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ABSTRACT

SOME CHARACTERIZATIONS OF GENERALIZED S-PLATEAUED
FUNCTIONS

CELiK, Emircan
M.S., Department of Cryptography
Supervisor : Prof. Dr. Ferruh Ozbudak

September 2017, [32] pages

Plateaued functions play important role in cryptography because of their various desir-
able cryptographic features. Due to this characteristics they have been widely studied
in the literature. This studies include p-ary functions and some generalizations of the
boolean functions. In this thesis, we present some of this important work and show
that plateaued functions can be generalized much more general framework naturally.
Characterizations of generalized plateaued functions using Walsh power moments are
also given.

Keywords : Boolean functions, Plateaued functions, p-ary functions, Walsh transform
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S-PLATEAUED FONKSIYONLARIN BAZI NIiTELENDIRILMELERI

CELIK, Emircan
Yiiksek Lisans, Kriptografi Bolimii
Tez Yoneticisi  : Prof. Dr. Ferruh Ozbudak

Eyliil 2017, [32] sayfa

Plateaued fonksiyonlar ¢esitli kriptografik ozellikeri sebebiyle kriptografide 6nemli rol
oynamaktadir. Bu karakteristikleri nedeniyle literatiirde genis capl ¢calisilmiglardir. Bu
caligmalar p-ary fonksiyonlar ve boole fonksiyonlarin bazi genellemelerini igermektedir.

Bu tezde, bu 6nemli ¢alismalarin bazilar1 sunulmug ve plateaued fonksiyonlarin ¢ok

daha genel bir ¢cerceveye dogal bir sekilde genisletilebilecegi gosterilmistir. Ayrica
plateaued fonksiyonlarin Walsh kuvvet anlar1 kullanilarak karakterize edilisleri de verilmistir.

Anahtar Kelimeler: Boole fonksiyonlar, plateaued fonksiyonlar, p-ary fonksiyonlar,
Walsh doniistimii
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CHAPTER 1

INTRODUCTION

A Boolean function f in n variables defined as s-plateaued function if the absolute
value of the Walsh transform of f belong to the set {0, 23" }. Plateaued functions first
introduced to the literature by Zheng and Zhang in 1999 in [26]. And Carlet and Prouff
studied them further in [6], and they have been studied widely ever since. Plateaued
functions draw attention of cryptographers due to their various cryptographic charac-
teristics. As a result of their low Hadamard transform, plateaued functions bring safe-
guard against linear cryptanalysis and fast correlation attacks. In [26], authors showed
that plateaued functions have nonlinear characteristics, namely high nonlinearity, high
algebraic degree and resiliency. They satisfy propagation criteria. Plateaued func-
tions defined over F include three most commonly known classes. First class is bent
functions, i.e. s = 0 in the functions Walsh transform’s amplitude. Second class is
near-bent functions also known as semi-bent functions in odd dimension. Near-bent
functions are 1-plateaued functions and they exists when dimension 7 is odd. Third
class is semi-bent functions, whic are 2-plateaued functions. Bent functions and semi-
bent functions exist when dimension 7 is even.

P-ary functions are generalization of the boolean functions in odd prime characteristic
.

This thesis organised as follows. In Preliminaries, basic concepts and definitions about
boolean functions and functions that are defined over odd characteristic are given. Also
generalizations of boolean functions and some characteristic of this generalizations are
presented.

Chapter 3 is dedicated to p-ary functions. This Chapter only includes present studies
about p-ary plateaued functions.

In Chapter 4 we generalize the concept of the plateaued functions defined over both
even and odd dimension vector spaces. Characterizations of generalized plateaued
functions are presented.






CHAPTER 2

PRELIMINARIES

Let IV, denote the Galois field with two elements. C denotes the set of complex num-
bers. For z € C, Z denotes the conjugate of the number z. Len F denote the vector
space of dimension n over [F,. Number of non-zero components of the vector z € 3 is
called Hamming weight of = and denoted by wt(x). Number of non-equal components
of two vectors x and y is defined as Hamming distance and denoted by dy(x,y). For
r = (x1,29,...,2,) and y = (y1, Yo, ..., ys) in [}, standard scalar product of = and
y on the vector space I is

-y = inyi
=1

A mapping from FZ to s is called boolean function. Set of boolean functions defined
over 7 is denoted with 5,,. Hamming weight of the boolean function is defined as the
size of the set {z € F4|f(x) # 0} and denoted by wt(f). Hamming distance dy(f, g)
of the functions f and g on [FY is the size of the set {z € F}|f(z) # g(x)}.

The Walsh Transform of the boolean function f : F} — F is defined as;

Nr(w) =Y (—1)/@ =1y

z€FY

for every w € . The Walsh Transform is invertible, i.e. Inverse Walsh Transform of

fis;
flo)y =27 Xlw)(=1)"*

wely

Lemma 2.1. Let f : Fy — Fy be a boolean function and let X 7 be Walsh Transform of
f. Then;

Y Rilw)* =2

weFy



Proof.

