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EMİRCAN ÇELİK
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ABSTRACT

SOME CHARACTERIZATIONS OF GENERALIZED S-PLATEAUED
FUNCTIONS

ÇELİK, Emircan

M.S., Department of Cryptography

Supervisor : Prof. Dr. Ferruh Özbudak

September 2017, 32 pages

Plateaued functions play important role in cryptography because of their various desir-
able cryptographic features. Due to this characteristics they have been widely studied
in the literature. This studies include p-ary functions and some generalizations of the
boolean functions. In this thesis, we present some of this important work and show
that plateaued functions can be generalized much more general framework naturally.
Characterizations of generalized plateaued functions using Walsh power moments are
also given.

Keywords : Boolean functions, Plateaued functions, p-ary functions, Walsh transform
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ÖZ

S-PLATEAUED FONKSİYONLARIN BAZI NİTELENDİRİLMELERİ

ÇELİK, Emircan

Yüksek Lisans, Kriptografi Bölümü

Tez Yöneticisi : Prof. Dr. Ferruh Özbudak

Eylül 2017, 32 sayfa

Plateaued fonksiyonlar çeşitli kriptografik özellikeri sebebiyle kriptografide önemli rol
oynamaktadır. Bu karakteristikleri nedeniyle literatürde geniş çaplı çalışılmışlardır. Bu
çalışmalar p-ary fonksiyonlar ve boole fonksiyonların bazı genellemelerini içermektedir.
Bu tezde, bu önemli çalışmaların bazıları sunulmuş ve plateaued fonksiyonların çok
daha genel bir çerçeveye doğal bir şekilde genişletilebileceği gösterilmiştir. Ayrıca
plateaued fonksiyonların Walsh kuvvet anları kullanılarak karakterize edilişleri de verilmiştir.

Anahtar Kelimeler : Boole fonksiyonlar, plateaued fonksiyonlar, p-ary fonksiyonlar,
Walsh dönüşümü
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CHAPTER 1

INTRODUCTION

A Boolean function f in n variables defined as s-plateaued function if the absolute
value of the Walsh transform of f belong to the set {0, 2n+s2 }. Plateaued functions first
introduced to the literature by Zheng and Zhang in 1999 in [26]. And Carlet and Prouff
studied them further in [6], and they have been studied widely ever since. Plateaued
functions draw attention of cryptographers due to their various cryptographic charac-
teristics. As a result of their low Hadamard transform, plateaued functions bring safe-
guard against linear cryptanalysis and fast correlation attacks. In [26], authors showed
that plateaued functions have nonlinear characteristics, namely high nonlinearity, high
algebraic degree and resiliency. They satisfy propagation criteria. Plateaued func-
tions defined over Fn2 include three most commonly known classes. First class is bent
functions, i.e. s = 0 in the functions Walsh transform’s amplitude. Second class is
near-bent functions also known as semi-bent functions in odd dimension. Near-bent
functions are 1-plateaued functions and they exists when dimension n is odd. Third
class is semi-bent functions, whic are 2-plateaued functions. Bent functions and semi-
bent functions exist when dimension n is even.

P-ary functions are generalization of the boolean functions in odd prime characteristic
p.

This thesis organised as follows. In Preliminaries, basic concepts and definitions about
boolean functions and functions that are defined over odd characteristic are given. Also
generalizations of boolean functions and some characteristic of this generalizations are
presented.

Chapter 3 is dedicated to p-ary functions. This Chapter only includes present studies
about p-ary plateaued functions.

In Chapter 4 we generalize the concept of the plateaued functions defined over both
even and odd dimension vector spaces. Characterizations of generalized plateaued
functions are presented.
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CHAPTER 2

PRELIMINARIES

Let F2 denote the Galois field with two elements. C denotes the set of complex num-
bers. For z ∈ C, z denotes the conjugate of the number z. Len Fn2 denote the vector
space of dimension n over F2. Number of non-zero components of the vector x ∈ Fn2 is
called Hamming weight of x and denoted by wt(x). Number of non-equal components
of two vectors x and y is defined as Hamming distance and denoted by dH(x, y). For
x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) in Fn2 , standard scalar product of x and
y on the vector space Fn2 is

x · y =
n∑
i=1

xiyi

A mapping from Fn2 to F2 is called boolean function. Set of boolean functions defined
over Fn2 is denoted with Bn. Hamming weight of the boolean function is defined as the
size of the set {x ∈ Fn2 |f(x) 6= 0} and denoted by wt(f). Hamming distance dH(f, g)
of the functions f and g on Fn2 is the size of the set {x ∈ Fn2 |f(x) 6= g(x)}.

The Walsh Transform of the boolean function f : Fn2 → F2 is defined as;

χ̂f (w) =
∑
x∈Fn2

(−1)f(x)(−1)w·x

for every w ∈ Fn2 . The Walsh Transform is invertible, i.e. Inverse Walsh Transform of
f is;

f(x) = 2−n
∑
w∈Fn2

χ̂f (w)(−1)w·x

Lemma 2.1. Let f : Fn2 → F2 be a boolean function and let χ̂f be Walsh Transform of
f . Then; ∑

w∈Fn2

|χ̂f (w)|2 = 22n

3



Proof. ∑
w∈Fn2

|χ̂f (w)|2 =
∑
w∈Fn2

χ̂f (w) · χ̂f (w)

=
∑
w∈Fn2

∑
x∈Fn2

(−1)f(x) (−1)w·x
∑
a∈Fn2

(−1)f(a) (−1)w·a

=
∑
w∈Fn2

∑
x∈Fn2

(−1)f(x)+f(a)
∑
a∈Fn2

(−1)w·(x+a)

=
∑
x,a∈Fn2

(−1)f(x)+f(a)
∑
w∈Fn2

(−1)w·(x+a) (2.1)

As ∑
w∈Fn2

(−1)w·(x+a) =

 0 , if x 6= a

2n , if x = a

(2.1) can be written as ∑
w∈Fn2

|χ̂f (w)|2 = 2n
∑
x∈Fn2

(−1)0

= 2n
∑
x∈Fn2

1

= 22n

For f ∈ Bn, f is defined as bent function if Walsh transform of f satisfies |χ̂f (w)| =
2n/2 for every w in Fn2 .

