PROBABILISTIC LEARNING OF TURKISH MORPHOSEMANTICS BY LATENT
SYNTAX

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF INFORMATICS
OF
MIDDLE EAST TECHNICAL UNIVERSITY

AHMET USTUN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE
IN
COGNITIVE SCIENCE

SEPTEMBER 2017






Approval of the thesis:

PROBABILISTIC LEARNING OF TURKISH MORPHOSEMANTICS BY LATENT
SYNTAX

submitted by AHMET USTUN in partial fulfillment of the requirements for the degree of
Master of Science in Cognitive Science, Middle East Technical University by,

Prof. Dr. Deniz Zeyrek Bozsahin
Director, Graduate School of Informatics

Prof. Dr. Cem Bozsahin
Head of Department, Cognitive Science, METU

Prof. Dr. Cem Bozgahin
Supervisor, Cognitive Science

Examining Committee Members:

Prof. Dr. Deniz Zeyrek Bozsahin
Cognitive Science Department, METU

Prof. Dr. Cem Bozsahin
Cognitive Science Department, METU

Assist. Prof. Dr. Cengiz Acartiirk
Cognitive Science Department, METU

Assist. Prof. Dr. Burcu Can Buglalilar
Department of Computer Engineering, Hacettepe University

Assist. Prof. Dr. Umut Ozge
Cognitive Science Department, METU

Date:







I hereby declare that all information in this document has been obtained and presented
in accordance with academic rules and ethical conduct. I also declare that, as required
by these rules and conduct, I have fully cited and referenced all material and results that
are not original to this work.

Name, Last Name: AHMET USTUN

Signature

iii



ABSTRACT

PROBABILISTIC LEARNING OF TURKISH MORPHOSEMANTICS BY LATENT
SYNTAX

Ustiin, Ahmet
M.S., Department of Cognitive Science

Supervisor : Prof. Dr. Cem Bozgahin

September 2017, [51] pages

The language processing capability of humans is highly dependent on the transparent inter-
face between syntax and semantics which is formalized as the grammar. Morphology also
interferes with this interface, in languages having rich morphology such as Turkish. This the-
sis aims to discover word semantics in Turkish from the compositional morphosemantics by
underlying latent syntax. A computational model has been developed to learn a morpheme
lexicon in which each morpheme contains semantic information in logical form with a basic
syntactic type. A knowledge-free segmentation algorithm based on distributional properties
of words is used to extract pseudo-morphemes from words. We utilize a classical probabilistic
CCG grammar for lexical learning. Since derivational changes can be handled with lexical-
ization of words, we employ our model for the inflectional morphemes in Turkish. The model
has been tested and results obtained is reported in the thesis with various aspects.

Keywords: morphological parsing, morphosemantics, syntax, CCG
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0z

TURKCE ICIN MORFOLOJiK ANLAMBILGISININ GiZLi SOZDiziMi ILE
OLASILIKSAL OGRENIMi

Ustiin, Ahmet

Yiiksek Lisans, Biligsel Bilimler Programi

Tez Yoneticisi : Prof. Dr. Cem Bozgahin

Eyliil 2017 , [51] sayfa

Insanlarin dil igleme yetenegi, dilbilgisi olarak formalize edilen s6zdizim ve anlambilim ara-
sindaki arayiize bagimlidir. Turkge gibi morfolojisi zengin dillerde, morfoloji bu arayiize mii-
dahale eder. Bu tez morfolojik anlambilgisiden ve kelimelerin icerisindeki ortiilii s6zdizimin-
den yola cikarak ile onlarin anlamlarini kesfetmeyi amaglamaktadir. Bu baglamda, morfem-
lerin s6zdizimsel kategorilerinden ve anlamsal 6gelerinden olugsan bir morfem s6zIigii 6gren-
mek iizere bir model gelistirilmistir. Kelimelerin i¢indeki olas1 morfemleri tespit etmek icin
kelimelerin dagilimsal 6zelliklerini kullanan bir boliimlenme algoritmasi, olasit morfemlerin
sozliik icindeki agirliklarin1 Ogrenme icin ise olasiliksal ulamsal dilbilgisi kullanilmistir. Ya-
pim ekleri anlamlar1 farkli yeni sézciikler iirettigi igin, gelistirilen model ¢cekim ekleri iizerine
egilmektedir. Tez kapsaminda model test edilmis ve sonuglar farkli yonleri ile rapor edilmistir.

Anahtar Kelimeler: morfolojik analiz, morfolojik anlambilgisi, sozdizimi, ulamsal dilbilim
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CHAPTER 1

INTRODUCTION

1.1 Thesis

Native speakers can perfectly comprehend the meaning of phrases or sentences. Whatever
they hear or read, they recognize automatically the underlying meaning carried within it. In
the course of language acquisition, children are required to learn a correct mapping between
linguistic units and corresponding meanings from limited inputs to perform this type of ability.
It is known that the smallest meaning bearing units in a natural language are morphemes.
Thus, in the language acquisition morphemes are also learned and mapped with their most
likely meanings.

The aim of the thesis is to learn morphemes with their correct morphological classes as in
language acquisition and to parse the word-forms with their corresponding semantics without
performing a morphological analysis. We take, as input, what the child hears and hypoth-
esizes, i.e a form and a meaning; then our model parses them into logical forms to build a
morpheme lexicon.

Theory of Universal Grammar (Chomsky, [1975, [1986) proposes that children are innately
equipped with a set of mechanisms and constraints called Universal Grammar shared by all
human languages, to adapt them to a specific language when they are exposed to the lin-
guistic input. According to Combinatory Categorial Grammar (Steedman, 2000; [Steedman
& Baldridge, |2011)) which is a radically lexicalized theory of natural language grammar, the
lexicon is the only resource for language-specific knowledge. Together with a set of combi-
natory rules and principles that are universal to all languages, a lexicon is enough to project a
natural language. Thereby, the lexical learning is the core element in language acquisition.

During language acquisition, the task that children face is to extract the boundaries of lin-
guistic units from speech and to associate them with their lexical representations that have
syntactic properties combined with semantics. If we assume that word boundaries are learned
earlier by children (Jusczyk, [1999; Thiessen & Saffran, [2003)), the only input they have is a
pair of sequence of words and contextually available meanings.

Zettlemoyer & Collins| (2005) shows how a CCG lexicon with lexical items consisting of a
phonological form, a syntactic type and a logical form can be learned from form-meaning
pairs of sentences exemplified in The study contains a computational model to build a
probabilistic CCG lexicon by associating the words with possible categories. [Kwiatkowski
et al| (2012) also bootstraps learning a CCG lexicon to model language acquisition. These



models treat the words as the smallest linguistic units. However, research conducted in this
field shows that children also learn morphemes to understand more complex structure.

(1.1 Surface : you have another toy
Meaning : have’(you’, another’(x, toy’(x)))

In this study, we develop a computational model to learn morphemes along with the semantics,
that we call morphosemantics. The system takes pairs of unsegmented words and logical
forms as input and builds a weighted CCG lexicon. An example input and expected lexical
items are given in[I.2]and [I.3]respectively. Since our model parses words into logical forms,
syntactic categories of morphemes become latent variables and the morphology is learned by
hidden syntax within the words.

(1.2) Surface : oyuncaklara
Meaning : dative’(plural’(toy’))

(1.3) oyuncak := N : toy
-lar := N\N: Ax.plural’(x)
-a := N\N: Ax.dative'(x)

The problem tackled here is not a simple correspondence problem. That is, it cannot be
solved by basic string operations such as matching the morphemes with semantic counterparts
following the order they appear. In fact, it is completely a learning problem. The model
built within the scope of the current study learns which fragments go with which meanings
as well as the order they appear without any information regarding the decompositions of
words. Learning the morphosemantics occurs with syntax of CCG since the radical lexicalism
in CCG allows language-specific information to be learned along with universal syntax as
in language acquisition. The parsing is not constrained by any set of combinators or star
modalities, so CCG is used with full power. The model hypothesizes a set of lexical items
that has CCG categories assigned with possible substrings i.e. pseudo-morphemes in the
words. The search space for hypotheses is narrowed down by a segmentation model which
takes the distributional properties of the words into account.

Starting with (Chomsky| (1970), it is widely acknowledged that derivational morphology is
internal to the lexicon. In most cases, its semantics is non-compositional and does not inter-
act with grammatical meanings (Bozsahin, [2002). Thus, the thesis focuses on learning the
inflectional morphology. That is, the model is designed to learn the inflections in the words

The lexical learning occurs without any morphological knowledge so the training set does not
contain decomposition or any morpheme level clues Nevertheless only segmented items can
take categories in CCG due to transparency of derivation. Therefore, we split the words into
pseudo-morphemes by using a segmentation algorithm.

The segmentation algorithm we design is based on the distributional properties of the words
that represent the meanings of them. Because the inflectional affixes do not change the mean-
ing of the word radically, a semantically-driven segmentation model is used. The aim of the

' The only assumption we accept is that the nominal forms of the words and their syntactic categories are
lexicalized before the learning process. See the Chapterm for details.
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procedure is to generate feasible segmentations of a word and extract possible substrings as
pseudo-morphemes. We employ the unsupervised embeddings of words (Mikolov, Sutskever,
et al.l [2013; Mikolov, Chen, et al., 2013 [Pennington et al., 2014) by using word2vec to ac-
cess distributional features and use them to calculate the corresponding semantic similarity
for each character boundary in the segmentation procedure.

We use the classical probabilistic CCG (Zettlemoyer & Collins, [2005) for the statistical learn-
ing of morphemic lexicon. The lexicon keeps a weight for each pseudo-morpheme in addition
to the surface form, syntactic type and logical form.

1.2 Motivation

The thesis has two main motivations from the cognitive science perspective:

1. To present a model that is designed to learn the words with their morphology as in
language acquisition period of children.

2. To demonstrate that morphology can be considered as an internal syntax which forms
the compositional meaning in the words.

Since our study aims to provide more realistic setting for the language acquisition and to be
more cognitively plausible, the model we develop only uses what children can access from
the environment, that is, the compositional and the distributional meaning of the words.

According to the Language of Thought Hypothesis (Fodor, [1975)), thought and thinking oc-
curs in a mental language that involves combinatorial syntax with semantics. This makes
possible to formalize compositional meaning of words with logical forms. Thus, our model
parses these logical forms with the help of combinatorial grammar which is latent in the word
structure.

Although our model is designed to be generic, the scope of this thesis is solely Turkish inflec-
tional morphology. Thus, we experimented our model on inflected words in Turkish.

1.3 Outline

The thesis consists of seven main chapters: Morphology, Combinatory Categorial Grammar,
Data, Learning Morphology by Latent Syntax, Results, Discussion and Conclusion

Morphology and CCG chapters describe the background of our study. Morphology (Chapter
) gives detailed information about the history of morphology studies. CCG (Chapter [3)
contains a short summary of the CCG required to understand our model. Data and Model
chapters explains our model and the data used in the experiments. We discuss the two main
arguments of the study in Discussion chapter. The last chapter concludes the thesis.






