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ABSTRACT

COMPRESSIVE SENSING METHODS FOR MULTI-CONTRAST

MAGNETIC RESONANCE IMAGING

Alper Güngör

M.S., Department of Computer Engineering

Supervisor : Prof. Dr. Fato³ T. Yarman Vural

Co-Supervisor : Assist. Prof. Dr. Tolga Çukur

September 2017, 116 pages

Compressive sensing (CS) is a signal processing tool that allows reconstruction

of sparse signals from highly undersampled data. This study investigates ap-

plication of CS to magnetic resonance imaging (MRI). In this study, �rst, an

optimization framework for single contrast CS MRI is presented. The method

relies on an augmented Lagrangian based method, speci�cally alternating direc-

tion method of multipliers (ADMM). The ADMM framework is used to solve

a constrained optimization problem with an objective function consisting of a

linear combination of the total variation on the magnitude image and the `1-

norm. Then, a fast implementation is derived for MRI, which requires only two

FFT operations per iteration. Second, for better exploitation of sparsity, a joint

reconstruction method for multi-contrast CS MRI is presented. This method

uses non-convex group-`p-sparsity as well as joint total variation as objective

functions. Finally, a joint dictionary learning based method for �nding the
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sparsifying transformation along with the image is presented. The sparsifying

transformation reconstructed by the method enforces group sparse representa-

tion on all contrast images. All the proposed methods are compared quan-

titatively and qualitatively with previous methods that exist in the literature

using both experimental in-vivo and simulated datasets. The e�ectiveness of

the ADMM for single contrast reconstruction is demonstrated over other single

contrast methods. Then, the advantages of using joint reconstruction is dis-

cussed and demonstrated. Although dictionary learning based method require

high computational cost, it presents bene�ts in terms of image quality is shown.

Keywords: Compressive Sensing, Magnetic Resonance Imaging, Sparsity, Dic-

tionary Learning, Multi-Contrast
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ÖZ

MANYET�K REZONANS GÖRÜNTÜLEME �Ç�N

SIKI�TIRILMI� ALGILAMA YÖNTEMLER�

Alper Güngör

Yüksek Lisans, Bilgisayar Mühendisli§i Bölümü

Tez Yöneticisi : Prof. Dr. Fato³ T. Yarman Vural

Ortak Tez Yöneticisi : Yrd. Doç. Dr. Tolga Çukur

Eylül 2017 , 116 sayfa

S�k�³t�r�lm�³ Alg�lama (SA) daha az ölçüm kullan�larak seyrek bir sinyalin isa-

betli bir ³ekilde gerikazanmak için kullan�lan bir sinyal i³leme tekni§idir. Bu ça-

l�³ma SA'n�n MRGye uygulan�³�n� incelemektedir. Bu çal�³mada, öncelikle, SA

MRG için bir optimizasyon çat�s� sunulmaktad�r. Metot, geni³letilmi³ Lagrange

tabanl� bir metot olan yön de§i³tiren çarpanlar yöntemine (YDÇY) dayanmakta-

d�r. Bu çat�, hedef fonksiyonlar� olarak görüntünün büyüklü§ü üzerinde toplam

de§i³inti ve `1-norm fonksiyonlar�n�n lineer kombinasyonunu içeren bir k�s�tl� bir

optimizasyon problemini çözmek için kullan�lm�³t�r. Ard�ndan, bu çat�n�n MRG

için her yinelemede iki FFT i³lemi ile çözülmesine olanak sa§layan h�zl� uy-

gulamas� geli³tirilmi³tir. �kinci olarak, seyreklikten daha çok yararlanmak için,

çoklu-kontrast MRG için bir ortak geri-kazan�m metodu sunulmaktad�r. Bu me-

tot hedef fonksiyonu olarak konveks olmayan grup-`p-seyrekli§i fonksiyonunun
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yan�-s�ra ortak toplam de§i³inti fonksiyonunu kullanmaktad�r. Son olarak, sey-

reklik dönü³ümü ile birlikte görüntünün bulunmas�na olanak sa§layan bir ortak

sözlük ö§renimi tabanl� metot sunulmu³tur. Yöntem taraf�ndan bulunan seyrek-

lik dönü³ümü, bütün kontrast görüntüler üzerinde grup seyrek temsili sa§lamak-

tad�r. Bütün önerilen yöntemler literatürdeki önceki yöntemlerle hem deneysel

hem de benzetim veri kümeleri kullan�larak nicelik ve kalite aç�lar�ndan k�yas-

lanm�³t�r. Tekli kontrast için YDÇY'nin etkilili§i di§er tekli kontrast yöntemler

üzerinden gösterilmi³tir. Daha sonra, ortak geri-kazan�m�n avantajlar� tart�³�lm�³

ve gösterilmi³tir. Sözlük ö§renimi tabanl� yöntem yüksek i³lem gücü gerektirse

de, bu yöntemin görüntü kalitesi aç�s�ndan avantajlar� gösterilmi³tir.

Anahtar Kelimeler: S�k�³t�r�lm�³ Alg�lama, Manyetik Rezonans Görüntüleme,

Seyreklik, Sözlük Ö§renimi, Çoklu Kontrast
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CHAPTER 1

INTRODUCTION

Magnetic Resonance Imaging (MRI) is a widely utilized imaging modality due

to its relatively high resolution and contrast for imaging soft tissue. In the past

30 years, it has found use in various applications, including diagnosis, treat-

ment monitoring and interventional guidance. For many applications, multiple

images with di�erent contrasts are required. However, the imaging process is

rather slow, and multi-contrast imaging leads to long scan times, which may

become infeasible impractically long scans. A recent approach to accelerated

imaging that has attracted broad attention is compressed sensing (CS) [37]. CS

is a signal processing technique that is used to reconstruct signals using fewer

measurements by exploiting sparsity of the signal of interest in a transform do-

main [16, 25]. However, due to high computational requirements of compressive

sensing reconstruction algorithms, its use in clinical practice has remained lim-

ited.

Appropriate selection of the sparsifying transform domain is critical in successful

applications of CS. Recent methods in the literature rely on pre-chosen sparsi-

fying transform domains such as �nite di�erences, wavelets, total variation etc.

for image reconstruction [10, 22, 23, 34, 37]. While these methods are shown to

be moderately successful, the transform domains have to be application speci�c,

and selected heuristically by the end user. In order to avoid this problem, an-

other trend in CS is to use a transform domain that is inferred from data using

dictionary learning [51]. Dictionary learning is a signal processing tool which can

be used to infer sparse representation of a group of signals in some transform

domain. However, it involves solving a highly non-convex problem. Further-

more, exploiting any type of apriori knowledge on the data is very important for

�nding the best solution. While several applications of dictionary learning to
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MRI exist [4, 51, 52, 53], a study on multi-contrast dictionary learning for CS

MRI has not been extensively carried out.

In this thesis, we deal with the problem of image reconstruction from under-

sampled multi-contrast MRI data. We �rst describe the basic principles of MRI

and CS. Next, we propose three techniques for image reconstruction. The �rst

technique is a fast and e�cient single contrast image reconstruction technique,

and it reconstructs each contrast image separately. We propose a novel objec-

tive function, and analyse the convergence of the proposed method. The second

technique is an extension of the �rst technique such that it allows reconstruction

of multi-contrast images using joint information across contrasts. The last tech-

nique relies on dictionary learning that works for multi-contrast images taking

structural similarity of di�erent contrasts into consideration. It learns the struc-

tural similarity across contrasts while simultaneously reconstructing images. We

describe each method extensively and discuss their fast and e�cient implemen-

tations. Finally, we compare each method with �ve methods in the literature

and with each other in terms of both qualitative and quantitative metrics.

The novelty of this thesis can be summarized as follows:

• We propose an e�cient framework for single contrast MRI reconstruc-

tion. We propose an e�cient augmented Lagrangian based method CS

MRI reconstruction. We use novel single contrast objective functions suit-

able for brain images and give e�cient implementation of the functions

within the proposed framework. The algorithm requires using well-known

�proximal mapping functions� associated with each objective function. We

apply gradient transformation on the magnitude of the image rather than

the complex-valued image. This requires deriving the associated proximal

mapping functions for these magnitude operations. We rigorously derive

a generic method for extending the proximal mapping of any real-valued

objective function for complex-valued imaging.

• We propose an e�cient framework for joint multi-contrast MRI recon-

struction. The algorithm is an augmented Lagrangian based method for
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joint reconstruction of multi-contrast CS MRI. We use novel joint objec-

tive functions suitable for multi-contrast brain images and give e�cient

implementations of the functions within the proposed framework. Similar

to single-contrast case, the functions are extensions of real-valued func-

tions for magnitude complex-valued imaging. We also use the previously

proposed theorem for deriving the associated proximal mapping.

• We propose a joint dictionary learning based image reconstruction method

for multi-contrast MRI. The method involves �nding both the transform

in which the image is sparse and the image itself from only the measure-

ments. Moreover, we use a single transform for multi-contrast images, and

assume joint sparsity.

• We compare both previous and proposed algorithms in terms of both qual-

itative and quantitative metrics. We show that each proposed algorithm

outperforms the reference methods in the literature. Moreover, we com-

pare ADMM based proposed methods to each other. In the cases where

multi-contrast data is available, exploitation of multi-contrast data results

in better reconstruction quality, as well as faster reconstruction. We also

compare dictionary learning based methods to the proposed augmented

Lagrangian based methods. Although dictionary learning results in higher

quality reconstructions, it requires considerably more computation time.

The choice between augmented Lagrangian based methods and dictionary

learning based methods presents trade-o� between computation time and

desired image quality.

Rest of this thesis is outlined as follows: First, chapter 2 gives background infor-

mation on MRI and CS. Then, chapter 3 describes a novel method for individual

reconstruction of CS MRI. Chapter 4 extends the method for joint reconstruction

of multi-contrast MRI and gives implementation speci�cs. Chapter 5 describes

a novel joint dictionary learning based CS method for multi-contrast MRI. Fi-

nally, chapter 6 demonstrates the proposed methods, and compare the methods
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to previous reference algorithms.

1.1 Notation

The following notation is used throughout this thesis. We denote vectors with

small bold letters such as x, y, z. Subscripts denote the iteration count, su-

perscripts denote a sub-block within a vector, where x
(i)
k denotes the i-th block

within vector x at iteration k. For multi-block structures such as i-th channel

t-th block, we use x
(i,t)
k . We use bold capital letters for matrices or transfor-

mations such as A, W. x[i] denotes the i-th element within vector x, while

x[i, j] denotes the element corresponding to i-th row, j-th column of the image

stacked as a vector ((iNv + j)-th element of x where each row has Nv elements).

xH , AH denotes the Hermitian transpose (or conjugate transpose) of x and A,

respectively. This operator is expressed in some contexts as x∗ and A∗ .
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CHAPTER 2

BACKGROUND ON MAGNETIC RESONANCE IMAGING AND

COMPRESSED SENSING

We deal with the problem of image recovery for compressed multi-contrast mag-

netic resonance imaging. In this chapter, we provide a background to the reader,

and discuss the basics related to magnetic resonance imaging, compressive sens-

ing, and some of the optimization algorithms used. First, we discuss physics of

Magnetic Resonance Imaging (MRI), next we discuss conventional image recon-

struction methods for MRI. After that, we discuss the theory behind compressed

sensing (CS), and explain some basic applications. We also give information on

the key points for a successful CS application, and how to achieve it. We then

give an overview on the recent work for optimization algorithms applied to solve

CS, and discuss the strong suits of each. Finally, we discuss the theory behind

the proposed method, a version of augmented Lagrangian method (ALM) called

alternating direction method of multipliers (ADMM).

2.1 Magnetic Resonance Imaging

Magnetic Resonance Imaging is a non-invasive imaging technology that has

gained attention due to its high resolution and contrast imaging of soft tis-

sues. The imaging process does not include ionizing radiation as in x-ray and is

therefore safe to be repeated for humans. MR scanner measures the magnetic

response of the molecules in a �eld of view. In MRI, an area is �rst excited

then measured. Although the fundamental principles remain the same, di�erent

types of excitation and measurements result in images containing di�erent infor-

mation. For example, while Magnetic Resonance Angiography (MRA) produces

images with enhanced blood vessels, functional Magnetic Resonance Imaging
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(fMRI) produces blood-oxygen-level dependent contrast images, which can then

be used for brain-decoding [3, 30]. Among many applications, we are primarily

interested in structural brain imaging.

The imaging process is based on a phenomena called Nuclear Magnetic Reso-

nance (NMR). In NMR, nuclei in a magnetic �eld absorb and re-emit electro-

magnetic radiation. Initially, the net magnetic �eld vector in a nuclei is zero.

However, when a very strong magnetic �eld denoted by B0 is applied, it po-

larizes the nuclei such that magnetic dipoles align with the external magnetic

�eld (either in parallel or antiparallel direction to B0, however there is a slight

preference for parallel direction and hence the polarization occurs. Then, a radio

frequency (RF) pulse, which is basically a time-varying magnetic �eld denoted

by B1(t), is applied to select and excite or tip these magnetic dipoles to the

transverse plane. Hence, while the net magnetic �eld in a selected slice points

towards the transverse direction, all other spins point towards the direction of

B0. Here, magnetic �eld in transverse direction denoted by Bxy can be used to

determine the tissue composition of the excited area. To gather information on

spatial position of the various tissues within the excited slice, spatial encoding is

required. Spatial encoding is performed via three coils that create magnetic �eld

gradient in three orthogonal directions. These coils are used to create spatially

varying magnetic �elds, G(~r), in all three dimensions, which provides position-

encoding in the received signal. Due to the applied gradient, the net magnetic

�eld at each position is slightly rotated in transverse plane. After application of

B1(t) is completed, the magnetic �eld in the tipped region slowly re-aligns with

the constant magnetic �eld, B0. The magnetization in transverse direction, sr(t)

is measured using a coil. The measured signal has two dimensions, x and y. To

simplify analysis, complex numbers are used to denote the coordinate system.

Hence, the received signal and the reconstructed image are both complex-valued.

The received signal has the form

sr(t) =

∫
R

m(~r)e−i2π
~k(t)·~rdr, (2.1)

where ~k(t) is proportional to
∫ t

0
G(~s)d~s, andm(~r) denotes the magnetic response

of the excited volume. Note that ~k(t) provides a di�erent rotation for each po-

sition, which provides spatial encoding. Eq. (2.1) basically dictates the imaging
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process. To sum up, �rst a pre-designed RF pulse B1(t) along with gradients

G(~r) are used simultaneously to excite or tip an area of interest. Then, the re-

sponse is measured after waiting for some time. Imaging algorithm simply uses

the measured signal to create an image.

For linear gradient �elds, the equation is exactly the Fourier transformation.

Hence, the signal becomes 2D spatial Fourier transform of the �eld of view

(FOV) [45]. The frequency domain representation is also called the k-space.

Depending on the change in all x,y, and z components of gradient G over time,

di�erent sampling schemes can be applied. Hence, simply put, one can say that

MR scanner samples frequency domain representation of magnetic response of

materials inside a FOV [45].

Fig. 2.1 (a) shows the timing of signals for gradient echo sequence Cartesian

sampling, (b) depicts the trajectory in the k-space. Before sampling process

begins, k-space initial position is set. At time t0, the integral of the gradients,

hence the corresponding wave numbers kx, ky, and kz are all 0. Slice selection

gradient is set to a constant value such that the same kz, wave number of the

slice to be sampled in the k-space is sampled. During this time, an RF excitation

pulse is applied such that the magnetic �eld inside the selected/excited slice is

tipped 90o. At this time k-space position is at t1 and kz is set. Then at t1, a

phase encoding gradient is applied to select the ky, frequency value of the line to

be sampled in the k-space. After the application the line is selected such that ky

is set. Finally at t2, frequency encoding gradient is applied. Frequency encoding

gradient is �rst set to a negative value such that its integral is set to negative of

the half bandwidth in that direction. While kx, frequency value to be sampled

within the line in the k-space, is increased, the signal is sampled.

The process described above is repeated since all of k-space can not be �lled

in a single scan. The time waited before sampling process starts is called echo

time, TE, and the period of the repetition is called repetition time, TR. These

two parameters a�ect the reconstructed image. Each tissue is represented by

three basic parameters [7], which are longitudinal relaxation time T1, transverse

relaxation time T2, and proton density (PD) m0. PD is the magnitude of
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Figure 2.1: (a) Gradient echo sequence timing (b) k-space trajectory.
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the magnetization in a speci�c voxel. Initially it is aligned with B0. After

tipping, a voxel starts relaxing in both transverse and longitudinal directions, as

dictated by Bloch equations [45]. T1 and T2 simply denote the time constants

of the relaxation in the associated direction. The measured signal m(~r) can be

represented as:

m(~r) = m0(~r)e−TE/T1(~r)
(
1− e−TR/T2(~r)

)
. (2.2)

Hence, using long TR and short TE, almost no relaxation occurs and PD of the

voxel is measured, which results in PD-weighted images. Increasing TE while

using long TR results in measuring relaxation in T2, and hence T2-weighted im-

ages. For short TE and short TR, the signal is repeated before the longitudinal

relaxation is completed. After a few repetition, the signal reaches steady-state

and T1-weighting becomes the dominating imaging parameter, hence results in

T1-weighted images.

Theoretically, in�nitely many contrast images can be formed using di�erent

values for TE and TR. However, similar values for the parameters result in very

similar images, and include same type of features. In this thesis, we deal with

simultaneous reconstruction of di�erent contrast images to reconstruct higher

resolution and better quality images. Even though any number of contrasts can

be used, we show our work on di�erent contrast images, namely PD, T1, and

T2 -weighted images.

The parameters T1, and T2 depend on the strength of the magnetic �eld B0.

Typical parameters for di�erent tissues for B0 = 1.5T are given in Table 2.1.

Each parameter set enhances contrast on di�erent type of structures. PD-

weighted images are mostly used for imaging underlying anatomical structures.

As it can be seen from the table, fat has very low T1 value and thus fat appears

bright, water appears dark in T1-weighted images. Since the inverse of T2 decay

is imaged in T2-weighted images, fat appears dark and water appears bright in

these images. Also, most pathological structures demonstrate itself as increase

in water level, and this contrast allows imaging those structures.

In this thesis, we deal with the multi-contrast MR image reconstruction problem.

For more reading on physics of MRI, please refer to [37, 45].
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Table2.1: Typical T1, and T2 values for di�erent tissues [7]

Tissue T1 (ms) T2 (ms) PD

CSF 2569 329 1
Gray Matter 833 83 0.86
White Matter 500 70 0.77

Fat 350 70 1

2.2 Image Reconstruction Problem for MRI

The received signal in MRI does not directly provide an image as explained

in section 2.1. Hence, an image reconstruction algorithm is required. Given

sampled data y, and a forward model fm relating image vector x to y such that

y = fm(x), image reconstruction is the process that is applied to recover image

vector x. Here, fm can be any linear or non-linear function that relates the data

and image. The problem can be cast as:

recover x

subject to fm(x) = y
. (2.3)

For MRI, the sampled signal y corresponds to sampled signal sr(t), and x cor-

responds to magnetization m(~r). In this thesis, we deal with 2D images and x

corresponds to 2D images stacked as vectors, while it can easily be extended to

be applied in n-dimensional signals.

