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ABSTRACT

PERFECT DISCRETE MORSE FUNCTIONS ON CONNECTED SUMS

Varlı, Hanife
Ph.D., Department of Mathematics

Supervisor : Assoc. Prof. Dr. Mehmetcik Pamuk

Co-Supervisor : Prof. Dr. Neža Mramor Kosta

October 2017, 61 pages

Let K be a finite, regular cell complex and f be a real valued function on K. Then
f is called a discrete Morse function if for all p-cell σ ∈ K, the following conditions
hold:

n1 = #{τ > σ | f(τ) ≤ f(σ)} ≤ 1,

n2 = #{ν < σ | f(ν) ≥ f(σ)} ≤ 1.

A p-cell σ is called a critical p-cell if n1 = n2 = 0. A discrete Morse function f is
called a perfect discrete Morse function if the number of critical p-cells of f equals to
the p-th Betti number of K with reference to the coefficient group.

The main purpose of this thesis is to compose and decompose perfect discrete Morse
functions on connected sums of closed, connected manifolds. We will first discuss
the existence of perfect discrete Morse functions on finite complexes and closed, con-
nected, triangulated n-manifolds.

Secondly, we will show that if the components of a connected sum M of closed,
connected, triangulated n-manifolds admit a perfect discrete Morse function, then
M admits a perfect discrete Morse function that coincides with the perfect discrete
Morse functions on the components.

Next, we will find a separating sphere on a connected sum M of closed, connected,
triangulated surfaces and 3-manifolds if M admits a perfect discrete Morse function
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f . Finally, we will prove that f can be decomposed as perfect discrete Morse func-
tions on each component of M after some local modifications of it.

Keywords: Perfect Discrete Morse Functions, Gradient Vector Fields, Connected
Sums.
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ÖZ

BAĞLANTILI TOPLAMLARDA MÜKEMMEL AYRIK MORSE
FONKSİYONLARI

Varlı, Hanife
Doktora, Matematik Bölümü

Tez Yöneticisi : Doç. Dr. Mehmetcik Pamuk

Ortak Tez Yöneticisi : Prof. Dr. Neža Mramor Kosta

Ekim 2017 , 61 sayfa

K bir sonlu, düzgün hücre kompleksi ve f , K üzerinde tanımlı reel değerli bir fonk-
siyon olsun. Eğer bütün p-hücre σ ∈ K için aşağıdaki şartlar sağlanırsa, f fonksiyo-
nuna ayrık Morse fonksiyonu denir:

n1 = #{τ > σ | f(τ) ≤ f(σ)} ≤ 1,

n2 = #{ν < σ | f(ν) ≥ f(σ)} ≤ 1.

Eğer n1 = n2 = 0, bu durumda σ p-hücresine kritik p-hücre denir. Eğer bir f ayrık
Morse fonksiyonunun kritik p-hücrelerinin sayısı K kompleksinin katsayı grubuna
göre hesaplanan p’inci Betti sayısına eşitse, f fonksiyonuna mükemmel ayrık Morse
fonksiyonu denir.

Bu tezin asıl amacı kapalı ve bağlantılı manifoldların bağlantılı toplamları üzerinde
mükemmel ayrık Morse fonksiyonlarının nasıl oluşturulduğunu ve ayrıştırıldığını gös-
termektir. İlk olarak sonlu kompleksler ve kapalı, bağlantılı, üçgenleştirilmiş n-mani-
foldlar üzerinde mükemmel ayrık Morse fonksiyonlarının varlığını tartışacağız.

İkinci olarak, eğer kapalı, bağlantılı ve üçgenleştirilmiş n-manifoldların bir bağlan-
tılı toplamı M içindeki bileşenler bir mükemmel ayrık Morse fonksiyonu içerirse,
M ’nin, bileşenleri üzerindeki mükemmel ayrık Morse fonksiyonları ile örtüşen, bir
mükemmel ayrık Morse fonksiyonu içerdiğini göstereceğiz.
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Daha sonra eğer kapalı, bağlantılı, üçgenleştirilmiş yüzeylerin ve 3-manifoldların
bağlantılı toplamı bir f mükemmel ayrık Morse fonksiyonu içerirse, M üzerinde,
bağlantılı toplamı ayrıştıran bir küre bulacağız. Son olarak f fonksiyonu üzerinde
bazı lokal değişikliler yaptıktan sonra, bu fonksiyonunM bağlantılı toplamının herbir
bileşeni üzerinde mükemmel ayrık Morse fonksiyonu verecek şekilde ayrıştırılabildi-
ğini göstereceğiz.

Anahtar Kelimeler: Mükemmel Ayrık Morse Fonksiyonları, Yöntürevi Vectör Alan-
ları, Bağlantılı Toplamlar.
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CHAPTER 1

INTRODUCTION

Marston Morse [29] originally introduced Morse theory for differentiable manifolds.

It helps one to examine the topological properties of manifolds via differentiable func-

tions, called Morse functions. Since Morse theory does not enable one to investigate

topological properties of discrete objects such as simplicial complexes and cellular

complexes, computer-based applications need the discrete version of Morse theory.

In the 1990s, Robin Forman [9] proposed a discrete version of Morse theory which

today is called the discrete Morse theory. This theory gives a way of studying the

topology of discrete objects via critical cells of discrete Morse functions. A real

valued function f : K → R on a finite regular CW -complex K is called a discrete

Morse function if for any p-cell α ∈ K, there exists at most one (p+ 1)-cell β ∈ K
containing α such that f(β) ≤ f(α), and there exists at most one (p− 1)-cell ν ∈ K
contained in α such that f(α) ≤ f(ν). A p-cell α is called a critical cell of f if

f(ν) < f(α) and f(α) < f(β) for all (p − 1)-cell ν contained in α and (p + 1)-cell

β containing α. A fundamental result of discrete Morse theory is the construction of

a CW -complex which is homotopy equivalent to the original complex with a smaller

number of cells corresponding to the number of critical cells of a discrete Morse

function on a given finite CW -complex and thus a more efficient way to examine the

topological properties of the original complex. Thus, an important problem in this

theory is to obtain a discrete Morse function on a given complex with the minimal

number of critical cells. Such a discrete Morse function is called an optimal discrete

Morse function.

Optimality of discrete Morse functions are extensively studied in literature [13], [19],

[22], [23], [2], [4], [3]. Optimal discrete Morse functions have many applications in
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topology and geometry [1], [6], [7], [15]. These functions can be used in homology

computations [10], [11], and they give effective algorithms for determining persis-

tent homology information, which is important in computational topology and has

applications in topological data analysis, image analysis, computer vision and mate-

rial science [16], [18], [27]. For instance, optimal discrete Morse function are used to

obtain topological information of a given combinatorial structure visually [24].

In this thesis, we study optimal discrete Morse functions whose number of critical

p-cells equals to the p-th Betti number of the complex. A discrete Morse function

that is optimal in this sense is called a perfect discrete Morse function.

Organization of this thesis is as follows:

In Chapter 3, we restate and prove several existence results of F-perfect discrete

Morse functions on 3-manifolds given in [4] for any dimension n. The proofs for

dimension 3 carry over directly to dimension n.

In Chapter 4, we study the existence of Z-perfect discrete Morse functions on a con-

nected sum of closed, connected, oriented, triangulated n-manifolds. The main result

of this chapter is as follows:

Theorem 1.0.1. Let M1 and M2 be two n-dimensional closed, connected, oriented,

triangulated manifolds, and f1 and f2 be the Z-perfect discrete Morse functions

on them, respectively. Then there exists a perfect discrete Morse function f on

M = M1#M2 which coincides with f1 and f2, up to a constant on each summand,

except on a neighbourhood of the two n-cells whose interiors are removed to form

the connected sum.

This theorem implies that a connected sum of n-manifolds has a cell decomposition

with a minimal number of cells if each component has a cell decomposition with a

minimal number of cells.

In Chapter 5, we show that a Z-perfect discrete Morse function on a connected sum of

closed, connected, oriented, triangulated surfaces or 3-manifolds can be decomposed

into Z-perfect discrete Morse functions on each summand. The main results of this

chapter are as follows:
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Let M = M1#M2 be a connected sum of two closed, connected, oriented, triangu-

lated surfaces M1 and M2 of genera g1 and g2, respectively. Let f be a Z-perfect

discrete Morse function on M with the discrete gradient vector field V such that

V |M−M2 has one critical 0-cell and 2g1 many critical 1-cells and V |M−M1 has one

critical 2-cell and 2g2 many critical 1-cells.

Theorem 1.0.2. There exist a separating 1-sphereC onM such thatM = M1#CM2,

and none of the cells on C are paired with the cells in M −M1.

This theorem also works for non-orientable surfaces admitting Z2-perfect discrete

Morse function. The proof is constructive and gives an algorithm for finding a sepa-

rating 1-sphere on a connected sum of surfaces.

Theorem 1.0.3. Let C be a separating 1-sphere on M such that M = M1#CM2 and

C ≈ ∂(M −M1) ≈ ∂(M −M2). Assume that none of the cells on C are paired with

the cells in M −M1, and none of the critical cells of f in M lie on C. Then V |M−M1

and V |M−M2 can be extended to M2 and M1, respectively, as discrete gradient vector

fields of perfect discrete Morse functions which agree with f onM−M1 andM−M2

except on a neighbourhood of C in M −M1 and M −M2.

In this chapter, we also indicate that a Z-perfect discrete Morse function on a con-

nected sum of closed, connected, triangulated, oriented 3-manifolds can be decom-

posed as a Z-perfect discrete Morse function on each component. Moreover, we

describe a way to obtain a separating sphere on a connected sum which decompose

M as M1 and M2 if M admits a Z-perfect discrete Morse function.

Let M = M1#M2 be a connected sum of closed, connected, oriented, triangulated

3-manifolds, and f be a Z-perfect discrete Morse function on it.

Theorem 1.0.4. If the spine of M induced by the discrete gradient vector field of f

is a wedge of spines of M1 and M2, then M1 and M2 have Z-perfect discrete Morse

functions f1 and f2, respectively, such that f1 and f2 agree with f on the spines of

M1 and M2.

In general, similar to the case in dimension 2, we have the following theorem on a

separating sphere for the connected sum:
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Theorem 1.0.5. We can find a separating sphere S on M such that M = M1#SM2,

and the cells on S are never paired with the cells on M −M1.

Let M = M1#SM2 such that S ≈ ∂(M − M1) ≈ ∂(M − M2). Let f be a Z-

perfect discrete Morse function on M , and V be the gradient vector field induced by

f . Assume that V |M−M2 has one critical 0-cell, b1(M1) many critical 1-cells, b2(M1)

many critical 2-cells, and V |M−M1 has one critical 3-cell, b1(M2) many critical 1-

cells, b2(M2) many critical 2-cells.

Once we have such a separating sphere as in Theorem (1.0.5), we can extend the

gradient vector field to each summand:

Theorem 1.0.6. In addition to the given conditions above, if there are no arrows on

the cells of S pointing into M −M1, then we can extend V |M−M2 to M1 and V |M−M1

to M2 as discrete gradient vector fields of Z-perfect discrete Morse functions which

coincide with V except on a neighbourhood of S in M −M1 and M −M2.

Remark 1.0.7. In the theorems given above, we study with Z-perfect discrete Morse

functions. But they also work for any suitable field coefficient F.
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CHAPTER 2

BACKGROUND

2.1 Preliminaries

In this thesis, we work with closed, connected, triangulated manifolds. In this section

we present some basic definitions and facts on CW -complexes and manifolds. This

section is based on [7], [12] and [14].

