
FINITE STRAIN MODELING OF COUPLED THERMO-MECHANICAL
BEHAVIOR OF POLYCRYSTALLINE NI-TI SHAPE MEMORY ALLOYS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

VAHID REZAZADEH

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

MECHANICAL ENGINEERING

AUGUST 2017





Approval of the thesis:

FINITE STRAIN MODELING OF COUPLED
THERMO-MECHANICAL BEHAVIOR OF POLYCRYSTALLINE

NI-TI SHAPE MEMORY ALLOYS

submitted by VAHID REZAZADEH in partial fulfillment of the requirements
for the degree of Master of Science in Mechanical Engineering Depart-
ment, Middle East Technical University by,

Gülbin Dural Ünver
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Raif Tuna Balkan
Head of Department, Mechanical Engineering

Assist. Prof. Dr. Hüsnü Dal
Supervisor, Mechanical Engineering Department,
METU

Assoc. Prof. Dr. Özgür Aslan
Co-supervisor, Mechanical Engineering Dept., Atılım
Uni.

Examining Committee Members:

Prof. Dr. Suha Oral
Mechanical Engineering Department, METU

Assist. Prof. Dr. Hüsnü Dal
Mechanical Engineering Department, METU

Assoc. Prof. Dr. Özgur Aslan
Mechanical Engineering Department, Atılım Uni.

Assoc. Prof. Dr. Demirkan Çöker
Aerospace Engineering Department, METU

Assoc. Prof. Dr. Ercan Gürses
Aerospace Engineering Department, METU

Date:



I hereby declare that all information in this document has been ob-
tained and presented in accordance with academic rules and ethical
conduct. I also declare that, as required by these rules and conduct,
I have fully cited and referenced all material and results that are not
original to this work.

Name, Last Name: VAHID REZAZADEH

Signature :

iv



ABSTRACT

FINITE STRAIN MODELING OF COUPLED THERMO-MECHANICAL
BEHAVIOR OF POLYCRYSTALLINE NI-TI SHAPE MEMORY ALLOYS

Rezazadeh, Vahid
M.S., Department of Mechanical Engineering
Supervisor : Assist. Prof. Dr. Hüsnü Dal
Co-Supervisor : Assoc. Prof. Dr. Özgür Aslan

August 2017, 72 pages

Shape memory alloys (SMAs) hold a significant importance in different areas
such as aeronautics, adaptive structures, oil/gas down-hole, and high-temperature
applications of automobile industry. Nowadays, researchers have already become
well-aware of these applications and attempted to discover all the primary fea-
tures of this specific smart material. Meanwhile, there is a growing effort to pro-
duce mathematical models in order to imitate the related behaviors in a precise
manner. Due to the crucial need to have a fine computational model, we estab-
lished a constitutive theory based on the finite strain framework of continuum
mechanics. The presented thermo-mechanically coupled model can perfectly
reproduce all behaviors of Ni-Ti SMAs including martensitic phase transfor-
mation, pseudoelasticity, and one-way shape memory effect. Our constitutive
model is also able to investigate the strain-rate and temperature dependency of
the loading conditions. This work aims at utilizing finite strain plasticity set-
ting with purely thermodynamically consistent constitutive equations. In this
framework, a user material subroutine (UMAT) is written and implemented into
ABAQUS/Implicit (2016) finite element program. Verification of the model is
carried out by the calibrated experimental findings which exist in the literature.
Numerical simulations of developed constitutive model successfully denote the
ability of our phenomenological model in capturing different memory effects of
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Ni-Ti SMAs under stress-strain-temperature cycling.

Keywords: Shape memory alloys, Finite strain plasticity, Constitutive modeling,
Martensitic phase transformation, Pseudoelasticity, Finite element method
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ÖZ

ŞEKİL HAFIZALI ALAŞIMLARIN TERMOMEKANİK
DAVRANIŞLARININ MODELLENMESİ VE SİMÜLASYONU

Rezazadeh, Vahid
Yüksek Lisans, Makina Mühendisliği Bölümü
Tez Yöneticisi : Yrd. Doç. Dr. Hüsnü Dal
Ortak Tez Yöneticisi : Doç. Dr. Özgür Aslan

Ağustos 2017 , 72 sayfa

Şekil Hafızalı Alaşımlar (ŞHA) havacılık, uyarlanabilen yapılar, petrol ve gaz ku-
yuları, otomotiv ve havacılık alanındaki yüksek sıcaklık uygulamaları gibi farklı
alanlarda önemli bir yere sahiptir. Günümüzde, araştırmacılar bu uygulamalar
hakkında farkındalığa sahiptir ve bu özel materyalin tüm temel özelliklerini keş-
fetmeye çalışmaktadır. İlgili davranışları kesin bir şekilde benzetimi için mate-
matiksel modeller üretilmesi konusunda ise artan bir çaba vardır. Modelleme ve
hesaplama metotları üzerinde artan ihtiyaca cevap vermesi adına, sonlu gerinme
çerçevesinde bünye denklemlerini içinde barındıran bir yapısal model oluştur-
duk. Bu üç boyutlu termo-mekanik olarak birleştirilmiş model, martensitli faz
dönüşümü, psödoelastisite ve tek yönlü şekil hafıza efekti gibi ŞHA’ların tüm
davranışlarını yüksek başarım ile benzetimini hedeflemiştir. Yapısal modelimiz,
yükleme koşullarının gerinim hızının ve sıcaklığın bünye davranışına olan etkisini
de ele almaktadır. Bu çalışma, termodinamik olarak tutarlı yapısal denklemleri,
sonlu şekil değiştirme esnekliği ile birlikte kullanmayı amaçlamaktadır. Bu çer-
çevede bir kullanıcı malzeme altrutini (UMAT) ABAQUS /Implicit (2016) sonlu
elemanlar programına yazılıp uygulanmıştır. Modelin doğrulanması literatürde
bulunan kalibre edilmiş deneysel bulgularla gerçekleştirilmiştir. Gelişmiş yapısal
modelin sayısal simülasyonları, fenomenolojik modelimizin stres gerilim-sıcaklık
döngüsü altında ŞHA’ların farklı hafıza etkilerini yakalama yeteneğini başarıyla
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göstermiştir.

Anahtar Kelimeler: Şekil Hafızalı Alaşımlar, sonlu şekil değiştirme esnekliği,
yapısal modelleme, martensitli faz dönüşümü, psödoelastisite, sonlu elemanlar
yöntemi
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CHAPTER 1

INTRODUCTION AND OVERVIEW

1.1 Shape Memory Alloys

Among thousands of distinct materials, Shape Memory Alloys (SMAs) can be
counted as one of the peculiar materials which are able to draw the attention
of humankind to themselves. Thanks to their crystallographic structure, SMAs
can remember and retaliate to their initial configuration, after a mechanical
deformation. By an increase and decrease in temperature, even under high
applied loads, SMAs demonstrate a considerable shape recovery. Figure 1.1
presents a schematic illustration of SMAs under loading and subsequent heating.

Figure 1.1: Schematic view of shape memory alloys, subjected to mechanical loading and

subsequent heating. θ is temperature,Mf martensite finish temperature, and Af is the austen-

ite finish temperature.

Beyond unique responsive characteristics of SMAs, "Pseudoelasticity", "One-
Way Shape Memory Effect (OWSME)", and "Two-Way Shape Memory Effect
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(TWSME)" are considered as the main and common features of SMAs [1, 2, 3].
Following a severe deformation, OWSME enables the material to retrieve to
its low-temperature state; however, in TWSME, material not only carries the
memory of its low-temperature state, it can also remember its high-temperature
shape. Figure 1.2, illustrates a sample, subjected to mechanical loading. In-
creasing temperature results in complete recovery of the sample in OWSMA
while TWSME carries two different configurations, one for heated state (c), and
one for the cold state (d).

Figure 1.2: One-way shape memory effect versus two-way shape memory effect.

These alloys can absorb or dissipate mechanical energy when they are subjected
to different thermo-mechanical loading. These distinctive characteristics, along
with bio-compatibility have made SMAs popular in high-technology applications
such as aerospace and biomedical application for actuation (in Nitinol stents),
sensing, vibration damping and impact absorption [4, 5, 2].

1.1.1 Morphology

The story behind the shape memory response resides in the crystalline phase
transformation known as martensitic phase transformation, a solid to solid diffu-
sionless (displacive) phase transformation where the lattice or molecular struc-
ture changes abruptly at some temperature. SMAs consist of two distinct phases.
Martensite (M), the so-called low-temperature phase and the austenite (A),
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or the high-temperature phase. Each of these phases posses different thermo-
mechanical and cystallographic characteristics. Generally, austenite has cubic
crystalline structure but martensite has the structure of monoclinic, tetragonal
or orthorhombic. Transformations between these structures are rather displacive
(without diffusion) and first-order. i.e. abrupt changes in lattice parameters.
An important characteristic of the martensitic phase transformation is the mi-
crostructure it creates afterward. The lattice of high-temperature austenite
phase (parent phase) has greater crystallographic symmetry than that of the
low-temperature martensite phase (daughter phase)[3], Figure 1.3.

Figure 1.3: Martensitic phase transformation in SMAs.

Crystalline structure of martensite possess different orientation directions, which
is called variant. Martensitic variants can assemble in two forms: twinned
martensite (M t), which is formed by a combination of “self-accommodated”
martensitic variants [6], and detwinned martensite (or reoriented martensite)
where (Md) , a single specific variant is dominant.

There are four particular temperatures associated with phase transformations
of SMAs, Figure 1.4. During cooling process, forward transformation (austenite
to twinned martensite) begins at the martensitic start-temperature (Ms) . This
transformation continues until the temperature decreases to martensitic finish
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temperature (Mf ). At this stage, the structure is in fully-twinned martensite
and forward transformation is complete. When the temperature of the material
is between Ms and Mf , applying mechanical load will result in detwinning the
martensitic structure and reorienting a certain number of variants. Detwinning
process will change the macroscopic shape, where deformed configuration will be
preserved after unloading. An additional decrease in temperature (cooling) of
SMAmay result in further contraction (thermally), but nothing unusual happens
(from the respect of shape change) [5]. Likewise, if we start heating the solid, the
reverse transformation starts at the austenitic start temperature (As) and finishes
at the austenitic finish temperature (Af ). The difference between transformation
temperature from austenite to martensite and martensite to austenite is known
as hysteresis. hysteresis may vary in different ranges of Celsius in different SMAs
[3, 7].

Figure 1.4: Transformation temperatures and crystallographic structure of SMAs.