The directional difference (or simply first-order derivative) of the function f : Fn2 → F2

at the direction of r ∈ Fn2 is the map

Daf : Fn2 → F2

x 7→ Daf(x) = f(x+ a)− f(x), ∀x ∈ Fn2

And for a, b ∈ Fn2 , the second-order derivative of the function f : Fn2 → F2, is the map

DaDbf : Fn2 → F2

x 7→ DaDbf(x) = f(x+ a+ b)− f(x+ a)− f(x+ b) + f(x), ∀x ∈ Fn2

Let p be a odd prime number. Let ζp = e
2πi
p be a primitive pth root of unity. Let Fp

denote the Galois field with p elements and let Fnp denote the vector space of dimension
n over Fp. The scalar product of two elements x, y ∈ Fnp with x · y.

A function f : Fnp → Fp is defined as p-ary function.

4



The Walsh transform of function f : F n
p → Fp is defined as

χ̂f : Fnp → C

w 7→ χ̂f (w) =
∑
w∈Fnp

ζf(x)p ζw·xp

Inverse Walsh Transform of the function f : Fnp → Fp is defined as

f(x) = p−n
∑
w∈Fnp

χ̂f (w)ζ
w·x
p

Lemma 2.2. Let f : Fnp → Fp be a p-ary function. Then, for all w ∈ Fnp∑
w∈Fnp

|χ̂f (w)|2 = p2n

Proof is very similar as proof of Lemma 2.1 therefore it is omitted.

Let ρ ≤ 1 be an integer. Let Z denote the set of integers and let Zρ denote ring
of integers modulo ρ. A function f : Fn2 → Zρ is defined as generalized boolean
function. The set of all generalized boolean functions in n variables are denoted by
GBρn. Note that GBρn = Bn when ρ = 2.

Let ζ be a primitive ρth root of unity. The Walsh transform of the generalized boolean
function is defined as

χ̂f (w) =
∑
w∈Fn2

ζf(x)(−1)w·x

Generalized boolean function f ∈ GN ρ
n is called generalized bent function if and only

if |χ̂f (w)| = 1 for all w ∈ Fn2 . Notice that f is reduced to be bent when ρ = 2.

5
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CHAPTER 3

P-ARY PLATEAUED FUNCTIONS

In this chapter nothing but existing studies are presented. In [5, 16, 17, 19], further
information can be found.

Definition 3.1. Function f : Fnp → Fp is called s- plateaued if |χ̂f |2 ∈ {0, pn+s} holds
for all w ∈ Fnp where 0 ≤ s ≤ n.

Lemma 3.1. ∑
w∈Fnp

|χ̂f (w)|2 = p2n (3.1)

Proof. Since for a complex number z, |z|2 = z · z, we can write∑
w∈Fnp

|χ̂f (w)|2 =
∑
w∈Fnp

χ̂f (w) · χ̂f (w)

=
∑
w∈Fnp

∑
x∈Fnp

ζf(x)p ζw·xp

∑
y∈Fnp

ζ−f(y)p ζ−w·yp

=
∑
w∈Fnp

∑
x∈Fnp

ζf(x)−f(y)p

∑
y∈Fnp

ζw·(x−y)p

=
∑
x,y∈Fnp

ζf(x)−f(y)p

∑
w∈Fnp

ζw·(x−y)p (3.2)

As ∑
w∈Fnp

ζw·(x−y)p =

 0 , if x 6= y

pn , if x = y

(3.2) can be written as ∑
w∈Fnp

|χ̂f (w)|2 = pn
∑
x∈Fnp

ζ0p

= pn
∑
x∈Fnp

1

= p2n
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Lemma 3.2. Let f : Fnp → Fp be an p-ary s-plateaued function. For w ∈ Fnp , |χ̂f (w)|
equals to p

n+s
2 for pn−s times and 0 for pn − pn−s times.

Proof. Define the set Nf = {w ∈ Fnp : |χ̂f (w)| = p
n+s
2 }. Then,∑

w∈Fnp

|χ̂f (w)|2 = |Nf | · pn+s

and from (3.1) ∑
w∈Fnp

|χ̂f (w)|2 = p2n = |Nf | · pn+s

⇒ |Nf | = pn−s (3.3)

Thus the rest of the result follows.

Definition 3.2. For integer i ≥ 0, Walsh moment of the Walsh transform of a p-ary
function f is defined as

Si(f) =
∑
w∈Fnp

|χ̂f (w)|2i

and define

Ti(f) =
Si+1(f)

Si(f)

Note that for i = 0 , S0(f) = pn and for i = 1, S1(f) = p2n according to (3.1) (and
T0(f) =

S1(f)
S0(f)

= pn).
For any integer A and integer i ≥ 0, following equation

∑
w∈Fnp

(
|χ̂f (w)|2 − A

)2 |χ̂f (w)|2i = Si+2(f)− 2ASi+1(f) + A2Si(f) (3.4)

always holds.

Theorem 3.3. For a p-ary function f : Fnp → Fp and two positive integers n and k
following are equivalent.

1. f is s-plateaued with 0 ≤ s ≤ n.

2. Ti+1(f) = Ti(f)

Proof. 1. Suppose that f is s-plateaued with 0 ≤ s ≤ n, . Then, from Lemma 3.2

Si(f) =
∑
w∈Fnp

|χ̂f |2i = pn−spi(n+s)

= p(i+1)n+(i−1)s

8



And

Si+1(f) = pn(i+2)+si

Si+2(=) = pn(i+3)+s(i+1)

Hence we get,

Ti(f) =
Si+1(f)

Si(f)
=

p(i+2)n+is

p(i+1)n+(i−1)s = pn+s

Ti+1(f) =
Si+2(f)

i+ 1
=
p(i+3)n+(i+1)s

p(i+2)n+is
= pn+s

Proving that Ti(f) = Ti+1(f).