Definition 2.1.1. An n-cell σ is a topological space which is homeomorphic to the

closed unit n-ball Dn = {x ∈ Rn | |x| ≤ 1}. The boundary of σ, ∂σ, is homeomor-

phic to ∂Dn = {x ∈ Rn | |x| = 1}.

Definition 2.1.2. A finite CW -complex K is a topological space that can be written

as

K =
⋃
n

Kn

whereK0 is a finite set of points andKn, the n-skeleton ofK, is obtained by attaching

finitely many n-cells σα via continuous attaching maps fα : ∂σα ≈ Sn−1 → Kn−1.

That is,

Kn = Kn−1
∐
α

σα

/
x ∼ fα(x), x ∈ ∂σα.

A CW -complex is regular if attaching maps are homeomorphisms onto their images.

Let α be an n-cell in a CW -complex K. If ν is a k-cell in ∂α for k < n, then we

say ν is a face of α, and we use the notation ν < α. We also use the notation α(n) to

denote an n-cell α.

Definition 2.1.3. An n-simplex is a convex hull of a set of (n+1) affinely independent

points, which are called the vertices of an n-simplex. A face of a simplex is the convex
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hull of a subset of its vertices.

A 0-simplex is a vertex, 1-simplex is an edge, 2-simplex is a triangle, 3-simplex is a

tetrahedron and so on.

(1, 0)

(0, 1)
(0, 0, 1)

(1, 0, 0) (0, 1, 0)

0-simplex 1-simplex 2-simplex

0

Figure 2.1: From left to right: a vertex, an edge, a triangle.

Definition 2.1.4. A finite simplicial complexK in Rn is a finite collection of simplices

such that

1. Every face of a simplex in K is also in K.

2. The intersection of any two simplices in K is a face of each simplex.

Definition 2.1.5 ([32]). Let K be a regular CW -complex, ν(n−1) < α(n) be two cells

of K and let ν be a free face of α, that is, it is not a face of any other cell. Then we

say that K collapses to L = K − {ν ∪ α} and write K ↘ L. A complex K is called

collapsible if it collapses to a point. The inverse of the collapse operation is called

an expansion.

Figure (2.2) is an example for a collapsible complex.

Figure 2.2: Collapsible 2-complex.

Definition 2.1.6. Two regular CW -complexes are simple homotopy equivalent if

there is a map between them which is homotopic to the composition of collapses

and expansions.

For example, a Möbius band and a cylinder are simple homotopy equivalent.
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Remark 2.1.7. Note that there are finite CW -complexes that are homotopy equiv-

alent but not simple homotopy equivalent. As an example, consider the Dunce hat

which is contractible but not collapsible ([34]) and a point.

a a

a

Figure 2.3: Dunce hat.

Next, we give the definition of a bisection which we use in the proofs of main theo-

rems.

Definition 2.1.8 ([9]). A bisection is a subdivision of a single cell in a regular CW -

complex into two cells resulting in a new CW -complex with precisely one more cell

than the original.

Figure (2.4) is an example of a sequence of bisections on a 2-cell.

Figure 2.4: A sequence of bisections.

Definition 2.1.9. Let M be an n-manifold. A triangulation of an n-manifold M is a

simplicial complex K such that the union | K | of its simplices is homeomorphic to

M .

Figure (2.5) is an example of a triangulation on the planer diagram of closed, oriented,

genus 2 surface.

Definition 2.1.10. Let K be a triangulated CW -complex, and α(k) ∈ K. The star

of α in K is StK(α) = {β ∈ K|α < β}, that is, it is a set of the cells in K that

contain α. The link of α in K is the set of the cells which are in the star of α and do

not consist of α on their boundary, that is, LkK(α) = {β ∈ StK(α)|α ∩ β = ∅}

7



1
2

3 4 5

6

7

8
9

1
2

3

3

3

33

3

3

4

5

6 7

8
9

Figure 2.5: A triangulation on the genus 2 surface.

In the Figure (2.6), the gray dashed regions represent the star of the vertex ν and the

star of the edge e. The blue colored circle, which is the boundary of St(ν), denotes

the link of ν, and the two blue vertices form the link of e.

1
2

3 4 5

6

7

8
9

1
2

3

3

3

33

3

3

4

5

6 7

8
9

ν

e

Figure 2.6: St(ν), St(e) and Lk(ν), Lk(e).

Definition 2.1.11. A piecewise-linear n-ball (respectively a piecewise-linear n-sphere)

is an n-dimensional CW -complex which is piecewise-linear homeomorphic to an n-

simplex (respectively to the boundary of an (n− 1)-simplex).

Definition 2.1.12. A triangulation of a manifold is piecewise-linear if the link of every

vertex is a piecewise-linear sphere.

Theorem 2.1.13 ([8], [33]). Every smooth manifold has a piecewise-linear triangu-

lation.

Note that the converse of the Theorem (2.1.13) is not always true. For instance,
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Kervaire’s 10-dimensional manifold admits a triangulation which is piecewise-linear

but not homeomorphic to any smooth manifold ( [17]).

Definition 2.1.14. Let M be a compact, connected n-manifold with boundary and N

be a subcomplex of M of dimension k ≤ n− 1. If M collapses to N and there is no

further collapses on N , then N is called a spine of M . A spine of a closed, connected

n-manifold is a spine of M − int(Dn).

Example 2.1.15. A spine of the torus T2 is S1 ∨ S1. A spine of the solid torus and

solid Klein bottle is S1.

Definition 2.1.16. Let M1 and M2 be n-dimensional manifolds. The connected sum

M1#M2 is an n-manifold that is obtained by removing the interior of an n-ball from

M1 and M2, and then gluing the resulting boundaries using an orientation reversing

homeomorphism.

Lemma 2.1.17 ([21]). Let M1 and M2 be two closed, connected, oriented, triangu-

lated 3-manifolds, and N1 and N2 be their spines, respectively. Then N1 ∨ N2 is a

spine of M1#M2.

Definition 2.1.18. A connected n-manifold M is called prime if it cannot be written

as a connected sum of two n-manifolds neither of which is an n-sphere.

The following theorem states an important property of 3-manifolds.

Theorem 2.1.19 ([20], [26]). Every compact, orientable 3-manifold can be expressed

as a connected sum of prime 3-manifolds, and this prime decomposition is unique up

to insertion or deletion of S3 summands.

Note that Theorem (2.1.19) is not valid for an arbitrary n-dimensional manifold. For

example, 2- and 4-dimensional manifolds do not have the unique prime decompo-

sition property. Consider RP 2#T2 as an example in dimension 2. It is homeo-

morphic to RP 2#K2, but T2 is not homeomorphic to K2. Also consider M =

CP 2#CP 2#CP 2 in dimension 4. It is diffeomorphic to (S2×S2)#CP 2, but S2×S2

and CP 2#CP 2 are not even homotopy equivalent [25].

The following lemma gives a relation between the homology groups of a connected

sum and the homology groups of each factor on the connected sum.
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Lemma 2.1.20 ([12]). Let M1 and M2 be closed, connected n-manifolds. Then

H0(M1#M2;Z) = Z, and Hi(M1#M2;Z) ∼= Hi(M1;Z)⊕Hi(M2;Z)

for 0 < i < n. If M1 and M2 are orientable, then Hn(M1#M2;Z) = Z. If either M1

or M2 is non-orientable, then Hn(M1#M2;Z) = 0 .

Remark 2.1.21. Let K be a finite CW -complex. Throughout this thesis, bi will de-

note the Betti number of K, that is, the rank of Hi(K;Z) which is the number of Z

summands in Hi(K;Z), and χ(K) will denote the Euler characteristic of K.

2.2 Discrete Morse Theory

In this section, we present some basic definitions and results on discrete Morse theory.

Throughout this section, K will represent a finite regular CW -complex. This section

is based on [9] and [10].

Definition 2.2.1 ([9]). Let f : K → R be a real valued function onK. We say that f is

a discrete Morse function if for any p-cell α ∈ K, it satisfies the following conditions:

n1 = #{τ > σ | f(τ) ≤ f(σ)} ≤ 1,

n2 = #{ν < σ | f(ν) ≥ f(σ)} ≤ 1.

In other words, Definition (2.2.1) states that for any p-cell α, there can be at most

one (p + 1)-cell τ containing α such that f(τ) ≤ f(α). Similarly, there can be at

most one (p− 1)-cell ν contained in α such that f(ν) ≥ f(α). See Figure 2.7 for an

example and a counterexample of a discrete Morse function on a 1-complex, where

the numbers represents the function values on each cell.

Lemma 2.2.2 ([9]). The numbers n1 and n2 above cannot be both one.

Proof. By the way of contradiction, assume that n1 = n2 = 1, that is, there exist a

(p − 1)-cell ν and a (p + 1)-cell β for a p-cell α ∈ K such that f(ν) ≥ f(α) and

f(β) ≤ f(α). Hence f(β) ≤ f(α) ≤ f(ν). Since K is a regular CW -complex,

there is at least one p-cell α̃(p) 6= α(p) such that ν(p−1) < α̃(p) < β(p+1). Since f is a

discrete Morse function, this implies that f(ν) < f(α̃) and f(α̃) < f(β), and this is

a contradiction.
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Figure 2.7: An example (left) and a counterexample (right) of a discrete Morse func-

tion on a 1-complex.

A p-cell α ∈ K is called a critical cell of f if n1 = n2 = 0. The value of f on a

critical cell is called a critical value.

Example 2.2.3. Every CW -complex K admits a discrete Morse function f : K → R

which can be defined as

f(α) = dim(α)

for each α ∈ K. For this particular discrete Morse function, we note that each cell

in K is critical.

Observe that every p-cell, for p ≥ 1, in K contains at least two (p − 1)-cells in its

boundary. Hence the minimum value of a discrete Morse function f on K is obtained

at a vertex, which will be critical 0-cell of f by the definition of the discrete Morse

function. Observe also that if K is a closed, connected, triangulated n-manifold, then

every (p−1)-cell, for p ≤ n, inK is contained in the boundary of at least two p-cells.

Thus the maximum value of f is attained at an n-cell, which will be a critical cell of

f .

Definition 2.2.4 ([9]). Let f be a discrete Morse function on K and c ∈ R. The

sublevel complex K(c) is defined as follows:

K(c) =
⋃

f(β)≤c

⋃
α≤β

α.

In other words, K(c) contains all cells β where f(β) ≤ c and all of their faces.

The following two lemmas show that restrictions and extensions of discrete Morse

functions are also discrete Morse functions.
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Lemma 2.2.5 ([9]). Let K be a CW complex, L be a subcomplex of K and f be a

discrete Morse function on M . Then the restriction of f is a discrete Morse function

on L such that if σ ∈ L is a critical cell of f , then it is a critical cell of the restriction

function.

Lemma 2.2.6 ([9]). Let K be a CW complex, L be a subcomplex of K such that K

collapses to L. Let f be a discrete Morse function on L and c = maxσ⊆Lf(σ). Then

there exists an extension of f to K that is a discrete Morse function on K with

L = K(c)

and there are no critical points in K − L.

The following theorems describe how critical cells affect the topology of the complex.

Lemma 2.2.7 ([9]). Let a < b ∈ R. If f−1((a, b]) does not contain any critical cell,

then K(b) collapses to K(a). See Figure (2.9) for an example.

Lemma 2.2.8 ([9]). Let a < b ∈ R and σ(p) be a unique critical cell in f−1((a, b]).

Then K(b) is homotopy equivalent to K(a) with a p-cell σ(p) attached along ∂σ(p).

