
FASTER RESIDUE MULTIPLICATION MODULO 521-BIT MERSENNE PRIME
AND APPLICATION TO ECC

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF APPLIED MATHEMATICS

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

SHOUKAT ALI

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY
IN

CRYPTOGRAPHY

SEPTEMBER 2017

Approval of the thesis:

FASTER RESIDUE MULTIPLICATION MODULO 521-BIT MERSENNE
PRIME AND APPLICATION TO ECC

submitted by SHOUKAT ALI in partial fulfillment of the requirements for the degree
of Doctor of Philosophy in Cryptography Department, Middle East Technical
University by,

Prof. Dr. Bülent Karasözen
Director, Graduate School of Applied Mathematics

Prof. Dr. Ferruh Özbudak
Head of Department, Cryptography

Assoc. Prof. Dr. Murat Cenk
Supervisor, Cryptography, METU

Examining Committee Members:

Prof. Dr. Ferruh Özbudak
Mathematics, METU

Assoc. Prof. Dr. Murat Cenk
Cryptography, METU

Prof. Dr. Ersan Akyıldız
Mathematics, METU

Assoc. Prof. Dr. Sedat Akleylek
Computer Engineering, Ondokuz Mayıs University

Assist. Prof. Dr. Oğuz Yayla
Mathematics, Hacettepe University

Date:

iv

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: SHOUKAT ALI

Signature :

v

vi

ABSTRACT

FASTER RESIDUE MULTIPLICATION MODULO 521-BIT MERSENNE PRIME
AND APPLICATION TO ECC

Ali, Shoukat
Ph.D., Department of Cryptography

Supervisor : Assoc. Prof. Dr. Murat Cenk

September 2017, 94 pages

We present faster algorithms for the residue multiplication modulo 521-bit Mersenne
prime on 32- and 64-bit platforms by using Toeplitz Matrix-Vector Product (TMVP).
The total arithmetic cost of our proposed algorithms is less than the existing algo-
rithms and we select the ones, 32- and 64-bit residue multiplication, with the best
timing results on our testing machine(s). For the 64-bit residue multiplication we
have presented three versions of our algorithm along with their arithmetic cost and
from implementation point of view, we provide the timing results of each version.
The transition from 64- to 32-bit residue multiplication is full of challenges because
the number of limbs becomes double and the bitlength of the limbs reduces by half.
We propose three technique for 32-bit residue multiplication such that both the arith-
metic cost and the timing results of each one is provided. Without use of any intrinsics
and SIMD/assembly instructions in our implementation, on Intel(R) Core i5− 6402P
CPU @ 2.80GHz, we find 136- and 550-cycle for our 64- and 32-bit residue multi-
plications, respectively. We implement constant-time variable- and fixed-base scalar
multiplication on the standard NIST curve P-521 and Edwards curve E-521. Using
our residue multiplication(s), we find E-521 more efficient than P-521 especially for
variable-base scalar multiplication.

vii

Keywords: residue multiplication, Toeplitz matrix-vector product, Mersenne prime,
elliptic curve cryptography, variable- and fixed-base scalar multiplication, 32- and
64-bit platforms

viii

ÖZ

521 BİTLİK MERSENNE ASAL MODÜLLERİNDE HİZLİ ÇARPMA VE ECC
YE UYGULAMALARI

Ali, Shoukat
Doktora, Kriptografi Bölümü

Tez Yöneticisi : Doç. Dr. Murat Cenk

Eylül 2017 , 94 sayfa

Toeplitz Matris - Vektör Çarpma (TMVP) kullanan, 32-ve 64-bit platformlarda çalı-
şan ve 521-bit Mersenne asal modlarındaki modüler çarpmalar için daha hızlı algo-
ritmalar sunmaktayız. Önerilen algoritmalarımızın toplam aritmetik maliyeti mevcut
algoritmalar ile kıyaslandığında daha azdır, ayrıca test makinalarmızda en iyi zaman-
lama sonuçlarına sahip olan algoritmalar, 32- ve 64-bit modüler çarpmaları seçilmiş-
tir. 64-bit modüler çarpma için aritmetik maliyetleri ile birlikte algoritmamızın üç
versiyonu gösterilmiştir ve uygulama bakış açısından, her bir versiyonun zamanlama
sonuçları da verilmiştir. Limb sayısı iki katına çıkarken limb bit uzunluğu yarıya azal-
dığı için 64-ten 32-bit kalıntı çarpımına geçiş zorluklarla doludur. Biz 32-bit modüler
çarpmaları için hem aritmetik maliyetleri hem de zamanlama sonuçları ile birlikte
üç teknik önermekteyiz. Uygulamamızda herhangi bir yapısal ve SIMD / montaj tali-
matı kullanmadan Intel R© Core i5 - 6402P CPU @ 2.80GHz’de sırasıyla 64- ve 32-bit
modüler çarpmalar için 136- ve 550- devir bulunmuştur. Standart NIST eğrisi P-521
ve Edwards eğrisi E-521 için sabit-zamanlı değişken ve sabit-bazlı skaler çarpmalar
uygulanmıştır. Bizim modüler çarpmalarımız kullanıldığı zaman, özellikle değişen-
bazlı skaler çarpım için E-521, P-521’den daha verimli bulunmuştur.

Anahtar Kelimeler: Modüler çarpma, Toeplitz matris-vektör ürünü, Mersenne prime,

ix

Eliptik eğrisi kriptografi, değişken ve sabit-bazlı skaler çarpımı, 32- ve 64-bit plat-
formları

x

To My Family

xi

xii

ACKNOWLEDGMENTS

I am thankful to my dissertation supervisor Assoc. Prof. Dr. Murat Cenk for his in-
sightful ideas, constant encouragements and valuable guidance in my research work.
I am also deeply grateful to him for all the support, time and openly sharing his expe-
riences.

I am thankful and grateful to Michael Scott for both making his constant-time variable-
base scalar multiplication code public and answering our questions related to imple-
mentations. Similarly, I would to thank Okash Khawaja, Dr. Çağdaş Çalık and others
for their valuable discussions and supports in improving our implementation results.

Embarking on the voyage of PhD would have never been possible without the firm
trust, unconditional supports and lasting encouragements of my parents and siblings.
They have always been there at the ups and downs of my life.

The time I spent at our Cryptology lab. and Institute of Applied Mathematics (IAM)
is and will always be the most memorable moments of my life. In spite of the rough
and tough waves of time, I came across many good people at IAM. Those people
made my research work and life pleasant and joyous. I shall be thankful to all of
them.

Lastly, I would to thank Türkiye Bursları for awarding me full scholarship to study at
Middle East Technical University (METU), Ankara, Turkey. This research was also
partially supported by the Scientific and Technological Research Council of Turkey
(TÜBİTAK) under Grant No. 115R289.

xiii

xiv

TABLE OF CONTENTS

ABSTRACT . vii

ÖZ . ix

ACKNOWLEDGMENTS . xiii

TABLE OF CONTENTS . xv

LIST OF TABLES . xix

LIST OF FIGURES . xx

LIST OF ABBREVIATIONS . xxi

CHAPTERS

1 INTRODUCTION . 1

2 PRELIMINARIES . 7

2.1 Finite Field . 7

2.2 Prime Field Arithmetic . 8

2.2.1 Addition and Subtraction 9

2.2.2 Multiplication . 9

2.2.3 Squaring . 13

2.2.4 Reduction . 13

xv

2.2.5 Inversion . 15

2.3 Toeplitz Matrix-Vector Product (TMVP) using integers . . . 18

2.3.1 Two-way Decomposition 19

2.3.2 Three-way Decomposition 20

2.4 Prime shapes . 20

2.5 Elliptic Curve over Prime Field 21

2.6 Elliptic Curve Cryptosystem 22

2.7 Point representation . 23

3 64-BIT RESIDUE MULTIPLICATION 25

3.1 Residue multiplication using TMVP 25

3.1.1 Proposed Technique 27

3.2 Algorithms and Comparison 31

3.2.1 Residue Representation 31

3.2.2 Implementation Results 32

3.2.2.1 Hybrid version 32

3.2.2.2 Mixed version 35

3.2.2.3 Recursive version 36

3.2.3 Arithmetic Cost Comparison 36

4 32-BIT RESIDUE MULTIPLICATION 39

4.1 Residue multiplication using TMVP 40

4.2 Technique-1 . 40

xvi

4.2.1 Level-1 . 41

4.2.2 Level-2 . 47

4.2.3 Overall Cost . 48

4.3 Technique-2 and Technique-3 49

4.3.1 Technique-2 . 50

4.3.1.1 Overall Cost 52

4.3.2 Technique-3 . 52

4.3.2.1 Overall Cost 55

4.4 Residue Representation . 55

4.5 Comparisons, Implementation and Testing Environment . . . 56

4.5.1 Schoolbook vs. TMVP variants of size 6 57

4.5.2 Residue Multiplication and Squaring 57

4.6 Worst-case bitlength analysis of Technique-1 60

5 SCALAR MULTIPLICATION . 65

5.1 Variable-base Scalar Multiplication 66

5.2 Our First implementation 70

5.3 Fixed-base Scalar Multiplication 72

5.4 Our Second implementation 74

5.4.1 Point Arithmetic Formulas 76

5.4.2 NIST Curve P-521 78

5.4.3 Edwards curve E-521 79

xvii

5.4.4 Timings . 81

6 CONCLUSION . 85

REFERENCES . 89

APPENDICES

CURRICULUM VITAE . 93

xviii

LIST OF TABLES

TABLES

Table 3.1 Number of operations for modular multiplication, 1 the cost of MUL
algorithm, 2 the cost of the optimal implementation in terms of cycles count 37

Table 4.1 SB = Schoolbook, 3wD = Three-way Decomposition, 2wD = Two-
way Decomposition and m.line = manually inlined. Clock Cycles counts
for SB and the TMVP variants of size 6 57

Table 4.2 Number of operations for 32-bit and 64-bit residue multiplication
techniques and their respective clock cycles counts. The cycles count were
obtained by generating 100 random integers at run-time and executing
each respective function for 107 times on each value. 60

Table 5.1 Clock Cycles counts of constant-time variable-base scalar multipli-
cation; GS stands for Granger-Scott algorithm, p and 2p stand for modulus
p and 2p implementation of the Hybrid version of our residue multiplica-
tion, respectively . 72

Table 5.2 Clock Cycles count of the scalar multiplication for NIST curve P-
521 and Edwards curve E-521 obtained at optimization level-3 of the GCC
5.4.0 compiler on Ubuntu 16.04 LTS. The timing tests were performed on
Intel(R) Core i5 − 6402P CPU @ 2.80GHz with Turbo Boost disabled,
Hyper-threading not supported and the machine was running on one core . 81

xix

LIST OF FIGURES

FIGURES

Figure 4.1 TMVP of size 18 for 32-bit implementation 41

xx

LIST OF ABBREVIATIONS

TMVP Toeplitz Matrix-Vector Product

ECC Elliptic Curve Cryptography

ECDLP Elliptic Curve Discrete logarithm Problem

SCR Short Coefficient Reduction

EFD Explicit Formulas Database

GCC GNU Compiler Collection

NAF Non-adjacent Form

P-521 Short Weierstrass standard NIST curve

E-521 Standard Edwards curve

Fp (Large-characteristic) Prime field

M Single-precision/word Multiplication

S Single-precision/word Squaring

A Single-precision/word Addition/Subtraction

Ad Double-precision/word Addition/Subtraction

xxi

xxii

CHAPTER 1

INTRODUCTION

Efficient cryptographic primitives have always been among the main objectives of the

researchers in cryptography. Therefore, the addition of Elliptic Curve Cryptography

(ECC) in the family of public key cryptography is a proof of efficiency over contem-

porary counterparts e.g. RSA. In ECC, an elliptic curve is defined over a finite field

where the characteristic of the field can be small or large prime. So, efficient finite

field arithmetic implies efficient ECC. That’s why the expensive finite field multipli-

cation and inversion (multiplicative inverse) have received good attention.

The expensive inversion can be avoided by choosing a higher coordinate system e.g.

Jacobian coordinate. But if inversions are required for some other efficiency purposes

i.e. mixed point addition, then Montgomery’s trick — computing the inverse of a

batch of elements by actually computing one inversion only — is the most efficient

strategy. Fermat’s Little Theorem is used to compute the inversion in constant-time

so that, the operation computation is guarded against simple timing attacks.

The finite field multiplication is comprised of integer multiplication and the expensive

reduction operation. In the literature there are different techniques to speed up the re-

duction operation and in case of Mersenne prime the operation is optimal in efficiency

because the reduction is computed by field addition(s) only. Unfortunately, there are

few Mersenne primes for contemporary cryptographic purposes. But there are other

kind of special primes such as Crandall primes, special Montgomery primes, Solinas

primes, Goldilocks prime etc. The implementation benefits of the Solinas primes [35]

for its efficiency, especially on 32-bit platform, made its way to become part of the

standards [15, 27]. The newly designed Goldilocks prime by Mike Hamburg [25]

1

is very useful for Karatsuba algorithm because at each level of Karatsuba, it saves

(double-precision) addition(s)/subtraction(s). Above all, the prime is equally suitable

for both 32-bit and 64-bit platforms.

For the ECC bitlength, the popular algorithm of Karatsuba [28] is widely used to com-

pute integer multiplication efficiently. Bernstein [4] presented the “refined Karatsuba

identity" which takes less number of additions than the original Karatsuba identity.

Furthermore, to reduce the cost of reduction in multiply-then-reduce technique, Bern-

stein et al. [5] eliminated some additions by using “reduced refined Karatsuba" in

their implementation. As explained in [5] it is based on the idea of reducing inputs

to a multiplication rather outputs of a multiplication. On the other hand, Granger

and Scott [23] achieved the (arithmetic) efficiency for their modular multiplication

algorithm by observing the structure/pattern of modular multiplication when multi-

plication and reduction steps are combined as single expression. Similarly, we — Ali

and Cenk [1] — observed that the same expression can be represented as a Toeplitz

Matrix-Vector Product (TMVP) and further reduced the total arithmetic cost of the

modular multiplication for 521-bit Mersenne prime modulus.

