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ABSTRACT 

VARIABLE-RATE, VARIABLE-PRESSURE PRODUCTION FROM A 

FRACTURED GAS WELL WITH LARGE VISCOSITY AND 

COMPRESSIBILITY VARIATION: APPLICABILITY OF SUPERPOSITION 

TIME 

 

Gül Ertunç, Kıymet Gizem 

Ph. D., Department of Petroleum and Natural Gas Engineering 

       Supervisor      : Prof. Dr. Mustafa Verşan Kök 

       Co-Supervisor: Prof. Dr. Erdal Özkan 

 

September 2017, 85 pages 

 

 

The conventional approach to model gas flow in reservoirs is to use a pseudopressure 

transformation and assume that the remaining nonlinearity of the diffusion equation 

can be ignored by the weak-dependence of compressibility and viscosity on 

pseudopressure. However, the nonlinearity of the diffusion equation cannot be ignored 

in the analysis of fractured, tight-gas well performances. The nonlinearity makes the 

application of superposition principal questionable for fractured tight-gas well 

performances. Fractured, tight-gas wells produce under large pressure drawdowns, 

which may cause three- to ten-fold variations in the gas compressibility-viscosity 

product, particularly in the vicinity of the fracture, over the life of production. Not 

accounting for the effect of large gas compressibility-viscosity product variations in 

pressure- and rate-transient analysis of fractured, tight-gas well performances leads to 

lower permeability estimates or, in general, misinterpretation of reservoir 

characteristics or misassessment of the efficiency of completions. 

In this research, a perturbation-Green’s function solution is developed for the nonlinear 

gas diffusion equation. Because each term of the perturbation solution represents the 

solution for a linearized problem, term-by-term application of the superposition 

principle is permitted. The semi-analytical nature of the solution also enables us to 
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derive approximations for practical use. This dissertation explains the solution 

procedure, compares and verifies the solution by a spectral solution and by a numerical 

simulator, presents variable-rate approximations in terms of a new superposition time, 

and discusses the results to provide guidelines for the analysis of fractured, tight-gas 

well performances under large variations of viscosity and compressibility. 

 

Keywords: perturbation method, Green’s function, superposition time, 

pseudopressure, tight-gas well performance, gas production 
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ÖZ 

YÜKSEK AKMAZLIK VE SIKIŞTIRILABİLİRLİK DEĞİŞİMİ OLAN 

ÇATLAKLI GAZ KUYUSUNDAN DEĞİŞKEN DEBİLİ VE DEĞİŞKEN 

BASINÇLI ÜRETİM: ZAMANDA SÜPERPOZİSYON 

UYGULANABİLİRLİĞİ 

 

Gül Ertunç, Kıymet Gizem 

Doktora, Petrol ve Doğal Gaz Mühendisliği Bölümü 

   Tez Yöneticisi          : Prof. Dr. Mustafa Verşan Kök 

   Ortak Tez Yöneticisi: Prof. Dr. Erdal Özkan 

 

 

Eylül 2017, 85 sayfa 

 

 

Rezervuarlarda gaz akışının modellemesine yönelik klasik yaklaşım, yalancı-basınç 

tanımını kullanarak, sıkıştırılabilirliğin ve akmazlığın yalancı-basınç ile zayıf 

bağımlılığı olduğunu varsayıp difüzyon denkleminin doğrusal olmayışını göz ardı 

etmektedir. Ancak difüzyon denkleminin doğrusal olmaması, çatlaklı, kesif gaz kuyu 

performansı analizlerinde göz ardı edilemez ve bu doğrusal olmayış süperpozisyon 

kuralının çatlaklı kesif gaz kuyu performansı analizlerinde uygulanabilirliği 

konusunda soru işaretleri oluşturur. Çatlaklı kesif gaz kuyuları, üretim ömrü boyunca, 

özellikle çatlak çevresinde, gaz sıkıştırılabilirlik katsayısı ve akmazlığı üzerinde 3-10 

katı değişikliğe neden olabilecek yüksek basınç düşüşleri altında üretilirler. Gaz 

sıkıştırılabilirlik katsayısı ve gaz akmazlığı değişiminin kesif gaz kuyu performansında 

göz önüne alınmaması, geçirgenlik tahminlerinin daha düşük olmasına, genel olarak 

rezervuar özelliklerinin yanlış yorumlanmasına veya kuyu tamamlama 

değerlendirmesinin hatalı olmasına neden olur. 

 

Bu araştırmada, doğrusal olmayan gaz difüzyon denklemi için pertürbasyon-Green 

fonksiyonu çözümü geliştirilmiştir. Pertürbasyon çözümünde, çözümünün her bir 
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terimi, doğrusal bir sorunun çözümünü temsil ettiğinden, süperpozisyon ilkesinin adım 

adım uygulamasına izin vermektedir. Çözümün yarı analitik yapısı da pratik kullanım 

için yaklaşımlar türetmeye olanak sağlar. Bu tezde sunulan çözüm, spectral çözüm ve 

numerik simülatör ile karşılaştırıldı ve doğrulandı. Çözüm prosedürü, değişken debili 

yaklaşımları yeni bir süperpozisyon zamanı ile sunar, viskozite ve gaz sıkıştırılabilirlik 

katsayısındaki yüksek değişimlerin çatlaklı kesif gaz kuyusu performansına etkisinin 

analizlerini tartışır. 

 

Anahtar kelimeler: pertürbasyon metodu, Green fonksiyon, superpozisyon zamanı, 

yalancı-basınç, kesif kuyu performansı, gaz üretimi 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

The main objective is to provide an analytical solution to investigate the effect of 

pressure-dependent viscosity-compressibility product on the performances of 

hydraulically fractured, tight-gas wells and provide guidelines to improve the analysis 

and interpretation of pressure and production data. This problem becomes prevalent 

particularly in tight, unconventional-gas reservoirs where large pressure gradients are 

required to produce the gas causing significant (up to three to ten folds) variations of 

gas viscosity and compressibility during production.  

 

Under Darcy-flow conditions, flow of fluids in porous media are governed by the 

diffusion equation. For the flow of a real gas, pressure-dependent fluid properties make 

the diffusion equation nonlinear that require approximate numerical or analytical 

techniques for solution. For the numerical simulation of real-gas flow problems, severe 

variations of viscosity and compressibility impose time-step restrictions to ensure 

numerical stability and accuracy. For analytical solutions, the first resort is to apply a 

transformation to linearize the diffusion equation. The pseudopressure, ( )m P , 

transformation introduced by Al-Hussainy et al. [1] has been the most common of 

these transformations. However, the pseudopressure transformation leaves some 

nonlinearity in the diffusion equation, which may be ignored if the variation of fluid 

properties is not expected to be significant during the period of analysis (e.g., short-

duration pressure transient tests). In other cases, appropriate solution approaches have 

to be adopted to effectively deal with the nonlinearity of the problem while retaining 

the practicality of the solution.  
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Recently, Barreto et al. [2] [3] proposed a perturbation-Green’s function solution by 

using the change in the viscosity-compressibility as a source term. This approach is 

promising to develop a semi-analytical solution for the problem under consideration 

in this dissertation. The particular emphasis in this work is to extend the approach 

proposed by Barreto et al. [2] [3] to computationally more efficient forms which 

enhances the practical utility of the solution as well enabling derivation of approximate 

forms for practical data analysis.  

 

Perhaps, the most salient feature of the perturbation-Green’s function solution is its 

potential to use with the superposition principle despite the nonlinearity of the 

underlying problem. Superposition principle is commonly used in petroleum 

engineering to develop solutions for complex boundary conditions, such as variable-

rate production or no-flow boundaries, by using the solutions for constant-rate 

production and infinite-acting reservoir. However, the nonlinearity of the gas diffusion 

equation prevents the application of the superposition principle in gas flow problems. 

Using the perturbation approach, the nonlinear problem is replaced by a series of linear 

problems, which permits the term-by-term application of the superposition principle. 

1.1. Dissertation Organization 

This dissertation consists of six chapters, in the following organizational structure:  

 

Chapter I provides an introduction of the research topic and description of the research 

objectives, motivations, contributions and significance of the research.  

 

Chapter II presents a literature review and discusses the background of the 

developments and discussions in the following sections.  

 

Chapter III provides the details of the problem formulation and solution together with 

the verifications of the solution. 
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In Chapter IV, practical approximations are given, derivation of a superposition time 

for data analysis is presented, and extensions to other physical problems are discussed.  

 

Chapter V presents a discussion of the results and example applications to practical 

problems of interest. 

 

Chapter VI, provides a summary of the accomplishments and conclusions of this work 

and makes recommendations for future studies. 