That is, K(b) is homotopy equivalent to

K(a)
⋃
∂σ(p)

σ(p).

Figure (2.8) is an example of a 2-complex K with a discrete Morse function, given

by the numbers on each cell. The 0-cell with the value 0 and the 1-cell with the value

8 are the critical cells of the function.

0

2

2

3

3 1

4

1

K = 7

8

Figure 2.8: A discrete Morse function on a 2-complex.

On Figure (2.9), K(4) collapses to K(0) as it is stated in Lemma (2.2.7). Moreover,

K(8) is homotopy equivalent to K(4) with one 1-cell attached along the boundary

vertices as in Lemma (2.2.8).
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Figure 2.9: K(4)↘ K(0)

Remark 2.2.9. Throughout this thesis, mp(f) will denote the number of critical p-

cells of a discrete Morse function f .

The following theorem determines the homotopy type of a given complex with a

discrete Morse function.

Theorem 2.2.10 ([9]). Let f be a discrete Morse function onK. ThenK is homotopy

equivalent to a CW -complex with one p-cell for each critical p-cell.

It is obvious that the complex given in Figure (2.8) is homotopy equivalent to a CW -

decomposition of a 1-sphere with one 0-cell and one 1-cell.

The following corollary gives the discrete version of the well known Morse inequali-

ties.

Corollary 2.2.11 ([9]). Let f : K → R be a discrete Morse function on an n-

dimensional complex K, F be a field and bi(M ;F) be the ith Betti number of K with

respect to F. Then, for 0 ≤ i ≤ n,

1. mi(f)−mi−1(f) + . . .±m0(f) ≥ bi(M ;F)− bi−1(M ;F) + . . .± b0(M ;F),

2. mi(f) ≥ bi(M ;F),

3. χ(K) = Σi(−1)imi(f)

Definition 2.2.12 ([9]). A discrete vector field V on K is a collection of pairs of cells

{α(p) < β(p+1)} such that each cell is in at most one pair. If {α(p), β(p+1)} ∈ V , then

we write V (α) = β

For a graphic representation of a discrete vector field we draw arrows pointing from

α(p) to β(p+1) as in Figure (2.10).
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α β

Figure 2.10: f(α) ≥ f(β).

Definition 2.2.13 ([9]). A V -path of dimension (p+ 1) is a sequence of cells

α
(p)
0 < β

(p+1)
0 > α

(p)
1 < β

(p+1)
1 > . . . < β

(p+1)
k > α

(p)
k+1

such that {α(p)
i , β

(p+1)
i } ∈ V and α(p)

i 6= α
(p)
i+1 for each i = 0, 1, . . . , k. A V -path is a

non-trivial closed path if for some k > 0 we have α0 = αk+1.

Definition 2.2.14 ([9]). The discrete gradient vector field of a discrete Morse function

f on K consists of pairs {α(p), β(p+1)} such that α < β and f(α) ≥ f(β).

A V -path on a discrete gradient vector field is called a gradient path.

We note that a cell is critical if and only if it is neither the tail nor the head of an arrow.

See Figure (2.11) for several gradient paths and critical cells on a planar diagram of

the torus.

Remark 2.2.15. If there are no arrows pointing from L to K − L in Lemma (2.2.5),

then the restricted function has only the critical cells of f and no other critical cells.

1

2

3

4 5

1

11

2

3

4 5

6 7

8 9

Figure 2.11: A collection of discrete gradient paths on the torus.
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The gradient paths denote the direction in which function values descend. Thus a

discrete gradient vector field does not admit any non-trivial closed gradient path. This

fact is stated in the following theorem.

Theorem 2.2.16 ([10]). A discrete vector field V is the discrete gradient vector field

of a discrete Morse function if and only if none of the V -paths forms a non-trivial

cycle.

In discrete Morse theory, discrete gradient vector fields are often more useful than the

underlying discrete Morse functions for the combinatorial purposes. We give the fol-

lowing definition concerning equivalence relation between discrete Morse functions.

Definition 2.2.17 ([2]). Let f and g be two discrete Morse functions on K. Then f

and g are called equivalent if for every pair of cells (α(p) < β(p+1)) ∈ K

f(α) < f(β) if and only if g(α) < g(β).

The following theorem gives us an opportunity to work with the discrete gradient

vector fields instead of the underlying discrete Morse functions.

Theorem 2.2.18 ([2]). Let f and g be two discrete Morse functions on K. Then f

and g are equivalent if and only if f and g have the same critical cells and induce the

same discrete gradient vector field.

The following theorem shows that bisection does not affect the existence of a discrete

Morse function on a given complex. That is, an extension of a discrete Morse function

f to the subdivided complex obtained via a sequence of bisections is also a discrete

Morse function.

Theorem 2.2.19 ([9, Theorem 12.1]). Let K be a polyhedron, g be a discrete Morse

function on K and α be a p-cell of K. Assume that K̃ is a subdivision of K obtained

from a bisection

α(p) = α1
(p) ∪ ν(p−1) ∪ α2

(p).

Then K̃ admits a discrete Morse function g̃ which satisfies the following properties:

1. β 6= α is a critical cell of g if and only if β is a critical cell of g̃.
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2. α is a critical cell of g if and only if α1 is a critical cell of g̃, and α2 is not a

critical cell of g̃.

3. Let Vg and Vg̃ be the discrete gradient vector fields induced by g and g̃, respec-

tively. Then, except the cell α, Vg = Vg̃. That is, if β1 6= α 6= β2, then

Vg(β1) = β2 if and only if Vg̃(β1) = β2

and

Vg(α) = β1 if and only if Vg̃(α1) = β2 or Vg̃(α2) = β2

Vg(β1) = α if and only if Vg̃(β1) = α1 or Vg̃(β1) = α2

In ([9]), Forman proved that homology groups of a complex can be computed via

discrete Morse functions. Let f be a discrete Morse function on K, and Ci be the free

groups generated by critical i-cells of f . There are boundary maps ∂i : Ci → Ci−1

such that ∂i−1 ◦ ∂i = 0 for each i, and thus the following complex:

C∗ : 0→ Cn
∂n−→ Cn−1

∂n−1−−−→ . . .
∂i+1−−→ Ci

∂i−→ Ci−1
∂i−1−−→ . . .

∂1−→ C0
∂0−→ 0

is called Morse complex arising from f . The boundary maps are computed from

gradient V -paths which start in the boundary of a critical i-cell and end in a critical

(i− 1)-cell as follows:

We choose an orientation for each critical cell. Then for any critical i-cell β, we

define

∂(β) = Σαc(α,β)α

where

c(α,β) = Σγm(γ)

and γ is a discrete gradient path which starts in the boundary of the critical i-cell β

and ends in a critical (i− 1)-cell α. Note that γ induces an orientation on α given by

the orientation of β. If this orientation coincides with the orientation of α, then we

say m(γ) = 1, otherwise, we say m(γ) = −1.

Theorem 2.2.20 ([9]). H∗(C∗) ∼= H∗(K,Z).

Here is an example for homology computation on torus via Morse complex.
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Example 2.2.21. On Figure (2.12) from the previous example of a discrete gradient

vector field on a torus, blue arrows represent the orientation of the critical 2-cell and

critical 1-cells. The orientation of the vertices 1 and 9 are− and +, respectively. The

green arrows and signs denote the orientation on each critical cell induced by the

discrete gradient paths.

1

2

3

4 5

1

11

2

3

4 5

6 7

8 9
+

−

−+

+ +

−+

− −

Figure 2.12: Orientation induced by the discrete gradient paths on the torus.

The Morse complex on the torus is as follows:

C∗ : 0
∂3−→ C2([5, 8, 9])

∂2−→ C1([1, 9], [2, 3], [4, 5])
∂1−→ C0([1], [9])

∂0−→ 0.

Note that c([1,9],[5,8,9]) = 0, c([2,3],[5,8,9]) = 0, c([4,5],[5,8,9]) = 0, c([1],[1,9]) = 1, c([9],[1,9]) =

1, c([1],[2,3]) = 0, c([9],[2,3]) = 0 and c([1],[4,5]) = 0, c([9],[4,5]) = 0. Thus ∂2([5, 8, 9]) = 0,

∂1([1, 9]) = [1] + [9], ∂1([2, 3]) = 0 and ∂1([4, 5]) = 0. Then the Morse homology

groups of the torus are as follows: H2(T2,Z) = Z is generated by the critical 2-

cell [5, 8, 9], H1(T2,Z) = Z ⊕ Z is generated by the critical 1-cells [2, 3], [4, 5], and

H0(T2,Z) = Z ∼= 〈[1], [9]〉/〈[1] + [9]〉.
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CHAPTER 3

EXISTENCE OF PERFECT DISCRETE MORSE FUNCTIONS

In this chapter, we discuss existence of F-perfect discrete Morse functions, where F

is a field or Z, on finite complexes and closed, connected, triangulated n-manifolds.

We add this chapter for the integrity of this thesis and we do not claim the originality

of this chapter. The results of this chapter are based on previous results from [3], [4],

[19], [23].

3.1 Existence of perfect discrete Morse functions

We start this section with the definition of an F-perfect discrete Morse function where

F is a field or Z.

Definition 3.1.1. A discrete Morse function f : K → R on a finite complex K is

called an F-perfect discrete Morse function if mi(f) = bi(K;F) where bi(K;F) =

rankHi(K;F) with the coefficient group F and i = 1, 2, . . . , dim(K).

Let L be a module over a principal ideal domain G. Observe that L is a group with

operators from G. In smooth Morse theory, Pitcher [30] stated the Morse inequalities

in terms of Betti numbers of a smooth manifold M with reference to the coefficient

group L and torsion coefficients of Hi(M,L) in the following theorem. Let Ti be the

submodule of elements of finite order in Hi(M,L) and ti be the number of torsion

coefficients which is the smallest number of the cyclic submodules of which Ti is a

direct sum.

Theorem 3.1.2 ([30, Theorem 14.2]). Let f be a smooth Morse function on a compact

n-dimensional Riemannian manifold M . Then
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1. m0(f) ≥ b0, mi(f) ≥ bi + ti + ti−1 for i = 1, 2, . . . , n,

2. mi(f)−mi−1(f) + . . .+ (−1)im0(f) ≥ bi − bi−1 + . . .+ (−1)ib0 + ti,

3. mn(f)−mn−1(f) + . . .+ (−1)nm0(f) = bn − bn−1 + . . .+ (−1)nb0.

The following lemma is a discrete version of the inequalities given in Theorem (3.1.2)

under the coefficient group Z.

Lemma 3.1.3. Let f be a discrete Morse function on a finite CW -complex K of

dimension n. Then,

mi(f) ≥ bi + ti + ti−1 for i = 1, 2, . . . , n.

where bi := rankHi(K,Z) and ti is the number of torsion coefficients of Hi(K;Z).

Proof. Let Ci(K,Z) be the free Z-module generated by the critical i-cells of f , and

C∗ : 0→ Cn(K,Z)
∂n−→ Cn−1(K,Z)

∂n−1−−−→ . . .
∂1−→ C0(K,Z)

∂0−→ 0

be the resulting Morse chain complex. Then, by Theorem (2.2.20),

Hi(C∗) ∼= Hi(K,Z).

Observe that rank(Ci(K,Z)) = rank(Ker∂i) + rank(Im∂i) and rank(Ker∂i) ≥ bi +

ti, rank(Im∂i) ≥ ti−1. Thus rank(Ci(K,Z)) ≥ bi+ti+ti−1 where rank(Ci(K,Z)) =

mi(f).