CHAPTER 2

MORPHOLOGY

2.1 Introduction

In linguistics, morphology is the study of the forms of words, and the study of how words are
made up of smaller pieces, i.e., morphemes which are the smallest meaning-bearing elements
of a language. Morphology is also studied as an interface between syntax and phonology
since the morphological constructions carry information from phonological levels to syntax
and semantics. (Katamba & Stonhaml, [1993))

Morphology entered the domain of generative linguistics with|Chomsky|(1970), Halle|(1973),
Siegel (1974), |Aronoft (1976)). The main issue studied by generative linguists is how mor-
phological representations, which constituted the word forms, interact with representations at
other levels such as syntax and semantics. Also, the nature of morphological units and mech-
anism in the formation of words are the other main questions about morphology. (Chomsky
(1970) put the morphology as a part of the lexicon. However, when syntactic relations are not
included in the account, especially in inflectional morphology, lexical rules of morphology
become just the application of phonological changes to stems and affixes. (Cakici, |2008])

The initial attempt to describe morphology as a set of morphosyntactic rules was presented
by [Hockett| (1954) in two different approaches; item-and-arrangement hypothesis, item-and-
process hypothesis. In item-and-process approach, a word form results from an application of
rules which modify the phonological form of the word or the stem. Resulting word forms are
not considered as a composition of stem and affixes, operations identified by rules alter the
word forms to a sequence of phonemes so they can not be fragmented into smaller part. That
is why this approach is called lexeme based morphology.

In item-and-arrangement approach, each word form is analyzed as a set of morphemes ar-
ranged in sequence. Example [2.1] shows that Turkish word arabalar ‘cars’ is represented as
the combination of root morpheme araba ‘car’ and Turkish plural suffix [Ar ‘s’ according to
item-and-arrangement approach.

(2.1) arabalar = araba + IAr
= root + PLU

Roark & Sproat|(2007)) stated that both item-and-process and item-and-arrangement approaches
are fitting to different languages. For example, the morphology of agglutinating languages



which have a linear sequence of morphemes and systematic morphosyntax such as Turk-
ish and Finnish (see Section [2.1.T] for details) are more appropriate to morpheme based ap-
proaches according to them. However, Schmerling (1983) pointed out that the categorial
grammar is much more consonant with item-and-process model.

A further approach is "Constraint-based Morphology" (Bird,|1990; Russell, |1993). Generally,
constraint-based architecture refers to a grammar which is formed from a set of constraints
on possible linguistic objects (Bonami & Crysmann, [2016)). The constraint-based approach
of morphology uses the phonological properties of the words as a set of constraints that links
morphology and syntax which are considered to the separate dimensions of language.

In the sections that follow the above introduction, we concentrate on the structure of Turkish
language, the relationship between morphology and syntax and computational models for
morphological processing. Since the thesis mainly focuses on Turkish morphology, we will
describe the morphology in agglutinating languages before the chapter’s main points.

2.1.1 Morphology in Agglutinating Language

According to Spencer| (1991) languages are divided into four classes: isolating, inflectional,
polysynthetic and agglutinating. Isolating languages are languages with limited or no mor-
phology such as Vietnamese or Chinese. As distinct from isolating ones, in inflectional or fu-
sional languages, morphemes can have multiple grammatical or semantic features that make
the language very complex. Greek, Russian and Polish are instances of inflectional languages.
Polysynthetic languages have words that consist of many morphemes which can have inde-
pendent meaning, to form a sentence. Similar to polysynthetic languages, agglutinating lan-
guages have relatively rich morphology. Words are formed from different morphemes but
each morpheme bears single grammatical feature that affects the meaning of words.

Hankamer| (1989) described what characterizes agglutinating languages as follows:

Stem formation by affixation to previously derived stems is extremely productive,
so that a given stem, even though itself quite complex, can generally serve as the
basis for even more complex words.

Turkish is an agglutinating language like Finnish or Swahili. The example [2.2] which is taken
from (Hankamer, |1989) shows the agglutinations occurring in Turkish morphology. In ex-
ample the affixation starts with causative suffix dir, and new word indir ‘lower’ is de-
rived from the root in ‘descent’. In continuation; passive, ability, negative, second ability,
tense and agreement suffixes are attached to the stem in a linear sequence and resulting word
indirilemiyebilecekler ‘they will be able to not be able to be lowered’ or ‘they will be able to
resist being brought down’ is obtained.

2.2) in -dir -il -e -mi -yebil  -ecek -ler
descent -CAUS -PASS -ABLE -NEG -ABLE -TENSE -AGR

they will be able to not be able to be lowered



Theoretically, it is possible to produce a word of infinite length since Turkish morphotactics
admit for the nested morphological structure. |Hankamer| (1989) exemplifies that mechanism
as follows:

(2.3) g0z ‘eye’
g0z -litkk ‘glasses’
g6z -liik -¢ii ‘seller of glasses’
g6z -liik -¢ii -litk ‘the occupation of oculists’
goz -lik -¢ii -liik -cii ‘a lobbyist for the oculist profession’
g6z -liik -¢ii -liik -¢ii -litk ‘the occupation of being a lobbyist for the oculist
profession’

The agglutinating character of Turkish is one of the main basis of the background of the
thesis since this character forces morphological learning throughout a parsing mechanism.
Hankamer| (1989) shows that a machinery that uses principles of Turkish morphotactics can
produce 1.8 million word forms from one verb root and 9.2 million word forms from one noun
root without any recursion. The number of word forms derived from a verb root and a noun
root jumps 26.7 million and 216.6 million respectively when one level of recursion is allowed.
Considered these numbers with the amount of verb root and noun root in Turkish lexicon, a
human can not store whole morphologically complex words in the mind. As a result, we must
parse words to learn morphology.

Moreover, the linear sequence in agglutination and segmental structure in Turkish morphol-
ogy makes it possible to model learning by Combinatory Categorial Grammar (see Chapter 3|
for details), because CCG is a linguistic theory that can only assign categories to segmented
items due to the transparency of derivation.

2.2 Turkish Morphology

As described in the previsection above, Turkish is an agglutinating language that contains
productive affixation capabilities (Oflazer et al., 1994). Affixations occur through inflectional
and derivational morphemes. Despite the affixation in Turkish morphology is based on suf-
fixing, there are a small number of unproductive prefixes from foreign origin. According to
Oflazer et al.| (1994), words containing such prefixes can be lexicalized separately.

Turkish orthography contains 29 characters with 8 vowels (a, e, 1, i, 0, 0, u, i) and 21 conso-
nants (b, c,¢,d, f, g, 8, h,j,k, 1,m,n,p,r,s,s,t,V,Yy, z) in its alphabet. In order to achieve the
vowel harmony, surface forms of words after affixation are determined by morphophonemic
rules. Deletion, alternation, and drop rules on the surface of the morphological structure can
be operated regarding these rules. Oflazer et al represented phonemes with meta-phonemes
for a clear description of the surface form and lexical form of morphemes which is called
two-level morphology. Their list of meta-phonemes is given in Table|2.1

The examples below are taken from Oflazer et al.| (1994). In the resolving of low-
unrounded vowel which is an alternation type morphophonemic operation is occurred on suf-
fix 1Ar. [2.5] and [2.6] illustrate the consonant changes and vowel drop operations respectively



Meta-phoneme Description
voiced (d) or voiceless (t)
back (a) or front (e)
high vowel (, i, u, i)
vowel except o, 0
voiced (c) or voiceless (¢)
voiced (g) or voiceless (k)

oL R WD =
QOX T » U

Table 2.1: Phoneme alternations of Turkish and meta-phonemes which are used by (Oflazer et
al.[(1994)

on root morphemes. Full list of the morphophonemic operations in Turkish are described in
(Oflazer et al., [1994)).

2.4) kedi-1Ar cat-PLU
kediOler kediler
cats
2.5) kitab-cH book-NtoN(ci)
kitapOg1 kitapet
bookseller
(2.6) kapa-Hyor close-PR-CON-3PS
kapaOO1yor kapryor

he/she is closing

Turkish morphology has a rich inventory in terms of both derivational and inflectional mor-
phemes. In METU-Sabanci Turkish Treebank (Say et al., 2002), there are 106 distinct mor-
phological tags reported. Table [2.2] shows the entire list of morpheme classes. Table [2.3]and
[2.4which are presented in (Oflazer et al.|[1994) show the morphemes used in noun inflections
and verb inflections respectivelyﬂ Since we mainly focus on the inflections in Turkish mor-
phology in the thesis, we do not list the derivational morphemes. An extensive report can be
found in (Oflazer et al., [1994)).

2.3 Morphology and Syntax

Although it is considered that morphology is an interface between phonology and syntax-
semantics, the common approach in studies, especially in computational ones, is to separate
morphology and syntax as independent processing steps.

' 'We changed the name of the morphological classes in the tables to make them compatible with METU-
Sabanci Turkish Treebank



Morphological Tags

Alpl Gen PClns
Alsg Hastily PCNom
A2pl Imp PersP
A2sg InBetween Pnon
A3pl Inf Pos
A3sg Ins Postp
Abl Inter;j Pres
Able JustLike PresPart
Acc Loc Progl
Acquire Ly Prog2
Adj Narr Pron
Adv Neces Prop
AfterDoingSo Neg Punc
Agt NegP Ques
Aor Ness QuesP
As Nom Range
AsIf NotState Real
Become Noun Recip
ByDoingSo Num Reflex
Card Opt ReflexP
Caus Ord Rel
Cond Plpl Related
Conj Plsg Since
Cop P2pl SinceDoingSo
Dat P2sg Stay
DemonsP P3pl Time
Desr P3sg Verb
Det Pass When
Distrib Past While
Dup PastPart With
Equ PCAbI Without
FitFor PCAcc WithoutHavingDoneSo
Fut PCDat Zero
FutPart PCGen

Table 2.2: Morphological tags (classes) in METU-Sabanci Turkish Treebank



Morphemic Morphological

Representation  Class Gloss Examples

-1Ar PLU Plural arabalar, evler
-(Hm P1SG 1st person singular possessive  arabam, evim
-(HymHz P1PL Ist person plural possessive arabamiz, evimiz
-(H)n P2SG 2nd person singular possessive  araban, evin
-(H)nHz P2PL 2nd person plural possessive arabaniz, eviniz
-(s)H P3SG 3rd person singular possessive  arabasi, evi
-1ArtH P3PL 3rd person plural possessive arabalari, evleri
-(y)H ACC Objective (accusative) case arabayi, evi

-nH ACC Objective case (after 3P poss)  masasini

-(n)Hn GEN Genitive case arabanin, evin
-(y)A DAT Dative case arabaya, eve

-nA DAT Dative case (after 3P poss) masasina

-DA LOC Locative case arabada, evde
-nDA LOC Locative case masasinda

-DAn ABL Ablative case arabadan, evden
-nDAn ABL Ablative case masasindan
-(PIA INS Instrumental/comitative case arabayla, evle
-ki REL Relative evdeki, arabadakilerinki

Table 2.3: Inflectional morphemes listed by |Oflazer et al.|(1994) for Turkish nouns

