SOME CHARACTERIZATIONS OF GENERALIZED S-PLATEAUED FUNCTIONS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF APPLIED MATHEMATICS
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

EMİRCAN ÇELİK

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE
IN
CRYPTOGRAPHY

SEPTEMBER 2017
Approval of the thesis:

SOME CHARACTERIZATIONS OF GENERALIZED S-PLATEAUED FUNCTIONS

submitted by EMİRCAN ÇELİK in partial fulfillment of the requirements for the degree of Master of Science in Department of Cryptography, Middle East Technical University by,

Prof. Dr. Bülent Karasözen
Director, Graduate School of Applied Mathematics

Prof. Dr. Ferruh Özbudak
Head of Department, Cryptography

Prof. Dr. Ferruh Özbudak
Supervisor, Cryptography, METU

Examining Committee Members:

Assoc. Prof. Dr. Murat Cenk
Department of Cryptography, METU

Prof. Dr. Ferruh Özbudak
Department of Mathematics, METU

Assist. Prof. Dr. Burcu Gülmez Temür
Department of Mathematics, Atılım University

Date: ______________
I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work.

Name, Last Name: EMİRCAN ÇELİK

Signature :
Plateaued functions play important role in cryptography because of their various desirable cryptographic features. Due to this characteristics they have been widely studied in the literature. This studies include p-ary functions and some generalizations of the boolean functions. In this thesis, we present some of this important work and show that plateaued functions can be generalized much more general framework naturally. Characterizations of generalized plateaued functions using Walsh power moments are also given.

Keywords: Boolean functions, Plateaued functions, p-ary functions, Walsh transform
ÖZ

S-PLATEAUED FONKSİYONLARIN BAZI NİTELİNDİRİLMELERİ

ÇELİK, Emircan
Yüksek Lisans, Kriptografi Bölümü
Tez Yöneticisi : Prof. Dr. Ferruh Özbudak

Eylül 2017, 32 sayfa

Anahtar Kelimeler: Boole fonksiyonlar, plateaued fonksiyonlar, p-ary fonksiyonlar, Walsh dönüşümü
To My Mother and Father
ACKNOWLEDGMENTS

I would like express my sincere gratitude to my supervisor Prof. Dr. Ferruh Özbudak for his guidance and insight. His inspiration is difficult to state by means of words for me. Truly, this work would not be possible without him.

I also would like to thank to all my colleagues at the Assessment Selection and Placement Center for their constant support and advices throughout this thesis.

I am grateful to my best friends Onur and Gurur for their enthusiasm and support for not only during my studies, but over a decade. I feel fortunate to have such friends in my life.

And last but by no means least, I would like to thank to my family. They deserve more credit in this accomplishment I could ever give them.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>vii</td>
</tr>
<tr>
<td>ÖZ</td>
<td>ix</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>xiii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>xv</td>
</tr>
<tr>
<td>CHAPTERS</td>
<td></td>
</tr>
<tr>
<td>1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2 PRELIMINARIES</td>
<td>3</td>
</tr>
<tr>
<td>3 P-ARY PLATEAUED FUNCTIONS</td>
<td>7</td>
</tr>
<tr>
<td>4 GENERALIZED PLATEAUED AND P-ARY GENERALIZED PLATEAUED FUNCTIONS</td>
<td>17</td>
</tr>
<tr>
<td>4.1 Generalizations of the Plateaued Functions</td>
<td>17</td>
</tr>
<tr>
<td>4.1.1 Even Characteristic</td>
<td>17</td>
</tr>
<tr>
<td>4.1.2 Odd Characteristic</td>
<td>21</td>
</tr>
<tr>
<td>4.2 Characterizations of P-ary Generalized Plateaued Functions</td>
<td>25</td>
</tr>
<tr>
<td>5 CONCLUSION</td>
<td>29</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>31</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

A Boolean function \(f \) in \(n \) variables defined as \(s \)-plateaued function if the absolute value of the Walsh transform of \(f \) belong to the set \(\{ 0, 2^{\frac{n-s}{2}} \} \). Plateaued functions first introduced to the literature by Zheng and Zhang in 1999 in [26]. And Carlet and Prouff studied them further in [6], and they have been studied widely ever since. Plateaued functions draw attention of cryptographers due to their various cryptographic characteristics. As a result of their low Hadamard transform, plateaued functions bring safeguard against linear cryptanalysis and fast correlation attacks. In [26], authors showed that plateaued functions have nonlinear characteristics, namely high nonlinearity, high algebraic degree and resiliency. They satisfy propagation criteria. Plateaued functions defined over \(\mathbb{F}_2^n \) include three most commonly known classes. First class is bent functions, i.e. \(s = 0 \) in the functions Walsh transform’s amplitude. Second class is near-bent functions also known as semi-bent functions in odd dimension. Near-bent functions are 1-plateaued functions and they exists when dimension \(n \) is odd. Third class is semi-bent functions, which are 2-plateaued functions. Bent functions and semi-bent functions exist when dimension \(n \) is even.

\(p \)-ary functions are generalization of the boolean functions in odd prime characteristic \(p \).

This thesis organised as follows. In Preliminaries, basic concepts and definitions about boolean functions and functions that are defined over odd characteristic are given. Also generalizations of boolean functions and some characteristic of this generalizations are presented.

Chapter 3 is dedicated to \(p \)-ary functions. This Chapter only includes present studies about \(p \)-ary plateaued functions.

In Chapter 4 we generalize the concept of the plateaued functions defined over both even and odd dimension vector spaces. Characterizations of generalized plateaued functions are presented.
CHAPTER 2

PRELIMINARIES

Let \mathbb{F}_2 denote the Galois field with two elements. \mathbb{C} denotes the set of complex numbers. For $z \in \mathbb{C}$, \overline{z} denotes the conjugate of the number z. $\text{Len } \mathbb{F}_2^n$ denote the vector space of dimension n over \mathbb{F}_2. Number of non-zero components of the vector $x \in \mathbb{F}_2^n$ is called Hamming weight of x and denoted by $\text{wt}(x)$. Number of non-equal components of two vectors x and y is defined as Hamming distance and denoted by $d_H(x, y)$. For $x = (x_1, x_2, \ldots, x_n)$ and $y = (y_1, y_2, \ldots, y_n)$ in \mathbb{F}_2^n, standard scalar product of x and y on the vector space \mathbb{F}_2^n is

$$x \cdot y = \sum_{i=1}^{n} x_i y_i$$

A mapping from \mathbb{F}_2^n to \mathbb{F}_2 is called boolean function. Set of boolean functions defined over \mathbb{F}_2^n is denoted with \mathcal{B}_n. Hamming weight of the boolean function is defined as the size of the set $\{x \in \mathbb{F}_2^n | f(x) \neq 0\}$ and denoted by $\text{wt}(f)$. Hamming distance $d_H(f, g)$ of the functions f and g on \mathbb{F}_2^n is the size of the set $\{x \in \mathbb{F}_2^n | f(x) \neq g(x)\}$.

The Walsh Transform of the boolean function $f : \mathbb{F}_2^n \rightarrow \mathbb{F}_2$ is defined as;

$$\hat{\chi}_f(w) = \sum_{x \in \mathbb{F}_2^n} (-1)^{f(x)} (-1)^{w \cdot x}$$

for every $w \in \mathbb{F}_2^n$. The Walsh Transform is invertible, i.e. Inverse Walsh Transform of f is:

$$f(x) = 2^{-n} \sum_{w \in \mathbb{F}_2^n} \hat{\chi}_f(w) (-1)^{w \cdot x}$$

Lemma 2.1. Let $f : \mathbb{F}_2^n \rightarrow \mathbb{F}_2$ be a boolean function and let $\hat{\chi}_f$ be Walsh Transform of f. Then:

$$\sum_{w \in \mathbb{F}_2^n} |\hat{\chi}_f(w)|^2 = 2^{2n}$$
Proof.
\[\sum_{w \in \mathbb{F}_2^n} |\hat{\chi}_f(w)|^2 = \sum_{w \in \mathbb{F}_2^n} \hat{\chi}_f(w) \cdot \hat{\chi}_f(w) = \sum_{w \in \mathbb{F}_2^n} \sum_{x \in \mathbb{F}_2^n} (-1)^{f(x)} (-1)^{w \cdot x} \sum_{a \in \mathbb{F}_2^n} (-1)^{f(a)} (-1)^{w \cdot a} \]
\[= \sum_{w \in \mathbb{F}_2^n} \sum_{x \in \mathbb{F}_2^n} (-1)^{f(x)+f(a)} \sum_{a \in \mathbb{F}_2^n} (-1)^{w \cdot (x+a)} \]
\[= \sum_{x,a \in \mathbb{F}_2^n} (-1)^{f(x)+f(a)} \sum_{w \in \mathbb{F}_2^n} (-1)^{w \cdot (x+a)} \quad (2.1) \]

As
\[\sum_{w \in \mathbb{F}_2^n} (-1)^{w \cdot (x+a)} = \begin{cases} 0 & \text{if } x \neq a \\ 2^n & \text{if } x = a \end{cases} \]

(2.1) can be written as
\[\sum_{w \in \mathbb{F}_2^n} |\hat{\chi}_f(w)|^2 = 2^n \sum_{x \in \mathbb{F}_2^n} (-1)^0 = 2^n \sum_{x \in \mathbb{F}_2^n} 1 = 2^{2n} \]

\[\square \]

For \(f \in \mathbb{B}_n \), \(f \) is defined as \textit{bent} function if Walsh transform of \(f \) satisfies \(|\hat{\chi}_f(w)| = 2^{n/2} \) for every \(w \) in \(\mathbb{F}_2^n \).

