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ABSTRACT

INVISCID BURGERS EQUATIONS AND ITS NUMERICAL SOLUTIONS

OYAR, NAZMİ
M.S., Department of Mathematics

Supervisor : Assist. Prof. Dr. Baver OKUTMUŞTUR

September 2017, 54 pages

In this work, we consider the Burgers equation with zero viscosity term which is
called the inviscid Burgers equation. We analyzed this equation both theoretically and
numerically through this study. First, we solve this equation analytically by means of
characteristic method since it is in the class of quasilinear partial differential equation.
Then, initial value problems for this equation subject to continuous and discontinuous
initial conditions are studied. We used three different numerical scheme-
s namely Lax-Friedrichs, Godunov and Lax Wendroff. The results of the numerical
experiments are compared by means of introducing finite difference methods.

Keywords: Inviscid Burgers equation, Shock waves, Rarefaction waves
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ÖZ

VİSKOZİTESİZ BURGERS DENKLEMİ VE SAYISAL ÇÖZÜMLERİ

OYAR, NAZMİ
Yüksek Lisans, Matematik Bölümü

Tez Yöneticisi : Yrd. Doç. Dr. Baver OKUTMUŞTUR

Eylül 2017 , 54 sayfa

Bu çalışmada, Burgers denkleminin vizkozitesiz formunu ele aldık. Bu denklem teorik
ve sayısal olarak incelendi. Bunun için sürekli ve süreksiz başlangıç değerleriyle
denklemin öncelikle analitik çözümünü inceledik. Ayrıca, şok ve seyrelti dalgalarına
neden olabilecek farklı başlangıç koşullarına bağlı olarak, bu modelin yaklaşık çözüm-
lerini göstermek için de çeşitli sayısal yöntemler uyguladık. Sonlu sayılar yöntemleri
kullanılarak sayısal çözümlerin sonuçları karşılaştırıldı.

Anahtar Kelimeler: Viskozitesiz Burgers denklemi, Şok dalgaları, Seyrelti dalgaları
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CHAPTER 1

INTRODUCTION

Nonlinear partial differential equations have an important place in applied mathemati-

cs. They have been used to model and analyze the real-world physical problems, [18].

The classical Burgers equation which is in the class of nonlinear partial differential

equations has been a center of interest for researchers studying various physical phe-

nomena such as theory of shock waves, fluid dynamics, turbulent flow and gas dyna-

mics, [3, 4, 6]. This equation is one of the most useful formulation of the behaviour

of the shock waves in which nonlinear advection and diffusion can be observed, [1].

The Burgers equation

ut + uux = νuxx (1.0.1)

is firstly studied by Bateman who come up with its steady state solutions and Burgers

explained it as a mathematical model for turbulent flow. Hope and Cole separately

showed afterwards that it can be transformed into linear heat equation, [1–3, 6, 11]. In

recent years, the Burgers equation continued to draw the attention of researchers. It is

used as a model to test several numerical methods since it includes an advection term

uux and a viscosity term νuxx. In fact, Burgers equation represents one dimensional

Navier-Stokes equation when the pressure and force terms are dropped from Navier–

Stokes equation, [1]. Another importance of this equation is that it allows us to

compare the quality of numerical method applied to a nonlinear equation.

In this work, we consider the Burgers equation with zero viscosity term which is

called the inviscid Burgers equation. The inviscid Burgers equation serves as a basic
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case study for more complex nonlinear wave equations since it has the properties of

nonlinear conservation laws. Our main purpose is to analyze the inviscid Burgers

equation both theoretically and numerically through this study. For that purpose, we

first solve this equation analytically by means of characteristic method since it is in

the class of quasilinear partial differential equation. Then, initial value problems for

this equation subject to continuous and discontinuous initial conditions are analyzed.

Here, we introduce the weak solution concept as a result of the discontinuous initial

data where shock and rarefaction waves are observed. Next, numerical schemes to

approximate the solutions of the inviscid Burgers equation are established. The results

of the numerical experiments are compared by means of introducing finite difference

methods in the last part. To this end, we used Lax-Friedrichs, Godunov and Lax

Wendroff numerical schemes.

The thesis consists of five chapters and the outline is classified as follows:

Following the introduction part, in Chapter 2 we start by introducing general forms

of quasi-linear partial differential equations and scalar conservation law. Next, we

give the definitions of the classical and inviscid Burgers equations where the analytic

solution of the latter one is derived through the characteristics method. Then, the

concept of weak solution, Rankine-Hugoniot jump condition and entropy condition

are introduced. In Chapter 3, we solve the Riemann problems for the inviscid Burgers

equation subject to different initial conditions. In the solutions of these initial value

problems, we see patterns of shock and rarefaction waves. In Chapter 4, we apply the

finite difference methods to approximate the solutions of the initial value problems.

First and second order schemes are used for this purpose. Indeed, Lax-Friedrichs,

Godunov, Lax-Wendroff schemes are used for the concerning initial value problems

to get shock and rarefaction waves. We also state the significant differences between

the numerical methods. Finally, in Chapter 5 we provide a summary of our work.
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CHAPTER 2

INVISCID BURGERS EQUATION

In this chapter, our main objective is to analyze the classical solution of the inviscid

Burgers equation theoretically. Following a brief information about the solutions

a first order quasilinear partial differential equation, we introduce a general form

of scalar conservation laws in this part. The analytical solution of linear advection

equation is the next topic. Then, we give the definition of the inviscid Burgers

equation which is a special case of conservation laws. Furthermore, the concept of

weak solution is studied just after introducing the Rankine-Hugoniot jump condition

and entropy condition.

2.1 Quasilinear Partial Differential Equations

A first-order quasilinear partial differential equation is of the form

A(t, x, u)ut +B(t, x, u)ux = S(t, x, u), (2.1.1)

withA,B, S ∈ C1(Ω),A2+B2+S2 6= 0 where Ω is a domain in R3. Here we suppose

that u = u(t, x) represents a surface in R3 which can be written in the implicit form

F (t, x, u) = u(t, x) = u,

so that the gradient vector∇F = (ut,ux,−1) is normal to surface F (t, x, u) = 0. In

other words, the vector (A,B, S) and ∇F are orthogonal. It follows that

(A,B, S).(ut, ux,−1) = 0
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which is equivalent to (2.1.1). We can construct the family of curves on the surface

F (t, x, u) = 0 by determining the integrals of the ordinary differential equations

dt

A(t, x, u)
=

dx

B(t, x, u)
=

du

S(t, x, u)
.

These curves are called characteristic curves. The transformation of the partial diffe-

rential equation (2.1.1) to an ordinary differential equation along its characteristics is

called the characteristics method. After this transformation, we end up with an ODE

having initial condition u(x0) = u0. Then from the theory of existence of ordinary

differential equations, there exists a unique characteristic passing from each point

(t0, x0, u0) where u(x0) = u0 is the initial condition. These characteristic curves

generates an integral surface so that this surface is the solution to equation (2.1.1). For

further details about ordinary and partial differential equations, we refer the reader to

the following reference [9].

2.2 Scalar Conservation Law

Partial differential equations often describes physical phenomena. Scalar conservation

law expresses the conservation of some physical quantity. Here we are dealing with

a one dimensional scalar conservation law that is a particular case of first order

quasi-linear partial differential equations when the coefficients are chosen as

A(t, x, u) = 1, B(t, x, u)ux = (f(u))x and S(t, x, u) = 0 in (2.1.1), i.e.,

ut + (f(u))x = 0. (2.2.1)

In equation (2.2.1), u is called conserved quantity and f is the flux function [8]. By

the following integration of (2.2.1) over the interval [x0, x1] we get

d

dt

∫ x1

x0

u(t, x) dx =

∫ x1

x0

ut(t, x) dx

= −
∫ x1

x0

f(u(t, x))x dx

= f(u(t, x0))− f(u(t, x1))

= [inflow at the pointx0]− [outflow at the pointx1].

(2.2.2)

That is, the quantity u(t, x) is conserved so that it depends on the difference of the

flux functions at the points x0 and x1, [15]. Thus, the conserved quantity u is neither

4



produced nor vanished. Equation (2.2.1) is called the differential form of the scalar

conservation law (2.2.1), whereas (2.2.2) is called the integral form of the scalar

conservation law (2.2.1).

2.3 Linear Advection Equation

Linear advection equation is one of the standard example of scalar conservation laws,

and it is also a quasilinear partial differential equation if the coefficients are chosen

as A(t, x, u) = 1, B(t, x, u) = a, and S(t, x, u) = 0 in (2.1.1), i.e,

ut + aux = 0. (2.3.1)

In order to solve the linear advection equation, we need to consider the Riemann

problem
ut + (f(u))x = 0, −∞ < x <∞, t ≥ 0,

u(0, x) = u0(x) −∞ < x <∞.
(2.3.2)

We are interested in the particular case of (2.3.2) where f(u) = au (a is a constant)

so that (2.3.2) becomes

ut + aux = 0, u(t, x) ∈ U , x ∈ R, t ≥ 0,

u(0, x) = u(x0) = f(x0) where u(x0) ∈ C∞(Ω),
(2.3.3)

where U is an open and convex subset of R, and a is a constant representing the

advection velocity.

