internal hidden state intact, effectively creating shortcuts through time.

Another well known gated recurrent unit is Long Short-Term Memory (LSTM) which

highly influenced the design of GRU and also commonly used in the literature [57,

13 Also known as an hadamard product.
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49]. Here, we do not detail LSTM, since they share the basic principles with GRU,

(ie. activations close to 1 for u).

The exploding gradient problem on the other hand, has a very simple and empirical

solution. Whenever the norm of the gradient ∇Lθ exceeds a threshold τ , we renor-

malize the norm of the gradient to be τ :

∇θL =

τ
∇θL
‖∇θL‖

, if ‖∇θL‖ > τ

∇θL, otherwise
(2.17)

This technique is called gradient clipping [101] and extensively is used in the litera-

ture.

2.1.2 Neural (Connectionist) Language Modelling

A language model, is a probability distribution function over the sequences of words.

On the other hand, language modelling is about learning a conditional probability dis-

tribution over the words given a context [4], as we have also framed in Eq. (2.1)-(2.2).

In traditional non- parametric models, this conditional probability is approximated

with count based statistics, such as (smoothed) N-gram models [71, 75, 47]. Coun-

terpart parametric approaches include maximum entropy models [105], feed-forward

neural networks [6] and recurrent neural networks [89]. As stated in Section 2.1.1,

at this thesis, we are only interested in parametric approaches using RNN, since they

surpass the previous approaches by large margins with the state-of-the-art results [68].

Formally speaking, let V be the vocabulary which contains all possible tokens (sym-

bols, words, sub-words or characters) in a language, with a total number of unique

symbols |V|,

V = {w1, w2, . . . , w|V|}. (2.18)

Further, let each symbol wi in V is represented with a one-hot encoding such that,

wi ∈ {0, 1}|V| is a binary vector of dimensionality |V|, having only one non-zero
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Figure 2.3: A Recurrent Neural Network Language Model (RNN-LM) over the se-

quence x1, x2, x3. Similar to a Recurrent Neural Network, an RNN-LM consists of

three regular layers and one additional embedding layer. From bottom to top, in-

put layer represents the input sequence, embedding layer corresponds to the mapping

(embedding) of a one-hot encoded input token to a continuous space, followed by a

hidden layer and output layer. Number of hidden layers, can be more than one, sim-

ply by stacking more layers. As the task of a language model is to predict the next

token, input sequence is presented to the RNN-LM with a special token <s> at the

beginning, indicating the beginning of sequence. Similarly, the output sequence is

appended with an end of sequence token </s>, enforcing the model to predict the end

of sequence token when it sees the last input token x3

.

element at index i. 14 One artifact of such encoding is the orthogonality of items in

the vocabulary. As an example, any two symbols in the vocabulary will be linearly

independent even if they are semantically close (eg. king and queen). Neural language

models, introduce the concept of continuous space word representations [6], which

maps (embeds) each one-hot encoded discrete symbol into a continuous space that

preserves the original semantic relationships across symbols.

Continuous space representations make use of an embedding matrix E ∈ R|V|×demb

where demb is the dimensionality of embedding space. By slicing the rows of matrix

14 Notice that, we change the notation from xi to wi just to emphasize the discrete nature of inputs and outputs.
Since we do not want to break the generality of an input sequence (which can very well be a sequence of patches
in an image) we can use wi when the inputs of the model are discrete in place of xi.
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E with the corresponding symbol wi, we obtain a continuous vector representation

of symbol wi which we call ei, simply ei = E [wi]. In neural language modelling,

this representation is called word embedding and used to embed discrete input tokens

into a continuous space [6, 90]. As this slicing operation can be tought as a linear

operation and differentiable, we can train the parameters of the embedding matrix E

along with all the other parameters of the model at use. In short, embedding matrices

are learned together with all the other parameters using backpropagation. Please see

Fig. 2.3 for an illustration of input and embedding layers. We refer the reader to

the references [6, 33, 90] for further explanations of word embeddings, since word

embeddings are not the main focus of this thesis. Next we detail the internals of RNN

language model and it’s variants.

Recurrent Language Model

In a RNN language model (RNN-LM), the goal is to predict the next token (symbol)

given the entire preceding symbols (context). For an input sequence x = (x1, x2, x3)

an RNN-LM first constructs it’s input and output sequences by making use of two spe-

cial symbols, the beginning of sequence symbol <s>, and the end of sequence symbol

</s>. Both symbols are necessarily added to the vocabulary V . Since the goal is to

predict the next symbol, an input-output pair xin,xout can easily be constructed by

prepending <s> to the input sequence xin, and appending </s> to the output sequence

xout, such that xin = (<s>, x1, x2, x3) and xout = (x1, x2, x3,</s>). By doing this

pre-ordering of input and output sequences, we practically shift the input sequence

to right by one token, aligning the input-output mapping each time step to be con-

sistent with predicting the next symbol in the sequence. Please see Fig. 2.3 for the

graphical illustration of an RNN-LM. In an RNN-LM layout, the symbol emitted at

time step t is given as an input to time step t+ 1 as the model is generating an output

sequence given an initial input token x1 at test time which is also called as sampling.

During training, as we know the whole input sequence and the corresponding output

sequence (which simply is the shifted version of the input sequence) the true labels

are given to the model for each time step which is known as teacher forcing in the

literature [129].
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Figure 2.4: Simplified illustration of an RNN Language Model (RNN-LM). All the

connection weights and embedding layer is omitted for clarity. Further input and

output layers merged together to emphasize the computations done by the RNN-LM.

The next question is, how are the discrete symbols in the vocabulary V are being used

in a RNN-LM in order to map an input sequence to an output sequence. Let, E [xt] be

the continuous space vector representation of the t-th symbol in the input sequence,

Ψ(·) be the recurrent activation function (eg. tanh, GRU or LSTM unit) and gj be

the j-th element of the output function g : Rdh → R|V |. An RNN-LM predicts the

probability of an output symbol j at time step t, by following:

ht = Ψ(ht−1,E [xt]), (2.19)

p(xt = j|x<t) =
exp(gj(ht))∑|V |
j′=1 exp(gj′(ht))

, (2.20)

where the right hand side of Eq. (2.20) is called softmax. Considering the recur-

rent function Ψ being a vanilla RNN, such that Ψ = f(xt,ht−1) from Eq. (2.5), the

parameter set of an RNN-LM is θ = {E,W,U,V}.

Training an RNN-LM is simply done by maximizing likelihood of the training set D.

Given a training set ofM examples (sequences), such thatD = {(x(1)1 , . . . , x
(1)
T1

), . . . , (x
(M)
1 , . . . , x

(M)
TM

)}
with the loss function L(θ), training objective is to maximize the log-probability of

D. As it was done in Section 2.1.1, we can re- write the joint log-probability of a

sequence as the sum of conditionals,

log p(x1, . . . , xT ) =
T∑
t=1

log p(xt|x1, . . . , xi−1). (2.21)
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Then, the loss function to optimize the parameters θ is:

L(D; θ) = arg max
θ

1

M

M∑
m=1

log p(x(m)
1 , . . . , x

(m)
Tm

), (2.22)

= arg min
θ
− 1

M

M∑
m=1

Tm∑
t=1

log p(x(m)
t |x

(m)
<t ). (2.23)

Learning is done, by mini-batch stochastic gradient descent (SGD). Note that, in fig-

ures and drawings, we omit the embedding layer, along with the weight matrices, for

the sake of brevity. For a simplified graphical depiction of an RNN-LM, see Fig. 2.4.

Conditional Recurrent Language Model

A conditional RNN-LM (cRNN-LM) is a regular RNN-LM with auxiliary inputs,

such that, the distribution over the sequence is conditioned on an additional source of

information. The additional information, which we call C, can be any other modality,

such as a sequence in another language (machine translation) [24, 118, 3], a sequence

of frames in video (video captioning)[134], patches in an image (image captioning)

[133], a speech signal (speech translation)[25, 19] or sometimes multiple modalities,

such as image and speech or image and text [30, 13]. In all of the above cases, cRNN-

LM slightly changes the formulation of RNN-LM to account for the newly introduced

modality.

Let C be the auxiliary information source, which is a set of Tc number of vectors,

C = {ci}Tci=1, where each ci is a partial representation of the auxiliary input modality.

The cardinality of C, Tc = |C| is assumed to be arbitrary. Further, let Φ be the time-

step sensitive encoding function of the new modality for C, such that,

c̃t = Φ(C, t). (2.24)

We incorporate Φ in the recurrent activation function Ψ of Eq. (2.19) simply as an

additional input to the recurrent function:
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Figure 2.5: A conditional recurrent language model (cRNN-LM). Dotted connections

are additional connections on top of a regular RNN-LM model. At each time step, a

cRNN-LM looks at its input xt, previous hidden state ht−1 and additional source of

information ct via modality encoding function Φ. Note that, encoding function Φ can

be time-step insensitive, effectively {∀i, j|Φ(C, i) = Φ(C, j)}.

ht = Ψ(ht−1,E [xt] ,Φ(C, t)), (2.25)

It is common to take into account (condition on) the auxiliary information also in the

output function g. Then, the conditional probability of the j-th symbol at time step t

becomes:

p(xt = j|x<t, C) =
exp(gj(ht, c̃t))∑|V |
j′=1 exp(gj′(ht, c̃t))

. (2.26)

Training is executed similar to RNN-LM, however the dataset D consists of (x, C)
pairs, D = {(x(m), C(m))}Mm=1 and cRNN-LM is again trained to minimize the nega-

tive log-likelihood of the training set D, which is defined as:

L(D; θ) = arg min
θ
− 1

M

M∑
m=1

Tm∑
t=1

log p(x(m)
t |x

(m)
<t , C(m)). (2.27)

See Figure 2.5 for an illustration of cRNN-LM.

A natural use-case of cRNN-LM is combination with another RNN-LM. The latter
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RNN-LM in this case, is responsible for generating the auxiliary information source,

namely the set of representations C. This specific tying of a cRNN-LM and a RNN-

LM constructs the basis of the sequence to sequence models which we will explain

next. The important distinction across the sequence to sequence models is the defini-

tion and usage of representation set C and mapping function Φ, which we explain in

the next section.

2.2 Sequence to Sequence Models - seq2seq

Sequence to sequence models aim at building a single neural network that takes input

sequence X = (x1, . . . , xTx) of length Tx and generates the corresponding output

(translation) sequence Y =
(
y1, . . . , yTy

)
of length Ty. Then, sequence to sequence

models are one of the most generic frameworks in machine learning that we can use

to map any input sequence to any output sequence.

Let us illustrate some architectures from the sequence to sequence modeling perspec-

tive. The simplest example is encountered when input and output sequence lengths

are equal to one, in other words, Tx = Ty = 1, which is basically a feed-forward neu-

ral network for classification/regression, Fig. 2.6a. Next group of problems involve

many-to-one mapping, (Fig. 2.6b) when Tx > 1 and Ty = 1, as in sentiment analysis

[123]. Similarly one-to-many mapping problems , (Fig. 2.6c), with Tx = 1, Ty > 1, as

in image captioning [133]. When both source and target sequences lengths are larger

than one, problems get more complicated. These problems can be handled within the

seq2seq framework. One particular set of problems is sequence labeling [96], where

Tx = Ty > 1, Fig. 2.6d. Finally, the most generic problems are formalized, when

both source and target sequence lengths are larger than one and not necessarily equal

in length with each other, Fig. 2.6e, Tx > 1, Ty > 1, as in neural machine translation

[24, 118].

Surprisingly, this end-to-end approach was independently discovered multiple times

withing the last 20 years [41, 16, 70, 24, 118]. However, they became popular after the

resurgence of modern neural networks [46]. In principal, all seq2seq models rely on,

first encoding an input sequence into an arbitrary length representation (C), and then
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(a) One-to-one (b) Many-to-one

(c) One-to-many (d) Many-to-many

(e) Sequence-to-sequence

Figure 2.6: Sequence-to-sequence models with varying source and target sequence

lengths Tx and Ty.

generating an output sequence by decoding this intermediate representation. Next,

we detail two common approaches of seq2seq, (1) basic encoder-decoder model and

(2) encoder-decoder model with attention.

2.2.1 Basic Encoder-Decoder Model

A basic encoder-decoder network consists of two recurrent networks. The first net-

work, called encoder, maps x, an input sequence of variable length, into a point in
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Figure 2.7: Simple sequence to sequence model, Encoder-Decoder architecture.

a continuous vector space, resulting in a fixed-dimensional context vector c. Then,

the second recurrent neural network, called decoder, generates a target sequence y,

again of variable length, starting from the context vector c, see Fig. 2.7. Although

we introduce the context vector c as an additional variable, it is considered as the last

hidden state of the encoder RNN, c = hTx , as explained in Section 2.1.1.

Following the descriptions in the previous section, a basic encoder-decoder network

can be constructed, simply by stitching an RNN-LM with a cRNN-LM. Extending

Eq. (2.24)-(2.26), with C = {c} and making Φ(·) time-step insensitive identity map-

ping, we obtain a simple encoder-decoder model:

hTx =Ψenc(hTx−1,Ex[xt]), (2.28)

c =Φ(C) = hTx , (2.29)

zt =Ψdec(zt−1,Ey[yt], c). (2.30)

In the above equations, encoder Ψenc is implemented as an RNN-LM and decoder

Ψdec is implemented as a cRNN-LM. Having each symbol in both source and target
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Figure 2.8: A simple Encoder-Decoder architecture (without attention) with input

sequence reversing and stacking recurrent layers.

sequences, xt or yt, (an integer index of the symbol in a vocabulary as described

in Section 2.1.2), we use Ex and Ey to refer input and output embedding matrices

respectively.

One last issue is about setting the initial hidden state of the decoder, z0. From a

trajectory learning perspective described previously, decoder RNN should follow a

trajectory that generates the output sequence y, by traversing the state space from z0

to zTy . Tracing back this trajectory all the way to z0, we can see that, in order to start

generating an output sequence that is relevant to the input sequence, the initial posi-

tion in the decoder state space z0, should be put into the right spot, practically should

use the right bias coming from the encoder. Luckily, we can make use of the last

hidden state of the encoder hTx , which corresponds to the end point of the encoded

trajectory, to give the right bias to the decoder trajectory. This can be achieved simply

by setting z0 = c, but also, having a parametric function that initializes z0:

z0 = finit(c). (2.31)

Please see Fig. 2.7 for a graphical illustration of the basic encoder-decoder architec-

ture.
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Figure 2.9: Bidirectional encoder, with two RNN. The final hidden state hi is con-

catenation of forward and backward RNN hidden states at time point i, represented

by the vertical boxes at each time-step.

The basic encoder-decoder approach however has been reported to be inefficient in

[23] for handling long sequences, due to the difficulty in learning a complex mapping

between an arbitrary long sentence and a single fixed-dimensional vector. An early

attempt to improve the basic encoder-decoder architecture makes two important mod-

ifications [118]. First, reversing the input sequence to align the beginning of source

and target trajectories closely. Second, stacking more recurrent layers to increase the

capacity/complexity of the seq2seq architecture. With these two enhancements, basic

encoder-decoder architecture achieved state-of-the-art performance on challenging

large scale tasks, such as machine translation. Please see Fig. 2.8 for a graphical il-

lustration. Next, we describe a technique to improve the basic encoder-decoder model

by extending function Φ(y) to a time-step sensitive function such that, Φ(y, t).

2.2.2 Encoder-Decoder Model with Attention

The attention-based encoder-decoder model was first proposed in [3]. It was moti-

vated from the observation in [23] that a basic encoder-decoder (translation) model,

described in the previous section, [24, 118] suffers from translating a long source

sequence into a target sequence, efficiently. This is mainly due to the fact that the

encoder of this basic approach needs to compress (encode) a whole source sequence

into a single vector. This vector representation creates an information bottleneck be-

tween encoder and decoder, during the end-to-end optimization of cost function of the
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Figure 2.10: Representation of a decoder time-step t for an attention based encoder-

decoder architecture. Source sequence is first annotated with context set C. For time

step t of the decoder, attention module (fscore) generates attention scores αt,i for each

annotation i in the context set C and then the weighted average of context set ct is fed

to the decoder (cRNN-LM) for time step t.

network, especially when it is deep. Here we describe the attention-based encoder-

decoder model in detail that remedies above issues.

The encoder of the attention-based model encodes a source sequence into a set of

context vectors C = {h1,h2, . . . ,hTx}, whose size varies with respect to the length

of the source sequence. This context set is constructed by a bidirectional recurrent

neural network (RNN) [109], which consists of a forward RNN and reverse RNN,

see Fig. 2.9. The forward RNN reads the source sequence from the first token until

the last one, resulting in the forward context vectors
{−→

h 1, . . . ,
−→
h Tx

}
, where

−→
h t =

−→
Ψ enc

(−→
h t−1,Ex [xt]

)
,

and Ex ∈ R|Vx|×d is an embedding matrix containing row vectors of the source sym-
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bols. The reverse RNN in an opposite direction, resulting in
{←−

h 1, . . . ,
←−
h Tx

}
, where

←−
h t =

←−
Ψ enc

(←−
h t+1,Ex [xt]

)
.

−→
Ψ enc and

←−
Ψ enc are recurrent activation functions such as long short-term memory

units (LSTM, [57]) or gated recurrent units (GRU, [24]). At each position in the

source sentence, the forward and reverse context vectors are concatenated to form a

full context vector, i.e.,

ht =
[−→

h t;
←−
h t

]
. (2.32)

The decoder, which is implemented as an cRNN, generates one symbol at a time, the

translation of the source sequence, based on the context set C returned by the encoder.

At each time step t in the decoder, a time- dependent context vector ct is computed

based on the previous hidden state of the decoder zt−1, the previously decoded symbol

ỹt−1 and the whole context set C. This starts by computing the relevance score of each

context vector as

et,i = fscore(hi, zt−1,Ey [ỹt−1]), (2.33)

for all i = 1, . . . , Tx. fscore can be implemented in various ways [86]. In general, we

can use a simple single- layer feedforward network. This relevance score measures

how relevant the i- th context vector of the source sequence is in deciding the next

symbol in the translation. The relevance scores are further normalized:

αt,i =
exp(et,i)∑Tx
j=1 exp(et,j)

, (2.34)

and we call αt,i the attention weight. Note that, each attention weight αt,i is between

[0− 1] letting us to interpret them as probabilities.

The time-dependent context vector ct is then defined as the weighted sum of the

context vectors with their weights being the attention weights from above:

ct =
Tx∑
i=1

αt,ihi. (2.35)
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With this time-dependent context vector ct, the previous hidden state zt−1 and the

previously decoded symbol ỹt−1, the decoder’s hidden state is updated by

zt = Ψdec (zt−1,Ey [ỹt−1] , ct) , (2.36)

where Ψdec is a recurrent activation function.

The initial hidden state z0 of the decoder is initialized based on the last hidden state

of the reverse RNN:

z0 = finit

(←−
h Tx

)
, (2.37)

where finit is a feedforward network with one or two hidden layers.

The probability distribution for the next target symbol is computed by

p(yt = k|ỹ<t, X) ∝ egk(zt,ct,E[ỹt−1]), (2.38)

where gk is a parametric function that returns the unnormalized probability for the

next target symbol being k. In summary, an encoder-decoder model with attention

alternates between three phases at each time-step of the decoding process. (1) look,

where attention module attends to the context set, (2) update where decoder cRNN-

LM updates its internal hidden state zt with the provided information and at last (3)

generate, where decoder generates the output token yt for time-step t. These phases

are further summarized in Table. 2.1.