Proposition 3.1.4 ([23]). Every closed, triangulated surface admits a Z-perfect dis-

crete Morse function if and only if it is orientable.

Figure (3.1) is an example of a discrete gradient vector field on the torus induced by

a perfect discrete Morse function.

Theorem 3.1.5 ([23]). Every closed, triangulated, non-orientable surface admits a

Z2-perfect discrete Morse function.

Corollary 3.1.6 ([23]). Every closed, connected surface admits a Z2-perfect discrete

Morse function.
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Figure 3.1: A discrete gradient vector field on the torus.

Theorem 3.1.7 ([3]). Let F be a field. A 2-complex K that is F-acyclic and non-

collapsible does not admit any F-perfect discrete Morse functions.

For example, the Dunce hat does not admit a perfect discrete Morse function for any

coefficient field.

The following proposition is mentioned in ([4]) for 3-dimensional manifolds without

any proof. For the integrity of this thesis, we will give a proof.

Proposition 3.1.8. Let M be a closed, connected, triangulated n-manifold with a Z-

perfect discrete Morse function defined on it. Then M is orientable and Hi(M ;Z) is

free for i = 0, 1, 2, . . . , n.

Proof. Let f be a Z-perfect discrete Morse function on M . By Lemma (3.1.3), we

have
b0 = m0(f) ≥ b0,

bi = mi(f) ≥ bi + ti + ti−1 for i = 1, 2, . . . , n− 1,

bn = mn ≥ bn + tn−1.

Thus ti = 0 for all i = 1, 2, . . . , n − 1 which implies that Hi(M ;Z) is free. Since

tn−1 = 0, then M is orientable by [12, Corollary 3.28].

Corollary 3.1.9 ([4, Corollary 1]). Let M be a closed, connected, triangulated n-

manifold such that π1(M) is finite and non-trivial. Then M cannot admit any Z-

perfect discrete Morse functions.

Proof. Assume that π1(M) is finite and non-trivial, then
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1. if H1(M ;Z) 6= 0, then H1(M ;Z) = π1(M)/π′1(M) will have a torsion sub-

group where π′1(M) is the commutator subgroup of π1(M). Thus, by Proposi-

tion (3.1.8), M does not admit a Z-perfect discrete Morse function.

2. if H1(M ;Z) = 0, then the abelianization of π1(M), which is π1(M)/π′1(M),

will be trivial. Since π1(M) is non-trivial, it is not abelian, and thus it should

have at least two generators. So, 1-skeleton of any CW -complex structure

on M will contain a wedge of at least two circles. That is, it will contain at

least two 1-cells. Therefore, by Theorem (2.2.10), M cannot admit a Z-perfect

discrete Morse function since for a Z-perfect discrete Morse function f on M ,

m1(f) = 0.

For instance, the lens space L(p, q) with π1(L(p, q)) = Zp, and the Homology sphere

M with π1(M) 6= 0 and H1(M ;Z) = 0 cannot admit any Z-perfect discrete Morse

functions.

Corollary 3.1.10 ([4, Corollary 2]). Let M be a closed, connected, triangulated n-

manifold such that π1(M) contains a torsion subgroup. Then M does not admit a

Z-perfect discrete Morse function.

The following Theorem indicates that the existence of an F-perfect discrete Morse

function on a closed manifold is strongly related with its subcomplexes.

Theorem 3.1.11 ([4, Theorem 5]). Let M be a closed, connected, orientable triangu-

lated n-manifold, and F be either Z or a field. Then there exists an F-perfect discrete

Morse function on M if and only if M has a spine that admits an F-perfect discrete

Morse function.

Proof. Let f be an F-perfect discrete Morse function on M . Since M is a closed,

connected, orientable manifold, b0(M ;F) = bn(M ;F) = 1 and bi(M ;F) = bj(M ;F)

for i+ j = n, by Poincare duality theorem. Thus m0(f) = mn(f) = 1 and mi(f) =

bi(M ;F) for i = 1, 2, . . . , n − 1. Let β be the unique critical n-cell in M , and

N = M − int(β). Clearly N can be collapsed along all n-paths and some i-paths for
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i = 1, 2, . . . , n− 1 to a subcomplex K of dimension ≤ (n− 1) of M such that there

is no more collapse on K. That is, K is a spine of M and f |K is a discrete Morse

function by Lemma (2.2.5) such that mi(f) = mi(f |K) because of the construction

of K. Since K and N are simple homotopy equivalent, bi(K;F) = bi(N ;F) and

bi(N ;F) = bi(M ;F) by Mayer Vietoris for i = 1, 2, . . . , n−1. Therefore, bi(K;F) =

mi(f) = mi(f |K) and f |K is an F-perfect discrete Morse function on K.

Conversely, let K be a spine of M such that M − int(γ)↘ K where γ is an n-cell of

M and h be an F-perfect discrete Morse function on K. By Lemma (2.2.6), we can

extend h to an F-perfect discrete Morse function f on M − Int(γ). Then, we can also

extend f toM as an F-perfect discrete Morse function by defining f(γ) = 1+max(α)

where α < γ.

Example 3.1.12. A 3-sphere S3 with a triangulation on it admits a Z-perfect discrete

Morse function since it has a spine which is a point. And S1× S2 is another example

which admits a Z-perfect discrete Morse function. Note that S1∨S2 is a spine of S1×
S2. Let f1 and f2 be Z-perfect discrete Morse functions on S1 and S2, respectively.

Let us identify the critical 0-cells ν and ω on S1 and S2 to obtain S1 ∨ S2. Then

f(α) =


min{f1(α), f2(α)} if α = ν = ω

f1(α) if α ∈ S1, α 6= ν

f2(α) if α ∈ S2, α 6= ω

is a Z-perfect discrete Morse function on S1∨S2. Thus, by Theorem (3.1.11), S1×S2

admits a Z-perfect discrete Morse function. We can say that, by universal coefficient

theorem for homology, S3 and S1 × S2 also admit F-perfect discrete Morse function

for any field coefficients F.
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CHAPTER 4

COMPOSING PERFECT DISCRETE MORSE FUNCTIONS ON A

CONNECTED SUM

In this chapter, we present our main result on composing perfect discrete Morse func-

tions on a connected sum of manifolds. We give an explicit algorithm for the perfect

discrete Morse function on the connected sum that coincides almost everywhere with

the perfect discrete Morse functions on the two components of the connected sum.

4.1 Main Result

We start this section with stating a lemma regarding uniqueness of critical 0-cell and

n-cell of a perfect discrete Morse function.

Lemma 4.1.1. If f is a perfect discrete Morse function on a connected complex K,

then it has precisely one critical vertex. If K is a triangulation of a closed triangu-

lated manifold of dimension n, then f has only one critical n-cell.

Proof. Since K is a connected complex, then b0(K,Z2) = 1. If K is a triangulation

of a closed, triangulated manifold of dimension n, then bn(K,Z2) = 1. Since f

is a perfect discrete Morse function on K, and the number of the critical cells of a

discrete Morse function is independent of the coefficients, then, by Corollary (2.2.11),

m0(f) = b0(K,Z2) and mn(f) = bn(K,Z2). Thus f has exactly one critical 0-cell

and one critical n-cell.

Now we give the main result of this chapter and its proof. Throughout the section,

we work with Z-perfect discrete Morse functions but the proof works for any field
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coefficients.

Theorem 4.1.2. Let M1 and M2 be two n-dimensional closed, connected, oriented,

triangulated manifolds, and f1 and f2 be the perfect discrete Morse functions on them,

respectively. Then there exists a perfect discrete Morse function f on M = M1#M2

which coincides with f1 and f2, up to a constant on each summand, except on a

neighbourhood of the two n-cells whose interiors are removed to form the connected

sum.

Proof. We work with the discrete gradient vector fields V1 and V2 induced by the

perfect discrete Morse functions f1 and f2, respectively. Now, let us show that V1

and V2 give a discrete gradient vector field V induced by a perfect discrete Morse

function, called f , on M which agrees with V1 and V2 on each summand. By Lemma

(4.1.1), V1 and V2 have only one critical 0-cell and one critical n-cell.

Let α be the unique critical n-cell of M1 and β be a non-critical n-cell of M2 with the

unique critical 0-cell ν in its boundary. We form M with a discrete gradient vector

field V defined on it as follows:

First, we attach a tube L = ∂α × [0, 1] to M1 − α̊, where α̊ represents the interior

of the cell α, along ∂α × {0} with the natural product cell decomposition. Then we

extend the discrete vector field V1|M1−α ,which is a discrete gradient vector field with

no additional critical cells by Lemma (2.2.5) and Remark (2.2.15), to (M1 − α) ∪ L
such that we pair each cell σ in ∂α × {1} with its co-face σ × (0, 1) in L. For an

example in dimension 2, see Figure (4.1).

α

∂α× {0}

∂α× {1}

Figure 4.1: The discrete gradient vector field on ∂α× {1}.

We subdivide β to obtain an n-cell β′ whose boundary and itself will be critical inM2

after the subdivision as in the following way: LetH : β× [0, 1]→ β be a deformation

retraction of β onto the critical 0-cell ν such that H(x, t) = ht(x) where ht : β → β
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is given by

ht(x) = (1− t)x+ tν

for all x ∈ β. Then β′ = H1/2(β) gives a smaller copy of β, and thus the map H(x, t)

provides a subdivision of β in M2. Let β′′ = β − β′ be the complement of β′ in β. In

other words, β′′ = Lkβ(ν) × [0, 1/2] where Lkβ(ν) denotes the link of ν in β. Then

there exists one to one correspondence between the cells of β − ν and β′′ − β′. See

Figure (4.2) for an example in dimension 2.

β
β′′
β′

Lkβ(ν)

ν ν

H : β × [0, 1] → β

Figure 4.2: The subdivison on β.

We extend the discrete gradient vector field V2|M2−β̊ to (M2− β̊)∪ (β′∪β′′) after the

subdivision on β as follows: For any pair (σ, τ) ∈ V2 with σ ∈ β and either τ ∈ β
or τ ∈ (M2 − β), there exists a corresponding pair (σ′′, τ ′′) with σ′′ ∈ β′′ and either

τ ′′ ∈ β′′ or and τ ′′ = τ ∈ (M2 − β). Hence the cells on β′ will be unpaired, that is,

they will be critical cells for the extension of V2|M2−β̊ let us call this vector field as

Ṽ2. See Figure (4.3) for an example in dimension 2.

v v

β
β′

β − β′

Figure 4.3: The discrete gradient vector field on β and its subdivision.

Finally, we form the connected sum M = M1#M̃2 by attaching M̃2 − β̊′ to (M1 −
α) ∪ L by identifying the resulting boundary of M̃2 − β̊′ ∼= ∂β′ with ∂α × {1}. The

discrete vector field V on M is given by
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V (γ) =


V1(γ) ; γ ∈M1 − α̊
γ × (0, 1) ; γ ∈ ∂α× {1} ∼= ∂β′

V2(σ) ; γ = σ′′ ∈ (β′′ − β′)
V2(γ) ; γ ∈M2 − β

The discrete vector field V is a discrete gradient vector field on M since neither V1

nor V2 admit any non-trivial loops and all the arrows on ∂α× {1} point towards M1.

We have removed the critical n-cell α ∈ M1 and we have paired the critical 0-cell

ν ∈ M̃2. The number of the critical cells in V are

m0(V ) = 1 = b0(M),

mi(V ) = mi(V1) +mi(V2) = bi(M1) + bi(M2) = bi(M), i = 1, 2, . . . , n− 1,

mn(V ) = 1 = bn(M).