1.2. Research Problem 

Most fractured tight-gas well performance data are available under the condition of 

variable production rate. If the conditions of flow grant the assumption of a linear 

diffusion equation, variable-rate production solutions can be obtained by the 

superposition of constant-rate solutions. Solutions developed by this approach enable 

the extension of the standard analysis techniques developed for the constant-rate 

problem to variable-rate production data by using relatively simple modifications, such 

as the definition of a superposition time. Severe variations of gas viscosity and 

compressibility in tight-gas fields, however, impose a strong nonlinearity on the 

diffusion equation, which cannot be removed by the standard pseudopressure 

transformation. Consequently, relatively simple, closed-form analytical solutions 

cannot be obtained by the conventional approaches. Available approximate analytical 

and numerical solution options for these cases usually encounter efficiency and 

accuracy problems due to computational limitations and, most importantly, they are 

not amenable to the use of superposition to obtain variable-rate solutions. This 

dissertation undertakes the challenge to develop a perturbation-Green’s function 

solution for fractured tight-gas well performances under strong variations of gas 

viscosity and compressibility, which can be used to analyze variable-rate and variable-

pressure production data. 
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1.3. Research Objectives 

The main objective of this dissertation is to express flow toward a fractured well in a 

tight-gas reservoir with strong variability of gas viscosity and compressibility in the 

form of a perturbation problem and obtain an approximate analytical solution in terms 

of a series of Green’s function solutions to a set of linear problems, which permits 

term-by-term term application of the superposition principle. This research has been 

inspired by the perturbation-Green’s function approach proposed by Barreto et al. [2] 

[3] for the solution of nonlinear diffusion equation and is a continuation of the MSc 

thesis research of Komurcu [4].  

 

The specific objectives of the research are the following: 

 

 Extend the approach proposed by Barreto et al. [2] [3] to 

computationally more efficient forms which enhances the utility of the 

solution; 

 Derive mathematically coherent approximate forms of the solution for 

practical data analysis; 

 Develop a superposition time for practical data analysis based on the 

approximate solution;  

 Discuss the extensions of the solution to other physical problems of 

interest; 

 Present example applications to demonstrate the utility of the solution; 

 Provide guidelines for the analysis and interpretation of fractured well 

performances in tight-gas reservoirs under strong variability of gas 

viscosity and compressibility. 

1.4. Motivation, Contribution, Significance  

Multi-fractured tight-gas wells have been the driver behind the shale-gas revolution in 

the last two decades. Numerical, analytical, and empirical methods have been used to 
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analyze and predict the performances of wells in tight-gas reservoirs. Numerical 

methods (mainly commercial simulators) are employed to deal with the complexities, 

such as extreme geologic heterogeneity, multi-phase flow, and nonlinearity of the 

problem if sufficient data and computational resources are available. An approximate 

solution is obtained from numerical methods where the success of simulations is 

controlled by grid and time-step requirements and the accuracy is improved at the 

expense of onerous computational efforts.  

 

On the other hand, empirical methods, such as decline curve analysis and, to some 

degree, brute force application of data analytics, have their utility in situations where 

minimal data (usually only the well-head production) are acquired and limited 

resources are afforded for the analysis. Despite their wide-spread use in reserve 

estimations and economic investment decisions, however, the roots of the empirical 

methods (mostly based on the observations from vertical wells in conventional 

reservoirs) raise skepticism on their application to fractured tight-gas wells and the 

lack of a solid physical basis further lowers the trust in them.  

 

Between the two ends (large data and computational-resource needs of numerical 

simulation and oversimplification inherent in the empirical techniques), analytical 

tools offer a compromise, which is appreciated at least for initial investigations, and a 

physical understanding, which can guide both numerical simulation studies and 

empirical interpretations. Closed-form solutions resulting from analytical methods are 

also useful to determine the functional dependencies of the well performances on the 

physical and well-completion parameters involved. However, the use of fully 

analytical methods requires certain mathematical conditions; linearity of the problem 

being one of the requirements. To this end, the nonlinearity of the real-gas flow 

equation has always been one of the most fundamental limitations for fully analytical 

solutions. Linearization of the gas-diffusion equation by pseudopressure 

transformation of Al-Hussainy et al. [1] does not provide an adequate practical solution 

when the viscosity-compressibility product becomes a strong function of pressure, 

which is the most common condition in tight, unconventional gas fields. 
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A related problem is the treatment of variable-pressure- and variable-rate-production 

conditions, which is traditionally handled by the superposition of constant-rate-

production solutions. However, the condition of linearity makes the superposition 

approach inapplicable for tight-gas wells, where most data are obtained under variable-

pressure- and variable-rate-production conditions. Therefore, a useful feature of any 

solution for tight-gas wells is to be amenable for superposition.  

 

When fully analytical solutions are not permitted by the physical conditions of the 

problem, an alternate option is to resort to semi-analytical techniques. Therefore, one 

of the motivations of this research is to provide semi-analytical tools for performance 

predictions and data analysis of tight-gas wells. The method of perturbations is one of 

the most common semi-analytical approaches to find approximate analytical solutions 

to nonlinear partial differential equations. Recently, Barreto et al. [2] [3] proposed to 

combine perturbation and Green’s function approaches to solve the nonlinear diffusion 

equation. They considered the nonlinearity of the diffusion equation due to strong 

pressure-dependence of viscosity and compressibility product and showed that adding 

the first order perturbation to the solution of the linear problem creates sufficiently 

accurate results for most practical purposes. They also suggested extensions of the 

perturbation-Green’s function solution to non-Darcy flow and variable-rate production 

by superposition, but they did not demonstrate these applications (except for the case 

of pressure buildup problem). 

 

Barreto et al. [2] [3] presented the basis of their approach and provided the verification 

of their solution. However, their solution requires numerical evaluation of convolution 

integrals, which is highly unstable and computationally intensive. Later, Ahmadi [5], 

Komurcu [4] and Bila [6] used the same approach to derive approximate analytical 

solutions for tight (1D fractured gas well) and high-permeability (non-Darcy flow) 

reservoirs, respectively, but they did not arrive at convincingly accurate and practical 

solutions. 
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The works of Barreto et al. [2] [3] have provided the inspiration for this research to 

derive a practical solution for fractured tight-gas wells under high variability of 

viscosity and compressibility. Unlike the solution of Barreto et al. [2] [3], which 

requires numerical integration of convolution integrals, this work discretizes and 

analytically solves the integrals appearing in the solution. This additional analytical 

treatment leads to computationally more efficient forms of the solution, which enables 

identification of parametric relationships, physically more sound approximations, and 

derivation of superposition-time functions. With the new features of the solution, it 

becomes possible to identify the conventional flow regimes on variable-rate- and 

variable-pressure data of fractured tight-gas wells and analyze the data by the 

conventional approaches. Moreover, the improved form of the solution enables easier 

extensions to other problems, such as stress dependent permeability in unconventional 

reservoirs. 

1.5. Assumptions and Hypotheses  

The derivation of the solution presented in this work involves the following 

assumptions: 

 

 Homogeneous formation of constant thickness 

 Infinite-acting reservoir 

 Uniform permeability, and porosity   

 Darcy flow  

 Permeability independent of pressure (unless specified otherwise)  

 Formation saturated with a homogeneous fluid (gas) 

 Isothermal gas flow   

 No gravity  

 No compositional changes 

 1D linear flow toward an infinite-conductivity fracture 

 Fully penetrating fracture 

 Uniform flux along the length and height of the fracture  
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Under these conditions, the main hypothesis of the research is that a perturbation-

Green’s function solution can be derived for the 1D, linear flow of a real gas toward a 

fractured well in an infinite, homogeneous reservoir. The solution permits extensions 

to variable-rate problems by the application of superposition principle. 
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CHAPTER 2 

 

 

LITERATURE REVIEW AND BACKGROUND 

 

 

 

This chapter presents a review of literature for variable rate problems and solutions to 

nonlinear gas flow problems. Modelling of gas flow is complicated because of the 

nonlinearity of the gas diffusion equation. Variable-rate problems can be handled by 

superposition principle for slightly compressible fluids; however, for compressible 

fluids superposition does not work since the linearity requirement does not satisfied. 

A comprehensive review was performed for the variable rate and nonlinear problems 

in this chapter. Solutions were categorized under relevant topics. 

2.1. Equation of Gas Flow through Porous Media 

The governing equation for the flow of gas through porous media is the diffusivity 

equation. The diffusion equation for the real gas flow through porous media is; 

 

( ) ( )

( ) ( ) ( ) ( )
g t

g g

P c PP P P
P

P z P k P z P t

 
 
  

   
  

 
  (2.1) 

 

Diffusivity term is defined as; 

 

( ) ( )g t

k

P c P


 
    (2.2) 

 

The Equation (2.1) is nonlinear because the fluid properties such as viscosity, gas 

deviation factor and gas compressibility are functions of pressure. Unlike slightly 
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compressible fluids (such as oil), removing the nonlinearity from the real gas diffusion 

equation by physically acceptable assumptions is not possible. 

 

Formerly, the usual approach is to use the same diffusivity equation for gas and oil 

flow but the difference is to use the pressure for oil flow and pressure-squared for gas 

flow [7]. It was proved that at high pressures to use P  instead of 2P  was also 

appropriate for gas reservoirs [8]. Later, Al-Hussainy et al. [1] introduced a third 

variable known as pseudopressure or real gas potential, ( )m P . Since pseudopressure 

approach contains the least number of assumptions in terms of gas diffusion equation, 

it can be considered as the most accurate one from all above the three for pressure 

transient analysis gas wells ( P , 2P , ( )m P ) [9]. Pseudopressure approach groups the 

pressure and pressure dependent properties into a new variable and aims to form a gas 

diffusion equation in which the nonlinearity is weaker. Pseudopressure is defined as; 

 

'
( ) 2 '

( ) ( )
 

b

P

P

P
m P dP

P z P
   (2.3) 

 

With the use of pseudopressure, a second order, nonlinear partial differential equation 

with variable coefficients is obtained as follows for the gas flow through porous media; 

 

2 ( ) ( ) ( )
( ) g tP c P m P

m P
k t

 
 


   (2.4) 

 

The original implementation of the pseudopressure approach is at low flow rates, at 

high pressures or when the pressure change is small through the application as in the 

case of gas well test data or transient flow periods during which the reservoir pressure 

does not significantly deviate from the initial pressure. Under these conditions, 

variation of viscosity-compressibility product with pressure can be neglected.  

