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ABSTRACT

OPTIMAL MULTIPLE HYPOTHESIS TESTING WITH AN APPLICATION
IN SIDE LOBE BLANKER DESIGN AND INVARIANCE APPLICATIONS IN

DETECTION AND SYNCHRONIZATION

COŞKUN, Osman
Ph.D., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Çağatay Candan

September 2017, 122 pages

This thesis aims to study two problems, namely optimal hypothesis testing in
the sense of Neyman-Pearson in the presence of multiple hypotheses and optimal
hypothesis testing in the presence of non-random unknown parameters (nuisance
parameters). Both problems occur frequently in different applications and their
optimal solution involves some fine details. In the first part of the thesis, the
multiple hypothesis testing problem is examined and the results are applied
on the problem of radar sidelobe blanker system design. The goal of this part
is two folds: To examine and compare the performance of Maisel system (the
conventional sidelobe blanking systems) with the optimal system and determine
the conditions for the Maisel system to approach the optimal blanker performance
so as to assist the design of practical Maisel sidelobe blankers. In the second
part of the thesis, uniformly most powerful invariant (UMPI) tests are examined.
UMPI tests are applicable when there are unknown non-random constants in the
hypothesis testing. UMPI tests retain the optimality properties of uniformly most
powerful tests (UMP) in a restricted setting of transform invariance with respect
to the unknown parameters. Many practical problems do not have UMP tests
and for these problems the general approach is to apply generalized likelihood
ratio test (GLRT) which does not have any optimality properties apart from
asymptotic ones. Similar to the first part of the thesis, our goal is to study the
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UMPI tests and examine their performance with respect to well-known GLRT
test. After a brief description of UMPI tests, we study two problems namely
the problem of low probability of intercept signal detection and the problem
of frame synchronization word detection problem. UMPI and GLRT approach
based tests are derived for both problems and it is shown that for some operating
conditions the invariant detector provides a better performance than GLRT, the
performance difference is not significant.

Keywords: Sidelobe Blanking Systems, Neyman-Pearson Hypothesis Testing,
Radar Signal Processing, Invariance Detectors
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ÖZ

OPTİMUM ÇOKLU HİPOTEZ TESTİNİN YAN LOB KÖRELTME
TASARIMINDAKİ BİR UYGULAMASI VE SEZİMLEME VE
SENKRONİZASYONDA DEĞİŞMEZLİK UYGULAMALARI

COŞKUN, Osman
Doktora, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Çağatay Candan

Eylül 2017, 122 sayfa

Bu tez iki problemin çalışılmasını hedeflemektedir: çoklu hipotez durumunda
Neyman-Pearson tipinde optimum hipotez testi ve rasgele olmayan bilinmeyen
parametrelerin (parazit parametreler) olması durumunda optimum hipotez tes-
tidir. Her iki problem farklı uygulama alanlarında sıklıkla karşılaşılmakta ve
söz konusu problemlerin optimum çözümü hassas detaylar içermektedir. Tezin
birinci bölümünde çoklu hipotez test problemi incelenmiş ve sonuçları radar yan
lob köreltme system tasarımına uygulanmıştr. Bu bölümün amacı iki bölümden
oluşmaktadır: Geleneksel yan lob köreltme sistemi olan Maisel sisteminin per-
formansının incelenmesi ve optimum system ile kıyaslanması ile pratik Maisel
yan lob köreltme sisteminin tasarımına yardımcı olmak amacıyla Maisel sistemi-
nin performansının optimum köreltici sisteme yaklaştığı durumlar belirlenmeye
çalışılmıştır. Tezin ikinci bölümünde değişmez düzgün en güçlü (DDEG) test-
ler incelenmiştir. Hipotez testinde bilinmeyen rasgele olmayan sabitler olması
durumunda DDEG uygulanmaktadır. DDEG testler bilinmeyen parametrelere
göre dönüşüm değişmezliğinin sınırlı ayarlamasında düzgün en güçlü (DEG)
testlerin optimum özelliklerini korur. Bir çok pratik uygulamada DEG testi mev-
cut değildir ve söz konusu problemler için genel yaklaşım asimptotik optimum
özelliği haricinde optimum özelliklerini barındırmayan genelleştirilmiş olabilirlik
oran testinin (GOOT) uygulanmasıdır. Tezin birinci bölümüne benzer şekilde,
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amacımız DDEG testlerini çalışmak ve performansını GOOT testlerine göre
incelemektir. DDEG testlerinin kısa bir özetinden sonra iki probleme çalışılmıştır.
Söz konusu problemler düşük olasılıkla yakalanma radar sinyallerinin sezimlen-
mesi ve çerçeve senkronizasyon kelimelerinin sezimlesi problemleridir. DDEG ve
GOOT yaklaşımlı testler her iki problem için çıkartılmış ve belirli bir çalışma
koşullarında değişmez sezimleyicinin GOOT’dan daha iyi performans sergilediği
ve performans farkının çok büyük olmadığı gösterilmiştir.

Anahtar Kelimeler: Yan Lob Köreltme Sistemleri, Neyman-Pearson Hipotez Testi,
Radar Sinyal İşleme, Değişmez Sezimleyiciler

viii



To my wife and son

Gülcan Coşkun, Sedat Coşkun

ix



ACKNOWLEDGMENTS

I would like to express my special appreciation and thanks to my advisor Professor
Dr. Çağatay Candan for the continuous support of my Ph.D study, for his
patience, motivation, and immense knowledge. It has been a real honor to be his
first Ph.D student. His guidance helped me in all the time of research and writing
of this thesis. I will miss our conversations and technical discussions.

There are lots of people without their support this thesis would not have taken
place. Since it is very challenging to continue PHD program as well as working
at a very demanding place, the support of my friends and my colleagues were
very valuable.

Last but not the least, I would like to thank my bellowed wife. Without your
support, patience, encouragement and love, this work could have not been
possible.

x



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ÖZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . x

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

CHAPTERS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 OPTIMALITY CONSIDERATIONS OF HYPOTHESIS TESTING 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Binary Hypothesis Testing Problem . . . . . . . . . . . 6

2.2.1 Bayesian Approach . . . . . . . . . . . . . . . 6

2.2.2 Neyman-Pearson Approach . . . . . . . . . . . 8

2.3 Multiple Hypothesis Testing Problem . . . . . . . . . . 10

2.3.1 Bayesian Approach . . . . . . . . . . . . . . . 10

2.3.2 Neyman-Pearson Approach . . . . . . . . . . . . 11

2.3.2.1 Neyman-Pearson Type-1 Detector . . 11

2.3.2.2 Neyman-Pearson Type-2 Detector . 13

2.3.2.3 Neyman-Pearson Type-3 Detector . 15

2.3.2.4 Discussion . . . . . . . . . . . . . . . 17

2.4 Composite Hypothesis Testing . . . . . . . . . . . . . . . 17

2.4.1 Bayesian Approach . . . . . . . . . . . . . . . 19

2.4.2 Generalized Likelihood Ratio Test . . . . . . . 20

2.4.3 Invariance Approach . . . . . . . . . . . . . . . . 21

xi



3 DESIGN OF MAISEL SIDELOBE BLANKERS WITH A GUAR-
ANTEE ON THE GAP TO OPTIMALITY . . . . . . . . . . . 23

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Neyman-Pearson Type Optimal Sidelobe Blankers . . . 26

3.2.1 Swerling-0 Target Model . . . . . . . . . . . . 29

3.2.2 Swerling-1 Target Model . . . . . . . . . . . . . 31

3.2.3 Swerling-3 Target Model . . . . . . . . . . . . . 37

3.3 Maisel SLB Detectors for Swerling-0, Swerling-1 and Swer-
ling -3 Target Models . . . . . . . . . . . . . . . . . . . 39

3.3.1 Swerling-0 Target Model . . . . . . . . . . . . 40

3.3.2 Swerling-1 Target Model . . . . . . . . . . . . . 41

3.3.3 Swerling-3 Target Model . . . . . . . . . . . . 45

3.4 Performance Comparison of Maisel Structure and Optimal
Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4.1 Swerling-1 Target Model . . . . . . . . . . . . 48

3.4.2 Swerling-3 Target Model . . . . . . . . . . . . 50

3.4.3 Swerling-0 Target Model . . . . . . . . . . . . 50

3.5 Discussion On Typical Target SNR Parameters In Con-
nection With Maisel SLB Detectors . . . . . . . . . . . 53

3.6 Design of Maisel Type SLB Systems With An Optimality
Guarantee . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 INVARIANCE PRINCIPLES . . . . . . . . . . . . . . . . . . . 59

4.1 Theoretical Framework of Invariance Concept . . . . . . . 61

4.1.1 Maximal Invariant Statistic . . . . . . . . . . . 62

4.1.2 Examples of Maximal Invariant Statistics . . . 65

4.1.3 Induced Maximal Invariant Statistic . . . . . . 66

4.1.4 Wijsman Theorem . . . . . . . . . . . . . . . . . 67

4.2 Invariance Application to General Signal Detection Problem 67

4.2.1 µ > 0 unknown, σ2 known . . . . . . . . . . . 69

4.2.2 µ 6= 0 unknown, σ2 known . . . . . . . . . . . 69

4.2.3 µ > 0 unknown, σ2 unknown . . . . . . . . . . 72

xii



4.2.4 µ 6= 0 unknown, σ2 unknown . . . . . . . . . . 75

4.3 Application of Invariance Principle to LPI Signal Detection
Problem: Synchronous Coherent Detectors . . . . . . . . 76

4.3.1 Bayesian Approach . . . . . . . . . . . . . . . . 77

4.3.2 Invariance Approach . . . . . . . . . . . . . . . 79

4.3.3 GLRT Approach . . . . . . . . . . . . . . . . . . 81

4.3.4 Simulation Results . . . . . . . . . . . . . . . . 82

4.3.5 Discussion . . . . . . . . . . . . . . . . . . . . . 84

4.4 Invariance Application to Detection of Frame Synchro-
nization Words . . . . . . . . . . . . . . . . . . . . . . . 85

4.4.1 Invariance And Bayesian Approach Combined 86

4.4.2 GLRT And Bayesian Approach Combined . . . 89

4.4.3 Simulation Results And Discussion . . . . . . . 90

4.4.4 Discussion and Further Work . . . . . . . . . . 95

5 CONCLUSIONS AND FUTURE DIRECTIONS . . . . . . . . 99

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

APPENDICES

A NOTATION CONVENTIONS . . . . . . . . . . . . . . . . . . 109

B MATLAB CODES FOR OPTIMUM SIDELOBE BLANKER . . 111

CURRICULUM VITAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

xiii



LIST OF TABLES

TABLES

Table 4.1 Scenario conditions for simulations . . . . . . . . . . . . . . . 90

Table A.1 Notation Conventions . . . . . . . . . . . . . . . . . . . . . . 109

xiv



LIST OF FIGURES

FIGURES

Figure 3.1 Gain patterns of main and auxiliary antennas for a conventional
SLB system [17]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Figure 3.2 Block diagram of Maisel sidelobe blanker [16]. . . . . . . . . . 24
Figure 3.3 Illustration of two-stage radar receiver with a sidelobe blanker

logic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 3.4 The pdf and histogram of the optimum SLB detector. # of

Monte Carlo trials = 107. . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 3.5 Performance plots of Maisel SLB detector for Swerling-0 targets. 42
Figure 3.6 Performance plots of Maisel SLB detector for Swerling-1 targets. 44
Figure 3.7 Performance plots of Maisel SLB detector for Swerling-3 targets. 47
Figure 3.8 Comparison of Pb on JNR for Swerling-1 targets. Parameters:

β2 = 5 dB, ω2 = −30 dB. . . . . . . . . . . . . . . . . . . . . . . . 49
Figure 3.9 Comparison of Pb on JNR for Swerling-3 targets. Parameters:

β2 = 5 dB, ω2 = −30 dB, # of Monte Carlo trials = 106. . . . . . . . 51
Figure 3.10 Comparison of Pb on JNR for Swerling-0 targets. Parameters:

β2 = 5 dB, ω2 = −30 dB, # of Monte Carlo trials = 106. . . . . . . 52
Figure 3.11 Comparison of Pb on β2 for Swerling-1 targets. Parameters:

Ptb = 0.05, JNR = 5 dB, ω2 = −30 dB. . . . . . . . . . . . . . . . . 56
Figure 3.12 Maisel minimum required JNR for different β2 values (Swerling-

1 target). Parameters: Ptb = 0.05, ω2 = −30 dB, min.Pb = 0.90. . . 58

Figure 4.1 Problem invariance and maximal invariant (from [35]). . . . . 63
Figure 4.2 Comparison of GLRT, UMPI and radiometer powers for the

case of N = 10, Ntrial = 5× 105. . . . . . . . . . . . . . . . . . . . 83
Figure 4.3 Comparison of GLRT, UMPI and radiometer powers for the

case of N = 100, Ntrial = 5× 105. . . . . . . . . . . . . . . . . . . . 84
Figure 4.4 Comparison of GLRT and invariant detector powers for the

case of N = 10, SW = Barker (7), Ntrial = 105. . . . . . . . . . . . . 91
Figure 4.5 Comparison of GLRT and invariant detector powers for the

case of N = 15, SW = Barker (13), Ntrial = 105. . . . . . . . . . . 92
Figure 4.6 Comparison of GLRT and invariant detector powers for the

case of N = 91, SW = Barker (13), Ntrial = 5× 105. . . . . . . . . 93
Figure 4.7 Comparison of GLRT and invariant detector powers for the

case of N = 91, SW = S201, Ntrial = 105. . . . . . . . . . . . . . . . 94

xv



Figure 4.8 Comparison of GLRT and invariant detector powers for the
case of N = 80, SW = FFFFF, Ntrial = 5× 105. . . . . . . . . . . 95

Figure 4.9 Comparison of GLRT and invariant detector ROC curves for
the case of N = 91, SW = Barker (13), Ntrial = 105. . . . . . . . . 96

xvi



CHAPTER 1

INTRODUCTION

This thesis examines topics of interest in hypothesis testing. The first topic is on

Neyman-Pearson type tests for non-binary hypothesis testing. The second topic

is hypothesis testing in the presence of nuisance parameters.

Optimum hypothesis testing problem is a well known topic of interest in many

fields. The main goal is to select the one hypothesis among multiple alternatives

in an optimum way. This problem lies at the heart of radar receiver architecture.

In radar receivers, the most important decision is whether the target of interest

is present or not. In chapter 2, the hypotheses testing problem is reviewed

with some several optimality considerations. The main attention is given to the

problem of multiple hypotheses testing.

In chapter 3, an application of Neyman-Pearson type optimum detector involving

multiple hypothesis testing is given. The application is called as sidelobe blanker

in radar signal processing. The optimum sidelobe blankers are derived and

compared with the widely used ad-hoc detector, namely Maisel detector. The

implementation of optimal detector depends on several factors such as SNR and

JNR of target and jammer. Although it can not be implemented in real time, the

optimum detectors derived for each Swerling targets can be used to determine the

design parameters of the Maisel sidelobe blankers. One of the most important

parameters is the gain margin between the auxiliary antenna and sidelobe of

main antenna. The optimum detectors help the designer choose this parameter

and forecast its effect on probability of falsely blanking the target signal and

probability of blanking the jammer. Chapter 3 presents extensive analysis of
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Maisel sidelobe blankers for Swerling-0, Swerling-1 and Swerling-3 targets and

compares the performance of it with corresponding optimum detectors for several

scenarios. Also, design examples are given to illustrate to use the optimum

sidelobe blanker results to determine the parameters of Maisel sidelobe blankers

and asses the performance quantitatively.

When there are unknown parameters regarding the probability distribution

functions for either hypotheses, there exists some cases that it is not possible

to find the optimum detectors via the classical Neyman-Pearson detector which

is explained in chapter 2. In order to deal with unknown parameters, there

are two well-known methods which are Bayesian approach, in which unknown

parameter is known to have a priori probability distribution, and Generalized

Likelihood Ratio Test (GLRT) approach, in which one can find the likelihood

ratio test by maximizing the probability distribution functions with respect to

unknown parameters. The Bayesian approach is optimal in the sense that average

Bayesian risk is minimized and the probability distribution function is found by

integrating the conditional probability distribution function with respect to the

unknown parameter. After marginalization, the classical likelihood ratios can be

constructed. GLRT is another method when a priori information is not available.

There is no guaranteed optimality properties for GLRT except some asymptotic

optimality properties.

In the statistics literature, there is a well known concept called the invariance

principle in which one can find a most powerful detector subject to some con-

straints. These constraints are very general and natural at times that a detector

designer would like to have a detector with these constraints. More theoretically,

there can be a group of transformations, which can be referred to as constraints,

leave the hypothesis testing problem invariant. Namely, the parameter space

of each probability distribution functions for both hypotheses remain same and

the type of probability distributions does not change except the change in pa-

rameters. After finding this group, one can uniquely index all data points for

all transformations within the group via maximal invariant function. The new

domain in which the maximal invariant test is defined is utilized to find the

likelihood ratio test. In chapter 4, the basic concept of invariance principle is

2



given along with some applications. Concrete application examples given are as

follows:

• Low Probability of Intercept Radar signal detection problem will be solved

by three methods, namely Bayesian, GLRT and Invariance. It is shown

that Bayesian and invariance approaches results in the same detector, while

GLRT results in a different detector. MATLAB simulations are presented

to compare the performances of GLRT and UMPI tests. It is shown that

the performance of the invariant test is better than GLRT. Moreover,

depending on the length of signal of interest, for high and low SNR regions,

the performances of GLRT and the energy detector are in close proximity

with the UMPI test, respectively.

• Frame synchronization word detection problem is solved by two methods,

namely GLRT and invariance. Bayesian approach is used in order to

eliminate the random bits effect. It is shown that invariant and GLRT

detectors are different, and in some region of interest, the invariant detector

outperforms GLRT. For high SNR region, GLRT and invariant detectors

have a very close performances. MATLAB simulations are presented in

order to understand the new detector design.

Literature survey of optimum sidelobe blanker and invariance applications is

given at the beginning of Chapter 3 and Chapter 4, respectively.

The main contribution of this thesis is summarized as follows:

• Optimum sidelobe blankers for Swerling-0, Swerling-1 and Swerling-3 tar-

gets are derived analytically and their performances are presented with a

comparison with Maisel sidelobe blankers. The statistical characteristics

of optimum sidelobe blanker for Swerling-1 target is obtained, while for

Swerling-1 and Swerling-3 detectors Monte Carlo simulations are performed

in order to estimate their performances. The Maisel sidelobe blanker design

example is also given. This study was published in the following journal

and proceeding publications.

1. Coşkun, O. and Candan, Ç. “Design of Maisel sidelobe blankers with
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a guarantee on the gap to optimality”. In: IET Radar, Sonar &

Navigation 10 (9 Dec. 2016), 1619–1626(7)

2. Coşkun, O. and Candan, Ç. “On the optimality of Maisel sidelobe

blanking system”. In: 2015 23nd Signal Processing and Communica-

tions Applications Conference (SIU). May 2015, pp. 585–591

3. Coşkun, O. and Candan, Ç. “On the optimality of Maisel sidelobe

blanking structure”. In: Radar Conf., 2014 IEEE. May 2014, pp. 1102–

1107

• The invariance concept and it’s interaction with sufficiency concept and

GLRT is studied. The derivations of general signal detection problem is

mostly benefited from [4], but the presented examples does not appear in

[4] explicitly. Invariance applications of LPI signal detection and frame

synchronization word detection problems are novel.
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CHAPTER 2

OPTIMALITY CONSIDERATIONS OF HYPOTHESIS

TESTING

2.1 Introduction

Choosing the hypothesis between two or more alternatives is cast as hypothesis

testing problem. One of the hypotheses is assumed to be null hypothesis which

usually represents the noise only situation for the target detection problems. The

problem at hand can be restated as what is the best decision rule to choose the

hypothesis given the data. There are two approaches for answering this question.

In each alternative solutions to the problem, the optimality definition and the

prior assumptions about the hypotheses are the deciding factors.

The first approach is Bayesian in which all uncertainties is put into some form of

probability distributions. The distinctive feature of this approach is to assume

a known a-priori distribution for each hypotheses. The decision is based on

minimizing the cost function of choosing a hypothesis.

The second one is Neyman-Pearson approach in which one of the error proba-

bilities is aimed to be minimized while the other error probabilities are aimed

to be kept below some predefined value. Explicitly speaking, the probability of

falsely not rejecting null hypothesis (in radar jargon, miss detection probabil-

ity) is minimized while the probability of falsely rejecting null hypothesis (false

alarm probability) is kept below some value. In other words, the probability of

detection is maximized while false alarm probability is upper bounded by some

value. In the subsequent sections, deeper meanings of Neyman-Pearson approach

5



is explored.

When more than one alternatives in addition to null hypotheses are available, the

Bayesian approach is widely used, specifically in the communication problems.

The reader is referred to the classic books for details, [5, pp. 52–63], [6, pp. 46–52].

Neyman-Pearson approach in radar jargon is generally employed for the binary

hypotheses testing problem in which there is only one alternative hypothesis

that is the presence of target. However, in some applications for instance, when

there are three options for the decision, namely, noise only, target and jammer

presences, if the final goal is to discriminate among the alternative decisions,

then the Neyman-Pearson sense of optimality can be useful in constructing

detectors.

2.2 Binary Hypothesis Testing Problem

Let the observation random vector be denoted as x, and our goal is to de-

cide between two alternative hypotheses, H0 and H1. The decision function is

represented as an indicator function δ(x) and defined as follows:

δ(x) =

1, x ∈ D1

0, x ∈ D0

(2.1)

where D1 and D0 are decision regions in which the hypotheses H1 and H0 are

chosen accordingly.

2.2.1 Bayesian Approach

Let assume that π0 and π1 represent the prior probabilities of H0 and H1 respec-

tively. The Bayes risk for the chosen hypothesis Hj is defined as follows:

R(δ|Hj) =
i=1∑
i=0

CijP (Hi|Hj) (2.2)

where Cij represents the cost of choosing hypothesis Hi when Hj is actually true.

The average cost of decision rule δ is defined as:

R(δ) = π0R(δ|H0) + π1R(δ|H1). (2.3)

6



The decision rule minimizing the average Bayes risk over all possible alternatives

is given as:

δ(x) =


1,

f(x;H1)

f(x;H0)
> T

0,
f(x;H1)

f(x;H0)
< T

(2.4)

where T is the threshold

T =
π0(C10 − C00)

π1(C01 − C11)
(2.5)

and Cii < Cij is assumed. The reader is referred to [5] for details.

