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ABSTRACT

MODULAR EXPONENTIATION METHODS IN CRYPTOGRAPHY

Yünüak, Hasan Bartu
M.S., Department of Cryptography

Supervisor : Assoc. Prof. Dr. Murat Cenk

September 2017, 51 pages

Modular exponentiation has an important role in many cryptographic algorithms. These
exponentiation methods differ in the bases used and their representations, the repeat-
ing aspect, and for which algorithms they are used for: fixed or variable base. Our
research aims to compare the efficiencies and implementation timings for some se-
lected algorithms. Also, we look at the options for using a dedicated cubing algorithm,
and compare them with the current algorithms.

Keywords : Modular exponentiation, big integer implementations, cubing, fixed expo-
nent, variable exponent
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ÖZ

KRİPTOGRAFİDE MODÜLER ÜS ALMA YÖNTEMLERİ

Yünüak, Hasan Bartu
Yüksek Lisans, Kriptografi Bölümü

Tez Yöneticisi : Doç. Dr. Murat Cenk

Eylül 2017, 51 sayfa

Modüler üs alma, kriptografik algoritmalar için büyük önem taşır. Üs alma metot-
larının kullanılan taban ve gösterim şekilleri, tekrarlı üst alımlarda kullanılan yöntemler,
sabit ve değişken üs gerektiren algoritmalarda kullanılmaları gibi farkları vardır. Araş-
tırmamız bazı seçtiğimiz üs alma algoritmalarının gerçekleştirme zamanlamalarını ve
verimliliklerini karşılaştırmayı amaçlar. Ayrıca, özelleşmiş küp alma yöntemlerinin
kullanılabilirliğini ve seçeneklerini araştırıp şu anda kullanılan algoritmalarla karşılaş-
tırmaları yapılmıştır.

Anahtar Kelimeler : Modüler üs alma, büyük sayı gerçekleştirmeleri, küp alma, sabit
üs, değişken üs
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ÖZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii

CHAPTERS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 PRELIMINARIES . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 RSA Cryptosystem . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 RSA Scheme . . . . . . . . . . . . . . . . . . . . 3

2.2 Elliptic Curve Cryptography . . . . . . . . . . . . . . . . . . 4

2.2.1 Elliptic Curve ElGamal Cryptosystem . . . . . . . 6

2.3 Algorithm Complexity and The Big-O Notation . . . . . . . 6

2.4 Modular Reduction . . . . . . . . . . . . . . . . . . . . . . 7

2.4.1 Barret Reduction . . . . . . . . . . . . . . . . . . 7

2.4.2 Montogmery Reduction . . . . . . . . . . . . . . . 8

xv



3 MULTIPLICATION ALGORITHMS . . . . . . . . . . . . . . . . . 11

3.1 Schoolbook Algorithm . . . . . . . . . . . . . . . . . . . . . 11

3.2 Karatsuba Algorithm . . . . . . . . . . . . . . . . . . . . . 13

3.3 Toom-Cook Algorithms . . . . . . . . . . . . . . . . . . . . 15

3.3.1 Toom-2 . . . . . . . . . . . . . . . . . . . . . . . 15

3.3.2 Toom-3 . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.3 Unbalanced Toom-3 . . . . . . . . . . . . . . . . 17

4 POWERS 2 AND 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1 Squaring Using Multiplication Methods . . . . . . . . . . . 21

4.1.1 Schoolbook Squaring . . . . . . . . . . . . . . . . 21

4.1.2 Karatsuba Squaring . . . . . . . . . . . . . . . . . 22

4.2 Asymmetric Squaring . . . . . . . . . . . . . . . . . . . . . 22

4.3 Classical Cubing Method . . . . . . . . . . . . . . . . . . . 24

4.4 Zanoni’s Cubing Algorithm . . . . . . . . . . . . . . . . . . 24

4.4.1 Modular Approach . . . . . . . . . . . . . . . . . 26

5 REPRESENTATIONS OF EXPONENTS AND EXPONENTIATION
ALGORITHMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.1 Schoolbook Exponentiation . . . . . . . . . . . . . . . . . . 29

5.2 Base-w Representation . . . . . . . . . . . . . . . . . . . . 29

5.2.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . 30

5.2.2 Binary Representation and Repeated Squaring Method 31

5.2.3 Ternary Representation and Repeated Cubing Method 32

5.2.4 Window Methods . . . . . . . . . . . . . . . . . . 33

xvi



5.2.5 Constant Length Nonzero Windows . . . . . . . . 34

5.2.6 Variable Length Nonzero Windows . . . . . . . . 35

5.3 Non Adjacent Form . . . . . . . . . . . . . . . . . . . . . . 36

5.4 Hybrid Binary-Ternary Number System . . . . . . . . . . . 37

5.4.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . 38

5.4.2 Exponentiation Using HBTNS . . . . . . . . . . . 39

5.5 Addition Chains . . . . . . . . . . . . . . . . . . . . . . . . 40

5.6 Double-Base Representation . . . . . . . . . . . . . . . . . 42

5.6.1 Tree Method . . . . . . . . . . . . . . . . . . . . 43

5.6.2 DAG Method . . . . . . . . . . . . . . . . . . . . 44

5.7 Implementation Results and Comparisons . . . . . . . . . . 45

6 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

xvii



xviii



LIST OF FIGURES

Figure 3.1 The cost of schoolbook algorithm . . . . . . . . . . . . . . . . . . 12

Figure 3.2 The cost of Karatsuba algorithm . . . . . . . . . . . . . . . . . . . 14

Figure 5.1 Tree graph for g19 . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Figure 5.2 DAG for g19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

xix



xx



LIST OF TABLES

Table 2.1 Complexity Scales . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Table 4.1 Time comparisons of two cubing algorithms . . . . . . . . . . . . . 25

Table 4.2 Time comparisons of gmp library’s reduction function for different
bit-sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Table 4.3 Time comparisons of two modular cubing algorithms . . . . . . . . 27

Table 5.1 Time comparisons for repeated squaring, cubing and hbtns exponen-
tiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Table 5.2 Time comparisons for repeated cubing and hbtns exponentiation us-
ing modular Zanoni’s cubing method. . . . . . . . . . . . . . . . . . . . . 46

xxi



xxii



LIST OF ABBREVIATIONS

ABBRV Abbreviation

R Real Numbers

Z Integers

kB k-many bit shifts

xxiii



xxiv



CHAPTER 1

INTRODUCTION

Cryptography has an important role in the world. Especially after both world wars, the
importance of information security became undenaibly apparent. Today, with many
devices connecting to internet, online shopping, banking, communication, and other
transmissions over unsecure channels, cryptography only grows more essential. In an-
cient times, obscuring the information is done via basic systems such as Caesar Cipher
[28]. Later during the world wars, mechanical cryptosystems one of which is Enigma
[36] is used. With the advances in computation power in the recent years, most crypto-
graphic algorithms use computers and related technologies for secure transmission of
information.

Today, instead of simple systems, two major methods are used for cryptography: Sym-
metric and Public Key Cryptography. Symmetric Key systems use the same key for
encryption and decryption, or a key that is easily obtainable from the other. These
systems are usually very fast, like AES [11] or now depreciated [3] DES [30] are two
examples. The problem with these kind of systems is that the key exchange between
the two parties has to be done over a secure channel, and it is hard to do so [30]. On
the other hand, public key systems use a different key for encrypition and decryption,
named public and private keys. These keys cannot be obtained from one another easily.
Public keys are, following their name, are public. This solves the key exchange prob-
lem. However, these systems tend to be slower than Symmetric Key systems. RSA
and ElGamal cryptosystems are two examples of Public Key cryptosystems.

The low speed of Public Key systems is because of the costly operations in computing
the keys, encryption, decryption and other levels of the cryptosystem. For example,
RSA uses modular exponentiation [11] with very big numbers. Modular exponenti-
ation is already a slow operation and with the increasing speed of computation we
use even larger numbers to be secure against cryptoanalysis [35]. Hence for RSA
and other cryptosystems that use similar operations, modular exponentiation has to be
studied and improved.

In this thesis, we study modular exponentiation for cryptography. We look at the the
exponentiation methods and their use in variable or fixed exponents. Our research
is on general algorithms but we also specifically investigate cubing algorithms. In
Chapter 2, we introduce some public key cryptography algorithms, cost computation
and reduction algorithms as preliminary information. In Chapter 3, we study some
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multiplication algorithms that are generally used for exponentiation. In Chapter 4,
we investigate both the squaring and cubing methods. Our main endeavour in this
section is analyzing Zanoni’s cubing algorithm [6] for integers as a modular cubing
algorithm. In Chapter 5 we research the repeated use of all these methods for large
integer exponentiation. Many algorithms are studied, and their costs compared. We
also implemented these algorithms. Implementation results for the ones that showed
promise with cubing in theory for variable exponents are given at the end. For fixed
exponents, we only give the recent results and their complexities. In Chapter 6, we
give the conclusion of the thesis and a note about future work.
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CHAPTER 2

PRELIMINARIES

In this chapter we present some basic information about public key cryptosystems.
As mentioned before, exponentiation is a main operation on these systems. Then we
continue with an introduction to elliptic curve cryptography. The operations used on
elliptic curves are closely related to exponentiation. After introducing elliptic curves,
we give the definition of big-O notation and its use in complexity computations. We
use this notation throughout the thesis. At the end we give two useful reduction algo-
rithms since modular reduction is of interest to us, the exponentiations used in public
key cryptography are usually modular.

2.1 RSA Cryptosystem

RSA is a public key cryptosystem invented by R. L. Rivest, A. Shamir, L. Adleman
in 1977 [33]. It is used in many public practical applications such as e-commerce,
message authentciation, secure e-mail, key exchange, etc. Its security depends on one
of the hard problems in mathematics, the integer factorization search problem.

Definition 2.1. Integer factorization search problem (IFSP): Given a composite inte-
ger n, find a p such that p | n, and 1 < p < n.

As the size of n increases, this problem becomes harder and p becomes infeasable to be
computed. The RSA Cryptosystem is based on the hardness of this problem. The main
operation of RSA is modular exponentiation. In encryption, decryption and digital
signing, modular exponentiation is used. In the next sections we give the schema of
RSA, assuming B is trying to send a message to A.

2.1.1 RSA Scheme

First, A chooses two big primes pA and qA not equal to each other. There are some
constraints on the choice of these primes to defend against attacks such as Pollard’s
p-1 attack [31] and William’s p+1 attack [38]. Primes pA and qA must be kept private,
since the system’s security depends wholly on these two primes. Currently, choosing
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these primes with bit sizes at least 1024-bits is thought to be secure [23] however, as
the computer science progresses, the size will increase as well.

After the primes are chosen, part of A’s public key, nA = pA · qA, is computed by A.
Notice that IFSP relates to this point, since it is hard to acquire pA and qA from knowing
only nA. After this, A finds the Euler phi [17] of nA: φA(nA) = (pA− 1) · (qA− 1). A
randomly selects an integer eA satisfying gcd(φ(nA), eA) = 1 where 1 < eA < φ(nA).
Finally,A finds the inverse of eA for the private key, eA ·dA ≡ 1 mod φ(nA). The public
key of A is (nA, eA) and the private key is dA. Note that without knowing pA, qA, we
cannot get φ(nA) and hence cannot find dA from eA.

