
MODELING AND CODE GENERATION FOR A REFERENCE SOFTWARE
ARCHITECTURE FOR NAVAL PLATFORM COMMAND AND CONTROL

SYSTEMS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

NAFİYE KÜBRA TURHAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

SEPTEMBER 2017

Approval of the thesis:

MODELING AND CODE GENERATION FOR A REFERENCE SOFTWARE
ARCHITECTURE FOR NAVAL PLATFORM COMMAND AND CONTROL

SYSTEMS

submitted by NAFİYE KÜBRA TURHAN in partial fulfillment of the requirements
for the degree of Master of Science in Computer Engineering Department, Mid-
dle East Technical University by,

Prof. Dr. Gülbin Dural Ünver
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Adnan Yazıcı
Head of Department, Computer Engineering

Prof. Dr. Halit Oğuztüzün
Supervisor, Computer Engineering Department, METU

Examining Committee Members:

Prof. Dr. Ahmet Coşar
Computer Engineering Department, METU

Prof. Dr. Halit Oğuztüzün
Computer Engineering Department, METU

Prof. Dr. Ferda Nur Alpaslan
Computer Engineering Department, METU

Assoc. Prof. Dr. Pınar Karagöz
Computer Engineering Department, METU

Assist. Prof. Dr. Hacer Yalım Keleş
Computer Engineering Department, Ankara University

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: NAFİYE KÜBRA TURHAN

Signature :

iv

ABSTRACT

MODELING AND CODE GENERATION FOR A REFERENCE SOFTWARE
ARCHITECTURE FOR NAVAL PLATFORM COMMAND AND CONTROL

SYSTEMS

Turhan, Nafiye Kübra

M.S., Department of Computer Engineering

Supervisor : Prof. Dr. Halit Oğuztüzün

September 2017, 104 pages

Many software teams who work in a particular domain develop software products

compliant with a specific Reference Software Architecture. By adopting a Reference

Software Architecture within an organization, software development schedule tend to

shorten, efficiency of software development process and quality of software product

tend to increase.

Architectures of all application software that are developed by Sea Defense Systems

Software Team are created based on a predefined Reference Software Architecture

named Sea Defense Systems Reference Software Architecture (DSS-RSA). In this

thesis, we propose a Model Driven Engineering approach to enforce the Reference

Software Architecture and to facilitate the process of transition from architectural

design of application software to implementation. In this approach, we create a meta-

model for describing DSS-RSA. Then, we define a domain specific graphical model-

ing language based on the metamodel. In the last stage, models that are created by

using the domain specific graphical modeling language are automatically transformed

v

to skeleton code. The approach has been evaluated on a case study.

Keywords: Model Driven Engineering, Reference Software Architecture, Domain

Specific Graphical Modeling Language, Automatic Code Generation, Model to Text

Transformation

vi

ÖZ

DENİZ PLATFORMU KOMUTA KONTROL SİSTEMLERİ REFERANS
YAZILIM MİMARİSİ İÇİN MODELLEME VE KOD ÜRETİMİ

Turhan, Nafiye Kübra

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Halit Oğuztüzün

Eylül 2017 , 104 sayfa

Belli bir alanda çalışan birçok yazılım ekibi özel bir Referans Yazılım Mimarisi ile

uyumlu yazılım ürünleri geliştirmektedir. Bir organizasyon içinde özel bir Referans

Yazılım Mimarisinin benimsenmesi sonucunda, yazılım geliştirme takvimi kısalma

eğilimi gösterirken, yazılım geliştirme sürecinin etkinliği ve yazılım ürünlerinin kali-

tesi artma eğilimindedir.

Deniz Savunma Sistemleri Yazılım Ekibi tarafından geliştirilen tüm uygulama yazı-

lımlarının mimarileri, Deniz Savunma Sistemleri Referans Yazılım Mimarisi (DSS-

RSA) olarak adlandırılan önceden tanımlanmış bir Referans Yazılım Mimarisine da-

yanarak oluşturulmuştur. Bu tezde, uygulama yazılımlarının mimari tasarımından,

kodlanmasına geçiş sürecini kolaylaştırmak ve yazılımların Referans Yazılım Mima-

risi ile uyumlu olarak geliştirilmesini sağlamak için bir Model Güdümlü Mühendislik

yaklaşımı önerilmektedir. Bu yaklaşımda, DSS-RSA’yı tanımlamak için bir metamo-

del oluşturulmuştur. Ardından, metamodele dayanan alana özgü bir grafiksel model-

leme dili tanımlanmıştır. Son aşamada, alana özgü grafiksel modelleme dili kullanı-

vii

larak oluşturulan modeller otomatik olarak iskelet koda dönüştürülmüştür. Önerilen

yaklaşım bir vaka çalışması üzerinde değerlendirilmiştir.

Anahtar Kelimeler: Model Güdümlü Mühendislik, Referans Yazılım Mimarisi, Alana

Özgü Grafiksel Modelleme Dili, Otomatik Kod Üretme, Modelden Metine Dönüş-

türme

viii

To my lovely family

ix

ACKNOWLEDGMENTS

I would first like to thank and express my gratitude to my thesis advisor Prof. Dr.

Halit Oğuztüzün for his encouragement, supervision and guidance throughout the

research.

I also would like to thank ASELSAN A.Ş. for giving me the opportunity of continuing

my education. I wish to express sincere appreciation to my colleagues and seniors in

my department for their support.

I wish to thank to my supportive friends and all people who have helped and inspired

me during my thesis study.

Finally, I have no suitable word to express my deepest gratitude to my family for their

support in every aspect of my life. I am indebted to my mother Emine Turhan and my

father Mustafa Turhan for their care and everlasting love to me. My sister Fatmanur

Turhan and my brother Hasan Turhan thanks for their love, trust, understanding and

every kind of support throughout my life.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xv

LIST OF FIGURES . xvi

LIST OF ABBREVIATIONS . xx

CHAPTERS

1 INTRODUCTION . 1

1.1 Motivation . 2

1.2 Contributions . 3

1.3 Thesis Organization . 4

2 RELATED WORK . 7

2.1 Model Driven Engineering 7

2.2 Correspondence between Reference Architectures and Meta-
models . 9

2.3 Reference Architecture Metamodeling 10

3 DSS REFERENCE SOFTWARE ARCHITECTURE AND SOFTWARE
FRAMEWORK GENERATOR . 13

xi

3.1 DSS Reference Software Architecture 13

3.1.1 Software Development Rules According to DSS
Reference Software Architecture 16

3.1.1.1 Manager Concept 16

3.1.1.2 Data Store Concept 17

3.1.1.3 Communication Mechanism Between
Managers 17

3.1.1.4 Communication Mechanism Between
Components 17

3.2 DSS Software Development Framework Generator 18

4 METAMODEL FOR DSS REFERENCE SOFTWARE ARCHITEC-
TURE . 21

4.1 Metamodeling Concept . 22

4.2 Metamodeling Language Concept 23

4.3 DSS-RSA Metamodel . 24

4.4 Mapping from DSS-RSA to Metamodel 26

5 STATIC SEMANTIC RULE DEFINITION WITH OCL 31

5.1 OCLinEcore Editor . 32

5.2 OCL Naming Constraints 33

5.3 OCL Cardinality Constraints 35

5.4 OCL Element Usage Constraints 35

5.5 OCL Servis Element Usage Constraints 37

5.6 OCL IsYonetici Element Constraints 38

5.7 OCL IsBileseni Element Constraints 38

5.8 OCL KaYonetici Element Constraints 39

xii

5.9 OCL KaBileseni Element Constraints 40

5.10 OCL ArayuzKay Element Constraints 40

5.11 OCL Olay Element Constraints 41

5.12 OCL Servis Element Constraints 41

5.13 OCL VeriDeposu Element Constraints 42

6 CONCRETE SYNTAX DEFINITION 45

6.1 GMF Domain Model . 47

6.2 EMF Generator Model . 47

6.3 GMF Graphical Definition Model 47

6.4 GMF Tooling Definition Model 48

6.5 GMF Mapping Model . 48

6.6 GMF Generator Model . 49

7 CODE GENERATION . 51

7.1 Creating Xpand Project . 52

7.2 Code Generator for ArayuzKay Elements 53

7.3 Code Generator for KaYonetici Elements 54

7.4 Code Generator for KaBileseni Elements 58

7.5 Code Generator for IsYonetici Elements 60

7.6 Code Generator for IsBileseni Elements 63

7.7 Code Generator for Veri Elements 65

7.8 Code Generator for Olay Elements 67

7.9 Code Generator for Servis Elements 67

8 CASE STUDY AND EVALUATION 71

xiii

8.1 Case Study: Acoustic Modem Application Software 71

9 CONCLUSION . 79

REFERENCES . 83

APPENDICES

A DEVELOPING DOMAIN MODEL AS EMF ECORE MODEL . . . 87

A.1 Creating EMF Project . 87

B GMF TOOLING WORKFLOW . 91

B.1 Creating GMF Project . 91

B.2 Developing Domain Model 92

B.3 Developing Graphical Definition Model 92

B.4 Developing Tooling Definition Model 94

B.5 Developing Mapping Model 97

B.6 Creating Generator Model and Diagram Plug-in 98

xiv

LIST OF TABLES

TABLES

Table 4.1 Modeling concept table for DSS-RSA 24

Table 8.1 Generation details for each element of DSS-RSA 75

Table 8.2 Manual and Automatic Development (Proposed Approach) Times

for each element of DSS-RSA . 76

xv

LIST OF FIGURES

FIGURES

Figure 2.1 Process and technologies adopted by [1] to define model driven

fast prototyping approach and resulting tool support 11

Figure 3.1 DSS Reference Software Architecture layers 14

Figure 3.2 DSS-Factory process schema . 19

Figure 4.1 Metamodeling levels [2] . 22

Figure 4.2 DSS-RSA Metamodel . 29

Figure 5.1 Some OCL constraints defined in OCLinEcore editor 33

Figure 5.2 OCL naming constraints . 33

Figure 5.3 OCL cardinality constraint . 35

Figure 5.4 OCL element usage constraints 35

Figure 5.5 OCL Servis element usage constraints 37

Figure 5.6 OCL IsYonetici element constraints 38

Figure 5.7 OCL IsBileseni element constraint 39

Figure 5.8 OCL KaYonetici element constraints 39

Figure 5.9 OCL KaBileseni element constraint 40

Figure 5.10 OCL ArayuzKay element constraint 41

xvi

Figure 5.11 OCL Olay element constraint . 41

Figure 5.12 OCL Servis element constraints 42

Figure 5.13 OCL VeriDeposu element constraints 42

Figure 6.1 Graphical notation introduces symbols for the modeling concepts,

adapted from [2] . 45

Figure 6.2 GMF-Tooling Workflow, adapted from [3] 46

Figure 7.1 Xpand Project . 52

Figure 7.2 An example code segment generated for a ArayuzKay Element . . 54

Figure 7.3 An example code segment generated for a KaYonetici Element . . . 58

Figure 7.4 An example code segment generated for a KaBileseni Element . . . 60

Figure 7.5 An example code segment generated for a IsYonetici Element . . . 64

Figure 7.6 An example code segment generated for a IsBileseni Element . . . 65

Figure 7.7 An example code segment generated for a Veri Element whose tip

attribute value is Class . 66

Figure 7.8 An example code segment generated for a Veri Element whose tip

attribute value is Enum . 67

Figure 7.9 An example code segment generated for a Olay Element 68

Figure 7.10 An example code generated for a Servis Element whose tip at-

tribute value is Isy . 69

Figure 7.11 An example code generated for a Servis Element whose tip at-

tribute value is Kay . 69

Figure 8.1 Properties View to edit DSS-RSA elements 72

Figure 8.2 Application model for Acoustic Modem Application Software . . . 73

xvii

Figure 8.3 Validating application architecture model 74

Figure 8.4 Validation problems of the application architecture model 74

Figure 8.5 Successful validation of the application architecture model 74

Figure A.1 Creating new Ecore Modeling Project: enter a project name 87

Figure A.2 Creating new Ecore Modeling Project: define the model settings . . 88

Figure A.3 Creating new Ecore Modeling Project: select viewpoints to activate 88

Figure A.4 Design area and palette of Ecore modeling editor 89

Figure A.5 DSS-RSA Domain Model . 90

Figure B.1 GMF Dashboard . 91

Figure B.2 Overview of the project after Domain Gen Model is created 93

Figure B.3 Graphical Definition Model creation wizard: select Domain Model 93

Figure B.4 Graphical Definition Model creation wizard: specify basic graphi-

cal definition of the Domain Model Part 1 94

Figure B.5 Graphical Definition Model creation wizard: specify basic graphi-

cal definition of the Domain Model Part 2 95

Figure B.6 Graphical Definition Model creation wizard: specify basic graphi-

cal definition of the Domain Model Part 3 95

Figure B.7 Setting RGB colors of Figures in Graphical Definition Model by

using properties view . 96

Figure B.8 Tooling Definition Model creation wizard: select Domain Model . 97

Figure B.9 Tooling Definition Model creation wizard: specify basic tooling

definition of the Domain Model . 98

xviii

Figure B.10Updating Tool Groups in Tooling Definition Model by using prop-

erties view . 99

Figure B.11Mapping Model creation wizard: load Domain Model and select

element for canvas mapping . 100

Figure B.12Mapping Model creation wizard: load Tooling Definition Model

and select diagram palette for canvas mapping 100

Figure B.13Mapping Model creation wizard: load Graphical Definition Model

and select diagram canvas for canvas mapping 101

Figure B.14Mapping Model creation wizard: map Domain Model elements . . 101

Figure B.15Mapping Model . 102

Figure B.16Generator Model creation wizard: load Mapping Model 102

Figure B.17Generator Model creation wizard: load GenModel 103

Figure B.18Generator Model creation wizard: specify transformation options . 103

Figure B.19Activating OCL constraints on Generator Model 104

Figure B.20GMF Diagram Editor . 104

xix

LIST OF ABBREVIATIONS

ATL Atlas Transformation Language

C2 Command and Control

DSL Domain Specific Language

DSS Sea Defense Systems

DSS-RSA Sea Defense Systems Reference Software Architecture

DSS-Factory Sea Defense Systems Software Development Framework Gen-

erator

EMF Eclipse Modeling Framework

GMF Graphical Modeling Framework

GUI Graphical User Interface

HTML Hypertext Markup Language

JET Java Emitter Templates

JS JavaScript

KKYTM Command and Control Software Design Department

MDE Model Driven Engineering

MOF Meta Object Facility

MVC Model-View-Controller

MVC-RIA Model-View-Controller Rich Internet Application

M2T Model to Text

oAW openArchitectureWare

OMG Object Management Group

PDE Plug-in Development Environment

OCL Object Constraint Language

PIMM Platform Independent Metamodel

xx

PSMM Platform Specific Metamodel

RIA Rich Internet Application

RSA Reference Software Architecture

SMC State Machine Compiler

SQL Structured Query Language

SST Defense System Technologies

UML Unified Modeling Language

UWA Ubiquitous Web Application

WST Web Standard Tools

xxi

xxii

CHAPTER 1

INTRODUCTION

As the structural complexity and size of software systems increase, the need for im-

proving productivity of software development process in terms of quality, time and

cost also increases. It is difficult to deliver a software product that works correctly

and efficiently in a limited time. Recently, software engineering world overcome this

challenge by strengthening the efficiency of software development process. Since

software architecture is the backbone of a successful software and the key element

that determines the quality of a software, it is being thoroughly investigated. To

achieve quality aspects of software, the research area of software architecture has

grown up and has accumulated important knowledge [4]. In the light of the obtained

knowledge, Reference Software Architectures started to be used in software systems

to develop better quality software products in a fast and effective way. By adopt-

ing a Reference Software Architecture within an organization, software development

schedule tend to shorten, efficiency of software development process and quality of

software product tend to increase [5].