The solution of the initial value problem follows by the characteristics method

dt

1
=
dx

a
=
du

0
,

which is stated in Section 2.1, i.e.,
u = c1,

dx

dt
= a = c1,

x = c1t+ c2,

where c1 and c2 are constants. After inserting u = c1, we get

x− at = c2.

5



Then, writing the solution in the implicit form f(c2) = c1 with the initial condition

u0(x) = f(x), it follows that

u(t, x) = f(x− at) for t ≥ 0, (2.3.4)

which is classical the solution to (2.3.3) where u, u0(x) ∈ C∞(Ω). Now, note that the

solution (2.3.4) represents a shifted travelling wave having a speed a. The solution

u = f(x − at) in (2.3.4) defines a wave moving in the positive x direction with a

speed a. Furthermore, the solution u(t, x) is constant along the characteristic curves

x = x0 + at.

This can be verified by differentiating u(t, x) along these characteristic curves:

d

dt
u(t, x(t)) =

∂

∂t
u(t, x(t)) +

∂

∂x
u(t, x(t))x′(t)

= ut + aux = 0.

2.4 Inviscid Burgers Equation

In literature, the classical Burgers equation is of the form

ut + uux = νuxx, (2.4.1)

where νuxx is the viscosity term. In this work, we are interested in the Burgers

equation (2.4.1) with zero viscosity term, i.e. νuxx = 0 which is called the inviscid

Burgers equation. Indeed, it is obtained from the nonlinear scalar equation

ut + (f(u))x = 0 (2.4.2)

by replacing the flux function f(u) = u2/2, that is,

ut + (u2/2)x = 0. (2.4.3)

Equation (2.4.3) can also be written in a quasilinear form via differentiating u2/2 with

respect to x, which gives

ut + uux = 0. (2.4.4)

Notice that equation (2.4.4) is equivalent to (2.3.1) with a = u. Then, the solution of

(2.4.4)

u(t, x) = f(x− ut) = u0(x− ut) (2.4.5)

6



follows by (2.3.4). We also observe that although the characteristic curves are parallel

for the linear advection equation (2.3.3), this is not the case for the inviscid Burgers

equation (2.4.3). This is simply by the fact that the characteristic speed "a" is constant

for linear advection equation; however, the characteristics speed f ′(u) = u depends

on the solution for the inviscid Burgers equation.

Moreover, by implicit function theorem, the solution of the inviscid Burgers equation

(2.4.5) can be written as a differentiable function of t and x since u0 is differentiable.

In other words, differentiating (2.4.5) with respect to t, it follows that

ut = −u′0(utt+ u),

ut(1 + u′0) = −u′0u,

ut = − u′0u

1 + u′0t
,

(2.4.6)

and differentiating with respect to x, we get

ux = u′0(1− uxt),

ux = (1 + u′0t) = u′0,

ux =
u′0

1 + u′0t
.

(2.4.7)

Inserting (2.4.6) and (2.4.7) into the inviscid Burgers equation (2.4.4), we see that

they satisfy (2.4.4). Further information can be found in the reference, [12].

One can observe that the characteristic lines

x = x0 + ut

intersect when they have different slopes. This situation eventually leads to a pheno-

menon called as wave breaking which is the subject of the next part.

2.4.1 Wave Breaking and Distortion

We give details about the travelling wave solution (2.3.4) in this part. The formation

and profile of the solution of (2.3.3) depends on its initial value u0. If u′0(x) > 0 at

some point then

ux =
u′0

1 + u′0t
(2.4.8)

7



measuring the profile of the wave speed diminishes in time because 1 + u′0t > 0 for

t > 0. This means that profile of the wave flattens as time passes.

On the other hand, if we assume u′0(x) < 0 at some point, then ux increases in time,

since

1 + u0t < 0.

Then ux in (2.4.7) tends to ∞ as 1 + u′0t approaches to zero [12]. Therefore, wave

profile steepens after a period of time. This phenomenon is illustrated in the Figure

2.1 for an initial value of sine function. While nonlinear wave becomes deformed

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

x

u

Initial Profile Steepened Wave Profile

Figure 2.1: Steepening and flattening of the wave profile for u0(x) = sinx

gradual-

ly, linear wave keeps its shape unchanged.

Proposition 2.4.1. If the propagation velocity of the wave is a decreasing function of

x, the wave eventually "breaks" and gives multiple valued solutions.

Proof. Suppose that u(t, x) is the solution to the Riemann problem for the inviscid

Burgers equation having a non-increasing characteristic speed. If there are two points

(0, x1), (0, x2) such that x1 < x2, then slope of the characteristics will be the reciprocal

of the characteristics speed

u(0, x1) > u(0, x2) =⇒ 1

u(0, x1)
<

1

u(0, x2)
,

since u is non-increasing function. Then the characteristics emanating from (0, x1)

and (0, x2) will cross each other at some point (t̃, x̃) for t̃ > 0. That is, the solution

u(t, x) is not unique at the intersection point.

8



Figure 2.2: Intersection of the characteristics

Next, we investigate the time of wave breaking.

Suppose the characteristics originating from initial value problem (2.3.3) intersect at

x1 and x2 where x2 = x1 + ∆x. Then,

x1 + u0(x1)t = x2 + u0(x2)t

= (x1 + ∆x) + u0(x1 + ∆x)t,

which yields

t = − ∆x

u0(x1 + ∆x)− u0(x1)
.

Hence, when ∆x→ 0, breaking time becomes

tB = − 1

minu′0(x)
. (2.4.9)

Here, the time of wave breaking (intersection of characteristics) is denoted by tB,

for t > 0. Observe that, the solution obtained by the characteristic method is only

valid for t < tB. This is because the initial value problem (2.3.3) has multiple valued

solutions for t > tB after the intersection of the characteristics which is illustrated

in the Figure 2.2. In order to eliminate the multiple valued solutions, we permit the

discontinuities of u. This can be achieved by the notion of weak solution which will

be introduced in the next section.

2.5 Weak Solution

In this part, our main interest is to investigate the initial value problem for one

dimensional scalar conservation law (2.3.2). Since it is not always easy to come

9



up with smooth solution of (2.3.2), we need a new concept of solution called weak

solution. u is a classical solution of (2.3.2) if u is C∞ function on R×R+ and satisfies

(2.3.2) whereas the weak solution may not be differentiable or even continuous.

Suppose that

φ : R× R+ → R

is a smooth test function such that it has a compact support (φ ≡ 0 outside a compact

set). If we multiply the equation

ut + (f(u))x = 0

by the test function φ and apply integration by parts, it follows that∫ ∞
0

∫ ∞
−∞

[φut + φ(f(u))x] dx dt =

∫ ∞
−∞

φu
∣∣∣∞
0
dx−

∫ ∞
0

∫ ∞
−∞

uφt dx dt

+

∫ ∞
0

φf(u)
∣∣∣∞
−∞

dt−
∫ ∞

0

∫ ∞
−∞

f(u)φxdx dt

=−
∫ ∞

0

∫ ∞
−∞

uφt dx dt−
∫ ∞

0

∫ ∞
−∞

f(u)φxdx dt

−
∫ ∞
−∞

uφ|t=0 dx.

After inserting the initial condition

u(0, x) = u0(x)

in the above equation, we obtain∫ ∞
0

∫ ∞
−∞

[
uφt + f(u)φx

]
dx dt+

∫ ∞
−∞

u(0, x)φ(x)dx = 0. (2.5.1)

Definition 2.5.1. ([14]) A function u ∈ L∞loc, where L∞loc is the space of locally

bounded measurable functions, is called the weak solution of the initial value problem

(2.3.2) with initial condition u0 ∈ L∞loc if (2.5.1) holds for a test function φ ∈ C∞c (R×
[0,+∞)).

We notice that u need not to be smooth or even continuous to satisfy (2.5.1). Thus,

we extend the solutions including the discontinuous solutions by the concept of weak

solution. Our results need to be physically meaningful. For this purpose we need

additional conditions which are in the content of the following part.