S IRrw)? =) Rpw) - Ry (w)

wely wely

Y Y i Y (1 (g
welFy zelFy S

= Z Z(_l)f(w)Jrf(a) Z (_1)w'(x+a)
wely zelFy acFy

= Z (_1)f($)+f(a) Z (_1)w~(x+a) (21)
z,a€Fy weFy

As
0 ,if z#a
> (e =
weFy 2 if x =a

(2.1) can be written as

Do IRpw)P =27 (1)

welky z€Fy

:2”21

z€lFy

— 22n
]

For f € B,, f is defined as bent function if Walsh transform of f satisfies |\ ;(w)| =
2"/2 for every w in FY.

The directional difference (or simply first-order derivative) of the function f : F} — [y
at the direction of r € [y is the map

D,f :Fy — F,
z— D,f(z) = f(x +a) — f(z), Vxely

And for a, b € F3, the second-order derivative of the function f : F§ — Iy, is the map

DuDyf : 2 — T
i+ D Dpf(x) = f(xr+a+0b)— flx+a)— f(x+b)+ f(x), VxeFy

Let p be a odd prime number. Let (, = e’s be a primitive p'* root of unity. Let I,
denote the Galois field with p elements and let ) denote the vector space of dimension
n over ). The scalar product of two elements z,y € ) with z - y.

A function f : F}) — [, is defined as p-ary function.

4



The Walsh transform of function f : F' — F), is defined as

@ : FZ —C
w Yi(w) =Y ¢

weky
Inverse Walsh Transform of the function f : F}) — [, is defined as
fl@)=p" ) Nw)Gy*
weFy
Lemma 2.2. Let [ : F) — F,, be a p-ary function. Then, for all w € F)

> INGw))” = p™

weFy

Proof is very similar as proof of Lemma [2.1| therefore it is omitted.

Let p < 1 be an integer. Let Z denote the set of integers and let Z, denote ring
of integers modulo p. A function f : Fj — Z, is defined as generalized boolean
function. The set of all generalized boolean functions in n variables are denoted by
GB?. Note that G/ = 3,, when p = 2.

Let ¢ be a primitive p'" root of unity. The Walsh transform of the generalized boolean
function is defined as
X7(w) = Z Cf(:v)(_l)w.a:
welFy

Generalized boolean function f € GN? is called generalized bent function if and only
if [X7(w)| = 1 for all w € F%. Notice that f is reduced to be bent when p = 2.






CHAPTER 3

P-ARY PLATEAUED FUNCTIONS

In this chapter nothing but existing studies are presented. In [ [16, [17, 19], further
information can be found.

Definition 3.1. Function f : ) — T, is called s- plateaued if IX71> € {0,p"**} holds
forall w € IF;‘ where 0 < s < n.

Lemma 3.1.

> IRpw) = p™ 3.1)

S

. 2 — .
Proof. Since for a complex number z, |z|” = z - Z, we can write

D IR = ) Ry(w) - Xy (w)

wEIF;‘ 'wEIF;;
= D QWG I
weF? z€F7 yely
— Z Z Cg(m)*f(y) Z C;)v-(r*y)
weFy zeFy yeFy
_ Z g}{(l‘)—f(y) Z C;U~(x—y) (3.2)
z,yeFy weFy
As
0 ,if x#y
DG =
wEIFg pn 71f r=1Yy
(3.2) can be written as
o~ 2 n
SR =p" )¢
we]FZ’} :L"E]Fg
SO
xEIF;}
— p2n



Lemma 3.2. Let [ : ¥} — [}, be an p-ary s-plateaued function. For w €

p [ (w)]

equals to pnTﬂ for p"~? times and O for p™ — p"~° times.

Proof. Define the set Ny = {w € F} : [\ (w)| = pnTﬂ}. Then,

> Xj(w)* = NG| -t
weFy
and from (3. 1))
> IRiw)P =p™ = [Ny - p
wely
= [N =p"~° (3.3)

Thus the rest of the result follows.

Definition 3.2. For integer ¢ > 0, Walsh moment of the Walsh transform of a p-ary
function f is defined as
N2
= WGw)

weky

and define

Note that for i = 0, So(f) = p™ and for i = 1, S;(f) = p*" according to (3.1) (and
) n

To(f) = 55 = ™.

For any integer A and integer ¢ > 0, following equation

S (R w)P = A) () = Sisa(f) — 2451 (f) + A2Si(f) (B4

weky
always holds.

Theorem 3.3. For a p-ary function f : F; — [, and two positive integers n and k
following are equivalent.

1. f is s-plateaued with 0 < s < n.

