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ABSTRACT

NAVIER-STOKES COMPUTATIONS OF HELICOPTER ROTOR FLOW FIELDS

Yüksel, Ali Oğuz

M.S., Department of Aerospace Engineering

Supervisor : Prof. Dr. Yusuf Özyörük

September 2017, 56 pages

Helicopters are widely used for military and civilian purposes because of their unique
capability of maneuvering including vertical take-off and landing. A helicopter ro-
tor provides this capability of motion with rotating wings. Aerodynamic forces on
rotor blades generate the thrust and torque. Hence, it is significant to predict pres-
sure distributions on rotor blades in hover, climbing, descending, and forward flight,
for assessing the helicopter performance. Not only this but acoustic radiation from
helicopter rotors also depends on the rotor load distributions. Motivated by these
points, the objective of the thesis is to carry out flow solutions of helicopter rotors in
hover and forward flight. The thesis involves numerical solutions of both Euler and
Reynolds-Averaged Navier-Stokes equations. Commercial software, Ansys Fluent is
used together with its User Defined Function capability to handle moving meshes.
To assess the success of User Defined Function capability for providing cyclic mo-
tion, comparisons with analytical blade motion are carried out. Then, numerical flow
solutions over rotor blades are compared with available experimental and numerical
results from literature. Results indicate good agreement. Aerodynamic load dis-
tributions on rotating blades and flow field solutions around some of the computed
rotors are also used as input into a noise prediction code developed under a separate
work which has been supported by the Turkish Aerospace Industry, Inc. Rotary Wing
Technological Center. Sound pressure levels predicted employing the flow solutions
obtained in this thesis are also presented.
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ÖZ

HELİKOPTER ROTORUNUN ÇEVRESİNDEKİ AKIŞIN NAVIER-STOKES
HESAPLAMALARI

Yüksel, Ali Oğuz

Yüksek Lisans, Havacılık ve Uzay Bölümü

Tez Yöneticisi : Prof. Dr. Yusuf Özyörük

Eylül 2017 , 56 sayfa

Dikey iniş ve kalkışı da içeren özgün manevra kabiliyetinden dolayı helikopterler
askeri ve sivil amaçlarla geniş çapta kullanılmaktadır. Bir helikopter rotoru bu hare-
ket kabiliyetini döner kanatlarla sağlamaktadır. Rotor palleri üzerindeki aerodinamik
kuvvetler itki kuvvetini ve torku üretmektedir. Dolayısıyla helikopter performansını
değerlendirmek için askı, yükselme, alçalma ve ileri uçuşundayken rotor palleri üze-
rindeki basınç dağılımlarını tahmin etmek önemlidir. Sadece bu değil; helikopter ro-
torlarından kaynaklı akustik yayılma da rotorun üzerindeki yük dağılımına bağlıdır.
Bu noktalardan hareketle, bu tezin amacı askı ve ileri uçuştaki helikopter rotorunun
akış çözümlerini gerçekleştirmektir. Bu Tez hem Euler hem de Reynolds-Ortalanmış
Navier-Stokes denklemlerinin numerik çözümlerini içermektedir. Ansys Fluent ticari
yazılımı ile bunun, hareketli ağlar için gereğini yapan, Kullanıcı Tanımlı Fonksiyon
kabiliyeti beraber olarak kullanılmıştır. Kullanıcı Tanımlı Fonksiyon kabiliyeti ile ve-
rilen periyodik hareketin başarısını değerlendirmek için analitik pal hareketi ile karşı-
laştırmalar yapılmıştır. Sonra, rotor üzerindeki numerik akış çözümleri, literatürdeki
mevcut deneysel ve numerik sonuçlarla karşılaştırılmıştır. Sonuçlar iyi uyum göster-
mektedir. Ayrıca, bazı hesaplanmış rotorların dönen palleri üzerindeki aerodinamik
yük dağılımları ve etrafındaki akış alanı çözümleri, Türkiye Uçak Sanayi A.Ş. Dö-
ner Kanat Teknoloji Merkezi destekli ayrı bir çalışma altında geliştirilen bir gürültü
hesaplama kodunda girdi olarak kullanılmıştır. Bu tezde elde edilen akış çözümleri
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kullanılarak hesaplanan ses basınç seviyeleri de sunulmaktadır.

Anahtar Kelimeler: Aerodinamik, Hesaplamalı akışkanlar dinamiği, Helikopter ro-
toru, Askı uçuşu, İleri uçuş, Rotor performansı, Rotor gürültüsü, Periyodik hareket-
ler
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CHAPTER 1

INTRODUCTION

1.1 Fundamentals of Rotor Aerodynamics

Helicopters are aircraft that utilize rotating wings to produce forces in all directions

and keep control [7]. Creating forces in all directions and keeping control provide

more maneuverability than fixed-wing aircraft. The capability of maneuvering makes

helicopters unique aircraft. A variety of flight missions cannot be performed by fixed-

wing aircraft. In other words, helicopters are indispensable for a lot of operations.

Therefore, a helicopter plays crucial role in civil and military operations.

Helicopter motions might in general be categorized as climbing, descending, hover-

ing, forward flight, and maneuvering, which combine all possible motions. In the

thesis, aerodynamic flow fields of helicopter rotors both in hover and forward flight

are examined. Some fundamental characteristics of helicopter rotor flow fields are

discussed below.

1.1.1 Principles of Hover and Forward Flight

Angle of attack and dynamic pressure at every sections of the blade decide on cre-

ation of the forces and moments of the rotor including lifting capability. Figure 1.1

illustrates an example of a rotor both in hover and forward flight [1]. By convention,

blade azimuth angle defining the angular blade position is zero in the tail direction,

and direction of rotation is counter-clockwise when observed from top. In the light

of this information, velocity normal to the leading edge is radially linear and it does
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not change with azimuthal position in hover. In other words, velocity at the rotor hub

is minimum and it equals to zero; while velocity at the blade tip is maximum and it

equals to ΩR. In forward flight, velocity normal to the leading edge is also radially

linear. However, it changes with azimuthal position unlike that in hover condition.

Velocity at rotational axis is equal to free-stream velocity. Maximum velocity normal

to the leading edge occurs at the advancing side which corresponds to an azimuth an-

gle of 90 degrees. On the other hand, minimum velocity normal to the leading edge

appears at the retreating side which corresponds to an azimuth angle of 270 degrees.

Therefore, it can easily be inferred that blade tip velocity relative to a fixed frame (e.g.

ground) is equal to ΩR+Vfsin(ψ). In the example of forward flight shown in Figure

1.1 [1], hover tip Mach number is equal to 0.6, and advance ratio (Mf/Mhover,tip) is

equal to 0.3.

Figure 1.1: Velocity normal to the leading edge for both hovering rotor (left) and rotor

in forward flight (right) [1]

1.1.2 Aerodynamic Issues around Helicopter Rotor

The major complication of rotating-wing aircraft different from fixed-wing one is

related to the effects of vortices trailed from each blade on rotor flow field. These

vortices are strong, and have complicated structures. Also, trajectories of tip vor-

tices have significant effect on rotor aerodynamics. Due to their rotation, rotor blade

sections near the tips generate more aerodynamic forces than inner ones, while fixed
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wing aircraft have nearly uniform loading along wingspan. Hence, stronger and more

complicated vortices might appear around tip of rotating wing aircraft than that of

fixed-wing ones. Flow paths of tip vortices of rotating wings are also distinct from

those of fixed-wings. For fixed-wing aircraft, directions of the wake and tip vortices

are downstream of the aircraft. On the other hand, wake and tip vortices of helicopter

rotors in forward flight interact with other rotor blades for a few rotations [1]. Thus,

blade-tip vortex interactions and complicated structures of tip vortices are main phe-

nomena regarding rotor aerodynamics. In complete helicopter aerodynamics, some

other interactions might also appear such as rotor wake-empennage interactions, tip

vortices-tail rotor interactions.