 

Even with the use of pseudopressure approach accounting for the variation of viscosity 

and gas deviation factor with pressure, Equation (2.4) is still nonlinear because of the 
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existence of viscosity and gas compressibility which are also dependent on pressure. 

When transient flow lasts long to cause considerable pressure drop as in the fractured 

unconventional reservoirs or when there is a steep pressure decline as in the boundary 

dominated flow, the constant viscosity-compressibility assumption is not valid [10]. 

As a consequence, true pseudo-steady state is not observed in gas wells which makes 

applicability of the standard gas well performance prediction techniques questionable. 

 

It is evident from Figure 2.1 and Figure 2.2 that there is a steep change in both 

viscosity-compressibility product and relative change of viscosity-compressibility 

product at low pressures; however, they become almost constant when the pressure 

approaches to initial reservoir pressure. That means that viscosity-compressibility 

product is clearly a function of pseudopressure. 

 

 

Figure 2.1. Variation of viscosity-compressibility product with pseudopressure 
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Figure 2.2. Relative change of viscosity-compressibility product with pseudopressure 

To remove the nonlinearity, Agarwal [11] introduced a new transformation, known as 

real gas pseudo-time, at , is given by; 

 

0

1
( ) '

( ') ( ')

t

a
t

t t dt
t c t

     (2.5) 

 

This transformation takes into account the variation of gas viscosity and 

compressibility with pressure, and correspondingly as a function of time. Fluid 

properties are evaluated at wellbore pressure. Finjord [12] proved that pseudo-time 

transformation does not linearize the early drawdown data during transient flow 

period. Lee and Holditch [13] confirmed that use of pseudo-time approach with 

pseudopressure effectively linearize gas diffusion equation. 

 

Palacio and Blasingame [14] introduced material balance pseudo-time for liquid flow 

as follows; 

 

( )
p

o

N
t

q t
    (2.6) 
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and material balance pseudo-time for gas flow; 

 

 
   0

t
g t gi

a
g g t

c q
t dt

q P c P




     (2.7) 

 

Material balance pseudo-time function allows to model single phase flow by using 

Fetkovich liquid type curve at slightly changing bottomhole pressure conditions. Later, 

Agarwal et al. [15] proved that material balance pseudo-time converts constant 

pressure solution into constant rate solution which is the primary goal for well test 

analysis. This definition requires the use of average reservoir pressure to estimate the 

fluid properties in order to calculate material balance pseudo-time. In order to estimate 

average reservoir pressure, original gas in place knowledge is required which requires 

an iterative procedure. 

 

Fraim and Wattenbarger [16] developed real gas normalized time definition to 

consider the variation of gas properties; 

 

 
   0

t
t i

n

t

c
t dt

P c P




     (2.8) 

 

The normalized time is developed for gas wells producing under constant wellbore 

pressure condition during boundary dominated flow in closed reservoirs. According to 

this method, fluid properties are calculated at average reservoir pressure. The purpose 

is to use Fetkovich type curve for gas wells. 

 

Meunier et al. [17] introduced normalizations to pseudopressure and pseudo-time 

definitions. Al-Hussainy et al. [1] pseudopressure definition is normalized as follows; 

 

2
( ) ( )

b

P
i i

pn
i P

z P
P dP

P P z P




     (2.9) 
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and Agarwal [11] pseudo-time normalized as follows; 

 

0

1

( ) ( )

t

pn i i
t

t c dt
P c P




     (2.10) 

 

The use of normalized pseudopressure and normalized pseudo-time transformation 

together results in retaining of units of pressure and time (unlike psi2/cp, it has unit of 

pressure) for both gas and liquid cases. It allows the use of same constants for liquid 

and gas flow equation. 

 

Ibrahim et al. [18] proposed new normalized pseudo-time approach; 

 

       
1

n t i
t

t c dt
p p c p


 

     (2.11) 

 

Normalized pseudo-time function is used in the superposition time method for 

smoothing the production field data. The use of this method takes into account the 

change in reservoir properties with average reservoir pressure and more accurately 

calculates original gas in place. It gives satisfactory results for the production data 

analysis in highly depleted reservoirs with high compressibility. The new normalized 

pseudo-time can be used for the variable rate and variable pressure gas well 

performance prediction. 

2.2. Superposition Principal 

The superposition principle states that, for all linear systems, the response of the total 

system at a given point or time is sum of the responses of each individual stimulus. 

Superposition principle is a mathematical technique used in petroleum engineering to 

solve more complex boundary conditions such as variable rate and bounded reservoirs 

by using the simpler solutions developed for constant rate and infinite-acting 
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reservoirs. Superposition in space, also known as method of images, is used to 

construct solutions for more complex well geometries, bounded reservoirs and 

multiple well problems. Superposition in time is used to construct solutions for 

variable rate and pressure buildup. Superposition technique is only applicable for 

linear systems. If nonlinearities appear in the equation (e.g. gas flow) to apply 

superposition, linearization techniques (e.g. pseudopressure transform) must be 

performed. 

 

Convolution is a mathematical operation between two functions ( )f t  and ( )g t  

producing a third function ( )t  which represent the overlap amount between ( )f t  

and the reversed or shifted function of ( )g t . The convolution between two functions 

( )f t  and ( )g t  can be written in mathematical form as; 

 

0

0

( ) ( )* ( ) ( ) ( )

( )* ( ) ( ) ( )

   

  

  

  





t

t

t f t g t f g t d

g t f t f t g d

   (2.12) 

 

The discrete form of the Equation (2.12) over a finite domain can be written as; 

 

1 1
1

( ) ( ) ( )
n

i i i
i

t f g t    


      (2.13) 

 

where  is the dummy variable, ( )t  is the system response, ( )f t  and ( )g t  are the 

convolution functions. The convolution or superposition equation indicates that the 

total response of the system is equal to the summation of each individual stimulus. 

 

In regards to petroleum engineering, the superposition principal can be applied to 

linear diffusivity equation in which there is a linear relationship between pressure and 

flow rate. If the linearity requirement is satisfied, the total pressure response of the 

reservoir under variable rate condition is equal to the summation of individual pressure 
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responses of each rate change since the time of each rate change. Duhamel’s principal 

states that the pressure drop for the variable rate system is equal to the convolution of 

the input rate function and the derivative of the impulse function or the derivative of 

constant rate pressure response. The system is assumed to be equilibrium at 0t   (i.e. 

( , 0) iP x t P  ).The convolution (Duhamel’s/superposition) integral is defined as; 

 

'

0

( ) ( ) ( )
t

uP t q t P d        (2.14) 

 

The discrete form of the Equation (2.14); 

 

1 1
1

( ) ( ) ( )
n

i i u i
i

P t q q P t t 


       (2.15) 

 

The Duhamel’s principal was introduced to the literature with van Everdingen and 

Hurst [19] to obtain a dimensionless wellbore pressure drop response solution for a 

continuously (smoothly) varying rate production. They convolved the smooth rate 

profile with constant rate pressure response in order to get the variable rate pressure 

drop response. Odeh and Jones [20] used semi-log approximation whereas Soliman 

[21] used exponential integral approximation of constant rate wellbore pressure 

response function in order to evaluate variable pressure data. van Everdingen and 

Meyer [22] applied the superposition approach to low permeability, vertical fractured 

wells in order to analyze pressure buildup data. They proved that Odeh and Jones 

method does not give reasonable results for the interpretation of buildup data in low 

permeability reservoirs. They apply superposition to dimensionless vertical fracture 

constant rate solution. In order to find a relation between dimensionless time and real 

time, they proposed a trial and error procedure with the initial estimate provided by 

conventional Horner analysis. Fetkovich and Vionet [23] modified the Odeh and Jones 

method and include dimensionless pressure approximation instead of log 

approximation. They derived plotting functions for a uniform flux vertical fractured 

well by using constant rate flow equation. These plotting functions are not valid for 
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boundary effected flow tests. Bostic et al. [24] employed the superposition to calculate 

a unit function. This unit function is a transformation to the equivalent pressure history 

with constant rate of well/reservoir system that has produced a variable rate with a 

known pressure history. This approach is similar to the van Everdingen and Hurst [19] 

approach for aquifers and to Jargon and van Poollen [25] for variable rate, variable 

pressure well tests. Agarwal [26] introduced a new method for correction of buildup 

data from producing time effects for variable rates by using Duhamel’s principal. 

 

Cinco-Ley and Samaniego [27] presented the advantages and limitations of using 

superposition time concept to several flow regimes during pressure buildup tests. 

