MODELING AND CODE GENERATION FOR A REFERENCE SOFTWARE
ARCHITECTURE FOR NAVAL PLATFORM COMMAND AND CONTROL
SYSTEMS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

NAFIYE KUBRA TURHAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE
IN
COMPUTER ENGINEERING

SEPTEMBER 2017

Approval of the thesis:

MODELING AND CODE GENERATION FOR A REFERENCE SOFTWARE
ARCHITECTURE FOR NAVAL PLATFORM COMMAND AND CONTROL
SYSTEMS

submitted by NAFIYE KUBRA TURHAN in partial fulfillment of the requirements
for the degree of Master of Science in Computer Engineering Department, Mid-
dle East Technical University by,

Prof. Dr. Giilbin Dural Unver
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Adnan Yazici
Head of Department, Computer Engineering

Prof. Dr. Halit Oguztiiziin
Supervisor, Computer Engineering Department, METU

Examining Committee Members:

Prof. Dr. Ahmet Cosar
Computer Engineering Department, METU

Prof. Dr. Halit Oguztiiziin
Computer Engineering Department, METU

Prof. Dr. Ferda Nur Alpaslan
Computer Engineering Department, METU

Assoc. Prof. Dr. Pmar Karagoz
Computer Engineering Department, METU

Assist. Prof. Dr. Hacer Yalim Keleg
Computer Engineering Department, Ankara University

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: NAFIYE KUBRA TURHAN

Signature

v

ABSTRACT

MODELING AND CODE GENERATION FOR A REFERENCE SOFTWARE
ARCHITECTURE FOR NAVAL PLATFORM COMMAND AND CONTROL
SYSTEMS

Turhan, Nafiye Kiibra
M.S., Department of Computer Engineering

Supervisor : Prof. Dr. Halit Oguztiiziin

September 2017, pages

Many software teams who work in a particular domain develop software products
compliant with a specific Reference Software Architecture. By adopting a Reference
Software Architecture within an organization, software development schedule tend to
shorten, efficiency of software development process and quality of software product

tend to increase.

Architectures of all application software that are developed by Sea Defense Systems
Software Team are created based on a predefined Reference Software Architecture
named Sea Defense Systems Reference Software Architecture (DSS-RSA). In this
thesis, we propose a Model Driven Engineering approach to enforce the Reference
Software Architecture and to facilitate the process of transition from architectural
design of application software to implementation. In this approach, we create a meta-
model for describing DSS-RSA. Then, we define a domain specific graphical model-
ing language based on the metamodel. In the last stage, models that are created by

using the domain specific graphical modeling language are automatically transformed

to skeleton code. The approach has been evaluated on a case study.

Keywords: Model Driven Engineering, Reference Software Architecture, Domain
Specific Graphical Modeling Language, Automatic Code Generation, Model to Text

Transformation

vi

0z

DENIZ PLATFORMU KOMUTA KONTROL SISTEMLERI REFERANS
YAZILIM MIMARISI iCIN MODELLEME VE KOD URETIMI

Turhan, Nafiye Kiibra
Yiiksek Lisans, Bilgisayar Miihendisligi Boliimii

Tez Yoneticisi : Prof. Dr. Halit Oguztiiziin

Eyliil 2017 , [I04] sayfa

Belli bir alanda ¢alisan bircok yazilim ekibi 6zel bir Referans Yazilim Mimarisi ile
uyumlu yazilim iiriinleri gelistirmektedir. Bir organizasyon i¢inde 6zel bir Referans
Yazilim Mimarisinin benimsenmesi sonucunda, yazilim gelistirme takvimi kisalma
egilimi gosterirken, yazilim gelistirme siirecinin etkinligi ve yazilim iiriinlerinin kali-

tesi artma egilimindedir.

Deniz Savunma Sistemleri Yazilim Ekibi tarafindan gelistirilen tiim uygulama yazi-
Iimlarinin mimarileri, Deniz Savunma Sistemleri Referans Yazilim Mimarisi (DSS-
RSA) olarak adlandirilan onceden tanimlanmig bir Referans Yazilim Mimarisine da-
yanarak olusturulmustur. Bu tezde, uygulama yazilimlarinin mimari tasarimindan,
kodlanmasina gegis siirecini kolaylastirmak ve yazilimlarin Referans Yazilim Mima-
risi ile uyumlu olarak gelistirilmesini saglamak i¢in bir Model Giidiimlii Miihendislik
yaklagimi onerilmektedir. Bu yaklasimda, DSS-RSA’y1 tanimlamak i¢in bir metamo-
del olusturulmustur. Ardindan, metamodele dayanan alana 6zgii bir grafiksel model-

leme dili tanimlanmistir. Son agsamada, alana 6zgii grafiksel modelleme dili kullani-

vii

larak olusturulan modeller otomatik olarak iskelet koda doniistiiriilmiistiir. Onerilen

yaklagim bir vaka caligmasi iizerinde degerlendirilmistir.

Anahtar Kelimeler: Model Giidiimlii Miithendislik, Referans Yazilim Mimarisi, Alana
Ozgﬁ Grafiksel Modelleme Dili, Otomatik Kod Uretme, Modelden Metine Doniis-

tirme

viii

To my lovely family

X

ACKNOWLEDGMENTS

I would first like to thank and express my gratitude to my thesis advisor Prof. Dr.
Halit Oguztiiziin for his encouragement, supervision and guidance throughout the

research.

I also would like to thank ASELSAN A.S. for giving me the opportunity of continuing
my education. I wish to express sincere appreciation to my colleagues and seniors in

my department for their support.

I wish to thank to my supportive friends and all people who have helped and inspired

me during my thesis study.

Finally, I have no suitable word to express my deepest gratitude to my family for their
support in every aspect of my life. I am indebted to my mother Emine Turhan and my
father Mustafa Turhan for their care and everlasting love to me. My sister Fatmanur
Turhan and my brother Hasan Turhan thanks for their love, trust, understanding and

every kind of support throughout my life.

TABLE OF CONTENTS

ABSTRACTI. e v

OZ . . . vii

ACKNOWLEDGMENTSI.o X

TABLE OF CONTENTSI e e e X1

LISTOETABLES| o XV

................................ xvi

LIST OF ABBREVIATIONSI XX
CHAPTERS

1 INTRODUCTIONI 1

2

3

(1.3 Thesis Organization| 4

2 REILATED WORKI o o oo 7

[2.1 Model Driven Engineermng 7

[2.2 Correspondence between Reference Architectures and Meta- |

[models| 9

xi

3.1.1 Software Development Rules According to DSS |

L Reference Software Architecturel 16
(3.1.1.1 Manager Concept| 16
[3.1.1.2 Data Store Concept| 17

B.1.1.3 Communication Mechanism Between |

Managers| 17

B3.1.1.4 Communication Mechanism Between |

[5.2 OCL Naming Constraints| 33
[5.3 OCL Cardinality Constraints| 35
[5.4 OCL Element Usage Constraints| 35
[5.5 OCL Servis Element Usage Constraints|. 37
0.6 OCL IsYonetici Element Constraints| 38
B.7 OCL IsBileseni Element Constraintsl 38
0.8 OCL KaYonetici Element Constraintsf. 39

xii

[5.10 OCL ArayuzKay Element Constraints| 40
[5.11 OCL Olay Element Constraints| 41
41

42

45

47

47

(6.3 GMF Graphical Definition Model| 47
[6.4 GMF Tooling Definitton Model| 48
(6.5 GMF MappingModel| 48
6.6 GMEF Generator Modell 49
7 CODEGENERATION| 51
[7.1 Creating Xpand Project| 52
[7.2 Code Generator for ArayuzKay Elements|. 53
54

58

60

63

65

67

67

8 CASE STUDY AND EVALUATION 71

xiil

(8.1 Case Study: Acoustic Modem Application Software| 71

9 CONCLUSION 79
REFERENCES|o o 83
APPENDICES

A DEVELOPING DOMAIN MODEL AS EMF ECORE MODEL| . . . 87

(A.1 Creating EMF Project| 87

B GMF TOOLING WORKFLOW! 91

[B.1 Creating GMF Project| 91
B.2 Developing Domain Model 92
[B.3 Developing Graphical Definition Model| 92
[B.4 Developing Tooling Definition Model|. 94
[B.5 Developing Mapping Model| 97
[B.6 Creating Generator Model and Diagram Plug-in| 98

X1V

TABLES

LIST OF TABLES

Table 4.1 Modeling concept table for DSS-RSAl 24
Table8.1 Generation details for each element of DSS-RSAl 75
Table [8.2 Manual and Automatic Development (Proposed Approach) Times |
[foreachelementof DSS-RSAl. 76

XV

FIGURES

LIST OF FIGURES

Figure 2.1 Process and technologies adopted by [1] to define model driven

| fast prototyping approach and resulting tool supportf

Figure 3.1

DSS Reference Software Architecture layers|

Figure 3.2

DSS-Factory process schemal

Figure 4.1

Metamodeling levels [2])

Figure 4.2

DSS-RSA Metamodel |

Figure[5.1

Some OCL constraints defined in OCLinEcore editor{

Figure|5.2

OCL naming constraints|

Figure|5.3

OCL cardinality constraint|

Figure[5.4

OCL element usage constraints|

Figure 5.5

OCL Servis element usage constraints|.

Figure|5.6

OCL IsYonetici element constraints|

Figure|5.7

OCL IsBileseni element constraint|.

Figure[5.8

OCL KaYonetici element constraints|

Figure 5.9

OCL KaBileseni element constraintf

Figure[5.10 OCL ArayuzKay element constraint

Xvi

Figure[5.11 OCL Olay element constraint, 41
Figure|5.12 OCL Servis element constraints| 42
Figure[5.13 OCL VeriDeposu element constraints| 42
Figure|6.1 Graphical notation introduces symbols for the modeling concepts, |
| adaptedfrom [2]] 45
Figure[6.2 GMEF-Tooling Workflow, adapted from [3] 46
Figure[/.1 Xpand Project 52
Figure[/.2 An example code segment generated for a ArayuzKay Element] 54
Figure[/.3 An example code segment generated for a KaYonetici Element|. . . 58
Figure[/.4 An example code segment generated for a KaBileseni Element|. . . 60
Figure[/.5 An example code segment generated for a IsYonetici Element| . . . 64
Figure[/.6 An example code segment generated for a [sBileseni Element] . . . 65
Figure[/.7 An example code segment generated for a Veri Element whose tip |
[attribute value1s Classlo oo 66
Figure[/.8 An example code segment generated for a Veri Element whose tip |
[attribute valueis Enum| oL oo 67
Figure[/.9 An example code segment generated for a Olay Element| 68
Figure /.10 An example code generated for a Servis Element whose tip at- |
| tribute value1s Isy| oo 69
Figure [/.11 An example code generated for a Servis Element whose tip at- |
[tribute value1sKay| oo 69
Figure[8.1 Properties View to edit DSS-RSA elements| 72
Figure[8.2 Application model for Acoustic Modem Application Software| . . . 73

Xvil

Figure[8.3 Validating application architecture model| 74
Figure (8.4 Validation problems of the application architecture model 74
Figure|8.5 Successful validation of the application architecture model| 74
Figure|A.1 Creating new Ecore Modeling Project: enter a project name| 87
Figure|A.2 Creating new Ecore Modeling Project: define the model settings| . . 88
Figure|A.3 Creating new Ecore Modeling Project: select viewpoints to activate| 88
Figure|A.4 Design area and palette of Ecore modeling editor{ 89
Figure[A.5 DSS-RSA Domain Model|. 90
Figure[B.1 GMF Dashboard] 91
Figure[B.2 Overview of the project after Domain Gen Model 1s created| 93
Figure |B.3 Graphical Definition Model creation wizard: select Domain Model| 93
Figure |B.4 Graphical Definition Model creation wizard: specify basic graphi- |
[cal definition of the Domain Model Part If. 94
Figure |B.5 Graphical Definition Model creation wizard: specify basic graphi- |
[cal definition of the Domain Model Part2f. 95
Figure |B.6 Graphical Definition Model creation wizard: specify basic graphi- |
[cal definition of the Domain Model Part 3|. 95
Figure [B.7 Setting RGB colors of Figures in Graphical Definition Model by [
| USING PrOPErties VIEW| o . v v v vt vt e et e e e e e 96
Figure[B.8 Tooling Definition Model creation wizard: select Domain Modell . 97
Figure [B.9 'Tooling Definition Model creation wizard: specify basic tooling |
[__definition of the Domain Modell 98

Figure [B.10 Updating Tool Groups in Tooling Definition Model by using prop-

| EITIES VIEW| . . . v v v o o e e e e e e e e e e e e e 99

Figure [B.11Mapping Model creation wizard: load Domain Model and select

[element for canvas mapping| 100

Figure [B.12Mapping Model creation wizard: load Tooling Definition Model

[and select diagram palette for canvas mapping| 100

Figure [B.13Mapping Model creation wizard: load Graphical Definition Model

| and select diagram canvas for canvas mapping| 101

Figure [B.14 Mapping Model creation wizard: map Domain Model elements| . . 101

Figure B.ISMappingModel| 102
Figure [B.16 Generator Model creation wizard: load Mapping Model| 102
Figure [B.17Generator Model creation wizard: load GenModel| 103

Figure [B.18 Generator Model creation wizard: specify transformation options| . 103

Figure [B.19 Activating OCL constraints on Generator Model| 104
Figure[B.20GMF Diagram Editor 104

Xix

ATL
C2

DSL
DSS

DSS-RSA

DSS-Factory

EMF
GMF
GUI
HTML
JET

IS
KKYTM
MDE
MOF
MVC
MVC-RIA
M2T
0AW
OMG
PDE
OCL

PIMM

LIST OF ABBREVIATIONS

Atlas Transformation Language

Command and Control

Domain Specific Language

Sea Defense Systems

Sea Defense Systems Reference Software Architecture

Sea Defense Systems Software Development Framework Gen-

erator

Eclipse Modeling Framework

Graphical Modeling Framework

Graphical User Interface

Hypertext Markup Language

Java Emitter Templates

JavaScript

Command and Control Software Design Department
Model Driven Engineering

Meta Object Facility

Model-View-Controller

Model-View-Controller Rich Internet Application
Model to Text

openArchitectureWare

Object Management Group

Plug-in Development Environment

Object Constraint Language

Platform Independent Metamodel

XX

PSMM Platform Specific Metamodel

RIA Rich Internet Application

RSA Reference Software Architecture
SMC State Machine Compiler

SQL Structured Query Language

SST Defense System Technologies
UML Unified Modeling Language
UWA Ubiquitous Web Application
WST Web Standard Tools

Xxi

xXxii

CHAPTER 1

INTRODUCTION

As the structural complexity and size of software systems increase, the need for im-
proving productivity of software development process in terms of quality, time and
cost also increases. It is difficult to deliver a software product that works correctly
and efficiently in a limited time. Recently, software engineering world overcome this
challenge by strengthening the efficiency of software development process. Since
software architecture is the backbone of a successful software and the key element
that determines the quality of a software, it is being thoroughly investigated. To
achieve quality aspects of software, the research area of software architecture has
grown up and has accumulated important knowledge [4]. In the light of the obtained
knowledge, Reference Software Architectures started to be used in software systems
to develop better quality software products in a fast and effective way. By adopt-
ing a Reference Software Architecture within an organization, software development
schedule tend to shorten, efficiency of software development process and quality of

software product tend to increase [3l].

Reference Software Architecture is a type of generic software architecture. It accu-
mulates the founding principles, underlying methodology and the architectural prac-
tices that are recognized by the domain experts as the best solution [6]. Reference
Software Architectures comprise a family of software architectures for a specific do-
main. Concrete software architectures are instantiated from Reference Software Ar-
chitectures. It provides standardized and systematic reuse of knowledge, components
and core assets for the development of a concrete software architecture for a particular

software product [[7], [8].

However defining a Reference Software Architecture is not enough. Software teams

who create particular architectural designs compliant with a predefined Reference
Software Architecture spend a big portion of their time on implementation. Further,
developers must ensure the architecture compliance of a software product. In some
cases architecture erosion problem occurs. The architecture erosion problem is de-
fined as the discrepancy between the architecture description and the resulting imple-
mentation [9]. Software systems can change over time: bug fixes can be done or new
features can be added. Such changes can result in architecture erosion problem. Fur-
thermore, implementation of software may diverge from original architectural design
due to short development deadlines or inexperienced developers in the architectural
design. In such cases, it becomes difficult to further develop, maintain or under-
stand the code and advantage of well designed architecture is lost. Inconsistencies
emerged at the beginning of the implementation have great importance. Making the
implementation compliant with the software architecture becomes hard and costly
due to the divergence of implementation from architectural design. In some cases
these problems can lead to re-implementing the complete system or at the end of the
software development lifecycle, erroneous, costly and poor quality software product

may be delivered to customer [10].

Sea Defense Systems (DSS) Software Team in Command and Control Software De-
sign Department (KKYTM) of Defense System Technologies (SST) division in ASEL-
SAN Inc. creates architectural designs of all application software in compliance with
a predefined Reference Software Architecture named as Sea Defense Systems Refer-
ence Software Architecture (DSS-RSA). In this thesis, we propose a Model Driven
Engineering approach to enforce the Reference Software Architecture and to facilitate
the process of transition from architectural design of application software to imple-
mentation. We describe benefits of our approach. Preliminary results of this thesis

has been presented in [11].

1.1 Motivation

DSS Software Team develops software in the fields of above-water and underwater
platforms of weapon/sensor control systems, decision support systems, sonar sys-

tems, fire control systems and other naval command and control (C2) systems and

2

components. They use a predefined Reference Software Architecture for their ar-
chitectural designs, namely DSS Reference Software Architecture (DSS-RSA). DSS-
RSA is defined by DSS Software Team as a common architectural structure to sup-
port the development of individual software products. But developers spend a lot of
time on implementation after architectural design is done. Occasionally, there may
be cases where the software architectural design of individual applications is non-
compliant with Reference Software Architecture or it is compliant with Reference
Software Architecture structurally, but implementation of software does not follow
the architectural guidelines. For these reasons, developers of DSS Software Team
need to perform architectural design of a new project in compliance with the Refer-
ence Software Architecture, carry out implementation compliant with the architec-

tural design and minimize the time spent for implementation.

To ensure Reference Software Architecture compliance of architectural design, pre-
vent architecture erosion problem and shorten development time, we put forth a

Model Driven Engineering approach. In this approach we:

e Develop a metamodel of Reference Software Architecture put forth by DSS
Software Team (DSS-RSA)

e Define Object Constraint Language (OCL) constraints for DSS-RSA Meta-

model

e Define graphical concrete syntax based on the DSS-RSA Metamodel and de-

velop a graphical modeling editor
e Create models by using graphical modeling editor
e Develop a code generation mechanism using Xpand template language

e Generate skeleton codes by using code generation mechanism and models

1.2 Contributions

The main contributions of this thesis are as follows:

e A Model Driven Engineering approach to automate the transition process from

3

architectural design which is compliant with the predefined Reference Software

Architecture to implementation for the DSS Team Software Projects is devised.

e A graphical tool is developed in order to enable the users to do architectural
designs in compliance with the predefined Reference Software Architecture,
namely DSS-RSA. In other words, Reference Software Architecture compli-

ance of software architecture is promoted.

e Through automatic code generation, architecture erosion problem is largely

prevented and architecture compliance of software implementation is promoted.

e Time spent to develop the software is reduced significantly through automatic

generation of software framework.

e The quality of the delivered software is enhanced because there will be no errors

resulting from non-compliance to the Reference Software Architecture.

1.3 Thesis Organization

The rest of this thesis is organized as follows:

Chapter 2] presents the related work on Model Driven Engineering techniques, Refer-

ence Architectures and Reference Architecture Metamodeling.

Chapter [3| describes the Reference Software Architecture put forth by DSS Software
Team and its layers. In addition, a mechanism for software framework generation

used by DSS Software Team is presented in the rest of Chapter 3]

In Chapter @ metamodeling concept, metamodeling language concept, DSS-RSA
Metamodel and mapping from DSS-RSA to Metamodel are described.

In Chapter [5] OCLinEcore Editor and defined Object Constraint Language (OCL)

constraints for DSS-RSA Metamodel are explained in detail.

Chapter [6] presents the graphical concrete syntax definition based on the DSS-RSA
Metamodel.

In Chapter [7] the code generation mechanism using Xpand template language is de-

scribed.
In Chapter 8] conducted case study and evaluation of results are presented.

In Chapter [9] discussion and conclusion are presented. The work to be done in the

future is mentioned.

CHAPTER 2

RELATED WORK

Reference Software Architecture, Model Driven Engineering and Automatic Code
Generation are important topics in Software Engineering community and many re-
search studies have been published on these topics in recent years. In this chapter, we
summarize some of these recent works that are related to the study we described in
this thesis. In Section[2.1] the studies which use Model Driven Engineering tecniques
are mentioned. In Section [2.2] a study that propose correspondence between Refer-
ence Architectures and Metamodels is described. In Section[2.3] studies on Reference

Architecture Metamodeling are mentioned.