2. Tina(f) = T(F)

Proof. 1. Suppose that f is s-plateaued with 0 < s < n, . Then, from Lemma

Z | f|21 n s z(n+s)

wEIE‘”
p(i+1)n+(i—1)s



And
SiJrl (f) — pn(i+2)+si
Si+2<:> — pn(z+3)+s(z+1)

Hence we get,

Si (i+2)n+is

7(f) = 2l P e
Sz(f) p(H— yn+(i—1)s
S; (i+3)n+(i+1)s

i+l pldntis p
Proving that 7;(f) = T;11(f)-
2. Conversely assume that T;(f) = T;41(f). Then, S;o(f) = Ti(f) - Siza(f)-
Taking A = T;(f) in (3.4) we get
> (G @) = T) G @)* = Susalf) = 21N S () + (TS
weky
=Ti(f) - Sira(f) = 2L(f)Sisa (f) + Ti(f) Sia (f)
=0
meaning that [x;|° € {0, T;(f)} for all w € F7?. Now let Ny = {w € F} :
X7[* = Ti(f)}- Then,
> K =Tu(f) - Vx| (35

wEF"

from (3.1I) we know that left hand side of the (3:5) equal to p**. Therefore
T;(f)|p*™ which means T;(f) = p* for some positive integer \. Thus we have
that [N7| = p*"~*. Since there is p" elements in F}!, [N7| is at most p”, i.e
p?~* < p" implying that A > n which means A = n + s for some nonnegative
integer s.

]

Theorem 3.4. Let | : ¥ — F, be p-ary function. For an integer s with0 < s < n
and two positive integers i and j, below assertions are equivalent:

1. fis p-ary s-plateaued.
2. Si(£)S;(f) = Sit1(f)Si=1(f) foralli > 1 and j > 2

Proof. 1. Assume that f is p-ary s-plateaued function with 0 < s < n . From

Lemma 3.2 we know that,
Sz(f) — pn (i+1)+s(i—1)
ij p n(j+1)+s(j—1)
Si—l—l(f) pn (2 +oi
Sj—1(f) = anJrS(] 2

=)



Therefore we have
Si(f)S;(f) = p TR = 5,1 ()5 (f)

2. Assume that S;(f)S ( ) = z+l< )Sj—1(f). Then, fori = j, wehave T;,_(f) =
T;(f). Taking A = T;_1(f) in (3.4) we have that

Z (|§G(w)|2 - Tz‘—l(f))2 |§<}(w)|2’ = Siva(f) — 2T (f)Sipa (f) + (Ti—l(f))2 Si(f)

weFy

And remaining proof deduced to proof of the Theorem [3.3]

Corollary 3.5. Let f : F}) — F}, be a p-ary function. If f is bent, then Vi € N

Si(f) = ptty (3.6)

Proof. Since we assumed that f is bent, |x7(w)|* = p" for all w € . For A = p"
and 7 = 0 in (3.4)) we have

3 (K = ") =Sa(f) — 20"S1(f) + A2So(f)

weFy

S (G w)P = ") =Sa(f) —p™ (3.7)

weFy

Since f is bent, left hand side of the (3.7) is equal to 0. So So(f) = p3". By (B.1)
Ss(f) = p*™ and by Theorem 3.4] one gets

Si—1(f)? _ i+

Si(f) = Saf) P

Next theorem characterizes s-plateaued functions by means of their Walsh moments.

Theorem 3.6. Let [ : F)) — [, be a p-ary function and let s be an integer 1 < s < n.
Then f is s-plateaued iff

S2(f) — p?m-‘rs and Sd(.f) — p4n+s.

Proof. Suppose [ is p-ary s-plateaued. Taking A = p"** and ¢ = 0 in (3.4)) we get

S (R w)]? = p)° = Sa(f) — 20" S1(f) + B ES0(f)

weFy

10



From Lemma we know that Y ;(w) takes p" — p"~* times the value 0. Therefore
we can write

S (G )P = p)° = So(f) = 2SI () + pPESe(f) (38)
wE]F;}

= (" =) (=)

From definition Sy(f) = p™ and from (3.1)), S1(f) = p?". Putting this values in (38)
we get

n+s, 2n n+2s, n n—s nts) 2
Sa(f) = 2p™ o p™ + p™ " = (p” ) (=)
S2(f) o 2p3n+s + p3n+2s p3n+25 o pSn—i—s

52 ( f) p3n+s

Also, from Theorem [3.4|for i = j = 2 we have S5(f) = (S2(/)° — >

— An+2s
S1 (f p2n - p

O

Now assume that Sy(f) = p*" ™ and S3(f) = p'™**. Taking A = p"™* and i = 1 in

(3.4) we have,
S (G @) = p)° X (w) 2 = S5(f) — 20" Sa(f) + p* 2 51(f)

weFn
— pint2s _gpnbsydnts  pont2s o
=0
implying that X7 (w) € {0, p"**} for every w € ). This concludes the proof.
Corollary 3.7. If p-ary function f is s-plateaued, for all positive integer i

Sz(f) _ pn(i+1)+s(i71) (3.9)

Proof. From Theorem [3.6| we have that Sy(f) = p*** and S3(f) = p'* 5. And by
Theorem [3.3] recursively we have

(Si—1(f))? — (sl
Si—a(f)

Vi > 4. Therefore, (3.9) holds for all positive integer :. O

Sz(f) =

Following theorem brings new characterizations of the plateaued functions in charac-
teristic p.