Minimum Error Probability Detector: If we assume the following cost

functions;

Cij =

1, i 6= j

0, i = j
(2.6)

The Bayes risk becomes the average error probability

R(δ) = P (H1|H0)π0 + P (H0|H1)π1. (2.7)

Also the threshold becomes as T =
π0

π1

. This detector, called as minimum error

probability detector also maximizes the posterior probability P (Hj|x), and the

decision rule can be written as:

P (H1|x)

H1

≷

H0

P (H0|x). (2.8)

Maximum Likelihood Based Detector: In addition to assumptions given in

(2.6), if one also assumes that the priori probabilities are equal to each other,

i.e., π0 = π1 = 0.5, then the detector given in (2.8) becomes as follows:

f(x;H1)

H1

≷

H0

f(x;H0). (2.9)

This detector is widely used in communication receivers when there is no prior

information about the message being sent.
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2.2.2 Neyman-Pearson Approach

An alternative optimality criteria to the Bayesian approach is the Neyman-

Pearson approach. Its motivation lies in the radar target detection problem. In

radar applications, the goal is usually to fix the probability of false alarm which

is defined as the probability of deciding that target is present when there is no

target and only noise is present. Moreover, at the same time radar designer

aims to maximize the provability of target detection. In other words, we wish to

minimize one error probability subject to other error probability upper bounded

by some value. The problem can be stated as;

minimize PM = P (H0|H1), subject to PFA = P (H1|H0) < α (2.10)

where PM represents the miss detection probability which is the falsely not

rejecting the null hypothesis, H0 : noise only, and PFA is the probability of

false alarm which is falsely rejecting the null hypothesis. α is the level of this

hypothesis test and represents maximum allowable false alarm probability or size

of the test. This feature is the distinctive feature of Neyman-Pearson approach.

In the Bayesian approach, the goal is to minimize total error probability which

includes the combination of both error probabilities (PM , PFA) and true decision

probability effects.

Although both approaches give the same test, i.e., the likelihood ratio test, their

optimality goals are different. The Neyman-Pearson problem can be solved by

various methods. Here, two proofs are given to convey some further depth in the

Neyman-Pearson approach.

First Proof: The proof in [5] and [7] uses the Lagrange multipliers method

to minimize the miss detection probability (or maximize the target detection

probability). We construct the cost function F and seek a decision function φ(x)

to minimize it,

φ∗(x) = min
φ
F (φ, λ) = PM(φ) + λ(PFA(φ)− λ) (2.11)

The cost function can be rewritten as:

F (φ, λ) =

∫
D0

f(x;H1)dx + λ

[∫
D1

f(x;H0)dx− α
]
, (2.12)

8



=

∫
D0

f(x;H1)dx + λ

[
1−

∫
D0

f(x;H0)dx− α
]
, (2.13)

= λ(1− α) +

∫
D0

[f(x;H1)− λf(x;H0)] dx. (2.14)

The function F (φ, λ) is minimized when the integrand f(x;H1)− λf(x;H0) is

negative and we choose H0 consequently.

if L(x) =
f(x;H1)

f(x;H0)
< λ then choose H0 (2.15)

Neyman-Pearson detector is again likelihood ratio test:

φ∗(x) =

1, L(x) > λ

0, L(x) < λ
(2.16)

When L(x) = λ, either hypotheses H0 or H1 can be chosen and this situation is

further examined in [5].

Second Proof: The proof in [8, 9, 10] is based on the definitions of indicator

function and the likelihood ratio test. Consider the decision functions (here, we

assume non-randomized test, so decision function becomes indicator function)

φ∗(x) and φ(x) which correspond to likelihood ratio test and any other test. Our

aim is to minimize PM subject to PFA ≤ α. The Neyman-Pearson lemma states

that the test obtained from likelihood ratio test has the minimum PM∗ unless
PFA is increased beyond the level of the test α. Stated differently, P ∗M ≤ PM

when PFA ≤ P ∗FA ≤ α where P ∗M , PM are the miss detection probabilities of

the Neyman-Pearson test and any other test, P ∗FA, PFA are the false alarm

probabilities of Neyman-Pearson test and any other test, respectively. We begin

the proof by stating the definition of Neyman-Pearson test as follows:

φ∗(x) =


1,

f(x|H1)

f(x;H0)
> T

0,
f(x|H1)

f(x;H0)
< T.

(2.17)

If x ∈ D∗1, then φ∗(x) = 1 and f(x;H1) > Tf(x;H0). Likewise; if x ∈ D∗0, then
φ∗(x) = 0 and f(x;H1) < Tf(x;H0). So the following inequality holds for all

decision functions:

(φ∗(x)− φ(x))(f(x;H1)− Tf(x;H0)) ≥ 0. (2.18)
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Integrating the above function over all values of x, we obtain the following series

of equations:∫
D∗1

(f(x;H1)− Tf(x;H0))dx−
∫
D1

(f(x;H1)− Tf(x;H0))dx ≥ 0 (2.19)

1− P ∗M − TP ∗FA − (1− PM) + TPFA ≥ 0 (2.20)

PM − P ∗M ≥ T (P ∗FA − PFA). (2.21)

Thus, as long as PFA < P ∗FA and since T > 0, then P ∗M < PM holds for any other

decision rule. This means that one can not decrease miss detection probability

any further unless false alarm probability is increased.

The above proof can be restated with the detection probabilities PD = P (H1|H1).

The final inequality becomes as follows:

P ∗D − TP ∗FA − PD + TPFA ≥ 0 (2.22)

P ∗D − PD ≥ T (P ∗FA − PFA). (2.23)

To put it differently, the optimal Neyman-Pearson test increases the probability

of a decision when in fact H1 is true under the constraint of probability of same

decision when in fact H0 be upper bounded by a fixed value. This meaning can

be deduced with the definition of decision rule δ. One can further extend this

as follows: Let’s say that the final goal of decision test is to decide some other

hypothesis, let’s say H3. The Neyman-Pearson lemma also states that P (H3|H1)

is maximized when P (H3|H0) is wanted to be upper bounded by some value

α. This interpretation will be used when constructing optimum radar sidelobe

blanker detectors which will be covered in Chapter 3.

2.3 Multiple Hypothesis Testing Problem

2.3.1 Bayesian Approach

When more than two hypotheses are available, the costs for each hypotheses are

computed, and the decision rule is found by minimizing the average cost functions.

There are ample resources in the literature, specifically in the communication
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literature. The Bayesian approach becomes minimum error probability and

maximum posterior probability detectors. It is fully covered in [5, 7, 11].

2.3.2 Neyman-Pearson Approach

Because the goal of Neyman-Pearson approach is to minimize one error probability

while keeping the other error probability below some fixed value, in case of

multiple hypotheses, there are multiple error probabilities to construct trade-offs.

In this subsection, three types of Neyman-Pearson detectors are given with their

definitions of optimality.

2.3.2.1 Neyman-Pearson Type-1 Detector

This detector design is based on minimizing multiple error probabilities. It is given

in [12]. Its main idea is to construct the null hypothesis decision region first, and

assume common threshold for false alarm probabilities, i.e, P (H1|H0), P (H2|H0).

This detector may have more applications in communication systems.

Theorem 2.1. Assume that there are three hypotheses to choose, namely, H0,

H1 and H2. Assume that the test determined by the decision regions D∗0, D∗1
and D∗2 is optimal in the sense that, for each other test defined by the sets

D0, D1 and D2 with the corresponding error probabilities α∗l|m and αl|m with

α∗l|m = P ∗(Hl|Hm), l,m = 0, 1, 2 and l 6= m if α0 ≤ α∗0, then max(α0|1, α0|2) ≥
max(α∗0|1, α

∗
0|2) and if α1 ≤ α∗1 then α1|2 ≥ α∗1|2 for the following decision regions:

D∗0 =

{
x : min

(
f(x;H0)

f(x;H1)
,
f(x;H0)

f(x;H2)

)
> T0

}
, 1− P (H0|H0) = α∗0

D∗1 = D∗0 ∩
{

x :
f(x;H1)

f(x;H2)
> T1

}
, 1− P (H1|H1) = α∗1

D∗2 = XN − (D∗0 ∪ D∗1) (2.24)

Proof. Let φ∗(x) and φ(x) be the indicator functions of decision regions D∗m
and Dm, respectively. For the decision region of D∗0, the following inequality is

correct.

(φ∗(x)− φ(x)) (f(x;H0)− T0 max(f(x;H1), f(x;H2))) ≥ 0 (2.25)
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The above inequality is verified as follows: When φ∗(x) = 1, then

min

(
f(x;H0)

f(x;H1)
,
f(x;H0)

f(x;H2)

)
− T0 ≥ 0

min

(
f(x;H0)

T0f(x;H1)
,
f(x;H0)

T0f(x;H2)

)
− 1 ≥ 0

f(x;H0)

T0 max (f(x;H0), f(x;H1))
− 1 ≥ 0

f(x;H0)− T0 max (f(x;H0), f(x;H1)) ≥ 0

When φ∗(x) = 0, the above inequality reverses, and since 0 ≤ φ(x) ≤ 1, above

inequality holds. Summing over all possible values of x, i.e., XN , the following

series of equations are obtained:∑
XN

(φ∗(x)− φ(x)) (f(x;H0)− T0 max(f(x;H1), f(x;H2))) ≥ 0∑
D∗0

(f(x;H0)− T0 max(f(x;H1), f(x;H2)))−

∑
D0

(f(x;H0)− T0 max(f(x;H1), f(x;H2))) ≥ 0

1− α∗0 − T0 max(α∗0|1, α
∗
0|2)−

[
1− α0 − T0 max(α0|1, α0|2)

]
≥ 0

T0

(
max(α0|1, α0|2)−max(α∗0|1, α

∗
0|2)
)
≥ α∗0 − α0

It is seen that if α0 ≤ α∗0, then max(α0|1, α0|2) ≥ max(α∗0|1, α
∗
0|2).

For the other case, similar methodology applies. The following inequality holds:

(φ∗(x)− φ∗(x)) (f(x;H1)− T0f(x;H2)) ≥ 0 (2.26)

(2.26) can be validated as follows: Note that if φ∗(x) = 1, it means x ∈ D∗0
and

f(x;H1)

f(x;H2)
> T1. So (f(x;H1)− T0f(x;H2)) ≥ 0. If

f(x;H1)

f(x;H2)
< T1, then

φ∗(x) = 0, hence the inequality holds.

Carrying out the summation over entire sample space, one obtains the following

equations:∑
XN

(φ∗(x)− φ(x)) (f(x;H1)− T1f(x;H2)) ≥ 0∑
D∗1

(f(x;H1)− T1f(x;H2))−
∑
D1

(f(x;H1)− T1f(x;H2)) ≥ 0

1− α∗1 − T1α
∗
1|2 − (1− α1 − T1α1|2) ≥ 0

T1

(
α1|2 − α∗1|2

)
≥ α∗1 − α1 (2.27)
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Thus, if α1 ≤ α∗1, then α1|2 ≥ α∗1|2.

Detector given in (2.24) can be restated as follows. For the null hypothesis be

chosen, two likelihood ratio tests
(
f(x;H0)

f(x;H1)
,
f(x;H0)

f(x;H2)

)
must be greater than

common threshold T0 at the same time. If one finds the threshold according

to error probability α∗0 = P (H2|H0) + P (H1|H0), then this threshold is used

for both likelihood ratio tests. This situation may not seem realistic for the

radar applications when more than two hypotheses are to be detected with the

Neyman-Pearson test. On the other hand, this detector’s structure is simple and

optimal within its assumption.

2.3.2.2 Neyman-Pearson Type-2 Detector

In [13], generalized Neyman-Pearson type detector is used to discriminate target

and jammer presences. The optimality criteria is maximizing the sum of true

detection probability, i.e, (P (H0|H0)+P (H1|H1)+P (H2|H2)), subject to distinct

false alarm probabilities (P (H1|H0) ≤ α1, P (H2|H0) ≤ α2) is less than some

preassigned values. Its derivation is given appendix of [13]. The derivation uses

the Lagrange multiplier method and is presented as follows:

maximize
2∑

k=0

P (Hk|Hk) subject to P (H2|H0) = α2, P (H1|H0) = α1. (2.28)

over the decision region of Hk, namely, Dk k = 0, 1, 2. Hk is chosen if the

observation space x falls in Dk. The Lagrange multipliers for this problem is

defined as:

= max
D1,D2

2∑
k=0

P (Hk|Hk) +
2∑

k=1

λk [P (Hk|H0)− αk]

= max
D1,D2

2∑
k=1

P (Hk|Hk) + P (H0|H0) +
2∑

k=1

λk [P (Hk|H0)− αk]

= max
D1,D2

2∑
k=1

P (Hk|Hk) + 1−
2∑

k=1

P (Hk|H0) +
2∑

k=1

λk [P (Hk|H0)− αk]

= max
D1,D2

2∑
k=1

[P (Hk|Hk)− P (Hk|H0)− λkP (Hk|H0)]
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= max
D1,D2

2∑
k=1

∫
Dk

[f(x;Hk)− f(x;H0)− λkf(x;H0)] dx (2.29)

(2.29) can be written in a compact form as follows:

max
D1,D2

2∑
k=1

∫
Dk

[Lk − 1− λk] dx (2.30)

where Lk the likelihood ratio test between Hk and H0 hypotheses is defined as

follows:

Lk ,
f(x;Hk)

f(x;H0)
k = 1, 2. (2.31)

The hypothesis Hk is chosen if the integrand given in (2.30) is greater than that

of the other hypotheses.

Choose Hk if Lk − 1− λk

Hk

≷

H0

0 k = 1, 2 (2.32)

and

Lk − 1− λk

Hk

≷

Hj

Lj − 1− λk k 6= j k, j = 1, 2

where L0 = 1 by definition (see Eqn. ((2.31))). In other words,
H0 : if L1 < 1 + λ1 or L2 < 1 + λ2

H1 : if L1 > 1 + λ1 and L1 − λ1 > L2 − λ2

H2 : if L2 > 1 + λ2 and L1 − λ1 < L2 − λ2

(2.33)

This detector structure is different from Neyman-Pearson Detector-1. The

difference between Detector-1 and Detector-2 is the definition of optimality. Here,

the false alarm probabilities are aimed to be kept below from some predefined

value, and the likelihood ratios L1 and L2 are compared with different thresholds

1 + λ1 and 1 + λ2. Also this detector does not present any optimality criteria

about the error probability (P (H2|H1)).
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2.3.2.3 Neyman-Pearson Type-3 Detector

In [14], the optimum detector is derived for theM possible message transmissions

within Neyman-Pearson framework and with corresponding optimality definition.

We believe that the work in [14] is substantially important to understand and

analyze the problem at hand. It is assumed that there is no prior information

about the message that was sent. Weinberbger and Merhav defines the four

type of error probabilities which are probability of false alarm (PFA), probability

of misdetection (PMD), probability of inclusive error (PIE) and probability of

exclusive error (PEE). Decision space is divided into M + 1 disjoint regions which

include Dm, (m = 1 · · ·M) and Dm which D0 correspond to null hypothesis

(transmitter is silent) and mth message is sent. For ease of readability, the

notations used so far are used in the following description:

PFA =
M∑
m=1

P (Hm|H0), (2.34)

PMD =
1

M

M∑
m=1

P (H0|HM), (2.35)

PIE =
M∑
m=1

P (Hm|Hm), (2.36)

PEE = PIE − PMD (2.37)

where P (Hm|Hm) is the probability of choosing any hypothesis except Hm, when

Hm is true. In other words,

P (Hm|Hm) = P (H0|Hm) + · · ·+ P (Hm−1|Hm)+

P (Hm+1|Hm) + P (HM |Hm) m = 1 · · ·M.

The detector is constructed via the following optimization problem:

minimize PIE

subject to PFA ≤ α and PMD ≤ β
(2.38)

where α and β are preassigned upper bounds for false alarm and misdetection

probabilities respectively.

In the binary Neyman-Pearson hypothesis testing problem, because of the fact

that PFA and PMD can not be minimized at the same time, the usual method
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is to minimize PMD subject to PFA can not be greater than some preassigned

value. By giving relaxation between these two error probabilities, the authors

aim to freely minimize PIE.

The solution to the problem given in (2.38) is given in the following lemma:

Lemma 2.1. Let the decision regions D∗m be constructed as follows:

D∗0 =

{
x : a.

M∑
m=1

f(x;Hm) + max
m

f(x;Hm) ≤ b.f(x;H0)

}
(2.39)

D∗m = D∗0
⋂{

x : f(x;Hm) ≥ max
k 6=m

f(x;Hk)

}
, m = 1, 2, . . . ,M (2.40)

and Dm any other decision regions. If

PFA ≤ P ∗FA and PMD ≤ P ∗MD, then P
∗
IE ≤ PIE. (2.41)

Proof of above lemma is based on the usage of indicator functions of D∗m and

Dm as in the proof of previous three detectors [14].

The first term in decision region D∗0, a.
M∑
m=1

f(x;Hm), is similar to Neyman-

Pearson Type-1 detector (see 2.3.2.1). This can interpreted as the likelihood

ratios
f(x;Hm)

f(x;H0)
being not greater than common threshold a. Weinberbger and

Merhav consider the special case, when the this term dominates the left hand side

of (2.39). It is stated that the first term is like the probability mass function of

the event of sending any message or put it differently, the hypotheses other than

null. So, the first expression becomes the binary hypothesis testing between null

hypothesis and transmission of a message. This fact is asserted asymptotically

when a� b.

When the purpose is to minimize to probability of exclusive error (PEE), the

proposed detector is not always optimal. Since the inclusive error already includes

the miss detection probability, separating them could be good approach. In the

case of replacing the misdetection error probability constraint PMD < β with

equality PMD = β, the detector in (2.39) becomes optimal. In the general sense,

it is difficult to solve the problem when the aim is minimizing the exclusive

error.
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2.3.2.4 Discussion

When there are multiple hypotheses, Bayesian approach is widely accepted

since it has ample of application areas in communication systems. Maximum a

posteriori detectors and maximum likelihood detectors are used and well covered

in literature (for example, see [5, 7, 11]).

However, when the goal is to discriminate three hypotheses as in radar appli-

cations, there is no prior information in general. With this motivation, the

Neyman-Pearson approach is revisited in the previous sections. The different

types of optimum detectors share common goal, i.e, to minimize the error proba-

bility or maximize true detection probability for the hypotheses in concern.

Type-1 and Type-3 Neyman-Pearson detectors can be applied specifically on the

communication problems. The assumption of more than two hypotheses and

minimizing the error probabilities with common threshold for likelihood ratio

tests are the common feature of these detectors.

In the next chapter, ternary hypotheses testing will be covered for the sidelobe

blanking application whose details are to be presented later. The detector

structure is divided into two parts. In the first one, the blanking decision is

performed with some optimality criteria, i.e., maximizing the blanking probability

when jammer is present, subject to the constraint of keeping the probability of

blanking when target is present below some preassigned value. In the second

stage, when decision in the first stage is not to blank, the usual target presence

decision is performed, like binary Neyman-Pearson hypothesis testing. Further

details are presented in Chapter 3

2.4 Composite Hypothesis Testing

The hypothesis testing problem that was considered up to this point is based

on the assumptions of known probability density functions (pdf) under each

hypotheses. The pdf f(x;Hm) is called conditional pdf for Hm hypothesis. We

assumed that the complete knowledge of pdf’s are available. In the problems
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considered so far, the hypothesis testing problems correspond to dividing the

parameter space of pdf’s into disjoint tests. For example, assume that hypothesis

H0 corresponds to noise only which has pdf of N (0, σ2), and hypothesis H1

represents the target presence and its pdf has the form of N (A, σ2) where A is

the amplitude of target signal. So the parameter space Φ consists of two sets

which are mean and variance. Let Θ = Φ0 ∪ Φ0, where Φ0 and Φ1 are parameter

sets of H0 and H1 respectively. For this simple example, Φ0 = {0, σ2} and

Φ1 = {A, σ2}. When A and σ2 are known, hypothesis testing problem is said to

be simple and optimum detectors can be found depending on the application. If

these parameters are not known, then the problem is called as composite. There

are several approaches to tackle to the composite tests. For each approach, the

optimality criteria changes and when optimum solution does not exist, some

sub-optimum or asymptotically optimum approaches are used.

For a test to be better than the others, it has to have higher detection probability,

i.e. the power, among the alternatives. For example, in the case of unknown

mean problem, when the sign of A is assumed to be known, then one can reach

the likelihood ratio test as follows:

Example 2.1.

f(x;H1|A) =
1

2πσ2
exp

(
−(x− A1)T (x−m1)

σ2

)
f(x;H0) =

1

2πσ2
exp

(
−xTx

σ2

)
After taking the logarithm of likelihood ratio test, one can find the following:

L(x|A) =
f(x;H1)

f(x;H0)
= A

1Tx

σ2
− A2N

2σ2
(2.42)

We see that even if we don’t known the value of A except its sign one can find

the test 1Tx as realizable and most powerful among any other tests. This type

of tests are called one-sided tests. It is seen that the decision test statistics is

completely known when H0 is assumed to be true. This feature enables the

designer to find the threshold based on preassigned false alarm rate.

If the likelihood ratio is monotonic with T (x), which means, for any θ0 and

θ > θ0, L(x) =
f(x|θ1)

f(x|θ0)
is nondecreasing function of T (x) for all values of x,
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then the following test is uniformly most powerful (UMP) among for one-sided

hypothesis testing problem [15].

T (x)

H1

≷

H0

x0 (2.43)

Also, it is shown that for the exponential family of distributions, the likelihood

ratio test is monotonic in sufficient statistic [15]. For the unknown mean in

Gaussian noise problem in example 2.1, the likelihood ratio test is monotonically

increasing function of T (x) = 1Tx, which is the sufficient statistic for mean of

Gaussian densities.

When the sign of A is not known, one can not find a single likelihood ratio test,

there is no UMP test for this type of problems. To tackle this problem, one

can transform the data ensuring that parameter space is not affected and try to

eliminate the effects of unknown parameter. For the above problem, an intuitive

test will be |1Tx|. This method will be further explained in chapter 4.

In this section, without giving the well-known concepts in detail which can be

found in many classical books, our focus will be on the radar applications and a

method, called as invariance, which is lesser-known but has appealing optimality

properties.

2.4.1 Bayesian Approach

In the Bayesian approach, prior distributions are assumed to represent the

realizations of unknown parameters. Each parameters in the conditional pdf’s

employ its own distributions. The marginal conditional pdf of data

f(x;H0) = Eθ0 [f(x|θ0;H0)] =

∫
f(x|θ0;H0)f(θ0)dθ0

f(x;H1) = Eθ1 [f(x|θ1;H1)] =

∫
f(x|θ1;H1)f(θ1)dθ1

(2.44)

where f(θ0) and f(θ1) are pdfs of parameters of each conditional distributions

of H0 and H1 respectively. After finding the conditional pdfs of f(x;H0) and

f(x;H1), Neyman-Pearson type detector, i.e., the likelihood ratio test can be

constructed.
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This approach is widely used in many applications. For example, when the phase

of the return signal is not known, it is assumed to have uniform distribution,

and such detectors are called as non-coherent detectors. Moreover, in radar

terminology, four types of Swerling targets are derived from different distribution

assumptions of its magnitude and phase.

2.4.2 Generalized Likelihood Ratio Test

When there is no probabilistic information about the unknown parameter, with

the Van Trees terminology, unknown deterministic parameter case, the maximum

likelihood estimate is found and inserted into likelihood ratio test. Maximum

likelihood (ML) estimate of the parameter maximizes the likelihood function

which is indeed pdf of data.