In forward flight with high free-stream Mach number, additional problems emerge

during flight. Advancing and retreating sides of rotor are related to these additional

problems. Blade tip on advancing side of rotor is exposed to transonic flow. As a

result of transonic flow, compressibility zones and shock waves take place at advanc-

ing side of rotor. Shock waves also cause high-speed impulsive noise, a significant

component of noise. While, blade on retreating side is required to achieve higher

angle of attack because of low local dynamic pressure. If angle of attack is increased

over stall limit at relatively high speed forward flight, reduction in lift, and instability

might arise. Also, reverse flow, a flow from trailing edge to leading edge, appears

near the blade root on retreating side as explained in Section 1.1.4.

Unsteady, viscous dominated, subsonic and transonic aerodynamics interactions, and

asymmetric blade normal velocity in forward flight make rotor flow field complicated.

Wake structures expanded from the rotor blades continue to stay in near field of the

rotor and helicopter body, producing unsteady aerodynamic loading. Therefore, ac-

curate prediction of rotor dynamics (e.g. cyclic blade motions), wake geometry con-

sisting of interactions (e.g. surface-vortex) play a vital role in unsteady helicopter

aerodynamics [8].

1.1.3 Noise generation of helicopter rotors

Aeroacoustics is concerned with pressure waves and their propagation in air. The

complexity of helicopter aeromechanics have caused late improvements in study of
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helicopter aeroacoustics when compared with fixed wing aircraft. These improve-

ments include the understanding of source mechanisms of noise, and the development

of feasible and accurate prediction techniques based on the flow physics. Moreover,

fixed wing aircraft can utilize noise control with the help of tools such as engine

acoustic liners. Physically, helicopters cannot use these tools. Therefore, aeroacous-

tic studies on helicopter noise are based only on source noise reduction [9].

Integrating the Ffowcs Williams-Hawkings (FW-H) equation is widely used to predict

helicopter rotor noise. The classification of noise components might be defined as lin-

ear aerodynamics and nonlinear effects. Thickness and loading noise components are

examined by monopole and dipole source terms of the FW-H equation, respectively.

High speed impulsive (shock, HSI) noise involves quadrupole source terms. While

computations of thickness noise components need only blade kinematic motion his-

tory, the loading noise and shock noise components also require the flow variables.

Thus, Computational Fluid Dynamics (CFD) solution is required as input to predict

the noise. In this thesis, flow variables attained are used as input by noise prediction

code developed under a TAI/DKTM project, specifically to compute noise of a hov-

ering TAI whirl tower rotor with a tip Mach number of 0.49. Furthermore, HSI noise

component of untwisted experimental UH-1H rotor with a tip Mach number of 0.88

is computed by the code using the CFD solutions obtained in this thesis.

1.1.4 Reverse flow

A reverse flow region takes place on the rotor on the retreating side near the rotation

axis because of the asymmetric velocity normal to leading edge in forward flight. In

this region, direction of velocity with respect to the blade is from trailing edge to

leading edge. On the retreating side of the disk, direction of the rotational velocity

is from leading edge to trailing edge. However, direction of free stream velocity is

from trailing edge to leading edge. Hence, reverse flow is located in the region where

free stream velocity is greater than rotational velocity. The circular diameter of the

reverse flow region depends on the advance ratio. At an azimuth angle of 270 degrees,

velocity normal to leading edge is zero when Vtip(r − µ). Hence, Rµ is the diameter

of reverse flow region. The effect of reverse flow is limited when the advance ratio
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is low. In contrast, the effect of reverse flow is significant as advance ratio is higher

than 0.5 [7]. Although reverse flow region is located where local dynamic pressure is

low, it has marked effects on the flow field.

1.1.5 Periodic motions of blade

Rotor is exposed to asymmetric normal velocity in forward flight, as explained in

Figure 1.1. On the advancing side of the rotor disk, flow velocity and local dynamic

pressure are greater than those on the retreating side of the disk. As a result of this,

thrust and moment generations are different for each side of disk. An instability

exists if the imbalances of thrust and moment are not eliminated. In order to remove

the imbalance, a cyclic motion is given to the blade. Periodic motions of the blade

which are flapping, pitching (feathering) and lead-lag are illustrated in Figure 1.2,

where also shown are the typical hinge locations and axes.

Figure 1.2: Cyclic motions of blade [1]

Azimuthal position may be represented by a function that depends on time and angu-

lar velocity of the rotor. The period of the cyclic motions of a blade is equal to 2π/Ω

seconds. On the other hand, the period of the rotor is 2π/(ΩN) seconds. In other

words, position of a rotor blade at an arbitrary time is the same as that after 2π/(ΩN)

seconds. Thus, the flapping, feathering, and led-lag angles are also periodic func-
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tions of the azimuth angle. Furthermore, these periodic functions might be described

by Fourier series. Therefore, flapping, feathering, and led-lag are described by the

Fourier series given in Section 2.5.

1.2 CFD Modelling of Helicopter Rotors in Hover and Forward Flight

In the early times of rotorcraft development, aerodynamic design had been based on

empirical results, and mathematical models such as momentum and blade element

theory. Then, increase in computer memory and speed led to development of compu-

tational fluid dynamics (CFD) techniques. Caradonna [10] states that CFD is a tool

which is both readily accessible for industry and reliable to design rotorcraft. Al-

though CFD is a reliable tool to design rotorcraft, there are a lot of sources of error

that must be considered carefully. Sources of errors are round-off errors, convergence

errors, discretization errors, and model errors. Thus, it is significant to be aware of

the error sources, and limitations of CFD for the sake of predictions regarding rotor

flow field.

The main purpose of the design of rotorcraft is to reach maximum performance in

hover and forward flight; furthermore, minimum noise and vibration are demanded

[10]. CFD modelling can be involved in design process with accurate flow solutions.

CFD analysis might calculate the effects of parameters such as aspect ratio, twist,

conning, collective and cyclic angles on helicopter rotor performance. These reli-

able calculations are incorporated into the early phase of design process. Therefore,

experimental cost decreases, and efficient design process is obtained as industry de-

mands. Also, aeroacoustic predictions utilize computations of the rotor flow fields. It

is widely known that aeroacoustics is a critical subject in helicopter industry because

certification criteria regarding noise restrictions are getting more intolerant by time.

Aeroacoustic noise, in general, can be divided into three main components which are

thickness noise, loading noise, and shock-associated noise. Kinematic knowledge on

blade motion during an arbitrary flight is enough to calculate thickness noise. On

the other hand, loading and shock-associated noise require solutions of the flow field.

Loading noise needs aerodynamic loads on the surfaces of rotor blades, while shock-

associated noise needs flow field around rotor. Thus, CFD applications on helicopter
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rotor could be used as input for prediction of helicopter rotor noise. The follow-

ing sections briefly explain some computational methods used in rotorcraft problems.

Assumptions and limitations of methods are also stated. Solutions of the Reynolds-

Averaged Navier-Stokes (RANS), and Euler equations are employed in the thesis, and

they are explained in Section 2.1. Moving Reference Frame (MRF) used in steady

state solutions of hover cases is discussed below.

1.2.1 Moving reference frame

Moving reference frame (called as MRF) method is independent of flow equations

which is intended to be solved. For instance, MRF is applicable to potential flow

theory as well as Navier-Stokes equations. The method is based on solving flow

equations with respect to a moving reference frame, instead of a stationary frame. As

viewed from the blade-fixed frame, the problem turns into a time-independent flow

problem. Therefore, the governing equations of the flow field around the helicopter

rotor can be solved in a steady state way. There is a limitation on the application of

MRF to flow equations around helicopter rotor. Rotor blades must not have cyclic

motion such as feathering, flapping, and lead-lag. Hence, hover and forward flight

cases without cyclic motion can be solved theoretically by MRF method. Solving the

equations of fluid flow in a rotating frame rather than inertial frame has important

advantages for hovering rotor. Convergence time of solution in rotating frame is

significantly less than that in stationary frame. Moreover, using rotating frame does

not need remeshing in each time step unlike using stationary reference frame [11].