10



The Rankine-Hugoniot jump condition

The solution of the inviscid Burgers equation with crossing characteristics which is

addressed in Section 2.4.1 is physically unacceptable. The discontinuity along the

characteristic line is restrained by the Rankine-Hugoniot jump condition, which we

derive in the following, in order to have a weak solution for the initial value problem

(2.3.2). We take into account a one dimensional scalar conservation law

ut + (f(u))x = 0

and integrating from x1 to x2, it follows that

d

dt

∫ x2

x1

u(t, x)dx+ f(u)
∣∣∣x2
x1

= 0. (2.5.2)

Suppose that we have a discontinuity at the point x = ξ(t) ∈ (x1, x2) but u and u′ are

continuous on the intervals [x1, ξ(t)) and (ξ(t), x2], respectively, and their limits exist

when x1 → ξ(t)− and x2 → ξ(t)+. Then (2.5.2) can be written as

d

dt

∫ ξ(t)

x1

u(t, x)dx+
d

dt

∫ x2

ξ(t)

u(t, x)dx = −[f(t, x2)− f(t, x1)]. (2.5.3)

Differentiating left hand side of (2.5.3) by using the fundamental theorem of calculus,

we get

u(ξ−, x)ξ′(t)− u(ξ+, x)ξ′(t) = −(f(t, x2)− f(t, x1)).

Next, it follows that

ξ′(t)(x2 − x1) = f(x2)− f(x1) =⇒ s = ξ′(t) =
f(x2)− f(x1)

x2 − x1

. (2.5.4)

Hence, relation (2.5.4) is called the Rankine-Hugoniot jump condition.

In particular, if we take f(u) = u2/2, the Rankine-Hugoniot jump condition for the

inviscid Burgers equation reads

s =
f(x2)− f(x1)

x2 − x1

=
x1 + x2

2
. (2.5.5)

Remark 2.5.2. ([21]) Let u be a piecewiseC1 solution of the conservation law (2.3.3)

and discontinuous along the characteristic curves satisfying the Rankine-Hugoniot

jump condition (2.5.4). Then u is a weak solution of (2.3.3).
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Entropy functions

In order to have physically meaningful solutions, beside the Rankine-Hugoniot jump

condition, we also need the entropy functions, [13]. For this purpose, we begin to this

subsection by introducing the entropy pairs which is stated in [19].

Definition 2.5.3. If u is the smooth solution of the conservation law (2.2.1) then

(G(u))t + (F (u))x = 0 (2.5.6)

is satisfied. We call the continuously differentiable functions (G,F ) as entropy pair.

Here, G is called as entropy and F is called as entropy flux.

Notice that, for smooth function u equation (2.5.6) leads to

G′(u)ut + F ′(u)ux = 0 (2.5.7)

which looks similar to the conservation law

ut + (f(u))x = 0. (2.5.8)

If we multiply equation (2.5.8) with G′(u), we get

G′(u)ut +G′(u)f ′(u)ux = 0. (2.5.9)

It follows by the equality of equations (2.5.7) and (2.5.9) that

F ′(u) = G′(u)f ′(u).

Since we are interested in the solution of the inviscid equation, we look at the solution

of viscous equation

ut + (f(u))x = νuxx (2.5.10)

when ν → 0. In this way, we establish the setting of the entropy condition for

vanishing viscosity weak solution, [13].

Theorem 2.5.4. The function u(t, x) is the entropy solution of the conservation law

(2.2.1), if for all convex entropy functions G(u) and entropy flux F (u), the inequality

(G(u))t + (F (u))x ≤ 0

holds.
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Proof. First, we start by multiplying the viscous equation (2.5.10) by G′(u) to get

(G(u))t + (F (u))x = ν G′(u)uxx.

Rewriting the right hand side, we obtain

(G(u))t + (F (u))x = ν(G′(u)ux)x − νG′′(u)(ux)
2. (2.5.11)

Next, we integrate equation (2.5.11) over the cell [x0, x1]× [t0, t1], and get∫ t1

t0

∫ x1

x0

[
(G(u))t + (F (u))x

]
dx dt =

ν

∫ t1

t0

[
G′(u(t, x1))ux(t, x1)−G′(u(t, x0))ux(t, x0)

]
dt

− ν
∫ t1

t0

∫ x1

x0

G′′(u)(ux)
2dx dt.

(2.5.12)

Note that since ν > 0, (ux)
2 and G′′(u) > 0 (since G is convex), the right hand side

of equation (2.5.12) is non-positive in the limit sense. Hence, the vanishing viscosity

weak solution satisfies the inequality

(G(u))t + (F (u))x ≤ 0.

Entropy condition

The uniqueness of the solution cannot be guaranteed even we define the Rankine-Hu-

goniot jump condition for the notion of the weak solution. One of the particular reason

to establish the entropy condition is to rule out the non-physical solutions among the

weak solutions. To this aim, we define the entropy condition, stated in [13].

Definition 2.5.5. Let u be a weak solution of (2.4.3) and Γ be a smooth curve in

R × R+ and f be a strictly convex function where u has a discontinuity on Γ. Let

(t0, x0) be a point in Γ,

uL := lim
δ→0

u(t0, x0 − δ), uR := lim
δ→0

u(t0, x0 + δ)

and

s =
f(uR)− f(uL)

uR − uL
.
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Then u satisfies the entropy condition

f ′(uL) > s > f ′(uR)

where s denotes the characteristic speed.

An important feature of the weak solution is the monotonicity of the characteristic

speed s. We consider the three cases of monotonicity

• s(u) is strictly increasing function, i.e. s′(u) = f ′′(u) > 0 (convexity).

• s(u) is strictly decreasing function, i.e. s′(u) = f ′′(u) < 0 (concavity).

• s(u) has extremum point, i.e. s′(u) = f ′′(u) = 0 (neither convex nor concave

function).

In particular, for the inviscid Burgers equation, the flux function f(u) = u2/2 is

convex since f ′′(u) = 1 > 0.

Proposition 2.5.6. Suppose that the solution u satisfies the entropy condition on a

smooth curve Γ and f is a convex function on Γ. Then we have uL > uR.

Proof. Notice that, for a convex function f , the characteristic speed must be between

f ′(uR) and f ′(uL) by the Rankine-Hugoniot jump condition (2.5.4), that is,

f ′(uL) > s > f ′(uR). (2.5.13)

Since f is convex for the inviscid Burgers equation, (2.5.13) reduces to

uL > uR.
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CHAPTER 3

INITIAL VALUE PROBLEMS FOR INVISCID BURGERS

EQUATION

This chapter is devoted to the solutions of the initial value problems subject to continu-

ous and discontinuous initial conditions for the inviscid Burgers equation. The strateg-

y is to solve the problems geometrically by using the characteristics method. We come

across the weak solutions due to the lack of the analytic solutions for some particular

initial value problems in this part. As a result of different types of initial conditions,

we also observe the shock and rarefaction waves which are analyzed and illustrated

by several examples in this Chapter.

3.1 Two Cases of Discontinuous Solutions

In this section, we look for the solutions of the initial value problems for the inviscid

Burgers equation with initial data having piecewise constant functions given in the

following form

ut + (u2/2)x = 0, x ∈ R, t ∈ R+,

u(0, x) =

uL if x < 0,

uR if x > 0.

(3.1.1)

The problem consists of two parts depending on the values of uL and uR.

Case 1 (uL > uR) :

For this case, there are two classes of characteristic curves. The first ones emanate
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from the negative values of x, i.e.,

x0 = x+ tuL,

and the other ones emanate from the positive values of x, i.e.,

x0 = x+ tuR.

This is illustrated in the Figure 3.1.

Figure 3.1: Characteristics for shock waves uL > uR

Then the solution reads as

u(t, x) =

uL if x− st < 0,

uR if x− st > 0,

where the characteristic speed is

s =
uL + uR

2

by the Rankine-Hugoniot jump condition. Since the inviscid Burgers equation has

a convex flux (f ′′(u) = 1 > 0), the entropy condition is satisfied if and only if

uL > uR. This is the case when the characteristics cross each other. This type of

solution is called as shock waves [7]. For these type of solutions, the left wave is

travelling faster than the right wave for a curve of discontinuity. Therefore, when a

point of the wave profile is moving faster than its front, there is a shock formation.

Case 2 (uL < uR) :

In this case, characteristics are spreading since f ′(uL) < f ′(uR) for the convex flux
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function f(u) = u2/2. The problem has two solutions. The first solution is

u(t, x) =

uL if x− st < 0,

uR if x− st > 0.

However, this solution disobeys the entropy condition since uL < uR. Furthermore, it

is discontinuous since the value of u(t, x) on the interval 0 < x < t is not determined.

This void must be filled to get a complete solution. We need to define another solution

in order to resolve this issue. Our aim is to fill the void region with an expansion fan.

Thus, we seek a solution of the form

u(t, x) = ϕ
(x
t

)
(3.1.2)

which is constant along the characteristics [17]. Inserting (3.1.2) into the conservation

law (2.2.1) we get,

− x
t2
ϕ′
(x
t

)
+

1

t
ϕ′
(x
t

)
f ′
(
ϕ
(x
t

))
= 0.