Reference Software Architecture is a type of generic software architecture. It accu-

mulates the founding principles, underlying methodology and the architectural prac-

tices that are recognized by the domain experts as the best solution [6]. Reference

Software Architectures comprise a family of software architectures for a specific do-

main. Concrete software architectures are instantiated from Reference Software Ar-

chitectures. It provides standardized and systematic reuse of knowledge, components

and core assets for the development of a concrete software architecture for a particular

software product [7], [8].

However defining a Reference Software Architecture is not enough. Software teams

1

who create particular architectural designs compliant with a predefined Reference

Software Architecture spend a big portion of their time on implementation. Further,

developers must ensure the architecture compliance of a software product. In some

cases architecture erosion problem occurs. The architecture erosion problem is de-

fined as the discrepancy between the architecture description and the resulting imple-

mentation [9]. Software systems can change over time: bug fixes can be done or new

features can be added. Such changes can result in architecture erosion problem. Fur-

thermore, implementation of software may diverge from original architectural design

due to short development deadlines or inexperienced developers in the architectural

design. In such cases, it becomes difficult to further develop, maintain or under-

stand the code and advantage of well designed architecture is lost. Inconsistencies

emerged at the beginning of the implementation have great importance. Making the

implementation compliant with the software architecture becomes hard and costly

due to the divergence of implementation from architectural design. In some cases

these problems can lead to re-implementing the complete system or at the end of the

software development lifecycle, erroneous, costly and poor quality software product

may be delivered to customer [10].

Sea Defense Systems (DSS) Software Team in Command and Control Software De-

sign Department (KKYTM) of Defense System Technologies (SST) division in ASEL-

SAN Inc. creates architectural designs of all application software in compliance with

a predefined Reference Software Architecture named as Sea Defense Systems Refer-

ence Software Architecture (DSS-RSA). In this thesis, we propose a Model Driven

Engineering approach to enforce the Reference Software Architecture and to facilitate

the process of transition from architectural design of application software to imple-

mentation. We describe benefits of our approach. Preliminary results of this thesis

has been presented in [11].

1.1 Motivation

DSS Software Team develops software in the fields of above-water and underwater

platforms of weapon/sensor control systems, decision support systems, sonar sys-

tems, fire control systems and other naval command and control (C2) systems and

2

components. They use a predefined Reference Software Architecture for their ar-

chitectural designs, namely DSS Reference Software Architecture (DSS-RSA). DSS-

RSA is defined by DSS Software Team as a common architectural structure to sup-

port the development of individual software products. But developers spend a lot of

time on implementation after architectural design is done. Occasionally, there may

be cases where the software architectural design of individual applications is non-

compliant with Reference Software Architecture or it is compliant with Reference

Software Architecture structurally, but implementation of software does not follow

the architectural guidelines. For these reasons, developers of DSS Software Team

need to perform architectural design of a new project in compliance with the Refer-

ence Software Architecture, carry out implementation compliant with the architec-

tural design and minimize the time spent for implementation.

To ensure Reference Software Architecture compliance of architectural design, pre-

vent architecture erosion problem and shorten development time, we put forth a

Model Driven Engineering approach. In this approach we:

• Develop a metamodel of Reference Software Architecture put forth by DSS

Software Team (DSS-RSA)

• Define Object Constraint Language (OCL) constraints for DSS-RSA Meta-

model

• Define graphical concrete syntax based on the DSS-RSA Metamodel and de-

velop a graphical modeling editor

• Create models by using graphical modeling editor

• Develop a code generation mechanism using Xpand template language

• Generate skeleton codes by using code generation mechanism and models

1.2 Contributions

The main contributions of this thesis are as follows:

• A Model Driven Engineering approach to automate the transition process from

3

architectural design which is compliant with the predefined Reference Software

Architecture to implementation for the DSS Team Software Projects is devised.

• A graphical tool is developed in order to enable the users to do architectural

designs in compliance with the predefined Reference Software Architecture,

namely DSS-RSA. In other words, Reference Software Architecture compli-

ance of software architecture is promoted.

• Through automatic code generation, architecture erosion problem is largely

prevented and architecture compliance of software implementation is promoted.

• Time spent to develop the software is reduced significantly through automatic

generation of software framework.

• The quality of the delivered software is enhanced because there will be no errors

resulting from non-compliance to the Reference Software Architecture.

1.3 Thesis Organization

The rest of this thesis is organized as follows:

Chapter 2 presents the related work on Model Driven Engineering techniques, Refer-

ence Architectures and Reference Architecture Metamodeling.

Chapter 3 describes the Reference Software Architecture put forth by DSS Software

Team and its layers. In addition, a mechanism for software framework generation

used by DSS Software Team is presented in the rest of Chapter 3.

In Chapter 4, metamodeling concept, metamodeling language concept, DSS-RSA

Metamodel and mapping from DSS-RSA to Metamodel are described.

In Chapter 5, OCLinEcore Editor and defined Object Constraint Language (OCL)

constraints for DSS-RSA Metamodel are explained in detail.

Chapter 6 presents the graphical concrete syntax definition based on the DSS-RSA

Metamodel.

4

In Chapter 7, the code generation mechanism using Xpand template language is de-

scribed.

In Chapter 8, conducted case study and evaluation of results are presented.

In Chapter 9, discussion and conclusion are presented. The work to be done in the

future is mentioned.

5

6

CHAPTER 2

RELATED WORK

Reference Software Architecture, Model Driven Engineering and Automatic Code

Generation are important topics in Software Engineering community and many re-

search studies have been published on these topics in recent years. In this chapter, we

summarize some of these recent works that are related to the study we described in

this thesis. In Section 2.1, the studies which use Model Driven Engineering tecniques

are mentioned. In Section 2.2, a study that propose correspondence between Refer-

ence Architectures and Metamodels is described. In Section 2.3, studies on Reference

Architecture Metamodeling are mentioned.

2.1 Model Driven Engineering

Trojanek [12] apply a Model Driven Engineering approach to design domain-specific

solutions for subsumption based robot control system development. The study in [12]

identifies the modeling concepts, creates subsumption control architecture metamodel

and defines OCL expressions. Additionally, in the same study, a graphical notation

editor using Eclipse Modeling Framework (EMF) Project is developed to allow the

designer to specify the structure of the control system. After the model definition

with graphical notation editor, about 1800 lines of skeleton Ada code of the robot

control system application are generated automatically by applying model to code

transformation with Eclipse Acceleo.

Altunbay et al. [13] describe a Model Driven Engineering approach in order to in-

crease the productivity of computer games design and development. [13] introduce

a metamodel using Meta Object Facility (MOF) metalanguage and extension mech-

7

anism of the Unified Modeling Language (UML) metamodel and provide a Domain

Specific Language for board game domain. In the same study, static sematic rules via

OCL expressions are defined and two example board game model (Chess game model

and Backgammon game model) are provided. The study in [13] does model to model

transformation via Atlas Transformation Language from Board Game metamodel to

Video Game metamodel and model to text transformations from Chess game model

to Java source code by applying three different methods via MOFScript tool which

is an implementation of the MOFScript model to text transformation language, via

OpenArchitectureWare (oAW) tool and via Xpand language.

In [14], the authors propose a Model Driven Engineering approach for fast prototyp-

ing of Rich Internet Applications (RIAs). They use well known Model Driven En-

gineering frameworks and technologies including Eclipse EMF, GMF and Xpand2.

The authors define two metamodels, the first of which enables designing a RIA at a

conceptual level using the Ubiquitous Web Application (UWA) design methodology

and the other one is a Model-View-Controller RIA (MVC-RIA) metamodel adopting

the Model-View-Controller (MVC) architectural design pattern and RIA widgets for

the user interface. In the same study, the authors develop a UWA Graphical Model

Editor to define the conceptual model and use Atlas Transformation Language (ATL)

transformation rules to automatically transform the UWA conceptual model into the

MVC-RIA design model. MVC-RIA design model can be customized and refined

using a MVC Graphical Model Editor. After the design refinement step, developers

do model to text transformation via Xpand to generate source code (HTML/JS re-

sources, Java source code, SQL scripts, and project metadata) of a ready-to-deploy

prototype of the application that uses the RichFaces Framework. The authors also

develop a case study to validate the proposed approach and design and implement an

e-commerce RIA named e-Market. e-Market application is ready to be deployed on a

Tomcat 7.0 application server using a MySQL database for data persistency.

Saritas and Kardas [15] propose a Model Driven Engineering approach that ease the

development of smart card software. They define a Platform Independent Metamodel

(PIMM) for smart card systems and two smart card Platform Specific Metamodels

(PSMM) which are Java Card and ZeitControl Basic Card metamodels. Platform in-

dependent and platform specific metamodels are defined by using Ecore metamodel

8

included in the Eclipse Modeling Framework. Model constraints are implemented

with OCL. To model the smart card elements and their relationships graphically, they

develop modeling editors for both platform specific and platform independent meta-

models by using Eclipse Graphical Modeling Framework (GMF). Developers design

smart card models according to the platform independent metamodel by using graph-

ical modeling editor. Then these models are transformed into the models of smart

card execution platform such as JCF or Basic Card environment (model-to-model

transformation between instances of platform independent metamodel and platform

specific metamodel). They use ATL for model transformations. They perform model-

to-text transformations between platform specific metamodel instances obtained from

model-to-model transformation and software code by using the MOFScript. Develop-

ers can also design smart card models in the platform specific level by using platform

specific graphical modeling editors and use these models as the direct input for model-

to-text transformation to generate program code in Java and ZC-Basic Languages. In

the end, they realize the same smart card system on different execution platforms

and provide easy development of smart card software saving the developers from the

tedious and error-prone work.

Eloumri [16] does a case study by using GMF for the creation of a graphical dia-

gram editor. This graphical diagram editor is developed for State Machine Compilers

(SMC). Domain model of SMC is created as EMF Ecore Model. Graphical con-

crete syntax is developed by using Eclipse GMF. SMC model instances created by

the graphical diagram editor is transformed into SMC source code. Model to text

transformation is done by using the Java Emitter Templates (JET) which is a part of

Eclipse M2T project. Strengths and weaknesses of GMF observed during the case

study are listed.

2.2 Correspondence between Reference Architectures and Metamodels

Graciano Neto et al. [7] carry out a Systematic Literature Review that shows there

is a need for advances regarding Reference Architecture representation and tools to

manipulate models. [7] claim that metamodels and Reference Architectures are cor-

respondent in a conceptual level and Model Driven Engineering techniques, frame-

9

works, processes and methods can also be used in Reference Architecture manage-

ment. They compare characteristics of metamodels and Reference Architectures, both

are abstract models that concrete models can be derived from. Both are seperated in

views. Specific diagrams are used to model their views and there is a need for both to

check the conformance between the concrete and the abstract model.

2.3 Reference Architecture Metamodeling

There are some studies that create metamodel of a Reference Architecture and apply

Model Driven Engineering techniques for software development, for example [17]

and [1].

Miksovic and Zimmermann [17] propose a domain-specific decision knowledge pro-

cessing solution to cover the requirements of complex strategic outsourcing solutions

design. Firstly they determine a set of architecturally significant requirements. Then,

they developed conceptual reference architecture from the requirements. Finally, they

design a decision process-oriented metamodel by using the reference architecture.

This metamodel defines a Domain Specific Language (DSL) as a workflow language

that provides certain concepts which allow to model and configure a decision guid-

ance system. They also generated a tool that allows knowledge engineers to model

detailed design variations and the relationships between them. In the end, solution de-

sign decisions can be managed effectively and they become comparable by detecting

deviations from standards and best practices.

Bernardi et al. [1] propose an approach for the model driven fast prototyping of Web

Applications in order to reduce the risk of rework during software development and

increase the code reusability and quality. [1] chooses a reference architecture along

with MVC architectural design pattern and JavaServer Faces technology platform for

Web Application development. [1] creates the metamodel of reference architecture

and a graphical editor is developed to create, view, and edit models which are instan-

tiated from the defined metamodel. Then, [1] defines model to text transformation

rules to automatically transform models defined using the developed graphical editor

into source code conforming to the chosen reference architecture and platform. In

10

Figure 2.1 adopted process and technologies and developed tool support by [1]] is

shown. To define the metamodel the Eclipse EMF, to develop the graphical editor

Adopted Process
Adopted Technologies

Developed Tool Support

-Graphical modeling tool
- Tool for automatic code gen

Defining a Metamodel for Web

Developing a Graphical Modeling

Tool for Defined Metamodel

Developing a Tool for Automatic

Code Generation starting from Models

Eclipse Modeling Framework

(EMF)

Eclipse Graphical Modeling

Framework (GMF)

Eclipse PDE, Xpand2,

Eclipse WST, Maven

Applications Design

Figure 2.1: Process and technologies adopted by [1] to define model driven fast pro-

totyping approach and resulting tool support

Eclipse GMF, to validate correctness of the generated models, OCL is used by [1].

[1] chooses the Xpand template language for code generation (HTML/JS resources,

Java source code, SQL scripts and project metadata), because of its excellent support

of EMF metamodels. [1] develops a case study that automatically generate the proto-

type of a simple Web Application for on-line note taking and sharing. The resulting

Web Application is ready to be deployed on a servlet container like Apache Tomcat,

using MySQL as Database Management System for data storage. [1] generates fully

functioning prototype of Web Application automatically and rapidly. In the end of

the study, design refinement process is simplified, verifying and validating the design

is made possible.

11

12

CHAPTER 3

DSS REFERENCE SOFTWARE ARCHITECTURE AND SOFTWARE

FRAMEWORK GENERATOR

DSS Software Team develops software products using Reference Software Architec-

ture in the fields of surface and underwater platforms, weapon/sensor control systems,

decision support systems, sonar systems, fire control systems and so on.

In this chapter, DSS Reference Software Architecture and Software Framework Gen-

erator is described. Firstly, in Section 3.1, Reference Software Architecture put forth

by DSS Software Team and its layers are given in detail. In Section 3.2, a mechanism

for software framework generation used by DSS Software Team is presented.

3.1 DSS Reference Software Architecture

DSS Reference Software Architecture (DSS-RSA) is defined as a common architec-

ture to support the development of individual software products. DSS-RSA involves

high-level definitions that are going to be used in software development. DSS-RSA is

a general architecture and can be used by different domains. DSS-RSA is defined by

adapting an architecture that Microsoft offers to .NET developers. This widely used

and trusted architecture helps developers build effective, high quality applications

more quickly and with less risk [18].