Theorem 3.8. Let [ : ¥} — F, be p-ary function and define 0 as
0f ZIFn —C

T — Hf Z Z CDanf(x

aEF" bE]F”

11



f is s-plateaued iff
Of(x) = p"* (3.10)

holds for all x € F;‘ and integer s such that 0 < s < n.

Following two propositions are useful for the proof of the Theorem [3.§]

Proposition 3.9. Let G; : F) — C, i = 1,2 be two functions and define a :Fy —C
as

Then for all w,v € F)

G1(w) = Go(w) if and only if @\1(@) = é\Q(v)

Proof. Assume that G (w) = Go(w) for all w € F}. Then from definition é\l(v) =
é\g(v) Now assume that é\l(v) = @(v) for all v € F} and G1(w) # Go(w) for some
w € 7. Since C?l(v) = @(v) we can write
Gr(v) = Galv) = Y (Gilw) = Ga(@)), ™"
z€lp

Since left hand side of this equation is equal to 0, we have reached a contradiction. So
G1(w) = Gy(w) for all w € Fy;. This completes the proof of Proposition 3.9] O

Let f : F) — I, be p-ary function. Define complex-valued functions F; and F5 as
fﬁrilFZ —C

r— Fi(z) = C;f(m)

EE I]FZ — C
r— Fy(z) = Cg(x)

Proposition 3.10. For all w € F?, Fi(w) = Fy(—w)

Proof.



0
Proof of Theorem[3.§. Since D, Dy f(x) = f(z+a+b)— f(x+a)— f(z+b) + f(x),

we can write f(x) as
— § E Cf(x+a+b)—f(x+a)—f($+b)+f($)
P

ackFp beky

Putz+a=a andz+b=0b;,thenz+a+b=a; +b —x.
Fori = 1,2, define G; : F) — Cas

Z Z Cf (a1+b1—x)—f(a1)—f(b1)

ay GF" b1 EF"

and
GQ( ) n+s< f(z)

P

Then for all x € Fy, (3.10) Eolds 1f£1d only if G1(z) = Ga(x) holds for all x € F}; .
We continue by computing G and Gs.

Gl = 3 X 3 o sgoes

:CEF ay GF b1 EFn

= D GG Y7 GG Y el

a1 €Fp s1€F7 z€Fp
— Fi(w) Fi(w) - B(—w)
And
_ Z pn+s<;f(x)<«];w~x

z€Fy

— pn-i-s Z Cp—f(w)cp—w;t

z€F}
n+ﬁ j{: fﬂ, C*U)m
z€Fy
= " Fy(w)
By Proposition G1(z) = Ga(x) iffé\l(w) = @(w) Therefore (3.10) holds if and
only if
Fi(w) - Fi(w) - F(—w) = p"™* - Fi(w), YweF), (3.11)

holds . And by Proposition [3.10} (3.11) holds for all z € F if and only if

Fi(w) Fi(w) - Fi(w) = p™* - Fi(w), Vo € B

which is equivalent to

Fi(w (‘F1 ‘—p >:0, Vw € B (3.12)

13



Therefore, (3.12) holds and only if

— 2
Fi(w)| €{0,p""}

holds for all w € .
This completes the proof of Theorem [3.8] We can rewrite Theorem [3.8]as following.

Corollary 3.11. P-ary function [ : ¥}, — F, s s-plateaued iff

> 05(x)

z€F}

2n+s

(3.13)

Proposition 3.12. For a positive integer n and a p-ary function f;

=Y W)l =p") ()

wng xEFg

Proof. Since |z|* = 2272

Sa(f) =Y )|’

weFy

and , =

Z Z Cg(al)+f(a2)

U)GFZ a1,2,3,4€F"

2

¢, " we can write

—f(az)—f(aa)

f(aa) Z gw (a1+az2—az—aq)

_CW(GTHW‘ﬂS*a@
P

Cf a1)+f(az2)—

a1,a2,a3,a4€FY wery
Since
pn ﬂ?a1-+-a2«—-a3 — Q4 =0
EZ(TMm+@%—M):
P

weFn 0 otherwise
Hence,

Z X7 (w)|* = p" Z ¢J (@ +S (@)= flas)=flao)

wng ahama&a4EF§

FormbEIFZputal:x,a2:x+a+b,a3:x+a,anda4:x+bweget

Cf(al +/f(az)—f(az)—

>

a1,a2,a3,a4€FY

Therefore,

H=> Kiw

flas) — Z Z Z Cf(w+a+b f(z+a)—f(z+b)+f(2)

z€FY a€F} a€Fp

DI s

z€FY a€F7 beFy

= Z Of(:z:

z€FP

f=pm Y O(x)

wng xEFg

14



From Proposition |3.12|and Corollary we can derive a new characterization of the
plateaued functions by the means of Walsh moments.