Assuming

ϕ′
(x
t

)
6= 0,

we obtain

f ′
(
ϕ
(x
t

))
=
x

t
.

Hence, ϕ
(x
t

)
= (f ′)−1

(x
t

)
. Observe that for the characteristics on the left of the

fan, we have

f ′(uL) =
x

t
. (3.1.3)

Substituting (3.1.3) into the solution (3.1.2) we obtain

ϕ
(x
t

)
= ϕ(f ′(uL)) = (f ′)−1(f ′(uL)) = uL if

x

t
< f ′(uL).

Similarly, for the characteristics on the right of the fan, we get

ϕ
(x
t

)
= ϕ(f ′(uR)) = (f ′)−1(f ′(uR)) = uR if f ′(uR) <

x

t
.

Combining all the information the continuous weak solution reads as

u(t, x) =


f ′(uL) if

x

t
< f ′(uL),

x

t
if f ′(uL) <

x

t
< f ′(uR),

f ′(uR) if f ′(uR) <
x

t
.

(3.1.4)
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This kind of continuous solutions which go away from the shock are called rarefaction

waves [16]. Thus, when the head of the wave profile moves faster than its tail there is

a rarefaction wave. These waves are illustrated in the Figure 3.2 and 3.3.

Figure 3.2: Characteristics for rarefaction waves

Figure 3.3: Physically meaningful solution (3.1.4)

3.2 Examples with Discontinuous Initial Conditions

In this part, there are examples of initial value problems for the inviscid Burgers

equation with discontinuous initial values. We study the behaviour of characteristic

curves depending on the values of uL and uR.
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Example 3.2.1. Consider (2.4.3) with the initial condition

u0 =

1 if x ≤ 0,

0 if x > 0.
(3.2.1)

We are searching for the characteristic curves and the solution of the problem. It can

be verified by the characteristic method that the characteristics for t > 0 are given by

du

dt
= 0,

dx

dt
= u0 =

1 if x ≤ 0,

0 if x > 0.
(3.2.2)

Integrating (3.2.2) with respect to t, we find the characteristic curves

x =

t− t0 if x ≤ 0,

x0 if x > 0,

where t0 > 0 and x0 are some constants. Notice that we do not have classical solution

to this problem since there is a discontinuity. The propagation speed becomes

s =
uL + uR

2
=

1

2

for the initial value (3.2.1).

Figure 3.4: Characteristics for uL > uR (Example 3.2.1).

On the other hand, the weak solution for t ≤ s = 1/2 is

u(t, x) =

1 if x/t ≤ 1/2,

0 if x/t > 1/2.
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This solution satisfies the jump condition along the discontinuity. It also satisfies the

entropy condition since uL = 1 > uR = 0. The characteristics for this example are

illustrated in the Figure 3.4.

Example 3.2.2. Consider the problem in Example 3.2.1 with reversing the values of

uL and uR, that is,

u0(x) =

uL = 0 if x ≤ 0,

uR = 1 if x > 0.
(3.2.3)

The first solution is

Figure 3.5: Characteristics for uL < uR (Example 3.2.2)

u1(t, x) =

0 if x/t ≤ 1,

1 if x/t > 1.

Here, u1(t, x) is a classical solution on the both sides of the line
x

t
= 1. Satisfying

the Rankine-Hugoniot jump condition along the curve of discontinuity, it is a weak

solution of the initial value problem with current initial conditions. The characteristics

for this first solution is shown in the Figure 3.5.

On the other hand the second solution becomes

u2(t, x) =


0 if x ≤ 0,

x/t if 0 ≤ x/t ≤ 1,

1 if x/t ≥ 1.

One can observe that u2(t, x) is also a solution to the Riemann problem. In the

Figure 3.6 the red lines represent the characteristics curves for the rarefaction solution
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Figure 3.6: Rarefaction solution u2(x, t) (Example 3.2.2)

u(t, x) =
x

t
on the interval 0 ≤ x

t
≤ 1. The solution u2(t, x) also satisfies the jump

condition. However, only u2(t, x) satisfies the entropy condition. Discarding u1(t, x),

we eliminate the non-physical result. Thus, entropy condition allows us to have a

physically meaningful solution.

Example 3.2.3. We investigate the solution to initial value problem for the inviscid

Burgers equation with the initial condition

u0(x) =


0 if x < 0,

1 if 0 < x < 1,

0 if x > 1.

By the characteristics method, it follows that

du

dt
= 0,

dx

dt
= u0.

Then using the initial condition, we write

dx

dt
= u0 =


0 if x0 < 0,

1 if 0 < x0 < 1,

0 if x0 > 1.

(3.2.4)

After integrating (3.2.4) with respect to t, we get

x =


x0 if x < 0,

t+ t0 if 0 < x < 1,

x0 if x > 1.
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Since uL = 1 (when 0 < x < 1) and u0 = 0 (when x > 1), there is a shock formation

at x0 = 1 (uL > uR). Using the Rankine-Hugoniot jump condition, shock speed

becomes

s =
f(uR)− f(uL)

uR − uL
=

1

2
.

Notice that, when we draw the characteristics, it can be clearly seen that characteristics

intersect at x = 1, and there is a void region after x = 0. This can be observed in the

Figure 3.7. Furthermore, the solution is no longer single valued after x = 1 since the

Figure 3.7: Characteristics for multiple valued solution for Example 3.2.3

characteristics cross each other. So, we can no longer have analytical solution at the

crossing point of characteristics.. First, we write the equation of the shock line that is

emerging from x = 1. It is the straight line passing from x0 = 1 with a speed s =
1

2
,

i.e.,

x = 1 +
t

2
(shock line). (3.2.5)

In order to get rid of the discontinuous solution at x = 1, we obtain the solution as
u = 1 when x <

t

2
+ 1,

u = 0 when x >
t

2
+ 1.

We recall that to get a physically meaningful solution, entropy condition must be

satisfied. However, due to the entropy condition is not satisfied (uL = 0 < uR = 1),

we fill the void region in the Figure 3.7 to get a "complete" solution. Here, we define

the solution u =
x

t
which is called as rarefaction fan when 0 < x/t < 1.

It remains to find the time when the expansion fan makes a contact with the shock

wave. To find out this time of contact we solve the common solution of the equations
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of rarefaction fan
dx

dt
=
x

t
= 1 (3.2.6)

and the equation of shock line (3.2.5)

x = 1 +
t

2
. (3.2.7)

Using (3.2.6) and (3.2.7) we find that the time of contact is t = 2. Hence the solution

for t ≤ 2 becomes

u(t, x) =



0 if x < 0,

x

t
if 0 < x < t,

1 if t < x <
t

2
+ 1,

0 if x >
t

2
+ 1.

(3.2.8)

The red lines in the Figure 3.8 represent the rarefaction fan where the right boundary

(line) of the rarefaction wave is a shock wave. Moreover, on the right side of the

rarefaction fan, there are characteristics with slope
dx

dt
= 1 which gives shock forma-

tion for the given problem. Finally, we investigate the behaviour of the solution after

Figure 3.8: Characteristics for physically correct solution for Example 3.2.3

t = 2. When the rarefaction wave make a contact with the shock line, the solution

must satisfy the Rankine-Hugoniot jump condition. Since uL =
x

t
and uR = 0 the

speed of the shock reads as
dx

dt
= s =

x

2t
. (3.2.9)
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Hence, we get a second shock line forming at x = 2 and t = 2. After integrating

(3.2.9), we get x = c
√
t where c is some constant. Since the shock line originates

from the point (2, 2), we find that c =
√

2. Thus, the equation of the shock line reads

as

x =
√

2t.

Now, we are able to define the solution for t ≥ 2, which is

u(t, x) =


0 if x < 0,

x

t
if 0 < x <

√
2t,

0 if x >
√

2t.

(3.2.10)

Example 3.2.4. Consider the Riemann problem (3.1.1) with the initial condition

u0(x) =


2 if x ≤ 0,

2− x if 0 ≤ x ≤ 2,

0 if x ≥ 2.

First, we find the characteristics curves.

Case i. Let x ≤ 0:

The characteristics with the speed s = 2 have the form
dx

dt
= 2,

x = 2t+ t0, (for constant t0 > 0).

Then u(t, x) = 2 for x ≤ 0.

Case ii. Let x ≥ 0:

In this case, the characteristics have zero speed. It follows that
dx

dt
= 0

x = x0, (for constant x0 > 2).

Hence, u(t, x) = 0 for x ≥ 2.

Case iii.Let 0 ≤ x ≤ 2:

24



However, the characteristics between 0 ≤ x ≤ 2 have the form

x− a = (2− a)t for a ∈ [−1, 1].