2.1 Model Driven Engineering

Trojanek [12] apply a Model Driven Engineering approach to design domain-specific
solutions for subsumption based robot control system development. The study in [[12]
identifies the modeling concepts, creates subsumption control architecture metamodel
and defines OCL expressions. Additionally, in the same study, a graphical notation
editor using Eclipse Modeling Framework (EMF) Project is developed to allow the
designer to specify the structure of the control system. After the model definition
with graphical notation editor, about 1800 lines of skeleton Ada code of the robot
control system application are generated automatically by applying model to code

transformation with Eclipse Acceleo.

Altunbay et al. [13] describe a Model Driven Engineering approach in order to in-
crease the productivity of computer games design and development. [13]] introduce

a metamodel using Meta Object Facility (MOF) metalanguage and extension mech-

7

anism of the Unified Modeling Language (UML) metamodel and provide a Domain
Specific Language for board game domain. In the same study, static sematic rules via
OCL expressions are defined and two example board game model (Chess game model
and Backgammon game model) are provided. The study in [[13]] does model to model
transformation via Atlas Transformation Language from Board Game metamodel to
Video Game metamodel and model to text transformations from Chess game model
to Java source code by applying three different methods via MOFScript tool which
is an implementation of the MOFScript model to text transformation language, via

OpenArchitectureWare (0AW) tool and via Xpand language.

In [[14]], the authors propose a Model Driven Engineering approach for fast prototyp-
ing of Rich Internet Applications (RIAs). They use well known Model Driven En-
gineering frameworks and technologies including Eclipse EMF, GMF and Xpand?2.
The authors define two metamodels, the first of which enables designing a RIA at a
conceptual level using the Ubiquitous Web Application (UWA) design methodology
and the other one is a Model-View-Controller RIA (MVC-RIA) metamodel adopting
the Model-View-Controller (MVC) architectural design pattern and RIA widgets for
the user interface. In the same study, the authors develop a UWA Graphical Model
Editor to define the conceptual model and use Atlas Transformation Language (ATL)
transformation rules to automatically transform the UWA conceptual model into the
MVC-RIA design model. MVC-RIA design model can be customized and refined
using a MVC Graphical Model Editor. After the design refinement step, developers
do model to text transformation via Xpand to generate source code (HTML/JS re-
sources, Java source code, SQL scripts, and project metadata) of a ready-to-deploy
prototype of the application that uses the RichFaces Framework. The authors also
develop a case study to validate the proposed approach and design and implement an
e-commerce RIA named e-Market. e-Market application is ready to be deployed on a

Tomcat 7.0 application server using a MySQL database for data persistency.

Saritas and Kardas [15] propose a Model Driven Engineering approach that ease the
development of smart card software. They define a Platform Independent Metamodel
(PIMM) for smart card systems and two smart card Platform Specific Metamodels
(PSMM) which are Java Card and ZeitControl Basic Card metamodels. Platform in-

dependent and platform specific metamodels are defined by using Ecore metamodel

included in the Eclipse Modeling Framework. Model constraints are implemented
with OCL. To model the smart card elements and their relationships graphically, they
develop modeling editors for both platform specific and platform independent meta-
models by using Eclipse Graphical Modeling Framework (GMF). Developers design
smart card models according to the platform independent metamodel by using graph-
ical modeling editor. Then these models are transformed into the models of smart
card execution platform such as JCF or Basic Card environment (model-to-model
transformation between instances of platform independent metamodel and platform
specific metamodel). They use ATL for model transformations. They perform model-
to-text transformations between platform specific metamodel instances obtained from
model-to-model transformation and software code by using the MOFScript. Develop-
ers can also design smart card models in the platform specific level by using platform
specific graphical modeling editors and use these models as the direct input for model-
to-text transformation to generate program code in Java and ZC-Basic Languages. In
the end, they realize the same smart card system on different execution platforms
and provide easy development of smart card software saving the developers from the

tedious and error-prone work.

Eloumri [16] does a case study by using GMF for the creation of a graphical dia-
gram editor. This graphical diagram editor is developed for State Machine Compilers
(SMC). Domain model of SMC is created as EMF Ecore Model. Graphical con-
crete syntax is developed by using Eclipse GMF. SMC model instances created by
the graphical diagram editor is transformed into SMC source code. Model to text
transformation is done by using the Java Emitter Templates (JET) which is a part of
Eclipse M2T project. Strengths and weaknesses of GMF observed during the case
study are listed.

2.2 Correspondence between Reference Architectures and Metamodels

Graciano Neto et al. [7]] carry out a Systematic Literature Review that shows there
is a need for advances regarding Reference Architecture representation and tools to
manipulate models. [7] claim that metamodels and Reference Architectures are cor-

respondent in a conceptual level and Model Driven Engineering techniques, frame-

9

works, processes and methods can also be used in Reference Architecture manage-
ment. They compare characteristics of metamodels and Reference Architectures, both
are abstract models that concrete models can be derived from. Both are seperated in
views. Specific diagrams are used to model their views and there is a need for both to

check the conformance between the concrete and the abstract model.

2.3 Reference Architecture Metamodeling

There are some studies that create metamodel of a Reference Architecture and apply
Model Driven Engineering techniques for software development, for example [17]]

and [1]].

Miksovic and Zimmermann [[1°/] propose a domain-specific decision knowledge pro-
cessing solution to cover the requirements of complex strategic outsourcing solutions
design. Firstly they determine a set of architecturally significant requirements. Then,
they developed conceptual reference architecture from the requirements. Finally, they
design a decision process-oriented metamodel by using the reference architecture.
This metamodel defines a Domain Specific Language (DSL) as a workflow language
that provides certain concepts which allow to model and configure a decision guid-
ance system. They also generated a tool that allows knowledge engineers to model
detailed design variations and the relationships between them. In the end, solution de-
sign decisions can be managed effectively and they become comparable by detecting

deviations from standards and best practices.

Bernardi et al. [1]] propose an approach for the model driven fast prototyping of Web
Applications in order to reduce the risk of rework during software development and
increase the code reusability and quality. [[1]] chooses a reference architecture along
with MV C architectural design pattern and JavaServer Faces technology platform for
Web Application development. [1] creates the metamodel of reference architecture
and a graphical editor is developed to create, view, and edit models which are instan-
tiated from the defined metamodel. Then, [[1] defines model to text transformation
rules to automatically transform models defined using the developed graphical editor

into source code conforming to the chosen reference architecture and platform. In

10

Figure [2.1] adopted process and technologies and developed tool support by [1]] is
shown. To define the metamodel the Eclipse EMF, to develop the graphical editor

/ Adop?Process \ / Adopted Technologies \

Eclipse Modeling Framework
(EMF)

Defining a Metamodel for Web

A

Applications Design

l

Eclipse Graphical Modeling

Developing a Graphical Modeling <
Tool for Defined Metamodel Framework (GMF)
Developing a Tool for Automatic Eclipse PDE, Xpand2,

A

Eclipse WST, Maven /

@ Developed Tool Support
-Graphical modeling tool
- Tool for automatic code gen

Figure 2.1: Process and technologies adopted by [l1] to define model driven fast pro-

Code GeneratioI starting from Models

totyping approach and resulting tool support

Eclipse GMF, to validate correctness of the generated models, OCL is used by [1].
[1] chooses the Xpand template language for code generation (HTML/JS resources,
Java source code, SQL scripts and project metadata), because of its excellent support
of EMF metamodels. [1]] develops a case study that automatically generate the proto-
type of a simple Web Application for on-line note taking and sharing. The resulting
Web Application is ready to be deployed on a servlet container like Apache Tomcat,
using MySQL as Database Management System for data storage. [1] generates fully
functioning prototype of Web Application automatically and rapidly. In the end of
the study, design refinement process is simplified, verifying and validating the design

is made possible.

11

12

CHAPTER 3

DSS REFERENCE SOFTWARE ARCHITECTURE AND SOFTWARE
FRAMEWORK GENERATOR

DSS Software Team develops software products using Reference Software Architec-
ture in the fields of surface and underwater platforms, weapon/sensor control systems,

decision support systems, sonar systems, fire control systems and so on.

In this chapter, DSS Reference Software Architecture and Software Framework Gen-
erator is described. Firstly, in Section @, Reference Software Architecture put forth
by DSS Software Team and its layers are given in detail. In Section [3.2] a mechanism

for software framework generation used by DSS Software Team is presented.

3.1 DSS Reference Software Architecture

DSS Reference Software Architecture (DSS-RSA) is defined as a common architec-
ture to support the development of individual software products. DSS-RSA involves
high-level definitions that are going to be used in software development. DSS-RSA is
a general architecture and can be used by different domains. DSS-RSA is defined by
adapting an architecture that Microsoft offers to .NET developers. This widely used
and trusted architecture helps developers build effective, high quality applications

more quickly and with less risk [18].

Architectures of all software that are developed by DSS Software Team are created
based on this Reference Architecture. DSS-RSA offers a layered architecture and
directives for the new software to be compliant with this layered structure. Figure[3.1]

shows conceptual architecture definition of DSS-RSA.

13

APPLICATION

USER INTERFACE COMPONENTS

USER INTERFACE MANAGERS

BUSINESS OBJECTS

BUSINESS MANAGERS BUSINESS COMPONENTS

TOOLS
SOFTWARE INFRASTRUCTURE COMPONENTS

Business Layer

ABSTRACTION COMPONENTS

Figure 3.1: DSS Reference Software Architecture layers

In Figure the boxes in layers are called as Component. However, this should
not be construed as developing each of them as a component, but it would be more
appropriate to consider it as a piece of software. Descriptions of the components in
Figure 3.1 and their relationships with each other are given below:

Tools: These components involve software units that perform simple computational
functions that may be needed by all software components like unit conversion tools,

text formatting tools, object comparison/hashing tools, text operations tools.

Software Infrastructure Components: The basic function of Software Infrastruc-
ture Components is the Software Lifecycle Management. This component group
meets the requirements of other layers like localization management, data store man-

agement etc.

User Interface Components: These components involve software units that imple-
ment Graphical User Interface (GUI) classes. There are no functionality capabilities

in these components. Management of user interface functionality is handled by User

14

Interface Managers. User Interface Components have no dependency to managers
and any other components except the definitions inside the Business Objects. The
communication between User Interface Components and other parts of the software

is done through the interfaces which are implemented by User Interface Managers.

User Interface Managers: Controls of the operation of the user interface and com-
munication with the Business Managers are provided by the User Interface Managers.
By using User Interface Managers, functionality is separated from User Interface
Components completely, so there are no dependencies to User Interface Components.
It results in a more understandable code structure and User Interface Components are

not affected from changes in business logic.

Business Managers: The business logic of the software is managed by the Business
Managers. These components manage business logic and software workflow by using
Business Components and other software units. For example, a Business Manager for
a sensor performs operations like initiating and terminating the communication with
the sensor, receiving a data from the sensor, writing received data to the database,

sending data to other devices/units or displaying it on the user interface.

Business Components: These components have basic business capabilities. The
calculations and algorithms related to business logic are developed as Business Com-
ponents. As an example, capabilities like decoding of the data received from a sensor,
internal processing of the received data and encoding of data sent to the sensor can be
done by Business Components. Providing functionality by using these basic capabil-

ities is done by Business Managers.

Business Objects: The data structure definitions that are needed by all components of
the software are located under Business Objects. Event classes and the service defini-
tions that are used in communication inside software are also located under Business
Objects. When Object Relational Mapping is used for accessing the database, map-

ping classes to the database are also defined under Business Objects.

Abstraction Components: Abstraction Components are components that are not do-
main specific and capable of presenting abstractualized abilities independently of im-

plementation details. These components provide abstraction for low-level operations

15

that need direct interaction with the operating system, for instance:

Printer operations

Serial Bus Communication

Usage of USB/CD/DVD for storage

Accessing special ports like PIO

Application: Application layer includes classes that initialize all manager compo-
nents (User Interface Managers and Business Managers) according to their starting
levels and starts all operations. This layer also includes classes that contain codes

related to how the software handle faults that may be encountered during startup.

Usage of these components from all layers is not free. Detailed usage rules are given

under the section [3.1.1] covering the interaction in all layers.

3.1.1 Software Development Rules According to DSS Reference Software Ar-

chitecture

3.1.1.1 Manager Concept

Managers are the components responsible for managing software workflow that are
functionally grouped for the purposes of managing User Interface Components at the

User Interface layer or managing business workflows at the Business Layer.

Managers start with the start of the application and serve as long as it is not termi-
nated. The concept of starting and terminating can have different meanings for each
manager. Creating DDS subscribers and publishers for Business Manager responsi-
ble for DDS communication or reading the configuration file and creating the rele-
vant data structure for Business Manager responsible for the configuration operations
can be given as examples of the operations performed during the initialization of the
managers. During the termination, closing the opened files, terminating the network

communication, etc. can be performed by Business Managers.

16

3.1.1.2 Data Store Concept

Data Store is an infrastructure that is developed to meet the needs of multiple man-
agers sharing data and informing users of changes in data. Data stores can only be

accessed by managers. Almost all status in the software is kept in this infrastructure.

3.1.1.3 Communication Mechanism Between Managers
The data transfer and workflow between the manager components can be performed
in two different ways; asynchronous and synchronous.

Managers communicate synchronously via service interfaces with the method call.
At the start of the software, services that are served by managers are injected into
each manager via the relevant infrastructure component. When a manager needs to

communicate with another manager, it uses the relevant service.

Managers communicate asynchronously by using event based infrastructure. Another

mechanism for data transfer is data store.

3.1.14 Communication Mechanism Between Components

Communication mechanism between components of DSS-RSA is defined below:

e Tools can be used by all components except for Abstraction Components.

e Software Infrastructure Components can be used by all components except for

Abstraction Components.

e Business Objects can be used by all components except for Abstraction Com-

ponents.

e User Interface Components can not have any dependency to other components

except Business Objects and User Interface Manager Interfaces.

e Access to the corresponding User Interface Manager from the User Interface

Component can take place via the interface that User Interface Manager has

17

presented for User Interface Component.

e User Interface Manager is responsible for creating the instance of the User In-
terface Component and injecting the interface to the User Interface Component

during the creation process.

e There is no direct access to the Abstraction Layer from User Interface Managers
and User Interface Components. If there is a need for access in this direction,

it is done via the relevant Business Manager.
e Business Components can only be accessed from Business Managers.

e Communication of Business Managers with external interfaces of the software
or with operating system is made via a method call to the relevant Abstraction

Component.

e Since Abstraction Components are developed for general purpose by consider-
ing reusability, no dependency is placed from these components to other com-

ponents.

3.2 DSS Software Development Framework Generator

In addition to the source code based reusable entities, the DSS Software Team also
aims to reuse other entities in the software development process. Software Devel-
opment Framework Generator (DSS-Factory) contains the descriptions for how to
develop software by using the reusable entities. DSS-Factory descriptions aim to ac-
celerate the product development process and to guarantee the usage of the reusable

entities.

Reusable entities used in DSS Software Team are Reference Software Architecture
(DSS-RSA), Components (DSS-Component), Development Environment Infrastruc-
tures (DSS-DEI) and Knowledge Base (DSS-Knowledge Base). DSS-Factory deter-
mines how to gather these reusable entities. Developer of a software product uses the
descriptions defined in DSS-Factory at the starting point. After the requirements of an
application are specified, by using DSS-RSA descriptions architectural design is cre-

ated. Then, developer selects the needed reusable entities and initiates development

18

process of software framework. Figure [3.2] shows DSS-Factory process schema.

DSS-RSA
Requirements
A\
Architectural Design DSS-Component DSS-DEI DSS-Knowledge Base
DSS-Factory

Software Framework

Figure 3.2: DSS-Factory process schema

Descriptions of the reusable entities in Figure [3.2]are given below:

DSS-Component: Code segments developed by DSS-Software Team, which are
needed in two or more projects and do not contain any information specific to these
projects, are turned into components and re-used. DSS-Components consist of com-
mon system components. DDS Abstraction Component, Operating System Abstrac-
tion Component, Serial Channel Abstraction Component, Socket Abstraction Com-
ponent, External Device Access Component can be given as examples of DSS-Compo-

nent.

DSS-DEI: DSS Development Environment Infrastructure corresponds to definitions
used for team-wide sharing of the tools, technical standards and methods used in all
phases of the software development process. Guide documents describing the use
of infrastructures are prepared and template definitions are made to standardize the
usage. For example, DSS-DEI defines how to integrate issues that are not defined

in the SST Processes in the DSS projects for the use of relevant tools in the require-

19

ment management phase. In this way, the Requirement Management Infrastructure
is used with similar approaches and more effectively in all projects. DSS-DEI also
defines how to do the preparation of the integrated development environment, code

configuration control, automatic version generation, code documentation, etc.

DSS-Knowledge Base: Any information produced in DSS Software Team has been
accepted as reusable entity. In order to ensure the permanence of this information
DSS-Knowledge Base has been established. DSS-Knowledge Base corresponds to
the ready-made infrastructures for Software Engineering and Naval Defense Systems
application areas or to the infrastructures created for the storage and subsequent ac-
cess of the information produced as a result of the research conducted. Documents
created by the DSS Software team as well as useful information that is readily avail-
able are also stored in DSS-Knowledge Base. Training notes, articles, presentations,
thesis studies, research reports and standards can be given as examples of information

stored in DSS-Knowledge Base.

In the scope of this study, only the first phase of DSS-Factory is discussed, which is
automatic generation of skeleton codes after software architectural design is created

in compliance with DSS-RSA.

20

CHAPTER 4

METAMODEL FOR DSS REFERENCE SOFTWARE ARCHITECTURE

Reference Software Architecture is a special type of software architecture that can
be used to instantiate concrete software architectures. Reference Software Architec-
ture addresses a specific application domain whereas a concrete architecture is for a
particular product, application or system within that domain. Naval command and
control systems is a domain; a weapon-target assignment system of a warship is an

example system belonging to that domain.

According to the conducted studies in literature, there is a necessity for software tools
to support the Reference Software Architecture representation. Like Reference Soft-
ware Architectures, metamodels in Model Driven Engineering are used to represent
concrete models. There are a lot of tools and representation tecniques available for
Model Driven Engineering. Reference Software Architectures and metamodels are
similar concepts that both of which are abstract solutions for a family of concrete
models and concrete models can be derived from both of them. Thus, available tools
and representation techniques for metamodels can be used to support Reference Soft-

ware Architecture representation [7]].

In this chapter, metamodeling concept, metamodeling language concept, DSS-RSA
Metamodel and mapping from DSS-RSA to Metamodel are described. Firstly, in
Section [4.1) metamodeling concept and metamodeling levels are presented. In Sec-
tion[d.2) metamodeling language concept and Eclipse EMF metamodeling language is
given. In Section[4.3] DSS-RSA Metamodel, its elements and relationships are given.
Lastly, in section 4.4 mapping from DSS-RSA to metamodel is described in detail.

21

4.1 Metamodeling Concept

In Model Driven Engineering, models play an important role and they are represented
as instances of some more abstract models. In the same way, models are abstraction
of real world entities. Figure @.1] shows the levels of metamodeling. By using meta-
metamodel at M3 level, metamodel at M2 level can be defined. By using metamodel

at M2 level, models at M1 level can be instantiated [2]].

) i<<instancec}ﬁ=-=
‘ M3 Meta-metamodel L :

i

1 <<instanceOf==

‘ M2 Metamodel ‘

#

1=<instanceCf=>

[M1 Model ‘

)

i =<instanceDf=>

‘ MO Real world objects ‘

Figure 4.1: Metamodeling levels [2]

Metamodels only define abstract syntaxes of the modeling languages that they rep-
resent. Abstract syntax describes modeling concepts (classes, attributes and associa-
tions) and their properties. Metamodels do not define the concrete syntax. Concrete
syntax is a notation in which graphical or textual elements are used to present the
model elements. To specify the concrete syntax, additional artifacts which refer to
the model elements are used. It is possible to define both graphical and textual con-
crete syntax for the same modeling language. Metamodels partially describe mod-
eling constraints. For example, cardinality constraints, association ends and types

for attributes can be defined by metamodel but more complicated constraints can not

22

be expressed. For example uniqueness of name of a model element can only be ex-

pressed by a constraint language [2].

4.2 Metamodeling Language Concept

Meta Object Facility (MOF) is a standard for metamodeling language which is de-
fined by Object Management Group (OMG). As well as MOF, there are various
languages and tools that support metamodeling and other modeling capabilities like
transformations (for example model-to-model or model-to-text), integration with the
software development process. Eclipse development environment is one of the promi-
nent tooling platform in Model Driven Engineering (MDE) world. It comprises pop-
ular components and tools for all modeling tasks. For MDD, the Eclipse Modeling
Framework (EMF) is the core technology in Eclipse development environment. EMF
is an open-source technology and good representative of MDD tools for reasons de-

scribed below [2]].