Architectures of all software that are developed by DSS Software Team are created

based on this Reference Architecture. DSS-RSA offers a layered architecture and

directives for the new software to be compliant with this layered structure. Figure 3.1

shows conceptual architecture definition of DSS-RSA.

13

T
O

O
L
S

S
O

F
T

W
A

R
E

IN
F

R
A

S
T

R
U

C
T

U
R

E
C

O
M

P
O

N
E

N
T

S

USER INTERFACE COMPONENTS

USER INTERFACE MANAGERS

BUSINESS MANAGERS BUSINESS COMPONENTS

B
U

S
IN

E
S

S
 O

B
J
E

C
T

S

User Interface Layer

Business Layer

ABSTRACTION COMPONENTS

APPLICATION

Figure 3.1: DSS Reference Software Architecture layers

In Figure 3.1, the boxes in layers are called as Component. However, this should

not be construed as developing each of them as a component, but it would be more

appropriate to consider it as a piece of software. Descriptions of the components in

Figure 3.1 and their relationships with each other are given below:

Tools: These components involve software units that perform simple computational

functions that may be needed by all software components like unit conversion tools,

text formatting tools, object comparison/hashing tools, text operations tools.

Software Infrastructure Components: The basic function of Software Infrastruc-

ture Components is the Software Lifecycle Management. This component group

meets the requirements of other layers like localization management, data store man-

agement etc.

User Interface Components: These components involve software units that imple-

ment Graphical User Interface (GUI) classes. There are no functionality capabilities

in these components. Management of user interface functionality is handled by User

14

Interface Managers. User Interface Components have no dependency to managers

and any other components except the definitions inside the Business Objects. The

communication between User Interface Components and other parts of the software

is done through the interfaces which are implemented by User Interface Managers.

User Interface Managers: Controls of the operation of the user interface and com-

munication with the Business Managers are provided by the User Interface Managers.

By using User Interface Managers, functionality is separated from User Interface

Components completely, so there are no dependencies to User Interface Components.

It results in a more understandable code structure and User Interface Components are

not affected from changes in business logic.

Business Managers: The business logic of the software is managed by the Business

Managers. These components manage business logic and software workflow by using

Business Components and other software units. For example, a Business Manager for

a sensor performs operations like initiating and terminating the communication with

the sensor, receiving a data from the sensor, writing received data to the database,

sending data to other devices/units or displaying it on the user interface.

Business Components: These components have basic business capabilities. The

calculations and algorithms related to business logic are developed as Business Com-

ponents. As an example, capabilities like decoding of the data received from a sensor,

internal processing of the received data and encoding of data sent to the sensor can be

done by Business Components. Providing functionality by using these basic capabil-

ities is done by Business Managers.

Business Objects: The data structure definitions that are needed by all components of

the software are located under Business Objects. Event classes and the service defini-

tions that are used in communication inside software are also located under Business

Objects. When Object Relational Mapping is used for accessing the database, map-

ping classes to the database are also defined under Business Objects.

Abstraction Components: Abstraction Components are components that are not do-

main specific and capable of presenting abstractualized abilities independently of im-

plementation details. These components provide abstraction for low-level operations

15

that need direct interaction with the operating system, for instance:

• Printer operations

• Serial Bus Communication

• Usage of USB/CD/DVD for storage

• Accessing special ports like PIO

Application: Application layer includes classes that initialize all manager compo-

nents (User Interface Managers and Business Managers) according to their starting

levels and starts all operations. This layer also includes classes that contain codes

related to how the software handle faults that may be encountered during startup.

Usage of these components from all layers is not free. Detailed usage rules are given

under the section 3.1.1 covering the interaction in all layers.

3.1.1 Software Development Rules According to DSS Reference Software Ar-

chitecture

3.1.1.1 Manager Concept

Managers are the components responsible for managing software workflow that are

functionally grouped for the purposes of managing User Interface Components at the

User Interface layer or managing business workflows at the Business Layer.

Managers start with the start of the application and serve as long as it is not termi-

nated. The concept of starting and terminating can have different meanings for each

manager. Creating DDS subscribers and publishers for Business Manager responsi-

ble for DDS communication or reading the configuration file and creating the rele-

vant data structure for Business Manager responsible for the configuration operations

can be given as examples of the operations performed during the initialization of the

managers. During the termination, closing the opened files, terminating the network

communication, etc. can be performed by Business Managers.

16

3.1.1.2 Data Store Concept

Data Store is an infrastructure that is developed to meet the needs of multiple man-

agers sharing data and informing users of changes in data. Data stores can only be

accessed by managers. Almost all status in the software is kept in this infrastructure.

3.1.1.3 Communication Mechanism Between Managers

The data transfer and workflow between the manager components can be performed

in two different ways; asynchronous and synchronous.

Managers communicate synchronously via service interfaces with the method call.

At the start of the software, services that are served by managers are injected into

each manager via the relevant infrastructure component. When a manager needs to

communicate with another manager, it uses the relevant service.

Managers communicate asynchronously by using event based infrastructure. Another

mechanism for data transfer is data store.

3.1.1.4 Communication Mechanism Between Components

Communication mechanism between components of DSS-RSA is defined below:

• Tools can be used by all components except for Abstraction Components.

• Software Infrastructure Components can be used by all components except for

Abstraction Components.

• Business Objects can be used by all components except for Abstraction Com-

ponents.

• User Interface Components can not have any dependency to other components

except Business Objects and User Interface Manager Interfaces.

• Access to the corresponding User Interface Manager from the User Interface

Component can take place via the interface that User Interface Manager has

17

presented for User Interface Component.

• User Interface Manager is responsible for creating the instance of the User In-

terface Component and injecting the interface to the User Interface Component

during the creation process.

• There is no direct access to the Abstraction Layer from User Interface Managers

and User Interface Components. If there is a need for access in this direction,

it is done via the relevant Business Manager.

• Business Components can only be accessed from Business Managers.

• Communication of Business Managers with external interfaces of the software

or with operating system is made via a method call to the relevant Abstraction

Component.

• Since Abstraction Components are developed for general purpose by consider-

ing reusability, no dependency is placed from these components to other com-

ponents.

3.2 DSS Software Development Framework Generator

In addition to the source code based reusable entities, the DSS Software Team also

aims to reuse other entities in the software development process. Software Devel-

opment Framework Generator (DSS-Factory) contains the descriptions for how to

develop software by using the reusable entities. DSS-Factory descriptions aim to ac-

celerate the product development process and to guarantee the usage of the reusable

entities.

Reusable entities used in DSS Software Team are Reference Software Architecture

(DSS-RSA), Components (DSS-Component), Development Environment Infrastruc-

tures (DSS-DEI) and Knowledge Base (DSS-Knowledge Base). DSS-Factory deter-

mines how to gather these reusable entities. Developer of a software product uses the

descriptions defined in DSS-Factory at the starting point. After the requirements of an

application are specified, by using DSS-RSA descriptions architectural design is cre-

ated. Then, developer selects the needed reusable entities and initiates development

18

process of software framework. Figure 3.2 shows DSS-Factory process schema.

Requirements

DSS-Component DSS-DEI DSS-Knowledge Base

DSS-Factory

Software Framework

Architectural Design

DSS-RSA

Figure 3.2: DSS-Factory process schema

Descriptions of the reusable entities in Figure 3.2 are given below:

DSS-Component: Code segments developed by DSS-Software Team, which are

needed in two or more projects and do not contain any information specific to these

projects, are turned into components and re-used. DSS-Components consist of com-

mon system components. DDS Abstraction Component, Operating System Abstrac-

tion Component, Serial Channel Abstraction Component, Socket Abstraction Com-

ponent, External Device Access Component can be given as examples of DSS-Compo-

nent.

DSS-DEI: DSS Development Environment Infrastructure corresponds to definitions

used for team-wide sharing of the tools, technical standards and methods used in all

phases of the software development process. Guide documents describing the use

of infrastructures are prepared and template definitions are made to standardize the

usage. For example, DSS-DEI defines how to integrate issues that are not defined

in the SST Processes in the DSS projects for the use of relevant tools in the require-

19

ment management phase. In this way, the Requirement Management Infrastructure

is used with similar approaches and more effectively in all projects. DSS-DEI also

defines how to do the preparation of the integrated development environment, code

configuration control, automatic version generation, code documentation, etc.

DSS-Knowledge Base: Any information produced in DSS Software Team has been

accepted as reusable entity. In order to ensure the permanence of this information

DSS-Knowledge Base has been established. DSS-Knowledge Base corresponds to

the ready-made infrastructures for Software Engineering and Naval Defense Systems

application areas or to the infrastructures created for the storage and subsequent ac-

cess of the information produced as a result of the research conducted. Documents

created by the DSS Software team as well as useful information that is readily avail-

able are also stored in DSS-Knowledge Base. Training notes, articles, presentations,

thesis studies, research reports and standards can be given as examples of information

stored in DSS-Knowledge Base.

In the scope of this study, only the first phase of DSS-Factory is discussed, which is

automatic generation of skeleton codes after software architectural design is created

in compliance with DSS-RSA.

20

CHAPTER 4

METAMODEL FOR DSS REFERENCE SOFTWARE ARCHITECTURE

Reference Software Architecture is a special type of software architecture that can

be used to instantiate concrete software architectures. Reference Software Architec-

ture addresses a specific application domain whereas a concrete architecture is for a

particular product, application or system within that domain. Naval command and

control systems is a domain; a weapon-target assignment system of a warship is an

example system belonging to that domain.

According to the conducted studies in literature, there is a necessity for software tools

to support the Reference Software Architecture representation. Like Reference Soft-

ware Architectures, metamodels in Model Driven Engineering are used to represent

concrete models. There are a lot of tools and representation tecniques available for

Model Driven Engineering. Reference Software Architectures and metamodels are

similar concepts that both of which are abstract solutions for a family of concrete

models and concrete models can be derived from both of them. Thus, available tools

and representation techniques for metamodels can be used to support Reference Soft-

ware Architecture representation [7].

In this chapter, metamodeling concept, metamodeling language concept, DSS-RSA

Metamodel and mapping from DSS-RSA to Metamodel are described. Firstly, in

Section 4.1, metamodeling concept and metamodeling levels are presented. In Sec-

tion 4.2 metamodeling language concept and Eclipse EMF metamodeling language is

given. In Section 4.3, DSS-RSA Metamodel, its elements and relationships are given.

Lastly, in section 4.4 mapping from DSS-RSA to metamodel is described in detail.

21

4.1 Metamodeling Concept

In Model Driven Engineering, models play an important role and they are represented

as instances of some more abstract models. In the same way, models are abstraction

of real world entities. Figure 4.1 shows the levels of metamodeling. By using meta-

metamodel at M3 level, metamodel at M2 level can be defined. By using metamodel

at M2 level, models at M1 level can be instantiated [2].

Figure 4.1: Metamodeling levels [2]

Metamodels only define abstract syntaxes of the modeling languages that they rep-

resent. Abstract syntax describes modeling concepts (classes, attributes and associa-

tions) and their properties. Metamodels do not define the concrete syntax. Concrete

syntax is a notation in which graphical or textual elements are used to present the

model elements. To specify the concrete syntax, additional artifacts which refer to

the model elements are used. It is possible to define both graphical and textual con-

crete syntax for the same modeling language. Metamodels partially describe mod-

eling constraints. For example, cardinality constraints, association ends and types

for attributes can be defined by metamodel but more complicated constraints can not

22

be expressed. For example uniqueness of name of a model element can only be ex-

pressed by a constraint language [2].

4.2 Metamodeling Language Concept

Meta Object Facility (MOF) is a standard for metamodeling language which is de-

fined by Object Management Group (OMG). As well as MOF, there are various

languages and tools that support metamodeling and other modeling capabilities like

transformations (for example model-to-model or model-to-text), integration with the

software development process. Eclipse development environment is one of the promi-

nent tooling platform in Model Driven Engineering (MDE) world. It comprises pop-

ular components and tools for all modeling tasks. For MDD, the Eclipse Modeling

Framework (EMF) is the core technology in Eclipse development environment. EMF

is an open-source technology and good representative of MDD tools for reasons de-

scribed below [2].

• EMF uses Ecore metamodeling language to define metamodels

• EMF has code generation capabilities from metamodels

• EMF has Java-based API for manipulating models

• EMF provides tree-based modeling editors to build models.

• EMF has API to serialize and deserialize models to/from XMI. By this way

exchanges can be possible between tools supporting the same meta-metamodel.

In Figure 4.1, meta-metamodels at M3 level defines metamodeling languages that

specify metamodeling concepts used to define metamodels at M2 level. At M2 level,

metamodels represent modeling languages that specify modeling concepts used to

define models. While creating a metamodel, which defines abstract syntax of domain

specific modeling language, a metamodeling language is used.

23

4.3 DSS-RSA Metamodel

In this study, we create the metamodel of DSS Reference Software Architecture. To

create DSS-RSA metamodel, Ecore metamodeling language is used. DSS-RSA meta-

modeling process is started of with some elements of DSS-RSA and relationships

between these elements. As the first step, modeling concepts are determined.

Table 4.1 shows the modeling concept table that is transformable into an Ecore meta-
model.

Table 4.1: Modeling concept table for DSS-RSA

Concept Intrinsic Properties Extrinsic Properties

DSSML : EClass anaPaket : EString Arbitrary number of IsYonetici

Arbitrary number of KaYonetici

Arbitrary number of KaBileseni

Arbitrary number of ArayuzKay

Arbitrary number of IsBileseni

Arbitrary number of Veri

Arbitrary number of VeriDeposu

Arbitrary number of Olay

Arbitrary number of Servis

KaYonetici : EClass isim : EString One or more of KaBileseni defined

seviye : EInteger as ka

paket : EString One or more of ArayuzKay defined

aciklama : EString as arayuz

Arbitrary number of Olay defined

as yakalananOlay

Arbitrary number of Servis defined

as sunulanServis

Arbitrary number of Servis defined

as kullanilanServis

Arbitrary number of VeriDeposu defined

as aboneVd

24

Table 4.1 Continued

Concept Intrinsic Properties Extrinsic Properties

KaBileseni : EClass isim : EString One ArayuzKay defined as

paket : EString yoneticiArayuz

aciklama : EString

ArayuzKay : EClass isim : EString

paket : EString

aciklama : EString

IsBileseni : EClass isim : EString

paket : EString

aciklama : EString

Veri : EClass isim : EString

paket : EString

tip : VeriTipi

aciklama : String

VeriDeposu : EClass isim : EString One Veri as veri1

tip : VeriDeposuTipi Zero or One Veri as veri2

aciklama : EString

IsYonetici : EClass isim : EString Arbitrary number of Olay defined

seviye : EInteger as yakalananOlay

paket : EString Arbitrary number of Servis defined

aciklama : EString as sunulanServis

Arbitrary number of Servis defined

as kullanilanServis

Arbitrary number of VeriDeposu defined

as aboneVd

Servis : EClass isim : EString

tip : ServisTipi

aciklama : EString

Olay: EClass isim : EString

aciklama : EString

VeriDeposuTipi :EEnum Yapi : EEnumLiteral

Dizi : EEnumLiteral

25

Table 4.1 Continued

Concept Intrinsic Properties Extrinsic Properties

VeriTipi :EEnum Class : EEnumLiteral

Enum : EEnumLiteral

Interface : EEnumLiteral

ServisTipi :EEnum Isy : EEnumLiteral

Kay : EEnumLiteral

Concepts in Table 4.1 are transformed into classes (EClass in Ecore Metamodel) or

enumerations (EEnum in Ecore metamodel). Intrinsic properties are transformed into

attributes. For attributes, types have to be presented, such as String as EString in

Ecore metamodel or Integer as EInteger in Ecore metamodel. If there is a range of

possible values, enumerations are defined, such as V eriDeposuT ipi, V eriT ipi and

ServisT ipi in Table 4.1. Attributes of enumerations are defined as EEnumLiteral

in Ecore metamodel. Extrinsic properties are transformed into associations between

classes. For the association ends, upper and lower bounds of multiplicities have to be

set properly [2].

