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ABSTRACT

PRUNING ALGORITHMS FOR PARTIALLY OBSERVABLE
MARKOV DECISION PROCESSES

Özgen, Selim

Ph.D., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Mübeccel Demirekler

November 2017, 120 pages

It is possible to represent the value function in partially observable Markov deci-

sion processes as a piecewise linear function if the state, action, and observation

space is discrete. Exact value iteration algorithm searches for this value func-

tion by creating an exponential number of linear functions at each step, many

of which can be pruned without changing the value of the value function. The

pruning procedure is made possible by the use of linear programming.

This study �rst gives a geometric framework of the pruning procedure. It shows

that the linear programming iterations refer to the selection of di�erent convex

regions in the vector space representation of the pruning problem. We also put

forward an algebraic framework, which is the utilization and maintenance of

linear programs. It shows how the problem can be decomposed into small sized

LPs and what the LP iterations refer to. While stating these two theoretical

frameworks, their relations have also been exploited.

v



The exponential increase in the number of vectors in any step of the exact

value iteration algorithm is due to an operation called the cross-sum addition

of a set of vectors. This operation results in a new set of vectors. It is known

that for any of the summand vectors in this new set to be non-dominated, the

addend vectors entering the cross-sum addition should have intersecting support

sets. The given geometric and algebraic framework has further been extended

to exploit this particular property of the cross-sum operation.

Two novel pruning algorithms have been o�ered in this study. First algorithm,

called FastCone, can be used for pruning any given set of vectors. For a given

set of clean vectors at any step, the algorithm hastily searches for the convex

region that a dirty vector is in and tries to �nd a clean vector if only the given

set of clean vectors is not su�cient to make the decision about this dirty vector.

The second algorithm is called Cross-Sum Pruning with Multiple Objective Func-

tions, where the aim is to �nd the vectors that have non-intersecting support

sets with the current active vectors in each simplex iteration. This approach is

useful because when two vectors from two di�erent sets with non-intersecting

support sets are detected, it is possible to delete all ordered pairs containing

these two vectors. And this amounts to a simple sign check of the coe�cients of

a row of the simplex tableau.

To show the algorithms' performance, both algorithms have been compared to

the conventional algorithms and their revised versions both analytically and

experimentally.

Keywords: decision-theoretic planning, Markov decision processes, partial ob-

servability, linear programming
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ÖZ

KISM� GÖZLEMLENEB�L�R MARKOV KARAR SÜREÇLER�
�Ç�N BUDAMA ALGOR�TMALARI

Özgen, Selim

Doktora, Elektrik ve Elektronik Mühendisli§i Bölümü

Tez Yöneticisi : Prof. Dr. Mübeccel Demirekler

Kas�m 2017 , 120 sayfa

Durum, eylem ve gözlem uzay�n�n ayr�k oldu§u k�smi gözlemlenebilir Markov

karar süreçlerinde de§er fonksiyonunu parçal� do§rusal bir fonksiyon olarak gös-

termek mümkündür. Kesin de§er yineleme algoritmas�, bu de§er fonksiyonunu

ararken her ad�mda üssel say�da lineer fonksiyon yaratmaktad�r. Bu fonksiyon-

lar�n önemli bir k�sm�n� de§er fonksiyonunun de§erini hiç de§i³tirmeden elemek

mümkündür. Bu budama prosedürü lineer programlaman�n kullan�lmas� saye-

sinde mümkün olmaktad�r.

Bu çal�³ma ilk olarak budama prosedürünün geometrik bir çerçevesini vermekte-

dir. Bu çal�³mada gösterilmektedir ki, lineer programlama iterasyonlar�, budama

probleminin vektör uzay� gösteriminde farkl� d�³bükey alanlar�n seçimine denk

gelmektedir. Buna ek olarak, budama problemine cebirsel bir çerçeve de sunul-

mu³tur. Bu çerçeve lineer programlar�n in³a edilmesi ve kullan�lmas� üzerine

kurulmaktad�r. Problemin daha küçük boyutlu lineer programlar kullan�larak
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nas�l çözülebilece§i ve lineer programlar�n iterasyonlar�n�n ne anlama geldi§i an-

lat�lm�³t�r. Problemin geometrik ve cebirsel çerçevesi aras�nda ayr�ca bir ili³ki

de kurulmu³tur.

Kesin de§er yineleme algoritmas�n�n her ad�m�nda vektör say�s�ndaki üssel ar-

t�³�n nedeni verili olan vektör kümeleri üzerinde yap�lan çapraz toplama i³lemi-

dir. Bu i³lem sonucunda yeni bir vektör kümesi olu³maktad�r. Bilinmektedir ki,

yeni olu³an setteki toplanan vektörlerden herhangi birinin elenebilir oldu§unu

görmek için çapraz toplama i³lemine giren toplanan vektörlerin destek kümele-

rinin kesi³imine bakmak yeterlidir. Elinizdeki çal�³ma, verili olan geometrik ve

cebirsel çerçeveyi çapraz toplama operasyonunun özelliklerini incelemek üzere

kullanmaktad�r.

Bu çal�³mada iki yeni budama algoritmas� önerilmektedir. Bunlardan ilki olan

FastCone verili herhangi bir vektör seti için kullan�labilir. Algoritman�n herhangi

bir an�nda verili olan bir temiz vektör seti için, seçilmi³ olan kirli vektörün içine

dü³tü§ü d�³bükey alan h�zl� bir ³ekilde bulunmaktad�r. E§er bulunan çözüm, se-

çilmi³ olan kirli vektörü elemek için yeterli de§ilse bu i³lem için yararl� olabilecek

temiz vektörler bulunmaya çal�³�lmaktad�r.

�kinci algoritman�n ismi Cross-Sum Pruning with Multiple Objective Functions

olarak belirlenmi³tir. Bu algoritma ile amaçlanan herhangi bir simpleks ad�-

m�nda aktif olan vektörlerin destek kümeleriyle kesi³imi bo³ küme olan vektörleri

belirlemektir. Bu operasyonun i³levi ³öyle özetlenebilir. E§er farkl� iki kümeden

al�nan iki vektörün destek kümelerinin kesi³imi bo³ küme ise, bu iki vektörü

içeren bütün s�ral� çiftlerin elenmesi mümkün hale gelmektedir. Bu iki vektörün

destek kümelerinin kesi³iminin bo³ küme oldu§unu anlamak için ise simpleks

tablosundaki bir s�rada i³aret kontrolu yapmak yeterli olmaktad�r.

Algoritma performanslar�n� gösterebilmek için önerilen algoritmalar, konvansi-

yonel algoritmalar ve onlar�n revize edilmi³ versiyonlar� ile analitik ve deneysel

olarak k�yaslanm�³t�r.

Anahtar Kelimeler: karar kuram� temelli planlama, Markov karar süreçleri,
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k�smi gözlemlenebilirlik, lineer programlama
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CHAPTER 1

INTRODUCTION

Decision making under uncertainty has been a subject of interest since the

1960s [1�4]. The milestone for the research has undoubtedly been the inven-

tion of dynamic programming in the 1950s [5�8]. Dynamic programming was

theoretically exciting, but at the same time it was computationally expensive.

Due to the lack of computational capacity, the application areas remained re-

stricted until the 1980s. As the inventor of the algorithm, Richard Bellman

notes [9], �I was prepared to face up to the challenge of using dynamic program-

ming as an e�ective tool for obtaining numerical answers to numerical questions.

A considerable part of the motivation in this direction at that time was the con-

tinuing development of the digital computer... It is far more di�cult to obtain

an e�ective algorithm than one that stops with a demonstration of validity.�

Yet, dynamic programming has proved to be much more than its theoretical

rigor and many algorithms exploiting this framework have been developed to

come up with exact and approximate solutions to the planning problem.

This thesis is a contribution to the exact representation of the value function

in �nite horizon for partially observable Markov decision process. A partially

observable Markov decision process (POMDP) models an agent acting in an

uncertain environment with imperfect actuators and noisy sensors. Due to im-

perfect actuators, the e�ect of the action might not be deterministic and that

brings forward the use of a probabilistic model for the state transition with re-

spect to the selected action. Moreover, the noise in sensors causes the state to be

observed partially; thus we need to de�ne a probabilistic relation for receiving
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an observation when any state and action couple is given. Note that although

the state transitions and observation probabilities are de�ned with respect to

the action taken, the model is not complete as there is no incentive for the agent

to act. This incentive is given in the form of a reward function; the agent is

given a reward for acting in a particular way depending on its state. For a given

planning horizon, this reward model is used to calculate the cumulative reward

for any given sequence of actions. This cumulative reward is called the value

function.

Above framework is eligible for many real life problems that require complex

models. Therefore POMDPs have received much attention and applied in diverse

areas such as preference elicitation for di�erent uses of an intelligent system [10],

dialogue management [11], radar resource management [12], scheduling in sensor

networks [13], healthcare [14�17], target tracking [18], collision avoidance [19],

etc. Even though POMDPs provide the possibility for modeling various phenom-

ena, the huge computational cost for coming up with an exact solution limits

its use.

The value function of a POMDP can be calculated by dynamic programming.

Moreover, when the model has discrete state, action, and observation spaces,

the value function comes out as a piecewise linear convex function for any �nite

planning horizon [20]. A piecewise linear convex function can be represented by

a set of vectors where each vector is used to represent the value function for some

convex subset of the solution set. However during the dynamic programming

update, the number of possible vectors grows linearly with the cardinality of

the action set and exponentially with the cardinality of the observation set [21].

Even in the �nite horizon planning case, �nding the optimal policy which maps

the belief states to actions is a PSPACE-hard problem [22].

Improving the scalability of solution methods for POMDPs has been a critical

research topic since the 1970s [23�25], but the attention reached a peak at the

beginning of 2000s. This is due to point based value iteration algorithms, where

the value function computations are done only for a �nite subset of the belief

space [26�28]. For the in�nite horizon problem with a discount factor, the value

2



iteration algorithm is a contraction mapping on bounded real functions [29].

Many of the point based algorithms exploit the properties of the error bound for

this contraction mapping [30�32]. There are also approximate solutions of the

optimal planning problem by policy iteration where the policy search has been

realized in a set of restricted policy space [33, 34]. In any of these algorithms,

a number of iterations is necessary for attaining to a predetermined bound on

the error of the value function [35]. Yet for the �nite horizon case, it is not easy

to give an estimate of the error bound between the optimal and approximate

value functions. It is still possible to use heuristic solvers, but we can safely say

that there is a trade-o� between accuracy and speed of the solution. When high

accuracy of the solution is required, the use of exact value iteration algorithms

is inevitable.

The computation of all possible vectors for each step of the exact value iteration

algorithm is quite straightforward. But this set of vectors should be pruned to

a minimal subset retaining the same value function over the state space. The

task of removing the useless vectors is typically known as pruning and is done

by solving a number of linear programs (LPs). The number of linear programs

to be solved for pruning a set of vectors is directly related to the initial number

of vectors in the set. With an exponential increase in the number of vectors, the

number of LPs dramatically increases even for a small planning horizon. Thus,

most of the time in the dynamic programming update is spent for solving these

LPs.

To deal with this bottleneck, this thesis focuses on the particular structure of the

linear programs to be solved in the pruning operation [24,28,36,37]. In this work,

we give a geometric framework of the pruning procedure by using the vector

state representation of the value function. The dual representation of the value

function of �nite horizon POMDPs in belief set and vector space has been noted

by Zhang [38]. We demonstrate what primal and dual simplex iterations mean

for any given set of vectors in the vector space representation of the problem.

We show that the linear programming iterations refer to the selection of di�erent

convex regions in the vector space representation of the pruning problem. All

steps of this problem is discussed in tandem with an algebraic framework which

3



has also been explained in great detail. By the algebraic framework we refer to

the construction and utilization of linear programs. The exhaustive explanation

of the relation between the algebraic and geometric frameworks is a contribution

of this thesis. This study shows how the problem can be decomposed into small

sized LPs and what each LP iteration refers to.

In any step of the exact value iteration algorithm, the input vectors are �rst

multiplied by di�erent projection matrices resulting in multiple set of vectors.

After this operation, the Cartesian product of these new set of vectors are taken.

Each n-tuple refers to a di�erent selection of vectors and the vectors in an n-

tuple are summed up to �nd an action dependent value function vector. This is

called as the cross-sum addition 1 of a set of vectors and there is an exponential

increase in the number of vectors is due to the cross-sum addition. There is a

�eld of research that exploits the properties of the dynamic programming update

steps to decrease the complexity of the LPs to be solved, many of which attack

the special structure of the cross-sum operation [41�45]. The given geometric

and algebraic framework has further been extended to exploit this particular

property of the cross-sum operation.

Finally, we o�er two novel pruning algorithms based on the theoretical frame-

work presented in this study. The �rst algorithm is called FastCone. For a given

set of clean vectors, the algorithm quickly searches for the convex region that a

dirty vector is in and searches for another clean vector if only the current set of

clean vectors is not su�cient to prune this dirty vector. The second algorithm

is called Cross-Sum Pruning with Multiple Objective Functions, where the aim

is to �nd the vectors that have non-intersecting support sets with the current

active vectors in each simplex iteration. Due to the properties of the cross-sum

operation, vector elimination is performed without explicitly writing all of the

dirty vectors to the simplex tableau.

All codes of the existing and novel algorithms are written in MATLAB environ-

ment. In any of the algorithms presented, Bland's rule has been used [46] for the

1 This operation is well known in convex analysis and de�ned as Minkowski addition [39]. The

term was named after the founder Hermann Minkowski [40]. We will stick to the term cross-sum

addition as preferred in the decision theoretic planning community.
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simplex iterations and the degeneracy of the simplex iterations has been solved

by the Harris ratio test [47]. The novel algorithms are compared to the existing

algorithms both analytically and experimentally.

This thesis is structured as follows. Chapter 2 gives a rigorous overview on the

decision-theoretic planning for the discrete state, action, and observation space.

This chapter discusses the properties of the value function for POMDPs and

gives an upper-bound complexity result for the calculation of the exact value

function for a given planning horizon. Chapter 3 discusses the pruning problem

for where an arbitrary set of vectors are reduced to a minimal set where each

vector is maximal at some belief state. Known pruning algorithms are discussed

and the pruning problem is explained in an algebraic and geometric framework.

Chapter 4 exploits the theoretical framework for the cross-sum operation where

the number of vectors increase exponentially. Chapter 5 concludes this study.
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CHAPTER 2

DECISION-THEORETIC PLANNING UNDER

UNCERTAINTY

2.1 Introduction

Decision-theoretic planning means deciding on a sequence of actions for an agent

in an environment to complete a task. Two important concepts will be described

here. Agent and its interaction with its environment is called the system. The

information that is necessary for deciding on the sequence of actions is called

as the state. The sequence of actions taken is called the decision process and

�nding the sequence of actions that are optimal in some sense is called the

decision theory.

While there is uncertainty in the system, the future behavior is not completely

unforeseeable by looking at its present state and future control actions, as in a

deterministic system. The uncertainty in the system can be due to two di�erent

reasons: there can be an uncertainty about the consequences of the actions taken

or there can be an uncertainty about what we observe about the state. The

property of the uncertainty completely changes the approach to the problem.

In this thesis, we will deal with sequential decision problems in a discrete time

framework. That means that at every discrete time step, a decision about the

system should be made and this decision a�ects the system state in the following

time steps. The number of decisions to be made can be �nite or in�nite regarding

to the number of time steps taken into consideration [20, 44, 48]. Both of these

problems have been thoroughly dealt with. Yet, our focus will be on �nite
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horizon problems and the in�nite horizon case will be mostly explained for the

sake of completeness.

2.2 Markov Decision Processes

Markov Decision Process (MDP) is a useful tool for sequential decision making

in a stochastic environment [49]. MDP actually refers to completely observable

MDP where the state of the agent can be directly observed. Yet, completely

knowing the state does not make the system deterministic. What makes it

di�erent from a deterministic system is that the agent is not sure about the

consequences of the action she takes. However, once the action is taken, the state

of the agent at the following discrete time step can also be directly observed.

How does the Markovian property come into the picture? The Markovian prop-

erty asserts that knowing the current state information at any point in time

is enough to act optimally. When the state transition is Markovian, the past

states and actions become irrelevant to the estimation of the future states once

the current state is known.

After giving a verbal description of the problem, we will now depict it formally.

For this, we need to �rst de�ne the support set of the variables used. In math-

emathical terms, MDP is de�ned as (S,A, T ,R), where;

• S corresponds to a �nite set of world states where each state will be de-
noted by s ∈ S

• A is a �nite set of actions that the agent can execute where each action
will be denoted by a ∈ A

• T : S ×A× S → [0, 1] de�nes the transition probability distribution
p(s′|s, a) that describes the e�ect of action a on the state of the world.
s′ ∈ S is a random variable that described the state after action a is taken
when state was s. This transition function models the stochastic nature
of the environment.

• r(s, a) ∈ R corresponds to the reward models S ×A → R that the agent
receives for executing action a when the state is s.
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Figure 2.1: MDP In�uence Diagram

MDP assumes that at any time step t, the system is at a state s and the agent

takes an action a and receives a deterministic reward r(s, a) from the environ-

ment as a result of this action. The system switches to a new state s′ according

to a known stochastic model p(s′|s, a). Due to this uncertainty in the transitions,

the states in the future time steps cannot be known exactly at time t.

While we search for the the best action we can take, we should also use our

information about the future states to decide on the future actions. We will

de�ne the variables st, at as the state and action at the time step t, respectively.

The values of these variables are not known before time t. When the sequence

of actions are known, st becomes a random variable de�ned over S. Note that
the agent can decide on her decisions in advance and apply this strategy no

matter what the state is. In such a case, there won't be any ambiguity about

which action is selected. However, if the agent decides on selecting her future

actions with respect to the future values of the states, an uncertainty about the

actions arise. In this case, at becomes a function of the future state and has

a random distribution over A. As any function of a random variable is also a

random variable, rt := r(st, at) also becomes a random variable distributed over

R. The in�uence diagram for a Markov decision process can be seen in Figure

2.1.

We would like to make a clari�cation here. The transition probability distribu-

tion p(s
′ |s, a) and the reward model r(s, a) can also be changing with time; and

in such a case, we would need to de�ne pt(s
′ |s, a) and rt(s, a). Such an attempt

would be necessary if the agent's interaction with the environment is changing

with time. Note that the Markovian property would be preserved in this case.

In our case, the system model is stationary. Therefore rt = r(st, at).
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The Markov property entails that the random variable st+1 is only dependent on

the distribution of the previous state st and action at. In mathematical terms,

p(st+1|st, . . . , s0, at, . . . , a0) = p(st+1|st, at)

As there are a �nite number of states, de�ne D := |S|. Then, this probability

distribution can be described by a matrix P(a) ∈ RD×D
≥0 , as follows:

(P(a))ij := p(st+1 = j|st = i, at = a) (2.1)

Similarly, we de�ne the immediate reward function as a vector r(a) ∈ RD×1, as

follows:

(r(a))i := r(st = i, at = a) (2.2)

2.2.1 Optimality Criteria

How do we de�ne the best action to take at time t? For the sake of simplicity

we will assume that t = 0. As the state is completely observable, the value of s0

is known. But, as we have seen from the previous section, the future state and

actions can only be known probabilistically. Therefore our aim would be to �nd

the sequence of decisions that would maximize some form of long term reward.

De�ne this as a function of the rewards J(r0, . . . , rN) where N is the planning

horizon. This function would clearly be a stochastic function.

One reasonable candidate for the performance measure then would be the ex-

pectation of the sum of rewards:

J(r0, . . . , rN ; s0) = ERN

(
N∑
t=0

rt

∣∣∣∣∣s0

)
= ESN

(
r(sN) +

N−1∑
t=0

r(st, at)

∣∣∣∣∣s0

)
(2.3)

where E(.) is the expectation operator, RN = r0:N , SN = s0:N . The important

observation here is that the only random quantity in this expectation is the

states. The actions become random when they are described as functions of the

states.

As mentioned before, our aim is to �nd the best sequence of actions {at}N−1
t=0

that would maximize the reward function J(.). The strategy used for selecting
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an action is called a policy. The policy decision can be made without considering

the system state and this is called an open loop policy. In this case, the sequence

of actions can be determined at time t = 0 as our decisions are not dependent

on the value of the future states. On the other hand, we can use the information

about the system state for deciding on the action at each time step t. This is

called a closed loop policy. Clearly, using a closed loop policy can alleviate the

uncertainty inherent to the system as it considers the state of the agent while

executing the action at each time step. However, in this case, it is not possible

determine a sequence of actions to be executed at time t = 0, as we would prefer

to see the state at any time to decide on the preferable action. However, it is

still possible to de�ne a mapping from the states to the actions for each time

step t = 1, . . . ,N when we are at time t = 0. As the policy can be evaluated for

each time step at t = 0, it can be applied as soon as the states at the next time

steps become available. The evaluation of this closed loop policy is what we

refer as planning. Moreover as discussed in [50], an open loop policy is actually

a degenerate case of closed loop policy.

Therefore, a closed loop policy is a mapping from the support set of the states

to the actions. In mathematical terms, it can be de�ned as µ(s) : S → A. If the
policy de�nition changes with time, then it becomes µt. For a �xed planning

horizon N , we need to also de�ne a plan, which is a sequence of policies for each

time step 0 ≤ t < N . In mathematical terms, a plan is π = {µ0,µ1, . . . ,µN−1} :

S × S . . .× S → A×A . . .×A.

When we decide on a closed loop plan π, the expected cost 2.3 becomes

Jπ(s0) = E

(∑
t

r(st,µt(st))

∣∣∣∣∣s0

)
(2.4)

Here E(.) denotes the expectation with respect to probability distribution of {st}
and {at} determined by µt. Note that, when the plan π is �xed, this expectation

can be calculated if the value of the initial state, s0 is known.

Recall from 2.1 that for a given action a, the transition probability distribution

can be represented in the form of a matrix P(a). When a policy µ is �xed, it is
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also possible to de�ne the vector r(µ) ∈ RD×1 and matrix P(µ) ∈ RD×D
≥0 :

(r(µ))j = r(j,µ(j)) (2.5)

(P(µ))ij = P(µ(i))ij (2.6)

De�ne ei ∈ R1×D
≥0 ,

∑
j ei(j) = 1 such that ei(i) = 1. Assume that at t = 0 it is

known that s0 = i. Then the prior distribution of the state is p0 = ei.

Jπ(i) =
N∑
t=0

D∑
j=1

p(st = j|s0 = i, a0 = µ0(i))r(j,µt(j)) (2.7)

Jπ(i) =
N∑
t=0

ei(P(µ0) . . .P(µt))r(µt) (2.8)

Thus, the best Markov plan π∗ would be the one maximizing this reward func-

tion. Note that for an open loop control sequence independent of the states, the

calculation of Equation 2.8 would be trivial because P(µk) = P(ak) for some

�xed value of ak ∈ A. With a closed loop Markov plan, this problem becomes

nontrivial and can be solved by dynamic programming [6].

2.2.2 Dynamic Programming

Dynamic programming is a technique for calculating the reward of a Markov

plan, π [7]. The technique depends only on the fact that the state process

corresponding to π is Markov. That is to say, for any �xed plan π and any time

step t if st = i is given, the calculation of the expected cost for the future time

steps can be done independent of the past states of the system.

De�ne V π
t (i) for some �xed plan π = {µ0,µ1, . . . ,µN−1} as:

V π
t (i) = E

(
r(sN) +

N∑
k=t

r(sk,µk(sk))

∣∣∣∣∣st = i

)
(2.9)

V π
t (i) =

N∑
k=t

ei(P(µt) . . .P(µk))r(µk) (2.10)

where ei ∈ R1×D
≥0 ,

∑
j ei(j) = 1 and ei(i) = 1.