1.1.2 Mechanical and Thermal Behaviors

Existence of two different phases and observable characteristics of martensitic
phase transformation give rise to variety of mechanical and thermal behaviors
in SMAs [8]. There are several numerical simulations to cover SMAs response
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to uniaxial and thermal loading conditions. Some cases of these numerical sim-
ulations are:

1. Supermechanical

• Pseudoelasticity.

• Pseudoplasticity.

• Existance of asymmetry in pseudoelastic response in tension and com-
pression.

2. Superthermal

• One-way shape memory effect (OWSME).

• Cyclic Thermal loading under isobaric stress state.

1.1.2.1 Pseudoelasticity

Loading and unloading of SMA, when temperature is constant and above austen-
ite finish (θ � Af ), will result in stress-induced forward and reverse martensitic
transformation. This behavior of SMAs is called Pseudoelasticity or Su-

perelasticity. Figure 1.5 shows a "flag-like" strees-strain curve for superelastic
behavior of SMAs under uniaxial isothermal loading conditions.

With the material being initially in austenite phase, loading from zero stress
(point "0" in Figure 1.5) begins. After elastic loading path (point "1"), phase
transformation from austenite to martensite starts (region "1-2"). Generally, it is
limited with small hardening (rate independent) state. When transformation is
complete (point "2") and martensitic phase is dominant (fully-martensitic phase),
increasing stress can result in severe rehardening (region "2-3"). Note that,
transformation strain or martensitic volume fraction (which is bounded by latter
region) identifies the main factor of SMA modeling [9]. Point "4" corresponds the
unloading, where region "4-5" represents the rapid reverse transformation from
martensite (daughter phase) to austenite phase (parent phase). Note that, in
real experiments, final phases always include some residual strain which indicates
the fractions of martensite retained in the material.
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Figure 1.5: Schematic presentation of the ideal pseudoelasticity response of SMAs [2, 9].

1.1.2.2 Pseudoplasticity

Pseudoplasticity is the response of SMAs under uniaxial loading when tem-
perature is below martensite finish temperature (θ � Mf ). After unloading,
Low-temperature state leads to high percentage of residual strain as shown in
Figure 1.6. Stress-induced transformation results in detwinning the initially
twinned martensite structure. Although reversibility is not considered when the
temperature is belowMf , SMAs can deform (reversibly) up to 8 percent strains.

Figure 1.7, demonstrates the evolutionary effect of an SMA material response
under cyclic loading in the martensitic state. The amount of residual strain is
high and can also reversibly deform about 5 times of regular steel.

1.1.2.3 One-way shape memory effect (OWSME)

In one-way shape memory effect, the material is initially in martensitic phase
(θ � Mf ), subjected to loading and subsequent unloading (zero stress), its
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Figure 1.6: Stress–strain curve of pseudoplastic Ni-Ti [10]

Figure 1.7: Pseudoplastic Ni-Ti under cyclic loading-unloading mechanical stress [10]

structure becomes detwinned martensite (by reorienting a certain number of
variants). The detwinning process results in a macroscopic shape change [3].
By raising the temperature above the austenite finish temperate θ � Af , crys-
tals of low-symmetry martensite phase tend to transform to the high-symmetry
austenite phase, which results in complete shape recovery. Cooling back again
results in twinned martensite with no shape change. Figure 1.8 demonstrates
the details of OWSME and compares it with superelasticity response.
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Figure 1.8: Pseudoelasticity response versus one-way shape memory effect.

1.1.2.4 Two-way shape memory effect (TWSME)

A Two-way shape memory metal can remember its configuration in both low and
high temperatures (see Figure 1.2). In this case, some variants of the marten-
sitic structure are also favored and does not adapt to the "self-accommodated"
structure of the austenite [11]. This behavior can be observed due to repeated
thermomechanical cycling along a specific loading path (training) [3] or the cre-
ation of precipitates in the material [12]. The symmetry and arrangement of
point defects can be a possible reason for TWSME [13]. TWSME is not as
common as OWSME because they deteriorate at high temperatures and are un-
stable in High-Temperature Shape Memory Alloys (HTSMA) systems (SMAs
with transformation temperatures above 100oC) [11].

1.2 Ni-Ti based SMAs

Nickel-Titanium alloy, also knows as Nitinol, is the most known shape mem-
ory alloys utilized in various applications. Exhibiting different behaviors of
OWSME, TWSME and pseudoelasticity under different conditions make it suit-
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able for commercial industrial applications. Corrosion resistance and biocompat-
ibility also make it ideal for medical applications. Nowadays, compared to other
SMAs (copper-based alloys, and iron-based alloys), thermo-mechanical charac-
teristics, crystallography, and responses to heat treatment of this alloy are well
understood. Moreover, there is a vast data about the variation of transforma-
tion temperatures with respect to composition changes [3], which facilitates the
application of Nitinol in various fields of study.

Decisions on SMAs are not concentrated on shape memory functionality but
also on utility features of specific SMA system. Another important point in
highlighting SMAs, is the cost of production and manufacturing to get a desired
shape memory effect at any temperature. The amount of knowledge we gained
in this area contributes to handle these issues in the best way. Based on Alam
et al. [14], price of Ni-Ti alloy has dropped from $1000DOLLAR/kg by the year
2000 to below $200DOLLAR/kg by the year 2015.

1.3 Literature Survey

Shape memory alloys (SMAs) hold a significant importance in different areas
such as aeronautics, adaptive structures, oil/gas down-hole, and high-temperature
automotive. Nowadays, researchers have already become well-aware of these ap-
plications and attempted to discover all the primary features of this specific
material. Meanwhile, there is a growing effort to produce mathematical models
in order to imitate the related behaviors in a precise manner. Research activities
of shape memory alloys involve three main areas: (a) experimental research, (b)
constitutive modeling, (c) analytical/computational work on the analysis of the
boundary value problem of SMA structures and devices. Here, we will go over
experimental work and modeling research done in the literature.

1.3.1 Experimental Research

Starting with the considerable work of Adharapurapu et al. [15], who con-
ducted an experimental research on the effect of temperature on the stress-strain
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response of Ni-Ti alloy (55.6%Ni by weight in alloy) at high strain rate and com-
pared the results with quasi-static strain rate. Obtained results of this work is
utilized to verify our constitutive model in the following chapters. Firstov et al.
[16], observed behavior of an unusual intermetallic compound Ni3Ta in order
to investigate martensitic transformation, shape memory effect, transformation
temperatures and hysteresis. They succeeded to determine the crystal structure
parameters of austenite and martensite and hoped to open new perspectives for
this specific material. Single crystal and polycrystalline Ni-Ti alloys were taken
into consideration by Gall et al. [17], to find out the importance of crystal-
lographic texture of shape memory alloys [18, 19]. Fatigue behaviors of single
crystals are also investigated in this paper. In another experimental work, Lex-
cellent and Tobushi [20], investigated the stress-strain isothermal hysteresis loops
of martensitic transformation in order to determine existence of two yield points
for Ni-Ti shape memory alloys, One for forward transformation and another for
reverse transformation. Tanaka et al. [21], took these results and generalized
them to anisothermal conditions.

Liu et al. [22], conducted a valuable inspection on the asymmetry in tension
and compression (ATC) under uniaxial loading conditions. Based on the obser-
vations in this work, behavior of Ni-Ti shape memory alloys under tension is
different from its behavior under compression. We verified ATC behavior of our
constitutive model with the findings of this paper. Next, three different single-
crystal shape memory alloys C-Al-Be, Ni-Ti, and Cu-Zn-Al samples subjected to
pure bending are studied experimentally and moment-curvature hysteresis loops
are derived in a work by Rejzner et al. [23]. In this work, ATC is also considered
in deriving non-linear differential equations for the motion of neutral plane. Un-
der varying temperatures and different series of uniaxial loading conditions, an
experimental research is conducted to investigate thermomechanical aspects of
Ni-Ti by Shaw and Kyriakides [24]. Another experimental work, guided by Lis-
senden et al. [25], went over the time dependency of deformations in Titanium
alloy. They carried out cyclic deformation tests under the stress-strain and rate
controlled loading conditions. They were able to observe strain ratcheting for
all of the cyclic tests.
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Kockar et al. [26], investigated the effect of grain size on the thermo-mechanical
cyclic stability of martensitic phase transformation of Ni49.7Ti50.3 shape memory
alloy. For this purpose, they refined the grain size using equal-channel angular
extrusion (ECAE) to 100-300 nm. They observed a considerable improvement
in thermal stability by refining the grain size. In a more advanced work, Grabe
and Bruhns [27], inspected the rate and viscous dependence of Ni-Ti subjected
to two-dimensional uniaxial tension/torsion loading conditions. They further
explored the relaxation behavior of Nitinol in this paper. Then, they extended
their research to multiaxial experiments on the polycrystalline Ni-Ti shape mem-
ory alloy [28]. Within high range of temperatures, they investigated the path
dependence of pseudoelasticy and one-way shape memory effect in both isother-
mal and temperature varying thermo-mechanical loading paths.

1.3.2 Constitutive Modeling

There are different approaches to model the behavior of SMAs. They can
be primarily based on micro-mechanics, i.e. crystallography of SMA, macro-
mechanics, i.e. phenomenological models of SMA, combination of micro and
macro-mechanics, kinetics methods, and statistical mechanics. The develop-
ment of numerical methods such as finite difference and finite element method
(FEM) has led to preference for using continuum mechanics theory along with
thermodynamic laws. Two essential theories of continuum mechanics are large
strain theory and small strain theory of deformation. The reader is refered to
[29, 30], in order to acquire knowledge about related concepts.

11



1.3.2.1 Models based on microscopic thermodynamic

Microscopic thermodynamic approach tends to model the microsrtructural fea-
tures of SMAs such as growth of martensite grains, phase nucleation, motion of
interfaces between two parent phases, and so forth. These models are derived
using "Molecular Dynamics (MD)" theory or "Ginzburg-Landau Theory (GL)".
Ginzburg-Landau theory is based on polynomial energy expression which is writ-
ten in terms of strain and temperature. One of the pioneers in this modeling
approach is Falk [31, 32]. His model can be counted as the first constitutive
model of SMAs. Afterward, James and Ball [33], Barch and Kurumhansi [34],
and Abeyarante [35] followed the same path and suggested some applicable mod-
els for SMAs.

Meanwhile, there exist some models based on molecular dynamics theory. In
this theory, there is a system of finite numbers of particles which utilizes New-
ton’s equations to describe the motion of every single particle of the system.
In this category, models are mostly based on two different potential functions:
embedded-atom-method (EAM) and Lennard-Jones (LJ). Lai and Liu [36], Ack-
land et al. [37], and Uehara and Tamai [38], are the examples of models on Ni-Ti
SMA using EAM potential of MD theory. Within the framework of molecular
dynamics, an alternative to EAM is Lennard-Jones potential. Kastner [39], in-
vestigated the evolutionary effect of martensitic phase transformation during a
cyclic loading using LJ potential.