Therefore, V is induced by a perfect discrete Morse function f that satisfies the con-

ditions of the theorem.

For example, assuming there is no pairing between the faces of the critical n-cell α of

f1, and the values of f2 is greater than or equal to the values of f1, f can be defined

as

f(γ) =


f1(γ) ; γ ∈M1 − α̊
f1(τ) + C/2 ; γ = τ × (0, 1), γ = τ × {1} ∈ L, τ ∈ ∂α
f2(γ) + C ; γ ∈M2 − β
f2(τ) + C ; γ = τ ′′ ∈ (β′′ − β′)

where C is a constant bigger than f1(α) + 1.

28



CHAPTER 5

DECOMPOSING PERFECT DISCRETE MORSE FUNCTIONS

In this chapter, we give our main results on decomposing perfect discrete Morse func-

tions on connected sums of closed, connected, oriented, triangulated surfaces and

3-dimensional manifolds. Before stating the main results of this chapter, we give

some useful lemmas and theorems which are used in the proofs of the main theorems.

Throughout this chapter, manifold will always refer to a closed, connected, oriented,

triangulated manifold.

5.1 Preliminaries

We start this section with an observation for a discrete Morse function on an oriented

surface.

Definition 5.1.1 ([5]). Let f be a discrete Morse function on a manifold with bound-

ary. If a cell on the boundary is a critical cell of f , then it is called a boundary critical

cell.

Figure (5.1) is an example of a discrete Morse function on a rectangle with three

boundary critical cells given as v and e.

e v

t

Figure 5.1: A discrete gradient vector field with boundary critical cells.
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Lemma 5.1.2. Let f be a discrete Morse function defined on a 2-manifold M . Let D

be a triangulated open disk in M whose closure contains exactly one critical 0-cell

or one critical 2-cell in its interior. Then the restriction function f |M−D has the same

number of boundary critical 0-cells as boundary critical 1-cells.

Proof. A 2-manifold M of genus g has Euler characteristic χ(M) = 2 − 2g. When

we remove a 2-disk D from M , Euler characteristic decreases by one. That is,

χ(M −D) = 2− 2g − 1

= 1− 2g. (5.1)

Let us assume that D includes only a single critical 0-cell, and there exist m0 many

critical 0-cells, m1 many critical 1-cells and m2 many critical 2-cells of f in M .

Assume also that f |M−D has n0 many boundary critical 0-cells and n1 many boundary

critical 1-cells. Thus, f |M−D has (m0 +n0−1) many critical 0-cells, (m1 +n1) many

critical 1-cells and m2 many critical 2-cells. Then, by Corollary (2.2.11), we have

χ(M) = m0 −m1 +m2 = 2− 2g, and

χ(M −D) = (m0 + n0 − 1)− (m1 + n1) +m2

= (m0 −m1 +m2) + n0 − n1 − 1

= (2− 2g) + n0 − n1 − 1

= 1− 2g + (n0 − n1). (5.2)

The equations (5.1) and (5.2) together imply that n0 = n1.

Moreover, the restriction of f to the resulting boundary 1-sphere C = ∂(M − D),

f |C , is a discrete Morse function by Lemma 2.2.5 and

χ(C) = 0 = m0(f |C)−m1(f |C)

implies that m0(f |C) = m1(f |C) where m0(f |C) and m1(f |C) represent the number

of critical 0-cells and the critical 1-cells of f |C , respectively.
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Now, let us give two preliminary Lemmas about discrete Morse functions which we

use in the following proofs. We include their proofs for the completeness of the text.

Lemma 5.1.3. LetK be a finite cell complex with a discrete Morse function f defined

on it and let V be the discrete gradient vector field induced by f . Then

1. The 1-paths in V can merge but they cannot split.

2. All 1-paths in V form a tree at the critical 0-cell(minimal vertex) if f is a perfect

discrete Morse function and K is a connected complex.

Proof. 1. Suppose, on the contrary, that a 1-path splits at a vertex. Then this

implies that the vertex is paired with two different edges, that is, it will be at

least in two pairs in V , which is a contradiction.

2. Since K is connected, b0(K) = 1 and since f is a perfect discrete Morse func-

tion, it has exactly one critical 0-cell in K. We note that every 1-path ends at

the critical 0-cell, and thus all 1-paths form a tree at the unique critical vertex.

Lemma 5.1.4. Let M be a compact triangulated n-manifold, and V be the discrete

gradient vector field induced by a discrete Morse function f on M . Then

1. The n-paths in V can split but they cannot merge.

2. If M is closed, connected and orientable, then every regular n-cell τ is con-

nected to the critical n-cell by a unique gradient path starting in the boundary

of the critical cell and ending in τ .

Proof. 1. Every (n − 1)-cell is a common face of at most two n-cells (which

depends on whether M is a manifold with or without boundary). If two n-paths

would merge at an (n − 1)-cell σ, then σ would be the common face of its

n-dimensional pair in V as well as at least two other n-cells, but this is not

possible.

2. If τ is an n-cell on an n-path in V , then its pair is an (n − 1)-cell which has

precisely one other coface since M is closed. If τ is not the critical n-cell, then
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this is the only possible previous n-cell on the path. By repeating this process

up to the unique critical n-cell, we eventually obtain a unique gradient n-path

which starts in the boundary of the critical n-cell.

5.2 Decomposing Perfect Discrete Morse Functions on 2-Manifolds

Let M be a 2-manifold given as a connected sum of two manifolds. Also, let f be

a perfect discrete Morse function defined on M . In this section, we show how to

decompose f as perfect discrete Morse function on each summand using the discrete

gradient vector field induced by f . To achieve this, we choose a separating circle

satisfying certain properties, given in terms of the vector field, and then attach suitable

disks to both sides.

The first thing one needs to do is to decide which critical cells belong to the same

component. (We use Poincare duality and cohomology ring structure of M to under-

stand the placement of critical cells). Note thatM is a genus g surface for some g. We

may take {α1, β1, . . . , αg, βg} as a basis for H1(M), where αi’s and βi’s are given by

the critical 1-cells of f . These homology classes are obtained by our perfect discrete

Morse function following the 1-paths emanating from the critical 1-cells. Note that

in any basis for the first homology group of a closed, connected, orientable surface of

genus g, homology generators come as pairs. That is for any α in a basis for H1(M),

there should be a class β such that the number of transverse intersections is odd be-

tween any representatives of α and β. This follows from the fact that H2(M) ∼= Z

and a generator is given by the cup product of two 1-dimensional cohomology gener-

ators, say a and b, such that (a∪ b)[M ] = 1. In other words, a([M ]∩ b) = 1. In terms

of homology, this can be explained as the cohomology classes a and b have Poincare

duals intersecting transversally at an odd number of points (i.e. these classes should

have an odd geometric intersection and their algebraic intersection should be 1). One

can not count these intersection numbers by considering the 1-paths from the critical

cells. Because these paths do not intersect transversally but instead they may merge

together. To get the correct pairing we are going to work with the dual homology
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generators obtained from the 2-paths from the critical 2-cell to the critical 1-cells. To

clarify the situation, let us try to explain these homology generators. There are ex-

actly two 2-paths from the critical 2-cell to a critical 1-cell. The core of these 2-paths

is a non-trivial homology class which is dual to the homology generator produced by

the critical 1-cell. This duality can be explained in this way: when one considers the

cohomology class that is the Poincare dual of the homology class from the critical

cell, its value is 1 on this homology class coming from the core. Actually, this dual

class must be homologous to one of the elements in the basis, the one we started with

and the class homologous to the dual class, must belong to the same component of

M . But instead of looking for this homologous class in the basis, which might be too

cumbersome, we opt for counting the number of transverse intersections of these dual

elements. Now we count the number of transverse intersections of these dual classes,

for which one might need to perturb these cycles, and the classes with an odd number

of intersections and hence their duals must belong to the same component.

Theorem 5.2.1. Let M = M1#M2 be a connected sum of two triangulated 2-

manifolds M1 and M2 of genera g1 and g2, respectively, and f be a perfect dis-

crete Morse function defined on M . Then there exists a separating 1-sphere C on

M so that M = M1#CM2 and none of the cells on C are paired with the cells in

M − (M1 − int(D1)) where D1 is a 2-disk.

The proof of the theorem requires some minor subdivisions of the triangulation, but

these are localised in the neighbourhood of C. By abuse of notation the subdivided

manifold and its regions will be denoted by the same symbols.

Lemma 5.2.2. Let M and f be given as in Theorem (5.2.1). The union of the critical

2-cell and all the gradient paths from the critical 2-cell to any pair of critical 1-

cells forms a subcomplex N ⊂ M with boundary consisting of a union of 1-spheres

meeting at finitely many vertices or connected by arcs which are formed by the interior

1-paths of N .

Proof. By construction, the regionN is a connected subcomplex ofM with boundary.

The boundary of N is a union of 1-spheres which are connected by either 1-paths

(these are the interior arcs where two 2-paths from N touch) or connected by the
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critical 1-cells in N . Otherwise, the 2-paths forming N would lie on a 2-cycle which

is not possible for a discrete Morse function.

The following two lemmas deal with these two situations about the resulting boundary

of N .

Lemma 5.2.3. Let P be the star of the cells on a 1-path γ in N along which different

2-paths forming N as in Lemma (5.2.2) meet, and let P ′ = P ∩ N . After some

necessary subdivisions on the cells in P ′ − γ, that are cofaces of the cells on γ, we

can separate these 2-paths such that they do not meet along γ anymore.

Proof. In order to separate the 2-paths containing γ on their common boundary, we

apply the following steps:

1. We bisect those 1-cells in P ′ that are mentioned above. Let ν be the terminal

point of γ in N .

2. In order to extend the vector field, we pair all the new vertices, but the vertices

in the star of ν, with their cofaces in the star of the 0-cells on γ.

3. We pair all the newly introduced vertices in the star of ν with their cofaces if

ν is either critical or it is not critical but it is not paired with a 1-cell on the

boundary of N .

4. If ν is paired with a 1-cell that is on the boundary of N , then we pair the new

vertices, except the one on the edge that is paired with ν, with their unpaired

cofaces in the star of ν and we pair the exceptional vertex with its unpaired

coface (see Figure (5.2)).

5. Next, we bisect all the 2-cells in P ′. Let P ′′ be the star of the cells on γ in N

obtained after the bisections in the above steps.

6. We have already paired the 0-cells and now we pair the 1-cells in P ′′ with their

cofaces in P ′′.

At the end of the steps above, we extend the vector field to the subdivided cells with-

out creating any cycle by Theorem (2.2.19).
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Lemma 5.2.4. Let S be the star of a wedge point ω on the boundary ofN obtained as

in Lemma (5.2.2), and let S ′ = S ∩N . After subdividing the cells on S ′ that contain

ω on their boundary, we can separate the 2-paths in N that meet at the wedge point

ω.

Proof. In order to separate the 2-paths, we construct a smaller copy S̃ of S ′ as in the

following way:

1. We bisect all the 1-cells in the open star of ω in S ′ and pair all the new vertices

with their cofaces in the star of ω if ω is the critical 0-cell or ω is not critical but

it is paired with a 1-cell in M −N .

2. If ω is paired with a 1-cell in S ′, then we pair the vertex that is on this 1-cell

with its unpaired coface, and we pair the remaining vertices with their cofaces

containing ω.

3. We bisect all the 2-cells in S ′. Let S ′′ be the new star of ω in N obtained after

bisecting the 1-cells and 2-cells as in the above steps.