In fact, research in this domain shows that morphology and syntax should serve as differ-
ent dimensions of a unified structure Bozsahin| (2002); (Cakic1 (2008); |Sehitoglu & Bozsahin
(1996)); Bozsahin| (2011)). In other words, there is an intricate and bilateral association be-
tween morphology and syntax. Below examples are taken from |Kilig| (2013) to illustrate an
impact of morphology to syntax and also semantics. The accusative case marker —H (-1 or
—i according to Turkish vowel harmony) can determine the subject and the object of a verb

which is important for the sequential meaning as in Example [2.7]and [2.§]

2.7 Kopek  adam-1 1s1rd1

Dog man-ACC bit

T he dog bit the man
(2.8) Kopeg-i  adam 1s1rd1
Dog-ACC man bit

T he man bit the dog

Morphology also has effects on the argument structure. The examples below are from (Cakicli,
2008)) to point the changes in argument structure caused by inflectional morphemes. The
causative morpheme generates a transitive structure as in (2.10) from an intransitive verb:

2.9) Yangin  son-dii
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Morphemic Morphological

Representation  Class Gloss Examples

-(H)n REFLEX Reflexive kapan, kacin, ortiin, vurun, edin
-Hs RECIP Reciprocal/Collective kacistir, biiziistiir, kosugmak
-DHr CAUS Causative kaldir, arttir, giildiir, sektir
-t CAUS Causative cikart, kiigiilt

-(Hr CAUS Causative cikar, batir

-HI PASS Passive yapilmus, kiictildi

-(H)n PASS Passive vidalandi

-(y) AmA IMP Impossible geleme, kalama

-mA NEG Negative gelme, kalma

-(H)r AOR Aorist tense kalir, bulur, biytir, gelir
-(A)r AOR Aorist tense gecer, kacar

-(H)yor PROG Progressive geciyor, kaliyor, buluyor, giilityor
-DH PAST Past tense kaldi, gecti, buldu, giildii
-mHs NARR Narrative past kalmis, bulmusg, 6lmiis
-(y)AcAk FUTR Future kalacak, gelecek, isteyecek
-(y)A OPT Optative gelmiyeydi, kazmiyaydi
-mAlIl NECES Necessitative gelmeli, bulmali, bilmeli
-sA COND Conditional gelse, vursa, bulasa

-yAbil ABLE Abilitative gidebil, kalamayabil
-yAmA NEG Negative abilitative gideme, okuyama
-yAdur REPEAT Repeat gidedur, calisadur

-yAkal STAY Stay bakakal

-yAyaz JUSTLIKE Almost diiseyaz, unutayaz

-yAgor SINCE Ever since yapagor

-yAgel SINCE Ever since yapagel

-yAkoy REPEAT Repeat alikoy

-(y)DI DESR Past aux yapsaydi, gelmisti, gelecekti
-(y)mHs NARR Dubitative aux tembelmis, gitmismig, buradaymis
-(y)sA COND Conditional aux buradaysa, bulduysa, gelmisse
-(y)ken WHILE Adverbial aux gelmigken, buradayken
-ArAk BYDOINGSO Adverbial aux bakarak, gelerek

-cAsInA ASIF Adverbial aux bilmiscesine, ucarcasina
-(H)m A1SG 1st person singular geldim, bulmugum

-(H)z A1PL Type I 1st person plural  geliriz, bulmuguz

-k Al1PL Type II 1st person plural — geldik, baksak

-(sH)n A25G 2nd person singular gelsen, bulursun

-(sH)nHz A2PL 2nd person plural gelseniz, bulursunuz

-DHr COP Copula buradadir, gelmisizdir

-Z A3SG Type II 3rd singular yapamaz, gelemez

Table 2.4: Inflectional morphemes listed by (Oflazer et al.| (1994) for Turkish verbs
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Fire extinguish-PST-P3SG
The fire extinguished

(2.10) Ben yangin-1  son-diir-dii-m
I fire-ACC  extinguish-CAUS-PST-P1SG
I extinguished the fire

In addition to causativisation, passive forms can also be produced through morphology. The
direct object of the verb in (2.1T)) disappears with the accusative case marker in (2.12] due to
the passive morpheme -(H)n.

(2.11) Kahya  yliziig-i bul-du
Butler ring-ACC  find-PST
The butler found the ring

(2.12) Yiizik  bul-un-du
Ring find-PASS-PST
T he ring was found

Besides examples above, morphological decomposition of a word may be ambiguous, and the
right scope can only be solved by looking at the syntactic structure. The following examples
are from |Goksel (2006). Possessive markers in Turkish are ambiguous as seen in Example
2.13]2.14]and 2.T5] so they must be identified syntactically.

(2.13) sev-di-k-ler-imiz
like-PST-REL-PLU-P1PL
those who we like /liked

(2.14) sev-en-ler-imiz
like-REL-PLU-P1PL
those who like /liked us

(2.15) kopek sev-en-ler-imiz
dog like-REL-PLU-P1PL
those among us who like/liked dogs

Bozsahin|(2002,2011)) states that morphological processing is a part of the syntax and the data
in which syntactic processing occurs contains enough evidence for morpheme semantics. We
build a model to process morphology by latent syntax in the thesis to integrate morphological
processing and syntactic structure based on this perspective. Although the parsing in our
model runs at the word level, doing parsing through syntactic principles can be regarded as
the first step for point of view above.

12



2.4 Computational Models for Morphological Analysis

One of the foundations of cognitive science is the idea that the human mind is an informa-
tion processor. According to this idea, our mind is a computational device that processes the
information that comes from the environment and creates internal representations from them
to learn, interact or modify the world. We have enough evidence to think that morphology
has systematicity which requires computational processing. Especially for the understand-
ing of the languages having rich morphology such as Turkish, morphological processing is
inevitable (Hankamer, [1989; Martin & Jurafskyl 2000; Bozsahinl, 2002; |Cakicil 2008} Kiligl
2013; |Coltekinl 2013)). |Cakicy (2008) showed that only for the verb git - go, there are 177 in-
stances in the Turkish treebank. |Sehitoglu & Bozsahin|(1996)) described that the system built
with a limited number of morphological rules can produce 2800 inflections from 40 Turkish
roots. When we think of the whole language, 200 billion distinct entries generated from 20K
noun roots and 10K verb roots are needed to list according to [Hankamer| (1989). Therefore,
our lexicon must contain hundreds of billions of entry, if we analyze the language without
morphological processing which is untenable.

Morphological processing can be divided into two main tasks: the morphological segmen-
tation and the morphological parsing. The segmentation task denotes splitting words into
morphemes and finding morpheme boundaries. However, the parsing operation refers to the
full analysis of a word including segmentation, morphological structure, tags of morphemes.
In section below, a short listing of research is given for both segmentation and parsing on
Turkish morphology.

2.4.1 Morphological Segmentation

As described above, morphological segmentation is the operation of identifying morphemes
in the words. Even though there are supervised and unsupervised computational models for
the segmentation task, supervised models generally aim to offer full analysis as well as seg-
mentation. Hence, these types of models are revised in Section[2.4.2] In addition to that, since
unsupervised learning proposes knowledge free mechanisms, models described in this section
are not designed only for Turkish.

One of the first models for the word segmentation was developed by Harris| (1955)). He made
use of the number of successors (successor variety) of a letter within a word to obtain the
correct split of the word. This method is called the letter successor variety (LSV) model. If
successor variety of a letter is high enough, it is likely that the letter is the morpheme boundary
in the word according to the algorithm designed by Harris.

Figure [2;1'] which is taken from (Can & Manandhar, [2014)), illustrates an example of letter
trie which is a successor tree. LSV approach was used in further studies to learn morpheme
boundaries (Hafer & Weiss| [1974; Déjean, |1998; |(Goldsmith, 2006; |Coltekin, 2010).

Another well-known system in the domain is Linguistica (Goldsmith, 2001} [2006)). Linguis-
tica relies on minimum description length (MDL) principles originated from information the-
ory. According to MDL, the best compression of data provides the best representation of data
(Rissanen, [1978). According to MDL the best compression of data provides the best repre-
sentation of data. Linguistica uses a data structure which contains a stem list, an affix list and
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Figure 2.1: Morpheme boundaries in LSV model

a signature list. A signature includes a list of words that have common affixes. Description
length (DL) is calculated with respect to the best segmentation model (M) in term of shortness
of morphemes, fitting the corpus (C) as follows:

1
p(CIM)

DL(C,M) = logs( ) 2.1)

The probability of a segmentation (w) is based on conditional probability between morphemes
and signatures as in Equation[2.3] where 7 is the root and f is the affix.

pw=t+f)=p(o)p(tlo)p(f|o) (2.2)

Morfessor Baseline introduced by [Creutz & Lagus| (2002) is another model based on MDL
principles. The total cost in the model is calculated as follows:

Cost = DL(Data) + DL(Codebook)
=Y —log p(mi) + Y k = I(m)) (2.3)

i€D jem

where p(m;) specifies the maximum likelihood estimate of the morpheme m;, I(m;) denotes
the length of m; and k represents the number of bits to encode a character.

Besides the baseline model, the Morfessor family also includes Categories ML (Creutz & La-
gus,, 2004) and Categories MAP (Creutz & Lagus, [2005) models which rely on the maximum
likelihood estimation and maximum a posteriori framework respectively. In these models,
morphemes are divided into categories that are stem, suffix and prefix. Creutz used the Hid-
den Markov Models (HMMs) to represent the words with morphemes belonging categories
(C) as follows:
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k

p(mi,my,...m) = [[[p(GICi-1)p(milCi)] * p(Cit1|Cr) (2.4)
i=1

where the transition probability between categories is denoted by p(C;|C;—1), the maximum
likelihood estimate of morpheme m; in terms of C; is calculated by p(m;|C;). The last term
P(Cr+1|Ck) represents the word boundary. Morfessor Categories MAP contains a prior term
that encodes the probability of the lexicon in addition the maximum likelihood estimate.

Can & Manandhari (2012) made use of a non-parametric Bayesian model to represent morpho-
logical paradigms which are hierarchically clustered. A non-parametric Bayesian model can
have infinite-dimensional parameter space to carry information from all possible solutions.
Can & Manandhar| (2012))’s algorithm recursively operates on hierarchical tree structure to
estimate the likelihood of data.

The last state-of-art model reviewed is Morpho Chain proposed by Narasimhan et al.|(2015).
They used a log-linear model to select correct morphological chains constructed through
child-parent relations in the surface form. For example, hope—hopeful—hopefully forms
a morphological chain, where hope is the parent of hopeful and hopeful is the child of hope.
The most dominant feature in Morpho Chain is the semantic similarity between words which
is based on neural word embeddings.

Unsupervised embeddings of words (Mikolov, Chen, et al., 2013 Mikolov, Sutskever, et al.,
2013 [Pennington et al., |2014) captures the distributional properties of words in the corpus
via neural networks. We used neural word embeddings to find pseudo-morphemes.

2.4.2 Morphological Parsing

In literature, there are various morphological parsers built for Turkish. Most of them are based
on a set of rules and finite-state machines (Hankamer, [1986}; Oflazer, |1994; |Altun & Johnson,
2001} Coltekin, [2010).