In the encryption step, B encodes the message he wants to send into an integer. If the
integer is larger than n−1, then the message must be separated into blocks. Then, each
block is encrypted separately using modes of operation [30] or with protocols such as
PKCS#1 [22]. Nevertheless, each block is encrypted similarly, so we only give the
schema for one block of message. Assume the integer encoding of the message is P .
After encoding, B gets the public key of A, (nA, eA). Using this key, B computes

C = P eA mod nA (2.1)

to get the ciphertext C. Sending C to A, the encryption exchange is done. Acquiring
C, A does the following to decrypt the ciphertext

P = CdA mod nA, (2.2)

and finds the plaintext message P .

The RSA system can be used to sign messages as well. Digital signatures allow the
signer to prove that she was the one send the message and prevent fake signatures.
When signing a message, we don’t assume the plaintext is hidden, because encryption
and decryption processess can be included almost trivially. Assuming the public and
private keys are chosen as above, A signs a message P with

S = P dA mod nA. (2.3)

After getting the signed message along with the public key of A, B verifies the cor-
rectness if

P = SeA mod nA. (2.4)

The signature can be seen as an inversed form of encryption. Since only A knows the
private key of A, only he is able to sign the message with dA.

As it can be seen from the Equations 2.1 to 2.4, every major operation in RSA is mod-
ular exponentiation therefore improving the speed of this operation is very important.

2.2 Elliptic Curve Cryptography

Elliptic curve cryptography consists of public key systems that use elliptic curve struc-
tures. In these structures we do not have exponentiation in the traditional integer sense,
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however, multiple point additions (called scalar multiplication or point multiplication)
is analogous to integer exponentiation. Before we continue with those, we give a brief
introduction on elliptic curves:

Definition 2.2. An elliptic curve E is a curve defined over the finite field Fp where p
is a prime number. Given a, b ∈ Fp where 4a3 + 27b2 6≡ 0 (mod p), E is defined by an
equation with the form

y2 = x3 + ax+ b. (2.5)

If x, y ∈ Fp satisfies the Equation 2.5, then (x, y) is on the curve. The point at infinity
is denoted by ∞, and used as the identity element. We denote the set of points of E
by E(Fp). This definition assumes char(Fp) 6= 2, 3. For simplicity and the sake of
introductory examples, we only give these type of curves. Next, we give the group law
for these kind of curves.

Let P1 = (x1, y1), P2 = (x2, y2) be points on the curve E(Fp) as it is defined in
Definition 2.2. Assume P1 6= ±P2.

• The identity element is denoted by∞, P1 +∞ =∞+ P1 = P1 for all points in
E(Fp).

• The negative of P1 is−P1 and is a point on E(Fp) defined as (x,−y). P1−P1 =
∞ and∞ = −∞.

• Adding two points in an elliptic curve is referred to as point addition. P1+P2 =
P3 where P3 = (x3, y3) is found with the following operations:

x3 =
( y2 − y1
x2 − x1

)2
− x1 − x2 y3 =

( y2 − y1
x2 − x1

)
(x1 − x3)− y1.

• The operation P1 + P1 = 2P1 is called point doubling. Assume P1 6= −P1. We
find 2P1 = (x3, y3) by

x3 =
(3x21 + a

2y1

)2
− 2x1 y3 =

(3x21 + a

2y1

)
(x1 − x3)− y1.

As it can be seen addition and doubling is very costly, using a myriad of multiplications
if used consecutively. However, negation is almost free. The relation between addition
and doubling can be seen as the relation between multiplication and squaring in the
integer case, which we investigate in the later chapters. Following the group law, we
give the elliptic curve variation of the discrete logarithm problem, which deals with
elliptic curve scalar multiplication.

Definition 2.3. Let E be an elliptic curve defined over a finite field F . Assume Q
and P are two points on E(K) with nP = Q. The elliptic curve discrete logarithm
problem (ECDLP) is to find n given P and Q.

5



2.2.1 Elliptic Curve ElGamal Cryptosystem

The elliptic curve version of the ElGamal Cryptosystem[26] is similar to the integer
version [18], and is a good example for observing the similarities between elliptic
curve scalar multiplication and integer exponentiation.

For key generation, we publicly choose an elliptic curve E defined over the finite field
Fp. We take a point P on E(Fp) with prime order n. Then we have a cyclic subgroup
with generator P , contained in E(Fp). We call E,P, n the domain parameters. Private
key is generated by choosing a random d where 1 ≤ d ≤ n − 1. The public key Q is
found by

dP = Q.

Finding d from Q is exactly the elliptic curve discrete logarithm problem.

Assume A is trying to send a message to B. For encryption, A takes a plaintext m and
encodes it into a pointM . This can be done by Koblitz’s method [2]. ThenA randomly
chooses an integer k from 1 ≤ k ≤ n − 1, which he computes kQ with, where Q is
B’s public key. The ciphertext is a pair of points (C0, C1) in E(Fp) and is computed
by

C0 = kP,

C1 =M + kQ.

After getting (C0, C1), B uses the private key d and finds M .

kQ = dC0,

M = C1 − kQ.

OnlyB can find kQ, through dC0 = d(kP ) = k(dP ) = kQ. It can be seen that finding
kQ from Q and C0 is a hard problem and similar to integer Diffie-Hellman problem
[19].

Notice that we use point addition kP on an integer k with an elliptic curve point P
on key generation, encryption and decryption. Since this operation is very costly,
the study of scalar multiplication is very important. This is where the exponentiation
algorithms come into place. We can think of kP as P + P + · · ·+ P , which is similar
to the form for integers, gk = g · g · · · g. The representation and the order we do the
multiplications can reduce the cost of computing kP . One important advantage we
have here is computing−Q from Q is very fast depending on the chosen curve. This is
similar to g−1 from the integer case. This allows us to use the NAF and the double base
representation methods from Chapter 5 without considering the cost of−Q (analogous
to an inversion in integer case, a costly operation).

2.3 Algorithm Complexity and The Big-O Notation

Time complexity is a way of comparing different algorithms. Generally what happens
is we count the operations, find the cost of the smallest operations and apply the costs
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to the whole operation. When dealing with algorithms, especially if speed is of concern
we use a tool called the big-O notation. WhatO does is that using the notation, we only
take the costs of the most costly operations, and faster operations are absorbed in those.
This is because we are thinking asymptotically when we compare the algorithms, and
at larges sizes the costly operations are bound to have a larger impact on the overall
cost. This leads to an upper bound on the cost. Formally,

f(n) ∈ O(g(n)) if 0 ≤ f(n) ≤ c · g(n) for n0, c ∈ Z+,∀n ≥ n0.

Table 2.1: Complexity Scales

O(1) O(log n) O(n) O(n log n) O(n2) O(2n)
Constant Logarithmic Linear Quasilinear Quadratic Exponential

In Table 2.1, the leftmost side is the fastest, and as we go to the right the complexity is
worse.

2.4 Modular Reduction

As we have said before, in many cryptographic systems, especially systems like RSA
modular operations are used. In modular exponentiation, for some algorithms there is
at least one reduction at each step. Considering the basic reduction is just a division,
and division is a costly operation [4], many reduction methods are designed. Among
them, we give two important ones, Barret and Montgomery reduction methods.

2.4.1 Barret Reduction

Barret reduction [9] uses a reciprocal approximation that is dependent on the modulus
but not the integers to be reduced. Let a be a 2n-digit positive integer that we aim to
reduce. Let N be an n-digit integer, chosen as the modulus. Choose an integer base
b = 2l for a suitable l that does not depend on a. Before starting with the algorithm,
we first define a useful notation.

Definition 2.4. The reciprocal of N is defined as µ = b b2n
N
c.

Since the result of the reduction of a (mod N ) is the remainder r from a/N , we can
see that the quotient q is b a

N
c from the same operation. We use the reciprocal of N

here to approximate q:

q =
⌊ a
N

⌋
=

⌊
a

bn−1
b2n

N

bn+1

⌋
,
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which we approximate to q̂ by

q̂ =

⌊b a
bn−1 cµ
bn+1

⌋
≤
⌊ a
N

⌋
= q.

In addition to this, we note that q − 2 ≤ q̂ ≤ q [9]. Using q̂, we can find â = a − q̂N
which is the remainder r if q̂ = q. Notice that â = a (mod N ), therefore if we don’t
get r right away in the algorithm below, we need at most 2 subtractions by N since
q − 2 ≤ q̂. Below is the full algorithm.

Algorithm 1 Barret Reduction

Input: N, b, n, a, µ ∈ Z;n = blogbNc+ 1, µ = b b2n
N
c, 0 ≤ a < b2n

Output: r = a (mod N)
1: q̂ ← bb a

bn−1 c µ
bn+1 c

2: r ← (a (mod bn+1))− (q̂N (mod bn+1))
3: if r < 0 then
4: r ← r + bn+1

5: end if
6: while r ≥ N do
7: r ← r −N
8: end while
9: return r

The important point about this algorithm is that µ does not depend on the integer to
be reduced. Therefore, if we have many reductions necessary in the computation, the
cost of computing µ only appears once. The other divisions in step 2 are nothing but
shifts in base-b. Further optimizations are possible [21]. If we do the operations other
than the division by bn+1 in step 1, we don’t use the rightmost n+ 1 digits, hence they
are unnecessary to compute. Furthermore, since division by a power of b is a shift,
we only need the rightmost n + 1 digits of q̂N in step 2. This can also be optimized
because N is already smaller than bn.

2.4.2 Montogmery Reduction

Montgomery [9] discovered a way of representing elements from ZN . This reduction
uses that representation with the following definition.

Definition 2.5. Let N,R ∈ Z such that gcd(N,R) = 1. For 0 ≤ a ≤ N − 1, the
Montgomery representation is [a] = (aR) (mod N).

With this representation, we define the reduction by REDC(a) = (aR−1) (mod N).
Below we give the algorithm where ri is the ith digit of r.
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Algorithm 2 Montgomery Reduction

Input: n, a, b, R,N,N ′ ∈ Z; n = blogbNc + 1, gcd(N, b) = 1, R = bn, N ′ =
(−N−1) (mod b), 0 ≤ a < b2n

Output: r = a (mod N)
1: r ← a
2: for i from 0 to n− 1 do
3: k ← riN

′ (mod b)
4: r ← r + kNbi

5: end for
6: r ← r

R
7: if r ≥ N then
8: r ← r −N
9: end if

10: return r

If we haveR andN ′ as they are in Algorithm 2, and choose k ≡ aN ′ (mod R) such that
0 ≤ k ≤ N−1, then we see thatR | (a+kN). If we select an integer r = (a+kN)/R
which is r = aR−1 (mod N) since gcd(R,N) = 1, we have 0 ≤ r < 2N [9]. Then at
most one subtraction by N gives the result. The algorithm uses these techniques digit
by digit in the for loop in steps 2 to 5. The division by R, which is a digit shift is in
step 6 and step 8 makes sure the result is the smallest positive r that is congruent to a
modulo N .

9
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CHAPTER 3

MULTIPLICATION ALGORITHMS

Multiplication is undoubtedly a very important operation in cryptography. Integer and
finite field multiplications are used in various cryptosystems [9]. Since we are studying
exponentiation, we have to explore what the exponentiation algorithms are based on
- multiplication. This chapter aims to explain some of the general use multiplication
algorithms. The algorithms we explain here will be useful in the later chapters.