Now, de�ne the column vector (Vπ
t )i = V π

t (i). Then it is possible to write the
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following the backward recursion formula for all 0 ≤ t < N ,

Vπ
t = r(µt) + P(µt)V

π
t+1 (2.11)

It can be seen that

Jπ(s0) =
D∑
i=1

p(s0 = i)(Vπ
0 )i (2.12)

starting with the �nal condition (Vπ
N)i = r(i,µN(i)).

It is shown in [8, 50] that for the optimal policy π∗, we can write

(Vπ∗

t )i = sup
a∈A

ei

(
r(a) + P(a)Vπ∗

t+1

)
(2.13)

where the supremum is calculated separately for each component of the column

vector Vπ∗
t . Assume that for st = i, the maximum value for (Vπ∗

t )i is given by

at = k. Then µ∗t (i) = k. Moreover,

Jπ
∗
(s0) =

D∑
i=1

p(s0 = i)(Vπ∗

0 )i

When the planning horizon N = ∞, a stationary and deterministic policy is

available. For this case, policy and plan can be used interchangeably while

the optimal plan becomes the application of the optimal policy at every time

step [49, 50]. As we will deal with the �nite horizon case in this thesis, we will

not go into the details of this derivation.

2.3 Partially Observable Markov Decision Processes

The main distinction between MDPs and POMDPs is in the information one

uses to select an action. For the MDP case, as shown in Equation 2.13, the

policy µ∗t is calculated by �xing st = i and calculating Vπ
t for all possible values

of at = a, a ∈ A. As both S and A are �nite, this is a viable operation. This

assumption is possible because at time t, the process state st will be known with

certainty.

For POMDP, actions are based only on the available information that consists

of previous observations and actions. Observations correspond to features of
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Figure 2.2: POMDP In�uence Diagram with an emphasis on incoming and
outgoing branches to variable at. To stress that the state is a hidden variable,
the branches related to the states are shown with dashed lines.

the world directly perceptible by an agent's sensors. In the case of partial

observability, the mathematical de�nition becomes (S,A, Θ, T ,O,R), where;

• Θ is a �nite set of observations where each observation will be denoted by
o ∈ Θ

• O : Θ × S × A → [0, 1] de�nes the observation probability distribution
p(o|s, a) that models the e�ect of actions and states on observations

Adding to our discussion on MDPs, we will also de�ne the random variable ot,

which is the observation at time t. Obviously, the value of ot is not known before

time t.

The di�erence between the two models can be understood by comparing Fig-

ure 2.1 and 2.2. In Figure 2.1, the action is taken directly by knowing the state

we are in at each time step. In Figure 2.2, we can see that as the states are

not completely observable by the decision agent, all observations and past de-

cisions are used to estimate the state and the action is taken according to all

information in hand.

Optimal behavior in a POMDP requires access to the entire history of the pro-

cess. This statistic is known as an information state or belief state. An informa-

tion state represents all information available to the agent at the decision time

that is relevant for the selection of the optimal action.
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In mathematical terms, de�ne I t := (o0, . . . , ot, a0, . . . , at−1). Note that, I t has

all the information available to the user at time t. We are interested in �nding

the state distribution at time t, therefore we de�ne B = Π(S) to be the space of

all probability distributions over S. Then, B is a unit-D simplex.

De�nition 1. Unit-D simplex is de�ned as

B = {b ∈ R1×D
≥0 : be = 1} (2.14)

where e = [1 . . . 1]T .

As can be seen from De�nition 1, unit-D simplex is set in a D − 1 dimensional

space.

De�nition 2. The probability distribution over S at any time t can be de�ned

as

bt(i) = p(st = i|It), bt ∈ B, 1 ≤ i ≤ D (2.15)

Keeping in mind that I t+1 = (I t, ot+1, at), and using the Bayes' rule [20],

bt+1(i) = p(st+1 = i|I t+1) (2.16)

= p(st+1 = i|I t, ot+1 = o, at = a) (2.17)

=
p(st+1 = i, ot+1 = o|I t, at = a)

p(ot+1 = o|I t, at = a)
(2.18)

=

∑
j p(st+1 = i, ot+1 = o|st = j, I t, at = a)p(st = j|I t, at = a)

p(ot+1 = o|I t, at = a)
(2.19)

=

∑
j p(ot+1 = o|st+1 = i, st = j, I t, at = a)p(st+1 = i|st = j, I t, at = a)bt(j)

p(ot+1 = o|I t, at = a)

(2.20)

=
p(ot+1 = o|st+1 = i, at = a)

∑
j p(st+1 = i|st = j, at = a)bt(j)

p(ot+1 = o|I t, at = a)
(2.21)

We can see that, the denominator of Equation 2.21 is actually a normaliza-

tion factor. We have also written Equation 2.17 explicitly to stress that the

observation ot+1 and the action at are already known by the agent at time t+ 1.

Using Equation 2.1 and de�ning the diagonal matrix (D(a, o)) ∈ RD×D
≥0 :

(D(a, o))ii := p(ot+1 = o|st = i, at = a), 1 ≤ i ≤ D (2.22)

(D(a, o))ij := 0, 1 ≤ i, j ≤ D, i 6= j (2.23)
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we arrive at

bt+1 =
btP(a)D(a, o)

btP(a)D(a, o)e
(2.24)

where at = a, ot+1 = o and e is de�ned before.

It means that when we have the belief vector bt at time t and make a decision

at = a and observe ot+1 = o according to our decision, we can update our

belief vector to bt+1. There is no more information available at any of the past

observations and actions while deriving bt+1 when bt is known. Due to this

reason the belief state, bt is called the su�cient statistics for POMDPs. By the

aid of the belief state, POMDPs can be represented as belief-state MDPs; thus

allowing the use of the properties of MDPs. The equivalence of information

state and belief state representation of the problem is shown in Figure 2.3.

2.3.1 Optimality Criteria

The performance measure can be taken similar to Equation 2.3:

J(b0) = ERN

(
N∑
t=0

rt

∣∣∣∣∣b0

)
= ESN

(
r(sN) +

N−1∑
t=0

r(st, at)

∣∣∣∣∣b0

)
(2.25)

As in the MDP case, we are searching for the best actions to take to maximize

this reward function. We need to de�ne a policy µt for each time step. If the

states were available, we would be able to de�ne this policy by considering the

states. As the states are not completely observable, we need to use the infor-

mation state I t to give our decision. Note that bt is equivalent in the amount

of information it carries with the information state I t. In Equation 2.25, it

is required to take the expectation of the states in the planning horizon. If

at any time step, the information we have about the state st is its distribu-

tion bt, then the result of the expectation would become a function of bt. In

mathematical terms, for a �xed action a, Est (r(st, a)|I t) = btr(a). Recall that

bt = f(bt−1, ot, at−1), where f(.) is the function described in Equation 2.24. Then

bt = τ(b0, I t).

Assume that the value of bt−1 is known. Note that, if we have decided on an

action for every possible value of the belief state, then we know which action
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Figure 2.3: The �rst �gure uses the POMDP framework for expressing the
evolution of the complete information state at each timestep. We will call this
�gure as the Information State In�uence Diagram. This complete information
state at each timestep can be summarized as the belief state, which demonstrates
the Markovian property. Thus, the second �gure is called as the Belief State
MDP In�uence Diagram
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to take for the particular value of bt−1. After observing ot, we can update the

belief state to bt. This shows us that, if we de�ne our policy as µt(b) : B → A,
the Markovian property will be preserved. Then, for a �xed planning horizon

N and a given plan π = {µ0,µ1, . . . ,µN−1} : B × B . . . × B → A × A . . . × A,
the recursive formula in Equation 2.24 is calculable if the observation sequence

Ot := (o0, . . . , ot) is known. Then we can write bt = fπ(b0,Ot). Then, for a given

observation sequence Ot := (o0, . . . , ot), the expected value of the immediate

reward at time t for plan π would be:

E
(
r(st, at)

∣∣b0,Ot, π
)

= btr(µt(bt)) (2.26)

= fπ(b0,Ot)r(µt(f
π(b0,Ot))) (2.27)

= gπ(b0,Ot) (2.28)

Therefore, for a �xed plan π, the immediate reward rt becomes a function of

observation sequence Ot and prior belief b0. At time t = 0, as the observations

are not known in advance, we need to take an expectation over Ot to calculate

the expected value of rt. Moreover, Ot+1:N−1 := (ot+1, . . . , oN−1) does not play

any role on this calculation.

2.3.2 Dynamic Programming

Here we will de�ne a iterative method for calculating the value function over the

belief space B. For any time t, if bt is known, the values of Ot become irrelevant

for the calculation of the expected value of rk where k > t. Therefore de�ne

V π
t (b) for some �xed plan π = {µ0,µ1, . . . ,µN−1} as:

V π
t (b) = EOt+1:N−1

(
rπ(sN) +

N−1∑
k=t

rπ(sk,µk(bk))

∣∣∣∣∣bt = b

)
(2.29)

Note that

V π
N (b) = br(µN(b)) (2.30)
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Moreover,

V π
t (b) = br(µt(b)) + Eot+1

(
V π
t+1(bt+1)

∣∣bt = b
)

(2.31)

= br(µt(b)) + Eot+1

(
V π
t+1(f(bt, ot+1, at))

∣∣bt = b
)

(2.32)

= br(µt(b)) + Eot+1

(
V π
t+1(f(b, ot+1,µt(b))

)
(2.33)

= br(µt(b)) +
∑
o∈Θ

p(o|b,µt(b))V π
t+1(f(b, o,µt(b))) (2.34)

where p(o|b, a) is the probability of observing o for the belief state b when

action a is executed. Similar to Equation 2.24, we can write p(o|b,µt(b)) =

bP(µt(b))D(µt(b), o)1 as µt(b) and o are �xed values. As µt(b) ∈ A, there are

only a �nite number of possibilities for the policy selection for a given belief

state b. Then switching to the optimal plan π∗,

V ∗t (b) = max
a∈A

(
br(a) +

∑
o∈Θ

p(o|b, a)V ∗t+1(f(b, o, a))

)
(2.35)

where r(a) is the immediate reward function given in the vector form, V ∗t is the

value function to be backed up at each time step. f(b, o, a) is the updated belief

state after action a is executed and observation o is experienced. As a reminder,

the calculation of f(b, o, a) is given in Equation 2.24. For notational convention,

bao := f(b, o, a). Note that, as V ∗t+1(.) is the optimal value function from time

t+1 to N for all b ∈ B, determining the optimal policy µ∗t (.) becomes a separate

problem then calculating V ∗t+1(.).

2.4 Properties of the Value Function in POMDPs

Sondik and Smallwood [20] showed that the optimal �nite horizon value function

is piecewise linear and convex (PWLC) for any planning horizon N . PWLC

property is useful because it allows the value function to be represented using

�nite resources. Assume that for some vector set Γt+1, the value function at

time t+ 1 can be written as

V ∗t+1(b) = max
γ∈Γt+1

b · γ (2.36)

In this section, we want to state some properties of Equation 2.36 as these

would be useful for de�ning V ∗t (b). De�ning γ = [γ(1) . . .γ(D)]T , we will arrive

19



at b.γ :=
∑D

l=1 b(l)γ(l) = bγ. Therefore, the value function V ∗t+1 in Equation

2.36 can be represented by a number of vectors represented by Γt+1.

One candidate for V ∗t+1(b) when D = 2 is shown in Figure 2.4. As be = 1, the

belief set B can be represented by a line. Each linear segment corresponds to a

hyperplane over some closed subset of the belief set and can be represented by

an D-vector of coe�cients, which is shown as γ in Equation 2.36. While our

aim here is to de�ne the general properties of the value function for any given

time step, the time index will be dropped and the set Γt+1 will be denoted by

Γ̄ = {γi}Ni=1, where γi ∈ RD
+ , D � N .

Figure 2.4: An example value function for a POMDP with two states

Each vector in Figure 2.4 corresponds to a policy tree. It is possible that a policy

tree might represent the optimal strategy at some point in the belief space and

contribute to the computation of the optimal value function. However, if a policy

tree, or the vector representing it, is not optimal for any belief state, there is no

need to keep that policy in memory. In mathematical terms,

De�nition 3. The support set of γi ∈ Γ̄ is de�ned as;

R(γi, Γ̄) = {b ∈ B : bγi > bγj, ∀γj ∈ Γ̄− {γi}} (2.37)

The following property follows from the convexity of the value function.

Lemma 2.4.1. The support set of any vector is a convex set.
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Proof. Suppose b1, b2 ∈ R(γi, Γ̄) and γj ∈ Γ̄, i 6= j. Now pick any belief state

b = λb1 + (1− λ)b2, 0 ≤ λ ≤ 1.

bγi = (λb1 + (1− λ)b2)γi

= λb1γi + (1− λ)b2γi

> λb1γj + (1− λ)b2γj

= bγj

�

De�nition 4. If R(γi, Γ̄) = ∅, then vector γi is dominated by the set of vectors

Γ̄.

Therefore, for any γi ∈ Γ̄, if γi is dominated, then it can be deleted. A useless

policy tree is equivalent to a dominated vector. Similarly if R(γi, Γ̄) 6= ∅, we
will call it a non-dominated vector.

De�nition 5. Any point b ∈ R(γi, Γ̄) is called a witness point for vector γi

relative to the set Γ̄.

De�nition 6. The witnessed vector for a belief state relative to the set Γ̄ is

de�ned by

w(b, Γ̄) := arg max
γi∈Γ̄

bγi

There can be more than one witness vectors in some belief state points, that is

w(b, Γ̄) is not a one-to-one function.

Therefore b ∈ R(γi, Γ̄) ⇐⇒ γi ∈ w(b, Γ̄).

De�nition 7. A set Γ̄ is called dirty if ∃γi ∈ Γ̄ such that R(γi, Γ̄) = ∅

De�nition 8. For a given dirty set Γ̄, the clean set, Γ, is de�ned as follows:

γi ∈ Γ ⇐⇒ R(γi, Γ̄) 6= ∅ (2.38)

Therefore, R(γi, Γ̄) = R(γi, Γ). We will call this operation pruning and de�ne

it as follows;
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Figure 2.5: Belief State Partition

De�nition 9. The operator PR(.) �nds the clean set for any given dirty set Γ̄.

Therefore,

Γ = PR(Γ̄)

Notice that the exact value function in Figure 2.4 can be represented by using

the clean set of vectors as shown in Figure 2.5. This thesis is mainly about

the pruning operator de�ned by PR(.). There are two legitimate questions that

can be raised. The �rst question is; how fast is the pruning operator? For any

given dirty set Γ̄, how fast do we achieve the clean set Γ. This question will

be answered in Chapter 3. The second question is; how e�cient is the pruning

operator? Note that, we haven't described so far the dirty set Γ̄. We have only

noted that there will be an increase while passing from the set Γt+1 to Γt and

then this set Γt should be pruned to a minimal set. If it is possible to create

a smaller set Γt in the �rst hand, then the pruning operation will obviously be

faster. This question will be answered in Chapter 4.

We can make an immediate observation for the pruning operation introduced in

De�nition 9 at this point. Note that in Figure 2.4, vector γ4 is never able to

determine the value function, because for every value of b ∈ B, γ1 would have

a higher value. This basic mechanism for vector pruning is called as pointwise

domination and can be formally shown as follows;

Lemma 2.4.2. Let γi,γj ∈ Γ̄. If γi(l) > γj(l), 1 ≤ l ≤ D, then vector γj is

dominated by γi.
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Proof. For any b ∈ B, we can write bγi > bγj as b ≥ 0T . �

However, it is not possible to prune all dirty vectors and arrive at the clean set

shown in Figure 2.5 by only using Lemma 2.4.2. The pruning operation will be

discussed in detail in Chapter 3. But before going into the details of the pruning

operation, we want to discuss how the vectors are created in each time step of

the planning horizon in the following section.

2.5 Exact Value Iteration

Recall that our aim is to calculate the optimal value function J∗(b),∀b ∈ B for

a �xed planning horizon N . For this, we start from V ∗N(b) and try to calculate

V ∗0 (b) = J∗(b). As seen from the previous section, this means to compute V ∗t
from V ∗t+1. We will now show that this is equivalent to compute the set Γt from

the set Γt+1.

Using Equations 2.35 and 2.36 and de�ning R(a, o) := P(a)D(a, o),

V ∗t (b) = max
a∈A

(
br(a) +

∑
o∈Θ

p(o|b, a) max
γ∈Γt+1

baoγ

)
(2.39)

V ∗t (b) = max
a∈A

(
br(a) +

∑
o∈Θ

p(o|b, a)baow(bao, Γt+1)

)
(2.40)

V ∗t (b) = max
a∈A

(
br(a) +

∑
o∈Θ

bR(a, o)e
bR(a, o)

bR(a, o)e
w(bao, Γt+1)

)
(2.41)

V ∗t (b) = max
a∈A

(
br(a) +

∑
o∈Θ

bR(a, o)w(bao, Γt+1)

)
(2.42)

We want to show that it is possible to �nd a vector set Γt such that,

V ∗t (b) = max
γ∈Γt

bγ (2.43)

Then it easily follows that,

J∗(b) = V ∗0 (b) = max
γ∈Γ0

b · γ (2.44)

Note that we have not discussed yet how to �nd the set Γt described in Equation

2.43. Before going into the mathematical details of arriving from Equation 2.42
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to Equation 2.43, we want to discuss the procedure verbally. Note that we can

�rst calculate 2.42 for each a ∈ A and then take the outer maximization. Then

for a �xed value of a, since the �rst summand is �xed, if the second summand

is PWLC then the whole summation would be PWLC. Finally for the second

summand, the summation of a set of PWLC functions is a also PWLC function.

In mathematical terms, optimal �nite horizon POMDP value function given in

Equation 2.35 can be written in a series of related value functions in terms of

vector operations;

V ∗t (b) = max
a∈A

V ∗,at (b) (2.45)

V ∗,at (b) =
∑
o∈Θ

V ∗,a,o
t (b) (2.46)

V ∗,a,o
t (b) =

1

|Θ|
br(a) + p(o|b, a)V ∗t+1(bao) (2.47)

Equations 2.45, 2.46, 2.47 show a way to decompose Equation 2.35 into smaller

parts while calculating one step of the dynamic programming algorithm. Using

Equations 2.47 and 2.42 and De�nition 6,

V ∗,a,o
t (b) =

1

|Θ|
br(a) + bR(a, o)w(bao, Γt+1) (2.48)

In Equation 2.48, there is a nontrivial maximization w(bao, Γt+1) which should be

calculated for the whole belief set B for any �xed values of a and o. As Sondik

and Smallwood note [20], w(bao, Γt+1) is a �nitely valued function of b. As V ∗t+1(.)

is a convex function and bao is a continuous function of b, w(bao, Γt+1) partitions

the belief set into a �nite number of regions such that w(bao, Γt+1) is single valued

over each region.

Note that the calculation of Equation 2.48 should be repeated for |A| × |Θ|
times. Once the vector that gives the maximum value for each belief state b ∈ B
is found, Equations 2.45, 2.46 should also be performed for the whole belief set

B. It is also possible to write Equation 2.48 in vector form as follows,

γa,o
t (b) =

1

|Θ|
r(a) + R(a, o)w(bao, Γt+1) (2.49)

Note that γa,o
t here is a function of b, due to the term w(bao, Γt+1). Assume that

γi = w(bao, Γt+1). As we know that R(γi, Γt+1) is a connected subset of B, we can
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see that this function has a constant value as long as bao ∈ R(γi, Γt+1). Then,

γat (b) =
∑
o∈Θ

γa,o
t (b) (2.50)

Finally,

dt(b) = arg max
a∈A

bγat (b) (2.51)

γt(b) = γ
dt(b)
t (b) (2.52)

2.6 The Computational Complexity of Exact Value Iteration

To have an idea about the complexity of the problem, we will �rst �gure out an

upper bound for the number of calculations needed. Assume that we seek to �nd

the expected reward for a known belief state b at time t. From Equation 2.49, we

can see that it is necessary to calculate bao for any selection of o and a. Assuming

that we have a stationary system model (i.e., �xed P(a) and D(a, o) matrices),

we can prepare the matrices R(a, o) = P(a)D(a, o) for each selection of o and

a. The multiplication bR(a, o) amounts to D2 multiplications and D × (D − 1)

additions. Therefore, the complexity of calculating each bao is O(|A|× |Θ|×D2).

If Γt+1 is known, then the calculation of w(bao, Γt+1) is possible by |Γt+1| × D

multiplications and |Γt+1| × (D − 1) additions. As the maximum vector should

be found for each bao, the total complexity becomes O(|Γt+1|×D×|A|×|Θ|×D2)

In a recursive manner, for a �xed planning horizon N and a prior belief b = b0,

the computational complexity of calculating J∗(b0) would be O(|A|N × |Θ|N ×
D2N). The complexity due to calculating w(bao, Γt+1) is discarded in this case, as

it is not necessary to calculate |Γt|, 0 ≤ t ≤ N , to �nd the value of J∗(b0). How-

ever, this number of operations are necessary for each belief point selected. Now

assume that, we have calculated the set Γ0. Then, the expected accumulated

reward could be calculated by the vector multiplications described in Equation

2.44 which amounts to a complexity of O(D × |Γ0|). As the number of belief

states are uncountably in�nite, after the number of belief states exceeds a cer-

tain number, it will become cost e�ective to calculate the set Γ0 then calculating

point based value iterations for each belief state. This is surely dependent on
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the problem de�nition. For instance, if the system model is not stationary (i.e.,

the transition probability pt(s′|s, a) or the observation probability pt(o|s, a) is

changing with time), the set of vectors in Γ0:N cannot be used for the value

function calculation in the future time steps.

Therefore it is important to calculate Γ0 for a given planning horizon N . In an

iterative manner, this problem is equivalent to calculating Γt when Γt+1 is given.

Equation 2.36 shows that the set Γt will be a �nite set of vectors, but the series

of equations does not immediately show how to �nd these vectors. The idea

proposed by Monahan in [21] gives an upper bound of the complexity of exact

value iteration algorithms. The algorithm creates a large number of candidate

vectors and then get rid of the useless ones. Due to the expensive operation

which calculates the vectors, it is called the Enumeration Algorithm.

For this aim, we will look at Equation 2.49 in a di�erent way. Note that there are

only a �nite number of possible values for w(bao, Γt+1) and we select the vector

that gives the highest value. Therefore if we take all the vectors in set Γt+1 and

multiply them by R(a, o) we arrive to a new set of vectors. For this new set of

vectors, the maximum value for b is the same as w(bao, Γt+1).

In mathematical terms, recall that in Equation 2.49, w(bao, Γt+1) ∈ Γt+1. Assume

that we have created the set

Γ̄a,o
t =

{
1

|Θ|
r(a) + R(a, o)γt+1 | γt+1 ∈ Γt+1

}
(2.53)

Then for any b ∈ B, γa,o
t (b) ∈ Γ̄a,o

t . Moreover, γa,o
t (b) = w(b, Γ̄a,o

t ). Using

De�nition 9,

Γa,o
t = PR

(
Γ̄a,o
t

)
(2.54)

Then, γa,o
t (b) = w(b, Γa,o

t ).

Now we know that for each a and o, the vectors described in Equation 2.53

forms V ∗,a,o
t (.) in Equation 2.47 which is a convex function. For Equation 2.46,

we need to take sum of PWLC functions which is a PWLC function. We know

that, there are a �nite number of vectors in each set Γa,o
t , o ∈ Θ. Therefore,

if we create all possible vectors from the combination of these sets, the vectors

described in Equation 2.50 would be in these vectors. Such an approach would
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avoid dependency to particular belief states. For the mathematical description,

we will �rst de�ne the cross-sum operator.