The \textit{directional difference} (or simply first-order derivative) of the function \(f : \mathbb{F}_2^n \rightarrow \mathbb{F}_2 \) at the direction of \(r \in \mathbb{F}_2^n \) is the map
\[D_a f : \mathbb{F}_2^n \rightarrow \mathbb{F}_2 \]
\[x \mapsto D_a f(x) = f(x + a) - f(x), \quad \forall x \in \mathbb{F}_2^n \]
And for \(a, b \in \mathbb{F}_2^n \), the \textit{second-order derivative} of the function \(f : \mathbb{F}_2^n \rightarrow \mathbb{F}_2 \), is the map
\[D_a D_b f : \mathbb{F}_2^n \rightarrow \mathbb{F}_2 \]
\[x \mapsto D_a D_b f(x) = f(x + a + b) - f(x + a) - f(x + b) + f(x), \quad \forall x \in \mathbb{F}_2^n \]

Let \(p \) be a odd prime number. Let \(\zeta_p = e^{\frac{2\pi i}{p}} \) be a primitive \(p^{th} \) root of unity. Let \(\mathbb{F}_p \) denote the Galois field with \(p \) elements and let \(\mathbb{F}_p^n \) denote the vector space of dimension \(n \) over \(\mathbb{F}_p \). The scalar product of two elements \(x, y \in \mathbb{F}_p^n \) with \(x \cdot y \).

A function \(f : \mathbb{F}_p^n \rightarrow \mathbb{F}_p \) is defined as \(p \)-ary function.
The Walsh transform of function \(f : F_p^n \rightarrow F_p \) is defined as

\[
\tilde{\chi}_f : F_p^n \rightarrow \mathbb{C}
\]

\[
w \mapsto \tilde{\chi}_f(w) = \sum_{w \in F_p^n} \zeta_p^{f(x)} \zeta_p^{w \cdot x}
\]

Inverse Walsh Transform of the function \(f : F_p^n \rightarrow F_p \) is defined as

\[
f(x) = p^{-n} \sum_{w \in F_p^n} \tilde{\chi}_f(w) \zeta_p^{w \cdot x}
\]

Lemma 2.2. Let \(f : F_p^n \rightarrow F_p \) be a \(p \)-ary function. Then, for all \(w \in F_p^n \)

\[
\sum_{w \in F_p^n} |\tilde{\chi}_f(w)|^2 = p^{2n}
\]

Proof is very similar as proof of Lemma 2.1 therefore it is omitted.

Let \(\rho \leq 1 \) be an integer. Let \(\mathbb{Z} \) denote the set of integers and let \(\mathbb{Z}_\rho \) denote ring of integers modulo \(\rho \). A function \(f : F_2^n \rightarrow \mathbb{Z}_\rho \) is defined as generalized boolean function. The set of all generalized boolean functions in \(n \) variables are denoted by \(GB_\rho^n \). Note that \(GB_2^n = B_n \) when \(\rho = 2 \).

Let \(\zeta \) be a primitive \(\rho^{th} \) root of unity. The Walsh transform of the generalized boolean function is defined as

\[
\tilde{\chi}_f(w) = \sum_{w \in F_2^n} \zeta^{f(x)} (-1)^{w \cdot x}
\]

Generalized boolean function \(f \in GN_\rho^n \) is called generalized bent function if and only if \(|\tilde{\chi}_f(w)| = 1 \) for all \(w \in F_2^n \). Notice that \(f \) is reduced to be bent when \(\rho = 2 \).
In this chapter nothing but existing studies are presented. In [5, 16, 17, 19], further information can be found.

Definition 3.1. Function \(f : \mathbb{F}_p^n \to \mathbb{F}_p \) is called \(s \)-plateaued if \(|\hat{\chi}_f|^2 \in \{0, p^{n+s}\} \) holds for all \(w \in \mathbb{F}_p^n \) where \(0 \leq s \leq n \).

Lemma 3.1.

\[
\sum_{w \in \mathbb{F}_p^n} |\hat{\chi}_f(w)|^2 = p^{2n} \tag{3.1}
\]

Proof. Since for a complex number \(z \), \(|z|^2 = z \cdot \overline{z} \), we can write

\[
\sum_{w \in \mathbb{F}_p^n} |\hat{\chi}_f(w)|^2 = \sum_{w \in \mathbb{F}_p^n} \hat{\chi}_f(w) \cdot \overline{\hat{\chi}_f(w)}
\]

\[
= \sum_{w \in \mathbb{F}_p^n} \sum_{x \in \mathbb{F}_p^n} \zeta_p^{f(x)} \zeta_p^{w \cdot x} \sum_{y \in \mathbb{F}_p^n} \zeta_p^{-f(y)} \zeta_p^{-w \cdot y}
\]

\[
= \sum_{w \in \mathbb{F}_p^n} \sum_{x \in \mathbb{F}_p^n} \zeta_p^{f(x)-f(y)} \sum_{y \in \mathbb{F}_p^n} \zeta_p^{w \cdot (x-y)}
\]

\[
= \sum_{x,y \in \mathbb{F}_p^n} \zeta_p^{f(x)-f(y)} \sum_{w \in \mathbb{F}_p^n} \zeta_p^{w \cdot (x-y)} \tag{3.2}
\]

As

\[
\sum_{w \in \mathbb{F}_p^n} \zeta_p^{w \cdot (x-y)} = \begin{cases}
0, & \text{if } x \neq y \\
p^n, & \text{if } x = y
\end{cases}
\]

(3.2) can be written as

\[
\sum_{w \in \mathbb{F}_p^n} |\hat{\chi}_f(w)|^2 = p^n \sum_{x \in \mathbb{F}_p^n} \zeta_p^0 = p^n \sum_{x \in \mathbb{F}_p^n} 1 = p^{2n}
\]
Lemma 3.2. Let \(f : \mathbb{F}_p^n \to \mathbb{F}_p \) be an \(p \)-ary \(s \)-plateaued function. For \(w \in \mathbb{F}_p^n \), \(|\hat{f}(w)| \) equals to \(p^{n+s} \) for \(p^n/s \) times and 0 for \(p^n - p^{n-s} \) times.

Proof. Define the set \(\mathcal{N}_f = \{ w \in \mathbb{F}_p^n : |\hat{f}(w)| = p^{n+s} \} \). Then,
\[
\sum_{w \in \mathbb{F}_p^n} |\hat{f}(w)|^2 = |\mathcal{N}_f| \cdot p^{n+s}
\]
and from (3.1)
\[
\sum_{w \in \mathbb{F}_p^n} |\hat{f}(w)|^2 = p^{2n} = |\mathcal{N}_f| \cdot p^{n+s}
\]
\[
\Rightarrow |\mathcal{N}_f| = p^{n-s}
\]
(3.3)

Thus the rest of the result follows.

Definition 3.2. For integer \(i \geq 0 \), Walsh moment of the Walsh transform of a \(p \)-ary function \(f \) is defined as
\[
S_i(f) = \sum_{w \in \mathbb{F}_p^n} |\hat{f}(w)|^{2i}
\]
and define
\[
T_i(f) = \frac{S_{i+1}(f)}{S_i(f)}
\]

Note that for \(i = 0 \), \(S_0(f) = p^n \) and for \(i = 1 \), \(S_1(f) = p^{2n} \) according to (3.1) (and \(T_0(f) = \frac{S_1(f)}{S_0(f)} = p^n \)).

For any integer \(A \) and integer \(i \geq 0 \), following equation
\[
\sum_{w \in \mathbb{F}_p^n} (|\hat{f}(w)|^2 - A)^2 |\hat{f}(w)|^{2i} = S_{i+2}(f) - 2AS_{i+1}(f) + A^2S_i(f)
\]
(3.4)
always holds.

Theorem 3.3. For a \(p \)-ary function \(f : \mathbb{F}_p^n \to \mathbb{F}_p \) and two positive integers \(n \) and \(k \) following are equivalent.