4. We have already paired all the 0-cells and now we pair all the unpaired 1-cells

in S ′′ with their cofaces in S ′′.

As a consequence of the above steps, we separate the 2-paths which meet at ω, and

we can extend the vector field to the subdivided cells without creating any cycle by

Theorem (2.2.19) (Figure (5.3) is an example of subdivision and extension of a vector

field).

Recall that our aim is to obtain a single circle as the boundary after following the

2-paths from the critical 2-cell to the critical 1-cells that belong to the M − (M1 −
int(D1)) part. The next lemma shows that for a pair of critical 1-cells on the same

component the resulting boundary components are always connected by 1-paths. We

use these connecting 1-paths to reduce the number of boundary components to one.

Lemma 5.2.5. Let α and β be two of the critical 1-cells in M that give a pair of non-

trivial intersecting first homology generators. Suppose that the stars of α, β and the
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unique critical 2-cell do not contain any other critical cells. If the resulting boundary

of the subcomplex N obtained by tracing the 2-paths that end in α and β is a disjoint

union of 1-spheres, then there must be 0-cells on the boundary components that are

paired with interior 1-cells on 1-paths in N that connects each disjoint boundary

components.

Proof. Suppose on the contrary that there is no such 1-path i.e., for such two critical

1-cells α and β assume that the boundary of the region N we obtain tracing the 2-

paths from the critical 2-cell has n > 1 disconnected boundary components but there

is no 1-path connecting the disjoint boundary components. Then by cutting M along

the boundary of N we get a triangulated surface of genus 1 containing α and β, and

a genus g1 + g2 − 1 surface with a discrete Morse function defined on them by the

restriction of f . This is the case since α and β give a pair of non-trivial intersecting

first homology generators. Observe that the genus g1 + g2 − 1 surface does not have

any boundary critical cells by construction, so by Euler characteristic calculations we

should have

1− 2(g1 + g2 − 1) = 2− 2(g1 + g2 − 1)− n.

The above equation yields that n = 1, which contradicts with our assumption on the

number of disjoint boundary components.

Next, we consider the case where non-trivial intersecting critical 1-cells produce a

connected boundary.

Lemma 5.2.6. If the resulting boundary of N obtained in Lemma (5.2.5) is a single

1-sphere C, then there can not be any 0-cells or 1-cells on C that are paired with the

interior cells of N .

Proof. By the construction of N , it is easy to see that there can not be any 1-cell on

C that is paired with the interior 2-cells of N . Suppose that there are n ≥ 1, 0-cells

on C that are paired with the interior cells of N . Since the unique critical 0-cell of

f belongs to M − int(N), there must be 1-paths in N that begin in these 0-cells and

end at some of the 0-cells on C (considering only the parts of these paths in N ). Note

that these 1-paths may occur as the common boundary of different 2-paths. If this is

the case, then we separate the 2-paths such that they do not contain these 1-paths in
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their boundary anymore and extend the vector field by using Lemma (5.2.3). Next,

we form a new subcomplex N ′′ of the subdivided M by tracing the 2-paths ending in

α and β. The boundary of N ′′ is a union of at least two disjoint 1-spheres. But, this

would imply disjoint boundary components with no 0-cells on the boundary that are

paired with interior cells of N ′′ which contradicts Lemma 5.2.5.

Proof of Theorem 5.2.1. By Lemma (2.1.20) and f being a perfect discrete Morse

function we have

b0(M) = m0(f) = 1,

b1(M) = m1(f) = b1(M1) + b1(M2) = 2g1 + 2g2,

b2(M) = m2(f) = 1.

Let A be a set of g2 many pairs of homologically transversal critical 1-cells. In order

to find a separating 1-sphere C which satisfies the condition given in the theorem

concerning how the cells are paired on it, we apply the following steps in the given

order whenever they are necessary:

1. First of all, if the star of a critical cell consists of an other critical cell, we bisect

the star to separate the critical cells from each other.

2. Then we construct a subcomplex M ′
2 of M by following the 2-paths that start

in the boundary of the critical 2-cell and end at the critical 1-cells in A by using

Lemma (5.2.2).

3. Next, we separate the 2-paths that meet along 1-paths, thus forming discon-

nected boundary components, using Lemma (5.2.3). (see Figure (5.2) as an

example of the separation of 2-paths where the gray region represents M ′
2 and

the red edges represent the resulting boundary).

4. Now, we construct a new subcomplex M ′′
2 of M (after these modifications) by

tracing the 2-paths ending at the cells in A. Since we separate the 2-paths

meeting along 1-paths, the resulting boundary ofM ′′
2 is connected. But it might

be a union of wedges of several 1-spheres since different 2-paths can meet at

a vertex, that is, the 2-cells on these 2-paths can share only a vertex on their

common boundary.
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ν ν′γ ν ν′γ

Figure 5.2: A separation of the 2-paths meeting along a 1-path in M ′
2.

5. Next, we separate the 2-paths in M ′′
2 meeting at wedge points on the resulting

boundary by using Lemma (5.2.4). Observe that, after this step, none of the

2-paths ending at the critical 1-cells meet neither along 1-paths nor at vertices

in this refined M (see Figure (5.3) for an illustration of the separation).

ω ω

Figure 5.3: A separation of the 2-paths meeting at a vertex ω in M ′′
2 .

6. In the next step, we trace all the 2-paths that begin in the boundary of critical

2-cell and end at the critical 1-cells to form a subcomplex M̃2 of M with a

boundary 1-sphere. Since we pair the cells obtained after each refinement of

M as in Lemma (5.2.3) and Lemma (5.2.4), none of the cells on the boundary

1-sphere, say C, is paired with the interior cells of M̃2.

7. For the last thing to check: if C admits the unique critical 0-cell of f , then we

bisect the cells in the star of this critical 0-cell in M̃2 by using Lemma (5.2.4)

to push it into M − M̃2.

Finally, we can consider M1 = (M − M̃2) ∪C D1 and M2 = M̃2 ∪C D2, where D1

and D2 are 2 dimensional disks with ∂D1 ≈ ∂D2 ≈ C. Note that M̃2 represents

M − (M1 − int(D1)) part of the connected sum M .
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Note that if A contains at least one pair of critical 1-cells that does not give non-

trivial intersecting first homology generators, we can not find a separating 1-sphere

on M that satisfy the conditions given in the statement of the Theorem (5.2.1) due to

Lemma (5.2.5) and Lemma (5.2.6).

Now, after these preliminaries we are ready to decompose a perfect discrete Morse

function defined on a connected sum of surfaces.

Let M = M1#CM2 be a connected sum of two 2-manifolds M1 and M2 of genera

g1 and g2, respectively. Let f be a perfect discrete Morse function on M with the

induced discrete gradient vector field V so that V |M−M2 has one critical 0-cell and

2g1 many critical 1-cells and V |M−M1 has one critical 2-cell and 2g2 many critical

1-cells where the notations M −M1 and M −M2 represent M − (M1− int(D1)) and

M − (M2 − int(D2)), respectively, and Di for i = 1, 2 denote a 2-disk. Assume also

that C ≈ ∂(M −M1) ≈ ∂(M −M2) is a separating 1-sphere in M and none of the

cells on C are paired with the cells in M−M1 and none of the critical cells of f in M

lie on C. By Theorem 5.2.1, we know that such a separating 1-sphere always exists.

Theorem 5.2.7. Let M be a connected sum given as above. Then V |M−M1 and

V |M−M2 can be extended to M2 and M1, respectively, as a discrete gradient vector

field of perfect discrete Morse functions that agree with f on M −M1 and M −M2

except on the cells in the star of the cells on C.

Proof. We can extend V |M−M1 to a discrete gradient vector field on M2 = (M −
M1) ∪C D2, where D2 is a triangulated disk with boundary C and an interior vertex

ν (as in Figure (5.4)), as in the following way:

1. For each pair (α, β) of V |M−M1 on C, we form a corresponding pair (α′, β′)

where α′, β′ ∈ D2 are cofaces of α and β, respectively.

2. For each boundary critical cell σ of V |M−M1 , we form a pair (σ, σ′) where

σ′ ∈ D2 is a coface of σ.

The vertex ν remains unpaired and is the unique critical 0-cell of the extension V2

of V |M−M1 to M2. Note that V2 is a discrete gradient vector field since V |M−M1 is a

39



discrete gradient vector field by Lemma (2.2.5), there is no cell on C paired with an

interior cell of M −M1, and all 1-paths on C end at ν. Let f2 be a discrete Morse

function which induces V2, then it has the following numbers of critical cells:

m0(f2) = 1 = b0(M2),

m1(f2) = b1(M2),

m2(f2) = 1 = b2(M2),

which implies that f2 is a perfect discrete Morse function. Specifically, we can define

f2 such that it is equal to f on the interior cells of M2 − D2 and it attains values on

the cells in D2 so that they descend along the gradient paths in V2|D2 .

The following figure shows how one can extend V |M−M1 to D2.

ν
α′ α

β′
β

Figure 5.4: The discrete gradient vector field on the disk with the critical 0-cell in the

center.

We extend V |M−M2 to a discrete gradient vector field on M1 = (M −M2) ∪C D1,

whereD1 is a triangulated disk with boundary C and an interior vertex ω (as in Figure

(5.5)), as in the following way:

1. We pair the interior vertex ω with one of the interior edges of D1.

2. For each remaining interior 1-cell αi, we form a pair (αi, βi), where βi ∈ D1 is

a coface of αi in counter-clockwise direction.

There must be exactly one 2-cell, say τ , inD1 that remains unpaired since the number

of interior 1-cells and 2-cells are the same. This cell is the unique critical 2-cell of
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the extension V1 of V |M−M2 to M1. Since none of the cells on C are paired with the

cells on M −M1, the vector field V1 is a discrete gradient vector field induced by a

discrete Morse function f1 with the following numbers of critical cells:

m0(f1) = 1 = b0(M1),

m1(f1) = b1(M1),

m2(f1) = 1 = b2(M1).

Thus f1 is a perfect discrete Morse function. Note that f1 can be defined so that it has

the same value with f on the cells in M1−D1, and it has a value on the critical 2-cell

τ which is big enough, and it has values on the remaining cells in D1 which descends

along the gradient paths in D1 and which are all greater than the values on C.

τ

ω
α1

β1
α2

β2

α3

β3
α4

Figure 5.5: The discrete gradient vector field on the disk with a critical 2-cell.

Remark 5.2.8. We can give an alternative proof for the extension of the discrete

Morse function f |M−M2 to M1 as a perfect discrete Morse function as follows:

We triangulate the disc D1 with a unique interior vertex v. Then we choose one of

the triangles in D1, say τ . Obviously, (D1 − int(τ)) ↘ C. We form M1 so that

(M −M2) ∪C D1 ≈ M1, and we note that (M1 − int(τ)) ↘ (M −M2). Hence,

f |M−M2 can be extended to M1 − τ as a discrete Morse function without any new

critical cells by Lemma (2.2.6). Let g be this extension of f |M−M2 to (M1 − τ). We

define a discrete Morse function g′ on M1 that is an extension of g to M1 as in the

following way:

g′(σ) =

 g(σ) if σ ∈M1 − τ,
max{g(∂σ)}+ c if σ = τ,
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where c is an arbitrary constant bigger than g(∂σ). Therefore, g′ is a perfect discrete

Morse function with a unique critical 2-cell T .

The following is an immediate corollary of Theorems (5.2.1) and (5.2.7).