Theorem 3.13. For an integer s with 0 < s < n, p-ary function f is s-plateaued iff

SQ(f) — p3n+s
Proof. From Proposition and Corollary we can deduce that f is s-plateaued

iff
Sa(f) =" ) Os(x) = p*+

z€Fy

15
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CHAPTER 4

GENERALIZED PLATEAUED AND P-ARY GENERALIZED
PLATEAUED FUNCTIONS

4.1 Generalizations of the Plateaued Functions

Let p > 2 be any integer, and let complex number ( = e’ be primitive p* root of
unity. In this section, we generalize plateaued functions and characterize them by the
means of their second-order derivatives. The cases of even and odd characteristics are
given separately.

4.1.1 Even Characteristic

Definition 4.1. Generalized boolean function. f : 5 — Z, defined to be generalized

s-plateaued function if
2

> Xr(w)| € {0,277}

wely
holds for all w € F} and integer s such that 0 < s < n.

Definition 4.2. The directional difference( derivative ) of f at the direction a € F} is
the map D, f from F3 to Z, defined as

Dof(z) = fx+a) = f(z), Vrel;
In same analogy, we can define second-order derivative of f as
DyDo(f) = flz+a+b) = f(x +a) = flz+b) + f(z)
forall a,b € Fy

Lemma 4.1. Let f be generalized s-plateaued function and let X ; be Walsh transform

of f. Then;
> Xp(w) =2%

weFy

17



Proof. Since

we can write

Z Z ¢F@ (—1)v Z W (—1)vY = Z Z ¢f@=1) Z (_1)w-(x+y)

weFD zeFy yeF? weF? zeFy yeFry
= Z Cf(x)—f(y) Z (_1)“"(x+y) 4.1)
z,y€lfy welFy
As
0 ,if z#y

> (e

wely 2" alf r=y

we can rewrite (4.1)) as

2"y (1) =2 1=2

zcFp z€Fy

O

Later theorem is very useful characterization of the generalized plateaued boolean
functions.
Theorem 4.2. For a function f : Fy — Z, define 0 as
0 f Fg — C
T — Qf(m) _ Z Z CDanf(x)

a€Fy beF?
f is generalized s-plateaued function iff
Of(x) =2"° 4.2)

holds for all x € F} and integer s such that 0 < s < n.

Before starting to proof, we will show some propositions that will be helpful to prove

Theorem (#.2).

Proposition 4.3. Let G, : F} — C, i = 1,2 be functions and define a :F3 — Cas

Then for all w,v € Fy
G1(w) = Go(w) if and only if Gi(v) = G2(v)

18



Proof. Assume that G (w) = Go(w) for all w € F3. Then

Gi(v) = Y Gi(@)("" = Y~ Gale)¢ ™" = Ga(v)

zeFy z€Fy

Now assume that é\l(v) = C/J\Q(v) forall v € F} and G (w) # Ga(w) for some w € F7.
Since G (v) = Ga(v) we can write

G1(v) = Ga(v) = D (Gi(x) — Ga(x))¢ ™" (4.3)

z€Fy

From our assumption, {.3) is equal to 0, therefore we have reached a contradiction.
So G1(w) = Go(w) for all w € F3.

O
Let f € GB!. Define complex-valued functions F} and F5 as
PH JFS — C
w — F(w) = ¢®
.PEZ]F; —C
w — Fy(w) = ¢f®
Proposition 4.4. For all = € %, f?\l(x) = E(—I)
Proof.
Fix)= Y R(w)(=
welFy
— Z (—fw)—zw
welFy
_ 2{: Cf(w)cxﬂu
welFy
= Fy(~a)
O

Next, we prove Theoremi.2]
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Proof of Theoremd.2]. Since D,D,f(x) = f(x+a+b)— f(r+a)— f(z+b)+ f(x),

we rewrite 6(z) as
Z Z Cf (z+a+b)—f(z+a)— f(z+b)+f(x)
a€F? beF:

Putx+b=bjandx +a=a;,thenx+a+b=a; +b —x.
Fori:1,2;deﬁneG- :F3 — Cas

Z Z ¢flartbi—a) )—f(b1)
a1€F} by €FE
and
Go(z) = 2n+8<—f(fﬂ)
With this definitions, holds iff Gy (z) = G2(z) holds for all z € F} . We continue
by computing é\l and é\z

w) = Z Z Z gf(al'f‘bl—x)—f(al)—f(b1)<—w~:c

€y a1 €Fy by €Fy

_ Z Cff(al)cfw-al Z Cff(b1)<-fw-b1 Z Cf(a1+b17z)<-w-(a1+blfz)

a1 €FY b1 €y zeFy
—_~

= Fy(w) - Fi(w) - Fy(—w)