EMEF uses Ecore metamodeling language to define metamodels

EMF has code generation capabilities from metamodels

EMF has Java-based API for manipulating models

EMF provides tree-based modeling editors to build models.

EMF has API to serialize and deserialize models to/from XMI. By this way

exchanges can be possible between tools supporting the same meta-metamodel.

In Figure 4.1 meta-metamodels at M3 level defines metamodeling languages that
specify metamodeling concepts used to define metamodels at M2 level. At M2 level,
metamodels represent modeling languages that specify modeling concepts used to
define models. While creating a metamodel, which defines abstract syntax of domain

specific modeling language, a metamodeling language is used.

23

4.3 DSS-RSA Metamodel

In this study, we create the metamodel of DSS Reference Software Architecture. To
create DSS-RSA metamodel, Ecore metamodeling language is used. DSS-RSA meta-
modeling process is started of with some elements of DSS-RSA and relationships

between these elements. As the first step, modeling concepts are determined.

Table {1 shows the modeling concept table that is transformable into an Ecore meta-

model.
Table 4.1: Modeling concept table for DSS-RSA
Concept Intrinsic Properties Extrinsic Properties
DSSML : EClass anaPaket : EString Arbitrary number of IsYonetici
Arbitrary number of KaYonetici
Arbitrary number of KaBileseni
Arbitrary number of ArayuzKay
Arbitrary number of IsBileseni
Arbitrary number of Veri
Arbitrary number of VeriDeposu
Arbitrary number of Olay
Arbitrary number of Servis
KaYonetici : EClass isim : EString One or more of KaBileseni defined
seviye : Elnteger as ka
paket : EString One or more of ArayuzKay defined
aciklama : EString as arayuz

Arbitrary number of Olay defined
as yakalananOlay

Arbitrary number of Servis defined
as sunulanServis

Arbitrary number of Servis defined
as kullanilanServis

Arbitrary number of VeriDeposu defined

as aboneVd

24

Table 4.1 Continued

Concept

Intrinsic Properties

Extrinsic Properties

KaBileseni : EClass

isim : EString
paket : EString

aciklama : EString

One ArayuzKay defined as

yoneticiArayuz

ArayuzKay : EClass

isim : EString
paket : EString

aciklama : EString

IsBileseni : EClass

isim : EString
paket : EString

aciklama : EString

Veri : EClass

isim : EString
paket : EString
tip : VeriTipi

aciklama : String

VeriDeposu : EClass

isim : EString
tip : VeriDeposuTipi

aciklama : EString

One Veri as veril

Zero or One Veri as veri2

IsYonetici : EClass

isim : EString
seviye : Elnteger
paket : EString

aciklama : EString

Arbitrary number of Olay defined

as yakalananOlay

Arbitrary number of Servis defined

as sunulanServis

Arbitrary number of Servis defined

as kullanilanServis

Arbitrary number of VeriDeposu defined

as aboneVd

Servis : EClass

isim : EString
tip : ServisTipi

aciklama : EString

Olay: EClass

isim : EString

aciklama : EString

VeriDeposuTipi :EEnum

Yapi : EEnumLiteral

Dizi : EEnumLiteral

25

Table 4.1 Continued

Concept Intrinsic Properties Extrinsic Properties

VeriTipi :EEnum Class : EEnumLiteral
Enum : EEnumLiteral

Interface : EEnumLiteral

ServisTipi :EEnum Isy : EEnumlLiteral
Kay : EEnumLiteral

Concepts in Table [4.1] are transformed into classes (EClass in Ecore Metamodel) or
enumerations (EEnum in Ecore metamodel). Intrinsic properties are transformed into
attributes. For attributes, types have to be presented, such as String as EString in
Ecore metamodel or Integer as Elnteger in Ecore metamodel. If there is a range of
possible values, enumerations are defined, such as VeriDeposuT'ipi, VeriTip: and
ServisTipi in Table .1} Attributes of enumerations are defined as EEnumLiteral
in Ecore metamodel. Extrinsic properties are transformed into associations between
classes. For the association ends, upper and lower bounds of multiplicities have to be

set properly [2].

Figure [4.2] shows the metamodel of DSS-RSA. Development steps of metamodel as
EMF Ecore Model are given in Appendix [A]in detail.

4.4 Mapping from DSS-RSA to Metamodel

e User Interface Layer of DSS-RSA includes User Interface Components and
User Interface Managers. In the metamodel KaBileseni elements are defined
to express User Interface Components, KaYonetici elements are defined to ex-
press User Interface Managers. Management of User Interface functionality is
handled by User Interface Managers in DSS-RSA, in the metamodel manage-

ment of KaBileseni elements is done by KaYonetici elements.
e The communication between User Interface Components and other parts of the

26

software is done through the interfaces which are implemented by User Inter-
face Managers in DSS-RSA. Communication between KaBileseni and KaYo-

netici elements is provided by the ArayuzKay elements in the metamodel.

Business Layer of DSS-RSA includes Business Managers and Business Com-
ponents. In the metamodel, IsYonetici and IsBileseni elements are defined for
Business Layer. IsYonetici elements represent Business Managers and IsBile-

seni elements represent Business Components.

Business Objects in DSS-RSA include data structure definitions which are de-
fined as Veri, events which are defined as Olay and services which are defined

as Servis in the metamodel.
Data stores in DSS-RSA are represented as VeriDeposu in the metamodel.

In DSS-RSA, Business Managers implement services, which reside in Business
Objetcs, to allow other managers of the software to communicate with them-
selves. To express this functionality in the metamodel, we create sunulanSer-

vis relationship between IsYonetici and Servis elements.

User Interface Managers implement services, which reside in Business Objetcs,
to allow other managers of the software to communicate with themselves. To
express this functionality in the metamodel, we create sunulanServis relation-

ship between KaYonetici and Servis elements.

To communicate with Business Managers or User Interface Managers, other
manager elements use services which reside in Business Objects in DSS-RSA.
To express this functionality, we create relationships, which are called as kul-
lanilanServis, between IsYonetici and Servis elements and between KaYo-

netici and Servis elements in the metamodel.

Manager elements can communicate asynchronously with other manager el-
ements by using event based infrastructure in DSS-RSA. To provide asyn-
chronous communication between managers, we create relationships, which
are called as yakalananOlay, between IsYonetici and Olay elements and be-

tween KaYonetici and Olay elements in the metamodel.

27

e Another asynchronized communication mechanism between manager elements
in DSS-RSA is data store. To express this communication, we create relation-
ships, which are called as aboneV d, between IsYonetici and VeriDeposu ele-

ments and between KaYonetici and VeriDeposu elements in the metamodel.

e In DSS-RSA, data stores can be defined as structure or sequence by using data
structure definitions in Business Objects. In the metamodel, VeriDeposu ele-
ments have an attribute called T'2p. T"p attribute values can be Y api or Dizi in
the metamodel. Regardless of whether the value is Y ap: or Dizi, VeriDeposu
element must have a relationship called as ver:il with Veri element. If Tip at-
tribute value is D1z, VeriDeposu element must also have a relationship called
as veri2 with Veri element. If T'ip attribute value 1s Y api, veri2 relationship

can not be established between VeriDeposu and Veri element.

e If application will have a user interface, defined User Interface Managers must
have at least one User Interface Component and at least one Interface. For
this reason, we put numerical restrictions in the metamodel. Each KaYonetici
element must have a relationship with at least one ArayuzKay called as arayuz
and KaBileseni element called as ka. Each KaBileseni element must have a

relationship with one ArayuzKay element called as yonetici Arayuz.

28

[OPOWERN VSY-SSA ‘7't 23]

29

UINST © EWEPRE o LA (17
buinsy rieved o |
sse|) = idiLuap tdp & .
Buisg : wisy 5 zuan [170] Buins3 : BWepRE o prsucge ol
uap § idey = 1dipnsodaguap : dg &
: Buisg : wist 5
nsodaguap { pnauoge 0]
; . ULAST : EWEHIZE o
uepedsgusn ool S) §
qaucks| Lol 1aBaujB1g3 : akines suuasuEiuEm [,70]
Bupisy : wist &
: i ID03UCAS]
134 Lol [‘m_ siJBSUEINUNS [0l
Iejoueueiexel Lol
Buinsy : ewepipe o
burnsy @ ieded o -
Bumsy s sy & | Lsuessigs| [oo) 125135 Lol
wasangsl g sspuesppserwodny = Buusy : edeue &
! I E = e -
TNSSTH JEEIC [0] =
BUINST © BWEMDE o dijsiniEs 3
As| = dhiisiages t dig &
Buins3 : BWepRe o Bumiss : wisi
Bu =
153 & sz g
uB|uzsajigey Lol) SDBLE] -
Aejoueuejeyeh [,70] wnug -
usjussapgheyzniery ol SinBSUEINUNS [0l SEED —
sinsssuEjuE|ny [0l BA 5
iajngaucaey Lol
ULOST | EWEPE o
~ Buins3 : 13ved o
Buigss : BWEpoE o 12b23u|Big3 : akinas
il Buins3 :1aed o s Buingy : wist 5 -
% . 2 o [' [
Buing3 @ BWERDE = kesvmgauch [1-1] Buwngy : wist I PR S
buinsd 11e%ed = wasa[gey g :
Buwis3 : wist & £ = |_‘ dijnsodsgusa 5
Aeyznheny B

znfeie 711

30

CHAPTER 5

STATIC SEMANTIC RULE DEFINITION WITH OCL

Metamodeling languages can only express part of the relevant information required
to define a modeling language. These very basic modeling constraints expressed by
metamodeling languages are cardinality constraints. Cardinality constraints restrict
relationships between elements in metamodels [2]. For example in DSS-RSA Meta-
model, each KaYonetici element can have ka relationship with at least one KaBileseni

element and arayuz relationship with at least one ArayuzKay element.

There is a need to describe additional constraints about the elements in the model.
Static semantic rules define well-formedness of a metamodel. These well-formedness
rules are used for both defining constraints on how models can be formed, and vali-
dating the models constructed upon a specific metamodel [13]. For restrictions that
cannot be brought in metamodeling language, some static semantic rules have been

identified by using Object Constraint Language (OCL).

OCL is a general purpose formal language which is easy to read and write. It has
been developed as a business modeling language within the IBM Insurance division.
It is adopted as a standard by OMG. OCL is a typed and side effect free specification
language. When an OCL expression is evaluated, it simply returns a value, does not
change the state of the system. Each OCL expression has a type. An OCL expression

must conform to the type conformance rules and operations of that type [19].

In Eclipse, to define OCL constraints for Ecore based metamodels several plugins
are available. Eclipse OCL is an implementation of the OMG OCL 2.4 specification
for use with Ecore metamodels. It provides APIs for parsing and evaluating OCL

constraints and queries on Ecore Models [20]].

31

Eclipse OCL supports OCL expressions embedded within Ecore using the OCLin-
Ecore editor. The OCLinEcore editor has been available for use since Eclipse OCL

3.0.0 by installing the Eclipse OCL Examples and Editors functionality [21].

In this chapter, OCLinEcore Editor and defined OCL constraints are described. Firstly,
in Section OCLinEcore Editor is introduced. In Section [5.2|defined naming con-
straints, in Section [5.3] defined cardinality constraints and in Section [5.4] defined el-
ement usage constraints are expressed. In Section [5.5] defined constraints to check
the usage of Servis elements by KaYonetici and IsYonetici elements, in Section [5.6]
defined IsYonetici element constraints, in Section [5.7]defined IsBileseni element con-
straints, in Section [5.8] defined KaYonetici element constraints, in Section [5.9] de-
fined KaBileseni element constraints, in Section [5.10| defined ArayuzKay element
constraints, in Section@ defined Olay element constraints, in Section@] defined
Servis element constraints and lastly, in Section @ contraints defined for VeriDe-

posu elements in OCL are described in detail.

5.1 OCLinEcore Editor

We define some OCL constraints by using Eclipse OCL project. After Ecore meta-
model is defined, we open metamodel with OCLinEcore editor. Figure [5.1] shows a

part of DSS-RSA metamodel opened in OCLinEcore editor.

Constraints in OCL are represented as Invariant. The name of the constraint is written
next to this keyword. To access properties of an element or related elements of an
element in metamodel, dot notation is used. The standard OCL Library predefines
the primitive and collection types and operations, quantifiers (like forAll, exists, etc.)

and iterators (like select, etc.) [2].

OCL constraints are checked after application architecture model is created by using
created graphical modeling editor as described in Chapter [6] To validate the model,
design area is right clicked and “OC'L — Validate” is selected. If some OCL con-
straints are violated, validation results show problems. Chapter [§] describes how we

check defined OCL constraints for the conducted case study.

32

[6] metamodel ecore

package metamodel : metamodel = 'http://www.example.org/metamodel’
{
class DSSML
{

attribute anaPaket : String[l1] = 'tr.com.aselsan.dss’;

property ArayuzKayBilesenleri : ArayuzKay[*|1] { ordered composes };

property KaBilesenleri : KaBileseni[*]|1] { ordered composes };

property IsBilesenleri : IsBileseni[*]|1] { ordered composes };

property Veriler : Veri[¥|1] { ordered composes };

property Olaylar : Olay[*|1] { ordered composes };

property Servisler : Servis[*]|1] { ordered composes };

property KaYoneticiler : KaYonetici[*|1] { ordered composes };

property IsYoneticiler : IsYonetici[*]|1] { ordered composes };

property VeriDepolari : VeriDeposu[*|1] { ordered composes };

invariant AyniIsimliIsYoneticiOlamaz: IsYoneticiler -> forAll(nl, n2 | nl <> n2
implies nl.isim <> n2.isim);

invariant AyniIsimliIsBileseniOlamaz: IsBilesenleri -> forAll(nl, n2 | nl <> n2
implies nl.isim <> n2.isim);

invariant AyniIsimliKaYoneticiOlamaz: KaYoneticiler -> forAll(nl, n2 | nl <> n2
implies nl.isim <> n2.isim);

invariant AyniIsimliKaBileseniOlamaz: KaBilesenleri -> forAll(nl, n2 | nl <> n2
implies nl.isim <> n2.isim);

invariant AyniIsimliArayuzKayOlamaz: ArayuzKayBilesenleri -> forAll(nl, n2 | nl <> n2
implies nl.isim <> n2.isim);

Figure 5.1: Some OCL constraints defined in OCLinEcore editor

5.2 OCL Naming Constraints

We define some naming constraints to our DSS-RSA metamodel shown in Figure[5.2]

invariant AyniIsimliIsYoneticiOlamaz: IsYoneticiler -»> forAll(nl, n2 | nl <> n2 implies nl.isim <> n2.isim);
invariant AynilsimliIsBileseniQlamaz: IsBilesenleri -> forAllL(nl, n2 | nl <> n2 implies nl.isim <> n2.isim);
invariant AynilsimliKaYoneticiOlamaz: KaYoneticiler -> forAlL(nl, n2 | nl <> n2 implies nl.isim <> n2.isim);
invariant AyniIsimliKaBileseniOlamaz: KaBilesenleri -> forAlLL(nl, n2 | nl <> n2 implies nl.isim <> n2.isim);
invariant AynilsimliArayuzKayOlamaz: ArayuzKayBilesenleri -» forALL(nl, n2 | nl <> n2 implies nl.isim <> n2.isim);
invariant AynilsimliOlayOlamaz: Olaylar -> forALL(nl, n2 | nl <> n2 implies nl.isim <> n2.isim);
invariant AynilsimliVeriDeposuOlamaz: VeriDepolari -> forAlLL(n1l, n2 | nl <> n2 implies nl.isim <> n2.isim);
invariant AyniIsimliServisIsyOlamaz: Servisler -> forAlL(nl, n2 | nl.tip = ServisTipi::Isy

and n2.tip = ServisTipi::Isy and nl <> n2 implies nl.isim <> n2.isim
)s
invariant AynilTsimliServisKayOlamaz: Servisler -> forAll(nl, n2 | nl.tip = ServisTipi::Kay

and n2.tip = ServisTipi::Kay and nl <> n2 implies nl.isim <> n2.isim
)s
invariant AyniPaketteAynilsimliVeriOlamaz: Veriler -> forAll(nl, n2 | nl <> n2

and nl.paket = n2.paket implies nl.isim <> n2.1isim

)

Figure 5.2: OCL naming constraints

Naming constraints shown in Figure [5.2) are explained in detail below:

e For each IsYonetici element pairs, ¢sim attribute values must be different from
each other. This rule is expressed in OCL with “Aynilsimlils YoneticiOlamaz”

invariant.

33

For each IsBileseni element pairs, 7sim attribute values must be different from
each other. This rule is expressed in OCL with “AynilsimlilsBileseniOlamaz”

invariant.

For each KaYonetici element pairs, ¢sim attribute values must be different from
each other. This rule is expressed in OCL with “AynilsimliKaYoneticiOlamaz”

invariant.

For each KaBileseni element pairs, 7sim attribute values must be different from
each other. This rule is represented in OCL with “AynilsimliKaBileseniOla-

maz” invariant.

For each ArayuzKay element pairs, ¢sim attribute values must be different from
each other. This rule is expressed in OCL with “AynilsimliArayuzKayOlamaz”

invariant.

For each Olay element pairs, ¢sivm attribute values must be different from each

other. This rule is expressed in OCL with “AynilsimliOlayOlamaz” invariant.

For each VeriDeposu element pairs, ¢sim attribute values must be different
from each other. This rule is expressed in OCL with “AynilsimliVeriDeposuO-

lamaz” invariant.

For each Servis element pairs having the tip attribute value of /sy, isim at-
tribute values must be different from each other. This rule is expressed in OCL

with “AynilsimliServislsyOlamaz” invariant.

For each Servis element pairs having the tip attribute value of Kay, isim at-
tribute values must be different from each other. This rule is expressed in OCL

with “AynilsimliServisKayOlamaz” invariant.

For each Veri element pairs having the same paket attribute values, isim at-
tribute values must be different from each other. This rule is expressed in OCL

with “AyniPakette AynilsimliVeriOlamaz” invariant.

34

5.3 OCL Cardinality Constraints

We define a cardinality constraint that could not be defined in metamodel shown in

Figure

invariant EnAzBirKaYoneticiVeyalsYoneticiOlmali: IsYoneticiler -»> size() > © or KaYoneticiler->size() > 0;

Figure 5.3: OCL cardinality constraint

In a DSS-RSA model, there must be at least one KaYonetici or at least one IsYonetici
element. This rule is expressed in OCL with “EnAzBirKaYoneticiVeyalsYoneticiOl-

mali” invariant.

5.4 OCL Element Usage Constraints

We define some constraints to check the usage of elements in DSS-RSA metamodel

shown in Figure[5.4]

invariant KullanilmayankaBileseniOlamaz: KaBilesenleri -> forALL(nl | (KaYoneticiler -> size() > 0
and KaYoneticiler -»> select(n2 | n2.ka -> select(n3 | n2.isim = nl.isim) -> notEmpty()) -> notEmpty()));

invariant KullanilmayanArayuzKayOlamaz: ArayuzKayBilesenleri -> forALL(nl | (KaYoneticiler -> size() > 0
and KaYoneticiler -> select(n2 | n2.arayuz -> select(n3 | n3.isim = nl.isim) -> notEmpty()) -> notEmpty())
and (KaBilesenleri -> size() > O and KaBilesenleri -> select(n4 | nd.yoneticiArayuz -> select(n5 | n5.isim = nl.isim) -> notEmpty()) -> notEmpty()));

invariant KullanilmayanOlayOlamaz: Olaylar -> forALL(nl | (KaYoneticiler -> size() > 0
and KaYoneticiler -> select(n2 | n2.yakalananOlay -> select(n3 | n3.isim = nl.isim)-> notEmpty()) -> notEmpty())
or (IsYoneticiler -»> size() > @ and IsYoneticiler -> select(n4 | nd.yakalananOlay -> select(n5 | n5.isim = nl.isim) -> notEmpty()) -> notEmpty()));

invariant KullanilmayanIsYoneticiServisiOlamaz: Servisler -> forAlL(nl | nl.tip = ServisTipi::Isy
implies IsYoneticiler -> size() > 0 and IsYoneticiler -> select(n2 | n2.sunulanServis ->select(n3 | n3.isim = nl.isim) -> notEmpty()) -> notEmpty()
and ((IsYoneticiler -»> size() > 0 and IsYoneticiler -> select(n4 | n4.kullanilanServis -> select(n5 | n5.isim = nl.isim) -> notEmpty()) -> notEmpty())
or (KaYoneticiler -> size() > @ and KaYoneticiler -> select(n6 | né6.kullanilanServis -> select(n7 | n7.isim = nl.isim) -> notEmpty()) -> notEmpty())));

invariant KullanilmayanKaYoneticiServisiOlamaz: Servisler -> forAllL(nl | nl.tip = ServisTipi::Kay
implies KaYoneticiler -> size() > 0 and KaYoneticiler -> select(n2 | n2.sunulanServis ->select(n3 | n3.isim = nl.isim) -> notEmpty()) -> notEmpty()
and ((IsYoneticiler -> size() > 0 and IsYoneticiler -> select(nd | nd.kullanilanServis -> select(n5 | n5.isim = nl.isim) -> notEmpty()) -> notEmpty())
or (KaYoneticiler -> size() > © and KaYoneticiler -> select(né | né.kullanilanServis -> select(n7 | n7.isim = nl.isim) -> notEmpty()) -> notEmpty())));

invariant KullanilmayanVeriDeposuOlamaz: VeriDepolari -> forALL(nl | (KaYoneticiler -> size() > @
and KaYoneticiler -> select(n2 | n2.aboneVd -> select (n3 | n3.isim = nl.isim) -> notEmpty()) -> notEmpty())
or (IsYoneticiler -> size() » 0 and IsYoneticiler -> select(nd | nd.aboneVd -> select (n5 | n5.isim = nl.isim) -> notEmpty()) -> notEmpty()));

Figure 5.4: OCL element usage constraints

Usage constraints shown in Figure [5.4] are explained in detail below:

e For each KaBileseni element defined in a DSS-RSA model, there must be a

KaYonetici element which has a ka relationship with this KaBileseni element.