If a forward model is invertible, then simplest solution would be to set

x = f−1
m (y). (2.4)

In this thesis, we deal with linear forward models such that fm can be represented

as a matrix A, hence fm(x) = Ax. The matrix depends on the problem model

and is directly related to the excitation pulse for MRI. Number of rows in the

matrix A is equal to the number of samples, and number of columns is equal to

the total size of the image. If the matrix A is full-rank, then a simple matrix

inversion operation would give the best estimate to recover x. However, if the

matrix A is tall such that the number of data points is higher than the number
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of image pixels, then least squares can be used to recover the image. By solving

minimize
x

‖Ax− y‖2
2 , (2.5)

x is recovered. Also, for fat A matrix, i.e. the number of data points is less

than the number of image pixels, the solution of

minimize
x

‖x‖2
2

subject to Ax = y
, (2.6)

would give the least squares estimate. The solution of this problem is simply

the multiplication of y by the pseudo-inverse of A.

As stated in Section 2.1, MR scanner simply sample Fourier coe�cients of the

FOV. However, gathering data is a time consuming process. Sub-sampling accel-

erates imaging process and hence we deal with fat matrices. At each repetition,

a trajectory in k-space is sampled. Hence, the forward model A can be rep-

resented using multiplication of two matrices, as a masked Fourier transform,

A = MU, where U denotes the unitary matrix associated with Fourier transfor-

mation of a given image vector x, and M denotes a row selection matrix. Hence

MUx simply results in selected Fourier coe�cients of x. Here note that Fourier

matrix is a unitary matrix, such that the inverse of the matrix is its conjugate

transpose, or its hermitian, UH .

If a cartesian sampling method is used in MR, then U operation can be per-

formed using Fast Fourier Transformation (FFT) algorithm, which has a com-

plexity of O(Nlg(N)). Hence, if the k-space is fully sampled, then the image

would be U−1x, and this can be calculated using inverse fast fourier transform

algorithm with a complexity of O(Nlg(N)). For the sub-sampled k-space case,

the solution to (2.6) is the image vector.

De�ne temporary variable z as Ux. Then, the problem becomes

minimize
x

‖U−1z‖2
2

subject to Mz = y
. (2.7)

Using Parseval's theorem (or the fact that Fourier transform is a magnitude

preserving transformation), we can omit the inverse Fourier matrix in the least
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square step. The solution is then simply zero-�lling of unknown elements in

the k-space, UHMHy. The reconstructed image is complex-valued. Di�erent

information can be extracted from phase and magnitude of the reconstructed

images. However, for most cases magnitude images are required, and hence are

more privileged.

The above algorithm holds for cartesian sampling and it reconstructs acceptable

results for enough samples. However, for highly subsampled data, the image

quality is very poor. Other trajectories such as spiral are used to increase image

quality. However, the FFT algorithm is not applicable in those cases. For non-

cartesian trajectories most algorithms process data in advance and interpolate

it onto a cartesian grid to exploit the speed of FFT [55].

For high undersampling factors, the sub-sampling mask has a huge impact on

image quality. Even though purely random sub-sampling works for some ap-

plications, most natural images are dense in the center of k-space, and MRI is

no di�erent. Recent work suggests drawing sub-sampling mask from a gaussian

pdf, or even fully sampling a pre-speci�ed radius in the k-space results in higher

quality images [37].

Here, we give details about two types of masks: 1D undersampled, and 2D

undersampled. For GRE cartesian sampling, it takes negligible amount of time

to sample a line in the Fourier transform of the image. Hence, while gathering

2D image data, one of the directions should always be fully sampled, and hence

undersampling masks should include lines in one of the directions. Figure 2.2

includes the created sampling masks. As discussed, samples randomly drawn

from a uniform probability density function (pdf) does not always result in

quality reconstruction. Sampling the Fourier domain densely in low frequencies

help improve the image quality. For this reason, when 1D undersampling is

employed, the middle region (low frequency) is fully sampled. The rest is drawn

from the given pdf in Fig. 2.2 (a). One instantiation is given in Fig. 2.2 (b).

While gathering data for 3D image reconstruction, 2D-undersampling can be

employed. As in 1D case, the low frequency region is going to be fully sampled

in Fig. 2.2 (c) and (d). The rest is drawn from a pdf as shown. One instantiation
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(a) (b)

(c) (d)

Figure 2.2: (a) 1D undersampling probability density function. (b) A mask
created from the PDF in (a). (c) 2D undersampling probability density function.
(d) A mask created from the PDF in (c).
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of 2D undersampling is given in Fig. 2.2. In �gures (b) and (d), white areas are

the samples that are gathered, while black areas are omitted. Compressive

sensing �lls the black areas while denoising the white ones.

In the above formulation that we do not consider noise in the MR imaging sce-

narios. However, for practical imaging systems, noise should also be considered.

In that case, one could change the equality constraint to include noise. For

Gaussian noise with zero mean and a standard deviation of ε, maximum a pos-

teriori (MAP) estimation corresponds to an `2-norm bound as ‖Ax − y‖2 ≤ ε.

A practical way to retrieve the standard deviation ε would be to gather data

without any RF excitation, which results in gathering purely noise data. Some

algorithms prefer adding the data �delity term to objective function and use

unconstrained optimization with a penalty parameter λ, as λ‖Ax−y‖2
2. In that

case, most algorithms determine λ by solving the problem in multiple times and

use the best outcome for parameter selection.

2.3 Compressed Sensing (CS)

To represent a continuous signal f(x) in digital domain, the signal f(x) is sam-

pled at speci�c time points and digitized into f [n]. Nyquist-Shannon's sampling

theorem states that if a continuous signal f(x) is sampled at a period twice

its highest frequency point, then it can be exactly recovered from its samples.

Conventional samplers follow the theorem and gather lots of data. For most

applications, the sampled signal is redundant and after sampling the signal is

compressed for storage or transmission purposes. Hence the natural question

of combining these two processes has been around for many years. Fig. 2.3 (a)

depicts the classical approach, (b) depicts the compressive sensing approach.

The classical approach includes �rst sampling a signal, then compressing it.

The signal can then be transmitted or stored, and �nally the signal can be de-

compressed at any location to reach the original signal. Compressive sensing

approach combines sampling and compressing steps, and arrives at compressive

sensing a signal. The signal can then be reconstructed by solving an optimization

problem.

14



(a) (b)

Figure 2.3: (a) Classical Approach (b) Compressive Sensing Approach

Figure 2.4: Uncompressed image (left), Wavelet coe�cients of the image (mid-
dle), Image after compression (right) [17]

Although it is known that the data is redundant, designing a data gathering

process is not straight forward. Fig. 2.4 shows an image with 1 mega-pixels, and

the compressed-decompressed image. The image is compressed by keeping top

25k Wavelet coe�cients of the image on the left. As it can be seen, the images

look almost the same. For most cases, the gathered data is overly redundant.

Hence, if there existed some sampling process that could capture top 25kWavelet

coe�cients, then the images would look almost the same. However, it is not

possible to know a-priori which coe�cients constitute the top 25k before hand.

This is why compressed sensing requires a non-straight forward data gathering

process.

CS is a signal processing technique that can be used to almost exactly recover

signals sampled in sub-Nyquist rates. The technique relies on sparsity of the

signals of interest in a transform domain. It has been proven that incoherent
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measurements of a sparse signal can be recovered using much fewer measure-

ments than Nyquist rate, by solving a non-linear optimization problem [25, 16].

Here, there exists some linear model A that measures a sparse signal. How-

ever, A is a fat-matrix, and the model Ax = y constitutes an under-determined

system of equations. Hence, there exists in�nitely many solutions. Choosing

the �best� solution among these requires a reqularization. One can argue that

minimizing the energy of the signal may yield the best result, such that ‖x‖2
2

is used as regularization function. However, as shown in [25, 16], this is far from

the truth. Undersampling process introduces an inherent noise-like artifacts on

the signal. Energy minimization does not help de-noise the signal, and hence

the energy-minimized image carries all the noise-like artifacts of the image.

CS theory states that, under some conditions on the forward model A, any

sparse signal can be recovered by solving [16, 25]:

minimize
x

‖x‖0

subject to Ax = y
, (2.8)

where ‖ · ‖0 denotes the pseudo-norm called `0-norm that counts the number of

non-zeros in a vector. It has been shown that Eq. (2.8) has a unique solution

and will recover the signal x exactly if the signal is k−sparse and sklog(n)

measurements are taken, where s is a constant, such as 2 and n is the dimension

of signal [16]. However, this is a non-convex optimization problem and this class

of problems are known to be NP-Hard [16].

Ax = y is an under-determined problem. However, the non-zero positions

on x is known beforehand, then the zero coe�cients of x could be omitted

before solving the problem. The corresponding columns in A could be omitted

as well. In that case, the problem becomes an over-determined problem since

the number of measurements, sklog(n) stays the same, and the signal can be

reconstructed exactly by solving the over-determined system of equations. Here,

note that over-determined system of equations may not have a solution. Since

we are dealing with the theory here, we assume there exists at least one solution

to the over-determined system of equations. However, since the locations of

the non-zero coe�cients are not known before solution, solving this problem

requires combinatorial search on each possible k-sparse combination. Because
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the problem is over-determined, it is very likely that most of these combinations

will have no solution.

Thus far, we described a way to state that if there exists an under-determined

system of equations which the solution is known to be k-sparse, solving for each

possible k-sparse combination will yield at least one solution. We have not dealt

with the uniqueness of the result, or how to achieve it without solving an NP-

Hard problem. There exists another critical contribution of the theory for this

very problem. Let us begin with the uniqueness of the result. Assume that x is a

k-sparse vector and the locations of non-zero elements are not known. Then, also

let us assume that m measurements are taken using A, where N >> m. Hence,

this is a highly under-determined system of equations, expressed as Ax = y. If

there are no two k − sparse vectors (x1,x2) such that

Ax1 = Ax2 = y, with x1 6= x2, (2.9)

for any y, then the underlying signal x can be exactly recovered from y by

solving eq. (2.8). Restricted Isometry Property (RIP) is a measure on how

well the matrix behaves according to Eq. (2.9). A matrix A satis�es RIP with

restricted isometry constant (RIC) δ, if for every k-sparse vector x the following

inequality holds:

(1− δ)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δ)‖x‖2
2. (2.10)

If RIP is satis�ed for some small RIC, then solving Eq. (2.8) will reconstruct

the signal exactly and uniquely. Furthermore, RIC (δ2k) for 2k-sparse vectors

holds the inequality (δ2k <
√

2− 1), then the image can be recovered using the

convex relaxation of Eq. (2.8), `1-norm regularized version of the problem [17].

In that case, the solution would be:

minimize
x

‖x‖1

subject to Ax = y
, (2.11)

and the error bound on the solution x∗ would be:

‖x∗ − x‖2 ≤ C0‖x− xS‖1/
√
S, and (2.12)

‖x∗ − x‖1 ≤ C0‖x− xS‖1, (2.13)
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where x is the sampled reference signal, xS is the largest S-components of x with

others set to 0, and C0 is some constant. This theory can easily be extended to

handle noise in the image. The best estimate would be the solution of:

minimize
x

‖x‖1

subject to ‖Ax− y‖2 ≤ ε
, (2.14)

where ε is the bound on the noise of the system. Here, the solution x∗ obeys:

‖x∗ − x‖2 ≤ C0‖x− xS‖1/
√
S + C1ε, (2.15)

for some constant C0 and C1.

While RIP allows the exact reconstruction in computationally feasible times,

the veri�cation of this property for a matrix A is also NP-Hard [16]. There are

some structured sampling domains that satis�es this property with very high

probability. It is shown that for matrices with elements drawn from independent

identically distributed Gaussian satis�es this property with very high probability

[16]. Also, random under-sampling in Fourier domain allows the reconstruction

with very high probabilities.

There are many extensions of RIP such as BRIP for block compressive sensing

[29], DRIP for redundant dictionaries [15], and GRIP for group compressive

sensing [6]. Most de�nitions simply restrict the subset that x can be in. We will

give further details of each respective de�nition whenever required in the next

chapters.

Even though CS theory was �rst developed for linear forward models with linear

sparsifying transforms, the theory is now known to apply to some non-linear

functions, such as isotropic total variation [44]. Also, the theory works well

under noise and some practical applications such as single pixel camera, MRI

and Radar Imaging applications show the e�ectiveness of the theory [37, 31, 26].

Three critical points are important for a successful CS application [37]:

• Incoherence of undersampling artifacts: The artifacts due to undersam-

pling must be incoherent. This condition can be met if the columns of the

sampling matrix are incoherent.
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• Non-linear reconstruction: Non-linear reconstruction algorithm such as `1

or `0 norm minimization is required to recover image exactly.

• Transform Sparsity: The signal of interest must be sparse or compressible

in a transform domain.

Incoherence of undersampling artifacts increase the probability that a sampling

matrix satis�es RIP. Since MR images are sampled in Fourier domain, all sam-

ples are incoherent and this property is a natural match in MRI. Another way

to look at incoherence is that, incoherence provides noise-like artifacts. `1-norm

regularized denoising (also called basis-pursuit) is known to work well. Hence,

CS algorithms simply solve a denoising problem to reconstruct the original im-

age, provided that the undersampling artifacts are incoherent noise-like.

Here let us note that compressive sensing is not widely used in clinical MRI

applications, due to required high computational cost. For this reason, faster al-

gorithms play a critical role in a practical compressive sensing application. It has

been announced by Siemens Healthineers (Erlangen, Germany) that Food and

Drug Administration (FDA, Maryland USA) has recently cleared compressive

sensing MRI acceleration technology from them [33].

Non-linear reconstruction methods are discussed in detail in section 2.3.1, and

transform domain sparsity is discussed in detail in section 5.1.

2.3.1 Optimization Algorithms for CS

Optimization algorithms play a critical role in applications of CS. As described in

section 2.3, there are two main approaches to CS. The �rst approach is pursuing

solution to the non-convex problem. Algorithms such as Matching Pursuit (MP)

or Orthogonal Matching Pursuit (OMP) directly attacks (2.8), and converges to

a sub-optimal point. Here we describe OMP.

The method recovers a single point in the sparse signal at each iteration until a

stopping criterion is met. Various adaptations of the algorithm exist, and some

successful applications include radar imaging [8, 59]. However, wrong choice
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Table2.2: Orthogonal Matching Pursuit Algorithm

1. Set r = y, λ = {}
2. repeat
3. Project r onto columns of A

4. Set τ to maximum absolute projection, max{| < AH , r > |}
5. r← r−Aτ

6. Add to λ new element τ
7. until some stopping criterion is satis�ed.

of stopping criterion may result in poor reconstructions [14]. Even though the

output of this thesis can be used with approximate solvers, our main focus is

on the second type algorithms, and we will not discuss approximate solvers in

detail. The algorithm is given in Table 2.2.

First, residual r is set to y. Then, at each iteration, r is projected onto the

columns of A. The column with the largest absolute value of these projections

is added to the solution set. Then the image x is updated as the least squares

solution of the remaining data vector, and the residual r is also updated. The

loop is terminated when a stopping criterion is satis�ed. For a review of greedy

algorithms, please see [11].

The second type of algorithms solve the convex relaxation of the problem in a

known transformation domain W:

minimize
x

‖Wx‖1

subject to ‖Ax− y‖2 ≤ ε
. (2.16)

The outlined problem in Eq. (2.16) is convex and exact solution can be obtained

with di�erent type of algorithms. Various algorithms have been proposed in the

literature for the solution of this problem. The method introduced by Çetin

and Karl uses conjugate gradient to solve the problem using total variation

and re�ectivity �eld sparsity in unconstrained form for synthetic aperture radar

(SAR) imaging [18]. [18] uses a quasi-Newton algorithm, while [49] adopts a

synthesis based objective function and uses the Spectral Projected Gradient

(SPGL1) algorithm [60]. In [38], an adaptive sequential basis selection strategy

is employed. [21] adopts a non-convex approach and solves `p-norm for p < 1 for
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higher quality reconstruction. Even though non-convex, practical experiments

show the reconstructed images are somewhat robust, and have better overall

quality.

CS-MRI algorithm shows combination of multiple bases, namely Wavelet and

Gradient, result in higher quality images, and uses conjugate gradient to solve

the problem [37]. Slow convergence of conjugate gradient disable practical ap-

plication of the algorithm. Hence, other algorithms are proposed for similar

problems. TVCMRI algorithm uses operator splitting while rec-pf algorithm

uses variable splitting to solve the problem proposed in CSMRI faster [56, 63].

To accelerate the solution, Fast Composite Splitting Algorithm (FCSA) based

on composite splitting denoising and FISTA was proposed [9, 35]. The problem

solved by these algorithms are in the form:

minimize
x

α1‖Wx‖1 + α2TV (x) + ‖Ax− y‖2
2, (2.17)

where TV is either isotropic (denoted TViso) or anisotropic (denoted TVani), as

de�ned below:

TViso(x) =
∑
n

√∑
m

(∇mx[n])2, (2.18)

TVani(x) =
∑
m

‖∇mx‖1, (2.19)

where ∇m denotes the gradient operator in m − th dimension. Total variation

function enforces sparsity on the gradients, hence reconstructs piece-wise smooth

images. The function is applicable to natural images, because natural images

tend to have similar intensity within an object. Total variation is minimized

for sharp transitions rather than smooth transitions, hence it promotes keeping

same intensities within an object. Even though it is easier to solve Eq. (2.19)

compared to Eq. (2.18), Eq. (2.18) imposes the sparsity on the gradients to be

on exactly same coordinate, hence results in more appropriate reconstruction.

Bayesian image reconstruction algorithms are also applicable to compressed sens-

ing [10, 36]. These algorithms maximize the posteriori probability of image vec-

tor x given the data y, P (x|y). The process is called Maximum a Posteriori
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(MAP) estimation as de�ned below:

maximize
x

P (x|y), (2.20)

equivalently

maximize
x

P (y|x)P (x)

P (y)
. (2.21)

Let number of data points be N . Then, for an independent identically dis-

tributed Gaussian noise with zero mean and ε standard deviation, and a Lapla-

cian probability density prior for x,

P (y|x) =
1

(2πε2)
N
2

exp{−‖Ax− y‖2
2

2ε2
}, (2.22)

P (x) =
1

2
exp{−‖x‖1}, (2.23)

maximize
x

1

(2πε2)
N
2

exp{−‖Ax− y‖2
2

2ε2
}1

2
exp{−‖x‖1}, (2.24)

then log-likelihood maximization is de�ned as:

maximize
x

− 1

2ε2
‖Ax− y‖2

2 − ‖x‖1, (2.25)

minimize
x

1

2ε2
‖Ax− y‖2

2 + ‖x‖1. (2.26)

As it can be seen, the problem is exactly of the form Eq. (2.17) for W = I,

α1 = 2ε2 and α2 = 0 [36].

In this thesis, we use an augmented Lagrangian based algorithm. The method

is described in detail in section 2.3.2.

2.3.2 Alternating Direction Method of Multipliers (ADMM)

ADMM is an augmented Lagrangian method (ALM) based optimization algo-

rithm that was �rst introduced in 1970s with roots in 1950s, but was recently

re-discovered [12]. Augmented Lagrangian methods solve a constrained opti-

mization problem by adding a term called Lagrangian term that is zero for any

feasible vector. This enables the algorithm to converge under far more gen-

eral conditions. ADMM contains ideas involving dual decomposition, method
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of multipliers, proximal methods and variable splitting. In addition to the La-

grangian term, ADMM uses a divide-and-conquer type approach by splitting un-

constrained multi-objective optimization problems, augmenting the Lagrangian

with a norm-squared error term, and using a non-linear block Gauss-Seidel ap-

proach on the resultant terms in the sub-problems. ADMM is advantageous

when the sub-problems have analytical solution or have an e�cient algorithm to

solve. The resulting algorithm converges under mild conditions [12]. A practical

compressive sensing application requires fast and reliable solution of the opti-

mization problem. ADMM can provide these properties, and this is the main

reason we propose ADMM based algorithms for CS.