_ Z 2n+sc—f(a:)c—w-x

z€FYy

— gnts Z C—f(x)c—ww

T€elFy

_2n+sZF1 c w-T

ey

And

— 2n+s A ﬁ(w)
By Proposition G1(z) = Gy(x) iff (/}’\1(11)) = é\g(w) Therefore (@.2)) holds if and
only if
Fl(w) . F1<w) . FQ(—U)) = 2n+s . Fl(w), Yw € ]Fg (44)
holds . And by Proposition#.4, (@.4) holds for all z € F3 if and only if

Fi(w) - Fi(w) - Fi(w) = 2" - F(w), Yw e F}

which is equivalent to

Fi(w (‘Fl ‘2 — 2"+8> —0, VwecE! 4.5)
Therefore, (.3) holds and only if
Fi(w)| € {0,27%)

holds for all for all w € F%.
This completes the proof of Theorem 4.2} O
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4.1.2 Odd Characteristic

In this section, we will define p-ary generalized plateaued functions for some odd
prime number p. From now on, ( = p» will denote primitive p* root of unity.

Definition 4.3. f : ¥ — Z, is called p-ary generalized plateaued function if

2

> Xsw)| € {0,pm}

we]F;
holds for all w € ]F;}.

Definition 4.4. The Walsh transform of the p-ary generalized function f is defined as

Nw) =D Q"

wEIF;L

Definition 4.5. Directional difference or derivative of f at the direction of a € I is
the map D, f from [} to Z, defined as

D.f(x) = f(x +a) — f(z), VxelF,
Second derivative of f is defined similarly as;
DyDo(f) = f(x +a+b) = f(z+a) = fz+b) + f(z)
forall a,b € F}
Following lemma known as Parseval identity holds for p-ary generalized plateaued
functions.

Lemma 4.5. Let | be p-ary generalized plateaued function and let X ; be it’s Walsh-
Hadamard Transform. Then;

Y IRe(w)]” = p™

weF;

Proof. Since

we can write

Z Z Cf(fﬁ)cww Z C—f(y)c—wy _ Z Z Cf(w)—f(y) Z Cw(w—y)

weF? xefn yelFn weF? xeFfn yelfn
P P P p P P
— § ¢f@=fw E :Cw(:v—y) (4.6)
z,yelfp weFy
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0 ,if z#y
Z Cw-(wfy) —
weFy pn 71f r=y
can be written as
pny C=pt ) 1=p™ (4.7)
:ﬂGFI’; .’EEFZ
O
Next we extend Theorem §.2] for p-ary generalized plateaued functions.
Theorem 4.6. For a p-ary generalized function f : ¥} — 7, define 0 as
Hf:]FZ — C
T — Bf(x) _ Z Z CDanf(’I)
a€Fy beFy
f is p-ary generalized s-plateaued iff
Of(x) = p"*” (4.8)

holds for all x € F}; and integer s such that 0 < s < n.

Before starting to proof the Theorem 4.6} let us extend Proposition 4.3]and Proposition
4.4]to odd prime p.

Proposition 4.7. Let G; : ¥} — C, i = 1,2 be functions and define é\z :F3 — Cas

Then for all w,v € F)

G1(w) = Go(w) if and only if é\l(v) = é\g(v)

Proof. Assume that G (w) = Ga(w) for all w € F}. Then clearly é\l(v) = C/J\Q(v)
Now assume that E}'\l(v) = C/J\z(v) forallv € ) and Gy (w) # Go(w) for some w € Fy.

Since (/}\1(@) = é\g(v) we can write

Gi(v) = Ga(v) = Y (Gi(x) — Golx))( "

z€lFp

As this equation is equal to 0, we have reached a contradiction. So G;(w) = Ga(w)
forallw € F}. [
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Let f : F) — Z, be a generalized p-ary function. Define complex-valued functions Fy
and F5 as

Fy FZ —C
w — Fy(w) = ¢f®

5y F; —C
w — Fy(w) = ¢f®

—

Proposition 4.8. For all v € F}, ﬁ(m) = Fy(—x)

Proof.