Srinivasan and Baeder [12] presented a work regarding helicopter rotor flow fields

including the solutions of the equations written in rotating frame. In their work,

helicopter rotor aerodynamic flow fields are calculated by applying MRF method.

1.2.2 Vorticity Transport Models

The effects of blade-wake and wake-wake interactions on the aerodynamic loading,

acoustics and vibration have significant results for rotorcraft. In order to capture the

complexities in the interactions, vorticity transport model (VTM) can provide the
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computational solutions of flow field. This method employs a direct computational

solution of incompressible Navier-Stokes and Biot-Savart relationship to calculate

evolution of the wake structure. Brown [13] states that developed model is a com-

putational helicopter rotor wake model which is based on the numerical solutions of

time-dependent fluid dynamic equations governing the generation and convection of

vorticity over a domain surrounding the rotor. When compared to Navier Stokes so-

lutions, VTM provides more feasible approach to predict rotor wake. Although this

method presents the complete model for the evolution of rotor wake, it is computa-

tionally expensive, similar to mesh based CFD approaches, for use in parametric de-

sign procedure [1]. Besides, Free vortex method (FVM), a simplified form of VTM,

also predicts evolution of the rotor wake. In a lot of practical problems, length scales

of rotor wake structures generated by viscous effects can be much smaller when com-

pared to structures caused by purely potential flow. In these cases, FVM is appropriate

way to predict rotor wake structure [1]. A drawing of total wake in hovering rotor and

typical blade loading distribution is illustrated in Figure 1.3 [2].

8



Figure 1.3: Total wake in hover and blade loading distribution on a blade [2]

1.2.3 Boundary Layer Equations

Boundary layer equations offer intermediate solution between Navier-Stokes and Eu-

ler equations. Viscous effects are only considered in boundary layer. Outside the

boundary layer, inviscid or potential flow solutions are applied. Hence, aerodynamic

loads and flow field are predicted with a feasible numerical method generally called

as viscous-inviscid interaction technique. One of the early and important examples of

the applications of boundary layer equations to helicopter flow field was performed

by Srinivasan and McCroskey [14]. In their work, unsteady, thin layer Navier-Stokes

equations written in rotor coordinates are solved to predict flow fields of a hover-

ing rotor at subsonic, transonic, lifting and non-lifting conditions. The procedure
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of solution is first to solve inviscid flow field and then to solve the boundary layer

equations. After performing a correction to consider the effect of the thickness of the

boundary layer on the outer flow, the inviscid solution is then repeated. The resultant

solution provides a high Reynolds number solution to the Navier-Stokes equations

[1]. Boundary layer equations give inaccurate results where greatly seperated flows

occur. Hence, regions of seperated flow must be considered before boundary layer

approach is employed.

1.3 Objective of Thesis

The main objective of the thesis is to carry out flow solutions of isolated helicopter ro-

tors in both hover and forward flight. Forward flight case with cyclic motions of blade

is relatively more challenging than the others because of blade motions and effects of

unsteady aerodynamics. Therefore, numerical cyclic motions in each time step must

match with analytical motions, and flow solutions must capture the unsteady effects

in that case. The resultant flow variables on the rotor blade surfaces and around the

entire rotor are employed for noise prediction by a code developed under a TAI/D-

KTM project [4]. The aim is to obtain resultant pressure distributions on the blades,

as well as integrated results of them, namely rotor performance data (e.g. thrust and

torque). Results indicate good comparisons for both performance data and sound

pressure levels with available experimental and numerical results in literature.

1.4 Scope of Thesis

The thesis includes the solutions of both Euler and Reynolds-Averaged Navier-Stokes

equations in hover and forward flight. Hover computations are carried out in a steady

state way by employing the MRF method. On the other hand, forward flight sim-

ulations are performed in a time-dependent manner. Commercial software, Ansys

Fluent v17.0 is used together with its User Defined Function (UDF) capability. In

hover cases, Caradonna-Tung rotor [3], a rotor tested in the TAI whirl tower facility

[15], and non-lifting and untwisted UH-1H rotor with transonic flight conditions are

investigated [16]. In forward flight cases, a two-bladed Onera model rotor without
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cyclic motions of blade and Caradonna-Tung rotor with cyclic motions of blade are

examined [5]. To assess the success of UDF for giving cyclic motions, comparisons

with analytical blade motions are carried out. Performance curves, the change of

non-dimensional thrust and torque with collective angles, chordwise pressure distri-

butions at different spanwise sections and sound pressure levels are compared with

the experimental and available numerical results from literature.
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CHAPTER 2

METHODOLOGY

2.1 Governing Flow Equations of Aerodynamics

Three dimensional, compressible, Reynolds-Averaged Navier-Stokes (generally known

as RANS) equations are used as the governing equations for aerodynamic fields of

helicopter rotors. Numerical solutions to the RANS equations are obtained for the

Caradonna and Tung [3] rotor in hover, TAI whirl tower rotor [15] in hover, On-

era two-bladed model rotor in forward flight without cyclic motions of blade and

Caradonna and Tung rotor in forward flight with cyclic motions of blades [5]. In hov-

ering UH-1H rotor with transonic flight conditions case, compressible Euler equations

are used as the governing equations.

Three-dimensional, compressible RANS equations (Favre-averaging) in Cartesian co-

ordinates could be represented as follows [17].

∂Q

∂t
+
∂(D −Dvis)

∂x
+
∂(E − Evis)

∂y
+
∂(F − Fvis)

∂z
= 0 (2.1)

Conservative flow variable vector, Q is given as follows.

Q =



ρ̄

ρ̄ũ

ρ̄ṽ

ρ̄w̃

ρ̄ẽt


(2.2)
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Inviscid flux vectors (D, E, F ), and viscous flux vectors (Dvis, Evis, Fvis) can be

written as

D=



ρ̄ũ

ρ̄ũ2 + P̄

ρ̄ũṽ

ρ̄ũw̃

(ρ̄ẽt + P̄ )ũ


, Dvis =



0

τ̄xx

τ̄xy

τ̄xz

τ̄xxũ+ τ̄xyṽ + τ̄xzw̃ − q̄x



E=



ρ̄ṽ

ρ̄ṽũ

ρ̄ṽ2 + P̄

ρ̄ṽw̃

(ρ̄ẽt + P̄ )ṽ


, Evis =



0

τ̄yx

τ̄yy

τ̄yz

τ̄yxũ+ τ̄yyṽ + τ̄yzw̃ − q̄y



F=



ρ̄w̃

ρ̄w̃ũ

ρ̄w̃ṽ

ρ̄w̃2 + P̄

(ρ̄ẽt + P̄ )w̃


, Fvis =



0

τ̄zx

τ̄zy

τ̄zz

τ̄zxũ+ τ̄zyṽ + τ̄zzw̃ − q̄z



(2.3)

Flow variables are seperated into averaged and fluctuating components. Overbar

and tilde signs indicate the Reynolds-averaging and Favre-averaging, respectively.

Reynolds and Favre averagings of an arbitrary flow variable, φ could be written as

φ̄ =
1

t

∫ t+∆t

t

φdt (2.4)

φ̃ =
ρ̄φ̄

ρ̄
(2.5)

Total energy term with Favre-averaging, ẽt, is defined as

ẽt =
P̄

ρ̄(γ − 1)
+

1

2
(ũ2 + ṽ2 + w̃2) (2.6)
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Compressible Euler equations are obtained by omitting viscous flux vectors (Dvis,

Evis, Fvis) from compressible Navier-Stokes equations. Euler equations are con-

sidered as feasible in certain flow physics that turbulence and viscous effects are not

significant. High Reynolds number flows over helicopter rotors are commonly con-

sidered as convenient for solution of Euler equations.