LG(x) =
f(x|θ̂1;H1)

f(x|θ̂0;H0)
(2.45)

where θ̂m maximizes f(x|θ̂m;Hm) for m = {0, 1}. In particular,

θ̂m =
∂ ln f(x|θ;Hm)

∂θ

∣∣∣∣
θ=θ̂m

. (2.46)

Without claiming any optimality, ML estimations are preferred in many applica-

tions due to following desirable properties:

• The solution of (2.46) converges to the true value of parameter, as the

number of data samples goes to infinity. This property, also called as

asymptotically unbiasedness is referred as consistency [6].

• The mean square error of ML estimate decreases to the Cramer-Rao

lower bound as the number of data samples goes to infinity. It is also

asymptotically Gaussian with the mean of true value of parameter and

variance of Cramer-Raor lower bound of error [6].

• It is invariant with respect to any one-to-one function of parameter. In

other words, if h(θ) is one-to-one function of θ and θ̂ is maximum likelihood

estimate of θ, then h(θ̂) is maximum likelihood estimate of h(θ) [9].
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2.4.3 Invariance Approach

When there exists no UMP test for the hypothesis testing considered, for example:

two-sided tests, there exists a third option to obtain UMP test. The approach in

the statistics literature is called the invariance method. The method is based

on finding group of transformations that does not change hypothesis testing

problem. For example, when the mean of the Gaussian signal is assumed to

be unknown for H1 hypothesis, i.e., A 6= 0 and zero for H0 hypotheses. Then

this problem is invariant under adding unknown constants or location shifting.

Thus, for all transformations, there exists a unique one which indexes all possible

values of transformation, i.e., the maximal invariant function. The mathematical

definition of maximal invariant test is given in Chapter 4. After finding the

maximal invariant statistics for the given group of transformation, one can obtain

usual likelihood ratio test using maximal invariant function. Finally, for a certain

type of problem, even there is no UMP test in general, there can be UMP test

within invariant transformation of data, called UMP invariant test (UMPI).

Another important aspect of invariant approach, unlike sufficient statistics about

unknown parameter, is that this method decreases the dimension of parameter

as well as dimension of data as in sufficient statistics. Note that sufficiency

definition mentioned here is the one given for unknown parameter. Definition

of sufficient statistic and a well known theorem to find the sufficient statistic,

Fisher-Neyman Factorization theorem, can be found in many classical detection

and estimation theory books. For example, see [9, pp. 80–81]. For example: if

mean and variance of gaussian signal is not known for either hypotheses, the

sufficient statistics for both parameters are known to be sample mean and sample

variance, respectively. By definition of sufficient statistics, it can not decrease the

dimension of data, in this case it is two-dimensional. For the invariant approach,

it will be shown that the dimension of parameter space is reduced to one and

the decision test becomes scalar.

In chapter 4, the mathematical theory of invariance method will be given and some

signal processing applications will be solved by using this approach. Among the

applications are the general signal detection problem, Low Probability of Intercept
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(LPI) radar signal detection and frame synchronization word detection.
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CHAPTER 3

DESIGN OF MAISEL SIDELOBE BLANKERS WITH A

GUARANTEE ON THE GAP TO OPTIMALITY

3.1 Introduction

Signals intercepted from the antenna sidelobes can cause false target declarations,

reduced tracking accuracy, reduced direction finding accuracy and other undesired

effects. To reduce the impact such effects, a sidelobe blanking (SLB) architecture,

known as the Maisel structure, has been proposed [16]. The Maisel structure

uses two receiving channels. The first one is the main channel whose antenna has

high gain in the main beam and low gain in the sidelobes. The second channel is

called the auxiliary channel and has an omnidirectional pattern, i.e. a flat gain

which is typically slightly greater than the sidelobe gain of the main antenna as

illustrated in Figure 3.1.

The Maisel structure generates a blanking signal when the ratio of the auxiliary

channel output power (v) to main channel output power (u), that is (v/u), is

greater than blanking threshold F as shown in Figure 3.2. A blanking decision

disables the main channel. Stated differently, the main channel output is discarded

without any further processing upon blanking. It should be clear that an erroneous

blanking decision causes a degradation in the detection performance. The main

goal of sidelobe blanker design is to reliably detect the presence of a sidelobe

jammer with a minor loss in the target detection capabilities.

As shown in Figure 3.1, the gain of the omnidirectional antenna (ω2) should

satisfy the condition ω2/δ2 = β2 ≥ 1 for a reliable operation. Stated differently,
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Auxiliary antenna pattern

Main antenna pattern

δ2

ω2

−θ θ

δ2 < ω2 � 1

β2 =
ω2

δ2
> 1

Figure 3.1: Gain patterns of main and auxiliary antennas for a conventional

SLB system [17].

the auxiliary antenna acts as a better receiver in comparison to the main antenna

for the targets in the sidelobe region. An interfering signal in the sidelobe region

with the power α produces main and auxiliary channel output powers of δ2α and

ω2α, respectively. The ratio of auxiliary to main channel output, the decision

statistics for the Maisel detector, is β2 and this ratio is to be compared with

the threshold F . Therefore, β2 ≥ F condition is required to successfully the

blank sidelobe interferer [16]. Similarly, in order not to erroneously blank a

target in the main lobe region, which produces auxiliary to main channel output

ratio of ω2, the condition of ω2 ≤ F is also required, [16]. As a summary, the

following three conditions are typically required for the design of Maisel sidelobe

blankers:

Blanking Logic

Main Channel

Auxiliary Channel

Receiver | · |2 Gate
Detection

Threshold

us(n)

Receiver | · |2
vr(n)

÷v/u
Blanking

Threshold

F

λ

Noise

Target

Figure 3.2: Block diagram of Maisel sidelobe blanker [16].
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1. β2 =
ω2

δ2
≥ 1,

2. β2 ≥ F ,

3. ω2 ≤ F .

It should be noted that these conditions are rather naive, since their derivation

is based on noise free operation, that is the statistical variations due to noise,

target fluctuations etc. are not taken into account. Typically, these conditions

are interpreted as the necessary conditions for the design of Maisel SLB systems;

but they do not guarantee a satisfactory performance in practical scenarios.

In practice, to realize a good performance in the presence of noise and other

statistical variations, the parameters β2, ω2 and F are chosen such that the

conditions are satisfied with a some margin. To the extent of our knowledge,

there is no quantitative study on the optimality of Maisel scheme and there

is no work on the selection of parameters with the guidance of the optimal

Neyman-Pearson test. This study aims to fill this gap in the literature.

The classical SLB systems are well studied in the literature. In [17], Farina

examines the classical SLB system in detail and derives the probability of

blanking the jammer in sidelobe (Pb), the probability of blanking the target in

main beam (Ptb), the probability of false target due to jammer in sidelobe (Pft)

for Swerling-0 target model. In [18], Farina and Gini extends the aforementioned

probability calculation to the Swerling-1 targets. The work is extended to gamma

distribution with an arbitrary shape parameter, and shadowed Rice target models

[19] and the effects of correlated Gaussian clutter in addition to thermal noise

is also accounted in [20]. Shnidman gives the analysis of an arbitrary number

of noncoherently integrated pulses for the case of nonfluctuating and gamma

fluctuating target in [21]. Shnidman extends the analysis to noncentral gamma

(NCG) and noncentral gamma-gamma (NCGG) fluctuations in [22]. In [23],

Cui et al. give the performance assessment for arbitrary correlated, possibly

nonidentically distributed, fluctuating target and/or jamming returns for a given

number of integrated pulses.

To the best of our knowledge, in spite of several important work on the Maisel
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structure, its performance gap from the optimal detector is not studied in the

literature. In [24], Finn et al. note that the SLB systems derived from the

Neyman-Pearson likelihood ratio test (LRT) are hard to implement in real

time and the Maisel structure is suggested as a substitute detector with a

simple implementation. One of our goals is to justify the good performance of

properly designed Maisel SLB systems by conducting a comparison with the

optimal Neyman-Pearson detector. It should be mentioned that the optimal

Neyman-Pearson test is not possible to implement in practice; since the optimal

Neyman-Pearson detector requires several jammer and target parameters which

are not typically available to the radar operator. Therefore, our goal is not to

suggest a practical alternative SLB structure; but to examine the performance

gap between the Maisel and optimal system for different scenarios, to identify

the conditions that Maisel system operates in the close vicinity of the optimal

system and, finally, to present some objective criteria to the designers of Maisel

blankers to achieve almost optimal performance.

3.2 Neyman-Pearson Type Optimal Sidelobe Blankers

Let s̃ and r̃ denote the complex valued matched filtered outputs of the main

and auxiliary channels at a specific time. We have three hypotheses, namely

noise only (H0), target in main lobe and no jammer in sidelobe (H1), jammer in

sidelobe and no target in main lobe (H2):

H0 :

s̃ = w̃s

r̃ = w̃r

, (3.1)

H1 :

s̃ = a0 exp (jφa) + w̃s

r̃ = ωa0 exp (jφa) + w̃r

, (3.2)

H2 :

s̃ = c0 exp (jφc) + w̃s

r̃ = βc0 exp (jφc) + w̃r

. (3.3)

Here ã = a0 exp (jφa) and c̃ = c0 exp (jφc) indicate target and jammer voltage

signal and w̃s ∼ CN (0, σ2) and w̃r ∼ CN (0, σ2) denote receiver noise in main
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and auxiliary channels, respectively. CN (0, σ2) represents zero mean complex

circularly symmetric Gaussian random variables with σ2 variance. Note that

the phrase “jammer” in this work also applies to an interfering target in the

sidelobe.

We assume that phases of target and jammer signals are independent of each other.

The receiving channels are perfectly matched1. Namely, E [r̃s̃∗;H1] = ωE [|a0|2]

and E [r̃s̃∗;H2] = βE [|c0|2]. The LRT to decide blanking the main channel can

be formed as follows:

Λm(s̃, r̃) =
fm(s̃, r̃;H2)

fm(s̃, r̃;H1)

Blank

≷

Blank

ζm, m = 0, 1, 3. (3.4)

Here, fm(s̃, r̃;H2) and fm(s̃, r̃;H1) are the joint probability density functions

(pdf) of s̃ and r̃ for Swerling-m (m = 0, 1, 3) target model and the Blank and

Blank denote the blanking and not-blanking decisions, respectively. It should be

noted that the sidelobe blanker logic given by (3.4) forms the first stage of the

detector shown in Figure 3.3.

The sidelobe blanker logic shown in Figure 3.3 generates the decision test which is

compared with the threshold ζm. If the threshold is exceeded, the main channel is

no longer processed and a jammer decision is declared. If the first stage declares

the absence of jammer, the main channel output is further processed for the

presence or absence of a target.

It can be shown that the sidelobe blanker logic, the first stage of the detector in

Figure 3.3, has the optimality properties in the sense that given a fixed probability

of (erroneously) blanking the target signal, Pr(Blank|H1), the probability of

blanking the jammer signal is maximized, Pr(Blank|H2), with the shown two-

stage test. The proof for this claim is given as follows:

Proof. Let φ∗ and φ denote the indicator functions of blanking decision regions

1 This assumption brings the coherency between receiving channels and only affects the design of
optimal detectors which are studied to provide a performance bound for the Maisel blankers.
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B∗ and B which correspond to Neyman-Pearson test and any other test:

φ∗(x) =


1 x ∈ Blank, i.e.

f(x;H2)

f(x, H1)
> ζ

0 x ∈ Blank, i.e.
f(x;H2)

f(x, H1)
< ζ

, (3.5)

where x =
[
s̃ r̃

]T
.

The following inequality immediately follows from the above expression.

(φ∗(x)− φ(x)) (f(x;H2)− ζf(x;H1)) ≥ 0. (3.6)

Integrating (3.6) over the entire sample space, we get the following equations:∫
x∈B∗

(f(x;H2)− ζf(x;H1)) dx−
∫

x∈B

(f(x;H2)− ζf(x;H1)) dx ≥ 0

P (B∗|H2)− ζP (B∗|H1)− P (B|H2)) + ζP (B|H1) ≥ 0

P (B∗|H2)− P (B|H2) ≥ ζ (P (B∗|H1)− P (B|H1)) (3.7)

where P (B|H2) and P (B|H1) are the probabilities of deciding blanking and not

blanking for the any other test except Neyman-Pearson test.

From (3.7), we see that if P (B|H1) ≤ P (B∗|H1) than P (B∗|H2) ≥ P (B|H2) since

ζ ≥ 0. Thus, any other test whose target blanking probability is desired to be

upper bounded by some level will have a smaller jammer blanking probability

compared to the Neyman-Pearson test.

With the adoption of this optimality result, the blanking process and target

detection process can be separated.

SLB Logic

fm(s̃, r̃;H2)

fm(s̃, r̃;H1)
≷ ηm

fm(s̃, r̃;H1)

fm(s̃, r̃;H0)
≷ λ

No processing

s̃, r̃

< (Not Blank)

> (Blank)

>
H1

<
H0

Figure 3.3: Illustration of two-stage radar receiver with a sidelobe blanker logic.
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In the rest of this section, the log likelihood ratio tests (LLRT) of hypotheses H2

and H1 are calculated for different target fluctuations models. We denote the

decision statistics for this purpose as

dm = log Λm(s̃, r̃)

Blank

≷

Blank

ηm. m = 0, 1, 3. (3.8)

Here, dm is the decision statistics for the Swerling-m target model. The

probability for the undesired event of (erroneous) target blanking probabil-

ity Ptb = Pr(Blank|H1) =
∫∞
ηm
fdm|H1(x)dx can be set to a predefined value by

adjusting the threshold level. As shown, the threshold value becomes a function

of the parameters {SNR, JNR, ω2, β2}. After setting the threshold, the proba-

bility of the desired event, that is the probability of blanking an active jammer,

can be determined as Pb = Pr(Blank|H2) =
∫∞
ηm
fdm|H2(x)dx. In the following

subsections, we present the details of these calculations. Throughout the SLB

detector constructions, it is assumed that target and jammer have same Swerling

target model except their powers.

3.2.1 Swerling-0 Target Model

Swerling-0 target model assumes that the phase of ã (φa) is uniformly distributed

over (0, 2π) and the magnitude of ã is deterministic.

We first give the conditional pdf’s of s̃ and r̃ given that ã and c̃ are completely

known. The conditional pdf will be Gaussian whose mean is reflected by target

and jammer signals and is given as follows:

Under H1, f(s̃|ã;H1) ∼ CN (ã, σ2) and f(r̃|ã;H1) ∼ CN (ωã, σ2). Under H2,

f(s̃|c̃;H2) ∼ CN (c̃, σ2) and f(r̃|c̃;H2) ∼ CN (βc̃, σ2). Since the conditional pdf’s

have the same form, we will continue with that under H1.

f(s̃|ã;H1) =
1

πσ2
exp

(
−|s̃− ã|

2

σ2

)
,

f(r̃|ã;H1) =
1

πσ2
exp

(
−|r̃ − ωã|

2

σ2

)
. (3.9)
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Since the receiver noise in both channels (w̃s and w̃r) are assumed to be inde-

pendent, s̃ and r̃ turns to be conditionally independent. Hence,

f(s̃, r̃|ã;H1) =
1

π2σ4
exp

(
− 1

σ2

(
|s̃− ã|2 + |r̃ − ωã|2

))
. (3.10)

To get rid of the phase dependency of joint pdf’s of s̃ and r̃, we use Bayesian

approach for random parameters. We carry out the integration of joint pdf’s

given that phase and magnitude are given over the phase of the target signal.

We assume that phases of target in both channels are same. The target signal

can be expressed as ã = a0 exp (jφ) where φ is uniformly distributed over (0, 2π),

and a0 is deterministic.

f(s̃, r̃|a0;H1) =

∫ 2π

0

f(s̃, r̃|a0, φ;H1)fφ(φ)dφ. (3.11)

Expanding (3.11), we obtain the following:

f(s̃, r̃|a0;H1) =
1

π2σ4
exp

(
− 1

σ2

(
|s̃|2 + |r̃|2 + a2

0 + ω2a2
0

))
I0

(
2a0

σ2
|s̃+ ωr̃|

)
(3.12)

where I0(·) is the modified Bessel function of the first kind. Similarly,

f(s̃, r̃|c0;H2) =
1

π2σ4
exp

(
− 1

σ2

(
|s̃|2 + |r̃|2 + c2

0 + β2c2
0

))
I0

(
2c0

σ2
|s̃+ βr̃|

)
(3.13)

where c0 = |c̃| is the magnitude of jammer return. Signal to noise ratio and

jammer to noise ratio are defined as:

γs , SNR =
|ã|2

E [w2
s ]

=
a2

0

σ2
, (3.14)

γj , JNR =
|c̃|2

E [w2
s ]

=
c2

0

σ2
. (3.15)

Moreover, we assume that phases of target and jammer signals are independent

of each other. But across the channels, target and jammer phases do not change.

In other words, the two channels are perfectly matched to each other. Also, this

assumption brings the coherency between channels. Namely, E[r̃s̃∗;H1] = ωa2
0

and E[r̃s̃∗;H2] = βc2
0.

Likelihood ratio test to decide Blank and Not Blank is

Λ0(r̃, s̃) =
f(s̃, r̃|c0;H2)

f(s̃, r̃|a0;H1)

Blank

≷

Blank

ζ0. (3.16)
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Ignoring non-data dependent terms we reach the following test:

d0 =

I0

(
2c0

σ2
|s̃+ βr̃|

)
I0

(
2a0

σ2
|s̃+ ωr̃|

) Blank

≷

Blank

η0. (3.17)

Using the test given in (3.17) one can find the optimum SLB detector. The

false blanking probability Ptb = Pr(Blank|H1) =
∫∞
η0
fd0|H1(x)dx is aimed to

keep below some predefined value. To this aim, the threshold value is found

for each parameters (SNR, JNR, ω2, β2). After finding the threshold, we can

find the probability of true blanking which is defined as Pb = Pr(Blank|H2) =∫∞
η0
fd0|H1(x)dx. With this approach, we can be sure that Ptb is kept below some

value by changing threshold and the probability of blanking the jammer in the

sidelobe is maximized. The decision statistic of (3.17) is analytically formidable

to obtain, due to nonlinearities in it. For this reason, Monte Carlo method of

simulation is applied in the following sections.

3.2.2 Swerling-1 Target Model

Swerling-1 target model assumes the amplitude of target return, ã, is Rayleigh

distributed and the phase is uniformly distributed as in Swerling-1 case. Also,

there is no pulse to pulse to fluctuations in one antenna scan. This model is

referred to as scan to scan fluctuation.

To find the joint pdf of s̃ and r̃, we integrate (3.12) over a0 whose pdf is as

follows:

f(a0) =
2a0

σ2
a

exp

(
−a

2
0

σ2
a

)
. (3.18)

Note that average power of target return signal is σ2
a and is complex Gaussian

distributed having a variance of σ2
a, that is, ã ∼ CN (0, σ2).

The signal-to-noise-ratio (SNR) and jammer-to-noise-ratio (JNR) are defined

as:

γs , SNR =
E [|ã|2]

E [w2
s ]

=
σ2
a

σ2
, (3.19)

γj , JNR =
E [|c̃|2]

E [w2
s ]

=
σ2
c

σ2
. (3.20)
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Here, two derivations of the optimum SLB detector are provided:

First Derivation:

Proof. By Bayesian approach for random parameters case,

f(s̃, r̃;H1) =

∫ ∞
0

f(s̃, r̃|a0;H1)f(a0)da0. (3.21)

Putting (3.12) and (3.18) into (3.21), we have the following equation:

f(s̃, r̃;H1) =

∫ ∞
0

1

π2σ4
exp

(
− 1

σ2

(
|s̃|2 + |r̃|2

))
exp

(
− 1

σ2
a2

0(1 + ω2)

)
× I0

(
2a0

σ2
|s̃+ ωr̃|

)
2a0

σ2
a

exp

(
−a

2
0

σ2
a

)
da0

(3.22)

=
1

π2σ4
exp

(
− 1

σ2

(
|s̃|2 + |r̃|2

))
×
∫ ∞

0

exp

(
−a2

0

(
1 + ω2

σ2
+

1

σ2
a

))
I0

(
2a0

σ2
|s̃+ ωr̃|

)
2a0

σ2
a

da0︸ ︷︷ ︸
I

.

(3.23)

By making use of the relation [25]∫ ∞
0

2xa exp (−ax2)I0(bx)dx = exp

(
b2

4a

)
,

The integral (I) in (3.23) can be written as:

I = exp

(
σ2
a

(
|s̃|2 + ω2|r̃|2 + 2ωRe(sr∗)
σ2 (σ2

a(1 + ω2) + σ2)

))
σ2

σ2
a(1 + ω2) + σ2

. (3.24)

Putting (3.24) into (3.23), we obtain the joint pdf as:

f(s̃, r̃;H1) =

(
σ2

σ2
a(1 + ω2) + σ2

)
︸ ︷︷ ︸

K1

1

π2σ4
exp

(
− 1

σ2

(
|s̃|2 + |r̃|2

))
︸ ︷︷ ︸

K

× exp

(
σ2
a

(
|s̃|2 + ω2|r̃|2 + 2ωRe(sr∗)
σ2 (σ2

a(1 + ω2) + σ2)

))
. (3.25)

Rewriting the joint pdf of s̃ and r̃ in terms of SNR and JNR, we obtain the
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following simplified expression for H1 and H2 hypotheses:

f(s̃, r̃;H1) = K1 exp

(
−(−γsω2 − 1)|s̃|2 + (−γs − 1)|r̃|2 + 2Re(sr∗)ωγs

σ2 (γs(1 + ω2) + 1)

)
(3.26)

f(s̃, r̃;H2) = K2 exp

(
−(−γjβ2 − 1)|s̃|2 + (−γj − 1)|r̃|2 + 2Re(sr∗)βγj

σ2 (γj(1 + β2) + 1)

)
(3.27)

where K1 is defined in (3.25) and K2 is defined as:

K2 =
σ2

σ2
c (1 + β2) + σ2

.

The likelihood ratio test to decide Blank or Blank:

Λ1(r̃, s̃) =
f(s̃, r̃;H2)

f(s̃, r̃;H1)

Blank

≷

Blank

ζ1. (3.28)

Λ1(r̃, s̃) in (3.28) can be found as:

Λ1(r̃, s̃) = K3 exp

[
|s̃|2
(

γsω
2 + 1

γs(1 + ω2) + 1
− γjβ

2 + 1

γj(1 + β2) + 1

)
+ |r̃|2

(
γs + 1

γs(1 + ω2) + 1
− γj + 1

γj(1 + β2) + 1

)
+ 2Re(sr∗)

(
−ωγs

γs(1 + ω2) + 1
− βγj
γj(1 + β2) + 1

)]
. (3.29)

where K3 =
K2

K1

is non-data dependent factor.

Taking the logarithm of (3.29) and ignoring non-data dependent terms we have

the following test:

d1 = A|s̃|2 +B|r̃|2 + C2Re(sr∗)

Blank

≷

Blank

η1, (3.30)

where

A =
γsω

2 + 1

γs(1 + ω2) + 1
− γjβ

2 + 1

γj(1 + β2) + 1
, (3.31a)

B =
γs + 1

γs(1 + ω2) + 1
− γj + 1

γj(1 + β2) + 1
, (3.31b)

C =
−ωγs

γs(1 + ω2) + 1
− βγj
γj(1 + β2) + 1

. (3.31c)
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Second Derivation:

Proof. We note that the random variables r̃ and s̃ are correlated. The correlation

under different hypotheses is as follows: E[r̃s̃∗;H1] = ωσ2
a and E[r̃s̃∗;H2] = βσ2

c .