The Karatsuba algorithm [28] trades multiplication for addition(s)/subtraction(s) in

order to reduce the complexity of multiplication operation and asymptotically this is

good. But for the bitlength relevant to contemporary ECC, such techniques are useful

only when the cost of saved multiplications is higher than the new addition(s) or sub-

traction(s) that come as overhead. The ratio of multiplication to additions/subtractions

in Karatsuba 3-way, Toom-3 and Granger and Scott technique can be useful in asymp-

totic analysis but as shown in [1] that a more balanced way of trading multipli-

cation for addition(s)/subtraction(s) is more useful in terms of the arithmetic cost

and suitable for contemporary ECC bitlength. Moreover, for multi-precision inte-

gers, the use of reduced-radix representation — bitlength of limb is less than the

word-size of underlying computer — provides space for saving the result of addi-

tion(s)/subtraction(s) that were produced as a result of the saved multiplication(s).

Now, the carries produced as a result of those addition(s)/subtraction(s) do not need

to be propagated immediately. Hence, the reduced-radix representation provides the

advantage of postponding the carry propagation and has shown encouraging results

such as [1, 3, 5, 6, 7, 11, 16, 23, 25, 34]. On the other hand, the conventional method

2

of using the packed-radix representation — bitlength of limb is equal to the word-size

of underlying computer — has also been implemented by different reserachers and

some of the examples are [13, 14, 17, 22, 24, 30].

Darrel Hankerson et al. have pointed out in their book [19] that the performance of

ECC depends heavily on the speed of field multiplication. Therefore, our work is fo-

cused on designing new faster residue multiplication modulo 521-bit Mersenne prime

p for 32- and 64-bit platforms by taking the finite field multiplication as TMVP. To

the best of our knowledge, this is the first use of TMVP to perform residue multipli-

cation in non-binary field and TMVP has been used in binary field for example, [21].

In the first part of our work [1], we presented our residue multiplication for 64-bit

platforms such that the total arithmetic cost is less than the previously known best

algorithm of Granger and Scott [23] for 521-bit Mersenne prime modulus. The total

arithmetic cost was computed by taking the cost ratio of multiplication to addition as

3. Furthermore, we presented three versions of our residue multiplication to provide

an extensive comparison — to the best of our knowledge — with respect to the other

well-known algorithms using the modulus p. Each version of our residue multiplica-

tion has lesser total number of operations than its counterparts. For implementation

purpose, Granger and Scott [23] chose 522-bit modulus i.e. 2p and in our case, we

implemented both modulus p and 2p. For each version of our residue multiplica-

tion, we find the timing results of modulus p better than 2p. To show the efficiency

of their algorithm [23], Granger and Scott implemented constant-time variable-base

scalar multiplication on the standard NIST curve P-521 and Edwards curve E-521.

They made their C++ code public. So, following their work, we did the same by

using modulus p and 2p. We find the timing results of constant-time variable-base

scalar multiplication for P-521 and E-521 using the three versions of our residue mul-

tiplications better than the public code of [23] on our machine. Note that to ensure

fair comparison, we used the same public code of [23] and the changes required for

modulus p were made accordingly. All the codes were executed in the same testing

environment.

After the successful completion of the first part of our work, we decided to extend

our work to 32-bit platforms using the TMVP approach. So, with respect to 64-bit

platforms, on 32-bit platforms the number of limbs becomes double and the bitlength

3

of the limbs reduces by half. But things are not so simple and easy. Indeed, there are

many challenges among which correctness, called numerical stability in [33], comes

first due to the overflow on 32-bit platforms. The number of limbs on 32-bit platforms

is a multiple of both 2 and 3 which opens the way for two- and three-way decompo-

sition. The structure and decomposition of the TMVP lead us to three techniques of

performing the residue multiplication such that the total arithmetic cost is less than the

well-known algorithms using the modulus p. Again, we take the cost of one single-

precision multiplication equal to three single-precision additions. Furthermore, for

the sake of simplicity, the arithmetic costs are presented in terms of single-precision

multiplication and additions by taking the cost of one double-precision addition equal

to two single-precision additions. Our three 32-bit residue multiplications are dis-

cussed in detail along with their arithmetic costs and the timing results. So, among

the three techniques we have selected the one with the best timing result on our ma-

chine. For the chosen technique, we have provided a proof — using the worst-case

scenario — that our 32-bit residue multiplication does not cause overflow. Similarly,

efficiency is compromised to avoid overflow and we have ensured the minimal loss of

efficiency both in terms of arithmetic cost and clock cycles. For the clock cycles, we

performed timing tests on our machine to find out the cross-over point between the

schoolbook and TMVP. Using the chosen technique, we have implemented constant-

time fixed- and variable-base scalar multiplication for 32-bit platforms. Unlike the

first part of our work, this time we have implemented both constant-time fixed- and

variable-base scalar multiplication for 64-bit platforms.

The rest of the thesis is organized as follows: In Chapter 2, we briefly introduce our

readers to the rudimentary concepts that we belief will set them to a good start to

easily comprehend the following chapters and maybe beyond. Next, we discuss our

64-bit residue multiplication in detail and its three versions. The arithmetic cost and

timing result of the three version of our residue multiplication are provided in Chapter

3. In Chapter 4, we discuss in detail our three techniques to perform 32-bit residue

multiplication. The challenges that arise in the design and implementation of our

32-bit residue multiplication are also discussed. We end the chapter by providing the

worst-case bitlength analysis of our most efficient technique in terms of clock cycle.

In Chapter 5, we discuss the vital operation of single-scalar multiplication in ECC

4

and using our 32- and 64-bit residue multiplication, we implemented the constant-

time fixed- and variable-base scalar multiplication for the standard NIST curve P-521

and Edwards curve E-521. We have used more than one computer for the timing

tests and all the results are provided. Finally, in Chapter 6, we conclude our research

work.

5

6

CHAPTER 2

PRELIMINARIES

In this chapter we cover the rudimentary topics that are required for the following

chapters. First, we briefly introduce the Finite field. Then we discuss the large-

characteristic prime field arithmetic such that the pseudocode of each field operation

is provided. Next, we briefly introduce the Toeplitz matrix and discuss our decompo-

sition methods that are used as the basis to compute the Toeplitz matrix-vector prod-

uct (TMVP). There is also a brief section on different forms/shapes of primes that are

used in elliptic curve cryptography (ECC). In the next section we briefly introduce

the elliptic curve over prime field. Then we briefly discuss the use of Diffie-Hellman

key exchange protocol in ECC. Finally, we discuss some of the different coordinate

systems that are used to represent a point on elliptic curve.

2.1 Finite Field

A finite set F with the operations of addition (+) and multiplication (·) is called finite

field such that it satisfies the following properties:

• F with addition is an Abelian group

• F with multiplication, excluding 0, is an Abelian group

• (x+ y) · z = x · z + y · z for all x, y, z ∈ F.

By definition, addition and multiplication are the default operations on the elements

of F and the properties of Abelian group imply that now, we have also the operations

7

of “subtraction" and “division". Subtraction is defined as: for all x, y ∈ F, x−y = x+

(−y) where−y is the unique additive inverse of y in F such that y−y = y+(−y) = 0

and 0 is called the additive identity. Similarly, division is defined as: for all x, y ∈ F,

excluding the element 0, x/y = x · y−1 where y−1 is the unique multiplicative inverse

of y in F such that y/y = y · y−1 = 1 and 1 is called the multiplicative identity. Note

that the division comprises of the two operations: inversion, and multiplication.

The number of elements in a finite field is called “order" of the field. For a prime

number p and a positive integer m, it is known that there exists a finite field F of

order pm where p is called the “characteristic". F is called a “prime field" when

m = 1 and an “extension field" when m ≥ 2. Furthermore, any two finite fields of

order pm are “isomorphic"; which means that the two fields are structurally the same

except their labeling/representation.

From above it is clear that for a prime number p, the set {0, 1, . . . , p−1}with addition

and multiplication performed modulo p is a prime field with characteristic and order

both p. For any integer x, the “reduction modulo p" is an integer in {0, 1, . . . , p− 1}
which is actually the remainder of integer division of x by p. The characteristic-two

finite field is called “binary field". In practice, the small-characteristic finite fields

— characteristic 2, 3 etc. — are defined over extension fields. In our work, we are

interested in large-characteristic prime field and denoted by Fp.

2.2 Prime Field Arithmetic

In this section, we present fundamental algorithms for (large-characteristic) prime

field arithmetic that are independent of the shape of the prime p. Actually, the shape

of p has considerable impact on the efficiency of the slow reduction operation and

that’s why we have different shapes of prime at our disposal in ECC.

Suppose we are working on a W -bit computer and in our case W ∈ {64, 32}.
So, a W -bit word B = (bW−1, . . . , b1, b0) is a block where bi ∈ {0, 1} for i =

0, 1, . . . ,W − 1. The bit b0 is called the “least significant bit" and bW−1 is called the

“most significant bit". So, the bitlength of p is k = dlog2 pe and its word-length is

l = dk/W e. Furthermore, we assume that the elements of Fp are k-bit integers and in

8

our case k is very large than W which implies that an element x ∈ {0, 1, . . . , p − 1}
is split in l-word called “chunks/limbs". In practice one can store x in an array

X = [x0, x1 . . . , xl−1] of l W -bit words where x0 is the “least significant limb" and

xl−1 is the “most significant limb".

The use of the full computer word for each limb is called packed-radix representa-

tion. Alternatively, one can use reduced-radix representation such that the bitlength

of the limbs is less than W . The reduced-radix representation has shown interestingly

results in practice but in this section, all the algorithms that we present are using

packed-radix representation. Note that the algorithms presented in this section are

taken from Darrel Hankerson et al. book [19] and amendments in the pseudo-code

are made according to our naming convention and notations.

2.2.1 Addition and Subtraction

The modular addition and subtraction is performed by adding and subtracting the cor-

responding limbs along with the carry, respectively. The Algorithm 1 and Algorithm

2 perform addition and subtraction in Fp, respectively. From Algorithm 1 and Algo-

rithm 2, it is evident that in the case of packed-radix the carry propagation must be

performed simultaneously along with the limbs addition/subtraction.

2.2.2 Multiplication

One can compute the field multiplication in Fp using the multiply-then-reduce ap-

proach. In other words, first we compute the integer multiplication of two field el-

ements and then reduce the result modulo p. In this section, we discuss the integer

multiplication only. Before presenting the pseudo-code of the schoolbook method for

integer multiplication, we assume that (u1u0) denote a (2W)-bit integer where u0 and

u1 are the lower and higher W -bit words, respectively. The Algorithm 3 represents

the schoolbook method of operand scanning whose complexity is O(n2). The com-

plexity of multiplication was reduced from quadratic to O(nlog2 3) by Karatsuba and

Ofman in [28]. The algorithm is based on divide-and-conquer technique where both

the input operands are taken as two equal half-size operands with higher and lower

9

Algorithm 1 Addition in Fp

Input: X = [x0, . . . , xl−1], Y = [y0, . . . , yl−1] and modulus p where X, Y ∈ [0, p−1]
Output: Z = [z0, . . . , zl−1] where Z ≡ X + Y (mod p)

1: z0 ← x0 + y0 (mod 2W)

2: if x0 + y0 ∈ [0, 2W) then carry ← 0

3: else carry ← 1

4: for i from 1 to l − 1 do

5: zi ← (xi + yi + carry) (mod 2W)

6: if (xi + yi + carry) ∈ [0, 2W) then carry ← 0

7: else carry ← 1

8: if carry = 1 then Z ← Z − p

9: else if Z ≥ p then Z ← Z − p

10: Return Z

Algorithm 2 Subtraction in Fp

Input: X = [x0, . . . , xl−1], Y = [y0, . . . , yl−1] and modulus p where X, Y ∈ [0, p−1]
Output: Z = [z0, . . . , zl−1] where Z ≡ X − Y (mod p)

1: z0 ← x0 − y0 (mod 2W)

2: if x0 − y0 ∈ [0, 2W) then carry ← 0

3: else carry ← 1

4: for i from 1 to l − 1 do

5: zi ← (xi − yi − carry) (mod 2W)

6: if (xi − yi − carry) ∈ [0, 2W) then carry ← 0

7: else carry ← 1

8: if carry = 1 then Z ← Z + p

9: Return Z

10

Algorithm 3 Integer Multiplication
Input: X = [x0, . . . , xl−1], Y = [y0, . . . , yl−1] where X, Y ∈ [0, p− 1]

Output: Z = [z0, . . . , z2l−1] where Z = X · Y

1: for i from 0 to l − 1 do

2: zi ← 0

3: for i from 0 to l − 1 do

4: u1 ← 0

5: for j from 0 to l − 1 do

6: (u1u0)← zi+j + xi · yj + u1

7: zi+j ← u0

8: zi+l ← u1

9: Return Z

parts. Algebraically, suppose x = x12
k + x0 and y = y12

k + y0 are 2k-bit integers

then the Karatsuba algorithm computes X · Y as follows:

x · y = (x12
k + x0) · (y12k + y0)

= x1 · y122k +
(
(x1 + x0) · (y1 + y0)− x1y1 − x0y0

)
2k + x0 · y0.

Unlike the Algorithm 3 where 4 multiplications are required to compute x · y, Karat-

suba algorithm performs the same operation with 3 multiplications and some extra

single- and double-word additions/subtractions. So, at each level of Karatsuba algo-

rithm one save 1/4 multiplications at the cost of some extra single- and double-word

additions/subtractions. Normally, the Karatsuba algorithm is applied recursively until

some terminating condition where the schoolbook method is more efficient. For the

sake of simplicity, we assume that the terminating condition is single-word multipli-

cation and the inputs X, Y are l-word where l = 2k for some positive integer k. The

pseudocode of Karatsuba algorithm is provided as Algorithm 4.