1. \(f \) is \(s \)-plateaued with \(0 \leq s \leq n \).
2. \(T_{i+1}(f) = T_i(f) \)

Proof. 1. Suppose that \(f \) is \(s \)-plateaued with \(0 \leq s \leq n \). Then, from Lemma 3.2
\[
S_i(f) = \sum_{w \in \mathbb{F}_p^n} |\hat{f}(w)|^{2i} = p^{n-s}p^{(n+s)}
\]
\[
= p^{(i+1)n+(i-1)s}
\]

Theorem 3.4. Let 1. Assume that

\begin{align*}
S_{i+1}(\cdot) &= p^{n(i+2)+si} \\
S_{i+2}(\cdot) &= p^{n(i+3)+s(i+1)}
\end{align*}

Hence we get,

\begin{align*}
T_{i}(f) &= \frac{S_{i+1}(f)}{S_{i}(f)} = \frac{p^{(i+2)n+is}}{p^{(i+1)n+(i-1)s}} = p^{n+s} \\
T_{i+1}(f) &= \frac{S_{i+2}(f)}{i + 1} = \frac{p^{(i+3)n+(i+1)s}}{p^{(i+2)n+is}} = p^{n+s}
\end{align*}

Proving that $T_{i}(f) = T_{i+1}(f)$.

2. Conversely assume that $T_{i}(f) = T_{i+1}(f)$. Then, $S_{i+2}(f) = T_{i}(f) \cdot S_{i+1}(f)$.

Taking $A = T_{i}(f)$ in (3.4) we get

\[
\sum_{w \in \mathbb{F}_p^n} (|\widehat{\chi_f}(w)|^2 - T_{i}(f))^2 |\widehat{\chi_f}(w)|^{2i} = S_{i+2}(f) - 2T_{i}(f)S_{i+1}(f) + (T_{i}(f))^2 S_{i}(f)
\]

\[
= T_{i}(f) \cdot S_{i+1}(f) - 2T_{i}(f)S_{i+1}(f) + T_{i}(f)S_{i+1}(f) = 0
\]

meaning that $|\widehat{\chi_f}|^2 \in \{0, T_{i}(f)\}$ for all $w \in \mathbb{F}_p^n$. Now let $\mathcal{N}_{T_{i}} = \{w \in \mathbb{F}_p^n : |\widehat{\chi_f}|^2 = T_{i}(f)\}$. Then,

\[
\sum_{w \in \mathbb{F}_p^n} |\widehat{\chi_f}|^2 = T_{i}(f) \cdot |\mathcal{N}_{T_{i}}| \tag{3.5}
\]

from (3.1) we know that left hand side of the (3.5) equal to p^{2n}. Therefore $T_{i}(f)$ is a p^n-ary s-plateaued function with $0 < s < n$ and two positive integers i and j, below assertions are equivalent:

1. f is p-ary s-plateaued.

2. $S_{i}(f)S_{j}(f) = S_{i+1}(f)S_{j-1}(f)$ for all $i \geq 1$ and $j \geq 2$

Proof. 1. Assume that f is p-ary s-plateaued function with $0 < s < n$. From Lemma 3.2 we know that,

\begin{align*}
S_{i}(f) &= p^{n(i+1)+s(i-1)} \\
S_{j}f &= p^{n(j+1)+s(j-1)} \\
S_{i+1}(f) &= p^{n(i+2)+si} \\
S_{j-1}(f) &= p^{n(j+2)+sj}
\end{align*}
Therefore we have

\[S_i(f)S_j(f) = p^{n(i+j)+s(i+j-2)} = S_{i+1}(f)S_{j-1}(f) \]

2. Assume that \(S_i(f)S_j(f) = S_{i+1}(f)S_{j-1}(f) \). Then, for \(i = j \), we have \(T_{i-1}(f) = T_i(f) \). Taking \(A = T_{i-1}(f) \) in (3.4) we have that

\[\sum_{w \in \mathbb{F}_p^n} (|\hat{\chi}_f(w)|^2 - T_{i-1}(f))^2 |\hat{\chi}_f(w)|^{2i} = S_{i+2}(f) - 2T_{i-1}(f)S_{i+1}(f) + (T_{i-1}(f))^2 S_i(f) \]

And remaining proof deduced to proof of the Theorem 3.3.

\[\square \]

Corollary 3.5. Let \(f : \mathbb{F}_p^n \to \mathbb{F}_p \) be a p-ary function. If \(f \) is bent, then \(\forall i \in \mathbb{N} \)

\[S_i(f) = p^{n(i+1)} \quad (3.6) \]

Proof. Since we assumed that \(f \) is bent, \(|\hat{\chi}_f(w)|^2 = p^n \) for all \(w \in \mathbb{F}_p^n \). For \(A = p^n \) and \(i = 0 \) in (3.4) we have

\[\sum_{w \in \mathbb{F}_p^n} (|\hat{\chi}_f(w)|^2 - p^n)^2 = S_2(f) - 2p^nS_1(f) + A^2S_0(f) \]

\[\sum_{w \in \mathbb{F}_p^n} (|\hat{\chi}_f(w)|^2 - p^n)^2 = S_2(f) - p^{3n} \quad (3.7) \]

Since \(f \) is bent, left hand side of the (3.7) is equal to 0. So \(S_2(f) = p^{3n} \). By (3.1) \(S_2(f) = p^{2n} \) and by Theorem 3.4 one gets

\[S_i(f) = \frac{S_{i-1}(f)^2}{S_{i-2}(f)} = p^{(i+1)n} \]

\[\square \]

Next theorem characterizes s-plateaued functions by means of their Walsh moments.

Theorem 3.6. Let \(f : \mathbb{F}_p^n \to \mathbb{F}_p \) be a p-ary function and let \(s \) be an integer \(1 \leq s \leq n \). Then \(f \) is s-plateaued iff

\[S_2(f) = p^{3n+s} \text{ and } S_3(f) = p^{4n+s} \]

Proof. Suppose \(f \) is p-ary s-plateaued. Taking \(A = p^{n+s} \) and \(i = 0 \) in (3.4) we get

\[\sum_{w \in \mathbb{F}_p^n} (|\hat{\chi}_f(w)|^2 - p^{n+s})^2 = S_2(f) - 2p^{n+s}S_1(f) + p^{2n+2s}S_0(f) \]
Corollary 3.7. If p-ary function f is s-plateaued, for all positive integer i
\begin{equation}
S_i(f) = p^{n(i+1)+s(i-1)}
\end{equation}
\begin{proof}
From Theorem 3.6 we have that $S_2(f) = p^{3n+s}$ and $S_3(f) = p^{n+2s}$. And by
Theorem 3.3 recursively we have
\begin{equation*}
S_i(f) = \frac{(S_{i-1}(f))^2}{S_{i-2}(f)} = p^{n(i+1)+s(i-1)}
\end{equation*}
\end{proof}

Following theorem brings new characterizations of the plateaued functions in characteristic p.

Theorem 3.8. Let $f : \mathbb{F}_p^n \to \mathbb{F}_p$ be p-ary function and define θ_f as
\begin{align*}
\theta_f : \mathbb{F}_p^n &\to \mathbb{C} \\
x &\mapsto \theta_f(x) = \sum_{a \in \mathbb{F}_p^n} \sum_{b \in \mathbb{F}_p^n} a^D_x b^D_y f(x)
\end{align*}
f is s-plateaued iff

$$\theta_f(x) = p^{n+s}$$

holds for all $x \in \mathbb{F}_p^n$ and integer s such that $0 \leq s \leq n$.

Following two propositions are useful for the proof of the Theorem 3.8.

Proposition 3.9. Let $G_i : \mathbb{F}_p^n \rightarrow \mathbb{C}$, $i = 1, 2$ be two functions and define $\hat{G}_i : \mathbb{F}_p^n \rightarrow \mathbb{C}$ as

$$\hat{G}_i = \sum_{x \in \mathbb{F}_p^n} G_i(x) \zeta_p^{-w \cdot x}$$

Then for all $w, v \in \mathbb{F}_p^n$

$$G_1(w) = G_2(w) \text{ if and only if } \hat{G}_1(v) = \hat{G}_2(v)$$

Proof. Assume that $G_1(w) = G_2(w)$ for all $w \in \mathbb{F}_p^n$. Then from definition $\hat{G}_1(v) = \hat{G}_2(v)$ Now assume that $\hat{G}_1(v) = \hat{G}_2(v)$ for all $v \in \mathbb{F}_p^n$ and $G_1(w) \neq G_2(w)$ for some $w \in \mathbb{F}_p^n$. Since $\hat{G}_1(v) = \hat{G}_2(v)$ we can write

$$\hat{G}_1(v) - \hat{G}_2(v) = \sum_{x \in \mathbb{F}_p^n} (G_1(x) - G_2(x)) \zeta_p^{-w \cdot x}$$

Since left hand side of this equation is equal to 0, we have reached a contradiction. So $G_1(w) = G_2(w)$ for all $w \in \mathbb{F}_p^n$. This completes the proof of Proposition 3.9.