Training this attention-based model is done again by maximizing the conditional log-

likelihood of the training set D = {x(m),y(m)}Mm=1:

L(θ) =
1

M

N∑
n=1

Ty∑
t=1

log p(yt = y
(m)
t |y

(m)
<t ,x

(m)), (2.39)

where the log probability inside the inner summation is from Eq. (2.38). It is impor-

tant to note that the ground-truth target symbols y(n)t are used during training. The

entire model is differentiable, and the gradient of the log-likelihood function with re-

spect to all the parameters θ can be computed efficiently by backpropagation. This

makes it straightforward to use stochastic gradient descent or its variants to train the

whole model jointly to maximize the translation performance as explained in the pre-

vious sections.
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Table 2.1: Decoder phases in an attentional encoder-decoder architecture.

Encoder-Decoder with Attention

Phase Output← Input

Look cj ← zj−1, yj−1, C
Update zj ← zj−1, yj−1, cj

Generate yj ← zj, yj−1, cj

2.3 Neural Machine Translation

In this section, we give the necessary context for Neural Machine Translation (NMT)

starting from history of Machine Translation (MT) followed by the definition of NMT.

We then give the motivation behind using NMT as the test-bed of this thesis and pro-

vide the details about the specifics of NMT. Specifically, structure of datasets, training

and testing (decoding) of NMT models, evaluation metrics and model selection. Fi-

nally we explain some specifics about the granularity of input and output sequences.

As described in the previous section, Sequence-to-Sequence models (seq2seq) refer

to a very broad family of models, that encapsulate each an every model that map

input sequences to output sequences. NMT on the other hand, focuses on automatic

translation (machine translation) of a source sequence into a target sequence where

both sequences are representations in different natural languages.

Before going into the details of NMT, let us first dissect the term NMT and explain

each component from the perspective of this thesis. Translation is the task of con-

verting a sequence into another sequence, while preserving the underlying semantics

or meaning. Intuitively, this conversion can be represented as a mapping problem

between a source sequence and a target sequence. When this mapping problem is

addressed by automatic methods, either relying on data covering source and target

sequences (eg. parallel data) or prior knowledge about the nature of the sequences

(eg. linguistic knowledge), leads us to the basic definition of Machine Translation.

Finally, Neural Machine Translation, is a data-driven statistical machine translation

approach to model the mappings between sequences, relying on connectionist meth-
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ods and parameterizations [21].

From our perspective, machine translation is a machine learning problem that the

task is mapping an arbitrary length input sequence x to an arbitrary length output se-

quence y. Since we treat machine translation as a machine learning problem, and we

rely on end-to-end connectionist approaches (deep learning methods), the linguistic

motivations (or common NLP approaches) are kept out of scope of this thesis. But

since Neural Machine Translation is chosen as the test-bed of this thesis, we mention

the history of Machine Translation very briefly.

Although there exist earlier attempts in seventeenth century for mechanical transla-

tion and the idea of philosophical (universal) languages with mechanical dictionaries,

Machine Translation research precursors and pioneers can be dated back between

1933-1956. This era laid the foundations of Machine Translation where researchers

focused on multilingual mechanical dictionaries later forming the idea of multilingual

translation devices [61] and the concept of interlingua from well-known Weaver’s

1949 memorandum on translation [82]. The after war era between 1956-1966 fo-

cused on practical developments and formed one of the most fundamental research

group for machine translation at the IBM Corporation (for the early history of MT,

please see [60]). A quiet decade between 1967-1976 was followed by operational

and commercial systems between 1976-1989, where the research on MT was revived.

Research after 1989 focused on corpus-based approaches relying on data statistics

and formed the foundations of Statistical Machine Translation (SMT) methods[76].

Incremental research on SMT dominated the field up until 2014, where Neural Ma-

chine Translation was invented by two Machine Learning groups simultaneously and

independently, one from University of Montreal [24] and the other from Google Inc.

[118]. Since 2014, NMT not only revolutionized the field of MT [131] but also many

other research areas of NLP [95], Computer Vision [22] and Robotics [cite].

NMT is a data-driven, end-to-end connectionist approach for statistical machine trans-

lation, requiring no linguistic prior, domain knowledge on NLP or ad-hoc algorithm

pipelines tailored for solving the translation (or sequence mapping) tasks only.

Why did we choose NMT as our test-bed?
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To our goal, machine translation is a very hard task to be solved, in order to take a

step towards understanding the artificial cognition. Now we enumerate the rationales

behind choosing NMT as our test-bed.

1. Machine Translation is a challenging real world problem for natural language

understanding, and requires a connectionist model to capture the semantics

of input and output sequences. In this thesis, our goal is modelling multiple

input and output sequences within the same connectionist model (superset of

seq2seq). Unlike small toy problems, such as hand-written digit classification,

developing such generic models requires hard tasks to solve, where MT is one

suitable stress test for development.

2. In many machine learning problems, the limiting factor is the amount of avail-

able data, either labelled or unlabelled. The amount of data becomes more im-

portant for end-to-end approaches and for the models that are more complex,

such as connectionist models (due to the increase in data complexity). The

scarcity of the data usually prohibits the model architectures explored (such as

restricted use of linear models), preventing researchers to exploit high compute

capabilities of modern machinery. MT on the other hand, offers a rich amount

of data for many languages, both in terms of quality and quantity. This wide

range of datasets are constructed by parliament proceedings, web-crawls, in-

ternational agencies such as United Nations or European Parliament and many

more formal and informal sources. With this large amount of data, we can at-

tack more challenging problems by making use of more sophisticated models.

Thanks to the availability of such datasets, researchers quite easily find their

models under-fitting even with the vast amount of computational resources. As

we aim to solve a very challenging task, modelling not only the mapping be-

tween two sequences, but modelling the mapping between multiple sequences,

the availability of the data becomes utmost important.

3. Large amount of data mentioned in the previous item also allows us to do con-

trolled experiments by reducing the amount of data used, or choosing complex

datasets to benchmark the machine learning architectures. As expected, not all

the mappings between any two language pairs are at the same level of diffi-
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culty and for some language pairs the amount of data is not as large as the other

common spoken languages (low-resource languages eg. Uzbek→English trans-

lation task). MT further allows us to choose and/or simulate the complexity and

the amount of data used for developing new model architectures. We can de-

velop architectures using the large datasets and then adjust them to work with

increasing complexity and reduced amount of data, for the sake of generality.

4. Another important reason of choosing MT as our test-bed is the availability

of multi-view data. In a multi-view dataset (multi-text or multi-way parallel

data) each example consists of a tuple of n data points where n >= 2. An

example in a sequence to sequence mapping problem is a 2-tuple (x,y) pair,

but in a multi-view dataset, which can be exploited by a multi-sequence mod-

elling architecture, an example can be an n-tuple such as (x1,x2,x3,y1,y2)

where n = 5, having three source data points x1,x2,x3 and two target data

points y1,y2, all representing the same semantics of a single observation. Such

datasets are quite common in MT community, thanks to multi-national orga-

nizations and multi-lingual countries, practically having the same sequence in

multiple languages, which is called n-way parallel data or multi-text in the

literature. We can develop architectures that can exploit the complementary in-

formation across multiple-views, practically benchmark multi-sequence mod-

elling architectures on many-to-one mapping problems (multi-source transla-

tion, eg. translating a source sequence given in multiple source languages into

a target language) or one-to-many mapping problems (multi-target translation)

or even many-to-many mapping problems. This further allows us to extend the

architectures to make use of different modalities, opening new research direc-

tions for multi-task and multi-modal mapping problems.

5. Finally, we believe that, being able to understand the semantics of language,

which is the medium intelligent bodies use to communicate, and coming up

with models that can express this complex behavior is a significant step towards

developing agents that can make sense of the observational world.

Next, we will describe the specific details about the datasets used in NMT and training

procedure for adjusting the model parameters.
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2.3.1 Training

In the previous sections, we described a general family of approaches, called sequence-

to-sequence models, that can learn to map an input sequence x to an output sequence

y by learning a continuous function that is trained to estimate the conditional prob-

ability of an output sequence given an input sequence, p(y|x). We explained how

to parametrize sequence-to-sequence models by using encoder-decoder architectures

and also mentioned how to adjust the parameters of the model given a training set us-

ing Stochastic Gradient Descent and Backpropagation. In this section, we detail the

training procedures, focusing on NMT specific routines. We start by explaining the

structure of the datasets for NMT, Bilingual Corpus. Then, the data iteration schemes,

how to efficiently make use of available data, Data Iteration and finally putting all of

them together with improved step rules for SGD, Training Loop.

Bilingual Corpus: Recall that, given a training set of (x,y) pairsD = {x(m),y(m)}Mm=1

with M samples, training an NMT model is done by maximizing the conditional log-

likelihood of the training set :

L(θ) =
1

M

N∑
n=1

Ty∑
t=1

log p(yt = y
(m)
t |y

(m)
<t ,x

(m)). (2.40)

Each input-output (source-target) pair (x(m),y(m)), consists of sequences having the

same meaning. For NMT, a general approach is to use sentences to represent se-

quences, meaning each source-target pair is a sentence given in two languages. When

two documents are aligned in a way that each sentence in a document has a corre-

sponding translation sentence in the other document, it is called a bilingual corpus,

parallel text or bi-text.

Following the basic training procedure of mini-batch SGD in Alg. (1), we need to

form mini-batches to feed the training algorithm. However, there is an efficiency

problem in sequential data of arbitrary length. The samples chosen by SGD can be

in varying length inside of a mini-batch, causing the training procedure waste com-

putational time for short sequences, when they are mixed with long sequences within

the same mini-batch. This problem is partially mitigated by following an iteration

scheme.
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Algorithm 2 Bilingual Corpus Iteration Scheme

Given Dataset D = {x(i),y(i)}Mi=1 of M examples, batch-size n and read-ahead

count k

repeat until the end of epoch

1: Shuffle dataset, preserving source-target pair alignments.

2: Read-ahead k × n examples (x(i),y(i)).

3: Sort according to target (or source) sequence lengths.

4: Form batches of approximately equal sized examples.

5: Feed training algorithm with the formed batches one-by-one.

Data Iteration: The main goal of the data iteration scheme is forming mini-batches

where each example in the mini-batch has approximately the same length. By pre-

serving such homogeneous batches, (1) we save computation time, (2) the average

gradient for the mini-batch becomes consistent and can be associated with a particu-

lar sequence length. We use Alg. (2) as our iteration scheme, which is also illustrated

in Fig. 2.11. Note that, the batching strategy described above is being used in almost

all of the seq2seq implementations [118, 24, 25, 27, 3] but details can only be found

in public codebases15 16 17, therefore we value mentioning it here.

Note that, the above procedures can trivially be extended to multi-way parallel data.

Training Loop: After deciding on an efficient iteration scheme, next we focus on

the training loop, where an iterative procedure is executed to optimize the model pa-

rameters over the training set D. Although vanilla mini-batch SGD algorithm is quite

robust and resilient, practitioners usually need to experiment for a convenient learning

schedule (ie. annealing the learning rate η with a schedule). This process necessitates

trial and error which can be very expensive when the training time for a model is as

long as weeks. In such cases, we resort to adaptive learning rate algorithms, such

as Rmsprop[122], Adadelta [135] or Adam [73]. In this thesis, in order to avoid the

manual tuning of the learning rates, we choose to use Adam step-rule to optimize the

model parameters. Adam step-rule is described in Alg. (3).

15 https://github.com/lisa-groundhog/GroundHog
16 https://github.com/mila-udem/blocks-examples/tree/master/machine_

translation
17 https://github.com/nyu-dl/dl4mt-tutorial
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Figure 2.11: Batching strategy for parallel, data-iteration. The data iterator first reads

ahead multiple source-target pairs (examples) from corresponding source and target

corpora. Then the sequences are sorted according to the sequence lengths (either wrt

source or target) in ascending order. Then sorted chunks will be formed as batches to

be fed to the training algorithm.

2.3.2 Testing

After having trained a NMT model which estimates the conditional probability p(y|x),

the next question is how to generate the translation given a source sequence x. For-

mally,

y∗ = arg max
y

p(y|x). (2.41)

As can be seen above, exact solution to Eq. (2.41) requires computing all possible

y. Unfortunately, most probable translation cannot be found exactly, because of the

intractability search space in the output y induced by the recurrent formulation, ap-

proximate search methods are employed in the literature. A common approach is to

use greedy beam-search. Beam-search starts with a set (beam) of hypotheses trans-

lations, empty at the very beginning of decoding. At each iteration/decoding step,
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Algorithm 3 Adaptive Moment Estimation SGD (Adam)
1: Given Hyperparameters η, β1, β2, ε

2: Initialize update-step t← 0

3: Initialize 1st moment vector m0 ← 0

4: Initialize 2nd moment vector v0 ← 0

5: repeat until convergence

6: t← t+ 1

7: Compute gradients of the loss w.r.t. model parameters: gt ← ∇θL
8: Update biased 1st moment estimate: mt ← β1 ·mt + (1− β1) · gt
9: Update biased 2nd moment estimate: vt ← β2 · vt + (1− β2) · g2t

10: Bias correction for 1st moment: m̂t ← mt/(1− βt1)
11: Bias correction for 2nd moment: v̂t ← vt/(1− βt2)
12: Update: θ ← θ − η · m̂t/(

√
v̂t + ε)

candidate translations are formed by extending hypothesis sequences in the beam by

one token. After this extension of each candidate translation, all the sequences in the

beam are scored using the model (simply checking the log-probabilities) and only the

top k scoring hypothesis are kept in the beam, k being the beam-size, the rest of the

hypothesis are discarded. The decoding stops when a beam is appended an end of

sequence token </s>, ie. when the model emits an end of sequence token.

Beam search is quite robust to the selection of beam-size hyper-parameter k [26, 69]

and a small beam-size between 2-10 is usually used for NMT.

2.3.3 Automatic Metrics for Evaluation

In the previous sections we describe, how to train a NMT model, and how to generate

translation using the trained model. Now, we describe evaluation metrics to measure

the goodness of generated translations. As in many other evaluation tasks, the ulti-

mate evaluation is the assessment by human evaluators, unfortunately, human evalu-

ation is costly, time-consuming and necessitates trained human translators. Therefore

MT research relies on automatic metrics for evaluation, that try to mimic human eval-

uation and give a score to a generated hypothesis translation, using gold-label (true)
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translation as reference. In this section, we describe three automatic metrics for the

evaluation of generated translations, Bilingual Evaluation Understudy Score (BLEU),

Translation Error Rate (TER) and TB score which is the average of BLEU and TER.

Bilingual Evaluation Understudy - BLEU[99] BLEU score is the most common auto-

matic metric for evaluating machine translated sequences. BLEU is a precision based

metric and compares a hypothesis (candidate) translation against a reference (true)

translation. BLEU computes the geometric mean of the modified n-gram precision

scores multiplied by a brevity penalty, formally:

BLEU = BrevityPenalty ∗ exp

(
N∑
n=1

wnlog pn

)
, (2.42)

BrevityPenalty =

 1, if c > r,

e1−r/c, otherwise
(2.43)

pn =

∑
S∈C

∑
ngram∈S ĉ(ngram)∑

S∈C
∑

ngram∈S c(ngram)
, (2.44)

where C is a corpus of all the translations, S is a set of all unique n-grams in

one sentence in C, c(ngram) is the count of n-gram, wn is the weight associated

with pn (usually taken as a uniform weight, wn = 1/N ) and finally, ĉ(ngram) is

min(c(ngram), cref (ngram)) as cref (ngram) being the count of n-gram in the ref-

erence sequence. N is usually selected to be four, to consider n-grams only up to four

and brevity penalty controls the effect of length, in order not to favor short transla-

tions. Intuitively, BLEU score tries to match n-gram overlaps between candidate and

reference translations weighted by a brevity penalty that penalizes sequences that are

not matching in sequence lengths. BLEU scores are usually normalized to be between

0-100 range and higher BLEU scores are better.

Translation Error Rate TER is a simple error metric for machine translation that

measures the number of edits required to change a candidate translation into reference

translation. TER scores are usually normalized between 0-100 and lower TER scores

are better.

TB score is simply a way of combining BLEU and TER to have a single measure and
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computed by TB = (TER-BLEU)/2.

All the measures mentioned above, are correlated (with a high positive or negative

value) with the log of the conditional probabilities defined in Eq. (2.38), and this

observation is illustrated in Fig. 2.12 comparing BLEU with negative log-probability

and Fig. 2.13 for TB with negative log-probability for validation sets.

2.3.4 Linguistic Units of Input and Output Sequences

One final topic to be mentioned which is necessary for NMT context is the granular-

ity of input and output tokens. Consider a scenario, where the total number of unique

symbols in vocabulary V , the vocabulary size |V | is extremely large (revisiting Sec-

tion 2.1.2), resulting giant embedding matrices for both source and target tokens (Ex

and Ey) also a softmax layer that again spans the vocabulary size V . This problem is

called large-vocabulary problem [63] which is still an open research question. Since

we are not interested about the particular NLP vocabulary reduction approaches or

approximation techniques for large integrals, we employ a simple unsupervised tech-

nique called Byte Pair Encoding (BPE) [111] that segments words in a sequence of

sub-word units according to the co- occurrence statistics of characters n-grams. BPE

encodes the sequences in a way that, words appearing in the training corpus with high

frequency are kept intact, but rare words are splitted into subword units or even char-

acter strings. BPE allows a budget for the number of co-occurrence statistics to be

considered, practically letting us choose the vocabulary size |V | that is convenient for

the task at hand.

2.4 Multi-Sequence Modelling

In the previous sections, we defined the internals and functionalities of the build-

ing blocks of this thesis, namely connectionist sequence modelling. We further for-

malized the Sequence-to-Sequence (seq2seq) approach as an introduction to multi-

sequence modelling, since seq2seq architectures, by definition, are the simplest form

of multi-sequence modelling architectures but only consider two sequences, input and

output sequences. In this thesis, we focus on a broader class of multi-sequence mod-
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Figure 2.12: BLEU Score versus Negative Log-Probability (NLL) on validation. The

x-axis corresponds to the number of iterations taken during training, and y-axis cor-

responds to Negative Log-Probability (left) and BLEU Score (right). As can be seen,

BLEU Score and NLL negatively correlates for two translation pairs, French-English

(green curves) and Spanish-English (blue curves).
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Figure 2.13: TB Score versus Negative Log-Probability (NLL) on validation. The

x-axis corresponds to the number of iterations taken during training, and y-axis cor-

responds to Negative Log-Probability (left) and TB Score (right). As can be seen, TB

Score and NLL positively correlates for two translation pairs, French-English (green

curves) and Spanish-English (blue curves).
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elling architectures, where we have more than two associated sequences both at the

input and the output.

Let us first define and formalize what do we mean by multi-sequence modelling,

using the definitions and building blocks introduced in the previous sections. Let Γ

be a set of N input sequences, such that Γ = {xi}Ni=1, where each input sequence xi

belongs to a different source domain. For example, for 1 = en and 2 = fr, x1=en can

be the sequence of tokens representing a sentence in English, xen = (xen1 , . . . , x
en
T enx

)

and x2=fr can be the sequence of tokens representing a sentence in French, xfr =

(xfr1 , . . . , x
fr

T frx
). Without loss of generality each xi can represent an input sequence

in a language (stream of words), image (stream of patches), video (stream of images)

or speech (stream of audio signals). Further let Λ be a set of M output sequences,

Λ = {yj}Mj=1, where each output sequence j belongs to a different domain (eg. y1

representing a sentence in German and y2 a sentence in Turkish).

Given a set of inputs Γ and a set of outputs Λ, we define the mapping problem of

Γ → Λ as multi-sequence mapping and we define the predictive modelling of this

mapping using a single parametric function Π as multi-sequence modelling, such that

Π : Γ→ Λ.