Instead of splitting the inputs in half, there is a variant of Karatsuba algorithm that

splits the inputs in 3 equal parts and we call this technique Karatsuba 3-way multi-

plication. We use the formula of Weimerskirch and Paar [36] to show the working

of Karatsuba 3-way. For the sake of simplicity, let a = a210
2 + a110 + a0 and

11

Algorithm 4 Karatsuba Algorithm
Input: X = [x0, . . . , xl−1], Y = [y0, . . . , yl−1] where X, Y ∈ [0, p− 1]

Output: X · Y

1: if l = 1 then Return X · Y
2: else split X, Y in half

3: X = X12
W (l/2) +X0

4: Y = Y12
W (l/2) + Y0

5: A =Algorithm 4(X1, Y1)

6: B =Algorithm 4(X0, Y0)

7: C =Algorithm 4(X1 +X0, Y1 + Y0)

8: D = C − A−B

9: Z = A2Wl +D2W (l/2) +B

10: Return Z

b = b210
2 + b110 + b0 be two 3-digit integers then a · b is computed as follows:

a · b = (a210
2 + a110 + a0) · (b2102 + b110 + b0)

= D210
4 + (D1,2 −D1 −D2)10

3 + (D0,2 −D2 −D0 +D1)10
2

+ (D0,1 −D1 −D0)10 +D0

where D0 = a0 · b0, D1 = a1 · b1, D2 = a2 · b2,

D0,1 = (a0 + a1) · (b0 + b1), D0,2 = (a0 + a2) · (b0 + b2),

D1,2 = (a1 + a2) · (b1 + b2)

So, instead of 9-mulitplication, the Karatsuba 3-way preforms 6-multiplication to

compute a · b. Hence, the complexity of multiplication using Karatsuba 3-way is

O(nlog3 6). Toom-Cook 3-way multiplication or simply Toom-3 also splits the inputs

in 3 equal parts and for this algorithm, we use the optimized formula of Bodrato [12].

12

Using the same a, b as two 3-digit integers, a · b is computed as follows:

a · b = (a210
2 + a110 + a0) · (b2102 + b110 + b0)

= D410
4 +D310

3 +D210
2 +D110 +D0

where d0 = a2 + a0, d3 = b2 + b0, d2 = d0 − a1, d1 = d3 − b1,

d0 = d0 + a1, d3 = d3 + b1, D1 = d2 · d1, D2 = d0 · d3,

d0 = ((d0 + a2) << 1)− a0, d3 = ((d3 + b2) << 1)− b0,

D3 = d0 · d3, D0 = a0 · b0, D4 = a2 · b2,

D3 = (D3 −D1)/3, D1 = (D2 −D1) >> 1, D2 = D2 −D0,

D3 = ((D3 −D2) >> 1)−D4 << 1, D2 = D2 −D1 −D4,

D1 = D1 −D3,

The operators “<<" and “>>" represent the shift-left and -right bit operation, respec-

tively. So, the Bodrato’s formula takes only 5 multiplications to compute a · b which

is less than the Karatsuba 3-way. But there are more single- and double-word addi-

tion(s)/subtraction along with some shifts and division by 3 operations in Bodrato’s

formula. Hence, the complexity of multiplication using the Toom-3 is O(nlog3 5).

2.2.3 Squaring

The multiply-then-reduce approach can also be to field squaring in Fp such that the

integer element is first squared and then the result is reduced modulo p. Just like the

last section, we discuss only the integer squaring in this section. Clearly, squaring is

more efficient than multiplication because the number of single-word multiplications

reduces roughly to half in squaring. The integer squaring is presented as Algorithm

5.

2.2.4 Reduction

In field multiplication, the reduction is expensive operation because of the (expensive)

division. Therefore, to reduce the computational cost of reduction, the researchers

have devised special primes e.g. Solinas primes, Crandall primes, Goldilocks prime

13

Algorithm 5 Integer Squaring
Input: X = [x0, . . . , xl−1] where X ∈ [0, p− 1]

Output: Z = [z0, , z2l−1] where Z = X2

1: T0 ← 0, T1 ← 0, T2 ← 0,

2: for k from 0 to 2l − 2 do

3: for each element of {(i, j)|i+ j = k, 0 ≤ i ≤ j ≤ l − 1} do

4: (u1u0)← xi · xj

5: if (i < j) then

6: (u1u0)← 2(u1u0) (mod 22W)

7: if 2(u1u0) ∈ [0, 22W) then carry ← 0

8: else carry ← 1

9: T2 ← T2 + carry

10: T0 ← T0 + u0 (mod 2W)

11: if T0 + u0 ∈ [0, 2W) then carry ← 0

12: else carry ← 1

13: T1 ← T1 + u1 + carry (mod 2W)

14: if (T1 + u1 + carry) ∈ [0, 2W) then carry ← 0

15: else carry ← 1

16: T2 ← T2 + carry

17: zk ← T0, T0 ← T1, T1 ← T2, T2 ← 0

18: z2l−1 ← T0

19: Return Z

14

etc. The shape of these primes significantly reduce the computational cost of the

reduction which directly speedup the computation of the field multiplications. That’s

why one can find both in the literature and the standard bodies, the use of the special

primes. In this section, we discuss the reduction method of Barrett that is used for

arbitrary modulus p.

Barrett reduction is based on the idea of replacing the expensive divisions in reduction

by less-expensive operations but it does not take advantage of the shape of the prime

i.e. modulus. For positive integer Z and p, Barrett reduction computes Z mod p

as shown in Algorithm 6. The Barrett reduction is useful when many reductions

are performed with a single modulus p because one has to compute the expensive

modulus-dependent quantity bb2k/pc.

Algorithm 6 Barrett Reduction
Input: p, b ≥ 3, k = blogbpc+ 1, Z ∈ [0, b2k) and n = bb2k/pc
Output: Z mod p

1: q′ ←
⌊
bz/bk−1c · n/bk+1

⌋
2: r ← (z mod bk+1)− (q′ · p mod bk+1)

3: if r < 0 then

4: r ← r + bk+1

5: while r ≥ p do

6: r ← r − p

7: Return r

2.2.5 Inversion

The multiplicative inverse of a nonzero element x in the prime field Fp is defined as

a unique (nonzero) element x−1 in Fp such that xx−1 = 1 in Fp. There are different

ways of computing x−1 and some of the techniques are discussed in this section. Note

that from here onwards by inversion we mean multiplicative inverse.

The extended Euclidean algorithm is the basic method of computing inversion. Ac-

tually, for any two positive integers a, b the algorithm computes au + bv = gcd(a, b)

where u, v are integers and gcd stands for greatest common divisor. So, in case of

15

prime field for the inputs x, p we get xu + pv = 1 because x, p are co-prime. Which

implies that xu − 1 = pv or xu ≡ 1 (mod p). The computation of x−1 ∈ Fp using

extended Euclidean algorithms is shown in Algorithm 7.

Algorithm 7 Extended Euclidean Aglorithm for computing inversion in Fp

Input: x, p where x ∈ [1, p− 1] and p is prime

Output: x−1 mod p

1: u1 ← 1, u2 ← 0, v1 ← a, v2 ← p

2: while v1 6= 1 do

3: q ← bv2/v1c
4: r ← v2 − qv1, s← u2 − qu1

5: v2 ← v1, v1 ← r, u2 ← u1, u1 ← s

6: Return (u1 mod p)

Unfortunately, the extended Euclidean algorithm involves the computation of expen-

sive divisions as shown in step 3 of the Algorithm 7. These expensive divisions are

replaced by cheaper shift and subtraction operations in the binary inversion algorithm.

Actually, the binary inversion algorithm is the extension of the binary gcd algorithm.

The Algorithm 8 shows how to compute inversion in Fp using the binary inversion

algorithm.

Fermat’s little theorem can also be used to compute inversion in Fp. According to

the theorem, for any nonzero element x ∈ Fp we have xp−1 ≡ 1 (mod p) which

implies that xxp−2 ≡ 1 (mod p). Hence, (xp−2 mod p) is the multiplicative inverse

of x in Fp. The most rudimentary and inefficient way of computing inversion in

Fp using Fermat’s little theorem is shown as Algorithm 9. The Algorithm 9 is just

for introduction and not recommended in implementation. Because it just performs

repeated multiplication and does not take advantage of the field squaring that are

computationally faster than field multiplication.

Unlike the other prime field operations, inversion is relatively very expensive. If

several inversions are required, then Montgomery’s trick of simultaneous inversion

is very useful. Because instead of computing several inversions separately, Mont-

gomery’s trick compute only one inversion and some field multiplications. Now, the

16

Algorithm 8 Binary Inversion Aglorithm for computing inversion in Fp

Input: x, p where a ∈ [1, p− 1] and p is prime

Output: x−1 mod p

1: u1 ← 1, u2 ← 0, v1 ← a, v2 ← p

2: while v1 6= 1 and v2 6= 1 do

3: while v1 is even do

4: v1 ← v1/2

5: if u1 is even then u1 ← u1/2

6: else u1 ← (u1 + p)/2

7: while v2 is even do

8: v2 ← v2/2

9: if u2 is even then u2 ← u2/2

10: else u2 ← (u2 + p)/2

11: if v1 ≥ v2 then

12: v1 ← v1 − v2, u1 ← u1 − u2

13: else v2 ← v2 − v1, u2 ← u2 − u1

14: if v1 = 1 then return (u1 mod p)

15: else return (u2 mod p)

Algorithm 9 Fermat’s little theorem for computing inversion in Fp

Input: x, p where x ∈ [1, p− 1] and p is prime

Output: xp−2 mod p

1: u← x

2: for i from 1 to p− 3 do

3: u← ux mod p

4: Return u

17

Algorithm 10 represents the computation of x−1i ∈ Fp for i = 1, . . . , n using the

Montgomery’s trick.

Algorithm 10 Montgomery’s trick of simultaneous inversion in Fp

Input: Nonzero elements x1, . . . , xn ∈ Fp and p is prime

Output: Nonzero elements x−11 , . . . , x−1n ∈ Fp such that xix
−1
i ≡ 1 (mod p)

1: y1 ← x1

2: for i from 2 to n do

3: yi ← xiyi−1 mod p

4: z ← y−1n mod p

5: for i from n downto 2 do

6: x−1i ← zyi−1 mod p

7: z ← zxi mod p

8: x1 ← z

9: Return (x−11 , . . . , x−1n)

So, the Algorithm 10 computes the inversion of n-element by performing one inver-

sion and 3(n − 1) field multiplications. Also, (n + 1) field elements are required to

store the intermediate results.

2.3 Toeplitz Matrix-Vector Product (TMVP) using integers

A Toeplitz or diagonal-constant matrix is a matrix in which each descending diagonal

from left to right is constant. An example of n× n Toeplitz matrix is give below:

x0 x1 xn−1

xn x0
. xn−2

...

...

... x0 x1

x2(n−1) xn x0


Toeplitz matrices have some great properties that can be exploited to achieve effi-

ciency. The first-and-foremost property is that a Toeplitz matrix can be represented

18

by the first row and the first column of it entries. Hence, it saves space/memory

in computer and one can use one-dimensional array as representation. It has also

the property that the splitting into sub-matrices, addition and subtraction of a Toeplitz

matrix result in Toeplitz matrix. One of the techniques for TMVP is to use the school-

book matrix-vector product and for size n the arithmetic complexity is O(n2). In lit-

erature, there are better algorithms than the schoolbook. For example, a leading study

on this subject for multiplication over the binary field can be found in [21].

To exploit the properties of Toeplitz matrices — with integer entries — by using

the common expression, one should derive the TMVP formula(s) such that addition

is restricted to matrix entries. Because addition is both commutative and associative,

one can reuse the the result of the common expressions rather than recomputing them.

Moreover, there are more (Toeplitz) matrix entries than the vector which implies more

operations on matrix entries. Based on our 64-bit and 32-bit implementation we have

two scenarios.

2.3.1 Two-way Decomposition

For a TMVP of size 2 we have x0 x1

x2 x0

×
 y0

y1

 =

 P2 + P1

P3 − P1

 (2.1)

where P1 = x0(y0 − y1), P2 = (x1 + x0)y1, P3 = (x2 + x0)y0.

The total cost of (2.1) will be 3M + 3A + 2Ad where M is the cost of a single preci-

sion/word multiplication, A is the cost of a single precision/word addition and Ad is

the cost of a double precision/word addition. As compared to the schoolbook matrix-

vector product which requires 4M + 2Ad, (2.1) trades 1M for 3A. The recursive

application of 2.1 results in O(nlog2 3) complexity of multiplication. Note that we

have restricted the addition operation to matrix entries in order to exploit the com-

mon expressions at maximum. The concept of “exploiting the common expressions"

will become clear in the following chapters.

19

2.3.2 Three-way Decomposition

For a TMVP of size 3 we have
x0 x1 x2

x3 x0 x1

x4 x3 x0

×


y0

y1

y2

 =


P3 + P4 + P6

P2 − P4 + P5

P1 − P2 − P3

 (2.2)

where P1 = (x4 + x3 + x0)y0, P2 = x3(y0 − y1),

P3 = x0(y0 − y2), P4 = x1(y1 − y2),

P5 = (x0 + x3 + x1)y1, P6 = (x2 + x0 + x1)y2.

Using the Pi for i = 1, . . . , 6 the total cost of (2.2) will be 6M + 8A + 6Ad where

M, A and Ad are same explained in previous section. The cost of single precision

addition is 8 because one can take common either (x3 + x0) between P1 and P5 or

(x0 + x1) between P5 and P6. In theory, one can say that for all those machines

where the cost ratio of multiplication to addition is greater than or equal to 3 then this

observation is worth to try. For larger bitlength, we can use this technique recursively

and for size n it results inO(nlog3 6) complexity of multiplication which is better than

the schoolbook. Like (2.1), again the addition operation is restricted to matrix entries

in order to take advantage of the common expressions.

2.4 Prime shapes

In this section, we briefly introduce the different shapes/forms of primes that we find

in the ECC literature. The list may not be comprehensive but it does contain primes

that are considered to be the best choices in contemporary ECC.

• Mersenne Primes: The primes 2n − 1 where n is prime but every prime.

Mersenne primes are the best choice to compute the reduction operation (most)

efficiently in finite field. Because the reduction is performed by some field ad-

dition(s). The bitlength relevant to contemporary ECC leaves us with the only

choice of 2521 − 1.

• Crandall Primes (2k − c): These primes are a good alternative to the scarcity

of Mersenne primes for contemporary ECC and the reduction operation is not

20

very expensive because c is normally taken as a small integer. Definitely, the

efficiency of Crandall primes is directely proportional to the smaller value of

c. These primes were introduced by Crandall [18]. These primes have been a

popular choice and some of the examples are 2255 − 19, 2414 − 17 etc.