We introduce x =
[
s̃ r̃

]T
as a two dimensional Gaussian random vector with

the correlation matrix Ci as follows:

Ci = E[xxH ;Hi] =

E[|s̃|2;Hi] E[s̃r̃∗;Hi]

E[s̃∗r̃;Hi] E[|r̃|2;Hi]

 , i = {1, 2}

The probability density function (pdf) of x under Hi becomes

f(x;Hi) =
1

π2|Ci|2
exp

(
−xHC−1

i x
)
, i = {1, 2}

and the covariance matrices C1 and C2 can be given as follows:

C1 = σ2

γs + 1 ωγs

ωγs ω2γs + 1

 , (3.32a)

C2 = σ2

γj + 1 βγj

βγj β2γj + 1

 . (3.32b)

The likelihood ratio test to decide blanking or not blanking can be written as:

Λ(r̃, s̃) =
fx(x;H2)

fx(x;H1)

Blank

≷

Blank

ζ. (3.33)

Taking the logarithm of Λ(r̃, s̃) and ignoring non-data dependent terms, we reach

the following test [6]:

d1 = xH(C−1
1 −C−1

2 )x

Blank

≷

Blank

η. (3.34)

The test consists of quadratic forms of complex Gaussian random variables. The

statistic of xHQx is important in several telecommunication applications [26, 27,

28, 29]. Following the notation of [27] and [28], we define the Q matrix

Q , σ2
(
C−1

1 −C−1
2

)
=

A C

C B

 , (3.35)
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whose entries can be calculated through elementary algebra as

A =
γs ω

2 + 1

γs ω2 + γs + 1
− γj β

2 + 1

γj β2 + γj + 1
, (3.36a)

B =
γs + 1

γs ω2 + γs + 1
− γj + 1

γj β2 + γj + 1
, (3.36b)

C = − γs ω

γs ω2 + γs + 1
+

β γj
γj β2 + γj + 1

. (3.36c)

See [3] for additional details.

The decision statistics d1 in (3.34) can be expressed as follows:

d1 = xHQx = A|s̃|2 +B|r̃|2 + 2CRe(r̃s̃∗) (3.37)

and its pdf can be written as [26, 27]:

fd(d) =



ab

a+ b
exp (−ad) d ≥ 0,

ab

a+ b
exp (bd) d < 0.

(3.38)

The parameters a and b appearing in (3.38) are defined through a rather compli-

cated functions of µr̃s̃ and r, [28]:

a =

√
r2 +

1

4(µr̃r̃µs̃s̃ − |µs̃r̃|2)(|C|2 − AB)
− r, (3.39a)

b =

√
r2 +

1

4(µr̃r̃µs̃s̃ − |µs̃r̃|2)(|C|2 − AB)
+ r (3.39b)

where µr̃s̃ = 1
2
E[r̃s̃∗] and

r =
Aµr̃r̃ +Bµs̃s̃ + C∗µ∗s̃r̃ + Cµr̃s̃
4(µr̃r̃µs̃s̃ − |µs̃r̃|2)(|C|2 − AB)

.

To verify the pdf given in (3.38), Monte Carlo simulation of 107 trials is performed

and the result is presented in Figure 3.4. The red solid line show the theoretical

output while dark blue bar graph shows the histogram of the quadratic output.

From Figure 3.4, it can be clearly stated that the theoretical expression (3.38) is

within a very close proximity to the simulated result.

Threshold Calculation: The threshold η1 for the Neyman-Pearson test can

be calculated from (3.38). For a given target blanking probability (Ptb), the
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(a) Under H2

(b) Under H1

Figure 3.4: The pdf and histogram of the optimum SLB detector. # of Monte

Carlo trials = 107.
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threshold η1 is

η1 =


−1

a
ln

[(
a+ b

b

)
Ptb

]
Ptb ≥

b

a+ b
,

1

b
ln

[
−
(
a+ b

a

)
(Ptb − 1)

]
Ptb ≤

b

a+ b
.

(3.40)

Blanking Probability Calculation: Using the threshold η1, the probability

of blanking the jammer in sidelobe is

Pb =


b

a+ b
exp (−aη1) η1 ≥ 0,

a

a+ b

(
1− exp(bη1)

)
+

b

a+ b
η1 ≤ 0.

(3.41)

3.2.3 Swerling-3 Target Model

Swerling-3 target model is similar to Swerling-1 target (scan to scan fluctuation)

case except that the magnitude of ã is distributed as:

f(a0) =
8a3

0

σ4
a

exp

(
−2a2

0

σ2
a

)
. (3.42)

The average power of target signal, E[a2
0] = σ2

a. Here, the inphase and quadrature

components are no longer Gaussian distributed. Using the same method in

Swerling-1 case, the joint pdf of s̃ and r̃ under H1 can be written as:

f(s̃, r̃;H1) =

∫ ∞
0

1

π2σ4
exp

(
− 1

σ2

(
|s̃|2 + |r̃|2

))
exp

(
− 1

σ2
a2

0(1 + ω2)

)
× I0

(
2|ã|
σ2
|s̃+ ωr̃|

)
8a3

0

σ4
a

exp

(
−2a2

0

σ2
a

)
da0,

(3.43)

=
1

π2σ4
exp

(
− 1

σ2

(
|s̃|2 + |r̃|2

))
×
∫ ∞

0

exp

(
−a2

0

(
1 + ω2

σ2
+

2

σ2
a

))
I0

(
2|ã|
σ2
|s̃+ ωr̃|

)
8a3

0

σ4
a

da0︸ ︷︷ ︸
I

.

(3.44)

By making use of the relation [25]∫ ∞
0

2x3 exp (−ax2)I0(bx)dx =
1

a2

(
1 +

b2

4a

)
exp

(
b2

4a

)
,
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The integral (I) in (3.44) can be written as:

I =
σ2

σ2
a(1 + ω2) + 2σ2

exp

(
σ2
a|s̃+ ωr̃|2

σ2 (σ2
a(1 + ω2) + 2σ2)

)(
1 +

σ2
a|s̃+ ωr̃|2

σ2 (σ2
a(1 + ω2) + 2σ2)

)
.

(3.45)

The joint pdf of s̃ and r̃ can be written as:

f(s̃, r̃;H1) = KK1 exp

(
γs|s̃+ ωr̃|2

σ2 (γs(1 + ω2) + 2)

)(
1 +

γs|s̃+ ωr̃|2

σ2 (γs(1 + ω2) + 2)

)
,

(3.46)

f(s̃, r̃;H2) = KK1 exp

(
γj|s̃+ βr̃|2

σ2 (γj(1 + β2) + 2)

)(
1 +

γj|s̃+ ωr̃|2

σ2 (γj(1 + β2) + 2)

)
.

(3.47)

In matrix form above expression can be arranged as follows:

Q1 ,
γs

σ2(γs(1 + ω2) + 2)

1 ω

ω ω2

 , Q2 ,
γj

σ2(γj(1 + β2) + 2)

1 β

β β2

 .
(3.48)

f(s̃, r̃;H1) = KK1 exp
(
xHQ1x

) (
1 + xHQ1x

)
, (3.49)

f(s̃, r̃;H2) = KK1 exp
(
xHQ2x

) (
1 + xHQ2x

)
. (3.50)

Likelihood ratio test to blank or not is defined as:

Λ3(r̃, s̃) =
f(s̃, r̃;H2)

f(s̃, r̃;H1)

Blank

≷

Blank

ζ3. (3.51)

Λ3(r̃, s̃) can be given as:

Λ3(r̃, s̃) = K3 exp
(
xH (Q2 −Q1) x

)(1 + xHQ2x

1 + xHQ1x

)
. (3.52)

Then, the log-likelihood ratio test is given as follows:

d3 = xH (Q2 −Q1) x + log

(
1 + xHQ2x

1 + xHQ1x

) Blank

≷

Blank

η3. (3.53)
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3.3 Maisel SLB Detectors for Swerling-0, Swerling-1 and Swerling -3

Target Models

In this chapter, in order to understand the design of Maisel SLB detectors and

comparison it with optimal detectors, the key formulas and facts about Maisel

SLB detectors will be given for each Swerling target models which are of interest

in this dissertation.

As stated in [17], there are three regions of interest whose probabilities are

important for the design of Maisel SLB detectors. Blanking region under different

conditions lead us to find the probability of blanking the jammer in sidelobe and

probability of blanking the target in the main lobe. Here our concern is limited

in finding the best parameters of Maisel SLB detectors which indeed is finding

the value of β2 assuming all the other antenna related parameters are kept fixed

in conjunction with the comparison with optimal detectors. The design examples

will be given in Section 3.6

As stated in the introduction part, the blanking occurs when the ratio of auxiliary

to main channel signal v/u is greater than F . This statement can be formulated

as follows:

Pb =

∞∫
0

f(v;H2)

v/F∫
0

f(u;H2)dudv. (3.54)

To find the probability of false blanking, one can change pdfs conditioned on H2

with H1.

The main requirement of Maisel SLB detector is that the threshold F has to be

less than gain margin β2 as shown in Figure 3.1. For this purpose, probability of

blanking curve against F will be provided for a predetermined value of β2 for

each Swerling target models.

Another point to be noted, thanks to the assumption of target in the main lobe,

the probability of target blanking decreases as SNR increases. So, for lower Ptb
values, higher SNR values are required to obtain them. The comparative figures

will be provided for different Swerling target models.
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3.3.1 Swerling-0 Target Model

The outputs of square law detector from the main and auxiliary channels can

be calculated easily via the elementary probability knowledge using (3.18) and

given as follows:

f(u|a0;H2) =
1

2σ2
exp

(
−u+ a2

0

2σ2

)
I0

(
a0

√
u

σ2

)
, (3.55)

f(v|c0;H2) =
1

2σ2
exp

(
−v + β2c2

0

2σ2

)
I0

(
βc0

√
v

σ2

)
. (3.56)

After putting above equations into (3.54), one can obtain the following expression

of Pb

Pb =
F

1 + F
+

1

1 + F
Q

(
β

√
2γj

1 + F
,

√
2γjF

1 + F

)

− F

1 + F
Q

(√
2γjF

1 + F
, β

√
2γj

1 + F

)
(3.57)

where

Q(a, b) =

∞∫
b

y exp

(
−y

2 + a2

2

)
dy

is the Marcum function and γj =
c2

0

σ2
.

The probability of blanking target in the main lobe can be obtained by replacing

the parameters β2 with ω2 and JNR = γj with SNR = γs and given as

follows:

Ptb =
F

1 + F
+

1

1 + F
Q

(
ω

√
2γs

1 + F
,

√
2γsF

1 + F

)

− F

1 + F
Q

(√
2γsF

1 + F
, ω

√
2γs

1 + F

)
. (3.58)

Figure 3.5(a) shows the dependency of Pb against the threshold F . Pb increases

as F decreases as the usual behaviour of hypothesis testing. Also, it shows that

the performance of Maisel SLB is not satisfactory if F is comparable with β2.

Another point to be noted from the figure, the required JNR to achieve some Pb
value depends on the chosen F value. For example to achieve the value of 0.9

probability of blanking, the possible (F , JNR) pair would be (-3 dB, 0 dB), (0
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dB, 5 dB) and (2 dB, 10 dB). This topic will be examined in depth in the design

of Maisel SLB detector in later sections.

Figure 3.5(b) shows the required SNR values to achieve certain Ptb values for

different values of gain margin when ω2 is set to -30 dB. From this figure, it is

seen that required SNR increases if the desired probability of target blanking

is lowered. Also, the probability decreases if the chosen threshold F increases.

3.3.2 Swerling-1 Target Model

As stated in [18], the probability of blanking for fluctuating targets can be

calculated by averaging the probability of blanking formula for Swerling-0 targets

with respect to amplitude fluctuation. Namely,

Pb =

∫
a0

P ∗b f(c0;H2)da0 (3.59)

where P ∗b is the probability of blanking for Swerling-0 targets, that is the proba-

bility of blanking conditioned on the amplitude of the target. Depending on the

assumed target fluctuation model f(c0;H2) can vary accordingly.

The probability of blanking the jammer in the sidelobe is calculated in using the

equations (3.18) and (3.59) and given as below:

Pb =
1

2

1− 1

1 + F
.

γj(F − β2)− F − 1√
[γj(F − β2) + F + 1]2 + 4γj(F + 1)β2

− F

1 + F
.

γj(F − β2) + F + 1√
[γj(F − β2)− (F + 1)]2 + 4γj(F + 1)F

 . (3.60)

Similarly, Ptb is calculated as

Ptb =
1

2

1− 1

1 + F
.

γs(F − ω2)− F − 1√
[γs(F − ω2) + F + 1]2 + 4γs(F + 1)ω2

− F

1 + F
.

γs(F − ω2) + F + 1√
[γs(F − ω2)− (F + 1)]2 + 4γs(F + 1)F

 . (3.61)
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Figure 3.5: Performance plots of Maisel SLB detector for Swerling-0 targets.
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where γs and γj are SNR and JNR, respectively.

Figure 3.6(a) shows the probability of blanking as a function of F when β2 is set

to 5 dB. As seen from the figure, if the main requirement of the Maisel system

is not satisfied, i.e., if F is not less than β2, the performance of the detector

deteriorates seriously. Also, decreasing F improves the threshold. But decreasing

F also increases Ptb, since there is no controlled way of determining F in Maisel

SLB detectors. This point is the core feature of optimum SLB detector. To put

it differently, the threshold is adjusted to meet the desired Ptb value.

Figure 3.6(b) shows the required SNR values for obtaining Ptb when ω2 is set to

−30 dB. It is seen that in order to maintain low Ptb values, one needs to increase

the SNR values. Also, it is seen that for the same SNR and Ptb values, increasing

F has an effect of decreasing Ptb as expected.

Comparing Figure 3.5(a) and Figure 3.6(a), one can see that the probability of

blanking is relatively lower for Swerling-1 targets than Swerling-0 targets for the

same JNR and F value. This is expected due to the assumption of nonfluctuating

amplitude of Swerling-0 and highly fluctuating nature of Swerling-1 targets. This

can be validated also for the required SNR values for the same Ptb values when

Figure 3.5(b) and Figure 3.6(b) are compared. For example, the required SNR

for the threshold value of F = 4 dB to achieve Ptb = 0.05 is around 4 dB, while

for Swerling-1 target case it is around 8 dB. As can be predicted, the required

SNR value for the same scenario for the Swerling-3 target would be somewhere

between 4 and 8 dB, thanks to the medium fluctuation assumption of target

amplitude. Swerling-3 target case will be explored in the next section.
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Figure 3.6: Performance plots of Maisel SLB detector for Swerling-1 targets.
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3.3.3 Swerling-3 Target Model

De Maio et al. [30] derives the probability of blanking formula for jammer whose

distribution is Swerling-Chi model [30]:

f(x) =
2mmx2∗m−1

ΩmΓ(m)
exp

(
−mx

2

Ω

)
(3.62)

where m is the shape parameter of fluctuation, Ω is the average power of the

jammer and Γ(m) =
∫∞

0
xm−1 exp(−x)dx is the gamma function. Γ(m) = (m−1)!

for integer values of m. In (3.62), m = 1 corresponds to the Rayleigh amplitude

model (Swerling-1 target) and m = 2 corresponds to the Swerling-3 target

model.

The probability of blanking can be calculated using the equations (3.62) and

(3.59) and given as below [30]:

Pb =
F

1 + F
+

1

1 + F
Ix(a, b,Ω,m)− F

1 + F
Ix(b, a,Ω,m) (3.63)

where the function Ix(a, b,Ω,m) is given in terms of another functionHx(a, b,Ω,m)

as follows:

Ix(a, b,Ω,m) =


Hx(a, b,Ω,m) a < b

Hx(a, b,Ω,m) + 0.5 a = b

Hx(a, b,Ω,m) + 1 a > b

(3.64)

where a and b are defined as:

a =
2

σ2

√
β2

1 + F
, b =

2

σ2

√
F

1 + F
. (3.65)

Hx(a, b,Ω,m) is defined for integer values of m as follows:

Hx(a, b,Ω,m) =
ξ1(ρ− ξ2

1)

1− ξ2
1

−
m∑
n=1

(
2

µ

)n−1
ξ3n−2

2

(1− ξ2
2)2n−1

×
n−1∑
j=0

(
2n− j − 2

n− 1

)(
1− ξ2

2

ξ2
2

)j [
ρ

(
n− 1

j

)
− ξ2

(
n

j

)]
(3.66)
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with

c =

√
2β2γj

(1 + F )m
, d =

√
2Fγj

(1 + F )m
, (3.67)

u1 =
c2 + d2

2cd
, u2 =

c2 + d2 + 2

2cd
(3.68)

and

ρ =
d

c
, µ = cd, ξ1 = u1 −

√
u2

1 − 1, ξ2 = u2 −
√
u2

2 − 1. (3.69)

Figure 3.7(a) presents the dependency of Pb as a function of F . Same comments

for Swerling-0 and Swerling-1 target cases are applicable here. It is seen that Pb
value for the same JNR and F values are between the values of Swerling-0 and

Swerling-1 targets.

Figure 3.7(b) shows the required SNR values for obtaining desired Ptb value for

different F values. Again, the same comments are applicable as before. For the

example given for Swerling-0 and Swerling-1 case, the required SNR for achieving

Ptb = 0.05 when JNR = 4 dB is 6 dB as expected. This value was 8 dB for

Swerling-1 targets and 4 dB for Swerling-0 targets.

In the next sections, Maisel SLB detector will be compared with the optimum

one and some design examples will be given.

3.4 Performance Comparison of Maisel Structure and Optimal De-

tectors

We present a quantitative critique of the Maisel detector by conducting a com-

parison with the optimal detector for different target models. The optimal

tests for Swerling targets given in (3.30), (3.17) and (3.53) depend on several

parameters including operating SNR and JNR. Hence, the optimality, in the

sense of Neyman-Pearson, is achieved through the knowledge of target and

jammer specific parameters which are not utilized in the classical Maisel SLB

system. The performance superiority of the Neyman-Pearson detectors can be

attributed to this additional knowledge. In practice, it may not be possible to

reliably estimate SNR and JNR values on-the-fly and resorting to classical Maisel
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Figure 3.7: Performance plots of Maisel SLB detector for Swerling-3 targets.
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structure is unavoidable. Yet, the performance gap between the optimal and

Maisel structures, in spite of the unavailable information for the conventional

structure, is the main interest of this section.

In the following subsections, we present a numerical comparison of Maisel struc-

ture and the optimal detector for three different Swerling models. It is assumed

that both systems are equipped with an antenna having identical ω2 and β2 val-

ues. Both detectors are adjusted to meet a given target blanking (false blanking)

probability.

3.4.1 Swerling-1 Target Model

Figure 3.8(a) compares the performance of two systems at a fixed probability of

target blanking. The target blanking probability is set to 0.01 and β2 is chosen as

5 dB. The threshold values for Maisel detector at different SNR values are noted

in the figure legend. (The statistics of Maisel SLB are given in [18].) We note

that threshold values for the optimum SLB detector depends on JNR; hence the

threshold varies for each point given in Figure 3.8(a) for the optimal test. It can

be noted from Figure 3.8(a) that the performance gap between Maisel structure

and optimum detector is large at SNR = 15.9 dB. For this case, the threshold

F for the Maisel structure is comparable with β2 value. The other cases have

much smaller performance gap between optimal test and Maisel structure. It can

be noted that the performance gap diminishes as the threshold F of the Maisel

structure gets smaller in comparison to β2.

Figure 3.8(b) presents the result of an identical comparison for a higher target

blanking of Ptb = 0.1. For the given Ptb value, the case of F ≈ β2 occurs at

much smaller SNR values, i.e. SNR ≈ 4 dB. It can be noted that the cases for

which the condition F � β2 is satisfied, the performances of Maisel structure

and the optimal detector are very similar. This general conclusion is indeed

expected; but results given here quantitatively illustrates the performance gap

from the optimal detector for different F and β2 values. In the following section,

we present a design guideline on how to make use of the presented results for the

design of almost optimal Maisel sidelobe blankers.
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Figure 3.8: Comparison of Pb on JNR for Swerling-1 targets. Parameters:

β2 = 5 dB, ω2 = −30 dB.
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3.4.2 Swerling-3 Target Model

The test given in (3.53) is the optimum Neyman-Pearson test for Swerling-3

targets. As in Swerling-1 case, the threshold η3 in (3.53) depends on several

parameters, including SNR, JNR, ω2 and β2. Swerling-3 target model corresponds

to medium fluctuation between Swerling-1 and Swerling-0 target model. Since

the fluctuation is less than Swerling-1 case, we can achieve the same probability

of false blanking (Ptb) at lower SNR values.

Figure 3.9 compares the two systems when β2 is set to 5 dB. The results are

similar to the Swerling-1 case. Due to less fluctuation compared to Swerling-1

target, the threshold values (F ) and η3 are smaller in comparison with Swerling-1

case. This results in a higher probability of blanking at the same JNR values than

the one of Swerling-1 targets. It can be noted that when the main requirement

of Maisel structure F � β2 is satisfied, the performance of Maisel structure

converges to the optimum SLB detector at even low JNR values. When this

requirement is not satisfied, the performance of Maisel structure has a large gap

from from the optimal test, as in the Swerling-1 case.

3.4.3 Swerling-0 Target Model

The test given in (3.17) is the optimal Neyman-Pearson test for Swerling-0 targets.

Figure 3.10(a) compares the two systems for the false blanking probability (Ptb)

of 0.01. The corresponding threshold values are shown in the figure legend.

As in the Swerling-1 case, the Maisel structure behaves poorly when F is not

sufficiently smaller than β2. It can be noted that, the performance gap gets

smaller when JNR increases. Figure 3.10(b) shows the identical comparison when

the false blanking probability is increased to 0.05.

It can be noted that the optimum SLB structure achieves higher blanking

probability at a relatively smaller JNR values when compared with Swerling-

1 and Swerling-3 cases. This is, indeed, expected due to the assumption of

non-fluctuating target model.

50



0 2 4 6 8 10 12 14 16 18 20
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

JNR (dB)

P
b

Optimum, SNR = 10.9 dB
Maisel, SNR = 10.9 dB F = 3.85 dB
Optimum, SNR = 12.9 dB
Maisel, SNR = 12.9 dB F = 1.26 dB
Optimum, SNR = 15.9 dB
Maisel, SNR = 15.9 dB F = -2.48 dB

(a) Ptb = 0.01

0 2 4 6 8 10 12 14 16 18 20
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

JNR (dB)

P
b

Optimum, SNR = 2.9 dB
Maisel, SNR = 2.9 dB F = 3.95 dB
Optimum, SNR = 4.9 dB
Maisel, SNR = 4.9 dB F = 2.09 dB
Optimum, SNR = 6.9 dB
Maisel, SNR = 6.9 dB F = 0.06 dB

(b) Ptb = 0.1

Figure 3.9: Comparison of Pb on JNR for Swerling-3 targets. Parameters:

β2 = 5 dB, ω2 = −30 dB, # of Monte Carlo trials = 106.
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Figure 3.10: Comparison of Pb on JNR for Swerling-0 targets. Parameters:

β2 = 5 dB, ω2 = −30 dB, # of Monte Carlo trials = 106.
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3.5 Discussion On Typical Target SNR Parameters In Connection

With Maisel SLB Detectors

In the previous sections, the performance figures of Maisel SLB and the optimum

SLB detectors for chosen scenarios are given. Here, some typical parameters of

SNR for radar target detection will be discussed in connection with Maisel SLB

detectors.