De�nition 10. For set of vectors U and V, the cross sum operator ⊕ is de�ned

by

U ⊕ V = {u+ v|u ∈ U , v ∈ V}

When there are more than two sets of vectors {Ui}Mi=1,⊕
i

Ui = {. . . {U1 ⊕ U2} . . .UM}

Using De�nitions 9 and 10 we can write,

Γ̄at =
⊕
o∈Θ

Γa,o
t (2.55)

Γat = PR
(
Γ̄at
)

(2.56)

A similar approach is also possible for the vectors in Equation 2.52. We take an

union of all vectors in sets Γat and then �nd the value function in Equation 2.45

by taking the ones that are not dominated. That is,

Γ̄t =
⋃
a∈A

Γat (2.57)

Γt = PR
(
Γ̄t
)

(2.58)

where
⋃

is the union operator. It is easy to show that γat (b) ∈ Γat and γt(b) ∈ Γt

for any b ∈ B.

As noted in [51], Monahan's Enumeration Algorithm provides us an upper bound

for the exact value iteration algorithms. In Equation 2.53, each vector should be

multiplied by R(a, o) which takes D2 multiplications and D× (D−1) additions.

Moreover, this operation should be repeated for each a and o. This amounts to

O(|Γt+1| × |A| × |Θ| ×D2).

After vectors Γa,o
t are found, we need to �nd Γat in Equation 2.55. Note that

summation of two vectors is D additions. From each set there are |Γt+1| di�erent
possibilities to add while creating a vector, therefore the total operations is

O(|A|×D×|Γt+1||Θ|) new vectors for each action. Hence, the overall complexity
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of calculating all vectors for a single step of enumeration algorithms is O(|A| ×
D × |Γt+1||Θ| + |Γt+1| × |A| × |Θ| ×D2).

Comparing this result to the complexity results for �nding the value of J∗(b0)

for a �xed prior belief b0 might be useful. Note that the enumeration algorithm

is very costly as O(|Γ0||Θ|) ≈ O(|ΓN |N×|Θ|) ≈ O(|A|N×|Θ|). While the number of

operations were also exponentially increasing in the former case, here the rate of

exponential increase is |Θ| times faster. Therefore it is fundamentally important

both to limit the number of vectors created while passing from Γt+1 to Γ̄t and

also do the pruning of unnecessary vectors in Γ̄t. The following chapters will

consider these two problems independently.
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CHAPTER 3

AN ALGEBRAIC AND GEOMETRIC FRAMEWORK

FOR VECTOR PRUNING IN POMDPS

3.1 Introduction

In Chapter 2, an upper bound for the computational complexity of exact value

iteration algorithm was discussed. It was shown that, if all possible vectors were

created in each step of the exact value iterations, the number of vectors increases

exponentially with |Θ| and linearly with |A|. Yet, not all these vectors are useful
when determining the optimal value function V ∗n . Only those vectors that are

maximal at some belief state are really necessary. The process of �nding these

vectors is called pruning.

Having a fast pruning procedure which can take a set of vectors Γ̄ and reduce it

to a set of non-dominated vectors Γ, is the main concern for exact value itera-

tion. Although the vector formation procedure in POMDPs is of a special kind

(transforming the vector by multiplying with matrix R(a, o) and then the cross-

sum addition of di�erent vectors), we will start analyzing the vector pruning

problem assuming that we have a random set of vectors. Our analysis will start

by the comparison of two pruning algorithms from the literature; the Lark's

algorithm [24] and Skyline algorithm [51]. The linear programming structure of

both of the algorithms will be introduced and the degrees of freedom on both

the selection of the constraints and the objective function of each linear program

will be discussed.

This chapter will then continue with a geometric framework of the pruning
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procedure. It is possible to represent the value function over the belief set and

in the vector space. In the belief set representation, each vector describes a

hyperplane equation. If the vector is non-dominated, this hyperplane equation

is used to de�ne the optimal value function in some convex region of the belief

state set. In the vector space representation, the optimal value function forms

a convex polyhedron [52] where each hyperplane equation belonging to a non-

dominated vector is represented by a vertex of an upper convex polyhedron [53].

There is a �eld of research in the convex analysis and computational geometry

literature regarding the properties of convex polyhedrons [53�55]. If the set of

all vertices are traversed, we get an edge graph of the polyhedron which can be

used to �nd the dominated vectors [56,57]. The vectors that are not in this edge

graph will be dominated. However, this operation is tedious for the pruning

procedure where the aim is to �nd only the set of non-dominated vectors.

We will use the dual representation of the problem for a di�erent purpose. We

will demonstrate that the linear programming iterations refer to the selection of

di�erent convex regions in the vector space representation of the value function.

This convex region can be used to determine if any vectors from the dirty set

are dominated. Instead of writing all the constraints, the dirty vectors that

are most likely to be dominated in this simplex iterations are written to the

simplex tableau. This will allow us to decompose the problem into small sized

LPs. We name this as the algebraic framework, which is the construction and

utilization of linear programs. The relation between the algebraic and geometric

frameworks have been exploited in this study.

Finally, we o�er a novel pruning algorithm, called FastCone, based on the the-

oretical framework stated in this thesis. For a given set of clean vectors the

algorithm hastily searches for the convex region that a dirty vector is in and

searches for a clean vector if only the set of clean vectors is not su�cient to

prune this dirty vector. To show the algorithm performance, FastCone algo-

rithm is compared to the existing algorithms and their revised versions both

analytically and experimentally.

This chapter is organized as follows. Section 3.3 introduces the algebraic and
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geometric approaches for the vector pruning problem and contains the mathe-

matical insight that led to the FastCone and Section 3.4 gives the pseudocode

for the algorithm. Section 3.5 gives the test results on both the arti�cial and

benchmark problems. Section 3.6 concludes the chapter.

3.1.1 Conventions

Before introducing di�erent pruning algorithms, we want to de�ne some con-

ventions that will be used throughout the chapter. We will denote Γ̄ as the

dirty set and Γ as the clean set. Assume that Γ̄ = {γ1, . . . ,γN}. We will de-

note the vectors in the set Γ̄ by their index set F0 = {1, . . . ,N}. As we give

our decision about the vectors in the dirty set Γ̄, the size of F0 decreases. For

notational convention, we will de�ne F , which represents the index of current

dirty set of vectors, respectively. At initialization, the dirty set contains all the

vectors, F = F0. All algorithms continue until F = ∅. In a similar manner, we

will de�ne Q∞ and Q which describe the �nal and current clean set of vectors,

respectively. The indexes of the vectors in Γ are one-to-one correspondent with

the set Q∞.If any index set A is used as a subscript of a vector set, i.e., Γ̄A, this

shows that from the set Γ̄, the vectors with the indices in A are selected. With

this de�nition, we can write Γ = Γ̄Q∞ . At the beginning of the algorithm, Q = ∅
and when the algorithm is terminated, Q = Q∞.

3.2 Known Pruning Algorithms

We have selected two pruning algorithms from the literature that would allow

us to introduce the necessary concepts for de�ning the vector pruning problem.

The mathematical formulations introduced for the algorithms will then be used

for introduction of a novel algorithm.
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3.2.1 Lark's Algorithm

When an arbitrary set of vectors is given, Lark's algorithm starts with F = F0

and Q = ∅. The algorithm picks a vector γi ∈ Γ̄(F ) and tries to �nd a belief

point b that satis�es bγi > bγj, ∀γj ∈ Γ̄Q. Such a belief point is found by the

following LP:

min δ

b(γi − γj) + δ > 0, ∀j ∈ Q
D∑
l=1

b(l) = 1

b(l) ≥ 0, 1 ≤ l ≤ D

(3.1)

The optimal solution occurs at the belief state b0 and the value of the objective

function is δ0. If δ0 is less than 0, it means that there is a vector in set Γ̄ that

gives a higher value for the belief state b0 where the optimal solution occurs.

The vector index k′ = arg maxγk∈Γ̄ b0γk is added to the clean set Q and deleted

from F . If δ0 is greater than or equal to zero, the vector γi is dominated by the

vectors in the clean set Γ̄Q and therefore i is deleted from F . The procedure

continues until there are no vectors left in F . The number of constraints in the

LP is |Q|, therefore as |Q| gets larger, the LP becomes harder to solve.

Algorithm 1 is the Lark's algorithm. The main routine is LRK, where we get

an arbitrary set of vectors, Γ̄, and initialize an empty clean set Γ. After a new

vector, γ is selected from the dirty set, we start the linear program discussed by

the FNDBLF procedure. FNDBLF procedure tries to �nd a witness point for

the given vector γ with respect to the set Γ̄Q. At the end of the optimization is

δ is negative, b is a witness point of the vector γ.

Algorithm 1 also explains two other routines; PNTDOM and BEST. These two

routines are used in the same fashion as the original algorithm. PNTDOM is

used to prune, if possible, some of the dominated vectors without using linear

programming which is described in Lemma 2.4.2. BEST is used to select one of

the dominating vectors if a belief state is given. The symbol <lex in the pseudo-

code denotes lexicographic ordering [58]. Lexicographic ordering is given in

Algorithm 2.
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Algorithm 1 Lark's Algorithm

1: procedure LRK(Γ̄)

2: Q← ∅
3: F ← F0

4: while F 6= ∅ do
5: γ ← any element in Γ̄

6: i← index of γ in Γ̄

7: if PNTDOM (γ, Γ̄Q) then

8: F ← F \ {i}
9: else

10: (δ, b)← FNDBLF(γ, Γ̄Q)

11: if δ > 0 then

12: F ← F \ {i}
13: else

14: γ̂ ← BEST(b, Γ̄)

15: k ← index of γ̂ in Γ̄

16: F ← F \ {k}
17: Q← Q ∪ {k}
18: end if

19: end if

20: end while

21: return Γ̄Q

22: end procedure

23: procedure PNTDOM(γ, Γ)

24: for all γ̂ ∈ Γ do

25: if γ(l) ≤ γ̂(l), 1 ≤ l ≤ D then

26: return true

27: end if

28: end for

29: return false

30: end procedure

31: procedure BEST(b, Γ̄)

32: γ̂ ← ∅
33: k = −∞
34: for all γ ∈ Γ̄ do

35: if k < bγ then

36: γ̂ ← γ

37: else

38: if k = bγ & γ̂ <lex γ then

39: γ̂ ← γ

40: end if

41: end if

42: end for

43: return γ̂

44: end procedure

45: procedure FNDBLF(γ, Γ)

46: solve the following linear program

variables: δ, b

min δ subject to

b(γ − γ̂) + δ > 0 ∀γ̂ ∈ Γ∑
b(l) = 1

b ≥ 0

47: return (δ, b)

48: end procedure

Algorithm 2 Lexicographic Ordering
1: procedure LEX(γ̂,γ)

2: for all 1 ≤ l ≤ D do

3: if γ̂(l) < γ(l) then

4: return γ

5: end if

6: if γ(l) < γ̂(l) then

7: return γ̂

8: end if

9: end for

10: return γ̂

11: end procedure
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3.2.2 Skyline Algorithm

An alternative to the Lark's algorithm is the Skyline algorithm proposed by

Raphael and Shani [51]. Skyline algorithm traces the upper envelope formed by

the set of vectors Γ̄. All vectors visited during this traversal are non-dominated,

hence should be added to the clean set Γ, while vectors that can never be visited

are pruned.

The visualization is easier with a geometric description of the algorithm. In

Figure 3.1, the partition of the belief state space B is shown for D = 3. As can

be seen from the �gure, all vectors have convex support sets as stated in Lemma

2.4.1. Any vertex on this graph can be represented by a set of equations. For

instance, the belief state b marked on the graph is the solution for bγ3 = bγ4 =

bγ5 and the simplex constraint be = 1. Now if we set one of the constraints

free (for instance leaving γ3 would mean we are left with bγ4 = bγ5 and the

simplex constraint be = 1), the set of equations will describe one of the lines

emanating from point b and these lines would end at another vertex on the

skyline. Repeating this strategy and keeping the visited points in a list, all

possible vertices on the skyline can be visited. The vectors that are not visited

during this traverse are the dominated ones.

In mathematical terms, this can be explained as follows. When an arbitrary set

of vectors Γ̄ is given, it is possible to write the following equations for any belief

state b ∈ B;

bγi + xi = bγj + xj ∀i, j ∈ F0

xi ≥ 0, ∀i ∈ F0

(3.2)

where xi,xj are the slack variables. If we are at b ∈ R(γi, Γ̄), then we can

satisfy the set of Equations 3.2 for xi = 0 and conclude that vector γi is on the

skyline. However, if γi is a dominated vector, it is not possible to satisfy the set

of Equations 3.2 for xi = 0. If all vertices in the unit simplex are traversed, the

vectors for which xi 6= 0 will be the dominated ones.

The operations done for the Skyline algorithm is equivalent to the enumeration

of vertices of a convex polyhedron [56,57]. The di�culty with this approach is in
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determining whether or not a vertex has been visited. Avis et al. [52] has o�ered

using the criss-cross algorithm [59] which is used to guarantee that all vertices

of the convex polyhedron are visited only once. The algorithm initializes a

simplex tableau and uses the same tableau for the whole enumeration algorithm.

Algorithm starts from a feasible solution and traverses a branch using the unique

path described by the criss-cross algorithm. Once the end of that branch is

reached, it traverses back until the �rst feasible solution is reached again. It is

also possible to save some of the dictionaries. At the end, the algorithm produces

a list that is free of duplicates even for degenerate inputs.

γ1

γ2

γ3

γ4

γ5

b

b(1)b(2)

b(3)

R(γ1, Γ)
R(γ2, Γ)
R(γ3, Γ)
R(γ4, Γ)
R(γ5, Γ)

Figure 3.1: Belief State Representation for D = 3

Still, traversing all the vertices on the skyline can be costly for the pruning

operation. For this, Raphael and Shani have o�ered an iterative version of

the Skyline algorithm. Rather than visiting all possible vertices, this revised

algorithm goes only in directions in which a predetermined vector γi comes

closer to the skyline. The LP given in Equation 3.3 is called iterative Skyline

algorithm [51].
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minxi

b(γi − γj) + xi − xj = 0, ∀j ∈ F0 \ {i}
D∑
l=1

b(l) = 1

b(l) ≥ 0, 1 ≤ l ≤ D

xj ≥ 0, 1 ≤ j ≤ N

(3.3)

As we are always at a feasible solution, the value of xi is always non-negative.

For the smallest possible value of xi, if the vector is still not on the skyline,

vector index i is removed from F . If xi = 0, vector index i is added to Q.

After the decision about vector γi is given, the algorithm picks one of the other

vectors, say k ∈ F and changes the objective function to minimize xk. The

algorithm continues until F = ∅.

Note that, the constraints for the LP given in Equation 3.3 are written for

the vector γi. We can write the LP for γk instead of γi by applying linear

row operations. After writing all the constraints for γk, by only changing the

objective function to minimize xk, we can continue from the set of equations

de�ning this point on the belief state.

Algorithm 3 is the iterative Skyline algorithm. The main procedure is de�ned

by ISKY, where we get an arbitrary set of vectors Γ̄. The dirty and clean set

indices are initiated as F = F0 and Q = ∅. LPINIT procedure writes the initial

simplex tableau P de�ned by Equation 3.2. An initial feasible solution for this

set of equations can be found when xj = 0 where j = arg maxγi∈Γ̄ γi(1) and

b(1) = 1. While b(l) = 0, l ∈ {2, . . . ,D} there are D variables equal to zero.

Therefore this is a basic feasible point for the simplex matrix P.

Note that through LPINIT procedure, an equation is de�ned for each vector in

the set Γ̄−{γj}. This set of equations, with the simplex constraint
∑

l b(l) = 1,

de�nes the simplex tableau. Therefore P is aN×(N+D) matrix. After LPINIT,

the same simplex tableau is used until the end of the pruning procedure.

After the simplex tableau is initialized, the objective function is selected as
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Algorithm 3 Iterative Skyline Algorithm
1: procedure ISKY(Γ̄)

2: Q← ∅, F ← F0

3: j = arg maxi∈F γi(1)

4: F ← F \ {j}, Q← Q ∪ {j}
5: P← LPINIT(Γ̄, j)

6: while F 6= ∅ do
7: i← any element in F

8: P← LPOBJSET(P, i)

9: while i ∈ F do

10: (P,F ,Q)← LPITER(P,F ,Q, i)

11: end while

12: end while

13: return Γ̄Q

14: end procedure

15: procedure LPINIT(Γ̄, j)

16: write the initial tableau P

variables: b,xi, i ∈ F
min 0

b(γj − γi) + xj − xi = 0, ∀i ∈ F \ {j}∑D
l=1 b(l) = 1

17: return P

18: end procedure

19: procedure LPOBJSET(P, i)

20: set the objective function to minxi
21: return P

22: end procedure

23: procedure LPITER(P,F ,Q, i)

24: do one simplex iteration to P

25: for all j ∈ F do

26: if xj = 0 then

27: Q← Q ∪ {j}
28: F ← F \ {j}
29: end if

30: end for

31: if xi optimal then

32: if xi 6= 0 then

33: delete the constraint row with xi
34: else

35: Q← Q ∪ {i}
36: end if

37: F ← F \ {i}
38: end if

39: return (P,F ,Q)

40: end procedure
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minxi, which is the slack variable of the hyperplane equation formed by γi

by the function LPOBJSET. The objective function is important because it

determines the direction of simplex iterations. LPITER is a simple simplex

iteration that moves from one vertex to another. At every visited vertex, we

check the non-dominated vectors and add their indices to Q if they were not

added before. We also check if the optimal value is reached for the slack variable

of the predetermined vector γi. At its optimal value, the index of the vector

γi is deleted from the set F . This index is added to the clean set Q depending

on the value of the slack variable. The algorithm continues until there are no

vector indices in the dirty set F .

3.2.3 Comparison of the Pruning Algorithms

Note that there is a great similarity between the LP given in Equation 3.1

and 3.3. However, there are two major di�erences. First one is the number of

constraints in the LPs. While constructing the LP, Lark's algorithm compares

vector γi to the vectors in the clean set Γ; whereas Skyline algorithm compares

γi with all the vectors in the initial set Γ̄. This is a disadvantage considering the

time spent in the LP, but it also has a major advantage. The objective function

of the LP in Equation 3.3 is to �nd whether if γi is on the skyline. But as LP

progresses from one feasible solution to another, the simplex iteration reveals one

of the non-dominated vectors. This is possible because LP considers all vectors

in the set Γ̄ and therefore, every basic feasible point of LP 3.3 is de�nitely on the

skyline. Moreover, there is no need to write the LP from scratch after the LP

terminates for xi. However, this is not valid for the LP in Equation 3.1. As the

Lark's algorithm considers only the set of clean vectors, there is no guarantee

that the termination point of the LP is on the skyline graph. After a new vector

is added to the set of clean vectors, another routine should be called to �nd a

basic feasible point for this new set of clean vectors.

Second di�erence is the objective function. While Lark's algorithm tries to

�nd the maximum contribution of a new vector γi to the clean set (that is the

minimum value of δ can be negative), the Skyline algorithm avoids �nding the
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greatest contribution of the γi vector to the sub-skyline graph, since all the

vectors are already being considered and we are on the skyline graph at any

iteration of the LP (xi should be non-negative).

3.3 Mathematical Preliminaries for the Vector Pruning Problem

In the previous chapter, we have introduced two existing pruning algorithms

from the literature. Although these algorithms succeed the pruning operation

by writing di�erent linear programs, the simplex tableaus written for these two

algorithms are of a similar structure. In this chapter, we will have a closer look

at the structure of the tableau and analyze what simplex iterations refer to.

First, note that the LP given in Equation 3.3 can be written in a di�erent format

in which every hyperplane equation is written on its own. For this, variable

y ≥ bγi,∀i ∈ F0 is de�ned.

minxi

bγj − y + xj = 0, ∀j ∈ F0

D∑
l=1

b(l) = 1

b(l) ≥ 0, ∀l ∈ {1, . . . ,D}

xj ≥ 0, ∀j ∈ {1, . . . ,N}

y ≥ 0

(3.4)

This modi�cation has no impact on the feasible solutions of the coordinate

vector b and slack variables xj, but makes the manipulations and analysis on

the LP easier. Note that γi ∈ RD
+ . De�ning H =

[
γ1 γ2 . . . γN

]T
, and

x =
[
x1 x2 . . . xN

]T
, Equation 3.4 is written in the matrix form;

min cx

H −e I

eT 0 0



bT

y

x

 =

0

1

 (3.5)
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where 0 is the zero vector, e = [1 . . . 1]T , and I is the identity matrix of relevant

sizes. There are a total of D + N + 1 variables in the simplex tableau; D

coordinate variables b, variable y and N slack variables x. This is not the

typical demonstration of an LP, as the slack variables xi are also included in the

variable vector. However, it is convenient to call x as the vector of slack variables,

while it is multiplied by I in the simplex tableau for the inequality constraints.

Moreover, the objective function of the linear program is also de�ned w.r.t x. c

is a zero row vector with a 1 in the ith entry. This indicates that the aim is to

minimize the slack of the ith constraint.

For any of the bγi ≤ y type of inequality constraints in Equation 3.5, if xi = 0

then the constraint is satis�ed as an equality. In linear programming literature,

this is called as an active constraint. As explained in Section 3.2.2, it is possible

to satisfy at most D of the y ≥ bγi type of constraints to be active (discarding

degeneracies).

De�nition 11. At any point of the simplex iterations, the active vectors from

the set Γ̄ are shown with ΓA.

There are two possible cases for |ΓA| that needs elaboration. We will discuss

the case where |ΓA| = D in the following section and provide the case where

|ΓA| < D in Appendix B.

3.3.1 Case Analysis for |ΓA| = D

Without loss of generality, assume that ΓA = {γi}Di=1. We will partition matrix

H into two parts; HA =
[
γ1 γ2 . . . γD

]T
and HN =

[
γD+1 γD+2 . . . γN

]T
.

We obtain the following simplex tableau that includes all of the constraints as

well as the right hand side of the equations as the last column. The �nal row

represents the objective function of the optimization where c = [cA cN].
HA −e I 0 0

HN −e 0 I 0

eT 0 0 0 1

0 0 cA cN 0

 ≡


HA −e 0 I 0

eT 0 0 0 1

HN −e I 0 0

0 0 cN cA 0

 (3.6)
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The second matrix in Equation 3.6 is obtained by changing the order of the

2nd and 3rd row blocks and third and the fourth column blocks. The sizes of

the identity matrices are not same as well as the sizes of the zero matrices, but

each can be found from the structure of the matrix. Discarding the objective

function, LP multiplies the second matrix of Equation 3.6 by the inverse of the

following part of it.

S =


HA −e 0

eT 0 0

HN −e I

 =

SA 0

SN I

 (3.7)

where SA =

HA −e

eT 0

 and SN =
[
HN −e

]
. Note that S is invertible if SA

is invertible.

Lemma 3.3.1. Take ΓA. Assume that the set of equations

SA

bT
y

 =

0

1


has a solution [bA yA]T . Then, SA is invertible and the inverse is given in

Equation 3.8.

Proof. We know that the vectors in HA are selected to be linearly independent

so it is invertible. Therefore the �rst D rows of SA are linearly independent.

For SA to be singular, we should be able to write its �nal row in terms of the

�rst D rows. Then we should be able to write,

h
[
HA −e

]
=
[
eT 0

]
which has a solution h = HA

−1e. Then using the solution [bA yA]T ,

[h − 1]SA

bTA
yA

 = [h − 1]

0

1

 = −1 6= 0

Therefore, rank(SA) = D + 1 and SA is invertible. Take α = eTHA
−1e. Using
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matrix inversion property,

SA
−1 =

HA
−1 − α−1heTHA

−1 α−1h

−α−1eTHA
−1 α−1

 (3.8)

bTA
yA

 =

α−1h

α−1

 (3.9)

�

Recall that, the LP de�ned in Equation 3.4 has the objective function min xi

which is the slack variable of the hyperplane equation for vector γi. After any

vector γi is selected, we need to �nd the set of active vectors ΓA from the set

of dirty vectors Γ̄ that minimizes xi. The following lemma will formulate the

problem in an inverse fashion; which vectors from the set Γ̄ should be selected

as the objective function for a given set of active vectors ΓA? To answer this

question, we will �rst introduce the following lemma.