Large integers can be thought of as polynomials. We can represent an integer a with
the polynomial f where

f(x) = an−1x
n−1 + an−2x

n−2 + · · ·+ a1x+ a0. (3.1)

In Equation 3.1, ai < w for 0 ≤ i < n for some chosen positive integer w called the
word size. An integer a with a polynomial representation f(x) with degree n − 1 is
said to be an n-word integer. We tend to use this form for arithmetic operations since
it allows us to make use of the polynomial structure and recursion.

In all sections below, M(n) will be used to denote the cost of multiplying two size-n
integers, while S(n) and C(n) is used for costs of squaring and cubing of a size-n
integer.

3.1 Schoolbook Algorithm

The schoolbook method is a basic multiplication method. Using the polynomial rep-
resentation, it uses straightforward computation. The algorithm is 2-way, since the
polynomials are separated into two parts to find the result recursively. This method of
separating and multiplying coefficients is called divide and conquer.

Assume we have two positive integers a and b, with polynomial representations:

a(x) = an−1x
n−1 + an−2x

n−2 + · · ·+ a1x+ a0,

b(x) = bn−1x
n−1 + bn−2x

n−2 + · · ·+ b1x+ b0.
(3.2)

11



Instead of multiplying the polynomials this way, we separate them into two parts. Both
parts have degree n

2
− 1.

a(x) = A1x
n
2 + A0 where

A1 = an−1x
n
2
−1 + · · ·+ an

2
+1x+ an

2

A0 = an
2
−1x

n
2
−1 + · · ·+ a1x+ a0

and

b(x) = B1x
n
2 +B0 where

B1 = bn−1x
n
2
−1 + · · ·+ bn

2
+1x+ bn

2

B0 = bn
2
−1x

n
2
−1 + · · ·+ b1x+ b0.

(3.3)

Let c = a · b, hence c(x) = a(x)b(x) = c2n2x
2n−2 + · · · + c1x + c0. To find c(x), the

schoolbook algorithm is used in the following way:

a(x)b(x) = A1B1x
n + (A1B0 + A0B1)x

n
2 + A0B0. (3.4)

As it can be seen, it is the usual polynomial multiplication. There are 4 multiplications,
A1B1, A1B0, A0B1, A0B0 of sizes-n/2, and an addition (A1B0 + A0B1) of size-n.
Since we look at these polynomials as integers, there are the additions between the
coefficients of xn with x

n
2 and of x

n
2 with x0 = 1. Therefore we must compute the

number of operations that come from those steps as well. The complete operations can
be seen in Figure 3.1. The lines denote the polynomials, and the two ends of each line
state the first and the last coefficient of that polynomial. The dotted lines show where
the overlaps on coefficients are located. Since each AiBj is of size n − 1, in 1 and 3
we have n

2
− 1 additions. In 2, there are n− 1 additions. Then in total we have 2n− 3

additions.

Figure 3.1: The cost of schoolbook algorithm

Since multiplications take the most time in such an algorithm we generally say the
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schoolbook algorithm costs 4M(n
2
). But from the recursive application of the algo-

rithm we find the computational complexity as

M(n) = 4M
(n
2

)
+ 2 · n− 3

= 4(4M
(n
4

)
+ 2 · n

2
− 3) + 2 · n− 3

= 42M
( n
22

)
+ 4 · 2 · n

2
+ 2 · n− 4 · 3− 3

If we continue this way until we hit 2l, we get M(n
n
) = 1 and group the operands,

= 4l + 2 ·
1−

(
4

2

)l
1−

4

2

· n− 3 ·
1− 4l

1− 4

= 4l − 2 · (1− 2l) · n+ 1− 4l

= n2 − 2 · (1− n) · n+ 1− n2

= n2 − 2n+ 2n2 + 1− n2

= 2n2 − 2n+ 1 ∈ O(n2)

From these, we see that the computational complexity of the schoolbook multiplication
is O(n2).

3.2 Karatsuba Algorithm

Up until 1960, it has been thought that the computational cost of multiplication is at
best O(n2), as it is in the schoolbook multiplication. But a paper published in 1962
about the discoveries of Anatoly Karatsuba [24] shows that Karatsuba multiplication
is a faster algorithm after a certain threshold compared to the schoolbook method.
This discovery led to other algorithms as well, like Toom-Cook methods, Schöngage-
Strassen, Fürer’s multiplication etc. [29].

This method is also a 2-way algorithm like schoolbook method. Using the same sep-
aration as in Equation 3.3, we multiply two polynomials a(x) = A1x

n
2 + A0 and

b(x) = B1x
n
2 +B0 as

a(x)b(x) = A1B1x
n + ((A0 + A1)(B0 +B1)− A1B1 − A0B0)x

n
2 + A0B0 (3.5)

If we count the multiplications here we see that there are only 3, A1B1, A0B0, (A0 +
A1)(B0 + B1). Comparing this with the schoolbook method, we have one less multi-
plication but more additions in the coefficient of x

n
2 . Cost of a single addition is much

less than the cost of a single multiplication. Since we use Karatsuba as a recursive
algorithm, as the size increases the number of both operations increase as well. Com-
pared to schoolbook where we have 4M(n) but less additions, Karatsuba’s 3M(n)
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and more additions becomes faster after some size. To find the computational cost of
Karatsuba’s Algorithm, we make a similar figure to the schoolbook algorithm’s Figure
3.1.

Figure 3.2: The cost of Karatsuba algorithm

To compute the cost, since this algorithm is recursive as well, we use similar operations
to the ones in the complexity computations from Section 3.1. We have 3 recursive
multiplications. The addition of (A0 + A1) and (B0 + B1) costs n/2 − 1 additions
each. Looking at Figure 3.2 we have n/2− 1 additions in 1 and 4, n− 1 in 2 an 3 for a
total of 4n− 6 additions. Karatsuba is also a 2-way algorithm, so we assume the sizes
are halved at each recursive separation. Assuming bit size of l = log2 n. Then we have
the following equations.

M(n) = 3M
(n
2

)
+ 4 · n− 6

= 3
(
3M

(n
4

)
+ 4 · n

2
− 6
)
+ 4 · n− 6

= 32M
( n
22

)
+ 3 · 4 · n

2
+ 4 · n− 3 · 6− 6

If we continue until we hit 2l, we get M(n
n
) = 1 and group the operands,

= 3l + 4 ·
1−

(
3

2

)l
1−

3

2

· n− 6 ·
1− 3l

1− 3

= 3l + 8 ·
(
3l

2l
− 1

)
· n+ 3(1− 3l)

= nlog2 3 + 8 ·
(
nlog2 3

nlog2 n
· n− 1

)
+ 3− 3nlog2 3

= nlog2 3 + 8nlog2 3 + 3nlog2 3 − 8n+ 3

= 6nlog2 3 − 8n+ 3 ∈ O(nlog23)
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Hence, we can see that the cost of the Karatsuba algorithm is O(nlog2 3) ≈ O(n1.58).
Which is asymptotically better than the schoolbook algorithm’s O(n2).

3.3 Toom-Cook Algorithms

Toom-Cook algorithms, Toom for short, define a family of multiplication methods that
lower the asymptotical complexity of multiplication from O(n2). After Karatsuba’s
work, Toom [37] and Cook [10] generalized these methods for a variety of k-way
multiplications.

Toom methods are a form of polynomial interpolation. Given two polynomials and the
result of their multiplication with undetermined coefficients, the resultant polynomial
is evaluated at previously chosen points. Using these evaluations we find the coeffi-
cients of the resultant polynomial.

Toom methods has four steps. In the splitting step, we divide the polynomials to be
multiplied into a number of pieces with previously determined degrees. If the original
polynomials have the same degree, we use Toom-k methods, if they have different
degrees, i.e. if they are unbalanced, we use Toom-k + 1/2 methods. Then we evaluate
these polynomials at previously chosen points. After the evaluation phase, we have the
actual interpolation, which is a matrix inversion. Finally we have the recomposition
step where we combine the result back into an integer.

The degrees, the number of coefficients and therefore the matrix to be inverted is se-
lected prior to multiplication so the cost can be asymptotically determined by the num-
ber of the coefficient multiplications arise from the interpolation step. The evaluation
and the interpolation steps can be combined as well. Similar to the Karatsuba and
schoolbook algorithms, we usually refer to the cost of a Toom multiplication with m-
many multiplications.

3.3.1 Toom-2

Toom-2 uses 2-way separation.

a(x) = a1x+ a0 and b(x) = b1x+ b0 (3.6)

Let c(x) = a(x)b(x) = c2x
2 + c1x + c0 = a1b1x

2 + (a0b1 + a1b0)x + a0b0. To
find the three coefficients {c2, c1, c0}, we need three interpolation points. These points
are chosen such that the operations we need are minimal. The points used here are
{0, 1,∞}. By the point ∞, we don’t literally mean infinity, but we mean the point
which gives c2 in the polynomial evaluation. Since a and b have smaller degrees than
c, c2 cannot be found by inputting points into the two operand polynomials, hence the
use of the notation ∞. When we look at the evaluations at these points, we get the
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following equations:

c(0) = c0
= a0b0,

c(1) = c2 + c1 + c0
= (a1 + a0)(b1 + b0),

c(∞) = c2
= a1b1.

(3.7)

Using these equations, we form the following linear equation system consisting of
coefficient multiplications, or equivalently a matrix-vector product:

S =

S1

S2

S3

 =

 a1b1
(a1 + a0)(b1 + b0)

a0b0


=

1 0 0
1 1 1
0 0 1

 ·
c2c1
c0

 = WC.

(3.8)

To find {c2, c1, c0}, we invert the 3x3 matrix in the left multiplicative operand in Equa-
tion 3.8. An important observation here is that we can either compute Si as we invert,
or compute the matrix multiplication after the inversion but there is no difference be-
tween doing either. We invert the S matrix by the following procedure. This is called
the inversion sequence.1 0 0 1 0 0

1 1 1 0 1 0
0 0 1 0 0 1

 R2−R1−→
R2−R3

1 0 0 1 0 0
0 1 0 −1 1 −1
0 0 1 0 0 1

 , (3.9)

which leads to

W−1S =

 S1

S2 − S1 − S3

S3


=

 a1b1
(a1 + a0)(b1 + b0)− a1b1 − a0b0

a0b0

 =

c2c1
c0

 = C.