Then the solution for t ≤ 1 reads as

u(t, x) =


2 if x < t,

2− x
1− t

if t < x < 2,

0 if x > 2.

−1 −0.5 0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

x

t

Figure 3.9: Characteristic curves for the initial value problem 3.2.4

The characteristics for the problem intersect and gather at x = 2, t = 1. Hence,

for t ≥ 1 the problem has multiple valued solution which can be observed by the

intersection of characteristics represented in the Figure 3.9. In other words, after

t = 1 we no longer have a classical solution, since the solution is not single valued.

This is illustrated in the Figure 3.10. Hence, we look for a weak solution. The speed

of shock is calculated by

s =
f(uR)− f(uL)

uR − uL
= 1

by the Rankine-Hugoniot jump condition. Writing the equation of shock line passing

from (t, x) = (1, 2) having a characteristic speed s = 1, we obtain

x = t+ 1

as shown in the Figure 3.11. Thus, the weak solution for t ≥ 1 is of the form

u(t, x) =

2 if x < t+ 1,

0 if x > t+ 1.

25



0 2
0

2

x

u

0 2
0

2

x

u

Figure 3.10: Multiply valued solutions u(0, x), u(0.5, x), u(1, x), u(1.5, x) for

Example 3.2.4, respectively

Figure 3.11: Formation of shock line for Example 3.2.4
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This solution is a classical solution on both sides of the shock line x = t+ 1. On the

other hand, it is a weak solution for t ≥ 1.

Here, we draw the snapshots of the analytical solution for Example 3.2.4 for different

time values. The time of wave breaking t = 1 can be observed from the Figure 3.12.

In the Example 3.2.4, the left segment of the wave is travelling faster than the right

segment of it. As time passes, the left part catches up the right part of the wave and

forces the wave to break. This gives a discontinuous solution after t = 1 which is

illustrated in Figure 3.12.

0 2
0

2

x

u

0 2
0

2

x

u

0 2
0

2

x

u

0 2
0

2

x

u

Figure 3.12: Profiles of the solutions u(0, x), u(0.5, x), u(1, x), u(1.5, x), respective-

ly

3.3 An Example with Continuous Initial Condition

Example 3.3.1. Consider the initial value problem for the inviscid Burgers equation

(2.4.3) with initial data

u0(x) = sinx.

The slopes of characteristics reads

dx

dt
= u(t, x) and

du

dt
= 0.
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Using the initial data we obtain

dx

dt
= u(x0, 0) = sin x0,

which gives
x = sin(x0)t+ x0 = ut+ x0,

x0 = x− ut.

Hence, the solution can be written in the form

u(t, x) = sin(x− ut).

Notice that

ux = cos(x− ut)(1− tux),

then

ux =
cos(x− ut)

1 + t cos(x− ut)
=

cosx0

1 + t cosx0

.

For x0 = π, one can observe that

ux = − 1

1− t

is unbounded when t → 1. Thus, we do not have analytic solution. This can also

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

x

t

Characteristics

Figure 3.13: Characteristics for Example 3.3.1

be observed in the Figure 3.13 by the intersection of the characteristics. The wave

shape sharpens as time evolves. The time of the intersection of characteristics can be

calculated by relation (2.4.9) as

t = − 1

minu′0(x)
= 1.
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The solution u(t, x) is illustrated for different values of t, in the Figure 3.14.
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Figure 3.14: The solution u(t, x) for Example 3.3.1 for different values of t

29



30



CHAPTER 4

NUMERICAL SOLUTIONS OF THE INVISCID BURGERS

EQUATION

In this chapter, our purpose is to approximate the solution of the inviscid Burgers

equation for continuous and discontinuous initial values. For this purpose, we apply

the finite difference approximation techniques. In particular, we use the Lax-Friedric-

hs, Godunov and Lax-Wendroff schemes for numerical approximations. The efficien-

cy of these methods are observed numerically in the last part of the chapter.

4.1 Numerical Schemes

In this part, we analyze the inviscid Burgers equation numerically. To this aim, we

use the concept of the finite difference schemes. We compare the results by using the

Lax-Friedrichs, Godunov and Lax-Wendroff schemes for the examples given in the

previous chapter.

We start by introducing some basic features of a finite difference method on a plane

region. A grid cell on a Cartesian coordinate can be approximated by cell average as

following

Un
j =

1

∆x

∫ xj+1/2

xj−1/2

u(tn, x)dx

where

xj = j∆x, tn = n∆t,

xj±1/2 = xj ±
∆x

2
for j = 0, ..., N + 1.
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Definition 4.1.1. ([14]) A numerical scheme is called conservative if it can be written

in the form

un+1
j = unj −

∆t

∆x

(
fnj+1/2 − fnj−1/2

)
(4.1.1)

where f is required to have Lipschitz continuity and

f(u, u) = f(u) (consistency). (4.1.2)

Scheme (4.1.1) can also be written in an alternative form. If we estimate the numerical

flux based on the values of un, we will have a discrete method. We write the average

fluxes fnj−1/2 and fnj+1/2 depending on the values of unj−1 and unj . Then, we introduce

F n
j−1/2 = F(Un

j−1, U
n
j ) =

1

∆t

∫ tn+1

tn
f(u(t, xj−1/2))dt,

F n
j+1/2 = F(Un

j , U
n
j+1) =

1

∆t

∫ tn+1

tn
f(u(t, xj+1/2, ))dt,

(4.1.3)

where F is a numerical flux function. Next, the numerical scheme (4.1.1) becomes

Un+1
j = Un

j −
∆t

∆x

(
F(Un

j , U
n
j+1)−F(Un

j−1, U
n
j )
)
. (4.1.4)

Clearly, one can see that this method is explicitly depending on the three values Un
j−1,

Un
j , Un+1

j . In other words, Un+1
j will be determined by the values of Un

j−1, U
n
j at

the former time level. Then we look for a particular flux function that is suitable for

numerical approximation. It is required that the numerical method must be convergent.

In other words, the numerical method has to satisfy two conditions in order to converge

to the analytical result as ∆x→ 0 and ∆t→ 0:

• Numerical scheme must be consistent.

• Numerical scheme must be stable, i.e., small perturbations do not lead to huge

errors.

Theorem 4.1.2. ([20]) If unj = u(j∆x, n∆t) is a discrete solution based on a consis-

tent, conservative finite difference approximation to a given conservation law initial-

value problem and if unj → u in L1
loc when ∆x,∆t → 0, then u = u(t, x) is a weak

solution to the initial value problem.
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Proof. Conservative finite difference scheme (4.1.1) can also be written as

un+1
j − unj

∆t
+
fnj+1/2 − fnj−1/2

∆x
= 0 (4.1.5)

First, we multiply equation (4.1.5) by a φ ∈ C∞′ and take the sum from j to n, we get

∞∑
n=0

∞∑
j=−∞

φnj

(
un+1
j − unj

∆t

)
+ φnj

(
fj+1/2 − fj−1/2

∆x

)
= 0.

Next, we make use of summation by parts rule

n−1∑
j=0

zj(yj+1 − yj) = ynzn − y0z0 −
n−1∑
j=0

yj+1(zj+1 − zj)

which is an analogous version of integration by parts to assign the derivatives from

the partial differential equation to the test function φ. (Recall that we used similar

approach while defining the weak solution in Section 2.5.) After applying the summa-

tion by parts we get

−
∞∑
n=0

∞∑
j=−∞

un+1
j

(
φn+1
j − φnj

∆t

)
+ fnj+1/2

(
φnj+1 − φnj

∆x

)
−

∞∑
j=−∞

u0
jφ

0
j

∆t
= 0. (4.1.6)

Since φ has compact support, φ = 0 on all of the boundary terms except the term at

n = 0 vanishes. If we multiply equation (4.1.6) by ∆t∆x, we obtain

−
∫ ∞

0

∫ ∞
−∞

[uφt + f(u, u)φx] dx dt−
∫ ∞
−∞

u(0, x)φ(x)dx = 0 (4.1.7)

as ∆t,∆x → 0 and unj → u. By the consistency property (4.1.2), equation (4.1.7)

yields

−
∫ ∞

0

∫ ∞
−∞

[uφt + f(u)φx] dx dt−
∫ ∞
−∞

u(0, x)φ(x)dx = 0.

Thus, u = u(t, x) is a weak solution of the initial value problem to the conservation

law by the definition of weak solution (2.5.1).

The numerical flux function should approximate the integral in (4.1.3) well, so that

the numerical scheme gives consistent results. If the function u(t, x) = ū is constant

in x, then u will remain the same when time changes. Then the integral (4.1.3) yields

to f(Ū). Thus,

Un
j−1 = Un

j = Ū ,
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when we substitute the values of F(Un
j , U

n
j+1) and F(Un

j−1, U
n
j ) into the equation

(4.1.4). Hence, the flux function yields to f(Ū) since F(Ū , Ū) = f(Ū). In general,

F(Ui−1, Ui)→ f(ū) as Ui−1, Ui → Ū .