Lemma 3.3.2. In the simplex tableau given in Equation 3.6, the optimization

procedure for any vector γi can be terminated if and only if the corresponding

bγi − y + xi = 0 type of constraint row have all negative coe�cients.

Proof. Note that the objective function candidates are the slack variables xi.

Now suppose xi belongs to one of the inactive vectors (cN 6= 0) in Equation

3.6. Then, we can write the simplex tableau as in Equation 3.10. It is known

that the LP operations done in Equation 3.10 do not change the set of feasible

solutions. 
SA 0 I

SN I 0

0 cN 0

 ∼


I 0 SA
−1

0 I −SNSA
−1

0 cN 0

 = P (3.10)

Assume that the nonzero entry of cN = ei
T corresponds to the slack variable of

bγi− y+ xi = 0. This constraint is represented as one of the rows in the second

row block of P in Equation 3.10. This row is in the form r1 =
[
0 ei

T −τ̃i xi

]
where xi is the value of the slack variable for this feasible solution.
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The last row block of P in Equation 3.10 which corresponds to the objective

function is in the form r2 =
[
0 ei

T 0 0
]
. The LP operation at this step

requires the subtraction of r1 from r2. Therefore τ̃i ≥ 0, then the resultant

coe�cients in the objective function will be all non-negative, which means the

end of the optimization for the objective function min xi. The same idea is valid

for any other row corresponding to the second row block of P. �

Lemma 3.3.2 shows that for any selection of ΓA, by only doing a simple sign check

of the block matrix SNSA
−1, we can see if the inactive vectors are dominated

for a particular selection of ΓA. We will demonstrate this with an example.

Table 3.1: Checking all vectors in Γ̄, D = 2

b(1) b(2) y x1 x2 x3 x4 RHS

γ1 4 0 -1 1 0 0 0 0

γ2 0 4 -1 0 1 0 0 0

γ3 2 1.9 -1 0 0 1 0 0

γ4 1 2.9 -1 0 0 0 1 0

SC 1 1 0 0 0 0 0 1

z 0 0 0 0 0 1 0 0ww�
b(1) b(2) y x3 x4 x1 x2 RHS

γ1 1 0 0 0 0 0.125 -0.125 0.50

γ2 0 1 0 0 0 -0.125 0.125 0.50

SC 0 0 1 0 0 -0.500 -0.500 2.00

γ3 0 0 0 1 0 -0.513 -0.488 0.05

γ4 0 0 0 0 1 -0.263 -0.738 0.05

z 0 0 0 0 0 0.513 0.488 -0.05

Suppose that the dirty set of vectors is Γ̄ = {[4 0]T , [0 4]T , [2 1.9]T , [1 2.9]T}.
Clearly, none of these vectors are pointwise dominated by another. In Table 3.1,

the hyperplane equations for each vector are written in the �rst four rows and

the �fth row corresponds to the simplex constraint. Assume that we are trying

to minimize the slack variable x3.

The �nal tableau is also given in Table 3.1. As can be seen here, x3 = 0.05 > 0

in the optimal point so γ3 is not in the clean set. Moreover, γ4 has also reached

the optimal point as the coe�cients of the non-basic variables are all negative

(−τ̃4 = [−0.263 −0.738]) and x4 = 0.05 > 0. Therefore, both of the hyperplane

equations for γ3 and γ4 will be erased from the table in the following round.
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Lemma 3.3.2 exploits the multiple objective function idea. For any selection of

the active vectors ΓA, we are trying to �nd the inactive vectors from the set Γ̄,

such that τ̃i ≥ 0. As ΓA is already selected in the simplex tableau, the inactive

vectors are now treated not as constraints but as objective function candidates.

Based on this argument, for each ΓA set, small sized special LPs are generated.

The constraints of any of them are formed from ΓA ∪ {γi} where γi ∈ Γ̄ \ ΓA

and the objective function is the slack variable of γi, so this LP ends up with

the conclusion about the domination or non-domination of γi by the vectors in

ΓA. This LP is named as LPA,i where A denotes the set ΓA and i is the index

of γi. Using the notation from Lemma 3.3.2 and taking i = 0, we de�ne;

SN = [γT0 − 1]

SNSA
−1 =

[
(γT0 + α−1(1− γT0 h)eT )HA

−1 α−1(γT0 h− 1)
]

Then,

x0 = α−1(1− γT0 h) (3.11)

τ̃0 = (γT0 + x0e
T )HA

−1 (3.12)

Using Equation 3.11 and 3.9, we can write

x0 = α−1 − α−1hTγ0 = yA − bAγ0 (3.13)

De�nition 12. De�ne γ̃0 = γ0 + x0e where x0 is given in Equation 3.11. Note

that γ̃0 depends on ΓA.

With De�nition 12, symbol τ̃0 in Equation 3.12 becomes the vector of coe�cients

for γ̃0 = γ0 + x0e when it is written as a linear combination of the vectors in

ΓA. Lemma 3.3.3 shows another property of these vector of coe�cients, τ̃0.

Lemma 3.3.3. τ̃0e = 1.

Proof.

τ̃0e = (γT0 + x0e
T )HA

−1e

= γT0 h + x0α

= γT0 h + (1− γT0 h)

= 1
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As discussed in Lemma 3.3.2, for a given ΓA, we will select γ0 such that the

corresponding τ̃0 has non-negative elements.

3.3.2 Convexity Analysis for |ΓA| = D

The de�nition of a convex cone is as follows:

De�nition 13. The convex cone formed by ΓA is described by

ΓCA =

{
γ0 ∈ RD : γ0 =

∑
γi∈ΓA

τ0(i)γi, τ0(i) ≥ 0

}

Note that the above de�nition is equivalent to γ0 = HA
Tτ T0 where τ0 =

[τ0(1) . . . τ0(D)].

The following theorem is equivalent to Lemma 3.3.2 but considers the convex

cone ΓCA.

Theorem 3.3.4. Take ΓA. The following statement is true:(
γ̃0 ∈ ΓCA

)
∧ (x0 > 0) =⇒ R(γ0, ΓA) = ∅

Proof. Take any b ∈ B. We can write b = bA +∇b such that ∇be = 0. Select

k = arg maxγi∈ΓA
∇bγi. Then

bγ0 = (bA +∇b)γ0

= bAγ0 +∇bγ0

= yA − x0 +∇bγ̃0

< yA +∇bγ̃0

= yA +
D∑
i=1

τ̃0(i)(∇bγi)

< yA +∇bγk

= (bA +∇b)γk

= bγk
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γ(1)

γ(2)

γ1

γ2

γ0

x0e

Figure 3.2: Supplementary Figure for Theorem 3.3.4. ΓA = {γi}2
i=1 and γ̃0 ∈ ΓCA

and x0 > 0, therefore γ0 is dominated.

�

Theorem 3.3.4 shows that if γ̃0 ∈ ΓCA and x0 ≥ 0, then the optimization is

�nished. The following theorem will prove a complementary fact; if γ̃0 ∈ ΓCA

and x0 < 0, there is a procedure of selecting another set ΓAt such that γ̃t0 ∈ ΓCAt

and the corresponding xt0 is increased. To cope with multiple A sets, we modify

the notation by introducing the subscript t.

De�nition 14. If there are more than one set of vectors ΓAt, then γ̃
t
0 = γ0+xt0e.

Similarly, γ0 = HAt

T (τ t0)T and γ̃t0 = HAt

T (τ̃ t0)T . The set ΓAt can be equally

represented by At = {j : γj ∈ ΓAt}

γ(1)

γ(2)

γ1

γ2

γ3

x1
3e

γ0

γ(1)

γ(2)

γ1

γ2

γ3

γ0

Figure 3.3: Supplementary Figure for Theorem 3.3.5. ΓA1 = {γi}2
i=1 and γ̃1

0 ∈
ΓCA1

. Note that x1
3 < 0 and it is not necessary that γ̃1

3 ∈ ΓCA1
. Select ΓA2 =

{γi}3
i=2. Then, x

2
0 > x1

0

Theorem 3.3.5. Take ΓA1 = {γj}Dj=1. Let γ0 and γD+1 be such that γ̃1
0 ∈ ΓCA1

and x1
D+1 < 0. Then, there is another set of vectors ΓA2 = {γj}D+1

j=1, j 6=k such that

γ̃2
0 ∈ ΓCA2

and x2
0 > x1

0. Moreover, this set ΓA2 is unique for a given vector γ0.
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Proof. For l ∈ {0,D + 1}, we can write γ̃1
l =

∑D
j=1 τ̃

1
l (j)γj and τ̃ 1

l e = 1.

Moreover, τ̃ 1
0 > 0.

We know that γ̃1
D+1 =

∑D
j=1 τ̃

1
D+1(j)γj. Then for any vector γk ∈ ΓA1 , we can

write,

γk =
1

τ̃ 1
D+1(k)

γ̃1
D+1 −

D∑
j=1,j 6=k

τ̃ 1
D+1(j)

τ̃ 1
D+1(k)

γj (3.14)

Selecting k = arg minj:τ̃1
D+1(j)>0

τ̃1
0 (j)

τ̃1
D+1(j)

, we have

γ̃1
0 = τ̃ 1

0 (k)γk +
D∑

j=1,j 6=k

τ̃ 1
0 (j)γj (3.15)

=
τ̃ 1

0 (k)

τ̃ 1
D+1(k)

γ̃1
D+1 +

D∑
j=1,j 6=k

(
τ̃ 1

0 (j)−
τ̃ 1

0 (k)τ̃ 1
D+1(j)

τ̃ 1
D+1(k)

)
γj (3.16)

De�ne,

τ̃ 2
0 (j) =


τ̃ 1

0 (j)− τ̃1
0 (k)τ̃1

D+1(j)

τ̃1
D+1(k)

1 ≤ j ≤ D, j 6= k

τ̃1
0 (k)

τ̃1
D+1(k)

j = D + 1

Recall that γ̃1
D+1 = γD+1 + x1

D+1e. Inserting this equation into Equation 3.16;

γ̃1
0 − τ̃ 2

0 (D + 1)x1
D+1e =

D+1∑
j=1,j 6=k

τ̃ 2
0 (j)γj (3.17)

Note that τ̃ 2
0 (j) = τ̃ 1

D+1(j)
(

τ̃1
0 (j)

τ̃1
D+1(j)

− τ̃1
0 (k)

τ̃1
D+1(k)

)
> 0, j 6= D + 1. From selection

τ̃ 1
D+1(k) ≥ 0. Therefore τ̃ 2

0 ≥ 0. Moreover,

D+1∑
j=1, j 6=k

τ̃ 2
0 (j) =

D∑
j=1

τ̃ 1
0 (j)− τ̃ 1

0 (k)

τ̃ 1
D+1(k)

(
D∑
j=1

τ̃ 1
D+1(j)− 1

)
= 1

(3.18)

Equation 3.18 and Lemma 3.3.3 show that γ̃2
0 = HA2

T τ̃ 2
0 . Then we can write,

γ̃2
0 = γ̃1

0 −
τ̃ 1

0 (k)

τ̃ 1
D+1(k)

x1
D+1e = γ0 + x1

0e−
τ̃ 1

0 (k)

τ̃ 1
D+1(k)

x1
D+1e (3.19)

= γ0 + x2
0e (3.20)

We know that x1
D+1 < 0. Then, x2

0 > x1
0.

Now we will prove that the selection of k is unique. Assume that we have selected

k′ instead of k. Then, τ̃ 2
0 (k) = τ̃ 1

D+1(k)
(

τ̃1
0 (k)

τ̃1
D+1(k)

− τ̃1
0 (k′)

τ̃1
D+1(k′)

)
< 0. �
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Recall from Theorem 3.3.4 and De�nition 14, for a given vector γ̃0 ∈ ΓCAt
, xt0 ≥ 0

means that vector γ0 is dominated. Theorem 3.3.5 guarantees that at every step

t, vector γ0 remains in a convex cone ΓAt and we are increasing the value of x
t
0 as

shown in Equation 3.19. This is done by replacing one of the vectors in ΓAt with

a vector γD+1 such that xtD+1 < 0. Note it is not obligatory that γ̃tD+1 ∈ ΓCAt
.

Theorem 3.3.5 actually writes the constraint bγD+1 − y + xD+1 = 0 into LPA1,0

where A1 denotes the initial active set ΓA1 and 0 is the index of γ0. While

x1
D+1 < 0, this newly added constraint violates the basic feasibility of the simplex

tableau. The procedure described in the theorem is one step of the dual simplex

algorithm where primal feasibility is again satis�ed.

Now, we need to show that the procedure de�ned in Theorem 3.3.5 ends up in

a unique solution. For this, we will assume that we have selected vector γ0 and

started from di�erent initial convex regions to apply Theorem 3.3.5. Theorem

3.3.6 shows that the �nal convex region is unique.

Theorem 3.3.6. Take any A1,A2. Suppose that

SAt

bTt
yt

 =

0

1

 t ∈ {1, 2}

has solutions such that b1 6= b2. Moreover, ∀γi ∈ ΓA1 \ ΓA2 , b2γi < y2 and

∀γi ∈ ΓA2 \ ΓA1 , b1γi < y1. Given these conditions, the following statement is

true for any γ0:

γ̃1
0 ∈ ΓCA1

=⇒ x1
0 < x2

0 and γ̃2
0 /∈ ΓCA2

Proof. We can write for t ∈ {1, 2},

γ0 + xt0e =
∑
j∈At

τ̃ t0(j)γj (3.21)
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where τ̃ 1
0 > 0. From De�nition 14, b2γ0 + x2

0 = y2. Write,

b2γ0 + x1
0 =

∑
j∈A1

τ̃ 1
0 (j)b2γj (3.22)

=
∑

j∈A1∩A2

τ̃ 1
0 (j)b2γj +

∑
j∈A1\A2

τ̃ 1
0 (j)b2γj (3.23)

=
∑

j∈A1∩A2

τ̃ 1
0 (j)y2 +

∑
j∈A1\A2

τ̃ 1
0 (j)b2γj (3.24)

<
∑
j∈A1

τ̃ 1
0 (j)y2 = y2 (3.25)

Then x1
0 < x2

0. Now suppose that γ̃2
0 ∈ ΓCA2

. Writing the same equations for

b1γ̃
1
0 and b1γ̃

2
0 we would arrive at x2

0 < x1
0. This is a contradiction. Therefore

γ̃2
0 /∈ ΓCA2

. �

Combined with Theorem 3.3.6, it can be asserted that if a convex cone ΓAt is

found such that the intersection point of the hyperplanes [bt yt]
T is on the skyline,

then the optimization for γ0 is �nished. If btγ0 6= yt, vector γ0 is dominated.

3.4 FastCone Algorithm

Algorithm 4 is the FastCone Algorithm. The main routine FC is basically the

initialization and utilization of the simplex tableau P. The subroutines used by

FC are provided by another table. At the initialization phase of the algorithm, F

and Q are set as the current dirty and clean vector indices, respectively. Another

index set, A, consists of the indices of the clean vectors inside P. Therefore, at

any time A ⊂ Q.

The algorithm starts with LPINIT, which initializes the simplex tableau P.

The tableau is initialized by using vector γi = w(b, Γ̄) where b(1) = 1. For

the objective function we select the vector γj where j = arg mink∈F bγk. The

constraint de�ned by the dirty vector γj is not written to P, therefore xj is

not de�ned. The aim of the algorithm is to �nd a convex cone ΓA where γj

is eliminated. Therefore we narrow down the convex cone around γj. If the

algorithm �nally arrives at the best possible convex cone which contains vector

γj and no other selection of the set ΓA is possible, we conclude that vector
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Algorithm 4 FastCone Algorithm
1: procedure FC(Γ̄)

2: Q← ∅, A← ∅, F ← F0

3: b1(1) = 1, i← arg maxk∈F b1γk, j ← arg mink∈F b1γk(1)

4: F ← F \ {i}, Q← {i}, A← {i}
5: H =

[
γ1 γ2 . . . γN

]
6: X = zeros(NSTATSMAX, |F |)
7: ∆X = zeros(NSTATSMAX, |F |)
8: P← LPINIT(γi, γj)

9: t← 1, X(t, :) = btH− yte
10: while F 6= ∅ do
11: while P not optimum do

12: t← t+ 1

13: (bt, yt, P)← LPITER1(P)

14: X(t, :) = btH− yte
15: ∆X(t, :) = X(t, :)−X(t− 1, :)

16: end while

17: while X(t, j) > 0 ∧ j 6= arg mink X(t, k) do

18: i← arg mink X(t, k)

19: F ← F \ {i}, Q← Q ∪ {i}, A← A ∪ {i}
20: add bγi + xi − y = 0 to P

21: while P not feasible do

22: t← t+ 1

23: (bt, yt, P)← LPITER2(P)

24: X(t, :) = btH− yte
25: ∆X(t, :) = X(t− 1, :)−X(t, :)

26: end while

27: if |A| > NVMAX then

28: At ← active vectors inside P

29: d0 = 0

30: for all k ∈ A \At do

31: d = sum(∆X(t− TMAX : t, k) < 0)

32: if d > d0 then

33: d0 = d, i← k

34: end if

35: end for

36: delete bγi + xi − y = 0 from P

37: A← A− {i}
38: end if

39: end while

40: if X(t, j) < 0 then

41: F ← F \ {j}
42: delete bγj + xj − y = 0 from P

43: end if

44: j ← LPOBJSLCT(∆X,F )

45: set objective function of P to min y − bγj
46: end while

47: return Γ̄Q

48: end procedure
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Subroutines for the FastCone Algorithm
procedure LPINIT(γi,γj)

write the initial simplex tableau P

min y − bγj subject to

bγi + xi − y = 0∑D
l=1 b(l) = 1

b ≥ 0, y > 0,xi ≥ 0

return P

end procedure

procedure LPITER1(P)

do one primal simplex iteration to P

return (bt, yt, P)

end procedure

procedure LPITER2(P)

do one dual simplex iteration to P

return (bt, yt, P)

end procedure

procedure LPOBJSLCT(∆X,F )

d0 = 0

for all k ∈ F do

d = sum(∆X(t− TMAX : t, k) > 0)

if d > d0 then

d0 = d, j ← k

end if

end for

return j

end procedure
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γj is not dominated. The objective function is taken as min y − bγj. De�ne

xj := y − bγj. Note that xj is not a slack variable while the constraint related

to γj is not written inside the simplex tableau. This vector is used to determine

the objective function.

NSTATSMAX is an estimated upper bound for the number of possible simplex

iterations that should be determined before the algorithm starts. NVMAX de-

termines the maximum number of vectors in the simplex tableau. All vectors

inside the simplex tableau are checked at each step of the FastCone algorithm;

therefore a higher number of vectors inside the simplex tableau increases the

chance of dirty vectors to be eliminated.

The backbones of the algorithm are LPITER1 and LPITER2. LPITER1 is a

primal simplex iteration and LPITER2 is a dual simplex iteration. To explain

the operation of these two simplex iteration procedures, suppose that dirty vector

γj is selected at time t = t0 and the objective function is written as min y− bγj.
Assume that the set of clean vectors inside P is A. We will de�ne xj := y− bγj
again to stress that xj is not a slack variable inside the simplex tableau. Initially,

LPITER1 is repeated until a convex region ΓAt is found such that γ̃
t
j ∈ ΓCAt

. Call

this time as t = t1. From Theorem 3.3.6, it is known that this convex region

is unique for any given set of clean vectors A and xt1j < xt0j . Throughout these

iterations, no vectors are added to the simplex tableau. If xt1j < 0, vector γj

can deleted from the dirty set of vectors and we can select another objective

function.

If xt1j ≥ 0, γi = w(bt1 , Γ̄) is selected and bγi− y+xi = 0 is added to the simplex

tableau P. Note that we can safely add vector γi to the simplex tableau as it is a

non-dominated vector. When vector γi is added to the simplex tableau P, primal

feasibility of the solution is violated while xt1i < 0 as described in Theorem 3.3.5.

Note that there is a non-negativity constraint on the slack variables of the clean

vectors. To solve this problem, LPITER2 is repeated until the primal feasibility

of P is again satis�ed. Call the time as t = t2 where the primal feasibility is

satis�ed. Then, we have reached another cone ΓAt2
such that γ̃t2j ∈ ΓCAt2

. Note

that xt2j < xt1j < xt0j . This operation is repeated for the dirty vector γj until
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there are no vectors left to add to the clean set which would decrease the slack

variable xj. Vector γj is eliminated as soon as xj < 0. Therefore when xj is

optimum, there are only two possibilities; either γj ∈ ΓAt2
becomes an active

vector and therefore xj = 0, or xj > 0 which shows that we have arrived at a

convex cone which has γj as the only vector inside. Therefore vector γj is not

dominated. After the decision about γj is given, a new dirty vector is selected

using LPOBJSLCT procedure.

Notice that at any of these iterations, the values of the slack variables are

stored in a matrix X. ∆X shows the simultaneous decrease/increase in the

slack variables of two vectors which is a good measure for their 'closeness'. It

would show that the same pivoting operation is a valid step for the minimiza-

tion/maximization of both of their slack variables. The algorithm checks for the

similarity in the decrease/increase of the slack variables for two vectors in the

last TMAX iterations by using matrix ∆X and decide on both the dirty vector

γj and the set of clean vectors inside the simplex tableau, P.

In the pseudocode, we have provided the matrices X and ∆X holding the in-

formation about the slack variables. It is also possible to write all vectors inside

the simplex tableau and use the revised simplex algorithm which would have the

same computational complexity. For such a simplex tableau the simultaneous

increase and decrease in the ∆X for any two vectors would refer to a column

check for these vectors in the simplex tableau. As these two representations are

equivalent when the computational complexity is considered, we have selected

to write X and ∆X as two matrices which is easier to think with the geometric

framework provided in this study.

3.4.1 Comparison of FastCone algorithm to the conventional algo-

rithms

Before going into the experimental results, we would like to give an analytical

comparison of the FC algorithm to the conventional algorithms and their revised

versions o�ered by us.
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After a dirty vector γ0 from Γ̄ is selected, the pruning algorithms come up with

an active set of vectors, ΓA, that shows whether this particular vector γ0 is

dominated or not. Skyline algorithm �nds an active set of vectors ΓA that has

a solution [bA yA]T on the skyline. However, if x0 >> 0, some other selection of

the ΓA would also be enough to conclude that γ0 is dominated. Lark's algorithm

selects a dirty vector γ0 as its objective function and adds clean vectors to the

simplex tableau until the selection of ΓA is su�cient to give a decision about γ0.

For Lark's algorithm, the optimization could end at a convex region which may

also contain other dominated vectors, but this fact is not exploited. While at

every step, one clean vector is added to the simplex tableau, the LP is calculated

from scratch.

In a former paper [36], we have discussed revisions for these two pruning algo-

rithms. These revised algorithms are also provided at Appendix A. The revision

o�ered for the Iterative Skyline Algorithm (ISKY) is based on the idea given in

Lemma 3.3.2. In ISKY, all the constraints are added to the simplex tableau from

the beginning. From Lemma 3.3.2, it is known that checking the optimality con-

dition for the inactive vectors inside the simplex tableau is equivalent to making

a sign check to the block matrix SNS−1
A . The Iterative Skyline Algorithm with

Multiple Objective Functions (ISwM) discussed in Section A.1 checks the new

value of block matrix SNS−1
A at every simplex iteration and decides which of

the vectors are dominated at this vertex. The pseudocode of the algorithm is

presented in Algorithm 11.