Probability of target detection depends on the several parameters which are

given as follows:

1. The assumed fluctuation model of target. For example, scan to scan or

pulse to pulse fluctuation as in Swerling target models.

2. Signal to noise ratio which also depends on the fluctuation model.

3. The presence of Constant False Alarm Rate (CFAR) detector in the radar

receiver. If CFAR processor is used to detect the target, it also causes

detection loss.

4. The number of pulses integrated either coherently or non coherently.

5. The presence of diversity techniques: For example, frequency agility tech-

niques either pulse to pulse or batch to bach.

The general formula for determining the required SNR for the single pulse to be

detected is referred to as detectability factor [31, pp. 121].

If pulse integration is assumed, it also improves the detection performance and

required SNR per pulse decreases. The gain is referred to as integration gain. The

integration can be either coherent meaning the phases of pulses to be integrated

is preserved and noncoherent in which squared magnitudes of signals are summed

before comparing it with the chosen threshold.

For Maisel SLB detector, the probability of target blanking depends on the gain

margin (ω2) and SNR of the target. For example, as given in Figure 3.5(b),

if the probability of target blanking is to be upper bounded by the value of
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0.01, required minimum SNR to achieve this goal is in the range of 5.8 dB and

7.8 dB for the values of the threshold F between 2 dB and 6 dB. If the design

goal of Ptb = 0.05 is chosen, then required SNR range becomes between 2.5 dB

and 5.2 dB. Additionally, with the assumption of absence of CFAR receiver,

the typical values of SNR to achieve probability of detection of 0.9 and false

alarm probability of 10−6 is 13.2 dB for Swerling-0 targets (see page 318 in [32],

Lecture 6 in [33] and the implementation of Schnidman formula in [34]). If 10

pulses are non-coherently integrated, then required single pulse SNR reduces

to 5.3 dB. Thus, depending on design values of Ptb, Pfa and the number of

pulses integrated, one can find the weakest target SNR to be detected. Note that

integration of pulses is assumed to be performed after the blanking logic. If we

assume that there is no pulse integration at all, required SNR to be detected

with 90 percent increases and achievable Ptb decreases as well. For the case of

pulse integration performed before the blanking logic, Maisel SLB performance

needs to be reevaluated and the corresponding optimum detector needs to be

found due to change in the pdf for the assumed target model (see also [17, pp.

91–92] for a similar example).

For the case of Swerling-1 targets, due to fluctuating loss, required single pulse

SNR to achieve the same design goals as in Swerling-0 targets increases. For the

same example (Pd = 0.9 and Pfa = 10−6), the required SNR value is 21.3 dB. If

10 pulses are integrated non-coherently, then required SNR per pulse reduces

to 13.5 dB. As can be seen in Figure 3.6(b), one can achieve Ptb values between

0.015 and 0.03 for SNR = 13.5 dB and F between 2 and 6 dB. If the number

of pulses integrated is increased, then the weakest target’s SNR to be detected

reduces. In that case, for example if 100 pulses are integrated, then the targets

with SNR of 7.2 dB can be detected with Pd = 0.9 and Pfa = 10−6. Then, the

achievable Ptb values increases to the range of 0.035 and 0.08 (see Figure 3.6(b)).

If we want to further reduce the Ptb values for low SNR values, the sidelobe of

main antenna needs to be decreased.
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3.6 Design of Maisel Type SLB Systems With An Optimality Guar-

antee

In the design of the Maisel sidelobe blankers, there are mainly two parameters,

namely (F ) and (β2) to be determined to achieve the desired blanking probability

Pb at the expense of a fixed (erroneous) target blanking probability (Ptb). In this

section, we aim to illustrate the process of designing Maisel type blankers with

an optimality guarantee.

We illustrate the design process through a numerical example. In this example, a

jammer with a JNR of 5 dB is assumed to be located in the sidelobe region. (It

should be noted that the mentioned JNR values are the receiver JNR values, that

is after the suppression of the jammer by the main antenna.) Our design goal

is to blank the jammer with a probability of larger than 90% and the tolerable

erroneous target blanking probability should be at most to 5% for Swerling-1

targets.

Figure 3.11 shows the performance comparison of Maisel type and optimal

sidelobe blanker systems for different values of antenna gain margin (β2) under

the conditions of Ptb = 0.05, JNR = 5 dB. From this figure, we can see that

when β2 = 10 dB, the Maisel SLB provides a blanking probability (Pb) of 0.9,

0.95, 0.97 when the threshold F is adjusted for the erroneous blanking of targets

having SNR values 9, 12 and 15 dB, respectively. Hence, if the weakest target

(target of lowest SNR) to be detected has an SNR of 9 dB, then it is necessary to

have β2 = 10 dB. If the weakest target SNR is around 12 dB, β2 = 7 dB suffices

to achieve the design goals.

It should be noted that a reduction in β2 is equivalent to a relaxation in the main

antenna sidelobe specifications. Hence, the utilization of a smaller β2 values is

desirable from the viewpoint of antenna design. If the weakest target has an SNR

value of 9 dB and β2 = 7 dB, there exists a large gap between the performance of

Maisel detector and optimal detector as illustrated by the vertical double sided

arrows in Figure 3.11. It can be noted that even a single dB in increase of β2

from 7 dB to 8 dB, results in a significant reduction of this gap. Hence, a SLB
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Figure 3.11: Comparison of Pb on β2 for Swerling-1 targets. Parameters: Ptb =

0.05, JNR = 5 dB, ω2 = −30 dB.

designer, whose operational scenario includes target SNR values of 9 dB, can

rightfully request an effort in the reduction of main antenna sidelobes. If the

lowest target SNR values are around 12 dB, the gap between Maisel and optimal

detector curves (shown with the triangle marker) is rather small and having a

reduction in the main antenna sidelobe levels has a much smaller pay off in terms

of the blanking probability.

To further assist the design process, we present the relation between minimum

JNR and β2 in Figure 3.12. The JNR values shown in this figure is the smallest

JNR value for which the design criteria are satisfied. Hence, this figure can be

interpreted as the blanking effectiveness of the system as a function of β2. The

desired probability of blanking (Pb) is set to 0.90, the erroneous target blanking

probability is limited to 0.05, Ptb ≤ 0.05 also in this figure. The curves given in

Figure 3.12 show the required JNR value for a fixed β2 so that the probability

gap between Maisel detector and optimal detector is smaller than 0.05. (The

mentioned probability gap is illustrated with the double sided arrows in Figure
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3.11.) Hence, these points on the curves shown in Figure 3.12 refer to the Maisel

systems whose performance has a fixed gap from the optimal detectors.

The curve with the solid black line shows the case of weakest target SNR values

of 9 dB. For this case, as noted earlier, β2 = 10 dB is required to blank the

jammers with receiver JNR of 5 dB with the desired blanking probability of

90%. For the same case, if β2 happens to be 7 dB, the jammers with 13 dB JNR

or higher can be blanked with the desired probability. As can be noted from

Figure 3.12, an increase in β2 from 7 dB to 8 dB, results in the blanking of the

jammers with JNR greater than 10 dB with the desired probability. Another

dB increment further reduces this JNR value to 7 dB. It can be said that from

that figure, the improvement in blanking effectiveness resulting for a single dB

increment in β2 can be read for the Maisel detectors with a fixed case worst case

gap from the optimal detectors. Using these curves, a sidelobe blanker designer

can asses the return for the reduction of main antenna sidelobe levels in terms of

blanking effectiveness.

To further assist the designer, we provide a set of ready-to-use, general purpose

MATLAB programs to generate similar figures for different values of parameters

such as Ptb, Pb, ω2 etc. in Appendix B

3.7 Conclusion

The main goals of this study are to compare the performance of the Maisel sidelobe

blanking structure with the optimal detectors and to provide design guidance

for the Maisel systems. To this aim, optimal Neyman-Pearson detectors are

studied for Swerling-0, Swerling-1 and Swerling-3 target models. Unfortunately,

the optimal detectors are not feasible to implement, since they require SNR and

JNR values which are typically not available to the radar operator. Yet, the

performance of the optimal detectors can be interpreted as a performance upper

bound for the Maisel systems. One of the main goals of this study is to derive

the mentioned performance bounds and examine the performance gap between

the optimal detector and Maisel structure. A second goal is to develop design
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Figure 3.12: Maisel minimum required JNR for different β2 values (Swerling-1

target). Parameters: Ptb = 0.05, ω2 = −30 dB, min.Pb = 0.90.

criteria and tools for the Maisel systems that guarantee a final design with a fixed

performance gap from the optimal detectors. To this aim, the return in terms of

jamming effectiveness as a function of β2 is studied. More specifically, the return

of a single dB increase in β2 in terms of an increase in the blanking probability

or a reduction in the minimum successfully blanked JNR level is examined. A

general purpose MATLAB code to assist the design process is provided. Through

the utilization of the presented criteria and provided software, a sidelobe blanker

designer can easily asses the value of an increase in β2 for different operational

scenarios and design Maisel systems with a provable optimality guarantee.
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CHAPTER 4

INVARIANCE PRINCIPLES

When there are unknown parameters in the hypothesis testing problem, The

Neyman-Pearson hypothesis test cannot be obtained because of unknown param-

eters in LRT. As introduced in 2.4.3, one can find optimum detector within the

class of invariance receivers. The main idea of invariance principle can be stated

as follows: Firstly, finding a group of transformations under which the hypothesis

testing problem is invariant is determined. With problem invariance we mean

that the decision regions should not change and the transformed data must

have same type of distributions as the original data. For each data point, each

possible transformations in the group is applied, the orbits are found accordingly.

Then, the maximal invariant test is found. The maximal invariant decision rule

uniquely indexes these orbits, thus eliminates the nuisance parameters. The

interesting feature of the maximal invariant tests is that the parameter space of

the maximal invariant test is reduced along with the dimension of data space.

Final step is to construct LRT which is the ratio of probability density functions

(pdf) of maximal invariant test under both hypotheses.

The application of invariance principle on signal detection problem appears in

[9]. Scharf et al. [9] considers four detection problems and derives the UMPI

detectors for each of them. The detection problems corresponds to the unknown

power and the unknown variance for rank-one and subspace signals. In [9], the

fundamental principles are given and a geometric approach is used to reach

maximal invariant statistics. The derivations used in the book does not give the

details and lacks the classic approach of invariance principles.
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Levy [5] explores the same problems in much more detail. Levy [5] combines the

sufficient statistic approach with the invariance data reduction method.

In [35], the maximal invariant test is constructed for adaptive radar detection

problem. This paper is a highly cited paper and can be considered as a benchmark

for the adaptive detection problem. Bose and Steinhardt [35] show that the

maximal invariant test consists of two elements which are Adaptive Matched

Filter (AMF) and Kelly’s GLRT test. Bose and Steinhardt [35] also derive that

the statistics of maximal invariant tests under which null hypothesis do not

depend on unknown parameter, making the test a CFAR test. This desirable

result is the main motivation behind the interest for the invariance principle

in adaptive detection problem. In [35] and [36], it is shown that no UMPI test

exists and the test statistics depend solely on target SNR.

In [37], Kraut et al. show that even if no UMPI test exists for the general adaptive

detection problem, the problem of unknown data scale between test data and

training data has a UMPI test which is called as Adaptive Coherent Estimator

(ACE). It was shown that ACE statistics is the ratio of elements of the maximal

invariant statistics.

In [4], Gabriel studies the application of Wijsman’s theorem to reach the maximal

invariant test in his dissertation. He also gives the relation between GLRT and

UMPI tests by the help of Wijsman’s theorem. In his dissertation, the maximal

invariant principles are explained well and the practical examples are solved by

two methods. The first one is classic approach in which after finding the group

of transformations, the hypothesis test is constructed by the ratio of pdf’s of

maximal invariant functions under two hypotheses. In Wijsman’s theorem, the

hypothesis test is constructed by the integration of pdf’s over all group elements,

and no need to find the pdf’s of the maximal invariant functions or itself.

In section 4.1, the theoretical framework of invariance is given starting from

the definition of a group. Gabriel [4] dissertation [4] is an excellent reference

for understanding the basics of the concept. Here, the fundamental definitions

and theorems of the concept follow the one in [4]. The examples of groups and

maximal invariant functions will be more elobarated with the references of [38]
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and [39].

In section 4.2, the invariance concept is applied to the basic signal detection

problem in which the amplitude of the known signal can be either completely

unknown or its sign may be known along with the variance of noise can be known

or unknown. These problems are also studied in [5] and [9]. In this report, we

will try to derive the UMPI tests in two ways: first one is the classic approach

(pure invariant reduction), second one is the combined approach of sufficient

statistic and invariance reduction.

In section 4.3, the invariance concept is applied to Low Probability of Intercept

(LPI) signal detection problem. In this section, only the synchronous coherent

detection problem is examined. It is derived that the invariant and Bayesian

detectors coincide, while the GLRT detector is different. The performance of

the invariant detector is compared with the GLRT and the energy detector,

called as radiometer in the literature. It is shown that the invariant test is the

most powerful test with a slight performance improvement against GLRT. When

SNR increases, the power of the GLRT test gets closer to the power of UMPI

test.

In section 4.3, the invariance idea is applied to the detection of frame synchroniza-

tion words. In this section, GLRT and Bayesian combined detector are compared

with invariant detector which is derived with the help of Wijsman theorem. It

is shown that the invariant detector has slightly better performance than the

GLRT test. When SNR increases, both tests converge.

4.1 Theoretical Framework of Invariance Concept

We first define the group and give its axioms, then give the definition of problem

invariance under certain group of transformations.

Definition 4.1. A group is a set G together with a binary operation ◦ satisfying
following axioms:

1. G is closed, that is, for any g1, g2 ∈ G, then g1 ◦ g2 ∈ G.
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2. The operation is associative, that is, (g1 ◦ g2) ◦ g3 = g1 ◦ (g2 ◦ g3)

3. There exists an identity element e ∈ G such that e ◦ g = g ◦ e = g for all

g ∈ G.

4. There exists an inverse, that is, g−1 ∈ G such that g ◦ g−1 = g−1 ◦ g = e.

Definition 4.2. The problem of testing H0 : Θ ∈ Θ0 vs H1 : Θ ∈ Θ1 remains

invariant with respect to a group of transformations if

• distribution remains in the same family with a possible change of parameter,

• parameter spaces of Θ0 and Θ1 are preserved.

Figure 4.1 shows the problem invariance and maximal invariant approach which

will be given in the following sections.

Let X be distributed according to a probability distribution denoted by Pθ,

θ ∈ Θ and let g ∈ G be a transformation acting over the sample space X. The

distribution of g(X) belongs to the same family of distributions with perhaps

a different value of parameter ḡ(θ), which is an element of original parameter

space Θ. Lehmann and Romano [39] denotes this relationship as

Pθ (g(X) ∈ A) = Pḡ(θ) (X ∈ A) for all Borel setsA. (4.1)

When the above condition is satisfied, we say that the family of distributions Pθ
is invariant to G [39].

If Θ0 = ḡ(Θ0) and Θ1 = ḡ(Θ1) also holds, it is seen that parameter space are

preserved. If these two conditions are satisfied, then hypothesis testing problem

is said to be invariant under G.

4.1.1 Maximal Invariant Statistic

A function T (x) is said to be invariant under group G if T (g(x)) = T (x) for all

x ∈ X and g ∈ G.

Example 4.1. Sign Group: G = {g : g(x) = cx, c ∈ {−1, 1}} which has two

elements (finite order group).
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Figure 4.1: Problem invariance and maximal invariant (from [35]).
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The statistic T (x) =
x[1]

x[0]
, where x =

[
x[0] x[1]

]T
is invariant under sign group.

Because T (g(x)) = T (cx) =
cx1

cx0

=
x[1]

x[0]
= T (x). Suppose that x =

[
3 −2

]T
,

Then for c = 1, cx =
[
3 −2

]T
⇒ T (x) = −2

3
. For c = −1, cx =

[
−3 2

]T
⇒

T (x) = −2

3
. The two points are obtained by taking a given point x and

applying all group elements of transformations to that point. Here, two group of

transformations give the same value of the statistic T (x) [4, p. 38].

Definition 4.3. An orbit is the set of points that are traced out as all group

element g ∈ G are applied to a given sample point. For the sign group: orbit of

point (3,−2) are the points (3,−2) and (−3, 2).

We state the following important remarks:

• All points of an orbit give the same value for an invariant statistic.

• Invariant statistic is constant on each orbit.

Definition 4.4. A statistic m(x) is maximal invariant if it is invariant and if

m(x1) = m(x2) implies that x2 = g(x1) for some g ∈ G. A maximal invariant

statistic is constant on each orbit (invariance), but also it takes different values

on each orbit (maximality).

Example 4.2. Sign invariant statistic T (x) =
x[1]

x[0]
. For point x1 = (3,−2), orbit

of x1 : (3,−2), (−3, 2), T (x1) =
−2

3
=

2

−3
(invariant). For point x2 = (9,−6),

orbit of x2 : (9,−6), (−9, 6), T (x2) =
−6

9
=

6

−9
. Since T (x1) = T (x2) = −2

3
and x1, x2 are not on the same orbit, T (x) is not maximal [4, p. 38].

Theorem 4.1. Let m(x) be maximal invariant with respect to G. Then a

necessary and sufficient condition for a function T to be invariant is that it

depends only through m(x), that is there exists a function h for which T (x) =

h (m(x)) for all x [39].

This theorem means that every invariant test is a function of maximal invariant

test. If one wants to find an optimal test within the class of invariant tests, they

all will be a function of maximal invariant test. Hence, we focus our attention to

find the maximal invariant test.

Remark 4.1. The maximal invariant test is solely based on transformations of
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a group. More than one maximal invariant can be found for the specific group.

In general, the one which reduce the data is chosen as the maximal invariant

tests.

4.1.2 Examples of Maximal Invariant Statistics

In this section common examples of transformations of group and maximal

invariant statistics will be given for the following real data vector

x =
[
x[0] x[1] · · ·x[N − 1].

]T
Example 4.3. Sign Group:

G = {g : g(x) = cx, c ∈ −1, 1} (4.2)

The maximal invariant test is given as follows:

m(x) =

[
x[0]

x[N − 1]

x[1]

x[N − 1]
· · · x[N − 2]

x[N − 1]
|x[N − 1]|

]
(4.3)

To prove that (4.10) is maximal invariant, consider two-dimensional data. It is

invariant since T (x) = T (−x). If m(x1) = m(x2), then[
x1[1]

x1[0]
|x1[0]|

]
=

[
x2[1]

x2[0]
|x2[0]|

]
(4.4)

|x2[0]| = |x1[0]|, then x2[0]

x1[0]
= g, for some g ∈ G.

x2[1]

x2[0]
=
x1[1]

x1[0]
⇒ x2[1] =

x2[0]

x1[0]
x1[1]⇒ x2[1] = x1[1]gs

for the same g found above.

Example 4.4. Location Group:

G = {g : g(x) = x + c,−∞ < c <∞} . (4.5)

The following functions are all maximal invariant statistics under G.

m1(x) =
[
x[0]− x[N − 1], · · · , x[N − 2]− x[N − 1]

]T
(4.6)

m2(x) =
[
x[0]− x[1] x[1]− x[2] · · · x[N − 2]− x[N − 1]

]T
(4.7)

m3(x) =
[
x[0]− x̄ · · · x[N − 1]− x̄

]T
, where x̄ =

1

N

N−1∑
i=1

x[i]. (4.8)
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Example 4.5. Scale Group:

G = {g : g(x) = cx,−∞ < c <∞} . (4.9)

m(x) =

[
x[0]

x[N − 1]
· · · x[N − 2]

x[N − 1]

]T
(4.10)

Example 4.6. Positive Scale Group:

G = {g : g(x) = cx, c > 0} . (4.11)

m(x) =


0 z = 0[
x[0]

z
· · · x[N − 1]

z

]T
z 6= 0

(4.12)

where z2 =
∑N−1

i=1 x2
i .

Example 4.7. Orthogonal Scale Group: Let G be the group of all orthogonal

transformations such that

G = {g(x) = Γx} (4.13)

where ΓΓH = I. Then

m(x) = xTx =
N−1∑
i=1

x2
i (4.14)

is the maximal invariant.

4.1.3 Induced Maximal Invariant Statistic

Theorem 4.2. If m(x) is invariant under G, and if v(θ) is maximal invariant

under the induced group G, then the distribution of m(x) depends only on v(θ).

The above theorem says that the statistics of maximal invariant test depends only

on the maximal invariant of induced group acting on parameter space. Usually,

the maximal invariant test reduces both the dimensions of data and parameter

vector.
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4.1.4 Wijsman Theorem

Wijsman theorem is well explained in [4]. Here, only the discrete finite group

case is considered. Let G be the group of orthogonal transformations defined

as

G =
{
gi : gi(x) = Oix,OTi Oi = I, i = 1, 2, · · · p

}
where Oi denotes each elements of orthogonal group. An example of such group

is permutation matrix which will be used in section 4.4. Then, the ratio of the

maximal invariant densities is given as:

p∑
i=1

fx (gi(x);H1)

p∑
i=1

fx (gi(x);H0)

(4.15)

4.2 Invariance Application to General Signal Detection Problem

The general signal detection problem can be written as

H0 : x = µs + w

H1 : x = w
(4.16)

where s is the target steering vector which is assumed to be known, µ is the scale

factor which controls the target presence and w ∼ N (0, σ2I).

The optimum Neyman Pearson test is the likelihood ratio test which ensures the

highest detection probability for the given false alarm probability. When the all

parameters in the probability distributions (for the above problem, µ, σ2) are

known, Neyman-Pearson test is the most powerful test. To realize the Neyman-

Pearson test, the conditional pdf’s under H0 should not include any unknown

parameter. Then, one can find the threshold which is set to a given Pfa.

Uniformly Most Powerful (UMP) tests are monotonically increasing function

of the scalar parameter of the LRT itself. This property makes the life easer,

because, it can be used as checking whether a test is UMP or not.
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When there is an unknown parameter in the null hypothesis pdf, then the test

is said to be composite. In that case some suboptimum approaches such as

GLRT can be used, furthermore, it is given as asymptotically optimum. Another

approach is to use invariance property of the problem in which the dimensions of

data and parameter space are reduced by exploiting the symmetries. Then, one

can search the uniformly most powerful test within the class of invariant tests,

called Uniformly Most Powerful Invariant Test (UMPI).