(3.10)

So, to find the product of two integers that can split as in Equation 3.6, we do the
operations in Equation 3.10. If we look at the three operations itself, we see that they
are the same operations in Equation 3.5, the Karatsuba algorithm. After we find all
the ci, we do the recombination phase to find the resulting integer, which is nothing
more than computing c2x2 + c1x + c0, where x’s are just shifts and memory manage-
ment. Obviously this is also the same as it is in Karatsuba’s algorithm. Its cost is the
same as Karatsuba’s. This is one of the reasons why Toom-Cook methods are called a
generalization of the Karatsuba multiplication.
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3.3.2 Toom-3

Toom-3 method is a 3-way method. This method is mentioned here without much
investigation, since a version of it, the unbalanced Toom-3 is used in next chapters,
albeit with some difference.

a(x) = a2x
2 + a1x+ a0 and b(x) = b2x

2 + b1x+ b0 (3.11)

The interpolation points we use are {0, 1,−1, 2,∞}. Similar to Toom-2, we construct
c(x) = a(x)b(x), having the coefficients ci for 0 ≤ i ≤ 4. Then we have 5Si and the
matrix to be inverted as given below:

S =


S1

S2

S3

S4

S5

 =


a0b0

(a2 + a1 + a0)(b2 + b1 + b0)
(a2 − a1 + a0)(b2 − b1 + b0)

(4a2 + 2a1 + a0)(4b2 + 2b1 + b0)
a2b2



=


1 0 0 0 0
1 1 1 1 1
1 −1 1 −1 1
16 8 4 2 1
0 0 0 0 1

 ·

c0
c1
c2
c3
c4

 = WC

(3.12)

With these, we have an inversion sequence with the cost 8A(n)+3B that can be found
in [5]. In the evaluation phase, our cost is 5M(n

2
).

3.3.3 Unbalanced Toom-3

This method is important since it has a use in cubing. Consider the cube of a degree
1 polynomial p(x) = p1x + p0. We can find the cube with p(x)2p(x). If we look at
p(x)2 = p21x

2 + 2p1p0x + p20, we see that we can divide this in another way: p(x)2 =
q3x

3 + q2x
2 + q1x + q0. Since p21, 2p1p0 and p20 is nearly double the size of p1 and

p0, this way is actually the recommended way of representing the polynomial so that
the multiplication with p(x) easier. Then we have a multiplication of two polynomials
with degrees 3 and 1, hence we use a method specialized for these kind of polynomials,
Unbalanced Toom-3 [39].

Assume the polynomials we want to multiply are

a(x) = a3x
3 + a2x

2 + a1x+ a0 and b(x) = b1x+ b0. (3.13)

Let c(x) = a(x)b(x) = c4x
4 + c3x

3 + c2x
2 + c1x + c0. Unbalanced Toom-3 uses the

same 5 interpolation points as Toom-3, {0, 1,−1, 2,∞}. In the equation below we put
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these points into polynomials c and a, b.

c(0) = c0
= a0b0,

c(1) = c4 + c3 + c2 + c1 + c0
= (a3 + a2 + a1 + a0)(b1 + b0),

c(−1) = c4 − c3 + c2 − c1 + c0
= (−a3 + a2 − a1 + a0)(−b1 + b0),

c(2) = 16c4 + 8c3 + 4c2 + 2c1 + c0
= (8a3 + 4a2 + 2a1 + a0)(2b1 + b0),

c(∞) = c4
= a3b1.

(3.14)

Like in all the other Toom-Cook methods, we use these equations to form a linear
equation system on ci:

S =


S1

S2

S3

S4

S5

 =


a0b0

(a3 + a2 + a1 + a0)(b1 + b0)
(−a3 + a2 − a1 + a0)(−b1 + b0)
(8a3 + 4a2 + 2a1 + a0)(2b1 + b0)

a3b1



=


1 0 0 0 0
1 1 1 1 1
1 −1 1 −1 1
16 8 4 2 1
0 0 0 0 1

 ·

c0
c1
c2
c3
c4

 = WC.

(3.15)

Here we have many coefficients to compute with, unlike Toom-2’s 2 coefficients for
each polynomial. If we look at S2 and S3, we see that a2 + a0 appear in both cases.
Then we can compute it only once, and reuse it later on. This means that there are
optimizations for computing these operations. An optimization is given by Zanoni
[39] where he evaluates the points {1,−1, 2}. The points {0,∞} are not included in
the evaluation sequence, since they are just single coefficient multiplications. In the
following equations, the sequence shown by Bodrato is given. Obviously, the equations
must be done in the correct order. Assuming each ai and bi are n

2
words each, the cost

for the ”a” side is 7A(n
2
) + 3B and the cost for the ”b” side is 3A(n

2
).

1 u4 = a2 + a0 1 v2 = b1 + b0 → ”b” part of S2

2 u3 = a3 + a1 2 v3 = b0 − b1 → ”b” part of S3

3 u2 = u3 + u4 → ”a” part of S2 3 v4 = v2 + b1 → ”b” part of S4

4 u3 = u4 − u3 → ”a” part of S3

5 u4 = a2 + (a3 � 1)

6 u4 = a1 + (u4 � 1)

7 u4 = a0 + (u4 � 1)→ ”a” part of S4

(3.16)
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After the evaluation, we do the multiplications to compute all Si where uivi = Si for
1 < i < 5; S1 = a0b0 and S5 = a3b1. This takes 5M(n

2
). An inversion sequence of

the matrix W can be found in [5] and it costs 8A(n) + 3B and a division by 3. Then
the recombination step follows like any other Toom-Cook algorithm. There are many
different ways to do all the steps with differing number of shifts and additions, but the
multiplications stay the same so when we are talking about the cost of Unbalanced
Toom-3 for polynomials with n word coefficients we generally say it has a cost of
5M(n

2
).
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CHAPTER 4

POWERS 2 AND 3

In this chapter we investigate some squaring and cubing methods. We first compare the
costs of usual multiplication methods when both operands are the same versus when
they are different. Then we go into asymmetric squaring which uses interpolation, but
with somehow unorthodox linear equations. After these we look at two cubing algo-
rithms, and discuss their efficiencies if used as modular operations and non-modular
operations.

4.1 Squaring Using Multiplication Methods

Generally, usual multiplication methods are used for squaring [8] like the schoolbook
algorithm or the Karatsuba algorithm. But, since we are multiplying the same integer
with itself there are some optimizations. For some algorithms, the same multiplications
or additions appear more than once. So, instead of doing the same operation twice, we
use the result from before, which leads to a less costly algorithm. Below we give
both the schoolbook and the Karatsuba squaring versions and their costs. They are
very similar to the multiplication cases, so we do not analyze as in depth as their
multiplication counterparts.

For both algorithms, we use the same notation in Equation 3.3, ie. we divide the
polynomial representation into two. However, since we are interested in squaring, we
multiply a(x) with itself.

4.1.1 Schoolbook Squaring

Repeating the method in 3.1 using a(x) only, we get

a(x)2 = A2
1x

n + 2A1A0x
n
2 + A2

0. (4.1)

Looking at this equation, we see that we have one less addition in the coefficient of x
n
2 .

With this in mind and using the algorithm recursively, we have similar cost computa-
tions to the multiplication case. We see that we have S(n) = 2S(n

2
) +M(n

2
) + n− 2

operations, which makes this algorithm faster than schoolbook multiplication.
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4.1.2 Karatsuba Squaring

Similar to the schoolbook squaring, we use the method in 3.2 using only a(x):

a(x)2 = A2
1x

n + ((A0 + A1)
2 − A2

1 − A2
0)x

n
2 + A2

0. (4.2)

Again we save an addition in the same place similar to the last section, and we have
only squares and zero multiplications. If we compute its cost recursively we have
S(n) = 3S(n

2
) + 7n

2
− 5 operations. Even though this is faster than both the squaring

and multiplication variants of the schoolbook and Karatsuba multiplication algortihms,
because of the schoolbook squaring algorithm’s speed, we start using this algorithm at
a higher word size [20].

4.2 Asymmetric Squaring

In this section we look at the asymmetric squaring methods as they are given in [8]
by Chung and Hasan. Their work investigates a new 3-way squaring algorithm that is
similar to Toom-3 but without the constant divisions that arise in that algorithm. To
achieve that they change the linear system constructions by finding linear equations
with ci’s that cannot be found only by evaluating the polynomials, where ci are the
coefficients of c(x) = a(x)2, and a(x) = a2x

2 + a1x+ a0.

They use four methods to find these linear equations and they are given below:

• Modulus: A known method used in finite field squaring; using some small inte-
gers u and v, take the modulo of c(x) = a(x)2 by (x2 + ux+ v2). This leads to
the equivalence

c′1 + c′0 ≡ (a′1x+ a′0)
2 (mod (x2 + ux+ v2)),

where each side are the results of the aforementioned modulus operation. If we
expand the equation, we can see that we have two new linear equations on c′i:

c′1 = a′1(2a
′
0 − ua′1),

c′0 = (a′0 − va′1)(a′0 + va′1).

Note that each only requires two coefficient multiplications.

• Hermite Interpolation: This is a known method in which we derive c(x) and
evaluate there. Since this is a square,

c′(x) = 2a(x)a′(x)

and we only have one coefficient multiplication.

• Difference: This is simply the difference of two squares with disctint xi and xj:

a(xi)
2 − a(xj)2 = (a(xi) + a(xj))(a(xi)− a(xj)).

This is useful if we use a(xi) and a(xj) in the evaluation already, then we find
another equation with two additions and a multiplication.
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• Duality: Another very known method where we find ci and c2n−i−2 with the
same function using different input. If we have

ci = f(a0, a1, · · · , an−1),

then

c2n−i−2 = f(an−1, an−2 · · · , a0).

So, if we have a new linear equation from other methods, we can get another one
using duality method.

Using these methods, they propose three squaring methods in [8]. Here we only give
SQR3 as it is the fastest out of all three.

Squaring a(x) = a2x
2+a1x+a0 with the result c(x) = a(x)2 = c4x

4+ c3x
3+ c2x

2+
c1x+ c0 using SQR3 [8]:

c0 = S0 = a20

S1 = (a2 + a1 + a0)
2

S2 = (a2 − a1 + a0)
2

c3 = S3 = 2a1a2

c4 = s4 = a22
T1 = (S1 + S2)/2

c1 = S1 − T1 − S3

c2 = T1 − S4 − S0

(4.3)

This computation requires 4S(n)+M(n) with a little overhead compared to Toom-3’s
5S(n) with large overhead. Notice that there are no divisions as well. The test results
in [8] show that between 2400-6700 bits long integer squaring, SQR3 is faster than gmp
library’s implementation of multiplication (mpn mul()). This is a very important result
as it shows that taking a square out in favour of a multiplication may lead to a speed up
in certain sizes if the overhead is less enough to cover the multiplication. This is one
of the reasons we thought Zanoni’s cubing algorithm can be used in a modular way,
explained in the next sections.

The reason we investigated asymmetric squaring was firstly, it was a fast squaring
algorithm and secondly the four methods proposed are interesting. We searched for
ways to use them in cubing algorithms, classical and Zanoni’s both, but the coefficients
do not behave as nicely as they do in the squaring. The reduction of complexity results
from using same coefficents many times for squaring. For cubing, this doesn’t happen.
Modulus and Hermite interpolation methods introduce too many coefficents, difference
method is not important without any new linear equations, there is no use trying duality.
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4.3 Classical Cubing Method

Take a big integer a, and its polynomial representation f(x) = a1x+ a0, where a0 is n
words and a1 is t ∈ {n, n− 1} words where n ∈ Z+. For our intents, let us say n ∼= t
so that we can say the size of a is 2n words long. As it can be seen, this method uses
2-way splitting. To find the cube, what we do is

a3 = (f(x))3 = (a1x+ a0)
2(a1x+ a0) (4.4)

It is pretty basic, we first square the polynomial, then multiply it with itself. If we look
at this from a non-modular perspective, we see that a2 is a 4n word integer, while a
is 2n words long. One of the best algorithms for multiplying these integers is to use
Unbalanced Toom-3 algorithm, from section 3.3.2. As previously noted, Unbalanced
Toom-3 Algorithm uses 5 multiplications of half-size in its interpolation step. Count-
ing the first square of 2nword long integer as well, the cost of cubing using this method
is C(2n) = S(2n) + 5M(n). S(2n) can be changed to whichever squaring algorithm
is used. For example, if we use the Karatsuba algorithm to compute the square, we
have C(2n) = 3S(n) + 5M(n).