The revision o�ered for the Lark's Algorithm is a heuristic to start the LP close

to the optimal feasible point. For this, the vector distance between the the dirty

vector and the clean vectors inside the simplex tableau, ||γ0− γi||, is taken into

account. The witness point to the clean vector γi is used to �nd an initial basic

feasible point for the LP. This algorithm is called Lark's Algorithm with Initial

Condition (LKwI). The revision idea and the algorithm is provided at section

A.2. The pseudocode of the algorithm can be found in Algorithm 12.

FastCone algorithm combines the advantage of both of the revised algorithms.

The algorithm tries to eliminate the dirty vector γ0 as soon as a set of active

54



vectors ΓA is found such that x0 ≈ 0. Moreover, the statistics about the slack

variables are used as a powerful vector selection criteria compared to the vector

distance. As shown in Figure 3.2, the optimization for two vectors with di�erent

vector norms can end in the same convex region ΓCA. Without doing the pivoting

operation inside the LP, by calculating the slack variables for the dirty vectors

at each turn, we can determine for which of the dirty vectors the visited vertices

are also a valid path for the minimization.

3.5 Simulations

In this section, we will present the result of the experiments with arti�cially cre-

ated vectors and benchmark problems. FastCone Algorithm (FC) is compared to

Lark's Algorithm (LRK), Iterative Skyline Algorithm (ISKY) and their revised

versions; Lark's Algorithm with Initial Conditions (LRwI) and Iterative Skyline

with Multi-Objective Functions (ISwM). The revised algorithms can be found

in Appendix A. The results are provided in the tables and �gures below. All of

the pruning algorithms and the exact value iteration algorithm are implemented

in MATLAB environment. The tests are performed with a standard desktop

computer (Intel Core i7-3770 3.4GHz 8GB RAM).

3.5.1 Pruning Performance of Randomly Generated Sets

To demonstrate the scalability of the proposed algorithms, we have �rst tested

them with arti�cial problems, as it gives the user the �exibility to design the

problem parameters as needed. We �rst constructed a set of random vector sets

{Γ1, . . . , ΓM}. Random vectors in Γi are created by selecting D random numbers

uniformly distributed between (0, 200). Then, additional random vectors are

generated and added to the set provided that they are not pointwise dominated.

This process is repeated until the number of vectors in Γi reaches n. A test

problem is thus speci�ed by the triple (M ,D,n).

These vector sets are then used to calculate Γ̄ in Equation 2.55, which is the

bottleneck of the exact value iteration algorithm. Monahan's Enumeration Al-
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gorithm described in Section 2.6 will be used to create all possible vectors. Here,

M = |Θ| is a substitute for the cardinality of the observation set. Increasing M

means an exponential increase in the number of vectors, nM .

Figure 3.4 shows the experimental results for 30 trials for D = 5, 10, 15. At each

graph, the horizontal axis shows the initial number of dirty vectors, |F0| = N =

125, 625, 3125 and the vertical axis demonstrates the time spent by the pruning

algorithms. Both axes are given in logarithmic scale. The graphs show that FC

algorithm has a time advantage in the order of magnitude compared to both

the conventional algorithms and their revised versions. This is due to holding

statistics about the slack variables and using this information to manipulate the

number of vectors in the simplex tableau. By this idea, the number of vectors

inside the simplex tableau stay in the order of D whereas for the other cases,

the number of vectors increase at every iteration.

It can also be observed from the graphs that the performance of ISKY and ISwM

algorithms become similar as the D increases. This is due to two facts. First,

the advantage of checking multiple objective functions at every simplex iteration

vanishes as the number of vertices increases. Second, as the vector indices are

selected from a uniformly distributed random variable when N = |F0| is held
constant, the number of dominated vectors decrease for the arti�cial examples

with increasing D. To show this fact, mean value of the number of clean vectors

|Q| when N = 55 is also supplied in Figure 3.4 for D = 5, 10, 15. It can be seen

that as |Q| approaches to the value of N , the dimension of the simplex tableau

becomes a bigger problem. As can be observed from Figure 3.4, LRwI is always

better than the performance of LRK where the former uses a stratgy to select

the objective function and the latter is doing this randomly.

3.5.2 Pruning Performance of Benchmark Problems

We then tested di�erent pruning algorithms on a set of benchmark problems from

[60]. As the proposed algorithms can be used for the general pruning procedure

of any set of vectors, the total time spent in all the LPs in Equation 2.42 is given

in Table 3.2. This total time is equal to the time spent in projection pruning

56



102 103 104

N

10-2

10-1

100

101

102

103

se
co

nd
s

D = 5, |Q| = 126

LRwI
LRK
ISwM
ISKY
FC

102 103 104

N

10-1

100

101

102

103

104

se
co

nd
s

D = 10, |Q| = 952

LRwI
LRK
ISwM
ISKY
FC

102 103 104

N

10-1

100

101

102

103

104

se
co

nd
s

D = 15, |Q| = 1860

LRwI
LRK
ISwM
ISKY
FC

Figure 3.4: Mean time spent by di�erent pruning algorithms
(FC,ISKY,ISwM,LRK,LRwI) for arti�cial problems in 30 trials. An arti�cial
problem is de�ned by the triple (M ,D,n). Three cases where D = 5, 10, 15

are examined in di�erent graphs. Horizontal axis shows the initial number of
dirty vectors N = nM and the vertical axis demonstrates the time spent by the
pruning algorithms. Each graph shows three di�erent results for n = 5 and
M = 3, 4, 5. |Q| shows the average number of clean vectors for N = 55 after the
pruning algorithms are terminated.
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of action and observation dependent vectors in Equation 2.47, the pruning of

the action dependent vectors after the cross sum in Equation 2.46 is performed

by Monahan's enumeration algorithm, and the maximization given in Equation

2.45 among action dependent vectors.

The speci�c structure of Equation 2.55 has been exploited in [43]. Yet, our aim

here is to show the e�ectiveness of FastCone algorithm for any given set of dirty

vectors Γ̄, without any prior information. For this aim, all possible vectors are

�rst created as shown in Equation 2.55, and the pruning algorithms are applied

to this set as in Equation 2.56.

Table 3.2 shows the performance results for di�erent pruning algorithms for

di�erent benchmark problems. The table provides the speci�ed time horizon for

each problem, h, the number of clean vectors at the end of the speci�ed horizon,

|Q|, and the time spent in algorithms in milliseconds. At h = 0, it is assumed

that there are no accumulated rewards for any of the states. Di�erent time

horizons are chosen regarding the complexity of the speci�c benchmark problem.

As we are asked for the value function for a �nite horizon, the discount factor

is taken as 1 in any of the cases.

Table 3.2: Tests with benchmark problems in milliseconds

Problem h |Q| time
LRwI
LRK
ISwM
ISKY
FC

4x3.95 7 128
128
129
129
128

9443
15566
558.1
675.5
711.8

LRwI
LRK
ISwM
ISKY
FC

tiger.95 8 21
21
21
21
21

931.8
2008
28.5
42.6
40.7

LRwI
LRK
ISwM
ISKY
FC

shuttle.95 6 185
185
186
186
187

12195
13827
472.9
550.6
658.9

Problem h |Q| time
hanks.95 9 17

17
17
17
17

2113.3
3839.6
73.8
110
88.4

4x4.95 7 20
20
20
20
20

902
2169
68.3
67.4
78

4x5x2.95 5 74
74
74
74
74

3875.6
8347.7
308.5
263.7
778.1
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Table 3.2 shows that for benchmark problems, the FastCone algorithm has a

similar performance to the Skyline based algorithms. This is due to two facts;

most of the vectors in the dirty set are non-dominated vectors, therefore Lark

based algorithms lose some time with writing the LPs from scratch. Secondly, as

discussed in [51], Skyline algorithm has a comparable time advantage to Lark's

algorithm when |Γ̄| is small. With increasing time horizon, |Γ̄| would increase

and this time advantage would disappear. Therefore, it is possible to increase

the time horizon of each problem to underline the performance of the FastCone

algorithm as shown in Section 3.5.1.

Yet, with increasing time horizon, another problem arises. Recall that, even

when the discount factor is taken as 1, the distribution of the vectors in the

vector space is dependent on the properties of R(a, o) in Equation 2.53. With

increasing horizon, the support set of some vectors become quite small, causing

the LP to do many unnecessary simplex iterations. In our application, to assure

the numerical stability of the pruning algorithms, two di�erent tolerances were

de�ned for the pivot and sign check operations.

For the pivoting operation, Harris ratio test is applied [47]. In the ratio test, the

selection of the εpiv = 10−8 value is critical especially for almost-degenerate cases

where the support region of some of the vectors becomes very small. Simplex

iterations also require a sign check operation to determine the pivoting column.

To alleviate the roundo� error accumulation, every value smaller that ε0 = 10−5

is assumed to be zero. However, due to the computation precision, small roundo�

errors can accumulate and get over a predetermined threshold causing some

extraneous vectors to appear in the clean set as shown in 3.2. Still, the number

of clean vectors in any of the problems are almost identical which manifests the

algorithm robustness. In the authors opinion, the importance of the benchmark

problems is not to show the algorithm performance in time but in stability.
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3.6 Conclusion

In the dynamic programming update of POMDPs, the number of vectors increase

exponentially. Therefore, pruning this set of vectors to a minimal set becomes

a major concern. Many scholars analyzed the steps of the exact value iteration

algorithm to overcome the exponential increase in vectors [42�45]. Yet, there are

only a few papers that speci�cally attack the linear programs which are being

used by the exact value iteration algorithm [36,37,51]. As stated in [51], treating

the LPs as a black box and focusing only on its optimal solution, results in a

major performance loss. If the LP iterations are not taken into account, similar

LP operations should be repeated for every dirty vector in Γ̄.

In our former study [36], we have discussed that it is possible to de�ne a heuristic

'closeness' measure for the dirty vectors. This idea is described in Section A.2

and used to improve the Lark's Algorithm. To be able to make a formal de�nition

of this closeness measure, this study puts forward a geometric approach for the

vector pruning problem. The use of convexity to de�ne the vector pruning

problem and the geometry of convex regions described in Section 3.3 is a novel

idea. This is the �rst contribution of this chapter.

The second contribution is the algebraic approach that is given in tandem with

the geometric approach in Section 3.3. For the geometric approach, the problem

is described by small sized LPs, called LPA,0 that refer to any selection of active

set of vectors ΓA and a dirty vector γ0. The simplex iterations given in Algorithm

4, LPINIT1 and LPINIT2 applied to LPA,0 are also explained geometrically by

the theorems given in Section 3.3.

As stated in Section 3.4.1, any of the pruning algorithms is basically the selection

of a clean set ΓA for a given dirty vector γ0. The �nal contribution of this study

is the use of stated framework for a novel algorithm called FastCone (FC). FC

algorithm is compared to the conventional algorithms and their revised versions

both analytically and experimentally. It is shown that FC algorithm results in

an order of magnitude performance increase as the problem size increases.

One recent study has also shown how the number of constraints in the LP
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can be reduced by using the Bender's decomposition technique [37]. FastCone

algorithm also uses the dual problem for �nding the solution of the LP but is

di�erent from [37] in three senses. First, it checks if the elimination criteria for

the selected dirty vector is satis�ed at every simplex iteration and terminates the

optimization if possible. This is important, as it might be possible to eliminate

a vector without reaching to the optimal solution of the linear program. After

termination, the same simplex tableau is used for the elimination of another

vector. This is the second di�erence. Thirdly, this new vector is selected by

a de�ned closeness metric that allows the solutions to be close to each other,

meaning a smaller number of LP iterations.

While FastCone is an e�cient algorithm as shown in part 3.5, vector pruning is

an open problem because of its di�erent structure. In the vector pruning prob-

lem there are as many objective functions as the number of linear constraints.

Therefore the order, in which these constraints are selected as the objective

function, results in a major performance di�erence. In our future work, we

aim to exploit the framework stated in this thesis for proposing both exact and

approximate algorithms.
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CHAPTER 4

EXTENDING THE THEORETICAL FRAMEWORK

FOR THE CROSS-SUM OPERATION

4.1 Introduction

In Chapter 2, we have discussed the exact value iteration algorithm. Section

2.6 introduced the enumeration algorithm for exact value iteration which is an

upper bound for the computational complexity of the problem. Here, all possible

vectors are �rst created and then pruned to a minimal set of non-dominated

vectors. This pruning operation is explained in Chapter 3.

The computational complexity of the exact value iteration algorithm is mainly

due to the cross-sum operation de�ned over a set of vectors shown in Equa-

tion 2.55. The number of vectors created at the cross-sum step are |Γ̄at | =∏
o∈Θ |Γ

a,o
t | ≈ |Γt+1||Θ|. However, the creation of the set Γ̄t is not necessarily as

costly as discussed in Section 2.6. There are many algorithms that use di�er-

ent properties of the cross-sum operation which is a summation over di�erent

PWLC functions. In this chapter, we will �rst introduce these algorithms and

then use the framework proposed in Chapter 3 to o�er a novel algorithm.

4.1.1 Conventions

Denote M := |Θ| as the observation cardinality. We have M sets {Γm}Mm=1,

where each Γm denotes a set of vectors. It is reasonable to think that Γm is a

set of clean vectors as it is possible to prune this set before starting the cross-
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sum operation. That is, Γm = PR(Γm). Let Nm := |Γm|. Then we can write

Γm = {γm,1, . . . ,γm,Nm}. Each set Γm can also be described by the set of indices

Qm = {1, . . . ,Nm}.

We will de�ne a recursive structure for the cross-sum operation. De�ne Γ̄k:M :=⊕M
m=k Γm, Γk:M := PR(Γ̄k:M) andNk:M := |Γk:M |. For the indices, de�neQk:M =

Qk×Qk+1×. . .×QM . The vectors in Γ̄k:M can be uniquely de�ned by the indices

in Qk:M .

Γ denotes the clean set after the cross-sum operation. That is Γ := Γ1:M . Denote

N := N1:M . Then we can write Γ = {γ1, . . . ,γN}. Recall that any element

γi ∈ Γ̄1:M can be represented by (i1, i2, . . . , iM) ∈ Q1:M where ij corresponds to

the ijth element in set Γj. Then (i1, i2, . . . , iM) ∈ Q1:M ⇐⇒ γi =
∑M

m=1 γm,im .

The support set of vector γm,k in Γi will be denoted by Bm,k := R(γm,k, Γm).

The support set of vector γj in Γ will be denoted by Bj := R(γj, Γ1:M).

The dirty set of vectors, Γ̄, will also be denoted by the set F0 = {1, . . . ,N},
where the vectors will be represented by their indexes. As we give our decision

about the vectors in the dirty set Γ̄, the size of F0 decreases. For notational

convention, we will de�ne F , which represents the index of current dirty set

of vectors, respectively. At initialization, the dirty set contains all the vectors,

F = F0. All algorithms continue until F = ∅. In a similar manner, we will de�ne

Q∞ and Q which describe the �nal and current clean set of vectors, respectively.

The indexes of the vectors in Γ are one-to-one correspondent with the set Q∞;

that is, Γ = Γ̄Q∞ . At the beginning of the algorithm, Q = ∅ and when the

algorithm is terminated, Q = Q∞.

4.2 Known Exact Value Iteration Algorithms

Smallwood et al. noted that the cross-sum operation partitions the belief set in

a particular way [20]. The special structure of the cross-sum operation can be

summarized by the following Lemma 4.2.1:
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Lemma 4.2.1. Suppose we have {Γm}Mm=1. Take γi =
∑M

m=1 γm,im. Then,

Bi =
M⋂
m=1

Bm,im (4.1)

Proof. (⇒:) Take b ∈ Bi and assume that ∃l such that b /∈ Bl,il . Then ∃k such

that b ∈ Bl,k. Form γ̃i =
∑

m 6=l γm,im + γl,k. Note that bγ̃i > bγi. As γ̃i ∈ Γ̄1:M ,

∃γj ∈ Γ1:M such that bγj ≥ bγ̃i. Then bγj > bγi. This is not possible as b ∈ Bi.
Therefore b ∈ Bl,il .

(⇐:) Take γi =
∑

m γm,im and b ∈
⋂M
m=1 Bm,im . Assume ∃γj ∈ Γ1:M such that

bγj > bγi. We know that γj =
∑

m γm,jm . Then ∃m such that bγm,jm > bγm,im .

Contradiction. �

There are many algorithms that exploit the special structure in the cross-sum

operation of many sets of vectors to reduce the number of constraints in the

LPs. Before going into the algorithms, we want to introduce some mathematical

de�nitions that would help us with explaining these algorithms.

De�nition 15. For a given set of vector sets {Γm}Mm=1, de�ne the following

operator I;

I(Γ1, . . . , ΓM) =

{
(i1, . . . , iM)|

⋂
m

Bm,im 6= ∅ where im ∈ Qm, 1 ≤ m ≤M

}

When a belief subset B̃ is also given, the operator becomes;

I(B̃; Γ1, . . . , ΓM) =

{
(i1, . . . , iM)|

(⋂
m

Bm,im

)⋂
B̃ 6= ∅ where im ∈ Qm, 1 ≤ m ≤M

}

The following equation shows the relation between the set and index notations.

M∑
m=1

γm,im ∈ Γ ⇐⇒ (i1, . . . , iM) ∈ I(Γ1, . . . , ΓM)

Therefore |Γ| = |I(Γ1, . . . , ΓM)|. Operator given in De�nition 15 is de�ned by

Feng et al. [61]. The following lemma shows clearly the iterative logic of the

cross-sum operation.
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Lemma 4.2.2. Given {Γm}Mm=1, the following statements are true.

(ik, . . . , iM) ∈ I(Γk, . . . , ΓM)⇒ (ik+1, . . . , iM) ∈ I(Γk+1, . . . , ΓM)

(ik, . . . , iM) ∈ I(B̃; Γk, . . . , ΓM)⇒ (ik+1, . . . , iM) ∈ I(B̃; Γk+1, . . . , ΓM)

Proof. Take (ik, . . . , iM). If
⋂M
m=k+1 Bm,im = ∅, then

⋂M
m=k Bm,im = ∅. Therefore,

(ik, . . . , iM) /∈ I(Γk, . . . , ΓM). �

γ1,1
γ1,2

γ1,3 b1 b2

b(1)b(2)

b(3)

(a) Belief State Partition of set Γ1

γ2,2

γ2,1b1
b2

b(1)b(2)

b(3)

(b) Belief State Partition of set Γ2

(1, 2)
(2, 2)

(3, 2)
(3, 1)

(1, 1)
b1 b2

b(1)b(2)

b(3)

(c) Belief State Partition of set Γ1 ⊕ Γ2

Figure 4.1: Cross-sum of two sets D = 3

The belief state representation of the value function can be seen in Figure 4.1.

In the �gure, a simple case of the cross-sum operation where D = 3 and M = 2

is investigated. The support set of the vectors in the �gure are denoted by the

vector names in Figures 4.1a and 4.1b. In Figure 4.1c, the support set of the

vectors is shown by their index numbers (i1, i2). As can be seen from the �gure,

for the belief point b1, there are D active vectors from the set Γ1. Therefore,

point b1 is a vertex point of set Γ1. If a belief point b1 is a vertex of one of
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the input sets, it naturally becomes a vertex of the output set. Discarding

degeneracies, the point b would be in the support set of a single vector for the

other input sets of the cross-sum operation (in our case γ2,2). One important

observation can be made here. If there are less than D vectors for any of the

input sets Γi, this results in a degeneracy. The solution at belief point b2 is such

a case. There are two active vectors from both Γ1 and Γ2 at point b2 and the

cross-sum of all vectors are inside the clean set. Lemma 4.2.1 says that γ1,2+γ2,1

cannot be an active vector as B1,2 ∩ B2,1 = ∅. But �nding if the regions of two

vectors from di�erent sets is possible only by writing the suitable LPs.

It is also possible to investigate the cross-sum operation in the vector space repre-

sentation of the value function. In [38], Zhang uses the vector space formulation

particularly for the cross-sum operation of di�erent sets of vectors. It is known

that optimal value function in the vector space forms a convex polyhedron and

the cross-sum operation is the Minkowski addition of the the vectors that are

forming these convex polyhedrons. If the vertices of each convex polyhedron has

already been enumerated [52], this enumeration information can be used when

writing the linear programs for �nding the vertices of the resultant convex poly-

hedron. For the pruning operation, the aim is not to enumerate all the vertices

of the value function [52,62], but to travel the least number of vertices until we

can assure that all the vectors in our the �nal set are non-dominated.

4.2.1 Incremental Pruning Algorithm

First systematic approach to deal with the pruning operation for the cross-

sum operation is o�ered by Cassandra et al. [43] with the incremental pruning

algorithm. Incremental pruning exploits the fact that PR and
⊕

operators in

Equations 2.55 and 2.56 can be interleaved. In mathematical terms,

PR(Γ1 ⊕ Γ2 ⊕ Γ3) = PR(Γ1 ⊕ PR(Γ2 ⊕ Γ3)) (4.2)

This idea is useful while |PR(Γ2⊕Γ3)| can be much less compared to |Γ2⊕Γ3| =
N2×N3. Therefore, if the pruning operation is done before cross-sum operation

with Γ1, the number of vectors created will be less compared to operand of the
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left hand-side of Equation 4.2. In a similar manner when M > 3,

PR

(
M⊕
m=1

Γm

)
= PR (Γ1 ⊕ PR (Γ2 ⊕ . . .PR (ΓM−1 ⊕ ΓM) . . .)) (4.3)

The order of the sets in Equation 4.3 does not change the resultant clean set Γ.

Cassandra et al. [43] also observed that, it might be bene�cial to choose the sets

Γi and Γj in the inner loops of Equation 4.3 if |PR(Γi ⊕ Γj)| << |Γi ⊕ Γj|.

As can be seen Equation 4.3 has a recursive structure. To �nd Γk:M , �rst Γk ⊕
Γk+1:M is calculated and PR(Γk ⊕ Γk+1:M) = Γk:M is performed. In Chapter

3, we have seen two di�erent pruning operators; Lark's and iterative skyline

algorithms. Both algorithms write an LP for any of these vectors inside Γ̄k:M to

see if the vector is dominated. We need to solve Nk×Nk+1:M LPs to reach the set

Γk:M . For the Lark's algorithm, the number constraints inside the LP increases

from 1 to Nk × Nk+1:M + 1 as the algorithm proceeds. If we have selected the

Skyline Algorithm, the constraints in each LP would be Nk ×Nk+1:M + 1. Note

that this operation should be repeated for k going from N to 1. Note that at

every step, we have two set of vectors that are being cross-summed.

4.2.2 Generalized Incremental Pruning

Cassandra et. al. gives an elaborate way to use Lemma 4.2.1 in the cross-sum

step of exact value iteration algorithm. The generalized incremental pruning

algorithm is described in Algorithm 5. The algorithm is basically a recursive

call of the subroutine GCS which is a generalized version of the cross-sum of

two set of vectors. Any element in the dirty set F is represented by the index

set (i1, i2). The algorithm has a similar structure to Lark's algorithm given in

Algorithm 1. Two routines are taken from Algorithm 1; FNDBLF and BEST.