2. Conversely assume that Ti(f) = Ti+1(f). Then, Si+2(f) = Ti(f) · Si+1(f).
Taking A = Ti(f) in (3.4) we get∑
w∈Fnp

(
|χ̂f (w)|2 − Ti(f)

)2 |χ̂f (w)|2i = Si+2(f)− 2Ti(f)Si+1(f) + (Ti(f))
2Si(f)

= Ti(f) · Si+1(f)− 2Ti(f)Si+1(f) + Ti(f)Si+1(f)

= 0

meaning that |χ̂f |2 ∈ {0, Ti(f)} for all w ∈ Fnp . Now let NT = {w ∈ Fnp :

|χ̂f |2 = Ti(f)}. Then, ∑
w∈Fnp

|χ̂f |2 = Ti(f) · |NT | (3.5)

from (3.1) we know that left hand side of the (3.5) equal to p2n. Therefore
Ti(f)|p2n which means Ti(f) = pλ for some positive integer λ. Thus we have
that |NT | = p2n−λ. Since there is pn elements in Fnp , |NT | is at most pn, i.e.
p2n−λ ≤ pn implying that λ ≥ n which means λ = n + s for some nonnegative
integer s.

Theorem 3.4. Let f : Fnp → Fp be p-ary function. For an integer s with 0 ≤ s ≤ n
and two positive integers i and j, below assertions are equivalent:

1. f is p-ary s-plateaued.

2. Si(f)Sj(f) = Si+1(f)Sj−1(f) for all i ≥ 1 and j ≥ 2

Proof. 1. Assume that f is p-ary s-plateaued function with 0 ≤ s ≤ n . From
Lemma 3.2 we know that,

Si(f) = pn(i+1)+s(i−1)

Sjf = pn(j+1)+s(j−1)

Si+1(f) = pn(i+2)+si

Sj−1(f) = pnj+s(j−2)

9



Therefore we have

Si(f)Sj(f) = pn(i+j+2)+s(i+j−2) = Si+1(f)Sj−1(f)

2. Assume that Si(f)Sj(f) = Si+1(f)Sj−1(f). Then, for i = j, we have Ti−1(f) =
Ti(f). Taking A = Ti−1(f) in (3.4) we have that∑
w∈Fnp

(
|χ̂f (w)|2 − Ti−1(f)

)2 |χ̂f (w)|2i = Si+2(f)− 2Ti−1(f)Si+1(f) + (Ti−1(f))
2 Si(f)

And remaining proof deduced to proof of the Theorem 3.3.

Corollary 3.5. Let f : Fnp → Fp be a p-ary function. If f is bent, then ∀i ∈ N

Si(f) = pn(i+1) (3.6)

Proof. Since we assumed that f is bent, |χ̂f (w)|2 = pn for all w ∈ Fnp . For A = pn

and i = 0 in (3.4) we have∑
w∈Fnp

(
|χ̂f (w)|2 − pn

)2
=S2(f)− 2pnS1(f) + A2S0(f)∑

w∈Fnp

(
|χ̂f (w)|2 − pn

)2
=S2(f)− p3n (3.7)

Since f is bent, left hand side of the (3.7) is equal to 0. So S2(f) = p3n. By (3.1)
S2(f) = p2n and by Theorem 3.4, one gets

Si(f) =
Si−1(f)

2

Si−2(f)
= p(i+1)n

Next theorem characterizes s-plateaued functions by means of their Walsh moments.

Theorem 3.6. Let f : Fnp → Fp be a p-ary function and let s be an integer 1 ≤ s ≤ n.
Then f is s-plateaued iff

S2(f) = p3n+s and S3(f) = p4n+s.

Proof. Suppose f is p-ary s-plateaued. Taking A = pn+s and i = 0 in (3.4) we get∑
w∈Fnp

(
|χ̂f (w)|2 − pn+s

)2
= S2(f)− 2pn+sS1(f) + p2n+2sS0(f)

10



From Lemma 3.2 we know that χ̂f (w) takes pn − pn−s times the value 0. Therefore
we can write∑

w∈Fnp

(
|χ̂f (w)|2 − pn+s

)2
= S2(f)− 2pn+sS1(f) + p2n+2sS0(f) (3.8)

=
(
pn − pn−s

) (
−pn+s

)2
From definition S0(f) = pn and from (3.1), S1(f) = p2n. Putting this values in (3.8)
we get

S2(f)− 2pn+sp2n + p2n+2spn =
(
pn − pn−s

) (
−pn+s

)2
S2(f)− 2p3n+s + p3n+2s = p3n+2s − p3n+s

S2(f) = p3n+s

Also, from Theorem 3.4 for i = j = 2 we have S3(f) =
(S2(f))2

S1(f
= p6n+2s

p2n
= p4n+2s

Now assume that S2(f) = p3n+s and S3(f) = p4n+s. Taking A = pn+s and i = 1 in
(3.4) we have,∑

w∈Fnp

(
|χ̂f (w)|2 − pn+s

)2 |χ̂f (w)|2 = S3(f)− 2pn+sS2(f) + p2n+2sS1(f)

= p4n+2s − 2pn+sp3n+s + p2n+2sp2n

= 0

implying that χ̂f (w) ∈ {0, pn+s} for every w ∈ Fnp . This concludes the proof.

Corollary 3.7. If p-ary function f is s-plateaued, for all positive integer i

Si(f) = pn(i+1)+s(i−1) (3.9)

Proof. From Theorem 3.6 we have that S2(f) = p3n+s and S3(f) = p4n+2s. And by
Theorem 3.3, recursively we have

Si(f) =
(Si−1(f))

2

Si−2(f)
= pn(i+1)+s(i−1)

∀i ≥ 4. Therefore, (3.9) holds for all positive integer i.

Following theorem brings new characterizations of the plateaued functions in charac-
teristic p.

Theorem 3.8. Let f : Fnp → Fp be p-ary function and define θf as

θf :Fnp → C

x −→ θf (x) =
∑
a∈Fnp

∑
b∈Fnp

ζDaDbf(x)p

11



f is s-plateaued iff
θf (x) = pn+s (3.10)

holds for all x ∈ Fnp and integer s such that 0 ≤ s ≤ n.