On the other hand, if we need reductions we change the algorithms used in this method.
After we take the square of a1x+a0, we reduce it using one of the appropriate reduction
algorithms. Let us denote the reduction of kn word integer using a mn word modulus
with R(kn → mn). Then this reduction of square costs R(4n → 2n). After the
reduction we are left with a 2n word integer b. To multiply b with a, we don’t have to
use Unbalanced Toom-3, and we should not since b and a are of same length. Instead
we can use Karatsuba’s algorithm, which will net us a cost of 3M(n). After that, since
the size is again 4n, we need another reduction of R(4n → 2n). In total, assuming
we use Karatsuba for both the multiplications and the square, the cost of this modular
cubing algorithm is 3S(n) + 3M(n) + 2R(4n→ 2n).

4.4 Zanoni’s Cubing Algorithm

Zanoni’s [6] cubing algorithm is a very different approach then what we have seen
before in this thesis. Compared to the other usual multiplication methods, Zanoni’s
method does not compute the cube of a polynomial directly. Instead, it computes
another polynomial that is somewhat similar to the cube of the orignial polynomial,
and using fairly non-expensive operations finds the cube from there. Let f, a, n be
defined in 4.3. As per Zanoni’s definition, the idea of computing a similar polynomial
comes from the following.

Definition 4.1. Let f(x) and g(x) be two polynomials in Z[x] of same degree k with
coefficients fi and gi respectively. f is a master of g ⇐⇒ fi | gi for 0 < i < k,
and if for some i the coefficient fi or gi is zero then the other polynomial’s respective
coefficient is also zero.

If we have an ordered vector v that has all the
gi
fi

in the correct order then we say
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that f is a v-master of g. For example, f(x) = 6x3 + 4x2 + 1 is a [3, 4, 1]-master of
g(x) = 2x3 + x2 + 1, but not a master of h(x) = 2x3 + 1.

Using this definition, and the polynomial f from before, we look at g, the [1, 1, 1, 9]-
master of f .

g(x) =a31x
3 + 3a21a0x

2 + 3a1a
2
0x+ 9a30

=(a21x
2 + 3a20)(a1x+ 3a0).

(4.5)

As we can see, this polynomial only differs from (f(x))3 in the x0’s coefficient and
also can be factorized into different polynomials. This was not the case with (f(x))3.
Looking at the factorization, we have 2S(n) in the first part. With this in mind, and
considering that x2 shifts the coefficient 2n words, (a21x

2 + 3a20) becomes a 4n word
polynomial. Hence the multiplication with (a1x+3a0) is a 4n by 2n word multiplica-
tion for which we can use Unbalanced Toom-3. After the multiplication, we can divide
the last coefficient by 9 to get back to the original cube.

However, as Zanoni points out in his paper, this is not the case. Unfortunately in
the Unbalanced Toom-3 method the term 9a30 never appears alone. To be able to use
Unbalanced Toom-3, he proposes to change the polynomial g into a more suitable
form.

h(x) =(a1,1a1)x
4 + (a1,0a1 + 3a1,1a0)x

3 + (3a0,1a0 + 3a0,1a1)x
2

+ (27a0,0a1 + 9a0,1a0)x+ 81a0,0a0

=
4∑
i=0

cix
i,

(4.6)

where a21 = a1,1x+ a1,0, a20 = a0,1x+ a0,0. Now this polynomial works perfectly with
Unbalanced Toom-3. After the algorithm, we just divide c0 by 81 and c1 by 9 to go
back to (f(x))3.

If we count the operations, the cost of this algorithm can be seen as C(n) = 2S(n) +
5M(n). The two constant divisions at the end are fast since the sizes we work on are
very large and the divisors are known beforehand so we can optimize them.

Table 4.1: Time comparisons of two cubing algorithms

#-bits Classical Zanoni’s
512 0.01266 · 10−5 0.03681 · 10−5
1024 0.04582 · 10−5 0.06757 · 10−5
2048 0.16623 · 10−5 0.16712 · 10−5
4096 0.48600 · 10−5 0.47783 · 10−5
8192 1.42976 · 10−5 1.38949 · 10−5

In Table 4.1, we see that after 2048-bits, Zanoni’s algorithm starts to become faster
than the classical one. The implementations are done using the gmp library on C++,
using mpn level functions. Further notes about the implementations for this chapter
can be found in Section 5.7.
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4.4.1 Modular Approach

Since our main purpose is to find a modular cubing algorithm, we looked at where
we can put the reduction operations in Zanoni’s Algorithm. Assuming the integer to
be cubed and the modulus both are 2n words, we don’t have many places to reduce.
Most obvious choice is to reduce at the end of the whole cubing operation, but a cubed
2n word integer becomes a 6n word integer. This was problematic since we thought
that R(6n → 2n) costs more than 2R(4n → 2n). Our first implementations used the
general mpz level functions in the gmp library. We don’t include these timings, but
in them it showed that the larger the difference between the modulo and the integer to
be reduced, the slower the reduction by a great amount. However, later on when we
implemented the same reductions using mpn level functions, we got the results shown
in Table 4.2. In the table, #-bits is the bit size of the modulo, which we take to be
2n-words. The columns are for integers with kn-words. For example, for the first row,
n = 256, and the integers to be reduced are 768, 1024, 1536, 2048-bits.

Table 4.2: Time comparisons of gmp library’s reduction function for different bit-sizes

#-bits 3n 4n 5n 6n
512 0.00146 · 10−5 0.00170 · 10−5 0.00249 · 10−5 0.00305 · 10−5
1024 0.00276 · 10−5 0.00391 · 10−5 0.00553 · 10−5 0.00702 · 10−5
2048 0.00622 · 10−5 0.01078 · 10−5 0.01574 · 10−5 0.02069 · 10−5
4096 0.01780 · 10−5 0.03415 · 10−5 0.05103 · 10−5 0.06742 · 10−5

The table shows us that the argument above does not hold, and

2R(4n→ 2n) ≈ R(6n→ 2n).

This changed our implementation. Below, we first give the other places which we can
reduce at, in case there is an optimized way of reducing for those specific differences
in size.

We cannot reduce after the first squaring, which increases the size to 4n, because then
the form would change. We cannot reduce inside the Unbalanced Toom-3 algorithm
since multiplications there are between n word integers already. On the other hand,
the recombination step is available. Assume that we are done with the evaluation and
interpolation steps. We are left with 5 integers w0, w1, w−1, w2, w∞, corresponding to
the interpolation points {0, 1,−1, 2,∞}. Then the recombination step is

(((((((w∞ � n) + w2)� n) + w1)� n) + w−1)� n) + w0. (4.7)

Here, when we shift w∞ by n and add w2 to it, we get a 3n word integer. We can then
reduce it to a 2n word integer and continue along the recombination step in this way.
Or, we can keep the integers as is until the addition of w1, then reduce the 4n word
integer to a 2n one. In the first version we have 4R(3n → 2n), in the second one
we have 2R(4n → 2n). The second is the same as what happens if you square and
multiply instead of using Zanoni’s algorithm. There you have the same reductions.
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On the other hand, looking at 4.2, we see that we can just reduce at the end with a
similar if not a lower cost. There is an additional benefit of this as well. When im-
plementing the result of a multiplication operation such as the Toom-Cook methods,
some of the shifts and additions are not necessary. Since we know where all the inter-
polation points will end up in the result, we can just put them at their correct places
in the memory. We know that w0 is always going to start from the first word of the
result, let us call it the word 0. Similarly, w1 starts from the word-2n, and w∞ from
the word-4n. If we put these points at their correct positions, we are only left with
two additions, the addition at the word-n with w−1 and at 3n with w2. Note that we
do not need shifts here. If we were to use a reduction anywhere else, we would need
to do all of the additions and shifts. In the implementation results below we use the
implementation without shifts and additions for modular Zanoni’s cubing algorithm.

Table 4.3: Time comparisons of two modular cubing algorithms

#-bits Classical Zanoni’s
512 0.04161 · 10−5 0.06983 · 10−5
1024 0.11333 · 10−5 0.14204 · 10−5
2048 0.32512 · 10−5 0.38226 · 10−5
4096 1.02509 · 10−5 1.17267 · 10−5
8192 3.21581 · 10−5 3.58838 · 10−5

In Table 4.3, the reduction modulo and the integers to be cubed are of the same bit size.
As we can see from the table, compared to the classical method, modular Zanoni’s
method is worse. The difference between these results and Table 4.1 comes from the
fact that the methods we compare with Zanoni’s method are different in both cases, as
discussed in 4.3. This table shows that using modular Zanoni’s method for modular
exponentiation is worse than just using the straightforward modular cubing.
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CHAPTER 5

REPRESENTATIONS OF EXPONENTS AND
EXPONENTIATION ALGORITHMS

In this chapter, we explain some different ways of representing an integer exponent.
Some of these representations are for general usage, however, addition chains, hybrid
binary-ternary number system and double base representations are very useful in expo-
nentiation and point multiplication for elliptic curves. We also give the exponentiation
algorithms that are used with given representations. Complexities of the algorithms
are computed as well.

Since our aim is to explore the use of a modular cubing algorithm, we investigate the
representations that could be useful for cubing alongside the ones that are useful in
general.

5.1 Schoolbook Exponentiation

Like any other integer operation, there is an obvious method for exponentiation as well.
Let g and n be positive integers. To find gn, we multiply g by itself n times,

gn = g2 · g · g · · · g. (5.1)

Notice that the first multiplication is a square, and all the others are multiplications.
So the total cost of schoolbook exponentiation is S + (n − 2)M. If we look at it in a
modular way, after each multiplication and square we need to reduce the result, which
makes n− 1 necessary reductions. Reduction is also a costly operation, and this many
operations make the algorithm unusable for a cryptosystem taliored for exponentiation,
such as RSA. As we will shortly see, this basic method is very slow compared to the
other methods.

5.2 Base-w Representation

One of the methods for representing an integer is base-w method, similar to polynomial
representation equation 3.1. Base-10, or the decimal representation is used daily, and
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bases 2, binary, and 16, hexadecimal, are widely used in computer science. For a given
non-negative n ∈ Z and a base w ≥ Z+, we have a unique representation of the form

n = dk−1w
k−1 + dk−2w

k−2 + · · ·+ d1w + d0, (5.2)

where di are non-negative integers such that di < w for 0 ≤ i ≤ k − 1, and k ∈ Z+ is
the length of n in base-w. In this form, since each di < w and the exponent of w is at
most k− 1, it can be seen that wk > n ≥ wk−1. Therefore k = blogwnc+1 where bnc
denotes the largest integer smaller than or equal to n. The representation is most of
the time represented with (dk−1, dk−2, · · · , d1, d0)w. Below is the algorithm for finding
such di’s.