The algorithm solves the generic problems of type:

minimize
x,z

f(x) + g(z)

subject to Gx + Hz = c
, (2.27)

where G and H are the constant problem model matrices with a constant vector

c, f and g denote the separable functions with respect to x and z, respectively.

Hence, this model allows separation of variables for multiple additive objective

functions. ADMM attacks the problem by �rst writing the Lagrangian function:

Lµ(x, z,u) = f(x) + g(z) + uT (Gx + Hz− c) +
µ

2
‖Gx + Hz− c‖2

2. (2.28)

For a positive step size µ, ADMM consists of the following iterations:

xk+1 = arg min
x
Lµ(x, zk,dk), (2.29)

zk+1 = arg min
z
Lµ(xk+1, z,dk), (2.30)

uk+1 = u +
µ

2
(Gx + Hz− c) , (2.31)

where k is the iteration counter. Hence, the updates are made in an alternating

fashion. Let r = Gx + Hz− c. Then,

uT r +
µ

2
‖r‖2

2 = uT r +
µ

2
rT r (2.32)

= uT r +
µ

2
rT r +

1

µ
uTu− 1

µ
uTu (2.33)

=
µ

2
‖r +

1

µ
u‖2

2 −
1

µ
‖u‖2

2. (2.34)
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As it can be seen, the second term does not a�ect the minimization problem

with respect to x or z. Also, de�ne d = 1
µ
u. The solution to equations (2.29)

and (2.30) can be made simpler using (2.34) and separability of function f and

z:

xk+1 = arg min
x
f(x) +

µ

2
‖Gx + Hzk − c + dk‖2

2 (2.35)

zk+1 = arg min
z
g(z) +

µ

2
‖Gxk+1 + Hz− c + dk‖2

2 (2.36)

dk+1 = d + Gx + Hz− c. (2.37)

The algorithm is proven to converge to an approximate solution very fast. How-

ever, it may take time to converge to an exact solution. For applications such as

CS, where an approximate solution is good enough, the algorithm is shown to

converge. The algorithm is also proven to converge for bi-convex and non-convex

problems [12].

2.3.2.1 C-SALSA

One of the �rst applications of an ADMM-variant for CS is an algorithm called

C-SALSA [2, 1]. The original paper shows that ADMM converges faster for

problems with only one objective terms. The algorithm solves the problems of

type:

minimize
x

φ(x)

subject to ‖Ax− y‖2 ≤ ε
, (2.38)

for any convex φ(x). The algorithm �rst considers the constraint ‖Ax−y‖2 ≤ ε

as an objective function using the indicator function of the convex set that has

value 0 if the condition is satis�ed and ∞ if not, denoted by ι(‖Ax− y‖2 ≤ ε).

It sets the ADMM variables f(x) = 0, c = 0, H = I and G = −[I AT ]T .

The algorithm splits z vector into two as z(0) and z(1) to enforce two objective

functions, and sets g(z) = φ(z(1)) + ι(‖z(0) − y‖2 ≤ ε). Hence, the algorithm

forces x = z(1) and Ax = z(0).
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The resulting iterations become:

xk+1 = arg min
x
‖z(1)

k − x + d
(1)
k ‖

2
2 + ‖z(0)

k −Ax + d
(0)
k ‖

2
2 (2.39)

z
(0)
k+1 = arg min

z(0)
ι(‖z(0) − y‖2 ≤ ε) +

µ

2
‖z(0) −Axk+1 + d

(0)
k ‖

2
2 (2.40)

z
(1)
k+1 = arg min

z(1)
φ(z(1)) +

µ

2
‖z(1) − xk+1 + d

(1)
k ‖

2
2 (2.41)

d
(0)
k+1 = d(0) −Ax + z(0) (2.42)

d
(1)
k+1 = d(1) − x + z(1). (2.43)

The problem in (2.39) is a simple least squares problem. The analytical solution

can be calculated using,

xk+1 = (I + AHA)−1
[
d

(1)
k + z

(1)
k + AH

(
d

(0)
k + z

(0)
k

)]
. (2.44)

Fast solutions to eq.(2.44) is proposed in [1]. A faster approach is proposed in

this work. The problems (2.41) and (2.40) are known as Moreau proximal map-

ping functions and analytical solutions exist for many cases. Proximal mapping

functions are de�ned as:

proxφ(v) = arg min
x

φ(x) +
1

2τ
‖x− v‖2

2. (2.45)

For compressed sensing applications, the function φ is chosen as `1-norm, which

results in an associated proximal mapping function known as soft thresholding,

soft(v, τ) = sign(v) ·max {0, |v| − τ} . (2.46)

Also, an algorithm by Chambolle is proposed for the proximal mapping of the

isotropic total variation function [19].

2.4 Chapter Summary

In this chapter, we overviewed MRI, its physics and typical image reconstruction

algorithms. The forward model of MRI is a simple Fourier transform for most ap-

plications. Although other data gathering strategies exist, here we use random

Fourier sub-sampling for simplicity. Also, we give brief information on com-

pressed sensing, and typical optimization algorithms used in it. We overviewed
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the su�cient conditions for sparse recovery, and key aspects in a successful ap-

plication. Finally, we discussed optimization algorithms, and brie�y discussed

an augmented Lagrangian based method, ADMM. We gave information on the

reasons we use ADMM, and described how it works.
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CHAPTER 3

SINGLE-CONTRAST OPTIMIZATION FRAMEWORK USING

ADMM (H-ADMM)

In this chapter, we describe a method for MRI image reconstruction. We �rst

start by deriving a solution for single contrast compressive sensing. We then

explain the MR speci�c problems in image reconstruction such as handling phase

in images. Then, we describe the algorithm, and how to use it under certain

conditions. For the results section, we plan to use this algorithm as baseline for

comparison.

3.1 ADMM for Constrained Optimization with a Hybrid Cost Func-

tion

In the previous chapter, we have discussed sparsifyable signals in a single trans-

formation domain. However, in most applications including MRI, because the

signal comprises of multiple type of features, it can only be sparsi�ed using

multiple transformation domains. In that case, one needs to use multiple do-

mains for transformation to either analyse or synthesize the sparse signal. Also,

the multiple transformation domains does not necessarily need to include lin-

ear transformations. Using analysis formulation has been previously shown to

improve the performance of the reconstruction algorithm [37, 63].

To clarify more on the previous paragraph, let us use an example. Assume that

the signal of interest consists of periodic impulses such that it is of the form, as

in [15]:

f(t) =

√
n∑

j=1

δ(t− j
√
n) (3.1)

The signal is not exactly sparse neither in signal domain nor in Fourier domain.
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The signal can only be recovered using both of these sparsifying transformations

simultaneously [15]. This example shows that using multiple transformation

domains may out-perform using single transformation.

In this study, we use a linear combination of a non-linear transformation (total

variation, TV) along with a linear one (`1-norm). We assume both piece-wise

constant features (sparse in the gradient directions) and sparse defects in the

image domain. Although MRI is not sparse in the image domain, using such a

combination outperforms both only `1-norm and only TV minimization. Hence,

we need an algorithm to solve for multiple separable objective functions. In

this section, we describe a generic method for solving constrained optimization

problems, and how to apply it to MR imaging.

First, we consider the problem model as:

y = Ax + n, (3.2)

where n is the noise vector. We propose solving:

minimize
x

α1‖x‖1 + αTV TV (x)

subject to ‖Ax− y‖2 ≤ ε
. (3.3)

In particular, we use a solution to the constrained optimization problem with a

hybrid cost function, by separating the weighted components in the Augmented

Lagrangian. Here, we propose a generic framework for problems of type:

minimize
x

α1φ1 (x) + · · ·+ αmφm (x)

subject to ‖Ax− y‖2 ≤ ε
, (3.4)

where m is the number of separable objective functions, x is the image vector,

y is the data vector, A is the forward model matrix, ε is the bound on the

noise, φi(·) represents the separable objective functions with αi as regularization
parameters. Here, we use the constrained form of the optimization problem for

easier choice of parameter. The data �delity term ‖Ax − y‖2 ≤ ε is actually

equal to ‖n‖2 ≤ ε, which can simply be set to `2-norm of n. Hence, we choose

m = 2, φ1(·) = ‖ · ‖1, and φ2(·) = TV (·).

ADMM solves problems of type Eq. (2.27). To solve the proposed type of prob-

lems using ADMM, variables need to be split and de�ned accordingly. We em-
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ploy splitting scheme used in [1, 2], and de�ne the variables for the transformed

problem:

minimize
x,z

f(x) + g(z)

subject to Gx + Hz = c
, (3.5)

as:

z =
[
z(0) z(1) · · · z(m)

]T
, G = −

[
AT I · · · I

]T
, (3.6)

Let us now choose the required problem model variables to solve the proposed

problem in eq. (3.4). Now, set H = I, c = 0, f(x) = 0, and

g(z) = ιE(ε,I,y)

(
z(0)
)

+
m∑
i=1

αiφi
(
z(i)
)
. (3.7)

Here, ιE(ε,I,y)

(
z(0)
)
is the indicator function for the constraint de�ned as:

ιE(ε,I,y) (x) =

 0 x ∈ E(ε, I,y) = {x|‖Ax− y‖2 ≤ ε}
∞ otherwise

. (3.8)

Hence, the resulting problem ensures that data �delity is satis�ed for z(0). For

the given de�nitions, let us break down the linear constraints imposed by the

equality in ADMM, Gx + Hz = c:

Ax = z(0) (3.9)

x = z(1) (3.10)

· · · (3.11)

x = z(m) (3.12)

the equalities force Ax = z(0) for data �delity, while forcing each z(i) = x for

separable objective functions. These setting ensures the proposed problem can

be solved using ADMM framework.

Now let us derive the iterations associated with the proposed method. It consists

of iterations:

xk+1 = arg min
x

µ

2

(
‖Gx + Hzk + dk‖2

2

)
, (3.13)

zk+1 = arg min
z
f2(z) +

µ

2
‖ (Gxk+1 + Hz + dk) ‖2

2, (3.14)

dk+1 = dk + Gxk+1 + Hzk+1. (3.15)
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Here, the solution to eq. (3.4) can be obtained by following these iterations.

Now let us further simplify the steps given in the iterations. Since there is

no objective function is associated with x, Eq. (3.13) is a simple least squares

operation and has an analytical solution as:

xk+1 = (GHG)−1GH(dk + zk). (3.16)

Putting G = −
[
AT I · · · I

]T
back,

=
(
mI + AHA

)−1

[
m∑
i=1

d
(i)
k + z

(i)
k + AH

(
d

(0)
k + z

(0)
k

)]
. (3.17)

This step requires a pre calculated matrix inversion. E�cient solutions to this

step will be described in the next section.

Next, we deal with eq. (3.14). This step consists of m separable optimization

problems. We split objective functions so that each sub problem can be handled

in a very fast way. First, let us write the problem as:

zk+1 = arg min
z
ιE(ε,I,y)

(
z(0)
)

+
m∑
i=1

αiφi
(
z(i)
)

+
µ

2
‖ (Gxk+1 + Hz + dk) ‖2

2

(3.18)

z
(0)
k+1 = arg min

z(0)
ιE(ε,I,y)

(
z(0)
)

+
µ

2
‖z(0) − (Axk+1 − d

(0)
k )‖2

2 (3.19)

z
(i)
k+1 = arg min

z(i)
αiφi

(
z(i)
)

+
µ

2
‖z(i) − (xk+1 − d

(i)
k )‖2

2 for i = 1 · · ·m (3.20)

Here, the eqns. (3.19) and (3.20) are called Moreau proximal mapping functions.

These functions are studied in the literature and are de�ned in general form as:

proxτφ(v) = arg min
x

φ(x) +
1

2τ
‖x− v‖2

2. (3.21)

Proximal mapping functions are a well studied in the literature [12, 48]. The pro-

posed method requires proximal mapping function associated with each objective

function. Here, let us assume that each proximal mapping function proxτφ(v)

can be calculated using Ψτφ(v). Then, the update steps can be re-written using

this de�nition as:

z
(0)
k+1 = ΨιE(ε,I,y)

(
Axk − d

(0)
k

)
(3.22)

z
(i)
k+1 = Ψαi

µ
φi

(
xk+1 − d

(i)
k

)
for i = 1 · · ·m (3.23)
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Here, eq. (3.22) is a simple projection onto `2-norm ball with ε radius and center

y, de�ned as:

ΨιE(ε,I,y)
(Axk − d

(0)
k ) =

 Axk − d
(0)
k , if ‖Axk − d

(0)
k − y‖2 ≤ ε

y + ε

(
Axk−d

(0)
k −y

)
‖Axk−d

(0)
k −y‖2

, if ‖Axk − d
(0)
k − y‖2 > ε

,

(3.24)

The �nal update step of ADMM, eq. (3.15) is a simple algebraic step that cal-

culates sum of vectors, and consists of the following calculations:

d
(i)
k+1 = d

(i)
k − xk+1 + z

(i)
k+1, for i = 1 · · ·m (3.25)

d
(0)
k+1 = d

(0)
k −Axk+1 + z

(0)
k+1. (3.26)

These last calculations �nalize the derivation of the framework. The algorithm

is summarized in Table. 3.1 as Algorithm ADMM with Hybrid cost function (H-

ADMM). The proposed method is a framework that solves problems of type

eq. (3.4).

The speci�c choice of forward model A, and objective functions φi(·) with their

respective regularization coe�cients αi depends on the problem, as discussed

earlier. In this study, we use partial Fourier transform as A, which is essentially

sub-sampled version of a unitary transformation. This helps greatly in speeding

up the algorithm as will be shown in the next sections. Also, in this study,

we use two regularization functions (m = 2) `1-norm and total variation for

experimental results. Application of these functions to complex imagery will

also be discussed in the next sections.

3.2 Fast Solution of Proposed Approach For Unitary Transform Do-

mains

The algorithm in the previous section requires a least squares operation along

with single forward (A) and conjugate transpose of forward (AH) operations.

When unitary transforms are used, the cost of least squares operation reduces

to single calculation of AHA, resulting in a total cost of two forward and two

conjugate transpose operators. However, as we will show in this chapter, this

cost can be further reduced.
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Table3.1: Algorithm: ADMM with Hybrid cost function (H-ADMM)

1. Set k = 0, choose µ > 0, z
(i)
0 , d

(i)
0 , αi for all i

2. repeat

3. xk+1 = (mI + AHA)−1
[∑m

i=1 d
(i)
k + z

(i)
k + AH

(
d

(0)
k + z

(0)
k

)]
4. for i = 1 · · · m
5. z

(i)
k+1 = Ψφi

αi
µ

(
xk+1 − d

(i)
k

)
6. d

(i)
k+1 = d

(i)
k − xk+1 + z

(i)
k+1

7. endfor
8. z

(0)
k+1 = ΨιE(ε,I,y)

(
Ax− d(0)

)
9. d

(0)
k+1 = d

(0)
k −Axk+1 + z

(0)
k+1

10. k ← k + 1

11. until some stopping criterion is satis�ed.

When A is a masked unitary transform such as Fourier, the algorithm can be

carried out using a single forward and inverse operations per iteration. Let

us denote the unitary transformation matrix by U, and mask by M, so that

A = MU. Here M satis�es MMH = I while MHM 6= I. Hence AAH = I,

while AHA 6= I.

First, let us begin with getting rid of the inversion in eq. (3.17).

(mI + AHA)−1 =
1

m
I− 1

m
IAH(I +

1

m
AIAH)−1A

1

m
I (3.27)

=
1

m

(
I− 1

m
AH(I +

1

m
AAH)−1A

)
(3.28)

=
1

m

(
I− 1

m
AH(I +

1

m
I)−1A

)
(3.29)

=
1

m

(
I− 1

m

m

m+ 1
AHA

)
(3.30)

=
1

m

(
I− 1

m+ 1
AHA

)
(3.31)

Fast inverse calculation given in eq. (3.31) has been shown in [1]. Eq. (3.31)

requires two forward and two inverse operations. Now let us further decrease

the cost by de�ning qk as:

qk =
m∑
i=1

d
(i)
k + z

(i)
k . (3.32)
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Then, step 3 of the algorithm table 3.1 can be re-written as:

xk+1 =
1

m
(I− 1

m+ 1
AHA)

[
qk + AH

(
d

(0)
k + z

(0)
k

)]
, (3.33)

=
1

m

[
qk + AH

(
d

(0)
k + z

(0)
k

)
− 1

m+ 1

(
AHAqk + AH

(
d

(0)
k + z

(0)
k

))]
(3.34)

xk+1 =
1

m

[
qk +

1

m+ 1
AH

(
m
(
d

(0)
k + z

(0)
k

)
−Aqk

)]
. (3.35)

Then, Axk+1 can be calculated as

Axk+1 =
1

m

[
Aqk +

1

m+ 1
AAH

(
m
(
d

(0)
k + z

(0)
k

)
−Aqk

)]
(3.36)

Axk+1 =
1

m+ 1

[
Aqk +

(
d

(0)
k + z

(0)
k

)]
. (3.37)

As shown, Axk+1 and xk+1 can be calculated using only one forward A and

one inverse AH operations, which corresponds to Fourier transformation for

our problem. Note that this method now has the same computational cost as

Orthogonal Matching Pursuit, a greedy optimization algorithm [8]. The updated

algorithm can be found in Table 3.2 This algorithm has been published in [31].

3.3 Handling Phase for Complex Imaging

The choice of regularization function has a huge e�ect on the reconstructed im-

age. This corresponds to choosing the transform domain in which MR images

are sparse. Although compressive sensing mostly deals with linear transforma-

tions, non-linear sparsifying transforms such as total variation is known to work

well [16]. Also, since MRI produces complex-valued images due to the nature

of data gathering process (such as chemical shift, o�-resonance e�ects) phase of

the images should be handled carefully.

One can simply choose to handle the real and imaginary parts of the image as

di�erent channels, and apply the sparsifying transform on the complex-valued

image and use `1-norm or Total Variation based minimization. A di�erent ap-

proach includes taking magnitude of the image prior to applying sparsifying
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Table3.2: Algorithm: ADMM with Hybrid cost function for Unitary Trans-

forms

1. Set k = 0, choose µ > 0, z
(i)
0 , d

(i)
0 , αi for all i

2. repeat
3. qk =

∑m
i=1 d

(i)
k + z

(i)
k , calculate Aqk

4. xk+1 = 1
m

[
qk + 1

m+1
AH

(
m
(
d

(0)
k + z

(0)
k

)
−Aqk

)]
5. Axk+1 = 1

m+1

[
Aqk +

(
d

(0)
k + z

(0)
k

)]
.

6. for i = 1 · · · m
7. z

(i)
k+1 = Ψφi

αi
µ

(
xk+1 − d

(i)
k

)
8. d

(i)
k+1 = d

(i)
k − xk+1 + z

(i)
k+1

9. endfor
10. z

(0)
k+1 = ΨιE(ε,I,y)

(
Ax− d(0)

)
11. d

(0)
k+1 = d

(0)
k −Axk+1 + z

(0)
k+1

12. k ← k + 1

13. until some stopping criterion is satis�ed.

transform, since we are mostly interested in magnitude images rather than phase

images. In this case, instead of minimizing ‖Wx‖1, we deal with ‖W|x|‖1, where

| · | is the element-wise magnitude operator.

Now, let us go back to proximal mapping functions. The proposed method

requires proximal mapping functions associated with each objective function.

In most cases, it is easy to compute the proximal mapping function for a real

valued function, whereas not straight-forward to compute proximal mapping

of a magnitude-input function. For this purpose, let us make the following

proposition:

Theorem 1 If proxφ(v) returns an all-positive output for an all-positive input,

then:

prox|φ|(v) = exp{j 6 v} proxφ(|v|), (3.38)

where prox|φ|(v) denotes the proximal mapping function for the magnitude-input

version of φ(·) as φ(| · |), and 6 v denotes a vector with entries consisting of

complex-angle of each element in v.