35

This rule is expressed in OCL with “KullanilmayanKaBileseniOlamaz” invari-

ant.

For each ArayuzKay element defined in a DSS-RSA model, there must be a
KaYonetici element which has an arayuz relationship with this ArayuzKay
element and there must be a KaBileseni element which has a yonetici Arayuz
relationship with this ArayuzKay element. This rule is expressed in OCL with

“KullanilmayanArayuzKayOlamaz” invariant.

For each Olay element defined in a DSS-RSA model, there must be at least
one KaYonetici or IsYonetici element which has a yakalananOlay relation-
ship with this Olay element. This rule is expressed in OCL with “Kullanil-

mayanOlayOlamaz” invariant.

For each Servis element defined in a DSS-RSA model, if ¢ip attribute has the
value of [sy, there must be an IsYonetici element which has a sunulanServis
relationship with this Servis element and there must be at least one IsYonetici
or KaYonetici element which has a kullanilanServis relationship with this
Servis element. This rule is expressed in OCL with “KullanilmayanIsYoneti-

ciServisiOlamaz” invariant.

For each Servis element defined in a DSS-RSA model, if #2p attribute has the
value of K ay, there must be a KaYonetici element which has a sunulanServis
relationship with this Servis element and there must be at least one KaYo-
netici or IsYonetici element which has a kullanilanServis relationship with
this Servis element. This rule is expressed in OCL with “KullanilmayanKaYo-

neticiServisiOlamaz” invariant.

For each VeriDeposu element defined in a DSS-RSA model, there must be at
least one KaYonetici or IsYonetici element which has an aboneV d relationship
with this VeriDeposu element. This rule is expressed in OCL with “Kullanil-

mayanVeriDeposuOlamaz” invariant.

36

5.5 OCL Servis Element Usage Constraints

We define some constraints for usage of Servis Elements by KaYonetici and IsYo-

netici elements in a DSS-RSA model. These constraints are shown in Figure [5.5]

invariant KullanilanVeSunulanKaYoneticiServisiAyniOlamaz: KaYoneticiler ->
forAll(n1 | ni.kullanilanServis -> forAlLL(n2 | nl.sunulanServis -> forAllL(n3 | n3.isim <> n2.isim)));

invariant KullanilanVeSunulanIsYoneticiServisiAyniOlamaz: IsYoneticiler ->
forALL(nl | nl.kullanilanServis -> forAlLL(n2 | nl.sunulanServis -> forALL(n3 | n3.isim <> n2.isim)));

invariant AyniServisiFarkliKaYoneticiSunamaz: KaYoneticiler ->
forAll(n1, n2 | nl<> n2 implies nl.sunulanServis -> forALL(n3 | n2.sunulanServis -> forAll(n4 | n3.isim <> nd.isim)));

invariant AyniServisiFarkliIsYoneticiSunamaz: IsYoneticiler -»
forALL(nl, n2 | n1 <> n2 implies nl.sunulanServis -> forALL(n3 | n2.sunulanServis -> forALL(nd | n3.isim <> nd.isim)));

Figure 5.5: OCL Servis element usage constraints

Servis element usage constraints shown in Figure [5.5]are explained in detail below:

e For each KaYonetici element defined in a DSS-RSA model, Servis elements
that KaYonetici element has kullanilanServis relationship with and sunulan-
Servis relationship with must be different from each other. This rule is ex-
pressed in OCL with “KullanilanVeSunulanKaYoneticiServisiAyniOlamaz” in-

variant.

e For each IsYonetici element defined in a DSS-RSA model, Servis elements that
IsYonetici element has kullanilanServis relationship with and sunulanSer
vis relationship with must be different from each other. This rule is expressed

in OCL with “KullanilanVeSunulanIsYoneticiServisiAyniOlamaz” invariant.

e For each KaYonetici element pairs defined in a DSS-RSA model, Servis el-
ements that KaYonetici element pairs have sunulanServis relationship with
must be different from each other. This rule is expressed in OCL with “Ayni-

ServisiFarkliKaYoneticiSunamaz” invariant.

e For each IsYonetici element pairs defined in a DSS-RSA model, Servis el-
ements that IsYonetici element pairs have sunulanServis relationship with
must be different from each other. This rule is expressed in OCL with “Ayni-

ServisiFarklilsYoneticiSunamaz” invariant.

37

5.6 OCL IsYonetici Element Constraints

We define some constraints for IsYonetici elements in a DSS-RSA model. These

constraints are shown in Figure [5.6]

class IsYonetici

attribute isim : String[1];

attribute seviye : Integer[1];

attribute paket : String[?];

attribute aciklama : String[?];

property sunulanServis : Servis[*|1] { ordered };

property kullanilanServis : Servis[*|1] { ordered };

property yakalananOlay : Olay[*|1] { ordered };

property aboneVd : VeriDeposu[*|1] { ordered };

invariant IsYoneticiIsmiIsyIleBaslamali: self.isim.startsWith('Isy');

invariant IsYoneticiSunulanServisTipilsyOlmali: self.sunulanServis -> forALL(nl | nl.tip = ServisTipi::Isy);

Figure 5.6: OCL IsYonetici element constraints

IsYonetici element constraints shown in Figure[5.6|are explained in detail below:

e isim attribute values of each IsYonetici element must start with /sy. This rule

is expressed in OCL with “IsYoneticilsmilsylleBaslamali” invariant.

e For each IsYonetici element defined in a DSS-RSA model, Servis elements
that IsYonetici element has sunulanServis relationship with must have ¢ip at-
tribute value of /sy. This rule is expressed in OCL with “Is YoneticiSunulanSer-

visTipilsyOlmali” invariant.

5.7 OCL IsBileseni Element Constraints

We define a constraint for IsBileseni elements in a DSS-RSA model. This constraint

is shown in Figure

IsBileseni element constraint shown in Figure [5.7]is that isim attribute value of each
IsBileseni element must start with /sb. This rule is expressed in OCL with “IsBile-

senilsmilsblleBaslamali” invariant.

38

class IsBileseni
{

attribute isim : String[1];

attribute paket : String[?];

attribute aciklama : String[?];

invariant IsBilesenilsmiIsbIleBaslamali: isim.startsiWith('Isb');
¥

Figure 5.7: OCL IsBileseni element constraint

5.8 OCL KaYonetici Element Constraints

We define some constraints for KaYonetici elements in a DSS-RSA model. These

constraints are shown in Figure [5.8]

class KaYonetici
{
attribute isim : String[1];
attribute seviye : Integer[1l];
attribute paket : String[?];
attribute aciklama : String[?];
property ka : KaBileseni[+|1] { ordered };
property arayuz : ArayuzKay[+]|1] { ordered };
property sunulanServis : Servis[*|1] { ordered };
property kullanilanServis : Servis[*|1] { ordered };
property yakalananOlay : Olay[*|1] { ordered };
property aboneVd : VeriDeposu[*|1] { ordered };
invariant KaYoneticilsmiKayIleBaslamali: isim.startsWith('Kay');
invariant KaYoneticiSunulanServisTipiKayOlmali: self.sunulanServis -> forAlLL(nl | nl.tip = ServisTipi::Kay);
invariant KaYoneticiVeKaBileseniPaketIsimleriAyniOlmali: self.ka -> forALL(nl | self.paket = nl.paket);
invariant KaYoneticiVeArayuzKayPaketIsimleriAyniOlmali: self.arayuz -> forAlLlL(nl | self.paket = nl.paket);

Figure 5.8: OCL KaYonetici element constraints

KaYonetici element constraints shown in Figure are explained in detail below:

e ;sim attribute value of each KaYonetici element must start with K ay. This rule

is expressed in OCL with “KaYoneticilsmiKaylleBaslamali” invariant.

e For each KaYonetici element defined in a DSS-RSA model, Servis elements
that KaYonetici element has sunulanServis relationship with must have tip at-
tribute value of Kay. This rule is expressed in OCL with “KaY oneticiSunu-

lanServisTipi K ayOlmali” invariant.

e For each KaYonetici element defined in a DSS-RSA model, KaBileseni ele-
ments that KaYonetici element has ka relationship with must have the same

paket attribute value with KaYonetici element. This rule is expressed in OCL

39

with “KaYoneticiVeKaBileseniPaketIsimleriAyniOlmali” invariant.

e For each KaYonetici element defined in a DSS-RSA model, ArayuzKay el-
ements that KaYonetici element has arayuz relationship with must have the
same paket attribute value with KaYonetici element. This rule is expressed in

OCL with “KaYoneticiVeArayuzKayPaketlsimleriAyniOlmali” invariant.

5.9 OCL KaBileseni Element Constraints

We define a constraint for KaBileseni elements in a DSS-RSA model. This constraint

is shown in Figure[5.9]

class KaBileseni
{

attribute isim : String[1];

attribute paket : String[?];

attribute aciklama : String[?];

property yoneticiArayuz : ArayuzKay[1];

invariant KaBileseniIsmiKaIleBaslamali: isim.startsWith('Ka');
¥

Figure 5.9: OCL KaBileseni element constraint

KaBileseni element constraint shown in Figure is that isim attribute value of
each KaBileseni element must start with Ka. This rule is expressed in OCL with

“KaBilesenilsmiKalleBaslamali” invariant.

5.10 OCL ArayuzKay Element Constraints

We define a constraint for ArayuzKay elements in a DSS-RSA model. This constraint

is shown in Figure [5.10]

ArayuzKay element constraint shown in Figure [5.10]is that isim attribute value of
each ArayuzKay element must start with ArayuzKay. This rule is expressed in

OCL with “ArayuzKayIlsmiArayuzKaylleBaslamali” invariant.

40

class ArayuzKay
{

attribute isim : String[1];

attribute paket : String[?];

attribute aciklama : String[?];

invariant ArayuzKayIsmiArayuzKayIleBaslamali: isim.startsWith('ArayuzKay');
¥

Figure 5.10: OCL ArayuzKay element constraint

5.11 OCL Olay Element Constraints

We define a constraint for Olay elements in a DSS-RSA model. This constraint is

shown in Figure[5.11]

class Olay
{
attribute isim : String[1];
attribute aciklama : String[?];
invariant OlayIsmiOlayIleBaslamali: isim.startsWith('0lay');

Figure 5.11: OCL Olay element constraint

Olay element constraint shown in Figure[S.TT]is that isim attribute value of each Olay
element must start with Olay. This rule is expressed in OCL with “OlayIsmiOlaylle-

Baslamali” invariant.

5.12 OCL Servis Element Constraints

We define some constraints for Servis elements in a DSS-RSA model. These con-

straints are shown in Figure[5.12]
Servis element constraints shown in Figure are explained in detail below:
e Ifa Servis element’s tip attribute value is / sy, 1sim attribute value of this Servis

element must start with Servislsy. This rule is expressed in OCL with “IsYo-

neticiServisIsmiServisIsylleBaslamali” invariant.
e If a Servis element’s tip attribute value is Kay, isim attribute value of this

41

class Servis
{
attribute isim : String[l];
attribute tip : ServisTipi[l];
attribute aciklama : String[?];
invariant IsYoneticiServisIsmiServisIsyIleBaslamali: tip = ServisTipi::Isy implies
self.isim.startsWith('ServisIsy');
invariant KaYoneticiServisIsmiServisKayIleBaslamali: tip = ServisTipi::Kay implies
self.isim.startsWith('ServisKay');

Figure 5.12: OCL Servis element constraints

Servis element must start with ServisK ay. This rule is expressed in OCL with

“KaYoneticiServisIsmiServisKaylleBaslamali” invariant.

5.13 OCL VeriDeposu Element Constraints

We define some constraints for VeriDeposu elements in a DSS-RSA model. These

constraints are shown in Figure [5.13]

{

class VeriDeposu

attribute isim : String[1];

attribute tip : VeriDeposuTipi[1];

attribute aciklama : String[?];

property veril : Veri[1];

property veri2 : Veri[?];

invariant VeriDeposuIsmivdIleBaslamali: isim.startsWith('vd');

invariant VeriDeposuTipiYapilkenVeri2BosOlmali: tip = VeriDeposuTipi::Yapi implies veri2 -> isEmpty();
invariant VeriDeposuTipiDiziTkenVeri2BosOlmamali: tip = VeriDeposuTipi::Dizi implies veri2 -> notEmpty();

Figure 5.13: OCL VeriDeposu element constraints

VeriDeposu element constraints shown in Figure[5.13]are explained in detail below:

e ;sim attribute value of each VeriDeposu element must start with vd. This rule

is expressed in OCL with “VeriDeposulsmivdlleBaslamali” invariant.

e If a VeriDeposu element’s tip attribute value is Yapi, ver:i2 attribute value

must be empty. This rule is expressed in OCL with “VeriDeposuTipi Yapilken-

Veri2BosOlmali” invariant.

e If a VeriDeposu element’s ¢ip attribute value is Dizi, veri2 attribute value must

42

not be empty. This rule is expressed in OCL with “VeriDeposuTipiDizilken-

Veri2BosOlmamali” invariant.

43

44

CHAPTER 6

CONCRETE SYNTAX DEFINITION

Based on the DSS-RSA metamodel, we define concrete syntax. Concrete syntax,
in general, includes definitions used to create models by using graphical or textual
elements. These elements refer to modeling concepts described in metamodel. In the
scope of this study, we define a graphical concrete syntax that uses graphical notation
to create models. Graphical notation symbolizes a metamodel by introducing symbols

for modeling concepts in metamodel as shown in Figure [6.1]

_ symbolizes . .
Metamodel [€ Graphical Notation
A A
confofms to confofms to
P visualizes)
Model < Diagram

Figure 6.1: Graphical notation introduces symbols for the modeling concepts, adapted

from [2]]

In Eclipse, Graphical concrete syntax development is supported by the Graphical
Modeling Framework (GMF). GMF defines graphical and tooling models to describe
the concrete syntax. Then, mapping model is defined to connect elements of the Ecore
metamodel to the corresponding elements of the concrete syntax. By developing
a generator model based on the mapping model, Java code and other configuration
files representing a Domain Specific Language (DSL) are generated. Generated DSL
(graphical modeling editor) is run as Eclipse plug-in [16].

Graphical modeling editor is used to manipulate the elements in concrete syntax. By

45

using graphical modeling editor, developers can drag and drop DSS-RSA elements
from the palette to the design area, set the attribute values of elements and create

associations between elements according to the DSS-RSA metamodel definitions.

GMF consists of two main components which are runtime and tooling. The GMF run-
time component provides editor operations such as palette, properties view, toolbars,
geometrical shapes, saving a diagram as an image and printing. The GMF tooling
component is used to generate graphical modeling editor code. Figure [6.2] shows the

GMEF-Tooling workflow.

Develop Domain

Model

Develop Mapping

Model]

*.gmfgraph *.gmfmap

Develop Graphical
Create GMF *)/ >3] Definition

Project

Create Generator
Model

\ > Develop Tooling

Definition

*.gmfgen

Create Diagram
Plug-in

Figure 6.2: GMF-Tooling Workflow, adapted from [3]]

*.gmftool

In this chapter, models created in GMF-Tooling Workflow are described. Firstly, in
Section[6.]] GMF Domain Model, in Section[6.2]EMF Domain Gen Model, in Section
@] GMF Graphical Definition Model, in Section @ GMF Tooling Definition Model,
in Section[6.5|GMF Mapping Model and finally in Section[6.6) GMF Generator Model
is explained. Development steps of graphical modeling editor are given in Appendix

in detail.

46

6.1 GMF Domain Model

The GMF Domain Model is the DSS-RSA metamodel which is created as EMF Ecore
Model and explained in Chapter 4]

6.2 EMF Generator Model

The EMF Generator Model is used for generating EMF code. It allows configuring
the properties for code generation that are not part of the Domain Model such as
base package name, compliance level and model directory by using properties view

in Eclipse [16].

6.3 GMF Graphical Definition Model

The GMF Graphical Definition Model is used to represent GMF Domain Model el-
ements graphically. To do this, GMF Graphical Definition Model allows creating
figures that are displayed on the graphical modeling editor and mapping figures with

nodes, connections and diagram labels.

The GMF Graphical Definition Model contains a main element whose name is Canvas
that has child elements as Figure Gallery, Node, Connection and Diagram Label.
Each figure is created by defining a Figure Descriptor element under Figure Gallery.
There can be one or more Figure Gallery in GMF Graphical Definition Model. A
node can be created by defining a Node element under Canvas. Figure Descriptor
related to the Node is set to Node element’s Figure property. A connection can be
created by defining a Connection element under Canvas. Figure Descriptor related to
the Connection is set to Connection element’s Figure property. A diagram label can be
created by defining a Diagram Label element under Canvas. Figure Descriptor related
to the Node that contains this Diagram Label is set to Diagram Label element’s Figure
property. In the GMF Mapping Model, Canvas elements are used to assign figures to

related Domain Model elements.

47

6.4 GMF Tooling Definition Model

The GMF Tooling Definition Model is used to create diagram palette. To do this,
GMF Tooling Definition Model allows creating tool groups and creation tools that
are used to create figures on diagram palette. Developers can drag and drop these

figures from the palette to the design area.

The GMF Tooling Definition Model contains a main element whose name is Tool
Registry that contains Palette as child element. Under Palette element, the user can
define Tool Group elements. In this study we define two Tool Groups; one for DSS-
RSA elements with the name “DSS RSA Elemanlar1”, one for DSS-RSA connections
with the name “Baglantilar”. Under Tool Groups, Creation Tool elements are de-
fined. We define Creation Tools related to the DSS-RSA elements under “DSS RSA
Elemanlar1” Tool Group, Creation Tools related to the DSS-RSA connections under

“Baglantilar” Tool Group.

6.5 GMF Mapping Model

The GMF Mapping Model is used to map the Domain Model elements to the related
figures that are defined in the GMF Graphical Definition Model and to the related
creation tool that are defined in GMF Tooling Definition Model.

The GMF Mapping Model contains a main element with the name Mapping. Mapping
element has some child elements but some of them are not used in this study. Top
Node Reference, Link Mapping and Canvas Mapping child elements of Mapping
element are used. Top Node Reference elements provide mapping of Nodes from
the GMF Graphical Definition Model to the related elements of GMF Domain Model
and mapping of Creation Tools from the GMF Tooling Definition Model to the related
elements of the GMF Domain Model. Link Mapping elements provide mapping of
Connections from the GMF Graphical Definition Model to the related connection
elements of GMF Domain Model and mapping of Creation Tools from the GMF
Tooling Definition Model to the related connection elements of the GMF Domain

Model. Canvas Mapping element maps the root element of the GMF Domain Model

48

to the Canvas element from the GMF Graphical Definition Model and to the Palette
element from the GMF Tooling Definition Model.

6.6 GMF Generator Model

The GMF Gerenerator Model is used to generate graphical modeling editor code and
configuration files by using the GMF Mapping Model and EMF Generator Model. It

allows configuring the properties for code generation.

49

50

CHAPTER 7

CODE GENERATION

The Model-to-Text transformation is a key concept in Model Driven Engineering.
To automate the derivation of text from models by using Model-to-Text transforma-
tions, several languages and tools are proposed. They are used for automating some
software engineering tasks such as generation of code, test cases, deployment spec-
ifications, reports, documents, etc. Code generation is the process of transforming
models into source code, which is the most applied Model-to-Text transformation in

the field of Model Driven Software Engineering [2].

Eclipse has the Model to Text (M2T) project that focuses on the generation of textual
artifacts from models. Jet, Acceleo and Xpand are sub-projects in the M2T project.
Xpand is emerged in openArchitectureWare project and migrated to Eclipse as a part

of the M2T project [22].

In the scope of this study, a code generation mechanism is implemented using Xpand.
Xpand is a statically-typed template language that is based on EMF models and spe-

cialized on code generation [22].