We further state that, such multi-sequence mapping models should not necessarily

rely on the existence of all of its inputs and outputs at the same time, both during

training and inference steps. Since this behavior is imperative, it needs further clari-

fication. Given the set of N input domains and M output domains, it is very unlikely

that the real world data is available for all possible pairs from source to target (N×M
cartesian). A realistic scenario is having high amount of parallel data between some

pairs (i, j), from source domain i to target domain j. Concretely, data in the form of

(xi,yj) (eg. bi-text between English and French). In addition to the available paral-

lel data, we usually have access to a small amount of n-way parallel data, such that

data in the form of (xi, . . . ,xj, . . . ,yk) where n = |(xi, . . . ,xj, . . . ,yk)|, (eg. 3-way

parallel data, between English, French and German)18.

For the majority of the pairs (i, j), we usually do not have access to any direct parallel

data (eg. between Turkish-Afrikaans). A multi-seq2seq architecture should be able to

18 The same sentence is given in three different languages.
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be trainable by only parallel data and still be able to operate across all possible pairs

from source to target, with the premise of generalizing to unseen pairs (i, j) during

training.19. The model should indeed exploit and make use of any available n-way

parallel data both during training and inference, but not solely rely on it’s availability.

Given the above premise for multi-seq2seq architecture, in this thesis, we do not

impose any necessity of the availability of data conditions to multi- seq2seq and we

call this necessity, as multi-way parallel data necessity.

As can be seen from the definition of Π, it can represent a broad family of functions

(many-to-one mappings, one-to-many mappings, many-to-many mappings across source

and target domains) and many machine learning problems, if not all, can be repre-

sented in this framework. The definition of Π is intentionally not been narrowed

down at this point in order to emphasize the magnitude of problems that can be en-

countered, which are analyzed in the subsequent sections.

2.4.1 From Sequence to Sequence Models to Multi-Task Sequence to Sequence

Models

Now, let us narrow down the definition of Π starting from Sequence-to-Sequence

mapping (seq2seq) problem by varying the cardinality of input set Γ and output set

Λ,N andM respectively. We first set both cardinalities to one,N = M = 1, and then

first increase the input set cardinality to be greater than one, N > 1,M = 1, second

increase both input and output set cardinalities to be greater than one, N > 1,M > 1.

2.4.1.1 One-to-One seq2seq

Following the task of seq2seq mapping problem, multi-sequence mapping (multi-

seq2seq) problem can be reduced to seq2seq when we consider only one domain of

input and one domain of output sequences. Explicitly, when N = 1 and M = 1,

multi-seq2seq reduces to seq2seq problem. As described in the previous section, we

consider seq2seq models that parametrize the mapping function from source to target

using neural networks only and in the framework of encoder-decoder architectures.
19 even there does not exist any parallel data between
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Figure 2.14: A Generalized View of Sequence to Sequence Models.

To start with, let us generalize the encoder-decoder architecture that can be used to

build multi-seq2seq models.

To examine at a high level, regardless of the type of seq2seq architecture, whether

basic encoder-decoder (Sec. 2.2.1) or encoder-decoder with attention (Sec. 2.2.2), all

seq2seq models consist of three major components (sub-modules or sub-networks),

see Fig. 2.14. (1) an encoder, that summarizes the input sequence x into a set of

representations (annotations) C, the red box in Fig. 2.14, (2) a decoder, that generates

an output sequence y by conditioning on the previously generated outputs y<t and the

information coming from encoder ct, the blue highlighted box in Fig. 2.14. The last

component, (3) the interface, is the most crucial component of a seq2seq architecture,

and responsible to provide the necessary information ct to the decoder, whenever it

is queried, the green box in Fig. 2.14. The interface, practically stitches an encoder

with a decoder and can be as simple as an identity function (basic encoder-decoder)

or can be a high capacity, time-step sensitive neural network (encoder-decoder with

attention).

By definition, seq2seq models consider only one domain of input sequence and solve

the task of mapping into only one domain of output sequence. Such tasks can easily be
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(a) One-to-One seq2seq (b) Many-to-One seq2seq

(c) Many-to-Many seq2seq

Figure 2.15: Multi Sequence-to-Sequence Model Variants.

machine translation [118, 24], image captioning [127, 133], video captioning [134],

speech recognition [19], solving discrete problems [125] or even image to image

translation [62].

To date, seq2seq models achieve state-of-the-art results in many fields cited above

and one of the most generic and powerful sequence mapping tools we have. Unfor-

tunately, the generality of seq2seq models do not apply directly when we switch to

multi-seq2seq, problems arise as we start considering more than one domain of inputs

or outputs, increasing N and M .

2.4.1.2 One-to-Many seq2seq

Consider the scenario when we have only one source domain, N = 1, but multiple

target domains, M > 1. The task is then, mapping of a source sequence into multiple
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output sequences, each in a different domain. As an example, translating a sequence

of tokens in English, into first a sequence of output tokens in French, and second a

sequence of output tokens in German, N = 1,M = 2. Such problems are known as

multi-task learning problems [15], and involves solving multiple tasks (two different

machine translation tasks in our example) withing the same model.

In order to use seq2seq framework to attack one-to-many seq2seq, we first need to

address one particular issue, the interface problem. As we increase M , (1) how do

we model/parametrize the interface?, (2) does it scale as we keep increasing M? The

simplest solution is to use multiple interfaces, one for each decoder, see Fig. 3.2a.

Individual interfaces, then can be trained using the available parallel data between the

source and the corresponding target domain. One such example for neural machine

translation is proposed by [36] where it has been shown that one-to-many (multi-task)

seq2seq can be applied to machine translation. We see two fundamental problems

with the approaches that use dedicated interfaces for each task. First, the knowledge

transfer from one task to the other task is lightly handled, because only the encoder

side of the whole architecture is shared across tasks, hence it is not data efficient.

The second problem is about the generality. In order to introduce a new task to the

model (increasing M by one), we do not only need adding a new decoder, but also a

new interface. This may not seem to be a problem when the interface is an identity

function (basic encoder-decoder) but becomes significant when the parametrization

of the interface involves a complex component (encoder- decoder with attention). It

is necessary to emphasize that, basic encoder- decoder architecture is not competitive

with it’s counterpart due to the problems mentioned in Section 2.2.1.

2.4.1.3 Many-to-One seq2seq

Next, we consider the scenario when we have multiple source sequences from dif-

ferent domains, only one output domain, N > 1,M = 1. This family of problems

are one of the most common problems in machine learning, where the task is using

multiple sources of information to satisfy one task. From multi-seq2seq perspective,

it is similar to one-to-many seq2seq with some minor differences. Here there is only

one task to solve, but the model can make use of two separate source of information,
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either at the same time, or one by one. When the sources are complementary, this

multi-source setup has potential to benefit from a diverse set of source information

and capture the regularities across source domains. The application of multi-source

setup is quite broad, and easily extends to multiple modalities, from Neural Machine

Translation [139], image-grounded translation [14, 13] to lip-reading [2, 31].

In a recent study, [139] an architecture with multiple encoders and a single decoder

is suggested to achieve multi-source seq2seq, where, two sources are considered, and

for both sources, a separate interface is employed. In addition, a dedicated module is

devised to combine the information coming from multiple interfaces, see Fig. 3.2b.

From a general multi-seq2seq perspective, we can observe some major issues with

this approach. First, interface is again kept separate, which leads to data inefficiency

for knowledge transfer. Next, every new source side domain has to be plugged into

the model with additional interfaces, preventing it to be scalable. Finally, the model

trained only using n-way parallel data, and can only do inference when all sources

are available, leading multi-way parallel data necessity. To develop general multi-

seq2seq architectures, we should ensure that the model can still operate even when

only one of the sources is given. However, we should be able to exploit the comple-

mentary information when such multi- way data is available, during the training and

inference stages.

2.4.1.4 Many-to-Many seq2seq

In the family of multi-seq2seq, many-to-many seq2seq is the most generic approach

where the model has multiple source domains and multiple target domains, both N >

1,M > 1. All the difficulties and problems in both many-to-one seq2seq and one-to-

many seq2seq still remain in many-to-many seq2seq, and further emphasized again

because of the interface. Consider a many-to-many seq2seq architecture that has N

encoder and M decoders and we introduce an additional target domain into the mix.

The interface problem becomes more important, since for each new target domain

added, we also need to introduce N separate interfaces, to stitch existing encoders

to the newly added decoder. This quadratic growth makes many-to-many seq2seq

impractical to scale to multiple source and target domains.
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When we do not consider any interfaces between encoders and decoders (ie. basic

encoder-decoder) where the interface is just an identity function, we can dodge this

problem, but resulting multi-seq2seq model will not be compatible due to the lack of

attention modules [83], see Fig. 3.2c. 20

Towards a generic multi-seq2seq architecture, we need to address all the above prob-

lems. We should, (1) revisit the notion of interface to mitigate the interface problem

observed when we combine the encoders with decoders. (2) enable the multi-seq2seq

architecture to be easily extendible to new source domains (encoders) and target do-

mains (decoders). (3) eliminate multi-way parallel data necessity. In short, a generic

multi-seq2seq architecture should be scalable to new domains, flexible to use any

combination of available data without sacrificing its representational capability.

In the next Chapter, we propose our solution to the above problems, by introducing the

notion of shared functional-medium. As a background, we first build the context for

shared functional-medium in the next Section from multi-sequence Neural Machine

Translation perspective.

2.4.2 Multi-lingual Sequence Modelling (Multi-lingual Neural Neural Machine

Translation)

In this section we first answer the question “how does the multi-seq2seq problem can

be adapted in multi-lingual neural machine translation?” and then give the intellectual

motivation behind the proposed architecture in this thesis.

Communication, by the model of Claude Shannon and Warren Weaver [113], re-

quires three major components: sender, receiver and a channel. We can trivially cast

a sequence to sequence mapping problem as a communication problem, simply by re-

naming sender/encoder, receiver/decoder and channel/interface. This thesis is about

the implications of multiple senders and multiple receivers to the structure of the

channel and vice-versa. We focus on modelling the channel itself, in order to transmit

information from any sender(s) to any receiver(s) and study the channel requirements

with respect to the availability and amount of data between sender(s) and receiver(s).
20 Note that, having an identity function as the interface has an implicit assumption that the interface function

is a fixed-point function everywhere in its domain, which is a very restrictive assumption.
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Figure 2.16: Multi-lingual Language Translation as an application of Multi-seq2seq.

The translation problem is indeed a communication problem, and multi-seq2seq prob-

lem is just one instance of a communication problem where we have multiple senders

and receivers. In Fig. 2.16, an illustration of multi-seq2seq for language translation

is provided, where each source and target is a different language, and the channel is

represented with a cloud in between.

2.4.2.1 Weaver’s Memorandum and Interlingua

Warren Weaver’s Memorandum about the translation states that:

“.. it is very tempting to say that a book written in Chinese is simply a book written in

English which was coded into the "Chinese code." If we have useful methods for solv-

ing almost any cryptographic problem, may it not be that with proper interpretation

we already have useful methods for translation?”

and the analogy of tall towers:

“..think, by analogy, of individuals living in a series of tall closed towers, all erected

over a common foundation. When they try to communicate with one another, they

shout back and forth, each from his own closed tower. It is difficult to make the sound

penetrate even the nearest towers, and communication proceeds very poorly indeed.

But, when an individual goes down his tower, he finds himself in a great open base-

ment, common to all the towers. Here he establishes easy and useful communication

with the persons who have also descended from their towers. Thus it may be true
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Figure 2.17: Communication medium for single source (sender) and single target

(receiver).

Figure 2.18: Communication medium for multiple sources (senders) and multiple

targets (receivers).
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that the way to translate from Chinese to Arabic, or from Russian to Portuguese, is

not to attempt the direct route, shouting from tower to tower. Perhaps the way is to

descend, from each language, down to the common base of human communication –

the real but as yet undiscovered universal language – and then re-emerge by whatever

particular route is convenient.”

The common base of communication or the great open basement common to all the

towers is known as interlingua.

The research on modelling interlingua has a long history and we can trace back the

roots of connectionist approaches to the notion of interlingua. Let us first provide

some history for interlingua from connectionist perspective.

1956-1966 some groups pursued the interlingua ideal, and believed that only fun-

damental research on human thought process (what would later be called artificial

intelligence) would solve the problem of automatic translation.[cite]

In this early period, MT was seen to be of wide relevance in many fields concerned

with the application of computers to intellectual tasks; this was true in particular for

the research on interlingual aspects of MT, regarded as significant for the development

of information languages.[cite]

Solvio Ceccato concentrated on the development of an interlingua based on cognitive

process, specifically on the conceptual analysis of words (species, genus, activity

type, physical properties etc.) and their possible correlations with other words in

texts - a forerunner of the .neural networks of later years.

Interlingua investigations were consonant with the multilingual needs of the Soviet

Union and undertaken at a number of other centers (Archaimbault and Leon 1997).

The principal one was at Leningrad State University, where a team under Nikolaj

Andreev conceived an interlingua not as an abstract intermediary representation but

as an artificial language complete in itself with its own morphology and syntax, and

having only those features statistically most common to a large number of languages.

In latter half of 1980s, there was a general revival of interest in interligua systems,

motivated by contemporary research in artificial intelligence.
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Let us now revisit the sequence to sequence problem with Weaver’s analogy of tow-

ers. It is straight-forward to substitute the encoder with one of the tall buildings and

the decoder with the other. The common base open to all towers is then the inter-

face, which navigates the information in the common base, interlingua, between an

encoder and a decoder, see Fig. 2.17 for illustration.

The multi-sequence modelling, or multi-lingual translation is then, is about modelling

the interlingua, when multiple tall buildings are trying to communicate. We increase

the number of encoders, the tall buildings on the left in Fig. 2.18 and the decoders, tall

buildings on the right, and still keeping a single common base, interlingua, among all

the source and targets.

We can rephrase the term interlingua as a shared medium and found our intellectual

motivation on top of it. We focus on building a single shared medium to control the

information flow between any source and target. The modelling of the shared medium

is critical to the success of multi-seq2seq and it is the major question of this thesis.

2.4.2.2 Benefits and Caveats

Next, let us enumerate the questions we ask in this thesis, before delving deep into

the answers given by this thesis.

In this thesis, we hypothesize that, interlingua can be modelled using connection-

ist approaches for the task of multi-seq2seq and we attempt to find answers to the

following questions:

1. In Section 3, we try to build a general architecture that is shared across all

sources and targets?

2. In Section 4, we handle under-represented (due to the scarcity of available data)

pairs in such multi-sequence mapping problem?

3. In Section 5, we benefit having multiple sources/views of the same observation?

4. In Section 6, we transfer the representation capabilities of the proposed archi-

tecture, for the cases when we have no direct data between two pairs in the
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Figure 2.19: Evolution of the Shared Medium Hypothesis

multi-sequence mapping architectures?

The notion of interlingua and shared medium is not new to the field at all. However,

this thesis is one of the first which formalizes a multi-seq2seq problem as a commu-

nication problem that relies on a parametrized shared medium with neural networks.

The research conducted to build this thesis has triggered the field of multi-lingual neu-

ral machine translation and as of the writing of this thesis. Our proposed approaches,

mainly the shared medium hypothesis, adopted and now being used by major research

institutes at Google, IBM, Facebook, Microsoft and many others, see Fig. 2.19.
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CHAPTER 3

MULTI-SEQUENCE MODELING VIA UNIVERSAL MEDIUM:

SHARED ATTENTION MECHANISM

“... frequencies of letters, letter combinations, intervals between

letters and letter combinations, letter patterns, etc. which are to

some significant degree independent of the language used.”

WARREN WEAVER, 1949

In this section, we propose a multi-way, multilingual neural machine translation

method which is the first multi-seq2seq architecture, explicitly modelling interlin-

gua and constitutes the basis of this thesis. The proposed approach enables a single

neural translation model to translate between multiple languages, with a number of

parameters that grows only linearly with the number of languages. This is made pos-

sible by having a single attention mechanism, that is shared across all language pairs,

the shared medium. We demonstrate that a single neural network can be trained on ten

language pairs from WMT’15 simultaneously and observe a substantial performance

improvements over models trained on a single language pair.

3.1 Motivation and Related Work

Existing machine translation systems, mostly based on a phrase-based system or its

variants, work by directly mapping a symbol or a subsequence of symbols in a source

language to its corresponding symbol or subsequence in a target language. This kind

of mapping is strictly specific to a given language pair, and it is not trivial to extend
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Figure 3.1: Multi-lingual Language Translation with the Shared Medium as Attention

Function.

this mapping to work on multiple pairs of languages.

A system based on sequence-to-sequence models (neural machine translation), on

the other hand, can be decomposed into two modules. The encoder maps a source

sentence into a continuous representation, either a fixed-dimensional vector in the

case of the basic encoder-decoder network or a set of vectors in the case of attention-

based encoder-decoder network. The decoder then generates a target translation based

on the source representation. This makes it possible conceptually to build a system

that maps a source sequence in any language to a common continuous representation

space and decodes the representation into any of the target sequences, allowing us to

make a multilingual machine translation system.

This task may look straightforward to implement and has been validated in the case

of basic encoder-decoder networks [84]. However, it is not easy to achieve, in the

case of the attention-based encoder-decoder network, as the attention mechanism, or

originally called the alignment function in [3], is conceptually language pair-specific.

In [37], the authors cleverly avoided this issue of language pair-specific attention

mechanism by considering only a one-to-many translation, where each target lan-

guage decoder embedded its own attention mechanism. Also, we notice that both of

these works have only evaluated their models on relatively small-scale tasks, making

it difficult to assess whether multilingual neural machine translation can scale beyond

data-low language translation (low-resource translation).
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In [139], authors proposed multi-source encoder-decoder networks with attention for

the case where two input sources are given at the same time to exploit multi-text

(three-way parallel data). Their proposed attention mechanism consists of two para-

metric alignment functions, both of which attends two sources separately and then

combines context vectors by concatenation. As this architecture still uses a separate

attention module for each source-target pair and strictly requires the availability of

multi-text, it is not clear how to extend it for the cases where only parallel text is

given for multiple source and target pairs.

In this section, we first step back from the currently available multilingual neural

translation systems proposed in [84, 37, 139] and ask the question of whether the

attention mechanism can be shared across multiple language pairs. As an answer to

this question, we propose an attention-based encoder-decoder network that admits a

shared attention mechanism with multiple encoders and decoders. We use this model

for all the experiments, which suggests that it is indeed possible to share an attention

mechanism across multiple language pairs.

We train a single model with the proposed architecture on all the language pairs from

the WMT’15; English, French, Czech, German, Russian and Finnish. We compare

this multi-way, multilingual model against 10 single-pair models and show that they

perform comparably to each other, while the number of parameters in the multilingual

model is substantially smaller than that of all the single-pair models. This confirms

that it is indeed possible to train a single attention-based network to perform multi-

way translation, validation the concept of shared medium, illustrated in Fig. 3.1.

3.1.1 Existing Approaches

Let us briefly discuss the recent approaches to multilingual neural machine translation

in [84, 37].

Neural Machine Translation without Attention In [84], the authors extended the

basic encoder-decoder network for multi-task neural machine translation. They ex-

tended the basic encoder-decoder network to a set of encoders and decoders, where
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each of the encoder projects a source sentence into a common vector space. A point

in the common space is then decoded into different languages, or into linearized parse

tree in the case of parsing, by separate decoders. The authors tried a number of distinct

tasks including translation, autoencoding [34], parsing [126] and skip thought [74].

The major difference between [84] and our work is that we extend the attention-based

encoder-decoder instead of the basic model. This is an important contribution, as the

attention-based neural machine translation has become de facto standard in neural

translation literatures recently [64, 65, 86, 112, 110], opposed to the basic encoder-

decoder.

Another difference is that they do not utilize multilinguality in depth. The authors

of [84] tested their models with a single language pair, namely, English and German.