Following two propositions are useful for the proof of the Theorem 3.8.

Proposition 3.9. Let Gi : Fnp → C, i = 1, 2 be two functions and define Ĝi : Fnp → C
as

Ĝi =
∑
x∈Fnp

Gi(x)ζ
−w·x
p

Then for all w, v ∈ Fnp
G1(w) = G2(w) if and only if Ĝ1(v) = Ĝ2(v)

Proof. Assume that G1(w) = G2(w) for all w ∈ Fnp . Then from definition Ĝ1(v) =

Ĝ2(v) Now assume that Ĝ1(v) = Ĝ2(v) for all v ∈ Fnp and G1(w) 6= G2(w) for some
w ∈ Fnp . Since Ĝ1(v) = Ĝ2(v) we can write

Ĝ1(v)− Ĝ2(v) =
∑
x∈Fnp

(G1(x)−G2(x))ζ
−v·x
p

Since left hand side of this equation is equal to 0, we have reached a contradiction. So
G1(w) = G2(w) for all w ∈ Fnp . This completes the proof of Proposition 3.9

Let f : Fnp → Fp be p-ary function. Define complex-valued functions F1 and F2 as

F1 : Fnp → C
x −→ F1(x) = ζ−f(x)p

F2 : Fnp → C
x −→ F2(x) = ζf(x)p

Proposition 3.10. For all w ∈ Fnp , F̂1(w) = F̂2(−w)

Proof.

F̂1(w) =
∑
x∈Fnp

F1(x)ζ−w·xp

=
∑
x∈Fnp

ζ
−f(x)
p ζ−w·xp

=
∑
x∈Fnp

ζf(x)p ζw·xp

= F̂2(−w)

12



Proof of Theorem 3.8 . Since DaDbf(x) = f(x+a+b)−f(x+a)−f(x+b)+f(x),
we can write θf (x) as

θf (x) =
∑
a∈Fnp

∑
b∈Fnp

ζf(x+a+b)−f(x+a)−f(x+b)+f(x)p

Put x+ a = a1 and x+ b = b1, then x+ a+ b = a1 + b1 − x.
For i = 1, 2, define Gi : Fnp → C as

G1(x) =
∑
a1∈Fnp

∑
b1∈Fnp

ζf(a1+b1−x)−f(a1)−f(b1)p

and
G2(x) = pn+sζ−f(x)p

Then for all x ∈ Fnp , (3.10) holds if and only if G1(x) = G2(x) holds for all x ∈ Fnp .
We continue by computing Ĝ1 and Ĝ2.

Ĝ1(w) =
∑
x∈Fnp

∑
a1∈Fnp

∑
b1∈Fnp

ζf(a1+b1−x)−f(a1)−f(b1)p ζ−w·xp

=
∑
a1∈Fnp

ζ−f(a1)p ζ−w·a1p

∑
s1∈Fnp

ζ−f(b1)p ζ−w·b1p

∑
x∈Fnp

ζf(a1+b1−x)p ζw·(a1+b1−x)p

= F̂1(w) · F̂1(w) · F̂2(−w)

And

Ĝ2(w) =
∑
x∈Fnp

pn+sζ−f(x)p ζ−w·xp

= pn+s
∑
x∈Fnp

ζ−f(x)p ζ−w·xp

= pn+s
∑
x∈Fnp

F1(x)ζ
−w·x
p

= pn+s · F̂1(w)

By Proposition 3.9, G1(x) = G2(x) iff Ĝ1(w) = Ĝ2(w). Therefore (3.10) holds if and
only if

F̂1(w) · F̂1(w) · F̂2(−w) = pn+s · F̂1(w), ∀w ∈ Fnp (3.11)

holds . And by Proposition 3.10, (3.11) holds for all x ∈ Fnp if and only if

F̂1(w) · F̂1(w) · F̂1(w) = pn+s · F̂1(w), ∀w ∈ Fnp
which is equivalent to

F̂1(w)

(∣∣∣F̂1(w)
∣∣∣2 − pn+s) = 0, ∀w ∈ Fnp (3.12)
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Therefore, (3.12) holds and only if∣∣∣F̂1(w)
∣∣∣2 ∈ {0, pn+s}

holds for all w ∈ Fnp .
This completes the proof of Theorem 3.8. We can rewrite Theorem 3.8 as following.

Corollary 3.11. P-ary function f : Fnp → Fp s s-plateaued iff∑
x∈Fnp

θf (x) = p2n+s (3.13)

Proposition 3.12. For a positive integer n and a p-ary function f ;

S2(f) =
∑
w∈Fnp

|χ̂f (w)|4 = pn
∑
x∈Fnp

θf (x)

Proof. Since |z|4 = z2z2 and ζp = ζ−1p we can write

S2(f) =
∑
w∈Fnp

|χ̂f (w)|4 =
∑
w∈Fnp

∑
a1,2,3,4∈Fnp

ζf(a1)+f(a2)−f(a3)−f(a4)p · ζw·(a1+a2−a3−a4)p

=
∑

a1,a2,a3,a4∈Fnp

ζf(a1)+f(a2)−f(a3)−f(a4)p

∑
w∈Fnp

ζw·(a1+a2−a3−a4)p

Since ∑
w∈Fnp

ζw·(a1+a2a3−a4)p =

p
n if a1 + a2 − a3 − a4 = 0

0 otherwise

Hence, ∑
w∈Fnp

|χ̂f (w)|4 = pn
∑

a1,a2,a3,a4∈Fnp

ζf(a1)+f(a2)−f(a3)−f(a4)p

For a, b ∈ Fnp put a1 = x, a2 = x+ a+ b, a3 = x+ a, and a4 = x+ b we get∑
a1,a2,a3,a4∈Fnp

ζf(a1)+f(a2)−f(a3)−f(a4)p =
∑
x∈Fnp

∑
a∈Fnp

∑
a∈Fnp

ζf(x+a+b)−f(x+a)−f(x+b)+f(x)p

=
∑
x∈Fnp

∑
a∈Fnp

∑
b∈Fnp

ζDaDbf(x)p

=
∑
x∈Fnp

θf (x)

Therefore,
S2(f) =

∑
w∈Fnp

|χ̂f (w)|4 = pn
∑
x∈Fnp

θf (x)
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From Proposition 3.12 and Corollary 3.11 we can derive a new characterization of the
plateaued functions by the means of Walsh moments.