Proof: The optimal solution to a optimization problem lies in the domain where
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its subgradient is equal to 0. For complex-valued vector v, the solution lies where

the derivative with respect to both the real and imaginary parts are equal to

zero. Let us write derivatives with respect to both real (<) and imaginary parts

(=) as:

0 =
∂φ(|x|)
∂|x|

∂|x|
∂<{x}

+ µ<{x− v}, (3.39)

0 =
∂φ(|x|)
∂|x|

∂|x|
∂={x}

+ µ={x− v}. (3.40)

Now, let us add Eqn. (3.40) to Eqn. (3.39) by multiplying it with imaginary j.

0 =
∂φ(|x|)
∂|x|

(
∂|x|
∂<{x}

+ j
∂|x|
∂={x}

)
+ µ(x− v), (3.41)

0 =
∂φ(|x|)
∂|x|

x

|x|
+ µ(x− v). (3.42)

In Eq. (3.42), The equality must be satis�ed for both real and imaginary parts.

Angle of all terms except for v is equal to the angle of x. Hence, for the equality

to be satis�ed for both real and imaginary parts, the angle of v is either exactly

equal to x, or the negative of it. Knowing this fact, let us move back to original

proximal mapping de�nition in Eq. (3.21). We take the magnitude of the input

x before using it. Hence, the angle of x does not a�ect the �rst term. For the

second term to be minimal, 6 x = 6 v must be satis�ed. Using this fact back, let

us go back to Eq. (3.42).

0 =
x

|x|

(
∂φ(|x|)
∂|x|

+ µ(|x| − v exp{−j 6 x})
)
, (3.43)

0 =
x

|x|

(
∂φ(|x|)
∂|x|

+ µ(|x| − |v|)
)
, (3.44)

0 =
∂φ(|x|)
∂|x|

+ µ(|x| − |v|). (3.45)

Eq. (3.45) is solution to the optimization problem:

arg min
|x|

φ(|x|) +
µ

2
‖|x| − |v|‖2

2, (3.46)

arg min
x
φ(x) +

µ

2
‖x− |v|‖2

2 subject to x[i] ≥ 0, for all i (3.47)

Here, if proximal mapping of regular φ(·) function returns an all-positive output

for an all-positive input, then the solution to Eq. (3.47) becomes exactly equal

to the proximal mapping of φ(| · |), since the constraint is dropped. Hence,

prox|φ|(v) = exp{ 6 v} proxφ(|v|), (3.48)
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for proximal mapping functions that return all-positive output for all-positive

inputs. Also, this theorem suggests that one can needs to derive a method for

calculation of the real-valued proximal mapping with positivity constraint to

�nd the proximal mapping applied on the magnitude.

We use two functions with magnitude input, Total Variation (TV) and `1-norm

of the magnitude vector. Let us begin with TV. Piecewise constant character-

istics (such as natural images) can be better recovered using total variation.

However, since the phase image in MRI does not necessarily need to be contin-

uous, we consider applying this function to the magnitude of the image rather

than complex image. Chambolle projection algorithm can be used as Moreau

proximal mapping function for real-valued inputs [19]. However, there is not a

well-known solution for total variation applied on the magnitude image. In this

section, we derive the proximal mapping for magnitude TV and show that it

can be used with Chambolle Projection algorithm.

Total variation belongs to a family of functions called bounded variation, and is

de�ned in the continuous domain as the integral:

TV (x) =

∫
Ω

|∇x(r)|dr. (3.49)

TV calculates the magnitude sum of gradients of a signal. The magnitude of

the gradient operator ∇ calculates the Euclidian norm of the gradients. This

operation is also rotation invariant, since the value of the integral does not

depend on the direction that it is integrated on. Hence, using this isotropic

de�nition of the TV, one can recover signals in a rotation invariant way, i.e.

although we implement gradient operators in two dimensions as vertical (∇v)

and horizontal (∇h), TV minimization can recover edges in any rotation.

In discrete setting, TV can explicitly be de�ned as the sum of gradients:

TV (|x|) =
∑
i,j

|∇ (|x|) |[i, j], (3.50)

where the gradients are in two direction (horizontal, ∇h, and vertical, ∇v):

|∇ (|x|) |[i, j] =

√
(∇h|x|)2 + (∇v|x|)2, (3.51)
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and

(∇h|x|) = |x[i+ 1, j]| − |x[i, j]|, (3.52)

(∇v|x|) = |x[i, j + 1]| − |x[i, j]|. (3.53)

To facilitate TV on the magnitude of the image, let us use Thm. 1. TV denoises

a signal by minimizing the gradient of that signal. If the maximum value of a

signal were to be increased, then that would result in a higher gradient change,

as well as higher data �delity term (‖x − v‖2
2). For the total variation term

to stay constant, the signal's mean value can be changed, which would simply

result in a higher data �delity term. Hence, the output of TV proximal mapping

function can not be greater than the maximum value of the input signal at any

point. The same procedure also holds for minimum value. Hence, the output of

TV proximal mapping is bounded by the minimum and maximum of the input

signal. Since we know that the minimum value of the input signal is zero, the

output is always greater than zero. Hence using Thm. 1,

prox|TV |(v) = exp{ 6 v} proxTV (|v|). (3.54)

Chambolle projection is an iterative algorithm that approximately solves TV

proximal mapping for real valued inputs. It is a fast-converging �xed point

method that relies on minimization of the dual problem [19]. For the sake of

completeness, the algorithm is also given in table 3.3. Aside from the above

de�nitions, the algorithm also requires transpose of gradient operator, which is

divergence de�ned as:

∇Tx = ∇T
hxh +∇T

v xv (3.55)(
∇T
hxh

)
= xh[i, j]− xh[i− 1, j], (3.56)(

∇T
v xv
)

= xv[i, j]− xv[i, j − 1]. (3.57)

We also suggest applying the objective to `1-norm of the magnitude of the input,

φ(x) = ‖W|x|‖1. Natural images are known to be sparse in some transforma-

tions such as Wavelet. Also, once we consider applying the transform to magni-

tude of the input, thm. 1 is not directly valid for calculating proximal mapping
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Table3.3: Algorithm: Proximal Mapping of TV (Chambolle Projection)

1. Set k = 0, choose τ = 0.25

2. repeat
3. qk[i, j] = pk[i, j] + τ∇(∇Tpk − v/λ)[i, j]

4. pk[i, j] = qk[i,j]
max{1,|qk[i,j]|}

5. k ← k + 1

6. until number of iterations are reached.

of φ(x) = ‖W|x|‖1, since the real valued counterpart does not always result

in all-positive output for all-positive inputs. For this reason, one has to solve

eq. (3.47) to calculate the proximal mapping. Due to its higher cost, we drop the

transformation domain, and apply the `1-norm objective directly on the image

magnitudes. `1-norm without any linear transformations satisfy thm. 1, as will

be shown. Proximal mapping for magnitude `1-norm proximal mapping is also

previously derived in [43].

prox‖·‖1(v) = exp{6 v} soft(v, 1/µ), (3.58)

where soft is the soft thresholding function de�ned as:

soft(x, τ) = sign(x) ·max{|x| − τ, 0}, (3.59)

Here, since the sign of the input does not change, the condition of thm. 1 is

satis�ed, and eq. (3.58) can be used.

Here, we use the isotropic TV de�nition [54], which, although non-linear, is

both proven to be compatible with natural images, and exhibits compressive

sensing guarantees [44]. However, in this study we use TV on the magnitude

images, which is a non-convex function. This function is a new function and does

not necessarily need to exhibit the guarantees. Although further study should

be done whether the guarantees hold, our study empirically suggests improved

performance for complex-valued imaging.

We derived the necessary equations and formulations to use total variation and

`1-norm with complex-valued imaging. These proximal mappings can be used

with the proposed algorithms in sections 3.1 and 3.2.

38



3.4 Parameter Selection

In the previous sections, we proposed an algorithm to solve a given problem in

the form of eq. (3.4). We simply followed the rules of the framework, and created

the algorithm. In this section, we discuss how one can choose parameters for

the described algorithm.

The proposed method requires choosing four parameters: ε, α1, αTV , and µ. As

previously discussed, ε can be chosen as the expected noise power. The expected

noise power can be measured directly for each patient by simply gathering data

in MRI without any RF excitation. Since no slice is selected due to lack of

excitation, the gathered data will consist of only noise. Also, this is a very fast

process.

Next, we deal with the choice of regularization parameters α1 and αTV , associ-

ated with the objective functions `1-norm and TV. Since we use the constrained

version, the two variables actually reduce to a single free variable. Hence, we

simply set the α1 to (1 − αTV ). The choice of αTV requires empirical studies.

This choice entirely depends on the characteristics of the signal. However, as

we will show in the results chapter, once it is set, the same value can be used

across many patients as long as the same anatomy is imaged (e.g. brain).

Finally, µ needs to be selected. This is not a problem parameter, but a parameter

related to the convergence of the algorithm. It can also be de�ned as 1/stepsize,

since choosing a greater µ results in a smaller step size, and a smaller µ results

in a greater step size. Choosing a large step size results in a fast convergence at

the beginning, however it may result in oscillation as the number of iterations

increase. Choosing a small step size results in a higher accuracy, however it

may take infeasible reconstruction times. There are di�erent studies in the

literature on how to select µ [12, 1]. Although convergence analysis requires

a �xed µ, it is suggested in [1] to gradually increase µ to move the scale from

faster convergence to higher accuracy. Another scheme is given in Chapter 3.4.1

of [12]. This scheme checks how the dual problem behaves, and updates step

size parameter accordingly.
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First, de�ne residual (r) and dual residual (s) as:

rk = Gx + Hz− c, (3.60)

sk = µGHH(zk+1 − zk). (3.61)

For our problem, these can be de�ned as:

rk =


Axk − (d

(0)
k + z

(0)
k )

xk − (d
(1)
k + z

(1)
k )

· · ·
xk − (d

(m)
k + z

(m)
k )

 , sk = −µ

(
AH(z

(0)
k+1 − z

(0)
k ) +

m∑
i=1

(z
(i)
k+1 − z

(i)
k )

)

(3.62)

The update scheme of µ is given as [12, 32, 61]:

µk+1 =


τ incrµk if ‖rk‖2 > ρ‖sk‖2

µk/τ
decr if ‖sk‖2 > ρ‖rk‖2

µk otherwise

(3.63)

Here, typical choices include ρ = 10, τ incr = τ decr = 2. Although more param-

eters are introduced to the problem, varying µ optimizes the step size through

out iterations, instead of using a �xed pattern.

To illustrate the e�ect of µ on optimization, let us give brief results on a toy

problem. The objective that we propose minimizing is an unconstrained `1-norm

optimization problem:

arg min
x
‖x‖1 + λ/2‖Ax− y‖2

2. (3.64)

We use a forward model A with its elements drawn from independent identically

distributed random Gaussian distribution of size 60 × 100. The data y is gen-

erated using a sparse vector of size 100, with 20 non-zero entries, in a noiseless

manner. We set λ = 3, and see how the cost evolves versus iteration. Figure 3.1

shows what we explained in this section. Using larger µ values results in slower

convergence as it can be seen for µ = 100. While, for small number of itera-

tions, using µ = 21.54 has a poor convergence, for higher number of iterations

this setting results in the most accurate result. Also, while decreasing µ results

in a faster convergence speed, as it can be seen using very small µ causes the

algorithm to oscillate.
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Figure 3.1: Evolution of cost function for di�erent µ values

Figure 3.2: Evolution of cost function for di�erent initial µ values with the
update scheme in eq. (3.63).

Whereas, when we use the µ evolution scheme, although it may cause oscillation,

the algorithm converges to a better point for various initial µ values, as can be

seen in Fig. 3.2.

3.5 Chapter Summary

In this chapter, we dealt with the problem of single contrast reconstruction from

undersampled data. We �rst de�ned the proposed approach, then proposed a

framework to solve the problems of the proposed type. The proposed algo-

rithm is an ADMM based method that requires a least squares operation and

proximal mappings associated with each objective function. We then derived
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a fast implementation method for the least squares operation for data models

involving masked unitary transformations. MRI data model �ts this de�nition

exactly the reconstruction process can be accelerated. Then, we proposed using

magnitude-input of the complex-valued images for TV, instead of the complex-

valued input. We also made a proposition and shown that for a wide variety

of functions including magnitude-TV, the associated proximal mappings can

be computed using the proximal mapping associated with the real-valued TV.

Finally, we discussed the parameter selection, and the step size.
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CHAPTER 4

MULTI-CONTRAST OPTIMIZATION FRAMEWORK USING

ADMM (MC-H-ADMM)

It is shown in previous studies that using multi-contrast data increases the re-

construction quality [34, 10, 29]. Hence, exploiting this additional information

across separate contrasts of the same anatomy yields better results. In this

chapter, we �rst describe the previous studies in multi-contrast joint compres-

sive sensing reconstruction, and give a brief information on the theory of block

compressive sensing. Then, we propose an algorithm that allows the reconstruc-

tion of multiple signals using joint and/or individual objective functions across

contrasts. The proposed method describes a splitting scheme to allow solving

an optimization problem provided that the proximal mappings associated with

the objective functions are known.

4.1 Multi-Contrast Compressed Sensing for MRI

Exploitation of any prior information on the signal increases reconstructed signal

quality. First, let us go back to Restricted Isometry Property (RIP) de�ned in

eq. (2.10). Restricted Isometry Constant (δ) is a measure that helps determine

whether a k-sparse signal can be reconstructed or not. When we move to multi-

contrast reconstruction problems, RIP is no longer the tightest bound on the

performance. A block restricted isometry property (BRIP), which is suitable for

block or group compressive sensing, is de�ned as the lowest δb that satis�es the

below equality for all k-block-sparse x:

(1− δb)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δb)‖x‖2
2. (4.1)

BRIP restricts the set that x can be chosen from, hence lowest bound of δb is

equal to δ of RIP. The theory suggests that in the worst case, block compressive
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sensing gives exactly the same result as compressive sensing provided that the

signals are indeed block sparse.

Multi-channel signals or images consist of data gathered from the same scene

using di�erent parameters. For example, red, green and blue (RGB) channels of

an optical camera gather data from the same scene in di�erent wavelengths. A

similar phenomenon exists in MRI. Gathering data using di�erent TE and TR

parameters results in di�erent contrast images of the same underlying anatomy.

Even though images are not exactly the same, the structural similarity can

be exploited. Recent work in the literature shows that reconstructing these

multi-channel/multi-contrast images jointly results in better images compared

to individual reconstructions [10, 34, 36].

The problem model is depicted in Fig. 4.1. As it can be seen from the Fig. 4.1

(a), each contrast has individual data that can be expressed with y(i) = A(i)x(i).

Figure 4.1 (b) shows the overall forward model A, which has a block-diagonal

structure with A(i) as its entries. Both image vector x and y are concatenated

vectors with elements x(i), and y(i), respectively.

Now that we de�ned the model, let us move to an algorithm to clarify the design

of an algorithm for multi-contrast compressed sensing. [34] solves the problems

of type:

minimize
x

α1JTV (x) + α2‖Wx‖2,1 +
∑
i

‖A(i)x(i) − y(i)‖2
2, (4.2)

where x(i) denotes i-th reconstructed channel of the image, x denotes the con-

catenated vector of each channel image, y(i) and A(i) denotes the data and

forward model of channel i, respectively. Recall that y(i) is the received sig-

nal, and x(i) is the resulting image for each experiment in MRI. The objective

functions JTV and ‖ · ‖2,1 are de�ned below. α1 and α2 denote the respective

weights of the regularized problem. ‖ · ‖2,1 denotes the group sparsity function

`2,1-norm de�ned as:

‖x‖2,1 =
∑
n

√∑
i

(x(i)[n])
2
, (4.3)

where n denotes the index of the vector. This formula is also applicable to 2D or

3D images, since we can consider an image concatenated into a vector. Just as
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Figure 4.1: Forward models for multi-contrast imaging: (a) Linear Forward
Model for each Contrast (b) Overall Linear Forward Model
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Figure 4.2: Application of group sparsity function to a group of vectors.

`1-norm, this function imposes sparsity in elements of x. In addition to `1-norm,

`2,1-norm imposes sparsity on the same coordinates in di�erent channels. This

is a reasonable assumption since multi-channel signals have the same underlying

anatomical structure. To further illustrate this function, it is depicted in Fig. 4.2.

As it can be seen, each image is concatenated horizontally, then row-wise `2-norm

operation is applied. Finally, `1-norm of the resulting vector is calculated.

JTV denotes the joint total variation function de�ned as:

JTV (x) =
∑
n

√∑
i

∑
m

(∇mx(i)[n])
2
, (4.4)

where m is the direction of gradient. This function can also be represented as

`2,1-norm of gradient of an image. Just as the group sparsity constraint, this

function is minimized when the change across di�erent channels occur on the

same coordinate. Since the underlying anatomy is the same, di�erent channels

are expected to have change on the same spot. Note that JTV is not `2,1-norm

of any linear transformation of each channel, since it also imposes the sparsity

on the same coordinate for di�erent sparsifying transforms.

Analysis and synthesis are two approaches for regularized image reconstruction.

If the regularization is applied on Wx = θ, then the signal is analysed using W
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into θ. However, if the regularization is applied on θ, and image is reconstructed

using x = WT θ, then the signal is synthesised using W and θ. We will

give further information regarding these approaches in chapter 5. Majumdar et

al. uses a synthesis based [42] and analysis based [41] approach to reconstruct

images jointly. They propose solving the following problem for synthesis:

arg min
θ
‖θ‖2,1

subject to ‖y(i) −A(i)WT θi‖2 ≤ εi. (4.5)

Here, the signal is synthesised using redundant wavelet transformation dictio-

nary.

In another study, they propose analysis formulation as:

arg min
x
‖Wx‖2,1

subject to ‖y(i) −A(i)x(i)‖2 ≤ εi. (4.6)

Here, like the previous study, the signal is analysed using redundant wavelet

transformation dictionary. Both studies work with multi-contrast images, and

utilize group sparsity for reconstruction.

Another study by [10] approaches the problem using a Bayesian framework. This

framework considers the compressed sensing approach as maximum a posteriori

(MAP) estimation of a sparse signal and Laplacian noise model. The method

�rst calculates horizontal and vertical gradients using MAP estimations, then

uses least squares to combine the gradients to reconstruct an image. The pro-

posed algorithm solves the problem for real and imaginary parts of the image

separately, and combines them. Even though the proposed method produces

quality results, it is very slow. However, the paper notes that spatial registra-

tion of di�erent channels may be required prior to running the algorithm.

4.2 A Generic Multi-Channel ADMM for Constrained Optimization

As described in previous section, the sparsifying transform has the greatest e�ect

on the reconstructed image quality. Crafting better sparsifying transformations
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allows the reconstruction of signals from less data. As Block Restricted Isometry

Property (BRIP) dictates in Eq. (4.1), block processing of signals results in

better reconstruction results provided that the signals are group sparse. As in

single-contrast reconstruction we further improve reconstruction quality using

multiple dictionaries. The multiple dictionaries may include both joint functions

such as group sparsity (‖ · ‖2,1) and individual functions such as sparsity (‖ ·
‖1). Adding more sparsifying transforms restricts the solution space, leading to

improved performance of image reconstruction.