Figure 4.2 shows the metamodel of DSS-RSA. Development steps of metamodel as

EMF Ecore Model are given in Appendix A in detail.

4.4 Mapping from DSS-RSA to Metamodel

• User Interface Layer of DSS-RSA includes User Interface Components and

User Interface Managers. In the metamodel KaBileseni elements are defined

to express User Interface Components, KaYonetici elements are defined to ex-

press User Interface Managers. Management of User Interface functionality is

handled by User Interface Managers in DSS-RSA, in the metamodel manage-

ment of KaBileseni elements is done by KaYonetici elements.

• The communication between User Interface Components and other parts of the

26

software is done through the interfaces which are implemented by User Inter-

face Managers in DSS-RSA. Communication between KaBileseni and KaYo-

netici elements is provided by the ArayuzKay elements in the metamodel.

• Business Layer of DSS-RSA includes Business Managers and Business Com-

ponents. In the metamodel, IsYonetici and IsBileseni elements are defined for

Business Layer. IsYonetici elements represent Business Managers and IsBile-

seni elements represent Business Components.

• Business Objects in DSS-RSA include data structure definitions which are de-

fined as Veri, events which are defined as Olay and services which are defined

as Servis in the metamodel.

• Data stores in DSS-RSA are represented as VeriDeposu in the metamodel.

• In DSS-RSA, Business Managers implement services, which reside in Business

Objetcs, to allow other managers of the software to communicate with them-

selves. To express this functionality in the metamodel, we create sunulanSer-

vis relationship between IsYonetici and Servis elements.

• User Interface Managers implement services, which reside in Business Objetcs,

to allow other managers of the software to communicate with themselves. To

express this functionality in the metamodel, we create sunulanServis relation-

ship between KaYonetici and Servis elements.

• To communicate with Business Managers or User Interface Managers, other

manager elements use services which reside in Business Objects in DSS-RSA.

To express this functionality, we create relationships, which are called as kul-

lanilanServis, between IsYonetici and Servis elements and between KaYo-

netici and Servis elements in the metamodel.

• Manager elements can communicate asynchronously with other manager el-

ements by using event based infrastructure in DSS-RSA. To provide asyn-

chronous communication between managers, we create relationships, which

are called as yakalananOlay, between IsYonetici and Olay elements and be-

tween KaYonetici and Olay elements in the metamodel.

27

• Another asynchronized communication mechanism between manager elements

in DSS-RSA is data store. To express this communication, we create relation-

ships, which are called as aboneV d, between IsYonetici and VeriDeposu ele-

ments and between KaYonetici and VeriDeposu elements in the metamodel.

• In DSS-RSA, data stores can be defined as structure or sequence by using data

structure definitions in Business Objects. In the metamodel, VeriDeposu ele-

ments have an attribute called Tip. Tip attribute values can be Y api or Dizi in

the metamodel. Regardless of whether the value is Y api or Dizi, VeriDeposu

element must have a relationship called as veri1 with Veri element. If Tip at-

tribute value is Dizi, VeriDeposu element must also have a relationship called

as veri2 with Veri element. If Tip attribute value is Y api, veri2 relationship

can not be established between VeriDeposu and Veri element.

• If application will have a user interface, defined User Interface Managers must

have at least one User Interface Component and at least one Interface. For

this reason, we put numerical restrictions in the metamodel. Each KaYonetici

element must have a relationship with at least one ArayuzKay called as arayuz

and KaBileseni element called as ka. Each KaBileseni element must have a

relationship with one ArayuzKay element called as yoneticiArayuz.

28

Fi
gu

re
4.

2:
D

SS
-R

SA
M

et
am

od
el

29

30

CHAPTER 5

STATIC SEMANTIC RULE DEFINITION WITH OCL

Metamodeling languages can only express part of the relevant information required

to define a modeling language. These very basic modeling constraints expressed by

metamodeling languages are cardinality constraints. Cardinality constraints restrict

relationships between elements in metamodels [2]. For example in DSS-RSA Meta-

model, each KaYonetici element can have ka relationship with at least one KaBileseni

element and arayuz relationship with at least one ArayuzKay element.

There is a need to describe additional constraints about the elements in the model.

Static semantic rules define well-formedness of a metamodel. These well-formedness

rules are used for both defining constraints on how models can be formed, and vali-

dating the models constructed upon a specific metamodel [13]. For restrictions that

cannot be brought in metamodeling language, some static semantic rules have been

identified by using Object Constraint Language (OCL).

OCL is a general purpose formal language which is easy to read and write. It has

been developed as a business modeling language within the IBM Insurance division.

It is adopted as a standard by OMG. OCL is a typed and side effect free specification

language. When an OCL expression is evaluated, it simply returns a value, does not

change the state of the system. Each OCL expression has a type. An OCL expression

must conform to the type conformance rules and operations of that type [19].

In Eclipse, to define OCL constraints for Ecore based metamodels several plugins

are available. Eclipse OCL is an implementation of the OMG OCL 2.4 specification

for use with Ecore metamodels. It provides APIs for parsing and evaluating OCL

constraints and queries on Ecore Models [20].

31

Eclipse OCL supports OCL expressions embedded within Ecore using the OCLin-

Ecore editor. The OCLinEcore editor has been available for use since Eclipse OCL

3.0.0 by installing the Eclipse OCL Examples and Editors functionality [21].

In this chapter, OCLinEcore Editor and defined OCL constraints are described. Firstly,

in Section 5.1, OCLinEcore Editor is introduced. In Section 5.2 defined naming con-

straints, in Section 5.3 defined cardinality constraints and in Section 5.4 defined el-

ement usage constraints are expressed. In Section 5.5 defined constraints to check

the usage of Servis elements by KaYonetici and IsYonetici elements, in Section 5.6

defined IsYonetici element constraints, in Section 5.7 defined IsBileseni element con-

straints, in Section 5.8 defined KaYonetici element constraints, in Section 5.9 de-

fined KaBileseni element constraints, in Section 5.10 defined ArayuzKay element

constraints, in Section 5.11 defined Olay element constraints, in Section 5.12 defined

Servis element constraints and lastly, in Section 5.13 contraints defined for VeriDe-

posu elements in OCL are described in detail.

5.1 OCLinEcore Editor

We define some OCL constraints by using Eclipse OCL project. After Ecore meta-

model is defined, we open metamodel with OCLinEcore editor. Figure 5.1 shows a

part of DSS-RSA metamodel opened in OCLinEcore editor.

Constraints in OCL are represented as Invariant. The name of the constraint is written

next to this keyword. To access properties of an element or related elements of an

element in metamodel, dot notation is used. The standard OCL Library predefines

the primitive and collection types and operations, quantifiers (like forAll, exists, etc.)

and iterators (like select, etc.) [2].

OCL constraints are checked after application architecture model is created by using

created graphical modeling editor as described in Chapter 6. To validate the model,

design area is right clicked and “OCL → V alidate” is selected. If some OCL con-

straints are violated, validation results show problems. Chapter 8 describes how we

check defined OCL constraints for the conducted case study.

32

Figure 5.1: Some OCL constraints defined in OCLinEcore editor

5.2 OCL Naming Constraints

We define some naming constraints to our DSS-RSA metamodel shown in Figure 5.2.

Figure 5.2: OCL naming constraints

Naming constraints shown in Figure 5.2 are explained in detail below:

• For each IsYonetici element pairs, isim attribute values must be different from

each other. This rule is expressed in OCL with “AyniIsimliIsYoneticiOlamaz”

invariant.

33

• For each IsBileseni element pairs, isim attribute values must be different from

each other. This rule is expressed in OCL with “AyniIsimliIsBileseniOlamaz”

invariant.

• For each KaYonetici element pairs, isim attribute values must be different from

each other. This rule is expressed in OCL with “AyniIsimliKaYoneticiOlamaz”

invariant.

• For each KaBileseni element pairs, isim attribute values must be different from

each other. This rule is represented in OCL with “AyniIsimliKaBileseniOla-

maz” invariant.

• For each ArayuzKay element pairs, isim attribute values must be different from

each other. This rule is expressed in OCL with “AyniIsimliArayuzKayOlamaz”

invariant.

• For each Olay element pairs, isim attribute values must be different from each

other. This rule is expressed in OCL with “AyniIsimliOlayOlamaz” invariant.

• For each VeriDeposu element pairs, isim attribute values must be different

from each other. This rule is expressed in OCL with “AyniIsimliVeriDeposuO-

lamaz” invariant.

• For each Servis element pairs having the tip attribute value of Isy, isim at-

tribute values must be different from each other. This rule is expressed in OCL

with “AyniIsimliServisIsyOlamaz” invariant.

• For each Servis element pairs having the tip attribute value of Kay, isim at-

tribute values must be different from each other. This rule is expressed in OCL

with “AyniIsimliServisKayOlamaz” invariant.

• For each Veri element pairs having the same paket attribute values, isim at-

tribute values must be different from each other. This rule is expressed in OCL

with “AyniPaketteAyniIsimliVeriOlamaz” invariant.

34

5.3 OCL Cardinality Constraints

We define a cardinality constraint that could not be defined in metamodel shown in

Figure 5.3.

Figure 5.3: OCL cardinality constraint

In a DSS-RSA model, there must be at least one KaYonetici or at least one IsYonetici

element. This rule is expressed in OCL with “EnAzBirKaYoneticiVeyaIsYoneticiOl-

mali” invariant.

5.4 OCL Element Usage Constraints

We define some constraints to check the usage of elements in DSS-RSA metamodel

shown in Figure 5.4.

Figure 5.4: OCL element usage constraints

Usage constraints shown in Figure 5.4 are explained in detail below:

• For each KaBileseni element defined in a DSS-RSA model, there must be a

KaYonetici element which has a ka relationship with this KaBileseni element.

35

This rule is expressed in OCL with “KullanilmayanKaBileseniOlamaz” invari-

ant.

• For each ArayuzKay element defined in a DSS-RSA model, there must be a

KaYonetici element which has an arayuz relationship with this ArayuzKay

element and there must be a KaBileseni element which has a yoneticiArayuz

relationship with this ArayuzKay element. This rule is expressed in OCL with

“KullanilmayanArayuzKayOlamaz” invariant.

• For each Olay element defined in a DSS-RSA model, there must be at least

one KaYonetici or IsYonetici element which has a yakalananOlay relation-

ship with this Olay element. This rule is expressed in OCL with “Kullanil-

mayanOlayOlamaz” invariant.

• For each Servis element defined in a DSS-RSA model, if tip attribute has the

value of Isy, there must be an IsYonetici element which has a sunulanServis

relationship with this Servis element and there must be at least one IsYonetici

or KaYonetici element which has a kullanilanServis relationship with this

Servis element. This rule is expressed in OCL with “KullanilmayanIsYoneti-

ciServisiOlamaz” invariant.

• For each Servis element defined in a DSS-RSA model, if tip attribute has the

value of Kay, there must be a KaYonetici element which has a sunulanServis

relationship with this Servis element and there must be at least one KaYo-

netici or IsYonetici element which has a kullanilanServis relationship with

this Servis element. This rule is expressed in OCL with “KullanilmayanKaYo-

neticiServisiOlamaz” invariant.

• For each VeriDeposu element defined in a DSS-RSA model, there must be at

least one KaYonetici or IsYonetici element which has an aboneV d relationship

with this VeriDeposu element. This rule is expressed in OCL with “Kullanil-

mayanVeriDeposuOlamaz” invariant.

36

5.5 OCL Servis Element Usage Constraints

We define some constraints for usage of Servis Elements by KaYonetici and IsYo-

netici elements in a DSS-RSA model. These constraints are shown in Figure 5.5.

Figure 5.5: OCL Servis element usage constraints

Servis element usage constraints shown in Figure 5.5 are explained in detail below:

• For each KaYonetici element defined in a DSS-RSA model, Servis elements

that KaYonetici element has kullanilanServis relationship with and sunulan-

Servis relationship with must be different from each other. This rule is ex-

pressed in OCL with “KullanilanVeSunulanKaYoneticiServisiAyniOlamaz” in-

variant.

• For each IsYonetici element defined in a DSS-RSA model, Servis elements that

IsYonetici element has kullanilanServis relationship with and sunulanSer

vis relationship with must be different from each other. This rule is expressed

in OCL with “KullanilanVeSunulanIsYoneticiServisiAyniOlamaz” invariant.

• For each KaYonetici element pairs defined in a DSS-RSA model, Servis el-

ements that KaYonetici element pairs have sunulanServis relationship with

must be different from each other. This rule is expressed in OCL with “Ayni-

ServisiFarkliKaYoneticiSunamaz” invariant.

• For each IsYonetici element pairs defined in a DSS-RSA model, Servis el-

ements that IsYonetici element pairs have sunulanServis relationship with

must be different from each other. This rule is expressed in OCL with “Ayni-

ServisiFarkliIsYoneticiSunamaz” invariant.

37

5.6 OCL IsYonetici Element Constraints

We define some constraints for IsYonetici elements in a DSS-RSA model. These

constraints are shown in Figure 5.6.

Figure 5.6: OCL IsYonetici element constraints

IsYonetici element constraints shown in Figure 5.6 are explained in detail below:

• isim attribute values of each IsYonetici element must start with Isy. This rule

is expressed in OCL with “IsYoneticiIsmiIsyIleBaslamali” invariant.

• For each IsYonetici element defined in a DSS-RSA model, Servis elements

that IsYonetici element has sunulanServis relationship with must have tip at-

tribute value of Isy. This rule is expressed in OCL with “IsYoneticiSunulanSer-

visTipiIsyOlmali” invariant.

5.7 OCL IsBileseni Element Constraints

We define a constraint for IsBileseni elements in a DSS-RSA model. This constraint

is shown in Figure 5.7.

IsBileseni element constraint shown in Figure 5.7 is that isim attribute value of each

IsBileseni element must start with Isb. This rule is expressed in OCL with “IsBile-

seniIsmiIsbIleBaslamali” invariant.