2.2 Solution Strategy and Solver

Solvers in Ansys Fluent commercial code solve the governing equations, conservation

of mass, momentum, energy in integral forms, and scalar turbulence equation. Con-

trol volume based technique is employed. Solution domain is divided up into discrete

control volumes using a computational grid. Integration of the governing equations

on control volumes is carried out in order to build algebraic equations for the discrete

flow variables. Discretized equations are linearized. The resulting linear equation

system is solved to provide updated values of the flow variables [18]. Cell-centered

finite volume method is used as discretization algorithm. Linearization and solution

of the system of equations is performed by pressure based coupled solver (PBCS).

Although pressure-based solvers are initially used for incompressible flows, the new

modified versions of pressure-based solvers are applicable for a wide range of flow

regimes, from low speed incompressible flow to high-speed compressible flow. In

this thesis, PBCS is employed because it decreases the time to reach convergence, ap-

proximately as much as five times faster, by solving momentum and pressure-based

continuity equations in a coupled way. Although PBCS requires about 2 times more

memory, its advantages outweigh the weaknesses. Pseudo-transient solution method

is a kind of implicit under relaxation method for simulations in steady-state. It de-

creases the convergence times and provides more robust solutions on relatively highly

skewed grids. In practice, average speedups of steady state solution to reach conver-

gence is 30 percent to 50 percent [19]. Also, initialization is a significant process to

reach converged solution faster. Full multigrid initialization (FMG) is used to achieve

feasible initial solution as considered the overall solution time. The necessary time

for FMG is longer than other types of initialization. However, it helps to obtain con-

verged solution faster by better first estimation. FMG solves Euler equations, and it

15



is convenient for compressible and external flows.

2.3 Boundary Conditions

2.3.1 Wall Boundary Conditions

Wall boundary conditions are employed to bound fluid and solid fields on blade sur-

faces. For Euler solution presented in Sections 3.1.3, inviscid wall boundary con-

ditions are applied. Velocity normal to wall is zero, ~V .~n = 0. Velocity vector is

tangent to blade wall (flow-tangency). For Navier-Stokes solutions presented in Sec-

tions 3.1.1, 3.1.2, 3.2.1,3.2.2, fluid sticks to the wall and moves with the same velocity

with the wall (no-slip condition). Wall boundaries are stationary in hover cases, while

they move with adjacent cell zone in forward flight cases. Adiabatic wall condition

is applied; In other words, heat flux between air and wall is equal to zero. Moreover,

wall roughness and roughness height are specified for viscous cases.

2.3.2 Far-field Boundary Conditions

As outer boundary conditions, pressure far-field boundary conditions are employed.

Free stream Mach number, direction of flow, static temperature and pressure are de-

fined. The turbulence viscosity ratio, µt
µ

, at the far-field boundary are also defined for

viscous solutions. Critical point is that boundaries must be located at far enough from

the rotor. For instance, distances between rotation center and boundaries located at

sides and top are 10 rotor radii. The bottom boundary is placed away from the rota-

tion center by 15 rotor radii distance for lifting case. Rotor is placed in the middle of

bottom and top boundaries for non-lifting cases.

2.3.3 Periodic Boundary Conditions

Periodic boundary conditions can theoretically be implemented for all hover cases,

because flow rotationally and periodically repeats. Flow variables coming in one

periodic surface are exactly same as the ones coming out the other periodic surface.
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Hence, periodic boundaries must be used in pairs. However, forward flight cases with

or without cyclic motion are not convenient to apply periodic boundary conditions.

The flow fields in forward flight cases do not have a periodically repeating nature.

Periodic conditions could allow smaller solution domains. Hence, number of cells

can be increased for better resolution. Therefore, better resolution can be obtained

with same computational power.

2.4 Discretizations of the Equations

Hover simulations, in Section 3.1 are carried out in steady state manner as stated

earlier. Hence, the equations are only exposed to spatial discretization. On the other

hand, forward flight simulations, in Section 3.2 are solved in time-dependent manner.

Therefore, spatial and temporal discretization are applied to the equations of forward

flight cases.

Third order MUSCL scheme is used by combining second order upwind with central

differencing scheme. Second order upwind scheme can be given as follows.

ϕf,sou = ϕ+∇ϕ.~r (2.7)

ϕ is the scalar discrete quantity at an arbitrary cell center. ∇ϕ is the gradient at the

upstream cell. ~r is the vector pointing to corresponding face centroid from centroid

of upstream cell. In central differencing scheme, an arbitrary scalar quantity is deter-

mined as

ϕf,cd = 0.5(ϕ0 + ϕ1) + 0.5(∇ϕ0.~r0 +∇ϕ1.~r1) (2.8)

Neighbour cells, 0 and 1, are split by face f. Direction of the ~r is from cell center to

face center. Hence, the following equation illustrates the third order MUSCL scheme

written by coupling second order upwind and central differencing scheme.

ϕf = ϑϕf,cd + (1− ϑ)ϕf,sou (2.9)
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Forward flight cases are time-dependent simulations. Thus, the governing equations

of these cases require discretization in both time and space. First order implicit tran-

sient formulation is employed as illustrated in Equation 2.10. Time derivative of a

scalar variable ϕ is shown in Equation 2.11.

ϕn+1 − ϕn

∆t
= F (ϕn+1) (2.10)

δϕ

δt
= F (ϕ) (2.11)

2.5 Implementation of the Prescribed Periodic Motions of Blade

Periodic motions of blade are explained briefly in Section 1.1.5. In this section, peri-

odic motions of blade are examined in a detailed way. Also, application of periodic

motions of blade to CFD analysis is described. Results of simulation case including

periodic motions are demonstrated in Section 3.2.2.

Periodic motions of blade are provided by User Defined Function [UDF] in Fluent

software. UDFs are functions in C programming language that can dynamically be

loaded with Fluent. They are used in order to enhance standard features of commer-

cial software, Ansys Fluent [18]. There are a lot of UDFs for a variety of purposes. In

this thesis, "Define cg motion" macro is used. Rigid body motion is given for certain

cell zones by this macro. Hence, cells in dynamic zones move rigidly with respect to

angular and linear velocities defined in macro.

The application of periodic motions of blade to CFD simulation is as follows. Flap-

ping, feathering and lead-lag motions are given to blade and boundary layer rigidly

by UDF. Rotor rotation is provided by mesh motion in Fluent for all cell zones includ-

ing blade, boundary layer and outer of the boundary layer. As blade and boundary

layer perform flapping and lead-lag, cells located in outer of the boundary layer are

deformed in order to avoid mesh overlapping. The application of UDF to simulation

is also illustrated in Figure 2.1.
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Two mesh deformation methods, which are smoothing and remeshing, are employed

to the cells adjacent to the boundary layers. Spring-based smoothing is applied whose

spring constant factor equals to 0.4. When constant factor equals to zero, it means that

there is no damping on the springs, and boundary node motions have more effect on

the motion of interior nodes. Moreover, smoothing process is performed iteratively

during each time step. Number of iterations is equal to 40 in mesh smoothing. The

second mesh deformation method is remeshing. When the boundary displacement is

large compared to adjacent cell sizes, or cell skewness is larger than 0.95, remeshing

is applied to local cells in each time step. Therefore, remeshing prevent problems

such as negative cell volumes and degenerate cells.

Figure 2.1: Application of periodic motions to CFD simulation

Simulation including periodic motions of blade is based on giving linear and angular

velocities to cell zones at each time step. Hence, time step size affects the accuracy of

motion. In order to validate the motion used in simulation, analytical calculation of
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periodic blade motion is also performed. Comparisons between analytical calculation

and motions performed in simulation is shown in Section 3.2.2. The first step for

both analytical calculation and UDF is to define periodic motions of blade. In typical

forward flight, blade performs flapping, feathering and lead-lag around specific axis

as illustrated in Figure 1.2. Angles of periodic motions are feathering (θ), flapping

(β) and lead-lag (φ). Number of blades is N and they are placed in same angular

distance. Therefore, in arbitrary time, periodic motions of blade (b) is illustrated as

Fourier series in the following equations.

