ELECTRICAL CHARACTERIZATION OF ELECTRON SELECTIVE TITANIUM DIOXIDE AND HOLE SELECTIVE MOLYBDENUM TRIOXIDE HETEROCONTACTS ON CRYSTALLINE SILICON

A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY

BY DOĞUŞCAN AHİBOZ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN PHYSICS

SEPTEMBER 2017
Approval of the thesis:

ELECTRICAL CHARACTERIZATION OF ELECTRON SELECTIVE TITANIUM DIOXIDE AND HOLE SELECTIVE MOLYBDENUM TRIOXIDE HETEROCONTACTS ON CRYSTALLINE SILICON

submitted by DOĞUŞCAN AHİBOZ in partial fulfillment of the requirements for the degree of Master of Science in Physics Department, Middle East Technical University by,

Prof. Dr. Gülbin Dural Unver  _______________________
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Altuğ Özpincelci  _______________________
Head of Department, Department of Physics

Prof. Dr. Raşit Turan  _______________________
Supervisor, Department of Physics, METU

Examiner Committee Members:

Prof. Dr. Çiğdem Erçelebi  _______________________
Physics Dept., METU

Prof. Dr. Raşit Turan  _______________________
Physics Dept., METU

Assoc. Prof. Dr. Alpan Bek  _______________________
Physics Dept., METU

Asst. Prof. Dr. Selçuk Yerci  _______________________
EEE Dept., METU

Assoc. Prof. Dr. Nurdan Demirci Sankır  _______________________
MSNT Dept., TOBB ETU

Date: 08/09/2017
I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work.

Name, Last name: Doğuşcan Ahiboz

Signature:
ABSTRACT

ELECTRICAL CHARACTERIZATION OF ELECTRON SELECTIVE TITANIUM DIOXIDE AND HOLE SELECTIVE MOLYBDENUM TRIOXIDE HETEROCONTACTS ON CRYSSTALLINE SILICON

Ahiboz, Doğuşcan

M. S., Department of Physics

Supervisor: Prof. Dr. Raşit Turan

September 2017, 79 pages

Transition metal oxides are promising materials as an alternative to the conventional charge transport layers in photovoltaic solar cells with the advantages of carrier selectivity and low processing temperatures. In this study, electronic properties of the hole transporting – electron blocking layer (HT-EBL) of sub-stoichiometric Molybdenum (III) Oxide (MoO$_{3-x}$) and electron transporting – hole blocking layer (ET-HBL) of Titanium (II) Oxide (TiO$_{2-x}$) were studied. For this purpose, carrier selective metal oxide layers with different thickness and deposition conditions were deposited over n-type and p-type crystalline silicon wafers in the structure of Metal-Oxide-Semiconductor (MOS) capacitor. Admittance analysis (capacitance and conductance methods) and current – voltage methods were employed for the characterization of the MOS capacitors. At the end of this study, best deposition
condition and the metal oxide thickness for the most effective carrier transportation at the silicon–metal oxide interface and through the metal oxide layer were determined.

**Keywords:** Sub-stoichiometric Titanium Dioxide, Sub-stoichiometric Molybdenum Trioxide, Admittance Measurement, Current Voltage Measurement, Hole Selectivity, Electron Selectivity.
ÖZ

SİLİSYUM ALTTAŞ ÜZERİNDE BÜYÜTÜLMÜŞ, ELEKTRON GEÇİRGEN TITANYUM DİOKSİT VE HOL GEÇİRGEN MOLİBDEN TRİOKSİT İNCE FİLM TABAKALARININ ELEKTRİKSEL KAREKTERİZASYONU

Ahiboz, Doğuşcan

Yüksek Lisans, Fizik Bölümü

Tez Yöneticisi: Prof. Dr. Raşit Turan

Eylül 2017, 79 sayfa

Anahtar kelimeler: eksik katlı titanyum dioksit, eksik katlı molibden trioksit, admitans ölçümü, akım gerilim ölçümü, elektron geçirgenliği, hol geçirgenliği.
To my family
ACKNOWLEDGMENTS

First and foremost I offer my heartfelt gratitude to my supervisor, Prof. Dr. Raşit Turan, who has supported me during the course of my thesis with his patience and knowledge at the same time as allowing me the room to work in my own way. I attribute the level of my Masters degree to his encouragement and effort and without him this thesis, too, would not have been completed.

I would like to thank Dr. Hisham Nasser who encouraged me to study transition metal oxide, for many perceptive conversations during the development of the ideas in this thesis, and for helpful comments and reviews on the text.

I am much obliged to GÜNAM members Prof. Dr. Mehmet Parlak, Hande Emine Çiftpinar, Dr. Fırat Es, and Ergi Dönerçark for their help during my research. I am also highly grateful to Dr. Özlen Ferruh for her guidance and valuable comments.

I am very thankful to my precious friends Gilda Afshari (Zerrin Taş), Nevra Akalın, Merve Akkaya, Erolcan Akbaba, Koray Kaymazlar and Fırat Yalçın who I spent my years together at the physics department.

I feel very lucky to have valuable friendship and support of Yasemin Durmuş, Havle Güney, Serra Memiş, Başak Sezgi Bilen. I appreciate the joy Araylim Gaipova and my beloved bacanak Okan Ata Küçük brought to my house while I am dealing with this thesis.

My uttermost gratitude to Özge Azeri for her love, patience and invaluable support which have been encouraging me in my professional and personal life. It is my greatest honor and biggest happiness to have her in my life.

The last but not the least, specials thanks to my mother Feriha Gül supporting me whenever I need her, and my grandparents who brought me up with love and encouragement - Saadet Gül and Ahmet Kaya Gül. I would like to thank all members of my family for their continuous affection and heartening.
# TABLE OF CONTENT

ABSTRACT ........................................................................................................................................... v
ÖZ ...................................................................................................................................................... vii
ACKNOWLEDGMENTS ........................................................................................................................ x
TABLE OF CONTENT ......................................................................................................................... xi
LIST OF TABLES .................................................................................................................................... xiii
LIST OF FIGURES .................................................................................................................................. xiv
LIST OF ABBREVIATIONS ................................................................................................................... xvii

CHAPTERS

1. INTRODUCTION ............................................................................................................................... 1

  1.1. Semiconductor Heterojunctions ................................................................................................. 2
      1.1.1. Band Alignment of Heterojunctions ............................................................................... 3
      1.1.2. Current Characteristics of a Heterojunction ................................................................. 6
      1.1.3. Capacitance of a Heterojunction .................................................................................... 16
      1.1.4. Differential Conductance of a Heterojunction .............................................................. 21

  1.2. Metal – Oxide – Semiconductor Capacitors ........................................................................... 22
      1.2.1. Equilibrium Under Applied External Potential Difference ........... 23
      1.2.2. Charges Trapped at Interface and Inside Oxide Layer ................................................. 29
      1.2.3. Equivalent Circuit Models of MOS Capacitor. ......................................................... 31
      1.2.4. Admittance of a MOS Capacitor .................................................................................. 33
      1.2.5. High-Frequency Curve of a MOS Capacitor ............................................................ 36
      1.2.6. The Conductance Method ............................................................................................ 37

  1.3. Electrical Conduction in Amorphous Semiconductors ....................................................... 39
LIST OF TABLES

Table 1. Measured electrical parameters of TiO$_{2-x}$/n-tye cSi MOS capacitors with different ALD temperature ................................................................. 55
Table 2. Measured electrical parameters of TiO$_{2-x}$/n-tye with 250 ALD temperature before and after PDA cSi MOS capacitors with different ALD temperature .......... 60
Table 3. Effect of the MoO$_{3-x}$ thickness on MoO$_{3-x}$/p-type cSi MOS capacitors’ electrical parameters ........................................................................................................ 64
Table 4. Effect of the PDA on the electrical properties of 90 nm p-type MoO$_{3-x}$–cSi MOS capacitor ........................................................................................................ 66
LIST OF FIGURES

Figure 1. Band diagram of two distinct semiconductors before heterojunction formation .......................................................................................................................................................... 3

Figure 2. Energy levels before heterojunction formation (left) and band alignments of (a) p-n, (b) n-p, (c) n-n, (d) p-p semiconductors ................................................................. 4

Figure 3. A step function for a particle with an energy less than barrier height .... 11

Figure 4. A generic potential barrier approximated as infinitesimal rectangular potential barriers .......................................................................................................................... 13

Figure 5. Direct and Fowler-Nordheim tunneling through barrier ................... 15

Figure 6. Schematic diagram of a parallel plate capacitor .................................. 16

Figure 7. Space–charge region of an isotype heterojunction. ......................... 18

Figure 8. A schematic of a typical MOS capacitor .......................................... 23

Figure 9. Band diagram of an ideal MOS capacitor at equilibrium without any external applied potential difference ................................................................................................. 24

Figure 10. MOS capacitor at accumulation condition (a) charge distribution over MOS capacitor, (b) band diagram ........................................................................................................ 25

Figure 11. MOS capacitor at flat band condition (a) charge distribution over MOS capacitor, (b) band diagram ........................................................................................................ 26

Figure 12. MOS capacitor at depletion condition (a) charge distribution over MOS capacitor, (b) band diagram ........................................................................................................ 27

Figure 13. MOS capacitor at inversion condition (a) charge distribution over MOS capacitor, (b) band diagram ........................................................................................................ 28

Figure 14. Oxide–semiconductor interface in the presence of interface trapped states ........................................................................................................................................ 30

Figure 15. PPC circuit models for a MOS capacitor; (a) general form, (b) accumulation, (c) depletion, (d) inversion .................................................................................... 32

Figure 16. Equivalent circuits of a MOS capacitor; (a) exact, (b) simplified, (c) measured........................................................................................................................................ 33
Figure 17. High frequency capacitance–voltage curves of an n–type MOS capacitor; (a) without traps charges, (b) with oxide charges and interface trapped charges. ..... 37
Figure 18. Density of electronic states in an amorphous semiconductor.................. 40
Figure 19. Energy band diagram of n-n isotype TiO$_{2-x}$ – cSi heterojunction.......... 42
Figure 20. Energy band diagram of MoO$_{3-x}$/p-type cSi n-p anisotype heterojunction ............................................................. 44
Figure 21. Atomic layer deposition cycle ................................................................. 46
Figure 22. Thermal evaporation deposition mechanism ............................................. 47
Figure 23. (a) Schematic of Transition Metal-Oxide-Semiconductor (TMOS) capacitor(b) actual device (top view)................................................................. 48
Figure 24. Electrical measurement setup schematics............................................. 49
Figure 25. (a) C-V, (b) G-V, and (c) R$_s$-V high frequency hysteresis curves of n-type TiO$_{2-x}$ MOS capacitor deposition at 200°C..................................................... 52
Figure 26. $\sigma$-$\omega$ graph of n-type TiO$_{2-x}$ MOS capacitor deposited at 200°C........ 53
Figure 27. Thickness and band gap of the TiO$_{2-x}$ prepared at different deposition temperatures as measured by spectroscopic ellipsometry.............................. 54
Figure 28. C-V characteristics of the TiO$_{2-x}$ – cSi MOS MOS capacitors with different ALD temperatures under 1MHz AC modulation frequency................................. 55
Figure 29. J-V curves in semi-log scale for the MOS capacitors with different deposition .................................................................................................................. 57
Figure 30. C-V curves of the TiO$_{2-x}$/ n-type- cSi MOS capacitors with 250°C ALD temperature annealed at 300°C and 350°C under 1MHz AC modulation frequency 59
Figure 31. Frequency dependence of the accumulation capacitance of the MOS capacitor deposited at 250°C and treated with different post-deposition temperatures. ........................................................................................................... 60
Figure 32. G-V curves of the TiO$_{2-x}$/ n-type- cSi MOS capacitors with 250°C ALD temperature annealed at 300°C and 350°C under 1MHz AC modulation frequency 62
Figure 33. J-V curves of the TiO$_{2-x}$/ n-type- cSi MOS capacitors with 250°C ALD temperature annealed at 300°C and 350°C ................................................................. 62
Figure 34. Hf-Capacitance-Voltage characteristics of 90 nm MoO$_{3-x}$/p-type cSi MOS capacitor ........................................................................................................ 63
Figure 35. Hf -Capacitance-Voltage characteristics of MoO$_{3-x}$/p-type cSi MOS capacitor with different MoO$_{3-x}$ thicknesses under 500kHz AC modulation.............65

Figure 36. Hf -Capacitance-Voltage characteristics of MoO$_{3-x}$/p-type cSi MOS capacitor with different MoO$_{3-x}$ thicknesses under 500kHz AC modulation.............66

Figure 37. Normalized C-V curves at 1 MHz AC modulation frequency of 90 nm p-type MoO$_{3-x}$ – cSi MOS capacitors with different PDA temperatures. .........................67

Figure 38. G-V curves at 1 MHz AC modulation frequency of 90 nm p-type MoO$_{3-x}$ – cSi MOS capacitors with different PDA temperatures. ........................................69

Figure 39. Separation of charge carrier on the carrier bands of MoO$_{3-x}$/c-Si n-p anisotype heterojunction under negative DC bias (a) without gap states (b) with gap states, and (c) without applying DC bias in the presence of gap states.......................70
LIST OF ABBREVIATIONS

HT-EBL  Hole transporting-electron blocking layer
ET-HBL  Hole blocking-electron transporting layer
MoO$_3$  Exact stoichiometric molydenum trioxide
MoO$_{3-x}$  Sub-stoichiometric molybdenum trioxide
TiO$_2$  Exact stoichiometric titanium dioxide
TiO$_{2-x}$  Sub-stoichiometric titanium dioxide
MOS    Metal oxide semiconductor
TMOS   Transition metal oxide semiconductor
CB     Conduction band
VB     Valence band
$E_g$  Band gap energy
$E_C$  Conduction band edge energy
$E_V$  Valence band edge energy
$E_F$  Fermi level energy
$E_i$  Intrisic fermi level energy
DC     Direct current
AC     Alternating current
SCR    Space charge region
PPC    Parallel Plate Capacitor
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>Silicon Dioxide</td>
</tr>
<tr>
<td>PDA</td>
<td>Post deposition annealing</td>
</tr>
<tr>
<td>ALD</td>
<td>Atomic Layer Deposition</td>
</tr>
<tr>
<td>TDMAD</td>
<td>Tetrakis(dimethylamido)titanium</td>
</tr>
<tr>
<td>HF</td>
<td>Hydrogen Flourur</td>
</tr>
<tr>
<td>UV-Vis</td>
<td>Ultra violet-vissible</td>
</tr>
<tr>
<td>FN</td>
<td>Fowler Nordheim</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

Crystalline silicon (cSi) based solar cells consisting of diffusion-doped homojunctions, such as standard (sometimes called Aluminum Back Surface Field Al-BSF) and Passivated Emitter and Rear Contact (PERC) designs which require high thermal budget, to effectively separate photogenerated charge carriers have dominated the photovoltaic industry for the last decades [1]. In these types of homojunction designs, solar cells carrier selectivity is usually achieved by forming heavily doped Si zones which require high production costs and complicated deposition systems. Fabricating a cost effective homo-junction cSi solar cell is usually accompanied with several technological as well as optoelectronic challenges including Auger recombination, minority carrier transport, recombination based losses, and the need of indispensable elevated temperature doping processes [2]. Considerable number of the above mentioned challenges can be eliminated by the use of selective contacts to completely replace doped silicon layers while holding the capacity to effectively separate photogenerated charge carriers without exploiting high temperature doping processes [3].