38

Figure 5.7: OCL IsBileseni element constraint

5.8 OCL KaYonetici Element Constraints

We define some constraints for KaYonetici elements in a DSS-RSA model. These

constraints are shown in Figure 5.8.

Figure 5.8: OCL KaYonetici element constraints

KaYonetici element constraints shown in Figure 5.8 are explained in detail below:

• isim attribute value of each KaYonetici element must start with Kay. This rule

is expressed in OCL with “KaYoneticiIsmiKayIleBaslamali” invariant.

• For each KaYonetici element defined in a DSS-RSA model, Servis elements

that KaYonetici element has sunulanServis relationship with must have tip at-

tribute value of Kay. This rule is expressed in OCL with “KaY oneticiSunu-

lanServisT ipiKayOlmali′′ invariant.

• For each KaYonetici element defined in a DSS-RSA model, KaBileseni ele-

ments that KaYonetici element has ka relationship with must have the same

paket attribute value with KaYonetici element. This rule is expressed in OCL

39

with “KaYoneticiVeKaBileseniPaketIsimleriAyniOlmali” invariant.

• For each KaYonetici element defined in a DSS-RSA model, ArayuzKay el-

ements that KaYonetici element has arayuz relationship with must have the

same paket attribute value with KaYonetici element. This rule is expressed in

OCL with “KaYoneticiVeArayuzKayPaketIsimleriAyniOlmali” invariant.

5.9 OCL KaBileseni Element Constraints

We define a constraint for KaBileseni elements in a DSS-RSA model. This constraint

is shown in Figure 5.9.

Figure 5.9: OCL KaBileseni element constraint

KaBileseni element constraint shown in Figure 5.9 is that isim attribute value of

each KaBileseni element must start with Ka. This rule is expressed in OCL with

“KaBileseniIsmiKaIleBaslamali” invariant.

5.10 OCL ArayuzKay Element Constraints

We define a constraint for ArayuzKay elements in a DSS-RSA model. This constraint

is shown in Figure 5.10.

ArayuzKay element constraint shown in Figure 5.10 is that isim attribute value of

each ArayuzKay element must start with ArayuzKay. This rule is expressed in

OCL with “ArayuzKayIsmiArayuzKayIleBaslamali” invariant.

40

Figure 5.10: OCL ArayuzKay element constraint

5.11 OCL Olay Element Constraints

We define a constraint for Olay elements in a DSS-RSA model. This constraint is

shown in Figure 5.11.

Figure 5.11: OCL Olay element constraint

Olay element constraint shown in Figure 5.11 is that isim attribute value of each Olay

element must start with Olay. This rule is expressed in OCL with “OlayIsmiOlayIle-

Baslamali” invariant.

5.12 OCL Servis Element Constraints

We define some constraints for Servis elements in a DSS-RSA model. These con-

straints are shown in Figure 5.12.

Servis element constraints shown in Figure 5.12 are explained in detail below:

• If a Servis element’s tip attribute value is Isy, isim attribute value of this Servis

element must start with ServisIsy. This rule is expressed in OCL with “IsYo-

neticiServisIsmiServisIsyIleBaslamali” invariant.

• If a Servis element’s tip attribute value is Kay, isim attribute value of this

41

Figure 5.12: OCL Servis element constraints

Servis element must start with ServisKay. This rule is expressed in OCL with

“KaYoneticiServisIsmiServisKayIleBaslamali” invariant.

5.13 OCL VeriDeposu Element Constraints

We define some constraints for VeriDeposu elements in a DSS-RSA model. These

constraints are shown in Figure 5.13.

Figure 5.13: OCL VeriDeposu element constraints

VeriDeposu element constraints shown in Figure 5.13 are explained in detail below:

• isim attribute value of each VeriDeposu element must start with vd. This rule

is expressed in OCL with “VeriDeposuIsmivdIleBaslamali” invariant.

• If a VeriDeposu element’s tip attribute value is Y api, veri2 attribute value

must be empty. This rule is expressed in OCL with “VeriDeposuTipiYapiIken-

Veri2BosOlmali” invariant.

• If a VeriDeposu element’s tip attribute value is Dizi, veri2 attribute value must

42

not be empty. This rule is expressed in OCL with “VeriDeposuTipiDiziIken-

Veri2BosOlmamali” invariant.

43

44

CHAPTER 6

CONCRETE SYNTAX DEFINITION

Based on the DSS-RSA metamodel, we define concrete syntax. Concrete syntax,

in general, includes definitions used to create models by using graphical or textual

elements. These elements refer to modeling concepts described in metamodel. In the

scope of this study, we define a graphical concrete syntax that uses graphical notation

to create models. Graphical notation symbolizes a metamodel by introducing symbols

for modeling concepts in metamodel as shown in Figure 6.1.

Metamodel

Model

conforms to

Graphical Notation

Diagram

conforms to

visualizes

symbolizes

Figure 6.1: Graphical notation introduces symbols for the modeling concepts, adapted

from [2]

In Eclipse, Graphical concrete syntax development is supported by the Graphical

Modeling Framework (GMF). GMF defines graphical and tooling models to describe

the concrete syntax. Then, mapping model is defined to connect elements of the Ecore

metamodel to the corresponding elements of the concrete syntax. By developing

a generator model based on the mapping model, Java code and other configuration

files representing a Domain Specific Language (DSL) are generated. Generated DSL

(graphical modeling editor) is run as Eclipse plug-in [16].

Graphical modeling editor is used to manipulate the elements in concrete syntax. By

45

using graphical modeling editor, developers can drag and drop DSS-RSA elements

from the palette to the design area, set the attribute values of elements and create

associations between elements according to the DSS-RSA metamodel definitions.

GMF consists of two main components which are runtime and tooling. The GMF run-

time component provides editor operations such as palette, properties view, toolbars,

geometrical shapes, saving a diagram as an image and printing. The GMF tooling

component is used to generate graphical modeling editor code. Figure 6.2 shows the

GMF-Tooling workflow.

*.ecore

*.gmfgraph

*.gmftool

*.gmfmap

*.gmfgen

Definition

Develop Tooling

Develop Graphical
Definition

Develop Domain

Model

Create GMF
Project

Develop Mapping
Model

Create Generator
Model

Create Diagram

Plug-in

Figure 6.2: GMF-Tooling Workflow, adapted from [3]

In this chapter, models created in GMF-Tooling Workflow are described. Firstly, in

Section 6.1 GMF Domain Model, in Section 6.2 EMF Domain Gen Model, in Section

6.3 GMF Graphical Definition Model, in Section 6.4 GMF Tooling Definition Model,

in Section 6.5 GMF Mapping Model and finally in Section 6.6 GMF Generator Model

is explained. Development steps of graphical modeling editor are given in Appendix

B in detail.

46

6.1 GMF Domain Model

The GMF Domain Model is the DSS-RSA metamodel which is created as EMF Ecore

Model and explained in Chapter 4.

6.2 EMF Generator Model

The EMF Generator Model is used for generating EMF code. It allows configuring

the properties for code generation that are not part of the Domain Model such as

base package name, compliance level and model directory by using properties view

in Eclipse [16].

6.3 GMF Graphical Definition Model

The GMF Graphical Definition Model is used to represent GMF Domain Model el-

ements graphically. To do this, GMF Graphical Definition Model allows creating

figures that are displayed on the graphical modeling editor and mapping figures with

nodes, connections and diagram labels.

The GMF Graphical Definition Model contains a main element whose name is Canvas

that has child elements as Figure Gallery, Node, Connection and Diagram Label.

Each figure is created by defining a Figure Descriptor element under Figure Gallery.

There can be one or more Figure Gallery in GMF Graphical Definition Model. A

node can be created by defining a Node element under Canvas. Figure Descriptor

related to the Node is set to Node element’s Figure property. A connection can be

created by defining a Connection element under Canvas. Figure Descriptor related to

the Connection is set to Connection element’s Figure property. A diagram label can be

created by defining a Diagram Label element under Canvas. Figure Descriptor related

to the Node that contains this Diagram Label is set to Diagram Label element’s Figure

property. In the GMF Mapping Model, Canvas elements are used to assign figures to

related Domain Model elements.

47

6.4 GMF Tooling Definition Model

The GMF Tooling Definition Model is used to create diagram palette. To do this,

GMF Tooling Definition Model allows creating tool groups and creation tools that

are used to create figures on diagram palette. Developers can drag and drop these

figures from the palette to the design area.

The GMF Tooling Definition Model contains a main element whose name is Tool

Registry that contains Palette as child element. Under Palette element, the user can

define Tool Group elements. In this study we define two Tool Groups; one for DSS-

RSA elements with the name “DSS RSA Elemanları”, one for DSS-RSA connections

with the name “Bağlantılar”. Under Tool Groups, Creation Tool elements are de-

fined. We define Creation Tools related to the DSS-RSA elements under “DSS RSA

Elemanları” Tool Group, Creation Tools related to the DSS-RSA connections under

“Bağlantılar” Tool Group.

6.5 GMF Mapping Model

The GMF Mapping Model is used to map the Domain Model elements to the related

figures that are defined in the GMF Graphical Definition Model and to the related

creation tool that are defined in GMF Tooling Definition Model.

The GMF Mapping Model contains a main element with the name Mapping. Mapping

element has some child elements but some of them are not used in this study. Top

Node Reference, Link Mapping and Canvas Mapping child elements of Mapping

element are used. Top Node Reference elements provide mapping of Nodes from

the GMF Graphical Definition Model to the related elements of GMF Domain Model

and mapping of Creation Tools from the GMF Tooling Definition Model to the related

elements of the GMF Domain Model. Link Mapping elements provide mapping of

Connections from the GMF Graphical Definition Model to the related connection

elements of GMF Domain Model and mapping of Creation Tools from the GMF

Tooling Definition Model to the related connection elements of the GMF Domain

Model. Canvas Mapping element maps the root element of the GMF Domain Model

48

to the Canvas element from the GMF Graphical Definition Model and to the Palette

element from the GMF Tooling Definition Model.

6.6 GMF Generator Model

The GMF Gerenerator Model is used to generate graphical modeling editor code and

configuration files by using the GMF Mapping Model and EMF Generator Model. It

allows configuring the properties for code generation.

49

50

CHAPTER 7

CODE GENERATION

The Model-to-Text transformation is a key concept in Model Driven Engineering.

To automate the derivation of text from models by using Model-to-Text transforma-

tions, several languages and tools are proposed. They are used for automating some

software engineering tasks such as generation of code, test cases, deployment spec-

ifications, reports, documents, etc. Code generation is the process of transforming

models into source code, which is the most applied Model-to-Text transformation in

the field of Model Driven Software Engineering [2].

Eclipse has the Model to Text (M2T) project that focuses on the generation of textual

artifacts from models. Jet, Acceleo and Xpand are sub-projects in the M2T project.

Xpand is emerged in openArchitectureWare project and migrated to Eclipse as a part

of the M2T project [22].

In the scope of this study, a code generation mechanism is implemented using Xpand.

Xpand is a statically-typed template language that is based on EMF models and spe-

cialized on code generation [22].

In this chapter, code generation mechanism using Xpand template language is de-

scribed. Firstly, in Section 7.1 creating a new Xpand Project is described. In section

7.2, code generator algorithm for ArayuzKay Elements is expained and an example

output is given. In section 7.3, code generator algorithm for KaY onetici Elements

is expained and an example output is given. In section 7.4, code generator algorithm

for KaBileseni Elements is expained and an example output is given. In section

7.5, code generator algorithm for IsY onetici Elements is expained and an example

output is given. In section 7.6, code generator algorithm for IsBileseni Elements

51

is expained and an example output is given. In section 7.7, code generator algorithm

for V eri Elements is expained and an example output is given. In section 7.8, code

generator algorithm for Olay Elements is expained and an example output is given.

And finally in section 7.9, code generator algorithm for Servis Elements is expained

and an example output is given.

7.1 Creating Xpand Project

We create a new Xpand project by clicking on the File menu of Eclipse and selecting

“New → Other → Xpand Project”. We give the project the name “dssml.genera-

tor” and select Generate a sample EMF based Xpand project. After clicking Finish,

the wizard creates a sample generator project as shown in Figure 7.1.

Figure 7.1: Xpand Project

Before we start working with this project, we perform some clean-up actions. We

open and delete contents of Checks.chk, Extensions.chk, GeneratorExtensions.ext

and Template.xpt files. We write our codes on Template.xpt file. We delete sam-

ple metamodel.ecore and Model.xmi files and copy our DSS-RSA metamodel file in

metamodel package. After we create a model by using graphical modeling editor de-

52

scribed in Chapter 6, we copy the model file under the src folder in Xpand project.

To generate Java codes under src-gen folder, generator.mwe2 file is right-clicked and

“Run As→MWE2Workflow” is selected.

7.2 Code Generator for ArayuzKay Elements

To generate code for ArayuzKay elements, we write Xpand codes to the Template.xpt

file. The overall algorithm of code generator for ArayuzKay elements is as follows.

Algorithm 7.2.1 Code Generator Algorithm for ArayuzKay Elements

Input: ArayuzKay element list

Output: Java files for each ArayuzKay element in ArayuzKay element list with the name repre-

sented by isim attribute

1: for each ArayuzKay element ∈ ArayuzKay element list do

2: if paket attribute value of ArayuzKay element 6= null and paket attribute value of Ara-

yuzKay element 6= empty then

3: Declare package by adding paket attribute value of ArayuzKay element to the ka pack-

age of main package (anaPaket)

4: else

5: Declare package as ka package of main package (anaPaket)

6: end if

7: if aciklama attribute value of ArayuzKay element 6= null and aciklama attribute value

of ArayuzKay element 6= empty then

8: Add interface comment by using aciklama attribute value of ArayuzKay element

9: end if

10: Declare interface by using isim attribute value of ArayuzKay element as name of interface

11: end for

Figure 7.2 shows an example code segment which is generated for a ArayuzKay Ele-

ment.

53

Figure 7.2: An example code segment generated for a ArayuzKay Element

7.3 Code Generator for KaYonetici Elements

To generate code for KaYonetici elements, we write Xpand codes to the Template.xpt

file. The overall algorithm of code generator for KaYonetici elements is shown on

Algorithm 7.3.1.