Finite state machines or automata (FSA) are abstract machines having a finite number of states
and the conditions that determine the transitions between states through the time. They are
frequently used in language modeling (Hopcroft et al., 2001). Figure [2.2]is an example of
FSA which is taken from (Kilic,[2013)). Turkish suffixes —/A, —n and —DI are represented as
transitions in FSA given in[2.2] For example, if we start with Turkish noun sepet basket, the
verbs sepet-le to put into basket” sepet-le-n to be put into basket and sepet-le-di, sepet-le-
n-di which are forms in the past tense of sepetle and sepetlen can be generated.

A finite state transducer (FST) is an FSA having two tapes. One tape can capture the phono-
logical changes and other tapes can incorporate the morphotactics for morphological model-
ing as in (Koskenniemil, [1984)). Figure@]is presented by Sak et al.|(2008)) shows a transducer
for Turkish vowel harmony that designed according to Turkish phonological rules described
in (Oflazer et al., [1994).

Hankamer| (1986) combined phonological rules and morphotactics in keci which is the first
finite state morphological parser for Turkish. Unlike other FST systems that use the two-level
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Figure 2.3: An example FST given by (Sak et al., 2008) for Turkish vowel harmony

morphology formalism of Koskenniemi| (1984)), ke¢i checks the true phonological form of the
morpheme at each transition that corresponds a suffixation.

Oflazer| (1994) introduced another morphological parser which is implemented according to
two-level approach. The parser was designed by using PC-KIMMO (Antworth, [1990) with
23K lexical entry, 22 phonetic rules and Turkish morphotactics described in (Ofiazer et al.,
1994).

Sak et al.|(2008)) presented another wide-coverage morphological analyzer for Turkish. They
used AT&T FSM tools (Mohri, [1997) with lexicon having 54K root words. A sample output
of their parser for the word alin is given in Example They further performed disam-
biguation operation by using average perceptron algorithm (Sak et al., 2007) in the same
study.

(2.16) alin[Noun]+[A3sg]+[Pnon]+[Nom]
al[Noun]+[A3sg]+Hn[P2sg]+[Nom]
al[Adj]-[Noun]+[A3sg]+Hn[P2sg]+[Nom]
al[Noun]+[A3sg]+[Pnon]+NHn[Gen]
al[Adj]-[Noun]+[A3sg]+[Pnon]+NHn[Gen]
alin[Verb]+[Pos]+[Imp]+[A2sg]
al[Verb]+[Pos]+[Imp]+YHn[A2pl]
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CHAPTER 3

COMBINATORY CATEGORIAL GRAMMAR

3.1 Introduction

Combinatory Categorial Grammar (Steedman), 2000; |Steedman & Baldridge, 2011; Bozsahin,
2013) is a radically lexicalized linguistic formalism that provides a transparent interface be-
tween syntax and underlying semantics where a syntactic parse directly results in an inter-
pretable structure. |Steedman & Baldridge| (2011) describe CCG with the following definition:

Combinatory Categorial Grammar (CCG), like other varieties of categorial gram-
mar[...] is a form of lexicalized grammar in which the application of syntactic
rules is entirely conditioned on the syntactic type, or category, of their inputs. No
rule is structure or derivation dependent.

CCG extends the classical Categorial Grammar (AB) of |Ajdukiewicz| (1935) and |Bar-Hillel
(1953). In a categorial grammar, each lexical item is a triplet which contains phonological
form, syntactic type and semantic type and it is written as in[3.1] The details are presented in
Figure shows an example of CCG derivation for sentence “Mary likes musicals" and
the corresponding tree structure for this derivation is given in Figure [3.1]

3.1 likes := (S\NP)/NP: AxAy.likes'xy
(3.2) likes := (S\NP)/NP:AxAy.likes'xy
surface form syntactic type  logical expression
category
(3.3) Mary likes musicals

NP :mary’ (S\NP)/NP: AxAy.likes'xy NP :musicals'
>
S\NP : Ly.likes'musicals'y

S : likes'musicals’'mary’
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Mary likes musicals
NP P

V\ /N
\S v

Figure 3.1: The corresponding tree structure for the derivation in the[3.3]

3.2 Categories and Combinatory Rules in CCG

3.2.1 Categories

A CCG category can be either atomic or complex. Atomic categories are basic categories
having a single item which generally refers to nouns, noun phrases, prepositions or sentences
with N, NP, PP, S as in[3.4]

(3.4) Mary := N :mary

Complex categories are made by the composition of atomic categories and other complex
categories with slash operators. Slash operators define functions with the parameters on the
right of the slash and the result on the left, that is similar to lambda operators in lambda-
calculus. For example, 3.5|is a word with syntactic category (NP/N) that expects an N to the
right of the word to become an NP.

3.5 the := NP/N:Ax.x

In our model, we use N and V for the noun roots and the verb roots. The affixes included in
noun inflections and verb inflections are represented with N /N and V /V respectively as CCG
categories.

3.2.2 Rules

CCG uses a small set of combinators adopted from combinatory logic to extend the classical
categorial grammar because natural languages need more expressive power than the categorial
grammar provides. In this respect, we describe composition (B), type raising (T) in addition
to the function application.

Function application is the only rule that the classical categorial grammar has. According to
the directionality of application which is determined by slash operators, there are two types
of function application rules:

3.6) Forward Application (>)
X/Y:f Y:a = X:fa
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(3.7 Backward Application (<)
Y:ia X\Y:f = X:fa

Composition which is one of the Curry’s combinators (Curry et al.,|1958) allows coordination
of adjacent strings that can not combine with the function application rules. [3.8]and [3.9] show
the classical composition rules. Crossing compositions in [3.10] and [3.11] use to compose
crossing dependencies in languages such as Turkish.

(3.8) Forward Composition (>B)
X/Y:f Y/Z:g = X/Z:Ax.f(gx)

(3.9) Backward Composition (<B)
Y\Z:g X\Y:f = X\Z:Ax.f(gx)

(3.10) Forward Crossing Composition (>B)
X/Y:f Y\Z:g = X\Z:Ax.f(gx)

3.11) Backward Crossing Composition (<B)
Y/Z:g X\Y:f = X/Z:Ax.f(gx)

Steedman & Baldridge] (2011) gives a sample derivation in Figure [3.2] to illustrate the usage
of composition rules that yields composite verb might prove from might and prove.

Marcel conjectured and might prove completeness
(S\NP)/NE (X\X)LX (S\NP)/yP — VP/NE NP
marcel’ : conjecture’  :a might' : prove’ : completeness’'
(S\NP)/NP
: Mxhy.might (prove'x)y

((S\NP)/NP)\«((S\NP)/NP)
: MvAxhy.and' (might' (prove'x)y) (tv xy)
(S\NP)/NP
: AxAy.and’ (might (prove'x)y) (conjecture'xy)
\NP
: Ay.and' (might' (prove' completeness’)y) (conjecture’ completeness’y)

>

S : and' (might' (prove' completeness' \marcel') (conjecture' completeness' marcel’)

Figure 3.2: A CCG derivation including composition and coordination (Steedman &
Baldridgel [2011)

Coordination in the Figure is handled by category in The * symbol following the
slashes allows only the function application on this category.

(3.12) The Conjunction Category
and = (X\.X)/.X
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Type-Raising transforms arguments to “functions over functions-over-such arguments" by
rules given in [3.13]and [3.14] Arguments can compose with verb by using type raising rules.
Type-raised arguments expect verbs to join a coordination structure as given in Figure [3.3]
(taken from (Steedman & Baldridgel 2011)).

(3.13) Forward Type Raising (>T)
X:a = T/(T\X):Af.fa

(3.14) Backward Type Raising (<T)
X:a = T\(T/X):Af.fa

In Figure Marcel and I are turned into S/(S\NP) to compose with verbs and become
S /NP for coordination by the category of and.

Marcel proved and I disproved completeness
NP (S\NP)/NP (X\.X)/X NP (S\NP)/NP NP
— ST — ST
S/(S\NP) S/(S\NP)
>B >B
S/NP S/NP
(S/NP)\.(S/NP)
S/NP
S >

Figure 3.3: A CCG derivation that includes type-raising (Steedman & Baldridgel 2011)

3.3 Morphology and CCG

CCG aims to define a semantically transparent interface on syntactic structures and syntactic
derivations. However, when morphology does not take account in the lexicon, some mis-
matches emerge such as bracketing paradoxes (Bozsahin, 2002). Moreover, from a cognitive
science point of view, the ability of the human mind to understand the language can not be ex-
plained without morphological processing in languages with rich morphology such as Turkish
(Hankamer!, [1989; |(Cakici, [2008)).

Bozsahin| (2002) proposes a morphosyntactic framework based on CCG. He states that mor-
phemes have a phrasal scope rather than word scope, so morphemes affect the semantics of
sentences. His morphemic CCG grammar includes the lexical projection of morphosyntactic
properties of languages.

Bozsahin| (2002)) introduces also “morphosyntactic modalities" to manage attachment mech-
anism in morpheme-based structure. He provides a way to combine phrasal functions of
morphemes and rules of morphotactics by these modalities. Figure [3.4]taken from (Bozsahin,
2002)) shows an example derivation in morphemic CCG lexicon. The plural marker —Iar plu-
ralize the phrase oyuncak araba, so resulting parse gives semantically correct construction
without distorting the principle of transparency of the derivation.
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Mehmet [[oyuncak araba]  -lar] -1 sev-er

M.NOM toy car  -PLU -ACC like-TENSE
- B
b b b b n b ¢ o t f
<]NrLor'u. <]N/<]N <]N QN\QN <]Nutt\<]N <]5\ <]NPJ’L!‘)HT
f
: mehmet :Axtoyx :car :Az.pluz Af S \ <ANPyce
S/(S\ A NPoy) w g like zy
: A f. f[mehmet]
e
b
<1 N:toycar

< N: plu(toy car)

ANaee: plu(toy car)

=T

(S\NP)/(S\NP\ 4 NP,....): Ag.g[plu(toy car)]

t !
8\ 4 NPoom: Ay.like(plu(toy car))y

S: like(plu(toy car))mehmet
‘Mehmet likes toy cars.”

Figure 3.4: A CCG derivation in Morphemic CCG lexicon of |Bozsahin| (2002)

3.4 Probabilistic CCG (PCCG)

A Probabilistic CCG (Zettlemoyer & Collins, [2005)) is a stochastic mechanism to assign prob-
abilities to possible CCG derivations of a sentence and to select the most probable parse by
ranking them. Mathematically, it defines a conditional distribution P(L,T|S) over possible
(L,T) pairs for a sentence, where L is the logical form and T is the sequence of derivations
for s given sentence S.

PCCG uses a conditional log-linear model which is introduced in (Clark & Curran, [2003).
For each (L,T,S) triples, a function f generates a feature vector in R? with d distinct features
as in follows:

f(L7 T,S) = <f1(L> T75)7"'7fd(L7 T7S)> (3.1)

The formula for the probability of a (L, T) pair for a given sentence S is as follows:

oJ(LT.S).0

P(L,T|S;6) = (3.2)

Z(L,T) ef(LT.S).0

where 6 € R? is the parameter vector for a grammar of size n. Therefore, the most probable
logical expression (L) for a given sentence S is obtained with the following formula:

arg mLaxP(L|S;é) =arg miaXZP(L,T|S;é) (3.3)
T
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The parameter estimation for 0 in the training phase with the dataset containing n number
of (S;,L;) pairs is performed by differentiating the log-likelihood as in and After the
differentiation step, a common stochastic gradient descent algorithm (LeCun et al.|, [1998)) is
used to maximize the likelihood.