Let $f : \mathbb{F}_p^n \rightarrow \mathbb{F}_p$ be p-ary function. Define complex-valued functions F_1 and F_2 as

$$F_1 : \mathbb{F}_p^n \rightarrow \mathbb{C}$$

$$x \mapsto F_1(x) = \zeta_p^{-f(x)}$$

$$F_2 : \mathbb{F}_p^n \rightarrow \mathbb{C}$$

$$x \mapsto F_2(x) = \zeta_p^{f(x)}$$

Proposition 3.10. For all $w \in \mathbb{F}_p^n$, $\hat{F}_1(w) = \hat{F}_2(-w)$

Proof.

$$\hat{F}_1(w) = \sum_{x \in \mathbb{F}_p^n} F_1(x) \zeta_p^{-w \cdot x}$$

$$= \sum_{x \in \mathbb{F}_p^n} \zeta_p^{-f(x)} \zeta_p^{-w \cdot x}$$

$$= \sum_{x \in \mathbb{F}_p^n} \zeta_p^{f(x)} \zeta_p^{w \cdot x}$$

$$= \hat{F}_2(-w)$$
Proof of Theorem 3.8. Since $D_a D_b f(x) = f(x + a + b) - f(x + a) - f(x + b) + f(x)$, we can write $\theta_f(x)$ as

$$
\theta_f(x) = \sum_{a \in \mathbb{F}_p^n} \sum_{b \in \mathbb{F}_p^n} \zeta^f(x+a+b)-f(x+a) - f(x+b) + f(x)
$$

Put $x + a = a_1$ and $x + b = b_1$, then $x + a + b = a_1 + b_1 - x$. For $i = 1, 2$, define $G_i : \mathbb{F}_p^n \to \mathbb{C}$ as

$$
G_i(x) = \sum_{a_1 \in \mathbb{F}_p^n} \sum_{b_1 \in \mathbb{F}_p^n} \zeta^f(a_1+b_1-x) - f(a_1) - f(b_1)
$$

and

$$
G_2(x) = p^{n+s} \zeta^f(x)
$$

Then for all $x \in \mathbb{F}_p^n$, (3.10) holds if and only if $G_1(x) = G_2(x)$ holds for all $x \in \mathbb{F}_p^n$. We continue by computing \widehat{G}_1 and \widehat{G}_2.

$$
\widehat{G}_1(w) = \sum_{a_1 \in \mathbb{F}_p^n} \sum_{b_1 \in \mathbb{F}_p^n} \zeta^f(a_1+b_1-x) - f(a_1) - f(b_1) \zeta^{-w\cdot x}
$$

$$
= \sum_{a_1 \in \mathbb{F}_p^n} \zeta^{-f(a_1)} \zeta^{-w\cdot a_1} \sum_{s_1 \in \mathbb{F}_p^n} \zeta^{-f(b_1)} \zeta^{-w\cdot b_1} \sum_{x \in \mathbb{F}_p^n} \zeta^f(a_1+b_1-x) \zeta^{w\cdot (a_1+b_1-x)}
$$

$$
= \widehat{F}_1(w) \cdot \widehat{F}_1(w) \cdot F_2(-w)
$$

And

$$
\widehat{G}_2(w) = \sum_{x \in \mathbb{F}_p^n} p^{n+s} \zeta^f(x) \zeta^{-w\cdot x}
$$

$$
= p^{n+s} \sum_{x \in \mathbb{F}_p^n} \zeta^{-f(x)} \zeta^{-w\cdot x}
$$

$$
= p^{n+s} \sum_{x \in \mathbb{F}_p^n} F_1(x) \zeta^{-w\cdot x}
$$

$$
= p^{n+s} \cdot \widehat{F}_1(w)
$$

By Proposition 3.9 $G_1(x) = G_2(x)$ iff $\widehat{G}_1(w) = \widehat{G}_2(w)$. Therefore (3.10) holds if and only if

$$
\widehat{F}_1(w) \cdot \widehat{F}_1(w) \cdot \widehat{F}_2(-w) = p^{n+s} \cdot \widehat{F}_1(w), \quad \forall w \in \mathbb{F}_p^n
$$

(3.11) holds. And by Proposition 3.10 (3.11) holds for all $x \in \mathbb{F}_p^n$ if and only if

$$
\widehat{F}_1(w) \cdot \widehat{F}_1(w) \cdot \widehat{F}_1(w) = p^{n+s} \cdot \widehat{F}_1(w), \quad \forall w \in \mathbb{F}_p^n
$$

which is equivalent to

$$
\widehat{F}_1(w) \left(|\widehat{F}_1(w)|^2 - p^{n+s} \right) = 0, \quad \forall w \in \mathbb{F}_p^n
$$

(3.12)
Therefore, (3.12) holds and only if
\[|\widehat{F}_1(w)|^2 \in \{0, p^{n+s}\} \]
holds for all \(w \in \mathbb{F}_p^n \).
This completes the proof of Theorem 3.8. We can rewrite Theorem 3.8 as following.

Corollary 3.11. \(p \)-ary function \(f : \mathbb{F}_p^n \rightarrow \mathbb{F}_p \) is \(s \)-plateaued iff
\[\sum_{x \in \mathbb{F}_p^n} \theta_f(x) = p^{2n+s} \quad (3.13) \]

Proposition 3.12. For a positive integer \(n \) and a \(p \)-ary function \(f \):
\[S_2(f) = \sum_{w \in \mathbb{F}_p^n} |\widehat{\chi_f}(w)|^4 = p^n \sum_{x \in \mathbb{F}_p^n} \theta_f(x) \]

Proof. Since \(|z|^4 = z^2 \bar{z}^2 \) and \(\overline{\zeta_p} = \zeta_p^{-1} \) we can write
\[
S_2(f) = \sum_{w \in \mathbb{F}_p^n} |\widehat{\chi_f}(w)|^4 = \sum_{w \in \mathbb{F}_p^n} \sum_{a_1,2,3,4 \in \mathbb{F}_p^n} \zeta_p^{|f(a_1)+f(a_2)-f(a_3)-f(a_4)|} \cdot \zeta_p^{w(a_1+a_2-a_3-a_4)}
\]
\[
= \sum_{a_1,a_2,a_3,a_4 \in \mathbb{F}_p^n} \zeta_p^{f(a_1)+f(a_2)-f(a_3)-f(a_4)} \sum_{w \in \mathbb{F}_p^n} \zeta_p^{w(a_1+a_2-a_3-a_4)}
\]
Since
\[
\sum_{w \in \mathbb{F}_p^n} \zeta_p^{w(a_1+a_2-a_3-a_4)} = \begin{cases} p^n & \text{if } a_1 + a_2 - a_3 - a_4 = 0 \\ 0 & \text{otherwise} \end{cases}
\]
Hence,
\[
\sum_{w \in \mathbb{F}_p^n} |\widehat{\chi_f}(w)|^4 = p^n \sum_{a_1,a_2,a_3,a_4 \in \mathbb{F}_p^n} \zeta_p^{f(a_1)+f(a_2)-f(a_3)-f(a_4)}
\]
For \(a, b \in \mathbb{F}_p^n \) put \(a_1 = x, a_2 = x+a+b, a_3 = x+a, \) and \(a_4 = x+b \) we get
\[
\sum_{a_1,a_2,a_3,a_4 \in \mathbb{F}_p^n} \zeta_p^{f(a_1)+f(a_2)-f(a_3)-f(a_4)} = \sum_{x \in \mathbb{F}_p} \sum_{a \in \mathbb{F}_p} \sum_{a \in \mathbb{F}_p} \zeta_p^{f(x+a+b)-f(x+a)-f(x+b)+f(x)}
\]
\[
= \sum_{x \in \mathbb{F}_p} \sum_{a \in \mathbb{F}_p} \sum_{b \in \mathbb{F}_p} \zeta_p^{D_aD_bf(x)}
\]
\[
= \sum_{x \in \mathbb{F}_p} \theta_f(x)
\]
Therefore,
\[S_2(f) = \sum_{w \in \mathbb{F}_p^n} |\widehat{\chi_f}(w)|^4 = p^n \sum_{x \in \mathbb{F}_p^n} \theta_f(x) \]
\[\square \]
From Proposition 3.12 and Corollary 3.11 we can derive a new characterization of the plateaued functions by the means of Walsh moments.

Theorem 3.13. For an integer s with $0 \leq s \leq n$, p-ary function f is s-plateaued iff

$$S_2(f) = p^{3n+s}$$

Proof. From Proposition 3.12 and Corollary 3.11 we can deduce that f is s-plateaued iff

$$S_2(f) = p^n \sum_{x \in \mathbb{F}_p^n} \theta_f(x) = p^{3n+s}$$

\square
CHAPTER 4

GENERALIZED PLATEAUED AND P-ARY GENERALIZED PLATEAUED FUNCTIONS

4.1 Generalizations of the Plateaued Functions

Let $\rho \geq 2$ be any integer, and let complex number $\zeta = e^{\frac{2\pi i}{\rho}}$ be primitive ρ^{th} root of unity. In this section, we generalize plateaued functions and characterize them by the means of their second-order derivatives. The cases of even and odd characteristics are given separately.