5.2.1 Algorithm

Algorithm 3 Base-w Representation
Input: n,w ∈ Z, w ≥ 2
Output: dk−1, dk−2, · · · , d1, d0

1: i← 0
2: while n ≥ w do
3: m← bn/wc
4: di ← n−mw
5: n← m
6: i← i+ 1
7: end while
8: di ← n
9: return dk−1, dk−2, · · · , d1, d0

In Algorithm 3, we divide n by w at each iteration to find the quotient q and the
remainder di. Then we assign q to n and continue until n is zero.

Example 5.1. Using Algorithm 3 to find the base-4 representation of 133.

i = 0

i = 1

i = 2

i = 3

q = 3

q = 8

q = 2

q = N/A

d0 = 1

d1 = 1

d2 = 0

d3 = 2

(5.3)

So, 133 = 2 · 43 +0 · 42 +1 · 4+ 1 = (2011)4. Throught the thesis the least significant
digit, ie. the digit that is the coefficient of w0 = 1 is on the rightmost side unless
otherwise specified.

The cost of the base representation depends heavily on the base itself. As the base
gets larger, the number of iterations becomes lower. However, the divisions get more
costly.
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5.2.2 Binary Representation and Repeated Squaring Method

Binary, bit, or the base-2 representation can be found by setting w = 2 in Algorithm
3. However, in most computers base-2 representation is the default. In computer
memory, integers are stored in different sizes of bytes, where each byte is 8-bits. Since
the integers are already stored as bits, we can use shifts and logical operations to find
the i-th bit of the integer. Assuming we have an integer n, getting the i-th bit is done
the following way:

(n� i)&1, (5.4)

where � i denotes the right shift by i bits, i.e. division by 2, & is the logical and
operation. These operations are basically free, hence finding the representation does
not require the utilization of Algorithm 3. This also allows us to not allocate memory
for storing bit representation.

Bit representation has many applications on computer science, cryptography and many
other disciplines, and its application on exponentiation is one of the major methods for
computing gn. Bit representation is used with repeated squaring algorithm and it has
two versions, left-to-right and right-to-left. Assuming n = (dk−1, · · · , d1, d0)2, both
versions are given below.

Algorithm 4 Repeated Squaring Algorithm, l-t-r

Input: g, n ∈ Z+, n = (dk−1, · · · , d1, d0)2
Output: gn

1: if dk−1 = 1 then
2: r ← g
3: else
4: r ← 1
5: end if
6: for i from k − 2 to 0 do
7: r ← r2

8: if di = 1 then
9: r ← r · g

10: end if
11: end for
12: return r

Left-to-right repeated squaring method works in this way: After the initialization steps
1-4, we go bit by bit from the leftmost to the rightmost, as per the algorithm’s name.
At each bit, we first take the square of the result variable, and check whether that bit is
0 or 1. If it is 0, we continue to the next iteration, if it is 1, we multiply the result with
the base.

Example 5.2. Let us find g15. Bit representation of 15 is (1111)2. We follow Algorithm
4:

r = g → g2 → g3 → g6 → g7 → g14 → g15. (5.5)
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We see that we have 3M + 3S. We can generalize this cost computation. A random
integer of bit size k has k/2 1-bits and 0-bits on average in its bit representation. Since
we only have assignments in the initialization steps, we have k − 1 iterations. Since
we have a square at each step and a multiplication at k/2 steps on average, we can say
that Algorithm 4 has a cost of (k − 1)S+ (k

2
− 1)M.

Algorithm 5 Repeated Squaring Algorithm, r-t-l

Input: g, n ∈ Z+, n = (dk−1, · · · , d1, d0)2
Output: gn

1: s← g
2: r ← 1
3: for i from 1 to k − 1 do
4: if di = 1 then
5: r ← r · s
6: end if
7: s← s2

8: end for
9: r ← r · s

10: return r

Right-to-left repeated squaring starts from the least significant digit instead of the most.
This difference does not change the number of operations, but the algorithm separates
the squaring and multiplication in the iterations. This results in the need for additional
space for the powers of g in the variable s.

Example 5.3. Let us find g15 using Algorithm 5. Bit representation of 15 was (1111)2.

r = 1→ g → g3 → g7 → g15,

s = g → g2 → g4 → g8.
(5.6)

5.2.3 Ternary Representation and Repeated Cubing Method

The ternary representation is the same as takingw = 3 in Algorithm 3. In this represen-
tation, we have digit 2 along with digits 1 and 0. Therefore we have to use Algorithm
3, or use additional operations to Equation 5.4. Since base-3 does not naturally appear
in computers, we also have to store the representation digits in an array.

Apart from repeated squaring, we have the m-ary method for computing the power of
a big integer. It is described in Knuth’s book [25]. This method can be seen as the
generalised version of the Algorithm 4 for other bases than 2. It incorporates the other
digits that come up when we write the integer in base-m. However, we are interested
in power 3, so we only give the algorithm for 3-ary, or the repeated cubing method.
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Algorithm 6 Repeated Cubing Algorithm

Input: g, n ∈ Z+, n = (dk−1, · · · , d1, d0)3
Output: gn

1: s← g2

2: if dk−1 = 0 then
3: r ← 1
4: else if dk−1 = 1 then
5: r ← g
6: else
7: r ← s
8: end if
9: for i from k − 2 to 0 do

10: r ← r3

11: if di = 1 then
12: r ← r · g
13: else if di = 2 then
14: r ← r · s
15: end if
16: end for
17: return r

The m-ary method can easily be deduced from Algorithm 6. Instead of computing just
the square of g, we also compute the other digits arise from the base representation
which increases the precomputation phase. And in the iteration starting from step 9 of
the algorithm, we check the digit we are on and multiply the result with the according
precomputed power.

The cost of this algorithm is computed similar to repeated squaring. Since now we
have 3 digits in the representation, each can occur with 1

3
probability in a random

integer. Then we have (k − 1)C + 2
3
(k − 1)M + S many operations. If the base-3

representation does not have a 2 in it, then the algorithm can be arranged to not to
compute the square.

We can compare binary and ternary methods by their relative sizes. Say that an integer
n is of size k if represented with base-2, and size k′ if represented with base-3. If we
compare these lengths, we get the equality 1.58k′ = k.

5.2.4 Window Methods

In the m-ary method, instead of writing the exponent in base-m we can group the bits
in a certain way. If we would like to use the m-ary method then we can divide the bit
representation of the exponent in a way where each group has size logm = k. This is
especially easy if m is a power of two, otherwise we pad after the most significant bit
with 0’s until it fills a k bit group. As an example, if the exponent is 206, then its bit
representation is (11001110)2. And if we would like to use 4-ary method, we divide
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the bit representation into log 4 = 2 bits each. Then the exponent becomes

11 | 00 | 11 | 10.

Each of these parts are called windows. If we turn back to the 3-ary method we see that
if we get a 0 in its base 3 expansion, we only take a cube. Obviously this is also the
case with the general m-ary methods. In the above example, we only take the fourth
power at the second window from the left. At all the other windows, there is at least
one multiplication which raises the cost. Windows with only zero bits in them are
called zero windows.

Since raising to the power m is inescapable, we’d rather have less multiplications at
each window, which means having more zero windows. It can be seen that as the
exponents get larger, the number of zero windows gets lower. Assuming in a random
integer zeroes and ones are distributed equally, and if we try to split an exponent into
k bits each, the probability that a window is a zero window is 2−k. On the other
hand, as k gets smaller, we do not have big jumps of larger exponents, hence we have
more multiplications. The sliding window methods [25] tries to solve this problem by
allowing variable lengths of windows to get more zero windows while also balancing
the size of k.

The sliding window exponentiation algorithm is the general m-ary method, however
instead of just representing the exponent in base-m we split the bit representation into
windows. There are different ways of splitting the windows, here we give two. One
of them fixes the sizes of nonzero windows, the other allows them to have different
values under a limit.

5.2.5 Constant Length Nonzero Windows

This method is proposed in [25] In CLNW, we start from the least significant bit and
collect the bits in the representation into a nonzero window or a zero window at each
step. As the name suggests, all nonzero windows are the same length. Assuming the
length of the windows is k, the algorithm can be explained with the following steps
[27]:

• First Step. Check the least significant bit of the exponent. If the bit is 0, collect
the bit into the first zero window, and go to Zero Step, otherwise go to Nonzero
Step.

• Zero Step. Check the next bit. If it is 0, collect the bit into the current zero
window and continue with Zero Step. Otherwise go to Nonzero Step.

• Nonzero Step. Collect the current bit and the next k− 1 into a nonzero window.
Check the next bit. If it is 0, collect it into a new zero window, and go to Zero
Step. Otherwise continue with Nonzero Step.

The algorithm ends when there are no more bits to read. As it can be seen, all the
successive 0’s are collected into a single zero window hence no two zero windows
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are allowed consecutively. After this step, we precompute the required exponents and
continue with the m-ary algorithm. For example, using k = 3 and taking the exponent
as 20708 = (101000011100100)2, to find g20708 for an integer g, we start with

101 | 0000 | 111 | 001 | 00.

Continuing with this example, we need to consider the windows {001, 011, 101, 111}.
The windows {010, 100, 110} will not appear, since their last 0’s have to be in a zero
window. The others appear, therefore we need to precompute the exponentiations for
them. Since 001 is 1, we don’t have to precompute it. Then we are left with {3, 5, 7},
so we find {g3, g5, g7}. As per m-ary algorithm, we find g20708 with the following
sequence:

g5 → (g5)16 → (g80)8 → g640 · g7 → (g647)8 → (g5176) · g → (g5177)4 → g20708.

Using this method without considering the precomputations we need 2M+12S. If we
take precomputation computations into account as well, we need 5M+13S. If we were
to compute the same exponent using the repeated squaring method, we would have
needed 5M+14S. One less square comes from computing {g3, g5, g7} consecutively.

5.2.6 Variable Length Nonzero Windows

This method is proposed in [7]. In this version, lengths of nonzero windows can change
under a maximum amount. For VLNW, we use two parameters. k, the maximum length
of nonzero windows, and q, the minimum required zeros to change from nonzero to
zero window. We use the following procedure to split the integer into windows:

• First Step. Just as it was in CLNW, we start by checking the least significant bit
of the exponent. If it is 0, collect it into the first zero window, and go to Zero
Step, otherwise go to Nonzero Step.

• Zero Step. This is also the same with CLNW. Check the next bit, if it is 0 collect
it into the current zero window and continue with another Zero Step. Otherwise
go to Nonzero Step.

• Nonzero Step. Collect the current bit into a nonzero window. Chect the next
q − 1 bits. If all of them are 0, go to Zero Step. If there is a 0 before all
q− 1 bits are checked, collect the bits before that first 0 into the current nonzero
window, collect the 0 into a zero window, then go to Zero Step. If all q − 1
bits are nonzero, collect them into the current nonzero window. After all q bits
are checked including the bit at the start of the step, check the next bit. If it is
0, collect it into a zero window and go to Zero Step. Otherwise go to Nonzero
Step.

Similar to CLNW, two zero windows will not be adjacent to each other. Instead they
will be assimilated into a single zero window. Two nonzero windows can be adjacent,
however this means that the least significant one is full, ie. it has a length of k. We
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can start with least or most significant bit with VLNW [27]. If we continue with our
example from the last section, writing 20708 in VLNW with k = 3 and q = 2 and
starting from the least significant bit, we get

101 | 0000 | 111 | 00 | 1 | 00.