• Special Montgomery Primes (2kc−1): These primes are mainly good in carry

propagation when packed-radix is used in implementation. As pointed out by

Hamburg in [25] that these primes are not a good choice for prime modulus

bitlength greater than 256. Because the vectorized and reduced-radix multipli-

cation that are the efficient ways of implementing larger bitlength ECC. Both

these efficient techniques change the carry propagation.

• Goldilocks Prime (2448 − 2224 − 1): The prime was introduced by Hamburg

in [25] and has several advantages. It enables faster Karastuba multiplication

[28] when performed as modular multiplication by saving double-word addi-

tions/subtractions. The prime is equal suitable efficient implementation on 32-

and 64-bit platforms.

• Solinas Primes: These form of primes were introduced by Solinas in [35] and

they have become part of the NIST standards [27] for ECC. The primes are of

the form 2k − 2l ± · · · ± 1 where the exponents are 32-bit aligned. In other

words, these primes are good for 32-bit platforms using packed-radix and the

fewer coefficients imply faster reduction.

2.5 Elliptic Curve over Prime Field

An elliptic curve E over a prime field Fp — characteristic of the Fp is not equal to 2

and 3 — is a set

E(Fp) = {(x, y) ∈ (Fp × Fp) : y
2 = x3 + ax+ b} ∪ {∞}

where a, b ∈ Fp and the discriminant of the curve is −16(4a3 + 27b2). It is required

for the elliptic curve that the discriminant of the curve should be nonzero. The point

at infinity ∞ is considered to be some infinite point far up the y-axis. The curve

equation form, y2 = x3 + ax + b, is called short Weierstrass form. Actually, the

21

set E(Fp) with point addition operation forms a finite abelian group with ∞ as the

identity element. The group law is defined as follows

• Identity: For all P ∈ E(Fp), P +∞ =∞+ P = P

• Negative: If P = (x, y) ∈ E(Fp), then −P = (x,−y) ∈ E(Fp) such that

P + (−P) = (x, y) + (x,−y) =∞.

• Point addition: If P = (x1, y1) ∈ E(Fp) and Q = (x2, y2) ∈ E(Fp) such that

P 6= ±Q, then P +Q = (x3, y3) ∈ E(Fp) is defined as follows

x3 =

(
y2 − y1
x2 − x1

)2

− x1 − x2

y3 =

(
y2 − y1
x2 − x1

)
(x1 − x3)− y1

• Point doubling: If P = (x1, y1) ∈ E(Fp) and P 6= −P , then 2P = (x3, y3) ∈
E(Fp) is defined as follows

x3 =

(
3x2

1 + a

2y1

)2

− 2x1

y3 =

(
3x2

1 + a

2y1

)
(x1 − x3)− y1

2.6 Elliptic Curve Cryptosystem

The use of elliptic curve over finite fields to construct cryptosystems was proposed

independently by Neal Koblitz [29] and V. S. Miller [31]. The operations of public-

key generation and shared-secret computation are the direct adaption of the popular

Diffie-Hellman key exchange protocol [20] in ECC. Another important cryptosystem

based on elliptic curve is the digital signature. These operations are accomplished by

the scalar multiplication kP in ECC where k is an integer and P is a point on elliptic

curve.

Let’s discuss the public-key generation and shared-secret computation using the con-

ventional example of Alice, Bob and Eve. Suppose P ∈ E(Fp) is of prime order p′

and called standard base point. Alice and Bob secretly and independently select a ran-

dom integer in [1, p′− 1]. Let’s denote the secret integers of Alice and Bob by kA and

22

kB, respectively. Alice computes her public key (point) QA = kAP and dispatches

it to Bob. Similarly, Bob computes his public key (point) QB = kBP and dispatches

it to Alice. Next, Alice and Bob compute the shared-secret (point) on their side as

S = kAQB and S = kBQA, respectively. Eve is intercepting all these traffics over

the insecure channel between Alice and Bob in order to spy on them. So, Eve knows

P,QA, QB and her challenge is to determine the secret integer kA or kB in order to

break the system. The problem of finding an integer k such that Q = kP is called

elliptic-curve discrete-logarithm problem (ECDLP) and the security of ECC relies on

the hardness of ECDLP.

2.7 Point representation

In Section 2.5, the point P = (x, y) ∈ E(Fp) and curve equation are both given in

affine coordinates. Furthermore, the group law was also defined in terms of affine

coordinates. But one can also use the projective coordinates for E(Fp) because there

is a 1−1 correspondence between the set of projective points and affine points. Unlike

an affine point, a projective point is represented as a triplet (X : Y : Z). Actually,

projective coordinates are very useful in accelerating the curve operations. Some of

the proposed projective coordinates are given below.

• Standard projective coordinates: The affine point (x, y) represents the projec-

tive point (X : Y : Z) with Z 6= 0 such that x = X/Z and y = Y/Z. In this

coordinates system, the elliptic curve equation becomes Y 2Z = X3+aXZ2+

bZ3. The additive inverse or negative of (X : Y : Z) is (X : −Y : Z) and the

identity∞ corresponds to (0 : 1 : 0).

• Jacobian coordinates: The affine point (x, y) represents the jacobian point (X :

Y : Z) with Z 6= 0 such that x = X/Z2 and y = Y/Z3. So, the elliptic curve

equation becomes Y 2 = X3 + aXZ4 + bZ6. The negative of (X : Y : Z) is

(X : −Y : Z) and the identity∞ corresponds to (1 : 1 : 0).

• Chudnovsky coordinates: The chudnovsky coordinates are redundant represen-

tation of jacobian coordinates so, the jocobian coordinates (X : Y : Z) with

23

Z 6= 0 represents the chudnovsky coordinates (X : Y : Z : Z2 : Z3). This

coordinates system is also called Chudnovsky-Jacobian coordinates.

• Extended coordinates: The coordinates were introduced for twisted Edwards

curve using extended affine coordinates (x, y, t) where t = xy. The point

(x, y, t) corresponds to the extended point (X : Y : T : Z) with Z 6= 0

and T = XY/Z such that x = X/Z, y = Y/Z and t = T/Z. The negative of

(X : Y : T : Z) is (−X : Y : −T : Z) and the identity is (0 : 1 : 0 : 1). The

extended coordinates were introduced by Hisil et al. [26].

The purpose of these different coordinates system is to accelerate the point arithmetic

operations in order to have more efficient elliptic curve schemes. Bernstein and Lange

maintain a website [9], Explicit-Formulas Database (EFD), where on can find the

latest and efficient point arithmetic formulas in different forms of the curve using

different coordinate systems.

24

CHAPTER 3

64-BIT RESIDUE MULTIPLICATION

Recall that for a prime number p there exist a finite field F of order p and the field

is denoted by Fp. In our case, the prime number p = 2521 − 1 and called 521-bit

Mersenne prime. Among the prime field operations, our objective is a new efficient

way of computing field multiplication in Fp. Our objective is also supported by Han-

kerson et al. in their book [19] that the performance of ECC depends heavily on the

speed of field multiplication. Hence, we use our residue multiplication to improve the

efficient computation of single-scalar multiplication.

In this chapter, we discuss in detail, our residue multiplication modulo p and the target

is 64-bit platforms. We present three versions of our 64-bit residue multiplication in

order to provide an extensive arithmetic cost comparison with respect to the other

well-known algorithms. We also discuss the implementation details and the timing

results to select the most efficient version of our algorithm in terms of clock cycles.

3.1 Residue multiplication using TMVP

Suppose X and Y are 521-bit integers and we want to compute Z ≡ XY (mod p)

where p = 2521− 1. Clearly, a 521-bit integer cannot be represented as a single-word

on 64-bit computers. Therefore, one splits 521-bit integer in smaller chunks/limbs

using either packed-radix or reduced-radix. Like Granger and Scott [23], we use

the same reduced-radix representation because it is very suitable for this scenario.

The use of reduced-radix has shown interesting results and some of the examples are

[1, 3, 5, 6, 7, 11, 16, 23, 25, 34]. Hence, we are computing residue multiplication

25

modulo p on 64-bit computers using reduced-radix.

As performed in [23], the operands X, Y are split in nine limbs where each limb

comprises of at most 58-bit, stored in a 64-bit word. So, one can represent X, Y as

follows:

X = x0 + 258x1 + 2116x2 + 2174x3 + 2232x4 + 2290x5 + 2348x6 + 2406x7 + 2464x8

Y = y0 + 258y1 + 2116y2 + 2174y3 + 2232y4 + 2290y5 + 2348y6 + 2406y7 + 2464y8

Unlike [23], we take the limbs x8 and y8 as 57-bit. In other words, we are interested

to work with modulus p. Like [23], the choice of modulus 2p is open and in that

case, x8 and y8 are taken 58-bit. We believe modulus p is an efficient approach when

modular multiplication is performed thousands of times i.e. scalar multiplication in

ECC. Let Z = [z0, z1, z2, z3, z4, z5, z6, z7, z8] where

z0 = x0y0 + 2(x8y1 + x7y2 + x6y3 + x5y4 + x4y5 + x3y6 + x2y7 + x1y8),

z1 = x1y0 + x0y1 + 2(x8y2 + x7y3 + x6y4 + x5y5 + x4y6 + x3y7 + x2y8),

z2 = x2y0 + x1y1 + x0y2 + 2(x8y3 + x7y4 + x6y5 + x5y6 + x4y7 + x3y8),

z3 = x3y0 + x2y1 + x1y2 + x0y3 + 2(x8y4 + x7y5 + x6y6 + x5y7 + x4y8),

z4 = x4y0 + x3y1 + x2y2 + x1y3 + x0y4 + 2(x8y5 + x7y6 + x6y7 + x5y8),

z5 = x5y0 + x4y1 + x3y2 + x2y3 + x1y4 + x0y5 + 2(x8y6 + x7y7 + x6y8),

z6 = x6y0 + x5y1 + x4y2 + x3y3 + x2y4 + x1y5 + x0y6 + 2(x8y7 + x7y8),

z7 = x7y0 + x6y1 + x5y2 + x4y3 + x3y4 + x2y5 + x1y6 + x0y7 + 2x8y8,

z8 = x8y0 + x7y1 + x6y2 + x5y3 + x4y4 + x3y5 + x2y6 + x1y7 + x0y8

(3.1)

The constant 2 in (3.1) appears as a result of the reduction and there are two impor-

tant things that need to taken into account. Firstly, it should be guaranteed that the

maximum value of zi can not be greater than 2128 − 1 for i ∈ {1, . . . , 8}. In other

words, overflow should be avoid in double-word (128-bit) to ensure the correctness

of the values. Secondly, each zi is a double-word and it contains the carry that should

be propagated to the next limb. We observed that the whole expressions in (3.1) can

be presented as a TMVP as shown in (3.2). One can compute the TMVP using the

schoolbook matrix-vector product method. Which results in the complexity ofO(n2)

multiplications for matrix-vector product of size n. There are efficient ways of com-

puting TMVP other than the schoolbook method and one can find better algorithms

26

in literature. For example, a leading study on this subject for multiplication over F2

can be found in [21].

x0 2x8 2x7 2x6 2x5 2x4 2x3 2x2 2x1

x1 x0 2x8 2x7 2x6 2x5 2x4 2x3 2x2

x2 x1 x0 2x8 2x7 2x6 2x5 2x4 2x3

x3 x2 x1 x0 2x8 2x7 2x6 2x5 2x4

x4 x3 x2 x1 x0 2x8 2x7 2x6 2x5

x5 x4 x3 x2 x1 x0 2x8 2x7 2x6

x6 x5 x4 x3 x2 x1 x0 2x8 2x7

x7 x6 x5 x4 x3 x2 x1 x0 2x8

x8 x7 x6 x5 x4 x3 x2 x1 x0



×



y0

y1

y2

y3

y4

y5

y6

y7

y8



(3.2)

3.1.1 Proposed Technique

Since the size of the TMVP (3.2) is 9, therefore, one can apply the three-way decom-

position (2.2) to decompose and compute (3.2) as follows:
X0 2X2 2X1

X1 X0 2X2

X2 X1 X0

×


Y0

Y1

Y2

 =


P3 + P4 + P6

P2 − P4 + P5

P1 − P2 − P3


where the sub-matrices Xi and the sub-vectors Yi are of size 3 for i = 0, 1, 2. Note

that the sub-matrices 2X2 and 2X1 provide the opportunity to exploit the common

expressions by simplifying the formulas in (2.2) as shown below.

P1 = (X2 +X1 +X0)Y0, P2 = X1(Y0 − Y1)

P3 = X0(Y0 − Y2), P4 = 2X2(Y1 − Y2)

P5 = (X0 +X1 + 2X2)Y1, P6 = (2(X2 +X1) +X0)Y2.

In this technique, we perform the schoolbook method when the size of matrix-vector

product becomes 3. From here onwards, we represent a Toeplitz matrix by its first

row and first column because by definition we know that the descending diagonal

entries from left to right are constant, therefore, we leave the other entries blank. So,

in a programming language a Toeplitz matrix can be presented by one-dimensional

array rather than two-dimensional array. Since we are working on a 64-bit computer,

therefore, in this chapter by single-word we mean 64-bit and double-word 128-bit.

27

Computing P2:

Y0 − Y1 =


y0

y1

y2

−


y3

y4

y5

 =


y0 − y3

y1 − y4

y2 − y5

 =


U1

U2

U3



X1(Y0 − Y1) =


x3 x2 x1

x4

x5

×


U1

U2

U3


Hence, the total arithmetic cost of the TMVP P2 is 9M + 3A + 6Ad.

Computing P4:

Y1 − Y2 =


y3

y4

y5

−


y6

y7

y8

 =


y3 − y6

y4 − y7

y5 − y8

 =


U7

U8

U9



2X2(Y1 − Y2) =


2x6 2x5 2x4

2x7

2x8

×


U7

U8

U9


Hence, the total arithmetic cost of the TMVP P4 is 9M + 3A + 6Ad + 5-shift where

the (left) shifts are due to multiplication of xi by 2 for i = 4, . . . , 8. Note that, some

of the elements of 2X2 appear in different places therefore, it is computed once and

used in different places.