Algorithm 7.3.1 Code Generator Algorithm for KaYonetici Elements

Input: KaYonetici element list, Veri element list

Output: Java files for each KaY onetici element in KaYonetici element list with the name repre-

sented by isim attribute

1: for each KaY onetici element ∈ KaYonetici element list do

2: if paket attribute value of KaY onetici element 6= null and paket attribute value of Ka-

Y onetici element 6= empty then

3: Declare package by adding paket attribute value of KaY onetici element to the ka pack-

age of main package (anaPaket)

4: else

5: Declare package as ka package of main package (anaPaket)

6: end if

7: DeclareImportsForKaYoneticiElement(KaY onetici element, Veri element list)

8: if aciklama attribute value of KaY onetici element 6= null and aciklama attribute value

of KaY onetici element 6= empty then

9: Add class comment by using aciklama attribute value of KaY onetici element

10: end if

11: Declare class by using isim attribute value of KaY onetici element as name of class, ex-

tending from KayTemel class, implementing interfaces that are sunulanServis relations of

KaY onetici element and implementing interfaces that are arayuz relations of KaY onetici

element

54

12: Declare class variable SEV IY E as public, static and final and initialize it with the seviye

attribute value of KaY onetici element

13: Declare class variable logger as private and initialize it

14: for each KaBileseni element ∈ ka relation of KaY onetici element do

15: Declare class variable for KaBileseni element as private by using its isim attribute value

16: end for

17: for each Servis element ∈ kullanilanServis relation of KaY onetici element do

18: Declare class variable for Servis element as private by using its isim attribute value

19: end for

20: Declare a method as protected with the name edtUzerindeIlklenEleAl whose return type is

void and add @Override annotation

21: for each KaBileseni element ∈ ka relation of KaY onetici element do

22: Initialize class variable for KaBileseni element in edtUzerindeIlklenEleAl method

declaration

23: end for

24: for each Servis element ∈ kullanilanServis relation of KaY onetici element do

25: Initialize class variable for Servis element by calling servis method and adding a pa-

rameter by using isim attribute value of Servis element in edtUzerindeIlklenEleAl

method declaration

26: end for

27: for each Servis element ∈ sunulanServis relation of KaY onetici element do

28: Call servisEkle method by using isim attribute value of Servis element in edtUzerinde-

IlklenEleAl method declaration

29: end for

30: Declare a method as protected with the name edtUzerindeSonlanEleAl whose return type

is void and add @Override annotation

31: VeriDeposuSubscriberForKaYoneticiElement (KaY onetici element, Veri element list)

32: for each Olay element ∈ yakalananOlay relation of KaY onetici element do

33: Declare a method as private by using isim attribute value of Olay element, putting @Abo-

ne annotation and adding a parameter with name olay and type same with isim attribute

value of Olay element as final

34: end for

35: end for

The algorithm of code generator for a specific KaYonetici element’s Import Declara-

tions is shown on Algorithm 7.3.2.

55

Algorithm 7.3.2 DeclareImportsForKaYoneticiElement

Input: A KaYonetici element, Veri element list

Output: Code segments for import declarations of KaYonetici element

1: Add import declarations for Logger and LoggerFactory classes

2: if KaY onetici element has a aboneV d relation with a V eriDeposu element whose tip at-

tribute value is Y api then

3: Add import declarations for OlayV eriDeposuY apiIslemi and V eriDeposuY apiIslemi-

Filtresi classes

4: end if

5: if KaY onetici element has a aboneV d relation with a V eriDeposu element whose tip at-

tribute value is Dizi then

6: Add import declarations for OlayV eriDeposuDiziIslemi and V eriDeposuDiziIslemi-

Filtresi classes

7: end if

8: if aboneV d relation of KaY onetici element 6= null or yakalananOlay relation of KaY one-

tici element 6= null then

9: Add import declaration for Abone class

10: end if

11: if aboneV d relation of KaY onetici element 6= null then

12: Add import declarations for Filtre and ServisIsyV eriDepolari classes

13: end if

14: Add import declarations for KaPanel and KayTemel classes

15: for each V eri element ∈ Veri element list do

16: if V eri element= veri1 relation of V eriDeposu element which is KaY onetici element’s

aboneV d relation or V eri element = veri2 relation of V eriDeposu element which is

KaY onetici element’s aboneV d relation then

17: Add import declaration for class which is created for V eri element

18: end if

19: end for

20: for each Olay element ∈ yakalananOlay relation of KaY onetici element do

21: Add import declaration for class which is created for Olay element

22: end for

23: for each Servis element ∈ kullanilanServis relation of KaY onetici element do

24: Add import declaration for class which is created for Servis element

25: end for

26: for each Servis element ∈ sunulanServis relation of KaY onetici element do

27: Add import declaration for class which is created for Servis element

56

28: end for

The algorithm of code generator for a specific KaYonetici element’s Verideposu Sub-

scriber Methods is shown on Algorithm 7.3.3.

Algorithm 7.3.3 VeriDeposuSubscriberForKaYoneticiElement

Input: A KaYonetici element, Veri element list

Output: Code segments for subscriber methods of VeriDeposu elements which KaYonetici element

has aboneV d relation

1: for each V eriDeposu element ∈ aboneV d relation of KaY onetici element do

2: if tip attribute value of V eriDeposu element = Y api then

3: Declare a method as private by using isim attribute value of V eriDeposu element, putting

@Abone annotation and a filter by using V eriDeposuY apiIslemiF iltresi class and

adding a parameter with name vdOlay and type OlayV eriDeposuY apiIslemi

4: Declare a variable with the name yeniV eri and initialize it by calling getY eniV eri method

of vdOlay parameter

5: Declare a variable with the name eskiV eri and initialize it by calling getEskiV eri method

of vdOlay parameter

6: else if tip attribute value of V eriDeposu element = Dizi then

7: Declare a method as private by using isim attribute value of V eriDeposu element, putting

@Abone annotation and a filter by using V eriDeposuDiziIslemiF iltresi class and

adding a parameter with name vdOlay and type OlayV eriDeposuDiziIslemi

8: Declare a variable with the name anahtar and initialize it by calling getAnahtar method

of vdOlay parameter

9: Declare a variable with the name yeniV eri and initialize it by calling getY eniV eri method

of vdOlay parameter

10: end if

11: end for

Figure 7.3 shows an example code segment which is generated for a KaYonetici Ele-

ment.

57

Figure 7.3: An example code segment generated for a KaYonetici Element

7.4 Code Generator for KaBileseni Elements

To generate code for KaBileseni elements, we write Xpand codes to the Template.xpt

file. The overall algorithm of code generator for KaBileseni elements is as follows.

58

Algorithm 7.4.1 Code Generator Algorithm for KaBileseni Elements

Input: KaBileseni element list

Output: Java files for each KaBileseni element in KaBileseni element list with the name repre-

sented by isim attribute

1: for each KaBileseni element ∈ KaBileseni element list do

2: if paket attribute value of KaBileseni element 6= null and paket attribute value of KaBi-

leseni element 6= empty then

3: Declare package by adding paket attribute value of KaBileseni element to the ka pack-

age of main package (anaPaket)

4: else

5: Declare package as ka package of main package (anaPaket)

6: end if

7: Add import declaration for KaPanel which will be copied under temel package of ka pack-

age

8: Add import declaration for localization class ArayuzY erellestirme which will be copied

under yerellestirme package of altyapi package of project

9: if aciklama attribute value of KaBileseni element 6= null and aciklama attribute value

of KaBileseni element 6= empty then

10: Add class comment by using aciklama attribute value of KaBileseni element

11: end if

12: Add annotation to suppress compiler warnings for serialization

13: Declare class by using isim attribute value of KaBileseni element as name of class and

extending from KaPanel class

14: Declare class variable yoneticiArayuz as private, whose type is the same with isim attribute

value of yoneticiArayuz attribute of KaBileseni element

15: Declare class variable yerellestirme as private, whose type is ArayuzY erellestirme

16: Add constructor with parameters yoneticiArayuz whose type is the same type with isim at-

tribute value of yoneticiArayuz attribute of KaBileseni element and yerellestirme whose

type is ArayuzY erellestirme

17: class variable yoneticiArayuz← parameter yoneticiArayuz

18: class variable yerellestirme← parameter yerellestirme

19: end for

Figure 7.4 shows an example code segment which is generated for a KaBileseni Ele-

ment.

59

Figure 7.4: An example code segment generated for a KaBileseni Element

7.5 Code Generator for IsYonetici Elements

To generate code for IsYonetici elements, we write Xpand codes to the Template.xpt

file. The overall algorithm of code generator for IsYonetici elements is as follows.

Algorithm 7.5.1 Code Generator Algorithm for IsYonetici Elements

Input: IsYonetici element list, Veri element list

Output: Java files for each IsY onetici element in IsYonetici element list with the name represented

by isim attribute

1: for each IsY onetici element ∈ IsYonetici element list do

2: if paket attribute value of IsY onetici element 6= null and paket attribute value of IsY one-

tici element 6= empty then

3: Declare package by adding paket attribute value of IsY onetici element to the is package

of main package (anaPaket)

4: else

5: Declare package as is package of main package (anaPaket)

6: end if

7: DeclareImportsForIsYoneticiElement(IsY onetici element, Veri element list)

8: if aciklama attribute value of IsY onetici element 6= null and aciklama attribute value of

IsY onetici element 6= empty then

9: Add class comment by using aciklama attribute value of IsY onetici element

10: end if

11: Declare class by using isim attribute value of IsY onetici element as name of class, ex-

tending from Y oneticiAdaptor class and implementing interfaces that are sunulanServis

relations of IsY onetici element

60

12: Declare class variable SEV IY E as public, static and final and initialize it with the seviye

attribute value of IsY onetici element

13: Declare class variable logger as private and initialize it

14: for each Servis element ∈ kullanilanServis relation of IsY onetici element do

15: Declare a class variable for Servis element as private by using its isim attribute value

16: end for

17: Declare a method as protected with the name ilklenEleAl whose return type is void and add

@Override annotation

18: for each Servis element ∈ kullanilanServis relation of IsY onetici element do

19: Initialize class variable for Servis element by calling servis method and adding a param-

eter by using isim attribute value of Servis element in ilklenEleAl method declaration

20: end for

21: for each Servis element ∈ sunulanServis relation of IsY onetici element do

22: Call servisEkle method by using isim attribute value of Servis element in ilklenEleAl

method declaration

23: end for

24: Declare a method as protected with the name sonlanEleAl whose return type is void and add

@Override annotation

25: VeriDeposuSubscriberForIsYoneticiElement (IsY onetici element, Veri element list)

26: for each Olay element ∈ yakalananOlay relation of IsY onetici element do

27: Declare a method as private by using isim attribute value of Olay element, putting @Abo-

ne annotation and adding a parameter with name olay and type same with isim attribute

value of Olay element as final

28: end for

29: end for

The algorithm of code generator for a specific IsYonetici element’s Import Declara-

tions is shown on Algorithm 7.5.2.

Algorithm 7.5.2 DeclareImportsForIsYoneticiElement

Input: A IsYonetici element, Veri element list

Output: Code segments for import declarations of IsYonetici element

1: Add import declarations for Logger and LoggerFactory classes

2: Add import declaration for Y oneticiAdaptor class

3: if IsY onetici element has a aboneV d relation with a V eriDeposu element whose tip attribute

value is Y api then

61

4: Add import declarations for OlayV eriDeposuY apiIslemi and V eriDeposuY apiIslemi-

Filtresi classes

5: end if

6: if IsY onetici element has a aboneV d relation with a V eriDeposu element whose tip attribute

value is Dizi then

7: Add import declarations for OlayV eriDeposuDiziIslemi and V eriDeposuDiziIslemi-

Filtresi classes

8: end if

9: if aboneV d relation of IsY onetici element 6= null or yakalananOlay relation of IsY onetici

element 6= null then

10: Add import declaration for Abone class

11: end if

12: if aboneV d relation of IsY onetici element 6= null then

13: Add import declarations for Filtre and ServisIsyV eriDepolari classes

14: end if

15: for each V eri element ∈ Veri element list do

16: if V eri element = veri1 relation of V eriDeposu element which is aboneV d relation of

IsY onetici element or V eri element = veri2 relation of V eriDeposu element which is

aboneV d relation of IsY onetici element then

17: Add import declaration for class which is created for V eri element

18: end if

19: end for

20: for each Olay element ∈ yakalananOlay relation of IsY onetici element do

21: Add import declaration for class which is created for Olay element

22: end for

23: for each Servis element ∈ kullanilanServis relation of IsY onetici element do

24: Add import declaration for class which is created for Servis element

25: end for

26: for each Servis element ∈ sunulanServis relation of IsY onetici element do

27: Add import declaration for class which is created for Servis element

28: end for

The algorithm of code generator for a specific IsYonetici element’s Verideposu Sub-

scriber Methods is shown on Algorithm 7.5.1.

62

Algorithm 7.5.1 VeriDeposuSubscriberForIsYoneticiElement

Input: A IsYonetici element, Veri element list

Output: Code segments for subscriber methods of VeriDeposu elements which IsYonetici element

has aboneV d relation

1: for each V eriDeposu element ∈ aboneV d relation of IsY onetici element do

2: if tip attribute value of V eriDeposu element = Y api then

3: Declare a method as private by using isim attribute value of V eriDeposu element, putting

@Abone annotation and a filter by using V eriDeposuY apiIslemiF iltresi class and

adding a parameter with name vdOlay and type OlayV eriDeposuY apiIslemi

4: Declare a variable with the name yeniV eri and initialize it by calling getY eniV eri method

of vdOlay parameter

5: Declare a variable with the name eskiV eri and initialize it by calling getEskiV eri method

of vdOlay parameter

6: else if tip attribute value of V eriDeposu element = Dizi then

7: Declare a method as private by using isim attribute value of V eriDeposu element, putting

@Abone annotation and a filter by using V eriDeposuDiziIslemiF iltresi class and

adding a parameter with name vdOlay and type OlayV eriDeposuDiziIslemi

8: Declare a variable with the name anahtar and initialize it by calling getAnahtar method

of vdOlay parameter

9: Declare a variable with the name yeniV eri and initialize it by calling getY eniV eri method

of vdOlay parameter

10: end if

11: end for

Figure 7.5 shows an example code segment which is generated for a IsYonetici Ele-

ment.

7.6 Code Generator for IsBileseni Elements

To generate code for IsBileseni elements, we write Xpand codes to the Template.xpt

file. The overall algorithm of code generator for IsBileseni elements is given on

Algorithm 7.6.1.

63

Figure 7.5: An example code segment generated for a IsYonetici Element

Algorithm 7.6.1 Code Generator Algorithm for IsBileseni Elements

Input: IsBileseni element list

Output: Java files for each IsBileseni element in IsBileseni element list with the name represented

by isim attribute

1: for each IsBileseni element ∈ IsBileseni element list do

2: if paket attribute value of IsBileseni element 6= null and paket attribute value of IsBile-

seni element 6= empty then

3: Declare package by adding paket attribute value of IsBileseni element to the is package

of main package (anaPaket)

4: else

5: Declare package as is package of main package (anaPaket)

64

6: end if

7: Add import declarations for Logger class

8: if aciklama attribute value of IsBileseni element 6= null and aciklama attribute value of

IsBileseni element 6= empty then

9: Add class comment by using aciklama attribute value of IsBileseni element

10: end if

11: Declare class by using isim attribute value of IsBileseni element as name of class

12: Declare class variable logger as private and initialize it

13: end for

Figure 7.6 shows an example code segment which is generated for a IsBileseni Ele-

ment.

Figure 7.6: An example code segment generated for a IsBileseni Element

7.7 Code Generator for Veri Elements

To generate code for Veri elements, we write Xpand codes to the Template.xpt file.

The overall algorithm of code generator for Veri elements is as follows.