In this chapter, code generation mechanism using Xpand template language is de-
scribed. Firstly, in Section creating a new Xpand Project is described. In section
code generator algorithm for Arayuz Kay Elements is expained and an example
output is given. In section[7.3] code generator algorithm for K aY onetici Elements
is expained and an example output is given. In section|/.4, code generator algorithm
for KaBileseni Elements is expained and an example output is given. In section
code generator algorithm for /sY onetici Elements is expained and an example

output is given. In section code generator algorithm for /sBileseni Elements

51

is expained and an example output is given. In section code generator algorithm
for Veri Elements is expained and an example output is given. In section code
generator algorithm for Olay Elements is expained and an example output is given.
And finally in section[7.9] code generator algorithm for Servis Elements is expained

and an example output is given.

7.1 Creating Xpand Project

We create a new Xpand project by clicking on the File menu of Eclipse and selecting
“New — Other — Xpand Project”. We give the project the name “dssml.genera-
tor” and select Generate a sample EMF based Xpand project. After clicking Finish,

the wizard creates a sample generator project as shown in Figure

B Model Explorer 2 S

|Type filter text |

~ 12 dssml.generator A
~ [src

~ B metamodel
Checks.chk
Extensions.ext

metamodel ecore € ==-=-=-======== Metamodel
v 2 template

GeneratorExtensions.ext

Templatexpt <€ Template
~ B workflow

[¥ generator.mwe Workflow

[¥] generator.mwe2

[generatorWithBackend. mwe

[generatorWithProfiler.mwe

2 Modelxmi Model

src-gen
=\ JRE System Library [jre1.8.0_131]
B\ Plug-in Dependencies
= META-INF
ot build.properties

Figure 7.1: Xpand Project

Before we start working with this project, we perform some clean-up actions. We
open and delete contents of Checks.chk, Extensions.chk, GeneratorExtensions.ext
and Template.xpt files. We write our codes on Template.xpt file. We delete sam-
ple metamodel.ecore and Model.xmi files and copy our DSS-RSA metamodel file in

metamodel package. After we create a model by using graphical modeling editor de-

52

scribed in Chapter] we copy the model file under the src folder in Xpand project.
To generate Java codes under src-gen folder, generator.mwe? file is right-clicked and

“Run As — MW E2 Work flow” is selected.

7.2 Code Generator for ArayuzKay Elements

To generate code for ArayuzKay elements, we write Xpand codes to the Template.xpt

file. The overall algorithm of code generator for ArayuzKay elements is as follows.

Algorithm 7.2.1 Code Generator Algorithm for ArayuzKay Elements

Input: ArayuzKay element list
Output: Java files for each ArayuzKay element in ArayuzKay element list with the name repre-
sented by ¢sim attribute
1: for each ArayuzKay element € ArayuzKay element list do
2: if paket attribute value of ArayuzKay element # null and paket attribute value of Ara-
yuzKay element # empty then
3: Declare package by adding paket attribute value of ArayuzKay element to the ka pack-

age of main package (anaPaket)

4: else

5: Declare package as ka package of main package (anaPaket)

6: endif

7: if aciklama attribute value of ArayuzKay element # null and aciklama attribute value

of ArayuzKay element # empty then

8: Add interface comment by using aciklama attribute value of ArayuzKay element

9: end if
10: Declare interface by using isim attribute value of ArayuzKay element as name of interface
11: end for

Figure [7.2] shows an example code segment which is generated for a ArayuzKay Ele-

ment.

53

package tr.com.aselsan.dss.ka.baglantiislemleri;

JEE
!

* Baglanti islemleri icin kullanici arayuzu vonetici arayuz sinifidir.

* f
/

public interface ArayuzKayBaglantiIslemleri {

h

Figure 7.2: An example code segment generated for a ArayuzKay Element

7.3 Code Generator for KaYonetici Elements

To generate code for KaYonetici elements, we write Xpand codes to the Template.xpt

file. The overall algorithm of code generator for KaYonetici elements is shown on

Algorithm

Algorithm 7.3.1 Code Generator Algorithm for KaYonetici Elements

Input: KaYonetici element list, Veri element list

Qutput: Java files for each KaY onetici element in KaYonetici element list with the name repre-

sented by ¢sivm attribute

1: for each KaY onetici element € KaYonetici element list do

2:

10:
11:

SRS AN

if paket attribute value of KaY onetici element # null and paket attribute value of Ka-
Yonetici element # empty then
Declare package by adding paket attribute value of KaY onetici element to the ka pack-
age of main package (anaPaket)
else
Declare package as ka package of main package (anaPaket)
end if
DeclareIlmportsForKaYoneticiElement(K aY onetici element, Veri element list)
if aciklama attribute value of KaY onetici element # null and aciklama attribute value
of KaY onetici element # empty then
Add class comment by using aciklama attribute value of KaY onetici element
end if
Declare class by using isim attribute value of KaY onetici element as name of class, ex-
tending from KayTemel class, implementing interfaces that are sunulanServis relations of
KaY onetici element and implementing interfaces that are arayuz relations of KaY onetici

element

54

12: Declare class variable SEVIY E as public, static and final and initialize it with the seviye
attribute value of KaY onetici element
13: Declare class variable logger as private and initialize it
14: for each KaDBileseni element € ka relation of KaY onetici element do
15: Declare class variable for KaBileseni element as private by using its ¢sim attribute value
16: end for
17: for each Servis element € kullanilanServis relation of KaY onetici element do
18: Declare class variable for Servis element as private by using its isim attribute value
19: end for
20: Declare a method as protected with the name edtU zerindellklen Ele Al whose return type is
void and add @QQOwerride annotation
21: for each KaDBileseni element € ka relation of KaY onetici element do
22: Initialize class variable for KaBileseni element in edtU zerindellklenFEle Al method
declaration
23: end for
24: for each Servis element € kullanilanServis relation of KaY onetici element do
25: Initialize class variable for Servis element by calling servis method and adding a pa-
rameter by using isim attribute value of Servis element in edtU zerindellklenEle Al
method declaration
26: end for
27: for each Servis element € sunulanServis relation of KaY onetici element do
28: Call servisEkle method by using isim attribute value of Servis element in edtU zerinde-
IlklenEle Al method declaration
29: end for
30: Declare a method as protected with the name edtU zerindeSonlanEle Al whose return type
is void and add @Owverride annotation
31: VeriDeposuSubscriberForKaYoneticiElement (K aY onetici element, Veri element list)
32: for each Olay element € yakalananOlay relation of KaY onetici element do
33: Declare a method as private by using isim attribute value of Olay element, putting @ Abo-
ne annotation and adding a parameter with name olay and type same with isim attribute
value of Olay element as final
34: end for
35: end for

The algorithm of code generator for a specific KaYonetici element’s Import Declara-

tions is shown on Algorithm[7.3.2]

55

Algorithm 7.3.2 DeclareImportsForKaYoneticiElement

Input: A KaYonetici element, Veri element list
Output: Code segments for import declarations of KaYonetici element
1: Add import declarations for Logger and Logger Factory classes
2: if KaYonetici element has a aboneV d relation with a VeriDeposu element whose tip at-
tribute value is Y api then
3: Add import declarations for OlayV eriDeposuY apil slemi and VeriDeposuY apil slemi-
Filtresi classes
4. end if
5. if KaYonetici element has a aboneV d relation with a VeriDeposu element whose tip at-
tribute value is Dizi then
6: Add import declarations for OlayV eriDeposuDizilslemi and VeriDeposuDizil slemi-
Filtresi classes
7: end if
8: if aboneVd relation of KaY onetici element # null or yakalananOlay relation of KaY one-
tici element # null then
9: Add import declaration for Abone class
10: end if
11: if aboneV d relation of KaY onetici element # null then
12: Add import declarations for F'iltre and ServislsyVeriDepolari classes
13: end if
14: Add import declarations for KaPanel and KayT emel classes
15: for each Veri element € Veri element list do
16: if Verielement = veril relation of VeriDeposu element which is KaY onetici element’s
aboneVd relation or Ver: element = wveri2 relation of VeriDeposu element which is

KaYonetici element’s aboneV d relation then

17: Add import declaration for class which is created for Ver: element
18: end if
19: end for

20: for each Olay element € yakalananOlay relation of KaY onetici element do

21: Add import declaration for class which is created for Olay element

22: end for

23: for each Servis element € kullanilanServis relation of KaY onetici element do
24: Add import declaration for class which is created for Servis element

25: end for

26: for each Servis element € sunulanServis relation of KaY onetici element do

27: Add import declaration for class which is created for Servis element

56

28: end for

The algorithm of code generator for a specific KaYonetici element’s Verideposu Sub-

scriber Methods is shown on Algorithm

Algorithm 7.3.3 VeriDeposuSubscriberForKaYoneticiElement

Input: A KaYonetici element, Veri element list
Output: Code segments for subscriber methods of VeriDeposu elements which KaYonetici element
has aboneV d relation
1: for each VeriDeposu element € aboneV d relation of KaY onetici element do
2: if tip attribute value of VeriDeposu element =Y api then
3: Declare a method as private by using ¢si¢m attribute value of VeriDeposu element, putting
@Abone annotation and a filter by using VeriDeposuY apil slemiFiltresi class and
adding a parameter with name vdOlay and type OlayV eriDeposuY apil slemi
4: Declare a variable with the name yeniV er: and initialize it by calling getY eniV er: method
of vdOlay parameter
5: Declare a variable with the name eskiV eri and initialize it by calling get E'skiV eri method
of vdOlay parameter

6: else if tip attribute value of VeriDeposu element = Dizi then

~

Declare a method as private by using isim attribute value of VeriDeposu element, putting
@Abone annotation and a filter by using VeriDeposuDizilslemiFiltresi class and
adding a parameter with name vdOlay and type OlayVeriDeposuDizilslemi
8: Declare a variable with the name anahtar and initialize it by calling get Anahtar method
of vdOlay parameter
9: Declare a variable with the name yeniV ers and initialize it by calling getY eniV eri method
of vdOlay parameter
10: end if

11: end for

Figure [7.3| shows an example code segment which is generated for a KaYonetici Ele-

ment.

57

package tr.com.aselsan.dss.acousticmodem.ka.baglantiislemleri;

import org.slfdj.logger;
impert org.slf4j.loggerFactory;

import tr.com.aselsan.dss.bilesen.cekirdek.vd.OlayVeriDeposuYapilslemi;

import tr.com.aselsan.dss.bilesen.cekirdek.vd.VeriDeposuYapilslemiFiltresi;

import tr.com.aselsan.dss.bilesen.cekirdek.vuku. Abone;

import tr.com.aselsan.dss.bilesen.cekirdek.vuku.Filtre;

import tr.com.aselsan.dss.acousticmodem.ka. temel KayTemel;

import tr.com.aselsan.dss.acousticmodem.isvarlik.veri.cit.CITSonuclari;

import tr.com.aselsan.dss.acousticmodem.isvarlik.veri.EnumYazilimModu;

import tr.com.aselsan.dss.acousticmodem.isvarlik.veri.EnumBaglantiDurumu;

impert tr.com. aselsan.dss.acousticmodem,isvarlik.olay.0layIstekAkustikHaberlesmeParametreleriGonderildi;

import tr.com.aselsan.dss.acousticmodem.isvarlik.servis.is.ServisIsyVeriDepolari;

import tr.com.aselsan.dss.acousticmodem.isvarlik.servis. ka.ServisKayBaglantilslemleri;

o

* Baglanti islemleri icin kullanici arayuzu yonetici simifidir.

=

public class KayBaglantilslemleri extends KayTemel implements ServisKayBaglantilslemleri, ArayuzKayBaglantilslemleri
public static fimal int SEVIYE = 1;
private final Logger logger = LoggerFactory.getlogger(getClass{});

-~

private KaPnlBaglantilslemleri kaPnlBaglantilslemleri;

B0verride

protected void edtUzerindellklenEleAl() {
kaPnlBaglantilslemleri = new KaPnlBaglantilslemleri(this, getYerellestirme());
servisEkle(ServisKayBaglantilslemleri.class, this);

}

BOverride
protected veid edtUzerindeSonlanEleAl() {

}

@Abone(filtreler = {@Filtre(sinif = VeriDeposuYapilslemiFiltresi.class, str = "ISIM="
+ ServisIsyVeriDepolari.vdModemBaglantiDurumu)})
private veid vdModemBaglantiDurumuIsleyici{OlayVeriDeposuYapilslemi vd0lay) {
EnumBaglantiDurume yeniveri (EnumBaglantiDurusu) vdOlay.getYeniVeri();
EnumBaglantiDurumu eskiVeri = (EnumBaglantiDurusu) vdOlay.pgetEskiVeri();

}

Eabone({filtreler = {
gFiltre(sinif = VeriDeposuYapiIslemiFiltresi.class, str = "ISIM=" + ServisIsyVeriDepolari.vdYozilimModu)})
private veoid vd¥azilimModulsleyici(0layVeriDeposuYapilslemi wdOlay) {
EnumYazilimModu yeniVeri = (EnumYazilimModu) wdOlay.getYeniVeri();
EnumYazilimModu eskiVeri = (EnumYazilimModu) vdOlay.getEskiVeri();

Enbone({filtreler = {
@Filtre(sinif = VeriDeposuYapilslemiFiltresi.class, str = "ISIM=" + ServislsyVeriDepolari.vdCITSenuclari)})
private wvoid vdCITSonuclarilsleyici(0layVeriDeposuYapilslemi vdDlay) {
CITSonuclari yeniVeri = (CITSonuclari) vdOlay.getYeniVeri();
CITSonuclari eskiVeri = (CITSonuclari) wdOlay.getEskiVeri();

}

Eabone

private void OlayIstekAkustikHaberlesmeParametreleriGonderildilsle(
final OlaylstekAkustikHaberlesseParametreleriGonderildi olay) {

Figure 7.3: An example code segment generated for a KaYonetici Element

7.4 Code Generator for KaBileseni Elements

To generate code for KaBileseni elements, we write Xpand codes to the Template.xpt

file. The overall algorithm of code generator for KaBileseni elements is as follows.

58

Algorithm 7.4.1 Code Generator Algorithm for KaBileseni Elements

Input: KaBileseni element list

Output: Java files for each KaBileseni element in KaBileseni element list with the name repre-

sented by ¢sivm attribute

1: for each KaBileseni element € KaBileseni element list do

2: if paket attribute value of KaBileseni element # null and paket attribute value of K aBi-
leseni element # empty then
3: Declare package by adding paket attribute value of KaBileseni element to the ka pack-
age of main package (anaPaket)
4: else
5: Declare package as ka package of main package (anaPaket)
6: end if
7: Add import declaration for K aPanel which will be copied under temel package of ka pack-
age
8: Add import declaration for localization class ArayuzY erellestirme which will be copied
under yerellestirme package of altyapi package of project
9: if aciklama attribute value of KaBileseni element # null and aciklama attribute value
of KaBileseni element # empty then
10: Add class comment by using aciklama attribute value of KaBileseni element
11: end if
12: Add annotation to suppress compiler warnings for serialization
13: Declare class by using ¢sim attribute value of KaBilesent element as name of class and
extending from K aPanel class
14: Declare class variable yonetici Arayuz as private, whose type is the same with isim attribute
value of yoneticiArayuz attribute of KaBileseni element
15: Declare class variable yerellestirme as private, whose type is ArayuzY erellestirme
16: Add constructor with parameters yonetici Arayuz whose type is the same type with isim at-
tribute value of yonetici Arayuz attribute of K aBileseni element and yerellestirme whose
type is ArayuzY erellestirme
17: class variable yonetici Arayuz < parameter yonetici Arayuz
18: class variable yerellestirme <— parameter yerellestirme
19: end for

Figure [7.4] shows an example code segment which is generated for a KaBileseni Ele-

ment.

59

package tr.com.aselsan.dss.ka.baglantiislemleri;

import tr.com.aselsan.dss.ka.temel.KaPanel;

* Baglanti islemleri icin kullanici arayuzu bilesenidir.

@SuppressWarnings("serial™)

public class KaPnlBaglantiTslemleri extends KaPanel {
private ArayuzKayBaglantilslemleri yoneticiArayuz;
private ArayuzYerellestirme yerellestirme;

public KaPnlBaglantiIslemleri(ArayuzKayBaglantiIslemleri yoneticiArayuz, ArayuzYerellestirme yerellestirme) {
this.yoneticiArayuz = yoneticiArayuz;
this.yerellestirme = yerellestirme;

Figure 7.4: An example code segment generated for a KaBileseni Element

7.5 Code Generator for IsYonetici Elements

To generate code for IsYonetici elements, we write Xpand codes to the Template.xpt

file. The overall algorithm of code generator for IsYonetici elements is as follows.

Algorithm 7.5.1 Code Generator Algorithm for IsYonetici Elements

Input: IsYonetici element list, Veri element list
Output: Java files for each IsY onetici element in IsYonetici element list with the name represented
by isim attribute
1: for each IsY onetici element € IsYonetici element list do
2: if paket attribute value of 1sY onetici element # null and paket attribute value of IsY one-
tici element # empty then
3: Declare package by adding paket attribute value of IsY onetici element to the is package

of main package (anaPaket)

4 else

5: Declare package as is package of main package (anaPaket)

6: end if

7: DeclareImportsForls YoneticiElement(/ sY onetici element, Veri element list)

8: if aciklama attribute value of IsY onetici element # null and aciklama attribute value of

1sY onetici element # empty then

9: Add class comment by using aciklama attribute value of IsY onetici element
10: end if
11: Declare class by using isim attribute value of IsY onetici element as name of class, ex-

tending from Yonetici Adaptor class and implementing interfaces that are sunulanServis

relations of IsY onetict element

60

12:

13:
14:
15:
16:
17:

18:
19:

20:
21:
22:

23:
24

25:
26:
27:

28:
29:

Declare class variable SEVIY E as public, static and final and initialize it with the seviye

attribute value of IsY onetici element

Declare class variable [ogger as private and initialize it

for each Servis element € kullanilanServis relation of IsY onetici element do
Declare a class variable for Servis element as private by using its isimn attribute value

end for

Declare a method as protected with the name ilklen Ele Al whose return type is void and add

@Qwerride annotation

for each Servis element € kullanilanServis relation of IsY onetici element do
Initialize class variable for Servis element by calling servis method and adding a param-
eter by using isim attribute value of Servis element in ilklen Ele Al method declaration

end for

for each Servis element € sunulanServis relation of IsY onetici element do
Call servisEkle method by using isim attribute value of Servis element in ilklenEle Al
method declaration

end for

Declare a method as protected with the name sonlan Ele Al whose return type is void and add

@Qwerride annotation

VeriDeposuSubscriberForls YoneticiElement (I sY onetici element, Veri element list)

for each Olay element € yakalananOlay relation of IsY onetici element do
Declare a method as private by using isim attribute value of Olay element, putting @ Abo-
ne annotation and adding a parameter with name olay and type same with ¢sim attribute
value of Olay element as final

end for

end for

The algorithm of code generator for a specific IsYonetici element’s Import Declara-

tions is shown on Algorithm

Algorithm 7.5.2 DeclareImportsForls YoneticiElement

Input: A IsYonetici element, Veri element list

Output: Code segments for import declarations of IsYonetici element

1:
2:
3:

Add import declarations for Logger and Logger Factory classes
Add import declaration for Y onetici Adaptor class
if IsY onetici element has a aboneV d relation with a Veri Deposu element whose tip attribute

value is Y api then

61

»

10:
11:
12:
13:
14:

16:

18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:

Add import declarations for OlayV eriDeposuY apil slemi and VeriDeposuY apil slemi-
Filtresi classes
end if
if IsY onetici element has a aboneV d relation with a Veri Deposu element whose tip attribute
value is Dizi then
Add import declarations for OlayV eriDeposuDizilslemi and VeriDeposuDizil slemi-
Filtresi classes
end if
if aboneVd relation of IsY onetici element # null or yakalananOlay relation of IsY onetici
element # null then
Add import declaration for Abone class
end if
if aboneVd relation of 1sY onetici element # null then
Add import declarations for F'iltre and ServislsyVeriDepolari classes

end if

: for each Veri element € Veri element list do

if Veri element = veril relation of VeriDeposu element which is aboneV d relation of
IsY onetici element or Veri element = veri2 relation of VeriDeposu element which is
aboneV d relation of IsY onetici element then
Add import declaration for class which is created for Veri element
end if
end for
for each Olay element € yakalananOlay relation of IsY onetici element do
Add import declaration for class which is created for Olay element
end for
for each Servis element € kullanilanServis relation of IsY onetici element do
Add import declaration for class which is created for Servis element
end for
for each Servis element € sunulanServis relation of IsY onetici element do
Add import declaration for class which is created for Servis element

end for

The algorithm of code generator for a specific IsYonetici element’s Verideposu Sub-

scriber Methods is shown on Algorithm [7.5.1]

62

Algorithm 7.5.1 VeriDeposuSubscriberForls YoneticiElement

Input: A IsYonetici element, Veri element list

Output: Code segments for subscriber methods of VeriDeposu elements which IsYonetici element

has aboneV d relation

1: for each VeriDeposu element € aboneV d relation of 1sY onetici element do

2: if tip attribute value of VeriDeposu element = Y api then
3: Declare a method as private by using ¢sim attribute value of Ver:Deposu element, putting
@Abone annotation and a filter by using VeriDeposuY apil slemiF'iltresi class and
adding a parameter with name vdOlay and type OlayV eriDeposuY apil slemi
4: Declare a variable with the name yeniV ers and initialize it by calling getY eniV eri method
of vdOlay parameter
5: Declare a variable with the name eskiV eri and initialize it by calling get E'skiV eri method
of vdOlay parameter
6: else if tip attribute value of VeriDeposu element = Dizi then
7: Declare a method as private by using isim attribute value of VeriDeposu element, putting
@Abone annotation and a filter by using VeriDeposuDizilslemiFiltresi class and
adding a parameter with name vdOlay and type OlayVeriDeposuDizilslemi
8: Declare a variable with the name anahtar and initialize it by calling get Anahtar method
of vdOlay parameter
9: Declare a variable with the name yeniV ers and initialize it by calling getY eniV er: method
of vdOlay parameter
10: end if
11: end for

Figure shows an example code segment which is generated for a IsYonetici Ele-

ment.