Computing P3:

Y0 − Y2 =


y0

y1

y2

−


y6

y7

y8

 =


y0 − y6

y1 − y7

y2 − y8

 =


U4

U5

U6



X0(Y0 − Y2) =


x0 2x8 2x7

x1

x2

×


U4

U5

U6


Where 2x8 and 2x7 have already been computed by P4. Hence, the total arithmetic

cost of the TMVP P3 is 9M + 3A + 6Ad.

28

Computing P1:

X2 +X1 =


x6 x5 x4

x7

x8

+


x3 x2 x1

x4

x5



=


x6 + x3 x5 + x2 x4 + x1

x7 + x4

x8 + x5

 =


S1 S2 S3

S4

S5



(X2 +X1) +X0 =


S1 S2 S3

S4

S5

+


x0 2x8 2x7

x1

x2

 =


S6 S7 S8

S9

S10



(X2 +X1 +X0)Y0 =


S6 S7 S8

S9

S10

×


y0

y1

y2


Again 2x8 and 2x7 are used but already computed by P4. Hence, the total arithmetic

cost of the TMVP P1 is 9M + 10A + 6Ad.

Computing P6: For the sub-matrices addition, we have

2(X2 +X1) +X0 = (X2 +X1 +X0) + (X2 +X1)

and we have already computed both the parenthesized expressions on the right-hand

side so

(X2 +X1 +X0) + (X2 +X1) =


S6 S7 S8

S9

S10

+


S1 S2 S3

S4

S5



=


S11 S12 S13

S14

S15



((X2 +X1 +X0) + (X2 +X1))Y2 =


S11 S12 S13

S14

S15

×


y6

y7

y8


29

Hence, the total arithmetic cost of the TMVP P6 is 9M + 5A + 6Ad.

Computing P5: Here, for the addition of sub-matrices one has to compute S16 =

S6 + f6 only. While the other four elements have already been computed i.e. two by

P1 and two by P6 as shown below

(X0 +X1) + 2X2 =


x0 + x3 2x8 + x2 2x7 + x1

x1 + x4

x2 + x5

+


2x6 2x5 2x4

2x7

2x8



=


S16 S15 S14

S8

S7



(X0 +X1 + 2X2)Y1 =


S16 S15 S14

S8

S7

×


y3

y4

y5



Hence, the total arithmetic cost of the TMVP P5 is 9M + 1A + 6Ad.

Final Computation: At last, we have to compute


P3 + P4 + P6

P2 − P4 + P5

P1 − P2 − P3



where each Pi is a 3× 1 vector and the elements are of double-word size so the total

arithmetic cost is 18Ad. Now, if we sum up all the costs, then the overall cost of the

whole technique is 54M + 25A + 54Ad + 5-shift.

Alternatively, one can take P1 = (X2+(X1+X0))Y0, P5 = ((X0+X1)+2X2)Y1, P6 =

((2X2 + (X1 +X0)) +X1)Y2 where P2, P3, P4 remain unchanged and 2X2 is com-

puted once. But we found the total arithmetic cost as 54M + 29A + 54Ad + 5-shift

which is more than the aforementioned technique.

30

3.2 Algorithms and Comparison

The psuedocode of our proposed technique, discussed in detail in Section 3.1.1, is

presented as Algorithm 11. Our technique provides the freedom to compute Pi in

different ways so that one can achieve efficient implementation on the machine at

one’s disposal, for i ∈ {1, . . . , 6}. We introduce three versions of our algorithm to

achieve two objectives: extensive arithmetic cost comparison, and efficient imple-

mentation. To provide an extensive arithmetic cost comparison, we have computed

the total arithmetic cost of the three versions of our algorithm separately with respect

to its counterpart(s). The counterparts are based on using the well-known algorithms.

The objective of efficient implementation is achieved by testing the three versions of

our algorithm on 64-bit computer for clock cycles count. The three versions of our

algorithm are discussed in detail in the following sections and they are: (i) Hybrid

version, (ii) Recursive version, and (iii) Mixed version.

3.2.1 Residue Representation

In this section, we explain the representation of a residue modulo p using the same

idea as in [23]. As aforementioned, our work is directly based on modulus p, whereas

the modulus 2p was chosen in [23]. One can easily switch between modulus p and 2p

with some (minor) changes. Like [23], the residue representation is strictly followed

for the output coordinates of point addition and doubling routines. Likewise, the co-

ordinates within the respective routines of point addition and doubling do not need to

follow the residue representation except for the output of the coordinate multiplica-

tion and squaring.

From our residue multiplication, we find through testing that if either of the in-

puts/operands (X or Y) is 2521 − 2 and the other in [2521 − 17, 2521 − 2], then the

output limbs are in [0, 259− 1]× [0, 258− 1]7× [0, 257− 1]. The least significant limb

z0 and the most significant limb z8 are in [0, 259 − 1] and [0, 257 − 1], respectively.

For all the other residue values as inputs, carry propagation in our residue multi-

plication results in the unique residue modulo p. Hence, the output of our residue

multiplication is always in [0, 259 − 1] × [0, 258 − 1]7 × [0, 257 − 1]. Similarly, the

31

selection of modulus p also requires changes in squaring algorithm. This time, we

find through testing that if the input is in [2521 − 5, 2521 − 2], then the output will be

in [0, 259 − 1]× [0, 258 − 1]7 × [0, 257 − 1].

Like [23], for the scalar mulitplication in ECC, the intermediate results are not fully

reduced to the unique residue in modulo p. Instead, the output coordinates of point

addition and doubling routines are ensured to be in [0, 259−1]×[0, 258−1]7×[0, 257−
1] using the idea of short coefficient reduction (SCR) routine in [23].

3.2.2 Implementation Results

For the timing tests, we use Ubuntu 16.04 LTS on an Intel Pentium CPU G2010

@ 2.80GHz desktop machine with 4GB RAM and the Turbo Boost being disabled.

There are two cores and from BIOS one can change the number of cores. Therefore,

we have tested our programs both with one core and two cores. We find testing on

two cores a better choice especially in case of scalar multiplication in ECC.

We have implemented all the three versions of our residue multiplication in C lan-

guage using GCC 5.3.1. For the clock cycles count, we use the technique proposed

by Paoloni in his white paper [32]. All the three versions of our algorithm are tested

on the same set of 103 (random) integers by calling the function twice in 103 iterations

loop. The values are read limb-by-limb from separate files for each operand. We find

164 as the minimum mean cycles count for the multiplication function, gmul(), of

Scott which is more than the report cycles of 155 in [23]. Although our interest is in

modulus p but we provide the timing results of our residue multiplication using both

modulus p and 2p.

3.2.2.1 Hybrid version

In this version, first we apply (2.2) for the matrix-vector decomposition to obtain Pi

for i = 1, . . . , 6 then use the schoolbook matrix-vector product to compute each Pi.

This version 1 is already explained in detail in Section 3.1.1 and the pseudo-code is

1 https://github.com/Shoukat-Ali/521-bit-Mersenne-Prime/blob/master/hybrid.c

32

https://github.com/Shoukat-Ali/521-bit-Mersenne-Prime/blob/master/hybrid.c

Algorithm 11 (Hybrid version) 64-bit residue Multiplication
Input: X = [x0, , x8], Y = [y0, , y8] ∈ [0, 259 − 1] × [0, 258 − 1]7 ×
[0, 257 − 1]

Output: Z = [z0, , z8] ∈ [0, 259−1]×[0, 258−1]7×[0, 257−1] where Z ≡ XY

(mod 2521 − 1)

T5 ← 2x8, c← 2x7, T1[3]← 2x6, T1[4]← 2x5

T1[0]← y0 − y3, T1[1]← y1 − y4, T1[2]← y2 − y5

P0 ← (x3 · T1[0]) + (x2 · T1[1]) + (x1 · T1[2])

P1 ← (x4 · T1[0]) + (x3 · T1[1]) + (x2 · T1[2])

P2 ← (x5 · T1[0]) + (x4 · T1[1]) + (x3 · T1[2])

T1[0]← y3 − y6, T1[1]← y4 − y7, T1[2]← y5 − y8

P6 ← (T1[3] · T1[0]) + (T1[4] · T1[1]) + (2x4 · T1[2])

P7 ← (c · T1[0]) + (T1[3] · T1[1]) + (T1[4] · T1[2])

P8 ← (T5 · T1[0]) + (c · T1[1]) + (T1[3] · T1[2])

T1[0]← y0 − y6, T1[1]← y1 − y7, T1[2]← y2 − y8

P3 ← (x0 · T1[0]) + (T5 · T1[1]) + (c · T1[2])

P4 ← (x1 · T1[0]) + (x0 · T1[1]) + (T5 · T1[2])

P5 ← (x2 · T1[0]) + (x1 · T1[1]) + (x0 · T1[2])

T6[0]← x4 + x1, T6[1]← x5 + x2, T6[2]← x6 + x3

T6[3]← x7 + x4, T6[4]← x8 + x5

T1[0]← T6[0] + c, T1[1]← T6[1] + T5, T1[2]← T6[2] + x0

T1[3]← T6[3] + x1, T1[4]← T6[4] + x2

T6[0]← T1[0] + T6[0], T6[1]← T1[1] + T6[1], T6[2]← T1[2] + T6[2]

T6[3]← T1[3] + T6[3], T6[4]← T1[4] + T6[4]

T5 ← T1[2] + x6

C ← (T1[2] · y2) + (T1[3] · y1) + (T1[4] · y0)− P2 − P5

c← C mod 257

C ← (T6[0] · y8) + (T6[1] · y7) + (T6[2] · y6) + P3 + P6 + (C » 57)

z0 ← C mod 258

C ← (T6[1] · y8) + (T6[2] · y7) + (T6[3] · y6) + P4 + P7 + (C » 58)

z1 ← C mod 258

33

Algorithm 12 (Hybrid version) 64-bit residue Multiplication: Continued

C ← (T6[2] · y8) + (T6[3] · y7) + (T6[4] · y6) + P5 + P8 + (C » 58)

z2 ← C mod 258

C ← (T6[3] · y5) + (T6[4] · y4) + (T5 · y3) + P0 − P6 + (C » 58)

z3 ← C mod 258

C ← (T6[4] · y5) + (T5 · y4) + (T1[0] · y3) + P1 − P7 + (C » 58)

z4 ← C mod 258

C ← (T5 · y5) + (T1[0] · y4) + (T1[1] · y3) + P2 − P8 + (C » 58)

z5 ← C mod 258

C ← (T1[0] · y2) + (T1[1] · y1) + (T1[2] · y0)− P0 − P3 + (C » 58);

z6 ← C mod 258

C ← (T1[1] · y2) + (T1[2] · y1) + (T1[3] · y0)− P1 − P4 + (C » 58)

z7 ← C mod 258

c← c+ (C » 58)

z8 ← c mod 257

z0 ← z0 + (c » 57)

Return Z

34

given as Algorithm 11. After testing and running multiple times we find the minimum

mean clock cycles count as 179 and 181 at -O3 for modulus p and 2p respectively.

3.2.2.2 Mixed version

Rather applying (2.2) individually on each Pi for i = 1, . . . , 6 one can further exploit

the formula to find the common expressions (having same result) on the matrix el-

ements of Pi. Unfortunately, the vectors do not have common expressions. Which

implies that one has to exploit the P2,i for i = 1, 5, 6 where P2,i represent the Pi when

(2.2) is applied the second time or call it level-2. From (2.2), we know that within

a Pi there is one intra-common expression — involving two elements — between

two P2,i and therefore, one has to exploit the third one for inter-common expres-

sion with other Pi. For example, for P2 we have P2,1 = (x3 + x4 + x5)U1, P2,5 =

(x2 + x3 + x4)U2, P2,6 = (x1 + x2 + x3)U3 and by taking x3 + x4 as intra-common,

leaves x1 + x2 + x3 for inter-common.

The total number of single-word addition can be reduced if one finds inter-common

expression among more than two Pi for i = 1, . . . , 6. However, in this particular

case we find commonality between two Pi only. There are two candidate groups

{P2, P3, P4} and {P1, P5, P6} for inter-common expression. In our implementation,

we have taken {P2, P3} and {P5, P6} for applying (2.2) at second level to exploit

the inter-common expression while using schoolbook for P4 and P1. Instead of two

Pi one may take either {P2, P3, P4} or {P1, P5, P6} for inter-common expression but

that will not reduce the total number of single-word addition because there is no inter-

common expression among more than two Pi. Since at level-2 all the elements of the

Toeplitz sub-matrix are independent therefore, it is impossible to find inter-common

expression involving more than two matrix elements.

Based on the arithmetic cost, we have tested three implementations of this version:

(i) computing P2, P3, P4 by applying (2.2) through a function call, (ii) in-lining the

computation of P2, P3, P4 rather making a separate call, and (iii) computing P2, P3

and P5, P6 through function calls as discussed above. We find (ii) as the optimal

implementation 2 and the minimum mean cycles count as 195 and 197 at -O3 for
2 https://github.com/Shoukat-Ali/521-bit-Mersenne-Prime/blob/master/mixed_inline.c

35

https://github.com/Shoukat-Ali/521-bit-Mersenne-Prime/blob/master/mixed_inline.c

modulus p and 2p respectively.

3.2.2.3 Recursive version

Instead of applying schoolbook to compute Pi for i = 1, . . . , 6 when the TMVP size

becomes 3, one may re-apply (2.2). For this version, we have tested three implemen-

tations: (i) function calls, (ii) in-lining rather than making calls, and (iii) using the

Mixed version exploitation for {P2, P3} and {P5, P6} where P1, P4 are computed by

additional function calls. Note that (iii) is implemented differently from the Mixed

version. Also, for all Pi we apply (2.2) no matter how the inter-common expressions

are exploited. We find (i) as the optimal implementation 3 and the minimum mean

cycles count as 193 and 194 at -O3 for modulus p and 2p respectively.

3.2.3 Arithmetic Cost Comparison

In the earlier sections, we discussed the three versions of our residue multiplication

and provided their respective timing results. Now, in this section, we provide the

arithmetic cost of each version of our residue multiplication along with its counter-

part(s) by using the well-known algorithms. The objective is twofold: firstly, to pro-

vide an extensive arithmetic cost comparison; and secondly, to show the robustness

of our residue multiplication modulo 521-bit Mersenne prime on 64-bit platforms.