Samaniego and Cinco-Ley [28] took into consideration the effect of high velocity flow 

and damage in variable rate gas wells. Their method, applicable to infinite acting radial 

flow gas reservoirs, develops a step-function approximation to flow rate to account for 

the small changes in pressure and the gas properties taken at initial conditions. It can 

be applied to discretized continuously varying flow rate tests. Gupta and Andsager 

[29] described the pressure behavior of gas well with superposition principal and 

Horner’s point source solution of radial diffusivity equation. According to their 

method, viscosity and z-factor is calculated at average reservoir pressure and 

diffusivity term was assumed to be constant. von Schroeter and Gringarten [30] 

applied superposition principle to nonlinear problems; however, they also assumed the 

diffusivity term as constant. 

2.3. Rate Normalization 

The rate normalization method was first introduced by Gladfelter et al. [31] to use both 

pressure and downhole flow rate data for the wellbore storage correction in gas well 

pressure buildup analysis. They claimed that pressure rise after shut-in divided by 

instantaneous change in downhole flow rate is a linear function of logarithm of 

production time. It is actually the substitute of conventional superposition. Ramey [32] 

confirmed the validity of Gladfelter et al. [31] correction for buildup case and the use 

of this approach for short time gas well drawdown data except for non-Darcy flow 
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effects. Kuchuk [33] showed that the Gladfalter [31] deconvolution is only valid for 

only few simple geometries and for linearly varying flow rates. 

 

Winestock and Colpitts [34] employed rate normalization to drawdown data of gas 

wells and obtained straight line in semi-log plot. They proposed is valid if flow rate 

changes smoothly even though the total flow rate change is large. Their method did 

not have any application for wellbore storage distorted data; however, it can be used 

to correlate constant rate analysis for constant pressure condition. 

 

Odeh and Jones [20] developed an iterative procedure for both oil and gas wells 

flowing at variable rates. They used the logarithmic approximation for exponential 

integral solution at each constant rate steps. 

 

Fetkovich and Vienot [23] applied Gladfelter approach to a hydraulically fractured oil 

well at initial completion. In order to identify boundaries, linear flow permeability 

changes near to wellbore, accurate pressure and total afterflow fluid rate measurements 

are required for a reservoir whose early time data is affected from wellbore storage. 

 

Earlier studies of Gladfelter et al. [31], Winestock and Colpitts [34], Odeh and Jones 

[20], among others have advocated to measuring the downhole flow rate and analyzing 

well tests by variable rate test methods. However, the use of production logging tools 

for the simultaneous transmission of rate and pressure was first conducted by Meunier 

et al. [35]. Using measured sandface rate data, Meunier et al. [35] introduced rate 

convolved buildup time function in order to modify Horner time ratio. They showed 

that using rate convolved buildup time function reduces the time to reach the semi-log 

straight line prior to 1½ log cycle rule or type curves. 

 

Kuchuk and Ayestaran [36] developed a Laplace transform based method to calculate 

formation pressure from the deconvolution of sandface flow rate and measured 

wellbore pressure data without wellbore storage effects. Formation parameters, 

wellbore and reservoir geometries can be estimated from this calculated formation 
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pressure. However, this method’s drawbacks are calculation of only constant unit rate 

pressure drop and fluctuation of its logarithmic derivative [37]. 

 

When both bottomhole pressure and sandface flow rate data are available, Thompson 

and Reynolds [38] considered the use of Duhamel’s principal to pressure buildup and 

drawdown data. Duhamel’s principal can be applied to convert bottomhole pressure 

data obtained at variable sandface flow rate to the equivalent pressure data that would 

have been obtained at constant sandface flow rate. Therefore, the standard solution 

techniques (type curve matching or semilog analysis) can be used with the equivalent 

pressure data obtained. Equivalent pressure analysis is more advantageous than rate 

normalization technique to use when the data are strongly affected by wellbore storage 

effects. However, in most cases rate normalization technique is applicable and more 

simple to use.  

2.4. Numerical Methods 

Most of the reservoir engineering equations are nonlinear partial differential equations 

which cannot be solved analytically easily. That is why numerical techniques must be 

employed to solve these differential equations. Finite difference is the most common 

numerical method used in petroleum engineering. In this work, Eclipse [39] was used 

as a finite difference simulator and Thompson’s spectral solution [40] were used as a 

spectral method. 

2.4.1. Finite Difference Method 

The solution of the flow equations in reservoir engineering is actually the 

determination of the dependent variables on time and space. In finite difference 

method, the time domain is discretized into time steps during which the problem is 

going to be solved and dependent variables are going to be obtained. The space domain 

is also divided into a number of finite difference grids. In order to improve the accuracy 

of the solution, smaller time steps and very fine grids are required which increase the 

run time and round off errors. The partial differential equation is replaced by its 
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approximate finite difference equations. These approximate equations are obtained by 

truncating the Taylor’s series expansion of the unknown variables as a function of a 

given point [41]. Truncation error due to the Taylor’s expansion approximation 

increases numerical dispersion [42]. 

2.4.2. Finite Element Method 

The difference between finite element method and finite difference method is that 

while finite element method is an approximation to the solution of the partial 

differential equation, finite difference method is an approximation to partial 

differential equation. Finite element methods discretize the problem space domain into 

a set of subdomains which is called finite element. The solution of the differential 

equation is approximated over the finite element. Noticeably, the approximated 

solution cannot satisfy the differential equation and remains some residue behind. This 

residue should be minimized by weighted residual formulation with appropriate 

weighting function [42]. 

2.4.3. Boundary Element Method 

In boundary element method, the bounding surface is discretized unlike in finite 

element and finite difference methods, the domain is discretized i.e. boundary element 

method is a surface method whereas the other two is domain methods. Due to domain 

discretization, finite element and finite difference methods suffer from grid orientation 

and numerical dispersion [43]. Although boundary element methods have the accuracy 

of analytical methods, it is less common in oil industry [44].  

2.4.4. Spectral Method 

Spectral methods are used to solve any kind of differential equations numerically by 

approximating the solution as a sum of continuous functions (such as Fourier series 

which are sinusoids or Chebyshev polynomials) over the whole domain. The main 

difference of spectral methods and finite difference methods is that while spectral 
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methods approximate the solution, finite difference methods approximate the 

differential equation to be solved. Similar to finite element methods, spectral methods 

also approximate the solution. However, the big difference is in approximations for 

the solution domain, in finite element method approximations are in local, whereas in 

spectral methods the approximations are valid throughout the entire computational 

domain [42]. Partially for this reason, spectral methods have excellent error properties 

(exponential convergence) when the solution is smooth. 

 

The accurate solutions can be obtained by spectral methods up to 30-60 terms. Similar 

accuracy can be obtained with finite difference with hundreds to thousand grids [45]. 

Incorporation of nonlinear terms (like pressure dependent permeability, fluid 

properties, non-Darcy flow) is easy [45]. 

 

In this research, in order to obtain accurate solutions to nonlinear gas diffusion 

equation, spectral method [45] is used. The solution is approximated by a backward 

Euler finite difference approximation in time and a truncated Chebyshev series in 

space. The detailed derivation and verification of  Thompson’s spectral solution [40] 

can be found in Komurcu MSc thesis [4]. 

2.5. Perturbation Approach (Asymptotic Expansion) 

Perturbation approach is one of the common approaches to solve the nonlinear 

equations. It breaks the nonlinear problem into a solvable/perturbation linear parts. 

Perturbation technique is applicable to the problems that cannot be solved exactly. To 

solve small disturbances,   are added to the exact problem. 

 

According to the perturbation theory, an approximate solution to full solution x, in 

terms of power series in small parameter ( ), can be described as follows; 

 

(0) 1 (1) 2 (2) 3 (3) ( )

0

... k k

k

x x x x x x   




        (2.16) 
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The first term in the right hand side of the equation ( (0)x ) is the solution for exactly 

solvable problem. The higher terms ( (0) (1) (2), , ,...x x x  ) describes the deviation from the 

exact solution. ( )kx  represents the order of the solution. The solution can be obtained 

by taking the limit as 0   . If   is small and the coefficients ( (0) (1) ( ), ,..., kx x x  ) are 

independent of   , then; 

 

(0) (1) (2) ( )... kx x x x       (2.17) 

 

The nonlinearity in the gas diffusion equation comes from the diffusivity term. In order 

to remove the nonlinearity perturbative and self-similar techniques have been applied. 

Kale and Mattar [46] were among the first to apply perturbation theory to diffusivity 

term in gas flow equation and used Boltzmann self-similar variable in order to develop 

an approximate first order solution for constant rate radial flow. Peres et al. [47] [48] 

also applied perturbation solution and Boltzmann self-similar transformation to a line 

source well located in infinite, homogeneous gas reservoir producing with constant 

surface flow rate. They showed that the perturbation solution truncated in the second 

order perturbation gave sufficiently accurate results for engineering purposes. 

Unfortunately, Boltzmann transformation technique are only applicable to self-similar 

problems which restricts the use of them to several nonlinear well testing problems. 