As previously given in section 2.1, using di�erent echo time (TE) and repetition

time (TR) results in di�erent contrast images, since di�erent parameters of a

tissue are enhanced with each parameter set. This results in images with same

overall features, especially in the edges. Also, if some part of the image is non-

zero in the image domain in some contrast, then it is more likely for the same

part of the image to be non-zero in other contrasts. Hence, imposing sparsity

on a block, rather than each pixel individually increases the reconstruction per-

formance. Also, we impose group version of TV function, Joint Total Variation

(JTV) function. This function imposes group sparsity on the gradients, hence

it forces edges to be at the same parts of the image.

Group sparsity is applied on a set of vectors. The function �rst takes `2-norm

in across vector direction, then takes `1-norm of the resulting single vector. The

`2-norm operation �rst groups multiple vectors in a single vector. Then, the

`1-norm takes magnitude sum. Using group sparsity as an objective function

results in imposing sparsity on the grouped vector. Hence, the each pixel of the

reconstructed signals are likely to either be zero in all contrasts, or non-zero in

all contrasts. Group sparsity is de�ned as:

‖x‖2,1 =
∑
n

√∑
i

(x(i)[n])
2
, (4.7)

JTV is an extended version of TV across contrasts. As in group sparsity, it

�rst takes `2-norm across contrasts, then takes `1-norm of the resulting image.

However, contrary to group sparsity, `2-norm of the gradient vectors are calcu-

lated, rather than direct image. This imposes sparsity in the same pixel in both

the horizontal and vertical gradient of each contrast. Therefore, if some pixel is
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to be non-zero, then it is more than likely that that pixel will correspond to a

vertical and/or horizontal edge in all contrasts. JTV is de�ned as:

JTV (x) =
∑
n

√∑
i

∑
m

(∇mx(i)[n])
2
, (4.8)

Now let us describe the methodology for the suggested algorithm. We consider

the problem model:

y(i) = A(i)x(i) + n(i), (4.9)

where i is the channel number, and n(i) is the noise vector associated with each

channel. Here, the proposed method splits and solves for multiple constraint

functions.

We develop an algorithm that solves problems of type:

minimize
x

α1φ1 (x) + · · ·+ αmφm (x)

subject to ‖A(i)x(i) − y(i)‖2 ≤ εi, for i = 1 to C,
(4.10)

where C is the number of channels, φi(·) denotes separable either individual or
joint functions for each channel. εi is chosen related to the power of the noise of

each channel as in single channel reconstruction.

Let us employ a splitting scheme as:

z = [(z(0))T (z(1))T · · · (z(c))T ]T ,x = [(x(1))T · · · (x(C))T ]T , (4.11)

z(i) = [(z(i,0))T (z(i,1))T · · · (z(i,m))T ]T . (4.12)

Hence, we create a dual variable per channel and objective function. Next, we

de�ne the linear transforms in ADMM to solve the de�ned problem Eq. (4.10):

G = −


G1 · · · 0

· · ·
0 · · · GC

 ,Gi = −
[
A(i)T I · · · I

]T
, (4.13)

Here, sizes of each Gi may vary, since the number of I's are equal to number

of objective functions associated with that contrast. Hence, this setting allows
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adding some speci�c transformation domains to speci�c signals aside from the

joint functions. We also set, H = I, c = 0, f1(x) = 0.

The objective function associated with the dual variables are:

f2(z) =
C∑
i=1

ιE(εi,I,y(i))

(
z(i,0)

)
+

m∑
t=1

αtφt
(
{z(i,t)}i=1···C

)
. (4.14)

The resulting problem ensures data �delity is satis�ed for each channel, z(i,0).

For the given de�nitions, let us break down the linear constraints :

Gx + Hz = c (4.15)

A(i)x(i) = z(i,0), for all i (4.16)

x(i) = z(i,1), for all i (4.17)

· · · (4.18)

x(i) = z(i,m), for all i (4.19)

This setting ensures the solved problem is exactly equal to Eq. (4.10).

Now let us derive the associated steps of the algorithm. The algorithm consists

of the generic iterations in Eqns. (3.13), (3.14), and (3.15). Each step can be

further simpli�ed. Eq. (3.13) can be written in the following way:

xk+1 = (GHG)−1GH(dk + zk) (4.20)

x
(i)
k+1 =

(
mI + (A(i))HA(i)

)−1

[
m∑
t=1

d
(i,t)
k + z

(i,t)
k + (A(i))H

(
d

(i,0)
k + z

(i,0)
k

)]
.

(4.21)

Hence, x-update step can be handled separately for each contrast. Eq. (3.14)

can be re-written for multi-contrast reconstruction as:

zk+1 = arg min
z

C∑
i=1

ιE(εi,I,y(i))

(
z(i,0)

)
+

m∑
t=1

αtφt
(
{z(i,t)}i=1···C

)
+
µ

2
‖ (Gxk+1 + Hz + dk) ‖2

2 (4.22)

z
(i,0)
k+1 = arg min

z(i,0)
ιE(εi,I,y(i))

(
z(i,0)

)
+
µ

2
‖
(
−A(i)x

(i)
k+1 + z(i,0) + d

(i,0)
k

)
‖2

2 (4.23)

z
(i,t)
k+1 = arg min

z(i,t)
αtφt

(
{z(i,t)}i=1···C

)
+
µ

2

C∑
i=1

‖z(i,t) − (x
(i)
k+1 − d

(i,t)
k )‖2

2 for t = 1 · · ·m

(4.24)
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Table4.1: Algorithm: Multi-Contrast ADMM with Hybrid cost function (MC-

H-ADMM)

1. Set k = 0, choose µ > 0, z
(i,t)
0 , d

(i,t)
0 , αt for all i, t

2. repeat
3. for i = 1 · · · C
4. x

(i)
k+1 =

(
mI + (A(i))HA(i)

)−1
[∑m

t=1 d
(i,t)
k + z

(i,t)
k + (A(i))H

(
d

(i,0)
k + z

(i,0)
k

)]
5. z

(i,0)
k+1 = Ψι

E(εi,I,y
(i))

(
A(i)x

(i)
k − d

(i,0)
k

)
6. d

(i,0)
k+1 = d

(i,0)
k −A(i)x

(i)
k+1 + z

(i,0)
k+1

7. endfor
8. for t = 1 · · · m
9. {z(i,t)}i=1···C = Ψαt

µ
φt

(
{x(i)

k+1 − d
(i,t)
k }i=1···C

)
for t = 1 · · ·m

10. d
(i)
k+1 = d

(i)
k − xk+1 + z

(i)
k+1, for all i

11. endfor
12. k ← k + 1

13. until some stopping criterion is satis�ed.

The Eqns. (4.23) and (4.24) are Moreau proximal mapping for joint or individual

reconstruction functions. If φt(·) is an individual function applied on each con-

trast separately, then the proximal mapping can also be calculated separately.

However, for joint case, joint proximal mapping functions should be used. We

can re-write these functions as:

z
(i,0)
k+1 = Ψι

E(εi,I,y
(i))

(
A(i)x

(i)
k − d

(i,0)
k

)
, for i = 1 · · ·C (4.25)

{z(i,t)}i=1···C = Ψαt
µ
φt

(
{x(i)

k+1 − d
(i,t)
k }i=1···C

)
for t = 1 · · ·m (4.26)

And, Eq. (3.15) can be calculated using:

d
(i,t)
k+1 = d

(i,t)
k − x

(i)
k+1 + z

(i,t)
k+1, for i = 1 · · ·C, t = 1 · · ·m (4.27)

d
(i,0)
k+1 = d

(i,0)
k −A(i)x

(i)
k+1 + z

(i,0)
k+1 , for i = 1 · · ·C. (4.28)

For the sake of completeness, the algorithm is given in Table. 4.1.

Step 4 of the algorithm can be implemented in a faster way using the ideas

developed in section 3.2.
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Table4.2: Algorithm: Proximal Mapping of JTV (Color Chambolle Projection)

1. Set k = 0, choose τ = 0.25

2. repeat
3. q

(c)
k [i, j] = p

(c)
k [i, j] + τ∇(∇Tp

(c)
k − v(c)/λ)[i, j], for all c

4. r[i, j] =

√∑C
c=1 |q

(c)
k [i, j]|2

5. p
(c)
k [i, j] =

q
(c)
k [i,j]

max{1,|rk[i,j]|} , for all c

6. k ← k + 1

7. until number of iterations are reached.

4.3 Handling Phase for Multi-Contrast Complex Imaging

In this chapter, we describe how we employ the described algorithm to compres-

sive multi-contrast MRI reconstruction problem. We use a linear combination

of JTV and group sparsity functions as objective functions. However, similar to

single contrast imaging, handling phase requires further care.

First, let us begin with JTV. Let us de�ne JTV on the magnitude as:

|JTV |(x) =
∑
n

√∑
i

∑
m

(∇m|x(i)[n]|)2
. (4.29)

Thm. 1 states that if proximal mapping of JTV results in an all-positive output

for an all-positive input, then we can directly use real-valued proximal mapping

function. The principles that hold for single-contrast TV also holds for JTV.

If any point in the output were to be below the minimum of the input, then

both the value of the JTV function, and the data �delity term would increase

in value. Hence, the proximal mapping of JTV must return all-positive output

for an all-positive input. Using thm. 1, we conclude that the proximal mapping

for JTV can be expressed as:

prox|JTV |(v) = exp{6 v} proxJTV (|v|). (4.30)

Now, let us deal with the proximal mapping of JTV function. The previously de-

scribed Chambolle's method does not directly work here. The extended method

can be found in Table 4.2 [13].

We also propose imposing group sparsity constraint. We select the groups as the
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corresponding pixels across di�erent contrasts. The proximal mapping function

of group sparsity function is well known and can be computed using:

prox‖·‖2,1/τ (v) = v ·max

0, 1− τ√∑C
i=1 |v(i)|2

)

 (4.31)

Furthermore, for all positive inputs, the proximal mapping returns all-positive

outputs. Hence, by Thm. 1 proximal mapping of complex-valued inputs can be

calculated using Eq. (4.31).

Using the outlined proximal mapping functions, one can solve the problem:

minimize
x

αG1‖x‖2,1 + αJTV JTV (x)

subject to ‖A(i)x(i) − y(i)‖2 ≤ εi, for i = 1 to C
, (4.32)

4.4 Group Lp-norm

We further extend the study to handle `p-norm based solutions. Compressive

sensing deals with sparsity, which can be expressed using `0-pseudo norm. The

solution to problem given in Eq. (2.8) results in the exact recovery of the signal

of interest. However, as discussed before, it is a non-convex problem, and can

not be solved e�ciently. It requires a combinatorial search algorithm to solve

it, which is classi�ed as NP-HARD. Let us now de�ne the `0-norm as:

‖x‖0 =
N∑
i=1

|x[i]|0, (4.33)

where, 00 is assumed to be 0. We call this pseudo-norm because this formulation

does not satisfy the triangular inequality to be a norm function. Actually, a

family of norm functions can be de�ned using:

‖x‖p =

(
N∑
i=1

|x[i]|p
)1/p

, p ≥ 1 (4.34)

p ≥ 1 is required because any `p-norm with p < 1 does not satisfy triangular

inequality and constitute non-convex functions, which are again classi�ed as NP-

HARD. For this very reason, we use the convex relaxation of `0-pseudo norm,

53



Figure 4.3: `p-norm function for various p values.

which is `1-norm, and under certain conditions both optimization problems yield

the exact same results.

Although p < 1 can not be classi�ed as norms, the problem is still studied in the

literature, and some promising results exist [21]. `p-norm with p < 1 is a better

relaxation compared to `1-norm, and gives sparser results. Since in compressed

sensing we desire sparser results, we propose using this formulation for image

recovery. Also, Fig. 4.3 shows values of |t|p for various p values. As it can be

seen, the desired function p is a horizontal line except for at t = 0. As p is

increased the function goes further away from the function with p = 0. Due

to the shapes of the costs, we penalize the positive values of the vector, and

hence the minimization problem results in sparser results for p < 1, since they

penalize small values just as much as large values in the vectors. The closest

convex function is at p = 1.

In this section, we propose using group p-norm sparsity, and develop a proximal

mapping function associated with that function. We de�ne the group p-norm

sparsity as:

‖x‖2,p =
∑
n

(∑
i

(
x(i)[n]

)2

)p/2

. (4.35)

The proximal mapping associated with this function does not have an analytical

solution. Hence, we deal with approximate solution. However, as given in [12],
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approximate solutions does not prevent ADMM from converging to a solution.

Here, note that ADMM still does not have a convergence guarantee. First, let

us de�ne group 2-norm as:

‖v‖2[n] =

√∑
i

(x(i)[n])
2
. (4.36)

The solution to this problem is given as [20]:

prox‖·‖2,p/τ (v) = v ·max
{

0, 1− τ 2−p‖v‖p−2
2

}
. (4.37)

Here, for p = 1 the proximal mapping reduces to regular group sparsity.

4.5 Individual Sparsity versus Group Sparsity

Now, to demonstrate the power of group sparsity over individual sparsity, let us

assume a toy problem. Compressive sensing is known to work well with forward

model matrices (A) that the elements of which are drawn from independent

identically distributed random Gaussian distribution.

We assumed an unknown signal of n = 100, with sparsity level s = 20, and

number of measurements of m = 50. We assumed a group of C = 3 signals,

such that the signals are group sparse. The measurements are calculated using

y = Ax(i), with no noise. We solved three problems for individual sparsity,

group sparsity and group `p-sparsity. Three individual problems were solved

for individual sparsity using a regularization of `1-norm. For group sparsity

and group `p-sparsity, we solved the previously de�ned problems. The proposed

methods were used to solve all problems, and all problems have converged to

their respective optimal solutions.

Individual sparsity problem can be expressed as in Eq. (2.11):

minimize
x(i)

‖x(i)‖1

subject to A(i)x(i) = y(i)
, (4.38)

while group sparsity can be expressed as

minimize
x

‖x‖2,1

subject to A(i)x(i) = y(i), for i = 1 to C
. (4.39)
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The results helped demonstrate the goal. Fig. 4.4 shows the signal to be recon-

structed, and the reconstruction errors for various problems. As it can be seen,

for this sparsity level, exploiting joint sparsity improved reconstruction quality.

Moreover, using `p-norm instead of `1-norm further decreased the reconstruc-

tion error for some p values. Since group `p-norm is a non-convex function,

increasing or decreasing p values may not always result in the best reconstruc-

tion quality. As it can be seen p = 0.9 has the least root mean squared error

(RMSE), computed for each pixel of the multi-channel signal as:

RMSE(x[l]) =

√√√√ 1

N

C∑
l=1

|x(i)
ref [l]− x(i)[l]|2. (4.40)

We further analysed the results in terms of the convergence of the algorithm.

We �xed the µ value across all problems. Fig. 4.5 shows the convergence result

for di�erent cost functions. For convergence, we computed peak signal-to-noise

ratio (pSNR) as:

pSNR(x) = 20 log

(
peak intensity of the signal

‖x− xref‖2

)
(4.41)

Figure 4.5 shows the change in mean PSNR for all channels per iteration. As

it can be seen, Group-`0.9-norm enforced sparsity resulted in the highest quality

signal.

4.6 Chapter Summary

In this chapter, we dealt with the problem multi-contrast compressive sensing.

We �rst described the theory behind block-compressive sensing. Then, we moved

on to MRI and assumed sparsity in a linear combination of two domains, joint

TV and group-sparsity (`2,1-norm). Then, we extended the algorithm in the pre-

vious chapter to handle multi-contrast imaging. We described phase handling,

and assumed sparsity on magnitude-image rather than complex-valued image.

Next, we described a non-convex pseudo-norm, group-`p-norm (with p < 1),

which is a better approximation of sparsity, i.e. `0-norm. However, since it is a

non-convex function, global minimum is not guaranteed to be found using the
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Figure 4.4: Row-wise `2-norm of the reference signal (top-left), Row-wise re-
construction error of individual sparsity (top-right), Row-wise Reconstruction
error of group sparsity (middle-left), Row-wise Reconstruction error of group
`0.9 sparsity (middle-right), Row-wise Reconstruction error of group `0.7 sparsity
(bottom-left), Row-wise Reconstruction error of group `0.5 sparsity (bottom-
right),
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Figure 4.5: Mean of PSNR versus iteration for �ve reconstruction methods.
Each color line in the �gure is calculated by taking the mean of PSNR values of
all channels.
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proposed algorithm. We replaced group-`p-norm with group sparsity function,

and showed the power of group-`p-norm on a toy problem.
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CHAPTER 5

DICTIONARY LEARNING BASED MULTI-CONTRAST

OPTIMIZATION FRAMEWORK (MC BCS MRI)

In previous chapters, we dealt with the problem of single contrast and multi-

contrast compressive sensing for MRI reconstruction. We manually hand-crafted

a transformation domain for which the image is expected to be sparse. We

assumed the images are sparse in a redundant dictionary of linear combination

of total variation and image domain `1-norm. However, hand-crafted domains

may not yield the best possible performance. For this reason, in this chapter,

we deal with a concept called dictionary learning. Dictionary learning is a tool

in signal processing that is used to �nd a transformation domain that yields a

sparse representation for a given signal. The idea has many uses such as in the

domains of feature extraction, compression, and denoising. From compressive

sensing perspective, �nding a transformation that yields a sparse representation

for a given signal is required for the recovery of the signal. In this chapter,

we �rst give a background on the studies in dictionary learning, then propose a

framework for multi-contrast dictionary learning only from gathered data points.

5.1 Dictionary Learning

For many applications, such as image compression or feature extraction, rep-

resentation of data using fewer number of samples is necessary. However, this

requires some information contained in the signal to be either omitted or stored

in a way that allows reconstruction of the signal. If the signal of interest is

sparse, then the zeros in the signal can simply be omitted. However, most

signals such as natural images are not sparse. Linear transformations such as

Wavelet or discrete cosine transform are known to sparsify natural images. In
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fact, JPEG2000 standard makes use of sparsity of wavelet coe�cients of natural

images [5]. A di�erent way to look at sparse representation is that, the di�eren-

tiating information within the signal of interest is embedded into the sparsifying

transform. Hence, the problem of feature extraction can also make use of sparsi-

fying transformations. Compressive sensing can reconstruct sparse signals from

fewer data. For problems that the signals themselves are not sparse, a spar-

sifying transformation is required. However, such transformations may not be

always so well-de�ned.

Overcomplete curvelet, wavelet, short time Fourier transform, discrete cosine

transform, steerable wavelet are some of the transforms that natural images

are known to be sparse on [5]. The main motivation behind dictionary learn-

ing or vector quantization problem is to create a better dictionary than a pre-

determined one for the training input.

Dictionary learning deals with the problem of representing signals using linear

bases. Each basis is called an atom and the atoms are combined to produce a

dictionary. Let us denote signals y concatenated as columns into a matrix with

Y, and the dictionary with W. Then, dictionary learning recovers a sparsifying

transformation W that satis�es both Y = WX, and ‖X‖0 ≤ s, for some sparsity

level s.

Synthesis and Analysis are the two main approaches to dictionary learning.

Synthesis approach can be formulated as

minimize
W,X

‖WX−Y‖2
F +Q(W)

subject to ‖X‖0 ≤ S,
(5.1)

where s denotes the level of sparsity. Q denotes the cost function associated

with the dictionary, W. As it can be seen, the signal y is synthesised using

dictionary W and the representation x. Analysis approach is formulated as:

minimize
W,X

‖X−Y‖2
F +Q(W)

subject to ‖WX‖0 ≤ S.
(5.2)

In this approach, the transformation W analyses signal x to get the sparse

representation. The dictionary here is the same as the transformations in the
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previous section. Since the outlined problem is non-convex even for a �xed

dictionary due to `0-norm, many applications change it with `1-norm [4, 52, 39].

This makes both (5.2) and (5.1) formulations bi-convex for W and Y, i.e.

keeping one of these variables �xed, results in a convex problem.