Recently, sub-stoichiometric molybdenum trioxide has been attempted to substitute p-type amorphous silicon layer in Silicon Heterojunction (SHJ) [4] Solar Cell and 22.5% conversation efficiency has been reported [5]. More feasible cell architecture with hole collecting MoO$_3$$_x$ deposited on top of n-type crystalline silicon (moly-poly) and p-type crystalline silicon (moly-BSR) were established with conversation efficiencies of 16.7% and 16.4% respectively [6]. Even more simpler and cost effective low temperature budget concept, the Dopant Free Hetero-Contact; DASH Cell as
illustrated, has been recently introduced with photon conversation efficiency of 19.42% [2].

Titanium dioxide (TiO$_2$) has been intensively utilized in a wide range in the field of semiconductor, environmental sciences, and industry owing to its chemical stability, distinct optical and electrical properties, and non-toxicity [7]-[8]. Its high dielectric constant ($\kappa$) makes it a suitable candidate to serve as a passivation layer in cSi solar cells and gate dielectric with even thinner thicknesses than that can be achieved by other dielectric materials such as SiO$_2$ and Si$_3$N$_4$ [9],[10]. Recently, TiO$_2$ has attracted an attention as carrier selective transport layer in photovoltaic devices [11].

In recent times, cSi solar cells based on TiO$_{2-x}$ electron transport and surface passivation layer have been demonstrated by Gad et al. and integrated in high efficiency cSi solar cell designs with efficiencies exceeding 20% [12],[13]. Moreover, TiO$_2$ has been used in organic solar cells designs such as dye-sensitized and organic heterojunction bulk structures as transport layer or protection layer against degradation [14].

1.1. Semiconductor Heterojunctions

A heterojunction is formed when two semiconductors with different bandgap energies ($E_g$), dielectric constant ($\varepsilon$), electron affinity ($q^{\chi}$), and work function ($q\phi_s$) are connected [15]. Figure 1 illustrates energy band diagram of the two semiconductors (n-type semiconductor-1 and p-type semiconductor-2) materials before the junction between the two semiconductors is formed. Contrary to semiconductor homojunction, the conduction band energy levels ($\Delta E_c$) of two semiconductors ($E_{C1}$ and $E_{C2}$) as well as the valance band energy levels ($\Delta E_V$) of two semiconductors ($E_{V1}$ and $E_{V2}$) are not equal.
1.1.1. Band Alignment of Heterojunctions

When the two semiconductor in the Figure 1 form a heterojunction, free charge carriers are exchanged between the semiconductors until a thermodynamic equilibrium is achieved. Thermodynamic equilibrium requires Fermi levels of any two semiconductor materials which are in contact to be balanced. Band alignment of isotype (p-p and n-n) and anisotype (p-n and n-p) heterojunctions are depicted in figure 2 according Anderson’s method [16]. Each heterojunction in Figure 2 has an abrupt interface which means that the interface region is very thin (few atomic layers) concerning carrier diffusion lengths. The work functions of the two different semiconductors \( W_1 = \phi_{f1} \) and \( W_2 = q\phi_{f2} \) for semiconductor-1 and semiconductor-2, respectively) change after thermodynamic equilibrium is established since Fermi levels of two semiconductors \( \phi_{f1} \) and \( \phi_{f2} \) are balanced at the equilibrium. As a consequence, a potential gradient close to carrier band edges of the semiconductors is formed. This gradient can be modeled as a sharp potential barrier as shown in Figure 2. By treating them as a Schottky barrier, a built-in potential \( (\phi_{bi}) \) can be related to

**Figure 1.** Band diagram of two distinct semiconductors before heterojunction formation
**Figure 2.** Energy levels before heterojunction formation (left) and band alignments of (a) p-n, (b) n-p, (c) n-n, (d) p-p semiconductors.
band bending between band edges of the two semiconductors according to the following relation:

\[ \phi_{bi} = \phi_{b1} + \phi_{b2} \]  

(1)

where \( \phi_{bi} \) and \( \phi_{b2} \) are the band bendings in semiconductor-1 and semiconductor-2, respectively [15]. Band bending is due to the fact that \( \phi_i \) is constant everywhere within the heterojunction.

If the energy difference between conduction or valence band edges of two semiconductors is very large, a band discontinuity occurs in addition to the band bending. These band discontinuities are the reasons of the energy band differences \( \Delta E_C \) and \( \Delta E_V \) for conduction and valence band of two semiconductors, respectively. \( \Delta E_C \) is expressed according to Anderson’s electron affinity as [17]:

\[ \Delta E_C = q\chi_1 - q\chi_2 \]  

(2)

where \( q\chi_1 \) and \( q\chi_2 \) are electron affinities of two semiconductors. However, a more general approach on \( \Delta E_C \) is required since the electric displacement \( \vec{D} \) at the junction is not continuous due to the presence of dipoles or charges trapped at the interface thus \( \Delta E_C \) is given by [18]

\[ \Delta E_C = q\chi_1 - q\chi_2 + \delta_{dip} \]  

(3)

where \( \delta_{dip} \) is dipole potential at the interface.
1.1.2. Current Characteristics of a Heterojunction

Current density \( (J) \) passing through a p-n junction is the sum of two different currents

\[
J = J_{\text{diff}} + J_{\text{drift}}
\]  \hspace{1cm} (4)

where \( J_{\text{diff}} \) is the diffusion current originated from particle exchange due to the difference in some charge carriers between p-type and n-type semiconductors. \( J_{\text{drift}} \) is created by the movement of the charge carriers yet to be \( \overline{D} \) Current density \( (J) \)-applied bias \( (V) \) characteristics of an ideal p-n homojunction diode is given by the following relation:

\[
J = J_o \left[ \exp \left( \frac{qV}{k_B T} \right) - 1 \right]
\]  \hspace{1cm} (5)

where \( k_B \) is the Boltzmann constant, \( T \) is temperature, \( V \) is applied DC bias, and \( J_o \) is saturation current density. \( J \) in the relation (4) is an idealization which assumes that electrical field across the interface between two semiconductors is continuous and the junction between them is abrupt. A fitting parameter \( \eta \) modifies relation (5); also known as diode ideality factor, which bears the effect of non-idealities such as discontinuous \( \overline{D} \) at interface of a p-n junction. Such non-uniformities are originated from the interface dipoles or charges trapped interface. A more general model for \( J \) is given as

\[
J = J_o \left[ \exp \left( \frac{qV}{\eta k_B T} \right) - 1 \right]
\]  \hspace{1cm} (6)
which is valid for metal–semiconductor and semiconductor- semiconductor junctions. In the case of $J_{\text{diff}}$ is the dominant term in equation 2, $\eta$ is $\sim 1$ (ideally $\eta = 1$). When $J_{\text{diff}} \sim J_{\text{drift}}$, $\eta = 2$. At high $V$ values, $\eta > 2$ due to series resistance ($R_s$). Another reason for the $\eta$ being larger than 2 is the case when there is a high-level injection of minority carriers into the diode. Most of the experimental results in the absence of the high-level injection can be modeled as in forward bias by neglecting generation-recombination current densities [15].

In general, different magnitudes of band discontinuities and barrier heights at carrier bands (Figure 2) in heterojunctions result in domination of total current by a single type of carrier (holes or electrons). Thermionic emission theory of a metal-semiconductor junction can be used for modeling anisotype heterojunction. $J$ through an anisotropic heterojunction is given by [16]

\[ J = J_{01} \exp \left( \frac{-q \phi'_1}{k_B T} \right) - J_{02} \exp \left( \frac{-q \phi'_2}{k_B T} \right) \]  

(7)

where $\phi'_1$ and $\phi'_2$ are barrier heights under applied DC bias, $J_{01}$ and $J_{02}$ are reverse saturation currents of semiconductor-1 and semiconductor-2, respectively. $J_{01}$ and $J_{02}$ are determined by three different parameter: i) doping densities of semiconductor-1 and semiconductor-2, ii) electronic conduction mechanism, and iii) effective mass of the charge carriers in the semiconductor materials [19]. It is clearly seen from relation (6) that two potential barriers determine the carrier transport. Anisotype heterojunction depicted in figure 2(b), which is not yet to be applied any external potential difference ($V$), an electron in CB of semiconductor-1 experiences a barrier of $q\phi_1$. Similarly, a hole in VB of semiconductor-2 experiences barrier of $\Delta E_V - q\phi_2$. As soon as thermodynamic equilibrium is established, the net current $J$ must be zero. In that case, $J_{01}$ and $J_{02}$ can be related using relation (6) [19]
\[ J_{01} \exp \left[ -\frac{q\phi_1}{k_B T} \right] = J_{02} \exp \left[ -\frac{(\Delta E_V - q\phi_2)}{k_B T} \right] \]  

(8)

and \( J_{02} \) is

\[ J_{02} = J_{01} \exp \left[ -\frac{q\phi_1}{k_B T} \right] \exp \left[ -\frac{(q\phi_2 + q\phi_1 - \Delta E_V)}{k_B T} \right] \]  

(9)

By putting (8) into (6) current density \( J \) can be expressed as

\[ J = J_{01} \exp \left( -\frac{q\phi_1}{k_B T} \right) \left[ \exp \left( -\frac{q(\phi'_1 - \phi_1)}{k_B T} \right) - \exp \left( \frac{\Delta E_V - q\phi'_2 - q\phi_2}{k_B T} \right) \right] \]  

(10)

or

\[ J = J_{01} \exp \left( -\frac{q\phi_1}{k_B T} \right) \left[ \exp \left( \frac{q\phi_{S1}}{k_B T} \right) - \exp \left( -\frac{q\phi_{S2}}{k_B T} \right) \right] \]  

(11)

\( \phi_{S1} \) and \( \phi_{S2} \) are the potentials of neutral regions of semiconductor-1 and semiconductor-2, respectively. By the fact that electric \( \vec{D} \) is continuous at an abrupt junction, a solution of Poisons’ equation gives

\[ N_1\varepsilon_1(\phi_1 - \phi_{S1}) = N_2\varepsilon_2(\phi_2 - \phi_{S2}) \]  

(12)

where \( N_1 \) and \( N_2 \) are the doping densities, \( \varepsilon_1 \) and \( \varepsilon_2 \) dielectric constants of semiconductor-1 and semiconductor-2, respectively [19]. Putting relation (11) into (10) the following relation is obtained:
\[ J = J_{01} \exp \left( \frac{-q\phi_1}{k_BT} \right) \left\{ \exp \left[ \frac{qV}{mk_BT} \right] - \exp \left[ -\frac{q(m - 1)V}{mk_BT} \right] \right\} \]  \hspace{1cm} (13)

where \( m \) is given by

\[ m = 1 + \frac{N_1\varepsilon_1}{N_2\varepsilon_2} \]  \hspace{1cm} (14)

Unless a heterojunction is driven into high injection condition, \( J \) is limited by the diffusion rate of electrons from semiconductor-1 to semiconductor-2. Therefore, \( J_{01} \) is equal to \( J_{\text{diff}} \) of electrons according to the following relation

\[ J_{01} = XqN_1 \frac{D_n}{L_n} \]  \hspace{1cm} (15)

where \( N_1 \) is the acceptor density, \( D_n \) and \( L_n \) are the electron diffusivity and electron diffusion length, respectively. Parameter \( X \) is the probability of an electron which has enough energy to cross the potential barrier at the junction to succeed to transport through to the semiconductor-2 from the semiconductor-1.