Recently, Barreto et al . [2] [3] applied the perturbation theory to the nonlinear gas 

diffusivity equation by the use of Green’s function. They obtained a solution of a 

Volterra integro-differential of the second kind which is implicit and need to be 

iterated. Komurcu [4] applied perturbation-Green’s function solution to 

unconventional gas reservoirs and solved the nonlinear gas diffusion equation 

analytically; however, convincingly accurate results were not obtained. 
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CHAPTER 3 

 

 

PROBLEM FORMULATION, SOLUTION, AND VERIFICATION 

 

 

 

In this chapter, the formulation of the 1D, linear flow problem of a real gas toward a 

fractured well in an infinite, homogeneous reservoir is presented and converted to an 

expression in terms of pseudopressure. The resulting diffusion equation is expressed 

in the form of a perturbation problem and its solution is assumed as a perturbation 

series, which creates a set of linear problems for each perturbation. The solutions for 

the zero and first order perturbation problems are presented and the solution is verified 

by the existing analytical and numerical methods.  

 

One dimensional, linear flow toward a fracture in an infinite reservoir can be  

schematically represented as in Figure 3.1. 

 

 

Figure 3.1. Reservoir schematics for 1D fracture flow 
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3.1. Mathematical Formulation of the Physical Problem 

The diffusion equation for the 1D, linear flow problem of a single-phase, real gas 

toward a fractured well in an infinite, homogeneous reservoir is given by; 
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g
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y y t
   (3.1) 

 

with the initial condition, 

 

( , 0) iP y t P     (3.2) 

 

outer boundary condition for an infinite-acting system, 
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y
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and the inner boundary condition, 
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Using the real-gas equation of state, 

 

g
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zRT
     (3.5) 

 

and the definition of isothermal gas compressibility, 
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Write Equation (3.1) through (3.4) as follows; 
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 
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   (3.7) 

 

where the rock compressibility is neglected with respect to compressibility of gas 

(constant rock porosity). 

 

If the definition of pseudopressure [1] is used; 
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Equation (3.7) can be written as follows; 
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where define; 

 

( ) ( ) ( )im P m P m P      (3.10) 

 

and  
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Similarly, Eqn. (3.2) through (3.4) can be written, respectively, as follows; 
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( ( , 0)) 0m P y t      (3.12) 
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and 

 

0

1422 ( )

fy

m q t T

y x hk





 
   

   (3.14) 

 

For notational simplicity, in Eqn. (3.14), the subscript can be dropped and used 

( ) ( )scq t q t  (that is, in the following derivations, ( )q t  corresponds to the flow rate in 

standard conditions). Note that the diffusion equation given by Eqn. (3.9) is nonlinear 

because   (defined in Eqn. (3.11)) is a function of pseudopressure. Next, the initial 

boundary value problem (IBVP) given by Eqns. (3.9) and (3.12) through (3.14) is 

stated as a perturbation problem. 

3.2. Formulation of the Perturbation Problem 

Define the constant, 

 

 
36.328 10

i

g g i

k

c





    (3.15) 

 

where the subscript i  refers the value of the property at initial pressure. Also, the new 

parameter is defined, 

 

 
( , )

g g g gi i

g g

c c
y t

c

   
 


      (3.16) 

 

and write Eqn. (3.9) as follows; 
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 
2

2

1
1

i

m m

y t



  

 
 

   (3.17) 

 

Introducing the small perturbation,  , Eqn. (3.17) can be expressed in the following 

form; 

 

 
2

2

1
1

i

m m

y t



  

 
 

   (3.18) 

 

where 

 

0 Linear problem

1 Non-linear problem



 


   (3.19) 

 

Together with the initial and boundary conditions (Eqns (3.12) through (3.14)), Eqn. 

(3.18) defines a perturbation IBVP, which has the perturbation solution in the 

following form; 

 

(0) ( ) ( )

1

k k

k

m m m




        (3.20) 

 

Substituting Eqn. (3.20) into Eqn. (3.18), obtain; 

 

2 (0) (0) 2 (1) (1) (0) (0)
(1)

2 2

2 (2) (2) (1) (1)
(2)

2

2 ( ) ( ) ( 1) ( 1)
( )

2

1 1

1
...

1
... 0

i i i

i i

k k k k
k

i i

m m m m m

y t y t t

m m m

y t t

m m m

y t t


  


 


 

 

         
             

    
       

    
        

  (3.21) 
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Eqn. (3.21) suggests that (0)m , (1)m , (2)m ,…, ( )km ,… are the solutions of the 

following set of IBVPs: 

 

 0th order perturbation problem: 

 

2 (0) (0)

2

(0)

(0)

(0)

0

1
0

( , 0) 0

( , ) 0

1422 ( )

i

fy

m m

y t

m y t

m y t

m q t T

y khx







  
    

   
   
       

   (3.22) 

 

1st order perturbation problem: 

 

2 (1) (1) (0) (0)

2

(1)

(1)

(1)

0

1
0

( , 0) 0

( , ) 0

0

i i

y

m m m

y t t

m y t

m y t

m

y


 



   
      

   
   
      

   (3.23) 

 

2nd order perturbation problem: 

 

2 (2) (2) (1) (1)

2

(2)

(2)

(2)

0

1
0

( , 0) 0

( , ) 0

0

i i

y

m m m

y t t

m y t

m y t

m

y


 



   
      

   
   
      

   (3.24) 

.

.

.
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kth order perturbation problem: 

 

2 ( ) ( ) ( 1) ( 1)

2

( 1)

( 1)

( 1)

0

1
0

( , 0) 0

( , ) 0

0

k k k k

i i

k

k

k

y

m m m

y t t

m y t

m y t

m

y


 

 









   
      

   
   
      

  (3.25) 

.

.

.

  

3.3. Solution of the Perturbation Problem 

The solution of the perturbation problem defined in Section 3.2 is obtained by finding 

the individual solutions for each of the kth order (k = 0, 1, …) perturbation problem 

and substituting into Eqn. (3.20). Below, the solution of the 0th and the 1st order 

perturbation problems are demonstrated. The same procedure used to solve the 1st 

order perturbation problem can be applied to the higher order perturbation problems. 

However, the solutions for the higher order perturbation problems becomes more 

complex and computationally more cumbersome. Moreover, as noted by Barreto et al. 

[2] [3] and Ahmadi [5], including the first order perturbation yields sufficiently 

accurate results for most practical purposes. Therefore, in this work, the perturbation 

solution will be truncated after the first order perturbation.  

3.3.1. Solution of the 0th Order Perturbation Problem (Linear Problem) 

Consider the 0th order perturbation problem (the linear problem) given by Eqn. (3.22) 

and repeated below for convenience: 
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2 (0) (0)

2

1
0

i

m m

y t
  

 
 

   (3.26) 

 

(0) ( , 0) 0m y t      (3.27) 

 

(0) ( , ) 0m y t      (3.28) 

 

and 

 

(0)

0

1422 ( )

fy

m q t T

y khx





 
   

   (3.29) 

 

The Green’s function solution of the linear problem (Eqns. (3.26)-(3.29)) is given by; 

 

 
 

2 (0) 2
(0) (0)

2 2
0 0 ', ( ', )

, ( ', ) ( ', ) '
' '

t

i

y y y t

m G
m y t G y y t m y dy d

y y 

   


 

                    
   (3.30) 

 

where the Green’s function is given by [49] [50], 

 

21 ( ')
( ', ) exp

4 ( )2 ( ) ii

y y
G y y t

tt


  
 

      
  (3.31) 

 

Using Green’s second identity (divergence theorem), Eqn. (3.30) can be written as 

follows; 

 

 
(0)

(0) (0)

0 0

,
' '

t

i

m G
m y t G m d

y y
 


  

      
   (3.32) 
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By Eqn. (3.28), both G  and (0)m  disappear , 'y y   and  (0)

0y
m y


   is given 

by Eqn. (3.29). Thus, from Eqn. (3.32), the solution of the 0th order perturbation 

problem is obtained as follows; 

 

 
2

(0)

0

1422 ( )
, exp

2 4 ( )

t
i

f i

T q y
m y t d

khx tt

  
 

 
     

   (3.33) 

 

Note that, if ( ) Constantq t q  , then Eqn. (3.33) yields the following well-known, 

1D, infinite-conductivity fracture solution [50]; 

 

   
2

(0)

0

2

2

1422 1
, exp

2 4

1422
exp

4 2 2

t
i

f i

i

f i f i

qT y
m y t d

khx tt

tqT y y y
erfc

kh x t x t




 

 
 

 
      

   
            


  (3.34) 

3.3.2. Solution of the 1st Order Perturbation Problem 

Now, consider the 1st order perturbation problem (Eqn. (3.23)) rewritten below for 

convenience; 

 

2 (1) (1) (0) (0)

2

1
0

i i

m m m

y t t


 

   
  

  
   (3.35) 

 

(1) ( , 0) 0m y t      (3.36) 

 

(1) ( , ) 0m y t      (3.37) 

 

and 
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(1)

0

0
y

m

y


 
  

   (3.38) 

 

The Green’s function solution of the problem in Eqns. (3.35) through (3.38) is given 

by, 

 

 
2 (1) (0) (0) 2

(1) (1)
2 2

0 0
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t

i
i

m m G
m y t G m dy d

y y

 
 

      
          

    (3.39) 

 

which can be rearranged as follows; 

 

 
2 (1) 2 (0) (0)

(1) (1)
2 2

0 0

, '
' '

t

i
i

m G m
m y t G m G dy d

y y

 
 

      
          

    (3.40) 

 

Using the Green’s second identity yields; 
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(1) (1) (0)

0 0 00
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t t

i

m G m
m y t G m d G dy d

y y
   



    
        

     (3.41) 

 

From Eqn. (3.33); 

 

 

(0) 2

', '

1422 ( ) '
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2 4 ( )
i

f iy t

Tm q y

t khx tt

 
 

  
       

  (3.42) 

 

Substituting Eqns. (3.31) and (3.42) into Eqn. (3.41), the following solution for the 1st 

order perturbation problem is obtained: 

 

   
2 2

(1) (0)

0 0

1422 ( ) ( ') '
, ', exp '

4 4 ( )
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f i

T q y y y
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khx t t

   
  

   
     

    (3.43) 
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3.3.3. Truncated Perturbation Solution  

As noted in the beginning of this section, based on the observations of Barreto et al. 