Another data reduction technique to reduce the dimension of data is to apply

the sufficiency principles. Sufficient statistics are helpful in that LRT depends

only on sufficient statistic. Sufficient statistics are closely related to the unknown

parameters. It is worth noting that sufficient statistics does not reduce the

dimension of parameter space by definition. But, invariance principles reduces it

as well. This property is another excellent property of invariance approach.

Sufficiency and invariance principles can be applied in either order. But, there is

no guarantee that both cases give the same test. General approach is to apply

sufficiency principles first, then apply invariance principle in the new reduced

domain [38].

In the following sections, we will give the UMPI test for different cases. To

obtain UMPI test, different methods can be applied. The classic approach can

be summarized as follows:

• Find the group of transformations for which the problem is invariant.

• Find the maximal invariant test for that group.

• Construct the LRT, check to see whether LRT is a monotonically increasing

function of some scalar which is UMPI test.

One can also apply the sufficient statistics for the unknown parameters, reduce

the data, then apply the above steps in the reduced domain.
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4.2.1 µ > 0 unknown, σ2 known

This case is referred to as one-sided detection problem for which UMP test exists

and is same as when µ is known. It is given as sTx. In classical detection theory

books such as [5, 38, 40], it is shown that only the sign of µ matters to achieve

UMP test.

4.2.2 µ 6= 0 unknown, σ2 known

UMP test exists when the sign of µ is known for gaussian noise case. So, when

its sign is not known, any invariant test should be invariant to the sign of µ. The

hypothesis testing problem is invariant under sign group defined in (4.2). Let’s

check whether this claim is true or not. There are two requirements for problem

invariance. The first one is that the pdf of transformed random variable should

be in the same family with a possible different parameter. The second one is

that the parameter space of the problem should not change. Since the operation

is linear, the resultant random variable is also Gaussian. The parameter space of

the original r.v. for two hypotheses are H0 : θ0 = {0} and H1 : θ1 = {µ}. Sign
group does not affect the variances of the original data. It is clear that ḡ(θ0) = θ0.

Since µ is not known, ḡ(θ1) = θ1 also holds. So the problem is invariant under

sign group.

Classical Approach: The pdf of maximal invariant test y given in (4.3) can

be found by the standard method of transformation of random variable. The

general formula is given as:

fy(y) = fx(m−1y)|Jm−1(y)| (4.17)
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where x = m−1(y), and Jm−1(y) is Jacobian factor.

Jm−1(y) = det



∂m−1
0 y

∂y[0]

∂m−1
0 y

∂y[1]
· · ·

∂m−1
1 y

∂y[0]

∂m−1
1 y

∂y[1]
· · ·

· · · · · · · · ·


= det



∂x[0]

∂y[0]

∂x[0]

∂y[1]
· · ·

∂x[1]

∂y[0]

∂x[1]

∂y[1]
· · ·

· · · · · · · · ·


where x[0] = m−1

0 (y). After some algebra, the pdf of y under H1 hypothesis can

be found as the following:

f(y;H1) =
1

(2πσ2)N/2

{
exp

[
− 1

2σ2

(
y[N − 1]2

(
yTN−1yN−1 + 1

)
− 2µy[N − 1]

(
yTN−1sN−1 + s[N − 1]

)
+ µ2sT s

)]
+ exp

[
− 1

2σ2

(
y[N − 1]2

(
yTN−1yN−1 + 1

)
+ 2µy[N − 1]

(
yTN−1sN−1 + s[N − 1]

)
+ µ2sT s

)]}
. (4.18)

where yN−1 =
[
y[0] · · · y[N − 2]

]T
and sN−1 =

[
s[0] · · · s[N − 2]

]T
.

f(y;H0) can be found easily by putting µ = 0 to above equation. Cancelling

common terms and ignoring non-data dependent terms, LRT can be found

as:

f(y;H1)

p(y;H0)
= exp

[
1

2σ2
2µy[N − 1]

(
yTN−1sN−1 + s[N − 1]

)]
+ exp

[
− 1

2σ2
2µy[N − 1]

(
yTN−1sN−1 + s[N − 1]

)]
. (4.19)

Note that exp(a) + exp(−a) is an increasing function of |a| [4]. So, after taking
logarithm of test, UMPI test d can be found as:

d =
∣∣y[N − 1]

(
yTN−1sN−1 + s[N − 1]

)∣∣ . (4.20)

Expressing in terms of original data vector x, noting y[N − 1] = |x[N − 1]| and
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yN−1 =
xN−1

x[N − 1]
, we can simplify UMPI test as the following:

d =

∣∣∣∣|x[N − 1]|
(

xTN−1

x[N − 1]
sN−1 + s[N − 1]

)∣∣∣∣
=
∣∣(xTN−1sN−1 + s[N − 1]x[N − 1]

)∣∣
=
∣∣xT s

∣∣ =
∣∣sTx

∣∣ =

∣∣∣∣∣
N−1∑
i=1

x[i]s[i]

∣∣∣∣∣ .
(4.21)

Any one-to-one function of the above test can be considered as UMPI test, so(
sTx

)2 is also UMPI test for this problem.

Sufficient Statistic Approach: Sufficient statistic for the unknown parameter

µ is t = sTx. We apply invariance principle to the new data set t which is one

dimensional. The resultant pdf of t under H1 hypothesis is N (µsT s, σ2sT s) and

under H0 hypothesis is N (0, σ2sT s). Transformed data is still invariant to sign

group. The maximal invariant for sign group is given in (4.3). So d = |t| =
∣∣sTx

∣∣
is the maximal invariant test. After forming the likelihood ratio test, we check

whether this test is UMPI or not by finding the pdf of LRT. It is given in [5]

that the test LRT is monotonically increasing function of d = |t|, thus making

itself a UMPI test.

It is worth noting that the test d =
(
sTx

)2 under H0 hypothesis can be completely

defined. One can find the threshold for a given Pfa. So it possesses CFAR

property.

Extension to The Complex Data: In this case, x, s are complex random

variables. This time; noise appearing in (4.16), w is complex Gaussian noise

having spherical invariance property meaning w ∼ C(0, σ2I). Since µ can be

negative, it means that target signal x has unknown phase, only its magnitude

is known. s = |s| exp(jφ1), φ1 is unknown, r = |s| is known.

This case corresponds to non-coherent processing of the return signal. So any

unitary transformation of x does not change hypothesis testing problem. The

problem is invariant under the group of rotation transformations given in (4.13).

The maximal invariant test for this group given in (4.14) is ||x||2 = xHx. The

sufficient statistic for unknown parameter µ is sHx. As in real case, UMPI test is
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d = ||sHx|| = |sHx|2. This detector is inherent to the rotations in the subspace

s and translations in the orthogonal subspace s⊥. The energy of the data x in

the subspace s is constant.

4.2.3 µ > 0 unknown, σ2 unknown

In this case, there are two unknown parameters, namely µ and σ2. The conditional

pdfs under both hypothesis are: H1 : N (µs, σ2I) and H0 : N (0, σ2I).

The first step is to find the group of transformations for which the problem is

invariant. Because of Gaussian random vectors, linear operations ensure that

transformed r.v. has Gaussian type. Thus, we can restrict ourself to linear

transformations. Considering the unknown variance, we can expect that the

operations must include unknown scaling cx. Next, considering the mean of

p(x, H1); the scale factor must be greater than zero. Otherwise, one can not

guarantee unknown cµ at the output is greater than zero. Finally, we conclude

that this problem is invariant to positive scale group of transformations.

Classical Approach: The positive scale group and its maximal invariant test

is given in (4.11) and (4.12), respectively. The maximal invariant test is repeated

below.

y = m(x) =


0 z = 0[
x[0]

z
, · · · , x[N − 1]

z

]T
z 6= 0

(4.22)

where z2 =
∑N−1

i=1 x2
i . To find the pdf of y, we follow the method described in

[4], that is, first find the pdf of the following vector. To simplify the notations,

we drop the case where z = 0.

y1 =

[
x[0]

z

x[1]

z
· · · x[N − 1]

z
z

]
(4.23)

After that, we marginalize the pdf of y1 over z to find the pdf of y, namely

f(y) =

∫ ∞
−∞

f(y1)dy1.

Using the standard formula of transformation of random vectors, f(y1;H1) can
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be found as the following:

fy1
(y;H1) =

1

(2πσ2)N/2
exp

[
− 1

2σ2
(yz − µs)T (yz − µs)

]
|z|N

=
1

(2πσ2)N/2
exp

[
− 1

2σ2

(
z2yTy − 2zµsTy + µ2sT s

)]
|z|N (4.24)

where z = y1[N ]. Note that y is the dummy variable in above equation. In-

tegrating the above expression with respect to z, using change of variables

t = z(yTy)1/2, we obtain the following expression:

fy(y;H1) =
1

(2πσ2)N/2

∫ ∞
−∞

exp

[
− 1

2σ2

(
t2 − 2µt

sTy

(yTy)1/2
+ µ2sT s

)]
|t|N

(yTy)1/2
dt

(4.25)

Similar expression for fy(y;H0) can be obtained by putting µ = 0 to the above

equation.

After forming likelihood ratio, we note that t can not be negative. Thus, the

lower limit of integration becomes 0. With this observation in mind LRT is an

increasing function of
sTy

(yTy)1/2
which is UMPI test statistic.

Sufficient Statistic Approach: The sufficient statistics for unknown param-

eters µ and σ2 are t1 = sTx and t2 = xTx. Remember that the problem is

invariant to group of positive scale transformations in the original data x. After

reducing the N-dimensional data to 2-dimensional data t =
[
t1 t2

]
, we apply

the invariance principle to the reduced set t. Induced transformation g∗ on

sufficient statistic domain becomes the following:

t′ = g∗(t) =
[
ct1 c2t2

]
(4.26)

where c > 0 is the scale factor in the original group.

We claim that maximal invariant for this induced transformation g∗ is m(t) =
t1√
t2
.

Proof of Invariance Part:

m(g∗(t)) =
t′1√
t′2

=
ct1√
c2t22

=
t1√
t2

= m(t) (4.27)
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Proof of Maximality Part: Let m(t) = m(t∗).

t1√
t2

=
t∗1√
t∗2
⇒ t∗1 = t1

√
t∗2√
t2

t∗1 = t1c where c =

√
t∗2√
t2
> 0

⇒
√
t∗2 =

√
t2
t∗1
t1√

t∗2 =
√
t2c same c above

t∗2 = c2t2

Finally, maximal invariant test is d =
sTx√
xTx

.

Induced group on parameter space θ = (µ, σ2) is defined as the following:

Ḡ =
{
ḡ : ḡ(µ, σ2) = (cµ, c2σ2), c > 0

}
(4.28)

The maximal invariant for the induced group ḡ is v(θ) =
µ

σ
. It is invariant since

v (ḡ(θ)) =
cµ√
c2σ2

=
µ

σ
= v(θ), since c > 0 is assumed. It is a maximal invariant

since if we are given that v(θ1) = v(θ2), then

µ1

σ1

=
µ2

σ2

⇒ µ1 =
σ1

σ2

µ2

⇒ µ1 =cµ2, for some c =
σ1

σ2

> 0.

Similarly,

µ1

σ1

=
µ2

σ2

⇒ σ1 =
µ1

µ2

σ2

⇒ σ1 =cσ2, using the same c above

The distribution of maximal invariant test d =
sTx√
xTx

depends only on the

maximal invariant for the parameter space v(θ) =
µ

σ
. The hypothesis testing

problem is simplified as follows:H1 : v(θ) > 0

H0 : v(θ) = 0
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It is shown in [9], [5] and [38] that the statistic of d is "Student-t" distributed.

It is important to note that under H0, the test statistic of d is completely

characterized even though σ2 is unknown. Thus, this test has the CFAR property.

Scharf and Demeure [9] calls this detector as CFAR Matched Filter.

p(d|H1)

p(d|H0)

H1

≷

H0

η (4.29)

4.2.4 µ 6= 0 unknown, σ2 unknown

Classical Approach: Since the sign of µ is not known, the problem is invariant

to scale group defined in (4.9). Since the scale transformation is linear, the distri-

bution type is preserved because of Gaussian normal r.v. Induced transformation

on parameter space can be written as ḡ(µ, σ2) = (cµ), c2σ2 where c 6= 0. It is

seen that partitioning of parameter space is also preserved, which means for H0,

ḡ(0, σ2) = (0, σ2) (since σ2 is unknown and for H1, ḡ(µ, σ2) = (µ, σ2) since µ and

σ2 are both unknown.

The maximal invariant test is given in (4.10). The difference between positive

scale group is the inclusion of positive number z = sT s in the maximal invariant

function in positive scale group as opposed to x[N − 1] in the scale group.

Same method can be applied to find the pdf of maximal invariant test. The only

change is on the limits of integration given in (4.25). This time z = x[N − 1]

and it can be negative. Thus, LRT is an increasing function of
∣∣∣∣ sTy

(yTy)1/2

∣∣∣∣. Any
one-to-one function of this test can be considered also UMPI test. The final test

is
(sTy)2

(yTy)
. Induced group on parameter space is studied in the next section.

Sufficient Statistic Approach: Hypothesis testing problem is invariant to scale

group. Similar steps can be applied as in µ > 0 unknown case. Sufficient statistic

is two dimensional vector t =
[
t1 t2

]
, where t1 = sTx and t2 = xTx.

We claim that m(t) =
t21
t2

is maximal invariant test under the induced group of
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action on the sufficient statistic domain which are given below.

t′ = g∗(t) =
[
ct1 c2t2

]
(4.30)

where c 6= 0 is the scale factor in the original group. m(x) is invariant since

m(g∗(t)) =
(ct1)2

c2t22
= m(t).

Proof for the maximality part: Let m(t) = m(t∗).

t21
t2

=
t∗1

2

t∗2
⇒ t∗1

2 = t21
t∗2
t2

t∗1 = t1c where c = ±
√
t∗2
t2

⇒ t∗2 = t2
t∗1

2

t21

t∗2 = t2c
2 same c above

The induced group on parameter space θ = (µ, σ2) is defined as follows:

Ḡ =
{
ḡ : ḡ(µ, σ2) = (cµ, c2σ2), c 6= 0

}
(4.31)

As in positive scale group, the maximal invariant parameter with respect to the

group Ḡ is found as v(θ) =
µ2

σ2
.

4.3 Application of Invariance Principle to LPI Signal Detection Prob-

lem: Synchronous Coherent Detectors

Consider a high-rate, random spreading code c(t) as

c(t) =
∞∑

n=−∞

cnp(t− nTc − εTc) (4.32)

where p(t) is a unit pulse of duration Tc second, {cn}∞−∞ is a sequence of i.i.d.

random variables with Pr(cn = 1) = Pr(cn = −1) = 0.5. Furthermore, the chip

epoch is modeled by the r.v. ε, uniformly distributed over [0, 1). The low-pass

equivalent waveform observed by the detector is given as follows (see [41] for

further details):

H1 : r(t) =
√
Sc(t) + nI(t)

H0 : r(t) = nI(t)
(4.33)
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where S is the average signal power and nI(t) is the in-phase component of noise

having variance of σ2 = N0/2 W/Hz. The observation time is T seconds, and

assumed to be integer multiple of chip time, i.e, T = NTc where N is positive

integer.

r(t) can be written in terms of orthogonal functions as follows:

r(t) =
∞∑
i=1

riψi(t), 0 ≤ t ≤ T. (4.34)

where ψi(t) = p(t−iTc). The first N coefficients (ri) for the functions of ψi(t), i =

1, . . . , N represent the sufficient statistic, while the remaining coefficients ri, i > N

are irrelevant to the hypothesis testing problem.

ri =

∫ NTc

0

r(t)ψi(t)dt =

∫ NTc

0

r(t)p(t− iTc)dt =

∫ iTc

(i−1)Tc

r(t)dt (4.35)

These coefficients {ri}Ni=1 are calculated for both hypotheses as follows:

H0 : ri =

∫ iTc

(i−1)Tc

nI(t)dt , wi

H1 : ri =

∫ iTc

(i−1)Tc

(√
Sc(t) + nI(t)

)
dt ,

√
STcci + wi. (4.36)

Here, {ri}Ni=1 ∼ N (0, N0Tc
2

) for H0 and N (
√
STcci,

N0Tc
2

) for H1 where N (m,σ2)

represents Gaussian random variable with mean m and variance σ2.

After obtaining discrete random variables ri, several approaches to find the

detector can be followed. In order to compare Bayesian and GLRT tests with

the test, we give their derivations first.

4.3.1 Bayesian Approach

The vector representation of (4.36) can be written as

H1 : r =
√
STcc + w,

H0 : r = w.
(4.37)

where r =
[
r1 · · · rN

]T
is received vector, c =

[
c1 · · · cN

]T
is the unknown

code, w =
[
w1 · · · wN

]T
is the noise term.

77



Note that {ri}Ni=1 are jointly Gaussian and independent random variables. Hence,

the pdf of ri can be found as:

fri(ri;H0) =
1√

πN0Tc
exp

(
− r2

i

N0Tc

)
fri(ri|ci;H1) =

1√
πN0Tc

exp

(
−(ri −

√
STcci)

2

N0Tc

)
(4.38)

Since the assumption on codes ci are random variables with equal probability

Pr(ci = 1) = Pr(ci = −1) = 0.5, the pdf of ci can be written as:

fci(ci;H1) = 0.5δ(ci − 1) + 0.5δ(ci + 1) (4.39)

Thus, the conditional pdf of ri for H1 can found by well-known Bayesian method

[42].

fri(ri;H1) =

∫
ci

fri(ri|ci;H1)fci(ci;H1)dci

=
1√

πN0Tc
exp

(
−r

2
i + ST 2

c

N0Tc

)
cosh

(
2

N0

ri
√
S

) (4.40)

Finally, since each ri is independent, the LRT becomes the following:

Λ(r) =
fr(r|H1)

fr(r|H0)
=

N∏
i=1

fri(ri|H1)

fri(ri|H0)

= exp(−Nγc)
N∏
i=1

cosh

(
2

N0

ri
√
S

) (4.41)

where γc =
STc
N0

is the pre-detection SNR of chip. The LLRT of the above test is

given as:

l1 = −Nγc +
N∑
j=1

ln cosh

(
2

N0

ri
√
S

) H1

≷

H0

ζ1. (4.42)

Since the first term is assumed to be known, equivalent detector is given as

l1 =
N∑
j=1

ln cosh (ri)

H1

≷

H0

ζ1. (4.43)

For the low pre-detection SNR values, ln coshx =
x2

2
hold and the detector (4.42)

reduces to the well-known detector, energy detector, commonly called radiometer
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as the following:

λ1 =
N∑
j=1

r2
j

H1

≷

H0

η1. (4.44)

4.3.2 Invariance Approach

In the problem given in (4.37), c is assumed to be unknown but its elements can

take only two values ci ∈ {1,−1}. The group of transformations which leaves

the problem invariant after having applied is the following sign group.

G =
{
g : g (r) =

[
a1r1 · · · aNrN

]
ai ∈ −1, 1

}
(4.45)

So the group G consists of 2N transformations. Note that this group is different

than one given in (4.2) in which all the elements of data vector are multiplied

by the same constant value, i.e., -1 or 1. Here, each elements of data vector are

multiplied by different constants as shown in (4.45). We claim that the maximal

invariant test for this sign group is as follows:

m(r) =
[
|r1| |r2| · · · |rN |

]
. (4.46)

Proof Of Invariance: The requirement for this function to be invariant wrt

the transformations in G is given as m(r) = m(g(r)) for each g(r) given in (4.45).

The following equations show that the function given in (4.3) is invariant under

the group of transformations G.

m(r) =
[
|r1| · · · |rN |

]
m(g(r)) =

[
|a1r1| · · · |aNrN |

]
=
[
|r1| · · · |rN |

]
= m(r) (4.47)

Proof Of Maximality: If m(r) = m(r∗) then, the maximality of (4.46) requires
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r = g(r∗) for the the group of transformations given in (4.45).

m(r) =
[
|r1| · · · |rN |

]
=
[
|r∗2| · · · |r∗N |

]
= m(r∗) (4.48)

Thus, if |ri| = |r∗i | then, ri = air
∗
i for ai ∈ {−1, 1}. In other words, ri and r∗i are

on the same orbit. Next step is to find the pdf of maximal invariant test to look

for monotonically increasing function in that for UMPI test.

Classic Method To Find UMPI Test: We will find the pdf of m(r) =[
|r1| · · · |rN |

]
. Since ri is independent random variables, so each mi = |ri| are

independent random variables.

fmi
(mi) = fri(mi) + fri(−mi)

=
1√

πN0Tc

[
exp

(
−(mi −

√
STcci)

2

N0Tc

)
+ exp

(
−(−mi −

√
STcci)

2

N0Tc

)]
(4.49)

Expanding the term inside the exponential, the following expressions are ob-

tained:

fmi
(mi) =

1√
πN0Tc

[
2 exp

(
m2
i

N0Tc

)
+ 2 exp

(
STcc

2
i

N0

)
+ 2 cosh

(
2
√
Smici
N0

)]
(4.50)

The ratio of conditional densities of m under H1 and H0

Λ2 =
f(m;H1)

f(m;H0)
=

N∏
i=1

fmi
(mi;H1)

N∏
i=1

fmi
(mi;H0)

(4.51)

After cancellation of common terms, the following test is obtained

Λ2 = 2N+1 exp

(
STc
N0

) N∏
i=1

cosh

(
2
√
Smici
N0

)
(4.52)

Since mi = |ri| and cosh(·) is an even function, the final UMPI test becomes as

follows:

Λ2 = 2N+1 exp

(
STc
N0

) N∏
i=1

cosh

(
2
√
Sri
N0

)
. (4.53)
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Taking the logarithm of the above test, one can reach the test given in (4.43).

When equal a priori probability is assumed for the unknown parameter, the

Bayesian approach and invariant detectors turn out to be same.

4.3.3 GLRT Approach

GLRT can be interpreted as maximizing the pdf over group elements or unknown

parameter. Namely,

tGLRT =
max
gi∈G

f (gi(r);H1)

max
gi∈G

f (gi(r);H0)
(4.54)

=
N∏
n=1

max
g′i∈G′

frn (g′i(rn);H1)

max
g′i∈G′

frn (g′i(rn);H0)
(4.55)

where gi and G are all group elements given in (4.45) and g′i, (i = 1, 2) and

G′ = {−1, 1} are sub group elements acting on each sample ri. Let denote

tn ,

max
g′i∈G′

frn (g′i(rn);H1)

max
g′i∈G′

frn (g′i(rn);H0)
.

Then,

tn =

max
g′i∈G′

1√
2πσ

exp

[
− 1

2σ2
(g′i(rn)− µcn)2

]
max
g′i∈G′

1√
2πσ

exp

[
− 1

2σ2
(g′i(rn))2

] , (4.56)

= max
g′i∈G′

1√
2πσ

exp

[
1

σ2
(µg′i(rn)cn)

]
, (4.57)

= exp

[
1

σ2
µ|rn|

]
. (4.58)

where µ =
√
STc and σ2 =

N0Tc
2

as given in (4.38). (See [4] for further

information.) GLRT test is the product of all tns.