Fix)= Y F(w) e

welky

= Z C—f(w)c—x'w

wely

_ Z Cf(w)gxw

weky

= Fy(—z)

Next we prove Theorem [.6]

Proof of Theorem Since D, Dyf(z) = f(x+a+b)— f(x+a)— f(z+b)+ f(x),
we rewrite 0 (x) as

0;(x) = Z Z (flatatb)—f(ata)—f(a+b)+f (@)

aGFg bEFZT;

Putz+b=b;andz +a=aq,thenz+a+b=a; +b; —x.
Fori:1,2,deﬁneGi:IFZ—>(Cas

Gi(z) = Z Z ¢H@tbi—a)=f(an)=/(b1)

a1 EF? b1 GF;

and
G(x) = p"o¢ @
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Then for all z € Iy, (4.8) holds iff G, (x) = G>(z) holds for all x € F; . We continue
by computing é\l and é\g

é\l(w) = Z Z Z Cf(a1+b1—x)—f(al)—f(bl)g_w.x

2€F} a1 EF} by EFF

_ Z C—f(al)c—wul Z C—f(bl)c—uwbl Z gf(a1+b1—x)cw~(a1+b1—a:)

a1 €Fp b1€Fp z€lFp

= Fy(w) - Fi(w) - Fy(—w)
And
Gow) = Y preg g

zeFy

_ pn+s Z C—f(x)c—ww

z€FY

_ pn+s Z Py (x)c—wfc

z€Fy

— " Fy(w)

By Proposition G1(z) = Gy(x) iff é\l(w) = é\g(w) Therefore (4.8)) holds if and
only if
Fi(w) - Fy(w) - By(—w) = p"™ - Fy(w), Ywée F, 4.9)

holds . And by Proposition (#.9) holds for all x € I, if and only if

—

Fi(w) - Fi(w) - Fi(w) = p"* Fi(w), Yw e T

which is equivalent to

—_ —_~ 2

Fr(w) (‘Fl(w)‘ - p"+8) —0, Vwel" (4.10)
Therefore, (4.10) holds and only if

— 2
Rw)| {05}

holds for all for all w € IF;‘.

]

Proposition 4.9. For p-ary generalized function [ : ¥, — 7, and a positive integer n

Yo I =p" Y 0s(w)

wEFg xGFg
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Proof. Since |z|* = 22z% and ¢ = ¢! we can write

Z |>/<}(w)|4 = Z Z Cf(x1)+f($2)—f(13)—f(w4) ) Cw'($1+r2—$3—$4)

weFy weFY x1,22,73,24€FY
_ E Cf(wl)Jrf(Iz)*f(xS)*f(M)E Cw'(xﬁm*ﬂ?sfﬂl)
z1,%2,23,24€FY wery
Since

Z gw'(x1+x2—x3—a:4) — p" ifoy +wy—23—124=0
- 0 otherwise
welky

Hence,

> )t =pr o e

wE]F; 561,502,133,:04611?3
Fora,b € F)putxy =z, 29 =x+a+b,23=1x+a,and 4, = z + b we get

Z Cf($1)+f(x2)—f(x3)—f(x4) - Z Z Z Cf(ﬂf+a+b)—f(x+a)—f(ff»‘+b)+f($)

x1,22,23,04€Fy z€F} a€lF} aclFp

3% S e

z€Fy acFy beFp

= bs(x)

z€Fp

Yo I =p" Y 0s(w)

wEF; :EEIF‘;}

Therefore,

4.2 Characterizations of P-ary Generalized Plateaued Functions

Herein this section we characterize p-ary generalized plateaued functions with Walsh
moments.

Definition 4.6. For an integer ¢ > 0, the Walsh moment of p-ary generalized plateaued
function f is
(20
Si(f) =Y =Ixz(w)
weFy
with the convention Sy(f) = p". Note that S;(f) = p*" by Parseval identity.

Lemma 4.10. Ler f : F) — 7Z, be p-ary generalized s-plateaued function with 0 <
s < n. Then forw € B, for p"~ times | X j(w)|” takes the value p"** and for p"* —p"~*
times |X7(w)|* takes the value 0.
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Proof. Let Ng denote the size of the set {w € ) : IX7(w)|* = p™*+=}. Then,
> NG w)f = N - p+
welFy
hence, by Parseval identity,
p2n — NS i pn+5
Ns=p"™*
And since #F} = p", we have #{w € F}, : X7(w)]> =0} = p* —p"~* O

Let f be p-ary generalized plateaued function. For any integer A and 7 geq0, equation
Z (’Xf(w)|2 - A) |Xf(w)|2 = Sita(f) = 2AS1(f) + A%Si(f) (4.11)
weFy

holds.

Theorem 4.11. For integer s with 0 < s < n and a p-ary generalized s-plateaued
function f;
Sz(f) — pn(i+1)+s(i—1)

holds for all integers i > 1. Also we have S;(f)S;(f) = Si+1(f)Sj-1(f) for all
integersi1 > 1,5 > 2.

Proof. From Lemma4.10] for a positive integer ¢, we have that
Sl(f) — pnfs(anrs)i — pn(i+1)+s(i)

Therefore the following two equations
Si(f)sj<f) — pn(i+1)s(i—1)pn(j+1)+s(j—1) — pn(z‘+j+2)+s(i+a‘—2)
Si—&—l(f)sjfl(f) _ pn(i+2)+sipnj+s(j—2) _ pn(i+j+2)+s(i+j—2)
are equal forall2 > 1 and j > 2. O]
Theorem 4.12. Let [ : ¥ — Z, be a generalized p-ary function. [ is s-plateaued iff
SZ(f) — p3n+s and Sg(f) — p4n+28

where s is an integer such that 1 < s < n.