Synthesis based approaches gained much attraction and is widely used [42].

However, analysis based approaches are not so far behind. For under-complete

or square transforms, the approaches are exactly equivalent and choosing either

one results in the same solution. For the over-complete case however, these

approaches di�er and the superiority of one is still a debated topic in literature

[28].

One of the main problems in dictionary learning is the size of the signal. The

required computational time for the algorithms grow quickly as the data size

increases. Also, the required number of samples increase along with the data

size. For example, if there exists an n-dimensional data, then the required

number of samples N is at least greater than n to avoid trivial solutions. In that

case, the most trivial solution would be for the dictionary to memorize signals

as its atoms, and use 1-sparse signals to represent the signals. The memorized

transformation is indeed not what is expected of the learned dictionary. To

avoid this, one possible solution is to impose a structure on the dictionary. One

example is to allow a dictionary of small size, then apply it on patches of the

signal [57]. Another would be to choose Q(W) such that W becomes a unitary

matrix.

For the next sections in this chapter, we denote n as the dimension of data, N

as the number of samples, and K as the number of dictionary atoms. Hence,

the de�nitions here are of the sizes:

Y ∈ Rn×N ,W ∈ Rn×K ,X ∈ RK×N . (5.3)

Many methods have been proposed for the solution to the problems de�ned

by Eq. (5.1) and Eq.(5.2). Di�erent cost (Q), and di�erent formulations are

employed in these methods as will be described in section 5.2.
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5.2 Methods for Dictionary Learning

As mentioned in the previous section, the dictionary learning problem is a non-

convex optimization problem and is NP-Hard [24]. Hence, �nding exact solution

is not a practical goal. Some methods use matching pursuit (MP) or Orthogo-

nal Matching Pursuit (OMP) type algorithms for an approximate solution [4].

Others use the convex relaxation formulation of the problem in (5.1) and solve

using basis pursuit algorithms [39].

A previous work by [46] approaches the dictionary learning using maximum

likelihood estimation, and maximize the probability that a set of training signals

Y with elements consisting of yi are sparse, given a dictionary W, with the

assumption that training signals are independent.

maximize
W

P (Y|W) (5.4)

maximize
W

ΠiP (yi|W). (5.5)

They de�ne a hidden variable as sparse codes, and integrate over it. The �nal

problem yields

minimize
W,X

‖Y −WX‖2
2 + λρ(X), (5.6)

where ρ(·) denotes the logarithm of prior assumption on the sparse signal such

as log summation of the super-Gaussian distribution.

Method of optimal direcitons (MOD) is a dictionary learning algorithm closely

related to k-means clustering algorithm [4]. The algorithm attacks the same

problem by dividing it into two steps. The algorithm alternates between mini-

mizing for W and X. It uses a coordinate-descent like structure for minimization

and at each iteration solves for one of the variables. Solving the problem for

X is called sparse coding and solving for W is called dictionary update.

The algorithm uses Newton's iterations to solve the dictionary update step, and

OMP or FOCUSS to solve the sparse coding step. However, the algorithm has

very high computational complexity, and is not practically applicable for high

dimensionality.

64



One of the most famous method in dictionary learning is called K-SVD [4].

The method relies on the generalization of a similar algorithm, k-means. The

algorithm solves synthesis approach in (5.1) with Q(W) = 0. Similar to MOD,

the algorithm alternates between minimizing for W and X. The improvement

brought to dictionary update step is the di�erentiating factor of K-SVD.

Before going further into K-SVD, let us discuss k-means algorithm. K-means

clustering is an algorithm that �nds a representation for a given data set using

fewer number of points by clustering them. It represents each cluster using only

one data point. Hence, it searches for both the data points that represents the

clusters, and a mapping between each data point and cluster. For example, if a

set of signals Y is to be represented using only one data point with minimum

squared error, then the mean of all data points would represent the data the best.

For more data points, the problem can be represented using an optimization

problem as:

minimize
W,X

‖WX−Y‖2
F ,

subject to ‖Xi‖0 = 1, (5.7)

where Xi is the i− th column of the matrix X. Here, K is the number of rows in

X, W is the transformation domain, or the points selected by the algorithm for

sparse representation. Hence, it represents the center points of the clusters, while

columns of X corresponds to the cluster for which the data point in Y belongs to.

The constraint imposes each data point to belong to only one cluster. Hence,

X is the described mapping between data points and the cluster. Here, the

problem Eq. (5.7) is again, a non-convex problem and only heuristic algorithms

exist to solve it. K-means alternates between solving for W and X.

At this point, we may prefer to represent each data point using more than one

data point of W, for example at most s. Then, the problem at hand becomes:

minimize
W,X

‖WX−Y‖2
F ,

subject to ‖Xi‖0 ≤ s. (5.8)

Although the sparse representation can be imposed on each training sample

separately as in Eq. (5.8), it can also be imposed on the whole matrix, as ‖X‖0 ≤
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S, where S = N × s [52]. This is an extension of k-means algorithm. Now let us

go back to K-SVD algorithm. The algorithm alternates between sparse coding

and dictionary update steps.

In the sparse coding step, any number of compressive sensing algorithms as well

as least absolute shrinkage and selection operator (LASSO) solver algorithms

can be used. The sparse coding step is represented as solving Eq. (5.1) for X:

minimize
X

‖WX−Y‖2
F

subject to ‖X‖0 ≤ S,
(5.9)

where W and Y are constants. Here, if sparse representation of each sample is

required separately, then the problem reduces to:

minimize
Xi

‖WXi −Yi‖2
2

subject to ‖Xi‖0 ≤ s,
(5.10)

for all i.

For dictionary update, the algorithm keeps X constant, and solves for W:

minimize
W

‖WX−Y‖2
F , (5.11)

minimize
W

‖Ek −WkX
T
k ‖2

F , (5.12)

where Xk and Wk denote the elements of X and W, respectively. Ek is de�ned

as Y−
∑

j 6=k WjX
T
j . The problem resembles a previously solved problem using

K singular value decomposition (SVD) operations. Hence the algorithm is called

K-SVD. At each iteration, SVD operations are performed K times to �nd the

optimal solution for the dictionary update.

The algorithm is considered a natural generalization of the algorithm k-means

clustering algorithm, and it is preferred due to its simplicity and power of gener-

ating sparse coding books. The algorithm K-SVD is used for many applications

such as compression, denoising and compressive sensing [4, 27]. The algorithm

can be used to learn both over-complete and under-complete dictionaries. K-

SVD is summarized as in table 5.1.

In this thesis, we deal with compressed multi-contrast MRI reconstruction. We

deal with group sparsity, and hence the learned dictionary must be associated
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Table5.1: Algorithm: K-SVD

1. Choose initial W(0) ∈ Rn×K with `2-normalized columns
2. repeat
3. Sparse Coding Stage: Solve for approximate solution of Eq. (5.9)

or Eq. (5.10) as:
minimize

X
‖WX−Y‖2

F

subject to‖X‖0 ≤ S

4. Dictionary Update Stage: For each column k = 1, · · · , K in W(J−1)

4a. De�ne the group of examples that use this atom Wk = {i|1 ≤ i ≤ N,

Xk
i 6= 0}, so that only samples that are associated with this atom is used.

(In k-means algorithm, this step is simply calculated as the mean of the
associated samples.)

4b. Compute the overall representation error matrix Ek, using
Ek = Y −

∑
j 6=k WjX

T
j .

4c. Restrict Ek by choosing only the columns corresponding to Wk, and
obtain ER

k , the restricted matrix.
4d. Apply Singular Value Decomposition on the restricted error matrix
ER
k = U∆V T . Choose the updated dictionary column W

(J)
k as the �rst

column of U . Update coe�cient vector WR
k as the �rst column of

V ×∆(1, 1).
5. J ← J + 1

6. until some stopping criterion is satis�ed.
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with group sparse structures for multi-contrast data. An extension of K-SVD

algorithm is related to the work in this thesis [40]. In [40], the algorithm is

extended for color images, hence can be applied to multi-channel signals. The

K-SVD algorithm is extended to handle 2D RGB images by extending the dic-

tionary size to a 3rd-dimension for color, such that the dictionary is of the size

W ∈ Rn×n×3. However, while allowing learning multi-channel dictionaries, the

algorithm learns dictionaries that promote gray levelness in the image. They

avoid the problem by changing the de�nition of inner product, and adding a

pre-conditioner matrix. The choice of the matrix is empirical and a wrong

choice results in poor learned dictionaries.

Another extension to K-SVD algorithm involves using wavelet-like multi-scale

dictionaries [47]. The algorithm produces dictionaries in multi-scale. Hence, the

dictionary can be applied in a fast manner with scales. Hence, it leads to faster

update rules, and allows high dimensional dictionaries to be learned. Thus,

multi-scale dictionaries have the potential to outperform single-scale dictionar-

ies. Di�erent pyramid-like structures are considered for fast reconstruction. A

similar work involves doubly-sparse dictionaries, which are sparse dictionaries

that apply to a signal in a sparsifying transformation domain [50, 57]. Recent

work on KSVD is related to learning structured dictionaries for application of

the algorithm to high dimensional signals.

One common problem among these algorithms are the problem of initialization.

Since the problem is non-convex, initialization from a well-known sparsifying

transformation such as DCT may result in convergence to a better minima, in

addition to faster convergence [27].

5.3 Dictionary Learning for Compressed Sensing

Compressed sensing requires sparsifying transformation domains. Given a set

of signals, dictionary learning can be used to �nd dictionaries that can spar-

sify these signals. Better sparsity domains allow the signals to be recovered

using fewer number of samples, as dictated by restricted isometry property in
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Eq. (2.10). In this section, we give brief information on how these methods can

be utilized within the context of compressive sensing.

As discussed in sections 5.1 and 5.2, numerous dictionary learning methods can

be used for denoising, feature extraction and compression. All the discussed

methods can be incorporated into compressive sensing, since the output of most

of these methods are W. For example, one can use K-SVD to �nd a sparsifying

transformation domain. Then, use that domain to recover a signal from fewer

number of measurements. Di�erent types of compressive sensing recovery algo-

rithms should be used for di�erent types of K-SVD algorithm, such as analysis

or synthesis. However, there may not always exist enough number of samples

to train a dictionary learning algorithm. In that case, one simple trick is to

use some type of structure to reduce the number of unknowns in the transform

domain (W) [52, 50, 57].

Here, we �rst categorize algorithms into two. Recovery of only the dictionary

W and the sparse codes B from given signals x is called �O�ine Dictionary

Learning�, while recovery of all three vectors from given data sets are called

�Online Dictionary Learning�, or blind compressive sensing (BCS). In o�ine

dictionary learning, the algorithms solve problems of type Eq. (5.1) or Eq. (5.2).

Then, the recovered dictionaries are general purpose in the signals of interest,

and can be used for various purposes. However, BCS assumes the signal that

will be recovered is going to be sparse in some transformation domain, and the

transform domain is not known a-priori. Hence, it is called transformation blind

compressive sensing.

O�ine dictionary learning algorithms are mostly discussed in the previous sec-

tions. One can simply recover a transformation domain using the methods given

in the previous sections, then use that transformation domain to solve the as-

sociated compressed sensing problem. Since this is a two step process, for these

type of algorithms to work, some samples from the signals of interest are re-

quired. These samples has to be fully sampled. One can again use the tricks

discussed above (such as structured dictionaries applied to patches of the image,

or multi-scale sparse structures) to decrease number of required samples. How-
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ever, at least one sample is required. Also, the choice of the samples may a�ect

the recovered transformation domain. Hence, for example if the transformation

is applied on an MRI image, then it should include most features seen in MRI.

This is a potential pitfall for dictionary learning algorithms, since the results are

a�ected by choice of the sample set. Acknowledging potential problems one can

always choose to use o�ine algorithms and recover a plausibly good transfor-

mation domain prior to application of CS. However, online algorithms approach

the problem in a di�erent way.

Online dictionary learning is an inherently harder problem to solve, and can be

expressed as:

minimize
W,X,B

‖WX−B‖2
2 + ν‖AX−Y‖2

F +Q(W)

subject to ‖B‖0 ≤ s
. (5.13)

Here, the critical di�erence of this problem is the knowledge of the image. Here,

the image itself (X) is not known, since it is not fully sampled. The image

in some transformation domain (A) is known, which already poses an under-

determined problem. The discussed problem in Eq. (5.13) reduces to o�ine

problems, if A = I, and ν → ∞. Hence, online dictionary learning problem is

more generic compared to o�ine counterpart. Moreover, if only one sample of

X exists, such that it is a vector that can be expressed with x, then the problem

reduces to:

minimize
W,X,B

‖Wx−B‖2
2 + ν‖Ax− y‖2

F +Q(W)

subject to ‖B‖0 ≤ s
. (5.14)

This problem is inherently harder, since the number of samples is assumed to

be 1. In this case, to avoid trivial solutions, some structure on the W is a

must. To avoid this problem, [51] assumes patch-wise sparsity and also imposes

unitary-ness on the transformation. They solve the problem:

min
x,W,B

ν‖Ax− y‖2
2 +

N∑
j=1

‖WPjx− bj‖2
2 + λQ(W)s.t.‖B‖0 ≤ s, ‖x‖2 ≤ C,

(5.15)

where Q(W) penalizes choice of transformation matrix to both avoid trivial

solutions, and enforce other wanted qualities. In [51], this function is chosen
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as −log|detW| + 0.5‖W‖2
F to avoid trivial solutions, scale ambiguity and also

enforce unitary solutions for W as λ goes to in�nity. Here, C is the bound on

the energy of the solution, which is usually ignored as it is set to ∞, and Pj is

the patch selection matrix that selects patches from x. Note that this structure

is the synthesis based structure.

Here, Pj can be visualized as in Fig. 5.1. As it can be seen, overlapping patches of

size 6×6 are selected in this example. One can also consider random patches, or

decrease the amount of overlapping to avoid dealing with large amount of data.

In that case, the summation term over all patches would reduce to summation

for speci�c patch indices, j.

In [51], other problem models have also been proposed. These models include

sparsity of overall system instead of every single patch, di�erent selection of

Q(W) such that it becomes the indicator function for WHW = I, and the

one with the sparsity penalty instead of using it as a constraint. These models

all have their respective advantages, and disadvantages. However, the overall

framework stays the same. The speci�c advantage of this framework is to recover

dictionaries speci�c to data, hence the training set is also the test set within this

context. Hence, the requirement for the training set to include most probable

structures within the image family is no longer needed. However, note that this

problem is highly non-convex.

Now let us discuss the implementation of the algorithm with Q(W) being the

indicator function for unitary W. The algorithm consists of three steps for each

variable. It is organized in a block-coordinate descent type structure, hence it

iteratively minimizes for each variable and alternates between them. Like K-

SVD, the �rst and second steps are the sparse coding and the dictionary update

steps. In sparse coding step, the problem to be solved becomes:

min
B

N∑
j=1

‖WPjx− bj‖2
2s.t.‖B‖0 ≤ s. (5.16)

Now, let us de�ne Z as the concatenated vectors with entries as WPjx. In that

case, the problem becomes:

min
B
‖Z−B‖2

F s.t.‖B‖0 ≤ s. (5.17)
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Figure 5.1: Visualization of patch selection matrix Pj, in Eq. (5.15).
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This is a projection onto a non-convex set problem. Here, the optimal sparse

codes are simply maximum-s hard thresholded version of Z, hence:

B∗[i] =

 Z[i] if Z[i] is in the top s elements

0 otherwise
. (5.18)

The next step is the dictionary update step, which is essentially the solution of

the problem:

min
W

N∑
j=1

‖WPjx− bj‖2
2 + λιWunitary (W) . (5.19)

As in sparse coding step, let us de�ne X as the concatenated vector with Pjx

as its entries. Then, the problem becomes:

min
W
‖WX−B‖2

F + s.t.WHW = I. (5.20)

The solution to the outlined problem has been recently derived, and can be

implemented using [51]:

W∗ = VUH , (5.21)

where XBH have a full singular value decomposition of UΣVH .

The �nal step includes an image update step, and requires the solution of:

min
x
ν‖Ax− y‖2

2 +
N∑
j=1

‖WPjx− bj‖2
2s.t.‖x‖2 ≤ C. (5.22)

In this study, we deal with structures with no energy bound on x, and hence

C =∞. The solution is then,(
N∑
j=1

PT
j WHWPj + νAHA

)
x =

N∑
j=1

PT
j WHbj + νAHy. (5.23)

In that case, the algorithm including the solution for MRI is given in table 5.2.

5.4 Multi-Contrast Blind Compressive Sensing

In the previous sections, we have worked with two established methods for dic-

tionary learning, one for online and one for o�ine dictionary learning. Although
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Table5.2: Algorithm: Blind Compressive Sensing MRI (BCS MRI) [51]

1. Initialize (W0,B0,x0).
2. for t = 1:J
3. Form the matrix X by stacking Pjx as its columns.

Compute L−1 =
(
XXH + 0.5λI

)−1/2
.

4. for l = 1:M
5. Transform Update:
5.a. Set W = VUH , where UΣVH = XBH .
6. Sparse Coding:
6.a. Update B according to Eq. (5.18).
7. end
8. Image Update:
8.a. Compute c =

∑N
j=1 PT

j WHbj, S = FFT (c).
8.b. Compute a1 as the �rst column of c =

∑N
j=1 PT

j WHWPj.
8.c. Set γ =

√
p× FFT (a1).

8.d. Set Fourier transform of x with indices (kx, ky) to{
S(kx,ky)

γ(kx,ky)
, if (kx, ky) /∈M

S(kx,ky)+νAHy

γ(kx,ky)+ν
, if (kx, ky) ∈M

.

9. end
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there exists some study on multi-channel imaging in the previous methods such

as color-ksvd, the algorithm is specialized for color images, and is an o�ine dic-

tionary learning technique such that it works in the presence of previous data.

However, in this thesis, we deal with compressed sensing of only single measure-

ment. Hence, we move towards more compressed sensing compatible techniques

such as transformation blind compressed sensing [51]. Moreover, we deal with

the problem of multi-contrast compressed sensing. To the best of our knowl-

edge, there is not an extension of such algorithms for multi-contrast dictionary

learning. In this section, we propose an algorithm for online dictionary learning

and reconstruction of multi-contrast MRI.

The algorithm in section 5.3 solves problems of type Eq. (5.15). The solved

problem can be extended for multi-contrast MRI. The simplest way to extend

the optimization problem is to use group `0 sparsity, instead of `0 sparsity. We

have discussed the advantages of group sparsity over sparsity in section 4.1. We

have also compared the results on individual and group sparsity on section 4.5,

and shown the advantages of group sparsity over individual sparsity. However,

the resulting dictionaries in the previous section are ambiguous in terms of lo-

cation. For example, interchanging the rows of W along with the corresponding

locations of B results in the exact same result. However, changing the locations

may cause problems for multi-contrast imaging. Hence, the proposed algorithm

has to recover a dictionary for all contrasts at once for group sparsity approach

to work.

In this study, we propose extending Eq. (5.15) as:

min
x,W,B

∑
i

(
ν‖A(i)x(i) − y(i)‖2

2 +
N∑
j=1

‖WPjx
(i) − b(i)

j ‖2
2

)
+ λQ(W)s.t.‖B‖2,0 ≤ s,

(5.24)

where ‖ · ‖2,0 is de�ned as the number of non-zero entries in a group of vec-

tors, which corresponds to the sparse codes of di�erent contrasts. Although it

has been previously shown that analysis [41] or synthesis [42] based redundant

wavelet transforms result in group sparse images, there has been not been a

study on learned dictionaries. Here, we optimize for a single transformation for

all contrast images. This constrains the solution space to a much smaller space,
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since the data size is tripled. We expect this version to have better convergence

speed, as well as a better sparsifying transform.