Corollary 5.2.9. Let M = M1#M2 be a connected sum of two closed, connected,

oriented surfaces of genera g1 and g2, respectively, and let f be a perfect discrete

Morse function on M . We can extend f|M−M2
to M1 and f|M−M1

to M2 as perfect

discrete Morse functions after some modifications in the star of some necessary cells

.

To clear up the process described in Theorem (5.2.1), we work it out in the following

example.

Example 5.2.10. Let M = M1#M2 be a connected sum of two tori with a perfect

discrete Morse function which induces the gradient vector field on a triangulation of

M depicted in Figure (5.6).
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Figure 5.6: A discrete gradient vector field on the genus 2 orientable surface.

The gray triangle is the critical 2-cell, the red and blue edges are the critical 1-cells,

and the vertex w is the critical 0-cell for the given discrete gradient vector field. We

will form a region M̃2 as in Theorem (5.2.1) such that M2 = M̃2 ∪C D2 is a torus,

and C is a separating circle in M .

In Figure (5.7), the blue region denotes the subcomplex M ′
2 obtained by following the

2-paths beginning in the boundary of the critical 2-cell and ending at the red critical
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1-cells. Different 2-paths inM ′
2 meet along the 1-path γ. Thus the resulting boundary

depicted with orange in the figure is disconnected.
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Figure 5.7: The 2-paths ending at the critical 1-cells.

Using Theorem (5.2.1), we separate these 2-paths by refiningM and extend the vector

field as in Figure (5.8).
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Figure 5.8: A separation of the 2-paths meeting along the 1-path γ.

Now, we trace the 2-paths up to the red critical 1-cells in the refined M to obtain a

subcomplex M ′′
2 of M . Observe that the resulting boundary is connected but a wedge

of three circles at the vertex 3 which is obtained due to the different 2-paths in M ′′
2

that meet at the vertex numbered 3. Figure (5.9) denotes the separation of the 2-paths

meeting at the wedge vertex.
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Figure 5.9: A separation of the 2-paths meeting at the wedge vertex 3.

Finally we trace all the 2-paths ending at the red critical 1-cells in the refined M

in Figure (5.9) to form M̃2 with a boundary which is a 1-sphere. Since we separate

the 2-paths in M which give rise to disconnected boundary components or wedge

points on the resulting boundary of the traced 2-paths, the boundary of M̃2 is a 1-

sphere. We can easily see the boundary 1-sphere by starting from an arbitrary vertex,

for instance, the vertex numbered 4 and following consecutive vertices on the orange

curve in Figure (5.9).

5.3 Decomposing Perfect Discrete Morse Functions on 3-Manifolds

In this section, we prove that one can decompose a Z-perfect discrete Morse func-

tion f on a connected sum M of 3-manifolds under a condition on f , which we are

going to explain now: The vector field induced by f might produce 2-paths from the

critical 2-cells to the critical 1-cells. Throughout our method for decomposition, we

first decide how to group the critical cells i.e., which critical cells belong to which

component. Then we are going to find a separating sphere as in the 2-dimensional

case with a certain arrow configuration on it. After grouping the critical cells, for our

purposes, the vector field may produce paths only from one component to the other

not from both components to the other. Otherwise we do not know how to extend the

vector field completely to each summand in the decomposition. Although we are not
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going to keep repeating this condition, let us assume that we are working with such a

discrete Morse function in this chapter. Moreover, we construct a separating 2-sphere

for the connected sum if it admits a Z-perfect discrete Morse function.

But first, let us prove a particular and simpler version of the main theorem of this

chapter whose proof uses the ideas introduced in [4, Theorem 6].

Theorem 5.3.1. Let M = M1#M2 be a connected sum of 3-manifolds M1 and M2

with a Z-perfect discrete Morse function f defined on it such that the spine of M

induced by f is a wedge of spines of M1 and M2. Then M1 and M2 have Z-perfect

discrete Morse functions f1 and f2 defined on them separately such that they agree

with f on the spines of M1 and M2, respectively.

Proof. Let K1 and K2 be spines of M1 and M2, respectively, such that K = K1 ∨K2

is the spine of M induced by f . Since K is a spine of M , we have bi(K) = bi(M)

for i = 0, 1, 2. Let g := f |K be the restriction of f to K. By Lemma (2.2.5), g is a

discrete Morse function on K. Indeed, it is a Z-perfect discrete Morse function on K

by Theorem (3.1.11). Then, we have

m0(g) = b0(K) = 1,

mi(g) = bi(K) for i = 1, 2.

Since K1 and K2 are subcomplexes of K, the restriction functions g|K1 and g|K2 are

discrete Morse functions on K1 and K2, respectively, by Lemma (2.2.5). In general,

the number of critical i-cells, for i = 0, 1, 2, of g|K1 and g|K2 might be bigger than

number of critical i-cells of g. Note that, K = K1 ∨ K2 is the spine obtained by

collapsing along the discrete gradient paths induced by f , and g does not have any

extra critical cells. Thus, g|K1 and g|K2 can not have any extra critical i-cells,for

i = 1, 2, which are not critical for g. This is the main difference between working

with K1#K2 and K = K1∨K2. While working with the connected sum, restrictions

to components might have extra critical cells. The function g is a Z-perfect discrete

Morse function on K, and so it has a unique critical 0-cell. Let v be the wedge point

of K. If the vertex v is the critical 0-cell of g, then it is critical for both g|K1 and g|K2 .

Thus m0(g|K1) = 1 = b0(K1) and m0(g|K2) = 1 = b0(K2). If the vertex v is not a

critical 0-cell of g, then the critical 0-cell of g is either in K1 or in K2. Assume that
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the critical 0-cell of g is in K1. Then the vertex v has to be paired with a 1-cell in

K1 since all 1-paths form a tree rooted at the unique critical 0-cell by Lemma (5.1.3).

Hence, v will be a critical 0-cell for g|K2 . Then we have

m0(g) = m0(g|K1) = 1 = b0(K1),

m0(g) = m0(g|K2) = 1 = b0(K2),

mi(g) = mi(g|K1) +mi(g|K2) = bi(M1) + bi(M2) = bi(M) for i = 1, 2.

As a result, we have the following equalities:

mi(g) = mi(g|K1) +mi(g|K2) = bi(K1) + bi(K2) = bi(M) for i = 1, 2.

We know that mi(g|Kj
) ≥ bi(Kj), for i = 1, 2 and j = 1, 2 by Corollary (2.2.11).

Then we have
mi(g|K1) = bi(K1),

mi(g|K2) = bi(K2).

which means that g|K1 and g|K2 are Z-perfect discrete Morse functions on K1 and

K2, respectively. By Theorem (3.1.11), M1 and M2 admit Z-perfect discrete Morse

functions that agree with f on the spines K1 and K2.

For an arbitrary perfect discrete Morse function f on M , the spine induced by f is

not necessarily a wedge. For such a function, we first show that one can always find

a suitable separating 2-sphere in the sense of the following theorem. But first, let us

recall the definition and a theorem on the double of a manifold.

Definition 5.3.2 ([31]). LetM be an n-manifold with boundary. The double 2M ofM

is a closed n-manifold obtained by gluing the two copies of M along the boundaries

by the identity map.

Theorem 5.3.3 ([28]). Let M be an orientable 3-manifold with boundary. Then the

double 2M is an orientable 3-manifold.

Theorem 5.3.4. Let M = M1#M2 be a connected sum of 3-manifolds M1 and M2

with a Z-perfect discrete Morse function f defined on it. Then we can find a separat-

ing 2-sphere S on M such that M = M1#SM2 and the cells on S are never paired

with the cells on M − (M1 − int(D1)) where D1 is a 3-disk.
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Before we give the proof of Theorem (5.3.4), we give two lemmas stating that, after

some necessary subdivisions, following certain paths from the critical 3-cell we can

separate 3-paths that meet along some 1-paths or 2-paths and get a 3-manifold with

connected boundary.

Let M and f be given as in Theorem (5.3.4), and C be the set of b1(M2) many critical

1-cells and b2(M2) many critical 2-cells of f in M . Let P2 be the set of the gradient

2-paths that end at the critical 1-cells in C. Then the union P2, the unique critical

3-cell, the gradient 3-paths that start in the boundary of the critical 3-cell and end at

the critical 2-cells in C and the gradient 3-paths that end at the 2-cell in P2 form a

subcomplex N of M with boundary.

Lemma 5.3.5. Let R be the star of the 1-cells and 2-cells on a 2-path γ in N along

which different 3-paths meet, that is, γ is on the common boundary of different 3-paths

in N . Let R′ = R∩N . After some necessary subdivisions on the cells in R′− γ, that

are cofaces of the cells on γ, we separate these 3-paths such that in the subdivision γ

is not in the common boundary of the 3-paths.

Proof. To separate these 3-paths, we follow the steps below in the given order (see

also Figure (5.10)):

1. We bisect all the 1-cells in R′ that intersects with γ at a single vertex.

2. To extend the vector field, we pair these new vertices with their cofaces that are

either in the star of the intersection vertex or with their cofaces outside the star

depending on whether the intersection point is not paired with this coface or is

paired with this coface.

3. We bisect the 2-cells in R′ by connecting the vertices that we introduced after

bisections.

4. We pair the remaining 1-cells with their cofaces that intersects with γ.

5. We pair the remaining 2-cells with their cofaces in the star of γ in N .

Finally, we extend the vector field given by f without creating any non-trivial cycle

by Theorem (2.2.19). Observe that all the 3-paths in the star of γ end at the regular
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2-cells on γ, and thus the 3-paths that end at the cells in C or in P2 do not contain γ

on their boundary. Figure (5.10) is an example of this separation and extension where

the blue arrows denote the 3-paths that end at a critical 2-cell in C and contain the 2-

path γ on their boundary. The front and back faces of these 3-paths are contained the

boundary of N . The figure on the right denotes the separation of these 3-paths where

the blue arrows denote the 3-paths that end at the critical 2-cell in C, red arrows show

the extension of the vector field. The front and back faces on the boundary of these

3-paths that are colored in gray denote the resulting boundary of a subcomplex N ′ of

M , which is obtained by tracing all 3-paths that end at the critical 2-cells in C and at

the 2-cells in P2 after we separate the 3-paths in N on the left figure.

C3

γ

ω1

ω2

ω3

ω4

C3

γ

ω1

ω3

ν1

Figure 5.10: A separation of the 3-paths that contain a 2-path on their common bound-

ary.

Lemma 5.3.6. Let S be the star of the cells on an interior 1-path µ inN that is on the

common boundary of different 3-paths inN and let S ′ = S∩N . After some necessary

subdivisions on the cells in S ′−µ that are cofaces of the cells on µ, we separate these

3-paths such that µ is not contained in the boundary of these paths anymore.

Proof. Let S ′′ ⊂ S ′ be the open star of the cells on µ, and σ and σ′ be the initial

and terminal vertices of µ in N , respectively. In order to separate the 3-paths, we

subdivide S ′ as in the following way (see also Figure (5.11)):

1. We bisect all the 1-cells in S ′ that intersect µ at a single vertex.and pair these
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new vertices with their cofaces in the star of the 0-cells on µ if σ′ is not paired

a with 1-cell in S ′.

2. If σ′ is paired with a 1-cell in S ′, then we pair the new vertex with its unpaired

coface and pair the remaining new vertices with their cofaces containing the

0-cells on µ.

3. We bisect the 2-cells in S ′ by connecting the vertices that we introduced after

bisections.

4. We extend the vector field by pairing the remaining 1-cells with their cofaces

that contain either the 0-cells or 1-cells on µ.