7.6 Code Generator for IsBileseni Elements

To generate code for IsBileseni elements, we write Xpand codes to the Template.xpt

file. The overall algorithm of code generator for IsBileseni elements is given on

Algorithm

63

package tr.com.aselsan.dss.acousticmodem. is.dosyagonderme;

import org.slfdj.Logger;
import org.s1f4j.LoggerFactory;

impert tr.com.aselsan.dss.bilesen.cati.YoneticiAdaptor;

import tr.com.aselsan.dss.bilesen.cekirdek.vd.0layWeriDeposuYapilslemi;

import tr.com.aselsan.dss.bilesen.cekirdek.vd.VeriDeposuYapilslemiFiltresi;

impert tr.com.aselsan.dss.bilesen.cekirdek.vuku.Abone;

import tr.com.aselsan.dss.bilesen.cekirdek.vuku.Filtre;

import tr.com.aselsan.dss.acousticmodem.isvarlik.veri.EnumBaglantiDurumu;

import tr.com.aselsan.dss.acousticmodem.isvarlik. olay.0layIstekVeriGonderimBildirimMesajiAlindi;
import tr.com,aselsan.dss.acousticmodem, isvarlik.servis.is.ServisIsyModemHaberlesme;

import tr.com.aselsan.dss.acousticmodem.isvarlik.servis.is.ServisIsyVeriDepolari;
impert tr.com.aselsan.dss.acousticmodem.isvarlik. servis.ka.ServisKayDosyaGonderme;
import tr.com.aselsan.dss.acousticmodem.isvarlik.servis.ka.ServisKayDosyaGondermeDurumBilgileri;
import tr.com.aselsan.dss.acousticmodem.isvarlik.servis.is.ServislsyDosyaGondermelslemleri;
Ju
* Dosya gonderme islemlerini yoneten is yonetici sinifidir.
¥,
public class IsyDosyaGondermelslemleri extends YoneticiAdaptor implements ServisIsyDosyaGondermelslemleri
public static fimal int SEVIVE = 1;

private final Logger logger = LoggerFactory.getlogger(getClass{));

-

private ServisIsyModemHaberlesme servislsyModemHaberlesme;
private ServisKayDosyaGonderme servisKayDosyaGonderme;
private ServisKayDosyaGondermeDurumBilgileri servisKayDosyaGondermeDurumBilgileri;

E0verride
protected void ilklenEleAl() {
servisEkle(ServisIsyDosyaGondermeIslemleri.class, this);
servisIsyModemHaberlesme = servis(ServisIsyModemHaberlesme.class);
serviskayDosyaGonderme = servis(ServisKayDosyaGonderme.class);
serviskayDosyaGondermeDurumBilgileri = servis(ServisKayDosyaGondermeDurumBilgileri.class);
H

Boverride
protected void sonlanEleAl() {

}

@Abone(filtreler = {@Filtre(sinif = VeriDeposuYapilslemiFiltresi.class, str = "ISIM="
+ ServisIsyVeriDepolari.vdModemBaglantiDurumu)})
private void vdModemBaglantiDurumuIsleyici(OlayVeriDeposuYapilslemi<EnumBaglantiDurumu> vddlay) {
final EnumBaglantiDurumy yeniVeri = (EnumBaglantiDurusu) vdOlay.getYeniVeri();
final EnumBaglantiDurumu eskiVeri = (EnumBaglantiDurumu) vdOlay.getEskiVeri();
1

@Abone
private veid OlayIstekVeriGonderimBildirimMesajiAlindiIsle(final 0layIstekVeriGonderimBildirisMesajialindi olay) {

}

Figure 7.5: An example code segment generated for a IsYonetici Element

Algorithm 7.6.1 Code Generator Algorithm for IsBileseni Elements

Input: IsBileseni element list
Output: Java files for each IsBileseni element in IsBileseni element list with the name represented
by ¢sim attribute
1: for each IsBileseni element € IsBileseni element list do
2: if paket attribute value of IsBileseni element # null and paket attribute value of IsBile-
seni element # empty then
3: Declare package by adding paket attribute value of I'sBileseni element to the is package
of main package (anaPaket)
4: else

5: Declare package as is package of main package (anaPaket)

64

6: end if
7: Add import declarations for Logger class
8: if aciklama attribute value of IsBileseni element # null and aciklama attribute value of

IsBileseni element # empty then

9: Add class comment by using aciklama attribute value of IsBileseni element
10: end if
11: Declare class by using isim attribute value of IsBileseni element as name of class
12: Declare class variable logger as private and initialize it
13: end for

Figure shows an example code segment which is generated for a IsBileseni Ele-

ment.

package tr.com.aselsan.dss.is;

import org.slf4j.Logger;
import org.slf4dj.LoggerFactory;

* Modem veri cozumleyici is bilesenidir.
public class IsbModemVeriCozumleyici {
private final Logger logger = LoggerFactory.getlogger(getClass());

¥

Figure 7.6: An example code segment generated for a IsBileseni Element

7.7 Code Generator for Veri Elements

To generate code for Veri elements, we write Xpand codes to the Template.xpt file.

The overall algorithm of code generator for Veri elements is as follows.

Algorithm 7.7.1 Code Generator Algorithm for Veri Elements

Input: Veri element list
Output: Java files for each Veri element in Veri element list with the name represented by isim
attribute
1: for each Veri element € Veri element list do
2: if paket attribute value of Veri element # null and paket attribute value of Veri element

empty then

65

3: Declare package by adding paket attribute value of Veri element to the isvarlik.veri
package of main package (anaPaket)
4: else
5: Declare package as isvarlik.vert package of main package (anaPaket)
6: endif
7: if aciklama attribute value of Veri element # null and aciklama attribute value of Veri
element # empty then
8: Add comment by using acitklama attribute value of Ver: element
9: endif
10: if tip attribute value of Veri element = Class then
11: Declare class by using ¢sim attribute value of Veri element as name of class
12: else if tip attribute value of Veri element = Inter face then
13: Declare interface by using isim attribute value of Veri element as name of interface
14: else if tup attribute value of Ver: element = Enum then
15: Declare enumeration by using ¢sim attribute value of Veri element as name of enumera-
tion
16: end if
17: end for

Figure [7.7] shows an example code segment which is generated for a Veri Element

whose tip attribute value is Class. Figure shows an example code segment which

is generated for a Veri Element whose tip attribute value is Enum.

package tr.com.aselsan.dss.isvarlik.veri.dosyagonderme;

JHE
/

* Dosya gonderme bilgileri icin veri sinifidir.

*® f
!

public class DosyaGondermeBilgileri {

}

Figure 7.7: An example code segment generated for a Veri Element whose tip at-

tribute value is Class

66

package tr.com.aselsan.dss.isvarlik.veri.dosyagonderme;

fFE
!

* Dosya gonderme durumlari icin enum sinifidir.

s g
L
!

public enum EnumDosyaGondermeDurumu {

¥

Figure 7.8: An example code segment generated for a Veri Element whose tip at-

tribute value is Enum

7.8 Code Generator for Olay Elements

To generate code for Olay elements, we write Xpand codes to the Template.xpt file.

The overall algorithm of code generator for Olay elements is as follows.

Algorithm 7.8.1 Code Generator Algorithm for Olay Elements

Input: Olay element list
Output: Java files for each Olay element in Olay element list with the name represented by isim
attribute
1: for each Olay element € Olay element list do
2: Declare package as isvarlik.olay package of main package (anaPaket)
3: if aciklama attribute value of Olay element # null and aciklama attribute value of Olay

element # empty then

4: Add class comment by using aciklama attribute value of Olay element
5: end if

6: Declare class by using isim attribute value of Olay element as name of class
7: end for

Figure shows an example code segment which is generated for a Olay Element.

7.9 Code Generator for Servis Elements

To generate code for Servis elements, we write Xpand codes to the Template.xpt file.

The overall algorithm of code generator for Servis elements is as follows.

67

package tr.com.aselsan.dss.isvarlik.olay;

fEE
!

* Dosya gondermek icin firlatilan olay sinifidir.

L
!

public class OlayIstekDosyaGonder {

}

Figure 7.9: An example code segment generated for a Olay Element

Algorithm 7.9.1 Code Generator Algorithm for Servis Elements

Input: Servis element list
Output: Java files for each Servis element in Servis element list with the name represented by isim
attribute
1: for each Servis element € Servis element list do
2 if tip attribute value of Servis element = Isy then
3: Declare package as isvarlik.servis.is package of main package (anaPaket)
4 if aciklama attribute value of Servis element # null and aciklama attribute value of

Servis element # empty then

5: Add interface comment by using aciklama attribute value of Servis element
6: end if
7: Declare interface by using isim attribute value of Servis element as name of interface
8: else if tup attribute value of Servis element = Kay then
9: Declare package as isvarlik.servis.ka package of main package (anaPaket)
10: if aciklama attribute value of Servis element # null and aciklama attribute value of
Servis element # empty then
11: Add interface comment by using aciklama attribute value of Servis element
12: end if
13: Declare interface by using isim attribute value of Servis element as name of interface
14: end if
15: end for

Figure[7.10]shows an example code segment which is generated for a Servis Element
whose tip attribute value is Isy. Figure shows an example code segment which

is generated for a Servis Element whose tip attribute value is Kay.

68

package tr.com.aselsan.dss.isvarlik.servis.is;

JE*
* Dosya gonderme islemleri icin is vyonetici servis sinifidir.
*/

public interface ServisIsyDosyaGondermelslemleri {

¥

Figure 7.10: An example code generated for a Servis Element whose tip attribute

value is Isy

package tr.com.aselsan.dss.isvarlik.servis.ka;

JE*
* Dosya gonderme icin kullanici aravuzu vonetici servis sinifidir.
*/

public interface ServisKayDosyaGonderme {

¥

Figure 7.11: An example code generated for a Servis Element whose tip attribute

value is Kay

69

70

CHAPTER 8

CASE STUDY AND EVALUATION

In this chapter, we describe the conducted case study, explain analysis method and

give some information about the experimental results.

8.1 Case Study: Acoustic Modem Application Software

In the scope of the case study, Acoustic Modem Application Software has been de-
veloped. The software has a graphical user interface that enables the management
and monitoring of the modem that provides data exchange over the acoustic environ-
ment. Serial communication is established between the modem and the application
software. The software allows the modem to transmit files over acoustic environment
and records the files sent by another modem on the file system. It displays the daily
records of modem, provides user interfaces to adjust communication parameters, does
terminal operations, monitors acoustic environment information, starts device test and

displays results of test. Graphical user interface presents a toolbar for these actions.

Firstly, a developer who is the author of this thesis implements skeleton codes of
Acoustic Modem Application Software manually after architectural design is cre-
ated. Then, same developer uses proposed Model Driven Engineering approach for
implementation of skeleton codes and create application architecture model by us-
ing developed graphical modeling editor described in Chapter [f] By using graph-
ical modeling editor, the developer drags and drops DSS-RSA elements from the
palette to the design area, set the attribute values of the elements by using Proper-
ties View and create associations between the elements according to the DSS-RSA

metamodel definitions. Usage of Properties View for a KaYonetici element named as

71

KaY onetici M odemGunluk K ayit to set attribute values is shown in Figure

[Properties 2
+ KaYonetici
Core Property Value
AT Abone Vd <>:\Jl’eri Deposu vdGunlukKayit
Aciklama = Modem gunluk kayitlari icin kullanici arayuzu yonetici sinifidir,
Arayuz “ Arayuz Kay ArayuzKayModemGunlukKayit
Isim *= KayModemGunlukKayit
Ka * Ka Bileseni KaPnIModemGunlukKayit
Kullanilan Servis * Servis ServislsyModemGunlukKayit
Paket *= gunlukkayit
Seviye =1
Sunulan Servis * Servis ServisKayModemGunlukKayit
Yakalanan Olay “ Olay OlaylstekModemGunlukKayitlariGoruntule

Figure 8.1: Properties View to edit DSS-RSA elements

Figure [8.2] shows created application architecture model. After application architec-
ture model is created, the model should be validated to check the conformance with
the DSS-RSA. As described in Chapter[5] OCL constraints are defined on metamodel
by using OCLinEcore editor. To validate the model, design area is right clicked and
“OCL — Validate” is selected as shown in Figure If some OCL constraints are
violated, validation results show problems. Figure 8.4 shows some validation prob-

lems and Figure shows successful validation of application architecture model.

After application architecture architecture model is created and validated, the model
file, namely Model.xmi, is copied under the src folder of Xpand project. To generate
skeleton Java codes under src-gen folder, generator.mwe?2 file is right-clicked and
“Run As — MW E2 Work flow” is selected as decribed in Chapter [7]] Generated
code examples for each element of DSS-RSA are also given in Chapter |/} Details of
generated classes and lines of skeleton codes for each DSS-RSA element are given in

Table [B.11

For this study, development times of two approaches are measured by using a stop-
watch and showed in Table [8.2] By using the second approach where proposed
method in this thesis is used, expected package structure and skeleton codes are cre-
ated in a much shorter time than the manual approach. In the first approach developer
finished the work in 489 minutes, whereas in the second approach the work took 116

minutes.

72

+ vdY

el
- [
+ VAPI l
4 Vazilimin m du(
| AKY

#vdSenkanalTevaEr\ vdSeriKa u

< YAPI YAPI

4 Seri kanal n&vamJ‘i eri kanal nu .
T S\

E‘
L \',”lll“ 'LVI’A‘R\\'A‘“L‘IL“A‘E“

)
i
LAV Y ‘,ﬁ'\&'[d’m\‘ﬂr\\'&ll“’ﬂ"i\‘_ A

|I....,..__, el |I-_......,__“__.1_ o
' A
y
|
A:m-r’

Figure 8.2: Application model for Acoustic Modem Application Software

73

) DSSML |_diagram - Eclipse Platform - =] X
File Edit Diagram Navigate Search Project Run Window Help
NI RRAQ- P EBES P STy e oo v I s A~ sy =By e|r| KB | 100% v ummss\m
EPran 57 Basmimeanode s |]
~ | patette
v stlengl Raao-
Add B
> B s & DSS RSA Elemanlan
> B IRE System Library peviiztc) > # IsYonetici
> [dssml.metamodel
File B + IsBileseni
) dssml.metamodel_
Edit > + Kavonetici
% Delete from Model + KaBileseni
i select + ArayuzKay
4 Arange All + Veri
Fiters >
+ Olay
View > + Servis
@ Zoom >
VeriDeposu
Load Resource oo
s Show EClass information bz dlanilai
.: Show Propertes View B Load Document Vaidate the OcL | Senis
o= B Show Xtext oclcunsme -
Remove from Context Cirl+Alt+Shift+Down | G Show OCL Console + KaVYoneticiKullanilanServis
& e + Ka¥oneticika
% Debug. +
+ Ka¥oneticiArayuz
+ KaVonetciAbonev
v 4 VerDeposuern2
. + VeriNeamebaside

Figure 8.3: Validating application architecture model

& Validation Problems

@ Problems encountered during validation

Reason:
Diagnosis of DSSML tr.com.aselsan.dss

oK << Detais |

& The 'KullanilmayanKaBileseniOlamaz' constraint is violated on 'DSSML’
@ The 'KullanilmayanArayuzKayOlamaz' constraint is violated on ‘DSSML
@ The "KullanilmayanlsYoneticiServisiOlamaz' constraint is violated on "‘DSSML'

@ The feature ‘metamodel:KaYoneticizarayuz' of ‘DSSML:KaYonetici' with 0 values

@ The 'KaYoneticilsmiKaylleBaslamali® constraint is violated on 'DSSML:KaYonetici'
@ The feature ‘'metamodel:KaYoneticizka' of 'DSSML:KaYonetici’ with O values must have at least 1 values

must have at least 1 values

Figure 8.4: Validation problems of the application architecture model

£ Validation Information

@ Validation completed successfully

Figure 8.5: Successful validation of the application

architecture model

In addition to that, source code is examined in code review by another developer

in DSS Team for compliance with the DSS-RSA. In first approach, some cases of

non-compliance with Reference Software Architecture is detected and listed below.

74

Table 8.1: Generation details for each element of DSS-RSA

DSS-RSA Element | Class/Enum/Interface Count | Package Count | Lines of Code
Veri 9 Enum 11 216
33 Class
Olay 15 Class - 90
Servis (tip=Isy) 6 Interface - 36
Servis (tip=Kay) 8 Interface - 48
ArayuzKay 11 Interface - 66
KaBileseni 11 Class - 168
KaYonetici 11 Class 11 395
IsYonetici 6 Class 6 210
IsBileseni 3 Class 0 27
VeriDeposu 1 Class 1 134
1 Interface
Total 26 Interface 29 Package 1390 LOC
9 Enum
80 Class

e A naming rule for KaYonetici element of DSS-RSA is violated. A KaYonetici
element named as KayFkranGoruntusuAlma is written as K AY Ekran-
GoruntusuAlma mistakenly. This rule can not be violated in the second ap-
proach, because it is validated via OCL with KaY oneticil smiKaylleBasla-

mal? invariant.

e A naming rule for IsYonetici element of DSS-RSA is violated. A IsYonetici el-
ement named as /sy M odem Haberlesme is written as 1sY Modem H aberles-
me mistakenly. This rule can not be violated in the second approach, because

it is validated via OCL with IsY oneticil smilsylle Baslamal: invariant.

e An element usage rule of DSS-RSA is violated. An Interface named as Servis-
KayAracCubugu is created for a Servis element whose tip attribute value is
Kay but it is not implemented by any KaYonetici element. In other words,
there is no sunulanServis relationship between a KaYonetici element and this

Servis element. This rule can not be violated in the second approach, because

75

Table 8.2: Manual and Automatic Development (Proposed Approach) Times for each
element of DSS-RSA

DSS-RSA Element | Manual Development Time | Automatic Development Time
(min.) (min.)

Veri 78 30

Olay 37 15
Servis (tip=Isy) 13 6
Servis (tip=Kay) 22 11
ArayuzKay 27 10
KaBileseni 60 11
KaYonetici 105 12
IsYonetici 75 9
IsBileseni 10 3
VeriDeposu 62 9

Total 489 minutes 116 minutes

it is validated via OCL with KullanilmayanKaY oneticiServisiOlamaz in-

variant.

e A KaYonetici element rule of DSS-RSA is violated. KaBileseni element named
as KaPnlBaglantilslemler: do not have the same paket attribute value with
a KaYonetici element named as KayBaglantilslemler: which has ka rela-
tionship with this KaBileseni element. paket attribute value of KaBileseni ele-
ment is baglanti but paket attribute value of KaYonetici element is baglanti-
tslemleri. This rule can not be violated in the second approach, because it
is validated via OCL with KaYoneticiVeKaBileseniPaketlsimleri Ayni-

Olmali invariant.

In the second approach, no case of non-compliance with Reference Software Archi-
tecture is detected. Proposed approach in this thesis increases the correctness of the
software. Units that are non-compliant with Reference Software Architecture pos-
sibly cause errors in software development lifecycle. Creating elements by using
graphical modeling editor is easy and it takes short time. Developing code manually

takes a long time and is error-prone.

76

As a case study, a small example consisting of only one subsystem was developed by
a single developer. Thus further process data needs to be collected and analyzed to

measure the true effect of the proposed approach.

77

78

CHAPTER 9

CONCLUSION

In this thesis, we propose a Model Driven Engineering approach to enforce the Ref-
erence Software Architecture and to aid in the transition process from architectural
design of application software, which is compliant with a Reference Software Archi-
tecture, to implementation. Reference Software Architecture provides architectural
best practices that are gathered from past experiences to all project team members.
They can be standards, prior project artifacts, design patterns, commercial frame-
works, and so forth. Reference Software Architecture provides tried and true repeat-
able processes and reduce the likelihood of incorrect technology decisions. Identi-
fication of a Reference Software Architecture can lead to a faster and more reliable

software development process [23]].