0(9) = zn:logP Li|S;;0) Zlog Z (Li,T|S:;0)) (3.4)

Zf] L;,T,S;) P(T|S;,L;; 6) — fZﬁ L,T,S;) P(L,T|S;;6) (3.5)
1T

i= i=1T

In our model, we use the CCGlab (Bozsahin, |2017)) for probabilistic CCG. The only feature
our model has is the lexical feature that represents the number of occurrence of a given lexical
entry in a sequence of derivations.
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CHAPTER 4

DATA

We used two different datasets: one to learn distributed features of words to be morpholog-
ically segmented and other to induced a weighted CCG lexicon to be used in probabilistic
morphological parsing. In this chapter, the details of the datasets are presented.

4.1 BOUN Corpus

In order to capture distributed properties of words and to embed them into a low dimensional
vector space (see the Chapter[5|for the details), we make use of BOUN corpus provided by|[Sak
et al.[ (2008)). BOUN corpus is a web corpus consists of 423 million word tokens. Different
sources of data are used to build this corpus. 184 millions of word tokens are gathered from
three newspapers and 239 millions of word tokens are manually crawled from the Turkish
web pages. Table shows the details of the corpus.

Corpus Word  Tokens
Milliyet 59M  68M
Ntvmsbnc 75M  86M
Radikal 50M 58M
Web Pages 239M  279M

BOUN Corpus 423M 491M

Table 4.1: Sub-corpora with number of tokens in the BOUN corpus (Sak et al., 2008])

BOUN Corpus contains 48 thousand root words despite a large number of word tokens in it.
This is an evidence of productivity in Turkish morphology. A script to remove the punctuation
and noisy words is run on the corpus automatically. Corpus is re-organized by removing new
lines. The final dataset has 361 million tokens and 725 thousand word types (i.e., distinct
word) to be used in our model as given in Table[d.2] This data does not have any label or hint
to inform the learning process. The only source of information is the distribution of words.
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Final BOUN Corpus

Word Token 361M
Word Type 275K

Table 4.2: Corpus used for morphological segmentation in our model

4.2 Turkish Corpus of 2016 Sigmorphon Shared Task

The aim of the thesis is to learn the morphemes with their correct morphological classes and
to parse the word-forms with corresponding semantics. The semantics of words is determined
by the stem and inflectional morphemes attached to it. SIGMORPHON Shared Task (Cotterell
et al.,[2016)) provides the required data to train a probabilistic CCG grammar in our model.

The first SIGMORPHON Shared Task was organized to encourage the computational studies
on morphological reinflection in 2016. Systems which joined the shared task tried to gener-
ate rein flections from inflected words without an explicit morphological analyzer as in the
first language acquisition of children. The workshop offered three different tasks regarding
the main issue where Task 1 aims to generate inflections, Task 2 and Task 3 demand the re-
inflection with different restriction and source of information. Datasets from 10 languages
including Turkish are provided for each different task.

We use Turkish datasets prepared for the Task lﬂ The dataset is divided into three portions
to be used as training, development (i.e., optimization) and testing data. All portions include
the roots of words with their part-of-speech tags. Training and development sets contain a set
of morphological classes and inflected forms in pairs. Test set consists of only inflected word
forms in addition to word roots. There are no segmented words in these datasets. The full
composition of the datasets is given in Table[d.3]

Pairs Lemma Tags

Train 12645 2353 190
Development 1599 1125 170
Test 1598 1128 170

Table 4.3: Turkish datasets provided by SIGMORPHON 2016

In order to ensure that the data used in the lexical training step is entirely contained in the
corpus employed for the word embeddings, we remove the words that are not in the BOUN
corpus from the training and test sets. We also recreated the sequence of the morpheme classes
so that only the classes of the morphemes expressed in the surface form or inflected words
remain. The remaining training set consists of 4568 inflected words containing 3808 nouns
and 760 verbs. The number of unique word roots in this set is 1353 for the nouns and 260
for the verbs. The test set is obtained by merging the original test set and development set. In

! All  datasets including  the  Turkish  corpus are  publicly available in
https://github.com/ryancotterell/sigmorphon2016/tree/master/data/
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addition to that, preprocessing operations performed on the training set are also applied on the
combined test set and randomly chosen 500 words is used to test. The word with maximum
number of suffixes has 4 inflections in both training and test set. The summary of the statistics

is given in Table

Training Set Test Set

Noun Verb Total | Noun Verb Total
# of inflected word forms 3808 760 4568 | 480 120 500
# of unique root 1353 260 1613 | 311 90 401
# of words having 4 suffixes 0 10 10 0 4 4
# of words having 3 suffixes | 852 170 1022 83 31 114
# of words having 2 suffixes | 1805 468 2273 | 165 83 248
# of words having 1 suffixes | 1151 112 1263 | 132 102 234

Table 4.4: Datasets used for the lexical learning and testing

We make use of CCG for the latent syntax in the internal structure to learn morphology and
word semantics. For this reason, each morpheme is defined as a semantic function. Table [4.3]
shows the unique functions in the training dataset. The reason why the third person singular
agreement marker A3SG is not seen in the table is that it is not represented with any morpheme
in the surface form of the words. In the further steps of our model (see the Chapter [3)),
these morpheme types with semantic functions are used the generate CCG entries containing
syntactic types as well.

Each training input is a (surface form : semantic interpretation) pair with the information
of the word being a noun or a verb. Input pairs inflected from the Turkish noun ac1 - pain in
the training set are given in|4.1

(4.1) acilarimiz := N : possessivel p(plural’ (pain’))
acilarda = N :locative'(plural'(pain’))
acimizi = N :accusative' (possessivel p'(pain’))
acilarimizda := N :locative' (possessivel p'(plural’ (pain’)))
acilarimizin := N : genitive'(possessivelp'(plural’(pain’)))
acima = N :dative'(pain’)
acilarinizdan := N :locative'(possessive2p'(plural’ (pain’)))
acilarinizi = N :accusative' (possessive2p’ (plural’ (pain’)))
acisindan := N :ablative'(possessive3s' (pain’))
acisina := N :dative' (possessive3s' (pain’))
acisinda := N :ablative'(possessive2s' (pain’))
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PoS Attribute | Morphological Classes Semantic Form
Noun | Number PLU Ax.plural’(x)
Noun | Person PSS1S Ax.possessivels’(x)
Noun | Person PSS2S Ax.possessive2s’ (x)
Noun | Person PSS3S Ax.possessive3s’ (x)
Noun | Person PSSI1P Ax.possessivel p' (x)
Noun | Person PSS2P Ax.possessive2p’ (x)
Noun | Person PSS3P Ax.possessive3p’(x)
Noun Case ABL Ax.ablative' (x)
Noun Case ACC Ax.accusative' (x)
Noun Case DAT Ax.dative' (x)
Noun Case GEN Ax.genitive(x)
Noun Case LOC Ax.locative' (x)
Verb Tense FUT Ax.future (x)
Verb Tense PAST Ax.past’ (x)
Verb Aspect PROG Ax.progressive'(x)
Verb Aspect PFV Ax.perfective'(x)
Verb Modal NEG Ax.negative' (x)
Verb | Agreement A1SG Ax.agreement1s’(x)
Verb | Agreement A2SG Ax.agreement2s’(x)
Verb | Agreement AIPL Ax.agreement1p’(x)
Verb | Agreement A2PL Ax.agreement2p’(x)
Verb | Agreement A3PL Ax.agreement3p’(x)

Table 4.5: Morphological classes with corresponding semantic form in training data
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CHAPTER 5

LEARNING MORPHOLOGY BY LATENT SYNTAX

This chapter describes the computational model for morphology learning. The learning of
morphology can be defined as learning of the association between word-forms and their mean-
ings that we call "morphosemantics", since the meaning of a word is composed of the smaller
meaning-bearing units, namely morphemes, inside the word. For example, Turkish word ara-
balarimin - (..) of my cars carries both genitive, possessive and plural meaning. Semantics
for this word can be represented as follows:

(5.1) arabalarimin : genitive'(possessivels'(plural’(car’)))

As seen in Example [5.1} we use a logical formalization to represent the semantics of words.
Each morphological class acts as a logical function in this formalization (see the Chapter[d]for
the full list of morphological classes we employ). An important point is that it is not known
which meaning (i.e., morphological class in our case) comes from which substring in the input
representation. We expect our model to make correct association between correct part of word
and corresponding meaning, with the help of lexicalized grammar and latent syntax.

The logical forms of words that represent their semantics are derived by the syntactic parsing.
We make use of CCG to model syntax in the morphology. Each morpheme is defined as a
lexical item containing a syntactic type and a logical expression. An example lexicon for the
word arabalarimin - (..) of my cars and the corresponding CCG derivation are given in
and [5.3|respectively.

(5.2) araba := N : car
-lar := N\N: Ax.plural(x)
-1m := N\N: Ax.possessivels’(x)
-1n := N\N: Ax.genitive' (x)
(5.3) araba -lar -im -1n

N:car' N\N: Ax.plural'(x) N\N: Ax.possessivels’(x) N\N: Ax.genitive'(x)
N : plural'(car)

N : possessivels'(plural' (car))

N : genitive' (possessivels' (plural' (car)))
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Morphology is accounted as internal syntax which is the hidden variable in our model to fit
a realistic setting for language learning, that is, our model learns morphosemantics of words
without any clue as to where the morpheme boundaries are in the word or which part of the
word corresponds to which function in the logical form. The model learns the morphological
structure of words just from the compositional meaning of them. The underlying assumption
for this type of learning is that the one who is exposed to linguistic input through the utterance,
has access to the semantics of the input in a logical form as well. The model only accepts that
knowledge of word roots that is acquired prior to morphology learning (which is discussed in
Chapter (/).

Syntax is the hidden variable in our model and it consists of combinatory categories. Learn-
ing of morphology is accomplished during syntactic parsing, which is constrained only by the
universal principles of CCG for semantic transparency. All combinators are included in pars-
ing. Combinatory categories of lexical items which are hypothesized in different forms are
marginalized over all syntactic derivations. By doing so, the most likely semantic composition
of the words is learned by latent syntax.

The assumption that word roots are lexicalized with their syntactic types prior to morphology
learning is also dependent on the universal semantics types. Inspired from the Language of
Thought (Fodor, [1975), we assume that the learner is able to distinguish the nominal and
verbal functions that are composed of semantic type e, e — t and e — (e — 1).

To sum up, the target of the model is to learn to map words to logical forms with the defini-
tion above. The only input provided to the model is a set of word-meaning pairs illustrated
in[5.1] For that reason, our model contains an automatic segmentation algorithm based on
neural word embeddings and a lexical learning algorithm using classical probabilistic CCG
framework. The workflow of the model is as follow:

1. Model takes a set of (word : logical form) pairs.

2. A segmentation algorithm generates the possible segmentations for each word and lists
all pseudo-morphemes in the dataset.