On the other hand, in this section, we test with six languages–English, French, Czech,

German, Russian, Finnish, and ten pairs across these languages.

One-to-Many Neural Machine Translation In [37], a multilingual translation model

is proposed based on the attention-based neural machine translation. Unlike the pro-

posal in this thesis, they tested it on one-to-many translation, similarly to the work

in [32] where one-to-many natural language processing was done. In this setting, it

is trivial to extend the single-pair attention-based model into multilingual translation

by simply having a single encoder for a source language and pairs of a decoder and

attention mechanism (Eq. (2.33)) for each target language. We will shortly discuss

more on why, with the attention mechanism, one-to-many translation is trivial, while

multi-way translation is not.

Many-to-One Neural Machine Translation More recently, Zoph & Knight [139]

introduced a multi-source neural machine translation which takes as input two source

sentences in two different languages and outputs their translation in yet another lan-

guage. Similarly to [37], the multi-source neural machine translation is equipped with

two separate attention mechanisms that operate on each of the two source languages.

Beside the fact that this approach works with a single target language, there is another

major difference. That is, they assume the availability of three-way parallel training
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corpora (two source and one target languages) which is often difficult to find in large

scale.

3.2 Interlingua in a Shared Functional Form

In this section, we discuss issues and our solutions in extending the conventional

single-pair attention-based neural machine translation (seq2seq) into multi-way, mul-

tilingual model (multi-seq2seq).

3.2.1 Problem Definition

We assume N > 1 source languages

{
X1, X2, . . . , XN

}
and M > 1 target languages

{
Y 1, Y 2, . . . , Y M

}
,

and the availability of L ≤M ×N bilingual parallel corpora {D1, . . . , DL}, each of

which is a set of sentence pairs of one source and one target language. We use s(Dl)

and t(Dl) to indicate the source and target languages of the l-th parallel corpus.

For each parallel corpus l, we can directly use the log-likelihood function from Eq. (2.40)

to define a pair-specific log-likelihood Ls(Dl),t(Dl). Then, the goal of multi-way, mul-

tilingual neural machine translation is to build a model that maximizes the joint log-

likelihood function with parameters θ,

L(θ) =
1

L

L∑
l=1

Ls(Dl),t(Dl)(θ). (3.1)

Once the training is over, the model can do translation from any of the source lan-

guages to any of the target languages included in the parallel training corpora.
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3.2.2 Combining Encoders with Decoders: Challenges

A quick look at neural machine translation seems to suggest a straightforward path

toward incorporating multiple sequences in both source and target sides. As described

earlier already, the basic idea is simple. We assign a separate encoder to each source

language and a separate decoder to each target language. The encoder will project a

source sentence in its own language into a common, language-agnostic space, from

which the decoder will generate a translation in its own language.

Unlike training multiple single-pair neural translation models, in this case, the en-

coders and decoders are shared across multiple pairs. This is computationally ben-

eficial, as the number of parameters grows only linearly with respect to the number

of languages (O(L)), in contrary to training separate single-pair models, in which

case the number of parameters grows quadratically (O(L2).) This further prevents

overfitting, as the number of training examples stays constant.

The attention mechanism, which was initially called a soft-alignment model in [3],

aligns a (potentially non-contiguous) source phrase to a target word. This alignment

process is largely specific to a language pair, and it is not clear whether an alignment

mechanism for one language pair can also work for another pair.

The most naive solution to this issue is to have O(L2) attention mechanisms that are

not shared across multiple language pairs. Each attention mechanism takes care of a

single pair of source and target languages. This is the approach employed in [37, 139],

where each decoder or encoder had its own attention mechanism.

There are two issues with this naive approach. First, unlike what has been hoped ini-

tially with multilingual neural machine translation, the number of parameters again

grows quadratically w.r.t. the number of languages. Second and more importantly,

having separate attention mechanisms makes it less likely for the model to fully ben-

efit from having multiple tasks [15], especially for transfer learning towards data-low

regimes (resource-poor languages).

In short, the major challenge in building a multi-way, multilingual neural machine

translation is in avoiding independent (i.e., quadratically many) attention mecha-
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(a) Multi-Decoder (b) Multi-Encoder

(c) Multi-Way

Figure 3.2: Multi Sequence-to-Sequence Model Variants.

nisms. There are two questions behind this challenge. The first one is whether it

is even possible to share a single attention mechanism across multiple language pairs.

The second question immediately follows: how can we build a neural translation

model to share a single attention mechanism for all the language pairs in considera-

tion?

3.3 Shared Attention Mechanism and Multi-Way, Multilingual Model

We describe in this section, the proposed multi-way, multilingual attention-based neu-

ral machine translation. The proposed model consists of N encoders {Ψn
enc}Nn=1 (see

Eq. (2.32)), M decoders {(Ψm
dec, g

m, fminit)}Mm=1 (see Eqs. (2.36)–(2.38)) and a shared

attention module with two sub-modules, where component for scoring, fscore (see

Eq. (2.33) in the single language pair case) and what component for aggregation

(adaptation), fadp.
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Figure 3.3: One step of the proposed multi-way. multilingual Neural Machine Trans-

lation model, for the n-th encoder and the m-th decoder at time step t. Shaded boxes

are parametric functions and square boxes represent intermediate variables of the

model. Initializer network is also illustrated as the left-most network with dashed

boxes. All the shared components are drawn with diamond boxes highlighted in

green. See Sec. 3.3 for details.
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3.3.1 Encoders

Similar to [86, 139], we suggest one encoder per source language, in which a single

encoder is shared for translating the language to multiple target languages. In order

to handle different source languages better, we may use a different type of encoder

for each source language. For instance, of different size (in terms of the number

of recurrent units) or of different architecture (convolutional instead of recurrent.)1

This allows us to efficiently incorporate varying types of languages in the proposed

multilingual translation model.

This however implies that the dimensionality of the context vectors in Eq. (2.32) may

differ across source languages. Therefore, we add to the original bidirectional encoder

from Sec. 2.2.2, a linear transformation layer consisting of a weight matrix Wn
adp

and a bias vector bnadp, which is used to project each context vector into a common

dimensional space:

hnt = Wn
adp

[−→
h t;
←−
h t

]
+ bnadp, (3.2)

where Wn
adp ∈ Rd×(dim

−→
h t+dim

←−
h t) and bnadp ∈ Rd. This transformation can also be

thought as an adapter layer, that will be necessary when one needs to plug-in a pre-

trained encoder to a multi-way multilingual model.

In addition, each encoder exposes two transformation functions φnatt and φninit. The first

transformer φnatt transforms a context vector to be compatible with a shared attention

mechanism:

h̃nt = φnatt(h
n
t ). (3.3)

This transformer can be implemented as any type of parametric function, and in this

thesis, we simply apply an element-wise tanh to hnt .

The second transformer φninit transforms the first context vector hn1 to be compatible

with the initializer of the decoder’s hidden state (see Eq. (5.3)):

ĥn1 = φninit(h
n
1 ). (3.4)

1 For the pairs without enough parallel data, one may also consider using smaller encoders to prevent over-
fitting or character/unicode encoders for the task at hand.
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Similarly to φnatt, it can be implemented as any type of parametric function. In this

thesis, we use a feedforward network with a single hidden layer and share one network

φinit for all encoder-decoder pairs.

3.3.2 Decoders

We first start with an initialization of the decoder’s hidden state. Each decoder has

its own parametric function ϕminit that maps the last context vector ĥnTx of the source

encoder from Eq. (3.4) into the initial hidden state:

zm0 = ϕminit(ĥ
n
Tx) = ϕminit(φ

n
init(h

n
1 ))

ϕminit can be any parametric function, and in our thesis, we used a feedforward network

with a single tanh hidden layer.

Each decoder exposes a parametric function ϕmatt that transforms its hidden state and

the previously decoded symbol to be compatible with a shared attention mechanism.

This transformer is a parametric function that takes as input the previous hidden state

zmt−1 and the previous symbol ỹmt−1 and returns a vector for the attention mechanism:

z̃mt−1 = ϕmatt

(
zmt−1,E

m
y

[
ỹmt−1

])
(3.5)

which replaces zt−1 in Eq. 2.33. In this thesis, we use a feedforward network with a

single tanh hidden layer for each ϕmatt.

Given the previous hidden state zmt−1, previously decoded symbol ỹmt−1 and the time-

dependent context vector cmt , which we will discuss shortly, the decoder updates its

hidden state:

zt = Ψdec
(
zmt−1,E

m
y

[
ỹmt−1

]
, fmadp(c

m
t )
)
, (3.6)

where fmadp affine-transforms the time-dependent context vector to be of the same di-

mensionality as the decoder. We share a single affine-transformation layer fmadp, for

all the decoders m.

Once the hidden state is updated, the probability distribution over the next symbol is

computed exactly as for the pair-specific model (see Eq. (2.38).)
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Figure 3.4: Shared Medium Details in multi-seq2seq.

3.3.3 Attention Mechanism

Unlike the encoders and decoders of which there is an instance for each language,

there is only a single attention mechanism, shared across all the language pairs. This

shared mechanism uses the attention-specific vectors h̃nt and z̃mt−1 from the encoder

and decoder, respectively.

The relevance score of each context vector hnt is computed based on the decoder’s

previous hidden state zmt−1 and previous symbol ỹmt−1:

em,nt,i =fscore

(
h̃nt , z̃

m
t−1, ỹ

m
t−1

)
These scores are normalized according to Eq. (2.34) to become the attention weights

αm,nt,i .

With these attention weights, the time-dependent context vector is computed as the

weighted sum of the original context vectors:

cm,nt =
Tx∑
i=1

αm,nt,i hni .
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See Fig. 3.3 for the illustration of the entire model and for the illustration of shared

medium, please see Fig. 3.4.

3.3.4 Overview of Shared Medium

Let us again, take a step back and explain how the shared medium functions and what

does it mean to have a shared medium across many source and target domains.

Fundamentally, in our proposed model, the hypothesis of interlingua, the cloud or the

common base to all languages or the channel, is represented by a parametric continu-

ous function. This parametric function constructs the notion of shared medium, since

only one single function, with a single set of trainable parameters is used to model the

interlingua. Our shared medium in practice, is responsible to navigate the informa-

tion between source and target representations, and encouraged to model regularities

across multiple pairs. See Fig. 3.6 for a graphical illustration.

By modelling the interlingua with a single parametric function also benefits the ease

of modularity. One can increase the number of both encoders and decoders without

having need to add additional attention modules, ensuring the scalability of the entire

architecture. It is straightforward with the proposed shared medium then, to build a

model to perform many-to-one mapping which we call a multi-encoder (Fig. 3.2b),

one-to-many mapping model, a multi-decoder (Fig. 3.2a) and many-to-many mapping

model, a multi-way seq2seq (Fig. 3.2c).

3.4 Experiments

In this section, we describe the datasets used in our experiments, along with data

processing routines and conducted experiments.
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3.4.1 Data Preparation

3.4.1.1 Datasets

We evaluate the proposed multi-way, multilingual translation model on all the pairs

available from WMT’152 Consider↔ as seq2seq from left to right and right to left,

– English (En)↔ French (Fr), Czech (Cs), German (De), Russian (Ru) and Finnish

(Fi)–, totalling ten directed pairs. For each pair, we concatenate all the available

parallel corpora from WMT’15 and use it as a training set. We use newstest-2013 as

the development set and newstest-2015 as the test set, in all the pairs other than Fi-En.

In the case of Fi-En, we use newsdev-2015 and newstest-2015 as development and

test sets, respectively.

WMT’15 dataset, as can be seen from Table 3.1, consists of both high-resource and

low-resource language pairs in terms of available data. En-Fr language pair has al-

most 20 times more parallel data than En-Fi language pair. In addition to the varying

amount of parallel data, considered languages also spread along a wide spectrum in

terms of their linguistic difficulty, Czech , German, Russian and Finnish all being

morphologically complex. WMT datasets are challenging datasets and considered to

be the real-world translation problem in the community.

3.4.1.2 Data Preprocessing

Each training corpus is tokenized using the tokenizer script from the Moses decoder.3

The tokenized training corpus is cleaned following the procedure in [65]. Instead of

using space-separated tokens, or words, we use sub-word units extracted by byte pair

encoding, as recently proposed in [112]. For each and every language, we include

30k sub-word symbols in a vocabulary. See Table 3.1 for the statistics of the final,

preprocessed training corpora.

2 http://www.statmt.org/wmt15/translation-task.html
3 https://github.com/moses-smt/mosesdecoder/blob/master/scripts/

tokenizer/tokenizer.perl
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Table 3.1: Statistics of the parallel corpora from WMT’15. Symbols are BPE-based

sub-words.

# Symbols # Sentence

# En Other Pairs

En-Fr 1.022b 2.213b 38.85m

En-Cs 186.57m 185.58m 12.12m

En-Ru 50.62m 55.76m 2.32m

En-De 111.77m 117.41m 4.15m

En-Fi 52.76m 43.67m 2.03m

3.4.2 Training and Evaluation

3.4.2.1 Training Setting

We train each model using stochastic gradient descent (SGD) with Adam [72] as an

adaptive learning rate algorithm. We use the initial learning rate of 2 · 10−4 and leave

all the other hyperparameters as suggested in [72]. Each SGD update is computed

using a minibatch of 80 sentence pairs, unless the model is parallelized over two

GPUs, in which case we use a minibatch of 60 pairs. We only use sentences of length

up to 50 symbols during training. We clip the norm of the gradient to be no more

than 1 [100]. All training runs are early-stopped based on BLEU on the development

set.4 As we observed in preliminary experiments better scores on the development

set if we further finetune the shared parameters and output layers of the decoders in

the case of multilingual models, we do this for all the multilingual models. During

finetuning, we clip the norm of the gradient to be no more than 5.

3.4.2.2 Model and Data Parallelism

The size of the multilingual model grows linearly w.r.t. the number of languages. We

observed that a single model that handles six source and six target languages does not

4 For multi-way multilingual setup, we early stop, by taking a majority voting score from the dev set BLEU
scores of all 10 language pairs. Specifically at each iteration, we compute the number of language pairs that has
better BLEU scores compared to the previous iteration. We decide to early-stop when the number of language
pairs showing better scores does not change (subject to a patience, which was taken 20 in our experiments.)
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Figure 3.5: Multi-GPU Training of multi-seq2seq Architecture. ∇Att corresponds to

the gradients of the loss function with respect to the attention module (shared compo-

nents), that is being exchanged across GPUs.

fit in a single GPU5 during training. We address this by distributing computational

paths according to different translation pairs over multiple GPUs, following [35]. The

shared parameters, mainly related to the attention mechanism, is duplicated on both

GPUs, see Fig.3.5 for a sketch of model and data parallelism.

In more detail, we distribute language pairs across multiple GPUs such that those

pairs in each GPU shares either an encoder or decoder. This allows us to avoid syn-

chronizing a large subset of the parameters across multiple GPUs. Only the shared

attention mechanism, which has substantially less parameters, is duplicated on all

the GPUs. Before each update, we build a minibatch to contain an approximately

equal number of examples per GPU in order to minimize any discrepancy in com-

putation among multiple GPUs. Each GPU then computes the gradient with respect

to the parameters on its own board and updates the local parameters. The gradients

with respect to the attention mechanism are synchronized using direct memory access

(DMA). In this way, we achieve near-linear speed-up. At each update on both GPUs,

we ensure that the exchanged gradients are gathered from approximately equal sized

batches and from language pairs in opposite direction, eg. computed gradients on

GPU1 correspond to task of En→Fr and computed gradients on GPU2 correspond to

5 NVidia Titan X with 12GB on-board memory
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task of Fr→En. We value to note that, by ensuring such exchange policy, the attention

module, shared medium, is informed about the error signals for both tasks at the same

time, and moves in the parameter space respectively. We observed instabilities and

large fluctuations when gradients from tasks from different language pairs are mixed.

3.4.2.3 Schedule

As we have access to bilingual corpora only, each minibatch updates only a subset of

the parameters. Excessive updates based on a single language pair may bias the model

away from the other pairs. To avoid it, we cycle through all the language pairs, one

pair of a minibatch at a time, in Fi�En, De�En, Fr�En, Cs�En, Ru�En order.6

Initial experiments on random scheduling across pairs and increasing the number of

consecutive updates for a pair did not give better results in contrast caused the very

problem of catastrophic forgetting[43]. We observed delayed learning curves with

degraded performance when we increase the update interval (eg. updating one task

multiple times before updating the other task), which can be explained by forgetting

of one task because of over-exposing another task. This issue is also partially miti-

gated by the distributed training of the entire architecture, since the model updates it’s

parameters only after seeing examples from two tasks and exchanging the gradients

for the shared components.

3.4.2.4 Evaluation Metric

We mainly use BLEU as an evaluation metric using the “multi-bleu.perl” script from

Moses.7 BLEU is computed on the tokenized, true-case text after merging the BPE-

based sub- word symbols. We further look at the average log-probability assigned to

reference translations by the trained model as an additional evaluation metric, as a

way to measure the model’s density estimation performance independent of any error

caused by approximate decoding (beam-search).

6 � indicates simultaneous updates on two GPUs.
7 https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/

multi-bleu.perl
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Figure 3.6: Shared Medium for WMT’15 all Languages.

3.4.3 Model Architecture

Each symbol, either source or target, is projected on a 620-dimensional space, the

dimensionality of embedding matrix E, demb. The encoder is a bidirectional recur-

rent neural network with 1,000 gated recurrent units (GRU) in each direction, and the

decoder is a recurrent neural network with also 1,000 GRU’s. The decoder’s output

function gk from Eq. (2.38) is a feedforward network with 1,000 tanh hidden units.

The dimensionalities of the context vector hnt in Eq. (3.2), the attention-specific con-

text vector h̃nt in Eq. (3.3) and the attention-specific decoder hidden state h̃mt−1 in

Eq. (3.5) are all set to 1,200.

We use the same encoder architecture for every source language, and the same type

of decoder for every target language. The only difference between the single-pair

models and the proposed multilingual ones is the number of encodersN and decoders

M . We leave those multilingual translation specific components, such as the ones in

Eqs. (3.2)–(3.5), in the single-pair models in order to retain the number of shared

parameters constant. This makes the baseline single-pair and multi-way, multilingual

models comparable as they will have same number of parameters.8
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3.4.4 Large-Scale Translation: Ten Language Pair/Directions

We first empirically verify the plausibility of sharing an attention mechanism across

multiple language pairs by training one multi-way, multilingual model that has six

encoders and six decoders. They correspond to six languages from WMT’15; En, Fr,

De, Cs, Ru, Fi→ En, Fr, De, Cs, Ru, Fi. We use the full corpora for all of them. As

a comparison, we also train a single-pair model for each translation pair/direction.

8 All the details on training along with the code are available at github.com/nyu-dl/dl4mt-multi.
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Table 3.2: (a) BLEU scores and (b) average log-probabilities for all the ten language pairs from WMT’15. For each translation pair/direction,

we bold-face the best score on the test set.

Fr (39m) Cs (12m) De (4.2m) Ru (2.3m) Fi (2m)

Direction → En En→ → En En→ → En En→ → En En→ → En En→

(a
)B

L
E

U D
ev

Single 27.22 26.91 21.24 15.9 24.13 20.49 21.04 18.06 13.15 9.59

Multi 26.09 25.04 21.23 14.42 23.66 19.17 21.48 17.89 12.97 8.92

Te
st Single 27.94 29.7 20.32 13.84 24 21.75 22.44 19.54 12.24 9.23

Multi 28.06 27.88 20.57 13.29 24.20 20.59 23.44 19.39 12.61 8.98

(b
)L

L D
ev

Single -50.53 -53.38 -60.69 -69.56 -54.76 -61.21 -60.19 -65.81 -88.44 -91.75

Multi -50.6 -56.55 -54.46 -70.76 -54.14 -62.34 -54.09 -63.75 -74.84 -88.02

Te
st Single -43.34 -45.07 -60.03 -64.34 -57.81 -59.55 -60.65 -60.29 -88.66 -94.23

Multi -42.22 -46.29 -54.66 -64.80 -53.85 -60.23 -54.49 -58.63 -71.26 -88.09
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3.5 Quantitative and Qualitative Analyses

For quantitative analysis, we employ BLEU scores and learning curves. In Table 3.2,

we observe that the proposed multilingual model either outperforms or is comparable

to the single-pair models for the majority of the all ten pairs/directions considered.