4.1.1 Even Characteristic

Definition 4.1. Generalized boolean function $f : \mathbb{F}_2^n \rightarrow \mathbb{Z}_\rho$ defined to be generalized s-plateaued function if

$$ \left| \sum_{w \in \mathbb{F}_2^n} \hat{\chi}_f(w) \right|^2 \in \{0, 2^{n+s}\} $$

holds for all $w \in \mathbb{F}_2^n$ and integer s such that $0 \leq s \leq n$.

Definition 4.2. The directional difference (derivative) of f at the direction $a \in \mathbb{F}_2^n$ is the map $D_a f$ from \mathbb{F}_2^n to \mathbb{Z}_ρ defined as

$$ D_a f(x) = f(x + a) - f(x), \quad \forall x \in \mathbb{F}_2^n $$

In same analogy, we can define second-order derivative of f as

$$ D_b D_a (f) = f(x + a + b) - f(x + a) - f(x + b) + f(x) $$

for all $a, b \in \mathbb{F}_2^n$

Lemma 4.1. Let f be generalized s-plateaued function and let $\hat{\chi}_f$ be Walsh transform of f. Then:

$$ \sum_{w \in \mathbb{F}_2^n} |\hat{\chi}_f(w)|^2 = 2^{2n} $$
Proof. Since
\[|\hat{\chi}_f(w)|^2 = \hat{\chi}_f(w) \cdot \overline{\hat{\chi}_f(w)} \]
we can write
\[
\sum_{w \in \mathbb{F}_2^n} \sum_{x \in \mathbb{F}_2^n} \zeta^{f(x)} (-1)^{w \cdot x} \sum_{y \in \mathbb{F}_2^n} \zeta^{-f(y)} (-1)^{w \cdot y} = \sum_{w \in \mathbb{F}_2^n} \sum_{x \in \mathbb{F}_2^n} \zeta^{f(x)-f(y)} \sum_{y \in \mathbb{F}_2^n} (-1)^{w \cdot (x+y)}
\]
\[= \sum_{x,y \in \mathbb{F}_2^n} \zeta^{f(x)-f(y)} \sum_{w \in \mathbb{F}_2^n} (-1)^{w \cdot (x+y)} \tag{4.1} \]
As
\[\sum_{w \in \mathbb{F}_2^n} (-1)^{w \cdot (x+y)} = \begin{cases} 0, & \text{if } x \neq y \\ 2^n, & \text{if } x = y \end{cases} \]
we can rewrite (4.1) as
\[2^n \sum_{x \in \mathbb{F}_2^n} (-1)^0 = 2^n \sum_{x \in \mathbb{F}_2^n} 1 = 2^{2n} \]
\[\square \]

Later theorem is very useful characterization of the generalized plateaued boolean functions.

Theorem 4.2. For a function \(f : \mathbb{F}_2^n \rightarrow \mathbb{Z}_\rho \) define \(\theta_f \) as
\[
\theta_f : \mathbb{F}_2^n \rightarrow \mathbb{C}
\]
\[x \rightarrow \theta_f(x) = \sum_{a \in \mathbb{F}_2^n} \sum_{b \in \mathbb{F}_2^n} \zeta^{D_aD_bf(x)} \]
f is generalized \(s \)-plateaued function iff
\[\theta_f(x) = 2^{n+s} \]
holds for all \(x \in \mathbb{F}_2^n \) and integer \(s \) such that \(0 \leq s \leq n \).

Before starting to proof, we will show some propositions that will be helpful to prove Theorem (4.2).

Proposition 4.3. Let \(G_i : \mathbb{F}_2^n \rightarrow \mathbb{C} \), \(i = 1, 2 \) be functions and define \(\hat{G}_i : \mathbb{F}_2^n \rightarrow \mathbb{C} \) as
\[
\hat{G}_i = \sum_{x \in \mathbb{F}_2^n} G_i(x) \zeta^{-w \cdot x}
\]
Then for all \(w, v \in \mathbb{F}_2^n \)
\[G_1(w) = G_2(w) \text{ if and only if } \hat{G}_1(v) = \hat{G}_2(v) \]
18
Proof. Assume that $G_1(w) = G_2(w)$ for all $w \in \mathbb{F}_2^n$. Then

$$\widehat{G}_1(v) = \sum_{x \in \mathbb{F}_2^n} G_1(x)\zeta^{-v \cdot x} = \sum_{x \in \mathbb{F}_2^n} G_2(x)\zeta^{-v \cdot x} = \widehat{G}_2(v)$$

Now assume that $\widehat{G}_1(v) = \widehat{G}_2(v)$ for all $v \in \mathbb{F}_2^n$ and $G_1(w) \neq G_2(w)$ for some $w \in \mathbb{F}_2^n$. Since $\widehat{G}_1(v) = \widehat{G}_2(v)$ we can write

$$\widehat{G}_1(v) - \widehat{G}_2(v) = \sum_{x \in \mathbb{F}_2^n} (G_1(x) - G_2(x))\zeta^{-v \cdot x} \quad (4.3)$$

From our assumption, (4.3) is equal to 0, therefore we have reached a contradiction. So $G_1(w) = G_2(w)$ for all $w \in \mathbb{F}_2^n$.

Let $f \in GB^n$. Define complex-valued functions F_1 and F_2 as

$$F_1 : \mathbb{F}_2^n \to \mathbb{C}$$

$$w \rightarrow F_1(w) = \zeta^{-f(w)}$$

$$F_2 : \mathbb{F}_2^n \to \mathbb{C}$$

$$w \rightarrow F_2(w) = \zeta^{f(w)}$$

Proposition 4.4. For all $x \in \mathbb{F}_2^n$, $\overline{F_1(x)} = \overline{F_2(-x)}$

Proof.

$$\overline{F_1(x)} = \sum_{w \in \mathbb{F}_2^n} \overline{F_1(w)}\zeta^{-x \cdot w}$$

$$= \sum_{w \in \mathbb{F}_2^n} \zeta^{-f(w)}\zeta^{-x \cdot w}$$

$$= \sum_{w \in \mathbb{F}_2^n} \zeta^{f(w)}\zeta^{x \cdot w}$$

$$= F_2(-x)$$

Next, we prove Theorem 4.2
Proof of Theorem 4.2. Since \(D_a D_b f(x) = f(x + a + b) - f(x + a) - f(x + b) + f(x) \), we rewrite \(\theta_f(x) \) as

\[
\theta_f(x) = \sum_{a \in \mathbb{F}_2^n} \sum_{b \in \mathbb{F}_2^n} \zeta^{f(x+a+b) - f(x+a) - f(x+b) + f(x)}
\]

Put \(x + b = b_1 \) and \(x + a = a_1 \), then \(x + a + b = a_1 + b_1 - x \).

For \(i = 1, 2 \); define \(G_i : \mathbb{F}_2^n \rightarrow \mathbb{C} \) as

\[
G_1(x) = \sum_{a_1 \in \mathbb{F}_2^n} \sum_{b_1 \in \mathbb{F}_2^n} \zeta^{f(a_1 + b_1 - x) - f(a_1) - f(b_1)}
\]

and

\[
G_2(x) = 2^{n+s} \zeta^{-f(x)}
\]

With this definitions, (4.2) holds iff \(G_1(x) = G_2(x) \) holds for all \(x \in \mathbb{F}_2^n \). We continue by computing \(\widehat{G}_1 \) and \(\widehat{G}_2 \).

\[
\widehat{G}_1(w) = \sum_{x \in \mathbb{F}_2^n} \sum_{a_1 \in \mathbb{F}_2^n} \sum_{b_1 \in \mathbb{F}_2^n} \zeta^{f(a_1 + b_1 - x) - f(a_1) - f(b_1)} \zeta^{-w \cdot x}
\]

\[
= \sum_{a_1 \in \mathbb{F}_2^n} \zeta^{-f(a_1)} \zeta^{-w \cdot a_1} \sum_{b_1 \in \mathbb{F}_2^n} \zeta^{-f(b_1)} \zeta^{-w \cdot b_1} \sum_{x \in \mathbb{F}_2^n} \zeta^{f(a_1 + b_1 - x)} \zeta^{w \cdot (a_1 + b_1 - x)}
\]

\[
= \widehat{F}_1(w) \cdot \widehat{F}_1(w) \cdot \widehat{F}_2(-w)
\]