[2] [3] and Ahmadi [5], the solution derived here will be truncated after the first 

perturbation term. Therefore, using Eqns. (3.33) and (3.43) in Eqn. (3.20), the 

following truncated perturbation solution for the fractured tight-gas well problem is 

obtained: 

 

 

   

2

0

2 2
(0)

0 0

( )
exp

4 ( )1422
,

2 ( ) ( ') '
', exp '
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t
i

i

t
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i

q y
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ttT
m y t

khx q y y y
y dy d

t t

 


 

   
  



  
       

         



 
  (3.44) 

 

Computation of the perturbation solution obtained here requires numerical evaluation 

of the integrals involved in Eqn. (3.44). Computation of the semi-infinite space integral 

particularly poses difficulties. Procedures described by Barreto et al. [2] [3] and 

Ahmadi [5] are useful in the numerical evaluation of the integrals in Eqn. (3.44). In 

the next section, the procedure used to compute Eqn. (3.44) will be described and the 

numerical results will be compared with the existing semi-analytical and numerical 

results to verify the solution.  

3.4. Computation and Verification of the Truncated Solution  

The numeric computation of truncated perturbation solution (Eqn. (3.44)) represents 

semi-infinite space integration and multidimensional numerical integration which 

acquires some difficulties. In order to perform numeric integration Matlab [51] was 

used. 

 

If the truncated perturbation solution is evaluated at the surface of the fracture ( 0y ), 

Eqn. (3.44) becomes; 
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   
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
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

 
 

    
        



 
  (3.45) 

 

The first term in Eqn. (3.45) is the 0th order perturbation solution ( (0)m ) which is the 

exact solution to the linear problem. 0th order perturbation solution is the conventional 

solution of the gas diffusivity equation in which we assume that the pseudopressure 

approach can linearize the gas diffusion equation. One of the significant assumptions 

in the use of pseudopressure transformation is that small variations in pressure cause 

small variations in viscosity-compressibility product and this nonlinearity can be 

handled by pseudopressure transformation. The 0th order perturbation solution at the 

fracture surface can be given by; 

 

 (0)

0

( )1422
0,

2

t
i

f

qT
m t d

khx t

 



 

    (3.46) 

 

The second term in Equation (3.45) is the 1st order perturbation solution ( (1)m ) and 

is added to the exact solution of the linear problem to take into account the effect in 

the change of viscosity and compressibility under large pressure variations. The 1st 

order perturbation solution at the fracture surface can be written; 

 

     
2

(1) (0)

0 0

1422 ( ) '
0, ', exp '

4 2 ( )

t

f i

T q y
m t y dy d

khx t t
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  

           
    (3.47) 

 

For the verification of the numerical solution of the truncated perturbation solution, 

Thompson’s spectral solution [40] and Eclipse [39] were used.  

 

For the calculation of gas properties like viscosity and gas compressibility different 

correlations were used and are shown in Table 3.1. Sutton’s associated gas correlations 
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[52] were used for pseudo critical pressure and temperature. For gas deviation factor 

and compressibility, Azizi et al. [53] correlations were utilized. Gas viscosity was 

estimated from Lee et al. correlations [54]. Same gas property correlations were used 

for spectral solution [40], truncated perturbation solution and for Eclipse [39]. 

 

Table 3.1. The correlations used for the evaluation of gas properties 

, pc pcT P   Sutton’s associated gas correlations [52] 

-factor, gz c  Azizi et al. correlations [53] 

g   Lee et al. correlations [54] 

 

Two synthetic data sets (Case 1 and Case 2) were created in spectral solution [40] and 

Eclipse [39]. For both of the cases, fracture conductivity is infinite and the flow to the 

fracture is linear, that is, the reservoir is in infinite-acting period for all the production 

period. Similar reservoir rock and fluid properties was implemented for both of the 

cases as given in Table 3.2. However, production pressures and flow rates differ for 

two cases. For the first case (Case 1), constant bottomhole production pressure and 

variable production rates were selected, while for the second case (Case 2), variable 

pressure and variable rate production was enforced as an inner boundary conditions. 

 

Table 3.2. Reservoir rock and fluid data for Case 1 and Case 2 

Matrix permeability, k , mD 0.0001 

Matrix porosity,   0.064 

Fracture height, h , ft 100 

Fracture half length, fx , ft 100 

Reservoir length, eL , ft 1000 

Initial reservoir pressure, iP , psia 10000 

Reservoir temperature, T , °F 200 

Gas specific gravity, SG  0.71 
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3.4.1. Case 1 - Constant bottomhole pressure case 

For the first case, the wellbore pressure and the corresponding production rate obtained 

from Eclipse were shown in Figure 3.2. 

 

 

Figure 3.2. Wellbore pressures and flow rates obtained from Eclipse with respect to 

time for Case 1 

The wellbore pressures and the corresponding flow rates obtained from spectral 

solution [40] can be seen from Figure 3.3. 
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Figure 3.3. Wellbore pressures and flow rates obtained from spectral solution with 

respect to time for Case 1 

The comparison of the flow rates obtained from Eclipse and spectral solution [40] can 

be seen from Figure 3.4. The numerical simulator gives lower values in flow rate 

compared to spectral solution. The reason behind this can be the grid refinement, 

because of the grid size limitations, the finite difference simulators cannot capture the 

variation in viscosity and compressibility in the near vicinity of the fracture. However, 

it must be emphasized that the conclusions drawn here are not about the particular 

choice of a simulator, they are about comparing the finite difference methods and the 

spectral methods. Because of the grid requirements, finite difference simulators 

require excessive grid refinement in order to catch the near analytical accuracy of 

spectral method. The grid sizes near the surface of the fracture implemented in Eclipse 

can be seen in Figure 3.5. 
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Figure 3.4. Comparison of Eclipse and spectral solution flow rates for Case 1 
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In Figure 3.6, the pseudopressure drops obtained from numerical solution of truncated 

perturbation solution (Eqn. (3.45)) are compared with the Thompson’s spectral 

solution [40] and Eclipse. In order to calculate pseudopressure drops from Eclipse, Al-

Hussainy et al. [1] pseudopressure equation is used and the gas properties were 

calculated according to the above mentioned correlations [52] [53] [54]. After initial 

flow period, the pseudopressure drops obtained from numerical solution of truncated 

perturbation solution, spectral solution and Eclipse are matched admirably. 

 

 

Figure 3.6. Comparison of pseudopressure drops for numerical solution of truncated 

perturbation solution, spectral solution and Eclipse for Case 1 

The perturbation technique allows us to see the deviation from the exact solution. It 
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linear. The 0th order perturbation solution is the conventional solution of the gas 

diffusivity equation. The 1st order perturbation term is added to the exact solution. 
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see the deviation from the exact solution. The 0th, 1st order perturbation and truncated 

perturbation solutions can be seen in Figure 3.7. 

 

 

Figure 3.7. The 0th and 1st order perturbation results for the numeric evaluation of 

truncated perturbation solutions for Case 1 
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drop with pseudopressure technique does not create convincingly accurate results 

since the nonlinearity cannot be handled by the pseudopressure transformation 
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that in fractured tight gas wells when large pressure drops occur using conventional 

linear flow equations leads us to lower estimates in pseudopressure drops. 

 

In Figure 3.8, change in  gas diffusivity deviation factor ( (0) ) can be seen. According 

to Eqn. (3.16), gas diffusivity deviation factor indicates the deviation of viscosity-

compressibility product from its initial state and it changes between (0)1 0   . 

(0) 0   means that there is no change in viscosity-compressibility product; that is 

there is no deviation from the slightly compressible fluid case. However, as it is getting 

smaller, the deviation from slightly compressible fluid case is increasing. In Case 1, 

constant bottomhole pressure production case, there is a huge pressure drop from 

initial reservoir pressure ( 10 000 psiaiP  ) to well bottomhole pressure (

500 psiawfP  ). Under this large pressure change, there occurs a huge variation in 

viscosity-compressibility product. As can be seen from Figure 3.8, (0)  changes 

abruptly to almost its smallest value and becomes constant since the wellbore pressure 

is constant. 