Theorem 3.13. For an integer s with 0 ≤ s ≤ n, p-ary function f is s-plateaued iff

S2(f) = p3n+s

Proof. From Proposition 3.12 and Corollary 3.11 we can deduce that f is s-plateaued
iff

S2(f) = pn
∑
x∈Fnp

θf (x) = p3n+s

15
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CHAPTER 4

GENERALIZED PLATEAUED AND P-ARY GENERALIZED
PLATEAUED FUNCTIONS

4.1 Generalizations of the Plateaued Functions

Let ρ ≥ 2 be any integer, and let complex number ζ = e
2πi
ρ be primitive ρth root of

unity. In this section, we generalize plateaued functions and characterize them by the
means of their second-order derivatives. The cases of even and odd characteristics are
given separately.

4.1.1 Even Characteristic

Definition 4.1. Generalized boolean function. f : Fn2 → Zρ defined to be generalized
s-plateaued function if ∣∣∣∣∣∣

∑
w∈Fn2

χ̂f (w)

∣∣∣∣∣∣
2

∈ {0, 2n+s}

holds for all w ∈ Fn2 and integer s such that 0 ≤ s ≤ n.

Definition 4.2. The directional difference( derivative ) of f at the direction a ∈ Fn2 is
the map Daf from Fn2 to Zρ defined as

Daf(x) = f(x+ a)− f(x), ∀x ∈ Fn2

In same analogy, we can define second-order derivative of f as

DbDa(f) = f(x+ a+ b)− f(x+ a)− f(x+ b) + f(x)

for all a, b ∈ Fn2

Lemma 4.1. Let f be generalized s-plateaued function and let χ̂f be Walsh transform
of f . Then; ∑

w∈Fn2

|χ̂f (w)|2 = 22n

17



Proof. Since
|χ̂f (w)|2 = χ̂f (w) · χ̂f (w)

we can write∑
w∈Fn2

∑
x∈Fn2

ζf(x) (−1)w·x
∑
y∈Fn2

ζ−f(y) (−1)w·y =
∑
w∈Fn2

∑
x∈Fn2

ζf(x)−f(y)
∑
y∈Fn2

(−1)w·(x+y)

=
∑
x,y∈Fn2

ζf(x)−f(y)
∑
w∈Fn2

(−1)w·(x+y) (4.1)

As ∑
w∈Fn2

(−1)w·(x+y) =

 0 , if x 6= y

2n , if x = y

we can rewrite (4.1) as

2n
∑
x∈Fn2

(−1)0 = 2n
∑
x∈Fn2

1 = 22n

Later theorem is very useful characterization of the generalized plateaued boolean
functions.

Theorem 4.2. For a function f : Fn2 → Zρ define θf as

θf :Fn2 → C

x −→ θf (x) =
∑
a∈Fn2

∑
b∈Fn2

ζDaDbf(x)

f is generalized s-plateaued function iff

θf (x) = 2n+s (4.2)

holds for all x ∈ Fn2 and integer s such that 0 ≤ s ≤ n.

Before starting to proof, we will show some propositions that will be helpful to prove
Theorem (4.2).

Proposition 4.3. Let Gi : Fn2 → C, i = 1, 2 be functions and define Ĝi : Fn2 → C as

Ĝi =
∑
x∈Fn2

Gi(x)ζ
−w·x

Then for all w, v ∈ Fn2

G1(w) = G2(w) if and only if Ĝ1(v) = Ĝ2(v)

18



Proof. Assume that G1(w) = G2(w) for all w ∈ Fn2 . Then

Ĝ1(v) =
∑
x∈Fn2

G1(x)ζ
−v·x =

∑
x∈Fn2

G2(x)ζ
−v·x = Ĝ2(v)

Now assume that Ĝ1(v) = Ĝ2(v) for all v ∈ Fn2 andG1(w) 6= G2(w) for somew ∈ Fn2 .
Since Ĝ1(v) = Ĝ2(v) we can write

Ĝ1(v)− Ĝ2(v) =
∑
x∈Fn2

(G1(x)−G2(x))ζ
−v·x (4.3)

From our assumption, (4.3) is equal to 0, therefore we have reached a contradiction.
So G1(w) = G2(w) for all w ∈ Fn2 .

Let f ∈ GBρn. Define complex-valued functions F1 and F2 as

F1 :Fn2 → C
w −→ F1(w) = ζ−f(w)

F2 :Fn2 → C
w −→ F2(w) = ζf(w)

Proposition 4.4. For all x ∈ Fn2 , F̂1(x) = F̂2(−x)

Proof.

F̂1(x) =
∑
w∈Fn2

F1(w)ζ−x·w

=
∑
w∈Fn2

ζ−f(w)ζ−x·w

=
∑
w∈Fn2

ζf(w)ζx·w

= F̂2(−x)

Next, we prove Theorem4.2
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Proof of Theorem 4.2 . Since DaDbf(x) = f(x+a+b)−f(x+a)−f(x+b)+f(x),
we rewrite θf (x) as

θf (x) =
∑
a∈Fn2

∑
b∈Fn2

ζf(x+a+b)−f(x+a)−f(x+b)+f(x)

Put x+ b = b1 and x+ a = a1, then x+ a+ b = a1 + b1 − x.
For i = 1, 2 ; define Gi : Fn2 → C as

G1(x) =
∑
a1∈Fn2

∑
b1∈Fn2

ζf(a1+b1−x)−f(a1)−f(b1)

and
G2(x) = 2n+sζ−f(x)

With this definitions, (4.2) holds iff G1(x) = G2(x) holds for all x ∈ Fn2 . We continue
by computing Ĝ1 and Ĝ2.