And

\[
\widehat{G}_2(w) = \sum_{x \in \mathbb{F}_2^n} 2^{n+s} \zeta^{-f(x)} \zeta^{-w \cdot x}
\]

\[
= 2^{n+s} \sum_{x \in \mathbb{F}_2^n} \zeta^{-f(x)} \zeta^{-w \cdot x}
\]

\[
= 2^{n+s} \sum_{x \in \mathbb{F}_2^n} \widehat{F}_1(x) \zeta^{-w \cdot x}
\]

\[
= 2^{n+s} \cdot \widehat{F}_1(w)
\]

By Proposition 4.3 \(G_1(x) = G_2(x) \) iff \(\widehat{G}_1(w) = \widehat{G}_2(w) \). Therefore (4.2) holds if and only if

\[
\widehat{F}_1(w) \cdot \widehat{F}_1(w) \cdot \widehat{F}_2(-w) = 2^{n+s} \cdot \widehat{F}_1(w), \quad \forall w \in \mathbb{F}_2^n
\]

(4.4) holds. And by Proposition 4.4 (4.4) holds for all \(x \in \mathbb{F}_2^n \) if and only if

\[
\widehat{F}_1(w) \cdot \widehat{F}_1(w) \cdot \widehat{F}_1(w) = 2^{n+s} \cdot \widehat{F}_1(w), \quad \forall w \in \mathbb{F}_2^n
\]

which is equivalent to

\[
\widehat{F}_1(w) \left(\left| \widehat{F}_1(w) \right|^2 - 2^{n+s} \right) = 0, \quad \forall w \in \mathbb{F}_2^n
\]

(4.5) Therefore, (4.5) holds and only if

\[
\left| \widehat{F}_1(w) \right|^2 \in \{0, 2^{n+s}\}
\]

holds for all for all \(w \in \mathbb{F}_2^n \).

This completes the proof of Theorem 4.2. \(\square \)
4.1.2 Odd Characteristic

In this section, we will define \(p \)-ary generalized plateaued functions for some odd prime number \(p \). From now on, \(\zeta = p^{\frac{n}{2}} \) will denote primitive \(\rho^n \) root of unity.

Definition 4.3. \(f : \mathbb{F}_p^n \rightarrow \mathbb{Z}_\rho \) is called \(p \)-ary generalized plateaued function if

\[
\left| \sum_{w \in \mathbb{F}_p^n} \hat{\chi}_f(w) \right|^2 \in \{0, p^{n+s}\}
\]

holds for all \(w \in \mathbb{F}_p^n \).

Definition 4.4. The Walsh transform of the \(p \)-ary generalized function \(f \) is defined as

\[
\hat{\chi}_f(w) = \sum_{x \in \mathbb{F}_p^n} \zeta^{f(x)} (\zeta)^{w \cdot x}
\]

Definition 4.5. Directional difference or derivative of \(f \) at the direction of \(a \in \mathbb{F}_p^n \) is the map \(D_a f \) from \(\mathbb{F}_p^n \) to \(\mathbb{Z}_\rho \) defined as

\[
D_a f(x) = f(x + a) - f(x), \quad \forall x \in \mathbb{F}_p^n
\]

Second derivative of \(f \) is defined similarly as;

\[
D_b D_a f = f(x + a + b) - f(x + a) - f(x + b) + f(x)
\]

for all \(a, b \in \mathbb{F}_p^n \)

Following lemma known as Parseval identity holds for \(p \)-ary generalized plateaued functions.

Lemma 4.5. Let \(f \) be \(p \)-ary generalized plateaued function and let \(\hat{\chi}_f \) be it’s Walsh-Hadamard Transform. Then;

\[
\sum_{w \in \mathbb{F}_p^n} |\hat{\chi}_f(w)|^2 = p^{2n}
\]

Proof. Since

\[
|\hat{\chi}_f(w)|^2 = \hat{\chi}_f(w) \cdot \overline{\hat{\chi}_f(w)}
\]

we can write

\[
\sum_{w \in \mathbb{F}_p^n} \sum_{x \in \mathbb{F}_p^n} \zeta^{f(x)} \zeta^{w \cdot x} \sum_{y \in \mathbb{F}_p^n} \zeta^{f(y)} \zeta^{-w \cdot y} = \sum_{w \in \mathbb{F}_p^n} \sum_{x \in \mathbb{F}_p^n} \zeta^{f(x) - f(y)} \sum_{y \in \mathbb{F}_p^n} \zeta^{w \cdot (x - y)}
\]

\[
= \sum_{x, y \in \mathbb{F}_p^n} \zeta^{f(x) - f(y)} \sum_{w \in \mathbb{F}_p^n} \zeta^{w \cdot (x - y)} \tag{4.6}
\]
As
\[\sum_{w \in \mathbb{F}_p^n} \zeta^{w \cdot (x - y)} = \begin{cases} 0 & \text{if } x \neq y \\ p^n & \text{if } x = y \end{cases} \]

(4.6) can be written as
\[p^n \sum_{x \in \mathbb{F}_p^n} \zeta^0 = p^n \sum_{x \in \mathbb{F}_p^n} 1 = p^{2n} \quad (4.7) \]

Next we extend Theorem 4.2 for p-ary generalized plateaued functions.

Theorem 4.6. For a p-ary generalized function \(f : \mathbb{F}_p^n \to \mathbb{Z}_p \) define \(\theta_f \) as
\[\theta_f : \mathbb{F}_p^n \to \mathbb{C} \]
\[x \mapsto \theta_f(x) = \sum_{a \in \mathbb{F}_p^n} \sum_{b \in \mathbb{F}_p^n} \zeta^{D_a D_b f(x)} \]

\(f \) is p-ary generalized \(s \)-plateaued iff
\[\theta_f(x) = p^{n+s} \quad (4.8) \]
holds for all \(x \in \mathbb{F}_p^n \) and integer \(s \) such that \(0 \leq s \leq n \).

Before starting to prove the Theorem 4.6, let us extend Proposition 4.3 and Proposition 4.4 to odd prime \(p \).

Proposition 4.7. Let \(G_i : \mathbb{F}_p^n \to \mathbb{C} \), \(i = 1, 2 \) be functions and define \(\widehat{G}_i : \mathbb{F}_2^n \to \mathbb{C} \) as
\[\widehat{G}_i = \sum_{x \in \mathbb{F}_2^n} G_i(x) \zeta^{-w \cdot x} \]

Then for all \(w, v \in \mathbb{F}_p^n \)
\[G_1(w) = G_2(w) \quad \text{if and only if} \quad \widehat{G}_1(v) = \widehat{G}_2(v) \]

Proof. Assume that \(G_1(w) = G_2(w) \) for all \(w \in \mathbb{F}_p^n \). Then clearly \(\widehat{G}_1(v) = \widehat{G}_2(v) \)

Now assume that \(\widehat{G}_1(v) = \widehat{G}_2(v) \) for all \(v \in \mathbb{F}_2^n \) and \(G_1(w) \neq G_2(w) \) for some \(w \in \mathbb{F}_p^n \).

Since \(\widehat{G}_1(v) = \widehat{G}_2(v) \) we can write
\[\widehat{G}_1(v) - \widehat{G}_2(v) = \sum_{x \in \mathbb{F}_2^n} (G_1(x) - G_2(x)) \zeta^{-v \cdot x} \]

As this equation is equal to 0, we have reached a contradiction. So \(G_1(w) = G_2(w) \) for all \(w \in \mathbb{F}_p^n \). \(\square \)
Let $f : \mathbb{F}_p^n \to \mathbb{Z}_p$ be a generalized p-ary function. Define complex-valued functions F_1 and F_2 as

$$F_1 : \mathbb{F}_p^n \to \mathbb{C}$$
$$w \mapsto F_1(w) = \zeta^{-f(w)}$$

$$F_2 : \mathbb{F}_p^n \to \mathbb{C}$$
$$w \mapsto F_2(w) = \zeta^{f(w)}$$

Proposition 4.8. For all $x \in \mathbb{F}_p^n$, $\overline{F_1(x)} = F_2(-x)$

Proof.

$$\overline{F_1(x)} = \sum_{w \in \mathbb{F}_p^n} F_1(w) \zeta^{-x \cdot w}$$
$$= \sum_{w \in \mathbb{F}_p^n} \zeta^{-f(w)} \zeta^{-x \cdot w}$$
$$= \sum_{w \in \mathbb{F}_p^n} \zeta^{f(w)} \zeta^{x \cdot w}$$
$$= \overline{F_2(-x)}$$

Next we prove Theorem 4.6

Proof of Theorem 4.6 Since $D_a D_b f(x) = f(x + a + b) - f(x + a) - f(x + b) + f(x)$, we rewrite $\theta_f(x)$ as

$$\theta_f(x) = \sum_{a \in \mathbb{F}_p^n} \sum_{b \in \mathbb{F}_p^n} \zeta^{f(x + a + b) - f(x + a) - f(x + b) + f(x)}$$

Put $x + b = b_1$ and $x + a = a_1$, then $x + a + b = a_1 + b_1 - x$.