We also need the Lipschitz continuity since if the arguments of F approaches to the

value Ū , F must approach to the function f(Ū) smoothly. That is,

lim
U1,...,Un

F(U1, ..., Un)→ f(Ū),

|F(Ui−1, Ui)− f(Ū)| ≤ K max
(
|Ui − Ū |, |Ui−1, Ū |

)
,

(4.1.8)

where K is called the Lipschitz constant.

Definition 4.1.3. ([23]) Any numerical scheme of the form (4.1.1) is stable if the so

called Courant-Friedrichs-Levy (CFL) condition

sup
x∈R,t>0

|f ′(u(t, x))|∆t
∆x
≤ 1

is satisfied.

However, the CFL condition is necessary but not sufficient in order to have a converge-

nt numerical scheme. A numerical method applied to a partial differential equation

regardless of being linear or non-linear is said to be convergent when the method is

stable and consistent.

4.1.1 First Order Schemes

In this part, we give two different numerical schemes, the Lax-Friedrichs and Godunov

Schemes, which are of the first order with their further properties.

4.1.1.1 Lax-Friedrichs Scheme

The corresponding numerical scheme

un+1
j =

1

2

(
unj+1 + unj−1

)
− ∆t

2∆x

(
fnj+1 − fnj−1

)
(4.1.9)
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is called the Lax-Friedrichs scheme [22]. We recall that a conservative numerical

scheme is written as

un+1
j = unj −

∆t

∆x

(
Fj+1/2 −Fj−1/2

)
. (4.1.10)

Lax-Friedrichs method can be derived by choosing the numerical flux functions in

equation (4.1.10) as

Fnj−1/2 =
1

2

(
f(unj−1) + f(unj )

)
,

Fnj+1/2 =
1

2

(
f(unj+1) + f(unj )

)
,

and changing the term unj by the average value (unj−1+unj+1)/2 in the equation (4.1.1).

It follows that

un+1
j =

1

2
(unj−1 + unj+1)− ∆t

2∆x

(
f(unj+1) + f(unj ),−f(unj−1)− f(unj )

)
which is equivalent to (4.1.9). If we choose

F(unj , u
n
j+1) =

∆x

2∆t
(uj − uj+1) +

1

2

(
f(uj) + f(uj+1)

)
,

F(unj−1, u
n
j ) =

∆x

2∆t
(uj−1 − uj) +

1

2

(
f(uj−1) + f(uj)

)
.

the Lax-Friedrichs scheme can also be written in a conservative form (4.1.4).

Convergence

In order to show the convergence of Lax-Friedrichs scheme, we determine the trunca-

tion error by taking into account the inviscid Burgers equation. To do this, we

substitute the flux function of the inviscid Burgers equation into the Lax-Friedrichs

method, i.e.,

un+1
j =

1

2

(
unj+1 + unj−1

)
− ∆t

2∆x

(
(unj+1)2

2
−

(unj−1)2

2

)
.

Then the truncation error, denoted by Et, for the Lax-Friedrichs method reads as

Et(t
n+1, xj) =

∣∣∣∣∣12(u(tn, xj+1) + u(tn, xj−1)
)
− ∆t

2∆x

(
(un

j+1)2

2
−

(un
j−1)2

2

)
− u(tn+1, xj)

∣∣∣∣∣ .
(4.1.11)
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After expanding the values u(tn, xj+1), u(tn, xj−1) and u(tn+1, xj) by Taylor series

in (4.1.11), it follows that

u(tn, xnj±1) = u(tn, xj)±∆x
∂u

∂x
(tn, xj) +

(∆x)2

2

∂2u

∂x2
(tn, xj) + o((∆x)3),

u(tn+1, xj) = u(tn, xj) + ∆t
∂u

∂t
(tn, xj) +

(∆t)2

2

∂2u

∂t2
(tn, xj) + o((∆t)3),

and substituting them into the truncation error (4.1.11), we get

Et(t
n, xj) =

(∆x)2

2∆t
uxx(t

n, xj) + o
(
(∆x)2, (∆t)2

)
.

For constant ∆x and decreasing ∆t, we have

lim
∆t→0

(∆x)2

2∆t
→∞,

that is, the method diverges.

On the other hand, whenever
∆x

∆t
is constant and ∆x→ 0,

lim
∆t→0

(∆x)2

2∆t
→ 0.

Hence, Et(tn, xj) → 0. In other words the method is convergent and the order of

convergence is one which can be established by CFL condition.

Consistency and Lipschitz continuity

We check the consistency condition (4.1.8) and the Lipschitz continuity for the Lax-

Friedrichs scheme. For the consistency, we assume

unj = un+1
j = ū

so that

F(ū, ū) =
∆x

2∆t
(ū− ū) +

1

2

(
f(ū) + f(ū)

)
which yields to

F(ū, ū) = f(ū). (4.1.12)

Therefore the scheme is consistent.
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To check Lipschitz continuity of F , we use the fact that f(u) = u2/2 is Lipschitz

continuous on L∞ with the Lipschitz constant k. It follows that∣∣∣F(uj+1, uj)−F(ū, ū)
∣∣∣

=
∣∣∣∆x

2∆t
(uj − uj+1) +

1

2

(
f(uj) + f(uj+1)

)
− f(ū)

∣∣∣
=
∣∣∣∆x

2∆t
(uj − uj+1) +

1

2

(
f(uj)− f(ū)

)
+

1

2

(
f(uj+1)− f(ū)

)∣∣∣
≤
(∆x

2∆t
+ k
)

max{|uj+1, ū|, |uj, ū|}

(4.1.13)

which is the desired result.

Von Neumann Stability of the Lax-Friedrichs Method

We next investigate the stability of the Lax-Friedrichs method by Von Neumann

method. To show whether the scheme is stable, we assume that the solution is of

the form

unj = ξneikxj . (4.1.14)

Here, ξ is called the magnification factor. The size of the magnification factor will

determine the stability of the numerical scheme. If |ξ| ≤ 1 and assuming that CFL

condition is satisfied then the scheme is stable. If |ξ| > 1 then the numerical solution

is unbounded as t → ∞ since the magnification factor increases exponentially as

n→∞. The numerical scheme becomes unstable in this case.

To apply Von Neumann method to scheme (4.1.9), we first insert equation (4.1.14)

into the Lax-Friedrichs scheme (4.1.9)

ξn+1eikxj =
1

2

(
ξneikxj+1 + ξneikxj−1

)
− ∆t

2∆x

(
ξneikxj+1 − ξneikxj−1

)
.

After making the cancellations, we get

ξ =
1

2

(
eik∆x + e−ik∆x

)
− ∆t

2∆x

(
eik∆x − eik∆x

)
which yields to

ξ = cos θ − Λi sin θ

where θ = k∆x. It follows that

|ξ|2 = 1− sin2θ(1− Λ2) < 1
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provided 0 ≤ Λ ≤ 1 is satisfied. Hence, the Lax-Friedrichs scheme is conditionally

stable.

4.1.1.2 First Order Godunov Scheme

Consider the scalar hyperbolic conservation law

ut + (f(u))x = 0. (4.1.15)

Godunov scheme makes use of analytical solutions of the Riemann problem for the

conservation law (4.1.15). It is a numerical scheme in conservative form where the

flux functions at the spatial steps xj−1/2 and xj+1/2 are calculated using the solutions

of the Riemann problem [10]. We will have a piecewise constant function on each

grid cell

Ci = [xj−1/2, xj+1/2].

The Riemann problem for (4.1.15) for the left and right sides of Ci are described by

uL(x) =

u
n
j−1; x < 0,

unj ; x > 0

and

uR(x) =

u
n
j ; x < 0,

unj+1; x > 0,

respectively. The combination of these solutions to the Riemann problem will be the

numerical solution ũ(t, x). After establishing the solution over the mesh [tn, tn+1],

we approximate the solution at the next time step tn+1 by the average value

Un+1
j =

1

∆x

∫ xj+1/2

xj−1/2

ũ(tn+1, x) dx.

Then continuing in this way, we define the solution ũ(tn+1, x) iteratively. Notice

that, the average value Un+1
j can be calculated by considering the integral form of the

conservation law (4.1.15) in the following way:

We integrate the conservation law (4.1.15) for u(t, x) over each grid cell

D = [tn, tn+1]× [xj−1/2, xj+1/2],
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∫∫
D

ũnt (t, x) dx dt+

∫∫
D

f(ũn(t, x))x dx dt = 0,

then we get, ∫ xj+1/2

xj−1/2

ũn(tn+1, x) dx−
∫ xj+1/2

xj−1/2

ũn(tn, x) dx

=

∫ tn+1

tn
f(ũnj−1/2) dt−

∫ tn+1

tn
f(ũnj+1/2) dt.