An isotype and an anisotype heterojunctions differ from each other by carrier transport mechanism at low injection levels. In general, \( \phi_{b1} - \phi_{s1} \gg \phi_{b2} - \phi_{s2} \) hence the isotype heterojunction behaves like semiconductor – metal junction[20]. Therefore, \( J \) is governed by the thermionic emission of electrons which is given by the Richardson–Dushman equation as [21]

\[ J_{Th} = A_T(k_BT)^2 \exp \left( -\frac{q\phi_b}{k_BT} \right) \]  \hspace{1cm} (16)
where $\phi_b$ is the height of the potential barrier which electrons have to overcome to be emitted while $A_T$ is given by

$$A_T = \frac{em_e}{2\pi^2h^3} \tag{17}$$

where $e$, $m_e$ and, $h$ are the fundamental electronic charge, effective mass of electron in the material in which emission takes place, and reduced Planck constant, respectively. In thermionic emission theory, it is assumed that an electron with energy greater than $q\phi_b$ which is heading towards barrier region is just transported. $J_{Th}$ of n-n isotype heterojunction (Figure 2(b)) is given by [22]

$$J = J_0 \left(1 - \frac{V}{\phi_{bi}}\right) \left[\exp\left(\frac{qV}{k_B T}\right) - 1\right] \tag{18}$$

where reverse saturation current is

$$J_0 = q^2N_{D1}\phi_{bi}(2\pi m_e k_B T)^{-\frac{1}{2}} \left[\exp\left(\frac{q\phi_{bi}}{k_B T}\right)\right] \tag{19}$$

$N_{D1}$ is the donor concentration on the semiconductor-1. However, thermionic emission model is not sufficient at high voltages and doping levels. The barrier heights and shapes in the Figure 2, quantum mechanical tunneling current mechanism must be considered.

Time independent solution of the Schrödinger equation for a particle under a potential in 3 dimensions is expressed as:
\[ \frac{\hbar}{2m} \nabla^2 \psi(r) + \phi_o \psi(r) = E \psi(r) \] (20)

Where \( \psi(r) \) and \( \phi_o \) are state function and potential that particle experienced, respectively. When a particle experiences a step potential barrier, as shown in figure 3, solution of the Schrödinger equation is obtained by considering suitable boundary conditions in one dimension as following[23]:

\[
\psi(x) = \begin{cases} 
A e^{ikx} + Be^{-ikx} & ; \quad x < -\frac{d}{2} \\
C e^{ikx} + De^{-ikx} & ; \quad -\frac{d}{2} < x < \frac{d}{2} \\
F e^{ikx} & ; \quad x > \frac{d}{2} 
\end{cases}
\] (21)

**Figure 3.** A step function for a particle with an energy less than barrier height
$A, B, C, D,$ and $F$ are constants in the solution of the Schrödinger’s equation in three different regions in spatial extent and $d$ is the thickness of the barrier. Wave vector where the potential is zero is $k$, and similarly, $\kappa$ is the wave vector where the particle is yet to be experienced potential which are given by:

$$k = \left(\frac{2mE}{\hbar^2}\right)^{1/2} \quad \text{and} \quad \kappa = \left(\frac{2m(\phi_o - E)}{\hbar^2}\right)^{1/2} \quad (22)$$

Coefficient $A$ in the (21) is related to the amplitude of the wave coming from region-III. After knowing $A$, other coefficients can be determined. Likely, $A$ can be determined for a physical system by sending a current of particles which amplitude can be determined easily, i.e., changing the working power of a hot filament emitting electrons through a potential barrier. By knowing the coefficient $F$, amplitude of wave transmitted wave can be determined so that transmission $T$ probability can be determined according to the following relation:

$$T = \left|\frac{F}{A}\right|^2 = \left[1 + \frac{\phi_o^2}{4E(\phi_o - E)} \sinh^2\left(d\sqrt{\frac{2m(\phi_o - E)}{\hbar}}\right)\right]^{-1} \quad (23)$$

By defining a function such that

$$\Gamma(d, \phi_o, E) = \frac{\phi_o^2}{2E(\phi_o - E)} \sinh^2\left(d\sqrt{\frac{2m(\phi_o - E)}{\hbar}}\right) \quad (24)$$

By using relation (23), relation (22) is simplified as
\[ T = \frac{1}{1 + \Gamma(d, \phi_o, E)} \]  

Physical picture which is emerging from the equation (24) is highly idealized, indeed, most of the physical system has no well-defined potential barrier like that. However complex potential barriers similar to the ones in Figure 4 can be approximated as collections of infinitesimally thin rectangular potential barriers.

![Figure 4](image)

**Figure 4.** A generic potential barrier approximated as infinitesimal rectangular potential barriers.

For the infinitesimal \( i \)th barrier with length \( dx \) equation (24) becomes

\[ \Gamma_i(dx, \phi_o, E) = \frac{\phi_o^2}{4E(\phi_o - E)} \sinh^2 \left( \frac{dx \sqrt{2m(\phi_o - E)}}{\hbar} \right) \]

Expanding the hyperbolic term in power series and neglecting the higher order terms in (25) gives:
\[ \Gamma_i(d, \phi_o, E) = \frac{\phi_o^2}{4E(\phi_o - E)} \frac{2m(\phi_o - E)(dx)^2}{6\hbar^2} \]  

(27)

Probability of the particle to be tunneled from \( x_1 \) to \( x_2 \) is given by

\[ T = \prod_i T_i \approx e^{-\frac{2\sqrt{2m}}{\hbar} \int_{x_1}^{x_2} \sqrt{\phi_o - E}} dx \]  

(28)

When the energy of a particle is smaller than the potential barrier edge at both side of the barrier, tunneling process \( i \) called direct tunneling. A thin layer of dielectric material can be considered as a rectangular potential barrier when charge carriers incident on it. When a linear dielectric experiences an external electric field \( \vec{F} \) or charges are embedded in the dielectric, the potential at either sides of the dielectric changes. The potential at a point on the dielectric can be obtained after some basic electrostatic analysis as follows:

\[ \phi(x) = \phi_b - qF \]  

(29)

This potential drop transforms the rectangular potential barrier into trapezoidal potential barrier in the Figure 5. Putting the relation (28) into relation (27) gives:

\[ T_{direct} = e^{-\frac{4\sqrt{2m}}{3q\hbar E} \left[ (\phi_o - E)^{3/2} - (\phi_o - E - qdF)^{3/2} \right]} \]  

(30)

If a current density \( J_0 \) flows through a dielectric potential barrier such as the barrier in Figure 5 and the average energy of the electron is less than both \( \phi_a \) and \( \phi_b \), a current
density J is measured at the other side of the barrier. The direct tunneling probability is given by:

\[ T_{\text{direct}} = \frac{I}{I_0} \quad (31) \]

Therefore, direct tunneling current density \( J_{\text{direct}} \) is given by

\[ J_{\text{direct}} = J_0 e^{-\frac{4\sqrt{2m}}{3q\hbar E}(\phi_o - E)^{3/2} - (\phi_o - E - q_dF)^{3/2}} \quad (32) \]

When the tunneling occurs through a triangular (Figure-5), it is called Fowler – Nordheim tunneling. In this case equation (30) becomes by Wentzel-Kramers-Brillouin (WKB) approximation as:

\[ J_{\text{FN}} = J_0 e^{-\frac{4\sqrt{2m}}{3q\hbar E}(\phi_o - E)^{3/2}} \quad (33) \]
1.1.3. Capacitance of a Heterojunction

A parallel plate capacitor (PPC) is a device which consists of a dielectric material sandwiched between two conducting plates as shown in Figure 6.

![Figure 6. Schematic diagram of a parallel plate capacitor](image)

Capacitance is an electrical response when a potential difference applied across a material as shown in Figure 6. When a potential difference between the conductor plates is applied, charges with different polarities yet with the same number accumulate on the opposite sides of the dielectric material. Capacitance of a PPC is given by

$$C = \frac{Q}{V} \quad (34)$$

By solving Poisson’s equation at the boundaries, capacitance of PPC can be found as
where \( \kappa \) is the relative dielectric constant, \( d \) is the thickness dielectric material, and \( A \) is the area of dielectric – conductor interface (\( A = l \times w \) in Figure 6).

When potential difference between the two conductors is originated from a small amplitude time-varying \( \vec{E} \) then the capacitance of the PPC is considered as differential capacitance given by

\[
C = \kappa \varepsilon_0 \frac{A}{d}
\]  

A semiconductor p-n junction can be modeled as two PPC with depletion approximation. Depletion approximation is based on the assumption that space charge region, \( d_1 \) and \( d_2 \) as shown in Figure 7, is free from mobile charge carriers. Only fixed charges exist due to the presence of fixed charges, i.e., dopant atoms (\( N_A^- \) and \( N_D^+ \)).

The neutral region of semiconductor and interface at semiconductor-1 and semiconductor-2 abrupt junction is considered as two conductors and space charge region (SCR)-1 as a dielectric layer. Indeed, similar arguments hold for SCR-2. Hence, total capacitance of the space charge region is

\[
C_{SC} = \frac{C_1 + C_2}{C_1 C_2}
\]
where $C_1$ and $C_2$ are the capacitance of SCR-1 and SCR-2 and $C_{SC}$ is the total capacitance of space charge region. As mentioned in section 1.1.2, electrostatic boundary conditions require $\mathbf{D}$ to be continuous at the junction according to the following expression:

$$\varepsilon_1 \mathbf{D}_1 = \varepsilon_2 \mathbf{D}_2$$

where $\varepsilon_1 = \kappa_1 \varepsilon_0$ and $\varepsilon_2 = \kappa_2 \varepsilon_0$ are the dielectric constant, $\mathbf{D}_1$ and $\mathbf{D}_2$ are the electric displacement in semiconductor-1 and semiconductor-2, respectively. $\phi_{b1}$ and $\phi_{b2}$ can be found by solving Poisson’s equation with boundary condition presented in relation (38) with assumption of an abrupt junction for an anisotype heterojunction (Figure 7) as:

$$\phi_{b1} = \frac{\varepsilon_2 N_A ( \phi_{bi} - V )}{\varepsilon_1 N_D + \varepsilon_2 N_A}$$

and
\[ \phi_{b2} = \frac{\varepsilon_1 N_D (\phi_{bi} - V)}{\varepsilon_1 N_D + \varepsilon_2 N_A} \]  

(40)

Portion of the space charge regions in Semiconductor-1 and Semiconductor-2 are

\[ d_1 = \left[ \frac{2 \varepsilon_1 \varepsilon_2 N_A (\phi_{bi} - V)}{q N_A (\varepsilon_1 N_D + \varepsilon_2 N_A)} \right]^{\frac{1}{2}} \]  

(41)

and

\[ d_2 = \left[ \frac{2 \varepsilon_1 \varepsilon_2 N_d (\phi_{bi} - V)}{q N_A (\varepsilon_1 N_D + \varepsilon_2 N_A)} \right]^{\frac{1}{2}} \]  

(42)

Total thickness of the space charge region (d = d\(_1\)+d\(_2\)) becomes

\[ d = \left[ \left( \frac{N_D}{N_A} \right)^\frac{1}{2} + \left( \frac{N_A}{N_D} \right)^\frac{1}{2} \right] \left[ \frac{2 \varepsilon_1 \varepsilon_2 (\phi_{bi} - V)}{q (\varepsilon_1 N_D + \varepsilon_2 N_A)} \right]^{\frac{1}{2}} \]  

(43)

Putting equations relations (41) and (42) into relation (37) gives:

\[ C_{SC} = \left[ \frac{q N_A N_D \varepsilon_1 \varepsilon_2}{2 (\varepsilon_1 N_D + \varepsilon_2 N_A) (\phi_{bi} - V)} \right]^{\frac{1}{2}} \]  

(44)

Potential distribution of an isotype heterojunction due to large band discontinuities
Potential distribution can be obtained by the fact that continuity of \( \bar{D} \) holds for the isotype heterojunction [19]
\[
\frac{\varepsilon_2 N_2}{\varepsilon_1 N_1} = \frac{\exp \left( \frac{q(\phi_{b1} - V_1)}{k_BT} \right) - \frac{q(\phi_{b1} - V_1)}{k_BT} - 1}{\exp \left( -\frac{q(\phi_{b2} - V_2)}{k_BT} \right) + \frac{q(\phi_{b2} - V_2)}{k_BT} - 1}
\]

(45)

and \( C_{SC} \) is

\[
C_{SC} = \left\{ \frac{q \varepsilon_2 N_2 \left[ 1 - \frac{k_BT}{q} \left( (\phi_{bi} - V) - (\phi_{b1} - V_1) \left( 1 - \frac{\varepsilon_1 N_1}{\varepsilon_2 N_2} \right) \right)^{-1} \right]}{2(\phi_{b2} - V_2) - k_BT} \right\}^{\frac{1}{2}}
\]

(46)

When a heterojunction is under forward bias, majority carriers are injected from one semiconductor region to the other, i.e., electrons from semiconductor-1 to semiconductor-2 (Figure 7). After crossing the junction, injected minority carrier recombines with majority carrier. This movement of carriers results in a current density flow and change in charge storage in neutral regions of the heterojunction. Total electronic charge in semiconductor-2 in a cross-sectional area (A) due to injections of electrons from the semiconductor-1 is given by [15]:

\[
Q_n = A \frac{L_n^2}{D_n} J_n(x_p) = \tau_n A J_n(x_p)
\]

(47)

Similarly, the total charge in the semiconductor due to the injection of holes is given by:

\[
Q_p = A \frac{L_p^2}{D_p} J_p(x_n) = \tau_p A J_p(x_n)
\]

(48)
where \( n \) and \( p \) stand for electron and holes in n-region and p-region, relatively, and \( \tau \) is the average minority carrier life time. \( J_n(x_p) \) and \( J_p(x_n) \) are diffusion current densities in neutral regions of the semiconductor concerning edges of the space charge region. Using relation (6) diffusion capacitance \( C_d \) can be found as

\[
C_d = A \left[ \frac{L_n^2}{D_n} \frac{dJ_n(x_p)}{dV} + \frac{L_p^2}{D_p} \frac{dJ_p(x_n)}{dV} \right] = A \left[ \tau_n \frac{dJ_n(x_p)}{dV} + \tau_p \frac{dJ_p(x_n)}{dV} \right]
\]  