With this method we can reduce the number of precomputed powers. It is suggested
that using a larger window size may lead to a reduced number of multiplications [7].

5.3 Non Adjacent Form

The non adjacent form [32] of a positive integer is a unique representation with digit
−1 along with 0 and 1. This form has a property that allows us to do less multi-
plications if used for an exponentiation algorithm: two consecutive digits cannot be
nonzero. This form of n ∈ Z+ can be computed using Algorithm 7 [21]. We denote
the non adjacent form of n by NAF(n) =

∑k−1
i=0 di2

i = (dk−1, · · · , d1, d0)NAF where
di ∈ {−1, 0,+1}.

Algorithm 7 Finding NAF(n)

Input: n ∈ Z+

Output: NAF(n) = (dk−1, · · · , d1, d0)NAF
1: i← 0
2: while n ≥ 1 do
3: if n (mod 2) = 1 then
4: di ← 2− (n mod 4)
5: n← n− di
6: else
7: di ← 0
8: end if
9: n← n

2
10: i← i+ 1
11: end while
12: return (dk−1, · · · , d1, d0)NAF

In Algorithm 7, we consecutively divide n by 2. When k is odd we set the remainder
to be one of {−1,+1} so that in the next iteration n is even, hence we make sure
that the next digit is 0. There are further properties [21] of NAF. Compared to the bit
representation, the length of NAF(n) can be at most one more, and in average, there
are 1/3 nonzero digits in a given NAF representation.
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Algorithm 8 Computing exponentiation with NAF

Input: g, n ∈ Z+, n = (dk−1, · · · , d1, d0)NAF
Output: gn

1: r ← 1
2: m← g−1

3: for i from k − 1 to 0 do
4: r ← r2

5: if di = 1 then
6: r ← r · g
7: else if di = −1 then
8: r ← r ·m
9: end if

10: end for
11: return r

Algorithm 8 is a modified version of Algorithm 4. There are two big differences how-
ever. Firstly, the NAF(n) has less nonzero digits, so there are less multiplications.
Since in average there are 1/3 nonzero digits, we can say that there will be k/3 multi-
plications and k squares. The second difference is the division bym or the computation
of the inverse in the modular case. The inversion operation can take a considerable time
[21], therefore rendering the NAF exponentiation useless for algorithms such as RSA.
Nonetheless, it is useful in fixed exponent - variable base exponentiation, because we
can precomute and store the inverse for later exponentiations.

Example 5.4. Using Algorithm 7 we find NAF(15) = (1000 –1)NAF . We compute g15
by the sequence

g15 = 1→ g → g2 → g4 → g8 → g16 → g15 (5.7)

The cost is M+4S+ I. Comparing this to the sequence using repeated squaring algo-
rithm in Example 5.2, we see that we have one more square but 2 less multiplications.
However, if we are not using the same base for many operations, we have the cost of
inversion as well.

5.4 Hybrid Binary-Ternary Number System

The Hybrid Binary-Ternary Number System (HBTNS) is introduced as a representa-
tion system for exponentiation by Dimitrov and Cooklev in [13]. This system mixes
bases 2 and 3 and uses both bases to express the integer. We need two arrays to rep-
resent the integer, one for the digits and another for the bases each digit belongs to.
Since both bases are used, the digit representation has a shorter length than base 2, but
a longer one than base 3. So it can be thought as a system with a base between 2 and 3.
Finding the representation is not as trivial as the base 2 case, and we have two arrays
of same size with each other to keep in the memory. Nonetheless, it is still faster to
find than optimized addition chains and other fixed exponent algorithms.

37



5.4.1 Algorithm

Algorithm 9 Hybrid Binary-Ternary Form Representation

Input: n ∈ Z+

Output: The arrays digit and base
1: i← 0
2: while n > 0 do
3: if n ≡ 0 (mod 3) then
4: digit[i]← 0
5: base[i]← 3
6: else
7: if n ≡ 0 (mod 2) then
8: digit[i]← 0
9: else

10: digit[i]← 1
11: end if
12: base[i]← 2
13: end if
14: n← bn/base[i]c
15: i← i+ 1
16: end while
17: return digit, base

The algorithm is actually very similar to the algorithm for finding bit representation.
If n at the current iteration is divisible by 3, then its digit is 1 with base 3. If n is not
divisible by 3, then we continue as if we are writing its base 2 representation. It can
also be seen that the digits of a given integer can only be 1 in base 2, and digit always
ends with 1. This will be important in the next section.

Example 5.5. HBT-form of some integers are given below, with the least significant
digit on the right:

66 =
[1 0 1 1 0 0] ← digit
[2 2 2 2 2 3] ← base (5.8)

113 =
[1 0 1 0 0 0 1] ← digit
[2 3 2 2 2 2 2] ← base (5.9)

495 =
[1 0 0 0 1 0 0] ← digit
[2 3 3 3 2 3 3] ← base (5.10)

Getting back to the integer from a given representation requires some explanation.
Starting from the least significant side, each time we get a base we increment the
exponent of that base by 1, while the exponent of the other base stays the same. If the
digit is k, we multiply the current 2i3j with k to get k · 2i3j . So if the digit is 1, it is
included in the representation. Also, base 3 always starts with 31, and 30 never appears
since 20 is already 1.

38



Example 5.6.

66 = 1 · 2431 + 0 · 2331 + 1 · 2231 + 0 · 2131 + 0 · 2031 + 0 · 31 (5.11)

= 243 + 22

113 = 1 · 2531 + 0 · 2431 + 1 · 24 + 0 · 23 + 0 · 22 + 0 · 21 + 1 · 20 (5.12)

= 253 + 24 + 1

495 = 1 · 2135 + 0 · 2035 + 0 · 2034 + 0 · 2033 + 1 · 2032 + 0 · 32 + 0 · 31 (5.13)

= 2 · 35 + 32

5.4.2 Exponentiation Using HBTNS

Let n be the integer exponent. Assume n has the Hybrid Binary-Ternary form as such:
digitn = (dm−1, · · · , d1, d0) and basen = (bm−1, · · · , b1, b0). Then we can compute gn
where g ∈ Z using the following algorithm.

Algorithm 10 HBTNS Exponentiation

Input: g ∈ Z, n ∈ Z+ with the hbt-form digitn and basen
Output: gn

1: r ← 1
2: for i from 0 to m− 1 do
3: if bi = 3 then
4: g ← g3

5: else
6: if di = 1 then
7: r ← r · g
8: end if
9: g ← g2

10: end if
11: end for
12: return r

The last square is not necessary when i = m − 1, since it is not incorporated into r,
hence we can omit it.

Using the representations for different n from Section 5.4.1, the following sequence of
exponentiations are found for gn. Chain for r and chain for g are given as well, so that
it is easier to follow the algorithm.
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Example 5.7.

n = 66 : (5.14)

Chain for g : g3 → g6 → g12 → g24 → g48

Chain for r : g6 → g18 → g66

Full chain : g3 → g6 → g12 → g24 → g48 → g66

Cost : 2M+ 4S+ 1C

n = 113 : (5.15)

Chain for g : g2 → g4 → g8 → g16 → g32 → g96

Chain for r : g1 → g17 → g113

Full chain : g1 → g2 → g4 → g8 → g16 → g17 → g32 → g96 → g113

Cost : 2M+ 5S+ 1C

n = 495 : (5.16)

Chain for g : g3 → g9 → g18 → g54 → g162 → g486

Chain for r : g9 → g495

Full chain : g3 → g9 → g18 → g54 → g162 → g486 → g495

Cost : 1M+ 1S+ 5C

To compare these 3 chains with repeated squaring, we take C = S + M. 66 =
(1000010)2 costs M + 6S with the repeated squaring method, which is better than
HBTNS exponentiation. On the other hand, 113 = (1110001)2, and the total cost is
3M + 6S, the same with this method. 495 = (111101111)2 is 7M + 8S, much worse
than the HBTNS method.

The relationship between the binary representation and HBTNS is given in [13]. The
number of digits an n-bit integer has is 0.8811n, and the number of multiplications
corresponding to the 1’s is approximated to 0.3388n.

5.5 Addition Chains

Introduced by Knuth [25], an addition chain is an integer representation specifically
useful for exponentiation. The other algorithms mentioned in this chapter before were
general algorithms. For example, the repeated squaring algorithm uses only multi-
plications and squares. Let us try not to focus on the squares, but also count them
as multiplications. Now, finding the binary representation of an integer is very fast.
However there is no guarantee that the repeated squaring method is the fastest ex-
ponentiation method for a specific integer, with binary representation and using only
multiplications (and squares). Using optimized addition chains for a certain integer,
the exponentiation uses a minimal amount of multiplications.

Definition 5.1. A sequence of integers with a0 = 1 and ak = n

a0, a1, · · · , ak (5.17)
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such that ar = ai + aj for 0 ≤ i ≤ j < r and r ≤ m is called an addition chain.

Considering this definition, we can see that the methods we have discussed so far such
as the repeated squaring and the window methods are nothing but different algorithms
for finding addition chains. However, as said before they obviously do not always find
the shortest chain. Moreover, finding the shortest addition chain is an NP-complete
[16] problem. What this means is that we have to compute all the chains to find the
shortest one, hence it takes considerable time even for small exponents. As the integers
get larger, the time it takes to compute the shortest chain is too much, and so using the
shortest addition chain is infeasible. Nevertheless, the shortest chain can be found for
smaller exponents.

Example 5.8. A short addition chain for 3691.

g → g2 → g3 → g5 → g7 → g14 → g28 → g56 → g112 → g115 →
g230 → g460 → g920 → g1840 → g1845 → g3690 → g3691.

This chain costs 9S + 7M. If we were to use a bit representation and the repeated
squaring method, the chain would look like this:

g → g2 → g3 → g6 → g7 → g14 → g28 → g56 → g57 → g114 → g115 →
g230 → g460 → g461 → g922 → g1844 → g1845 → g3690 → g3691.

The bit representation of 3691 is (111001101011)2. Total cost is 11S + 7M, which is
worse than the shortest chain.

We have lower and upper bounds for the lengths of shortest addition chains. The upper
bound comes from the chain that arises from the repeated squaring method, and the
lower bound is found by Schönhage [34].

• An upper bound is blog2 nc + H(n) − 1 where H(x) is the Hamming weight
function.

• A lower bound is given by log2 n+ log2 (H(n))− 2.13.

In addtion to addition chains, we also have addition-subtraction chains which is very
similar. The difference is that we also allow subtractions in the chain, which is equiv-
alent to multiplying with the inverse of an intermediate result. NAF exponentiation
can be thought of a way of finding addition-subtraction chains, but it only allows the
multiplication with the inverse of the base and not the inverses of intermediate results.
Unfortunately, along with the cost of finding the chain, finding the inverses results in
an increase in cost. However since we are not using shortest chains with variable expo-
nents, the balance must be on the length of the chain versus the amount of precomputed
inverses. Finding shortest chains here is again a problem, but it is not known whether
they are NP-hard or not.
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5.6 Double-Base Representation

Double-base representation is, in a way, a generalization of most of the representations
up to this point. Similar to HBTNS we use two bases to represent the digits of an
integer, following certain rules. Any two bases can be used in the representation,
however we only give the definition for the bases 2 and 3, as they are the focus of our
research.