Dividing both parts by ∆x and using ũ(tn, x) = unj is constant at the end points xj−1/2

and xj+1/2, we obtain

un+1
j = unj −

∆t

∆x

[
f(ũnj−1/2)− f(ũnj+1/2)

]
.

One can observe that this scheme is similar to scheme (4.1.1). In other words,

Godunov method is a conservative numerical scheme. This method can be written

in an alternative form. If we represent the constant value of unj at the points xj−1/2

and xj+1/2 by u∗(Un
j−1, U

n
j ) and u∗(Un

j , U
n
j+1) respectively, then the numerical flux

functions become

f(ũnj−1/2) = f
(
u∗(Un

j−1, U
n
j )
)

= F(Un
j−1, U

n
j ),

f(ũnj+1/2) = f
(
u∗(Un

j , U
n
j+1)

)
= F(Un

j , U
n
j+1).

Thus, a first order Godunov method reads as

Un+1
j = Un

j −
∆t

∆x

[
F(Un

j , U
n
j+1)−F(Un

j−1, U
n
j )
]
.

As a result, constant value of ũn depends on the initial data. Hence the Godunov

method considers the Riemann problem as constant in each grid cell [xj−1/2, xj+1/2].

At the next time step, the exact solutions of the problem is taken as the numerical

fluxes at the boundaries of the grids.

Consistency

The Godunov method is consistent with the exact solution of the Riemann problem

for the conservation law (4.1.15). If we assume unj = un+1
j = ū, then ũnj+1/2 = ū and

F(ū, ū) = f(ū). For the stability of the scheme, CFL condition requires that

sup
x∈R,t>0

|f ′(u(t, x))|∆t
∆x
≤ 1
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for each unj . Next, if we denote the intermediate value over the grid (xj−1/2, xj+1/2)

by u∗ in the Riemann solution, it follows that

u∗(uL, uR) =

uL, s > 0,

uR, s < 0,

where s denotes the wave propagation speed, then the numerical flux for Godunov’s

method can be generalized as following;

f(uL, uR) =



f(uL), if f ′(uL), f ′(uR) ≥ 0 and uL ≤ uR,

f(uR), if f ′(uL), f ′(uR) ≤ 0 and uL ≤ uR,

f(uL), if f ′(uL) ≥ 0 ≥ f ′(uR) and f ′(u) > 0,

f(uR), if f ′(uL) ≥ 0 ≥ f ′(uR) and f ′(u) < 0,

0, if f ′(uL) ≤ 0 ≤ f ′(uR) and uL ≤ uR.

(4.1.16)

This expression has an alternative version in a modest way:

f(uL, uR) =


min

uL≤u≤uR
f(u) if uL ≤ uR,

max
uL≥u≥uR

f(u) if uR < uL.

In particular if we use Burgers equation instead of (4.1.15), then Godunov method

reads as

Un+1
j = Un

j −
∆t

2∆x

(
(u∗)2(Un

j−1, U
n
j )− (u∗)2(Un

j , U
n
j+1)

)
,

and, (4.1.16) reduces to the flux function for inviscid Burgers equation

f(uL, uR) =



(uL)2

2
if 0 ≤ uL ≤ uR,

(uR)2

2
if uL ≤ uR ≤ 0,

(uL)2

2
if uL ≥ 0 ≥ uR and f ′(u) > 0,

(uR)2

2
if uL ≥ 0 ≥ uR and f ′(u) < 0,

0 if uL ≤ 0 ≤ uR.

4.1.2 Second Order Schemes

This part is devoted to the second order numerical schemes. We give again two

different numerical schemes, the Godunov and Lax-Wendroff Schemes, which are

of the second order with their basic properties.
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4.1.2.1 Second Order Godunov Scheme

In this part, we formulate the second order Godunov method for the inviscid Burgers

equation. A first order method modified into a second order scheme by continuing

process using the boundary values at each grid to find the intermediate time step

tn+1/2 =
tn + tn+1

2
.

This algorithm can be formulated by the following stages:

The variables (unj,L, u
n
j,R) are calculated within the grid itself where unj,L is between

unj−1 and unj and unj,R is between unj and unj+1 [5]. Then the solution is continued

by a half time step. The average values at the grid boundaries at the time step

tn+1/2 =
tn + tn+1

2
are indicated via (unj,L, u

n
j,R). These average values can be compu-

ted as
u
n+1/2
j,L = uni,L −

∆t

2∆x

[
(f(unj,R)− f(unj,L)

]
,

u
n+1/2
j,R = uni,R −

∆t

2∆x

[
(f(unj,R)− f(unj,L)

]
.

Next, the Riemann problem constructed by the average values (unj,L, u
n
j,R) is solved.

The solution u
n+1/2
j+1/2 is substituted into the numerical flux f

n+1/2
j+1/2 = f

(
u
n+1/2
j+1/2

)
.

Finally, we get to the solution by time step ∆t from tn by the conservative numerical

scheme formula

un+1
j = unj −

∆t

∆x

(
f
n+1/2
j+1/2 − f

n+1/2
j−1/2

)
where we insert f(u) = u2/2 into the numerical flux for the inviscid Burgers equation.

4.1.2.2 Lax-Wendroff Scheme

The Lax-Wendroff scheme is a second-order finite difference for hyperbolic partial

differential equations [22]. It is of the form

un+1
j = unj −

∆t

∆x

(
f
n+1/2
j+1/2 − f

n+1/2
j−1/2

)
. (4.1.17)

This method makes use of the Lax-Friedrichs scheme (4.1.9) to compute the half-step

time level in the following way:

f
n+1/2
j+1/2 =

1

2
(unj+1 + unj )− ∆t

2∆x

(
fnj+1 − fnj

)
,

f
n+1/2
j−1/2 =

1

2
(unj + unj−1)− ∆t

2∆x

(
fnj − fnj−1

)
,

(4.1.18)
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for xj+1/2 and xj−1/2, respectively. Relations (4.1.18) is used to compute the fluxes

f
n+1/2
j+1/2 and fn+1/2

j−1/2 in the Lax-Wendroff scheme (4.1.17).

Next, we write the Lax-Wendroff method for inviscid Burgers equation. We insert

f(u) =
u2

2
into (4.1.17) and substitute the numerical fluxes (4.1.18) into equation

(4.1.17) to get

un+1
j = unj −

∆t

2∆x
(unj+1 − unj−1) +

(∆t)2

2(∆x)2

[
(unj+1)2 − 2(unj )2 + (unj−1)2

]
.

Convergence

The Lax-Wendroff method is second order accurate in space and time. In order to

show that, we observe the truncation error which follows by

Et(t
n, xj) =

∣∣∣u(tn+1, xj)− u(tn, xj) +
∆t

2∆x
u(tn, xj)

(
u(tn, xj+1)− u(tn, xj−1)

)
− (∆t)2

2(∆x)2
u(tn, xj)

2
(
u(tn, xj+1)− 2u(tn, xj) + u(tn, xj−1)

)∣∣∣.
(4.1.19)

After using expansion of Taylor series for u(tn+1, xj), u(tn, xj+1), and u(tn, xj−1) in

(4.1.19), the truncation error becomes

Et(t
n, xj) = O

(
(∆t)2, (∆x)2

)
,

which is the desired result.

Consistency

We check now the consistency condition (4.1.8) for the Lax-Wendroff scheme. We

assume

unj = un+1
j = ū

so that

F(ū, ū) =
∆x

2∆t
(ū− ū) +

1

2

(
f(ū) + f(ū)

)
which yields to

F(ū, ū) = f(ū). (4.1.20)

Therefore, the scheme is consistent.
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Von Neumann stability of the Lax-Wendroff method

In order to analyze the stability of the Lax-Wendroff scheme, we start by inserting

unj = ξneikxj

into scheme (4.1.17), which gives

ξneikxjeik∆x =ξneikxj − ∆t

2∆x

(
ξneikxjeik∆x − ξneikxje−ik∆x

)
− (∆t)2

2(∆x)2

(
ξneikxjeik∆x − 2ξneikxj + ξneikxje−ik∆x

)
.

After dividing both sides of the equation by ξneikxj we obtain

ξ = 1− Λi sin θ + Λ2(cos θ − 1)

where θ = k∆x and Λ = ∆t/∆x. The length of the amplification factor ξ yields

|ξ|2 = 1 + Λ2(Λ2 − 1)(1− cos θ)2 ≤ 1

for the stability of this scheme. We see that, the Von Neumann stability condition

ξ2 ≤ 1 is satisfied if Λ2 ≤ 1 which is the CFL condition itself. This means that, the

Lax-Wendroff method is stable as long as Λ2 ≤ 1.