Our approach is realized in three stages by utilizing Model Driven Engineering tech-
niques and tools. In the first stage, we formalize the Reference Software Architecture,
namely DSS-RSA, as a metamodel, which is created by DSS Software Team. Ref-
erence Software Architecture metamodeling process is started out with elements of
DSS-RSA and relationships between these elements. Eclipse Modeling Framework
is used for Ecore-based metamodel definition. After DSS-RSA Metamodel is created,
OCL constraints for this metamodel are defined by using OCLinEcore Editor. Meta-
model can express only very basic modeling constraints, for example cardinality con-
straints, association ends and types for attributes. More complicated constraints can
only be expressed as static semantic rules by using OCL. In the second stage, based
on the DSS-RSA Metamodel, concrete syntax is defined by using Eclipse Graphi-
cal Modeling Framework. At the end of the concrete syntax definition, a graphical

modeling editor is developed. Architectural designs of all application software in

79

DSS Software Team are created through this graphical modeling editor to promote
the Reference Software Architecture compliance of architectural design. Finally, in
the third stage, a code generation mechanism is implemented using Xpand which is
a statically-typed template language that is based on EMF models and specialized on
code generation [22]]. By using model file which is the output of the graphical mod-
eling editor and automatic code generation mechanism, skeleton codes are generated.
Thus, transition process from architectural design to implementation is facilitated.
Furthermore, development of software in compliance with the Reference Software

Architecture is promoted.

In this thesis, a case study involving Acoustic Modem Application Software is con-
ducted. The software has a graphical user interface that enables the management and
monitoring of the modem that provides data exchange over the acoustic environment.
A developer who is the author of this thesis implements the skeleton codes of this ap-
plication software manually after architectural design is done. Then, same developer
uses the proposed method for implementation and creates application architecture
model by using graphical modeling editor. Development times of two approaches
are measured. By applying proposed method, expected package structure and skele-
ton codes are created in a much shorter time than the manual approach. In the first
approach, the developer finished the implementation of skeleton codes in 489 min-
utes while the second approach took 116 minutes to build the application architecture
model and generate skeleton codes. Therefore, by automatic generation of skeleton
codes, savings are achieved in labor. In addition to that, source code is examined in
code review by another developer in DSS Software Team for compliance with the Ref-
erence Software Architecture. In the first approach, some cases of non-compliance
with Reference Software Architecture is detected. But in the second approach, no

case of non-compliance with Reference Software Architecture is detected.

To conclude, proposed approach in this thesis increases the correctness of the soft-
ware by promoting the Reference Software Architecture compliance of architectural
design. Moreover, it prevents architecture erosion problem on a large scale and short-
ens development time. Creating elements by using graphical modeling editor is easy
and it takes short time, whereas developing code manually for takes more time and

is error-prone. The case study is obviously quite limited in scope, yet promising in

80

regards to long term benefits for the Sea Defense System Software Team.

In the future, we plan to automatically generate the architectural design documents.
We can also compare graphical modeling with textual modeling by using results of

the study presented in [11].

81

82

[1]

[2]

(3]

[4]

[5]

[6]

[7]

[8]

REFERENCES

M. L. Bernardi, G. A. D. Lucca, and D. Distante, “A model-driven approach
for the fast prototyping of web applications,” in 2011 13th IEEE International
Symposium on Web Systems Evolution (WSE), pp. 65-74, Sept 2011.

M. Brambilla, J. Cabot, and M. Wimmer, Model-Driven Software Engineering
in Practice. Morgan & Claypool Publishers, 1st ed., 2012.

S. Bouchet, Graphical Modeling Framework/Tutorial/Part 1, 2013 (last
accessed July 8, 2017). available: https://wiki.eclipse.org/

Graphical_Modeling_Framework/Tutorial/Part_1.

E. Y. Nakagawa, P. Oliveira Antonino, and M. Becker, Reference Architecture
and Product Line Architecture: A Subtle But Critical Difference, pp. 207-211.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011.

D. Quintero, IBM software defined environment. IBM redbooks, Poughkeepsie,
NY : IBM Corporation, International Technical Support Organization, 2015.,
2015.

M. Panunzio, “Definition, realization and evaluation of a software reference ar-
chitecture for use in space applications (ph.d. thesis),” Tech. Rep. UBLCS-2011-
07, University of Bologna (Italy). Department of Computer Science, July 2011.

V. V. Graciano Neto, L. Garcés, M. Guessi, L. B. R. de Oliveira, and F. Oquendo,
“On the equivalence between reference architectures and metamodels,” in Pro-
ceedings of the Ist International Workshop on Exploring Component-based
Techniques for Constructing Reference Architectures, CobRA ’15, (New York,
NY, USA), pp. 21-24, ACM, 2015.

S. Martinez-Ferndndez, C. Ayala, X. Franch, D. Ameller, and H. M. Mar-
ques, “A framework for software reference architecture analysis and review.,”

in CIbSE 2013: 16th Ibero-American Conference on Software Engineering -

83

https://wiki.eclipse.org/Graphical_Modeling_Framework/Tutorial/Part_1
https://wiki.eclipse.org/Graphical_Modeling_Framework/Tutorial/Part_1

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Memorias del 10th Workshop Latinoamericano Ingenieria de Software Exper-
imental, ESELAW 2013, (GESSI Research Group, Universitat Politécnica de
Catalunya), pp. 89—-102, 2013.

B. Tekinerdogan, “Chapter 10: Architectural drift analysis using architecture
reflexion viewpoint and design structure reflexion matrices.,” Software Quality

Assurance, pp. 221 — 236, 2016.

J. Rosik, A. Le Gear, J. Buckley, M. A. Babar, and D. Connolly, “Assessing
architectural drift in commercial software development: a case study,” Software:

Practice and Experience, vol. 41, no. 1, pp. 63-86, 2011.

N. K. Turhan and H. Oguztiiziin, “Metamodeling of reference software archi-
tecture and automatic code generation,” in Proccedings of the 10th European
Conference on Software Architecture Workshops, ECSAW ’16, (New York, NY,
USA), pp. 2:1-2:7, ACM, 2016.

P. Trojanek, “Model-driven engineering approach to design and implementation

of robot control system,” CoRR, vol. abs/1302.5085, February 2013.

D. Altunbay, E. Cetinkaya, and M. G. Metin, “Model driven development of
board games,” First Turkish Symposium on Model-Driven Software Develop-
ment (TMODELS), May 2009.

M. L. Bernardi, G. A. D. Lucca, and D. Distante, “Model-driven fast prototyp-
ing of rias: From conceptual models to running applications,” in 2014 Interna-

tional Conference on Advances in Computing, Communications and Informatics

(ICACCI), pp. 250-258, Sept 2014.

H. B. Saritas and G. Kardas, “A model driven architecture for the development

of smart card software,” Computer Languages, Systems & Structures, vol. 40,

no. 2, pp. 53 — 72, 2014.

M. S. Eloumri, Graphical editors generation with the graphical modeling frame-

work: A case study. PhD thesis, Queen’s University, 2011.

C. Miksovic and O. Zimmermann, “Architecturally significant requirements,
reference architecture, and metamodel for knowledge management in informa-

tion technology services,” in Proceedings of the 2011 Ninth Working IEEE/IFIP

84

Conference on Software Architecture, WICSA 11, (Washington, DC, USA),
pp- 270-279, IEEE Computer Society, 2011.

[18] M. Patterns, Microsoft Application Architecture Guide. Microsoft Press,
2nd ed., 2009.

[19] OCL Specification, 2014 (last accessed May 27, 2017). available: http://
WWw.omg.org/spec/OCL/2.4/.

[20] Eclipse OCL (Object Constraint Language), 2013 (last accessed May 27,
2017). available: https://projects.eclipse.org/projects/

modeling.mdt.ocll

[21] E. Willink, OCL/OCLinEcore, 2013 (last accessed May 27, 2017). available:
https://wiki.eclipse.orqg/OCL/OCLinEcorel

[22] N. Skrypuch, Eclipse Model To Text (M2T) Project, last accessed July 16, 2017.
available: https://eclipse.org/modeling/m2t.

[23] P. Reed, Reference Architecture: The best of best practices, 2002 (last
accessed August 12, 2017). available: https://www.ibm.com/
developerworks/rational/library/2774.htmll

85

http://www.omg.org/spec/OCL/2.4/
http://www.omg.org/spec/OCL/2.4/
https://projects.eclipse.org/projects/modeling.mdt.ocl
https://projects.eclipse.org/projects/modeling.mdt.ocl
https://wiki.eclipse.org/OCL/OCLinEcore
https://eclipse.org/modeling/m2t
https://www.ibm.com/developerworks/rational/library/2774.html
https://www.ibm.com/developerworks/rational/library/2774.html

86

APPENDIX A

DEVELOPING DOMAIN MODEL AS EMF ECORE MODEL

A.1 Creating EMF Project

We create a new project to hold domain model by clicking on the File menu of Eclipse
and selecting “New — Other — Ecore Modeling Project”. We give the project
the name “dss_rsa_metamodel_project” as shown in Figure @ Then, we define the
model settings as shown in Figure[A.2]and select the viewpoints to activate as shown

in Figure [A.3] After clicking finish, Ecore Modeling Project is created.

& New Ecore Modeling Project O X
Create a new Ecore Modeling project w
Enter a project name ﬂ

Project name: | dss_rsa_metamodel_project ‘

Use default location

C\Users\kubra\Desktop\workspace-tez\dss_rsa_metamodel_project Browse...
Working sets
[[] Add project to working sets New...

Select...

Figure A.1: Creating new Ecore Modeling Project: enter a project name

By using the created diagram shown in Figure [A.4] elements are dragged&dropped

from Palette into the design area and Domain Model of DSS-RSA is created as shown

in Figure[A.5]

87

2 New Ecore Modeling Project O x
Model settings ﬁ
Define the model settings

Main package name me‘[amodel| |

MNamespace properties
Use default namespace parameters

Ns Uri | http://www.example.org/metamodel

Ns Prefix | metamodel

@ < Back Next > Cancel

Figure A.2: Creating new Ecore Modeling Project: define the model settings

2 New Ecore Modeling Project O x
Select viewpoints ﬁ
Select viewpoints to activate
[- Archetype Provides graphical and tabular ~
¢ Design representation to design an Ecore model.
[+ Review

Figure A.3: Creating new Ecore Modeling Project: select viewpoints to activate

88

B Model Explorer 52 = 5

- =

‘type filter text

~ & dss_rsa_metamodel_project

=i Project Dependencies
2 src

BA JRE System Library [JavaSE-1.8]

=4 Plug-in Dependencies
& META-INF

~ (= model

> metamodel aird
~ #1 metamodel.ecore
v & metamodel
& metamodel
~ [metamodel.genmodel
> B Metamodel

Figure A.4:

& metamodel &

BBy FI D m B

&) 100% | m =

A

i

(= Existing Elements
add

4 Remove

(= Classifier
» B Class
& Datatype
2 Enumeration

%0 ETypeParameter

(= Feature
= Literal
@ Operation
= Attribute

(= Relation
b SuperType
= Reference
=" Bi-directional Reference

= Composition

(= Dynamic

Ef Dynamic instance

(= Package
Package

Design area and palette of Ecore modeling editor

89

[PPOIN UTrEWo(] VSY-$SA :§'V m51g

US| ELUEPDE = LA L")
buinsy 18%ed o
sse|y = idijuap tdi &
& zuaa [0l Buinsy : ewe| = phaucge Lol
1dey, = wdijnsodaguap : diy 1
Busy : wist &,
nsodaguan 5 pazucge Lol
uejodsguisp, [0l cmwu:wwtﬂm%_._mum o
sjaned o
13]1D83U0AS| L.0] 1aBa3uiB1g3 : akinss I, sinIaSUeluE|ny [0l
Buwysy - wist &
DR3UoAS) B
siasuenuns gl
Aejoueuejexed

BuLAST : BWERRE o
Burnsy :13ed o
Buwysy - wist 5

usjuasags| Lol

90

sspruespserwoddy = Bulsy : jaedeue
TNssa B ABY =
A5l =
Buins3 : BWENDE o iSRS 5
As) = idisinieg @ dy L
Buinsa : ewepze o Buins : wist .,
Bupisy : wis) &
siiss {
ugjuasajigey Lol fejo g
0 SoEE] —
Aejoueueiexed ol ,,.Fc”“:m,
usjuasajglezniery o] spniasuEINUNS 0] SSE|D -
SinIBSUBJIUEfNY 0] e
13)1003UsAEY [0l 1GlLeA &
A ULAST © BLUBRIZE o
burns3 :13ved o
b Buigsy @ BWERDE o ieboyu)Bigy : akines
4 mmr__hmu i38ged o Buwgsy : wist
ULLST | BLERIDE = S R -, ULST @ wis) & Za -
Baner i ZnAEyIDn; [~ S B pRauakel H idex -
B 3 ! (i
Bunsa - wiist & idiinsodsqusn 5
Reyzndery B

mAeie .~

APPENDIX B

GMF TOOLING WORKFLOW

B.1 Creating GMF Project

We create a new project to hold our models by clicking on the File menu of Eclipse
and selecting “New — Other — Graphical editor project”. We give the project
the name “com.aselsan.dss.dssml” and click “Show dashboard view for the created

project”.

GMF has a utility called the GMF dashboard that facilitates the process of generating
a graphical modeling editor. Figure [B.1|shows the overwiew of GMF Dashboard.

&8 Graphical Def Model
. ot specifieds

Select/ Edit/ Create

#] Domain Model _ |8 Mapping Model
: ll <notspecified> | :: 3 not specifieds

Select/Edit/Create Select/Edit/ Create

" RCP
| Transform

B Demain Gen Model
nat specified: .

Select/Edit/Reload Select/Edit /Create Select/Edit/ Create
: : Generate diagram editor

Tooling Def Model & Diagram Editor Gen Model
<ot specifieds oecifieds

cl

Figure B.1: GMF Dashboard

91

B.2 Developing Domain Model

DSS-RSA metamodel is copied in model folder of the project and selected by clicking
“Select” option of Domain Model on GMF Dashboard.

After Domain Model is selected, we click “Derive” between Domain Model and Do-
main Gen Model on GMF Dashboard and then, a wizard to create Gen Model is
opened. We give the Gen Model the name “metamodel.genmodel” and use the de-
faults of the wizard. Gen Model creation wizard can also be opened without us-
ing GMF Dashboard by right-clicking the metamodel file and selecting “New —
Other — EMF Generator Model”.

After Gen Model is created, Metamodel package below the root of the Gen Model
is selected and by using the properties view, Base Package property is changed to
“com.aselsan.dss.dssml”. The root of the Gen Model is right-clicked and Generate
Model Code followed by Generate Edit Code is selected. The overwiew of the project

after Domain Gen Model is created is shown in Figure [B.2

B.3 Developing Graphical Definition Model

To develop Graphical Definition Model, we click “Derive” between Domain Model
and Graphical Def Model on GMF Dashboard. Then, a wizard to create Graphical
Definition Model is opened. Graphical Definition Model creation wizard can also
be opened without using GMF Dashboard by right-clicking the model folder and
selecting “New — Other — GM FGraph Model”. We give the Graphical Defini-
tion Model the name “metamodel.gmfgraph” and after loading metamodel we choose
“DSSML” diagram element as root element. Domain Model view of Graphical Defi-

nition Model creation wizard is shown in Figure (B.3

After clicking Next button in Figure B.3] we specify basic graphical definition of the
Domain Model as shown in Figure Figure[B.5]and Figure After clicking the
Finish button in Figure Graphical Definition Model is created.

To color figures in graphical modeling editor, created Graphical Definition Model is

92

File Edit MNavigate Search Project Generator Run Window Help

:l-j"-:;..‘-‘:%qvéi-:ﬂ:@ng'vg.' - " 5w B ow
& Model Explorer = E% T = B ® metamodelgenmodel 5
|type filter text | ~ 2 Metamodel
~ 1 com.aselsan.dss.dssml ~ [EMemmode:
— - B DSSML
» mA JRE System Library [JavaSE-1.] ' g :SEC_’I”E“C_'
> ®. Plug-in Dependencies) — esen_l .
y = META-INE » H KaYonetici
- ; s > H KaBileseni
#| metamodel.ecare : s Sra_yuzKay
[metamodel.genmodel i c OT"
s build.properties d a;{
P ; - + H Servis
= plugin.properties ;
& pluginxmi » H VeriDeposu
s 1 com.aselsan.dss.dssml.edit = Ven'l_'lp!)
= ServisTipi

i

VeriDeposuTipi

[Properties £ *. Problems @ GV

Property Value
~ All
Base Package '= com.aselsan.dss.dssmi
Prefix '= Metamodel
~ Ecore
. Package ¥ metamodel

Figure B.2: Overview of the project after Domain Gen Model is created

2 New | *

Domain Model

Select file with ecore domain model. 240
Model URL: Browse File System... Browse Workspace...| | Find In Workspace...
|pIatform:/resource/com.aselsan.dss.dssmI/model/metamodel.ecore | Load

Diagram Element:

ArayuzKay ~
IsBileseni

IsYonetici

KaBileseni

KaYonetici

Olay

W
Cmmsie

@ < Back Next = Cancel

Figure B.3: Graphical Definition Model creation wizard: select Domain Model

opened and under each Figure Descriptor’s Rectangle element, Background Color

RGB Color is added as a child element. By using properties view blue, green and red

93

S New O *

Graphical Definition

Specify basic graphical definition of the domain model. L

Domain model elements to process:

Element ® 7 A " Deselect All
~ H DSSML L
7 anaPaket : EString L Defaults

&% ArayuzKayBilesenleri : ArayuzKay
&% KaBilesenleri : KaBileseni
5% IsBilesenleri : IsBileseni
&% Veriler : Veri
&% Olaylar ; Olay
&% Servisler : Servis O
&% KaYoneticiler : KaYonetici
&% IsYoneticiler : IsYonetici
&% VeriDepolari : VeriDeposu

~ H IsYonetici M C
T isim : EString
T seviye : EBigInteger
= paket: EString
= aciklama : EString
&% sunulanServis : Servis

AR R K

&% kullanilanServis : Servis

&% yakalananQlay : Olay

& aboneVd : VeriDeposu
~ [IsBileseni

% isim : EString

= paket : EString 5

= aciklama : EString M

IRERR

l?f‘ < Back Mext > Cancel

Figure B.4: Graphical Definition Model creation wizard: specify basic graphical def-

inition of the Domain Model Part 1

values of Background Color RGB Color are set as shown in Figure B.7]

B.4 Developing Tooling Definition Model

To develop Tooling Definition Model, we click “Derive” between Domain Model
and Tooling Def Model on GMF Dashboard. Then, a wizard to create Tooling Def-
inition Model is opened. Tooling Definition Model creation wizard can also be
opened without using GMF Dashboard by right-clicking the model folder and select-
ing “New — Other — GM FTool Model”. We give the Tooling Definition Model
the name “metamodel.gmftool” and after loading metamodel we choose “DSSML”
diagram element as root element. Domain Model view of Tooling Definition Model

creation wizard is shown in Figure [B.8]
After clicking Next button in Figure we specify basic tooling definition of the

94

S New (] x
Graphical Definition
Specify basic graphical definition of the domain model. s
Domain model elements to process:
Element B 7R ™ Deselect Al
~ H KaYonetici 20
< isim : EString %) Defaults
T seviye : EBiginteger %]
= paket: EString %)
= acikiama : EString 5]
3 ka: KaBileseni =]
3 arayuz : ArayuzKay =
&2 sunulanServis : Servis 5]
&% kullanilanServis : Servis =
52 yakalananOlay : Olay 7]
£ aboneVd : VeriDeposu =
~ H KaBileseni [u}
T isim: EString %]
= paket: EString %l
= aciklama : EString]
* yoneticiArayuz : ArayuzKay =
~ B ArayuzKay [z
T isim : EString %)
= paket : EString %]
= aciklama : EString %}
~ B Veri 20
T isim : EString M
T tip: VeriTipi]
= paket : EString %]
= aciklama : EString B
@ < Baek Next > Cancel

Figure B.5: Graphical Definition Model creation wizard: specify basic graphical def-

inition of the Domain Model Part 2

S New O X

Graphical Definition

Specify basic graphical definition of the domain model. L

Domain model elements to process:

Element = A A Deselect All
v H Olay = O
T isim : EString %] Defaults
= aciklama : EString =]
~ B Servis MO
T isim : EString %}
T tip: ServisTipi =
= aciklama : EString %]
~ B VeriDeposu MO
% isim : EString %]
T tip: VeriDeposuTipi %]
= aciklama : EString =]
 veril : Veri %]
= yeri2 : Veri]

®

< Back Next > Cancel

Figure B.6: Graphical Definition Model creation wizard: specify basic graphical def-

inition of the Domain Model Part 3

95

v L e
& Model Explorer =g

File Edit Mavigate Search Project GMFGraph Editor

BS P viklv i

Run Window Help

a wipow

¥ = B | @ metamodelgmfgraph i

|type filter text

| [Resource Set

~ L com.aselsan.dss.dssml

= src

&\ Plug-in Dependencies
&= META-INF
~ (= model
#] metamodel.ecore
[& metamodel.genmodel
& metamodel.gmfgraph
jo¢ build.properties
= plugin.properties
4 pluginxml
2 com.aselsan.dss.dssml.edit

B JRE System Library [lavaSE-

~ < Figure Descriptor IsYoneticiFigure
~ 4 Rectangle IsYoneticiFigure

1.8 < Flow Layout false

4 Background: {84,178,249]
4 Label IsYoneticilsimFigure
4 Label IsYoneticiSeviyeFigure
4 Label IsYoneticiPaketFigure
4 Label IsYoneticiAciklamaFigure
4 Child Access getFigurelsYoneticilsimFigure
<+ Child Access getFigurelsYoneticiSeviyeFigure
< Child Access getFigurelsYoneticiPaketFigure
4 Child Access getFigurelsYoneticiAciklamaFigure
» < Figure Descriptor IsYoneticiSunulanServisFigure
< Figure Descriptor IsYoneticikKullanilanServisFigure
< Figure Descriptor IsYoneticiYakalananOlayFigure
4 Figure Descriptor IsYoneticiAboneVdFigure
4 Figure Descriptaor IsBileseniFigure
+ Figure Descriptor KaYoneticiFigure
<+ Figure Descriptor KaYoneticiKaFigure
<+ Figure Descriptor KaYoneticiArayuzFigure
» < Figure Descriptor KaYoneticiSunulanServisFigure
< Figure Descriptor KaYoneticiKullanilanServisFigure
< Figure Descriptor KaYoneticiYakalananOlayFigure

I Properties & ms @& GMFD

Property Value
Blue 249
Green Ci 179
Red iy 84

Figure B.7: Setting RGB colors of Figures in Graphical Definition Model by using

properties view

Domain Model as shown in Figure [B.9] After clicking the Finish button in Figure
[B.9] Tooling Definition Model is created.