3. In order to generate a morpheme lexicon, each pseudo-morpheme is associated with a
CCG category regarding to its logical form by template based operation. A limited set
of categories is used in this operation. (Steedman & Bozsahin, 2016)

4. For each lexical item a weight is learned though parsing with probabilistic CCG.

Model is tested by comparing the correct logical forms with the derived expressions of words
which are not in the training set. Most probable derivation is selected via PCCG for each
word which is segmented by the operation in Step 2.

The first section in this chapter briefly describes the segmentation algorithm and the second
section covers the lexical learning process which we call MorphoGenLex.
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5.1 Morphophonological Segmentation by Using Unsupervised Embeddings of
Words

Combinatory Categorial Grammar is a linguistic theory that can only assign categories to
segmented items, due to the transparency of derivation. The Principle of Combinatory Type-
Transparency says that the logical form (semantic type) of a reduction is entirely determined
by syntactic types in the derivation (Steedman), 2000). For that reason, words must be divided
into smaller substrings before the lexical learning step. Besides that, word segmenting should
be performed without any morphological clue to not contradict with the main assumptions in
the thesis.

We use a deterministic method based on unsupervised embeddings of words. Word embed-
dings refer to the vector model learned by neural networks from the distribution of words in a
corpus (Mikolov, Sutskever, et al., 2013} Mikolov, Chen, et al.,[2013;|Pennington et al.|[2014).
The origins of the idea were introduced by Harris| (1954). Harris’ distributional hypothesis
says that “linguistic items with similar distributions have similar meanings”. In these types
of models, each word is represented by a vector in a low dimensional vector space. It is
thought that these vectors learned from the distributions, express the meaning of the words.

Morphological segmentation is one of the natural language processing tasks in which word
embeddings are employed (Narasimhan et al., 2015} Soricut & Och, 2015). We used word
embeddings to generate possible segmentations of words in the training pairs. The motivation
that drives us to use word embeddings is the observation that semantically similar words
can be detected by comparing their vectors due to the vectors’ capability to represent the
contextual meaning of words. Since the inflectional morphemes which we try to learn do not
significantly change the meaning of the words, inflected forms of the same stem have higher
semantic similarity between them. Hence, an algorithm that uses word embeddings can detect
semantic similarity to hypothesize the possible segmentations. The segmentation algorithm
proposed in|Ustiin & Can|(2016) is adopted for the current study. Since words are represented
by vectors that encode the meanings, semantic similarities between words can be calculated
with vectorial distance between them. The form of vectorial distance used in our model is the
cosine distance:

v(wi) -v(wa)
[v(w)] - [[v(w2)]]
Yo vilwi)-vi(wa)

VI viw)? VR vi(wa)?

G.D

cos(v(wy),v(w2))

(5.2)

where v(w;) and v(w,) denotes the n dimensional vectors of words w; and w respectively

The algorithm takes the input pair (word : LF) and starts with listing all possible segmen-
tations of the given word. The number of segments in a word must be equal to the number
of components in the logical form (LF) to provide a semantically transparent derivatioﬂ
Besides, it is assumed for a given pair that the root of the word is acquired as a lexical infor-
mation before this segmentation. For the given input pair of word arabalarimin (..) of my cars

I The underlying assumption is that the resulting reduction in corresponding CCG derivation for a word does
not contain a free A term.
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where the root is araba car, all possible segmentations are provided in[5.4] The list contains a
total of 15 segmentations.

/ /

54 araba-l-a-rimin : genitive' (possessivels'(plural'(ca

/ ! /

araba-l-ar-imin : genitive' (possessivels'(plural’(ca

/ ! /

araba-l-ari-min : genitive' (possessivels'(plural’(ca

/ / /

araba-l-arim-in : genitive' (possessivels'(plural'(ca

/ ! /

araba-l-arimi-n : genitive'(possessivels'(plural’ (ca

/ /

araba-la-r-imin : genitive' (possessivels'(plural’(ca

/ ! /

araba-la-ri-min : genitive' (possessivels'(plural'(ca

/ / /

araba-la-rimi-n : genitive' (possessivels'(plural’(ca

/ / /

araba-lar-i-min : genitive' (possessivels'(plural'(ca

/ ! /

araba-lar-im-in : genitive'(possessivels'(plural’ (ca

araba-lar-imi-n : genitive'(possessivels'(plural(car’

/ ! /

araba-lari-m-in : genitive' (possessivels'(plural'(ca

/ ! /

araba-lari-mi-n : genitive' (possessivels'(plural’(ca

/ /

( ( (car’)))
( ( (car’)))
( ( (car’)))
( ( (car’)))
( ( (car’)))
( ( (car’)))
( ( (car’)))
araba-la-rim-in : genitive'(possessivels'(plural’(car’)))
( ( (car’)))
( ( (car’)))
( ( (car’)))
( ( (car’)))
( ( (car’)))
( ( (car’)))
( ( (car’)))

araba-larim-i1-n : genitive' (possessivels'(plural’(ca

After all possible segmentations are listed, our algorithm checks all morpheme boundaries
whether the corresponding cosine distance is above a certain threshold. The word (as a char-
acter sequence) up to the boundary point and the word up to next boundary point are compared
by using the function in to calculate the cosine distance for a morpheme boundary. For
example, in order to check morpheme boundaries at the segmentation araba-lar-im-1in,
the algorithm calculates cosine distance for (araba,arabalar) (arabalar,arabalarim),
(arabalarim,arabalarimin) as shown in Figure If a cosine distance for a boundary
point is below a threshold, the segmentation that contains this boundary point is removed from
the possible segmentation list. The full procedure is presented in Algorithm I}

araba # arabalar arabalarim # arabalarimin
://"- - "--\\.. lr/--' - --._\\
I i A d i i ~I+
I ] I
‘araba‘ ; ‘—War‘ ' ‘—1m‘ .‘—1n|
2R U A
. e

arabalar # arabalarim

Figure 5.1: The mechanism to check cosine distance at split points for finding morpheme
boundaries in araba-lar-im-in

Ustiin & Can (2016) reported that the most feasible cosine distance threshold for Turkish
word segmentation task is 0.25. We make use of this value in order to reduce search space for
lexical learning. For example, 9 segmentations are eliminated out of 15 segmentations, when
the algorithm is performed for the segmentation set given in [5.4 The list in [5.5] shows the
remaining segmentations.
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Algorithm 1 Automatic segmentation algorithm used to eliminate semantically unfeasible
segmentations
1: procedure AUTOSEGMENT(word, LF : word root, threshold)

2: Generate list L for all possible segmentations of word w.r.t LF
3 forall s € L do

4: for all b in morpheme boundaries do

5 if cos(v(wqp),v(Wsp11)) # threshold then

6 remove s from L

return L

/

(5.5) araba-lar-i-min : genitive' (possessivels'(plural’

/ /

araba-lar-im-in : genitive' (possessivels'(plural'

/ /

plural’

araba-lar-imi-n : genitive' (possessivels

/ /

araba-lari-mi-n : genitive'(possessivels'(plural’

/

( ( (car’)))
( ( (car’)))
( ( (car’)))
araba-lari-m-in : genitive' (possessivels'(plural’(car’)))
( ( (car’)))
( ( (car’)))

araba-larim-i-n  : genitive'(possessivels'(plural’
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5.2 Inducing a CCG Lexicon by MorphoGenLex

This section describes the learning procedure for morphology in our model. What the model
learns is that which substrings (i.e., pseudo-morphemes) are associated with which meanings.
The learning procedure we proposed is based on the algorithms used by |Zettlemoyer & Collins
(2005) and |Coltekin & Bozsahin| (2007).

Zettlemoyer & Collins|(2005) introduced a lexical learning algorithm GenLex. GenLex takes
a sentence and a logical form to generate a set of lexical entries in such a way that at least one
parse of the sentence with lexicon is obtained in the results in corresponding logical form.
A set of “hand-engineered" rules is defined in GenLex to restrict the number of lexical items
generated during the learning phase. Parameters of the lexical items are estimated with PCCG
described in Section[3.4

Coltekin & Bozsahin|(2007)) adopted a similar procedure from Zettlemoyer & Collins| (2005)
to model word acquisition with child directed speech. Their system uses syllable boundaries
in the phonetic form of words and concatenates them according to the number of components
in the logical form. Syllables (or group of syllables) are associated with basic categories
during lexical generation. They employed a Bayesian computation to assign weights to each
lexical item obtained.

Unlike the systems above, our model, we call MorphoGenLex, is designed to learn cate-
gories of pseudo-morphemes to derive the semantically transparent morphological structure
of words, that is, the main focus of our model is syntax in the words. We also do not use man-
ually defined syllable boundaries to segment words. We use distributional properties of words
to divide words into pseudo-morphemes and to eliminate a large number of lexical items.

MorphoGenLex begins with an initial CCG lexicon Aq that does not contain any items. As a
new input pair arrives, our system first creates a set of segmentations by using the procedure
given in Algorithm [T} After the segmenting operation, MorphoGenLex associates a CCG
category to each pseudo-morpheme according to logical form in the input pair and a syntactic
type selected from the pre-defined templates. The lexical items generated in this way, are
placed to the lexicon A. We defined two sets of syntactic type templates: one for the nouns
and one for the verbs which are given in[5.6) and respectively. These templates contain
only basic types variated with directionality constraint which is provided by the forward slash
(/) and the backward operators (\ ). The start modalities (/., \ ) are not employed not to limit
syntactic parsing to only the forward and backward compositions.

5.6) syn.type.nl = N
syn.type.n2 = N/N
syn.type.n3 = N\N

6.7 syn.type.vl =V
syn.type.v2 = V/V
syn.type.v3 = V\V

MorphoGenLex generates all possible combinations of syntactic types and LF components
to create a set of lexical entries for each pseudo-morpheme. The Principle of Combinatory
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Type-Transparency guides the process to restrict the number of lexical items for semantic
transparency. Since it is assumed that the learner has the knowledge of root word with its syn-
tactic type, corresponding lexical items are automatically generated without any combination.
A set of lexical items which are generated from the example word arabalarimin (..) of my cars
with root araba car, is given the Table 5.1 with segmentation list that comes from the previous
step.