1.3.2.2 Macroscopic phenomenological models

Macroscopic models discuss phenomenological considerations of materials to
model the related behaviors. There are different approaches associated with
macroscopic modeling of materials;

• Theory of plasticity

• Statistical physics

One of the popular phenomenological models of SMAs, is the model of Tanaka
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[40]. The model has utilized second law of thermodynamics in terms of Helmholtz
free energy function. Temperature θ, uniaxial strain ε and martensitic volume
fraction ξ are the only state variables. Within the scope of small strain de-
formation theory Barbarino et al. [41], and Bodaghi et al. [42], developed
phenomenological models wherein, they considered two, scalar and directional,
internal variables; martensitic volume fraction as scalar internal variable, and
the preferred direction of oriented martensitic variants as directional internal
variable. In a two-part paper by Patoor et al. [43], a study on the modeling of
the single crystal and polycrystalline SMAs, dealing with the kinematics of the
phase transformation and addressing different approaches for the development
of the free energy and dissipation, is conducted in order to derive constitutive
equations. Mechanism of two-way shape memory effect (TWSME) is inves-
tigated through the thermomechanical processes in a work by Wada and Liu
[44, 45]. One of the recent applicable models, is the model of Hart et al. [46].
They assessed the effect of irrecoverable viscoplastic strains in SMAs; since,
these accumulated plastic strains are the main event in SMAs subjected to high
temperatures. Later in 2014, Chemisky et al. [47], extended this model to in-
vestigate the concepts of cyclic actuation behavior and transformation induced
plasticity.

Another approach in macroscopic modeling is deriving models using a thermody-
namic potential. In these models, microscopic, phenomenological, and physical
consideration construct the frame of potential energies. These models mostly
utilize the framework presented in Halphen and Nguyen [48]; with generalized
standard materials including internal constraints. One of the most important
models presented based on the thermodynamic potential is Zaki and Moumni
(ZM) model [49, 50]. They considered two parameters in their modeling scope:
first one is the martnesitic volume fraction and the other one is the marten-
site orientation strain tensor. They also explored the utility of their model
by investigating the well-known ATC behavior [51]. Recently, they presented
the numerical simulation of ZM model subjected to multiaxial non-proportional
loading conditions in a conference proceeding of smart material and adaptive
structures [52].
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Within the range of finite strain theory of continuum media, Anand and Gurtin
[53], have developed a three dimensional model for superelasticity response of
Ni-Ti SMA. In their simulation, both isothermal and coupled thermomechanical
response of superelasticity have been modeled within a framework that accounts
for the thermodynamic laws. Following their work, Thamburaja [54] developed
an isotropic-based constitutive model and Crystal-mechanics-based constitutive
model for single-crystal and polycrystalline SMAs in his PhD thesis. Eight years
later, he published a paper by taking Anand’s large strain modeling algorithms
[55], into account and finalized his model.

Similar to these works, there was a constitutive model to reproduce psudoelas-
ticity behaviors of SMAs in finite strain by Aurricchio et al. [56]. They verified
their isothermal model by applying it to simple typical structures like uniaxial
test and four-point bending test. Barot et al. [57], developed a model for thermo-
mechanical behavior of crystallizable shape memory polymers. They modeled
original amorphous phase and semi-crystalline phase to capture shape-memory
effect.

1.4 Aim of Thesis

In response of thermo-mechanical stimulus, shape memory alloys can demon-
strate different characteristic behaviors. Due to this fact, they play a crucial
role in different areas such as aeronautics, military, medical devices, actuators
and etc. Nowadays, most scientists and researchers have already become well-
aware of these applications and attempted to discover all the primary features
of this specific material. Meanwhile, there is a growing effort to produce a
mathematical model which is able to imitate the related behaviors in a precise
manner.

In this thesis, we are motivated to develop a thermo-mechanically coupled phe-
nomenological three-dimensional constitutive model to describe salient features
of shape memory alloys, under different loading conditions. We utilize isotropic-
based plasticity setting with standard balance laws, thermodynamic laws and
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theory of microforce balance to develop our constitutive model. It is aimed to
implement the constitutive model to ABAQUS/Implicit (2016) finite element
program, by writing a user material subroutine (UMAT). Material parameters
are taken and calibrated from experimental research existed in the literature.
Our principal goal is to capture the pseudoelasticity response under uniaxial
loading condition, and extend it to one-way shape memory effect under stress-
strain-temperature cycling. Both isothermal and thermo-mechanically coupled
conditions will be considered here.

1.5 Structure of the Work

Chapter 2, outlines the general theory of continuum mechanics and presents an
entry path to the modeling concepts of SMAs.

In the framework of large-deformation continuum mechanics, Chapter 3 is de-
voted to giving a detailed overview on the development of a thermo-mechanically
coupled elastoplasticity theory to model the temperature dependency and trans-
formation strain of SMAs. Development of theory based on the principle of vir-
tual power is presented by investigating the macroscopic and microscopic force
balance. Then, basic thermodynamic principles such as the balance of energy,
and entropy imbalance are included in this chapter in order to develop the con-
stitutive theory.

At the beginning of Chapter 4, material constants are tabled. Two-dimensional
and three-dimensional geometry definitions and properties, required for finite
element simulation, are explained thoroughly as well. Taking these finite element
models into consideration, we carried out our coupled simulations. Results of
pseudoelastic response along with one-way shape memory effect are presented
graphically. Simulations of SMAs which are subjected to thermal cycling under
uniaxial loading will be shown in this chapter, as well.

Chapter 5, is allotted to discuss the results and demonstrate the capability of
our three-dimensional model in capturing the qualitative responses of SMAs.
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CHAPTER 2

FINITE STRAIN THEORY OF CONTINUUM

THERMODYNAMICS

Basic Fields

x = χ(X, t), motion;

F = ∇χ, J = detF > 0, deformation gradient;

F = FeFp, elastic-plastic decomposition of F;

Fe, Je = detFe = J > 0, elsastic distortion;

Fp, Jp = detFp = J = 1, inelsastic distortion;

Fe = ReUe, polar decomposition of Fe;

Ce = FeTFe, elastic right Cauchy-Green tensor;

T = TT , Cauchy stress;

TR = JTF−T , Piola stress;

ψ, free energy density per unit reference volume;

η, entropy density per unit reference volume;

θ > 0, absolute temperature;

∇θ > 0, temperature gradient;

q, heat flux vector;

r scalar heat supply;

ξ total martensitic volume fraction;

ξ̇ rate of the change of martensitic volume fraction
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This chapter is devoted to giving a comprehensive view point on the development
of finite strain theory of continuum mechanics. Such a theory, can be deployed on
modeling and simulation of the thermo-mechanical response of various materials,
including SMAs, used in different components and structures.

2.1 Large Deformation Theory

Large deformation theory (also called large strain or finite strain theory), is a
theory of continuum mechanics that deals with large scale strains and rotations.
While small deformation plasticity theories are widely used in the analysis and
design of metal structures, such theories fall short in providing adequate basis for
design against plastic-buckling and other structural instabilities, e.g, situations
in which, although the strains may be small, the rotations are often large. Prod-
ucts made from ductile metals are often subjected to processing operations such
as forging, rolling, extrusion and drawing, as well as finishing operations such as
machining, and large plastic deformations are ubiquitous to such manufactur-
ing processes. Also, a proper analysis of the stress and strain states associated
with tips of cracks in structural components requires a theory of finite plasticity;
for that reason, large deformation theories of plasticity form a strong basis for
numerically based computational methods used for the design and analysis of
processing operations.

Since even metals can undergo large elastic dilational changes under high pres-
sures, such as under high velocity impact, it is important to formulate the theory
within a thermodynamically consistent frame-indifferent description that allows
both elastic and plastic deformations to be large1.

1 Notation: For a tensor B, BT denotes its transpose. trB is the trace of tensor B. The
determinant of tensor B is detB. For any tensor B, symB = 1/2(B + BT ), skwB = 1/2(B − BT ).
B0 is the deviatoric part of B which is defined by B0 = B − 1/3(trB)1. For the rest of details about
tensor algebra, the reader is referred to Holzapfel [30].
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2.2 Kinematics

Let us consider a homogeneous body A in reference (initial) configuration and
take a material point X in A 2. Motion of A can be identified as the one-to-one
mapping of x = χ(X, t). On that account, deformation gradient, velocity and
velocity gradient are given by:

F = ∇χ, v = χ̇, L = gradv = ḞF−1. (2.2)

To model the inelastic response of the materials, we assume that the deformation
gradient F may be decomposed as Kröner [60]:

F = FeFp. (2.3)

Accordingly, we assume:

J = detF with Je := detFe > 0, Jp := detFp > 0,

so that Fe and Fp are invertible. Here, suppressing the argument:

• Fp(X) represents the inelastic part of deformation gradient which can
be caused by different mechanisms, such as plastic distortion, damage or
degradation mechanism, phase deformation, etc. This leads to carrying
or pining the material point to a new local configuration.

• Fe(x) is responsible for the subsequent elastic deformation of material
point X. This elastic distortion includes stretching and rotation of the
crystal lattices.

From now on, we refer to Fp and Fe as the inelastic and elastic distortions,
respectively. By Eqs. 2.2 and 2.3,

L = Le + FeLpFe−1, (2.4)

with
Le = ḞeFe−1, Lp = ḞpFp−1. (2.5)

2 For further information about the concepts of homogeneous body, reference configuration, current
configuration, material point, etc., the reader is referred to Holzapfel [30], Lee [58], Gurtin et al. [59].
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Hence, we define the total, elastic, and plastic stretching and spin tensors as
follows:

D = symL, W = skwL, (2.6)

so that

L = D + W, Le = De + We, and Lp = Dp + Wp.

The right and left polar decomposition of F are given by.