5. Finally, we pair the remaining 2-cells with their cofaces in the star of µ in N .

Consequently, we extend the vector field without creating any non-trivial cycle using

Theorem (2.2.19). Note that all the 3-paths in the star of γ end at regular 2-cells.

Thus, we separate the 3-paths such that µ is not contained in their boundary. Figure

(5.11) is an illustration of this extension and separation where the orange colored

arrows represent the 2-paths in P2 that end at the orange colored critical 1-cell in C,

and blue colored arrows denote the 3-paths that end at the 2-cells in P2 and admit

the 1-path µ on their common boundary. The front and back faces on the boundary

of these 3-paths on the left figure form the boundary of N . The figure on the right

denote the separation of these 3-paths such that the boundary of these paths does not

contain µ anymore. The front and back faces on the boundary of the blue 3-paths with

the gray colored cells in the left figure form the boundary of a subcomplex N ′ of M

obtained after we trace these blue 3-paths.

Proof of Theorem 5.3.4. Before we start decomposingM in accordance with the given

perfect discrete Morse function f on it, let us make an observation about which cells

should belong to the same part. Since M is an orientable 3-manifold H3(M ;Z) ∼= Z,

and f is perfect, there is a unique critical 3-cell. We think M as the union of M −M1

andM−M2 where the notationsM−M1 andM−M2 representM−(M1− int(D1))

and M − (M2− int(D2)), respectively, and Di, for i = 1, 2, denotes a 3-disk, and we
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Figure 5.11: A separation of the 3-paths that contain a 1-path on their common bound-

ary.

are going to put this critical 3-cell to the M −M1 part. When we trace back a 3-path

from a critical 2-cell to the unique critical 3-cell, we get a solid torus whose core is a

1-dimensional homology generator obtained from the dual cell decomposition. From

the cup product structure of M , this homology generator must be homologous to ex-

actly one of the homology generators that we obtain by considering the 1-paths from

a critical 1-cell to the unique critical 0-cell of f . We will put these 2- and 1-cells on

the same part of M . Then we will form M −M1 part of M with a boundary sphere

S which then will serve as a separating sphere on M , and the remaining part will be

M −M2.

Let C be the set of the critical 1-cells and 2-cells that belong to the same part of M

and C2 be the set of the 2-paths that end at the critical 1-cells in C.

1. To begin with, if the star of a critical cell consists of another critical cell, we

bisect the star to separate these cells.

Let M ′
2 be a subcomplex of M that contains the unique critical 3-cell, the 3-

paths that end at the critical 2-cells in C and at the regular 2-cells in C2. Since

different 3-paths that formM ′
2 may meet along some 1-paths and 2-paths which

are on their common boundary, there might be some boundary 0-cells and 1-

cells that are paired with interior 1-cells and 2-cells of M ′
2.

2. Let µ and γ be such 1- and 2-paths that lie in the interior of M ′
2, respectively,

such that initial point of these paths are on the boundary of M ′
2. Since the
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unique critical 0-cell of f belongs to M −M ′
2, terminal point of µ in M ′

2 is on

the boundary of M ′
2.

3. We first separate the 3-paths such that their boundaries do not contain γ any-

more as in Lemma (5.3.5) (see Figure (5.10)). We repeat this process for all

boundary 1-cells that are paired with interior 2-cells of M ′
2.

4. Next we separate the 3-paths such that µ is not on their boundary anymore

by using Lemma (5.3.6)(see Figure (5.11)). We repeat this operation for all

boundary 0-cells that form a pair with the interior 1-cells in the locally refined

M ′
2 in step 4.

After these modifications, let M ′′
2 be the subcomplex M obtained by tracing all

the 3-paths that end at the critical 2-cells in C and end at the regular 2-cells in

C2. Since we separate all the 3-paths which give the existence of the boundary

cells in M ′
2 that are paired with some of the interior cells of M ′

2, none of the

cells on the resulting boundary of M ′′
2 are paired with the interior cells of M ′′

2 .

But the boundary of M ′′
2 may not be a manifold, that is, there may be some

non-manifold edges and vertices on the boundary since two different 3-paths in

M ′
2 might have only edges or vertices on their common boundary.

5. To get rid of these non-manifold cells, we bisect the star of these cells in M ′′
2

to separate these 3-paths that share non-manifold cells on their boundary and

extend the vector field by using Lemma (5.3.5) and Lemma (5.3.6)(see Figure

(5.12 for the separation of the 3-paths, which are given with the blue arrows,

that cause the existence of a non-manifold edge).

τ τ

Figure 5.12: A non-manifold edge τ on ∂(M ′′
2 ) and a separation of the 3-paths meet-

ing at τ .

6. We construct a new subcomplex M̃2 of the modified M by tracing all 3-paths
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beginning in the boundary of the unique critical 3-cell and ending at the critical

2-cells in C and at the regular 2-cells in C2. The resulting boundary of M̃2 is a

2-manifold such that none of the cells on it are paired with the interior cells of

M̃2.

7. If the boundary of M̃2 admits the unique critical 0-cell of f , then we may push

it into M − M̃2 by reversing the a 1-path in M − M̃2 that end at this 0-cell.

Let V be the discrete gradient vector field on M obtained after the necessary subdi-

visions in the above steps. Observe that M̃2 and the remaining subcomplex M − M̃2

are 3-manifolds with boundary, and the restriction of V to M − M̃2 has no boundary

critical cells. So the number of critical cells of V |M−M̃2
are

m0(V |M−M̃2
) = b0(M1) = 1,

m1(V |M−M̃2
) = b1(M1),

m2(V |M−M̃2
) = b2(M1).

Let 2(M−M̃2) be the double ofM−M̃2. By Definition (5.3.2) and Theorem (5.3.3),

2(M − M̃2) is a closed, connected, oriented 3-manifold. Thus, we have

0 = χ(2(M − M̃2)) = 2χ(M − M̃2)− χ(∂(M − M̃2)),

χ(M − M̃2) = 1− b1(M1) + b2(M1).

The above equations together imply that χ(∂(M − M̃2)) = 2. Since ∂(M − M̃2) is a

closed, oriented 2-manifold, by classification of surfaces, it is a 2-sphere S2.

Finally, the sphere S = S2 is a separating sphere for the two componentsM−M1 and

M −M2 in the connected sum that are represented by M̃2 and M − M̃2, respectively,

in the proof.

In the following theorem, we show how to decompose a Z-perfect discrete Morse

function defined on a manifold M , which is a connected sum, as Z-perfect discrete

Morse functions on each summand. As a consequence of this, we show how to obtain

each prime factor of M .
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Let M = M1#M2 be a connected sum of 3-manifolds M1 and M2 such that neither

M1 nor M2 is a 3-sphere, and D3
i ⊂Mi be an embedded 3-disk for i = 1, 2. Let f be

a Z-perfect discrete Morse function on M and V be the discrete gradient vector field

induced by f such that the critical 3-cell, b2(M2) many critical 2-cells and b1(M2)

many critical 1-cells belong to M2 part, and the remaining critical cells belong to M1

part of the connected sum. Suppose thatM−M1 andM−M2 part of theM is formed

as in the proof of Theorem (5.3.4) with a boundary sphere S obtained by modifying

V in a neighbourhood of some specific paths. Let W be this modification of V . Note

that

m0(W |M−M2) = 1,

m1(W |M−M2) = b1(M1),

m2(W |M−M2) = b2(M2),

and

m0(W |M−M1) = n0,

m1(W |M−M1) = b1(M2) + n1,

m2(W |M−M1) = b2(M2) + n2,

m3(W |M−M1) = 1

where ni is the number of boundary critical cells of W |M−M2 for i = 0, 1, 2.

Theorem 5.3.7. Under the above conditions, we can extend W |M−M2 to M1 and

W |M−M1 to M2 as perfect discrete gradient vector fields such that the extensions

coincide with V everywhere on M −M2 and M −M1 except some cells around the

separating sphere S given above.

Proof. We will extend W |M−M2 to a discrete gradient vector field on M1 = (M −
M2)∪S D1 where D1 is a triangulated 3-disk with boundary S and an interior vertex.

Let ∆ be a 3-cell in D1. Obviously (M1− int(∆))↘ (M−M2). By the construction

of S in Theorem (5.3.4), W |M−M2 has no boundary critical cells. Therefore, we

can extend W |M−M2 to a discrete gradient vector field W ′ on M1 − int(δ) without

53



creating any extra critical cells by Lemma (2.2.6). Let g be a discrete Morse function

corresponding to W ′ on M1 − int(∆). Then a function g̃ : M1 → R defined as

g̃(α) =

 g(α) ; α ∈M1 − int(∆)

1 + max{g(∂α)} ; α = ∆

is a discrete Morse function on M1 with the following number of critical cells:

m0(g̃) = 1 = b0(M1),

m1(g̃) = b1(M1),

m2(g̃) = b2(M1),

m3(g̃) = 1 = b3(M1).

That is, g̃ is a perfect discrete Morse function on M1 corresponding the extension of

the discrete gradient vector field W |M−M2 on M1.

Now we will extend W |M−M1 to a discrete gradient vector field on M2 = (M −
M2) ∪S D2 where D2 is a triangulated disk with boundary S and with an interior

vertex ω, in the following way:

1. For each boundary critical cell α on M −M1, we form a pair (α, α′) where α′

is the coface of α in int(D2).

2. For each (σ, β) ∈ W |M−M1 , we form a corresponding pair (σ′, β′) where σ′

and β′ are the cofaces of σ and β in int(D2), respectively.

The vertex ω remains unpaired, and it is the unique critical 0-cell of the obtained

extension V of W |M−M1 to M2. Observe that V is a discrete gradient vector field

since the cells on S are never paired with interior cells of M −M1. The number of

the critical cells of V is as follows:

m0(V ) = 1 = b0(M2),

m1(V ) = b1(M2),

m2(V ) = b2(M2),

m3(V ) = 1 = b3(M2).
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Hence V is a discrete gradient vector field induced by a perfect discrete Morse func-

tion on M2, that is, it is a perfect discrete gradient vector field.

The Figure 5.13 is an example of a discrete gradient vector field (W |M−M1)|S where

v9 is a critical 0-cell, e1, e2 and e3 are critical 1-cells, and σ1, σ2, σ3 and σ4 are critical

2-cells.

v1
v2

v4

v5
v6 v7

v8v9

v12

e1

e2

e3

v10

v0

σ1

σ3

σ2

σ4

v3

v11

Figure 5.13: A discrete gradient vector field on a sphere S2.

The vector field on Figure 5.14 denotes the extension of (W |M−M1)|S toD3
2 with only

one critical 0-cell which is the vertex ω. On this extension, v9 is paired with the 1-cell

[v9, ω], e1, e2 and e3 are paired with the 2-cells [v5, v6, ω], [v1, v9, ω], [v8, v12, ω], re-

spectively, and σ1, σ2, σ3, and σ4 are paired with the 3-cells [v0, v1, v3, ω], [v2, v8, v9, ω],

[v3, v4, v7, ω] and [v10, v11, v12, ω], respectively. The pairs of the remaining interior

cells depend on the pairs of the cells on their faces on S.

Remark 5.3.8. One should note that we cannot extend the methods that we used in

Theorems (5.3.4) and (5.3.7) to higher dimensional manifolds because higher dimen-

sional manifolds cannot be classified only by using the homology groups and Euler

characteristic. Moreover, these manifolds do not have a unique connected sum de-
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Figure 5.14: A perfect discrete gradient vector field on D3.

composition as in dimension 3, see Chapter (2) for an example.
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