θb(t) = θ0 + θ1c cosψb + θ1s sinψb + θ2c cos 2ψb + θ2s sin 2ψb + ... (2.12)

βb(t) = β0 + β1c cosψb + β1s sinψb + β2c cos 2ψb + β2s sin 2ψb + ... (2.13)

φb(t) = φ0 + φ1c cosψb + φ1s sinψb + φ2c cos 2ψb + φ2s sin 2ψb + ... (2.14)

Here, azimuthal angle (ψb) is represented as a function depending on angular velocity

of rotor (Ω) and time (t). Direction of the reference axis (ψ = 0) is from head to

tail of the helicopter. First blade of rotor (b=1) is considered along reference axis at

initial time. The azimuthal angle of blade b can be written as

ψb(t) = Ωt+ 2π(b− 1)/N (2.15)

In general, higher harmonics of feathering (θ2c, θ2s, etc.), flapping (β2c, β2s, etc.) and

lead-lag (φ2c, φ2s, etc.) are so small and might be neglected. Therefore, periodic

motion angles are simplified as.

θb(t) = θ0 + θ1c cosψb(t) + θ1s sinψb(t) (2.16)

βb(t) = β0 + β1c cosψb(t) + β1s sinψb(t) (2.17)

φb(t) = φ0 + φ1c cosψb(t) + φ1s sinψb(t) (2.18)

Here, θ0, θ1c, θ1s are collective, longitudinal and lateral pitch angles; β0, β1c, β1s are

conning, lateral and longitudinal flap angles; φ0, φ1c, φ1s are mean lag, lateral and

longitudinal shifts, respectively.

In the simulation case performed in Section 3.2.2, blade is initially on the direction

of helicopter tail and rotational axis is +z axis. Flapping, feathering and lead-lag

hinges are located at rotational axis. The order of the cyclic motions is prescribed.

It is arranged in order of rotation, flapping, lead-lag and feathering. In other words,
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rotation (around z axis), flapping (around −y(1) axis), lead-lag (around z(2) axis) and

feathering (around x(3) axis) are performed respectively.

Analytical calculation is based on coordinate transformation. For instance, x0 is co-

ordinate of a point on blade as time and azimuthal angle equal to zero. Therefore,

coordinate transformation is carried out by the following equations.
x1

y1

z1

 =


cosψ − sinψ 0

sinψ cosψ 0

0 0 1


︸ ︷︷ ︸

R1


x0

y0

z0

 (2.19)


x2

y2

z2

 =


cos β 0 − sin β

0 1 0

sin β 0 cos β


︸ ︷︷ ︸

R2


x1

y1

z1

 (2.20)


x3

y3

z3

 =


cosφ − sinφ 0

sinφ cosφ 0

0 0 1


︸ ︷︷ ︸

R3


x2

y2

z2

 (2.21)


x4

y4

z4

 =


1 0 0

0 cos θ − sin θ

0 sin θ cos θ


︸ ︷︷ ︸

R4


x3

y3

z3

 (2.22)

Here, R1, R2, R3, R4 are transformation matrices and ~x0 = [x0, y0, z0]T is the initial

position of an arbitrary point on blade at ψ = 0. Therefore, after all cyclic motions of

blade, final position of blade is ~x4 defined as.

~x4 = [R4R3R2R1]~x0 (2.23)

The purpose of the analytical calculation is to prove the accuracy of motion given

by commercial software and its UDF capability. After analytical calculation is per-

formed, UDF is written in order to provide periodic motions of rotor in solver. Hence,
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with certain time step interval, motion is acquired numerically. They are compared

in Section 3.2.2. UDF macro provides flapping, feathering and lead-lag by using the

components of angular velocity with respect to Cartesian coordinates. Therefore, it is

required to define the angular velocities with respect to blade-fixed frame as follows.

θ̇b(t) = −θ1cΩ sinψb + θ1sΩ cosψb (2.24)

β̇b(t) = −β1cΩ sinψb + β1sΩ cosψb (2.25)

φ̇b(t) = −φ1cΩ sinψb + φ1sΩ cosψb (2.26)

Angular velocities with respect to blade-fixed frame are required to rotate back to

inertial frame. Components of angular velocity in Cartesian coordinates (Ωx, Ωy, Ωz)

are obtained as follows.
Ωx

Ωy

Ωz

 = R1R2R3R4


θ̇

0

0

 +R1R2R3


0

0

φ̇

 +R1R2


0

−β̇
0

 (2.27)

Finally, cyclic motions are provided by UDF. Time dependent solver is ready to solve

accurate motion. The shortened version of UDF is stated in Appendix A.
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CHAPTER 3

RESULTS AND DISCUSSION

3.1 Hover Flight Cases

Hover flight cases are solved in a steady state manner with the MRF method as

mentioned earlier. Three hovering rotors are analysed. The first one is known as

Caradonna Tung rotor in literature [3]. The study made by Caradonna and Tung [3]

includes hover cases with various collective angles and angular velocities. These im-

portant test series are benchmark for hovering cases. The case with a collective angle

of 8 degrees is selected. The tip Mach number of the selected case is similar to that

of TAI whirl tower case [15]. The RANS equations are solved in a steady state way.

Chordwise pressure distributions at different spanwise sections are compared with

experimental results. The second rotor is the TAI whirl tower rotor [15]. Eight dif-

ferent collective pitch angles are computed, from zero to 14 degrees with 2-degree

interval. Rotor performance curves and sound pressure levels at a microphone loca-

tion are compared with experimental study. The third rotor is the untwisted model of

the UH-1H rotor which has symmetric NACA0012 airfoils. A non-lifting case (zero

collective angle) with a transonic tip Mach number is considered [16]. Attained flow

solutions of this rotor are used as input for computations of high speed impulsive

noise. Computations of noise for both TAI whirl tower and UH-1H rotors are per-

formed by the noise prediction code developed under a TAI/DKTM project [4]. Flow

conditions and computation details of the hover cases are summarized in Table 3.1.

During the simulations, under-relaxation factors control the update of computed flow

variables at each iteration. The values of pseudo transient under-relaxation factors

are stated in Table 3.2. Under-relaxation factor of temperature is valid for only invis-
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Table 3.1: Summary of hover case simulations

Caradonna and
Tung

TAI whirl tower UH-1H

Flow conditions
Mtip 0.44 0.49 0.88
θcollective 8o 0o, 2o, 4o, 6o, 8o,

10o, 12o, 14o
0o

βconning 0o 2o 0o

Computation details
Model Viscous, Spalart

Allmaras
Viscous, Spalart
Allmaras

Inviscid

Solution domain full rotor full rotor periodic
Number of cells 7,700,000 10,300,000 7,100,000
Number of surface grid
on a blade

58,000 87,000 109,000

Length of edge of tet grid
in refinement region

0.12c 0.12c 0.20c

Table 3.2: Pseudo transient under-relaxation factors

Pressure Momentum Density Body
forces

Energy Temperature Modified
turbulent
viscosity

Turbulent
viscosity

0.4 0.4 1 1 0.75 0.75 0.75 1

cid case while modified turbulent viscosity and turbulent viscosity is relevant to only

viscous flows.