Since the number of limbs is nine, therefore, the algorithms of Karatusba 3-way and

Toom-Cook (or Toom-3) are good candidates in this situation. We have selected the

Karatsuba 3-way formula defined by Weimerskirch and Paar in [36]. Similarly, for

the Toom-3, we have selected the optimized formula of Bodrato in [12]. We did not

find the recursive version of Toom-3 useful for two reasons: (i) the trading of 4M

for 18A plus some shifts and a division by 3 is not good at this situation, and (ii) we

could not find any common expression(s) between the two levels.

We find the arithmetic cost of each selected algorithm as provided in Table 3.1 and

the cost of shifts, division by small constant(s) and carry propagation are precluded.

Because we did not find the precluded costs very significant. The arithmetic cost of
3 https://github.com/Shoukat-Ali/521-bit-Mersenne-Prime/blob/master/recursive_v1.c

36

https://github.com/Shoukat-Ali/521-bit-Mersenne-Prime/blob/master/recursive_v1.c

Table 3.1: Number of operations for modular multiplication, 1 the cost of MUL algo-
rithm, 2 the cost of the optimal implementation in terms of cycles count

Technique Arithmetic cost
Karatsuba 3-way recursive [36] 36M + 54A + 93Ad

Recursive version2 (this chapter) 36M + 73A + 54Ad

Toom-3 plus Schoolbook [12] 45M + 30A + 76Ad

Granger-Scott1 [23] 45M + 72A + 52Ad

Mixed version2 (this chapter) 45M + 48A + 54Ad

Karatsuba 3-way plus Schoolbook [36] 54M + 18A + 75Ad

Hybrid version (this chapter) 54M + 25A + 54Ad

all the algorithms in Table 3.1 include the cost of reduction operation. It is evident

from the Table 3.1 that each version of our residue multiplication has lesser arithmetic

cost than its counterpart(s) for residue multiplication modulo 521-bit Mersenne prime

on 64-bit platform.

37

38

CHAPTER 4

32-BIT RESIDUE MULTIPLICATION

In the last chapter, we discussed in detail our 64-bit residue multiplication modulo

521-bit Mersenne prime and by following the same TMVP approach on 32-bit plat-

forms, the new size of TMVP becomes double and the bit-length of the its entries is

reduced by half. But these changes in sizes — the size of TMVP and its entries on

32-bit platform — bring different challenges that directly affect the arithmetic cost

and timing result. Unlike the 64-bit residue multiplication, the free bit space in 32-bit

word of a limb shrinks and as a result the number of single-word operations reduces

in order to avoid overflow. In other words, overflow is avoided at the cost of efficiency

in arithmetic cost and timing result. Our objective of speeding up the computation of

single-scalar multiplication using our residue multiplication is also affected by the

changes in sizes and the related issues are discussed in detail in Section 5.4.

In this Chapter, we discuss in detail our three techniques to perform residue mul-

tiplication modulo 521-bit Mersenne prime on 32-bit platforms. Unlike the 64-bit

residue multiplication, this time we work only in modulus p = 2521 − 1. We also

discuss our strategies of dealing with the challenges that arise due to the change in

the size of the TMVP and its entries. For the implementation result, we find the size

6 as the cross-over point between the schoolbook and TMVP. The comparison of our

three techniques to other algorithms with respect to the arithmetic cost and the timing

results are provided in this chapter. Lastly, based on the timing results of our tech-

niques, we select the one with the least number of clock cycles count and provide the

worst-case bitlength analysis to show that overflow can not occur in that technique.

39

4.1 Residue multiplication using TMVP

Recall that X and Y are 521-bit integers and we want to compute Z ≡ XY (mod p)

where p = 2521−1. Our 64-bit residue multiplication implies that on 32-bit platforms

the number of limbs will become double and the bitlength of the limbs will reduce by

half. In other words, for 32-bit implementation we have 18-limb such that each limb

can be at most 29-bit, as shown below.

X = x0 + 229x1 + 258x2 + · · ·+ 2464x16 + 2493x17

Y = y0 + 229y1 + 258y2 + · · ·+ 2464y16 + 2493y17

The limbs x17 and y17 are 28-bit and again we take the modulus p = 2521 − 1. In this

case, the TMVP is given in Fig. 4.1. Since 18 is a multiple of 2 and 3, both (2.1) and

(2.2) are applicable but there are challenges in the form of overflow and efficiency.

As pointed out by Scott in [33], to ensure numerical stability on 32-bit computers

the reduced-radix representation is useful when the limbs size are at most 29-bit.

Unfortunately, in our case the size of the entries of the Toeplitz matrix becomes 30-bit

because of the constant 2 as a result of the reduction as shown in Fig. 4.1. Moreover,

the large number of limbs makes things challenging and perplexing due to overflow.

Therefore, one must avoid overflow not only in single-word (32-bit) but also in the

double-word (64-bit) otherwise, the result is not correct.

Since (2.1) and (2.2) are both applicable to TMVP in Fig. 4.1, we find three tech-

niques with different arithmetic costs. It’s not just the arithmetic cost that we are

interested in but also the timing result. Therefore, we discuss the three techniques

in detail by providing their arithmetic costs and timing results. We select the one

with minimum clock cycles count and show that the technique does not cause over-

flow using the worst-case analysis. Moreover, the chosen technique is used in the

implementation of the scalar multiplication on 32-bit platforms.

4.2 Technique-1

Our most efficient technique is based on the idea of applying (2.2) to TMVP in Fig.

4.1 followed by (2.1) where possible. So, at level-1 we apply (2.2) which results in

40



x0 2x17 2x16 2x15 2x14 2x13 2x12 2x11 2x10 2x9 2x8 2x7 2x6 2x5 2x4 2x3 2x2 2x1

x1 x0 2x17 2x16 2x15 2x14 2x13 2x12 2x11 2x10 2x9 2x8 2x7 2x6 2x5 2x4 2x3 2x2

x2 x1 x0 2x17 2x16 2x15 2x14 2x13 2x12 2x11 2x10 2x9 2x8 2x7 2x6 2x5 2x4 2x3

x3 x2 x1 x0 2x17 2x16 2x15 2x14 2x13 2x12 2x11 2x10 2x9 2x8 2x7 2x6 2x5 2x4

x4 x3 x2 x1 x0 2x17 2x16 2x15 2x14 2x13 2x12 2x11 2x10 2x9 2x8 2x7 2x6 2x5

x5 x4 x3 x2 x1 x0 2x17 2x16 2x15 2x14 2x13 2x12 2x11 2x10 2x9 2x8 2x7 2x6

x6 x5 x4 x3 x2 x1 x0 2x17 2x16 2x15 2x14 2x13 2x12 2x11 2x10 2x9 2x8 2x7

x7 x6 x5 x4 x3 x2 x1 x0 2x17 2x16 2x15 2x14 2x13 2x12 2x11 2x10 2x9 2x8

x8 x7 x6 x5 x4 x3 x2 x1 x0 2x17 2x16 2x15 2x14 2x13 2x12 2x11 2x10 2x9

x9 x8 x7 x6 x5 x4 x3 x2 x1 x0 2x17 2x16 2x15 2x14 2x13 2x12 2x11 2x10

x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 x0 2x17 2x16 2x15 2x14 2x13 2x12 2x11

x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 x0 2x17 2x16 2x15 2x14 2x13 2x12

x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 x0 2x17 2x16 2x15 2x14 2x13

x13 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 x0 2x17 2x16 2x15 2x14

x14 x13 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 x0 2x17 2x16 2x15

x15 x14 x13 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 x0 2x17 2x16

x16 x15 x14 x13 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 x0 2x17

x17 x16 x15 x14 x13 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 x0



×



y0

y1

y2

y3

y4

y5

y6

y7

y8

y9

y10

y11

y12

y13

y14

y15

y16

y17



Figure 4.1: TMVP of size 18 for 32-bit implementation

six TMVP of size 6, called Pi for i = 1, . . . , 6, such that half of them are eligible

for the application of (2.1) at level-2. Because application of (2.1) requires at least

one-bit space and the matrix entries of P2, P3 and P4 are 30-, 31- and 31-bit signed

integer at the worst-case, respectively. The decision to use either the schoolbook or

a TMVP variant for size 6 is driven by our timing results. So, the cross-over point

between the schoolbook and TMVP variants of size 6 is discussed in detail in Section

4.5.1. Hence, we have designed our residue multiplication based on the arithmetic

and timing results. The technique is discussed in detail in the next section.

4.2.1 Level-1

By using (2.2) the Fig. 4.1 can be represented as follows:


X0 2X2 2X1

X1 X0 2X2

X2 X1 X0

×


Y0

Y1

Y2

 =


P3 + P4 + P6

P2 − P4 + P5

P1 − P2 − P3


41

where P1 = (X2 +X1 +X0)Y0, P2 = X1(Y0 − Y1),

P3 = X0(Y0 − Y2), P4 = 2X2(Y1 − Y2),

P5 = (X0 +X1 + 2X2)Y1, P6 = (2(X2 +X1) +X0)Y2.

The sub-matrices Xi for i ∈ {0, 1, 2} are of size 6 × 6 and contain (some) common

elements, whereas, the vectors Yi are of size 6 × 1. Again, we represent a Toeplitz

matrix by first row and first column.

Computing P2:

Y0 − Y1 =



y0

y1

y2

y3

y4

y5


−



y6

y7

y8

y9

y10

y11


=



U0

U1

U2

U3

U4

U5


︸ ︷︷ ︸

30-bit signed

The size of the matrix entries of P2 is 29-bit unsigned but we take it as 30-bit signed

integer. Still, P2 is a good candidate for level-2 computation because of the two-bit

free space. So, neither the matrix nor the vector entries will cause overflow in single-

and double-word. Hence, the arithmetic cost of this vector computation is 6A.

Computing P4:

Y1 − Y2 =



y6

y7

y8

y9

y10

y11


−



y12

y13

y14

y15

y16

y17


=



U6

U7

U8

U9

U10

U11


︸ ︷︷ ︸

30-bit signed

We have to also compute 2X2 = {2x7, 2x8, . . . , 2x17} and as a result we take the size

of the matrix entries of P4 as 31-bit signed integer at the worst-case. But still we have

one-bit free space, therefore, P4 is eligible for level-2 computation without causing

overflow. Hence, the arithmetic cost of these operations is 6A + 11-shift.

42

Computing P3:

Y0 − Y2 =



y0

y1

y2

y3

y4

y5


−



y12

y13

y14

y15

y16

y17


=



U12

U13

U14

U15

U16

U17


︸ ︷︷ ︸

30-bit signed

The lower triangular part of the matrix of P3 consists of 29-bit entries while the rest

of the entries are 30-bit unsigned integer. At the worst-case, we consider the matrix

entries as 31-bit signed integer. Like P4, we have one-bit free space and a candidate

for level-2 computation. Note that some of the matrix entries of P3 are found in 2X2.

Instead of re-computation, we reuse the computed values. Hence, the arithmetic cost

of this vector computation is 6A.

Computing P1:

C1 = X1 +X2 =



x6 x5 x4 x3 x2 x1

x7

x8

x9

x10

x11


+



x12 x11 x10 x9 x8 x7

x13

x14

x15

x16

x17



=



S1 S2 S3 S4 S5 S6

S7

S8

S9

S10

S11


︸ ︷︷ ︸

30-bit unsigned

43

C2 = C1 +X0 =



S1 S2 S3 S4 S5 S6

S7

S8

S9

S10

S11


+



x0 2x17 2x16 2x15 2x14 2x13

x1

x2

x3

x4

x5



=



S12 S13 S14 S15 S16 S17

S18

S19

S20

S21

S22


︸ ︷︷ ︸

31-bit unsigned

C2 × Y0 =



S12 S13 S14 S15 S16 S17

S18

S19

S20

S21

S22


×



y0

y1

y2

y3

y4

y5



At the worst-case, the size of the matrix entries is 31-bit unsigned or 32-bit signed

integer. We exploit P1 for level-2 computation which results in multiplication of

signed by unsigned integer. Unfortunately, in our pure C-implementation we find

mixed-sign multiplication inefficient. We also used the strategies of type casting to

avoid mixed-sign multiplication but still the timing results are not good. Although the

application of (2.1) to compute P1 at level-2 is efficient in terms of arithmetic cost,

our timing results are not good. Hence, we compute P1 using the schoolbook at this

level and the total arithmetic cost will be 36M + 22A + 30Ad.

Computing P6: We have

2(X2 +X1) +X0 = (X2 +X1 +X0) + (X2 +X1) = C2 + C1

44

then

C2 + C1 =



S12 S13 S14 S15 S16 S17

S18

S19

S20

S21

S22


+



S1 S2 S3 S4 S5 S6

S7

S8

S9

S10

S11



=



S23 S24 S25 S26 S27 S28

S29

S30

S31

S32

S33


︸ ︷︷ ︸

32-bit unsigned

(C2 + C1)× Y2 =



S23 S24 S25 S26 S27 S28

S29

S30

S31

S32

S33


×



y12

y13

y14

y15

y16

y17


The size of the matrix entries will be 32-bit unsigned at the worst-case. Therefore,

we compute P6 using the schoolbook at this level. Hence, the total arithmetic cost of

computing P6 is 36M + 11A + 30Ad.

Computing P5:

X0+X1 =



x0 2x17 2x16 2x15 2x14 2x13

x1

x2

x3

x4

x5


+



x6 x5 x4 x3 x2 x1

x7

x8

x9

x10

x11


45

=



x0 + x6 2x17 + x5 2x16 + x4 2x15 + x3 2x14 + x2 2x13 + x1

x1 + x7

x2 + x8

x3 + x9

x4 + x10

x5 + x11



(X0 +X1) + 2X2 =



S12 + x12 S33 S32 S31 S30 S29

S17

S16

S15

S14

S13



((X0 +X1) + 2X2)× Y1 =



S12 + x12 S33 S32 S31 S30 S29

S17

S16

S15

S14

S13


×



y6

y7

y8

y9

y10

y11


From the computation of P1 and P6, we already know that the matrix entries S13 to

S17 and S29 to S33 are 31- and 32-bit unsigned, respectively. At the worst-case, the

entry S12 + x12 is 32-bit unsigned. So, we P5 using the schoolbook at this level.

Hence, the total arithmetic cost of computing P5 is 36M + 1A + 30Ad.