This happens in terms of both BLEU and average log-probability. This result is en-

couraging, considering the fact that there are twice more parameters in the whole set

of single-pair models than in the multilingual model.

Note that, the performances are often below state-of-the-art neural MT systems, which

use large vocabularies, unknown replacements techniques, target-side monolingual

corpora and ensembling (see, e.g., [87, 64, 110].) We mainly focused on comparing

the proposed model against single-pair models without these techniques in order to

carefully control and analyze the effect of having multiple languages. The power of

the suggested multi-way multilingual model should be further explored by incorpo-

rating these techniques for performance improvements.

It is worth to notice that the benefit of the suggested approach is more apparent when

the model translates from a language to English (many-to-one setting). This may

be due to the fact that all of the parallel corpora include English as either a source

or target language, leading to a better parameter estimation of the English decoder.

In the future, a strategy of using a pseudo-parallel corpus to increase the amount of

training examples for the decoders of other languages [110] should be investigated to

confirm this conjecture.

We further noticed that, the proposed multi-way multilingual model converges faster

than the single pair models, that are trained individually. In Fig. 3.7, validation

set negative-log probabilities are shown for both ten different single-pair models

(seq2seq) and a single multi- way multilingual model (multi-seq2seq). It is clear

from the figures that, multi-way model converges much faster compared to single

pair models.

For qualitative analysis, we use soft alignments.

The most distinct characteristic of the proposed model is that a single attention mech-
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(a) Fi→En (left) En→Fi (right) (b) De→En (left) En→De (right)

(c) Ru→En (left) En→Ru (right) (d) Ru→En (left) En→Ru (right)

(e) Fr→En (left) En→Fr (right)

Figure 3.7: Learning Curve comparison of Single-Pair models (seq2seq - blue curves)

and Multi-way model (multi-seq2seq - green curves).

anism is shared across multiple language pairs. More specifically in this experiment, a

single attention mechanism is used for 10 translation directions with six different lan-

guages. Although the competitive performance by this multi-way, multilingual model

suggests that the model is well utilizing the shared attention mechanism, this does not

necessarily imply that the shared attention mechanism has learned good alignments

across multiple languages.

Here we visualize the attention weights for all ten language pair/directions. We use

the following sentence:
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The freedom of speech is essential in a democratic society.

We translate this sentence into the five target languages–Fr, Cs, De, Ru and Fi– and

also translate the corresponding translations in those languages to English.

In Fig. 3.8 and Fig. 3.5, we present the soft alignments returned by the shared atten-

tion mechanism of the multi-way, multilingual model. It is clear that the attention

mechanism was able to align between two sentences regardless of which languages

they were written in. Note that the attention mechanism used in this experiment is

purely based on the content, meaning that it did not exploit the (near-)monotonicity

of the true alignment between any language pair. This clearly demonstrates that it is

indeed possible to share a single attention mechanism across multiple language pairs.
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Figure 3.8: Visualization of the alignments found by the multi-way, multilingual model. Best viewed digitally. From top-down and left-to-

right ordering, alignments between French→ English, Czech→ English, German→ English, Russian→ English and Finnish→ English

translations, estimated by the shared attention module.
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Figure 3.9: Visualization of the alignments found by the multi-way, multilingual model. Best viewed digitally. From top-down and left-to-

right ordering, alignments between English→ French, English→ Czech, English→ German, English→ Russian and English→ Finnish

translations, estimated by the shared attention module.
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3.6 Conclusion

In this section, we proposed multi-way, multilingual attention-based neural machine

translation. The proposed approach allows us to build a single neural network that can

handle multiple source and target languages simultaneously. The proposed model is

a step forward from the recent works on multilingual neural translation, in the sense

that we support attention mechanism, compared to [84] and multi-way translation,

compared to [37]. Furthermore, we evaluate the proposed model on large-scale ex-

periments, using the full set of parallel corpora from WMT’15.

We empirically evaluated the proposed model in large-scale experiments using all five

languages from WMT’15 with the full set of parallel corpora. In the experimented set-

tings, we observed the benefits of the proposed multilingual neural translation model

over having a set of single-pair models.

In general, we observed the larger improvements when translating to English. We

conjecture that this is due to a higher availability of English in most parallel corpora,

leading to a better parameter estimation of the English decoder. More research on

this phenomenon in the future will result in further improvements from using the pro-

posed model. Also, all the other techniques proposed recently, such as large vocabu-

lary tricks and character-level decoding, need to be tried together with the proposed

multilingual model to improve the translation quality even further.

Interesting future directions are (1) to use and evaluate the proposed model to inves-

tigate the behaviors in very poor data regimes, low-resource translation, (2) to use the

proposed model to leverage from multi-view data, multi-source translation (3) to use

the proposed model to translate between a language pair not included in a set of train-

ing corpus. In the forthcoming Chapters, we investigate the above mentioned future

directions one-by-one.

81



82



CHAPTER 4

MULTI-SEQUENCE MODELING FOR LOW DATA REGIMES:

LOW(UNDER)-RESOURCE TRANSLATION

“It is a capital mistake to theorize before one has data.

Insensibly, one begins to twist the facts to suit theories, instead of

theories to suit facts.”

SHERLOCK HOLMES

The goal of this chapter, is to analyze the behavior of multi-seq2seq architecture when

there is not enough parallel data for a given source-target pair.

In the previous Chapter, we proposed the multi-sequence modelling architecture with

a shared attention module and presented it’s large scale capabilities in the context

of neural machine translation. The next question we ask is the following: in which

scenario would the proposed multi-way, multilingual neural translation have an ad-

vantage over the existing, single-pair model? Specifically, we consider the case of

translation between pairs that the amount of training data is inadequate in terms of

quantity, namely low-resource language pairs. The experiments in this section show

that the proposed multi-way, multilingual model generalizes better than the single-

pair translation model, when the amount of available parallel corpus is small. We

validate that this is not only due to the increased amount of target-side, monolingual

corpus.

In order to test the low-resource translation capabilities, we device two set of experi-

ments. In the first set of experiment, controlled setting - Section 4.4.1, we gradually

decrease the amount of data used to train a particular source-target pair in multi-
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seq2seq model. This simulated low data help us to control and compare the benefits

of using multi-seq2seq architecture over single pair seq2seq models.

In the second set of experiments, real-world setting - Section 4.4.2, we increased the

difficulty of the low- resource translation problem by attacking real-world low re-

source translation problems and compare the results with strong statistical machine

translation baselines. This is done by gradually augmenting the model with more

source and target languages until the best translation quality is achieved on the target

low-resource pair. In particular, we observe that the proposed multilingual model out-

performs strong conventional statistical machine translation systems on low-resource

Turkish-English and very low-resource Uzbek-English by incorporating the resources

of other language pairs.

We finally present practical tips for successfully training such models when the sizes

of datasets of language pairs vary significantly.

4.1 Low-Resource NMT and Positive Language Transfer

The motivation behind testing our proposed multi-seq2seq model on low resource

translation tasks has two folds. Firstly, low-resource seq2seq problems, or more gen-

erally, the seq2seq problems where available training data is scarce is very common

in real-world problems. Consider the 52% of the entire internet is in English1, finding

diverse datasets spanning multiple languages is a very challenging one.

Secondly, a natural premise of having a multilingual model is to benefit from pos-

itive language transfer [98], or more generally knowledge transfer, where applying

knowledge from one language (task) to another language (task). Our proposed multi-

seq2seq architecture naturally enables and makes it easier, for such knowledge to

transfer from one task to another by the notion of shared medium.

For the above mentioned reasons and motivations, we tested the proposed multi-

seq2seq architecture on low-resource language translation tasks. Next, we summarize

the recent work using again seq2seq for low-resource translation.

1 en.wikipedia.org/wiki/Languages_used_on_the_Internet
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4.2 Related Work

Although there exists a few studies on applying seq2seq architectures on low-resource

language translation tasks (NMT), to our knowledge there does not exist any work

that uses multi-linguality in a connectionist framework. Therefore, in this section we

summarize the low-resource translation remedies using seq2seq models.

Sennrich et al. [112] proposed two strategies for low resource NMT by making use

of monolingual data (data in one language only - eg. English wikipedia). The first

approach, called “dummy source sentences”, is to train the decoder of NMT with

a sentence from a monolingual corpus while setting all the context vectors ct (see

Eq. (2.35)) to all- zero vectors. The second approach uses “synthetic source sen-

tences”, where each sentence from a target-side monolingual corpus is translated to

a synthetic source sentence by a reverse translation model. These pseudo-parallel

sentence pairs are mixed into the existing parallel corpus and used to train an neural

translation model. Both of these approaches, and especially the latter approach based

on synthetic source sentences, were shown to improve the translation quality signif-

icantly on Tr-En, En-De and De-En. Their approaches are orthogonal to the ones

proposed in this thesis, and can easily be adapted to work on multi-seq2seq archi-

tecture. We showcase the use of this approach in the sixty chapter for zero-resource

translation task.

Luong et al. [84] proposed a multi-task neural machine translation model. In this

multi-task model, it is possible to include multiple source languages as well as target

languages. They experimented with a setting where monolingual translation paths

(sequence autoencoders) were added to a neural translation model. The experiment

revealed that the translation quality improves by jointly training the translation and

autoencoding paths. Their work is however limited to a simple encoder-decoder

model without the attention mechanism which has proven to be crucial in getting a

good neural translation model. The benefits and caveats of this approach is discussed

in the previous chapters.

More recently, Zoph et al. [141] demonstrated a transfer learning approach to low-

resource translation. They first train a neural machine translation model with a large

85



parallel corpus whose target-side matches that of the target low-resource language

pair. Then, this model, or its part, is further finetuned on a small parallel corpus of

the target task. They observed significant improvements with a variety of languages,

including Hausa, Turkish, Uzbek and Urdu, when the model is pretrained with Fr-En

was used as an initial point. Again, it is certainly possible to incorporate the proposed

transfer learning approach to multi-seq2seq but since the transfer learning is not our

main focus, we leave it as a future direction to be taken.

4.3 Shared Attention Mechanism

In this section we detail the differences and improvements made over the original

multi-seq2seq architecture proposed in Chapter 3. We closely follow the model archi-

tectures from the earlier experiments (see Sec. 3.4.3) however with one modification

to the attention mechanism and one modification to the decoder RNN.

Let us start with the improvements over decoder RNN. As a reminder, in the original

multi-seq2seq decoder we proposed using GRU units, and here we improve it by

proposing a variant cGRU which has additional internal gating mechanisms and a

deeper recurrent transition function. Here we describe cGRU for regular RNNs but

it’s extension to multi-seq2seq is trivial.

Given a source sequence (x1, . . . , xTx) of length Tx and a target sequence (y1, . . . , yTy),

let hi be the annotation of the source symbol at position i, obtained by concatenating

the forward and backward encoder RNN hidden states, hi = [
−→
h i;
←−
h i]. A condi-

tional GRU with attention mechanism, cGRUatt, uses it’s previous hidden state sj−1,

the whole set of source annotations C = {h1, . . . ,hTx} and the previously decoded

symbol yj−1 in order to update it’s hidden state sj , which is further used to decode

symbol yj at position j,

sj = cGRUatt (sj−1, yj−1,C) . (4.1)

Internals The conditional GRU layer with attention mechanism, cGRUatt, consists

of three components, two recurrent cells and an attention mechanism ATT in between.

86



First recurrent cell REC1, combines the previous decoded symbol yj−1 and previous

hidden state sj−1 in order to generate an intermediate representation s′j with the fol-

lowing formulations:

s′j = REC1 (yj−1, sj−1) = (1− z′j)� s′j + z′j � sj−1, (4.2)

s′j = tanh
(
W′E[yj−1] + r′j � (U′sj−1)

)
, (4.3)

r′j = σ (W′
rE[yj−1] + U′rsj−1) , (4.4)

z′j = σ (W′
zE[yj−1] + U′zsj−1) , (4.5)

where E is the target word embedding matrix, s′j is the proposal intermediate repre-

sentation, r′j and z′j being the reset and update gate activations. In this formulation,

W′, U′, W′
r, U′r, W′

z, U′z are trained model parameters2 tanh and σ are hyperbolic

tangent and logistic sigmoid activation functions respectively.

The attention mechanism ATT, inputs the entire context set C along with intermediate

hidden state s′j in order to compute the context vector cj as follows:

cj =ATT
(
C, s′j

)
=

Tx∑
i

αijhi, (4.6)

αij =
exp(eij)∑Tx
k=1 exp(ekj)

, (4.7)

eij =vᵀatanh
(
Uas

(1)
j + Wahi

)
, (4.8)

where αij is the normalized alignment weight between source symbol at position i

and target symbol at position j and va,Ua,Wa are the trained model parameters.

Finally, the second recurrent cell REC2, generates sj , the hidden state of the cGRUatt,

by looking at intermediate representation s′j and context vector cj with the following

formulations:

2 All the biases are omitted for simplicity.
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sj = REC2

(
s′j, cj

)
= (1− zj)� sj + zj � s′j, (4.9)

sj =tanh
(
Wcj + rj � (Us′j)

)
, (4.10)

rj =σ
(
Wrcj + Urs

′
j

)
, (4.11)

zj =σ
(
Wzcj + Uzs

′
j

)
, (4.12)

similarly, sj being the proposal hidden state, rj and zj being the reset and update gate

activations with the trained model parameters W,U,Wr,Ur,Wz,Uz.

After defining the intrinsics of cGRU let us extend it to multi-seq2seq. First instead

of a simple feedforward network for ϕmatt in Eq. (3.5), we use the following formula:

z̃mt−1 =ϕmatt

(
ỹmt−1, z

m
t−1
)

= (1− u′t)� s′t + u′t � zmt−1, (4.13)

s′t = tanh
(
W′Em

y [ỹmt−1] + r′j � (U′zmt−1)
)
, (4.14)

r′t = σ
(
W′

rE
m
y [ỹmt−1] + U′rz

m
t−1
)
, (4.15)

u′t = σ
(
W′

uE
m
y [ỹmt−1] + U′uz

m
t−1
)
, (4.16)

where s′t, r′t and u′t are the proposal intermediate representation, the reset gate and the

update gate respectively. W′, U′, W′
r, U′r, W′

u and U′u are model parameters.3 tanh

and σ are respectively hyperbolic tangent and logistic sigmoid activation functions.

Furthermore, instead of Eq. (3.6), we update the hidden state of the decoder by

zt = Ψdec
(
z̃mt−1, f

m
adp(c

m
t )
)
. (4.17)

One last change over the original multi-seq2seq architecture is the indicator vectors.

Indicator vectors are one-hot vectors that encode the source or target language index

(id) into a one-dimensional binary vector, having only one non- zero element, at the

position of source or target language, within the whole set of languages considered.

As an example, let us assume we have three different source languages, and we the

provided data to multi-seq2seq system at time t is the second language. We can

construct the indicator vector s = (s1, s2, s3) such that si = 0 if i /∈ 2 and si = 1

if i = 2. With the help of indicator vectors, we provide an additional information

to the decoder, which language it is translating. Please see Fig. 4.1 for the graphical

illustration of the proposed changes over Fig. 3.3.
3 We omit the biases to make the equations less cluttered.
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Figure 4.1: One step of the improved multi-way. multilingual Neural Machine Trans-

lation model, for the n-th encoder and the m-th decoder at time step t of the decoder.

Shaded boxes are parametric functions and square boxes represent intermediate vari-

ables of the model. Initializer network is also illustrated as the left-most network with

dashed boxes. All the shared components are drawn with diamond boxes highlighted

in green. Orange boxes are indicator vectors. See Sec. 4.3 for details.
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4.4 Experiments

In this section we provide two set of experiments for low resource translation. First

we test the proposed multi-way, multilingual model in a controlled setup, second

going further and testing the model on real world low resource translation tasks.

4.4.1 Controlled Settings: Fi-En, De-En, En-De

4.4.1.1 Setting

We investigate the effect of the proposed multi-way, multilingual model on low-

resource language-pair translation under the same setting however with a smaller

number of languages. Among the six languages from WMT’15, we choose En-

glish(En), German(De) and Finnish(Fi) as source languages, and En and De as target

languages. We control the amount of the parallel corpus of each pair out of three

to be 5%, 10%, 20% and 40% of the original corpus. In other words, we train four

models with different sizes of parallel corpus for each language pair (En-De, De-En

and Fi-En.)

As a baseline, we train a single-pair model for each multi-way, multilingual model.

We further finetune the single-pair model to incorporate the target-side monolingual

corpus consisting of all the target side text from the other language pairs (e.g., when a

single-pair model was trained on Fi-En, the target-side monolingual corpus consists of

the target sides from De-En.) This is done by the recently proposed deep fusion [52].

The latter is included to tell whether any improvement from the multilingual model

is simply due to the increased amount of target-side monolingual corpus.

4.4.1.2 Result and Analysis

It is clear from Table 4.1 that the proposed model (Multi) outperforms the single-

pair one (Single) in all the cases. This is true even when the single-pair model is

strengthened with a target-side monolingual corpus (Single+DF). This suggests that

the benefit of generalization from having multiple languages goes beyond that of
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Table 4.1: BLEU scores where the target pair’s parallel corpus is constrained to be

5%, 10%, 20% and 40% of the original size. We report the BLEU scores on the devel-

opment and test sets (separated by /) by the single-pair model (Single), the single-pair

model with monolingual corpus (Single+DF) and the proposed multi-way, multilin-

gual model (Multi).

Size Single Single+DF Multi

Fi
→

E
n

100k 5.06/3.96 4.98/3.99 6.2/5.17

200k 7.1/6.16 7.21/6.17 8.84/7.53

400k 9.11/7.85 9.31/8.18 11.09/9.98

800k 11.08/9.96 11.59/10.15 12.73/11.28

D
e→

E
n

210k 14.27/13.2 14.65/13.88 16.96/16.26

420k 18.32/17.32 18.51/17.62 19.81/19.63

840k 21/19.93 21.69/20.75 22.17/21.93

1.68m 23.38/23.01 23.33/22.86 23.86/23.52

E
n→

D
e

210k 11.44/11.57 11.71/11.16 12.63/12.68

420k 14.28/14.25 14.88/15.05 15.01/15.67

840k 17.09/17.44 17.21/17.88 17.33/18.14

1.68m 19.09/19.6 19.36/20.13 19.23/20.59
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simply having more target-side monolingual corpus. The performance gap grows as

the size of target parallel corpus decreases.

4.4.2 Real World Settings: Tr-En, Uz-En

The last experiment in Sec. 4.4.1 suggests that adding more language pairs works as

a regularizer for low-resource translation and improves its translation quality. This

means that we can use the proposed multi-way, multilingual model as an effective

approach to low-resource language translation by tweaking the training procedure to

focus solely on the performance on a single target task of low-resource translation

rather than the average performance over all the language pairs (as was done in the

previous experiments). We test this aspect of the proposed model by evaluating it on

Turkish-English (Tr-En) and Uzbek-English (Uz-En) translation tasks with auxiliary

language pairs including Spanish-English (Es-En) and French- English (En-Fr).