Proof. Let f be p-ary generalized s-plateaued function. Then by Theorem So(f) =
P> and S3(f) = p*™T2%. Conversely assume that Sy(f) = p*""*and S3(f) =
p'" 2. By @.11) with A = p"** and i = 1 we have,

S (K@) = p) " [} (w)* = Ss(f) = 20" Sa(f) + "+ S1(f)

welkp
_ p4n+2s o 2pn+sp3n+s + p2n+23p2n
— 2p4n+2s . 2p4n+2s
=0
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Hence, |x7(w)|” € {0,p""*} holds for all w € Fy, ie. f is p-ary generalized s-

plateaued function. [

Proposition 4.13. For a p-ary generalized function f : ¥}, — Z, and a positive integer

Sof) =" Y 0y(a)

z€F}

Proof. Since |z|" = 22z2 and ¢ = ¢~ we can write

Sy(f) = Z IF(w)|* = Z Z S @)+ ()= f(23)=f(@a) | rw-(or+as—os—a2)

wely weF? x1,72,23,24€FY
— E Cf(x1)+f(12)*f(ﬂf3)*f(x4) E Cw'(wﬁrz*msfm)
z1,22,23,24EFY weFy

Since

Z gw'(x1+$2—z3—x4) — ptofr+wy—x3—24=0

0 otherwise

wng

Hence,

> Rlw)l =pr 3o et

we]Fg x1,562,a:3,:(:4€F$

Fora,bGIFl’jputa:l::1:,932:a:+a—|—b,as3:a:+a,andx4:x+bweget

Z Cf(r1)+f(z2)—f(063)—f(r4) - Z Z Z Cf(x+a+b)—f(x+a)—f(l‘+b)+f(x)

T1,22,23,04EFp z€F} a€lF} a€lkp

I I

xngangbEF?

= bs(x)

zeFy

Therefore,

Sa(f) =p" Z 0s(x)

xEF;
[

Using Theorem #.12] and Proposition 4.13] we can get much more general case as
stated below.

Corollary 4.14. Let | : F) — 7Z, be a p-ary generalized s-plateaued function. Then,

Sz(f) _ pn(i—1)+s(i—2) Z 0f<l’)

xng

where s is an integer with 0 < s < n.
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For another characterization plateaued functions, we recall two important inequalities.

Theorem 4.15 (Holder’s inequality). Let p1, ps € (1,00) with pil + piz = 1. Then for
all (xla Xy 7xm)’ (yla Yo, - - 7ym) € Cm’

1
m m p1 m
Z |[zkyr| < (Z |$k|pl> <Z ’yk|p2>
k=1 k=1 k=1

and the equality holds if and only if, there exists a nonnegative constant c such that,
fork e{1,2,...m},

P2

|P1 ’P2

= clyx

holds. If p; = 2 for i = 1,2, then the above inequality is reduced to the Chauchy-
Schwarz Inequality.

|z,

Theorem 4.16. Let f : ¥} — Z, be generalized p-ary boolean function. Then for all

integers 1 > 1 )
(Si+1(f))™ < Siva(f)Si(f)
and the equality holds for at least one i, iff, f is p-ary generalized plateaued function.

Proof. Let x, yy in the theorem (above) be z;, = |x7(w)|" and y, = |x7(w)|™™.

Then, for all w € IF‘Z we have,

Do) < Y G Y K w)

we]Fg wGFg wEFg

that is, ,
(Si+1 ()™ < Si(f)Six2(f)
for i > 1. Now suppose that f is p-ary generalized plateaued function. Then above
equality holds for at least one ¢ > 1 if and only if
X7 (W) = ez (w) "™ (4.12)

holds for all w € [}, and for some nonnegative constant c. If |x;(w)| = 0, then @.12)
holds for all nonnegative c. If |\ ;(w)| = p"** for some s with 0 < s < n, one can

simply take ¢ = |x7(w)|"*. In both cases (@12) holds, proving that equality above
holds if and only if f is p-ary generalized plateaued.

]
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CHAPTER 5

CONCLUSION

Plateaued functions, posses desirable cryptographic properties such as maximal non-
linearity amid balanced plateaued functions, low autocorrelation. Also, alongside of
being practical in cryptography, plateaued functions also have use in coding theory and
secret sharing schemes.

In this thesis we first introduced the mathematical background and basic concepts
about generalized boolean, generalized p-ary functions and plateaued functions.

In Chapter 3, we present the studies about p-ary plateaued functions and their various
characterizations using both second-order derivatives and Walsh moments.

In Chapter 4, the notation of Generalized plateaued functions are presented. We char-
acterized generalized s-plateaued and p-ary generalized plateaued functions using their
second-order derivatives and Walsh moments.
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