As in classical PCCG which is described in Section [3.4} each lexical item in lexicon A, has
a weight vector @ € R? in addition to the word form, the syntactic type and the logical form.
In this study, we parametrize only the lexical features that keep the number of times the
corresponding lexical items is used in the derivation sequence. Therefore each weight is rep-
resented by a numerical ValuﬁE] In order to estimate the weights, PCCG defines a distribution
over parse trees for any word form with the following formula:

e F(L.T,W).0

P(L,T|S;6) =

Ywr) e/ (LTW)8 i

where L is the final logical form of the words, T is the sequence of derivations that corresponds
to the suffixation in our case and W is the word itself. The most probable logical form (L) for
a given word W is obtained with formula in In accordance with the problem definition, T’
represents the hidden syntax in the word structure.

arg mLaxP(L|W;é) =arg mLaXZP(L,T|W;6_)) (5.4)
T

2 Initial value of each weight is 1.0 in our model.
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Input Pair

arabalarimin

. genitive' (possessivels'(plural’(car’)))

[ gen/ (possls'(plu/(car’))) T

*These abbreviations are used for morphological classes in the rest of the table

Segmentation
Set

araba-lar-i-min
araba-lar-im-in
araba-lar-imi-n
araba-lari-m-in
araba-lari-mi-n
araba-larim-1i-n

Lexical Set

araba:=N : car

-lar :=N/N: Ax.pl'(x)
-lar :=N/N: Ax.possls'(x)
-lar :=N/N: Ax.gen'(x)
-1:=N/N: Ax.plu'(x)
-1:=N/N: Ax.possls'(x)
-1:=N/N: Ax.gen'(x)
-min:=N/N: Ax.plu'(x)
-min:=N/N: Ax.possls'(x)
-min:=N/N: Ax.gen'(x)

-1m:=N/N: Ax.plu(x)
-1m:=N/N: Ax.possls’'(x)
-1m:=N/N: Ax.gen'(x)
-1n:=N/N: Ax.pld(x)
-1n:=N/N: Ax.possls'(x)
-1n:=N\N: Ax.gen(x)

-1m1:=N/N: Ax.pl'(x)
-1m1:=N/N: Ax.possls'(x)
-1m1:=N/N: Ax.gen'(x)
-n:=N/N: Ax.pld'(x)
-n:=N/N: Ax.possls’(x)
-n:=N/N: Ax.gen'(x)
-lari:=N/N: Ax.plu(x)
-lari:=N/N: Ax.possls’(x)
-lar1:=N/N: Ax.gen'(x)
-m:=N/N: Ax.plu(x)
-m:=N/N: Ax.possls’(x)
-m:=N/N: Ax.gen'(x)
-m1:=N/N: Ax.plu'(x)
-m1:=N/N: Ax.possls’'(x)
-m1:=N/N: Ax.gen'(x)
-larim:=N/N: Ax.plu'(x)
-larim:=N/N: Ax.possls'(x)
-larim:=N/N: Ax.gen'(x)

-lar :=N\N: Ax.plu(x)
-lar:=N\N: Ax.possls’(x)
-lar :=N\N: Ax.gen'(x)
-1:=N\N: Ax.plu'(x)
-1:=N\N: Ax.possls'(x)
-1:=N\N: Ax.gen'(x)
-min:=N\N: Ax.plu'(x)
-min :=N\N: Ax.possls’(x)
-min:=N\N: Ax.gen'(x)

-1m:=N\N: Ax.plu(x)
-1m:=N\N: Ax.possls’'(x)
-1m:=N\N: Ax.gen'(x)
-1n:=N\N: Ax.pld(x)
-1n:=N\N: Ax.possls'(x)
-1n:=N\N: Ax.gen(x)

-1m1:=N\N: Ax.plu(x)
-1m1:=N\N: Ax.possls’(x)
-1m1:=N\N: Ax.gen'(x)
-n:=N\N: Ax.pld(x)
-n:=N\N: Ax.possls’(x)
-n:=N\N: Ax.gen (x)
-lari:=N\N: Ax.pld(x)
-lari:=N\N: Ax.possls’'(x)
-lar1:=N\N: Ax.gen'(x)
-m:=N\N: Ax.plu'(x)
-m:=N\N: Ax.possls’(x)
-m:=N\N: Ax.gen (x)
-m1:=N\N: Ax.plu/(x)
-m1:=N\N: Ax.possls’'(x)
-m1:=N\N: Ax.gen'(x)
-larim:=N\N: Ax.plu'(x)
-larim:=N\N: Ax.possls'(x)
-larim:=N\N: Ax.gen'(x)

Table 5.1: All lexical items generated for the word arabalarimin
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CHAPTER 6

RESULTS

In this chapter, we describe the results of the experiments that are performed by using the
datasets given in Chapter @l Word embeddings that we make use of in the segmentation
algorithm, are obtained by training wordZve with a version of BOUN corpus presented in
Section 3.1. The lexical learning model is trained with the SIGMORPHON dataset given
in Section 3.2. In order to learn a morphemic lexicon with the probabilistic CCG, we use
cC Glalﬂ which is designed by |Bozsahin| (2017).

The output of our model is a weighted CCG lexicon that contains morpheme entries consisting
of a syntactic type, a logical form and a numerical weight. The parser uses this lexicon to
derive the most likely logical form for the input word which is segmented into morphemes.

We evaluate our model in terms of two criteria: comprehension of words and coverage of
morphemic lexicon. The comprehension task refers that when a word that is not in the training
set is given to the system as an input, whether parser grasps the compositional meaning of
the word. Moreover, coverage of lexicon shows how much the lexicon covers the actual
morphemes in the training set.

6.1 Word Comprehension

In order to evaluate word comprehension success of our model, we give inflected word forms
to the system and compare resulting most likely logical forms with the actual logical forms.
The design of our model requires segmented word forms to be able to perform semantically
transparent derivations (see Chapter[5]for the details of the design). We generate one sequence
of segments for each word included in the test set.

The operation of word splitting is based on the algorithm described in Section[5.1} We slightly
modify the algorithm so that only one segmentation is obtained for each word. To select one
of possible segmentations, we define a normalized distance function d,() for each of them:

1 word2vec refers to both a neural word embeddings model and also a software program that designed ac-

cording to model (Mikolov, Sutskever, et al.| 2013} [Mikolov, Chen, et al| [2013). It was created by a team of
researchers led by Tomas Mikolov at Google. We make use of a java implementation to obtain word embeddings
(Teaml 2017).

2 CGGlab is a software tool implemented in COMMON LISP for experimenting with CCG. We use a model
setting with N (ireration numner) =5, op = 0.1 and ¢ = 0.1 as learning parameters
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dy(si) = ZbCOS(V(ijl)v(Wj)) 6.1)

Y number of boundary points

where s; is the ' possible segmentation and » denotes the boundary points in s;. After d,, mea-
sure is calculated for each segmentation, the one with the highest d,, is selected as segmented
form of the corresponding word.

The dataset used in testing consists of 500 inflected words that include 380 nouns and 120
verbs. After training model with 4568 (word : LF) pairs, our system obtains 364 correct
logical forms out of 500. The corresponding accuracy for the comprehension task is 72.80%.
Among the 120 verbs in the test set, 101 (84.16%) of them are correctly recognized by our
system, whereas only 263 (69.21%) of the nouns out of 380 can be mapped with the correct
logical form.

Noun Verb Total
# of Words 380 120 500
# of Correct LFs 263 101 374
Accuracy 69.21% 84.16% 72.80%

Table 6.1: Results of the word comprehension task

When we look at the hit rate of the morphological classes in the logical forms generated by
our system according to precision and recall, the model hits 745 morphological classes out
of 930 by generating 987 segments. The corresponding values for precision and recal are
75.48% (745/987) and 80.10% (745/930) respectively. The details of the results are given
in Table

Noun Verb Total
# of Morpheme Classes 694 236 930
# of Predicted Morpheme Classes 535 236 987
# of Correct Morpheme Classes 535 210 745
Precision 73.48% 81.08% 75.48%
Recall 77.08% 88.98% 80.10%
F-Score 74.94% 84.81% T77.42%

Table 6.2: Results for individual hits in logical form predictions

In word comprehension task, our model fails to predict logical forms of 126 words due to
three main problems: over-segmentation, under-segmentation and category mismatch. These
cases are illustrated in the 6.1} [6.2] and [6.3]

3 Recall shows the ratio of correct prediction to expected number of predictions while precision refers the
correct ones among all prediction made.
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(6.1) gel -iyo -1 -um
N :come N\N: Ax.prog'(x) N\N: Ax.prog'(x) N\N: Ax.possessivels’(x)
N : prog'(car)

N : prog'(prog'(come))
N : possessivels'(prog' (prog' (come)))

(6.2) eldiven -ler -ini
N :glove’ N\N: Ax.plural'(x) N\N: Ax.genitive'(x)

N : plural’(glove)

N : genitive' (plural’ (glove))

(6.3) g0z -ler -in -in

N:eye N\N: Ax.plural'(x) N\N: Ax.possessive2s’(x) N\N: Ax.possessive2s’(x)

N : plural’ (eye)

N : possessive2s' (plural (eye))

N : possessive2s' (possessive2s' (plural’(eye)))

Compared to the syllable-based model developed by (Coltekin & Bozsahin, [2007) although
our model does not use any segmenting information, our model results with similar success
for the recognition of words.

6.2 Coverage of The Lexicon

MorphoGenLex which is the lexical generation algorithm in our model aims to map pseudo-
morphemes with lexical categories that consist of a syntactic type and a logical form. After it
is trained on 4568 input pairs, it generates automatically 5065 lexical entries. 1793 of them
are root forms of words and they are provided before the learning. Therefore, MorphoGenLex
creates 3272 lexical items from 298 unique substrings.

Each item in the lexicon contains a weight that is initially assigned as 1.0. Lexical training
is actually a weight optimization process so that the parser in our model parses words with
respect to their logical forms to increase the weights of the correct entries. Table [6.3] shows
the top 40 of them according to their weights.

The training set contains 144 unique bound-morphemes. Our model learns all of them with
positive weights. However since MorphoGenLex expands the lexicon with all possible sub-
strings, 288 unique lexical items are generated with positive weights for these bound-morphemes.
For the verb inflections, the only pseudo-morpheme that gains the dominant weight by mis-
take is -r := V\V : Ax.progressive’(x). On the other hand, for the noun inflections, (-1,
-i, -u, -i)and (-in, -in, -un, -iin) are confused between possessive3s - accusative
and possessive2s - genitive cases respectively due to the phonetic similarity and the lack of
morphotactic rules.
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Another result of the lexical learning is that our model also learns the allomorphs of the same
morpheme jointly in lexicon. For instance, two allomorphs of plural marker, ler and lar, are
lexicalized correctly by the category of N\N := Ax.plural’(x) as can be seen in Table
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Surface Form | Syntactic Type | Logical Form Weight
-t1 V\V Ax.past’(x) 15.77
-s1 N\N Ax.possessive3s'(x) | 14.18
-yor V\V Ax.progressive'(x) | 12.88
-lar N\N Ax.plural’(x) 12.79
-da V\V Ax.past’(x) 12.70
-larim N\N Ax.plural’(x) 12.51
-nin N\N Ax.genitive (x) 12.48
-acak V\V Ax.future (x) 12.39
-yo V\V Ax.progressive (x) 12.32
-1yo V\V Ax.progressive'(x) | 11.98
-lari N\N Ax.plural’ (x) 11.73
-1yor V\V Ax.progressive' (x) | 11.65
-ar V\V Ax.perfective'(x) 11.24
-m1z N\N Ax.possessivelp’(x) | 10.95
-la N\N Ax.plural’(x) 10.52
-si N\N Ax.possessive3s'(x) | 10.36
-lar V\V Ax.agreement3p’(x) | 10.17
-a N\N Ax.dative (x) 10.11
-1m1z N\N Ax.possessivelp'(x) | 10.10
-larimiz N\N Ax.plural’ (x) 9.88
-ler N\N Ax.plural’(x) 9.80
-ndan N\N Ax.ablative (x) 9.37
-le N\N Ax.plural’(x) 8.96
-dan N\N Ax.ablative (x) 8.94
-lerim N\N Ax.plural’(x) 8.75
-e N\N Ax.dative (x) 8.70
-zi V\V Ax.future (x) 8.66
-1m N\N Ax.possessivels'(x) | 8.29
-m1yo V\V Ax.negative'(x) 8.16
-den N\N Ax.ablative' (x) 8.14
-m1 V\V Ax.negative' (x) 8.08
-larini N\N Ax.possessive3s'(x) | 7.92
-k V\V Ax.agreement1p'(x) | 7.75
-iim N\N Ax.possessivels'(x) | 7.72
-ma V\V Ax.past’(x) 7.71
-rsun V\V Ax.agreement2s'(x) | 7.71
-da N\N Ax.locative' (x) 7.66
-nin V\V Ax.past’(x) 7.58
-na N\N Ax.dative (x) 7.42
-du V\V Ax.past’(x) 7.29

Table 6.3: The top 40 lexical items in our lexicon
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CHAPTER 7

DISCUSSION

The study we present in the thesis contains two main arguments in terms of cognitive science
point of view:

1. The model that we design provides a more realistic learning environment in terms of
language and specifically word acquisition.