(49)

By the fact that current is dominated by a single type charge carrier in an isotype heterojunction, one of the terms in relation (48) can be ignored depending on the type of majority carriers. The second term on the right side of relation (48) can be neglected for n-n type heterojunction. Furthermore, \( C_d \) of an n-n isotype heterojunction can be found by inserting relation (18) into relation (48)

\[
C_d = \frac{AXq^2 N_{i,n} T_n}{m k_B T} \exp \left( \frac{-q \phi_1}{k_B T} \right) \left\{ \exp \left[ \frac{qV}{m k_B T} \right] + (m - 1) \exp \left[ \frac{-q(m-1)V}{m k_B T} \right] \right\}
\]

(50)

1.1.4. Differential Conductance of a Heterojunction

The conductance of a material is just the inverse of its resistance. It is a measure how easily a current density flows through a cross sectional area (A) of a material. In case of small potential excitation, differential conductance is given by

\[
G = A \frac{dJ}{dV}
\]

(51)
Conductance of the anisotype heterojunction in Figure 2(b) is obtained by putting relation (12) into relation (50)

\[ G = \frac{Aq^2J_0}{mk_BT} \exp \left( \frac{-q\phi_1}{k_BT} \right) \left\{ \exp \left[ \frac{qV}{mk_BT} \right] + (m - 1) \exp \left[ -\frac{q(m-1)V}{mk_BT} \right] \right\} \]  \hspace{1cm} (52)

Solution for n-n isotype semiconductor is given as:

\[ G = \frac{AXq^2N_1D_n}{mk_BT} \exp \left( \frac{-q\phi_1}{k_BT} \right) \left\{ \exp \left[ \frac{qV}{mk_BT} \right] + (m - 1) \exp \left[ -\frac{q(m-1)V}{mk_BT} \right] \right\} \]  \hspace{1cm} (53)

It is clear that there exists a relation between relation (49) and relation (52) such that

\[ C_D = \tau_n G \]  \hspace{1cm} (54)

for an n-n isotype heterojunction. Similarly, for a p-p isotype heterojunction

\[ C_D = \tau_p G \]  \hspace{1cm} (55)

1.2. Metal – Oxide – Semiconductor Capacitors

A Metal - oxide - semiconductor (MOS) capacitor is a device which importance lays on the fact that it holds a base for very large circuit integration (VLSI) and it is an easy way of studying semiconductor - oxide interface. A typical MOS capacitor is shown in Figure 8 which consists of an oxide layer deposited on a semiconductor and metal contacts deposited over the semiconductor and the oxide layer.
A MOS capacitor differs from a semiconductor junction in two ways; i) space charge region presents just below the oxide – semiconductor interface in semiconductor, ii) total charge neutrality holds for the p-n junction and not for the MOS capacitor. Band diagram for an ideal (defect free abrupt oxide – semiconductor interface and oxide bulk) MOS with n-type semiconductor (n –type MOS) capacitor at equilibrium is depicted in Figure 9. Once a MOS capacitor is in equilibrium, fermi levels of metal \( \phi_m \) and that of the semiconductor \( \phi_s \) line up. If \( \phi_m \neq \phi_s \) before thermal equilibrium is established, CB and VB of semiconductor bend towards equilibrium. Consequently, a potential across the oxide layer is formed which tilts conduction band of the oxide material. This potential is called flat band voltage (since it corresponds to deviation from flat carrier bands). If \( \phi_m = \phi_s \) then \( \phi_{FB} = 0 \), all carrier bands are flat and there is no potential difference across the oxide layer assuming that there exist no charges at oxide – semiconductor interface and within the oxide layer.

1.2.1. Equilibrium Under Applied External Potential Difference

Distribution of charge carriers in an ideal MOS capacitor highly depends on the external field. Charge distribution charges towards to thermodynamic equilibrium after time-independent potential (V) applied. Four different equilibrium
configurations for charge distribution exist depending on magnitude and polarity of $V$; accumulation, depletion, flat band, and inversion.

When positive $V$ (with respect the metal contact on the oxide layer, conventionally) $> \phi_{FB}$ is applied, as shown in Figure 10, $q\phi_m$ increases. After the equilibrium is established, $E_F$ exceeds CB edge of the semiconductor near the interface. Electrons in the semiconductor accumulate beneath the oxide – semiconductor surface. Electrons on the top metal contact are repelled away from the oxide layer in the influence of electrostatic potential. This physical picture of MOS capacitor is called accumulation condition or regime. The oxide layer can be considered as a PPC in the accumulation regime. Oxide capacitance $C_{ox}$ according to PPC model is given by:

\[ C_{ox} = \frac{q}{\epsilon_{ox}} \]

**Figure 9.** Band diagram of an ideal MOS capacitor at equilibrium without any external applied potential difference
\[ C_{ox} = \kappa_{ox} \varepsilon_o \frac{A}{d_{ox}} \]  

where the \( ox \) stands for that quantity, belong oxide material.

If \( V = \phi_{FB} \) then \( \phi_m \) and \( \phi_s \) align at the same level after equilibrium is established. The voltage drop across oxide layer is compensated by \( V \). Therefore; all the bands become flat as shown in Figure 11. In that case, the semiconductor is neutral. The \( \phi_{FB} \) depends on the difference between the \( \phi_m \) and \( \phi_s \) such that

\[ \phi_{FB} = \phi_m - \phi_s = \phi_{ms} \]  

Figure 10. MOS capacitor at accumulation condition (a) charge distribution over MOS capacitor, (b) band diagram

Work function difference between metal and semiconductor \( q\phi_{ms} \) is given by[15]
\[
q\phi_{ms} = q\phi_m - q\phi_s = q\phi_m - \left( q\chi_s + \frac{E_G}{2} - q\phi_B \right)
\]

(58)

Where \( E_G \) is band gap of the semiconductor and \( q\phi_B = E_F - E_i \) is the difference between intrinsic Fermi energy (\( E_i \)) and actual Fermi energy (\( E_F \)) of the semiconductor.

Once negative \( V \) is applied, \( \phi_m \) is lifted up since electrons are injected into metal. Conduction electrons beneath the oxide - semiconductor interface are depleted under the influence of electrostatic potential. A space charge region is created under the interface as shown in Figure12. This condition is usually termed as depletion condition. Charge density exists only on space charge region due to fixed charges inside the semiconductor. Hence, space charge region capacitance \( C_{SC} \) can modeled as PPC and given by

\begin{figure}
\centering
(a) MOS capacitor at flat band condition (a) charge distribution over MOS capacitor, (b) band diagram
\end{figure}
Solution of Poisson’s equation for a potential generic $\psi(x)$ under the interface through the semiconductor at a distance $x$ gives surface potential of the semiconductor $\psi_{sur}$ since $\psi(x)$ is constant at by the definition it can be set as zero[15]

$$\psi_{sur} = \frac{qN_D w_{SC}^2}{2\kappa_s \varepsilon_0}$$

where $w_{SC}$ is the thickness of space charge region, and $\kappa_s$ is the relative dielectric constant of the semiconductor. When $V \ll 0$, a positively-charged inversion layer is formed due to the presence of high $\mathbf{E}$ at the semiconductor surface as depicted in Figure 13.
Without a doubt, the total charge is present in space charge region due to the depleted fixed atoms and inverted layer under the strong inversion condition. Condition for surface inversion is given by \[15\]

\[\psi_{\text{sur}}^{\text{inv}} \approx 2\phi_B = \frac{2k_BT}{q} \ln\left(\frac{N_D}{n_i}\right)\]  

where \(n_i\) is the intrinsic carrier concentration of the semiconductor and \(\text{inv}\) stands for inversion. Once space charge region extends its maximum thickness, strong inversion is formed. Maximum length of space charge region \(w_{\text{max}}\) is given by:

\[w_{\text{max}} = \left(\frac{2\kappa_s \varepsilon_0 \psi_{\text{sur}}^{\text{inv}}}{qN_D}\right)^\frac{1}{2} \approx \left(\frac{4\kappa_s \varepsilon_0 \phi_B}{qN_D}\right)^\frac{1}{2}\]  

Figure 13. MOS capacitor at inversion condition (a) charge distribution over MOS capacitor, (b) band diagram
The condition for applied potential difference to achieve strong inversion defined as a threshold voltage $\phi_T$ is in which $w_{SC}$ reaches its maximum. $\phi_T$ is given as

$$\phi_T = \psi_{sur}^{inv} + \frac{qN_Dw_{max}}{C_{ox}} \approx \left( \frac{4qN_D\phi_B}{C_{ox}^2} \right)^{\frac{1}{2}} + 2\phi_B$$

(63)

The capacitance of the MOS capacitor has a minimum value due to the threshold. A depleted MOS capacitor whose surface is not yet to be inverted can be considered as two capacitors ($C_{ox}$ and $C_{SC}$) in series so that capacitance of the MOS capacitor is

$$C_{min} = \frac{C_{ox}C_{SC}}{C_{ox} + C_{SC}} = \frac{\kappa_{ox}\varepsilon_0 A}{d_{ox} + \frac{\kappa_{ox}}{\kappa_S}w_{max}}$$

(64)

where $C_{min}$ is the minimum capacitance value that the MOS capacitor has.

1.2.2. Charges Trapped at Interface and Inside Oxide Layer

Ideal MOS capacitor is discussed in previous section; ignoring interface effects such as emission and capture of charge carriers and presence of any charge within the oxide layer. However, a MOS capacitor always contains electronic states at the oxide and the semiconductor interfaces. Discontinuity of crystal structure at the surface causes unpaired electrons (dangling bonds). Electronic states at the oxide – semiconductor interface are mostly originated from the unpaired electrons [24]. Figure 14 illustrates electronic states that present at the interface. These states are called as
interface trapped states, and when a charge is trapped in that state, then it is termed as interface trapped charge ($Q_{it}$). Blue shaded area at the interface in Figure 14 represents excited trap states with applied potential difference to MOS capacitor. Trap states with energy level lower than semiconductor midgap (~$E_i$) exhibit acceptor-like behavior while trap states with energy level greater than midgap exhibit like donor type behavior. Capacitance due to the interface trapped charges $C_{it}$ is given by[25]

$$C_{it} = q^2 D_{it}$$  \hspace{1cm} (65)

where $D_{it}$ is the number of charges per unit area trapped at the interface.

Three different types of charges are trapped by oxide[26]. They are categorized as i) fixed oxide charges ($Q_f$) which are the charges originated from oxide fabrication process and have no electrical interaction with the semiconductor, ii) oxide trapped
charges ($Q_{ox}$) which are holes or electrons trapped in the oxide, iii) Mobile ionic charges ($Q_m$) which are mainly due to ionic impurities within the oxide[25].

When a potential difference $V$ is applied across a MOS capacitor, potential drops across the interface and oxide layer. Consequently, $\phi_{FB}$ is not as same value as for an ideal MOS capacitor. $\phi_{FB}$ is given including effects of trapped charges by[25]

$$\phi_{FB} = \phi_{ms} - \frac{1}{C_{ox}} \left( Q_f + Q_{it} + \int_0^{d_{ox}} x d_{ox} \rho_m(x) dx + \int_0^{d_{ox}} x d_{ox} \rho_{ot}(x) dx \right) \quad (66)$$

where $\rho_m$ and $\rho_{ot}$ are charge distributions of mobile ionic and oxide trapped charges within the oxide layer. Effective number of charges in the oxide; $N_{eff}$, can be defined as

$$N_{eff} = \frac{1}{q} (Q_f + Q_m + Q_{ot}) \quad (67)$$

Thus relation (66) can be expressed as

$$\phi_{FB} = \phi_{ms} - \frac{q(D_{it} + N_{eff})}{C_{ox}} \quad (68)$$

1.2.3. Equivalent Circuit Models of MOS Capacitor.

A MOS capacitor can be modeled as series and parallel PPCs whether it is considered as an ideal or actual device. Circuit models for capacitance of a MOS capacitor under different equilibrium conditions are shown in Figure 15[25]. The most general form of
the circuit model (Figure 15(a)) consist of 3 parallel capacitor which are due to; i) charges trapped interface \( (C_{it}) \), ii) carriers stored in bulk of the semiconductor \( (C_s) \), iii) fixed charges at space charge region \( (C_{SC}) \) and a capacitor in series due oxide capacitance \( (C_{ox}) \). Capacitance of a MOS capacitor is dominated by \( C_{ox} \). Hence, \( C_{ox} \) is the capacitance of a MOS capacitor under accumulation condition (Figure 15(b)).

As soon as the semiconductor surface is not inverted, a MOS capacitor can be modelled as three component capacitive circuit as shown in Figure 15(c). \( C_{SC} \) can be considered as an variable capacitor whose capacitance depends on how far space charge region extends as a response of applied V. Once the surface inverted, \( C_{SC} \) is fixed. In that case a MOS capacitor is modelled as two capacitors in series \( (C_{ox} \ and \ C_{SC}) \). The most general form of a MOS capacitance based on Figure-15(a) is given as[25]

\[
\frac{C}{C_{ox} + C_{SC} + C_{it} + C_s} = \frac{C_{ox} (C_{SC} + C_{it} + C_s)}{C_{ox} + C_{SC} + C_{it} + C_s} \tag{69}
\]
1.2.4. Admittance of a MOS Capacitor

Circuit models in section 1.2.3 are only consideration of circuits comprising of capacitive elements. Circuits models including resistive elements are shown in Figure 16[25],[26].