For $i = 1, 2$, define $G_i : \mathbb{F}_p^n \to \mathbb{C}$ as

$$G_1(x) = \sum_{a_1 \in \mathbb{F}_p^n} \sum_{b_1 \in \mathbb{F}_p^n} \zeta^{f(a_1 + b_1 - x) - f(a_1) - f(b_1)}$$

and

$$G_2(x) = p^{n+s} \zeta^{-f(x)}$$
Then for all \(x \in \mathbb{F}_p^n \), (4.8) holds iff \(G_1(x) = G_2(x) \) holds for all \(x \in \mathbb{F}_p^n \). We continue by computing \(\hat{G}_1 \) and \(\hat{G}_2 \).

\[
\hat{G}_1(w) = \sum_{x \in \mathbb{F}_p^n} \sum_{a_1 \in \mathbb{F}_p^n} \sum_{b_1 \in \mathbb{F}_p^n} \zeta f(a_1 + b_1 - x) - f(a_1) - f(b_1) \zeta^{-w \cdot x} = \sum_{a_1 \in \mathbb{F}_p^n} \zeta^{-f(a_1)} - w \cdot a_1 \sum_{b_1 \in \mathbb{F}_p^n} \zeta^{-f(b_1)} - w \cdot b_1 \sum_{x \in \mathbb{F}_p^n} \zeta f(a_1 + b_1 - x) - f(a_1) - f(b_1) \zeta^{-w \cdot (a_1 + b_1 - x)} = \hat{F}_1(w) \cdot \hat{F}_1(w) \cdot \hat{F}_2(-w)
\]

And

\[
\hat{G}_2(w) = \sum_{x \in \mathbb{F}_p^n} p^{n+s} \zeta^{-f(x)} \zeta^{-w \cdot x} = p^{n+s} \sum_{x \in \mathbb{F}_p^n} \zeta^{-f(x)} \zeta^{-w \cdot x} = p^{n+s} \sum_{x \in \mathbb{F}_p^n} F_1(x) \zeta^{-w \cdot x} = p^{n+s} \cdot \hat{F}_1(w)
\]

By Proposition 4.7, \(G_1(x) = G_2(x) \) iff \(\hat{G}_1(w) = \hat{G}_2(w) \). Therefore (4.8) holds if and only if

\[
\hat{F}_1(w) \cdot \hat{F}_1(w) \cdot \hat{F}_2(-w) = p^{n+s} \cdot \hat{F}_1(w), \quad \forall w \in \mathbb{F}_p^n \quad (4.9)
\]

holds. And by Proposition 4.8, (4.9) holds for all \(x \in \mathbb{F}_p^n \) if and only if

\[
\hat{F}_1(w) \cdot \hat{F}_1(w) \cdot \hat{F}_1(w) = p^{n+s} \cdot \hat{F}_1(w), \quad \forall w \in \mathbb{F}_p^n
\]

which is equivalent to

\[
\hat{F}_1(w) \left(\left| \hat{F}_1(w) \right|^2 - p^{n+s} \right) = 0, \quad \forall w \in \mathbb{F}_p^n \quad (4.10)
\]

Therefore, (4.10) holds and only if

\[
\left| \hat{F}_1(w) \right|^2 \in \{0, p^{n+s}\}
\]

holds for all for all \(w \in \mathbb{F}_p^n \).

Proposition 4.9. For \(p \)-ary generalized function \(f : \mathbb{F}_p^n \to \mathbb{Z}_\rho \) and a positive integer \(n \)

\[
\sum_{w \in \mathbb{F}_p^n} |\hat{\gamma}_f(w)|^4 = p^n \sum_{x \in \mathbb{F}_p^n} \theta_f(x)
\]

24
Proof. Since \(|z|^4 = z^2\bar{z}^2\) and \(\zeta = \zeta^{-1}\) we can write

\[
\sum_{w \in \mathbb{F}_p^n} |\overline{\chi_f}(w)|^4 = \sum_{w \in \mathbb{F}_p^n} \sum_{x_1,x_2,x_3,x_4 \in \mathbb{F}_p^n} \zeta^{f(x_1)+f(x_2)-f(x_3)-f(x_4)} \cdot \zeta^{w(x_1+x_2-x_3-x_4)}
\]

\[
= \sum_{x_1,x_2,x_3,x_4 \in \mathbb{F}_p^n} \zeta^{f(x_1)+f(x_2)-f(x_3)-f(x_4)} \sum_{w \in \mathbb{F}_p^n} \zeta^{w(x_1+x_2-x_3-x_4)}
\]

Since

\[
\sum_{w \in \mathbb{F}_p^n} \zeta^{w(x_1+x_2-x_3-x_4)} = \begin{cases}
p^n & \text{if } x_1 + x_2 - x_3 - x_4 = 0 \\
0 & \text{otherwise}
\end{cases}
\]

Hence,

\[
\sum_{w \in \mathbb{F}_p^n} |\overline{\chi_f}(w)|^4 = p^n \sum_{x_1,x_2,x_3,x_4 \in \mathbb{F}_p^n} \zeta^{f(x_1)+f(x_2)-f(x_3)-f(x_4)}
\]

For \(a, b \in \mathbb{F}_p^n\) put \(x_1 = x, x_2 = x + a + b, x_3 = x + a,\) and \(x_4 = x + b\) we get

\[
\sum_{x_1,x_2,x_3,x_4 \in \mathbb{F}_p^n} \zeta^{f(x_1)+f(x_2)-f(x_3)-f(x_4)} = \sum_{x \in \mathbb{F}_p^n} \sum_{a \in \mathbb{F}_p^n} \sum_{b \in \mathbb{F}_p^n} \zeta^{f(x+a+b)-f(x+a)-f(x+b)+f(x)}
\]

\[
= \sum_{x \in \mathbb{F}_p^n} \sum_{a \in \mathbb{F}_p^n} \sum_{b \in \mathbb{F}_p^n} \zeta^{D_aD_bf(x)}
\]

\[
= \sum_{x \in \mathbb{F}_p^n} \theta_f(x)
\]

Therefore,

\[
\sum_{w \in \mathbb{F}_p^n} |\overline{\chi_f}(w)|^4 = p^n \sum_{x \in \mathbb{F}_p^n} \theta_f(x)
\]

\[
\square
\]

4.2 Characterizations of P-ary Generalized Plateaued Functions

Herein this section we characterize p-ary generalized plateaued functions with \textit{Walsh moments}.

Definition 4.6. For an integer \(i \geq 0\), the \textit{Walsh moment} of p-ary generalized plateaued function \(f\) is

\[
S_i(f) = \sum_{w \in \mathbb{F}_p^n} = |\overline{\chi_f}(w)|^{2i}
\]

with the convention \(S_0(f) = p^n\). Note that \(S_1(f) = p^{2n}\) by Parseval identity.

Lemma 4.10. Let \(f : \mathbb{F}_p^n \rightarrow \mathbb{Z}_p\) be p-ary generalized \(s\)-plateaued function with \(0 \leq s \leq n\). Then for \(w \in \mathbb{F}_p^n\), for \(p^{n-s}\) times \(|\overline{\chi_f}(w)|^2\) takes the value \(p^{n+s}\) and for \(p^n - p^{n-s}\) times \(|\overline{\chi_f}(w)|^2\) takes the value 0.

25
Proof. Let \(N_S \) denote the size of the set \(\{ w \in \mathbb{F}_p^n : |\chi_f(w)|^2 = p^{n+s} \} \). Then,
\[
\sum_{w \in \mathbb{F}_p^n} |\chi_f(w)|^2 = N_S \cdot p^{n+s}
\]
hence, by Parseval identity,
\[
p^{2n} = N_S \cdot p^{n+s}
\]
and since \(\#\mathbb{F}_p^n = p^n \), we have \(\# \{ w \in \mathbb{F}_p^n : |\chi_f(w)|^2 = 0 \} = p^n - p^{n-s} \quad \square \)

Let \(f \) be \(p \)-ary generalized plateaued function. For any integer \(A \) and \(i \) even, equation
\[
\sum_{w \in \mathbb{F}_p^n} (|\chi_f(w)|^2 - A)^2 |\chi_f(w)|^{2i} = S_{i+2}(f) - 2AS_{i+1}(f) + A^2S_i(f) \quad (4.11)
\]
holds.

Theorem 4.11. For integer \(s \) with \(0 \leq s \leq n \) and a \(p \)-ary generalized \(s \)-plateaued function \(f \):
\[
S_i(f) = p^{n(i+1)+s(i-1)}
\]
holds for all integers \(i \geq 1 \). Also we have \(S_i(f)S_j(f) = S_{i+1}(f)S_{j-1}(f) \) for all integers \(i \geq 1, j \geq 2 \).