Λ3 =
N∏
n=1

tn =
N∏
n=1

exp

[
1

σ2
µ|rn|

]
(4.59)
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Taking the logarithm of the above expression and ignoring known constants, the

following expression is obtained:

l3 =
N∑
n=1

|rn|. (4.60)

As a conclusion, for this application the invariant test and the Bayesian test with

equal prior coincide, but different from the GLRT.

4.3.4 Simulation Results

The performance of the UMPI test given in (4.53) is compared with the GLRT

test given in (4.60) and the energy detector given in (4.44). The argument of

the UMPI test inside the summation is log(cosh(x)). For low SNR region, this

argument can be approximated as
x2

2
and results in radiometer. For high SNR

region, cosh(x) can be approximated as
1

2
exp(|x|) and UMPI detector can be

approximated by GLRT detector. In order to differentiate the high and low SNR

regions, the signal lengths of 10 and 100 are chosen in simulation. For the case

of N = 10, the effect of SNR dominates the effect of signal length, thus, when

SNR increases, GLRT and UMPI detectors converge and the radiometer detector

diverges from UMPI detector.

Figure 4.2 presents the probability of detection as a function of SNR for the

probability of false alarms of 0.001, 0.01 and 0.1 when the signal length N is

set to 10. It is seen that UMPI outperforms GLRT and the radiometer in all

SNR and Pfa regions. When SNR > −2dB and Pfa = 0.001, GLRT and UMPI

detectors performs very close to each other while the gap between UMPI and

radiometer increases as SNR increases. The performance gap between all three

detectors diminishes for low SNR and high Pfa regions.

Figure 4.2 shows the powers of UMPI, GLRT and the radiometer detectors

when the signal length is set to 100. Since the energy of signal is higher than

the previous case of N = 10, the performance of all three detectors can be

differentiated for the low SNR regions. From Figure 4.2, it is seen that the

radiometer performance is in close proximity of UMPI detector. Also, the GLRT
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detector performance has worse performance for all regions. For this case, the

UMPI detector can well be approximated by the energy detector as seen from

the figure.
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Figure 4.2: Comparison of GLRT, UMPI and radiometer powers for the case of

N = 10, Ntrial = 5× 105.
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Figure 4.3: Comparison of GLRT, UMPI and radiometer powers for the case of

N = 100, Ntrial = 5× 105.

4.3.5 Discussion

For the synchronous coherent LPI signal detection problem, it is shown that

the UMPI and Bayesian detectors with equal prior turn out to be same, while

the GLRT test is different than the UMPI detector. For the low and high

SNR regions, UMPI detector can be approximated by the energy detector and

the GLRT detector, respectively. Also, the performance gap between all three

detectors are not significant.

For the noncoherent LPI signal detection problem case, the invariance principle

can be applied and the similar results can be found as in coherent case. Explicitly

speaking, the Bayesian and UMPI detectors will be same and the GLRT detector

will be in similar form as in coherent case.
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4.4 Invariance Application to Detection of Frame Synchronization

Words

Let N denote the frame length and assume that the frame is composed of L-digit

synchronization word and (N − L)-digit random binary data which follows the

sync word. The synchronization codeword cL, which is assumed to be known,

and data bits dN−L are shown as follows [43]:

cL =
[
c0 c1 · · · cL−1

]T
(4.61)

dN−L =
[
dL dL+1 · · · dN−1

]T
(4.62)

where Pr(di = 1) = Pr(di = −1) = 0.5. Received samples xn is represented

as

x(n) = c(n−m) + d(n−m) + w(n), n = 0 · · ·N − 1 (4.63)

where m is the starting position of sync word and it is assumed to be unkown.

Concatenating c and d vectors as s =

c

d

, the received data samples can be

written as

x = APms + w (4.64)

where Pm is a cyclic permutation matrix which shifts the samples to the right by

m positions and A is known signal amplitude. Then, hypothesis testing problem

can be formulated as follows:

H1 : x = APm

 cL

dN−L

+ w,

H0 : x = APm

 dL

dN−L

+ w

(4.65)

Under H0 hypothesis, each frame assumed to consist of N random data bits and

noise. Here, the continuous transmission of data assumed and at the beginning of

data bits, synchronization word is located. Receiver window duration is assumed

to be less than frame length. Thus, for each look, there can be a sync word

followed by data or only data covering whole receive window.
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This problem is similar to the detection of signal with unknown location which

was considered in [44] and [45]. Below are given the hypothesis testing problem

they solved by Wijsman theorem and finding classic maximal test.

H1 : x = APms + w,

H0 : x = w.
(4.66)

where x is the target signal considered.

Here, the assumption of random data bits on both hypothesis and the different

length of them should be taken account. As it will be seen later, the permutation

of data vector with unknown parameter m can be tackled easily and the group

of transformations that leave the problem invariant can be found. But, for

the random data bits part, since the length of data bits in both hypothesis

are different, no group of transformations take into account of each data bit

leaving the hypothesis problem can be found. We use Bayesian approach instead,

namely, we will first find the conditional pdf based on given data bit, then we

will integrate it with respect to random data bit. This method is not purely

invariant, but as it will be shown in subsequent chapter, it will give the similar

result as in [44] and [45].

4.4.1 Invariance And Bayesian Approach Combined

The hypothesis testing problem is invariant for the following group:

G =
{
g : g(x) = Pix, i = 1, · · · , N

}
. (4.67)

Here, Pi is the i-shift permutation matrix.

We assume that random data bits employ known a priori information. For

simplicity, we will assume that each random data bit is equally likely.

The conditional pdfs can be found by applying the Bayesian approach. Specifi-

cally,

fx (gi(x);H1) =
∑
d′

fx (gi(x)|d = d′;H1)Pr(d = d′;H1) (4.68)
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where d′ =
[
d′L d′L+1 · · · d′N−1

]T
denotes the values that random vector d

can take. Remember that these values are -1 and 1 with equal probability. So,

Pr(d = d′;H1) = 2−(N−L) and Pr(d = d′;H0) = 2−N .

(4.15) can be written as

N∑
i=1

fx (gi(x);H1)

N∑
i=1

fx (gi(x);H0)

= 2L

∑
d′

N∑
i=1

fx (gi(x)|d = d′;H1)

∑
d′

N∑
i=1

fx (gi(x)|d = d′;H0)

(4.69)

Considering the inner summation of denominator

N∑
i=1

fx (gi(x)|d = d′;H1) =
N∑
i=1

1

(2πσ2)N/2
exp

[
− 1

2σ2
(gi(x)− As)T (gi(x)− As)

]

= K1

N∑
i=1

exp

[
− 1

2σ2

(
xTx− 2AsTgi(x) + A2sT s

)]
(4.70)

where K1 =
1

(2πσ2)N/2
. Since xTx is common in denominator and numerator

and sT s is not data dependent, only the middle term affects the final result,

N∑
i=1

fx (gi(x)|d = d′;H1) = K1K2

N∑
i=1

exp

[
1

σ2

(
AsTgi(x)

)]
(4.71)

where K2 accounts for the terms involving xTx and sT s. Note that gix(n) =

x(n− i), thus

sTgi(x) =
N−1∑
n=0

s(n)x(n− i).

Then,

N∑
i=1

fx (gi(x)|d = d′;H1) = K3

N−1∑
i=0

exp

[
A

σ2

N−1∑
n=0

s(n)x(n− i)

]

= K3

N−1∑
i=0

exp

[
A

σ2

L−1∑
n=0

c(n)x(n− i) +
N−1∑
j=L

d′(j)x(j − i)

]

= K3

N−1∑
i=0

exp

[
A

σ2

L−1∑
n=0

c(n)x(n− i)

]
N−1∏
j=L

exp (d′(j)x(j − i))

(4.72)
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where K3 = K1K2. Considering the outer summation in (4.68),

∑
d′

N∑
i=1

fx (gi(x)|d = d′;H1) = K1K2

N−1∑
i=0

exp

[
A

σ2

L−1∑
n=0

c(n)x(n− i)

]
N−1∏
j=L

∑
d′

exp [d′(j) (x(j − i))] . (4.73)

The final form is obtained as:

N∑
i=1

fx (gi(x);H1) = K1K2

N−1∑
i=0

exp

[
A

σ2

L−1∑
n=0

c(n)x(n− i)

]
N−1∏
j=L

2 cosh (x(j − i)) .

(4.74)

Similarly, fx (gi(x);H0) can be found as:

N∑
i=1

fx (gi(x);H0) = K1K2

N−1∑
i=0

exp

[
A

σ2

]N−1∏
j=0

2 cosh (x(j − i)) . (4.75)

The ratio of maximal invariant densities will be

tinvariant =

N−1∑
i=0

exp

[
L−1∑
n=0

c(n)x(n− i)
]
N−1∏
j=L

cosh (x(j − i))

N−1∑
i=0

N−1∏
j=0

cosh (x(j − i))
, (4.76)

=

N−1∑
i=0

exp

[
L−1∑
n=0

c(n)x(n− i)
]
N−1∏
j=L

cosh (x(j − i))

N
N−1∏
j=0

cosh (x(j))

. (4.77)

Equivalently, the test given in (4.77) can be expressed as

tinvariant =
N−1∑
i=0

αi exp [rcx(i)] (4.78)

where rcx(i) =
L−1∑
n=0

c(n)x(n+ i) is the cross-correlation of the input x[n] with the

synchronization code c[n] and αi =
L−1∏
j=0

[cosh (x(j − i))]−1 is a weighting factor.

The αi weight can be interpreted as the weight for the synch word starting at

the i’th index.
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4.4.2 GLRT And Bayesian Approach Combined

GLRT can be defined either as a maximization of pdf over group elements or

over unknown parameter [4];

max
g∈G

f (g(x); θ1)

max
g∈G

f (g(x); θ0)
(4.79)

where hypotheses H1 and H0 correspond to the unknown parameters θ1 ∈ Θ1 and

θ0 ∈ Θ0 respectively. This interpretation is valid for orthogonal subgroups.

In order to tackle the random data bits, Bayesian approach is used.

Omitting the summation in (4.77) and maximizing with respect to unknown

location i, one can find the GLRT test as follows:

tGLRT =

max
i∈[0,N−1]

exp

[
L−1∑
n=0

c(n)x(n− i)
]
N−1∏
j=L

2 cosh (x(j − i))

max
i∈[0,N−1]

N−1∏
j=0

2 cosh (x(j − i))
,

= max
i∈[0,N−1]

exp

[
L−1∑
n=0

c(n)x(n− i)

]
L−1∏
j=0

cosh (x(j − i)) . (4.80)

Without any loss of generality, we can divide the test given in (4.80) by
N−1∏
j=0

cosh (x(j)). With this modification, tGLRT becomes

tGLRT = max
i∈[0,N−1]

αi exp [rcx(i)] (4.81)

where the definitions for rcx(i) and αi coincide with the definitions given for the

invariant detector given in (4.78).

Taking the logarithm of (4.81) and simplifying the expression, equivalent test

can be written as:

log (tGLRT) = max
i∈[0,N−1]

log (αi) + rcx(i), (4.82)

= max
i∈[0,N−1]

log

(
L−1∏
j=0

[cosh (x(j − i))]−1

)
+

L−1∑
n=0

c(n)x(n+ i), (4.83)

= max
i∈[0,N−1]

L−1∑
n=0

c(n)x(n+ i)−
L−1∑
j=0

log [cosh (x(j − i))] . (4.84)
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4.4.3 Simulation Results And Discussion

Since the statistics of both detectors given in (4.78) and (4.84) are difficult to

obtain analytically, Monte Carlo simulations are used to asses their comparative

performance on MATLAB environment.

It should be noted that both detectors have the common goal of discriminating

one code from the other. Namely, the problem at hand is to build a detector

whose aim is to discriminate two codes of same power. The threshold for this

test is found when H0 is true, i.e., the frame consists of only random data bits.

Based on preassigned value for false sync word declaration probability, similar to

false alarm probability, a threshold is found for each SNR. This SNR is used to

know whether the frame includes the sync word or not.

For the following scenarios, the chosen sync word is represented as hexadecimal

equivalent of the code where the values of -1 is represented as false bits (0). If the

length of sync word is not multiple of 4, required number of zeros is appended

to the left. For example, Barker (7) code (-1, -1, -1, 1, 1, -1, 1) is represented

in binary form as 0001101, and its hexadecimal equivalent becomes 0D and one

zero is appended to the left side in order to make the length 8.

Table 4.1: Scenario conditions for simulations

Figure No Frame Length (N) Name of SW Hex Value of SW

Figure 4.4 10 Barker (7) OD
Figure 4.5 15 Barker (13) OOCA
Figure 4.6 91 Barker (13) OOCA
Figure 4.7 91 S201 14B37
Figure 4.8 91 All ones (20) FFFFF

Figure 4.4 shows the powers of the invariant and GLRT detectors as a function

of SNR for different Pfa values and chosen sync word is set to Barker (7) and

the frame length is chosen as 10. It is seen that for Pfa = 0.001 and Pfa = 0.01,

Pd does not increase as SNR is increased after some point. This situation can be

explained due to the nature of both detectors. Since, the similarity of sync word

and equally likely random data bits is tested, when the energy of the sync word
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is not enough, the highest power value that can be achieved by the structure of

this detectors is limited. When the false alarm probability is set to a lower value,

the required threshold increases, and since the dissimilarity between two codes is

fixed, the power does not approach to 1 as SNR increases.

Also, from Figure 4.4 it can be noted that for higher false alarm probabilities,

the performance difference between invariant and GLRT detectors increases

compared to lower false alarm rates. For example, for the case of Pfa = 0.4

and SNR between -5 dB and 5 dB, invariant detector achieves higher detection

probabilities.
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Figure 4.4: Comparison of GLRT and invariant detector powers for the case of

N = 10, SW = Barker (7), Ntrial = 105.

Figure 4.5 shows the same comparison of both detectors when chosen sync word

is Barker (13) and the frame length is 15. Here, it is seen that for Pfa = 0.01,

Pd approaches to 1 as SNR increases. Since the energy of sync word increases

as its length is increased from 7 to 13, this behaviour is indeed expected. From

this figure, it is also seen that as the frame length gets closer to the length of
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sync word, the invariant and GLRT detectors performs very similar. Because,

the invariant detectors is build upon the assumption of unknown location of sync

word. To put it differently, when the sync word covers the most of the frame,

the location of sync word becomes less important compared to the case of long

frame.
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Figure 4.5: Comparison of GLRT and invariant detector powers for the case of

N = 15, SW = Barker (13), Ntrial = 105.

Figure 4.6 presents the same comparison as in Figure 4.5 except the frame length

is increased to 91. It is seen that the performance gap between the invariant

and GLRT detectors increases as Pfa increases. The region where the invariant

detector outperforms GLRT is Pfa ∈ (0.1, 0.4) and SNR ∈ (−6 dB, 0 dB). The

performance gap between two detectors diminishes as SNR increases. For the

case of Pfa = 0.01, for SNR is greater than 3 dB, the performance of GLRT

detectors is better than the invariant detector by a small amount. This case is

attributed to the fact that for the chosen sync word there is an minimum lower

bound for the false alarm consideration in order to be in the region where Pd
increases as SNR increases. It can be noted that for the case of frame length of
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91 and Barker (13) sync word, Pfa = 0.01 is very close the aforementioned lower

bound for the satisfactory operation of both detectors. Remember that when the

frame length is set to 15, this situation does not appear (see Figure 4.5).
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Figure 4.6: Comparison of GLRT and invariant detector powers for the case of

N = 91, SW = Barker (13), Ntrial = 5× 105.

Figure 4.7 presents the same comparison when the sync word is chosen as S201

code (see [46]). It is seen that both detectors operate satisfactorily for the case of

Pfa = 0.001. When Pfa is set to 0.001, 0.01 and 0.1 both detectors’ performance

are almost same, while for higher Pfa values the invariant detector’s performance

has minor improvement.

The previous simulations in which sync words are chosen with the aim of having

a better correlation characteristic show that the lengths of frame and sync word

and the code of sync word can effect the performances of both detectors as well

as the performance gap between them. Figure 4.8 presents the scenario in which

sync word is chosen as all 1’s meaning having worse autocorrelation properties

compared to Barker and the other codes which have the narrow main lobe and low
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Figure 4.7: Comparison of GLRT and invariant detector powers for the case of

N = 91, SW = S201, Ntrial = 105.

sidelobes. It is seen that the performance gap between both detectors increases

and the invariant detector outperforms the GLRT detector. The reason of this

behaviour can be attributed to the fact that the autocorrelation of codewords

which has narrow main lobes and low sidelobes can cause the better estimate

of its maximum, and leading to better GLRT performance. For the case of all

1’s codeword, the autocorrelation is triangle and the level of sidelobes is half

of its maximum. For the invariant detector, since all the possible locations of

sync word is considered and summed up, its performance can be thought of

independent of the location of sync word.

Figure 4.9 shows the receiver operating characteristics of both detector for the

third scenario described in Table 4.1. The region where the invariant detector

outperforms GLRT is of SNR between -3 dB and 3 dB and Pfa between 0.2 and

0.6.
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Figure 4.8: Comparison of GLRT and invariant detector powers for the case of

N = 80, SW = FFFFF, Ntrial = 5× 105.

4.4.4 Discussion and Further Work

This section shows how to combine invariance principle with Bayesian approach

when there is a priori information about unknown data bits. It was shown that

the performance of invariant detector is very similar to the performance of GLRT.

But, for some regions and for some chosen sync words and frame length, invariant

detector can outperform GLRT. To sum it up,

1. When the frame length and the length of sync word is close to each other,

the invariant and GLRT detectors’ performances approach each other.

2. Depending on the length of sync word, there is an lower limit on Pfa for

satisfactory operations due to the limited dissimilarity between sync code

and equally likely random data bits.

3. The performance difference between the invariant and GLRT detectors
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Figure 4.9: Comparison of GLRT and invariant detector ROC curves for the

case of N = 91, SW = Barker (13), Ntrial = 105.

increases, as the desired maximum false alarm probability increases.

4. The performance gap between both detectors increases as the autocorre-

lation of the sync code has the higher sidelobes as in the code of all ones

case.

The detectors built in this section is aimed to detect the presence of synchroniza-

tion word within the chosen frame. After finding that frame, suitable estimation

techniques might be applied, and the location of sync word can be found. One

might argue that applying only the estimation of location of sync word approach

can be computationally effective. Indeed, in some situation if one wants to fix

the false sync declaration probability and aim to increase the probability of

detection of frames including sync word at the same time, the methods described

in this chapter might be useful. The estimation methods which can be applied

afterwards are expected to give more accurate results since the frame of sync

word would have been found in advance.
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For future work, one can formulate the hypothesis testing problem as testing

sync word followed by random data bit against only data bits with the same

length as former case. For this problem, one can find pure invariant detector and

GLRT detector since the group of transformation leaving the hypothesis testing

problem can be found.
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CHAPTER 5

CONCLUSIONS AND FUTURE DIRECTIONS

In this dissertation, optimality considerations in multiple hypothesis testing

and composite hypothesis testing is studied and some application examples

are provided. It is shown that for each problem considered, the definition of

optimality is the most crucial point for constructing the relevant detector.

Neyman-Pearson test is the optimal detector in the sense of minimizing the

probability of miss detection probability while keeping the probability of false

alarm bounded by predetermined upper value. This definition of optimality is

suitable for radar target detection problem and well-known concept by many

radar receiver designers. In the literature, there is a vast amount of information

covering Neyman-Pearson detectors for binary hypothesis testing problem. For

multiple hypothesis testing, Neyman-Pearson theory is not well covered due to the

complexity of controlling multiple error probabilities. In this work, a literature

survey of application of Neyman-Pearson theory to multiple hypothesis testing

problem is provided. The results of survey is then used to construct optimum

sidelobe blanker for radar receivers. As a future work, these Neyman-Pearson

detectors can be applied to adaptive radar detectors, and their performances can

be compared.

The Sidelobe blanker (SLB) systems are intended to blank the main channel

when there is a jammer in the sidelobe of main antenna. This problem was

solved by Maisel and widely used in many radars. Maisel SLB detectors uses

two channels to identify the jammer presence. One of them is main channel

which has narrow main beam and low sidelobes. The other channel is secondary
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channel whose antenna has flat gain and its gain is slightly greater than the

sidelobe gain of main antenna. The idea is to divide auxiliary channel signal

magnitude by main channel magnitude and see that value is greater than by

some threshold. Optimal SLB detectors are derived for each Swerling targets and

its performance are compared with classical Maisel SLB detectors. Even though

optimum detectors are not realizable, they can be used to assist Maisel SLB

design process and show the performance bound for the probability of blanking

of jammer and the probability of falsely blanking the target. Several performance

figures are provided and design examples of Maisel SLB are given.

As a future work, the new optimum blanking structure can be combined with

the second target threshold, and the probability of declaring false target due to

jammer and loss of probability of target detection can be analyzed. An example

of application fields of optimum SLB detector can be the problem of finding the

optimum path for airborne radars. When there are multiple jammer with known

location, unmanned airborne vehicle (UAV) equipped with radar, in that case

optimum path with respect to minimizing the target blanking probability and

desired jammer blanking probability can be found. The fact that SLB detector

considered in this dissertation can blank the jammer with low-duty cycle signals

is to be remembered. If high-duty cycle signals are desired to be cancelled, in that

case sidelobe cancellation systems (SLC) or any beamforming methods suitable

needs to be used. Additionally, digital beamforming method can be utilized

to form the auxiliary antenna pattern and the gain margin between auxiliary

antenna and main beam of main antenna (ω2) can be increased by decreasing

the gain of auxiliary antenna within the region of main lobe.

Next, the invariance principles are studied. It is shown that an alternative to the

GLRT detector when there is no a prior information about the unknown parameter

can be provided by the invariant detectors. The theoretical framework, group

and orbit definitions are provided. The invariant detector can be preferable over

the GLRT detector based on the fact that invariant detector is mostly uniformly

most powerful (UMPI) within its class called UMPI detector. In addition, the

dimension of the unknown parameters can decrease and the resultant detector

can be CFAR. Two methods to find the UMPI detectors are provided along with
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the combination of sufficient statistics. As an application, general signal detection

problem is considered and solved by the classical maximal invariant detector

and it’s combination with sufficient statistic approach. The other method is

Wijsman theorem approach in which one can find the ratio of maximal invariant

statistic without knowing the maximal invariant function of group. Only the

information of group structure and some common requirements are enough to

use Wijsman theorem. Wijsman theorem is applied to the LPI signal detection

problem and frame synchronization word detection problems. It is shown that

for both examples GLRT detector is different than the invariant detectors. For

both problems, the computer simulations are given to asses the performance

gap between the invariant and GLRT detector. For the former problem, UMPI

detector can be well approximated by the energy detector for low SNR region

and GLRT for high SNR region. The performance gap among three detectors

are not significant and the invariant detector is the best detector for all Pfa and

SNR regions. For the latter problem, Depending on the chosen sync word and

frame length, invariant and GLRT detectors have probability of detection within

close proximity except for the case of relatively high false alarm probability and

low SNR region for which the power of the invariant detector is greater than the

one of GLRT test.