F = RU = VR, (2.7)

with

U =
√

FTF, V =
√

FFT. (2.8)

Where R is a rotation (proper orthogonal tensor), while U and V are right and
left stretch tensors which are symmetric and positive definite tensors. Hence,
we derive the logarithmic elastic strain tensor:

Ee = lnUe =
3∑
i=1

Ee
ir
e
i ⊗ rei , (2.9)

with principal values Ee
i = lnλei , where λei and rei are the positive eigenvalues

and eigenvectors of Ue, respectively. The left and right Cauchy-Green tensors
can also be defined as follows:

C = U2 = FTF, B = V2 = FFT. (2.10)

2.2.1 Incompressible, irrotational plastic flow

Here, we consider that the plastic flow follows two fundamental assumptions;

(i) First, plastic flow is incompressible;

Jp = detFp = 1 and trLp = 0, (2.11)

hence,

Je = J. (2.12)
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(ii) Second, under the circumstances in which SMA material may be idealized
as isotropic, utilizing the Kroner [60] decomposition, we assume that the
martensitic transformation is irrotational in the sense that:

Wp = 0, (2.13)

then, trivially, Lp ≡ Dp and;

Ḟp = DpFp. (2.14)

Thus, using Eqs. 2.14 2.4 2.5, and 2.14 we can conclude:

(∇χ̇)F−1 = ḞeFe−1 + FeDpFe−1. (2.15)

2.3 Development of the theory based on the principle of virtual

power

We take an arbitrary subregion G on the reference body A, with n denoting the
outward unit normal on the boundary ∂G of G. Macroscopic motion of body
leads to enforcing power on G, which results in macroscopic surface traction
s(n), measured per unit area in the reference body. Here, the body force, b

accounts for inertia, which results in the fact that the following frame is inertial
in a way:

b = b0 − ρχ̈, (2.16)

with b0 the non-inertial body force, and ρR the mass density in the reference
configuration. Thus, external power can be written as:

Wext(G) =
∫
∂G

s(n) · χ̇da +
∫
G

b · χ̇dv. (2.17)

On that account, we assume that external power is consumed internally by an
elastic stress Se power-conjugate to Ḟe, and plastic stress Tp power-conjugate
to Dp. Thus, the internal power relation can be written as:

Wint(G) =
∫
G

(Se : Ḟe + Tp : Dp)dv. (2.18)

Since Dp is symmetric deviatoric, we can accordingly assume that Tp is sym-
metric, deviatoric.

21



2.3.1 Principal of virtual power

Let us assume some arbitrary fields as ˜̇χ, ˜̇Fe, and D̃p which are consistent with
Eq. 2.15, and consider that at a fix arbitrary chosen time χ, Fe (and hence F

and Fp are known). Then, we require that [59]:

(∇˜̇χ)F−1 = ˜̇FeFe−1 + FeD̃pFe−1. (2.19)

Now let us define a generalized virtual velocity in order to be consistent with
above Eq. 2.19:

ν = (˜̇χ, ˜̇Fe, D̃p)

Then, we write external, and internal power as:

Wext(G, ν) =
∫
∂G

s(n) · ˜̇χ = da +
∫
G

b · ˜̇χdv,

Wint(G, ν) =
∫
G

(Se : ˜̇Fe + Tp : D̃p)dv,
(2.20)

for any part G, the principle of virtual power is the requirement for internal,
and external power to be balanced:

Wint(G, ν) = Wext(G, ν) for all virtual velocities ν. (2.21)

2.3.2 Macroscopic force balance

In Eq. 2.21, we are free to choose any ν which is consistent with Eq. 2.20. So
let us consider a case D̃p ≡ 0, in a way that:

˜̇Fe = ∇ ˜̇χFp−1. (2.22)

With this definition of ν, Eq. 2.21 yields:

∫
∂G

s(n) · χ̇da +
∫
G

b · χ̇dv =
∫
G

(SeFp−T ) : ∇ ˜̇χdv, (2.23)

and by defining,

TR := SeFp−T , (2.24)
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and applying the divergence theorem results in:∫
∂G

(s(n)−TRn) · ˜̇χda +
∫
G

(DivT + b) · ˜̇χdv = 0.

As long as this relation must hold for all G then,

s(n) = TR(n), (2.25)

and the local macroscopic force balance:

DivTR + b = 0. (2.26)

Besides, from the consequences of frame-indifference theory, and Eq. 2.24, we
conclude that:

TRFT = FTT
R. (2.27)

Thus, TR is considered as the classical Piola stress, and Eqs. 2.27, 2.26 indicate
the local macroscopic force, and moment balances in the reference configuration
[59]. Since the body force b accounts for inertia, so that Eq. 2.16 reduces to
local balance law for linear momentum:

DivTR + b0 = ρχ̈, (2.28)

with b0 the non-inertial body force. Moreover, the Piola stress TR is related to
symmetric Cauchy stress T through:

TR = JTF−T , (2.29)

thus,
T = J−1TRFT . (2.30)

considering Eq. 2.12, 2.24, and FeT = Fp−TFT , Eq. 2.30, yields the Cauchy
stress which is:

T := J−1SeFeT . (2.31)

Note that:
Se = JeTFe−T , (2.32)

and is the counterpart of the standard "first Piola stress" with respect to the
intermediate space [59].
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2.3.3 Microscopic force balance

Let us consider a generalized virtual velocity,

˜̇χ ≡ 0; (2.33)

and arbitrarily choose the virtual field ˜̇Dp, and let the rate of virtual deformation
tensor to be;

˜̇Fe = −FeD̃p, (2.34)

consistent with Eq. 2.19. Therefore,

Se : ˜̇Fe = −(FeTSe) : D̃p. (2.35)

Further, let’s define a Mandel Stress by,

Me := FeTSe = JFeTTFe−T , (2.36)

which is not symmetric generally. Then, considering our choice in Eq. 2.33,
the external power vanishes, so that, by Eq.2.21, the internal power must also
vanish, and satisfy,

Wint(G, ν) =
∫
G

((Tp −Me) : Dp) dυR = 0.

Recent equation must satisfy for all G, and all tensors D̃p (which are symmetric,
and deviatoric), then it yields the Microforce Balance:

sym0Me = Tp. (2.37)

This microscopic balance denotes the interaction between internal forcese re-
sulted from the elastic, and plastic response of the material [59].

2.4 Balance of energy. Entropy imbalance. Free-energy imbalance

Let,

• θ > 0 denote the absolute temperature;
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• ε and η denote the internal energy and entropy densities, both measured
per unit volume of the reference configuration;

• q denote the heat flux, measured per unit area in the reference body;

• r denote the scalar value for heat supply, measured per unit volume in the
reference body.

With above definitions, the balance of energy is:
˙∫

G

εdv = −
∫
∂G

q · nda +
∫
G

rdv +Wext(G), (2.38)

while, entropy imbalance of the form (the second law of thermodynamics):

˙∫
G

ηdv ≥ −
∫
∂G

(q
θ

) · nda +
∫
G

r

θ
dv. (2.39)

Therefore, based on equality of Eq 2.21, and since G is arbitrary, we may use
Eq. 2.18 to acquire local forms of Eqs. 2.38 and 2.29 as follows,

ε̇ = −Divq + r + Se : Ḟe + Tp : Dp,

η̇ ≥ −1
θ

Divq + 1
θ2 q · ∇θ + r

θ
.

(2.40)

Let,
ψ := ε− θη, (2.41)

present the Helmholtz free energy per unit volume of the reference body. Then,
by Eq. 2.40, the local free-energy imbalance becomes:

ψ̇ + ηθ̇ + 1
θ

q · ∇θ − Se : Ḟe −Tp : Dp ≤ 0. (2.42)

Note that two conjugate tensors of stress and deformation rate pair (Se, Ḟe) in
Eq. 2.42, are not frame-invariant. Thus, we introduce a new stress tensor in
order to use in the balance of internal energy and free energy imbalance. Recall
from Eq. 2.32 that,

Se = JTFe−T . (2.43)

Let us introduce a new stress relation:

Te := Fe−1Se = JFe−1TFe−T , (2.44)
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the symmetric Te represents a second Piola stress. Note that, Mandel stress
defined in Eq. 2.36 becomes:

Me = CeTe. (2.45)

It is straightforward to show that:

Se : Ḟe = 1
2Te : Ċe, (2.46)

thus, the internal power is:

1
2Te : Ċe + Tp : Dp. (2.47)

Then, the energy imbalance 2.40 may be written as:

ε̇ = −Divq + r + 1
2Te : Ċe + Tp : Dp. (2.48)

While the free energy imbalance 2.42 becomes;

ψ̇ + ηθ̇ + 1
θ

q · ∇θ − 1
2Te : Ċe −Tp : Dp ≤ 0. (2.49)

We note that following fields are frame-invariant:

ψ, η, θ, C, Me, Dp. (2.50)

2.5 Rate-dependency of the theory

From the balance of microforce law, we consider that Mandel stress is related to
flow direction using a rate dependent function of Y , through:

Me
0 = Y (dp, S)Np, (2.51)

where dp = |Dp| and S is positive scalar hardening variable. We assume that Y
function has the form:

Y (dp, S) −→ g(dp)Y (S). (2.52)

Therefore, Eq 2.51 becomes:

Me
0 = g(dp)Y (S)Np. (2.53)
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It is assumed that the rate sensitivity function g(dp) satisfies g(0) = 0, and it
is monotonically increasing function of dp, which is invertible. We take absolute
value of the Eq. 2.53,

|Me
0|

Y (S) = g(dp), (2.54)

which is invertible to:

dp = g−1
(
|Me

0|
Y (S)

)
−→ dp = f

(
|Me

0|
Y (S)

)
. (2.55)

Here, special form of power-law function is going to be used. This function
has important utility in characterizing experimental data. From the power-law
function:

g(dp) =
(
dp

d0

)m
, (2.56)

where, m > 0, is a rate-sensitivity parameter. thus:

dp = d0

(
|Me

0|
Y (S)

)1/m

. (2.57)

From the flow rule we already know that Np = Me
0

|Me
0|
. Taking this into consid-

eration, we conclude:

Dp = d0

(
|Me

0|
Y (S)

)1/m Me
0

|Me
0|
. (2.58)

This indicates how rate-dependency affects the evolution of phase transforma-
tion.
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CHAPTER 3

DERIVATION OF THE CONSTITUTIVE MODEL

FOR NI-TI SHAPE MEMORY ALLOY

In this section, we summarize our continuummechanics-based constitutive model
for Ni-Ti shape memory alloy, capable of representing martenstic phase trans-
formation, pseudoelasticity, and one-way shape memory effect. The related
framework is similar in spirit to the isotropic plasticity-based theory of Anand
and Gurtin [53].

We recall some points from the previous chapter and extend it to constitutive
modeling of Ni-Ti SMA. To construct the constitutive theory, using the standard
notation of modern continuum mechanics, we recall that the deformation gra-
dient F, maps referential segments dX to segments dx = FdX in the deformed
configuration. The list of the governing variables in the constitutive model are:

(i) The Helmholtz free energy per unit reference volume, ψ.

(ii) The Cauchy stress tensor, T.