Proof. From Lemma 4.10, for a positive integer \(i \), we have that
\[
S_i(f) = p^{n-s}(p^{n+s})^i = p^{n(i+1)+s(i)}
\]
Therefore the following two equations
\[
S_i(f)S_j(f) = p^{n(i+1)s(i-1)}p^{n(j+1)+s(j-1)} = p^{n(i+j+2)+s(i+j-2)}
\]
\[
S_{i+1}(f)S_{j-1}(f) = p^{n(i+2)+si}p^{nj+s(j-2)} = p^{n(i+j+2)+s(i+j-2)}
\]
are equal for all \(i \geq 1 \) and \(j \geq 2 \). \(\square \)

Theorem 4.12. Let \(f : \mathbb{F}_p^n \to \mathbb{Z}_p \) be a generalized \(p \)-ary function. \(f \) is \(s \)-plateaued iff
\[
S_2(f) = p^{3n+s} \text{ and } S_3(f) = p^{4n+2s}
\]
where \(s \) is an integer such that \(1 \leq s \leq n \).

Proof. Let \(f \) be \(p \)-ary generalized \(s \)-plateaued function. Then by Theorem 4.11 \(S_2(f) = p^{3n+s} \text{ and } S_3(f) = p^{4n+2s} \). Conversely assume that \(S_2(f) = p^{3n+s} \text{ and } S_3(f) = p^{4n+2s} \). By (4.11) with \(A = p^{n+s} \) and \(i = 1 \) we have,
\[
\sum_{w \in \mathbb{F}_p^n} (|\chi_f(w)|^2 - p^{n+s})^2 |\chi_f(w)|^2 = S_3(f) - 2p^{n+s}S_2(f) + p^{2n+2s}S_1(f)
\]
\[
= p^{4n+2s} - 2p^{n+s}p^{3n+s} + p^{2n+2s}p^{2n}
\]
\[
= 2p^{4n+2s} - 2p^{4n+2s}
\]
\[
= 0
\]
Hence, \(|\widehat{\chi_f}(w)|^2 \in \{0, p^n+s\}\) holds for all \(w \in \mathbb{F}_p^n\), i.e. \(f\) is \(p\)-ary generalized \(s\)-plateaued function.

\[S_2(f) = p^n \sum_{x \in \mathbb{F}_p^n} \theta_f(x)\]

Proposition 4.13. For a \(p\)-ary generalized function \(f : \mathbb{F}_p^n \to \mathbb{Z}_p\) and a positive integer \(n\)

Proof. Since \(|z|^4 = z^2\bar{z}^2\) and \(\bar{z} = \zeta^{-1}\) we can write

\[S_2(f) = \sum_{w \in \mathbb{F}_p^n} |\widehat{\chi_f}(w)|^4 = \sum_{w \in \mathbb{F}_p^n} \sum_{x_1,x_2,x_3,x_4 \in \mathbb{F}_p^n} \zeta^{f(x_1)+f(x_2)-f(x_3)-f(x_4)} \cdot \zeta^{w(x_1+x_2-x_3-x_4)}\]

\[= \sum_{x_1,x_2,x_3,x_4 \in \mathbb{F}_p^n} \zeta^{f(x_1)+f(x_2)-f(x_3)-f(x_4)} \sum_{w \in \mathbb{F}_p^n} \zeta^{w(x_1+x_2-x_3-x_4)}\]

Since \(\sum_{w \in \mathbb{F}_p^n} \zeta^{w(x_1+x_2-x_3-x_4)} = \begin{cases} p^n & \text{if } x_1 + x_2 - x_3 - x_4 = 0 \\ 0 & \text{otherwise} \end{cases}\)

Hence,

\[\sum_{w \in \mathbb{F}_p^n} |\widehat{\chi_f}(w)|^4 = p^n \sum_{x_1,x_2,x_3,x_4 \in \mathbb{F}_p^n} \zeta^{f(x_1)+f(x_2)-f(x_3)-f(x_4)}\]

For \(a, b \in \mathbb{F}_p^n\) put \(x_1 = x, x_2 = x + a + b, x_3 = x + a,\) and \(x_4 = x + b\) we get

\[\sum_{x_1,x_2,x_3,x_4 \in \mathbb{F}_p^n} \zeta^{f(x_1)+f(x_2)-f(x_3)-f(x_4)} = \sum_{x \in \mathbb{F}_p^n} \sum_{a \in \mathbb{F}_p^n} \sum_{a' \in \mathbb{F}_p^n} \zeta^{f(x+a+b)-f(x+a)-f(x+b)+f(x)}\]

\[= \sum_{x \in \mathbb{F}_p^n} \sum_{a \in \mathbb{F}_p^n} \sum_{b \in \mathbb{F}_p^n} \zeta^{D_a D_b f(x)}\]

\[= \sum_{x \in \mathbb{F}_p^n} \theta_f(x)\]

Therefore,

\[S_2(f) = p^n \sum_{x \in \mathbb{F}_p^n} \theta_f(x)\]

Using Theorem \([4.12]\) and Proposition \([4.13]\) we can get much more general case as stated below.

Corollary 4.14. Let \(f : \mathbb{F}_p^n \to \mathbb{Z}_p\) be a \(p\)-ary generalized \(s\)-plateaued function. Then,

\[S_i(f) = p^{n(i-1)+s(i-2)} \sum_{x \in \mathbb{F}_p^n} \theta_f(x)\]

where \(s\) is an integer with \(0 \leq s \leq n\).
For another characterization plateaued functions, we recall two important inequalities.

Theorem 4.15 (Hölder’s inequality). Let $p_1, p_2 \in (1, \infty)$ with $\frac{1}{p_1} + \frac{1}{p_2} = 1$. Then for all $(x_1, x_2, \ldots, x_m), (y_1, y_2, \ldots, y_m) \in \mathbb{C}^m$,

$$\sum_{k=1}^{m} |x_k y_k| \leq \left(\sum_{k=1}^{m} |x_k|^{p_1} \right)^{\frac{1}{p_1}} \left(\sum_{k=1}^{m} |y_k|^{p_2} \right)^{\frac{1}{p_2}}$$

and the equality holds if and only if, there exists a nonnegative constant c such that,

$$|x_k|^{p_1} = c |y_k|^{p_2}$$

holds. If $p_i = 2$ for $i = 1, 2$, then the above inequality is reduced to the Chauchy-Schwarz Inequality.

Theorem 4.16. Let $f : \mathbb{F}_p^n \to \mathbb{Z}_p$ be generalized p-ary boolean function. Then for all integers $i \geq 1$

$$(S_{i+1}(f))^2 \leq S_{i+2}(f)S_i(f)$$

and the equality holds for at least one i, iff, f is p-ary generalized plateaued function.

Proof. Let x_k, y_k in the theorem (above) be $x_k = |\widehat{\chi_f}(w)|^i$ and $y_k = |\widehat{\chi_f}(w)|^{i+2}$. Then, for all $w \in \mathbb{F}_p^n$ we have,

$$\left(\sum_{w \in \mathbb{F}_p^n} |\widehat{\chi_f}(w)|^{2i+2} \right)^2 \leq \sum_{w \in \mathbb{F}_p^n} |\widehat{\chi_f}(w)|^{2i} \sum_{w \in \mathbb{F}_p^n} |\widehat{\chi_f}(w)|^{2i+4}$$

that is,

$$(S_{i+1}(f))^2 \leq S_i(f)S_{i+2}(f)$$

for $i \geq 1$. Now suppose that f is p-ary generalized plateaued function. Then above equality holds for at least one $i \geq 1$ if and only if

$$|\widehat{\chi_f}(w)|^{2i} = c |\widehat{\chi_f}(w)|^{2i+4}$$ \hspace{1cm} (4.12)

holds for all $w \in \mathbb{F}_p^n$ and for some nonnegative constant c. If $|\widehat{\chi_f}(w)| = 0$, then (4.12) holds for all nonnegative c. If $|\widehat{\chi_f}(w)| = p^{n+s}$ for some s with $0 \leq s \leq n$, one can simply take $c = |\widehat{\chi_f}(w)|^{-4}$. In both cases (4.12) holds, proving that equality above holds if and only if f is p-ary generalized plateaued.

\[\square\]
CHAPTER 5

CONCLUSION

Plateaued functions, possess desirable cryptographic properties such as maximal non-linearity amid balanced plateaued functions, low autocorrelation. Also, alongside of being practical in cryptography, plateaued functions also have use in coding theory and secret sharing schemes.

In this thesis we first introduced the mathematical background and basic concepts about generalized boolean, generalized p-ary functions and plateaued functions.

In Chapter 3, we present the studies about p-ary plateaued functions and their various characterizations using both second-order derivatives and Walsh moments.

In Chapter 4, the notation of Generalized plateaued functions are presented. We characterized generalized s-plateaued and p-ary generalized plateaued functions using their second-order derivatives and Walsh moments.
REFERENCES