Algorithm 7.7.1 Code Generator Algorithm for Veri Elements

Input: Veri element list

Output: Java files for each V eri element in Veri element list with the name represented by isim

attribute

1: for each V eri element ∈ Veri element list do

2: if paket attribute value of V eri element 6= null and paket attribute value of V eri element

6= empty then

65

3: Declare package by adding paket attribute value of V eri element to the isvarlik.veri

package of main package (anaPaket)

4: else

5: Declare package as isvarlik.veri package of main package (anaPaket)

6: end if

7: if aciklama attribute value of V eri element 6= null and aciklama attribute value of V eri

element 6= empty then

8: Add comment by using aciklama attribute value of V eri element

9: end if

10: if tip attribute value of V eri element = Class then

11: Declare class by using isim attribute value of V eri element as name of class

12: else if tip attribute value of V eri element = Interface then

13: Declare interface by using isim attribute value of V eri element as name of interface

14: else if tip attribute value of V eri element = Enum then

15: Declare enumeration by using isim attribute value of V eri element as name of enumera-

tion

16: end if

17: end for

Figure 7.7 shows an example code segment which is generated for a Veri Element

whose tip attribute value is Class. Figure 7.8 shows an example code segment which

is generated for a Veri Element whose tip attribute value is Enum.

Figure 7.7: An example code segment generated for a Veri Element whose tip at-

tribute value is Class

66

Figure 7.8: An example code segment generated for a Veri Element whose tip at-

tribute value is Enum

7.8 Code Generator for Olay Elements

To generate code for Olay elements, we write Xpand codes to the Template.xpt file.

The overall algorithm of code generator for Olay elements is as follows.

Algorithm 7.8.1 Code Generator Algorithm for Olay Elements

Input: Olay element list

Output: Java files for each Olay element in Olay element list with the name represented by isim

attribute

1: for each Olay element ∈ Olay element list do

2: Declare package as isvarlik.olay package of main package (anaPaket)

3: if aciklama attribute value of Olay element 6= null and aciklama attribute value of Olay

element 6= empty then

4: Add class comment by using aciklama attribute value of Olay element

5: end if

6: Declare class by using isim attribute value of Olay element as name of class

7: end for

Figure 7.9 shows an example code segment which is generated for a Olay Element.

7.9 Code Generator for Servis Elements

To generate code for Servis elements, we write Xpand codes to the Template.xpt file.

The overall algorithm of code generator for Servis elements is as follows.

67

Figure 7.9: An example code segment generated for a Olay Element

Algorithm 7.9.1 Code Generator Algorithm for Servis Elements

Input: Servis element list

Output: Java files for each Servis element in Servis element list with the name represented by isim

attribute

1: for each Servis element ∈ Servis element list do

2: if tip attribute value of Servis element = Isy then

3: Declare package as isvarlik.servis.is package of main package (anaPaket)

4: if aciklama attribute value of Servis element 6= null and aciklama attribute value of

Servis element 6= empty then

5: Add interface comment by using aciklama attribute value of Servis element

6: end if

7: Declare interface by using isim attribute value of Servis element as name of interface

8: else if tip attribute value of Servis element = Kay then

9: Declare package as isvarlik.servis.ka package of main package (anaPaket)

10: if aciklama attribute value of Servis element 6= null and aciklama attribute value of

Servis element 6= empty then

11: Add interface comment by using aciklama attribute value of Servis element

12: end if

13: Declare interface by using isim attribute value of Servis element as name of interface

14: end if

15: end for

Figure 7.10 shows an example code segment which is generated for a Servis Element

whose tip attribute value is Isy. Figure 7.11 shows an example code segment which

is generated for a Servis Element whose tip attribute value is Kay.

68

Figure 7.10: An example code generated for a Servis Element whose tip attribute

value is Isy

Figure 7.11: An example code generated for a Servis Element whose tip attribute

value is Kay

69

70

CHAPTER 8

CASE STUDY AND EVALUATION

In this chapter, we describe the conducted case study, explain analysis method and

give some information about the experimental results.

8.1 Case Study: Acoustic Modem Application Software

In the scope of the case study, Acoustic Modem Application Software has been de-

veloped. The software has a graphical user interface that enables the management

and monitoring of the modem that provides data exchange over the acoustic environ-

ment. Serial communication is established between the modem and the application

software. The software allows the modem to transmit files over acoustic environment

and records the files sent by another modem on the file system. It displays the daily

records of modem, provides user interfaces to adjust communication parameters, does

terminal operations, monitors acoustic environment information, starts device test and

displays results of test. Graphical user interface presents a toolbar for these actions.

Firstly, a developer who is the author of this thesis implements skeleton codes of

Acoustic Modem Application Software manually after architectural design is cre-

ated. Then, same developer uses proposed Model Driven Engineering approach for

implementation of skeleton codes and create application architecture model by us-

ing developed graphical modeling editor described in Chapter 6. By using graph-

ical modeling editor, the developer drags and drops DSS-RSA elements from the

palette to the design area, set the attribute values of the elements by using Proper-

ties View and create associations between the elements according to the DSS-RSA

metamodel definitions. Usage of Properties View for a KaYonetici element named as

71

KaY oneticiModemGunlukKayit to set attribute values is shown in Figure 8.1.

Figure 8.1: Properties View to edit DSS-RSA elements

Figure 8.2 shows created application architecture model. After application architec-

ture model is created, the model should be validated to check the conformance with

the DSS-RSA. As described in Chapter 5, OCL constraints are defined on metamodel

by using OCLinEcore editor. To validate the model, design area is right clicked and

“OCL→ V alidate” is selected as shown in Figure 8.3. If some OCL constraints are

violated, validation results show problems. Figure 8.4 shows some validation prob-

lems and Figure 8.5 shows successful validation of application architecture model.

After application architecture architecture model is created and validated, the model

file, namely Model.xmi, is copied under the src folder of Xpand project. To generate

skeleton Java codes under src-gen folder, generator.mwe2 file is right-clicked and

“Run As → MWE2 Workflow” is selected as decribed in Chapter 7. Generated

code examples for each element of DSS-RSA are also given in Chapter 7. Details of

generated classes and lines of skeleton codes for each DSS-RSA element are given in

Table 8.1.

For this study, development times of two approaches are measured by using a stop-

watch and showed in Table 8.2. By using the second approach where proposed

method in this thesis is used, expected package structure and skeleton codes are cre-

ated in a much shorter time than the manual approach. In the first approach developer

finished the work in 489 minutes, whereas in the second approach the work took 116

minutes.

72

Figure 8.2: Application model for Acoustic Modem Application Software

73

Figure 8.3: Validating application architecture model

Figure 8.4: Validation problems of the application architecture model

Figure 8.5: Successful validation of the application architecture model

In addition to that, source code is examined in code review by another developer

in DSS Team for compliance with the DSS-RSA. In first approach, some cases of

non-compliance with Reference Software Architecture is detected and listed below.

74

Table 8.1: Generation details for each element of DSS-RSA

DSS-RSA Element Class/Enum/Interface Count Package Count Lines of Code

Veri 9 Enum 11 216

33 Class

Olay 15 Class - 90

Servis (tip=Isy) 6 Interface - 36

Servis (tip=Kay) 8 Interface - 48

ArayuzKay 11 Interface - 66

KaBileseni 11 Class - 168

KaYonetici 11 Class 11 395

IsYonetici 6 Class 6 210

IsBileseni 3 Class 0 27

VeriDeposu 1 Class 1 134

1 Interface

Total 26 Interface 29 Package 1390 LOC

9 Enum

80 Class

• A naming rule for KaYonetici element of DSS-RSA is violated. A KaYonetici

element named as KayEkranGoruntusuAlma is written as KAY Ekran-

GoruntusuAlma mistakenly. This rule can not be violated in the second ap-

proach, because it is validated via OCL with KaY oneticiIsmiKayIleBasla-

mali invariant.

• A naming rule for IsYonetici element of DSS-RSA is violated. A IsYonetici el-

ement named as IsyModemHaberlesme is written as IsYModemHaberles-

me mistakenly. This rule can not be violated in the second approach, because

it is validated via OCL with IsY oneticiIsmiIsyIleBaslamali invariant.

• An element usage rule of DSS-RSA is violated. An Interface named as Servis-

KayAracCubugu is created for a Servis element whose tip attribute value is

Kay but it is not implemented by any KaYonetici element. In other words,

there is no sunulanServis relationship between a KaYonetici element and this

Servis element. This rule can not be violated in the second approach, because

75

Table 8.2: Manual and Automatic Development (Proposed Approach) Times for each

element of DSS-RSA

DSS-RSA Element Manual Development Time Automatic Development Time

(min.) (min.)

Veri 78 30

Olay 37 15

Servis (tip=Isy) 13 6

Servis (tip=Kay) 22 11

ArayuzKay 27 10

KaBileseni 60 11

KaYonetici 105 12

IsYonetici 75 9

IsBileseni 10 3

VeriDeposu 62 9

Total 489 minutes 116 minutes

it is validated via OCL with KullanilmayanKaY oneticiServisiOlamaz in-

variant.

• A KaYonetici element rule of DSS-RSA is violated. KaBileseni element named

as KaPnlBaglantiIslemleri do not have the same paket attribute value with

a KaYonetici element named as KayBaglantiIslemleri which has ka rela-

tionship with this KaBileseni element. paket attribute value of KaBileseni ele-

ment is baglanti but paket attribute value of KaYonetici element is baglanti-

islemleri. This rule can not be violated in the second approach, because it

is validated via OCL with KaY oneticiV eKaBileseniPaketIsimleriAyni-

Olmali invariant.

In the second approach, no case of non-compliance with Reference Software Archi-

tecture is detected. Proposed approach in this thesis increases the correctness of the

software. Units that are non-compliant with Reference Software Architecture pos-

sibly cause errors in software development lifecycle. Creating elements by using

graphical modeling editor is easy and it takes short time. Developing code manually

takes a long time and is error-prone.

76

As a case study, a small example consisting of only one subsystem was developed by

a single developer. Thus further process data needs to be collected and analyzed to

measure the true effect of the proposed approach.

77

78

CHAPTER 9

CONCLUSION

In this thesis, we propose a Model Driven Engineering approach to enforce the Ref-

erence Software Architecture and to aid in the transition process from architectural

design of application software, which is compliant with a Reference Software Archi-

tecture, to implementation. Reference Software Architecture provides architectural

best practices that are gathered from past experiences to all project team members.

They can be standards, prior project artifacts, design patterns, commercial frame-

works, and so forth. Reference Software Architecture provides tried and true repeat-

able processes and reduce the likelihood of incorrect technology decisions. Identi-

fication of a Reference Software Architecture can lead to a faster and more reliable

software development process [23].

Our approach is realized in three stages by utilizing Model Driven Engineering tech-

niques and tools. In the first stage, we formalize the Reference Software Architecture,

namely DSS-RSA, as a metamodel, which is created by DSS Software Team. Ref-

erence Software Architecture metamodeling process is started out with elements of

DSS-RSA and relationships between these elements. Eclipse Modeling Framework

is used for Ecore-based metamodel definition. After DSS-RSA Metamodel is created,

OCL constraints for this metamodel are defined by using OCLinEcore Editor. Meta-

model can express only very basic modeling constraints, for example cardinality con-

straints, association ends and types for attributes. More complicated constraints can

only be expressed as static semantic rules by using OCL. In the second stage, based

on the DSS-RSA Metamodel, concrete syntax is defined by using Eclipse Graphi-

cal Modeling Framework. At the end of the concrete syntax definition, a graphical

modeling editor is developed. Architectural designs of all application software in

79

DSS Software Team are created through this graphical modeling editor to promote

the Reference Software Architecture compliance of architectural design. Finally, in

the third stage, a code generation mechanism is implemented using Xpand which is

a statically-typed template language that is based on EMF models and specialized on

code generation [22]. By using model file which is the output of the graphical mod-

eling editor and automatic code generation mechanism, skeleton codes are generated.

Thus, transition process from architectural design to implementation is facilitated.

Furthermore, development of software in compliance with the Reference Software

Architecture is promoted.

In this thesis, a case study involving Acoustic Modem Application Software is con-

ducted. The software has a graphical user interface that enables the management and

monitoring of the modem that provides data exchange over the acoustic environment.

A developer who is the author of this thesis implements the skeleton codes of this ap-

plication software manually after architectural design is done. Then, same developer

uses the proposed method for implementation and creates application architecture

model by using graphical modeling editor. Development times of two approaches

are measured. By applying proposed method, expected package structure and skele-

ton codes are created in a much shorter time than the manual approach. In the first

approach, the developer finished the implementation of skeleton codes in 489 min-

utes while the second approach took 116 minutes to build the application architecture

model and generate skeleton codes. Therefore, by automatic generation of skeleton

codes, savings are achieved in labor. In addition to that, source code is examined in

code review by another developer in DSS Software Team for compliance with the Ref-

erence Software Architecture. In the first approach, some cases of non-compliance

with Reference Software Architecture is detected. But in the second approach, no

case of non-compliance with Reference Software Architecture is detected.

To conclude, proposed approach in this thesis increases the correctness of the soft-

ware by promoting the Reference Software Architecture compliance of architectural

design. Moreover, it prevents architecture erosion problem on a large scale and short-

ens development time. Creating elements by using graphical modeling editor is easy

and it takes short time, whereas developing code manually for takes more time and

is error-prone. The case study is obviously quite limited in scope, yet promising in

80

regards to long term benefits for the Sea Defense System Software Team.

In the future, we plan to automatically generate the architectural design documents.

We can also compare graphical modeling with textual modeling by using results of

the study presented in [11].

81

82

REFERENCES

[1] M. L. Bernardi, G. A. D. Lucca, and D. Distante, “A model-driven approach

for the fast prototyping of web applications,” in 2011 13th IEEE International

Symposium on Web Systems Evolution (WSE), pp. 65–74, Sept 2011.

[2] M. Brambilla, J. Cabot, and M. Wimmer, Model-Driven Software Engineering

in Practice. Morgan & Claypool Publishers, 1st ed., 2012.

[3] S. Bouchet, Graphical Modeling Framework/Tutorial/Part 1, 2013 (last

accessed July 8, 2017). available: https://wiki.eclipse.org/

Graphical_Modeling_Framework/Tutorial/Part_1.

[4] E. Y. Nakagawa, P. Oliveira Antonino, and M. Becker, Reference Architecture

and Product Line Architecture: A Subtle But Critical Difference, pp. 207–211.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2011.

[5] D. Quintero, IBM software defined environment. IBM redbooks, Poughkeepsie,

NY : IBM Corporation, International Technical Support Organization, 2015.,

2015.

[6] M. Panunzio, “Definition, realization and evaluation of a software reference ar-

chitecture for use in space applications (ph.d. thesis),” Tech. Rep. UBLCS-2011-

07, University of Bologna (Italy). Department of Computer Science, July 2011.

[7] V. V. Graciano Neto, L. Garcés, M. Guessi, L. B. R. de Oliveira, and F. Oquendo,

“On the equivalence between reference architectures and metamodels,” in Pro-

ceedings of the 1st International Workshop on Exploring Component-based

Techniques for Constructing Reference Architectures, CobRA ’15, (New York,

NY, USA), pp. 21–24, ACM, 2015.