3.1.1 Caradonna-Tung

For this rotor RANS solutions with Spalart-Allmaras one equation turbulence model

are carried out in a steady state way. The rotor consists of two untwisted and sym-

metric (NACA0012) blades [3]. The radius of the rotor is 1.143 meters, and aspect

ratio of the blades is 6. Experiments are run in a wide range of angular velocity (650

rpm to 2540 rpm), and collective angles (zero to 12 degree). A single case with an

eight degree collective angle and 1250 rpm is analysed. This rotational velocity is

examined because the tip Mach number is 0.44 which is same as TAI whirl tower

[15] discussed in the next section. Also, Reynolds number is same as TAI whirl
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tower. When tip velocity is considered, Reynolds number is approximately equal to

1.9× 106. Characteristic length is chord in the calculations of Reynolds number. The

distances between rotation center and the outer boundaries on the side and top are

about 10 rotor radii. The bottom boundary is away from the rotor center by 15 rotor

radii. Mesh refinement is performed in the regions of high flow gradients, such as

near tip vortex flow paths. The edge of the largest tetrahedron mesh in the refined

region is defined as 0.12 chord. Figure 3.1 shows some different views of the solution

domain which is made of cylindrical shape and the mesh refinement regions. Mesh

study is carried out in order to demonstrate that solution is independent of number of

cells. For relatively coarse mesh including 6.1 million cells, the edge of the largest

tetrahedron mesh in the refined region is equal to 0.18 chord. Figure 3.3 indicates

pressure distributions at the tip regions. There is no important difference between the

solutions obtained on two grids. Figure 3.2 illustrates the pressure distributions along

chord at five different spanwise sections for finer mesh. Pressure coefficient distribu-

tion at a section of blade is obtained by using the velocity normal to that section of

blade. It seems that the pressure values on upper surfaces are slightly overestimated

at the leading edge. Nevertheless, a good overall agreement between the experimental

data and the computed results is observed.
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Figure 3.1: Solution domain and mesh refinement regions
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(a) r/R=0.50 (b) r/R=0.68

(c) r/R=0.80 (d) r/R=0.89

(e) r/R=0.96

Figure 3.2: Pressure distribution comparison for the Caradonna and Tung case [3]
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(a) r/R=0.89 (b) r/R=0.96

Figure 3.3: Pressure distribution comparison between coarse and fine meshes for the

Caradonna and Tung case [3]

3.1.2 TAI Whirl Tower

The method used in the solution of Caradonna and Tung [3] rotor is discussed in the

preceding section. This method is applied to the 3-meter radius experimental rotor

which is designed by TAI. The RANS equations are solved with Spalart-Allmaras

one equation turbulence model. Meshing strategy is also similar to that of hovering

Caradonna and Tung [3] rotor. The first cell wall y+ value is set nearly equal to

a minimum value of 1, which is in the vicinity of blade tip. As mentioned before,

eight simulations are carried out from zero to 14 degree collective pitch angles with

an interval of 2 degrees. Double precision arithmetic is used in simulations in order

to minimize round-off error. Also, convergence plays a crucial role to attain reliable

CFD results. Iterations for steady state solution are continued until about a five orders

of magnitude residual reduction.

Monitoring the values of the produced thrust and torque during the solution is also

a good way of observing the convergence. This is shown in Figure 3.4. Figure 3.5

illustrates velocity magnitude contours on a vertically sliced plane through the rotor

center as well as gage pressure contours on a blade. Qualitatively, no abnormalities

such as discontinuities in gage pressure or velocity contours are observed in compu-
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Table 3.3: Normalization variables of TAI whirl tower case

Chord
[m]

Density
[kg/m3]

Rotor
radius
[m]

Rotor
Area [m2]

Angular
velocity
[rad/s]

Number
of blades

Solidity

0.1778 1.0584 2.97 27.7117 56.5487 2 0.0381

tations of rotor flow fields. In order to compare the obtained computational results

with the measured thrust and torque values, a normalization was performed for thrust

and torque values. Namely, the thrust and torque coefficients are obtained. Table 3.3

illustrates the geometric properties and operational conditions used in normalization.
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(a) θ = 10o (b) θ = 10o

(c) θ = 12o (d) θ = 12o

(e) θ = 14o (f) θ = 14o

Figure 3.4: TAI whirl tower convergence history
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Figure 3.5: TAI whirl tower downwash and gage pressure contour at θ = 12o
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(a) thrust vs. collective (b) torque vs. collective

(c) torque vs. thrust

Figure 3.6: Comparisons of present viscous solutions with tested non-dimensional

thrust and torque values for TAI whirl tower cases

Non-dimensional values of the thrust and torque are compared with the experiment

results [15] in Figure 3.6. The predictions of thrust coefficient for different collective

angles show generally good agreement with experimental data. The variation of the

torque coefficient with collective angles has similar trend with experiment. However,

a nearly 25 percent difference between the attained results and experimental data can

be detected at some collective angles. It is known that thrust and torque are related to

lift and drag, respectively. Hence, it is expected that the thrust is predicted generally

more accurately than the torque. On the other hand, a significant performance curve

which is the change of non-dimensional thrust with non-dimensional torque agrees
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well with the experimental data. This curve is important because it compares the

performance of actual rotor with the performance of an ideal rotor like figure of merit

[7].

Figure 3.7 illustrates the chordwise pressure coefficent variations at different span-

wise sections for collective angles of 4, 8 and 12 degrees. These type distributions

were used as input into noise prediction code developed in TAI [4]. The noise predic-

tion code [4] uses the flow variables such as static temperature, static pressure, den-

sity, velocity components. This noise prediction algorithm is based on integration of

the Ffowcs William-Hawkings equation. Figure 3.8 shows the comparisons of sound

pressure levels of the experiment and code at a microphone location. While blue

bars represent acoustic calculations without ground reflection, orange bars illustrate

results with inclusion of ground reflection for acoustic calculations. Attained results

show very good agreement with experiment for the first two harmonics. Capturing

similar accuracy for the higher harmonics requires using of finer meshes, because

higher harmonics are results of mainly multiple effects of trailing tip vortices.
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(a) θcollective = 4o (b) θcollective = 8o

(c) θcollective = 12o

Figure 3.7: Pressure distributions of TAI whirl tower rotor blade
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(a) θcollective = 2o (b) θcollective = 4o

(c) θcollective = 6o (d) θcollective = 8o

(e) θcollective = 10o (f) θcollective = 12o

Figure 3.8: Comparisons of acoustic predictions of TAI whirl tower rotor with exper-

imental data [4]
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3.1.3 UH-1H with Transonic Flight Conditions

Solutions of Euler equations in steady state manner are carried out in this section.

The discretization of the equations are similar to those given in Sections 3.1.1, and

3.1.2. However, some of the boundary conditions are naturally different than the

above hover cases. Firstly, inviscid wall boundary condition is applied on the blade

surfaces . Secondly, solution is not carried out for 360-degree domain, rather on half

of it with periodic boundary conditions. Domain boundaries are indicated in Figure

3.9.

Figure 3.9: Domain boundaries of UH-1H rotor

Also, flight conditions of UH-1H rotor are different from the previous hover cases.

The first difference is transonic tip Mach number (Mtip = 0.88). The second one is

rotor blade is symmetric and untwisted. Hence, thrust generation does not exist. Be-

cause of these two reasons, mesh refinement region also includes some differences.

Shock waves and supersonic flow regions occur both below and above blade tip, and
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they extend out beyond the rotating blade tip. Mesh refinement focuses in these re-

gions.

Figure 3.10 indicates the computed pressure coefficients along chord at different

wingspan sections. Pressure discontinuity near tip region (r/R = 0.95) demonstrates

that a shock wave exists there. The same pressure distribution on upper and lower sur-

faces means there is no thrust generation. Figure 3.11 shows the static pressure and

relative Mach number contour lines near the tip on the rotor plane. Relative Mach

number contour lines illustrate the sonic cylinder, and shock wave around tip region.