As in [51], let us further derive the required steps for the implementation of the

algorithm. We follow similar steps to [51], and update the necessary update step

for sparse code update by solving:

min
B

∑
i

(
N∑
j=1

‖WPjx
(i) − b(i)

j ‖2
2

)
s.t.‖B‖2,0 ≤ s, (5.25)

Here, we can construct matrix Z by concatenating column vectors WPjx
(i) for

each contrast. Then, the problem becomes:

min
B
‖Z−B‖2

F s.t.‖B‖2,0 ≤ s, (5.26)

The optimal solution is hard thresholded Z, as before. The only di�erence here

is to concatenate column vectors for each contrast. Next, we deal with the

transform update step, as:

min
W

∑
i

(
N∑
j=1

‖WPjx
(i) − b(i)

j ‖2
2

)
s.t.WHW = I. (5.27)

Let us begin by de�ning X as the concatenated vectors Pjx
(i) for all contrasts.

Then, the problem becomes:

min
W
‖WX−B‖2

F s.t.W
HW = I. (5.28)

Here, the optimal solution is similar to section 5.3, and can be expressed using

VUH . Finally, let us deal with the image update step. This step requires

solving:

min
x

∑
i

(
ν‖A(i)x(i) − y(i)‖2

2 +
N∑
j=1

‖WPjx
(i) − b(i)

j ‖2
2

)
. (5.29)

As can be seen, the problem can be divided for each contrast. In that case, the

update steps is simply to carry out the solution given in table 5.2 multiple times.

For the sake of completeness, the algorithm is summarized in table 5.3.

5.5 Chapter Summary

In this chapter, we �rst brie�y described background information on dictionary

learning. We described the concept, and some basic algorithms. Then, we moved
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Table5.3: Algorithm: Multi-Contrast Blind Compressive Sensing MRI (MC

BCS MRI)

1. Initialize (W0,B0,x0).
2. for t = 1:J
3. Form the matrix X by stacking Pjx

(i) as its columns for each contrast.

Compute L−1 =
(
XXH + 0.5λI

)−1/2
.

4. for l = 1:M
5. Transform Update:
5.a. Set W = VUH , where UΣVH = XBH .
6. Sparse Coding:
6.a. Update B according to Eq. (5.18).
7. end
8. for i = 1: # of contrasts, Image Update:
8.a. Compute c =

∑N
j=1 PT

j WHB
(i)
j , S = FFT (c).

8.b. Compute a1 as the �rst column of c =
∑N

j=1 PT
j WHWPj.

8.c. Set γ =
√
p× FFT (a1).

8.d. Set Fourier transform of x with indices (kx, ky) to{
S(kx,ky)

γ(kx,ky)
, if (kx, ky) /∈M

S(kx,ky)+ν(A(i))Hy(i)

γ(kx,ky)+ν
, if (kx, ky) ∈M

.

8e. end
9. end
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on to dictionary learning for CS. We described online dictionary learning within

the context of CS. We then proposed a joint reconstruction algorithm that can

recover multi-contrast images simultaneously as well as the single sparsifying

transformation applied on all contrast images. We also assumed group sparsity

instead of sparsity on di�erent contrast images. This helped improve recon-

struction quality. We �nally gave details on the implementation of the proposed

multi-contrast joint dictionary learning algorithm.
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CHAPTER 6

RESULTS OF EXPERIMENTS

In previous chapters, we described methods for compressed multi-contrast MRI

image reconstruction. We �rst described the basics of MRI, and the most basic

image reconstruction technique, i.e. inverse Fourier transformation. Then, we

moved on to compressed sensing based techniques for single contrast imaging,

then multi-contrast imaging. Finally, we moved on to dictionary learning based

methods. Each chapter describes an approach and an algorithm related to that

approach. Although the strong-suits of each approach are described, these are

not demonstrated yet. We have just given a comparison of single contrast versus

multi-contrast reconstruction technique in section 4.5. In that section, we have

compared the e�ect of group sparsity and p-norm for a toy problem. In this

chapter, we analyse the performance of each algorithm. We compare the meth-

ods for individual and joint reconstruction methods, under di�erent imaging

masks, SNR and parameter selections. We also demonstrate the e�ectiveness of

each algorithm against conventional methods, as well as the state of the art. In

this chapter, we �rst describe the nature of the experiments, the set up used and

then move on to analysis of the methods on various datasets, and undersampling

ratios.

6.1 Description of Experiments

In this thesis, we have worked with two simulated, and one experimental datasets,

and di�erent undersampling masks. First, let us describe the experimental pro-

cedure. As given in section 2.1, MR scanner gathers data in k-space. Hence,

undersampling in MRI is a straightforward process of simply selecting some lines

or points from k-space. Therefore, in this chapter, we �rst undersample an im-

age by omitting some points from the k-space, then use one of the proposed
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approaches to reconstruct the image. We, then, compare the reference image

with the reconstructed image using both qualitative and quantitative metrics.

For qualitative metrics, we use visual inspection and emphasize the regions of

the image that is better or worse. For quantitative metrics, we use peak signal-

to-noise-ratio (pSNR), root mean squared error (RMSE), mean magnitude error

(mmE), and structural similarity index measure (SSIM). For a reconstructed

image x, and reference image f , the metrics are de�ned as:

pSNR(x, f) = 20 log

(
max(f)

‖x− f‖2

)
, (6.1)

RMSE(x, f) =

√
1

N
‖x− f‖2

2, (6.2)

mmE(x, f) =
1

N
‖x− f‖1. (6.3)

SSIM is an image metric developed for comparing the similarity between two

images similar to human eye [62]. It is combination of three metrics for an

image, namely: luminance, contrast and the structural terms, de�ned as:

SSIM(x, f) = [I(x, f)]α[c(x, f)]β[s(x, f)]γ, (6.4)

I(x, f) =
2µxµf + C1

µ2
x + µ2

f + C1

, (6.5)

c(x, f) =
2σxσf + C2

σ2
x + σ2

f + C2

, (6.6)

s(x, f) =
σxf + C3

σxσf + C3

, (6.7)

where µx and µf are the mean values, and σx, σf are the standard deviations of

x and f , respectively. σxf is the cross covariance of x and f . For SSIM, we used

the de�nition given in [62]. We used a Gaussian kernel for calculating the SSIM

map using Eq. (6.4). Finally, the average of the SSIM map is taken to calculate

SSIM.

After the reconstruction process, we scale the image to 0-255 for viewing pur-

poses. In this case, although the overall image has high quality, the image

metrics may fail to re�ect this. To avoid this, we �rst �t a line though the

reconstruction and reference image by solving:

[a, b] = arg min
a,b
‖ax + b− f‖2

2. (6.8)
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Here, note that multiplying an image with a constant and adding an o�set does

not change the viewed image, since the changes are cancelled later while scaling

to 0 - 255. We then compare ax + b with the reference image, f , while using

quantitative imaging metrics.

Now let us move on to describing the used masks.

6.1.1 Sampling Masks

Compressive sensing is a natural match for MRI, since incoherence of the sam-

pling domain with the signal domain is required for compressed sensing to work

[37]. However, natural images such as MRI are not sparse in image domain

itself. MR images are mostly sparse in some transformation domain, or gradient

of the image, which break the purely random uniform undersampling scenario

that compressed sensing is reported to work with [16]. In fact, drawing sam-

ples from a probability density function (pdf), rather than using purely random

undersampling has been reported to increase the performance of CS algorithms

[37]. In this study, we also use such an approach and create imaging masks ac-

cordingly. Sampling low-frequency components of the image in a higher density,

while sampling high-frequency components sparsely results in better images. For

this reason, it is suggested to use a pdf that decays with a polynomial order of

3, after sampling the low-frequency components fully (for example, one-eighth).

We sampled one-eighth of the k-space (i.e. low frequency parts) fully, and draw

rest of the samples randomly using the polynomial decay pdf of 3rd order. We

used these masks to undersample the image, then added bivariate Gaussian noise

to the data.

We have previously described that scanning a full line rather than a point in k-

space does not change the required sampling time much. Hence, for 2D imaging,

it makes sense to undersample images in only one dimension, and use masks such

as the ones given in Fig. 2.2. On the other hand, for 3D imaging, two dimensional

undersampling can be employed, which has better incoherence.
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Table6.1: Typical TE, and TR values for di�erent contrasts

Sequence TE (ms) TR (ms)
PD 17 2775
T1 14 575
T2 102 2775

6.1.2 Datasets

In this study, we used 3 datasets.

First, we worked with a simulated dataset including eleven types of tissues.

Each tissue has its own T1, T2 and PD values, and images are generated using

di�erent TE and TR values. The detailed data generation process is given in

[7], and is beyond the scope of this thesis. In this thesis, we assumed a TE

and TR as given in table 6.1. Since the resulting phantoms are real-valued, we

introduced a slowly-varying phase to the overall image.

Next, we worked with SRI 24 atlas [58]. The atlas consists of PD, T1, and

T2 weighted images generated from real patient data. However, as in [7], the

images are real-valued, and required slowly-varying phase to overall images. The

resulting images are given in �gures.

Finally, we worked with experimental data, gathered using 3T scanner (courtesy

of UMRAM, Ihsan Dogramaci Bilkent University). This data consists of PD,

T1, and T2 weighted images, all gathered from the same patient. The data was

gathered using 32 channels, which are then combined to a single channel image

prior to undersampling. No additional phase was introduced to this image, since

it is already complex-valued.

6.2 Results of Single Contrast Experiments

In this study, we �rst demonstrate the proposed individual method over similar

techniques. We analyse two aspects of the single contrast framework. First,

we compare the algorithm to similar methods in terms of convergence of the
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objective function, and change in pSNR. We then compare the method to only

`1-norm and only TV algorithms in terms of image quality, to emphasize the

usage of multiple objective functions. Finally, we give the results for multiple

masks created using the procedure described in section 6.1.1.

6.2.1 Selection of Regularization Parameters for Single Contrast Frame-

work

First, let us show results for the selection of objective functions for single contrast

images. Here, we chose a linear combination of `1-norm and TV , while other

choices were possible. Let us now compare di�erent α1 and αTV values that result

in di�erent linear combinations of regularizations. For simplicity in parameter

selection, let us set αTV = 1− α1.

We now used grid search to see which parameters result in better results in terms

of quantitative metrics such as pSNR, SSIM, MME, and RMSE, as well as visual

inspection. For the �rst study, we used the real-valued Aubert-Broche [7] brain

phantom, and chose T1 contrast image for reconstruction, since we dealt with

single contrast images. We sub-sampled the image to 33%. Convergence results

versus time is depicted in Fig. 6.1. In terms of the quality of the converged point,

α1 = 0.8 with αTV = 0.2 outperforms other results in terms of all quantitative

metrics. This parameter set had the highest PSNR and SSIM, while having

the lowest MME and nRMSE. Moreover, it has the fastest convergence. The

closest parameter sets are the ones with α1 = 1 and αTV = 0.6. While α1 = 1

begins with a similar speed to α1 = 0.8, it diverges from the optimal solution

approximately 20 seconds after the beginning of the reconstruction, and con-

verges to a worse point. Other parameter sets result in poorer results in terms

of all quantitative metrics.

Fig. 6.2 depicts the imaging results for di�erent parameters, as well as original

and zero-�lled images. Fig. 6.2 (a) is the reference image used in this experiment,

while (b) shows the conventionally reconstructed image from fewer number of

samples. (c) � (h) shows the reconstructions using the proposed framework using

di�erent regularization weights between objective functions. As it can be seen,
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Figure 6.1: Comparison of convergence speed of the single contrast framework
with various α1 selections in terms of SSIM, PSNR, nRMSE, and MME for
Aubert-Broche brain phantom T1-weighted image using 33% of full data.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.2: (a) Reference (Original) Image (b) Zero-�lled Image (c) Image Re-
construction with α1 = 1 (d) Image Reconstruction with α1 = 0.8 (e) Image
Reconstruction with α1 = 0.6 (f) Image Reconstruction with α1 = 0.4 (g) Im-
age Reconstruction with α1 = 0.2 (h) Image Reconstruction with α1 = 0, for
Aubert-Broche brain phantom T1-weighted image using 33% of full data.
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choosing α1 = 1 results in noise-like artefacts in image (c), due to `1-norm. The

objective function in this image enhances sparsity in the image, although the

image itself is not sparse. As α1 decreases and αTV increases, the reconstructions

become more and more blurry. The other end of the spectrum with αTV = 1

results in a very blurry image such that the contrast between the image and the

background is lower than that of other reconstructions. Better quality images

can be obtained by imposing high contrast using `1-norm while retaining piece-

wise smoothness with TV . Hence, using both `1-norm and TV together results

in a better reconstruction. Using both qualitative and quantitative results, we

can conclude that using a linear combination of `1-norm and TV results in a

better reconstruction. Among these results, the best reconstruction can be seen

in image (d).

Next, we analyse these results in terms of robustness. We ran the same exper-

iment 20 times, and compared for di�erent parameters for robustness. In each

run, we used di�erent mask and noise patterns. Quantitative results are given

in Fig. 6.3. As can be seen, for each case, α1 = 0.8 yielded the best result

quantitatively.

6.2.2 Comparison of Single Contrast Image Reconstruction Algo-

rithms

Next, we deal single contrast images. We compare the performance of the single

contrast techniques. First, let us brie�y describe previous algorithms. Here, all

compared algorithms solve the same optimization problem. Each algorithm use

a di�erent technique to solve their respective problem. Each algorithm tackles

the problems of the form:

minimize
x

α1‖Wx‖1 + α2TV (x) +
1

2
‖Ax− y‖2

2, (6.9)

where W is some transformation domain and TV (·) is the isotropic total varia-
tion function previously de�ned as the squared sum of gradients in two di�erent

directions. We used the default settings for all algorithms in terms of the choice

of the transformation domain, W.
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Figure 6.3: Comparison of image quality values of 20 runs for single contrast
framework with various α1 selections in terms of SSIM, PSNR, nRMSE, and
MME for Aubert-Broche brain phantom T1-weighted image using 33% of full
data.
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SparseMRI is an algorithm proposed by Lustig et al. [37]. The algorithm solves

the problem using conjugate gradient. The main drawback of this algorithm is

the time required for the algorithm to converge. Conjugate gradient is known to

converge with high precision. This helps produce quality images at the expense

of high image reconstruction time. This method is also the �rst application of

compressed sensing to MRI.

TVCMRI uses �xed point based algorithm to solve the same problem [56]. It

tackles another form of the same problem depicted as:

minimize
θ

α1‖θ‖1 + α2TV (W−1x) +
1

2
‖AW−1θ − y‖2

2, (6.10)

where the image vector x = W−1θ. Here, the outlined problem is exactly same

as the one used in [37]. However, the used algorithm is di�erent which a�ects the

time required for convergence and the precision which the algorithm converges

to. The algorithm iterates using �xed-point iterations to minimize with respect

to each objective function separately.

RecPF algorithm uses ADMM based algorithm to solve the given problem [63].

The algorithm is formulated using ADMM, and it is solved by dividing the

problem into simpler sub-problems. The algorithm converges in few number

of iterations thanks to ADMM framework. However, the used formulation is

di�erent from the proposed method. The proposed single contrast optimization

framework takes advantage of the complex nature of the problem, and applies

the TV regularization to magnitude of the image, while the depicted problem

for the compared algorithms do not. Also, although this method uses ADMM,

the speci�c formulation a�ects the quality of the reconstruction as well as the

convergence speed.

FCSA algorithm uses Composite-Splitting based algorithm to solve the same

problem [35]. The algorithm employs a fast version of the composite splitting

algorithm, and hence is called fast composite-splitting algorithm (FCSA).

All algorithms are compared for robustness against noise and mask selection,

and convergence speed, as well as the quality of the converged signal. We used

the codes supplied online for each of these algorithms. All parameters are opti-
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Table6.2: Selected parameters for each algorithm

Algorithm αTV α1

SparseMRI 0.0118 0.0100
TVCMRI 0.3550 0.6958
RecPF 0.4187 0.0399
FCSA 0.0100 0.0350

Proposed Single Contrast 0.0175 0.9825

mized for highest SSIM value using grid search. The used parameters for each

algorithm are given in table 6.2. There exists scale di�erences between algo-

rithms on the de�nitions of TV and W. Hence, each algorithm runs with a

di�erent regularization parameter. Each algorithm is optimized for the best

SSIM performance.

We compared the algorithms in terms of the reconstruction quality using complex-

valued images. As in the previous experiment, we used a 33% acceleration with

the same Aubert-Broche brain phantom, with the exception of using complex-

valued images as described in section 6.1.2. Figure 6.4 depicts the convergence

speed for the given algorithms in terms of SSIM, PSNR, nRMSE and MME. As

can be seen from the �gure, the proposed method outperforms all other meth-

ods quantitatively. While the proposed individual method reaches the lowest

result in terms of nRMSE and MME, it results in the highest pSNR and SSIM

values. Although RecPF algorithm converges faster, the end-result reached by

the proposed method is better.

Robustness analysis for the same phantom experiment is included in Fig. 6.5.

The �gure depicts comparison of SSIM, PSNR, nRMSE, and MME values for

various algorithms in 20 runs. As can be seen, the proposed method outperforms

other methods in terms of nRMSE, MME PSNR, and SSIM values. Here, as in

the previous case, RecPF scored similar to the proposed individual method. The

proposed method consistently outperformed all other methods quantitatively.

We have observed consistent results in visual inspection, which we omit here.

Next, we switch to experimental dataset. We used PD image from the ex-

perimental dataset for a similar analysis on the convergence speed and visual
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Figure 6.4: Comparison of convergence speed of di�erent algorithms in terms
of SSIM, PSNR, nRMSE, and MME for Aubert-Broche brain phantom T1-
weighted image using 33% of full data.
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Figure 6.5: Comparison of image quality of 20 runs for various single contrast
algorithms in terms of SSIM, PSNR, nRMSE, and MME for Aubert-Broche
brain phantom T1-weighted image using 33% of full data.
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Figure 6.6: Comparison of convergence speed of di�erent algorithms in terms of
SSIM, PSNR, nRMSE, and MME for experimental PD-weighted image using
25% of full data.

inspection. We subsampled the data 25% using 2D undersampling patterns,

and ran the same algorithms 20 times using di�erent masks. Here, since the

data is experimentally collected, the data itself contains a noise with SNR 40

dBs. ε value in the proposed method is set according to this fact. Convergence

analysis is included in Fig. 6.6. The �gure depicts comparison of SSIM, PSNR,

nRMSE, and MME values for various algorithms versus time. As can be seen,

the proposed method outperforms other methods in terms of MME, PSNR, and

nRMSE values. RecPF outperforms the proposed method in terms of SSIM.

However, visual inspection supports the claim of MME, pSNR, and nRMSE as

will be discussed.

Although quantitative results help compare various methods, this is not the only

metric available. Visual inspection is still a powerful tool and visual inspection

results are given in Fig. 6.7. Fig. 6.7 (a) depicts the reference image, while
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others depict reconstructed images using various algorithms. SparseMRI result

in part (b) of the same �gure su�ers from loss in resolution in tissue boundaries.

TVCMRI result in part (c) su�ers from blocky artefacts due to the use of multi-

scale wavelet transformation. FCSA, part (e), has poor visual image quality due

to blocky artefacts. The closest algorithm to the proposed individual method,

RecPF, has similar overall quality compared to the proposed method. However,

RecPF produces oversmooth images as in part (b), and has lower contrast in

the zoomed region on the bottom right of the images.