(iii) The total deformation gradient tensor, F with detF > 0.

(iv) The absolute temperature, θ.

(v) The martensitic phase change tensor, Fp wit detFp > 0. It denotes the
cumulative inelastic strain due to martensitic phase deformation.

(vi) The elastic tensor (no martensitic phase transformation), Fe with detFe >

0. It describes the elastic stretches that give rise to the Cauchy stress T.
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From the theory of Kröner [60] and Lee [58], the elastic distortion tensor
is given by Fe = FFp−1.

(vii) The total martensite volume fraction, ξ with 0 ≤ ξ ≤ 1

3.1 Kinematics of the theory

Here, x indicates the position vector of the material point in the current configu-
ration. The velocity vector, which is time derivative of the position vector with
respect to time becomes, v = ẋ. The derivative of the deformation gradient
tensor with respect to time is:

Ḟ ≡ gradv = LF, (3.1)

where L denotes the total velocity gradient. Using the definition F = FeFp, total
velocity gradient can be represented as:

L = Le + FeLpLp−1, (3.2)

where Le = ḞeFe−1 and Lp = ḞpFp−1 represent the elastic and inelastic part
of velocity gradients, respectively. Let’s consider the polar decomposition of
deformation tensor, F = RU, and drive the logarithmic elastic strain tensor:

Ee = lnUe =
3∑
i=1

Ee
ir
e
i ⊗ rei , (3.3)

with principal values Ee
i = lnλei , where λei and rei are the positive eigenvalues

and eigenvectors of Ue, respectively. Our formulation is based on two important
assumptions: (1) referred to the work of Anand and Gurtin [61], the inelastic
velocity gradient, Lp is taken to be spinless i.e. skwLp = Wp = 0, and (2) the
martensitic phase transformation is isochoric (volume preserving) [62] i.e. Lp is
purely deviatoric.

By taking these points into consideration from previous chapter, we generalize
the work of Sun and Hwang [62] to a large-strain setting and express the inelastic
velocity gradient as:

Lp = k(1 + aφ)
2∑
i=1

ξ̇i.Ṅi (3.4)
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Here, ξ̇1 ≥ 0 and ξ̇2 ≤ 0 is the rate of change in the martensite volume fraction.
In forward transformation, ξ̇1 > 0, whereas in reverse transformation ξ̇2 < 0.
k > 0 is a constant of proportionality, a is a dimensionless scalar parameter,
calibrated from experimental studies and controls the degree of asymmetry in
tension-compression. Following the work of Orgeas and Favier [63], φ denotes the
third stress-invariant measure, i.e. J3, with the value of 0 ≤ φ ≤ 1. Before the
martensitic phase transformation, martensitic volume fraction is zero (ξ = 0),
then at end of transformation it becomes one (ξ = 1). For forward and reverse
transformation, we define N1 and N2 as the flow direction. The flow direction
tensors Ni, are traceless and symmetric, i.e. Ni = NT

i and trNi = 0. From the
work of Auricchio et al. [56], martensitic volume fraction change is taken to be:

ξ̇ =
2∑
i=1

ξ̇i = ξ̇1 + ξ̇2. (3.5)

In Eq. 3.4, we will further enforce, |Ni| = εT , where εT is the experimentally
determined constant which defines transformation strain of austenite-martensite
phase transformation.

Inspired by the work of Sun and Hwang and Boyd and Lagoudas [62, 64], it
has been deducted that reverse transformation is restricted by the history of
forward transformation. In another words, martensite-austenite transformation
is the recovery of the austenite-martensite transformation. Therefore, with N1

in hand, we can derive the reverse transformation flow direction N2 as:

N2 = εT

[
B
|B|

]
with Ḃ = Lp.

Here, B is a tensor defined in the same configuration as Fp, i.e. relaxed config-
uration [65].

3.2 Micro-force balance

A micro-force system is a system that describes forces which perform work as-
sociated to martensitic phase transformation. This system consists of:

• The micro-traction vector, c - per unit area - reference configuration
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• The scalar internal micro-force, πint - per unit volume - reference configu-
ration

• The scalar external micro-force, πext, - per unit volume - reference config-
uration

Following the work of Gurtin [66], we can write the corresponding micro-force
balance equation based on the above micro-force systems, as:∫

∂<
c · n dA+

∫
<
πext dV =

∫
<
πint dV. (3.6)

Using divergence theorem and localization of the results of Eq. 3.6:

Div c− πint + πext = 0, (3.7)

while c, πint and πext are the functions of martensite volume fraction ξ and
martensitic transformation rate ξ̇, respectively:

c = ĉ(ξ, ξ̇), πint = π̂int(ξ, ξ̇), πext = π̂ext(ξ, ξ̇).

3.3 Balance of linear momentum

The balance of linear momentum is written as:∫
∂<

TRn dA+
∫
<

b dV = 0. (3.8)

Where TR = (detF)TF−T , is the first Piola-Kirchhoff stress tensor and b the
macroscopic body force vector per unit volume in reference configuration (which
includes inertial forces as well). Applying divergence law and localizing the
results in Eq. 3.8 yields:

Div TR + b = 0. (3.9)

3.4 Balance of angular momentum

The balance of angular momentum is given by:∫
∂<

y×TRn dA +
∫
<

y× b dV = 0. (3.10)
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Using divergence theorem and localizing the results of Eq. 3.10, while using Eq.
3.9, result in:

TRFT = FTT
R. (3.11)

Substituting TR = (detF)TF−T into Eq. 3.11 results in T = TT i.e. the Cauchy
stress is symmetric.

3.5 Balance of energy

The balance of energy (first law of thermodynamics) is defined as:∫
∂<

[
TRn · v + (c · n)ξ̇ − q · n

]
dA+

∫
<

(b ·v+πextξ̇+r)dV = d

dt

∫
<
εdV, (3.12)

while, ε is the internal energy per unit reference volume. Here q is the heat flux
vector measured per unit area in the reference configuration and r is the heat
supply per unit reference volume. While using Eqs. 3.1, 3.7 and 3.9, applying
divergence theorem and localizing results yield:

TRFT · L + c · ∇ξ̇ + πintξ̇ −Divq + r = ε̇. (3.13)

Substituting TR = (detF)TF−T , Eqs. 3.2, 3.3 and 3.7 into Eq. 3.13 while using
the result of Eq. 3.11 and assuming that the external micro-force vanishes i.e.
πext = 0,

T∗ · Ėe + T̄ · Lp + c · ∇ξ̇ + (Divc)ξ̇ −Divq + r = ε̇, (3.14)

where
T∗ = (detF)Fe−1TFe−T and T̄ = CeT∗, (3.15)

denote frame-invariant measures of stress. Note that T∗ is symmetric whereas
T̄ is generally not symmetric.

3.6 Entropy imbalance

The second law of thermodynamics (entropy imbalance) is written as:

d

dt

∫
<
ηdV >

∫
∂<
−q
θ
· ndA+

∫
<

r

θ
dV. (3.16)
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When η is the entropy per unit reference volume. Applying divergence law and
localizing the results, yield:

η̇θ + Divq − q
θ
· ∇θ − r > 0. (3.17)

Then, lets define Helmholtz free energy per unit reference volume, ψ, as:

ψ = ε− ηθ → ψ̇ = ε̇− η̇θ − ηθ̇. (3.18)

Here, we use the functional form of the free energy density [67], thus;

ψ = ψ̂(Ee, ξ, θ)→ ψ̇ = ∂ψ

∂Ee
· Ėe + ∂ψ

∂ξ
ξ̇ + ∂ψ

∂θ
θ̇. (3.19)

Substituting Eqs. 3.19 and 3.18, into Eq. 3.14 results in,(
T∗ − ∂ψ

∂Ee

)
· Ėe −

(
η + ∂ψ

∂θ

)
θ̇ + Γ = η̇θ, (3.20)

where
Γ ≡ T̄ · Lp + (Divc)ξ̇ − ∂ψ

∂ξ
ξ̇ −Divq + r. (3.21)

Substitution of Eq. 3.20 into Eq. 3.17 results in the dissipation inequality:(
T∗ − ∂ψ

∂Ee

)
· Ėe −

(
η + ∂ψ

∂θ

)
θ̇ + Π > 0, (3.22)

where
Π ≡ T̄ · Lp + (Divc)ξ̇ − ∂ψ

∂ξ
ξ̇ − q

θ
· ∇θ. (3.23)

From rational thermodynamic arguments, inequality 3.22 results in;

T∗ = ∂ψ

∂Ee
, and η = −∂ψ

∂θ
. (3.24)

Eqs. 3.241, and 3.242 are the constitutive equations for the stress, entropy and
the micro-traction vector, respectively.

3.7 Fourier’s law and phase transformation criteria

From Eq. 3.24, we can drive the reduced dissipation inequality from inequality
Eq. 3.22:

Π ≡ T̄ · Lp + (Divc)ξ̇ − ∂ψ

∂ξ
ξ̇ − q

θ
· ∇θ > 0. (3.25)
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Here Π represents the total dissipation and it is always non-negative. By as-
suming each dissipative mechanism to be strongly dissipative [53], substituting
Eqs. 3.4, 3.5 into Eq. 3.25, yields:

f1ξ̇1 > 0 whenever ξ̇1 6= 0, (3.26)

where f1 ≡ k(1 + aφ)[symT̄0 ·N1] + Divc− ∂ψ

∂ξ
, is the driving force for forward

transformation,

f2ξ̇2 > 0 whenever ξ̇2 6= 0, (3.27)

where f2 ≡ k(1 + aφ)[symT̄0 ·N2] + Divc− ∂ψ

∂ξ
, is the driving force for reverse

transformation. Finally,

−q
θ
· ∇θ > 0 whenever ∇θ 6= 0. (3.28)

It is assumed that above inequalities are all obeyed at all times in a way that
reduced dissipation inequality 3.25 is currently satisfied. Under the assumption
of rate-dependence, in order to satisfy inequality of Eq. 3.26, we choose an
expression for f1, as follows:

f1 = fc1 whenever ξ̇1 > 0, (3.29)

where fc1 = f̂c1(θ) > 0 denotes the critical resistance to forward transformation;

f2 = −fc2 whenever ξ̇2 < 0, (3.30)

where fc2 = f̂c2(θ) > 0 denotes the critical resistance to reveres transformation
As it is already known, we can assume that the material obeys Fourier’s law of
heat conduction, we take:

q = −kth∇θ. (3.31)

Where kth = k̂th(ξ, θ) > 0 represents the coefficient of thermal conductivity.
To satisfy Eq. 3.28 kth = k̂th(ξ, θ) > 0, but for simplicity, we will assume
that coefficient of thermal conductivity is constant at all times regardless of
martensitic transformation and temperature.
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3.8 Constitutive function of the free energy density

Free-energy density used in our constitutive modeling is taken to contain the
free-energy of conventional shape-memory alloy, Helm [67]. We consider the free
energy per unit reference volume, ψ to be in separable form as follows:

ψ = ψe(Ee, θ) + ψξ(ξ, θ) + ψθ(θ), (3.32)

where

ψe(Ee, θ) = µ|Ee
0|2 + κ(trEe)2 − 3καth(θ − θ0)(trEe),

ψξ(ξ, θ) = λT
θT

(θ − θT )ξ + 1
2hξ2,

ψθ(θ) = c(θ − θ0)− cθlog( θ
θ0

).