4.4.3 Data Preparation

4.4.3.1 Corpora

Tr-En We concatenate the following Tr-En parallel corpora to form a single Tr-En

parallel corpus:

• LDC2014E115: 54k sentence pairs

• WIT TED Talks [18]: 228k sentence pairs

• SETimes24: 207k sentence pairs

• OpenSubtitles5: 211k sentence pairs

• Tatoeba Corpus6: 156k sentence pairs

We tokenize the both sides of the corpora using the script from Moses. Development

and test sets are randomly sampled from LDC2014E115 dataset before training.
4 http://opus.lingfil.uu.se/SETIMES2.php
5 http://opus.lingfil.uu.se/OpenSubtitles.php
6 http://opus.lingfil.uu.se/Tatoeba.php
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Uz-En We use LDC2014E112 which consists of 74k sentence pairs. Similarly,

development and test sets are randomly sampled from training set before training.

Es-En and Fr-En We use a total of 34.71m parallel sentences for Es-En auxiliary

data, which is a combination of LDC, Europarl, News-Commentary, Open-Subtitles

2013, UN, and IBM internal technical parallel corpora. For Fr-En auxiliary data,

we used a combination of LDC, Europarl, News-Commentary, News-Crawl, UN,

Gigaword, Hansard, Reuters and IBM internal technical parallel corpora which adds

up to 65.77m sentence pairs.

4.4.3.2 Preprocessing

All the text is tokenized using the tokenizer script from Moses. We then replace all the

special tokens, such as numbers, dates and urls, with special markers, which will be

used during translation and replaced to original, corresponding tokens after decoding.

Afterwards we build a dictionary for each language using BPE [112].

For each language, other than English and Turkish, we use only the parallel corpora

to extract up to 40k BPE subwords and form a vocabulary. In the case of English,

we use the English side of the parallel corpora for Tr-En and Uz-En in addition to the

English Gigaword (LDC2011T07) to extract up to 40k BPE subwords. For Turkish,

we use the Turkish side of the parallel corpora for Tr-En in addition to the Turkish

Wikipedia,7 again, to extract up to 40k BPE subwords.

The detailed statistics of the final corpora are presented in Table 4.2.

4.4.4 Model Architecture

Multi-Seq2Seq We closely follow the model hyperparameters in the previous Chap-

ter and employed the enhancements explained in Section 4.3.

7 http://dumps.wikimedia.org/trwiki/20131011
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Table 4.2: Statistics of the parallel corpora used in Uz-En and Tr-En experiments.

Symbols are BPE-based sub-words.

# Symbols # Sentence

# En Other Train Dev Test

En-Uz 1.361m 1.186m 73.66k 948 882

En-Tr 13.17m 12.43m 784.65k 862 940

En-Es 908.1m 924.9m 34.71m 3003 3000

En-Fr 1.837b 1.911b 65.77m 3003 3000

Conventional SMT In order to better evaluate the proposed model, we build con-

ventional tree-to-string SMT models, based on [137] for both Tr-En and Uz-En and

use them as our SMT baselines. We used the same data to train these models. They

use the standard set of SMT features: forward and backward count-based probabil-

ities, forward and backward lexical probabilities, word and rule penalty and a lan-

guage model probability. The language model was trained to be a 5-gram model

using a large English monolingual corpus including Gigaword and English-side of

the parallel data from WMT’15 with a total of ~5B words. The parameters are further

tuned with PRO [58] to minimize T-B metric. Notice that, these baseline models

offer strong baseline numbers for the two language pairs and employ large amounts

of monolingual data.

4.4.5 Training and Evaluation

4.4.5.1 Training Setting

We observed while inspecting the models trained during the earlier experiments that

training converges at vastly different rates and they approximately correlate with the

size of training corpora. A language pair with a smaller training corpus converged

and began to overfit faster than another with a larger corpus. In order to alleviate

this behavior, we use varying minibatch sizes for each language pair based on the

respective training data size. A minibatch consisting of sentence pairs from a high-

resource language pair will be larger than that from a low-resource language pair.

This ensures that the approximately same number of updates is needed to make a
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full pass on a whole training corpus for each language pair. We call this strategy

a balanced batch strategy. We explain the necessity and benefits of using balanced

batch strategy shortly in Sec. 4.6.

Other than employing the balanced batch strategy, we closely follow the training pro-

cedure in Sec. 3.4.2 from the previous set of experiments.

4.4.5.2 Evaluation Metric

BLEU tends to favor longer translations because of the brevity penalty. In the context

of this thesis employing shared attention, we are interested to evaluate its effective-

ness in generating translations of optimal length. We thus use another well-known

evaluation metric, T-B, which combines BLEU and TER, which is defined as:

T-B =
TER− BLEU

2
,

where TER is a translation edit rate [117]. Note that, T-B is an error metric and

hence smaller numbers correspond to better translations and vice versa. Consequently

training in this section is early stopped based on the T-B score on the development

set. However for the sake of comparison we also provide BLEU alongside.

4.5 Analysis

4.5.1 Turkish-English: Result and Analysis

We experimented with different configurations which are shown in Table 4.3 with the

translation quality for each configuration. We make a number of observations.

First, there is a clear improvement even when simply one source language was added

(Turkish→ English + Spanish→ English), compared to the single-pair model (Turk-

ish → English.) However, adding another source language (Turkish → English +

Spanish → English + French → English) did not improve as much. We conjecture

that this is due to the similarity between Spanish and French. The addition of a new

language contributes to the generalization performance if there is new knowledge.
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Table 4.3: Results on Turkish→ English Translation. We report TB↓ (BLEU↑) score

in each cell. ? Ensemble of four models. † Ensemble of two models. ‡ Ensemble of

three Turkish(Tr)→ English(En) + Spanish(Es)→ English + French(Fr)→ English

and three Turkish → English + Spanish → English + English → Turkish + English

→ Spanish models. Best scores written in bold.

Added Pairs
Development Test

Single Ensemble Single Ensemble

Tr→En 31.99 (14.21) 28.00 (18.34)? 28.58 (17.28) 24.27 (20.83)?

+ Es→En 29.91 (16.00) 27.15 (18.36)† 27.49 (17.75) 23.94 (20.89)†

+ Es→En + Fr→En 29.05 (16.18) 26.54 (18.69)† 26.77 (18.13) 24.00 (20.90)†

+ Es→En + En→Tr + En→Es 29.74 (16.28) 28.03 (18.32)† 26.30 (18.66) 24.28 (20.23)†

MLNMT Ensemble 25.42 (20.00)‡ 21.78 (22.56)‡

Conventional SMT 26.55 (14.44) 23.42 (18.00)

If the additional language (French) is closely related to one of the previously added

languages (Spanish), there is less to be gained.

Second, the best single-model performance was achieved when we made the model

multi-way (Turkish→ English + Spanish→ English + English→ Turkish + English

→ Spanish), utilizing most of the parallel corpora available. Adding target languages

was more beneficial than adding a source language, which supports the multi-way,

multilingual translation proposed in this thesis.

Lastly, we see that the ensemble of multiple models with two different configurations8

results in a better translation model than the strong, conventional statistical machine

translation model (Conventional SMT). This is an encouraging sign for the proposed

multi-way, multilingual neural machine translation system in the task of low-resource

language translation, especially considering that the current neural models did not

utilize any of the monolingual corpora.
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Table 4.4: Results on Uzbek→English Translation. We report TB↓ (BLEU↑) score

in each cell. ? Ensemble of four models. † Ensemble of three models. ‡ Ensemble of

three Uzbek→ English + Turkish→ English + Spanish→ English and three Uzbek

→ English + Turkish→ English + English→ Uzbek + English→ Turkish models.

Best scores written in bold.

Added Pairs
Development Test

Single Ensemble Single Ensemble

Uz→En 41.58 (6.63) 38.98 (8.21)? 42.56 (6.45) 38.56 (8.81)?

+ Tr→En 37.13 (8.68) 35.83 (10.79)† 36.79 (9.34) 34.49 (11.69)†

+ Tr→En + Es→En 36.42 (9.55) 34.28 (11.96)† 35.39 (10.34) 33.20 (12.33)†

+ Tr→En + En→Uz + En→Tr 36.69 (8.93) 34.90 (10.57)† 36.28 (9.41) 33.65 (11.30)†

MLNMT Ensemble 33.40 (12.17)‡ 31.77 (12.99)‡

Conventional SMT 32.33 (11.50) 32.38 (9.37)

4.5.2 Uzbek-English: Result and Analysis

In the case of Uzbek(Uz)-English(En), we observe a similar trend with Turkish(Tr)-

English(En). One noticeable difference is that the addition of a single language pair,

Tr→En (Uzbek → English + Turkish → English) shows a substantial improvement

over the single-pair model (Uzbek → English). This is likely due to the similarity

between Uzbek and Turkish (both of them are Turkic languages).

Unlike Turkish-English, we observed that having two additional source languages

(Uzbek → English + Turkish → English + Spanish → English) was better than the

multi-way model (Turkish → English + English → Uzbek + English → Turkish).

We conjecture that this is due to the small training corpus of Tr-En, compared to Es-

En. This observation indirectly confirms that it is important to have high-resource

language pairs to fully exploit the capacity of the proposed multi-way, multilingual

model.9

Similarly to Tr-En, the ensemble of the multilingual neural translation models outper-

formed the conventional statistical translation system. Especially, in terms of BLEU,
8 An ensemble of three Uzbek→ English + Turkish→ English + Spanish→ English and three Uzbek→

English + Turkish→ English + English→ Uzbek + English→ Turkish models
9 Note that, in Section 4.5.1, two high resource, distant languages (to Turkish) are incrementally added. The

second high resource language did not improve the performance, either as it did not introduce any new information
or the decoder did not have enough capacity to leverage more data.
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we see more than +3 improvement on both Tr-En and Uz-En.

4.6 Notes on Early-Stopping, Dataset Balancing and Scheduling

A major problem encountered in almost any multi-task learning setup is the imbalance

between datasets, both in terms of quality and quantity. When we assume all tasks are

equally difficult, this imbalance between available data for each task, causes a series

of complications.

Let us describe the probable problems with a simplified scenario. Given three seq2seq

tasks with equal difficulty, we name individual seq2seq problems as Pair-1, Pair-2 and

Pair-3. Further, assume that the associated parallel data for each task is proportional

to: Pair-1 has 10% of the total amount of data that Pair-3 has, and Pair-2 has 50% of

the data that Pair-3 has.

In order to train a multi-seq2seq model given three tasks with their associated par-

allel data, we first need to decide an update schedule which determines the order

and frequency of examples that are provided to model during training. Following

the training routines from Sec. 3.4.2, the simplest scheduling is using equal sized

mini-batches for all tasks, and providing the mini-batches in a round-robin fashion,

performing one update per task at each turn.

The problem we encounter is related with over-fitting and early stopping [44]. During

training, we need to stop training pick a the model to be used at test time. However,

it is unclear when to stop training for a model that learns how to solve multiple tasks.

Given the varying sizes of the datasets for our three pairs, and the update scheduling

above, it is obvious that, at a given iteration of training, the model will pass through

the dataset of Pair-1 ten times more compared to the dataset of Pair-3. And at the

same iteration, the model will pass over the dataset of Pair-2 two times more, again

compared to Pair-3. Practically, model will complete more epochs for the tasks that

have less amount of data, Pair-1 and Pair-2, as a result, will start over-fitting way

earlier on tasks that have less amount of data. And no matter when we early stop, the

model will favor one task, and will not generalize for the other tasks, as it generalizes

for the task we choose. This behavior is sketched in Fig. 4.2a, which we call bad
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scenario. More plausible scenario is, trained model becoming equally an expert on all

three tasks, at a given time during training. In the second scenario, the loss curves will

be expected to align in a way that, early stopping point of the model will generalize to

test cases of all tasks equally likely. This plausible behavior is sketched in Fig. 4.2b

and we call it the good scenario. Note that, the generalization performance of the end

model that is picked differs purely on the early stopping point, and independent of the

model architecture used.

In order to observe models following the good scenario, the learning process of the

different tasks should be aligned, ensuring that the model that is good for one tasks

will not lack generalization due to over-fitting on the other tasks. The solution is quite

simple and intuitive. At a given time in the training process, we ensure the model to

pass over the datasets of each tasks equal times. For instance, the model at iteration

550 of Fig. 4.2b, is expected to finish equal amount of epochs on the datasets of all

three tasks, Pair-1, Pair-2 and Pair-3. And then we can decide our early stopping point

to be iteration 550, at which the generalization performance of the model is balanced

for all three tasks with respect to their dataset sizes.

When we follow a round-robin update schedule, we can simply adjust the batch sizes

of tasks that have smaller datasets, to finish one epoch at the same time. In our

example, good scenario can be achieved by using mini-batches that are ten times

smaller for Pair-1 compared to Pair-3 and two times smaller for Pair-2 compared to

again Pair-3. We call the above described heuristic balanced-batch strategy.

Now let us investigate the effect of using the proposed balanced-batch strategy in our

real world setting, namely, Tr-En and Uz-En neural machine translation. Figure ?? il-

lustrates the validation set negative log-likelihoods of a multi-way multilingual model

that is trained for four pairs, Uz→En (Pair-1), En→Uz (Pair-2), Tr→En (Pair-3) and

En→Tr (Pair-4). The early stopping point it chosen to be 40 (80k iterations) and

the model at iteration 80k achieves TB scores of 38.85, 57.19, 39.52 and 51.86 for

four pairs respectively. When we apply the balanced-batch strategy, effectively us-

ing mini-batches ten times smaller for Uz→En and En→Uz, the early stopping point

shifts further in time dramatically, and let’s us to chose the model at iteration 260k

that achieves TB scores of 36.69, 55.32, 32.76 and 41.31 respectively.
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Table 4.5: Balanced-Batch Strategy Improvements, T-B Scores (BLEU Scores)

Pair w/o Balanced-Batch with Balanced-Batch Improvement

Uz→En 38.85 (8.47) 36.69 (8.93) 2.16 (0.46)

En→Uz 57.19 (4.09) 55.32 (4.31) 1.87 (0.22)

Tr→En 39.52 (9.57) 32.76 (13.91) 6.76 (4.34)

En→Tr 51.86 (4.83) 41.31 (9.13) 10.55 (4.3)

As can be seen from Fig. 4.3, the early stopping point chosen without balanced-batch

strategy heavily favors Uz→En and En→Uz pairs and performs poorly on Tr→En

and En→Tr pairs. However, using the balanced-batch strategy allows us to early stop

at an iteration of the model that performs better on all four pairs.

The improvements we observe for Tr→En and En→Tr pairs are as large as 10 TB

points (4 BLEU points), see Table 4.5. Surprisingly, balanced-batch strategy also im-

proves Uz→En and En→Uz pairs. We argue that,using the proposed strategy delivers

an additional regularization benefit. Since we use smaller batches for low-resource

language pairs, the variance of the computed gradients for these pairs increase (also

mini-batch gradients become more noisy),serving as a regularizer for low-resource

pairs [94, 20].
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(a) Bad Scenario

(b) Good Scenario

Figure 4.2: Balanced batches toy.
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(a) Training without Balanced-batch Strategy

(b) Training with Balanced-batch Strategy

Figure 4.3: Negative Log-Likelihood plots on Validation Set using Balanced-batch

Strategy (b) and not (a).
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4.7 Conclusion

In this Chapter, we analyzed the behavior of proposed multi-way multilingual archi-

tecture for low-data regimes. We experimented positive language transfer capability

of the shared medium hypothesis on two settings. In the first setting, we gradually de-

creased the amount of data that is being used to train one particular pair in a multi-way

setup on three different language pairs, namely, Finnish-English, German-English and

English-German. We compared the performance of the proposed model with mod-

els that are trained for a single pair only and models that use additional monolingual

data for target-side language modelling. In the second setting, we experimented two

real-world low resource language translation performance of the proposed architec-

ture and compared it again with the single pair NMT models along with very strong

conventional Phrase-Based Machine Translation systems.

In both of the settings, we observed the benefits of the proposed multilingual neural

translation model over having a set of single-pair models. The improvement was

especially clear in the cases when the amount of data is small.

Motivated by this observation, we tested the proposed model specifically to target

low-resource language translation with the target tasks Uzbek-English and Turkish-

English. In these experiments, we confirmed the effectiveness of the proposed multi-

way, multilingual model by showing that it outperforms the strong conventional ma-

chine translation system based on a hybrid tree-to-string statistical model.
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CHAPTER 5

MULTI-SEQUENCE MODELING FOR MULTI-VIEW DATA:

MULTI-SOURCE TRANSLATION

“It is a narrow mind which cannot look at a subject from various

points of view.”

MARY ANNE EVANS

In the previous chapters, we first proposed the multi-sequence modelling architec-

ture with a shared attention module and presented it’s large scale capabilities in the

context of neural machine translation in Chapter 3, then in Chapter 4, we presented

it’s transfer learning capabilities across language pairs, when the amount of available

data is limited for a subset of translation pairs. In all of the previous experiments,

we assumed that, an example in a sequence to sequence mapping problem is a 2-

tuple (x,y) pair, and used bi-text both during training and test time. In other words,

proposed multi-sequence modelling architecture is used to perform one-to-one map-

pings, from a source sequence x to a target sequence y.

One very interesting and natural use case of the multi-sequence modelling architec-

ture is the mapping problems when there are more than one views (or sources) of

the same data point (example)[132]. This chapter investigates the possible extensions

of the proposed multi-sequence modelling architecture, when multi-view and multi-

source data is available.

As described in Section 2.3 in a multi-view dataset (multi-text or multi-way parallel

data) each example consists of a tuple of n data points where n >= 2. We can

develop architectures that can exploit the complementary and diverse information
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across multiple-views, practically benchmark multi-sequence modelling architectures

on many-to-one mapping problems (multi-source translation).

In this Chapter, we first frame many-to-one mapping problem into multi-sequence

mapping architecture. Then we describe different scenarios of many-to-one mapping

problem according to the availability of multi-view data, either during training or test

time. Next, we propose novel decoding strategies that exploit model ensembles in

multi-sequence mapping architecture or manifold hypothesis of the attention module,

the shared medium.

Finally, we present empirical evidence of how our proposed multi-sequence mapping

architecture makes use of multi-view data, application to large-scale multi-source

Neural Machine Translation between French, Spanish and English. In doing so, we

begin by studying different translation strategies available in the multi-way, multilin-

gual model in Sec.5.4. The strategies include a usual one-to-one translation as well

as variants of many-to-one translation for multi-source translation [140]. We empir-

ically show that the many-to-one strategies significantly outperform the one-to-one

strategy.

5.1 Many-to-one Mapping with seq2seq and Related Work

As described and summarized by the previous chapters, neural machine translation [42,

70, 118, 24] has proven to be a platform for new opportunities in machine translation

research. Rather than word-level translation with language-specific preprocessing,

neural machine translation has found to work well with statistically segmented sub-

word sequences as well as sequences of characters [28, 85, 112, 80]. Also, recent

works show that neural machine translation provides a seamless way to incorporate

multiple modalities other than natural language text in translation [84, 12]. Fur-

thermore, neural machine translation has been found to translate between multiple

languages, achieving better translation quality by exploiting positive language trans-

fer [37, 39, 140].

Before going into the details and related work, let us first describe possible scenarios

that can be encountered in a multi-seq2seq architecture according to the availability
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Figure 5.1: Multi-source Prediction Problems in a very simple Neural Network (NN).