The FNDBLF routine in Step 15 is used to �nd a belief point for a vector with

respect to a given set of vectors. BEST routine in Step 19 is used to select one

of the dominating vectors if a belief state is given. This algorithm is used to

�nd a witness point for a vector γi with respect to the set Ψ. If the vector has

a witness point with respect to the set Ψ, then it is a non-dominated vector. Ψ

can be one of the following sets:
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Algorithm 5 Generalized Incremental Pruning
1: procedure GIP(Γ1, . . . , ΓM )

2: Γ← ΓM

3: k ←M − 1

4: while k 6= 0 do

5: Γ← GCS (Γ, Γk)

6: k ← k − 1

7: end while

8: return Γ

9: end procedure

10: procedure GCS(Γ1, Γ2)

11: Γ̄← Γ̄1:2, F ← Q1 ×Q2, Q← ∅
12: while F 6= ∅ do
13: (i1, i2)← any element in F

14: γi ← γ1,i1 + γ2,i2
15: (δ, b)← FNDBLF(γi, Ψ)

16: if δ > 0 then

17: F ← F \ {(i1, i2)}
18: else

19: γ ← BEST(b, Γ̄)

20: (i1, i2)← index of γi in Γ̄

21: F ← F \ {(i1, i2)}
22: Q← Q ∪ {(i1, i2)}
23: end if

24: end while

25: return Γ̄Q

26: end procedure
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1. Ψ = Γ1 ⊕ Γ2

2. Ψ = Γ̄Q

3. Ψ = ({γ1,i1} ⊕ Γ2) ∪ (Γ1 ⊕ {γ2,i2})

4. Ψ = ({γ1,i1} ⊕ Γ2) ∪Ψ2

5. Ψ = Ψ1 ∪ (Γ1 ⊕ {γ2,i2})

where Ψ1 = {γ1,i1 + γ2,k|(i1, k) ∈ Q} and Ψ2 = {γ1,k + γ2,i2|(k, i2) ∈ Q}. Recall
that before running the FNDBLF routine, we select a vector (i1, i2). For the

details of the algorithm, the reader can refer to [44]. We want to show what the

selection of di�erent Ψ sets means.

When Ψ = Γ1⊕ Γ2 is selected, all the vectors are written inside the LP and the

algorithm becomes similar to the LP of the Skyline algorithm given in Algorithm

3. When Ψ = Γ̄Q is selected, the algorithm becomes similar to the Lark's

algorithm as only the vectors in the clean set are considered inside the LP. For

the other cases, we want to keep in mind that FNDBLF routine writes

b(γi − γ̂) + δ > 0 ∀γ̂ ∈ Ψ

Recall that γi = γ1,i1 + γ2,i2 .

When Ψ = ({γ1,i1} ⊕ Γ2) ∪ (Γ1 ⊕ {γ2,i2}) is selected, the constraints inside the
LP becomes

b(γm,im − γm,tm) + δ > 0, ∀tm ∈ Qm \ {im}, 1 ≤ m ≤ 2 (4.4)

where for any δ ≤ 0, we have found a b ∈ B1,i1 ∩ B2,i2 .

For the 4th and 5th cases there is a symmetry. For this, it is enough to investigate

only one of these cases. When Ψ = ({γ1,i1} ⊕ Γ2) ∪Ψ2 is selected,

b(γ1,i1 − γ1,t1) + δ > 0, ∀t1|γ1,t1 + γ2,i2 ∈ Ψ2

b(γ2,i2 − γ2,t2) + δ > 0, ∀t2 ∈ Q2, t2 6= i2

where the second set of constraints restricts the region and the �rst set does

the pruning operation over this region. This algorithm in great similarity with
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operating the Lark's algorithm over the belief region B2,i2 . This variant of the

incremental pruning algorithm has the smallest number of constraints in the LP.

Yet, even in this case, the algorithm is de�ned only for two sets, therefore the

e�ectiveness of the algorithm diminishes as more sets are cross-summed. For

instance, when M = 3, after the sets Γ2 ⊕ Γ3 is cross-summed, the number

of constraints inside the LP would vary between |Γ2:3| to N1 + |Γ2:3|. With a

similar reasoning, when we consider Equation 4.3 where M > 3, the number of

constraints inside the LP will approach |Γ1:M |.

As we have discussed before, Lemma 4.2.1 is �rst noticed by Smallwood et al. [20]

and later developed by Cassandra [43]. Feng et al. [45] have built the restricted

region variants of the incremental pruning algortihm on this background. There-

fore, the algorithms proposed by Feng et al. [61] are a major improvement to

the generalized incremental pruning algorithm when M > 2. The generalization

of 3rd case will be discussed in detail in the region intersection algorithm given

in Algorithm 6 and 4th and 5th cases in restricted region algorithm given in

Algorithm 7, respectively.

4.2.3 Intersection Based Incremental Pruning

Feng et al. [61] generalize the proposition of Lemma 4.2.1 as follows: Suppose we

want to determine if a particular vector γi =
∑M

m=1 γm,im is dominated. Instead

of calculating the vector set Γ̄1:M and then searching for γi, we can write an

LP using the intersection of the support set of individual vectors γm,im . This is

equivalent to the following LP;

min 0

b(γm,im − γm,t) > 0, ∀t ∈ Qm \ {im}, 1 ≤ m ≤M

D∑
l=1

b(l) = 1

b(l) ≥ 0, 1 ≤ l ≤ D

(4.5)

However, the LP in Equation 4.5 should be solved for any (i1, . . . , iM) which

means
∏

iNi LPs where every LP has
∑

mNm+1 constraints. Instead of writing

an LP for every possible vector, Feng et al. [61] proposes to use Lemma 4.2.2 and
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stop the recursion for any branch at step k if (ik+1, . . . , iM) ∈ I(Γk+1, . . . , ΓM)

but (ik, . . . , iM) /∈ I(Γk, . . . , ΓM).

The algorithm for �nding I(Γ1, . . . , ΓM) via region intersection is given in Al-

gorithm 6. The main algorithm, IBIP, is a recursive call of the function PRI,

where at each time step the set Γk:M = PR (Γk
⊕

Γk+1:M) is found. The func-

tion PRI writes an LP for every vector in (ik, . . . , iM) ∈ Qk × I(Γk+1, . . . , ΓM).

Procedure LPINTSCT corresponds to the LP for region intersection described

in Equation 4.5. The function returns true if the regions of the given vectors

in the n-tuple intersect. The algorithm selects (ik, . . . , iM) randomly from set

F and tries to �nd if their support set is intersecting. Note that as there is

no objective function, any point b ∈
⋂M
j=k Bm,im satis�es the linear program. If

we start the LP from b /∈
⋂M
m=k Bm,im , the program �nds a corner point of the

region
⋂M
m=k Bm,im . If

⋂M
m=k Bm,im = ∅ then (ik, . . . , iM) /∈ I(Γk, . . . , ΓM).

We can see that there are Nk × |I(Γk+1, . . . , ΓM)| = Nk × Nk+1:M LPs needed

which is the same for the incremental pruning algorithm. However for each

LP, there are approximately
∑M

m=kNm constraints compared to Nk × Nk+1:M

constraints in the incremental pruning algorithm. Note that the LP structure

is somehow similar to the Skyline algorithm where all the vectors in
⋃M
m=k Γm

are written inside the LP as constraints. Moreover, it is possible to decrease the

number of vectors inside the LP by using a similar logic to Lark's algorithm.

This will be investigated by the following algorithm.

4.2.4 Region Based Incremental Pruning

Feng et al. [61] also propose a method to decrease the number of constraints in

each LP to be solved. Recall that Lark's algorithm in Section 3.2.1 tries to �nd

a belief point b ∈ B at the end of every LP which is used to either delete a vector

from the dirty set or add a new vector to the clean set. Instead of the whole

belief set, it is possible to de�ne a subset of the belief set B̃ and perform a similar

operation. This is equivalent to a special case of the operator in De�nition 15,

where a single set Γi is given and I(B̃; Γi) is performed.
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Algorithm 6 Intersection Based Incremental Pruning
1: procedure IBIP(Γ1, . . . , ΓM )

2: Γ̄← Γ̄1:M

3: k ←M

4: Q← Qk

5: while k 6= 0 do

6: Q← PRI ({Γm}Mm=k,Q)

7: k ← k − 1

8: end while

9: return Q

10: end procedure

11: procedure PRI({Γm}Mm=k, Q̄)

12: Q← ∅
13: F ← Qk × Q̄
14: while F 6= ∅ do
15: (ik, . . . , iM )← any element in F

16: F ← F \ {(ik, . . . , iM )}
17: if LPINTSCT ((ik, . . . , iM ), {Γm}Mm=k) == true then

18: Q← Q ∪ {(ik, . . . , iM )}
19: end if

20: end while

21: return Γ̄Q

22: end procedure

23: procedure LPINTSCT((ik, . . . , iM ), {Γm}Mm=k)

24: solve the following linear program

min 0 subject to

b(γm,im − γm,tm) > 0, ∀tm ∈ Qm \ {im}, k ≤ m ≤M∑
b(l) = 1, 1 ≤ l ≤ D

b ≥ 0

25: if LP is feasible return true

26: else return false

27: end procedure
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Assume that M = 2 and Γ = PR(Γ1⊕Γ2). The question is for a �xed γ2,i2 ∈ Γ2

which vectors from γ1,i1 ∈ Γ1 should be selected such that γ1,i1 + γ2,i2 ∈ Γ. As

discussed in [45], the bene�t of the region-based pruning algorithm comes from

the following fact;

I(Γ1, Γ2) =
⋃
i2∈Q2

{I(B2,i2 ; Γ1)× {i2}} (4.6)

Note that, in this case the clean set of vectors is only the set of vectors in Γ1 which

are dominant over B2,i2 . This is equivalent to saying i1 ∈ I(B2,i2 ; Γ1). Therefore,

the vectors in Γ1 can be regarded as the dirty set of vectors. For the initialization

of the algorithm F = Q1 and Q = ∅. The algorithm picks a vector γ1,k ∈ Γ1

and tries to �nd a belief point b ∈ B2,i2 that satis�es bγ1,k > bγ1,l, ∀l ∈ Q. This
is equivalent to the following LP;

min δ

b(γ1,k − γ1,t1) + δ > 0, ∀t1 ∈ Q ⊂ Q1

b(γ2,i2 − γ2,t2) > 0, ∀t2 ∈ Q2, t2 6= i2
D∑
l=1

b(l) = 1

b(l) ≥ 0, 1 ≤ l ≤ D

(4.7)

The optimal solution occurs at the belief state b0 and the value of the objective

function is δ0. We know that b0 ∈ B2,i2 . If δ0 is less than 0, it means that there is

a vector constraint from set Γ2 that gives a higher value for y2 at the belief state

b0 where the optimal solution occurs. The vector index k′ = arg maxk∈F b0γ1,k

is added to the clean set Q and deleted from F . If δ0 is greater than or equal

to zero, the vector γ1,k is dominated by the vectors in the clean set Γ1,Q and

therefore k is deleted from F . The procedure continues until there are no vectors

left in F .

Algorithm 7 is the restricted region variant of incremental pruning. The main

routine is I(B2,i2 , Γ1) where the pruning operation is performed only over the

belief subset B2,i2 . To cover the whole belief set, we need to perform this op-

eration ∀i2 ∈ Q2. Note that the algorithm can be written for any closed belief

subset B̃, the only constraint is that the borders of B̃, should be determined by
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the linear equations as demonstrated in Equation 4.7.

If we were to �nd I(Γ1, Γ2) by using Algorithm 6, the number of LPs to be solved

are N1 ×N2. Same number of LPs are needed in Algorithm 7. However for the

former algorithm, each LP would have N1 +N2 + 1 constraints. The number of

constraints inside the LP for the latter varies between N1 + 1 and N1 +N2 + 1.

Algorithm 7 Restricted Region Algorithm
1: procedure I(B2,i2 ; Γ1)

2: Q← ∅
3: F ← Q1

4: while F 6= ∅ do
5: i← any element in F

6: (δ, b)← LPRR(B2,i2 ,γ1,k, Γ1,Q)

7: if δ > 0 then

8: γ ← BEST(b, Γ1)

9: k ← index of γ in Γ1

10: Q← Q ∪ {k}
11: F ← F \ {k}
12: else

13: F ← F \ {i}
14: end if

15: end while

16: return Γ1,Q

17: end procedure

18: procedure LPRR(B2,i2 ,γ1,k, Γ1,Q)

19: solve the following linear program

variables: δ, b

min δ subject to

b(γ1,k − γ1,t1) + δ > 0, ∀t1 ∈ Q
b(γ2,i2 − γ2,t2) > 0, ∀t2 ∈ Q2, t2 6= i2∑
b(l) = 1

b ≥ 0

20: return (δ, b)

21: end procedure

What happens when M > 2? Feng et al. describe a recursive structure by using

the following fact.

I(Γ1, . . . , ΓM) =
⋃
iM

{I(BM ,iM ; Γ1, . . . , ΓM−1)× iM} (4.8)

=
⋃

(ik,...,iM )

{
I

(
M⋂
m=k

Bm,im ; Γ1, . . . , Γk−1

)
× (ik, . . . , iM)

}
, 1 ≤ k ≤M

(4.9)
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Algorithm 8 Region Based Incremental Pruning
1: procedure RBIP(Γ1, . . . , ΓM )

2: Γ̄← Γ̄1:M

3: F ← QM

4: Q← ∅
5: while F 6= ∅ do
6: i← any element in F

7: F ← F \ {i}
8: Q← Q ∪ I(BM ,i; Γ1, . . . , ΓM−1)× {i}
9: end while

10: return Γ̄Q

11: end procedure

12: procedure I(B̃; Γ1, . . . , ΓK)

13: Q← ∅
14: k ← K

15: while k 6= 0 do

16: if k = 1 then

17: Q← I(B̃; Γ1)

18: else

19: F ← Qk

20: while F 6= ∅ do
21: i← any element in F

22: for 1 ≤ m ≤ k do

23: U ← I
(

(B̃ ∩ Bk,i); Γm

)
24: Γ̄m = Γm,U

25: end for

26: Q← I
(
B̃ ∩ Bk,i; Γ̄1, . . . , Γ̄k−1

)
× {i}

27: end while

28: end if

29: k ← k − 1

30: end while

31: return Q

32: end procedure

76



For any selected (ik, . . . , iM) if
⋂M
m=k Bm,im = ∅, there is no need to continue with

this operation. Here the proposition of Lemma 4.2.2 is being used where B̃ =

BM ,iM . However in Algorithm 8, Equation 4.8 is not used directly. Assume that

we want to �nd I(BM ,iM ; Γ1, . . . , ΓM−1). We can write the following equation;

∃(i1, i2, . . . , iM−1) ∈ I(BM ,iM ; Γ1, . . . , ΓM−1) ⇐⇒ im ∈ I(BM ,iM ; Γj) ∀1 ≤ m ≤M−1

Therefore, if we want to perform the cross-sum operation in the belief subset

BM ,iM , we can �rst perform I(BM ,iM ; Γm) for each set m independently. Assume

that the pruned set at the end of this operation is shown by Γ̃j. Then,

I(BM ,iM ; Γ̃1, . . . , Γ̃M−1) = I(BM ,iM ; Γ1, . . . , ΓM−1)

The advantage of this step is apparent when we think of the future steps of the

algorithm. For instance, at the �nal step of the algorithm we need to calculate

I(
⋂M
m=2 Bm,im ; Γ̃1) = I(

⋂M
m=2 Bm,im ; Γ1). As |Γ̃1| < |Γ1|, it will be easier to cal-

culate the former case. The number of constraints inside boths LPs is the same

and would be much smaller than
∑M

m=kNm, which is the result for restricted

region case shown in Algorithm 7.

4.2.5 Witness Algorithm

The witness algorithm is proposed by Cassandra et al. [63]. Recall that most of

the algorithms choose the vectors from the dirty set with no particular order.

The main motivation of the witness algorithm is to choose the vectors that

are `close' to the vectors in the clean set. After selecting any vector γi =∑M
m=1 γm,im , the following set is formed.

De�nition 16. The neighboring vectors of a vector γi =
∑M

m=1 γm,im are de�ned

as follows;

N (γi) =

{∑
m 6=k

γm,im + γk,t, ∀t ∈ Qk \ {ik}, 1 ≤ k ≤M

}
(4.10)

The indices of vectors in set N (γi) will be denoted by IN (γi)

De�nition 16 gives the neighboring vectors of a vector γi. A neighbor is any

vector that di�ers by a single term in the summation over the observation set.
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Algorithm 9 Witness Algorithm
1: procedure WITNESS(Γ1, . . . , ΓM )

2: Γ̄← Γ̄1:M

3: b← any belief state in B
4: γi ← BEST(b, Γ̄)

5: (i1, i2, . . . , iM )← index of γ in Γ̄

6: Q← {(i1, i2, . . . , iM )}
7: F ← IN (γ)

8: while F 6= ∅ do
9: (i1, i2, . . . , iM )← any element in F

10: γ ← (i1, i2, . . . , iM )th vector in Γ̄

11: F ← F \ {(i1, i2, . . . , iM )}
12: (δ, b)← FNDBLF(γ, Γ̄Q)

13: if δ < 0 then

14: F ← F ∪ {(i1, i2, . . . , iM )}
15: γ ← BEST(b, Γ̄)

16: (i1, i2, . . . , iM )← index of γ in Γ̄

17: F ← F ∪ IN (γ)

18: Q← Q ∪ {(i1, i2, . . . , iM )}
19: end if

20: end while

21: return Γ̄Q

22: end procedure

The vectors in N (γi) does not necessarily share a witness point with vector γi,

but the set N (γi) is useful due to the following theorem given in Cassandra et

al. [63].

Theorem 4.2.3. Take any vector γi ∈ Γ. De�ne the set N (γi). Then the

following equation holds for all b ∈ B;

γi 6= w(b, Γ) ⇐⇒ γi 6= w(b,N (γi) ∪ γi) (4.11)

where the de�nition of w(b, Γ) is given in De�nition 6.

Proof. (⇒:) We know that ∃γk ∈ Γ such that bγk > bγi. We can write γk =∑M
m=1 γm,km . As bγk > bγi, ∃j such that bγj,kj > bγj,ij . Form γ̃ =

∑
m 6=j γm,im+

γj,kj . Then, bγ̃ > bγi and γ̃ ∈ N (γi).

(⇐:) Note that ∃γ̃ ∈ N (γi) such that bγ̃ > bγi. We know that γ̃ ∈ Γ̄1:M . Then

b · w(b, Γ̄1:M) ≥ bγ̃ > bγi. Therefore b /∈ R(γi, Γ̄1:M) = R(γi, Γ) �

Theorem 4.2.3 says that if there is a belief state b where bγj > bγi and γi,γj ∈ Γ,
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then a vector fromN (γi) is better than vector γi at this belief point b. Neighbors

of a vector can show if a vector is dominated, therefore checking for domination

of vectors from the same neighborhood is a faster way to delete the dirty vectors

from this neighborhood. Algorithm 9 shows how this idea is used for the selection

of the dirty vectors. The main routine of the algorithm is quite similar to the

Lark's routine as the selected vector is only compared to the vectors in the clean

set. But for the selection of dirty vectors, priority is given to the neighbors of

the clean vectors. Yet there is no guarantee for the solution of FNDBLF(γ, Γ̄Q).

If the solution is at another part of the belief set, these vectors are also added

to the dirty set, causing a fast increase. If a great percentage of the vectors

are added to the set F at the initial steps of the algorithm, the information

about the region intersection due to the cross-sum operation would not be used

e�ciently. To see that this algorithm is complete, the reader can refer to [44].

4.2.6 Some Other Exact Value Iteration Algorithms

There are a number of algorithms which is used for the exact value iteration.

Sondik's One Pass Algorithm starts with a random belief point and the corre-

sponding dominant vector. It then �nds the set of vectors that would constrain

the support set of this dominant vector, yet it was shown that the algorithm can

be conservative when �nding the support set of a particular vector [64]. Cheng's

Linear Support algorithm [41] starts from an arbitrary belief point and �nds the

dominant vector at this point. Unlike Sondik's One Pass algorithm, it does not

add the constraints from start but at each step narrows down the support set of

the dominant vector until the actual support set of the vector is found. These

algorithms do not directly aim the cross-sum operation, therefore they will not

be explained in this thesis, but is mentioned here for the sake of completeness.
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4.3 Using the Vector Pruning Framework for the Cross-Sum Oper-

ation

It is possible to modify the mathematical preliminaries of the vector pruning

problem discussed in Section 3.3 for the cross-sum operation. As all vectors are

written as constraints in Equation 4.5 of the region intersection algorithm, we

can relate it to Equation 3.3 of the skyline algorithm. Similar to the LP given in

Equation 3.3, every hyperplane equation is written on its own. For this, variable

ym ≥ bγm,im , ∀im ∈ Qm, 1 ≤ m ≤M is de�ned.

min δ

bγm,tm − ym + xm,tm = 0, ∀tm ∈ Qm, 1 ≤ m ≤M

D∑
l=1

b(l) = 1

b(l) ≥ 0, ∀l ∈ {1, . . . ,D}

xm,tm ≥ 0, ∀tm ∈ Qm, 1 ≤ m ≤M

ym ≥ 0, 1 ≤ m ≤M

(4.12)

In Equation 4.12, δ is a function that can be de�ned di�erently in di�erent

settings. Finding a belief state for γi =
∑M

m=1 γm,im , means selecting δ =∑M
m=1 xm,im . This is a similar LP to Equation 4.5. In Equation 4.5, the op-

timization for the vector γi =
∑M

m=1 γm,im is hidden in the constraints. The

constraints of Equation 4.5 are written in such a way that for any feasible solu-

tion, xm,im = 0, 1 ≤ m ≤M . As �nding any of the feasible solutions is enough,

δ = 0.

Before discussing further the selection criterion of δ, �rst we want to write Equa-

tion 4.12 in matrix notation. We will �rst assume M = 2, but later show that a

similar approach is valid forM > 2. De�ning, Hm =
[
γm,1 γm,2 . . . γm,Nm

]T
,

xm =
[
xm,1 xm,2 . . . xm,Nm

]T
, x =

[
x1

Tx2
T

]T
, y =

[
y1 y2

]T
Equation 4.12
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is written in matrix form;

min z = cx


H1 −e 0 I 0

H2 0 −e 0 I

eT 0 0 0 0





bT

y1

y2

x1

x2


=

0

1

 (4.13)

where 0 is the zero vector, e = [1 . . . 1]T , and I is the identity matrix of relevant

sizes. The selection of c depends on our purpose which is represented by δ in

Equation 4.12. Note that, there are a total of D+
∑2

m=1Nm+ 2 variables in the

simplex tableau; D coordinate variables b, 2 variables ym and
∑2

m=1 Nm slack

variables xm,l.

De�nition 17. At any point of the simplex iterations, the active vectors from

the set Γm are shown with Γm,A where Dm := |Γm,A|. Moreover, ΓA =
⋃
m Γm,A.

Without loss of generality, at any point of the simplex iterations, assume that

Γm,A = {γm,j}Dm
j=1. Similar to Chapter 3, we will assume vectors inside Γm,A

are linearly independent to avoid degenerate solutions. Furthermore, any of the

D vectors from the set ΓA are also assumed to be independent. We will par-

tition each matrix Hm into Hm,A =
[
γm,1 γm,2 . . . γm,Dm

]T
and Hm,N =[

γm,Dm+1 γm,Dm+2 . . . γm,Nm

]T
. We obtain the following simplex tableau

that includes all of the constraints as well as the right hand side of the equa-

tions as the last column. The �nal row represents the objective function of the

optimization where c = [c1,A c1,N c2,A c2,N].
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

b y1 y2 x1,A x1,N x2,A x2,N z

H1,A −e 0 I 0 0 0 0

H1,N −e 0 0 I 0 0 0

H2,A 0 −e 0 0 I 0 0

H2,N 0 −e 0 0 0 I 0

eT 0 0 0 0 0 0 1

0 0 0 c1,A c1,N c2,A c2,N 0


≡ (4.14)

b y1 y2 x1,N x2,N x1,A x2,A z

H1,A −e 0 0 0 I 0 0

H2,A 0 −e 0 0 0 I 0

eT 0 0 0 0 0 0 1

H1,N −e 0 I 0 0 0 0

H2,N 0 −e 0 I 0 0 0

0 0 0 c1,N c2,N c1,A c2,A 0


The second matrix in Equation 4.14 is obtained by elementary row and column

operations. The sizes of the identity matrices are not same as well as the sizes

of the zero matrices, but each can be found from the structure of the matrix.