Ĝ1(w) =
∑
x∈Fn2

∑
a1∈Fn2

∑
b1∈Fn2

ζf(a1+b1−x)−f(a1)−f(b1)ζ−w·x

=
∑
a1∈Fn2

ζ−f(a1)ζ−w·a1
∑
b1∈Fn2

ζ−f(b1)ζ−w·b1
∑
x∈Fn2

ζf(a1+b1−x)ζw·(a1+b1−x)

= F̂1(w) · F̂1(w) · F̂2(−w)
And

Ĝ2(w) =
∑
x∈Fn2

2n+sζ−f(x)ζ−w·x

= 2n+s
∑
x∈Fn2

ζ−f(x)ζ−w·x

= 2n+s
∑
x∈Fn2

F1(x)ζ
−w·x

= 2n+s · F̂1(w)

By Proposition 4.3, G1(x) = G2(x) iff Ĝ1(w) = Ĝ2(w). Therefore (4.2) holds if and
only if

F̂1(w) · F̂1(w) · F̂2(−w) = 2n+s · F̂1(w), ∀w ∈ Fn2 (4.4)
holds . And by Proposition 4.4, (4.4) holds for all x ∈ Fn2 if and only if

F̂1(w) · F̂1(w) · F̂1(w) = 2n+s · F̂1(w), ∀w ∈ Fn2
which is equivalent to

F̂1(w)

(∣∣∣F̂1(w)
∣∣∣2 − 2n+s

)
= 0, ∀w ∈ Fn2 (4.5)

Therefore, (4.5) holds and only if∣∣∣F̂1(w)
∣∣∣2 ∈ {0, 2n+s}

holds for all for all w ∈ Fn2 .
This completes the proof of Theorem 4.2.
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4.1.2 Odd Characteristic

In this section, we will define p-ary generalized plateaued functions for some odd
prime number p. From now on, ζ = p

2πi
ρ will denote primitive ρth root of unity.

Definition 4.3. f : Fnp → Zρ is called p-ary generalized plateaued function if∣∣∣∣∣∣
∑
w∈Fnp

χ̂f (w)

∣∣∣∣∣∣
2

∈ {0, pn+s}

holds for all w ∈ Fnp .

Definition 4.4. The Walsh transform of the p-ary generalized function f is defined as

χ̂f (w) =
∑
w∈Fnp

ζf(x)(ζ)w·x

Definition 4.5. Directional difference or derivative of f at the direction of a ∈ Fnp is
the map Daf from Fnp to Zρ defined as

Daf(x) = f(x+ a)− f(x), ∀x ∈ Fnp

Second derivative of f is defined similarly as;

DbDa(f) = f(x+ a+ b)− f(x+ a)− f(x+ b) + f(x)

for all a, b ∈ Fnp

Following lemma known as Parseval identity holds for p-ary generalized plateaued
functions.

Lemma 4.5. Let f be p-ary generalized plateaued function and let χ̂f be it’s Walsh-
Hadamard Transform. Then; ∑

w∈Fnp

|χ̂f (w)|2 = p2n

Proof. Since
|χ̂f (w)|2 = χ̂f (w) · χ̂f (w)

we can write∑
w∈Fnp

∑
x∈Fnp

ζf(x)ζw·x
∑
y∈Fnp

ζ−f(y)ζ−w·y =
∑
w∈Fnp

∑
x∈Fnp

ζf(x)−f(y)
∑
y∈Fnp

ζw·(x−y)

=
∑
x,y∈Fnp

ζf(x)−f(y)
∑
w∈Fnp

ζw·(x−y) (4.6)
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As ∑
w∈Fnp

ζw·(x−y) =

 0 , if x 6= y

pn , if x = y

(4.6) can be written as
pn
∑
x∈Fnp

ζ0 = pn
∑
x∈Fnp

1 = p2n (4.7)

Next we extend Theorem 4.2 for p-ary generalized plateaued functions.

Theorem 4.6. For a p-ary generalized function f : Fnp → Zρ define θf as

θf :Fnp → C

x −→ θf (x) =
∑
a∈Fnp

∑
b∈Fnp

ζDaDbf(x)

f is p-ary generalized s-plateaued iff

θf (x) = pn+s (4.8)

holds for all x ∈ Fnp and integer s such that 0 ≤ s ≤ n.

Before starting to proof the Theorem 4.6, let us extend Proposition 4.3 and Proposition
4.4 to odd prime p.

Proposition 4.7. Let Gi : Fnp → C, i = 1, 2 be functions and define Ĝi : Fn2 → C as

Ĝi =
∑
x∈Fn2

Gi(x)ζ
−w·x

Then for all w, v ∈ Fnp

G1(w) = G2(w) if and only if Ĝ1(v) = Ĝ2(v)

Proof. Assume that G1(w) = G2(w) for all w ∈ Fnp . Then clearly Ĝ1(v) = Ĝ2(v)

Now assume that Ĝ1(v) = Ĝ2(v) for all v ∈ Fnp andG1(w) 6= G2(w) for somew ∈ Fnp .
Since Ĝ1(v) = Ĝ2(v) we can write

Ĝ1(v)− Ĝ2(v) =
∑
x∈Fnp

(G1(x)−G2(x))ζ
−v·x

As this equation is equal to 0, we have reached a contradiction. So G1(w) = G2(w)
for all w ∈ Fnp .
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Let f : Fnp → Zρ be a generalized p-ary function. Define complex-valued functions F1

and F2 as

F1 :Fnp → C
w −→ F1(w) = ζ−f(w)

F2 :Fnp → C
w −→ F2(w) = ζf(w)

Proposition 4.8. For all x ∈ Fnp , F̂1(x) = F̂2(−x)

Proof.