(3.33)

Here, ψe denotes the classical thermo-elastic free energy density with µ = µ̂(ξ, θ),
κ = κ̂(ξ, θ) and αth = α̂th(ξ, θ) represent the shear modulus, bulk modulus and
the coefficient of thermal expansion, respectively.

The martensitic phase transformation energy is defined by ψξ, where λT and θT
represent the latent heat released/absorbed (units of energy per unit volume)
during phase transformation, and the phase equilibrium temperature, respec-
tively. Moreover, the energetic interaction coefficient, h has units of energy per
unit volume.

Purely thermal portion of the free energy is denoted by ψθ with c = ĉ(ξ, θ),
being the specific heat per unit reference volume. In this thesis, we follow
the modeling assumption presented by Abeyaratne and Knowles [35]. They
suppress the dependence of µ, κ, αth and c on the martensite volume fraction
and temperature, and consider them as constants.

3.9 Constitutive function of the stress and entropy

Substituting Eq. 3.32 into Eq. 3.241, results in the stress equation:

T∗ = 2µEe
0 + κ [trEe − 3αth(θ − θ0)] 1. (3.34)
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Further, Substituting Eq. 3.32 into Eq. 3.242, results in the entropy density for
constitutive equation:

η = c log(θ/θ0) + 3καth(trEe)− (λT/θT )ξ. (3.35)

3.10 Flow direction N1 and the J3 parameter

Since, we assumed that material is elastically-isotropic, we can conclude from
stress equation 3.34, that Ee and T∗ are co-axial. Thus, the stress tensor T̄ ≡
CeT∗ is also symmetric. Using this result and substituting Eqs. 3.32 and 3.34
into the equation of driving force for phase transformation results in:

f1 = k(1 + aφ)(T̄0 ·N1)− λT
θT

(θ − θT )− hξ, (3.36)

f2 = k(1 + aφ)(T̄0 ·N2)− λT
θT

(θ − θT )− hξ. (3.37)

Substituting Eq. 3.36 into Eq. 3.29, while ξ̇ 6= 0 (forward transformation),
yields:

k(1 + aφ)(T̄0 ·N1) = λT
θT

(θ − θT ) + hξ + fc1(sign(ξ̇1)). (3.38)

In order to satisfy Eq. 3.38, we take:

(εT )2[k(1 + aφ)]T̄0 =
{
λT
θT

(θ − θT ) + hξ + fc1(sign(ξ̇1))
}

N1. (3.39)

Since |N1| = εT . Taking the magnitude of both sides of Eq. 3.39 results in:

N1 = εT

{
T̄0

|T̄0|

}
−→ f1 = σ̄εT (1 + aφ)− λT

θT
(θ − θT )− hξ, (3.40)

where σ̄ = κ|T̄0| represents an equivalent stress. Following the work of Orgeas
and Favier [68], the J3 parameter is then given by:

φ =
√

6
[
N1 ·N2

1

]
(εT )−3.

3.11 Flow rule

During forward transformation i.e. ξ̇1 6= 0 and ξ̇2 = 0, we get:

εT (1 + aφ)ξ̇1 ≡
√

2/3|symLp| −→ k =
√

3/2 and σ̄ =
√

3/2|T̄0|.
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As mentioned above, σ̄ is equivalent tensile stress or Mises stress. Thus, the
final form of the flow rule i.e. the inelastic strain-rate is then given by:

Lp =
√

3/2(1 + aφ)
2∑
i=1

ξ̇iNi. (3.41)

3.12 Related criteria for the driving forces and phase transformation

rates

The criteria for the driving forces f1 and f2 are defined as follows:
f1 6 fc1 for 0 6 ξ < 1,
f2 > −fc2 for 0 < ξ 6 1,

• for ξ = 1 : the driving force for forward transformation is defined for all
values of f1.

• for ξ = 0 : the driving force for forward transformation is defined for all
values of f2.

Conditions for phase transformation between martensite and austenite in a rate-
dependent theory, are:

• Conditions for elastic range: If f1 6= fc1, then ξ̇ = 0. If f2 6= −fc2, then
ξ̇ = 0

• Forward transformation: If 0 6 ξ < 1 and f1 = fc1, then

ξ̇1( ˙f1 − fc1) = 0. (3.42)

• Reverse transformation: If 0 < ξ 6 1 and f2 = −fc2, then

ξ̇2( ˙f2 − fc2) = 0. (3.43)

• End conditions: If ξ = 1 and f1 = fc1, then ξ̇ = 0. If ξ = 0 and f2 = −fc2,
then, ξ̇2 = 0.

Eqs. 3.42 and 3.43, represent the consistency conditions for forward and reverse
phase transformation, receptively [65]. These consistency conditions are used to
determine the transformation rates ξ̇1 and ξ̇2.
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3.12.1 Balance of energy

Substituting Eqs. 3.31, 3.32, 3.34 and 3.35 into Eq. 3.20 gives:

T̄0 · Lp − λT
θT

(θ − θT )ξ̇ + kth(∇2θ) + r = η̇θ. (3.44)

Taking the time-derivation of Eq. 3.35, yields:

η̇ = ( c
θ

)θ̇ + 3καth(trĖe)θ − (λT/θT )ξ̇. (3.45)

By substituting Eqs. 3.5, 3.41 and 3.45 into Eq. 3.44, we can drive evolution
equation for temperature as follows:

cθ̇ = kth(∇2θ) + (λT/θT )θξ̇ − 3καth(trĖe)θ +
2∑
i=1

fiξ̇ + r. (3.46)
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CHAPTER 4

RESULTS OF FINITE ELEMENT SIMULATIONS

Previous chapter was concerned with the comprehensive explanation on the
related energy functions, evolution algorithms, and the constitutive equations.
In this chapter, we are planning to present numerical simulations to demonstrate
the capability of our fully coupled 3-D modeling framework. On that account,
simulations of following cases will be considered under uniaxial stress/strain-
controlled loading conditions,

• Pseudoelastic response,

• Asymmetry in tension and compression of pseudoelastic response,

• Pseudoplastic response,

• One-way shape memory effect,

• Stress-controlled and strain-controlled thermal cycling.

Note that UMAT (user material subroutine) has been written and implemented
to FE program ABAQUS® (ABAQUS/Implicit, 2016) to perform the simula-
tions.

Throughout this chapter, basic assumptions have been made towards the fi-
nal model of polycrystalline Ni-Ti SMA: that material constants such as ther-
mal expansion, heat capacity and, bulk modulus are independent of austenite-
martensite crystal structure. Likewise, concluded from isotropic-plasticity the-
ory, the material is assumed to be isotropic. It should be mentioned that none
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of these simplifications/assumptions play a critical role in presenting the con-
stitutive model and they can be disregarded straighforwardly. Our presented
results in this chapter, reveals the admissibility of these assumptions.

4.1 Material constants and geometry definitions

In this thesis, we did not carry out any kind of experimental research to pro-
vide material parameters for Ni-Ti alloy. We only aimed to demonstrate the
qualitative features of the mechanically rate-dependent model. For this reason,
all material parameters are taken from Thamburaja and Anand [69], who con-
ducted experiments on the textured sheet of the polycrystalline Ni-Ti alloy.
Table 4.1, represents the values for all of these parameters which are used in
our model. Based on the assumption taken by Abeyaratne and Knowles [35],
we will not consider the dependence of material parameters on the martensitic
volume fraction and temperature, and keep them constant throughout the phase
transformation. Thus, estimated transformation temperatures are as follows:

θms = 251.3 K, θmf = 213.0 K, θas = 260.3 K, θaf = 268.5 K.

Table 4.1: Material parameters of polycrystalline rod Ni-Ti [69].

µ = 23.31 GPa κ = 60.78 GPa αth = 10× 10−6 K−1 εT = 0.046
a = 0.13 h = 0 J/m3 c = 2.08 MJ/Km3 Kth = 18 W/mK
θT = 255.8 K λT = 97 MJ/m3 fc = 7.8 MJ/m3 r = 0 W/m3

For implementing our model into finite element simulation, first of all, a thermo-
mechanically-coupled continuum 3-D brick single-element, C3D8RT, is taken
into account as shown in Figure 4.1(a)1.

In a sense, elaboration of phenomenological models is in pledge of targeting
complicated geometries. Thus, in order to look deeper into the roots of written
implicit code and investigate the rate of convergence, from ABAQUS documenta-
tions [70], we hired a 2-D plane strain, 4-node bilinear hybrid with temperature

1 C3D8RT, is a general purpose temperature-displacement continuum linear brick element, with
reduced integration (1 integration point).

42



(a) (b)

Figure 4.1: Schematic view of geometric finite element mesh with thermo-mechanically-

coupled element type, (a) single three-dimensional C3D8RT element. (b) plane strain

CPE4HT element.

and displacement degrees of freedom, CPE4HT [70], element type. This 2-D
multi-element finite element model contributes to verify the validity of frame-
work as well. Figure. 4.1(b) demonstrates the schematic view of 2-D finite
element model.

Figure 4.2: Geometric finite element mesh of a four-coil SMA actuator.

Finally, taking the importance of application of SMA helical actuators in electri-
cal and aerospace industries into consideration, we implemented a SMA helical
spring finite element model, as illustrated in Figure 4.2. Accordingly, the geo-
metric variables of spring coil are indicated in Table 4.2. Helical spring finite
element model can play an important role in evaluating of SMA model under
different conditions of geometric complexity and can also be a clear 3-D model
to enable a precise demonstration of one-way memory effect. For the purpose of
integrity in results, a refined mesh of total 3920 C3D20RHT elements (20-node
thermally coupled brick, triquadratic displacement, trilinear temperature, hybrid,
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linear pressure, reduced integration, three-dimensional [70]), were applied for the
analysis.

In the upcoming sections, we are about to deal with the set of key state variables
which introduce major features of SMAs; that is to construct a reliable scope
for our constitutive model.