![Figure 16](image)

**Figure 16.** Equivalent circuits of a MOS capacitor; (a) exact, (b) simplified, and (c) measured

An exact circuit model is illustrated in Figure 16(a) where parallel capacitors in Figure 15 are collectively represented as $C_p$. Moreover, a resistive element $R_{it}$ is included in order to represent potential loss due to the possible emission or capture of the carriers at the interface. Similarly, leakage current generated by tunneling of the charge carriers is considered as tunneling conductance $G_T$. A simplified version of exact circuit model is shown in Figure 16(b). $C_p$ is reduced to $C_s$ and the interface is represented by parallel conductance $G_p$. However, any measuring device is incapable of distinguishing all of these circuit components since they are hypothetical, rather a measured capacitance ($C_m$) and measured conductance ($G_m$) as in Figure-16(c). Admittance ($Y$) of the simplified circuit (Figure 16(b)) is given as[27]
\[ Y_m = G_m + i\omega C_m \]  

(70)

where \( \omega = 2\pi f \) is the angular frequency of applied AC signal. Impedance (Z) of a circuit is just the inverse of \( Y \)

\[ Z_m = \frac{1}{Y_m} = \frac{G_m}{G_m^2 + (\omega C_m)^2} - i \frac{\omega C_m}{G_m^2 + (\omega C_m)^2} \]  

(71)

If Figure 16(b) is driven into strong accumulation condition (\( V \gg 0 \) for a n-type MOS capacitor) the circuit can be simplified to a circuit that \( R_s \) is in series with the circuit in Figure 15(b), in these conditions, \( Z \) of the circuit in Figure 16 is calculated by

\[ Z_{ma} = R_s - \frac{1}{i\omega C_{ox}} \]  

(72)

where \( ma \) stands for 'measured at accumulation.' \( R_s \) and \( C_{ox} \) can be related to \( C_{ma} \) and \( G_{ma} \) by matching imaginary and real parts of the right sides of relation (72) and relation (73) and \( R_s \) is found as

\[ R_s = \frac{G_{ma}}{G_{ma}^2 + (\omega C_{ma})^2} \]  

(73)

Similarly, \( C_{ox} \) is

\[ C_{ox} = C_{ma} \left[ 1 + \left( \frac{G_{ma}}{\omega C_{ma}} \right)^2 \right] \]  

(74)
$R_s$ of a MOS capacitor is originating from many possible sources such as: i) resistance of the probe connections and rear contacts of the measurement system, ii) oxide or contaminations present on the rear contact plate of the measurement system and iii) material originated resistivities such as non-uniform doping profile under oxide – semiconductor junction and depletion layer edge.

If $G_T$ is neglected from the circuit in Figure 16(a), $Y$ of the circuit becomes as:

\[
Y = \frac{\omega^2 R_{it} C_{it}^2}{1 + (\omega R_{it} C_{it})^2} + i\omega \left( C_s + \frac{C_{it}}{1 + (\omega R_{it} C_{it})^2} \right) - \frac{i}{\omega C_{ox}} \tag{75}
\]

$Y$ of the circuit in Figure 16(b) by neglecting $R_s$ becomes

\[
Y = G_p + i\omega C_p - \frac{i}{\omega C_{ox}} \tag{76}
\]

If the two circuits are equivalent, $G_p$ and $C_p$ can be express by solving relations (75) and (76) together

\[
G_p = \frac{\omega^2 R_{it} C_{it}^2}{1 + (\omega R_{it} C_{it})^2} \tag{77}
\]

and

\[
C_p = C_s + \frac{C_{it}}{1 + (\omega R_{it} C_{it})^2} \tag{78}
\]

An alternative expression for $G_p$ is driven by reducing the circuit in Figure 16(a) to (c)[25]
\[ G_p = \frac{\omega^2 C_m C_{ox}^2}{G_m^2 + \omega^2 (C_{ox} - C_m)^2} \]  

(79)

1.2.5. High-Frequency Curve of a MOS Capacitor

Admittance measurement is performed by applying a small AC signal to a MOS capacitor which has been already subjected to DC bias. The purpose of giving an AC signal is to create small perturbation on the MOS capacitor which is in equilibrium with the DC signal so that charge carriers response under different conditions (i.e. under accumulation) can be examined. Charges in a MOS capacitor at low frequencies are in equilibrium with both AC and DC signals. They can follow the signal so that equilibrium is established. However, charges which are not in equilibrium at high frequency with the AC signal while equilibrium with the DC signal holds. Furthermore, an extreme condition exists such that charges are not in equilibrium with both AC and DC frequencies[28]. Hf C-V curves of an n-type MOS capacitor are shown in Figure 17. An ideal Hf C-V curve reaches its maximum value at accumulation and minimum value just after \( \phi_{TH} \) (Figure 17(a)). The presence of oxide and interface trapped charges alter the C-V response of the MOS capacitor. When \( N_{eff} \) of oxide charges present within oxide layer, the C-V curve shifts parallel to the voltage axis relative to the polarity of \( N_{eff} \) (positive oxide charges causes to shift towards negative voltages while negative oxide charges moves the curve towards positive voltages)[29]. A positive shift due to negative \( N_{eff} \) is shown in Figure 17(b). As a result, a flat band voltage \( \Delta \phi_{FB} \) occurs. On the other hand, \( D_{it} \) does not shift the C-V curve as much as \( N_{eff} \) does. Even though a small \( \Delta \phi_{FB} \) can be observed since trapped charges respond a change due to changing the DC bias (\( \Delta V \)), the major change in C-V curve reveals itself in depletion regime. The C-V curves stretch out over the voltage axis[15]. The amount of stretching depends on \( D_{it} \) and its energy distribution.
1.2.6. The Conductance Method

An admittance measuring technique to determine $D_{it}$ was suggested by Nicollian[30] et al. which is known as conductance method. Conductance method is widely used and trusted worthy owing to its high sensitivity in the range between CB edge and mid gap[25]. However, this method is ineffective to determine $D_{it}$ with energy too close to mid-gap level[30]. $G_p$ is related with trap level relaxation time constant ($\tau_{it} = R_{it}C_{it}$) and $D_{it}$ whose relation can be obtained by combining relations (65) and (77).

\[
\frac{G_p}{\omega} = \frac{q \omega D_{it} \tau_{it}}{1 + (\omega \tau_{it})^2} \quad (80)
\]
and in terms of $C_{ma}$ and $G_{ma}$

$$\frac{G_p}{\omega} = \frac{\omega G_m C_{ox}^2}{G_m^2 + \omega^2 (C_{ax} - C_m)^2}$$

(81)

Frequency dependence of $G_p$ arises from $\tau_{it}$ which is the emission and capture rates at the oxide semiconductor interface and modeled by Shockley-Read-Hall statistics[31].

$$\tau_{it} = \frac{e^x \left( \frac{\Delta E}{k_B T} \right)}{\sigma_c \theta_{th} D_{dos}}$$

(82)

where $\sigma_c$ is the capture cross-section of the trap level at the oxide-semiconductor interface and $\Delta E$ is the difference between energy level of the trap state and the band edge; conduction band edge ($E_{CB}$) for n-type semiconductor and valence band edge ($E_{VB}$) for p-type semiconductor while $k_B T$ and $\theta_{th}$ are the average thermal energy and average thermal velocity of the majority carriers at T, respectively, and $D_{dos}$ is the effective density of states at majority carrier band. Interface trap levels are assumed to be non-degenerate in this model[30]. Charge carriers are emitted or captured by the trap levels which are in very close proximity of $E_t$ ($-k_B T$).

An approximate relation for $D_{it}$ is given as[30]

$$D_{it} = \frac{2.5}{qA} \left( \frac{G_p}{\omega} \right)_{max}$$

(83)

where $max$ stands for the value of $G_p$. In most of the cases, measured $G_p$ curves at high frequencies is indistinguishable, the peak usually appears around 10 kHz [32]. Another approximation for $D_{it}$ is given by
\[ D_{1t} = \frac{0.4}{qA} \frac{G_p}{\omega} \]_{10kHz} \tag{84} 

where 10 kHz is used to indicate \( G_p \) peak at 10 kHz AC modulation frequency is used.

### 1.3. Electrical Conduction in Amorphous Semiconductors

Amorphous semiconductors are class of disordered materials which are lacking long range of structural order. They only possess a short range of order which is not sufficient to define a unit cell as in crystalline semiconductors\[33\]. Electronic structure of the material is determined by its molecular orbitals. Molecular orbitals of material are highly affected from the potential neighboring its atom\[34\]. If the potential surrounding does not severely affect the molecular orbital in an amorphous solid, it can exhibit similar electronic band structure with its crystalline state. However, there exist significant differences such as available electronic states within the forbidden energy gap which are not present in crystalline semiconductors\[35\]. Density of the electronic states in an amorphous semiconductor is illustrated according to Mott-Davis model in Figure 18. By the fact that electronic states exist between \( E_C \) and \( E_V \), \( \Delta E \) is called forbidden gap mobility or mobility gap. The tail of the \( E_C \) and \( E_V \) host localized (low mobility) states while extended (high mobility) states present where \( E > E_C \) and \( E < E_V \). These states are originated from bonding disorder of the semiconductor. Moreover, mobility gap has a narrow localized state band which arises from structural defects\[36\]. Carrier transport in an amorphous semiconductor occurs in three different ways; i) transport through extended states which is similar to carrier transport in crystalline semiconductors, ii) hopping conduction in the localized states, iii) hopping conduction via localized states around \( E_F \)[35]. Hoping conduction occurs when a carrier in a localized state gains enough energy to hop from its site to another. This hopping movement can require a phonon to assist. Typically hopping conduction is
much less than extended state conduction. Furthermore, it depends on temperature and applied AC frequency. Frequency depend hopping conductivity $\sigma(\omega)$, also known as AC conductivity, is given by

$$\sigma(\omega) = \sigma_{DC} \frac{1}{1 - (\omega \tau)^2}$$

where $\sigma_{DC}$ is the DC conductivity. Frequency dependence of the hopping conduction is given by the

$$\sigma(\omega) = c \omega^{-s}$$

where $c$ is a proportionality constant. $s$ is found to be 0.7 – 1.0 for hopping conduction.
1.4. Transition Metal Oxides

1.4.1. Sub-stoichiometric Titanium Dioxide

TiO$_2$ thin films can be formed in amorphous or crystallized in rutile, anatase, or brookite structures. Rutile structure is thermodynamically the most stable structure among the other crystalline structures of TiO$_2$ [7]. On the other hand, stable brookite structure is hard to obtain [37]. Anatase and brookite phases are considered as the metastable phases of the TiO$_2$ which can be transformed to rutile phase by post deposition thermal treatments [38]. Deposition of TiO$_2$ at temperatures lower than 150°C results in amorphous TiO$_2$ films [39]. Anatase phase of TiO$_2$ is usually formed by deposition at relatively higher temperatures or by post deposition (PDA) at elevated temperatures [40],[41]. Moreover, the size of anatase nanocrystals and phase transformation from anatase to rutile nanocrystals with the thermal treatment at temperatures above 350°C was demonstrated [42]. Band gap energy is reported just above 3 eV for the rutile TiO$_2$ and ~3.2 eV for the anatase phase [7],[43]. High band gap energy reduces the parasitic light absorption when it is utilized as a window layer covering the solar cell surface [44]. Anatase form of TiO$_2$ is more desirable for photovoltaic applications owing to its indirect band gap which results in longer charge carrier lifetimes [43]-[45]. Moreover, lower value of lattice mismatch of anatase TiO$_2$ deposited on cSi makes it a good candidate for cSi based photovoltaic applications [46].

TiO$_{2-x}$ – cSi n-n isotype heterojunction band alignment based on work function values of TiO$_{2-x}$ which are taken from literature is depicted in Figure 19[47],[48]. Band bending of both CB and VB contributes to $\phi_{bi}$ and a large VB discontinuity exists in the n-n isotype TiO$_{2-x}$ – cSi heterojunction.
Conduction band electrons can be transported in several ways: i) thermionic emission, ii) thermionic filed emission (thermionic emission + FN tunneling), and iii) field emission (direct tunneling) in the n-n isotype TiO$_{2-x}$ – cSi heterojunction. Same transport mechanisms are also valid for an electron on the CB of TiO$_{2-x}$. Electrons in the CB with sufficient energy to overcome the potential barriers of the CB can either go towards metal contact (see Figure 19 red arrows indicating directions) or towards gate metal due to the electrostatic potential. However, hole transport is limited to only one direction. Holes in cSi VB experience huge potential barrier at the interface and can be transported only through the metal contact on cSi. This transport mechanism is the origin of electron transporting – hole blocking nature of the TiO$_{2-x}$ deposited on cSi substrates.

Electrical and structural properties of TiO$_2$ layer are highly dependent on the point defects in the bulk matrix of TiO$_2$. Common point defects are known to be (i) oxygen or (ii) titanium vacancies, and (iii) titanium interstitials. Oxygen vacancies are formed when oxygen ions are detached from their hosting lattice site due to TiO$_2$ reduction [7]. On the other hand, titanium vacancies are originated from TiO$_2$ oxidation while titanium interstitials occur during the displacement of Ti atoms from their lattice site to the interstitial side during the TiO$_{2-x}$ reduction duration. Recently, Bak et al. has
shown that Ti vacancies have acceptor type point defect characteristics [49]. Defects originated from the reduction of TiO₂ (O vacancies and Ti interstitials) lead to n-type charge transport nature of TiO₂ since ionization results in the creation of quasi-free electrons in the TiO₂ film [49],[50].