4.2 Numerical Results for Inviscid Burgers Equation

4.2.1 Numerical Results for First Order Schemes

In this section, numerical schemes are presented for the initial value problem of the

inviscid Burgers equation. We compare the classical and numerical solutions to our

model. For this purpose, the first and second order finite difference approximation

methods are used. We examine the initial value problems with shock and rarefaction

waves for the Lax-Friedrichs, Godunov and Lax-Wendroff schemes. Before the nume-

rical approximation, we give a short introduction about the notation. We denote ∆x =

space interval, ∆t = time interval, and we set

x = j∆x, t = n∆t,
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where j = number of spatial steps and n = number of time steps. We set up x ∈ [0, 1]

and u ∈ [0, 1]. Figure 4.1 was plotted via choosing spatial step size ∆x = 0.0013378

and time step size ∆t = 0.006689 with a number of iterations in time as n = 100,

n = 300 and n = 600 respectively. For Example (3.2.1), we get shock waves as

mentioned in the previous sections. Figure 4.1 represents the shock waves found by

the Lax-Friedrichs method applied to our problem. For Example 3.2.2, there is a

formation of rarefaction waves. Figure 4.1 also shows the rarefaction waves obtained

using the Lax-Friedrichs scheme.
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Figure 4.1: Lax-Friedrichs scheme for inviscid Burgers equation for Example 3.2.1

and 3.2.2 respectively (shock and rarefaction waves)

Figure 4.2 illustrates Lax-Friedrichs scheme for Example 3.3.1 on interval x ∈ [0, 2π].

The solution is illustrated at time t = 0, t = 0.5, t = 1, t = 1.5 corresponding to

number of iterations n = 250, n = 500 and n = 750 with a step sizes ∆x = 0.0210

and ∆t = 0.0420. Dispersion of the wave profile appears for bigger values of t.
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Figure 4.2: Lax Friedrichs method for Example 3.3.1

For the comparison, Godunov method is also applied to the Riemann problem for
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inviscid Burgers equation. Formation of shock waves are illustrated in Figure 4.3, for

the initial value problem (3.2.1) using the Godunov scheme. On the other hand, the

Riemann problem of inviscid Burgers equation for the initial value problem (3.2.2)

produces rarefaction wave solutions. CFL constant is chosen as 0.2 in these numerical

experiments. Figure 4.3 also demonstrates the rarefaction waves for the numerical

solution of the problem by the Godunov scheme.
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Figure 4.3: First order Godunov scheme for inviscid Burgers equation for Example

3.2.1 and 3.2.2 respectively (shock and rarefaction waves)

The solution for Example (3.2.3) results in an expansion wave starting from x = 0.

The expansion wave encounters with the shock at t = 2. Figure 4.4 was drawn using

Godunov method with a step size ∆x = 0.010033 and ∆t = 0.0020067 with 500 time

steps when t = 1. The left part of Figure 4.4 illustrates the behaviour of rarefaction

fan, whereas the right part demonstrates the shock wave.
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Figure 4.4: First order Godunov method for Example 3.2.3

Figure 4.5 was drawn for Example 3.3.1 on the interval x ∈ [0, 2π]. The solution is

illustrated at time t = 0, t = 0.5, t = 1, t = 1.5 corresponding to number of iterations

n = 250, n = 500 and n = 750 with a step sizes ∆x = 0.0210 and ∆t = 0.0420.
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The sinusoidal wave shape sharpens as the number of time iterations increase. This

is an example of distortion of the wave for a nonlinear wave profile.
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Figure 4.5: First order Godunov method for Example 3.3.1

4.2.2 Numerical Results for Second-Order Schemes

In this part, we give illustrations for numerical approximation of the initial value

problems for second-order schemes. Figure 4.6 was plotted by choosing spatial step

size ∆x = 0.0013378 and time step size ∆t = 0.006689 with a number of iterations

in time as n = 100, n = 300 and n = 600 respectively. The shock and rarefaction

waves also appear in the second order Godunov scheme as in the first order of this

scheme.
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Figure 4.6: Second order Godunov method for Example 3.2.1 and 3.2.2 respective-

ly

Figure 4.7 was drawn for Example 3.3.1. The distortion of the wave profile beginning

from initial data can be observed in Figure 4.7.
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Figure 4.7: Second order Godunov method for Example 3.3.1

Figure 4.8 was drawn using Lax-Wendroff method with a step size ∆x = 0.01 and

∆t = 0.002 with 50 time steps which corresponds to t = 0.1. We can observe

the oscillations at the points where the solution is not smooth, unlike the Godunov

method. However, the illustration of shock and rarefaction waves is quite similar to

the one in Godunov method.
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Figure 4.8: Lax-Wendroff method for Example 3.2.1 and 3.2.2 (shock and

rarefaction solution)

In Figure 4.9, the shock and rarefaction waves appear together. The left part of the

wave profile exhibits the behaviour of rarefaction fan whereas the right part gives a

shock.
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Figure 4.9: Lax-Wendroff method for Example 3.2.3

In Figure 4.8 Lax-Friedrichs, Godunov and Lax-Wendroff schemes were drawn together

for the Example 3.2.1 with number of iterations n = 50 which corresponds to t = 0.1

with a step size ∆x = 0.01 and ∆t = 0.002. It can be deduced that Lax-Friedrichs

approximation smears out, while the Lax-Wendroff scheme suffers from oscillation.

Godunov scheme seems to show less smearing and wiggling compa-

red to other methods that are used.
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Figure 4.10: Lax-Wendroff, Lax Friedrichs, First order Godunov methods for

Example 3.2.1(shock wave)

Figure 4.11 was drawn for the initial value problem (3.3.1) on the interval x ∈ [0, 2π].

We apply the Lax-Friedrichs, Godunov, Lax-Wendroff methods to the example for

time t = 0, t = 0.5, t = 1, t = 1.5 respectively which corresponds to number of

iterations n = 250, n = 500 and n = 750 with a step sizes ∆x = 0.0210 and

∆t = 0.0420. We observe that Lax-Friedrichs scheme gives smeared out solutions as

time increases. Thus, the scheme is dissipative for the initial value problem (3.3.1).

The profile of the solution steepens and creates a shock in Godunov scheme. On the
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other hand, Lax-Wendroff method creates oscillations as the wave profile steepens

creating sharp edges which results in a shock wave.
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Figure 4.11: Lax-Wendroff method for Example 3.3.1
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CHAPTER 5

CONCLUSION

In this work, we studied the inviscid Burgers equation both theoretically and numeric-

ally. First, analytic form of the solution for this equation is explained by the characteri-

stics method that is used for quasilinear partial differential equations. The difference

and similarity of the solutions of the inviscid Burgers equation are compared to

the linear advection equation. Then, we take into account different initial value

problems for the inviscid Burgers equation by means of weak solutions due to the

appearing of discontinuities in the initial conditions. The physically relevant solutions

among the weak solutions are chosen by the restriction of entropy condition where

we observed shocks and rarefaction waves. Then, we apply the finite difference

techniques to the inviscid Burgers equation for these examples. For this purpose, we

used Lax-Friedrichs, Godunov and Lax-Wendroff schemes in order to approximate

and compare the solutions for continuous and discontinuous initial values problems

for methods of different orders. To sum up, we observed the following remarks:

• Solutions of the inviscid Burgers equation subject to discontinuous initial data

results in shock or rarefaction waves.

• In general, the classical solution to the inviscid Burgers equation does not exist

because of the discontinuities appearing in the solution on a finite time period.

• Intersection of the characteristic lines give rise to shock waves which causes to

breaking of the wave.

• The wave breaking phenomenon leads to non-unique solutions for the inviscid

Burgers equation.
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• Beginning from the initial wave profile nonlinear wave becomes distorted for

the inviscid Burgers equation.

• All of these schemes illustrate the behaviour of shock and rarefaction waves

depending on the type of the initial conditions.

• The Lax-Friedrichs scheme is the most dissipative method among all of these

schemes.

• The Lax-Wendroff scheme shows oscillatory motion near the discontinuity.

• The Lax-Friedrichs and Godunov methods exhibit rather monotonic behaviour

compared to the Lax-Wendroff methods.

• The Godunov method shows less diffusive and oscillatory behaviour compared

to the other methods.

As a result, the construction of the Lax-Friedrichs, Godunov, Lax-Wendroff methods

for the inviscid Burgers equation have been analyzed. We have demonstrated the

behaviours of the solution in the figures. To this end, we chose distinct initial wave

profiles. In this work, we have shown that the inviscid Burgers equation is a useful

model allowing the shock and rarefaction waves.
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