Bold arrows represent the source-target mapping. At the leftmost two scenarios, NN

performs one-to-one mappings (x1 → y, x2 → y) and at the rightmost scenario, NN

performs many-to-one mapping. The merger layer, indicated with a (+) node, should

be adaptable to use either sources alone and/or both sources at the same time.

of the multi-view data. Consider a simple multi-seq2seq architecture, that has two

input sources x1, x2 and one output target y, with both input and output sequences are

always length one for simplicity. With the availability of source-target pair data (2-

tuple or bi-text) in the form of (y, x1) and (y, x2), multi-seq2seq architecture can be

trained to estimate p(y|x1) and p(y|x2). This means that, multi-seq2seq architecture

will be trained to perform one-to-one mapping at training time and, at test time it

will be tested again, to perform one-to-one mapping. Now consider the availability

of multi-view data in the form of a 3-tuple (x1, x2, y). If this 3-tuple multi-view data

is available during training along with 2-tuple data, multi-seq2seq architecture has to

device a merger layer that can process single source information, coming from either

source and also, multi-source information coming from multiple-sources at the same

time. These scenarios are depicted in Fig. 5.1.
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We now summarize the related work that makes use of multi-view data in a seq2seq

framework. Zoph and Knight [140] was the first to extend NMT to handle multi-view

data. Their proposed architecture consists of two separate encoders for two source

languages, a single decoder for the target language, two separate attention modules

for each source encoder and finally a merger layer that combines the information

coming from two separate attention modules (see Fig. 3.2b). The crucial point of

their proposed architecture is the merger layer which is implemented as a tree-LSTM

[119] that combines multiple sources with a parametric function. As this function is

parametrized with a neural network, it’s parameters have to be learned during train-

ing, making the model necessitate multi-way data at training time. Since this is the

only strategy that the model is trained, the model again has to be provided with multi-

way data during test time. Further, bi-text is not used during training, which is almost

always abundant compared to multi-way data. Although Zoph and Knight [140] de-

veloped a seq2seq architecture that necessitates multi-text both during training and

test, the performance results on translation tasks are compelling.

In this thesis, we aim to develop multi-seq2seq architectures that can benefit from

multi-way data when it is available, but also be able to be trainable by using bi-

text only. A plausible combination is then, using both bi-text and multi-text during

training and test.

Next, we will discuss two scenarios, and propose novel training and decoding meth-

ods, first when multi-view data is available both during training and test time, and

second, the harder scenario, when multi-view data is available only during test time.

5.2 Availability of Multi-view Data Both During Training and Test

In this section, we assume the availability of multi-view data during training along

with bi-text for each considered pair. To be concrete, having two separate views

(sources) for input sequences, x1 and x2, with a single target sequence y, multi-

sequence modelling architecture aims to learn following mappings: first single source

mappings, (1) x1 → y, (2) x2 → y and then multi-source mapping (3) x1 + x2 → y.

The crucial question is, how can we extend the proposed multi-sequence modelling
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architecture with a shared medium, to perform all above mappings at once. Simplest

solution is, training the model using all multi- text and bi-text at the same time, using

the very same shared medium. This can be achieved by alternating updates between

(1), (2) and (3) and using a non-parametric function in the merger layer, such as mean,

max, sum etc. The rationale of using a non-parametric function for the merger layer

is, flexibility to the absence of any of the sources. If we were to train a parametric

merger layer to combine information coming from two sources x1 and x2, then this

function will not be able to used when only one of the sources is given 1. Further, as

we increase the number of views, each time we introduce an additional view, we need

to train parametric merger layer with multi-view data.

Since learning a parametric merger layer is already being proposed by Zoph and

Knight [140] and shown to improve translation quality, we skip this section to fo-

cus on a more interesting problem, where the multi-sequence modelling architecture

is trained using bi-text only, but during test time, multi-view data is made available.

5.3 Availability of Multi-view Data During Test Only

Before going into the details of proposed strategies, let us remind our-selves the pro-

posed multi-way multilingual architecture.

5.3.1 Model Description

The goal of multi-way, multilingual model is to build a neural translation model that

can translate a source sentence given in one of N languages into one of M target lan-

guages. Thus to handle thoseN source andM target languages, the model consists of

N encoders and M decoders. Unlike these language-specific encoders and decoders,

only a single attention mechanism is shared across all M ×N language pairs.

Encoder An encoder for the n-th source language reads a source sentence X =

(x1, . . . , xTx) as a sequence of linguistic symbols and returns a set of context vectors
1 We can give zero input for the sources that are not available, but this does not generalize to the case when

multiple sources are not given.
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Cn =
{
hn1 , . . . ,h

n
Tx

}
. The encoder is usually implemented as a bidirectional recur-

rent network [109], and each context vector hnt is a concatenation of the forward and

reverse recurrent networks’ hidden states at time t. Without loss of generality, we

assume that the dimensionality of the context vector for all source languages are all

same.

Decoder and Attention Mechanism A decoder for the m-th target language is a

conditional recurrent language model [89]. At each time step t′, it updates its hidden

state by

zmt′ = ϕm(zmt′−1, ỹ
m
t′−1, c

m
t′ ),

based on the previous hidden state zmt′−1, previous target symbol ỹmt′−1 and the time-

dependent context vector cmt′ . ϕ
m is a gated recurrent unit (GRU, [24]).

The time-dependent context vector is computed by the shared attention mechanism

as a weighted sum of the context vectors from the encoder Cn:

cmt′ = U
Tx∑
t=1

αm,nt,t′ hnt + b, (5.1)

where

αm,nt,t′ ∝ exp
(
fscore(W

nhnt ,W
mzmt′−1, ỹ

m
t′−1)

)
. (5.2)

The scoring function fscore returns a scalar and is implemented as a feedforward neural

network with a single hidden layer. For more variants of the attention mechanism for

machine translation, see [86].

The initial hidden state of the decoder is initialized as

zm0 = φminit(W
nhnt ). (5.3)

With the new hidden state zmt′ , the probability distribution over the next symbol is

computed by

p(yt = w|ỹ<t, Xn) ∝ exp(gmw (zmt , c
m
t ,E

m
y [ỹt−1]), (5.4)

where gmw is a decoder specific parametric function that returns the unnormalized

probability for the next target symbol being w.
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5.3.2 Learning

Training this multi-way, multilingual model does not require multi-way parallel cor-

pora but only a set of bilingual corpora. For each bilingual pair, the conditional

log-probability of a ground-truth translation given a source sentence is maximize by

adjusting the relevant parameters following the gradient of the log-probability.

5.3.3 Proposed Decoding (Translation) Strategies: One-to-One Translation

Up until now, in the context of proposed multi-sequence modelling architecture, only

one translation strategy was evaluated, that is, one-to-one translation. This one-to-

one strategy works on a source sentence given in one language by taking the encoder

of that source language, the decoder of a target language and the shared attention

mechanism. These three components are glued together as if they form a single-pair

neural translation model and translates the source sentence into a target language.

We however notice that this is not the only translation strategy available with the

multi-way, multilingual model. As we end up with multiple encoders, multiple de-

coders and a shared attention mechanism, this model naturally enables us to exploit

a source sentence given in multiple languages, leading to a many- to-one transla-

tion strategy which was proposed recently by [140] in the context of neural machine

translation.

Unlike [140], the multi-way, multilingual model is not trained with multi-way parallel

corpora. This however does not necessarily imply that the model cannot be used in

this way. In the remainder of this section, we propose two alternatives for doing multi-

source translation with the multi-way, multilingual model, which eventually pave the

way towards zero-resource translation of Chapter 6.

5.3.4 Proposed Decoding (Translation) Strategies: Many-to-One Translation

In this section, we consider a case where a source sentence is given in two languages,

X1 and X2. However, any of the approaches described below applies to more than

two source languages trivially.
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Figure 5.2: Multi-Source Translation and Interpretation of Shared Medium.

Given X1 and X2 and separate encoders for each of the source languages, we first

obtain context sets C1 and C2 for both sequences. Then, the shared medium, the

attention module, generates two context vectors c̃m,1t , c̃m,2t for each source sequence,

given a query from the decoderm via ϕmatt. The next question is, how can we combine

these two sources of information? The overall picture is also illustrated in Fig. ??.

In our proposed multi-way, multilingual model, multi-source translation can be thought

of as averaging two separate translation paths. For instance, in the case of Es+Fr to

En, we want to combine Es→En and Fr→En so as to get a better English translation.

We notice that there are two points in the multi-way, multilingual model where this

averaging may happen.

Early Average The first candidate is to averaging two translation paths when com-

puting the time-dependent context vector (see Eq. (5.1).) At each time t in the de-

coder, we compute a time-dependent context vector for each source language, c̃1
t and

c̃2
t respectively for the two source languages. In this early averaging strategy, we

simply take the average of these two context vectors:

ct =
c̃1
t + c̃2

t

2
. (5.5)

Similarly, we initialize the decoder’s hidden state to be the average of the initializers

of the two encoders:
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z0 =
1

2

(
φinit(φ

1
init(h

1
Tx1

)) + φinit(φ
2
init(h

2
Tx1

))
)
, (5.6)

where φinit is the decoder’s initializer (see Eq. (5.3).)

Late Average Alternatively, we can average those two translation paths (e.g., Es→En

and Fr→En) at the output level. At each time t, each translation path computes the

distribution over the target vocabulary, i.e., p(yt = w|y<t, X1) and p(yt = w|y<t, X2).

We then average them to get the multi-source output distribution:

p(yt = w|y<t, X1, X2) = (5.7)
1

2
(p(yt = w|y<t, X1) + p(yt = w|y<t)).

An advantage of this late averaging strategy over the early averaging one is that this

can work even when those two translation paths were not from a single multilingual

model. They can be two separately trained single-pair models. In fact, if X1 and X2

are same and the two translation paths are simply two different models trained on the

same language pair–direction, this is equivalent to constructing an ensemble, which

was found to greatly improve translation quality [118, 65]

Early+Late Average The two strategies above can be further combined by late-

averaging the output distributions from the early averaged model and the late averaged

one. We empirically evaluate this early+late average strategy as well.

All three translation strategies are depicted in Fig. 5.3.

5.4 Experiments: Translation Strategies and Multi-Source Translation

In this section, we evaluate the translation strategies described in the previous section

on multi-source translation, as these translation strategies form a basic foundation

on which we extend the multi-way, multilingual model for zero-resource machine

translation of the next Chapter.
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(a) Early-Averaging (b) Late-Averaging

(c) Early+Late

Figure 5.3: Multi-Source Translation Strategies.

5.4.1 Settings

When evaluating the multi-source translation strategies, we use English, Spanish and

French, and focus on a scenario where only En-Es and En-Fr parallel corpora are

available.

5.4.1.1 Corpora

En-Es We combine the following corpora to form 34.71m parallel Es-En sentence

pairs: UN (8.8m), Europarl-v7 (1.8m), news-commentary-v7 (150k), LDC2011T07-

T12 (2.9m) and internal technical-domain data (21.7m).
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Table 5.1: Data statistics. †: newstest-2012. ‡: newstest-2013

# Sents Train Dev† Test‡

En-Es 34.71m 3003 3000

En-Fr 65.77m 3003 3000

En-Es-Fr 11.32m 3003 3000

En-Fr We combine the following corpora to form 65.77m parallel En-Fr sentence

pairs: UN (9.7m), Europarl-v7 (1.9m), news-commentary-v7 (1.2m), LDC2011T07-

T10 (1.6m), ReutersUN (4.5m), internal technical-domain data (23.5m) and Giga-

word R2 (20.66m).

Evaluation Sets We use newstest-2012 and newstest-2013 from WMT as develop-

ment and test sets, respectively.

Monolingual Corpora We do not use any additional monolingual corpus.

Preprocessing All the sentences are tokenized using the tokenizer script from Moses [77].

We then replace special tokens, such as numbers, dates and URL’s with predefined

markers, which will be replaced back with the original tokens after decoding. After

using byte pair encoding (BPE, [112]) to get subword symbols, we end up with 37k,

43k and 45k unique tokens for English, Spanish and French, respectively. For train-

ing, we only use sentence pairs in which both sentences are only up to 50 symbols

long.

See Table 5.1 for the detailed statistics.

5.4.2 Models and Training

We start from the code made publicly available as a part of [39]. We made two

changes to the original code as described in the previous Chapter. First, we replaced

1 https://github.com/nyu-dl/dl4mt-multi
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Table 5.2: One-to-one translation qualities using the multi-way, multilingual model

and four separate single-pair models.

Multi Single

Src Trgt Dev Test Dev Test

(a) Es En 30.73 28.32 29.74 27.48

(b) Fr En 26.93 27.93 26.00 27.21

(c) En Es 30.63 28.41 31.31 28.90

(d) En Fr 22.68 23.41 22.80 24.05

the decoder with the conditional gated recurrent network with the attention mech-

anism as outlines in [40]. Second, we feed a binary indicator vector of which en-

coder(s) the source sentence was processed by to the output layer of each decoder

(gmw in Eq. (5.4)). Each dimension of the indicator vector corresponds to one source

language, and in the case of multi-source translation, there may be more than one

dimensions set to 1.

We train the following models: four single-pair models (Es↔En and Fr↔En) and

one multi-way, multilingual model (Es,Fr,En↔Es,Fr,En), see Fig. 5.4. As proposed

by [39], we share one attention mechanism for the latter case.

Training We closely follow the setup from [39]. Each symbol is represented as a

620-dimensional vector. Any recurrent layer, be it in the encoder or decoder, consists

of 1000 gated recurrent units (GRU, [24]), and the attention mechanism has a hidden

layer of 1200 tanh units (fscore in Eq. (5.2)). We use Adam [72] to train a model,

and the gradient at each update is computed using a minibatch of at most 80 sentence

pairs. The gradient is clipped to have the norm of at most 1 [100]. We early-stop any

training using the T-B score on a development set.2

5.4.3 One-to-One Translation

We first confirm that the multi-way, multilingual translation model indeed works as

well as single-pair models on the translation paths that were considered during train-

2 2T-B score is defined as TER−BLEU
2

which we found to be more stable than either TER or BLEU alone for
the purpose of early-stopping [138].
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Figure 5.4: Multi-source Prediction Problems in a very simple Neural Network.

ing, which was the major claim in [39]. In Table 5.2, we present the results on four

language pair-directions (Es↔En and Fr↔En).

It is clear that the multi-way, multilingual model indeed performs comparably on

all the four cases with less parameters (due to the shared attention mechanism.) As

observed earlier in [39], we also see that the multilingual model performs better when

a target language is English.

Table 5.3: Many-to-one quality (Spanish + French→ English) using three translation

strategies. Compared to Table 5.2 (a–b) we observe a significant improvement (up to

3+ BLEU), although the model was never trained in these many-to-one settings. The

second column shows the quality by the ensemble of two separate single-pair models.

Multi Single

Dev Test Dev Test

(a) Early 31.89 31.35 – –

(b) Late 32.04 31.57 32.00 31.46

(c) E+L 32.61 31.88 – –
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5.4.4 Many-to-One Translation

We consider translating from a pair of source sentences in Spanish (Es) and French

(Fr) to English (En). It is important to note that the multilingual model was not trained

with any multi-way parallel corpus. Despite this, we observe that the early averaging

strategy improves the translation quality (measured in BLEU) by 3 points in the case

of the test set (compare Table 5.2 (a–b) and Table 5.3 (a).) We conjecture that this

happens as training the multilingual model has implicitly encouraged the model to

find a common context vector space across multiple source languages.

The late averaging strategy however outperforms the early averaging in both cases

of multilingual model and a pair of single-pair models (see Table 5.3 (b)) albeit

marginally. The best quality was observed when the early and late averaging strate-

gies were combined at the output level, achieving up to +3.5 BLEU (compare Ta-

ble 5.2 (a) and Table 5.3 (c).)

We emphasize again that there was no multi-way parallel corpus consisting of Span-

ish, French and English during training. 3 The result presented in this section shows

that the multi-way, multilingual model can exploit multiple sources effectively with-

out requiring any multi-way parallel corpus, and we will rely on this property together

with the proposed many-to-one translation strategies in the later sections where we

propose and investigate zero-resource translation.

5.4.5 What Does It Mean to Take the Average of Representations?

In the previous section, we proposed a test time strategy to leverage multi-view data,

by simply taking the mean of time-dependent context vectors from multiple sources.

The experimental results supported that, even if the multi-way multilingual model is

trained using only bi-text, supposedly having no notion of multiple-views, simply by

taking the average of representations during test time yields significant improvements.

Although we empirically show that such decoding strategy achieves better results, it
3 We do not assume the availability of annotation on multi-way parallel sentence pairs. It is likely that there

will be some sentence (or a set of very close variants of a single sentence) translated into multiple languages (eg.
Europarl). One may decide to introduce a mechanism for exploiting these [140], or as we present here, it may not
be necessary at all to do so.
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is surprising that a simple arithmetic operation between intermediate contextual rep-

resentations can achieve significant boost without even training the model. In this

section we try to explain the above improvements by resorting to the manifold hy-

pothesis [46]. Manifold hypothesis in connectionist models state that, hidden layers

of a deep neural network flatten (stretch) the data generating distribution (the mani-

fold) [7, 93, 17]. These manifolds are low dimensional regions in input space near

which the distribution concentrates. Each point in the manifold, is then, surrounded

by other highly (semantically) similar examples that can be reached by applying sim-

ple transformations. In practical terms, if the network is deep enough to disentangle

the factors of variations in the data, into a flat enough manifold, then traversing in the

manifold will translate into transitioning between semantically similar points.

Now let us consider the architecture proposed in this thesis. We first apply a deep

encoder to generate a set of annotations by making use of encoder RNNs. Then these

set of annotations are summarized by a deep attention module. Since the attention

module is exposed to many source-target pairs, first, it is implicitly encouraged to find

a common vector space that represents the shared commonalities across all source-

target pairs. Second, since the mapping from input to the attention module output ct

is a quite deep and non-linear mapping, we would expect the output of the attention

module lies in a flat (locally-linear) manifold. This hypothesis is illustrated in Fig. 5.6.

Then, consider we use the same shared medium to map two semantically similar

input sequences, into this representational manifold (see Fig. 5.7). If the output of

the shared medium is a locally-flat manifold, and two points are semantically similar,

then their mean should also lie in the manifold, and hopefully the new point in the

manifold is more informative than either of the points alone.

We tested this hypothesis by trying to brake the manifold hypothesis with simple arith-

metic operations. We trained a multi-lingual model that translates from Es-Fr to En,

by using only bi-text, but during training, we evaluated the model using multi-text

with different arithmetic operations in the merger layer. In Fig. 5.5, red curves cor-

respond to different merger operations, blue curve is the negative log-probability for

Fr-En and green curve is the negative log probability for Es-En pair. When we apply

max operation as the merger operation (curves with (x) label), resulting log- probabil-
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ities are close to Es-En curve and highly fluctuates. We can interpret this as the max

operation yields sparse features, result of the operation may not be on the manifold. A

similar result is observed for the sum operation (curves with (s) label). Since the sum

of two points can overshoot the manifold tangent, results can still be off the manifold,

explaining the similar performance with max operation. The mean operation on the

other hand (curves with (m) label) achieves the best performance and fluctuates less

compared to other operations, giving us more clue that the representations induced by

the shared medium, is likely to lie on a semantic manifold.

We manipulated the manifold hypothesis to exploit the flatness of representations,

and applied simple arithmetic operations, such as mean, between semantically similar

points to obtain more informative representations during test time. These experiments

pave the way to zero-resource translation where we again use the manifold hypothesis

and exploit the locality of representations in the next Chapter. Also, our findings

support that “with good disentangling, there is no need for further learning, only

good inference.” by Bengio[7].

5.5 Conclusion

In this chapter, we first showed that the multi-way, multilingual neural translation

model by [39] is able to exploit common, underlying structures across many lan-

guages in order to better translate when a source sentence is given in multiple lan-

guages. This confirms the usefulness of positive language transfer, which has been

believed to be an important factor in human language learning [97, 103], in machine

translation. Furthermore, our result significantly expands the applicability of multi-

source translation [140], as it does not assume the availability of multi-way parallel

corpora for training and relies only on bilingual parallel corpora.