Discarding the objective function, LP multiplies the second matrix of Equation

4.14 by the inverse of the following part of it.

S =

SA 0

SN I

 (4.15)

where SA =


H1,A −e 0

H2,A 0 −e

eT 0 0

 and SN =

H1,N −e 0

H2,N 0 −e

.
Note that S is invertible if SA is invertible. The column rank of matrix SA is

D + 2 which should be equal to its row rank. Therefore, it is possible to satisfy

at most D + 1 of the ym ≥ bγm,j, ∀j ∈ Qm, 1 ≤ m ≤ 2 type of constraints to

be active (discarding degeneracies). In other words, |ΓA| =
∑2

m=1 Dm = D + 1.
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Lemma 4.3.1. Take Γi,A, 1 ≤ i ≤ 2. Assume that the set of equations

SA


bT

y1

y2

 =


0

0

1


has a solution [bA y1,A y2,A]T . Then, SA is invertible.

Proof. To use the results of Lemma 3.3.1, de�ne HA =

H1,A −e

H2,A 0

. Note that
HA is a square matrix and the selection of the vectors in Hm,A, m ∈ {1, 2}
is determined by the linear programming iterations. Therefore, we can safely

assume that this matrix is invertible. Then taking h = HA
−1e and multiplying

both sides of the equation in the lemma by the row vector [h − 1] from left we

can see that the last row of SA is linearly independent to the other rows and

therefore, SA is invertible. �

Using Lemma 4.3.1, we can write the simplex tableau as follows;
SA 0 I

SN I 0

0 cN cA,0

 ∼


I 0 SA
−1

0 I −SNSA
−1

0 cN cA,0

 = P (4.16)

where cN = [c1,N c2,N], cA = [c1,A c2,A] and cA,0 = [cA 0]. The �nal zero of the

row vector cA,0 stands for the right hand side of the simplex tableau. We �nally

de�ne c = [cN cA] which shows the coe�cient vector of the objective function.

Up to this point, we have not discussed the selection of the objective function

z = cx in Equation 4.13. Before the formal presentation the selection procedure

is explained with an example. Assume that D = 2 and we have two set of vectors

Γ1 = {[4 0]T , [0 4]T} and Γ2 = {[1 0]T , [0.1 0.3]T}. We want to calculate Γ1:2.

Table 4.1 shows the simplex tableau written by using Equation 4.13. Our aim is

to �nd if γ1,1 +γ2,1 is a non-dominated vector. Therefore the objective function

is written as min x1,1 + x2,1. Table 4.1 shows the simplex iteration where ΓA =

{γ1,1,γ1,2,γ2,1}. The solution occurs at the intersection point of the hyperplanes

formed by vectors γ1,1 and γ1,2. The hyperplane equation formed by γ2,1 is used
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Table 4.1: The solution for γ1,1 + γ2,1 ∈ Γ1 ⊕ Γ2 by region intersection, D = 2

b(1) b(2) y1 y2 x1,1 x1,2 x2,1 x2,2 RHS

γ1,1 4 0 -1 0 1 0 0 0 0

γ1,2 0 4 -1 0 0 1 0 0 0

γ2,1 1 0 0 -1 0 0 1 0 0

γ2,2 0.1 0.3 0 -1 0 0 0 1 0

SC 1 1 0 0 0 0 0 0 1

z 0 0 0 0 1 0 1 0 0ww�
b(1) b(2) y1 y2 x2,2 x1,1 x1,2 x2,1 RHS

γ1,1 4 0 -1 0 0 1 0 0 0

γ1,2 0 4 -1 0 0 0 1 0 0

γ2,1 1 0 0 -1 0 0 0 1 0

SC 1 1 0 0 0 0 0 0 1

γ2,2 0.1 0.3 0 -1 1 0 0 0 0

z 0 0 0 0 0 1 0 1 0ww�
b(1) b(2) y1 y2 x2,2 x1,1 x1,2 x2,1 RHS

γ1,1 1 0 0 0 0 1/8 -1/8 0 0.5

γ1,2 0 1 0 0 0 -1/8 1/8 0 0.5

γ2,1 0 0 1 0 0 -0.5 -0.5 0 2

SC 0 0 0 1 0 1/8 -1/8 -1 0.5

γ2,2 0 0 0 0 1 0.15 -0.15 -1 0.3

z 0 0 0 0 0 1 0 1 0

for determining the value of y2. As the selected SA matrix is invertible and both

γ1,1 and γ2,1 are active vectors in this solution, the requirement to minimize

x1,1 + x2,1 is satis�ed at point b = [0.5 0.5] as x1,1 + x2,1 = 0. Note that,

this point is a witness point for all vectors γ ∈
⊕

m Γm,A. That means vector

γ1,2 + γ2,1 is also active as x1,2 = 0 for our case.

After reaching the solution b = [0.5 0.5] for γ1,1 + γ2,1 at Table 4.1, we check

the set of dirty vectors and see that the dirty set contains the vectors γ1,i1 +

γ2,2, i1 ∈ {1, 2}. Note that these two vectors are neighbors of the active vectors
at b = [0.5 0.5]. For both of these cases, we need to set c2,2 = 1. For the moment,

assume that we have not decided on the values of c1,1 and c1,2 as shown in Table

4.2. We know that there is a region where x2,2 = 0 because Γ2 is a minimal set.

Therefore, when the objective function is set to min x2,2, that is, when c1,1 and

c1,2 are both zero, there must be at least one negative coe�cient in the objective

function. It can be seen from the �rst part of Table 4.2 that the coe�cient of
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x1,1 is less than zero. From the second simplex tableau in Table 4.2, we can see

that x1,i1 , i1 ∈ {1, 2} are the slack variables of the active constraints. Therefore,
having them in the objective function only a�ects the values of c1,i1 , i1 ∈ {1, 2}.

Table 4.2: New search at b = [0.5 0.5] for γ1,i1 + γ2,2 by region intersection,
D = 2

b(1) b(2) y1 y2 x2,2 x1,1 x1,2 x2,1 RHS

γ1,1 1 0 0 0 0 1/8 -1/8 0 0.5

γ1,2 0 1 0 0 0 -1/8 1/8 0 0.5

γ2,1 0 0 1 0 0 -0.5 -0.5 0 2

SC 0 0 0 1 0 1/8 -1/8 -1 0.5

γ2,2 0 0 0 0 1 0.15 -0.15 -1 0.3

z 0 0 0 0 1 c1,1 c1,2 0 0ww�
b(1) b(2) y1 y2 x2,2 x1,1 x1,2 x2,1 RHS

γ1,1 1 0 0 0 0 1/8 -1/8 0 0.5

γ1,2 0 1 0 0 0 -1/8 1/8 0 0.5

γ2,1 0 0 1 0 0 -0.5 -0.5 0 2

SC 0 0 0 1 0 1/8 -1/8 -1 0.5

γ2,2 0 0 0 0 1 0.15 -0.15 -1 0.3

z 0 0 0 0 0 c1,1−
0.15

c1,2 +

0.15

1 -0.3

Now we can decide on the values of c1,1 and c1,2. When c1,1 = 1, we are searching

for the vector γ1,1 + γ2,2. From the second part of Table 4.2, we can see that

the optimization ends when c1,1 = 1. Therefore, we can eliminate the vector

γ1,1 + γ2,2. So by only checking the coe�cients of bγ2,2 − y2 + x2,2 = 0, we were

able to make a decision about the neighboring vectors of the active vectors that

contain γ2,2.

For Table 4.2, taking c1,1 = 1 was enough to end the optimization for the vector

γ1,1 + γ2,2 as c1,1 − 0.15 = 0.85 > 0. However this depends on the coe�cients

of the non-basic variables of the constraint bγ2,2 − y2 + x2,2 = 0. Now, we will

approach the problem in a di�erent way. Recall that γ1,1 is an active vector in

the last simplex tableau of Table 4.2 and our aim is to �nd a witness point for

γ1,1 + γ2,2. This means to �nd a solution where x1,1 + x2,2 = 0. Note that it

is also possible to reach the same solution if we were to take c1,1x1,1 + x2,2 = 0

where c1,1 � 1. Then take c1,1 = ∞. This is equivalent to keeping constraint

bγ1,1 − y1 + x1,1 = 0 active while reaching the witness point of γ1,1 + γ2,2. This
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Table 4.3: Searching a solution for γ1,1 + γ2,2 by �xing x1,1 = 0, D = 2

b(1) b(2) y1 y2 x2,2 x1,1 x1,2 x2,1 RHS

γ1,1 1 0 0 0 0 1/8 -1/8 0 0.5

γ1,2 0 1 0 0 0 -1/8 1/8 0 0.5

γ2,1 0 0 1 0 0 -0.5 -0.5 0 2

SC 0 0 0 1 0 1/8 -1/8 -1 0.5

γ2,2 0 0 0 0 1 0.15 -0.15 -1 0.3

z 0 0 0 0 1 c1,1 0 0 0ww�
b(1) b(2) y1 y2 x2,2 x1,2 x2,1 RHS

γ1,1 1 0 0 0 0 -1/8 0 0.5

γ1,2 0 1 0 0 0 1/8 0 0.5

γ2,1 0 0 1 0 0 -0.5 0 2

SC 0 0 0 1 0 -1/8 -1 0.5

γ2,2 0 0 0 0 1 -0.15 -1 0.3

z 0 0 0 0 0 0.15 0 -0.3

operation is shown in Table 4.3. The important observation here is that when

we force γ1,1 to be active in Table 4.3, there is no vector left in set Γ1 that we

can select to move. From the second simplex tableau in Table 4.3, we can see

that the optimization for the vector γ1,1 +γ2,2 has come to an end. As γ2,2 is not

an active vector at this point, we can see that vector γ1,1 + γ2,2 is dominated.

This observation leads us to the following lemma.

Lemma 4.3.2. Assume that in Equation 4.16, bγm,im − yj + xm,im = 0 is an

active constraint. For �nding the vectors in I (Bimm ; Γ1, . . . , Γm−1, Γm+1, . . . , ΓM),

we can delete the column corresponding to xm,im.

Proof. As bγm,im − ym + xm,im = 0 is an active constraint xm,im = 0, the row

pertaining to the variable xm,im correspond the third column block of the matrix

P in Equation 4.16. If we omit the column corresponding to xm,im , we force the

equation bγm,im + ym = 0 to be satis�ed in every simplex iteration. �

Then, similar to Lemma 3.3.2, this idea can be used to prune vectors as follows;

Lemma 4.3.3. For any simplex iteration given in Equation 4.16, take any vector

γj,k /∈ ΓA. De�ne the vector γ =
∑

m 6=j γm,im +γj,k where γm,im ∈ Γm,A,∀m 6= j.

Then γ is dominated, if the constraint row bγj,k− yj +xj,k = 0 have all negative

coe�cients except for the coe�cients of the non-basic slacks xm,im , ∀m 6= j.
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Proof. We know that xj,k belongs to one of the inactive vectors in Equation

4.16. Therefore for the objective function cx if we take cj,k = 1 then cN 6= 0.

Assume that the only nonzero entry of cN corresponds to the slack variable

of bγj,k − yj + xj,k = 0. This constraint is represented as one of the rows in

the second row block of P in Equation 4.16. This row is in the form r1 =[
0 ej,k

T −τ̃j,k xj,k

]
where ej,k is a unit vector with the only nonzero entry

corresponding to the coe�cient of xj,k and the last entry of r1 corresponds to

the value of the slack variable for this feasible solution. As γj,k is an inactive

vector, xj,k > 0. The row vector −τ̃j,k represents the coe�cients of the non-basic

variables for this particular solution.

Now take γj. For �nding a witness point for this vector, write the objective

function min cx =
∑

m6=j cm,imxm,im + xj,k. Here we have taken cj,k = 1. As

we know that γm,im ∈ ΓA, ∀m 6= j, the objective function is of the form r2 =[
0 ej,k

T cA 0
]
where the only non-zero entries of cA are cm,im ∀m 6= j. cA

is de�ned in Equation 4.16.

For �nding the value of the objective function in this particular solution, it is nec-

essary to subtract r1 from r2. The resulting row is in the form
[
0 0 cA + τ̃j,k 0

]
.

It can be seen that the only nonzero entries correspond to the coe�cients of

the non-basic variables. From Lemma 4.3.2, to stay at Bm,im means taking

cm,im =∞ or equivalently discarding the column corresponding to the non-basic

variable xm,im from the simplex tableau. Therefore staying at
⋂
m 6=j Bm,im means

to discard the columns corresponding to non-zero entries of cA. For the zero

entries of cA if τ̃j,k has all non-negative coe�cients, we can conclude that the

optimization for min cx ends at this point. In mathematical terms we have

proven that,
⋂
m6=j Bm,im 6= ∅ but

⋂
m6=j Bm,im

⋂
Bj,k = ∅. Therefore γ cannot

be a non-dominated vector. �

Lemma 4.3.3 shows that for any selection of ΓA, we start with a sign check of the

block matrix SNSA
−1. Assume that a row of SNSA

−1 have dominantly negative

coe�cients and this row is related to the constraint bγj,k − yj + xj,k = 0. This

means that the cross-sum of vector γj,k with the vectors inside the current active

set ΓA would likely to be dominated. Therefore, for all inactive vectors γj,k we
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can see if γ =
∑

m6=j γm,im + γj,k where γm,im ∈ Γm,A,∀m 6= j is dominated by

just checking the corresponding row of SNSA
−1.

4.4 Cross-Sum Pruning with Multiple Objective Functions

Algorithm 10 Cross-Sum Pruning with Multiple Objective Functions
1: procedure CSwM({Γm}Mm=1)

2: Γ̄← Γ̄1:M , F ← Q1:M , Q← ∅
3: N = |Γ̄|, H =

[
γ1 γ2 . . . γN

]
4: b1(1) = 1, j ← arg maxk∈F b1γk, i← arg mink∈F b1γk(1)

5: F ← F \ {j}, Q← {j}
6: P← LPINIT({Γm}Mm=1)

7: t← 0

8: while F 6= ∅ do
9: P← LPOBJSET(P, i)

10: while i ∈ F do

11: t← t+ 1, ΓA ← ∅
12: (bt, yt, P)← LPITER1(P)

13: for all xm,k == 0 do

14: Γm,A ← Γm,A ∪ {γm,k}
15: end for

16: for all γj ∈
⊕

m Γm,A do

17: if j /∈ Q then

18: Q← Q ∪ {j}, F ← F \ {j}
19: end if

20: end for

21: for all xj,k 6= 0 do

22: for all γl ∈
⊕

m6=j Γm,A ⊕ {xj,k} do
23: (l1, l2, . . . , lM )← index of γl
24: τ ← τ̃j,k
25: Remove the coe�cients of xm,lm , ∀m 6= j from τ

26: if τ ≥ 0 then

27: F ← F \ {l}
28: end if

29: end for

30: end for

31: end while

32: x = btH− yt
33: i← arg mink∈F x(k)

34: end while

35: return Γ̄Q

36: end procedure

Algorithm 10 is the adaptation of the multiple objection function idea to the
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Subroutines for the Cross-Sum Pruning with Multiple Objective Functions
procedure LPINIT({Γm}Mm=1)

write the initial simplex tableau P

min 0 subject to

bγm,tm − ym + xm,tm = 0, ∀tm ∈ Qm, 1 ≤ m ≤M∑D
l=1 b(l) = 1

b ≥ 0,xm,tm ≥ 0, ym > 0

return P

end procedure

procedure LPITER1(P)

do one primal simplex iteration to P

return (bt, yt, P)

end procedure

procedure LPOBJSET(P, k)

set the objective function to minxk =
∑

m xm,km

return P

end procedure

cross-sum operation. The subroutines of the algorithm are also provided as a

di�erent table. Recall that in the FastCone algorithm, the aim is to �nd a con-

vex cone that a dirty vector is in and narrow it down by using the other vectors

in the clean set. Here the aim is to detect the vectors with non-intersecting

support regions as soon as possible. The main advantage of the algorithm is

the initialization and maintenance of a single simplex tableau throughout this

operation. The state-of-art solution to the problem is to solve many small-sized

LPs to �nd the vectors in some region of the belief space as discussed in re-

stricted region algorithm or pruning by region intersection which were discussed

in Algorithm 8 and 6, respectively.

In the �rst step of Algorithm 10 it can be seen that all possible vectors from

the cross-sum operation are formed Γ̄1:M and indexed by F . While the simplex

tableau will only contain the vectors in the set {Γm}Mm=1, it is not necessary to

form all vectors Γ̄1:M . However, the indexing of possible vectors is necessary for

the algorithm. i represents the vector index in set Γ̄1:M and it is assumed that

xi =
∑

m xm,im .

The LPINIT routine initializes the simplex tableau P by using all of bγm,im −
ym + xm,im = 0 type of constraints. LPITER1 is a primal simplex iteration.

Contrary to FastCone, we do not need any dual simplex iterations while all
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vector constraints are written to the simplex tableau at the beginning of the

algorithm by LPINIT. After every LP iteration, we check the simplex tableau

P. For the non-basic variables of the simplex tableau we can �nd for which

vectors γm,km , xm,km = 0 is satis�ed. Clearly this means γm,km ∈ Γm,A. Then

any vector in the set
⊕

m Γm,A is a clean vector and its index should be discarded

from the dirty set F and added to Q.

Then we start checking each row of the block matrix SNSA
−1 as discussed in

Lemma 4.3.3. In the pseudocode, we have explained the procedure for every

possible neighbor of the active vectors, yet it not necessary to perform check as

such. Recall that for all inactive vectors γj,k, our aim is to �nd the dirty vectors

containing γj,k and eligible for pruning. For this we are allowed to delete some

entries of τ̃j,k, but the remaining entries should all be non-negative. Therefore it

is enough to �nd the negative entries of τ̃j,k. Each entry corresponds to a vector

γm,km . Any vector γk =
∑

m γm,km which contains all of these �xed vectors can

be eliminated.

The subroutine LPOBJSET sets the objective function to min xi =
∑

m xm,km .

While the main elimination procedure is realized by checking the signs of the

block matrix SNSA
−1 at every step as discussed in Lemma 4.3.3, the selection

of the slack of a particular vector γi guarantees that we can give a decision

about this vector at the end of simplex iterations. This is necessary for the

completeness of the algorithm.

4.5 Simulations

In this section, we will present the result of the experiments with arti�cial and

benchmark problems. From the existing algorithms, we have selected two of

them for comparison: Intersection Based Incremental Pruning (IBIP) and Re-

gion Based Incremental Pruning (RBIP). Since Feng et. al. [45] have shown that

the selected algorithms have a superior performance to the Generalized Incre-

mental Pruning (GIP), we have omitted GIP from our comparison. Similarly,

the Witness algorithm adds the neighbors of a vector in each step to the dirty
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set, which, in the worst case, would cause a computational complexity of writing

every dirty vector that comes out of the cross-sum operation. Therefore for the

Witness algorithm, the number of vectors inside the simplex tableau can increase

exponentially compared to IBIP and RBIP, therefore it is also discarded from

the comparison.

The performance of these two algorithms have been compared to Cross-Sum with

Multiple Objective Functions (SCwM). The results are provided in the tables

and �gures below. All of the pruning algorithms and the exact value iteration

algorithm are implemented in MATLAB environment. The tests are performed

with a standard desktop computer (Intel Core i7-3770 3.4GHz 8GB RAM).

4.5.1 Pruning Performance of Randomly Generated Sets

To demonstrate the scalability of the proposed algorithms, we have �rst tested

them with arti�cial problems, as it gives the user the �exibility to design the

problem parameters as needed. We �rst constructed a set of random vector sets

{Γ1, . . . , ΓM}. Random vectors in Γi are created by selecting D random numbers

uniformly distributed between (0, 200). Then, additional random vectors are

generated and added to the set provided that they are not pointwise dominated.

This process is repeated until the number of vectors in Γi reaches n. A test

problem is thus speci�ed by the triple (M ,D,n).

Notice that for any of the incremental pruning based algorithms we do not need

to compute the set Γ̄1:M from the beginning of the algorithm. We only would

need to take the Cartesian product of the vector indices in each set Γi, where

each resultant n-tuple represents a vector in set Γ̄. Here,M = |Θ| is a substitute
for the cardinality of the observation set. Increasing M means an exponential

increase in the number of vectors, nM .

Figure 4.2 shows the experimental results for 30 trials for D = 5, 10, 15. For

comparison with 3.4 of the FastCone algorithm, we have kept the experimental

parameters same. At each graph, the horizontal axis shows the initial number

of dirty vectors, |F0| = N = 125, 625, 3125 and the vertical axis demonstrates
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the time spent by the pruning algorithms. Both axes are given in logarithmic

scale. The graphs show that CSwM algorithm has a time advantage in the order

of magnitude compared both to IBIP and RBIP. This is due to writing only one

LP and checking for multiple objective functions at every simplex iteration.

As expected, RBIP has a better performance compared to IBIP. As the Lark's

algorithm, RBIP only writes a number of vectors to the LP, therefore this results

in a better performance. It can also be observed from the graphs that the

performance of IBIP and RBIP become similar as the D increases. This is

due to the fact that the partitioning of the belief state becomes �ner and both

algorithms need to calculate a number of simplex iterations for each vector

considered. The advantage of using CSwM can be seen in this situation clearly

while only one simplex tableau is used for all iterations.

4.5.2 Pruning Performance of Benchmark Problems

We then tested di�erent pruning algorithms on a set of benchmark problems

from [60]. The proposed algorithms are only used for comparing the performance

of di�erent cross-sum pruning algorithms for the given problem. The results

can be seen in Table 4.4. The table provides the speci�ed time horizon for

each problem, h, and the time spent in cross-sum operation in the last step in

milliseconds. At h = 0, it is assumed that there are no accumulated rewards for

any of the states. Di�erent time horizons are chosen regarding the complexity

of the speci�c benchmark problem. As we are asked for the value function for a

�nite horizon, the discount factor is taken as 1 in any of the cases.

Table 4.4: Tests with benchmark problems in milliseconds

Problem h time
IBIP
RBIP
CSwM

4x3.95 7 6.45
4.09
0.218

IBIP
RBIP
CSwM

shuttle.95 6 11.2
5.31
0.134

Problem h time
hanks.95 9 8.01

1.48
0.87

4x4.95 7 0.870
0.207
0.021
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Figure 4.2: Mean time spent by di�erent pruning algorithms
(CSwM,IBIP,RBIP) for arti�cial problems in 30 trials. An arti�cial problem is
de�ned by the triple (M ,D,n). Three cases where D = 5, 10, 15 are examined
in di�erent graphs. Horizontal axis shows the initial number of dirty vectors
N = nM and the vertical axis demonstrates the time spent by the pruning
algorithms. Each graph shows three di�erent results for n = 5 and M = 3, 4, 5.
|Q| shows the average number of clean vectors for N = 55 after the pruning
algorithms are terminated.
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For the pivoting operation, Harris ratio test is applied [47]. In the ratio test, the

selection of the εpiv = 10−8 value is critical especially for almost-degenerate cases

where the support region of some of the vectors becomes very small. Simplex

iterations also require a sign check operation to determine the pivoting column.

To alleviate the roundo� error accumulation, every value smaller that ε0 = 10−5

is assumed to be zero.

4.6 Conclusion

In any step of the exact value iteration algorithm, a set of vectors are received

from the previous time step. These input vectors are �rst multiplied by di�erent

projection matrices, P(a)D(a, o), resulting in multiple sets of di�erent vectors.