[8] S. Martínez-Fernández, C. Ayala, X. Franch, D. Ameller, and H. M. Mar-

ques, “A framework for software reference architecture analysis and review.,”

in CIbSE 2013: 16th Ibero-American Conference on Software Engineering -

83

https://wiki.eclipse.org/Graphical_Modeling_Framework/Tutorial/Part_1
https://wiki.eclipse.org/Graphical_Modeling_Framework/Tutorial/Part_1

Memorias del 10th Workshop Latinoamericano Ingenieria de Software Exper-

imental, ESELAW 2013, (GESSI Research Group, Universitat Politécnica de

Catalunya), pp. 89–102, 2013.

[9] B. Tekinerdogan, “Chapter 10: Architectural drift analysis using architecture

reflexion viewpoint and design structure reflexion matrices.,” Software Quality

Assurance, pp. 221 – 236, 2016.

[10] J. Rosik, A. Le Gear, J. Buckley, M. A. Babar, and D. Connolly, “Assessing

architectural drift in commercial software development: a case study,” Software:

Practice and Experience, vol. 41, no. 1, pp. 63–86, 2011.

[11] N. K. Turhan and H. Oğuztüzün, “Metamodeling of reference software archi-

tecture and automatic code generation,” in Proccedings of the 10th European

Conference on Software Architecture Workshops, ECSAW ’16, (New York, NY,

USA), pp. 2:1–2:7, ACM, 2016.

[12] P. Trojanek, “Model-driven engineering approach to design and implementation

of robot control system,” CoRR, vol. abs/1302.5085, February 2013.

[13] D. Altunbay, E. Çetinkaya, and M. G. Metin, “Model driven development of

board games,” First Turkish Symposium on Model-Driven Software Develop-

ment (TMODELS), May 2009.

[14] M. L. Bernardi, G. A. D. Lucca, and D. Distante, “Model-driven fast prototyp-

ing of rias: From conceptual models to running applications,” in 2014 Interna-

tional Conference on Advances in Computing, Communications and Informatics

(ICACCI), pp. 250–258, Sept 2014.

[15] H. B. Saritas and G. Kardas, “A model driven architecture for the development

of smart card software,” Computer Languages, Systems & Structures, vol. 40,

no. 2, pp. 53 – 72, 2014.

[16] M. S. Eloumri, Graphical editors generation with the graphical modeling frame-

work: A case study. PhD thesis, Queen’s University, 2011.

[17] C. Miksovic and O. Zimmermann, “Architecturally significant requirements,

reference architecture, and metamodel for knowledge management in informa-

tion technology services,” in Proceedings of the 2011 Ninth Working IEEE/IFIP

84

Conference on Software Architecture, WICSA ’11, (Washington, DC, USA),

pp. 270–279, IEEE Computer Society, 2011.

[18] M. Patterns, Microsoft Application Architecture Guide. Microsoft Press,

2nd ed., 2009.

[19] OCL Specification, 2014 (last accessed May 27, 2017). available: http://

www.omg.org/spec/OCL/2.4/.

[20] Eclipse OCL (Object Constraint Language), 2013 (last accessed May 27,

2017). available: https://projects.eclipse.org/projects/

modeling.mdt.ocl.

[21] E. Willink, OCL/OCLinEcore, 2013 (last accessed May 27, 2017). available:

https://wiki.eclipse.org/OCL/OCLinEcore.

[22] N. Skrypuch, Eclipse Model To Text (M2T) Project, last accessed July 16, 2017.

available: https://eclipse.org/modeling/m2t.

[23] P. Reed, Reference Architecture: The best of best practices, 2002 (last

accessed August 12, 2017). available: https://www.ibm.com/

developerworks/rational/library/2774.html.

85

http://www.omg.org/spec/OCL/2.4/
http://www.omg.org/spec/OCL/2.4/
https://projects.eclipse.org/projects/modeling.mdt.ocl
https://projects.eclipse.org/projects/modeling.mdt.ocl
https://wiki.eclipse.org/OCL/OCLinEcore
https://eclipse.org/modeling/m2t
https://www.ibm.com/developerworks/rational/library/2774.html
https://www.ibm.com/developerworks/rational/library/2774.html

86

APPENDIX A

DEVELOPING DOMAIN MODEL AS EMF ECORE MODEL

A.1 Creating EMF Project

We create a new project to hold domain model by clicking on the File menu of Eclipse

and selecting “New → Other → Ecore Modeling Project”. We give the project

the name “dss_rsa_metamodel_project” as shown in Figure A.1. Then, we define the

model settings as shown in Figure A.2 and select the viewpoints to activate as shown

in Figure A.3. After clicking finish, Ecore Modeling Project is created.

Figure A.1: Creating new Ecore Modeling Project: enter a project name

By using the created diagram shown in Figure A.4, elements are dragged&dropped

from Palette into the design area and Domain Model of DSS-RSA is created as shown

in Figure A.5.

87

Figure A.2: Creating new Ecore Modeling Project: define the model settings

Figure A.3: Creating new Ecore Modeling Project: select viewpoints to activate

88

Figure A.4: Design area and palette of Ecore modeling editor

89

Fi
gu

re
A

.5
:D

SS
-R

SA
D

om
ai

n
M

od
el

90

APPENDIX B

GMF TOOLING WORKFLOW

B.1 Creating GMF Project

We create a new project to hold our models by clicking on the File menu of Eclipse

and selecting “New → Other → Graphical editor project”. We give the project

the name “com.aselsan.dss.dssml” and click “Show dashboard view for the created

project”.

GMF has a utility called the GMF dashboard that facilitates the process of generating

a graphical modeling editor. Figure B.1 shows the overwiew of GMF Dashboard.

Figure B.1: GMF Dashboard

91

B.2 Developing Domain Model

DSS-RSA metamodel is copied in model folder of the project and selected by clicking

“Select” option of Domain Model on GMF Dashboard.

After Domain Model is selected, we click “Derive” between Domain Model and Do-

main Gen Model on GMF Dashboard and then, a wizard to create Gen Model is

opened. We give the Gen Model the name “metamodel.genmodel” and use the de-

faults of the wizard. Gen Model creation wizard can also be opened without us-

ing GMF Dashboard by right-clicking the metamodel file and selecting “New →
Other → EMF Generator Model”.

After Gen Model is created, Metamodel package below the root of the Gen Model

is selected and by using the properties view, Base Package property is changed to

“com.aselsan.dss.dssml”. The root of the Gen Model is right-clicked and Generate

Model Code followed by Generate Edit Code is selected. The overwiew of the project

after Domain Gen Model is created is shown in Figure B.2.

B.3 Developing Graphical Definition Model

To develop Graphical Definition Model, we click “Derive” between Domain Model

and Graphical Def Model on GMF Dashboard. Then, a wizard to create Graphical

Definition Model is opened. Graphical Definition Model creation wizard can also

be opened without using GMF Dashboard by right-clicking the model folder and

selecting “New → Other → GMFGraph Model”. We give the Graphical Defini-

tion Model the name “metamodel.gmfgraph” and after loading metamodel we choose

“DSSML” diagram element as root element. Domain Model view of Graphical Defi-

nition Model creation wizard is shown in Figure B.3.

After clicking Next button in Figure B.3, we specify basic graphical definition of the

Domain Model as shown in Figure B.4, Figure B.5 and Figure B.6. After clicking the

Finish button in Figure B.6, Graphical Definition Model is created.

To color figures in graphical modeling editor, created Graphical Definition Model is

92

Figure B.2: Overview of the project after Domain Gen Model is created

Figure B.3: Graphical Definition Model creation wizard: select Domain Model

opened and under each Figure Descriptor’s Rectangle element, Background Color

RGB Color is added as a child element. By using properties view blue, green and red

93

Figure B.4: Graphical Definition Model creation wizard: specify basic graphical def-

inition of the Domain Model Part 1

values of Background Color RGB Color are set as shown in Figure B.7.

B.4 Developing Tooling Definition Model

To develop Tooling Definition Model, we click “Derive” between Domain Model

and Tooling Def Model on GMF Dashboard. Then, a wizard to create Tooling Def-

inition Model is opened. Tooling Definition Model creation wizard can also be

opened without using GMF Dashboard by right-clicking the model folder and select-

ing “New → Other → GMFTool Model”. We give the Tooling Definition Model

the name “metamodel.gmftool” and after loading metamodel we choose “DSSML”

diagram element as root element. Domain Model view of Tooling Definition Model

creation wizard is shown in Figure B.8.

After clicking Next button in Figure B.8, we specify basic tooling definition of the

94

Figure B.5: Graphical Definition Model creation wizard: specify basic graphical def-

inition of the Domain Model Part 2

Figure B.6: Graphical Definition Model creation wizard: specify basic graphical def-

inition of the Domain Model Part 3

95

Figure B.7: Setting RGB colors of Figures in Graphical Definition Model by using

properties view

Domain Model as shown in Figure B.9. After clicking the Finish button in Figure

B.9, Tooling Definition Model is created.

To edit Tool Groups, created Tooling Definition Model is opened and existing Tool

Group title is updated as “DSS RSA Elemanları” by using properties view. A new

Tool Group is added and title of this Tool Group is set as “Bağlantılar”. Then, Cre-

ation Tools that correspond to the relations of DSS RSA are moved under “Bağlan-

tılar” Tool Group. Overview of the Tooling Definition Model after Tool Groups are

updated is shown in Figure B.10.

96

Figure B.8: Tooling Definition Model creation wizard: select Domain Model

B.5 Developing Mapping Model

To develop Mapping Model, we click “Combine” between Domain Model, Graphical

Def Model, Tooling Def Model and Mapping Model on GMF Dashboard. Then, a

wizard to create Mapping Model is opened. Mapping Model creation wizard can

also be opened without using GMF Dashboard by right-clicking the model folder and

selecting “New → Other → GMFMap Model”. We give the Mapping Model the

name “metamodel.gmfmap” and after loading Domain Model we choose “DSSML”

diagram element for canvas mapping. Select Domain Model view of Mapping Model

creation wizard is shown in Figure B.11.

After clicking the next button in Figure B.11, we load Tooling Definition Model and

select diagram palette for canvas mapping as shown in Figure B.12. After clicking the

next button in Figure B.12, we load Graphical Definition Model and select diagram

canvas for canvas mapping as shown in Figure B.13. After clicking the next button in

Figure B.13, we map Domain Model elements as Nodes and Links as shown in Figure

B.14. After clicking the Finish button in Figure B.14, Mapping Model is created.

Node and Link Mappings of Mapping Model is shown in Figure B.15. Diagram

Nodes and Tools can be updated by using properties view.

97

Figure B.9: Tooling Definition Model creation wizard: specify basic tooling defini-

tion of the Domain Model

B.6 Creating Generator Model and Diagram Plug-in

To create Generator Model, we click “Transform” between Mapping Model and Di-

agram Editor Gen Model on GMF Dashboard. Then, Generator Model is created

easily under model folder with the name “metamodel.gmfgen”. Generator Model can

also be created without using GMF Dashboard by right-clicking Mapping Model and

selecting Create Generator Model. After giving the name “metamodel.gmfgen” to

Generator Model, Mapping Model is loaded as shown in Figure B.16. After clicking

the Next button in Figure B.16, GenModel is loaded as shown in Figure B.17. After

clicking the Next button in Figure B.17, transformation options are specified as shown

98

Figure B.10: Updating Tool Groups in Tooling Definition Model by using properties

view

in Figure B.18. After clicking the Finish button in Figure B.18, Generator Model is

created.

To use defined OCL constraints in Ecore Model in order to validate the created model,

the Generator Model is opened and “Gen Diagram DSSMLEditPart” is clicked. By

using the properties view, “Validation Decorators” and “Validation Enabled” values

are changed to “true” as shown in Figure B.19.

To generate diagram code, Generator Model is right-clicked and Generate Diagram

99

Figure B.11: Mapping Model creation wizard: load Domain Model and select ele-

ment for canvas mapping

Figure B.12: Mapping Model creation wizard: load Tooling Definition Model and

select diagram palette for canvas mapping

Code is selected. Generated diagram project is right-clicked and run as an Eclipse

Application. After the application is launched, a new Java Project is created and a

100

Figure B.13: Mapping Model creation wizard: load Graphical Definition Model and

select diagram canvas for canvas mapping

Figure B.14: Mapping Model creation wizard: map Domain Model elements

new “Metamodel Diagram” is added to the Java Project. GMF Diagram Editor is

ready now to create a model as shown in Figure B.20.

101

Figure B.15: Mapping Model

Figure B.16: Generator Model creation wizard: load Mapping Model

102

Figure B.17: Generator Model creation wizard: load GenModel

Figure B.18: Generator Model creation wizard: specify transformation options

103

Figure B.19: Activating OCL constraints on Generator Model

Figure B.20: GMF Diagram Editor

104

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	Motivation
	Contributions
	Thesis Organization

	RELATED WORK
	Model Driven Engineering
	Correspondence between Reference Architectures and Metamodels
	Reference Architecture Metamodeling

	DSS REFERENCE SOFTWARE ARCHITECTURE AND SOFTWARE FRAMEWORK GENERATOR
	DSS Reference Software Architecture
	Software Development Rules According to DSS Reference Software Architecture
	Manager Concept
	Data Store Concept
	Communication Mechanism Between Managers
	Communication Mechanism Between Components

	DSS Software Development Framework Generator

	METAMODEL FOR DSS REFERENCE SOFTWARE ARCHITECTURE
	Metamodeling Concept
	Metamodeling Language Concept
	DSS-RSA Metamodel
	Mapping from DSS-RSA to Metamodel

	STATIC SEMANTIC RULE DEFINITION WITH OCL
	OCLinEcore Editor
	OCL Naming Constraints
	OCL Cardinality Constraints
	OCL Element Usage Constraints
	OCL Servis Element Usage Constraints
	OCL IsYonetici Element Constraints
	OCL IsBileseni Element Constraints
	OCL KaYonetici Element Constraints
	OCL KaBileseni Element Constraints
	OCL ArayuzKay Element Constraints
	OCL Olay Element Constraints
	OCL Servis Element Constraints
	OCL VeriDeposu Element Constraints

	CONCRETE SYNTAX DEFINITION
	GMF Domain Model
	EMF Generator Model
	GMF Graphical Definition Model
	GMF Tooling Definition Model
	GMF Mapping Model
	GMF Generator Model

	CODE GENERATION
	Creating Xpand Project
	Code Generator for ArayuzKay Elements
	Code Generator for KaYonetici Elements
	Code Generator for KaBileseni Elements
	Code Generator for IsYonetici Elements
	Code Generator for IsBileseni Elements
	Code Generator for Veri Elements
	Code Generator for Olay Elements
	Code Generator for Servis Elements

	CASE STUDY AND EVALUATION
	Case Study: Acoustic Modem Application Software

	CONCLUSION
	REFERENCES
	Developing Domain Model as EMF Ecore Model
	Creating EMF Project

	GMF Tooling Workflow
	Creating GMF Project
	Developing Domain Model
	Developing Graphical Definition Model
	Developing Tooling Definition Model
	Developing Mapping Model
	Creating Generator Model and Diagram Plug-in