2. The morphological structure of the words has compositional semantics as in the de-
pendency structure of the sentences or phrases. One syntax with combinatorial char-
acteristics can fit for both cases. This should be considered as a linguistic aspect of
the Language of Thought Hypothesis (Fodor, [1975) which advocates that “thought and
thinking take place in a mental language".

The first argument relies on the objective situation in which children are involved during lan-
guage acquisition. The task they confront is to link phonological input coming from speech
to meaning that arises from the environment, that is, they must learn to map part of utter-
ance with constituents of semantics. [Kwiatkowski et al.| (2012) show that children can learn
language from pairs of utterance and logical form representing contextually available mean-
ing. (Coltekin & Bozsahin| (2007) make use of a similar procedure to model noun acquisition
from child-directed speech. They uses syllabified words to learn to map between syllables
(or consecutive clusters of syllables) and morphological knowledge in the noun inflections.
We take one step further to show that morphology can be learned by hidden syntax from the
distributional and the compositional semantics of words. In our model morpheme boundaries
are predicted according to distributional properties of words and morphosemantics is learned
by parsing with combinatorial syntax. Distributional properties of words are learned just from
raw data in an unsupervised manner.

Results show that distributional properties of words help to map the correct morphemes with
the correct semantics. However, our model requires a better algorithm that finds more accurate
segmentation of words for recognition of the most likely meaning of words.

In our model, it is assumed that the knowledge of root of words and their syntactic cate-
gories (noun or verb) are lexicalized before the learning of the complex structure of words.
According to |Aksu-Kog/ (1985)), Turkish children capture the nominal case of nouns earlier
prior to other morphological variations. |Avcul (2014)) also showed that children can acquire
the knowledge of whether a word is a noun or a verb from various social and attentional cues.
Therefore our assumption does not jeopardize the realistic scenario for morphology learning.
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The second argument is based on the Language of Thought Hypothesis (Fodor,|[1975). LOTH
claims that thought and thinking are products of a symbolic system which has combinatorial
syntax and semantics, that is, cognitive processes occur in a mental language called Men-
talese in which tokens are represented with both symbolic representations, that are physically
realized in the brain of thinkers. [Fodor (1975) suggested that thoughts are the tokens of these
representations having a syntactic structure with underlying semantics. Hence, thinking is the
process of generating a complex thought from the atomic tokens with the help of syntactic op-
erations defined over these representations. Since thinking governed by combinatorial syntax,
resulting products are causally sensitive, i.e., semantically transparent.

According to LOTH, the cognitive ability of language processing has a common foundation
with thinking occurs in mentalese. The language is the expression of thought and in order
to make assumptions about what thought is being expressed, it should have a compositional
structure to form semantics as in mentalese.

Fodor|(1975)) stated that language learning requires an internal mental language common to all
human beings. The language of thought procures ability to make form-meaning association
with a combinatorial grammar.

Our study consists of a model to learn morphology by combinatorial syntax, as well. We as-
sume that learner has the ability to make symbolic manipulation on linguistic representations.
In our model, morphology is learned from word-meaning pairs by using latent syntax. When
considered together with (Zettlemoyer & Collins, 2005) in which syntax is modeled as a hid-
den variable captured from sentence and logical form pair, our study can be seen as a strong
evidence for LOTH.
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CHAPTER 8

CONCLUSION

The thesis presents a computational model that learns morphology from the word-form mean-
ing pairs. In the input representation of the model, the meaning of each word is formalized in
a logical form without the information about which part of meaning comes from which part
of the word. Our model parses morphophonologically segmented words into logical forms
by assuming the syntactic categories are latent variables. Thus, morphology is learned by
internal syntax which is a hidden variable in our model.

We make use of a small set of CCG categories and principles to internal syntax in the words.
The learning occurs via a probabilistic CCG. After the training, our model builds a weighted
morphemic CCG lexicon to recognize morpheme and to comprehend words by parsing. Each
lexical item in the lexicon contains a surface form (phonological form), syntactic categories,
a logical form and a weight. The resulting most likely meaning for a new word is calculated
with these weights and possible syntactic derivations. Since CCG is used in the model, it
provides a transparent interface between syntax and semantics in lexical projections.

Possible morphophonological segmentation of words is obtained by using distributional prop-
erties of words. In order to segment words into pseudo-morphemes with respect to these prop-
erties, we train a word embeddings model for words with a neural network, namely word2vec.
The algorithm we design makes use of cosine similarity between word embeddings to esti-
mate whether a split point can be a morpheme boundary or not.

Therefore, this study aims to learn morphemes with correct morphological classes and to
obtain corresponding semantics of any word without morphological analysis. Our input rep-
resentation and model design are appropriate to language and word acquisition context. In
the real scenario, the task that children face is to find linguistic boundaries from phonological
streams and to map them with lexical representations. They can only access the phonological
and distributional properties of linguistic items and contextually available meanings of them,
as in our model. We assume that children sensitive to clues to extract word boundaries from
the phonological stream and the root forms of words with basic syntactic type are acquired
before the morphological learning.

We perform experiments to test our model on Turkish nominal and verbal inflections. The
system is trained with SIGMORPHON dataset described in Chapter[d The word embeddings
model is also trained with BOUN corpus. The results of test are evaluated with respect to two
aspects: word comprehension and coverage of the lexicon learned.

Among the 500 words which are not in the training set, our model correctly derive the mean-
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ing of 374 words, that is, the accuracy of our model in comprehension task is 72.80%. Al-
though the common belief is that nouns are acquired earlier compared to verbs, our model
performs better in verbal inflections. The accuracy of word comprehension in verbs is 84.16%
(101/120) whereas nouns have an accuracy of 69.21% (263/380). |Avcu| (2014) also encoun-
tered the same tendency in some of his experiments and reported them in his thesis.

Regarding the results evaluated according to the hit rate of individual morphological classes
in logical form predicted by our model, our model finds the correct morphological classes
with an f-score of 77.42%, precision of 75.48% (745/987) and recall of 80.10% (745/930).
The hit rate of inflections in the verbs is better in this evaluation, as well.

Compared to the (Coltekin & Bozsahin| (2007), our system gets competitive results even if
the syllables are not provided manually to segment the words. However, ambiguity in the
meaning comprehension is higher in our model as expected.

The coverage of lexicon which is learned after the training also gives promising results. Our
MorphoGenLex algorithm generates 3272 lexical items for the possibly bound-morphemes
from 298 unique pseudo-morphemes. 1046 lexical items out of 3272 are increasing in weight
as a result of training. The list of real bound-morphemes which consists of 144 morphemes,
is entirely contained in 1046 lexical items.

Especially in nominal inflections, there are many phonetically identical bound-morphemes
with the same syntactic category combined with different logical form, since we use very
limited set of syntactic types to represent them. This causes the ambiguity in comprehension
task such as confusion between possessives3s — accusative or possessives — genitive.

Our model also learns the allomorphs of the same morpheme jointly in lexicon. For instance,
two allomorphs of plural marker, ler and lar, are lexicalized correctly by the category of
N\N := Ax.plural(x).

The overall results show that a model that uses both distributional and compositional seman-
tics of words can learn morphology by assuming that there is a latent syntax in word structure.

8.1 Future Work

Firstly, in order to show the universality of the assumption the model can be tested with other
concatenative languages such as Finnish or Hungarian.

Secondly, we can increase the number of syntactic types in our lexical template so that our
lexicon can also project the morphotactics of the language.

Our model is designed to perform only morphology learning and word comprehension. The
last possible extension of our model would be to include the phrase structure to the learning in
order to build a fully fledged semantic parser and generate high-coverage morphemic lexicon.
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Appendix A

A SAMPLE PARSE RESULT IN CCGLAB

Most likely LF for the input: (GEL ECEK LER DI)

(PST (3PL (FUT GEL))) =
(PST (3PL (FUT GEL)))

Cumulative weight: 408.94516

Most probable derivation forit: (4 1 403)
LEX 1.0 (GEL):=V
: GEL
LEX 6.60565 (ECEK):=VW
s (LAM X (FUT X))
LEX 4.49914 (LER):=WV\V
: (LAM X (3PL X))
<B 11.1043 (ECEK)(LER):= V'V
D(LAMX (LAMX (3PL X)) (LAM X (FUT X)) X))
LEX 6.58057 (DI):=VWV
:(LAM X (PST X))
<B 17.6554 (ECEK LER)(DI):=VWV
(LAM X
(LAMX (PST X)) (LAM X ((LA.M X (3PL X)) (LAM X (FUT X)) X)) X))
< 66.1909 (GEL)(ECEK LER DI):=
s ((LAMX
((LAM X (PST X))
(LAM X (LAM X (3PLX)) (LAMX (FUT X)) X)) X))
GEL)

Final LF, normal-order evaluated:

(PST (3PL (FUT GEL))) =
(PST (3PL (FUT GEL)))

Most weighted derivaton : (4 1 403)
LEX 1.0 (GEL):=V
: GEL
LEX 6.60565 (ECEK):= V'V
: (LAM X (FUT X))
LEX 4.43914 (LER):=V\V
: (LAM X (3PL X))
<B 11.1048 (ECEK)(LER):= V\V
t (LAM X ((LAMX (3PL X)) (LAM X (FUT X)) X)))
LEX 6.59057 (DI):=V\V
: (LAM X (PST X))
<B 17.6954 (ECEK LER)(DI):=V\V
(LAMX
(LAMX (PST X)) (LAM X ((LA_M X (3PL X)) (LAM X (FUT X)) X)) X))
< 66.1909 (GEL)(ECEK LER DI):=
t((LAM X
((LAM X (PST X))
(LAM X (LAM X (3PLX)) (LAMX (FUT X)) X)) X))
GEL)

Final LF, normal-order evaluated:

(PST (3PL (FUT GEL))) =
(PST (3PL (FUT GELY))

Figure A.1: The parse result for the word “gel-ecek-ler-di”
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