Second, although the proposed many-to-one translation is indeed generally applicable

to any number of source languages, we have only tested a source sentence in two

languages. We expect even higher improvement with more languages, but it must be

tested thoroughly in the future.

Being able to perform many-to-one mapping further allows us to extend the multi-
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Figure 5.5: Merger Operations for Multi-Source Translation. Blue curve corresponds

to validation set negative log-likelihood of French→ English, red green curve corre-

sponds validation set negative log-likelihood of Spanish→ English, and all red curves

correspond to validation set negative log-likelihood of multi-source French + Spanish

→ English with different merger operations.

sequence modelling architecture to make use of different modalities, opening new

research directions for multi-modal mapping problems .
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Figure 5.6: Manifold-hypothesis and Interpretation of Shared Medium.

Figure 5.7: Multi-Source Translation and Interpretation of Shared Medium.
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CHAPTER 6

MULTI-SEQUENCE MODELING FOR ZERO-DATA

REGIMES: ZERO-RESOURCE TRANSLATION

“These conclusions have been based upon a finite segment of a numerically

determined solution. They cannot be regarded as mathematically proven,

even though the evidence for them is strong. One apparent contradiction

requires further examination. It is difficult to reconcile the merging of two

surfaces, one containing each spiral, with the inability of two trajectories to

merge. It is not difficult, however, to explain the apparent merging of the

surfaces.”

EDWARD LORENZ - DETERMINISTIC NON-PERIODIC FLOW, 1962

In this section, we propose a novel finetuning algorithm for the multi-way, multilin-

gual neural machine translation architecture proposed previously, that enables zero-

resource machine translation. When used together with novel many-to-one translation

strategies introduced in Chapter 5, we empirically show that this finetuning algorithm

allows the multi-way, multilingual model to translate a zero- resource language pair

(1) as well as a single-pair neural translation model trained with up to 1M direct par-

allel sentences of the same language pair and (2) better than pivot-based translation

strategy, while keeping only one additional copy of attention-related parameters.

We move on to zero-resource translation by first evaluating a vanilla multi-way, multi-

lingual model on a zero-resource language pair, which revealed that the vanilla model

cannot do zero-resource translation in Sec. 6.2.1. Based on the many-to-one strate-

gies we proposed earlier, we design a novel finetuning strategy that does not require

any direct parallel corpus between a target, zero-resource language pair in Sec. 6.1.2,
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which uses the idea of generating a pseudo-parallel corpus [110]. This strategy makes

an additional copy of the attention mechanism and finetunes only this small set of pa-

rameters.

Large-scale experiments with Spanish, French and English show that the proposed

finetuning strategy allows the multi-way, multilingual neural translation model to

perform zero-resource translation as well as a single-pair neural translation model

trained with up to 1M true parallel sentences. This result re-confirms the potential of

the multi-way, multilingual model for low/zero-resource language translation, which

we argued in Chapter 3 and 4 [39].

6.1 Zero-Resource Translation Strategies

The network architecture of multi-way, multilingual model suggests the potential for

translating between two languages without any direct parallel corpus available. In the

setting considered in this chapter (see Sec. 5.4.1,) these translation paths correspond

to Es↔Fr (dashed orange arrow in Fig. 6.1), as only parallel corpora used for training

were Es↔En and Fr↔En (solid black arrows in Fig. 6.1).

The most naive approach for translating along a zero-resource path is to simply treat

it as any other path that was included as a part of training. This corresponds to the

one-to-one strategy from Sec. 5.3.3. In our experiments, it however turned out that

this naive approach does not work at all, as can be seen in Table 6.1 (a).

In this section, we investigate this potential of zero-resource translation with the

multi-way, multilingual model in depth. More specifically, we propose a number

of approaches that enable zero-resource translation without requiring any additional

bilingual or multi-way corpora.

6.1.1 Pivot-based Translation

The first set of approaches exploits the fact that the target zero-resource translation

path can be decomposed into a sequence of high-resource translation paths [130, 124,

54]. For instance, in our case, Es→Fr can be decomposed into a sequence of Es→En
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Figure 6.1: Zero-shot Pair in a multilingual neural machine translation model. Pairs

with parallel data are English → French, English → Spanish, French → English,

Spanish→ English, indicated by gray arrows. Zero shot pair, Spanish→ French, has

no direct parallel data, and indicated by dashed red arrow.

and En→Fr. In other words, we translate a source sentence (Es) into a pivot language

(En) and then translate the English translation into a target language (Fr), all within

the same multi-way, multilingual model trained by using bilingual corpora.

One-to-One Translation The most basic approach here is to perform each transla-

tion path in the decomposed sequence independently from each other. This one-to-

one approach introduces only a minimal computational complexity (the multiplica-

tive factor of two.) We can further improve this one-to-one pivot-based translation

by maintaining a set of k-best translations from the first stage (Es→En), but this in-

crease the overall computational complexity by the factor of k, making it impractical

in practice. We therefore focus only on the former approach of keeping the best pivot

translation in this section.

Many-to-One Translation With the multi-way, multilingual model proposed in

this thesis, we can extend the naive one-to-one pivot-based strategy by replacing the
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second stage (En→Fr) to be many-to-one translation from Sec. 5.4.4 using both the

original source language and the pivot language as a pair of source languages. We

first translate the source sentence (Es) into English, and use both the original source

sentence and the English translation (Es+En) to translate into the final target language

(Fr).

Both approaches described and proposed above do not require any additional action

on an already-trained multilingual model. They are simply different translation strate-

gies specifically aimed at zero-resource translation.

6.1.2 Finetuning with Pseudo Parallel Corpus

The failure of the naive zero-resource translation earlier (see Table 6.1 (a)) suggests

that the context vectors returned by the encoder are not compatible with the decoder,

when the combination was not included during training. The good translation quali-

ties of the translation paths included in training however imply that the representations

learned by the encoders and decoders are good. Based on these two observations, we

conjecture that all that is needed for a zero-resource translation path is a simple ad-

justment that makes the context vectors from the encoder to be compatible with the

target decoder. Thus, we propose to adjust this zero-resource translation path however

without any additional parallel corpus.

First, we generate a small set of pseudo bilingual pairs of sentences for the zero-

resource language pair (Es→Fr) in interest, Fig. 6.2a - 6.2b. We randomly select N

sentences pairs from a parallel corpus between the target language (Fr) and a pivot

language (En) and translate the pivot side (En) into the source language (Es). Then,

the pivot side is discarded, and we construct a pseudo parallel corpus consisting of

sentence pairs of the source and target languages (Es-Fr).

We make a copy of the existing attention mechanism, to which we refer as target-

specific attention mechanism. We then finetune only this target-specific attention

mechanism while keeping all the other parameters of the encoder and decoder intact,

using the generated pseudo parallel corpus. We do not update any other parameters

in the encoder and decoder, because they are already well-trained (evidenced by high
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(a) Given Pair (b) Generate Pseudo Parallel Data

(c) Finetune with Generated Pseudo-parallel Data

Figure 6.2: Finetuning with Pseudo Parallel Corpus
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Table 6.1: Zero-resource translation from Spanish (Es) to French (Fr) without fine-

tuning, using multi-way, multilingual model. When pivot is
√

, English is used as a

pivot language.

Pivot Many-to-1 Dev Test

(a) < 1 < 1

(b)
√

20.64 20.4

(c)
√

Early 9.24 10.42

(d)
√

Late 18.22 19.14

(e)
√

E+L 13.29 14.56

translation qualities in Table 5.2) and we want to avoid disrupting the well-captured

structures underlying each language.

Once the model has been finetuned with the pseudo parallel corpus, Fig. 6.2c, we can

use any of the translation strategies described earlier in Sec. ?? for the finetuned zero-

resource translation path. We expect a similar gain by using many-to-one translation,

which we empirically confirm in the next section.

6.2 Experiments:

Zero-Resource Translation

6.2.1 Without Finetuning

Settings We use the same multi-way, multilingual model trained earlier in Sec. 5.4.2

to evaluate the zero-resource translation strategies. We emphasize here that this model

was trained only using Es-En and Fr-En bilingual parallel corpora without any Es-Fr

parallel corpus.

We evaluate the proposed approaches to zero-resource translation with the same multi-

way, multilingual model from Sec. 5.4.1. We specifically select the path from Spanish

to French (Es→Fr) as a target zero-resource translation path.

Result and Analysis As mentioned earlier, we observed that the multi-way, multi-

lingual model cannot directly translate between two languages when the translation
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path between those two languages was not included in training (Table 6.1 (a).) On the

other hand, the model was able to translate decently with the pivot-based one-to-one

translation strategy, as can be seen in Table 6.1 (b). Unsurprisingly, all the many-

to-one strategies resulted in worse translation quality, which is due to the inclusion

of the useless translation path (direct path between the zero-resource pair, Es-Fr).

Another interesting trend we observe is the Early+Late averaging (Table 6.1 (e))

seems to perform worse than Late averaging (Table 6.1 (d)) alone, opposite of the re-

sults in Table 5.3 (b-c). We conjecture that, by simply averaging two model outputs

(as in E+L), when one of them is drastically worse than the other, has the effect of

pulling down the performance of final results. But early averaging can still recover

from this deficiency, upto some extent, since the decoder output probability function

gmw (Eq. (5.4).) is a smooth function not only using the averaged context vectors

(Eq. (5.5).).

These results clearly indicate that the multi-way, multilingual model trained with only

bilingual parallel corpora is not capable of direct zero-resource translation as it is.
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Table 6.2: Zero-resource translation from Spanish (Es) to French (Fr) with finetuning. When pivot is
√

, English is used as a pivot language.

Row (b) is from Table 6.1 (b).

Pseudo Parallel Corpus True Parallel Corpus

Pivot Many-to-1 1k 10k 100k 1m 1k 10k 100k 1m

(a) Single-Pair Models
Dev – – – – – – 11.25 21.32

Test – – – – – – 10.43 20.35

(b)
√

No Finetuning Dev: 20.64, Test: 20.4 –

(c)
Dev 0.28 10.16 15.61 17.59 0.1 8.45 16.2 20.59

Test 0.47 10.14 15.41 17.61 0.12 8.18 15.8 19.97

(d)
√

Early
Dev 19.42 21.08 21.7 21.81 8.89 16.89 20.77 22.08

Test 19.43 20.72 21.23 21.46 9.77 16.61 20.40 21.7

(e)
√ Early+ Dev 20.89 20.93 21.35 21.33 14.86 18.28 20.31 21.33

Late Test 20.5 20.71 21.06 21.19 15.42 17.95 20.16 20.9
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6.2.2 Finetuning with a Pseudo Parallel Corpus

Settings The proposed finetuning strategy raises a number of questions. First, it is

unclear how many pseudo sentence pairs are needed to achieve a decent translation

quality. Because the purpose of this finetuning stage is simply to adjust the shared

attention mechanism so that it can properly bridge from the source-side encoder to

the target-side decoder, we expect it to work with only a small amount of pseudo

pairs. We validate this by creating pseudo corpora of different sizes–1k, 10k, 100k

and 1m.

Second, we want to know how detrimental it is to use the generated pseudo sen-

tence pairs compared to using true sentence pairs between the target language pair.

In order to answer this question, we compiled a true multi-way parallel corpus by

combining the subsets of UN (7.8m), Europarl-v7 (1.8m), OpenSubtitles-2013 (1m),

news-commentary-v7 (174k), LDC2011T07 (335k) and news-crawl (310k), and use

it to finetune the model.1 This allows us to evaluate the effect of the pseudo and true

parallel corpora on finetuning for zero-resource translation.

Lastly, we train single-pair models translating directly from Spanish to French by

using the true parallel corpora. These models work as a baseline against which we

compare the multi-way, multilingual models.

Training Unlike the usual training procedure described in Sec. 5.4.2, we compute

the gradient for each update using 60 sentence pairs only, when finetuning the model

with the multi-way parallel corpus (either pseudo or true.)

Result and Analysis Table 6.2 summarizes all the result. The most important

observation is that the proposed finetuning strategy with pseudo-parallel sentence

pairs outperforms the pivot-based approach (using the early averaging strategy from

Sec. 5.4.4) even when we used only 10k such pairs (compare (b) and (d).) As we

increase the size of the pseudo-parallel corpus, we observe a clear improvement. Fur-

thermore, these models perform comparably to or better than the single-pair model

1 See the last row of Table 5.1.
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trained with 1M true parallel sentence pairs, although they never saw a single true

bilingual sentence pair of Spanish and French (compare (a) and (d).)

Another interesting finding is that it is only beneficial to use true parallel pairs for

finetuning the multi-way, mulitilingual models when there are enough of them (1m

or more). When there are only a small number of true parallel sentence pairs, we

even found using pseudo pairs to be more beneficial than true ones. This effective as

more apparent, when the direct one-to-one translation of the zero-resource pair was

considered (see (c) in Table 6.2.) This applies that the misalignment between the

encoder and decoder can be largely fixed by using pseudo-parallel pairs only, and we

conjecture that it is easier to learn from pseudo-parallel pairs as they better reflect the

inductive bias of the trained model and as the pseudo- parallel corpus is expected to

be more noisy, this may be an implicit regularization effect. When there is a large

amount of true parallel sentence pairs available, however, our results indicate that it

is better to exploit them.

Unlike we observed with the multi-source translation in Sec. 5.3.4, we were not able

to see any improvement by further averaging the early-averaged and late-average de-

coding schemes (compare (d) and (e).) This may be explained by the fact that the

context vectors computed when creating a pseudo source (e.g., En from Es when

Es→Fr) already contains all the information about the pseudo source. It is simply

enough to take those context vectors into account via the early averaging scheme.

These results clearly indicate and verify the potential of the multi-way, multilin-

gual neural translation model in performing zero-resource machine translation. More

specifically, it has been shown that the translation quality can be improved even with-

out any direct parallel corpus available, and if there is a small amount of direct parallel

pairs available, the quality may improve even further.

6.3 Conclusion:

Implications and Limitations

Implications There are two main results in this chapter. First, we showed that the

multi-way, multilingual neural translation model proposed in this thesis, [39], is able
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to exploit common, underlying structures across many languages in order to better

translate when a source sentence is given in multiple languages. This confirms the

usefulness of positive language transfer, which has been believed to be an important

factor in human language learning [97, 103], in machine translation. Furthermore,

our result significantly expands the applicability of multi-source translation [140], as

it does not assume the availability of multi-way parallel corpora for training and relies

only on bilingual parallel corpora.

Second, the experiments on zero-resource translation revealed that it is not necessary

to have a direct parallel corpus, or deep linguistic knowledge, between two languages

in order to build a machine translation system. Importantly we observed that the

proposed approach of zero-resource translation is better both in terms of translation

quality and data efficiency than a more traditional pivot-based translation [130, 124].

Considering that this is the first attempt at such zero-resource, or extremely low-

resource, translation using neural machine translation, we expect a large progress in

near future.

Limitations Despite the promising empirical results presented in this paper, there

are a number of shortcomings that needs to addressed in follow-up research. First,

our experiments have been done only with three European languages–Spanish, French

and English. More investigation with a diverse set of languages needs to be done in

order to make a more solid conclusion, such as was done in [39, 28]. Furthermore,

the effect of varying sizes of available parallel corpora on the performance of zero-

resource translation must be studied more in the future.

Second, although the proposed many-to-one translation is indeed generally applicable

to any number of source languages, we have only tested a source sentence in two

languages. We expect even higher improvement with more languages, but it must be

tested thoroughly in the future.

Lastly, the proposed finetuning strategy requires the model to have an additional set

of parameters relevant to the attention mechanism for a target, zero-resource pair.

This implies that the number of parameters may grow linearly with respect to the

number of target language pairs. We expect future research to address this issue by,
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for instance, mixing in the parallel corpora of high-resource language pairs during

finetuning as well.
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CHAPTER 7

CONCLUSION

In this thesis, we first proposed a multi-way, multilingual neural machine translation

method which is the first multi-seq2seq architecture, explicitly modelling interlin-

gua. We initially showed that, the proposed approach enables a single neural trans-

lation model to translate between multiple languages, with a number of parameters

that grows only linearly with the number of languages. This is made possible by hav-

ing a single attention mechanism, that is shared across all language pairs, the shared

medium, by explicitly parameterizing interlingua. We demonstrated that a single neu-

ral network can be trained on ten language pairs from WMT’15 simultaneously and

observe a substantial performance improvements over models trained on a single lan-

guage pair.

Following chapter, we analyzed the behavior of multi-seq2seq architecture when there

is not enough parallel data for a given source-target pair. We showed by experiments

that the proposed multi-way, multilingual model generalizes better than the single-

pair translation models, when the amount of available parallel corpus is small. We

validated that this is not only due to the increased amount of target-side, monolingual

corpus but the capability of positive language transfer.

Next, we explored one very interesting and natural use case of the multi-sequence

modelling architecture, the mapping problems when there are more than one views

(or sources) of the same data point (example). We investigated the possible extensions

of the proposed multi-sequence modelling architecture, when multi-view and multi-

source data is available. We first framed many-to-one mapping problem into multi-

sequence mapping architecture. Then we described different scenarios of many-to-
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one mapping problem according to the availability of multi-view data, either during

training or test time. Next, we proposed novel decoding strategies that exploit model

ensembles in multi-sequence mapping architecture or manifold hypothesis of the at-

tention module, the shared medium.

Finally, we proposed a novel finetuning algorithm for the multi-way, multilingual neu-

ral machine translation architecture, that enables zero-resource machine translation.

When used together with novel many-to-one translation strategies, also proposed in

this thesis, we empirically showed that the finetuning algorithm allows the multi-way,

multilingual model to translate a zero- resource language pair (1) as well as a single-

pair neural translation model trained with up to 1M direct parallel sentences of the

same language pair and (2) better than pivot-based translation strategy, while keeping

only one additional copy of attention-related parameters.

Connectionist multi-sequence modelling architecture and the techniques proposed in

this thesis opened up various research directions to be pursued, below we summarize

recent extensions of our proposed multi-sequence model by the research community.

• Multi-modal Extensions of Multi-Sequence Modeling. A natural extension

of multi-sequence modelling approach is to replace or introduce new modal-

ities as additional encoders or decoders in the proposed multi-seq2seq archi-

tecture. [13, 14] extended the multi-seq2seq approach proposed in this thesis

for image-grounded translation tasks, where multiple sequences are presented

to the model that has an image encoder and a text encoder, translating the input

sequences to a translated output text sequence.

• Zero-Shot Translation. Following Chapter 6 of this thesis, [67, 53] extended

the shared-medium to it’s extreme, where the shared components between a set

of encoders and decoders not only span the attention mechanism but entire en-

coders, decoders and attention mechanism. This is made possible by collapsing

the encoders and decoders to a single encoder and decoder, sharing the same

encoder across all the source languages, a single shared attention module, and

again sharing the same decoder across all the target languages. This extreme

shared-medium appears as a natural extension of this thesis, and made possible

to perform zero-shot translation without any finetuning phase, as proposed in

136



Chapter 6 of this thesis.

• Multi-task learning. As the target side decoders can represent different tasks,

multi-seq2seq architecture is extended to multi-task learning [81] by making

use of a shared memory. Further, multi-seq2seq allows to use mono-lingual

data to enable unsupervised learning in seq2seq architectures [102, 136].

• Larger-Context Translation and System Combination. Last, by extending the

multi-source translation strategies proposed in this thesis, it is straight-forward

to replace different language encoders to a single encoder that encodes only one

language, but the sequences coming from the left and right context sentences

of the source sequence. This allows a multi-seq2seq model to make use of

larger (or extended) context and opens up a new direction for neural translation

models to translate in context [66].
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