In general, as tip Mach number is between 0.8 and 0.9, weak shock waves take place

in tip region. When tip Mach number is greater than about 0.9, the shocks become

delocalized, extending beyond the blade tip. This causes intense and high frequency

noise in directions near the plane of rotor [20]. Therefore, shock delocalization arises

when the tip Mach number reaches a critical value about 0.9. At this Mach number,

the transonic zone and shock waves expand radially. Shock waves detach from the

blade tip, and then they reach the sonic cylinder. The flow discontinuity on the sonic

cylinder causes a weak acoustic shock in the far field. The earlier works proposed

that tip Mach number starting the shock delocalization for untwisted and symmetric

UH-1H rotor was between 0.88 and 0.90 [16]. Tip Mach number of 0.88 seems very

close to beginning of shock delocalization. Therefore, accurate solution of the flow

field is essential to predict high speed impulsive noise.
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Figure 3.10: Pressure coefficient distribution along chord at different spanwise sec-

tions for UH-1H case
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Figure 3.11: Static pressure (left) and relative Mach number (right) on UH-1H rotor

plane (top view)

3.2 Forward Flight Cases

In this section, flow solutions of helicopter rotors in forward flight are performed.

Solutions of RANS equations are carried out in time-dependent manner. Third order

MUSCL discretization is used in space, while first order implicit transient formulation

is applied with pseudo subiterations. A number of 15 subiterations are forced in aim

of approximately 4 orders of magnitude residual reduction at each physical time step.

The physical time step is chosen such that it corresponds to a 0.25 degree of rotor

rotation. Due to transient nature of the solutions, a mesh motion is realized between

two consecutive time steps.

Two forward flight cases are considered. The first one, discussed in detail in Section

3.2.1, does not include cyclic blade motions. Hence, only grid rotation about the
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Table 3.4: Summary of forward flight case simulations

Onera two-bladed Caradonna and Tung
Flow conditions
Mhovertip 0.605 0.60
Advance ratio 0.55 0.25
Cyclic motions of blade not exist exist
Computation details
Model Viscous, Spalart-

Allmaras
Viscous, Spalart-Allmaras

Solution domain full rotor full rotor
Number of cells 4,500,000 6,600,000
Number of surface grid
on a blade

30,000 49,000

Length of edge of tet grid
in refinement region

0.15c 0.15c

Number of revolutions 4 4
Number of cores 32 32
Simulation time [h] 70 84

rotation axes is sufficient to simulate the physics of the problem. This flight condition

is solved in preparation for the next case that includes cyclic motion. Due to cyclic

motion, the latter case is the more challenging one. It is solved through mesh motion

and deformation which are provided during the transient solution through the UDF

capability of the solver. Details are given in Section 2.5. Table 3.4 gives a summary

of the flow conditions, and computational details for both forward flight cases.

3.2.1 Onera Two-bladed Model Rotor without Periodic Motions of Blade

One of the major objectives of the thesis is to solve flow field of helicopter rotors in

forward flight with cyclic motions accurately. For this purpose, forward flight with-

out cyclic motion case is initially performed in order to get ready for cyclic motion

case. Figure 3.12 specifies the geometric properties of Onera two-bladed model rotor

solved. The length of the root chord is 0.166 meters, while radius of the rotor is 0.75

meters. The profile relative thickness decreases linearly from 17 percent at 0.37R to

14.5 percent at 0.8R, then down to 9 percent at the tip.
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Figure 3.12: Geometric specifications of Onera model rotor blade[5]

The advance ratio for the rotor is 0.55, and forward flight Mach number is 0.33275.

Therefore, rotor is exposed to transonic flow at advancing side. When advancing

tip velocity is considered, Reynolds number approximately equals to 2.1 × 106. In

this case, unsteady RANS equations are solved. Figure 3.13 shows the comparisons

of the attained results with the experimental study [6]. Pressure distributions at az-

imuth angles of 60o and 120o degrees are extracted after three revolutions of rotor are

completed. The major challenge in this case is to capture the shock formation and

pressure discontinuity accurately. Figure 3.13 indicates good agreement between the

computed and tested surface pressure distributions.
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(a) ψ = 60o, r/R = 0.891 (b) ψ = 120o, r/R = 0.891

(c) ψ = 60o, r/R = 0.946 (d) ψ = 120o, r/R = 0.946

Figure 3.13: Pressure distribution comparison between experiment [6] and present

viscous solution for Onera two-bladed model rotor

3.2.2 Caradonna-Tung with Periodic Motions of Blade

In this section, solutions of the RANS equations with one equation Spalart-Allmaras

turbulence model are carried out in a totally time dependent manner. No-slip wall

boundary condition on the blade surfaces, and pressure far-field boundary condition

at the far field boundaries are applied. Figure 3.14 illustrates the solution domain, and

regions of mesh refinement in various views. Third order MUSCL discretization is

employed in space. On the other hand, first order implicit transient formulation strat-

egy is applied with a number of subiterations which aim at four orders of magnitude

residual reduction at each time step.
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Forward flight Mach number of Caradonna and Tung rotor with two blades is equal

to 0.15, and the advance ratio is 0.25. When advancing tip velocity is considered,

Reynolds number approximately equals to 3.3 × 106. The Parameters of the pre-

scribed cyclic motions of pitching, flapping, and lead-lag angles are given in Table

3.5. Before comparison of the present viscous solution with numerical results from

literature [5], given cyclic motions to the blades, that is kinematics of blades are

checked. Analytically calculated kinematic motion is compared with that numeri-

cally calculated one through the written UDF module. Guidance on how to provide

calculated kinematic motion both analytically and numerically is presented in Sec-

tion 2.5. For this purpose, a point located at the trailing edge of the tip of a blade

is exposed to analytical and numerical periodic motions. Figure 3.15 indicates the

difference between the numerically and analytically obtained maximum deflections

of this point in the rotor axis direction due to cyclic motion. Difference over greatest

deflection is around 0.006 for some azimuthal positions. In other words, the distance

between blades exposed to analytical and numerical motion is about 0.5mm that is

good agreement. Thus, it can be stated that present solution provides accurate cyclic

motions and rotation.

Figure 3.14: Solution domain and mesh refinement regions for forward flight cases
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Table 3.5: Prescribed cyclic motions of blade for forward flight with cyclic motion
case

θ0 θ1s θ1c β0 β1s β1c φ0 φ1s φ1c

4.0o 2.0o 0.0o 1.5o 2.0o 2.0o 0.0o −2.0o 0.0o

Figure 3.15: Comparison of analytical and numerical cyclic motions for forward flight

with cyclic motion case

During the solution, forces produced by the rotor in upward direction (+z) and in

flow direction (+x) are normalized, and represented by symbols Cz, and Cx, respec-

tively. Figure 3.16 indicates the normalized forces during last two rotations. Because

rotor has two blades, periodic oscillations with an interval of 180 degrees are ex-

pected. It is clearly seen the periodic oscillations during last two rotations, forth and

fifth one. Pressure distributions are captured during the last rotation, fifth one. Qual-

itatively, Figure 3.17 shows the pressure contours on a blade at azimuth angles of

30o, 90o, 150o, 210o, 270o, 330o. Quantitatively, pressure distributions along the chord

at spanwise section of r/R = 0.89 for different azimuthal positions are obtained.

Attained results are compared with the numerical analysis of [5]. Although the lift

of the rotating blade is little overestimated for all azimuthal positions, Figure 3.18

shows good agreement between the present viscous solution and available numerical

solution [5].
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(a) Normalized force in flow direction vs. time

(b) Normalized force in upward direction vs. time

Figure 3.16: Normalized forces on Caradonna and Tung rotor in forward flight during

4th and 5th revolutions
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Figure 3.17: Pressure contours of a blade for various azimuthal positions for forward

flight with cyclic motion case
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(a) ψ = 30o (b) ψ = 90o

(c) ψ = 150o (d) ψ = 210o

(e) ψ = 270o (f) ψ = 330o

Figure 3.18: Pressure distribution comparison for forward flight with cyclic motion

case [5]
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CHAPTER 4

CONCLUSION

In this thesis, flow solutions of helicopter rotors in hover and forward flight have

been carried out. Hover cases have been simulated in steady-state manner, while for-

ward flight cases have been analysed in time-dependent manner due to cyclic blade

motions. Both solutions of Euler and Reynolds-Averaged Navier-Stokes (RANS)

equations have been performed. While Euler equations are usually sufficient to repre-

sent the rotor aerodynamics in the cases of high Reynolds numbers, RANS equations

are needed to be solved in cases of turbulence and viscous effects being relatively

significant.