High-quality TiO₂-x is critical for both charge carrier lifetimes and electron selective transport. Trapped charges inside the bulk of TiO₂-x due to the point and the structural defects can reduce or increase the conductivity of the charge carriers. Determination of these trapped charges and revealing any correlation between their effective number and the electrical response of TiO₂-x is crucial to fabricate the desired effective electron transporting–hole blocking layer (ET-HBL) TiO₂-x thin films. Another parameter which affects the carrier transport across the TiO₂-x/cSi interface is the presence of interface trap charge states. Low levels of interface trap charge density and TiO₂-x film surface uniformity are crucial to reduce recombination of electrons at the TiO₂-x/cSi interface.

1.4.2. Sub-Stoichiometric Molybdenum Trioxide

MoO₃-x is naturally n-type with a bandgap exceeding 3 eV which alleviates parasitic light absorption that present in narrower bandgap carrier collecting materials [44]. Its large work function ranging between 6-7 eV, depending on oxygen stoichiometry, makes MoO₃-x a possible candidate as a selective heterocontact [51]. Energy band diagram of MoO₃-x /p-type cSi n-p anisotype heterojunction is shown in Figure 20.

In general, d-level oxidation corresponds to MoO₃-x conduction while occupancy of these levels determines conductivity characteristics in MoO₃-x and other transition metal-oxides, in general [52]. Stoichiometric molybdenum trioxide (MoO₃) has
insulator like behavior while molybdenum dioxide (MoO$_2$) shows metallic behavior. Recent studies have demonstrated that Mo$^{+6}$ cation is responsible for the insulating behavior while Mo$^{+5}$ and Mo$^{+4}$ cations are responsible for the metallic behaviors in sub-stoichiometric MoO$_{3-x}$ [53]. Oxygen vacancy introduces 4d levels within molybdenum trioxide bandgap which is responsible of hole selective transport [54]. Wong et al. reported that PDA at 180°C in inert gas environment induces gap states just below the fermi level energy within the band gap of MoO$_{3-x}$ [55]. These gap states are originated from oxygen vacancies and they have ability to capture electrons [56]. Furthermore, It was reported by Arvizu et al. that anoxic PDA between 100°C and 225°C induces oxygen vacancies in MoO$_{3-x}$ and PDA at temperatures > 200°C results in phase transformation and crystallization of MoO$_{3-x}$[57].
2.1. Device Preparation

2.1.1. Crystalline Silicon Wafer Preparation

Mono-crystalline silicon (cSi) substrates were used to produce TMOs capacitors. Before TMO deposition, cSi surfaces were subjected to standard Radio Corporation of America (RCA) cleaning and a dilute hydrofluoric (HF) solution dip just before the evaporation to assure surface cleanliness, remove the oxide thin film grown during RCA cleaning procedure, and to eliminate undesired contamination at cSi and TMO interface. Wafers were rinsed after each cleaning processes with deionized water (DI) for 10 minutes.

2.1.2. Titanium Dioxide Thin Film Atomic Layer Deposition

Atomic layer deposition (ALD) is a widely used technique in semiconductor production processes owing to its capability of producing extremely uniform thin films [58] with superior surface coverage. Moreover, it is possible to achieve control at Å scale over the film thickness with ALD. A brief summary of thin film production process by ALD and ALD mechanism are illustrated in Figure 21 [59],[60]. TiO$_{2-x}$ thin films were deposited on both p-type (5-10 ohm.cm) and n-type cSi (1-3 ohm.cm)
substrates using a thermal-mode atomic layer deposition (ALD) system (V-Edge TYA-16). Tetrakis(dimethylamido)titanium (TDMAT) (Sigma-Aldrich) and H2O were used as titanium and oxygen precursors, respectively. TDMAT was heated in a stainless cylinder to 75°C. Nitrogen (N2) of 5N purity was used as carrier and purge gas at flow rate of 20 sccm resulting in a working pressure of 0.3 mbar. Each ALD reaction cycle consisted of 0.015 s pulse of TDMAT, 15 s purge with N2, 0.015 s pulse of H2O, and 15 s purge with N2. The depositions were carried out for 300 reaction cycles at different substrate temperatures varying between 50°C and 300°C. To study the effect of post deposition annealing (PDA) on TiO2-x/cSi interface quality, the as-deposited TiO2-x thin films prepared at 250°C were annealed at 300°C and 350°C in a flowing N2 atmosphere for a total time of 1 h.

**Figure 21.** Atomic layer deposition cycle
2.1.3. Molybdenum Trioxide Deposition by Thermal Evaporation

Physical vapor deposition (PVD) via thermal evaporation is simple and effective technique to deposit various materials such as metals and metal oxides. The general deposition mechanism of thermal evaporation is illustrated in Figure 22.

![Thermal evaporation deposition mechanism](image)

**Figure 22.** Thermal evaporation deposition mechanism

MoO$_{3-x}$ thin films studied in this work were deposited by vacuum sublimation from 99.99% pure MoO$_3$ powder positioned 20 cm away from the cSi samples. MoO$_3$ powder was evaporated at a temperature of ~790°C at a deposition pressure of ~1 × 10$^{-6}$ torr to obtain a deposition rate of 0.15–0.2 Å/sec (as monitored by a crystal oscillator). The cSi substrates were kept at room temperature during deposition. MoO$_{3-x}$ thin films were evaporated on to n-type and p-type float zone (FZ), c-Si wafers. Three different MoO$_{3-x}$ thicknesses were considered in this study: 20, 40, and 90 nm deposited on p-type cSi wafers. Set of MoO$_{3-x}$ thin films with 90 nm thickness grown
on p-type cSi wafers were subjected to PDA in N₂ environment using a flow rate of 150 sccm for 1 hour in the temperature range of 200°C and 400°C.

2.1.4. Metallization

Native SiO₂ removal from cSi surface prior to rear side metallization was done by dilute HF solution in order to remove native oxide which is grown during MoO₃₋ₓ deposition. Immediately after rear side HF treatment, ~400 nm of silver (Ag) for n-type and aluminum for p-type cSi substrates, respectively, were evaporated by thermal evaporation technique. To complete the TMOS capacitors, ~400 nm thick Ag circular dots with a radius less than 300 µm each were deposited on top of TMO thin films through a shadow mask. The final structure of the fabricated MOS capacitors is depicted in Figure 23.

![Figure 23](image)

**Figure 23.** (a) Schematic of Transition Metal-Oxide-Semiconductor (TMOS) capacitor (b) actual device (top view)
2.2. Device Characterization

2.2.1. Electrical Transport Measurements

Electrical characterization of the TMOS capacitors were done by admittance (Y) and current voltage measurements at room temperature under dark and light ambient. For measurements under light, a UV-visible light source was utilized. Electrical measurement setup is illustrated in Figure 24.

A gold coated micro needle was used as probe and rear side of the TMOS capacitor were in contact with a plate which can support whole rear area of the TMOS capacitor. Admittance measurements were conducted using HP 4192 LF impedance analyzer. AC modulation frequency was held fixed at each frequency in the (1 kHz–10 MHz) range for each measurement while the DC bias sweeps between -10 V and +10 V to observe the general capacitance behavior and the high-frequency C-V hysteresis. Moreover, Capacitance–Frequency (C-F) measurements were performed by sweeping the AC modulation frequency from 5 Hz to 10 MHz while the DC bias was kept constant under the accumulation condition. During both DC bias and AC frequency

\[ \text{Figure 24. Electrical measurement setup schematics} \]
dependent admittance measurements, AC modulation amplitude was fixed at 50 mV in order to satisfy small signal condition.

Effect of the $R_s$ is discussed in section 1.4.2, however, some methods (such as the conductance method) neglect the effect of $R_s$. As the $R_s$ of a MOS capacitor is low, the electrical parameters can be extracted from the admittance data. Still, a series resistance correction on $C$ and $G$ ensures getting more precise results. These corrections were done on the measured data before extracting that electrical parameter which usually require relations that eliminate the contribution of $R_s$. Corrected $C$ and $G$ is given as [31]

$$C_c = \frac{(G_m^2 + \omega^2 C_m^2) C_m}{[G_m - (G_m^2 + \omega^2 C_m^2) R_s]^2 + \omega^2 C_m^2} \quad (87)$$

And

$$G_c = \frac{(\sigma_m^2 + \omega^2 C_m^2) [G_m - (\sigma_m^2 + \omega^2 C_m^2) R_s]}{[(G_m^2 + \omega^2 C_m^2) R_s]^2 + \omega^2 C_m^2} \quad (88)$$

I-V measurements were conducted using Kietley 4001 Source Meter. DC bias was swept at rate of 0.01 V. The position of the probes was kept fixed at the same circular pin contact during each I-V and C-V measurement to avoid any unsystematic measurement arising from possible local non-uniformities in the TMO thin films.

2.2.2. Optical Measurements

Thickness of TMO films were measured by model spectroscopic ellipsometry. Band gap of TMOs were calculated from data obtained by UV-visible absorption spectra model spectrometer and spectroscopic ellipsometry.
CHAPTER 3

RESULTS & DISCUSSION

3.1. Electron Selective Atomic layer Deposited TiO$_{2-x}$/cSi Metal-Oxide-Semiconductor-Capacitor

Hf C-V, G-V and R$_s$ –V hysteresis curves of TiO$_{2-x}$/n-type cSi MOS capacitor produced at 200°C ALD temperature are shown in Figure 25. Each parameter (C, G, and R$_s$) shows strong dependence on applied AC frequency. Frequency dependence of the capacitance and conductance values for the the MOS capacitor is shown in Figure 25(a). At accumulation capacitance; with applied DC bias ≥ 0 V, saturation was not observed when the applied AC frequency is relatively low. Saturation is observed at ~1 MHz as modulation frequency and the capacitance knees down at higher AC modulation frequencies. This behavior of accumulation capacitance is attributed to the frequency dependence of the interface trapped charges relaxation and R$_s$ originating from the device and the measuring system [25],[61]. Frequency dependence of R$_s$ becomes insignificant under strong accumulation at values just above 0.1 kΩ as can be seen in Figure 25(c). R$_s$ peaks are frequency dependent which is due to the dependence of the interface charges relaxation on the AC frequency. Similar dependency also appears in the conductance measurement under the depletion and accumulation regimes which is related to the charges trapped at the TiO$_{2-x}$–cSi interface [31]

Furthermore, leakage conductivity via defect state in the TiO$_{2-x}$ is responsible for decreasing capacitance since conductance values (Figure 25(b)) increases with frequency at accumulation regime. $\sigma - \omega$ curve of TiO$_{2-x}$ is plotted in Figure 26. Frequency dependence of $\sigma$ (as discussed in section 1.3) is related to hoping
Figure 25. (a) C-V, (b) G-V, and (c) R_s-V high frequency hysteresis curves of n-type TiO_{2-x} MOS capacitor deposition at 200°C.
conduction from localized electronic states on the band tails of TiO$_{2-x}$ when the conductivity-frequency proportionality constant $s$ in the relation (86) is between 0.7 – 1.0. Measured $s$ value was found to be 0.84 as indicated from the fitting in Figure-26. This shows that the hopping conduction contributes to the frequency dispersion of C-V and G-V curves.

![Graph of conductivity frequency proportionality](image)

**Figure 26.** $\sigma$-$\omega$ graph of n-type TiO$_{2-x}$ MOS capacitor deposited at 200°C.

### 3.1.1. Effect of ALD Temperature on Electrical Properties of the TiO$_{2-x}$/cSi MOS Capacitors

Figure 27 shows the thickness of TiO$_{2-x}$ thin films deposited at different substrate temperatures and as measured by spectroscopic ellipsometry.

It can be seen that the thickness of TiO$_{2-x}$ decreases as the deposition temperature increases while the band gap was found to vary between 3.28–3.38 eV which is
consistent with the values reported for TiO\textsubscript{2} thin films deposited with ALD technique in the literature [7],[47]-[62]. Band gap values decrease with increasing the deposition temperature and the lowest band gap value was obtained for sample deposited at 200\(^{\circ}\)C. Further increase in the deposition temperature above 200\(^{\circ}\)C results in an increase in the band gap of the TiO\textsubscript{2-x} films.

C-V curves of TiO\textsubscript{2-x} – cSi MOS capacitors with different ALD temperatures at 1 MHz AC modulation frequency are plotted in the Figure 28.

Different relative \(\phi_{FB}\) shift around the voltage axis; as shown in Figure 28 for each sample deposited at different temperature may suggests that each deposition temperature results in different oxide trapped charge density. It is worth mentioning that, there exist less relative \(\phi_{FB}\) shift between samples with high ALD temperature (T>150\(^{\circ}\)C). Measured electrical parameters of the MOS capacitors with different ALD temperature are listed in Table 1. The \(\phi_{FB}\) values of the MOS capacitors decline with increasing the ALD temperature as shown in Table 1.
Figure 28. C-V characteristics of the TiO$_{2-x}$ – cSi MOS MOS capacitors with different ALD temperatures under 1MHz AC modulation frequency.

Table 1. Measured electrical parameters of TiO$_{2-x}$/n-tye cSi MOS capacitors with different ALD temperature.