 

 

Figure 3.8. Diffusivity gas deviation factor, (0)  with respect to time for Case 1 
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3.4.2. Case 2 - Variable bottomhole pressure case 

The wellbore pressures and the flow rates obtained from Eclipse for Case 2 can be 

seen in Figure 3.9 

 

 

Figure 3.9. Wellbore pressure and flow rate obtained from Eclipse with respect to 

time for Case 2 

The wellbore pressures and the corresponding flow rates obtained from spectral 

solution [40] can be seen in Figure 3.10. 
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Figure 3.10. Wellbore pressures and the flow rates obtained from spectral solution 

with respect to time for Case 2 

The Eclipse flow rates and the spectral solution flow rates are compared in Figure 3.11. 

The reason behind the difference in flow rates can be again because of the grid size 

limitations in finite difference simulators. Same grid sizes were used as in Case 1. 
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Figure 3.11. Comparison of Eclipse and spectral solution flow rates for Case 2 

The pseudopressure drops obtained from numerical solution of truncated perturbation 

solution (Eqn. (3.45)) are compared with the spectral solution [40] and Eclipse. The 

results can be seen in Figure 3.12. It can be deduced from Figure 3.12 that after some 

time, there is a good match between the numerical solution of the truncated 

perturbation solution, Eclipse and the spectral solution [40]. 
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Figure 3.12. Comparison of pseudopressure drops between numerical solution of 

truncated perturbation solution, spectral solution and Eclipse for Case 2 

 

The pseudopressure drop for 0th order, 1st order and truncated perturbation solutions 

are seen in Figure 3.13 for Case 2. 
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Figure 3.13. The 0th and 1st order perturbation results for the numeric evaluation of 

truncated perturbation solutions for Case 2 

 

Similar conclusions can be deduced for Case 2. It can be obviously seen from Figure 

3.13 that not accounting the effect of large variations in viscosity-compressibility 

results in misinterpretations. 1st order perturbation solution shows the deviation from 

the constant viscosity-compressibility product assumption. The nonlinearity of the 

diffusion equation cannot be neglected in fractured tight-gas wells where high pressure 

drops are required in order to produce the stored gas in this tiny little pores.  

 

Gas diffusivity deviation factor, seen in Figure 3.14, shows not steep change as in  
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Figure 3.14. Gas diffusivity deviation factor,   with respect to time for Case 2 
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CHAPTER 4 

 

 

APPROXIMATION OF THE GREEN’S FUNCTION SOLUTION 

 

 

 

As noted in the Introduction, one of the objectives of deriving an analytical solution 

for fractured tight-gas wells is to offer a robust tool for quick performance evaluations 

and provide a sound ground for practical data analysis techniques. The truncated 

perturbation solution developed in Chapter 3 (Eqn. (3.44)) is not completely 

satisfactory for these purposes. For example, even to compute the solution at the 

fracture plane ( 0y  ), pressures would have to be computed at every point in the 

reservoir because the evaluation of the semi-infinite integral in Eqn. (3.44) requires 

the  term (that is, the diffusivity,  ) as a function of pressure at every point in the 

reservoir. Therefore, in this chapter, an approximation of the perturbation-Green’s 

function solution will be derived to improve its practical utility. Our scope here is 

limited to deriving an approximation for the pressure at the fracture plane ( 0y  ሻ. 

4.1. Discretization of Integrals  

The first step toward obtaining a more computationally convenient form of the solution 

is to discretize and find appropriate analytical approximations for the integrals in the 

solution. First discretize the time integral in Eqn. (3.44) to obtain; 
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where  jq t  is the mean value of  q   in the interval 1j jt t   . Similarly, 

discretizing the space integral in Eqn. (4.1), yields; 
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  (4.2) 

 

In Eq. 4.2, where   (0) ' ,i jy   is the mean value of  (0) ',y   in the space interval 

' '
1'j jy y y    and time interval 1j jt t   . If Eqn. (4.2) is evaluated on the fracture 

plane ( 0y  ), and have; 
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Consider 
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and make the substitution; 

 

   
 ' '

;   ;  ' 2  
2 2

i

i i

y dy
u du dy t du

t t
 

   
   

 
  (4.5) 

 

and have; 
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Substituting Eqn. (4.6) into Eqn. (4.3) yields; 
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  (4.7) 

 

Define 
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and consider 
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Because 
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and ( [55], p. 109, [56], p. 228) 
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and have; 
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Thus, Eqn. (4.9) can be written as follows; 
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Also, have; 
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Substituting Eqns. (4.13) and (4.14) into Eqn. (4.7) yields; 
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 (4.15) 

 

After expanding and rearranging Eqn. (4.15) as follows: 
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 (4.16) 

 

Eqn. (4.16) can be further simplified by noting that '
0 0y  ;  
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  (4.17) 

 

where having used; 
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   (4.18) 

 

Eqn. (4.17) is the discretized form of the solution at the fracture plane. However, it 

still requires the pressures in the entire reservoir (all '
iy  for 1,2,...,i   ) to be able to 

evaluate the   (0) ' ,i jy t  terms at every time step. Below, try to find a suitable 

approximation to alleviate this difficulty.  
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4.2. Approximate Solution 

Here, an approximation is obtained for Eqn. (4.15), which is reasonably accurate for 

practical applications, by evaluating Eqn. (4.17) asymptotically at short- and long-

times. For the geometry considered in this problem, there is only one flow regime 

(linear flow) for all times and the short- and long-time approximations should yield 

the same result, which will be taken as the approximate solution. 

4.2.1. Short-Term Approximation 

Consider Eqn. (4.17) as 0t  . The following assumptions are made; 
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and 
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Then, the following short-term approximation is obtained for Eqn. (4.17); 
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4.2.2. Long-Term Approximation  

Evaluate the approximate form of Eqn. (4.17) as t  .	From Abramowitz and Stegun 

[56], we have; 
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Then, write; 
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Assume that; 
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and 
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This shows that; 
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Therefore, as t  , Eqn. (4.17) is approximated by; 
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Further assume that; 
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Then, obtain, 
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which is the same as the short-time approximation given by Eqn. (4.21). Therefore, 

Eqn. (4.30) can be taken as an appropriate approximation for the fractured tight-gas 

well solution under strong variability of viscosity and compressibility. 

4.2.3. Generalized Approximation for the Perturbation-Green’s Function 

Solution  

Consider Eqn. (4.30) as the approximate solution for the fractured tight-gas well 

solution with variable viscosity and compressibility. Expand Eqn. (4.30) as follows; 
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Simplifying and rearranging Eqn. (4.31), the approximate solution can be written in 

the following more familiar form; 
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Eqn. (4.32) can be written as; 
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where st  is the superposition time defined by; 
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Note that Eqns. (4.32) through (4.34) reduce to the following well-known results, 

respectively, for 1D linear flow when the variation of viscosity-compressibility 

product is negligible; 
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4.3. Verification of the Approximate Solution  

The approximated perturbation-Green’s function solution (Eqn. (4.32)) leads us to a 

new superposition time definition (Eqn. (4.34)). This new superposition time, 

responsible for the large variations in viscosity compressibility due to huge pressure 

drops at the fracture surface, is derived for infinite, homogeneous, isotropic gas 
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reservoirs. If we split Eqn. (4.32) into two parts, we can get the 0th ( (0)m ) and 1st 

order ( (1)m ) perturbation solutions. Consequently, it will be obvious to see the 

difference between constant viscosity-compressibility product solution and the 

variable one. 
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For the verification of the approximate perturbation-Green’s function solution, the 

previous synthetic cases mentioned in Chapter 3 was going to be used in order to show 

the agreement between numerical and analytical solutions of perturbation solution. 

4.3.1. Case 1 - Constant bottomhole pressure case 

The pseudopressure drops obtained with spectral solution [40], the approximated 

perturbation-Green’s function solution and the numerical solution of the truncated 

perturbation solution were demonstrated in Figure 4.1. As can be seen from Figure 4.1, 

after initial flow period approximated perturbation-Green’s function solution, 

numerical solution of the truncated perturbation solution and spectral solution [40] 

agreed fairly. 
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Figure 4.1. Pseudopressure drops comparison for spectral solution, analytical and 

numerical perturbation solutions for Case 1 

 

Figure 4.2 shows the 0th, 1st order perturbation and also the truncated perturbation 

solutions which were calculated both numerically and analytically. As can be seen 

from Figure 4.2, the numerical and analytical results are in close agreement. This 

figure also shows how the change in viscosity and compressibility affect the 

pseudopressure drop. If we ignore the large variation of viscosity-compressibility 

product with pressure (leading us (0)m ), the calculated pseudopressure drops will 

deviate from the actual. Therefore, 1st order perturbation term which considers this 

deviation is added to 0th order perturbation solution. 
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Figure 4.2. 0th and 1st perturbation solutions evaluated both numerically and 

analytically for Case 1 

4.3.2. Case 2 – Variable bottomhole pressure case 

For the variable bottomhole pressure case i.e. Case 2, the pseudopressure drops 

obtained from perturbation-Green’s function solution, spectral solution [40] and the 

numeric solution of truncated perturbation solution are presented in Figure 4.3. The 

analytical solution of the truncated perturbation-Green’s function solution and 

numerical solution of the truncated perturbation solution are in close agreement and 

they intercept with spectral solution after some time as can be seen from Figure 4.3. 
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Figure 4.3. Pseudopressure drops comparison for spectral, analytical and numerical 

perturbation solutions for Case 2 

 

Figure 4.4 shows the 0th,1st order perturbation solutions obtained from analytic and 

numeric solution of perturbation-Green’s function. It is obvious from the Figure 4.4 

that analytic and numeric solutions of the perturbation-Green’s function solutions for 

0th and 1st order perturbation equations are in close agreement. Figure 4.4 presents the 

difference between constant viscosity-compressibility product solution and the 

variable viscosity compressibility product solution. When the variation in viscosity 

compressibility product with pressure is ignored, the corresponding calculated 

pseudopressure drops (  (0) 0,m t ) is actually low compared to variable viscosity 

compressibility case. Therefore, a correction term  (1) 0,m t  is added to the solution 

that accounts for the deviation from its initial value. 