6.3 Results of Multi-Contrast Experiments

Next, we demonstrate the multi-contrast optimization framework. We �rst �nd

the most suitable parameters for the algorithm. Here, we search for the best

p value de�ned in section 4.4, and αJTV . Next, we compare the algorithm to

both individual and joint reconstruction methods in terms of convergence speed

of the algorithm, and performance. We demonstrate the di�erences between

individual and joint reconstruction algorithms. We compare the performance

of the algorithm in terms of both quantitative metrics such as pSNR, SSIM,

nRMSE and mmE, and by visual inspection. Here, we also give monte carlo

results to demonstrate the robustness of the proposed method.

6.3.1 Selection of Regularization Parameters for Multi-Contrast Frame-

work

Before comparing multi-contrast algorithms to individual counterparts, let us

optimize parameters for the proposed multi-contrast method. Here, we deal

with two main parameters: αJTV that determines the regularization between

joint total variation function and the group-`p-norm, and p that determines

the coe�cient of p-norm in group-`p-norm. Here, we ran the algorithm for 200

iterations with di�erent parameter sets. We set αG1 associated with group-`p-

norm objective to 1 − αJTV . The �nal problem we solve is of the form (as in
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(a) (b)

(c) (d)

(e) (f)

Figure 6.7: (a) Reference (Original) Image (b) Image Reconstruction using
SparseMRI (c) Image Reconstruction using TVCMRI (d) Image Reconstruction
using RecPF (e) Image Reconstruction using FCSA (f) Image Reconstruction
using Proposed Single Contrast Method, for experimental PD-weighted image
using 25% of full data.
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Table6.3: Mean pSNR values (given in dB) for various selections of αJTV and p
values, for the multi-contrast optimization framework. The values depict mean
pSNR of three contrast images for Aubert-Broche brain phantom images using
16% of full data.

H
HHHH

HHp

αJTV 0.05 0.09 0.14 0.18 0.23 0.27 0.32 0.36 0.41 0.45

0.50 29.33 31.94 31.71 31.38 30.82 30.26 29.46 28.48 27.25 25.81
0.56 29.22 31.94 31.83 31.56 31.01 30.51 29.77 28.87 27.79 26.46
0.61 29.28 31.96 31.92 31.68 31.20 30.77 30.15 29.27 28.27 27.10
0.67 29.34 32.07 32.03 31.80 31.40 31.00 30.47 29.63 28.76 27.75
0.72 29.48 32.12 32.02 31.93 31.60 31.22 30.76 30.03 29.18 28.29
0.78 29.79 32.09 32.14 32.05 31.78 31.44 31.02 30.40 29.60 28.86
0.83 30.12 31.97 32.30 32.19 31.97 31.60 31.25 30.77 29.99 29.28
0.89 30.38 32.16 32.39 32.28 32.09 31.77 31.47 31.05 30.42 29.70
0.94 30.83 32.41 32.53 32.34 32.13 31.90 31.61 31.31 30.79 30.12
1.00 31.13 32.34 32.51 32.37 32.20 31.96 31.71 31.50 31.10 30.50

Eq. (4.32)):

minimize
x

αG1‖x‖2,p + αJTV JTV (x)

subject to ‖A(i)x(i) − y(i)‖2 ≤ εi, for i = 1 to C
. (6.11)

We used Aubert-Broche brain phantom, subsampled to 16% of full data. We

used 3 contrast images of PD, T1 and T2. We ran the proposed framework

using only one mask, and calculated mean pSNR values given in table 6.3. Mean

PSNR values are calculated as the mean of 3 di�erent pSNR values. The table

shows choosing αJTV of 0.14 and p value of 0.94 results in the highest pSNR

reconstruction, as opposed to using p = 1 as proposed by other methods.

We next compare the proposed method to the ones in the literature.

6.3.2 Comparison of Multi-Contrast Image Reconstruction Algorithms

In this study, we compared the proposed multi-contrast optimization framework

to both the proposed individual method, and the previous methods exist in the

literature, for joint multi-contrast CS MRI reconstruction. Let us �rst brie�y

discuss the compared methods. We compared the methods to two previous

methods, namely FCSA for multi-contrast images (FCSA-MT) [34], and Group

Sparsity MRI (GSMRI) [42].

95



FCSA-MT is previously discussed in section 4.1. It uses a Composite-Splitting

based algorithm to solve problems of type:

minimize
x

α1JTV (x) + α2‖Wx‖2,1 +
∑
i

‖A(i)x(i) − y(i)‖2
2. (6.12)

The algorithm is a natural extension of individual reconstruction algorithm

FCSA.

The second algorithm, GSMRI, is previously discussed in sections 4.1 and 5.4.

The method relies on solving the problems of the form using synthesis based

redundant wavelet dictionaries:

arg min
θ
‖θ‖2,1

subject to ‖y(i) −A(i)WT θi‖2 ≤ εi. (6.13)

Now let us describe the experiments in this section. We work with two cases.

We �rst demonstrate the advantages of the proposed multi-contrast method

using simulated Aubert-Broche dataset. We create 5 contrast images, PD, T1

weighted, T2 weighted, FLAIR and STIR. We then subsample each image to

16%. Figure 6.8 depicts the resulting images. Individually reconstructed images

are noisy due to presence of low data. GSMRI reconstructed blocky images,

while FCSA-MT reconstructed images with overall artefacts, as well as noise.

The proposed method outperformed all other methods and reconstructed �ne

images.

We then worked with the experimental data. We used all three contrasts (PD,

T1 weighted, T2 weighted) of the experimental data for joint reconstruction. We

then subsampled the data to 50%, 33%, 17%, and 8%. For each case we ran the

proposed methods single contrast optimization framework and multi-contrast

optimization framework, as well as GSMRI and FCSA-MT. Quantitative per-

formance results are given in table 6.4. The results show that for all given 2D

undersampling ratios, proposed multi-contrast algorithm outperformed other al-

gorithms. Another interesting result is that the proposed individual algorithm

outperformed previous joint methods that exist in the literature. Joint recon-

struction assumptions may not always hold and some noisy contrast image may
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Figure 6.8: (a) Reference (Original) Image, (b) Image Reconstruction using Pro-
posed Single Contrast Method, (c) Image Reconstruction using GSMRI, (d) Im-
age Reconstruction using FCSA-MT, (e) Image Reconstruction using Proposed
Multi-Contrast Method. From left to right, PD, T1 weighted, T2 weighted,
FLAIR and STIR images are given. The rightmost image includes 4x magni-
tude sum of error in all parts.
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Table6.4: Mean pSNR, SSIM, nRMSE, and MME values for four algorithms
using 50%, 33%, 17%, and 8% of full data for Aubert-Broche brain phantom
images.

Method Ratio PSNR (dB) SSIM nRMSE (%) MME (%)
Proposed Individual 50% 37.86 0.88 %9.38 %0.87

GSMRI 50% 33.76 0.85 %12.70 %1.33
FCSA MT 50% 34.54 0.77 %12.09 %1.09

Proposed Multi-Contrast 50% 39.19 0.92 %7.16 %0.67
Proposed Individual 33% 34.78 0.84 %13.00 %1.19

GSMRI 33% 31.95 0.80 %15.64 %1.51
FCSA MT 33% 28.93 0.64 %22.66 %2.13

Proposed Multi-Contrast 33% 36.06 0.89 %10.13 %0.89
Proposed Individual 17% 30.99 0.80 %19.08 %1.69

GSMRI 17% 25.24 0.55 %33.78 %3.42
FCSA MT 17% 23.73 0.52 %41.75 %4.16

Proposed Multi-Contrast 17% 31.51 0.83 %16.79 %1.44
Proposed Individual 8% 25.65 0.69 %33.51 %3.07

GSMRI 8% 21.54 0.41 %52.02 %4.94
FCSA MT 8% 19.45 0.42 %66.49 %7.16

Proposed Multi-Contrast 8% 26.38 0.70 %30.43 %2.71

degrade other contrast images. One should be careful while using joint recon-

struction.

Next, we demonstrate the convergence speed in terms of the given metrics for

33% of full experimental data. We also provide images for qualitative com-

parison. Quantitative results are given in �g. 6.9. The �gure contains mean

nRMSE, SSIM, pSNR and MME values that are calculated by averaging the

respective metric of all three contrasts. As can be seen from the �gure, the pro-

posed method yielded fast convergence as well as better quantitative metrics,

i.e. highest pSNR and SSIM and lowest MME and nRMSE values.

All contrast images are given in �g. 6.10. The �gure depicts proposed individ-

ual algorithm, GSMRI, FCSA-MT and the proposed multi-contrast algorithm

reconstructions. Each line in the result depicts PD, T1, T2 weighted images,

respectively. The rightmost image includes 4x magnitude sum of error in all

lines. As can be seen, proposed individual method introduced an overall noise

to the image due to lack of exploitation of joint features. GSMRI resulted in a
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Figure 6.9: Comparison of convergence speed of four CS MRI reconstruction
algorithms in terms of SSIM, PSNR, nRMSE, and MME for experimental images
using 33% of full data.
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blocky reconstruction due to Wavelet, while FCSA-MT resulted in a low resolu-

tion reconstruction (edges can not be properly captured). The proposed method

performed the best compared to others algorithms.

Next, we compare the algorithms in terms of robustness. Although we have

shown that the proposed multi-contrast algorithm works better for various un-

dersampling ratios, let us now show robustness of the algorithm to di�erent noise

patterns and undersampling masks for 33% data. We ran the methods 20 times

using 20 di�erent masks and noise patterns for each contrast. Then, we com-

pared the mean pSNR, SSIM, nRMSE and MME values of the algorithms. The

results for each run is given in Fig. 6.11. As shown in the �gure, the proposed

multi-contrast method outperformed all methods in all runs.

6.4 Results of Dictionary Learning Based Method Experiments

In this study, we compared the proposed multi-contrast dictionary learning based

method to both its single contrast counterpart, and other proposed methods. Let

us �rst begin by �nding the best parameters for the algorithm. The algorithm

solves problems of type:

min
x,W,B

∑
i

(
ν‖A(i)x(i) − y(i)‖2

2 +
N∑
j=1

‖WPjx
(i) − b(i)

j ‖2
2

)
+ λQ(W)s.t.‖B‖2,0 ≤ s,

(6.14)

The algorithm includes three parameters: ν (regularization parameter on data

�delity), λ (regularization parameter on dictionary W) and s (sparsity level). λ

is used to tune the likeliness of the learned dictionary to a unitary transforma-

tion, and ν is used to enforce data �delity term. For the sake of simplicity, we

avoid tuning for ν, and set it to a high value of 1e6/{sizeofimage}, which seems

to work �ne, since we are �rst dealing with high SNR scenarios. We optimized

parameters using the experimental data set. We selected all three contrast data,

and ran an exhaustive search algorithm to �nd the best PSNR values for the

proposed dictionary learning method.
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Figure 6.10: (a) Reference (Original) Image, (b) Image Reconstruction using
Proposed Single Contrast Method, (c) Image Reconstruction using GSMRI, (d)
Image Reconstruction using FCSA-MT, (e) Image Reconstruction using Pro-
posed Multi-Contrast Method. From left to right, PD, T1, T2 weighted images
are given. The rightmost image includes 4x magnitude sum of error in all parts.
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Figure 6.11: Robustness comparison for four algorithmsin terms of SSIM, PSNR,
nRMSE, and MME for multi-contrast joint image reconstruction using experi-
mental data.
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Figure 6.12: Evolution of SSIM, PSNR, nRMSE, and MME for di�erent pa-
rameters of the proposed multi-contrast dictionary learning based method using
experimental data subsampled to 33%.

Figure 6.12 shows convergence of di�erent parameters for the proposed method.

As can be seen, while setting higher value of sparsity level helps produce better

images, setting lower λ increases reconstructed image quality. Next, we com-

pare the proposed multi-contrast dictionary learning based method to individual

dictionary learning based method.

6.4.1 Comparison of Multi-Contrast Dictionary Learning Based Method

to Other Algorithms

In this section, we �rst compare the proposed multi-contrast dictionary learning

framework to its individual counterpart, BCSMRI. The individual algorithm

is summarized in section 5.2. We �rst show the advantage of multi-contrast

algorithm to individual algorithm, as well as to other proposed methods.
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Figure 6.13: Evolution of SSIM, PSNR, nRMSE, and MME for di�erent pa-
rameters of the proposed multi-contrast dictionary learning based method using
Aubert-Broche dataset data subsampled to 33%.

We ran an experiment on the four algorithms, proposed individual method, pro-

posed multi-contrast method, single contrast dictionary learning based method

(BCS MRI) and the proposed multi-contrast dictionary learning based method

(MC BCS MRI) using Aubert-Broche dataset and 33% of full data with three

contrasts. Quantitative results can be found in �g. 6.13. Here, ADMM based

algorithms are cut early because these methods have already converged. The

�gure shows clear advantage of using multi-contrast dictionary learning method

over single contrast. However, as can be seen from the �gures, the required re-

construction time is increased compared to other methods. Also, the proposed

multi-contrast ADMM framework outperforms individual BCS MRI method.

Next, we investigate the reconstructed image qualities in experimental data for

experimental data using 25% data. Fig. 6.14 shows the quantitative results for

four algorithms same as above. As can be seen, although the dictionary learn-
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Figure 6.14: Evolution of SSIM, PSNR, nRMSE, and MME for di�erent pa-
rameters of the proposed multi-contrast dictionary learning based method using
experimental data subsampled to 25%.

ing based methods require high computation time to generate a solution. The

methods provide a more accurate solution rather than a fast one. Dictionary

learning is more suitable for cases where computation time is not the limiting fac-

tor. Also, contrary to previous experiment, individual dictionary learning based

method performed better than proposed multi-contrast ADMM framework in

the long run.

Finally, we give visual results of all contrast images. Figure 6.15 shows the

reconstructed images. As can be seen, individual ADMM reconstruction has an

overall noisy image due to lack of data. Multi-contrast ADMM reconstruction

is a little better, however the image still is noisy. Individual BCS MRI failed to

preserve the contrast on edges. MC BCS MRI has the least overall error.
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Figure 6.15: (a) Reference (Original) Image, (b) Image Reconstruction using
Proposed Single Contrast Method, (c) Image Reconstruction using Proposed
Multi-Contrast Method, (d) Image Reconstruction using BCS MRI, (e) Image
Reconstruction using MC BCS MRI. From left to right, PD, T1, T2 weighted
images are given. The rightmost image includes 4x magnitude sum of error in
all parts.
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CHAPTER 7

CONCLUSIONS

In this thesis, we dealt with the problem of multi-contrast MRI image recon-

struction from under-sampled data, and presented three novel methods. We �rst

described the imaging process and compressive sensing theory. Next, we gave

brief information on the optimization algorithms used within the context of this

thesis. We then discussed current problems regarding the application of CS to

MRI.

Two key issues exist in a practical application of CS to MRI. The �rst is that,

CS algorithms require high computation time that undersampling the data for

shortening scan time loses its advantage. The second aspect is on the selection

of transformation domain on which the data is assumed to be sparse. We discuss

the selection of transformation domain, and compare hand-crafted transforma-

tion domains to inferred ones using dictionary learning.

In this study, we approached these problems from two di�erent perspectives. We

�rst dealt with hand-crafted transformation domains. For hand-crafted transfor-

mation domains, we �rst proposed an optimization framework based on a variant

of augmented Lagrangian method, ADMM. Then, we presented details on how

this framework can be employed for CS MRI reconstruction. We used this al-

gorithm for reconstructing single contrast MR images from undersampled data.

We proposed a hybrid cost function speci�c for complex-valued imagery. We

rigorously derived the necessary proximal mapping functions for the algorithm,

and showed how any objective function can be applied to magnitude images.

Next, we derived necessary equations for fast implementation of the algorithm.

We discussed how each parameter of the algorithm can be selected.ADMM con-

verges to an approximate solution in a few iterations. Since a fast solution

was desired rather than a very accurate solution, ADMM was suitable for the
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problem at hand. The method is suitable for not only CS MRI, but also other

imaging modalities that include complex valued image reconstruction problems.

After establishing the framework for single contrast images, we moved to multi-

contrast CS MRI. We �rst discussed the theoretical background of block com-

pressive sensing. We rigorously derived an algorithm for multi-contrast imag-

ing. We then discussed how this algorithm can be applied within the context of

multi-contrast CS MRI. We introduced an objective function similar to the one

proposed in single contrast CS MRI. We then proposed using group-`p-sparsity

with p < 1 instead of group-`1-sparsity for better imposing sparsity on the im-

age. We gave details of e�cient implementation of the objective functions using

the proposed multi-contrast framework. We then demonstrated the power of

group sparsity and group `p sparsity over individual sparsity on a toy example.

In our �nal approach, we dealt with inferred transformation domains using dic-

tionary learning. Dictionary learning is a signal processing tool used for �nding

the most suitable sparsifying transformation on training data. In chapter 5, we

�rst discussed dictionary learning and some basic methods. We then discussed

previous applications of dictionary learning to CS. In this study, we used an

online dictionary learning method, i.e. simultaneous reconstruction of both the

transformation domain and the signal, for image reconstruction. We proposed

a dictionary learning based multi-contrast CS MRI algorithm. Although dic-

tionary learning methods are computationally intensive, this method aims for

improvement on the selection of transformation domain rather than computation

time.

Finally, we tested the three proposed algorithms against each other and ones

that exist in the literature. We �rst tested the performance of single contrast

optimization framework for CS MRI, and compared it to similar single contrast

reconstruction algorithms in the literature in terms of both quantitative and

qualitative metrics. We have shown that the proposed single contrast algorithm

outperforms similar reference algorithms in terms of both metrics. We then

compared the algorithm for robustness using di�erent masks and noise patterns.

We have shown that the algorithm produces consistent results under di�erent
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mask and noise patterns.

We then moved to multi-contrast imaging algorithms. We have �rst shown the

advantage of group-`p-norm over group `1-norm using MRI data. Then, we com-

pared the proposed algorithm to both other joint reconstruction algorithms, and

the proposed single contrast algorithm. The proposed single contrast method

outperformed other joint reconstruction algorithms, while the proposed multi-

contrast method performed the best in terms of both qualitative and quantita-

tive metrics in experimental MRI data. Hence, using mutual information across

channels does not always result in better images. We investigated the method

in terms of both convergence speed, and robustness. We have found that using

joint objective functions help the algorithm converge in fewer number of iter-

ations as well as to a better solution. Hence, exploiting joint features across

contrasts improved image quality for these experiments.

Finally, we tested the dictionary learning based methods. Here, multi-contrast

ADMM framework performed similar to individual dictionary learning based

CS. However, in all cases the proposed MC BCS MRI algorithm outperformed

the other algorithms. The major setback of dictionary learning based methods

is the required computation time. Here, we believe that the speci�c choice of

the method is a trade-o� between computation time and desired image quality.

Future work of this thesis includes performance testing of the algorithms on

more datasets, parallel implementation and comparison of more objective func-

tions. Although we have tested the proposed methods on both simulated and

experimental datasets, large scale applicability of the methods are not shown

in this thesis due to lack of data. Also, ADMM is a highly parallelizable op-

timization framework. Although we have not implemented the algorithms in

a parallel framework using multiple CPUs or GPUs, such an implementation

will surely decrease the required time, which would increase feasibility in the

clinical settings. Within this thesis we have used `1-norm, `2,p-norm, total vari-

ation and joint total variation as hand-crafted transformations. However, other

functions such as total generalized variation, or `1-norm in some transformation

domain such as wavelet may result in better image quality. Finally, we have
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not compared the sparsifying transformations found using the single contrast

dictionary learning based method and multi-contrast dictionary learning based

method. The inherent properties of these transformations may lead to better

hand-crafted or auto-reconstructed sparsifying transformations.
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