F̂1(x) =
∑
w∈Fnp

F1(w)ζ−x·w

=
∑
w∈Fnp

ζ−f(w)ζ−x·w

=
∑
w∈Fnp

ζf(w)ζx·w

= F̂2(−x)

Next we prove Theorem 4.6

Proof of Theorem 4.6. Since DaDbf(x) = f(x+a+ b)−f(x+a)−f(x+ b)+f(x),
we rewrite θf (x) as

θf (x) =
∑
a∈Fnp

∑
b∈Fnp

ζf(x+a+b)−f(x+a)−f(x+b)+f(x)

Put x+ b = b1 and x+ a = a1, then x+ a+ b = a1 + b1 − x.
For i = 1, 2, define Gi : Fnp → C as

G1(x) =
∑
a1∈Fnp

∑
b1∈Fnp

ζf(a1+b1−x)−f(a1)−f(b1)

and
G2(x) = pn+sζ−f(x)
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Then for all x ∈ Fnp , (4.8) holds iff G1(x) = G2(x) holds for all x ∈ Fnp . We continue
by computing Ĝ1 and Ĝ2.

Ĝ1(w) =
∑
x∈Fnp

∑
a1∈Fnp

∑
b1∈Fnp

ζf(a1+b1−x)−f(a1)−f(b1)ζ−w·x

=
∑
a1∈Fnp

ζ−f(a1)ζ−w·a1
∑
b1∈Fnp

ζ−f(b1)ζ−w·b1
∑
x∈Fnp

ζf(a1+b1−x)ζw·(a1+b1−x)

= F̂1(w) · F̂1(w) · F̂2(−w)

And

Ĝ2(w) =
∑
x∈Fnp

pn+sζ−f(x)ζ−w·x

= pn+s
∑
x∈Fnp

ζ−f(x)ζ−w·x

= pn+s
∑
x∈Fnp

F1(x)ζ
−w·x

= pn+s · F̂1(w)

By Proposition 4.7, G1(x) = G2(x) iff Ĝ1(w) = Ĝ2(w). Therefore (4.8) holds if and
only if

F̂1(w) · F̂1(w) · F̂2(−w) = pn+s · F̂1(w), ∀w ∈ Fnp (4.9)

holds . And by Proposition 4.8, (4.9) holds for all x ∈ Fnp if and only if

F̂1(w) · F̂1(w) · F̂1(w) = pn+s · F̂1(w), ∀w ∈ Fnp

which is equivalent to

F̂1(w)

(∣∣∣F̂1(w)
∣∣∣2 − pn+s) = 0, ∀w ∈ Fnp (4.10)

Therefore, (4.10) holds and only if∣∣∣F̂1(w)
∣∣∣2 ∈ {0, pn+s}

holds for all for all w ∈ Fnp .

Proposition 4.9. For p-ary generalized function f : Fnp → Zρ and a positive integer n∑
w∈Fnp

|χ̂f (w)|4 = pn
∑
x∈Fnp

θf (x)
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Proof. Since |z|4 = z2z2 and ζ = ζ−1 we can write∑
w∈Fnp

|χ̂f (w)|4 =
∑
w∈Fnp

∑
x1,x2,x3,x4∈Fnp

ζf(x1)+f(x2)−f(x3)−f(x4) · ζw·(x1+x2−x3−x4)

=
∑

x1,x2,x3,x4∈Fnp

ζf(x1)+f(x2)−f(x3)−f(x4)
∑
w∈Fnp

ζw·(x1+x2−x3−x4)

Since ∑
w∈Fnp

ζw·(x1+x2−x3−x4) =

{
pn if x1 + x2 − x3 − x4 = 0
0 otherwise

Hence, ∑
w∈Fnp

|χ̂f (w)|4 = pn
∑

x1,x2,x3,x4∈Fnp

ζf(x1)+f(x2)−f(x3)−f(x4)

For a, b ∈ Fnp put x1 = x, x2 = x+ a+ b, x3 = x+ a, and x4 = x+ b we get∑
x1,x2,x3,x4∈Fnp

ζf(x1)+f(x2)−f(x3)−f(x4) =
∑
x∈Fnp

∑
a∈Fnp

∑
a∈Fnp

ζf(x+a+b)−f(x+a)−f(x+b)+f(x)

=
∑
x∈Fnp

∑
a∈Fnp

∑
b∈Fnp

ζDaDbf(x)

=
∑
x∈Fnp

θf (x)

Therefore, ∑
w∈Fnp

|χ̂f (w)|4 = pn
∑
x∈Fnp

θf (x)

4.2 Characterizations of P-ary Generalized Plateaued Functions

Herein this section we characterize p-ary generalized plateaued functions with Walsh
moments.

Definition 4.6. For an integer i ≥ 0, the Walsh moment of p-ary generalized plateaued
function f is

Si(f) =
∑
w∈Fnp

= |χ̂f (w)|2i

with the convention S0(f) = pn. Note that S1(f) = p2n by Parseval identity.

Lemma 4.10. Let f : Fnp → Zρ be p-ary generalized s-plateaued function with 0 ≤
s ≤ n. Then forw ∈ Fnp , for pn−s times |χ̂f (w)|2 takes the value pn+s and for pn−pn−s

times |χ̂f (w)|2 takes the value 0.
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Proof. Let NS denote the size of the set {w ∈ Fnp : |χ̂f (w)|2 = pn+s}. Then,∑
w∈Fnp

|χ̂f (w)|2 = NS · pn+s

hence, by Parseval identity,

p2n = NS · pn+s

NS = pn−s

And since #Fnp = pn, we have #{w ∈ Fnp : |χ̂f (w)|2 = 0} = pn − pn−s

Let f be p-ary generalized plateaued function. For any integer A and i geq0, equation∑
w∈Fnp

(
|χ̂f (w)|2 − A

)2 |χ̂f (w)|2i = Si+2(f)− 2ASi+1(f) + A2Si(f) (4.11)

holds.

Theorem 4.11. For integer s with 0 ≤ s ≤ n and a p-ary generalized s-plateaued
function f ;

Si(f) = pn(i+1)+s(i−1)

holds for all integers i ≥ 1. Also we have Si(f)Sj(f) = Si+1(f)Sj−1(f) for all
integers i ≥ 1, j ≥ 2 .

Proof. From Lemma 4.10, for a positive integer i, we have that

Si(f) = pn−s(pn+s)i = pn(i+1)+s(i)

Therefore the following two equations

Si(f)Sj(f) = pn(i+1)s(i−1)pn(j+1)+s(j−1) = pn(i+j+2)+s(i+j−2)

Si+1(f)Sj−1(f) = pn(i+2)+sipnj+s(j−2) = pn(i+j+2)+s(i+j−2)

are equal for all i ≥ 1 and j ≥ 2.