Table 4.2: Geometric parameters of the helical SMA spring [71].

Variables Values
Number of helix, n 4
Mean coil Diameter, Dm (mm) 12.7
Inside coil Diameter, Di (mm) 11.2
outside coil Diameter, Do (mm) 14.2
wire Diameter, d (mm) 1.5
Pitch height,P (mm) 2.8
Pitch angle, α (deg) 4.014

In the most following experimental plots, we are aimed at carrying out a qualita-
tive comparison between experimental findings of literature and ideal behavior
of SMAs simulated by numerical analysis. Due to this reason, we ignore the
quantitative arguments as stress plateau numbers, strain amounts and so forth.

4.2 Pseudoelasticity response

Pseudoelasticity is the initial departure point for characterizing the reliability
of every SMA model. In that account, we conducted a simple tension and com-
pression test on the derived SMA constitutive model calibrated with material
parameters stated in the Table 4.1. Subjected to tensile stress, boundary con-
ditions are applied in a way that the resultant shapes for both 3-D and 2-D
finite element models are deformed as exhibited in Figures 4.3(a) and 4.3(b),
respectively.

At the beginning of deformation, material is fully-austenitic, (θ = 298 > θaf ).
Critical resistances of forward-reverse transformation are supposed to be equal
and independent of temperature (for the all numerical simulations). An isother-
mal simulation of 2-D and 3-D finite element models performed under both stress
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(a) (b)

Figure 4.3: Deformed and undeformed shape of finite element mesh at the end of loading

and unloading step, (a) 3-D Geometry (b) 2-D plain strain geometry. Shaded parts are the

initial configurations.

and strain-controlled loading conditions. As shown in Figure 4.4(a) and 4.4(b),
material initially behave elastically. Crystallization of martensite leads to sub-
sequent perfect plasticity h = 0. At the end of phase transformation, material
begins to harden elastically since we have a fully martensitic structure. As un-
loading begins, reverse transformation from martnesite to austenite takes place
and the the material navigate in the same manner as forward transformation,
(See Figure. 4.4(a) 4.4(b)). Results of the experimental analysis taken from
Huo and Muller [72], are also presented in the 4.4(c). It can be inferred from
the graphs that the plastic deformation is directly delivered by the advance and
retreat of the martensitic volume fraction. Martensitic phase transformation is
induced just at the presence of mechanical loading. In the experimental plots of
Figure 4.4 and in most subsequent figures, we are aimed at carrying out a qual-
itative comparison between experimental findings and ideal behavior of SMAs
simulated by numerical analysis. Due to this reason, we ignore the quantitative
arguments as stress plateau numbers, strain amounts and so forth.

In order to observe the formation of hysteresis loop during pseudoelastic behav-
ior, the following simulation conducted under isothermal loading condition. The
sample is subjected to tensile stress in a way that each cycle ends before the
completion of martensitic phase transformation. This repeats also for the reverse
transformation in the opposite manner. In the experiment conducted by Huo
and Miller [72], hysteresis loop derived for this cyclic loading. It is concluded
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(a) (b)

(c) (d)
.

Figure 4.4: Pseudoelastic response of Ni-Ti SMA under (a) uniaxial tension, (b) uniaxial

compresssion. (c) Experimental results of pseudoelasticity obtained from Huo and Muller [72].

(d) Ideal behavior expected by Huo and Muller [72].

that AB line is region that full thermodynamic equilibrium take place for all
internal and external state variables and driving force of phase transformation
is zero. As it is illustrated in 4.5(a), the derived constitutive model can produce
this phenomenon in a satisfying manner.

4.2.1 Hardening effect

Another analysis conducted while energetic interaction coefficient is set to-
h = 2 × 104 J/m3. In the spirit of modeling inelastic materials, h coefficient
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(a) (b)

Figure 4.5: Formation of hysteresis loop due to partial cyclic loading-unloading. (a) Results

of experimental findings by Huo and Muller [72] for CuZnAl SMA. (b) Results of numerical

simulation of related behavior.

is responsible for the hardening behavior of the material (if there is any). It
should be mentioned that we have isotropic kind of hardening here. Figure 4.6
indicates the result of this analysis.

Figure 4.6: Comparison of pseudoelasticity response with hardening and without hardening.
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4.2.2 Temperature effect in isothermal analysis

In another investigation of pseudoelasticity behavior, we performed a simulation
with two different ambient temperatures (θ0 = 288K & θ0 = 308K). With
the material parameters calibrated with respect to Table 4.1, simple isothermal
tension loading-unloading analysis is conducted with our model. As illustrated
in the plots 4.7(a), and 4.7(b), the required stress to induce forward and reverse
transformation increases by increasing ambient temperature (i.e. critical stress
is dependent linearly on temperature). In another words, critical stress increases
from 400MPa to 580MPa as temperature increases from 288K to 308K. However,
the area of hysteresis loop remains unchanged due to the fact that hysteresis
is independant of temperature in pseudoelasticity. Unchenged hysteresis loop
results in equal transformation strains for all temperatures. This is inferred
from the stress exploitation of thermo-elastic portion of energy function. All of
these results take place in a same manner as experimental findings of Huo and
Muller [72] and Tanaka et al. [21].

4.2.3 Strain-rate effect

Amount of the strain rate-dependency of the model will be taken into consid-
eration in this section. Figure 4.8(a) demonstrates three different pseudoelastic
responses conducted with various strain-rates under thermo-mechanically cou-
pled conditions. Increasing strain-rate exhibits different trends in stress-strain
response of pseudoelastic behavior:

• A larger hardening happens in forward transformation.

• A larger softening happens in reverse transformation.

• Hysteresis loop gets wider (dissipation increases).

The causes for the observed trends are as follows: in the low strain-rate m =
1 × 104, simulation behaves in a nearly isothermal way, i.e. martensitic phase
transformation occurs in a constant stress plateaus. However, by increasing
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(a) (b)

(c) (d)

Figure 4.7: Stress-strain plot of the pseudoelastic response under different temperatures,

(a) tension loading, (b) compression loading. (c) Experimental results of Huo and Muller[72]

for CuZnAl, (d) experimental results of Tanaka et al [21] for Ni-Ti

deformation-rate, simulation leads to non-isothermal results. Analysis’ contours
demonstrate generation of temperature field in high strain-rates. That being so,
generated temperature causes hardening during phase transformation.

4.2.4 Fully-coupled simulation

Finally, fully-coupled thermo-mechanical behavior of our model is exhibited in
Figure 4.9(a). In the forward transformation, since the generated heat energy
due to mechanical dissipation and release of latent heat do not leave the spec-
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(a) (b)

Figure 4.8: Strain-rate effect on the stress-sttrain curve of pseudoelasticity. (a) Numerical

simulation results. (b) Experimental results [15].

imen quickly (through conduction and convection), temperature-time response
indicates 39K increase in one cycle of uniaxial loading-unloading tensile stress.
This increased temperature causes hardening in stress-strain curve during analy-
sis, Figure 4.9(b). However, in the reverse transformation, absorbed heat due to
the phase transformation (latent heat) exceeds the heat generated by mechani-
cal dissipation, thus, this results in decreasing the temperature of specimen with
respect to ambient temperature to 302K. This is the decrease in temperature
which leads to softening of material in reverse transformation, Figure 4.9(b).
Total increase of 4K in temperature is the output of the mechanical dissipation
in one cycle of uniaxial loading-unloading tensile stress.

As mentioned previously, coupled behavior of the model emerges from the evo-
lution equation for the temperature (Eq 3.46), which is perfectly embedded into
UMAT code. The detailed step by step algorithm is presented in appendix A.

4.3 Asymmetry in tension and compression (ATC)

Literature of shape memory alloys are full of cases which discuss the asymmetry
in tension and compression (ATC) of SMAs [22][15][73]. To investigate this
behavior in Ni-Ti SMA, the numerical stress-strain curves are plotted repeatedly
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(a) (b)

(c)

Figure 4.9: Fully-coupled behavior of the model under uniaxial loading-unloading tensile

stress. (a) Temperature-time plot, (b) stress-strain plot, and (c) strain-time plot, at the end

of cycle

in Figure 4.10(a). As mentioned previously, constant a and J3, are responsible
for the ATC trend in our model. Figure 4.10(a) indicates the following facts:

• Stress value required to initiate the forward-reverse phase transformation
is higher in compression.

• Hysteresis loop is wider in compression.

• Transformation strain measured in compression is less than the transfor-
mation strain measured in tension.
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(a) (b)

Figure 4.10: (a) Numerical simulation of asymmetry in tension and compression, (b) Ex-

perimental results of ATC in pseudoelasticity obtained from Thamburaja and Anand [69].

As it is obvious from the plots 4.10(a) and 4.10(b), the results of our constitutive
model and experimental findings are in well agreement with each other. The
story behind the ATC is buried under the fact that under compressive stress
large amount of dislocation happens between martensite bands; However, under
tensile stress reorienting of martensite variants happens rather that generating
dislocation.

4.4 One-way shape memory effect

The most prominent behavior of SMA, which makes it ideal for various appli-
cations, is one-way shape memory effect. When subjected to mechanical load-
ing, a crystal structure of an initially twinned martensite becomes detwinned
martensite and then by subsequent heating, it transforms to austenite struc-
ture. Here, a fully-coupled analysis conducted on the finite element model as
following: initially, a concentrated force of 150 N applied to every single node
in the z direction while temperature is below martensite finish temperature
(θ = 240 < Mf ). Loading step continues until the whole material becomes fully
austenitic. Then, material unloads to zero stress while ambient temperature
is still (θ = 240 < Mf ). This is followed by heating to (θ = 298 > θaf ) and
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subsequent cooling to (θ = 240 < Mf ), while the stress state is kept at zero.
Figure 4.11, demonstrates a fine comparison among different numerical models
and experimental findings of one-way effect in Ni-Ti SMA.

(a) (b)

(c)

Figure 4.11: (a)Experimental results obtained by Noebe et al [74] (b) model prediction of

Saleeb et al. [9], (c) simulation results of numerical analysis.

Taking the importance of application of SMA helical actuators in electrical and
aerospace industries into consideration, we implemented our constitutive model
on the helical spring finite element mesh, as illustrated in Figure 4.2. Geometry
is sketched by SolidWorks (2016), based on the parameters listed in Table 4.2,
and then inserted to Abaqus/Implicit (2016) in order to be meshed. For detailed
information about mesh configuration, reader is referred to section 4.1. Figure
4.12(a), indicates the helical spring at the beginning of analysis. Subjected to
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uniaxial loading, spring elongates (see 4.12(b)), and subsequent unloading leads
to driving back the elastic deformation as presented in the configuration 4.12(c).
Next, pure thermal step begins as temperature raises from 240K to 340K. By
increasing temperature, spring shrinks to its initial shape as the residual plastic
strain disappear, Figure 4.12(e). Here, stress, strain, and temperature-variation
contours along the helical spring is clearly observable. Results of numerical
simulations successfully signifies the prominent one-way shape memory effect.