<table>
<thead>
<tr>
<th>ALD Temperature</th>
<th>$R_s$ (kΩ)</th>
<th>$\Phi_{FB}$ (V)</th>
<th>$\Phi_{bi}$ (V)</th>
<th>$J_{leakage}$ (μA.cm$^{-2}$)</th>
<th>$\eta$</th>
<th>$D_{it}$ (10$^{12}$eV$^{-1}$.cm$^{-2}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50°C</td>
<td>0.11</td>
<td>3.40</td>
<td>0.36</td>
<td>398.11</td>
<td>1.51</td>
<td>8.02</td>
</tr>
<tr>
<td>80°C</td>
<td>0.17</td>
<td>3.06</td>
<td>0.82</td>
<td>0.34</td>
<td>2.02</td>
<td>5.43</td>
</tr>
<tr>
<td>100°C</td>
<td>0.12</td>
<td>3.29</td>
<td>0.37</td>
<td>1.51</td>
<td>3.31</td>
<td>4.81</td>
</tr>
<tr>
<td>150°C</td>
<td>0.06</td>
<td>2.76</td>
<td>0.56</td>
<td>3.16</td>
<td>1.60</td>
<td>7.45</td>
</tr>
<tr>
<td>200°C</td>
<td>0.11</td>
<td>0.92</td>
<td>0.40</td>
<td>18.6</td>
<td>3.85</td>
<td>5.64</td>
</tr>
<tr>
<td>230°C</td>
<td>0.07</td>
<td>1.69</td>
<td>0.68</td>
<td>9.54</td>
<td>3.23</td>
<td>1.90</td>
</tr>
<tr>
<td>250°C</td>
<td>0.05</td>
<td>1.40</td>
<td>0.52</td>
<td>5.62</td>
<td>3.96</td>
<td>3.35</td>
</tr>
<tr>
<td>300°C</td>
<td>0.04</td>
<td>1.02</td>
<td>0.45</td>
<td>1152.26</td>
<td>3.27</td>
<td>3.13</td>
</tr>
</tbody>
</table>
Series resistance is a parameter that limits the device performance. Fabrication and measurement were simultaneous and identical for all the fabricated MOS capacitors. Therefore, we assume that the oxide and the interface are the major reasons for the series resistance differences of the MOS capacitors. $R_s$ values were calculated from measured admittance data and tabulated in Table 1. The lowest value of $R_s$ is measured to be 45.1 $\Omega$ for the sample deposited at 300°C whereas the sample deposited at 80°C exhibited a $R_s$ of 171 $\Omega$. A decreasing trend with increasing the deposition temperature is observed after 200°C. Barrier heights are extracted from the C-V data as discussed in sections 1.1.3 and 1.2.2. $\phi_{bi}$ shows no trend with the ALD temperature. Extracted $\phi_{bi}$ values are between 0.36 – 0.82 V which are in the range of the values in literature.[63]-[64].

Measured values of the interface trap levels have wide range of energy spectra. Among these, the ones falling within cSi band gap are the most important spectra since they act as recombination centers. The values of $D_{it}$ within cSi CB and mid gap energies are shown in Table 1 for different deposition temperatures. Lowest $D_{it}$ of $1.90 \times 10^{12} \text{ cm}^{-2}\text{eV}^{-1}$ was obtained for the sample deposited at 230°C while the highest value of $D_{it}$= $8.02 \times 10^{12} \text{ cm}^{-2}\text{eV}^{-1}$ was obtained for the sample deposited at 50°C. There exists correlation between $\phi_{FB}$ and $D_{it}$ such that increasing $D_{it}$ results in relative $\phi_{FB}$ shift (Figure 28). By considering relation (66), it can be suggested that negative charges trapped at the interface causes a $\phi_{FB}$ shifts over the DC bias axis toward to positive values. J-V characteristics of TiO$_2$x / n-type- cSi MOS capacitors are plotted in Figure 29.

Leakage current densities ($J_{leakage}$) which is the J values ar $V < 0$, of the TiO$_2$x / n-type- cSi MOS capacitors at -1V are shown in Table 1. $J_{leakage}$ values greatly vary in magnitude for each deposition temperature. The highest value of $J_{leakage}$ is $1.15 \times 10^{-3} \text{ A.cm}^{-2}$ for the sample deposited at 300°C. It is expected that $J_{leakage}$ increases with decreasing film thickness of a high-$\kappa$ dielectric material such as TiO$_2$x since direct and FN tunneling probability increases with decreasing
the thickness of the dielectric thin film. Although there exist a slight difference in the thicknesses of a round~0.45 nm between the MOS capacitors fabricated at 250°C and 300°C ALD temperatures, still the leakage difference between these two capacitor is ~3 order of magnitude. Therefore, this difference cannot be explained by the increase of quantum mechanical tunneling probability. High leakage value may arise from the structural defects in the TiO$_2$-x thin films. On the other hand, the lowest value of 1.41x10$^{-6}$ A.cm$^{-2}$ is obtained for the sample deposited at 80°C which is expected since low temperature deposition of TiO$_2$-x results in amorphous film formation. Apart from these two leakage values, the obtained leakage values of all the other produced TiO$_2$-x / n-type- cSi MOS capacitors are comparable with the reported values in the literature for ALD deposited TiO$_2$-x thin films[61],[65]. Moreover, TiO$_2$-x / n-type- cSi MOS capacitors with ALD temperature of 80°C and 230°C have symmetrical J-V curves around J-axis, in addition J$_{leakage}$ > J$_F$ in the DC bias range of -1V – +1V. This phenomena is not peculiar to this study, in fact it also observed by others.

Figure 29. J-V curves in semi-log scale for the MOS capacitors with different deposition
This phenomenon can be explained by considering the Figure 19. When the potential barriers on the either side of TiO$_2$-x / n-type- cSi heterojunction are comparable, thermionic emission from CB of Si to CB of TiO$_2$-x is comparable to the emission from CB of TiO$_2$-x to CB of Si. In other words, two materials exhibit metal-semiconductor junction like conduction mechanism. Furthermore, difference between emission rates of TiO$_2$-x / Ag and Si/Ag may be the reason for observing $J_{\text{leakage}} > J_F$. Moreover, $\eta$ of the TiO$_2$-x / n-type- cSi MOS capacitors were shown in the Table 1. The MOS capacitors with higher ALD temperatures exhibit larger $\eta$ values than those deposited at lower temperatures. It is worth mentioning that there exist a correlation between $D_{it}$ and $\eta$ values where it was found that TiO$_2$-x / n-type- cSi MOS capacitors with $\eta > 3$ exhibit less $D_{it}$.

The highest value of $3.37 \times 10^{-7}$ A.cm$^{-2}$ was obtained for the 250ºC deposited sample after post deposition annealing at 350ºC which can be attributed to the less crack density in the film and low average density of the interface states [66]. Similarly, $J$ values at positive voltages are different for each MOS capacitor deposited at different temperatures which is due to the existence of different barrier heights.

### 3.1.2. Effect of PDA on TiO$_2$-x / n-type- cSi MOS Capacitor with ALD at 250ºC

Figure 30 shows the changes in capacitance characteristics of TiO$_2$-x / n-type- cSi MOS capacitor prepared at 250ºC and annealed at 300ºC and 350ºC. The dominant change after PDA is at accumulation capacitance which suggests that TiO$_2$-x experienced some structural changes since the accumulation capacitance is highly correlated to $\kappa_{\text{TiO}_2-x}$. Moreover, a capacitance valley between 0-1 V appears after PDA which is in related to VB discontinuity of two material at the junction in the case of n n isotype heterojunction [18].

The $\phi_{FB}$ shift with increasing PDA temperature is clearly seen in Figure 30 which is identical to $\phi_{FB}$ shift for the cases when TiO$_2$-x thin films are deposited at higher ALD temperatures. This suggests that there exists a correlation between $\phi_{FB}$ and the thermal
conditions at relatively high temperatures. As the temperature of thermal conditions increases (ALD temperature or PDA), C-V curves of the TiO$_{2-x}$/n-type-cSi MOS capacitor shift toward negative voltages. Hence, it is an indication of the presence of trapped positive charges either at TiO$_{2-x}$/n-type-cSi interface or in the TiO$_{2-x}$ itself.

Electrical parameters of TiO$_{2-x}$/n-type-cSi MOS capacitor with 250°C ALD temperature before and after PDA are tabulated in Table 2. The influence of PDA was also investigated for TiO$_{2-x}$/n-type-cSi MOS capacitor deposited at 250°C by frequency dependent C-V measurement. PDA shifts the C-V curves towards lower frequencies as shown in Figure 31. These shifts indicate that the interface trapped states relaxation time distribution as well as the interface quality change with PDA. Measured $D_{it}$ values for different PDA temperatures are tabulated in Table 2. It can be seen that PDA at 300°C and 350°C improve the interface quality since $D_{it}$ decreases with PDA at these temperatures.
Table 2. Measured electrical parameters of TiO2-x /n-type with 250 ALD temperature before and after PDA cSi MOS capacitors with different ALD temperature

<table>
<thead>
<tr>
<th>PDA Temperature</th>
<th>Rs (kΩ)</th>
<th>$\phi_{FB}$ (V)</th>
<th>$\phi_{bi}$ (V)</th>
<th>$J_{leakage}$ (μA.cm$^{-2}$)</th>
<th>$\eta$</th>
<th>$D_{it}$ ($10^{12}$eV$^{-1}$.cm$^{-2}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>As Dep.</td>
<td>0.05</td>
<td>1.40</td>
<td>0.52</td>
<td>5.62</td>
<td>3.96</td>
<td>3.35</td>
</tr>
<tr>
<td>300°C</td>
<td>0.10</td>
<td>-0.25</td>
<td>0.51</td>
<td>25.02</td>
<td>2.87</td>
<td>2.19</td>
</tr>
<tr>
<td>350°C</td>
<td>0.13</td>
<td>-0.21</td>
<td>0.61</td>
<td>0.34</td>
<td>2.56</td>
<td>2.98</td>
</tr>
</tbody>
</table>

Figure 31. Frequency dependence of the accumulation capacitance of the MOS capacitor deposited at 250°C and treated with different post-deposition temperatures.
Yet, the sample annealed at 350°C has a larger number of $D_{it}$ than that annealed at 300°C. This can be attributed to the fact that PDA at elevated temperatures (above 350°C) can result in the formation of (i) surface boundaries between TiO$_x$ and cSi substrate or (ii) interfacial Si-TiO$_2$ layer; in the sample annealed at 350°C [7].

The effect of PDA on $R_s$ of the samples deposited at 250°C is tabulate in Table 2. It can be seen that $R_s$ value increases drastically with increasing the PDA temperature. This increase in $R_s$ with increasing PDA temperature is attributed to the fact that PDA above 300°C can form (i) grain boundaries between TiO$_{2-x}$ and cSi which are formed due to TiO$_{2-x}$ crystallization at nano-scale and (ii) an interfacial layer at TiO$_{2-x}$/cSi interface which contributes to series resistance [7],[42].

PDA at 300°C has no pronounce effect on $\eta$ values of the MOS capacitor with a slight change of ~0.01 V which implies PDA at this temperature did not alter the conduction band alignment. However, it is clear that structural changes occurred considering the reduction of accumulation capacitance with PDA. It can be suggested that changes occurred at VB discontinuities of TiO$_{2-x}$ and cSi junction. On the other hand, 0.1 V increment was measured after PDA at 350°C which suggests that PDA this temperature triggers the band bending of the CB of the two materials.

Results of G-V measurement are shown in Figure 32. Conductance values decrease dramatically with increasing PDA temperature at accumulation and depletion regimes. Furthermore, a conductance saturation occurs at the accumulation for the as deposited sample and sample with PDA at 350°C whereas the sample with PDA at 300°C shows no saturation; in fact, increases moderately.

Effect of PDA on J-V characteristic is plotted Figure 32. $J_{leakage}$ increases with PDA at 300°C (Table 2) and decreases with PDA at 350°C from 5.62 μA.cm$^{-2}$ to 0.34 μA.cm$^{-2}$. Furthermore, $\eta$ of the TiO$_{2-x}$/n-type- cSi MOS capacitor with ALD 250°C decreases with the increasing PDA temperature as shown in Table 2. The J-V curve TiO$_{2-x}$/n-type- cSi MOS capacitor annealed at 350°C exhibits three different conduction mechanism. At low forward bias, conduction mechanism includes the contributions of both $J_{diff}$ and $J_{diff}$ ($\eta$~2), at moderate bias $\eta$ = 2.56, while further increase in the DC bias results in high injection condition with $\eta$>3.
Figure 32. G-V curves of the TiO$_{2-x}$/ n-type- cSi MOS capacitors with 250°C ALD temperature annealed at 300°C and 350°C under 1MHz AC modulation frequency

Figure 33. J-V curves of the TiO$_{2-x}$/ n-type- cSi MOS capacitors with 250°C ALD temperature annealed at 300°C and 350°C
3.2. Hole Selective Thermally Evaporated MoO$_{3-x}$/cSi MOS Capacitor

Figure 34 shows the Hf capacitance-voltage and conductance-voltage characteristics at different AC modulation frequencies of 90 nm thick MoO$_{3-x}$ deposited on p-type cSi wafer which is common for all the produced MoO$_{3-x}$ – cSi MOS capacitors.

![Capacitance-Voltage characteristics](image)

**Figure 34.** Hf-Capacitance-Voltage characteristics of 90 nm MoO$_{3-x}$/p-type cSi MOS capacitor

It can be seen that as frequency increases, oxide capacitance decreases. With changing the applied AC frequency, dispersion in CV curves is observed in accumulation regime accompanied with formation of peak maxima. In depletion and week inversion regimes at ~0V; in Figure 34, frequency dependent dispersions were not observed, yet peak maxima dominate the curves. Ideally, no frequency dependent dispersion of oxide capacitance or peak in the accumulation, depletion, or weak inversion regimes is
expected[25]. All of these three types of peaks anomalies for MoO$_{3-x} / \text{cSi MOS}$ capacitor are frequency dependent.

3.2.1. **Effect of MoO$_{3-x}$ Thickness**

Measured electrical parameter of MoO$_{3-x} / \text{p-type cSi MOS}$ capacitors with different thicknesses are tabulated in Table 3. C-V curves of the MoO$_{3-x} / \text{p-type-cSi MOS}$ capacitors are shown in Figure 35. Ideally, it is expected that when the thickness of dielectric layer is doubled its capacitance reduces to half of its initial value.