This operation is followed by the cross-sum addition of these sets of vectors.

It is possible to represent the resultant vectors with an n-tuple, which shows

the indices of the addend vectors from the vector sets entering the cross-sum

operation. There is an exponential increase in the number of vectors due to the

cross-sum operation and many of these vectors can be pruned.

There is a �eld of research that exploits the properties of the dynamic program-

ming update steps to decrease the complexity of the LPs to be solved, many of

which attack the special structure of the cross-sum operation [41�45]. The prop-

erties of the cross-sum operation has been analyzed in both the vector space [45]

and belief set representation [38] of the value function. It was stated by both

of these studies that for the resulting vector to be non-dominated, the vectors

entering the n-tuple should have intersecting support sets. This study extends

the algebraic framework for the vector pruning operation given in Chapter 3 to

exploit this particular property of the cross-sum operation. The vectors with

non-intersecting belief states are identi�ed by a simple sign-check performed over

the simplex tableau, and instead of writing a special LP for a selected n-tuple,

the algorithm eliminates any vector when it comes across to it during this sign

check.

This theoretical framework has been used for a novel algorithm called Cross-
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Sum Pruning with Multiple Objective Functions. In this algorithm, the aim

is to �nd the vectors that have non-intersecting support sets with the current

active vectors in each simplex iteration. Due to the properties of the cross-sum

operation, vector elimination is performed without explicitly writing all of the

dirty vectors to the simplex tableau. The algorithm performance has shown to

be better than the state-of-the-art algorithm by at least an order of magnitude.
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CHAPTER 5

CONCLUSION

It is possible to represent the value function in partially observable Markov deci-

sion processes as a piecewise linear function if the state, action, and observation

space is discrete. Exact value iteration algorithm searches for this value func-

tion by creating an exponential number of linear functions at each step, many

of which can be pruned without changing the value of the value function. This

pruning procedure is made possible by the use of linear programming.

This thesis is about a linear programming problem with an unusual setting.

In a textbook linear programming problem, one would expect to optimize a

single objective function for a given set of constraints. However, in the vector

pruning problem there are as many objective functions as the number of linear

constraints. There are only a few papers that speci�cally attack the linear

programs which are being used by the exact value iteration algorithm [36,37,51].

As stated in [51], treating the LPs as a black box and focusing only on its optimal

solution, results in a major performance loss. If the LP iterations are not taken

into account, similar LP operations should be repeated for many of the dirty

vectors.

The most important contribution of this thesis is its extensive discussion of the

vector pruning problem in POMDPs from di�erent aspects. We give an exhaus-

tive geometric and algebraic analysis of what happens at each simplex iteration.

By the geometric perspective, we mean the dual representation of the value func-

tion in belief set and vector space. The vector space representation is important,

because it guides us visually in our explanation for an algorithm which focuses
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on the pruning procedure. We have discussed a heuristic `closeness' measure for

the dirty vectors in the following work;

• Özgen, Selim and Mübeccel Demirekler. A Fast Elimination Method for

Pruning in POMDPs, KI 2016, pp. 56-68.

To be able to make a formal de�nition of this closeness measure, this thesis uses

the geometric approach to the vector pruning problem.

The algebraic framework is the explanation of this pruning operation on the

corresponding simplex tableau. Our aim is to utilize the use of simplex tableau.

By this, we mean an e�cient procedure which would lead us to give a decision

about some of the dirty vectors at every step of the simplex iterations. The

second important function is maintenance. By this we mean that, at every

simplex iteration the constraints inside the simplex tableau were investigated.

If found unnecessary, they were let out. The theoretical endeavor has resulted

in a pruning algorithm called FastCone. For a given set of clean vectors, the

algorithm quickly searches for the convex region that the selected dirty vector is

in and searches for another clean vector if only the current set of clean vectors is

not su�cient to prune this dirty vector. Above-mentioned theoretical framework

and resulting pruning algorithm has been presented in the following work;

• Özgen, Selim and Mübeccel Demirekler. An Algebraic and Geometric

Framework for Vector Pruning in POMDPs, Journal of Arti�cial Intel-

ligence Research, (submitted at May 22, 2017)

We are aware that there is an open research question for the FastCone algorithm:

The number and selection of clean and dirty vectors inside the simplex tableau

can be further optimized. If the number of clean vectors in the simplex tableau

are small and we do not add more clean vectors to the tableau, for a selected

dirty vector we will end up constraining this dirty vector to a convex cone at

an infeasible vertex of the convex polyhedron, i.e., a suboptimal value of the

value function. However, being at this infeasible vertex can be a�ordable if it

can be used to delete this dirty vector. If not, it is always possible to �nd more
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clean vectors which would guarantee that this vector stays inside a convex cone.

Therefore, our priority is not about �nding the clean vectors but selecting the

correct combination of clean and dirty vectors inside the simplex tableau to

maximize the number of pruned vectors.

Finally, we consider the cross-sum operation in this thesis as it is the most

troublesome operation of the exact value iteration. This operation can be sum-

marized as follows. For a given set of vector sets, the Cartesian product is taken,

resulting in n-tuples. Each n-tuple refers to a di�erent selection of vectors and

the vectors in an n-tuple are summed up to �nd a new vector. There are many

studies showing that for the resulting vector to be non-dominated, the vectors

in the n-tuple should have intersecting support sets. This idea has been ex-

ploited by a novel algorithm called Cross-Sum Pruning with Multiple Objective

Functions where the vectors with non-intersecting belief states are identi�ed by a

simple sign-check performed over the simplex tableau. The following submission

is considered;

• Özgen, Selim and Mübeccel Demirekler. Cross-Sum Pruning with Multiple

Objective Functions, IEEE Transactions on Cybernetics, (planned submis-

sion December 2017)

Both of algorithms, FastCone and Cross-Sum Pruning with Multiple Objective

Functions, propose novel solutions to di�erent stages of the exact value itera-

tion algorithm and their e�ciency has been substantiated by the experimental

results.
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APPENDIX A

REVISED PRUNING ALGORITHMS

In Chapter 3, we have discussed two pruning algorithms called Lark's and It-

erative Skyline. For each vector in the dirty set Γ̄, both algorithms construct

a number of linear programs to be able to make a decision about the selected

dirty vector. In this section, we propose modi�cations to both of these algo-

rithms and provide the pseudocodes for the revisions done. This revision ideas

are important to note, as they have led us to the FastCone algorithm given in

Algorithm 4.

A.1 Iterative Skyline Algorithm with Multiple Objective Functions

Recall that for the Skyline algorithm discussed in Section 3.2.2, an constraint is

de�ned for each vector in the set Γ̄ from the beginning of the simplex iterations.

As all vector constraints are already in the simplex tableau, it is possible to take

any of these constraints as the objective function and check for its optimality.

In this way, we are not only trying to minimize the slack variable of one vector

while passing through a vertex, but we also get rid of some of the vectors from

the dirty set.

Algorithm 11 is the revised version of the iterative Skyline algorithm. The main

procedure is de�ned by ISwM, where we get an arbitrary set of vectors Γ̄, and

initialize an empty clean set Γ. Similar to Algorithm 3, LPINIT procedure writes

the initial simplex tableau. Note that through LPINIT procedure, ∀γi ∈ Γ̄, a

constraint bγi − y + xi = 0 is written to the LP as described by Equation 3.4.

This set of equations, with the simplex constraint
∑

l b(l) = 1 and the non-
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negativity constraints for each variable de�nes the simplex tableau. The same

simplex tableau is used to the end of the pruning procedure.

After the simplex tableau is initialized, the objective function is selected as

minxi, which is the slack variable of γi by the function LPOBJ. Yet for every

simplex iteration, we call the function LPITER. LPITER is a simple simplex

iteration followed by a check routine for the rows of the simplex tableau P at any

point. This idea behind this routine was demonstrated by Lemma 3.3.2. With

such a routine, it is easy to see if any of the constraints for the vectors in Γ̄ are

optimized. As they can never get closer to the skyline, they can be discarded

from the dirty set and also from the simplex tableau P. The algorithm continues

until there are no vectors in the dirty set Γ̄.

Algorithm 11 Iterative Skyline Algorithm with Multiple Objective Functions

1: procedure ISwM(Γ̄)

2: Q← ∅, F ← {1, . . . ,N}

3: P← LPINIT(Γ̄)

4: while F 6= ∅ do

5: i← any element in F

6: P← LPOBJ(P, i)

7: while i ∈ F do

8: (P,F ,Q)← LPITER(P,F ,Q)

9: end while

10: end while

11: return Γ̄Q

12: end procedure

13: procedure LPINIT(Γ)

14: write the initial tableau P

variables: y,xi, b

P(i, :) : bγi − y + xi = 0, ∀γi ∈ Γ

P(N+1, :) :
∑

l b(l) = 1

15: set the objective function to zero

16: return P

17: end procedure

18: procedure LPOBJ(P, i)

19: set the objective function to minxi

20: return P

21: end procedure

22: procedure LPITER(P,F ,Q)

23: do one simplex iteration to P

24: for all optimal P(i, :), i ∈ F do

25: if xi 6= 0 then

delete P(i, :) from the tableau

delete i from F

26: else

add i to Q

delete i from F

27: end if

28: end for

29: return (P,F ,Q)

30: end procedure

Smallwood and Sondik [20] also note the use of checking multiple objective

functions for decreasing the number of linear programs. Although they note
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the computational e�ciency, they do not provide a discussion about how the

idea is being used. The algorithm o�ered by Smallwood and Sondik starts by

�nding a clean vector γ and selecting a subset of the dirty vectors from the set

Γ̄N ⊂ Γ̄ that would allow them to traverse the corners of R(γ, Γ̄). Then they

check at every corner point of R(γ, Γ̄) if the vectors in γ̃ ∈ Γ̄N are dominated.

However, the multiple objective function idea would be e�cient if the vectors

that would dominate γ̃ are inside the simplex tableau and they are active. If

only the dirty vectors which are used to de�ne R(γ, Γ̄) are added to the simplex

tableau, it is very unlikely that any of the vectors will be pruned. Moreover, a

similar procedure should be repeated for all vectors in Γ for the completeness of

the algorithm.

A.2 Revisions to the Lark's Algorithm

A.2.1 Sorting the vectors

For the Lark's algorithm, it does not make sense to use multiple objective func-

tions as the algorithm starts with only one vector in the simplex tableau P and

adds one vector to the constraint set at every LP. However, the order in which

the vectors in the dirty set Γ̄ are selected as the objective function can be op-

timized in this case. A suboptimal measure will be demonstrated in the two

dimensional case.

As be = 1, the belief state is parametrized as b = [λ (1 − λ)] = f(λ). Assume

that we have three non-dominated vectors as given in Figure 2.5. For these

vectors, it is possible to show the following relationship:

λ = 0 =⇒ γ2(2) > γ1(2) > γ0(2)

λ = 1 =⇒ γ0(1) > γ1(1) > γ2(1)
(A.1)

where γi(j) denotes the jth element of vector γi. Therefore, ||γ0 − γ1|| <
||γ0 − γ2||. Moreover, as γ1 is neighbouring to γ0 and γ2 but γ0 and γ2 are

not neighboring, ∀bi ∈ R(γi, Γ), i ∈ {0, 1, 2} we can assert ||b0 − b1|| < ||b0 −
b2||. Therefore non-neighboring vectors have distant support sets compared to

neighboring vectors when D = 2.
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Figure A.1: The aim is to �nd if γ2 is a non-dominated vector. We start from
b ∈ R(γ0, Γ̄) and arrive at point b(1) = 0 in two simplex iterations. If we were
to start from b ∈ R(γ1, Γ̄), we would arrive point b(1) = 0 in one step. Note
that ||γ0 − γ1|| < ||γ0 − γ2||

To understand the importance of this relationship, assume that in Figure 2.5,

we have only two non-dominated vectors γ0 and γ1 in the clean set Γ, and we

are trying to �nd if γ2 is a non-dominated vector. If we start from any point in

the support region of γ0, we will �rst arrive at the vertex between γ0 and γ1,

and then the Skyline algorithm would terminate at the maximal vertex between

γ1 and γ2, and Lark's algorithm would come to an end at the point b(1) = 0.

However, if we were to start from anywhere in the support region of γ1, both of

the pruning algorithms would arrive at the solution by visiting one vertex less.

Figure A.1 shows that if we start the pruning algorithm for a selected vector

from the support set of one of its neighbouring vectors, we would reach to the

solution faster. Unfortunately, it is not easy to extend this idea to the vectors

of dimension greater than two. Yet the experiments show that by sorting the

vectors by using the vector distance, Lark's algorithm bene�t from not traversing

the same vertices of the simplex tableau P repeatedly.

A.3 Lark's Algorithm with Initial Condition

In De�nition 6, we have de�ned the witnessed vector for a belief state. Note that

this is not an invertible function; that is if γ = w(b, Γ̄) we cannot say that b 6=
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w−1(γ, Γ̄) while the this function is one-to-many. Yet, for the Lark's algorithm

(and also for any of the pruning algorithms), we �nd a point b ∈ R(γ, Γ̄) before

deciding that vector γ is non-dominated. With an abuse of notation, we will

call b as the wintess point of vector γ relative to set Γ̄ and show this relation by

b = w†(γ, Γ̄).

Algorithm 12 is the revised version of the Lark's algorithm. The main routine

is LRwI, where we get an arbitrary set of vectors, Γ̄, and initialize an empty

clean set Γ. After a new vector γ, is selected from the dirty set, the l2 distance

between this vector is compared to the vectors in the clean set Γ by the SORT

routine and a vector γ̂ is selected.

As we know a witness point of vector γ̂, b0 = w†(γ̂, Γ̄), we start the LP, discussed

by the LPLARK procedure, from this belief state b0. Notice the similarity of

the LPLARK procedure with the structure of the LP for the Lark's algorithm

discussed in section 3.2.1. The major di�erence is the use of an initial condition

b0 in the algorithm.

Algorithm 12 also explains two other routines; PNTDOM and BEST. These two

routines are used in the same fashion as the original algorithm. PNTDOM is

used to prune, if possible, some of the dominated vectors without using linear

programming and BEST is used to select one of the dominating vectors if a

belief state is given. The symbol <lex in the pseudo-code denotes lexicographic

ordering [58].
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Algorithm 12 Lark's Algorithm with Initial Condition

1: procedure LRwI(Γ̄)

2: Γ← ∅

3: while Γ̄ 6= ∅ do

4: γ ← any element in Γ̄

5: b0 ← SORT(Γ,γ)

6: if PNTDOM (γ, Γ) then

7: Γ̄← Γ̄ \ {γ}

8: else (δ, b∗)← LPLARK(γ, Γ, b0)

9: if δ < 0 then

10: Γ̄← Γ̄ \ {γ}

11: else

12: γ ← BEST(b∗, Γ̄)

13: w†(γ, Γ̄)← b∗

14: Γ← Γ ∪ {γ}

15: Γ̄← Γ̄ \ {γ}

16: end if

17: end if

18: end while

19: return Γ

20: end procedure

21: procedure SORT(Γ, γ)

22: k =∞

23: for all γ̂ ∈ Γ do

24: if k > ||γ − γ̂|| then

25: k ← ||γ − γ̂||

26: b← w†(γ̂, Γ̄)

27: end if

28: end for

29: return b

30: end procedure

31: procedure PNTDOM(γ, Γ)

32: for all γ̂ ∈ Γ do

33: if γ(l) ≤ γ̂(l), 1 ≤ l ≤ D then

34: return true

35: end if

36: end for

37: return false

38: end procedure

39: procedure BEST(b, Γ̄)

40: γ̂ ← ∅

41: k = −∞

42: for all γ ∈ Γ̄ do

43: if k < bγ then

44: γ̂ ← γ

45: else

46: if k = bγ & γ̂ <lex γ then

47: γ̂ ← γ

48: end if

49: end if

50: end for

51: return γ̂

52: end procedure

53: procedure LPLARK(γ, Γ, b0)

54: solve the following linear program

start the linear program from b0

variables: δ, b

min δ subject to

b(γ − γ̂) + δ > 0 ∀γ̂ ∈ Γ∑
l b(l) = 1

b ≥ 0

55: return (δ, b)

56: end procedure
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APPENDIX B

CASE ANALYSIS FOR |ΓA| < D

In Section 3.3.1, we have assumed that the active set has D vectors, however

a vector can be dominated by a set of vectors such that |ΓA| < D. Pointwise

domination described in Lemma 2.4.2 is an example for this case where |ΓA| = 1.

It can be shown that the structure of the LP is not di�erent when |ΓA| < D.

We need to select the coordinate indexes E ⊂ {1, . . . ,D} where |A|+ |E| = D.

Without loss of generality, assume that the active vectors from the set Γ̄ are ΓA =

{γi}Li=1, L < D and the feasible solution is at an edge E = {L+1, . . . ,D}. Form
matrices HA =

[
γ1 γ2 . . . γL

]T
and HN =

[
γL+1 γL+2 . . . γN

]T
. For

this selection of A and E, these matrices can be divided as HA =
[
HA,1 HA,2

]
where HA,1 is an L × L square matrix and HN =

[
HN,1 HN,2

]
where HN,1

is an (N − L) × L matrix. If E was selected di�erently, the order of the rows

in these matrices would change accordingly. Then the simplex tableau can be

arranged as follows;
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
HA,1 HA,2 −e 0 I 0

eT eT 0 0 0 1

HN,1 HN,2 −e I 0 0

0 0 0 cN 0 0


↓

HA,1 −e 0 HA,2 I 0

eT 0 0 eT 0 1

HN,1 −e I HN,2 0 0

0 0 cN 0 0 0

 = P (B.1)

LP multiplies P by the inverse of the following part of it.

S =


HA,1 −e 0

eT 0 0

HN,1 −e I

 =

SA,1 0

SN,1 I

 (B.2)

where SA,1 =

HA,1 −e

eT 0

 and SN,1 =
[
HN,1 −e

]
. Similar to Lemma 3.3.2,

our concern is to �nd the dominated vectors. Therefore we will analyze the last

N − L rows of P. Taking h = HA,1
−1e and α = eTHA,1

−1e, we arrive at;

SN,1SA,1
−1 =

[
(HN,1 + xh)eTHA,1

−1 x
]

(B.3)

where x = α−1(e−HN,1h).

The non-zero coe�cients of the third row block of S−1P are given by the fol-

lowing equation;

[
−SN,1SA,1

−1 I
]

HA,2 I 0

eT 0 1

HN,2 0 0

 =

[
(HN,2 + xeT −THA,2) −T x

]
(B.4)
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where T = (HN,1 + xeT )HA,1
−1.

Now assume that HN = γT0 and we want to �nd if vector γ0 is dominated at

this corner of the unit simplex. Then,

HN,1 = γT0,1 = [γ0(1) . . .γ0(L)] (B.5)

HN,2 = γT0,2 = [γ0(L+ 1) . . .γ0(D)] (B.6)

x = x0 = α−1(e− γT0,1h) (B.7)

T = τ̃0 = (γT0,1 + x0e
T )HA,1

−1 (B.8)

where x0 is the slack variable of the hyperplane equation bγ0 + x0 = y. From

Lemma 3.3.3, we know that τ̃0e = 1.

Notice that γ0,1 and γ0,2 de�ned in Equation B.5 and B.6 is valid for the

special case when E = {L + 1, . . . ,D}. Now, for any given E, it is possi-

ble to de�ne the vector γ0,2 the entries of which is formed by the operation

γ0,2(i) = γ0(E(i)), 1 ≤ i ≤ |E|. With a slight abuse of notation we will de-

�ne this newly formed vector as γ0(E). Similarly, de�ning the set Ē as the

complement of the set E w.r.t D, it is possible to write γ0,1 = γ0(Ē).

As described in Lemma 3.3.2, to give a decision about vector γ0, all row coe�-

cients of the �nal simplex tableau should be negative. Using the right hand-side

matrix at Equation B.4, we can write;

τ̃0 > 0 (B.9)

τ̃0HA,2 − γT0,2 > x0e
T (B.10)

Lemma B.0.1. Take ΓA and let E ⊂ {1, . . . ,D} is an arbitrary set where

|A|+ |E| = D. Then it is possible to write;

γ̃0 = γ0 + x0e =
∑
j∈A

τ̃0(j)γj −
∑
j∈E

β0(j)ej (B.11)

Proof. Note that for given ΓA and E, x0 and τ̃0 are de�ned uniquely by Equa-

tions B.7 and B.8, respectively. Then we can write,

γ0(Ē) + x0e =
∑
j∈A

τ̃0(j)γj(Ē) (B.12)

Equation B.11 is identical to Equation B.12 as β0 is unconstrained. �
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With Lemma B.0.1, γ0 is represented in terms of ΓA for our selection of the

coordinate variables E.

De�nition 18. De�ne the set Γ{A,E} where ΓA is the set of active vectors and

E ⊂ {1, . . . ,D} is the index set for the coordinate variables and |A|+ |E| = D.

Then the set of equations

b(E) = 0

SA

bT
y

 =

0

1


has a solution [bA yA]T .

De�nition 19. De�ne γ̃0 ∈ ΓC{A,E} as β0 > 0 and τ̃0 > 0. This statement is

equivalent to the statement of Equations B.9 and B.10.

Theorem B.0.2. Take ΓA and E. The following statement is true:(
γ̃0 ∈ ΓC{A,E}

)
∧ (x0 > 0) =⇒ R(γ0, ΓA) = ∅

Proof. We can write for any b = bA + ∇b such that ∇be = 0. Recall that

bA(E) = 0, therefore ∇b(E) ≥ 0. Now select k = arg maxi∇bγi . Then,

bγ0 = (bA +∇b)γ0

= bAγ0 +∇bγ0

= yA − x0 +∇bγ̃0

< yA +∇bγ̃0

= yA +
∑
j∈A

τ̃0(j)(∇bγj)−
∑
j∈E

β0(j)∇bej

< yA +∇bγk

= (bA +∇b)γk

= bγk

�

Until this point, we haven't speci�ed the selection of the coordinate indices, E.

The following theorem says that, for a given active set of vectors ΓA, there is

only one possible selection of E for γ̃0 ∈ ΓC{A,E}.
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Theorem B.0.3. Take ΓA = {γi}Li=1. Suppose that

bt(Et) = 0

SA,1

bt(Ēt)T
yt

 =

0

1

 t ∈ {1, 2}

has solutions such that b1 6= b2 and |Et| = D − L. Given these conditions, the

following statement is true:

γ̃1
0 ∈ ΓC{A,E1} =⇒ x1

0 < x2
0 ∧ γ̃2

0 /∈ ΓC{A,E2}

Proof. As given in Lemma B.0.1, we can write for t ∈ {1, 2},

γ0 + xt0e =
∑
j∈A

τ̃ t0(j)γj −
∑
j∈Et

βt0(j)ej (B.13)

We are also given that τ̃ 1
0 > 0. From De�nition 14, b2γ0 + x2

0 = y2. Write,

b2γ0 + x1
0 =

∑
j∈A

τ̃ 1
0 (j)b2γj −

∑
j∈E1

β1
0(j)b2ej (B.14)

= y2 −
∑
j∈E1

β1
0(j)b2ej (B.15)

< y2 (B.16)

Then x1
0 < x2

0. Moreover, if γ̃2
0 ∈ ΓC{A,E2} we do the same operations for b1γ̃

2
0

and arrive at x2
0 < x1

0. This is a contradiction. So, γ̃2
0 /∈ ΓC{A,E2}. �

In Section 3.3.1, we have described small sized LPs, called LPA,i, where A de-

notes the set ΓA and i is the index of γi. Theorem B.0.3 refers to a series of

pivot operations on LPA,0 where the initial non-basic coordinate variables are

b(E2) and they are approaching to b(E1) as it is the optimal solution.
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