4.5 Stress-controlled thermal cycling

Another manifestation of the pseudoelasticity response is the strain-temperature
response under isobaric (constant stress) tension. A single element cube is sub-
jected to fixed stress level of 80 MPa and goes through a single cycle of tempera-
ture between 265K and 320K. The material initially is in full austenitic state;
however, subsequent stress results in fully martensitic phase. This is followed by
a raise in temperature to 320K and ended by decreaseing temperature to ini-
tial temperature 265K. Padula et al. [75, 76], conducted different experiments
on the thermal cycling of Ni-Ti SMA to demonstrate the evolutionary effect of
this alloy. Figure 4.13, exhibits strain-temperature curve for isobaric tension
obtained by experimental findings of Padula et al. [75, 76], model predictions
of Anand and Gurtin [53], and our simulation results.

We also carried out a different simulation with different stress levels of 60 MPa to
130 MPa It is been concluded that increasing stress level leads to an increase in
the initial temperature needed to initiate martensitic forward and reverse trans-
formation. It is clear that thermal loop width remains fixed as stress increases
i.e., it is independent of stress level at which transforamtion begins. Figure
4.14, compare the results of numerical simulation with experimental findings of
Thamburaja and Anand [77].
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(a)

(b) (c)

(d) (e)
.

Figure 4.12: Finite element model of helical spring, implemented with constitutive model

of polycrytalline Ni-Ti SMA. (a) Initial configuration, (b) end of loading step, (c) end of

unloading step, (d) increasing temperature from 240K to 320K, (e) end of heating step.
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(a) (b)

(c)

Figure 4.13: Single thermal cycle under isobaric stress. (a) Simulation results of our

constitutive model, (b) model prediction of Thamburaja and Anand [53], (c) experimental

results obtained by Saleeb et al. [71]
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(a) (b)

Figure 4.14: Comparison of single thermal cycle under isobaric stress of various stresses.

(a) result of numerical simulations, (b) model predictions of Thamburaja [65]
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CHAPTER 5

CONCLUSION

To establish a constitutive theory for Ni-Ti SMA, this work utilized finite strain
plasticity setting with purely thermodynamically consistent constitutive equa-
tions. With the martenesitic volume fraction as the internal variable evolving
with phase transformation, our model demonstrated high capabilities in captur-
ing various qualitative behavior of Ni-Ti SMA. The results show that SMAs can
be modeled successfully within this framework. Delicate inspection in the tem-
perature evolution equation and synchronizing it properly with the algorithm
led us to reproduce the thermo-mechanically coupled behavior in a fundamental
way.

It is shown that the presented constitutive model can perfectly capture pseudoe-
lasticity, and one-way shape memory effect from different aspects. Furthermore,
basics of the ATC is also reproduced by the derived constitutive model and it
is in good agreement with experimental findings. Rate and temperature de-
pendency is also captured successfully in presented constitutive model. In this
thesis, both isothermal and coupled simulations conducted on different 2-D and
3-D finite element mesh and implemented to ABAQUS/Implicit (2016) finite
element program. Although, SMAs are mostly subjected to large scale defor-
mations, most constitutive models existed in the literature are written in small
strain framework which can not intricately reproduce the related phenomena.
Some of these classically well-known models do not function in a fully-coupled
manner. They mostly introduce an internal variable to be responsible for the
temperature evolution of model. In this regard, we put our effort to establish
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constitutive relations which are able to successfully model important behaviors
of SMAs such as martensitic phase transformation, pseudoelasticity, and one-
way shape memory effect under different loading and temperature conditions.

In the light of obtained results, next step will be to further investigate the model
under different proportional-unproportional multiaxial loading conditions.
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APPENDIX A

TIME-INTEGRATION PROCEDURE :

CONSTITUTIVE MODEL OF NI-TI SHAPE

MEMORY ALLOY

This appendix, gives a comprehensive summary on the implicit time-integration
procedure of constitutive model developed for Ni-Ti SMA. Here, t denotes the
current time, ∆t is an infinitesimal time increment, and τ = t+ ∆t.

Following parameters are known at the beginning of each step in the algorithm:

• F(t), F(τ), θ(t), θ(τ).

• T(t), Fp(t).

• B(t), N1(t), N2(t), φ(t).

• Martensite volume fraction ξ(t).

note that, initially B(t) = 0.

Following parameters will be calculated at the end of the each step:

• T(τ), Fp(τ).

• B(τ), N1(τ), N2(τ), φ(τ).

• Martensitic volume fraction ξ(τ) with advancing forward in time.
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The steps of algorithm are as follows:

Step 1. Calculate the trial elastic strain Ee(τ)trial:

Fe(τ)trial = F(τ)Fp(t)−1,

Ce(τ)trial = (Fe(τ)trial)TFe(τ)trial,

Ee(τ)trial = (1/2)(Ce(τ)trial − 1).

Step 2. Calculate the trial stress T∗(τ)trial

T∗(τ)trial = 2µEe
0(τ)trial + κ[trEe(τ)trial − 3αth(θ(τ)− θ0)]1 (A.1)

Step 3. Calculate the trial driving forces fi(τ)trial. In our implicit numerical
algorithm , initially we approximate:

Ni(τ) ≈ Ni(t), φ(τ) ≈ φ(t) and T̄(τ) ≈ T∗(τ) (A.2)

Note that later approximation is valid only in infinitesimal elastic stretches.
Thus, the trial driving force for phase transformation are then given by:

fi(τ) =
√

3
2(1 + aφ(t))

[
T∗0(τ)trial ·Ni(t)

]
− λT
θT

(θ(τ)− θT )− hξ(t) (A.3)

Step 4. Evolution equation for plastic decomposition of deformation matrix.
lets take plastic distortion-rate tensor, Eq. (3.41):

Lp =
√

3/2(1 + aφ)
2∑
i=1

ξ̇iNi

and putting it into the decomposition of distortion-rate tensor, Lp = ḞpFp−1

yields,

Fp(τ) =
{

1 +
√

3/2(1 + aφ(t))
2∑
i=1

∆ξjNj(t)
}

Fp(t) (A.4)

Step 5. Determine the criteria for potential transformation systems.
Consistency conditions for phase transformation are as follows:

• For forward transformation,

f1(τ)− fc = 0
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• For reverse transformation,

f2(τ) + fc = 0

Using Eqs. (A.1)-(A.4), it is straightforward to show that:

fi(τ) = fi(τ)trial −
2∑

i,j=1
∆ξj

[
3µ(1 + aφ(t))2sym(Ce(τ)trialNj(t)) ·Ni(t) + hδij

]
(A.5)

where δij is the Kronecker delta. Substituting Eq. (A.5) into mentioned above
consistency equations yields transformation conditions as follows:[

3µ(1 + aφ(t))2Ni(t) · sym(Ce(τ)trialNj(t)) + hδij
]

∆ξi = bi with i, j = 1, 2
(A.6)

for forward transformation,

b1 = f1(τ)trial − fc > 0 and ∆ξ1 > 0

for reverse transformation,

b2 = f2(τ)trial + fc < 0 and ∆ξ1 < 0

For the considerations of rate dependency, we define a subroutine that iteratively
solve for the martensitic volume change rate using Newton-Raphson/Bisection
method. For the detailed information, reader is referred to numerical recipe of
RTSAFE function. By taking Eqs. 2.57 and 2.58 into consideration, function
f(x) to be used in the algorithm is:

f(x) = f1(τ)trial−
[
3µ(1 + aφ(t))2N1(t) · sym(Ce(τ)trialN1(t)) + h

]
∆ξ1(τ)−f(c)

(
∆ξ1(τ)
∆ξ1(t)

)m
(A.7)

for forward transformation, and:

f(x) = f2(τ)trial−
[
3µ(1 + aφ(t))2N2(t) · sym(Ce(τ)trialN2(t)) + h

]
∆ξ2(τ)−f(c)

(
∆ξ2(τ)
∆ξ2(t)

)m
(A.8)

for reverse transformation. Here m is the parameter for controlling the amount
of rate-dependency.

Step 6. Update the martensitic volume fraction.

ξ(τ) = ξ(t) +
∑
i

∆ξi, i = 1, 2 (A.9)
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If ξ(τ) > 1, then set ξ(τ) = 1. If ξ(τ) < 0, then set ξ(τ) = 0.

Step 7. Update the plastic distortion Fp(τ).

Fp(τ) =
{

1 +
√

3/2(1 + aφ(t)
2∑
i=1

∆ξjNj(t)
}

Fp(t) (A.10)

Step 8. Calculate the stress T∗(τ).

Fe(τ) = F(τ)Fp(τ)−1,

Ce(τ) = (Fe(τ))TFe(τ),

Ee(τ) = (1/2)(Ce(τ)− 1),

T∗(τ) = 2µEe
0(τ) + κ[trEe(τ)− 3αth(θ(τ)− θ0)]1

(A.11)

Step 9. Update the flow direction N1(τ) and the J-3 parameter.

N1(τ) = εT

[
T∗0(τ)
|T∗0(τ)|

]
and φ(τ) =

√
6
[
N1(τ) · (N1(τ))2

]
(εT )−3 (A.12)

Step 10. Update the tensors B(τ) and reverse flow direction N2(τ):

B(τ) = B(t)+
√

3/2(1+aφ(t)
2∑
i=1

∆ξjNj(t) and N2(τ) = εT

[
B(τ)
|B(τ)|

]
(A.13)

Step 11. Calculate the driving forces fi(τ)

fi(τ) =
√

3
2(1 + aφ(t)) [T∗0(τ) ·Ni(τ)]− λT

θT
(θ(τ)− θT )− hξ(τ) (A.14)

Step 12. Calculate the inelastic work increment:

∆ωp =
(
λT
θT

)
θ(τ)

∑
i

∆ξi − 3καthθ(τ)(tr(∆Ee)) +
∑
i

fi(τ)∆ξi (A.15)

Inelastic work increment causes heating/cooling during deformation.

Step 13. Calculate the Cauchy stress T(τ):

T(τ) = [detF(τ)]−1 Fe(τ)T∗(τ)Fe(τ)T (A.16)

In this algorithm, elastic and numerical tangent matrices have been introduced
in order to be utilized in the UMAT code.
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