<table>
<thead>
<tr>
<th>Thickness</th>
<th>90 nm</th>
<th>40 nm</th>
<th>20 nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_s ,(k\Omega)$</td>
<td>1.32</td>
<td>1.34</td>
<td>1.55</td>
</tr>
<tr>
<td>$\phi_{bi} ,(V)$</td>
<td>0.83</td>
<td>0.53</td>
<td>0.57</td>
</tr>
<tr>
<td>$\phi_{FB} ,(V)$</td>
<td>-0.68</td>
<td>-1.27</td>
<td>-1.79</td>
</tr>
</tbody>
</table>

However, accumulation capacitance of the MoO$_{3-x} / \text{p-type cSi MOS}$ capacitors do not meet that expectation. On the contrary, the 20 nm and 40 nm thick MOS capacitor have similar capacitance value at the strong accumulation regime. This can be explained by tunneling and leakage current mechanisms. As discussed in section 1.1.2, decreasing MoO$_{3-x}$ layer thickness increases the pure field emission and thermionic field emission rates, and the probability of recombination of charge carriers before reaching metal contact reduces. Furthermore, $\phi_{FB}$ of the MoO$_{3-x} / \text{p-type-cSi MOS}$ capacitors shifts towards negative voltages suggesting that number of the negative charges increases with MoO$_{3-x}$ layer thickness. Similarly, $R_s$ of MoO$_{3-x} / \text{p-type-cSi MOS}$ capacitors decreases with increasing MoO$_{3-x}$ thickness. On the other hand, $\phi_{bi}$ of the MoO$_{3-x} / \text{p-type-cSi MOS}$ capacitors are almost identical for 20 nm and 40 nm thick
MoO$_3$-x. Moreover, the $\phi_{bi}$ of the MoO$_3$-x /p-type cSi MOS capacitors with 20 and 40 nm thick MoO$_3$-x (Table 3) are nearly the same. However, $\phi_{bi}$ increases by ~0.3 V when the film thickness is 90 nm. This may imply that band alignment of the p-type / MoO$_3$-x depends on the film thickness. This dependency is probably originated with changing oxide stoichiometry of MoO$_3$-x. G-V curves of MoO$_3$-x /p-type cSi MOS capacitors are plotted in Figure 36. MoO$_3$-x /p-type cSi MOS capacitor with 40 nm thickness has two different threshold points for conduction; i) transition from inversion to depletion, ii) leakage conduction due to applied high field at weak accumulation. The highest conductivity is measured for 40 nm thick MoO$_3$-x /p-type cSi MOS capacitor under accumulation condition.

**Figure 35.** Hf -Capacitance-Voltage characteristics of MoO$_3$-x /p-type cSi MOS capacitor with different MoO$_3$-x thicknesses under 500kHz AC modulation.
Effect of PDA on the measured electrical parameters measured from the 90 nm thick MoO$_{3-x}$/p-type cSi MOS capacitor are tabulated in Table 4.

**Table 4.** Effect of the PDA on the electrical properties of 90 nm p-type MoO$_{3-x}$–cSi MOS capacitor

<table>
<thead>
<tr>
<th>PDA Temperature</th>
<th>As Deposited</th>
<th>200°C</th>
<th>300°C</th>
<th>400°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D_{it}$ ($10^{12}$eV.cm$^{-2}$)</td>
<td>9.46</td>
<td>6.61</td>
<td>27.32</td>
<td>20.85</td>
</tr>
<tr>
<td>$R_s$ (kΩ)</td>
<td>2.04</td>
<td>2.74</td>
<td>0.12</td>
<td>0.21</td>
</tr>
<tr>
<td>$\Phi_{bi}$ (V)</td>
<td>0.62</td>
<td>0.39</td>
<td>0.55</td>
<td>0.18</td>
</tr>
<tr>
<td>$\Phi_{FB}$ (V)</td>
<td>-0.57</td>
<td>1.35</td>
<td>-1.24</td>
<td>-2.52</td>
</tr>
<tr>
<td>$C_{ox}$ (nF)</td>
<td>0.21</td>
<td>0.13</td>
<td>2.42</td>
<td>0.63</td>
</tr>
<tr>
<td>$E_g$</td>
<td>3.51</td>
<td>3.54</td>
<td>3.79</td>
<td>4.25</td>
</tr>
</tbody>
</table>

**Figure 36.** Hf-Capacitance-Voltage characteristics of MoO$_{3-x}$/p-type cSi MOS capacitor with different MoO$_{3-x}$ thicknesses under 500kHz AC modulation.

### 3.2.2. Effect of PDA on P-Type MoO$_{3-x}$/cSi MOS Capacitor

Effect of PDA on the measured electrical parameters measured from the 90 nm thick MoO$_{3-x}$/p-type cSi MOS capacitor are tabulated in Table 4.
Capacitance values at accumulation (C_{ox}) vary greatly in magnitude which is clearly seen in the Table 4. To illustrate this more, C-V curves of the MoO_{3-x}/p-type cSi MOS capacitor are normalized to C_{ox} and depicted in Figure 37. PDA at 200°C reduces D_{it} suggesting that PDA improves the interface quality. PDA at temperatures > 200°C increases formation interface trap state at the p-type cSi/MoO_{3-x} interface. D_{it} rises to 3 times than its value after PDA at 300°C. Formation an interfacial layer between MoO_{3-x} can be responsible from this increase in D_{it}. Large changes on accumulation capacitance are mostly originated from the changes in the dielectric properties of MoO_{3-x}. Contrary to all the other 90 nm thick MoO_{3-x}/p-type cSi MOS capacitors, a positive \( \phi_{bi} \) was found. This is caused by PDA at 200°C in N\(_2\) environment which

![Normalized C-V curves at 1 MHz AC modulation frequency of 90 nm p-type MoO_{3-x} – cSi MOS capacitors with different PDA temperatures.](image)

**Figure 37.** Normalized C-V curves at 1 MHz AC modulation frequency of 90 nm p-type MoO_{3-x} – cSi MOS capacitors with different PDA temperatures.
induces oxygen vacancies which form gap states just below the fermi level energy within the band gap of MoO$_{3-x}$ [55] [57]. These gap states can trap electrons[56]. Therefore, $\phi_{bi}$ of the as deposited 90 nm thick MoO$_{3-x}$/p-type cSi MOS capacitor shifts toward positive voltages with PDA at 200$^\circ$C in the presence of electrons trapped within the MoO$_{3-x}$ gap states originated from oxygen vacancies. Formation of gap states within MoO$_{3-x}$ increases fermi level of MoO$_{3-x}$ [55]. Reduction in $\phi_b$ with PDA can be caused by the increment of fermi level of MoO$_{3-x}$. $E_g$ of the as deposited sample and the PDA at 200$^\circ$C are almost identical as show in Table 1 which suggests that MoO$_{3-x}$ is still keeps its amorphous nature with PDA at this temperature. PDA at temperatures $> 200^\circ$C results in phase transformation and crystallization of MoO$_{3-x}$[57]. On the other hand, measured $E_g$ of MoO$_{3-x}$ drastically increased with PDA at 300$^\circ$C and 400$^\circ$C due to crystallization and phase transformation.

$R_s$ of the 90 nm thick MoO$_{3-x}$/p-type cSi MOS capacitor increased with PDA at 200$^\circ$C which may be related to increased electron trapping at the MoO$_{3-x}$ gap states. However, the $R_s$ reduced significantly with PDA at 300$^\circ$C and 400$^\circ$C.

The effect of PDA on conductance response as a function of applied bias voltage for 90 nm thick MoO$_{3-x}$ is shown in Figure 38. $G$ values of the 90 nm thick MoO$_{3-x}$/p-type cSi MOS capacitor increase with PDA at 300$^\circ$C and 400$^\circ$C. Due to partial crystallization of the MoO$_{3-x}$ at high PDA temperatures, structural defects are induced. Due to the leakage conductance from defects, high $G$ values are observed. A sharp peak at $\sim$1.5 V appears which is an indication of high $D_i$ localized near to cSi CB edge[26]. On the hand, $G$ of the MOS capacitor decreases after PDA at 200$^\circ$C. Since the fermi energy MoO$_{3-x}$ increases respect to vacuum level[55] by introduction of the gap states into the MoO$_{3-x}$ band alignment of the cSi – MoO$_{3-x}$ changes. This case is illustrated in Figure 39 with $E_f$ and band alignment suggestion from literature[51],[55], [56],[67]. In Figure 39(a), electron injected from gate to MoO$_{3-x}$ faces a potential barrier at the MoO$_{3-x}$ – Si interface. Once they have enough energy to overcome the barrier, electron from MoO$_{3-x}$ are conducted to Si or they can recombine with the hole in the VB of MoO$_{3-x}$. On the other hand, holes on VB of Si cannot be injected through MoO$_{3-x}$ since there exist a vast potential difference between VB of MoO$_{3-x}$ and Si.
Therefore, conduction is dominated by electronic conduction. However, when the gap state exist, position of the fermi levels MoO$_{3-x}$ and cSi change as discussed previously. After alignment of $E_f$ between MoO$_{3-x}$ and cSi is established, the band discontinuity can be increased at CBs of MoO$_{3-x}$ and cSi (Figure 39(b)). Furthermore, potential gradient exist between CB of MoO$_{3-x}$ and VB of the cSi due to broken MoO$_{3-x}$ – p-type cSi junction, which causes flow of electrons from CB of MoO$_{3-x}$ trough VB of cSi and holes from VB of cSi to CB of MoO$_{3-x}$. Growing potential gradient between CB of MoO$_{3-x}$ and VB of the cSi due to $E_f$ alignment after PDA at 200$^\circ$C may be contribute. Similarly, decrease in $C_{ox}$ with PDA at 200$^\circ$C (Table 4) is originated from the transport of accumulated holes beneath the MoO$_{3-x}$ – cSi interface via gap states. In figure 39(c), origin of hole selectivity of MoO$_{3-x}$ at the open circuit condition is illustrated. A created electron – hole pair near the junction faces different potential barriers. Electrons on the CB of Si cannot be conducted if they don’t have enough energy.

**Figure 38.** G-V curves at 1 MHz AC modulation frequency of 90 nm p-type MoO$_{3-x}$ – cSi MOS capacitors with different PDA temperatures.
However, holes on VB of cSi can be transferred via induced gap states through the gate. In addition, holes in VB of cSi can be flow through MoO$_{3-x}$ by recombining with electrons on CB of MoO$_{3-x}$ to recombination via broken junction which may be the reason conduction decrease.

**Figure 39.** Separation of charge carrier on the carrier bands of MoO$_{3-x}$/c-Si n-p anisotype heterojunction under negative DC bias (a) without gap states (b) with gap states, and (c) without applying DC bias in the presence of gap states.
CHAPTER 4

CONCLUSIONS

In this study, the effect of film thickness, deposition and post deposition condition on electrical transport properties of electron selective atomic layer deposited TiO$_{2-x}$/n-type cSi and hole selective thermally evaporated MoO$_{3-x}$/p-type cSi MOS capacitors were studied with electrical transport measurements (admittance and current voltage).

TiO$_{2-x}$/n-type cSi MOS capacitor produced with ALD technique with seven different substrate temperatures; 50°C, 80°C, 100°C, 150°C, 200°C, 250°C, and 300°C. Furthermore, effect of the PDA at 300°C and 350°C was examined on TiO$_{2-x}$/ n-type cSi MOS capacitor with ALD temperature of 250°C. HF capacitance hystereses are observed for all the MOS capacitors which are due to the presence of interface trapped charges. We have obtained $D_{it}$ values in the range of $\sim 10^{12}$ eV$^{-1}$cm$^{-2}$ and shown that TiO$_{2-x}$/ cSi interface trap density decreases down to 1.90x$10^{12}$ eV$^{-1}$cm$^{-2}$ with proper substrate deposition and PDA temperatures. Similarly, Rs of the samples measured under the accumulation regime decreases with increasing the deposition temperature.

A regular trend in the $\phi_{FB}$ of TiO$_{2-x}$/ n-type cSi MOS capacitor was not observed, yet significant changes in $\phi_{FB}$ values were observed with PDA which can be attributed to the annealing-induced structural and morphological modifications in TiO$_{2-x}$. The $J_{leakage}$ values of the MOS capacitors vary with deposition temperature, thermal annealing, and substrate type in the $\sim 10^{-3}$-10$^{-7}$ A.cm$^{-2}$.

MoO$_{3-x}$/p-type cSi MOS capacitors were produced with thermal evaporation technique with 3 different MoO$_{3-x}$ thicknesses of 20 nm, 40 nm, and 90 nm. In order to see effects
of PDA, 90 nm thick MoO$_{3-x}$/p-type cSi MOS capacitors was annealed at 200°C, 300°C, and 400°C. It has been revealed that, 90 nm and 40 nm thick MoO$_{3-x}$ on p-type cSi wafers have similar series resistance while 20 nm thick sample shows lower series resistance. Series resistance increases with the annealing temperatures. Density of interface trapped charges reduced from 9.46 eV$^{-1}$cm$^{-2}$ with PDA at 200°C while increased to 27.32 eV$^{-1}$cm$^{-2}$ and 20.85 eV$^{-1}$cm$^{-2}$ with PDA at 300°C and 400°C, respectively. In addition, a $\phi_{FB}$ shift toward the positive voltages with PDA at 200°C is observed which is an indication of electron trapping in the gap states of MoO$_{3-x}$. Annealing at elevated temperatures; above 300°C, alters the nature of MoO$_{3-x}$ as it starts to behave as an insulator accompanied by an increase in energy bandgap as demonstrated from UV-VIS and SE analysis.
REFERENCES


[32] H. Yang, Y. Son, S. Choi, and H. Hwang, “Improved conductance method for