 

 

1.000E+04

1.000E+05

1.000E+06

1.000E+07

1.000E+08

1.000E+09

1.000E+10

0.001 0.010 0.100 1.000 10.000 100.000 1000.000 10000.000

Δ
m
(P

w
f)
 (
p
si
a2
/c
p
)

t (days)

Δm‐Spectral Δm‐Numeric perturbation Δm‐Analytic perturbation



 

65 

 

Figure 4.4. 0th and 1st perturbation solutions evaluated both numerically and 

analytically for Case 2 
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CHAPTER 5 

 

 

DISCUSSION OF RESULTS AND EXAMPLE APPLICATIONS 

 

 

 

In this chapter, linear flow analysis is going to be performed with rate normalized 

pseudopressure drop and superposition time. Two previously mentioned synthetic 

cases (Case 1 and Case 2) and field data are going to be used for the application. Linear 

flow analysis is going to be carried out with the conventional superposition time and 

new superposition time. Then, the errors are going to be calculated to show the 

calculation accuracy in fx k  for synthetic cases. 

 

For the conventional superposition time analysis, Eqn. (4.40) is used; 
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which is actually the 0th order perturbation equation not considering the large 

variations in viscosity and compressibility.  

 

For the new superposition time analysis, Eqn. (4.41) is used; 
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which is the approximated perturbation-Green’s function equation developed in 

Chapter 4 taking into account the variations in viscosity and compressibility with 

pressure. 

 

For rate-normalized pseudopressure drop equation, Eqns. (4.40) and (4.41) can be 

arranged as respectively, and if we insert i  into equations, the following equations 

can be obtained; 
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Therefore, we can write the conventional superposition time equation coming from 

Eqn. (4.42) as, 
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and the new superposition time from Eqn. (4.43) as, 
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For Eqns. (4.42) and (4.43), if we plot superposition time versus rate normalized 

pseudopressure drop, the slope will be equal to; 
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from which we can get fx k . 

5.1. Case 1 - Constant Bottomhole Pressure Case 

For the linear flow analysis the rate normalized pseudopressure drop is plotted against 

the conventional superposition time and new superposition time in Figure 5.1.  

 

 

Figure 5.1. Rate normalized pseudopressure drop versus conventional superposition 

time and new superposition time for Case 1 

From the slopes of the straight lines, fx k  values were calculated by using Eqn. 

(4.46) and are shown in Table 5.1. In Table 5.1, the input values, the calculated values 
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from conventional and new superposition time for fx k  and the errors in fx k

values from this calculations are listed. It is obvious from Table 5.1 that the 

conventional superposition time high slope yields relatively high errors in fx k  

values and results in low permeability values. On the other hand, the error calculated 

from new superposition time is around 1%. Therefore, we can conclude that the use of 

conventional superposition time in fractured tight gas well performance cause high 

errors in reservoir property calculations. 

 

Table 5.1. The input  and calculated fx k  values from conventional and new 

superposition time and the errors for Case 1 

Method Input Calculated Error % 

Conventional superposition time 1.000fx k   0.746fx k   25.443 

New superposition time 1.000fx k   0.998fx k   0.202 

5.2. Case 2 - Variable Bottomhole Pressure Case 

For the linear flow analysis, the rate normalized pseudopressure drop versus the 

conventional superposition time and new superposition time is plotted in Figure 5.2 

for the variable bottomhole pressure case. 
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Figure 5.2. Rate normalized pseudopressure drop versus conventional superposition 

time and new superposition time for Case 2 

From the slopes of the straight lines, fx k  values were calculated from conventional 

and new superposition time and shown in Table 5.2. In Table 5.2, the input values, the 

calculated values from conventional and new superposition time and the errors for 

fx k  are shown. It can be seen from Table 5.2 that the error calculated from new 

superposition time is less than 1%. 

 

Table 5.2. The input and calculated fx k  values from conventional and new 

superposition time and the errors for Case 2 

Method Input Calculated Error % 

Conventional superposition time 1.000fx k   0.752fx k   24.787 

New superposition time 1.000fx k   0.996fx k   0.429 
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5.3. Field Case 

The new superposition time is also tested in a hydraulically fractured tight gas well 

data. The reservoir is in infinite-acting flow period; therefore, the flow to the fracture 

is linear flow. The reservoir rock and fluid properties are given in Table 5.3 for the 

field. 

 

Table 5.3. Reservoir rock and fluid properties for field case 

Matrix permeability, k , mD 0.0011 

Matrix porosity,   0.08 

Fracture height, h , ft 260 

Initial reservoir pressure, iP , psia 10400 

Reservoir temperature, T , R 707.668 

Gas viscosity-compressibility product at initial 

reservoir pressure,  g g i
c   

1.301e-6 

Skin, S   0 

 

The wellbore bottomhole pressures and flow rates for the field can be seen in Figure 

5.3. 
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Figure 5.3. Flow rate and bottomhole pressure for a tight gas reservoir 

Linear flow analysis is performed by using both the conventional and new 

superposition time as in the synthetic cases. As can be seen from Figure 5.4, although 

in the field there is no skin, conventional superposition time plot does not start from 

origin which indicates skin. The conventional superposition time analysis causes 

misinterpretation in skin values. The early time distortion of the data from straight line 

can be due to wellbore storage effect. 
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Figure 5.4. Rate normalized pseudopressure versus conventional superposition time 

and new superposition time for a field data 

The fx k  values calculated from conventional and new superposition time again 

using Eqn. (4.46) can be seen in Table 5.4. 

 

Table 5.4. The fx k  values calculated from conventional and new superposition 

time for a tight gas reservoir 

Method Calculated 

Conventional superposition time 9.764fx k   

New superposition time 7.892fx k   
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CHAPTER 6 

 

 

CONCLUSIONS 

 

 

 

In this chapter, the conclusions derived from this study are going to be summarized. 

In unconventional tight gas reservoirs large pressure gradients are required for 

production and under these conditions the variation in viscosity-compressibility 

product is also high. This makes the gas diffusion equation nonlinear. In order to 

eliminate this nonlinearity, perturbation approach is used. In perturbation method, the 

nonlinear equation is divided into a series of linear equations and each of them is 

solved separately which also makes the term-by-term application of superposition 

principle possible. The main objective of this study is to provide an analytical 

perturbation-Green’s function solution to hydraulically fractured tight gas wells 

producing under large pressure drops, to investigate the effect of pressure dependent 

viscosity-compressibility product on the production tight gas well performances and 

to improve the interpretation from pressure and production data. The solution proposed 

in this work leads us to a new superposition time which is valid under severe variations 

in viscosity-compressibility with pressure.  

 

Based on the results of this work, the following conclusions can be outlined; 

 

 An approximated perturbation-Green’s function is developed for variable-rate 

and variable-pressure production data for a fractured tight gas well in an 

infinite, homogeneous gas reservoir under strong variation in viscosity-

compressibility product.  

 The approximated perturbation-Green’s function numerical and analytical 

solutions for fractured tight gas well are verified with Thompson’s spectral 
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solution [40] and finite difference simulator, Eclipse. The comparison tests 

show that the approximated solutions are highly accurate. 

 The approximated perturbation-Green’s function numerical and analytical 

solutions present a correction term that considers the deviation of viscosity-

compressibility product from its initial value. 

 The approximated perturbation-Green’s function analytical solution leads us to 

a practical tool for the analysis of fractured tight gas well performances. 

 The approximated perturbation-Green’s function analytical solution leads us to 

a new superposition time equation. 

 The estimation of fx k  values with the use of conventional superposition 

time is not sufficiently accurate. 

 The conventional solution does not take into account the variation in viscosity-

compressibility product and this results in misinterpretations in the analysis of 

tight gas well performances. 

 The new superposition time yields highly accurate values in the estimation of 

fx k  in synthetic data up to 99%.  
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CHAPTER 7 

 

 

RECOMMENDATIONS 

 

 

 

The perturbation solution presented in this work is valid for infinite, homogeneous 

tight gas reservoirs with infinite hydraulic fracture conductivity. More complicated 

properties can be implemented into the model such as; 

 

 The solution presented in this work is valid for infinite acting reservoir. The 

solution can be extended to boundary dominated flow conditions. 

 There is no skin in this work. The effect of skin can be tested. 

 The pressure dependent rock properties like permeability and posrosity can be 

implemented.  

 Klinkenberg effect can be implemented. 

 The solution is valid for fully penetrating, infinite conductivity hydraulic 

fracture. It can be extended to finite conductivity partial penetration case. 
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