Definition 5.2. A double base representation of an integer n written as

n =
l∑

i=1

di2
ai3bi ,

and is called a base-{2, 3} representation, where di ∈ S for a chosen set S, and
a1, · · · , al and b1, · · · , bl are non-decreasing sequences starting from 0 [1].

If we look at double-bases from an exponentiation viewpoint, we see that the set S
designates the multiplications. Relating this with the earlier representations, in base-
2 representation, we can only have 0 or 1 as the coefficients so we either multiply or
don’t. In NAF, we can have multiplications with inverses so the S in NAF is {−1, 0, 1}.

Representing an exponent in double-base allows an interesting tradeoff between the
exponents from respective bases. One base is more costly but jumps a larger expo-
nent gap, on the other hand the other is faster but to conquer the same gap it uses more
exponents. For example, using the base 2 or base 3 alone would mean either more oper-
ations with faster powers or less operations with expensive powers. Using base-{2, 3}
representation we can optimize both of these, if we can find the best representation.
Obviously this representation is not unique even for a given S.

To denote the succession of exponentiation, instead of using the representation we use
double-base chains. These chains are introduced in [14] by Dimitrov, Imbert, Mishra.
Similar to addition chains, they are another way of visualizing the successive expo-
nentiation process. They share the same optimization problem with addition chains as
well: finding the best double-base chain for a given integer. There are many parameters
factoring into this, such as the chosen bases or the set S. Even for a suitably chosen
S and bases, finding the optimized double-base chain takes time. Because of this,
they are often researched for elliptic curve cryptography, because the operations there
are already costly. Also the speed of computing point multiplication with different
bases can be quite similar to finding the chain, allowing for better tradeoffs using this
method. Also they are useful in fixed power exponentiation if the cost of computing
the exponent warrants the use of finding the best double-base chain.

We use the notation in [1] to denote base-{2, 3} chains. For an integer g, (b · x + s)
appears as gb · gs in the operations where b is the base and s ∈ S. The b · x part
uses the result from the last operation but s part uses the original g. For example, an
exponentiation chain in base-{2, 3} with S = {0, 1} for g15 can be given by

(3x, 2x+ 1, 2x+ 1),
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which is then computed with

(x3)→ (x6 → x7)→ (x14 → x15).

Below we give two methods of finding double-base chains. Both of these methods use
graphs to find the chains.

5.6.1 Tree Method

The tree method is found by Doche and Habsieger in [15]. As its name, it uses tree
graphs. To find a base-{2, 3} chain with S = {+1,−1} for exponent n, they propose
the following procedure:

• Choose the root of the tree as n. Start from the root and repeat the next steps at
each node.

• Take every 2 and 3 factors out from the node.

• Add +1 and −1 to the remaining integer on the node to make two new leaves.

• Repeat until we have a node with value 1.

Using this method, we have two choices. We can either speed up the algorithm with
deleting the larger nodes as we continue with the algorithm so that only the small nodes
appear, or we can do the algorithm as is. The first approach is faster since you deal
with less nodes but it is a greedy approach and may not always give the best chain. The
second one however gives an optimal chain [1] but it takes longer to compute the tree
and we have to use another algorithm to traverse it. The next section iterates on this.

Example 5.9. Finding a base-{2, 3} chain with S = {+1,−1} of 19, to find g19 for
some integer g is given in Figure 5.1.

Figure 5.1: Tree graph for g19

The chain can be represented with:

g → g2 → g6 → g18 → g19.

It costs 2C+ S+M = 3S+ 3M.
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5.6.2 DAG Method

In [1] it is proved to that using directed acyclic graphs to map out the shortest path
between the root node n and the last node 1 is the same as finding an optimized double-
base chain for n. They propose three algorithms but we only give the basic one, the
one that uses Dijkstra’s Algorithm [12] for finding the shortest path in a graph.

The directed acyclic graph D to be used in this algorithm is defined in the following
way [1]. Assume the double base we have is base-{v, w} and set S with the restriction
that 0 ∈ S and representation (b · x+ s), b ∈ {v, w}, s ∈ S. First, let there be a vertex
for each integer n ≤ N for some integer bound N . Join the vertexes for s and n with
the edges vn + s → n and wn + s → n, if vn + s > n and wn + s > n. Label these
edges (v · x + s) and (w · x + s) respectively. Notice that the definition of the graph
does not depend on the chosen exponent. It is easy to see that any node n can only
reach a finite number of nodes, and it is stated in [1] that this finite number of nodes is
at most O((logn)2) for any chosen S.

After constructing the graph, we use Dijkstra’s Algorithm to find a shortest path be-
tween the exponent n to 0 in the graph. Dijkstra’s Algorithm searches the lengths of
every edge and finds the path with the smallest length, and we haven’t defined those
for the DAG. The way we do that is we first find the cost of each operation in (b ·x+s)
for all b, s as defined above. For example we assign S +M for (2 · x + 1) and C for
(3·x) and so on. To make the comparisons easier, we use the algorithms from Chapters
3 and 4. If we work with a modulus, the costs at each level depend only on the size of
n so that there is no need for additional cost computations for each vertex n.

As we can see, we only make the graph once and for repeated uses of the system its
cost can be neglected. However, even though Dijkstra’s algorithm is a polynomial time
algorithm, the whole algorithm still has a sizeable overhead [1] and makes the DAG
method only usable for fixed exponents.

Example 5.10. Finding a base-{2, 3} chain with S = {+1,−1} of 19, to find g19 for
some integer g is shown in Figure 5.2. Both the graph starting from 19 and the result
of Dijkstra’s Algorithm are given. The 0 node is unnecessary hence it is not included.

Assume that C = S + M and S < M. Then according to the graph, the one of the
possible best paths is (19, 10, 5, 2, 1), which costs 4S+ 2M. The chain is given by:

g → g2 → g4 → g5 → g10 → g20 → g19

Comparing with the tree method, we have given a multiplication in favour of a square.
The inversion is precomputed in both cases. Generating the graph and the Dijkstra’s
Algorithm costs are higher in the DAG case, but the chain is more optimized than the
tree case.
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Figure 5.2: DAG for g19

5.7 Implementation Results and Comparisons

We implemented three modular exponentiation algorithms, using both the classical
and Zanoni’s method for a total of 5 timings. These implementations are done on a
machine with Intel i5-6200U, 2.8 GHz and 8GB’s RAM. The operating system was
Manjaro Linux. Implementations use C with the gmp big number library version 6.1.2
for all of the main functions, and C++ for some auxillary functions and input/output.
The compiler used is gcc version 7.1.1. All implementations use only the mpn level
gmp functions, which are the lowest level and most memory management is done by
us and not the library.
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Table 5.1: Time comparisons for repeated squaring, cubing and hbtns exponentiation

#-bits RS RC HBTNSE
512 0.01802 · 10−3 0.01913 · 10−3 0.01809 · 10−3
1024 0.08719 · 10−3 0.09766 · 10−3 0.08593 · 10−3
2048 0.50161 · 10−3 0.56877 · 10−3 0.48400 · 10−3
4096 3.05223 · 10−3 3.55163 · 10−3 2.97026 · 10−3
8192 18.5382 · 10−3 22.0898 · 10−3 18.4278 · 10−3

The bit sizes are for all of the operands, for example the modulus, the base and the
exponent are all 512-bits in the second rows. All operands are generated randomly,
and for a single timing, 100 different exponents are used, then each exponentiation is
looped 100 times. The times given in every table is in seconds and is a mean of the 100
exponents and loops. The operands’ most significant bits are always 1.

Looking at Table 5.1, we see that the repeated cubing algorithm is worse on every bit
sizes but HBTNS exponentiation quickly catches up to the repeated squaring algorithm,
and passes it after around 1024-bits.

Table 5.2: Time comparisons for repeated cubing and hbtns exponentiation using mod-
ular Zanoni’s cubing method.

#-bits RC HBTNSE
512 0.02838 · 10−3 0.02143 · 10−3
1024 0.12103 · 10−3 0.09759 · 10−3
2048 0.65238 · 10−3 0.51640 · 10−3
4096 3.93786 · 10−3 3.12083 · 10−3
8192 24.4370 · 10−3 19.0999 · 10−3

Table 5.2 shows that hybrid binary-ternary expansion is better than repeated cubing
with Zanoni’s algorithm as expected. Interestingly, if we compare the hybrid Zanoni’s
version with the Table 5.1, we can see that starting from 1024-bits, hybrid Zanoni’s
version is better than the repeated cubing with the classical cubing. This is not enough
for using Zanoni’s cubing in modular exponentiation, but it shows that the HBTNS
method is a better method than repeated squaring and cubing both, after some bit size.
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CHAPTER 6

CONCLUSION

Public key cryptography algorithms are important and widely used in many areas in
both daily life and secure systems. Some of these algorithms heavly use modular expo-
nentiation, such as RSA. As explained in Chapter 2, an analogue of modular exponenti-
ation is used in elliptic curve cryptosystems. The disadvantage of these cryptosystems
is that they are slower than their symmetric counterparts. For example, AES [11] al-
gorithm is also used and is faster than RSA. However the key exchange problems and
other limitations of symmetric systems make public key systems very attractive. To
make them faster, we have to speed up the main operation, which is modular exponen-
tiation.

In this thesis, we investigated methods for exponentiation, both modular and non-
modular. Our focus was on the third power, cube, however we studied general methods,
squaring and multiplication as well. We aimed to speed up cryptographic algorithms
using cubing, hence we studied both variable and fixed exponent methods. We men-
tioned recent improvements on elliptic curve fixed exponent methods [1].

Before starting with exponentiation, in Chapter 3 we gave some of the multiplication
algorithms used both in general exponentiation and one for integer cubing in particular.
We computed their costs and compared them.

In Chapter 4 we focused on the squaring and cubing. Squaring comes along with cub-
ing since we cannot compute all exponents with only using power 3, we need squares
as well. We also mentioned asymmetric methods that we have came across in our re-
search for cubing. For cubing we focused on Zanoni’s algorithm since it was faster
than usual methods if computed in a non-modular fashion, and found a way to make it
modular. We tried to use asymmetric methods used in squaring. However, asymmetric
methods didn’t work, and while the modular version worked perfectly, it was slower
than usual square and multiply for computing a cube.

The next chapter, we changed our focus to repeated use of the algorithms given in the
earlier chapters. We gave the algorithms, complexities, and investigated many of them
and their respective representations thoroughly. At the end of the chapter we included
our test results as well.

In conclusion, we looked at exponentiation algorithms with cubing in mind, and their
repeated use. We took many inspirations from the elliptic curve case, and used hybrid
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number systems for integers. We have investigated many algorithms, but our proposed
modular Zanoni’s cubing algorithm turned out to be slower than the current methods.
Hence, it is not useful for cryptography. Nonetheless, the wide research made for this
thesis will allow later research on this subject to be more focused. As a future work,
using modified versions of hybrid number systems, Zanoni’s work and asymmetric
squaring, we may research a fifth power algorithm. The flexibility in factorization for
fifth power may allow for interesting results.
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