Theorem 4.12. Let f : Fnp → Zρ be a generalized p-ary function. f is s-plateaued iff

S2(f) = p3n+s andS3(f) = p4n+2s

where s is an integer such that 1 ≤ s ≤ n.

Proof. Let f be p-ary generalized s-plateaued function. Then by Theorem 4.11 S2(f) =
p3n+s andS3(f) = p4n+2s. Conversely assume that S2(f) = p3n+s andS3(f) =
p4n+2s. By (4.11) with A = pn+s and i = 1 we have,∑

w∈Fnp

(
|χ̂f (w)|2 − pn+s

)2 |χ̂f (w)|2 = S3(f)− 2pn+sS2(f) + p2n+2sS1(f)

= p4n+2s − 2pn+sp3n+s + p2n+2sp2n

= 2p4n+2s − 2p4n+2s

= 0

26



Hence, |χ̂f (w)|2 ∈ {0, pn+s} holds for all w ∈ Fnp , i.e. f is p-ary generalized s-
plateaued function.

Proposition 4.13. For a p-ary generalized function f : Fnp → Zρ and a positive integer
n

S2(f) = pn
∑
x∈Fnp

θf (x)

Proof. Since |z|4 = z2z2 and ζ = ζ−1 we can write

S2(f) =
∑
w∈Fnp

|χ̂f (w)|4 =
∑
w∈Fnp

∑
x1,x2,x3,x4∈Fnp

ζf(x1)+f(x2)−f(x3)−f(x4) · ζw·(x1+x2−x3−x4)

=
∑

x1,x2,x3,x4∈Fnp

ζf(x1)+f(x2)−f(x3)−f(x4)
∑
w∈Fnp

ζw·(x1+x2−x3−x4)

Since ∑
w∈Fnp

ζw·(x1+x2−x3−x4) =

{
pn if x1 + x2 − x3 − x4 = 0
0 otherwise

Hence, ∑
w∈Fnp

|χ̂f (w)|4 = pn
∑

x1,x2,x3,x4∈Fnp

ζf(x1)+f(x2)−f(x3)−f(x4)

For a, b ∈ Fnp put x1 = x, x2 = x+ a+ b, x3 = x+ a, and x4 = x+ b we get∑
x1,x2,x3,x4∈Fnp

ζf(x1)+f(x2)−f(x3)−f(x4) =
∑
x∈Fnp

∑
a∈Fnp

∑
a∈Fnp

ζf(x+a+b)−f(x+a)−f(x+b)+f(x)

=
∑
x∈Fnp

∑
a∈Fnp

∑
b∈Fnp

ζDaDbf(x)

=
∑
x∈Fnp

θf (x)

Therefore,
S2(f) = pn

∑
x∈Fnp

θf (x)

Using Theorem 4.12 and Proposition 4.13, we can get much more general case as
stated below.

Corollary 4.14. Let f : Fnp → Zρ be a p-ary generalized s-plateaued function. Then,

Si(f) = pn(i−1)+s(i−2)
∑
x∈Fnp

θf (x)

where s is an integer with 0 ≤ s ≤ n.
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For another characterization plateaued functions, we recall two important inequalities.

Theorem 4.15 (Hölder’s inequality). Let p1, p2 ∈ (1,∞) with 1
p1

+ 1
p2

= 1. Then for
all (x1, x2, . . . , xm), (y1, y2, . . . , ym) ∈ Cm,

m∑
k=1

|xkyk| ≤

(
m∑
k=1

|xk|p1
) 1

p1

(
m∑
k=1

|yk|p2
) 1

p2

and the equality holds if and only if, there exists a nonnegative constant c such that,
for k ∈ {1, 2, . . .m},

|xk|p1 = c |yk|p2

holds. If pi = 2 for i = 1, 2, then the above inequality is reduced to the Chauchy-
Schwarz Inequality.

Theorem 4.16. Let f : Fnp → Zρ be generalized p-ary boolean function. Then for all
integers i ≥ 1

(Si+1(f))
2 ≤ Si+2(f)Si(f)

and the equality holds for at least one i, iff, f is p-ary generalized plateaued function.

Proof. Let xk, yk in the theorem (above) be xk = |χ̂f (w)|i and yk = |χ̂f (w)|i+2.
Then, for all w ∈ Fnp we have,∑

w∈Fnp

|χ̂f (w)|2i+2

2

≤
∑
w∈Fnp

|χ̂f (w)|2i
∑
w∈Fnp

|χ̂f (w)|2i+4

that is,
(Si+1(f))

2 ≤ Si(f)Si+2(f)

for i ≥ 1. Now suppose that f is p-ary generalized plateaued function. Then above
equality holds for at least one i ≥ 1 if and only if

|χ̂f (w)|2i = c |χ̂f (w)|2i+4 (4.12)

holds for all w ∈ Fnp and for some nonnegative constant c. If |χ̂f (w)| = 0, then (4.12)
holds for all nonnegative c. If |χ̂f (w)| = pn+s for some s with 0 ≤ s ≤ n, one can
simply take c = |χ̂f (w)|−4. In both cases (4.12) holds, proving that equality above
holds if and only if f is p-ary generalized plateaued.
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CHAPTER 5

CONCLUSION

Plateaued functions, posses desirable cryptographic properties such as maximal non-
linearity amid balanced plateaued functions, low autocorrelation. Also, alongside of
being practical in cryptography, plateaued functions also have use in coding theory and
secret sharing schemes.
In this thesis we first introduced the mathematical background and basic concepts
about generalized boolean, generalized p-ary functions and plateaued functions.
In Chapter 3, we present the studies about p-ary plateaued functions and their various
characterizations using both second-order derivatives and Walsh moments.
In Chapter 4, the notation of Generalized plateaued functions are presented. We char-
acterized generalized s-plateaued and p-ary generalized plateaued functions using their
second-order derivatives and Walsh moments.
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