Final Computation: Note that P2, P3 and P4 are not fully computed yet and once all

the Pi for i = 1, . . . , 6 are computed then we have to compute


P3 + P4 + P6

P2 − P4 + P5

P1 − P2 − P3


where each Pi is a double-word vector of size 6. Hence, the arithmetic cost of this

final computation is 36Ad.

46

4.2.2 Level-2

There are three calls from level-1 to compute TMVP of size 6 at this level. From

the arithmetic cost and (our) timing results, it is evident that (2.1) is efficient than the

schoolbook by using its proper variant. The further details are given in Section 4.5.1.

The application of (2.1) results in three TMVP of size 3. By the worst-case bitlength

analysis, P4 is an ideal candidate to take into account. So, we have



2x12 2x11 2x10 2x9 2x8 2x7

2x13

2x14

2x15

2x16

2x17


︸ ︷︷ ︸

31-bit signed

×



U6

U7

U8

U9

U10

U11


︸ ︷︷ ︸

30-bit signed

=

X0 X1

X2 X0

×
Y0

Y1

 =

P4,2 + P4,1

P4,3 − P4,1



where P4,1 = X0(Y0 − Y1), P4,2 = (X1 +X0)Y1,

P4,3 = (X2 +X0)Y0

Computing P4,1: 
U6

U7

U8

−


U9

U10

U11

 =


U19

U20

U21


︸ ︷︷ ︸

31-bit signed


2x12 2x11 2x10

2x13

2x14

×


U19

U20

U21


Hence, the total arithmetic cost of P4,1 is 9M + 3A + 6Ad.

47

Computing P4,2:
2x9 2x8 2x7

2x10

2x11

+


2x12 2x11 2x10

2x13

2x14

 =


T1 T2 T3

T4

T5


︸ ︷︷ ︸

32-bit signed
T1 T2 T3

T4

T5

×


U9

U10

U11


Hence, the total arithmetic cost of P4,2 is 9M + 5A + 6Ad.

Computing P4,3:
2x15 2x14 2x13

2x16

2x17

+


2x12 2x11 2x10

2x13

2x14

 =


T6 T5 T4

T7

T8


︸ ︷︷ ︸

32-bit signed
T6 T5 T4

T7

T8

×


U6

U7

U8


Note that the entries T4 and T5 are already computed by P4,2. Hence, the total arith-

metic cost of P4,3 is 9M + 3A + 6Ad.

Final Computation: Finally, we have to compute P4,2 + P4,1 and P4,3 − P4,1 where

each P4,i is a vector of size 3 for i = 1, 2, 3. Hence, the arithmetic cost of this final

computation is 6Ad.

4.2.3 Overall Cost

At level-1, the arithmetic costs are: P2 and P3 are each 6A, P4 is 6A + 11-shift,

P1 is 36M + 22A + 30Ad, P6 is 36M + 11A + 30Ad, P5 is 36M + 1A + 30Ad

and the final computation step is 36Ad. So, the total arithmetic cost of level-1 is

108M+52A+126Ad+11-shift. There are three calls to level-2 so, the total arithmetic

cost of level-2 is 3
(
27M+11A+24Ad

)
= 81M+33A+72Ad. Hence, the overall cost

48

of our residue multiplication for 32-bit platforms is 189M+85A+198Ad+11-shift =

189M + 481A + 11-shift. Note that we are taking 1Ad = 2A.

4.3 Technique-2 and Technique-3

The two techniques that we discuss in this section are based on the idea of applying

(2.1) to the TMVP in Fig. 4.1 followed by (2.2) and some tricks where (2.2) is not

directly applicable. If we apply (2.1) straightaway, then it is not a good approach at

all. Because the application of (2.1) at level-1 results in three TMVP of size 9 that

are P1, P2 and P3. Clearly, the matrix entries of P1, P2 and P3 differ in sizes but

for the sake of simplicity and the worst-case, we take the largest size. So, the matrix

entries of P1, P2 and P3 will be at most 30-, 31- and 31-bit unsigned/non-negative

integer, respectively. It is evident from [1, 23, 33] that in a pure C-implementation —

no intrinsics and SIMD/assembly instructions — the schoolbook is not efficient for

matrix-vector product of size 9 or polynomials product of degree 8. So, if we apply

(2.2) at level-2, then only P1 is eligible because there are two-bit space in 32-bit word

while P2 and P3 do not have enough free space to avoid overflow. We didn’t find it

efficient to exploit the fact that the matrix entries of P1, P2 and P3 are not the same

bitlength. Does it mean a dead end? No, there is a way out and the better approach is

to exploit the structure of Fig. 4.1 by applying (2.1) as follows. X0 2X1

X1 X0

×
 Y0

Y1

 =

 P1 + P3

P1 + P2



where P1 = (X0 +X1)Y0, P2 = X0(Y1 − Y0)

P3 = X1(Y1 + (Y1 − Y0)).

The (Toeplitz) sub-matrices Xi for i = 0, 1 are of size 9 × 9 and contain (some)

common elements, whereas, the vectors Yi are of size 9× 1. The application of (2.2)

at level-2 seems to be smooth for the computation of P2 and P3 because there is no

danger of overflow. So, the arithmetic cost of P2 and P3 at level-1 is each 9A. On the

other hand, the computation of P1 is tricky because the size of the (Toeplitz) matrix

entries of X0 +X1 is 30- and 31-bit unsigned. So, our two techniques differ in how

49

we compute P1 and suppose at level-1 the P1 is

P1 =



S1 S2 S3 S4 S5 S6 S7 S8 S9

S10

S11

S12

S13

S14

S15

S16

S17



×



y0

y1

y2

y3

y4

y5

y6

y7

y8



where S1 = x0 + x9, S2 = 2x17 + x8, S3 = 2x16 + x7,

S4 = 2x15 + x6, S5 = 2x14 + x5, S6 = 2x13 + x4,

S7 = 2x12 + x3, S8 = 2x11 + x2, S9 = 2x10 + x1,

S10 = x1 + x10, S11 = x2 + x11, S12 = x3 + x12,

S13 = x4 + x13, S14 = x5 + x14, S15 = x6 + x15,

S16 = x7 + x16, S17 = x8 + x17.

The total cost of computing S1 to S17 is 17A + 8-shift. The size of the matrix entries

S1 and S10 to S17 are 30-bit unsigned while the size of S2 to S9 is 31-bit unsigned

at the worst-case. In our residue representation x0 is at most 30-bit unsigned which

implies that we take the size of S1 to S9 as 31-bit unsigned. Now, it’s time to discuss

the two techniques of computing P1.

4.3.1 Technique-2

Let’s compute P1 using (2.2) at level-2 and handle the overflow where it arises. So,

we have 
X0 X1 X2

X3 X0 X1

X4 X3 X0

×


Y0

Y1

Y2

 =


P1,3 + P1,4 + P1,6

P1,2 − P1,4 + P1,5

P1,1 − P1,2 − P1,3


50

where P1,1 = (X4 +X3 +X0)Y0, P1,2 = X3(Y0 − Y1),

P1,3 = X0(Y0 − Y2), P1,4 = X1(Y1 − Y2),

P1,5 = (X0 +X3 +X1)Y1, P1,6 = (X2 +X0 +X1)Y2.

The sub-matrices Xi for i ∈ {0, 1, 2} are of size 3 × 3 and contain (some) common

elements, whereas, the vectors Yi are of size 3×1. Like our 64-bit residue multiplica-

tion we use the schoolbook for TMVP of size 3 which implies that the total arithmetic

cost of P1,2, P1,3 and P1,4 is 3
(
9M + 3A + 6Ad

)
.

Computing P1,1:

X3 +X0 =


S12 S11 S10

S13

S14

+


S1 S2 S3

S10

S11

 =


S18 S19 S20

S21

S22



X4 + (X3 +X0) =


S15 S14 S13

S16

S17

+


S18 S19 S20

S21

S22

 =


S23 S24 S25

S26

S27



(X2 +X1 +X0)Y0 =


S23 S24 S25

S26

S27


︸ ︷︷ ︸

32-bit unsigned

×


y0

y1

y2



The value of S23, S24 and S25 can be at most 7(229 − 1) and the value of S26 and S27

can be at most 6(229 − 1). In other words, the size of the matrix entries is at most

32-bit unsigned. Hence, the total arithmetic cost of P1,1 is 9M + 10A + 6Ad.

Computing P1,5:

(X3 +X0) +X1 =


S18 S19 S20

S21

S22

+


S4 S5 S6

S3

S2

 =


S28 S29 S30

S31

S32



(X3 +X0 +X1)Y1 =


S28 S29 S30

S31

S32


︸ ︷︷ ︸

32-bit unsigned

×


y3

y4

y5



The value of S28, S29 and S30 can be at most 8(229 − 1) and the value of S31 and S32

51

can be at most 7(229 − 1). In other words, the size of the matrix entries is at most

32-bit unsigned. Hence, the total arithmetic cost of P1,5 is 9M + 5A + 6Ad.

Computing P1,6: The upper triangular matrix entries of the result of X0 +X1 +X2

causes overflow in 32-bit word. Therefore, to avoid the overflow we compute P1,6 as

follows

=


(S1 + S4)y6 + S7y6 +(S2 + S5)y7 + S8y7 +(S3 + S6)y8 + S9y8

S30y6 +(S1 + S4)y7 + S7y7 +(S2 + S5)y8 + S8y8

S29y6 +S30y7 +(S1 + S4)y8 + S7y8


Hence, the total arithmetic cost of P1,6 is 15M + 3A + 12Ad. Note that we are not

recomputing the common expression just like before.

Final Computation: At last, we have to compute
P1,3 + P1,4 + P1,6

P1,2 − P1,4 + P1,5

P1,1 − P1,2 − P1,3


where each P1,i for i = 1, . . . , 6 is a 3 × 1 vector and the elements are of double-

word size so the total cost is 18Ad. Hence, the total arithmetic cost of P1 at level-2 is

3
(
9M+3A+6Ad

)
+9M+10A+6Ad+9M+5A+6Ad+15M+3A+12Ad+18Ad =

60M + 27A + 60Ad.

4.3.1.1 Overall Cost

From the computation of P1 using (2.2) at level-2, it is easy to conceive that the total

arithmetic cost of P2 and P3 at level-2 is 2
(
54M + 30A + 54Ad

)
= 108M + 60A +

108Ad. Then the total arithmetic cost of the computation at level-2 and level-1 is

168M + 87A + 168Ad and 35A + 18Ad, respectively, precluding the negligible cost

of shift operation. Thus, the overall cost is 168M+122A+186Ad = 168M+494A.

4.3.2 Technique-3

From Technique-2, it is evident that the use of (2.2) to compute P1 results in many

(inefficient) mixed-sign multiplications e.g. the computation of P1,1, P1,5 and P1,6.

52

Therefore, our technique-2 is based on the idea of reducing the number of mixed-

sign multiplications and have minimum increase in the arithmetic cost. Definitely,

the number of multiplications will be more than the technique-1. From Section 4.5.1,

it is clear that we have size 6 as the cross-over point between the schoolbook and a

TMVP variant. Therefore, we compute P1 by decomposing it, shown by dotted lines,

in such a way that we have a TMVP of size 6 as shown below.

P1 =



S1 S2 S3 S4 S5 S6 S7 S8 S9

S10 S1 S2 S3 S4 S5 S6 S7 S8

S11 S10 S1 S2 S3 S4 S5 S6 S7

S12 S11 S10 S1 S2 S3 S4 S5 S6

S13 S3 S4 S5

S14 S2 S3 S4

S15 S1 S2 S3

S16 S10 S1 S2

S17 S11 S10 S1



×



y0

y1

y2

y3

y4

y5

y6

y7

y8


The first, second and third row of P1 are (fully) computed by sum of products while

the rest are computed as sum of the result of the TMVP of size 6 and sum of the

products of the other entries in that respective row. So, the total arithmetic cost of the

first, second and third row is 27M+24Ad. On the other hand, the total arithmetic cost

of the partial results of the fourth to ninth row is 18M + 12Ad precluding the cost of

the TMVP of size 6. Finally, the TMVP of size 6 is computed using (2.1) followed by

the schoolbook because it results in the cross-over point between the schoolbook and

TMVP. For further details, see Section 4.5.1. Hence, the TMVP of size 6 is computed

as follows.

P ′1 =



S12 S11 S10 S1 S2 S3

S13

S14

S15

S16

S17


×



y0

y1

y2

y3

y4

y5


 X0 X1

X2 X0

×
 Y0

Y1

 =

 P ′1,2 + P ′1,1

P ′1,3 − P ′1,1


53

where P ′1,1 = X0(Y0 − Y1), P ′1,2 = (X1 +X0)Y1,

P ′1,3 = (X2 +X0)Y0.

The (Toeplitz) sub-matrices Xi for i ∈ {0, 1, 2} are of size 3× 3 and contain (some)

common elements, whereas, the vectors Yi are of size 3 × 1. Note that, at the worst-

case, the entries of X0 and X2 are 30-bit unsigned while the upper triangular matrix

entries of X1 are 31-bit unsigned.

Computing P ′1,1: 
y0

y1

y2

−


y3

y4

y5

 =


U0

U1

U2




S12 S11 S10

S13

S14


︸ ︷︷ ︸

31-bit signed

×


U0

U1

U2


︸ ︷︷ ︸

30-bit signed

Hence, the total arithmetic cost of P ′1,1 is 9M + 3A + 6Ad.

Computing P ′1,2:
S1 S2 S3

S10

S11

+


S12 S11 S10

S13

S14

 =


T1 T2 T3

T4

T5


By the worst-case, T1, T2 and T3 are 32-bit unsigned while T4 and T5 are 31-bit un-

signed. 
T1 T2 T3

T4

T5

×


y3

y4

y5


Hence, the total arithmetic cost of P ′1,2 is 9M + 5A + 6Ad.

Computing P ′1,3:
S15 S14 S13

S16

S17

+


S12 S11 S10

S13

S14

 =


T6 T5 T4

T7

T8


54


T6 T5 T4

T7

T8


︸ ︷︷ ︸

32-bit signed

×


y0

y1

y2



Note that the entries T4 and T5 are already computed by P ′1,2. Hence, the total arith-

metic cost of P4,3 is 9M + 3A + 6Ad.