In the introductory chapter of the thesis, fundamentals of helicopter rotor aerodynam-

ics, and the additional complexity involved in forward flight cases are briefly dis-

cussed. Also, the CFD modelling approaches used in literature are reviewed briefly.

In the second chapter, the solution strategies are expressed with a description of the

commercial solver, Ansys Fluent employed. The governing equations of the hover

cases are given by writing them with respect to rotating frame. On the other hand, in

forward flight analysis, unsteady flow solutions are carried out by first order implicit

transient formulation. Forward flight without cyclic motions are figured out by rotat-

ing the computational mesh. However, forward flight with cyclic motions requires a

different approach. The user defined function (UDF) capacity of Fluent is employed

to give mesh motions, specifically blade cyclic, flapping and lead-lag motions. In

this approach, both the blade surface mesh and the boundary layer mesh are moved

together as a rigid object through a UDF module written for this purpose, while the

mesh elements adjacent to the boundary layer are deformed in order to avoid mesh
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overlapping due to lead-lag and flapping. Two critical issues related to the mesh mo-

tion are time step size and mesh deformation itself. The previous one is important

because rigid motion is performed numerically by integration of angular velocity.

Hence, time step size must be small enough to obtain accurate motion. The latter one

is significant because mesh deformation should take place adjacent to boundary layer,

instead of blade in order to obtain stable pressure distributions.

Three hover and two forward flight cases are solved. Viscous solutions of Caradonna

and Tung [3] rotor, and Turkish Aerospace Industries (TAI) whirl tower rotor [15]

with subsonic tip Mach numbers are carried out by considering the whole rotor. While

inviscid solutions of UH-1H rotor with transonic flight conditions are performed by

employing periodic boundary conditions. Pressure distributions and performance

curves are compared with experimental data. Although it seems that torque values

are little overestimated, overall the agreement with experimental data is good for

pressure distributions, thrust values, and figure of merit. Also, CFD data are used

as input into a noise prediction code developed under TAI Rotary Wing Technology

Center [4]. Sound pressure levels and high speed impulsive noise are obtained for

the hover cases with subsonic and transonic tip Mach number, respectively. Sound

pressure level comparisons with TAI whirl tower measurements are quite well for the

major frequency and its first harmonic. However, some differences exist at higher

harmonics which could be due to insufficient resolution.

Onera two-bladed model rotor [6] without cyclic motions is also solved. The rotor

blades have transonic tip Mach number on the advancing side. Unsteady, viscous so-

lutions are carried out. Pressure distributions are compared with the available exper-

imental data at various azimuthal positions. General trends of pressure distributions

are promising. Forward flight analysis of Caradonna and Tung rotor with cyclic mo-

tions is relatively more challenging than the others because of the mesh deformation

and cyclic blade motions. For this case unsteady RANS solutions are carried out.

Attained results are compared with the numerical solution of [5]. Although lift of the

rotating blade is slightly overestimated for all azimuthal positions, attained viscous

solution indicates good agreement in general, with the numerical viscous solution of

[5].
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4.1 Future Works

• Structured multi-block topology can be constructed. Comparisons between

present unstructured meshes approach with structured multi-block topology

could be carried out.

• Chimera (Overset) method [21] including blade-fixed grids and background

mesh can be conducted. Comparisons of present mesh deformation approach

and Chimera method could be carried out.

• Aeroelastic effects can be taken into account by coupling the flow solver with

a finite element model of the blade.

• Coupling of the flow solver with a rotor trimming approach can be imple-

mented.
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APPENDIX A

USER DEFINED FUNCTION

1 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

2 ∗ node mot ion abou t h e l i c o p t e r r o t o r b l a d e s

3 ∗ c o m p i l e d UDF

4 ∗ w r i t t e n by A l i Oguz Y u k s e l & Y u s u f Ozyoruk

5 ∗ Aerospace Eng . METU, Ankara , S e p t . 2016

6 ∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /

7 # i n c l u d e " udf . h "

8 # i n c l u d e " math . h "

9 # i n c l u d e " d y n a m e s h _ t o o l s . h "

10

11 DEFINE_CG_MOTION( b lade1 , dt , ve l , omega , t ime , d t ime )

12 {

13 r e a l angve l , p s i , t h e t a , be t a , l ag , th0 , bt0 , lg0 , t h e t a d a t ,

b e t a d a t , l a g d a t ;

14 r e a l th1c , th1s , b t1c , b t1 s , lg1c , lg1s , phase , ib , Nblades ;

15 /∗ ∗∗ r e s e t v e l o c i t i e s ∗∗ ∗ /

16 NV_S ( ve l , = , 0 . 0 ) ;

17 NV_S ( omega , = , 0 . 0 ) ;

18 t h 0 = 4 . 0∗M_PI / 1 8 0 ; b t 0 = 1 . 5∗M_PI / 1 8 0 ; l g 0 = 0 . 0∗M_PI / 1 8 0 ;

19 t h 1 c = 0 . 0∗M_PI / 1 8 0 ; t h 1 s = −2.0∗M_PI / 1 8 0 ;

20 b t 1 c = −2.0∗M_PI / 1 8 0 ; b t 1 s = −2.0∗M_PI / 1 8 0 ;

21 l g 1 c = 0 . 0∗M_PI / 1 8 0 ; l g 1 s = 2 . 0∗M_PI / 1 8 0 ;

22 /∗ ∗∗ l a g p o s i t i v e when i t has same d i r e c t i o n w i t h r o t a t i o n ∗∗ ∗ /

23

24 /∗ ∗ With r e s p e c t t o S t e i j l e t . a l .

25 t h e t a = t h 0 − t h 1 c ∗ cos ( p s i ) − t h 1 s ∗ s i n ( p s i ) ;

26 b e t a = b t 0 − b t 1 c ∗ cos ( p s i ) − b t 1 s ∗ s i n ( p s i ) ;
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27 l a g = l g 0 − l g 1 c ∗ cos ( p s i ) − l g 1 s ∗ s i n ( p s i ) ; ∗ ∗ /

28

29 /∗ ∗∗ Thus , v a l u e s o f th1c , th1s , b t1c , b t1s , lg1c , l g 1 s are

m u l t i p l i e d by mines s i g n (−) ∗∗ ∗ /

30

31 a n g v e l = 1 7 8 . 5 6 9 1 ; i b = 1 . 0 ; Nblades = 2 . 0 ;

32 phase = 2 . 0 ∗ M_PI ∗ ( i b − 1 . 0 ) / Nblades ;

33 p s i = a n g v e l ∗ t ime + phase ;

34

35 t h e t a = t h 0 + t h 1 c ∗ cos ( p s i ) + t h 1 s ∗ s i n ( p s i ) ;

36 b e t a = b t 0 + b t 1 c ∗ cos ( p s i ) + b t 1 s ∗ s i n ( p s i ) ;

37 l a g = l g 0 + l g 1 c ∗ cos ( p s i ) + l g 1 s ∗ s i n ( p s i ) ;

38

39 t h e t a d a t = −t h 1 c ∗ a n g v e l ∗ s i n ( a n g v e l ∗ t ime + phase ) + t h 1 s ∗ a n g v e l ∗ cos (

a n g v e l ∗ t ime + phase ) ;

40 b e t a d a t = −b t 1 c ∗ a n g v e l ∗ s i n ( a n g v e l ∗ t ime + phase ) + b t 1 s ∗ a n g v e l ∗ cos (

a n g v e l ∗ t ime + phase ) ;

41 l a g d a t = −l g 1 c ∗ a n g v e l ∗ s i n ( a n g v e l ∗ t ime + phase ) + l g 1 s ∗ a n g v e l ∗ cos (

a n g v e l ∗ t ime + phase ) ;

42 . . . S h o r t e n e d v e r s i o n . . .
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