As a future work, for the problem of detection of frame synchronization word,

the invariant detector can be applied to different null hypothesis than the one

was considered in this work. Null hypothesis definition may exclude the data

vector for the place of sync word and it can contain only noise vector in the

place of sync word. Also, the idea can be used to derive more realistic problem

of detection of LPI signals where the phase of each bits and/or the variance of

noise is unknown. In that case a new group of transformation has to be found

and the invariant detector should be derived afterwards.
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APPENDIX A

NOTATION CONVENTIONS

Table A.1: Notation Conventions

Notation Meaning
x observation data
XN N-dimensional sample space
f(x) probability density function (pdf) or probability mass function

(pmf)
f(x;Hm) conditional pdf or pmf when Hm hypothesis is true
f(x|θ) pdf or pmf when the parameter θ is given or f(x) is parame-

terized by θ
f(x|θ;Hm) conditional pdf or pmf when the parameter θ when Hm hy-

pothesis is true
φ(x) indicator function for the given decision space
φ∗(x) indicator function of optimum decision rule (Neyman-Pearson)

for the given decision space
D∗m decision region of optimum decision rule (Neyman-Pearson)

for hypothesis Hm

Dm decision region of any other decision rule except Neyman-
Pearson rule for hypothesis Hm

PFA probability of false alarm
PMD probability of miss detection
PD probability of correct detection
PIE probability of inclusive error
PEE probability of exclusive error
Pb probability of blanking
Ptb probability of target blanking
P (Hm|Hk) probability of deciding Hm hypothesis when in fact Hk hy-

pothesis is true
P (Hc

m|Hk) probability of deciding any hypothesis except Hm when in fact
Hk hypothesis is true
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APPENDIX B

MATLAB CODES FOR OPTIMUM SIDELOBE

BLANKER

B.1 Required JNR vs gain margin

1 function [min_jnr, Pb_attained] = min_jnr_vs_beta(P_tb, Pb_tolerance,

Pb_classic_minimum, varargin)↪→

2 %% function [min_jnr, Pb_attained] = min_jnr_vs_beta(P_tb, Pb_tolerance,

Pb_classic_minimum, snr_db, beta_db, omega_db)↪→

3 %

4 % This function finds the minimum required JNR (min_jnr) for classical SLB

5 % system that achieves a minimum $P_b$ (Pb_attained) within a tolerance

with↪→

6 % respect to optimum SLB detector. It plots min_jnr and Pb_attained with

7 % respect to different antenna gain margins $\beta^2$ (beta_db).

8 %

9 % Input Parameters:

10 % omega_db : Side lobe gain of main antenna, 1x1 scalar, in dB, default

11 % value: -30 dB.

12 % beta_db : Antenna gain margin between axuilarry antenna and sidelobe

of↪→

13 % main antenna, 1xM vector, in dB, default value: 5:1:10.

14 % snr_db : SNR of interest, 1xM vector, in dB, default value: [9 12

15].↪→

15 % P_tb : Desired probability of target blanking, ex: 0.05, required.

16 % Pb_tolerance: Tolerance with respect to optimum SLB detector, ex: 0.05.

17 % Pb_classic_minimum : Desired minimum jammer blanking probability

18 %

19 % Sample Run:

20 % P_tb, Pb_tolerance and Pb_classic_minimum are required to input to run

the↪→

21 % function, snr_db, beta_db and omega_db have default values as defined

22 % above.

23 %

24 % To generate Fig. 8, run >> min_jnr_vs_beta(0.05, 0.05, 0.90);
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25 % To generate Fig. 8 with SNR of [10 15 20] dB

26 % run >> min_jnr_vs_beta(0.05, 0.05, 0.90, [10 15 20]);

27 %

28 % To generate Fig. 8 with P_tb = 0.1, Pb_tolerance = 0.05,

29 % Pb_classic_minimum = 0.85, SNR = [10 15 20], $\beta^2$ = [4:2:20] dB and

30 % $\omega^2$ = -40 dB,

31 % run >> min_jnr_vs_beta(0.1, 0.05, 0.85, [10 15 20], [4:2:20], -40);

32 %

33 % Caution: SNR should be high enough such that requiered $F$ will be less

34 % than chosen $\beta^2$. If $F$ is not less than $\beta^2$, then $P_b$ of

0.90 will↪→

35 % not be attained and infinite loop can occur. To avoid this, first find

36 % the minimum SNR that achieves $F << \beta^2$.

37 %

38 % Osman Coskun

39 % Nov. 2015

40 %

41 numvarargs = length(varargin);

42 if numvarargs > 3

43 error('find_min_jnr_wrt_beta:TooManyInputs', ...

44 'requires at most 3 optional inputs');

45 end

46 default_values = {[9 12 15], [5:10], -30};

47 default_values(1:numvarargs) = varargin;

48 [snr_db, beta_db, omega_db] = default_values{:};

49 %initialization

50 Pb_attained = zeros (length(snr_db), length(beta_db));

51 Pb_new = ones (length(snr_db), length(beta_db));

52 min_jnr = Pb_new;

53 aux_legend = cell (size(snr_db));

54 for ii = 1: length (snr_db)

55 [F_db,~] = compute_F_SW1(P_tb, snr_db (ii), omega_db);

56 for jj = 1:length(beta_db)

57 jnr_db = -33;

58 while ~((Pb_new (ii,jj) - Pb_attained (ii,jj) <= Pb_tolerance )&&

Pb_attained (ii,jj)>=Pb_classic_minimum)↪→

59 Q = compute_Q_matrix (snr_db (ii), jnr_db, omega_db,

beta_db(jj));↪→

60 [a, b] = compute_hypothesis_a_b ('H1', Q, snr_db (ii), jnr_db,

omega_db, beta_db(jj));↪→

61 [eta, ~] = compute_threshold (P_tb, a, b);

62 [a, b] = compute_hypothesis_a_b ('H2', Q, snr_db (ii), jnr_db,

omega_db, beta_db(jj));↪→

63 Pb_new (ii,jj) = compute_Pb_new (a, b, eta);

64 Pb_attained (ii,jj) = compute_Pb_classic_SW1 (F_db, jnr_db,

beta_db(jj));↪→

65 jnr_db = jnr_db + .1;

66 end

67 min_jnr (ii,jj) = jnr_db;

68 end
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69 aux_legend(ii) = {['SNR = ' num2str(snr_db (ii)) ' dB' ' $F = $ '

sprintf('%1.2f', F_db) ' dB' ]};↪→

70 end

71 %%

72 figure(2)

73 h2= plot(beta_db, Pb_attained');

74 ylabel ('$P_b$ (Maisel)','FontSize', 8,'interpreter', 'latex')

75 xlabel ('$\beta^2$ (dB)','FontSize', 8,'interpreter', 'latex')

76 set (gca(), 'xtick', beta_db, 'FontSize', 8);

77 title (['$\omega^2=$ ' num2str(omega_db) ' dB, ' '$P_{tb}=$ ' num2str(P_tb)

', min.' '$P_{b}=$ ' num2str(Pb_classic_minimum)],'interpreter',

'latex');

↪→

↪→

78 grid on

79 legend(aux_legend, 'Location','northeast','FontSize', 8,'interpreter',

'latex');↪→

80 figure(1)

81 h1 = plot(beta_db, min_jnr');

82 set (gca(), 'xtick', beta_db, 'FontSize', 8);

83 grid on

84 ylabel ('Min. JNR','interpreter', 'latex', 'FontSize', 8)

85 xlabel ('$\beta^2$ (dB)','interpreter', 'latex','FontSize', 8)

86 title (['$\omega^2=$ ' num2str(omega_db) ' dB, ' '$P_{tb}=$ ' num2str(P_tb)

', min.' '$P_{b}=$ ' num2str(Pb_classic_minimum)],'interpreter',

'latex');

↪→

↪→

87 marker_style = ['s', '<', 'o', '+', '>', 'v', ];

88 marker_face_color = ['r', 'b', 'g', 'm'];

89 for jj = 1: length (snr_db)

90 set(h1(jj),'Linestyle', '-', 'Marker', marker_style (jj), 'Linewidth',

0.6, ...↪→

91 'MarkerSize',4, 'MarkerFaceColor','w',

'MarkerEdgeColor','k','Color',marker_face_color(jj));↪→

92 set(h2(jj),'Linestyle', '-', 'Marker', marker_style (jj), 'Linewidth',

0.6, ...↪→

93 'MarkerSize',4, 'MarkerFaceColor',marker_face_color(jj),

'MarkerEdgeColor','k','Color',marker_face_color(jj));↪→

94 end

95 legend(aux_legend, 'Location','northeast','FontSize', 8,'interpreter',

'latex');↪→

96 % *************
97 % End of main function

98 %%

99 function [F_db,Pb_found] = compute_F_SW1(Pb_desired, jnr_db, beta_db)

100 beta = db2pow(beta_db); % beta in linear scale

101 jnr = db2pow (jnr_db);

102 tolerance= Pb_desired/1e5; % Tolerance value for computation of

103 initial = 0.000001; % Initial value for bisection search

104 final= 200; % Final value for bisection search
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105 Pb = @(F) 0.5.*(1-

(1./(1+F)).*(jnr.*(F-beta)-F-1)./sqrt((jnr.*(F-beta)+F+1).^2+

4.*jnr.*(F+1).*beta) -

(F./(1+F)).*(jnr*(F-beta)+F+1)./sqrt((jnr*(F-beta)-F-1).^2+

4*jnr*(F+1).*F));

↪→

↪→

↪→

↪→

106 initial_Pb = Pb(initial);

107 error = initial_Pb - Pb_desired;

108 while abs(error) > tolerance;

109 F_linear = 0.5*(initial + final);

110 if Pb(F_linear) >= Pb_desired

111 initial = F_linear;

112 else

113 final = F_linear;

114 end

115 error = Pb(F_linear) - Pb_desired;

116 end

117 F_db = 10*log10(F_linear);

118 Pb_found = Pb(F_linear);

119 %*****************
120 function [Q] = compute_Q_matrix (snr_db, jnr_db, omega_db, beta_db)

121 %[Q] = compute_Q_matrix (snr_db, jnr_db, omega_db, beta_db)

122 beta = db2pow(beta_db); % beta in linear scale

123 omega = db2pow(omega_db); % omega in linear scale

124 jnr = db2pow (jnr_db); % JNR in linear scale

125 snr = db2pow (snr_db); % SNR in linear scale

126 % Compute covariance matrices

127 C1 = [ (snr +1), sqrt(omega)*snr; sqrt(omega)*snr, (omega*snr +1)];

128 C2 = [ (jnr +1), sqrt(beta)*jnr; sqrt(beta)*jnr, (beta*jnr +1)];

129 Q = inv(C1) - inv(C2);

130 %*****************
131 function [a, b] = compute_hypothesis_a_b (hypothesis, Q, snr_db, jnr_db,

omega_db, beta_db)↪→

132 % [a, b] = compute_hypothesis_a_b (hypothesis, Q, snr_db, jnr_db, omega_db,

beta_db)↪→

133 beta = db2pow(beta_db); % beta in linear scale

134 omega = db2pow(omega_db); % omega in linear scale

135 jnr = db2pow (jnr_db); % JNR in linear scale

136 snr = db2pow (snr_db); % SNR in linear scale

137 % Compute covariance matrices

138 C1 = [ (snr +1), sqrt(omega)*snr; sqrt(omega)*snr, (omega*snr +1)];

139 C2 = [ (jnr +1), sqrt(beta)*jnr; sqrt(beta)*jnr, (beta*jnr +1)];

140 if hypothesis == 'H1'

141 R = C1/2;

142 else

143 R = C2/2;

144 end

145 r = sum(sum(R.*Q))/(-4*det(R)*det(Q));

146 a = sqrt(r^2+1/(-4*det(R)*det(Q))) - r ;

147 b = sqrt(r^2+1/(-4*det(R)*det(Q))) + r ;

148 %*****************
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149 function [eta, threshold] = compute_threshold (P_b, a, b)

150 threshold = b/(a+b);

151 if P_b <= threshold

152 eta = -(log((P_b*(a + b))/b) )/a;

153 else

154 eta = (log(-((a + b)*(P_b - 1))/a) )/b;

155 end

156 %*****************
157 function Pb_temp = compute_Pb_new (a_temp, b, eta_temp)

158 f1 = @(x)(b/(a_temp+b)*exp(-a_temp.*x));

159 f2 = @(x)(a_temp/(a_temp+b))*(1-exp(b.*x))+b/(a_temp+b);

160 Pb_temp = zeros (size(eta_temp));

161 for i = 1: length (eta_temp)

162 if eta_temp(i) >= 0

163 Pb_temp(i) = f1 (eta_temp(i));

164 else

165 Pb_temp(i) = f2 (eta_temp(i));

166 end

167 end

168 %*****************
169 function Pb = compute_Pb_classic_SW1 (F_db, jnr_db, beta_db)

170 beta = db2pow(beta_db); % beta in linear scale

171 jnr = db2pow (jnr_db); % JNR in linear scale

172 F = db2pow (F_db); % F in linear scale

173 Pb_formula = @(F, jnr, beta) 0.5.*(1-

(1./(1+F)).*(jnr.*(F-beta)-F-1)./sqrt((jnr.*(F-beta)+F+1).^2+

4.*jnr.*(F+1).*beta) - ...

↪→

↪→

174 (F./(1+F)).*(jnr*(F-beta)+F+1)./sqrt((jnr*(F-beta)-F-1).^2+

4*jnr*(F+1).*F));↪→

175 Pb = Pb_formula (F, jnr, beta);

B.2 The probability of blanking jammer vs gain margin

1 function Pb = Pb_vs_beta(P_tb, varargin)

2 %% function Pb = Pb_vs_beta(P_tb, jnr_db, snr_db, beta_db, omega_db)

3 %

4 % This function finds and plots the probability of blanking jammer (Pb)

5 % for optimum and Maisel SLB systems with respect to different antenna

6 % gain margins $\beta^2$ (beta_db).

7 %

8 % Input Parameters:

9 % P_tb : Desired probability of target blanking, ex: 0.05.

10 % snr_db : SNR of interest, 1xM vector, in dB, default = [9 10 12] dB.

11 % jnr_db : JNR of interesr, scalar, in dB, default = 5 dB.

12 % beta_db : Antenna gain margin between axuilarry antenna and sidelobe

of↪→
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13 % main antenna, 1xM vector, in dB, default = [5:1:10] dB.

14 % omega_db : Side lobe gain of main antenna, 1x1 scalar, default = -30

dB.↪→

15 %

16 % Sample Run:

17 % P_tb is required to input to run the function. jnr_db, snr_db, beta_db

and omega_db↪→

18 % have default values as defined above.

19 %

20 % To generate Fig. 7, run >> Pb_vs_beta(0.05);

21 %

22 % To generate Fig. 7 with P_tb = 0.1, JNR = 8 dB, SNR = [5 10 15],

23 % $\beta^2$ = [2:2:20] dB and $\omega^2$ = -40 dB,

24 % run >> Pb_vs_beta (0.1, 8, [5 10 15], [2:2:20], -40);

25 %

26 % Osman Coskun

27 % Nov. 2015

28 %

29 numvarargs = length(varargin);

30 if numvarargs > 4

31 error('plot_Pb_wrt_beta:TooManyInputs', ...

32 'requires at most 3 optional inputs');

33 end

34 default_values = {5, [9 12 15], [5:10], -30};

35 default_values(1:numvarargs) = varargin;

36 [jnr_db, snr_db, beta_db, omega_db] = default_values{:};

37

38 main_legend = cell (2*length(snr_db),1);

39 Pb = zeros (2*length(snr_db),length(beta_db));

40 for ii = 1: length (snr_db)

41 [F_db,~] = compute_F_SW1(P_tb, snr_db (ii), omega_db);

42 for jj = 1:length(beta_db)

43 Q = compute_Q_matrix (snr_db (ii), jnr_db, omega_db, beta_db(jj));

44 [a, b] = compute_hypothesis_a_b ('H1', Q, snr_db (ii), jnr_db,

omega_db, beta_db(jj));↪→

45 [eta, ~] = compute_threshold (P_tb, a, b);

46 [a, b] = compute_hypothesis_a_b ('H2', Q, snr_db (ii), jnr_db,

omega_db, beta_db(jj));↪→

47 Pb (2*ii-1,jj) = compute_Pb_new (a, b, eta);

48 Pb (2*ii,jj) = compute_Pb_classic_SW1 (F_db, jnr_db, beta_db(jj));

49 end

50 main_legend (2*ii-1) = {['Optimum, SNR = ' num2str(snr_db (ii)) '

dB']};↪→

51 main_legend (2*ii) = {['Maisel, SNR = ' num2str(snr_db (ii)) ' dB' ' $F

= $ ' sprintf('%1.2f', F_db) ' dB']};↪→

52 end

53 % figure(1)

54 %%

55 h1 = plot(beta_db, Pb');

56 y_tick = 0:0.05:1;
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57 set (gca(), 'xtick', beta_db, 'FontSize', 8);

58 set(gca(), 'ytick', y_tick, 'FontSize', 8);

59 grid on

60 ylabel ('$P_b$','Interpreter','latex')

61 xlabel ('$\beta^2$ (dB)', 'Interpreter','latex')

62 title ([ '$\omega^2=$ ' num2str(omega_db) ' dB, ' 'JNR = '

num2str(jnr_db)...↪→

63 ' dB, ' '$P_{tb}=$ ' num2str(P_tb)],'FontSize', 8, 'interpreter',

'latex');↪→

64 marker_style = ['s', '<', 'o', '+', '>', 'v', ];

65 for jj = 1: length (snr_db)

66 set(h1(2*jj-1),'Linestyle', '-' , 'Marker', marker_style (jj),

'Linewidth', 0.5, ...↪→

67 'MarkerEdgeColor','k',...

68 'MarkerFaceColor','w',...

69 'MarkerSize',3, ...

70 'Color', 'Red');

71 set(h1(2*jj),'Linestyle', ':', 'Marker', marker_style (jj),

'Linewidth', 0.5, ...↪→

72 'MarkerEdgeColor','k',...

73 'MarkerFaceColor','w',...

74 'MarkerSize',3, ...

75 'Color', 'Blue');

76 end

77 legend(main_legend, 'Location','southeast','FontSize', 8,'interpreter',

'latex');↪→

78 set(gca, 'TickLabelInterpreter','latex');

79 % End of main function

80 %%

81 function [F_db,Pb_found] = compute_F_SW1(Pb_desired, jnr_db, beta_db)

82 beta = db2pow(beta_db); % beta in linear scale

83 jnr = db2pow (jnr_db);

84 tolerance= Pb_desired/1e5; % Tolerance value for computation of

85 initial = 0.000001; % ?nitial value for bisection search

86 final= 200; % Final value for bisection search

87 Pb = @(F) 0.5.*(1-

(1./(1+F)).*(jnr.*(F-beta)-F-1)./sqrt((jnr.*(F-beta)+F+1).^2+

4.*jnr.*(F+1).*beta) -

(F./(1+F)).*(jnr*(F-beta)+F+1)./sqrt((jnr*(F-beta)-F-1).^2+

4*jnr*(F+1).*F));

↪→

↪→

↪→

↪→

88 initial_Pb = Pb(initial);

89 error = initial_Pb - Pb_desired;

90 while abs(error) > tolerance;

91 F_linear = 0.5*(initial + final);

92 if Pb(F_linear) >= Pb_desired

93 initial = F_linear;

94 else

95 final = F_linear;

96 end

97 error = Pb(F_linear) - Pb_desired;
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98 end

99 F_db = 10*log10(F_linear);

100 Pb_found = Pb(F_linear);

101 %*****************
102 function [Q] = compute_Q_matrix (snr_db, jnr_db, omega_db, beta_db)

103 %[Q] = compute_Q_matrix (snr_db, jnr_db, omega_db, beta_db)

104 beta = db2pow(beta_db); % beta in linear scale

105 omega = db2pow(omega_db); % omega in linear scale

106 jnr = db2pow (jnr_db); % JNR in linear scale

107 snr = db2pow (snr_db); % SNR in linear scale

108 % Compute covariance matrices

109 C1 = [ (snr +1), sqrt(omega)*snr; sqrt(omega)*snr, (omega*snr +1)];

110 C2 = [ (jnr +1), sqrt(beta)*jnr; sqrt(beta)*jnr, (beta*jnr +1)];

111 Q = inv(C1) - inv(C2);

112 %*****************
113 function [a, b] = compute_hypothesis_a_b (hypothesis, Q, snr_db, jnr_db,

omega_db, beta_db)↪→

114 % [a, b] = compute_hypothesis_a_b (hypothesis, Q, snr_db, jnr_db, omega_db,

beta_db)↪→

115 beta = db2pow(beta_db); % beta in linear scale

116 omega = db2pow(omega_db); % omega in linear scale

117 jnr = db2pow (jnr_db); % JNR in linear scale

118 snr = db2pow (snr_db); % SNR in linear scale

119 % Compute covariance matrices

120 C1 = [ (snr +1), sqrt(omega)*snr; sqrt(omega)*snr, (omega*snr +1)];

121 C2 = [ (jnr +1), sqrt(beta)*jnr; sqrt(beta)*jnr, (beta*jnr +1)];

122 if hypothesis == 'H1'

123 R = C1/2;

124 else

125 R = C2/2;

126 end

127 r = sum(sum(R.*Q))/(-4*det(R)*det(Q));

128 a = sqrt(r^2+1/(-4*det(R)*det(Q))) - r ;

129 b = sqrt(r^2+1/(-4*det(R)*det(Q))) + r ;

130 %*****************
131 function [eta, threshold] = compute_threshold (P_b, a, b)

132 threshold = b/(a+b);

133 if P_b <= threshold

134 eta = -(log((P_b*(a + b))/b) )/a;

135 else

136 eta = (log(-((a + b)*(P_b - 1))/a) )/b;

137 end

138 %*****************
139 function Pb_temp = compute_Pb_new (a_temp, b, eta_temp)

140 f1 = @(x)(b/(a_temp+b)*exp(-a_temp.*x));

141 f2 = @(x)(a_temp/(a_temp+b))*(1-exp(b.*x))+b/(a_temp+b);

142 Pb_temp = zeros (size(eta_temp));

143 for i = 1: length (eta_temp)

144 if eta_temp(i) >= 0

145 Pb_temp(i) = f1 (eta_temp(i));
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146 else

147 Pb_temp(i) = f2 (eta_temp(i));

148 end

149 end

150 %*****************
151 function Pb = compute_Pb_classic_SW1 (F_db, jnr_db, beta_db)

152 beta = db2pow(beta_db); % beta in linear scale

153 jnr = db2pow (jnr_db); % JNR in linear scale

154 F = db2pow (F_db); % F in linear scale

155 Pb_formula = @(F, jnr, beta) 0.5.*(1-

(1./(1+F)).*(jnr.*(F-beta)-F-1)./sqrt((jnr.*(F-beta)+F+1).^2+

4.*jnr.*(F+1).*beta) - ...

↪→

↪→

156 (F./(1+F)).*(jnr*(F-beta)+F+1)./sqrt((jnr*(F-beta)-F-1).^2+

4*jnr*(F+1).*F));↪→

157 Pb = Pb_formula (F, jnr, beta);
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