To edit Tool Groups, created Tooling Definition Model is opened and existing Tool
Group title is updated as “DSS RSA Elemanlar1” by using properties view. A new
Tool Group is added and title of this Tool Group is set as “Baglantilar”. Then, Cre-
ation Tools that correspond to the relations of DSS RSA are moved under “Baglan-

tilar” Tool Group. Overview of the Tooling Definition Model after Tool Groups are

updated is shown in Figure

96

S New [m| X

Domain Model

Select file with ecore domain model. SRy

Model URI: Browse File System...| | Browse Workspace... | Find In Workspace...

‘ platform/resource/com.aselsan.dss.dssmil/model/metamodel.ecore | Load

Diagram Element:

ArayuzKay ~
IsBileseni

IsYonetici

KaBileseni

KaYonetici

Olay

v
Candic

'f?} < Back Next > Cancel

Figure B.8: Tooling Definition Model creation wizard: select Domain Model

B.5 Developing Mapping Model

To develop Mapping Model, we click “Combine” between Domain Model, Graphical
Def Model, Tooling Def Model and Mapping Model on GMF Dashboard. Then, a
wizard to create Mapping Model is opened. Mapping Model creation wizard can
also be opened without using GMF Dashboard by right-clicking the model folder and
selecting “New — Other — GMF Map Model”. We give the Mapping Model the
name “metamodel.gmfmap” and after loading Domain Model we choose “DSSML”
diagram element for canvas mapping. Select Domain Model view of Mapping Model

creation wizard is shown in Figure

After clicking the next button in Figure we load Tooling Definition Model and
select diagram palette for canvas mapping as shown in Figure[B.12] After clicking the
next button in Figure [B.12] we load Graphical Definition Model and select diagram
canvas for canvas mapping as shown in Figure[B.13] After clicking the next button in
Figure[B.13] we map Domain Model elements as Nodes and Links as shown in Figure
B.14] After clicking the Finish button in Figure [B.14] Mapping Model is created.
Node and Link Mappings of Mapping Model is shown in Figure [B.T5] Diagram

Nodes and Tools can be updated by using properties view.

97

£ New [m] X

Tooling Definition ‘O’

Specify basic tooling definition of the domain model.

Domain model elements to process:

Element il Deselect All
~ H DSSML

£% ArayuzKayBilesenleri : ArayuzKay [Defaults
52 KaBilesenleri : KaBileseni]
5% IsBilesenleri : IsBileseni
53 Veriler : Veri
£2 Olaylar : Olay
5% Servisler : Servis
£% KaYoneticiler : KaYonetici
5% IsYoneticiler : IsYonetici
5% VeriDepolari : VeriDeposu
5 IsYonetici 1]

<

£% sunulanServis : Servis 5]
5% kullanilanServis : Servis %
5% yakalananOlay : Olay 7
5% aboneVd : VeriDeposu M
H IsBileseni @0
~+ [KaYonetici 1]
% ka : KaBileseni =
3 arayuz : ArayuzKay =]
£% sunulanServis : Servis 5]
5% kullanilanServis : Servis %
5% yakalananOlay : Olay 7
5% aboneVd : VeriDeposu M
~ E KaBileseni |
T yoneticiArayuz : ArayuzKay]
E ArayuzKay [
B Veri
B Olay
H Servis
~ B VeriDeposu
5 veril : Veri =}
= veri2 : Veri v
‘-?:' Next > Finish Cancel

Figure B.9: Tooling Definition Model creation wizard: specify basic tooling defini-

tion of the Domain Model

B.6 Creating Generator Model and Diagram Plug-in

To create Generator Model, we click “Transform” between Mapping Model and Di-
agram Editor Gen Model on GMF Dashboard. Then, Generator Model is created
easily under model folder with the name “metamodel.gmfgen”. Generator Model can
also be created without using GMF Dashboard by right-clicking Mapping Model and
selecting Create Generator Model. After giving the name “metamodel.gmfgen” to
Generator Model, Mapping Model is loaded as shown in Figure[B.16] After clicking
the Next button in Figure [B.16] GenModel is loaded as shown in Figure [B.17] After
clicking the Next button in Figure transformation options are specified as shown

98

File Edit MNavigate Search Project GMFTool Editor Run Window Help

e S ELrO e EE Pl i o v

& Model Explorer 52 5% T 3 P metamodelgmftool 2

|Type filter text ‘ [Resource Set

+ 12 com.aselsan.dss.dssml v & platform:/resource/com.aselsan.dss.dssmi/model/metamodel.gmftool
8 src ~ <4 Tool Registry
> = JRE System Library [JavaSE-1.8] ~ @ Palette metamodelPalette

=\ Plug-in Dependencies ~ 4 Tool Group DSS RSA Elemanlan
&= META-INF 4 Creation Tool IsYonetici

~ (= model < Creation Tool IsBileseni

&) metamodel.ecore > 4 Creation Tool KaYonetici
[E metamodel.genmodel
& metamodel.gmfgraph
metamodel.gmftool
ué build.properties
|2 plugin.properties
4+ pluginxml
2 com.aselsan.dss.dssml.edit

> 4 Creation Tool KaBileseni
4 Creation Tool ArayuzKay
4 Creation Tool Veri
4 Creation Tool Olay
4 Creation Tool Servis
4 Creation Tool VeriDeposu

~ 4 Tool Group Baglantilar

> 4 Creation Tool IsYoneticiKullanilanServis

> 4 Creation Tool IsYoneticiYakalananOlay
4 Creation Tool IsYoneticiSunulanServis
4 Creation Tool IsYoneticiAboneVd
4 Creation Tool KaYoneticiKullanilanServis
4 Creation Tool KaYoneticiKa
4 Creation Tool KaYoneticiSunulanServis
4 Creation Tool KaYoneticiArayuz

> 4 Creation Tool KaYoneticiAboneVd

> 4 Creation Tool VeriDeposuVeri2
4 Creation Tool VeriDeposuVeri1
4 Creation Tool KaBileseniYoneticiArayuz
4 Creation Tool KaYoneticiYakalananOlay

= Properties & . Problems @ GMF Dashboard
Property Value

Active

Collapsible " true

Description L=

Stack M false

Title "= DSS RSA Elemanlan

Figure B.10: Updating Tool Groups in Tooling Definition Model by using properties

view

in Figure [B.I8] After clicking the Finish button in Figure [B.18] Generator Model is

created.

To use defined OCL constraints in Ecore Model in order to validate the created model,
the Generator Model is opened and “Gen Diagram DSSMLEditPart” is clicked. By
using the properties view, “Validation Decorators” and “Validation Enabled” values

are changed to “true” as shown in Figure [B.19]
To generate diagram code, Generator Model is right-clicked and Generate Diagram

99

& Create GMFMap model

Select Domain Model

Load domain model and select element for canvas mapping.

Model URL: Browse File System... Browse Workspace... | Find In Workspace...

platform:/resource/com.aselsan.dss.dssml/model/metamodel.ecore Load

+ Use one of the predefined models:
Package: metamodel

Class:

ArayuzKay ~
DSSML

IsBileseni
IsYonetici
KaBileseni
KaYonetici

Figure B.11: Mapping Model creation wizard: load Domain Model and select ele-

ment for canvas mapping

& Create GMFMap model

Select Diagram Palette

Load tooling definition model and select diagram palette for canvas mapping.

Model URL: Browse File System... Browse Workspace... | Find In Workspace...

| platform:/resource/com.aselsan.dss.dssml/model/metamodel.gmftool Load

Diagram Palette: | metamodelPalette

w

[] Create new model

® < Back Next = | Finish | Cancel

Figure B.12: Mapping Model creation wizard: load Tooling Definition Model and

select diagram palette for canvas mapping

Code is selected. Generated diagram project is right-clicked and run as an Eclipse

Application. After the application is launched, a new Java Project is created and a

100

& Create GMFMap model [m| X
Select Diagram Canvas
Load graphical definition model and select diagram canvas for canvas mapping.
Model URL: Browse File System...| | Browse Workspace... | Find In Workspace...
platform/resource/com.aselsan.dss.dssml/model/metamodel.gmfgraph Load
» Use one of the predefined models:
Diagram Canvas: metamodel e
@' < Back Next > | Finish | Cancel

Figure B.13: Mapping Model creation wizard: load Graphical Definition Model and

select diagram canvas for canvas mapping

& Create GMFMap model O x

Mapping

Map domain model elements

Nodes forTi e Links
Olay (Olay; Olaylar) ~ yoneticiArayuz : ArayuzKay (KaBileseniYoneticiArayuz; - ~
Servis (Servis; Servisler) As link > sunulanServis : Servis (KaYoneticika; <unspecified>)
KaBileseni (KaBileseni; KaBilesenleri) sunulanServis : Servis (IsYoneticiSunulanServis; <unspec
ArayuzKay (ArayuzKay; ArayuzKayBilesenleri) Remave yakalananOlay : Olay (IsYoneticiSunulanServis; <unspec
KaYonetici (KaYonetici; KaYoneticiler) aboneVd : VeriDeposu (KaYoneticiKa; <unspecified>)
Veri (Veri; Veriler) e Restore... ka : KaBileseni (KaYoneticika: <unspecified>) e

Structure Edit

Element: IsYonetici

Containment: IsYoneticiler

Target Feature: Change..

Visual Constraints.

Diagram Element: IsYonetici Specialization:

Initializer:

@' < Back Next > Cancel

Figure B.14: Mapping Model creation wizard: map Domain Model elements

new ‘“Metamodel Diagram” is added to the Java Project. GMF Diagram Editor is

ready now to create a model as shown in Figure |B.20)

101

File Edit Navigate Search Project GMFMap Editor Run Window Help

Il BB CEBS S B Gy
& Model Explorer 2 2% =0 &4 metamodel.gmimap &
‘typgs filter text | [y Resource Set
~ & com.aselsan.dss.dssml - ¥ platform:/resource/com.aselsan.dss.dssml/model/metamodel.gmfmap
i 2 src ~ % Mapping
=\ JRE System Librai y ~ ¥ Top Node Reference <Olaylar:Olay/Olay>
=\ Plug-in Dependencies O Node Mapping <Olay/Olay>
= META-INF ¥ Top Node Reference <Servisler:Servis/Servis>
e L7 model B Top Node Reference <KaBilesenleri:KaBileseni/KaBileseni=>
#] metamodel.ecore B Top Node Reference <ArayuzKayBilesenleri:ArayuzKay/ArayuzKay >
[@ metamodel.genmodel ¥ Top Node Reference <KaYoneticiler:KaYonetici/KaYonetici>
&1 metamodel.gmfgraph B Top Node Reference <Veriler:Veri/Veri>
&4 metamodel.gmfmap ¥ Top Node Reference <IsBilesenleri:lsBileseni/IsBileseni>
2 metamodel.gmftool ¥ Top Node Reference <VeriDepolari:VeriDeposu/VeriDeposu:
& build.properties B Top Node Reference <IsYoneticilerIsYonetici/lsYoneticiz

Link Mapping <{KaBileseni.yoneticiArayuzArayuzKayl/KaBileseniYoneticiArayuz>
Link Mapping <{KaYonetici.sunulanServis:Servis}/KaYoneticiKa>
Link Mapping <{lsYonetici.sunulanServis:Servis}/IsYoneticiSunulanServis=
Link Mapping <{IsYonetici.yakalananOlay:Olay}/IsYoneticiSunulanServis >
Link Mapping <{KaYonetici.aboneVd:VeriDeposu}/KaYoneticiKa:>
Link Mapping <{KaYonetici.ka:KaBileseni}/KaYoneticiKa>
Link Mapping <{KaYonetici.arayuz:ArayuzKay}/KaYoneticiKa>

{

{

{

{

{

{

lugin.properties
42 pluginxml
i com.aselsan.dss.dssml.edit

Link Mapping <{lsYoneticikullanilanServis:Servis}/IsYoneticiSunulanServis:
Link Mapping <{KaYonetici.kullanilanServis:Servis}/KaYoneticiKa>

Link Mapping <{lsYonetici.aboneVd:VeriDeposu}/IsYoneticiSunulanServis>
Link Mapping <{VeriDeposu.veri1:Veri}/VeriDeposuVeri1x>

Link Mapping <{VeriDeposu.veri2:Veri}/VeriDeposuVeri1>

Link Mapping <{KaYonetici.yakalananOlay:Olay}/KaYoneticiKa>

El Canvas Mapping

S S A A A A A A A A A

S

[Properties 3 Problems & GMFC
Property Value
~ Domain meta informatic
Element 5 Olay
Misc

~ Visual representation
Appearance Style

Context Menu
Diagram Node “+ Node Olay (OlayFigure)
< > Tool <+ Creation Tool Olay

Figure B.15: Mapping Model

& Create generator model O X

Select Mapping Model
Load Mapping Model

Model URI: Browse File System...| Browse Workspace...| Find In Workspace...

platform:/resource/com.aselsan.dss.dssml/model/metamodel.gmfmap Load

< Back Next > Cancel

Figure B.16: Generator Model creation wizard: load Mapping Model

102

& Create generator model O X

Select GenModel

Load GenModel or create new one

Model URI: Browse File System... Browse Workspace.. Find In Workspace...
platform:/resource/com.aselsan.dss.dssml/model/metamodel.genmodel Load
New EMF Model ... Default GenModel...

Refresh stale GenModel...

@ < Back Next > | Finish | Cancel

Figure B.17: Generator Model creation wizard: load GenModel

& Create generator model O x

Specify transformation options

Specify transformation options

Use IMapMode
Utilize enhanced features of GMF runtime
[[] Generate RCP Application
[]Use Modeled Viewmap
Provisional

<«

GMFGraph dynamic templates

Map to Gen transformation

@ L sBadc | ex: Cancel

Figure B.18: Generator Model creation wizard: specify transformation options

103

File Edit Navigate Search Project GMFGen Editor Run Window Help

My PR R CIEBS ity I vt Oy
. Model Explorer 2 BES v=0 g & metamodelgmfgen

‘type filter text | [Resource Set

~ @ platform:/resource/com.aselsan.dss.dssml/model/metamodel.gmfgen
~ 4 Gen Editor Generator com.aselsan.dss.dssml.metamodel.diagram

v 1= com.aselsan.dss.dssml

(# src

B JRE System Library [JavaSE-1.8] < Gen Diagram DSSMLEditPart

B4 Plug-in Dependencies 4 Gen Plugin Metamodel Plugin
s £ META-INF 4 Gen Editor View com.aselsan.dss.dssml.metamodel.diagram.part
« = model 4 Gen Navigator MetamodelNavigatorContentProvider

< Gen Diagram Updater MetamodelDiagramUpdater
4 Property Sheet com.aselsan.dss.dssml.metamodel.diagram.sheet
4 Gen Parsers MetamodelParserProvider
4 Context Menu
2] platform:/resource/com.aselsan.dss.dssml/model/metamodel.genmode!

[8 metamodel.ecore

[& metamodel.genmodel
& metamodel.gmfgen
& metamodel.gmfgraph
&3 metamodel.gmfmap
metamodel.gmftool
metamodel.trace

lmé build.properties
plugin.properties
pluginxml [T Properties ¢ |'f Problems @ GMF Dashboard
= com.aselsan.dss.dssml.edit

&) platform:/resource/com.aselsan.dss.dssml/model/metamadel.ecore
[& platform:/plugin/org.eclipse.gmf.runtime.notation/model/natation.genmodel
&) platform:/plugin/org.eclipse.gmfruntime.notation/model/notation.ecore

Property Value
Validation Decorators “rue
Validation Enabled A true

Figure B.19: Activating OCL constraints on Generator Model

File Edit Diagram Navigate Search Project Run Window Help
g HvO QU OB O EBOS P il vl v < v {Tahoma 9 i vhv iy v |BiveRyee|n| = v || 100%

1% Package Explorer 22 = B @ dssml.metamodel_diagram &

+ & DSSML Model Ao

@ src (& DSS RSA Elemanlar
> B JRE System Library [J2 8

* IsYonetici
5 dssmlmetamodel
i dssml.metamodel_diagram ¥ IsBileseni
+ KaYonetici
* KaBileseni

+ ArayuzKay
+ Veri
+ Olay
+ Servis
4 VeriDeposu

= Baglantilar
IsYoneticiKullanilanServis
“ IsYoneticiVakalananOlay
IsYoneticiSunulanServis
IsYoneticiAboneVd
KaYoneticiKullanilanServis
+ Kaoneticika
KaYoneticiSunulanServis
+ KaYoneticiArayuz
+ KaYoneticiAboneVd
4 VeriDeposuVeri2
+ VeriDeposuVeril
+ KaBileseniYoneticiArayuz
KaYoneticiYakalananOlay

Problen va Jeclaration [Properties 5%
+ Undefined
Core Property Value
Rulers&Grig | Am@Paket “1rcomaselsandss

Figure B.20: GMF Diagram Editor

104

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	Motivation
	Contributions
	Thesis Organization

	RELATED WORK
	Model Driven Engineering
	Correspondence between Reference Architectures and Metamodels
	Reference Architecture Metamodeling

	DSS REFERENCE SOFTWARE ARCHITECTURE AND SOFTWARE FRAMEWORK GENERATOR
	DSS Reference Software Architecture
	Software Development Rules According to DSS Reference Software Architecture
	Manager Concept
	Data Store Concept
	Communication Mechanism Between Managers
	Communication Mechanism Between Components

	DSS Software Development Framework Generator

	METAMODEL FOR DSS REFERENCE SOFTWARE ARCHITECTURE
	Metamodeling Concept
	Metamodeling Language Concept
	DSS-RSA Metamodel
	Mapping from DSS-RSA to Metamodel

	STATIC SEMANTIC RULE DEFINITION WITH OCL
	OCLinEcore Editor
	OCL Naming Constraints
	OCL Cardinality Constraints
	OCL Element Usage Constraints
	OCL Servis Element Usage Constraints
	OCL IsYonetici Element Constraints
	OCL IsBileseni Element Constraints
	OCL KaYonetici Element Constraints
	OCL KaBileseni Element Constraints
	OCL ArayuzKay Element Constraints
	OCL Olay Element Constraints
	OCL Servis Element Constraints
	OCL VeriDeposu Element Constraints

	CONCRETE SYNTAX DEFINITION
	GMF Domain Model
	EMF Generator Model
	GMF Graphical Definition Model
	GMF Tooling Definition Model
	GMF Mapping Model
	GMF Generator Model

	CODE GENERATION
	Creating Xpand Project
	Code Generator for ArayuzKay Elements
	Code Generator for KaYonetici Elements
	Code Generator for KaBileseni Elements
	Code Generator for IsYonetici Elements
	Code Generator for IsBileseni Elements
	Code Generator for Veri Elements
	Code Generator for Olay Elements
	Code Generator for Servis Elements

	CASE STUDY AND EVALUATION
	Case Study: Acoustic Modem Application Software

	CONCLUSION
	REFERENCES
	Developing Domain Model as EMF Ecore Model
	Creating EMF Project

	GMF Tooling Workflow
	Creating GMF Project
	Developing Domain Model
	Developing Graphical Definition Model
	Developing Tooling Definition Model
	Developing Mapping Model
	Creating Generator Model and Diagram Plug-in