Final Computation: Finally, we have to compute P ′1,2 + P ′1,1 and P ′1,3 − P ′1,1 where

each P ′1,i is a vector of size 3 for i = 1, 2, 3. So, the arithmetic cost of these operations

is 6Ad. The result of P ′1 needs to be added to the partial result of the fourth to ninth

row of (original) P1 and the arithmetic cost of this operation is 6Ad.

Hence, the total arithmetic cost of computing P1 using technique-3 is 27M+24Ad +

18M + 12Ad + 9M + 3A + 6Ad + 9M + 5A + 6Ad + 9M + 3A + 6Ad + 12Ad =

72M + 11A + 66Ad.

4.3.2.1 Overall Cost

Like before, P2 and P3 are computed using (2.2) at level-2 and the total arithmetic

cost is 2
(
54M + 30A + 54Ad

)
= 108M + 60A + 108Ad. Then the total arithmetic

cost of the computation at level-2 and level-1 is 180M+71A+174Ad and 35A+18Ad,

respectively, precluding the negligible cost of shift operation. Thus, the overall cost

is 180M + 106A + 192Ad = 180M + 490A.

4.4 Residue Representation

From the timing results of both the residue and scalar multiplication in [1], it can be

deduced that modulus p is efficient than 2p. Therefore, we use modulus p and the

same strategy of residue representation as the one employed in [1, 23]. In case of 32-

bit implementation, the bitlength of the limbs is half of that 64-bit implementation.

Therefore, for 32-bit residue multiplication and squaring, the input and output range

of the limbs are [0, 229+27−2]× [0, 229−1]16× [0, 228−1] where the least significant

limb is in [0, 229 + 27 − 2] and the most significant limb is in [0, 228 − 1]. Hence, the

55

size of the least significant limbs x0 and y0 are at most 30-bit.

In case of 64-bit residue multiplication, overflow can be disregarded in spite of using

different residue representation e.g. [1, 23]. Because there are 9-limb and enough bit

space in single- and double-word to avoid overflow comfortably. But the situation is

more challenging for our 32-bit residue multiplication techniques. Instead of proving

that overflow does not occur in single- and double-word using all our techniques, we

show the proof for our most efficient technique, minimum clock cycles count, on our

machine. It is not a restriction that proof should be provided for the most efficient

technique but we are doing it for the sake of simplicity. Definitely, the most efficient

technique is determined by timing test.

4.5 Comparisons, Implementation and Testing Environment

In this section, to the best of our knowledge, we compare our 32-bit residue mul-

tiplication techniques to some of the well-known algorithms mainly in terms of the

arithmetic cost and also provide the published timing results. For our timing results,

we have to verify whether a TMVP variant takes less number of clock cycles than the

schoolbook to compute a Toeplitz matrix-vector product of size 6. In other words,

can size 6 be the cross-over point between the schoolbook and TMVP variant? So,

we have to describe our testing environment for timing results.

The implementation/timing results are obtained on Intel(R) Core i5− 6402P CPU @

2.80GHz with Turbo Boost disabled, Hyper-threading not supported and the machine

is running on one core. All our programs are written in C programming language and

as pointed out in [23], this gives the freedom of portability unlike the other platform

dependent (assembly) implementation. As recommended by Paoloni in his white

paper [32], we use rdtsc and rdtscp for clock cycles counts. For all the C programs

in this paper we use GCC 5.4.0 compiler on Ubuntu 16.04 LTS and the clock cycles

of our residue multiplication algorithms are counted at optimization level 2 i.e. -O2.

Note that the testing environment is different from our earlier work [1] for 64-bit

residue multiplication i.e. Chapter-3.

56

Table 4.1: SB = Schoolbook, 3wD = Three-way Decomposition, 2wD = Two-way
Decomposition and m.line = manually inlined. Clock Cycles counts for SB and the
TMVP variants of size 6

SB
3wD 2wD

m.line SB m.line 2wD m.line SB m.line 3wD
83 84 83 76 90

4.5.1 Schoolbook vs. TMVP variants of size 6

We perform timing tests to determine whether size 6 is the cross-over point between

the schoolbook and TMVP. Also, 6 is a multiple of both 2 and 3, therefore, it is nec-

essary to decide to apply either (2.1) or (2.2). To answer these questions we executed

our C programs with the command gcc -Wall -m32 -O2 program.c -o program.exe.

We have tested the programs on 100 random values such that for each value the func-

tion is called 107 times in order to get consistent cycle count. The optimization ar-

gument -O3 returns 0 cycle. The results of our timing tests are provided in Table

4.1.

By m.line, we mean that the callee function is manually inlined within the body of

the caller function. Because we found the compiler’s inlining feature slower than our

manual inlining. Our timing results show that the application of (2.1) followed by

the schoolbook is the most efficient approach such that the schoolbook is manually

inlined within the caller function. On the other hand, the application of (2.1) followed

by (2.2) is the worst technique. The application of the schoolbook results in almost

the same cycle count as the application of (2.2) followed by either (2.1) or the school-

book. Hence, we find size 6 as the cross-over point where a TMVP variant is more

efficient than the straight application of the schoolbook.

4.5.2 Residue Multiplication and Squaring

In this section, we provide the arithmetic cost and clock cycles count of our residue

multiplication techniques and squaring for 32- and 64-bit platforms. Since the testing

environment has changed therefore, we also provide the new timing result of our 64-

bit residue multipicaiton. In case of 64-bit, we don’t reproduce the Table 1 in [1] and

57

only include the one that we require i.e. Hybrid version. Because in terms of the

timing results, Hybrid version was found the most efficient in [1] and the source code

is freely available on GitHub.

In the earlier sections of this chapter, you may have noticed that we presented the

total arithmetic cost in terms of the single-word multiplication and addition by tak-

ing 1Ad = 2A. Henceforth, we follow the same arithmetic cost presentation. Let’s

apply the Granger and Scott observation [23] on 18-limb and we find the arithmetic

cost as 171M + 664A. Similarly, applying the Karatsuba algorithm and using the

Scott’s work in [33] to decide about the cross-over point between the schoolbook

and Karatsuba, we have two choices. First choice, apply the Karatsuba 3-way iden-

tity in [36] followed by the schoolbook when the size of multiplicands become 6.

So, using this technique we find the total arithmetic cost as 216M + 564A including

the cost of reduction. Second choice, using the technique of Bernstein et al. in [5],

we apply the reduced refined Karatsuba identity at level-1 to yield multiplicands of

size 9. Then we apply the Karatsuba 3-way identity because of the cross-over point

between the schoolbook and Karatsuba, as shown in [33]. Thus, we find the total

arithmetic cost of the second choice as 162M + 576A including the cost of reduc-

tion. Note that the total arithmetic cost of our residue multiplication techniques are

168M + 494A, 180M + 490A and 189M + 481A. Clearly, the total arithmetic cost

of all our techniques for 32-bit platforms is less than the aforementioned techniques

even if one takes 1M = 3A. Note that we have not included the cost of shift operation

in all the aforementioned techniques because it is not significant and in our case all

the shift operations are performed on single-word.

Now that the arithmetic cost of different techniques is provided, it’s time to per-

form timing tests. In our timing tests, we run the residue multiplication functions

for 107 iterations over 100 random values generated at run-time and the results are

provided in Table 4.2. The Arbitrary Degree Karatsuba (ADK) is more efficient

than the schoolbook for 9-limb multiplication, as shown in [33]. But [1] and [23]

present even more efficient modular multiplication algorithm than ADK for mod-

ulus p with 9-limb. In [23], 155 clock cycles are reported for the modular multi-

plication algorithm and it is also mentioned that they tried different compilers and

options. On the other hand, we got 165-cycle for the same modular multiplication

58

code in our test and the result is almost same as the one reported in [1]. Surpris-

ingly, we find 136-cycle for the Hybrid version of our residue multiplication in [1]

which is less than the reported 179-cycle in our earlier tests. Note that we have used

the same residue multiplication function gmul and TMV_product as provided at

http://indigo.ie/~mscott/ws521.cpp and https://github.com/

Shoukat-Ali/521-bit-Mersenne-Prime/blob/master/hybrid.c, re-

spectively. Similarly, for squaring, we use the same code provided at https://

github.com/Shoukat-Ali/521-bit-Mersenne-Prime/blob/master/

ws521.cpp.

The Table 4.2 shows that our cycles count for 64-bit squaring is 110 as compared to

105 in [23]. For 32-bit squaring, the number of cycles is 4 times of the 64-bit ver-

sion and the increase in the number of multiplication and addition from 64- to 32-bit

squaring is 3.8 and 3.77 times, respectively. The 550-cycle of the Technique-1 is 4.04

times of the Hybrid version cycle. While, the increase in the number of multiplication

and addition from 64- to 32-bit residue multiplication are 3.5 and 3.62 times, respec-

tively. The 574-cycle of the Technique-2 is around 4.22 times of the Hybrid version

cycle. Whereas, the increase in the number of multiplication and addition from 64-

to 32-bit residue multiplication are 3.11 and 3.71 times, respectively. Lastly, the 572-

cycle of the Technique-3 is about 4.21 times of the Hybrid version cycle. While,

the increase in the number of multiplication and addition from 64- to 32-bit residue

multiplication are aroudn 3.33 and 3.68 times, respectively. It is to mention that Seo

et al. [34] reported 350- and 708-cycle on Cortex-A15 and Cortex-A9, respectively,

for their parallel multiplication modulo 521-bit Mersenne prime. As compared to the

20-limb used by Seo et al. [34], our techniques use 18-limb which also implies that

the parallel implementation of our residue multiplication techniques might have way

better result than [34] on Cortex-A15.

From Table 4.2, it is evident that Technique-1 is our most efficient residue multipli-

cation. So, Technique-1 is our selection for which we show that the technique does

not cause overflow in single- and double-word. In spite of their less arithmetic cost,

both Technique-2 and Technique-3 take more clock cycles than Technique-1. The

most evident factor is the inefficient mixed-sign multiplication performed the GCC

compiler. Actually, all our codes are written in C programming language with no use

59

http://indigo.ie/~mscott/ws521.cpp
https://github.com/Shoukat-Ali/521-bit-Mersenne-Prime/blob/master/hybrid.c
https://github.com/Shoukat-Ali/521-bit-Mersenne-Prime/blob/master/hybrid.c
https://github.com/Shoukat-Ali/521-bit-Mersenne-Prime/blob/master/ws521.cpp
https://github.com/Shoukat-Ali/521-bit-Mersenne-Prime/blob/master/ws521.cpp
https://github.com/Shoukat-Ali/521-bit-Mersenne-Prime/blob/master/ws521.cpp

Table 4.2: Number of operations for 32-bit and 64-bit residue multiplication tech-
niques and their respective clock cycles counts. The cycles count were obtained by
generating 100 random integers at run-time and executing each respective function
for 107 times on each value.

Technique Arithmetic cost Clock Cycles
Squaring (64-bit) 45M + 91A 110

Granger-Scott (64-bit) 45M + 176A 165

Hybrid version (64-bit) 54M + 133A 136

Squaring (32-bit) 171M + 343A 440

Technique-1 (this chapter) 189M + 481A 550

Technique-2 (this chapter) 168M + 494A 574

Technique-3 (this chapter) 180M + 490A 572

of intrinsics and SIMD/assembly instructions. Techniques-2 has more mixed-sign

multiplication than Technique-3. In order to obtain better timing results, we did dif-

ferent type casting and mixed-sign addition tricks, that we know, for Technique-2 and

Technique-3.

4.6 Worst-case bitlength analysis of Technique-1

We are using reduced-radix representation for 521-bit residues such that the bitlength

of the limbs on 32-bit platforms is more than the recommended range in [33]. In

other words, overflow is a big challenge to ensure correctness and efficiency on 32-bit

platforms. Moreover, the number of limbs and our residue representation aggravate

the situation further. As aforementioned in earlier section, overflow is not a threat for

64-bit residue multiplication.

In Section 4.1, it is shown that overflow is avoided in single-word on 32-bit platforms.

Now, in this section, we prove that the Technique-1 does not cause overflow in double-

word (64-bit) in spite of using our residue representation. For the sake of simplicity

and the worst-case analysis, the (non-negative) residues X and Y are considered the

largest 522-bit value. In other words, the maximum values of all the limbs of X and

Y are 229 − 1. Before starting our proof, it is reminded that based on (2.1) and (2.2)

we restrict addition and subtraction to Toeplitz matrix and vector, respectively. This

implies that the result of P1, P5 and P6 is always unsigned/non-negative while the

60

result of P2, P3 and P4 is signed (negative/non-negative). Therefore, our focus is on

the vectors Y0, Y1 and Y2 which determine the value of P2, P3 and P4.

Case-1:

Y0 =



229 − 1

229 − 1

229 − 1

229 − 1

229 − 1

229 − 1


, Y1 =



229 − 1

229 − 1

229 − 1

229 − 1

229 − 1

229 − 1


, Y2 =



229 − 1

229 − 1

229 − 1

229 − 1

229 − 1

229 − 1


These vector values give the maximum value of P1, P5 and P6 as shown below

P1 = (22(229 − 1))(229 − 1)6 = 262 + 261 − 234 − 233 + 24 + 23

P5 = (5(229 − 1))(229 − 1)6

= 262 + 261 + 260 + 259 − 234 − 233 − 232 − 231 + 24 + 23 + 22 + 2

P6 = (6(229 − 1))(229 − 1)6

= 263 + 260 − 235 − 232 + 25 + 22

Since Y0 = Y1 = Y2 then the resultant vector of P2, P3 and P4 will be [0, . . . , 0].

Which implies that the result of P2, P3 and P4 will be zero. Hence, we have

P3 + P4 + P6 = P6

P2 − P4 + P5 = P5

P1 − P2 − P3 = P1

So, none of the result is more than 64-bit unsigned. Thus, overflow is avoided in

double-word by taking the summation as 64-bit unsigned integer.

Case-2:

Y0 =



229 − 1

229 − 1

229 − 1

229 − 1

229 − 1

229 − 1


, Y1 =



228 − 1

228 − 1

228 − 1

228 − 1

228 − 1

228 − 1


, Y2 =



229 − 1

229 − 1

229 − 1

229 − 1

229 − 1

229 − 1


61

In this case, the computation of P1, P5 and P6 result in the following values

P1 = (22(229 − 1))(229 − 1)6 = 262 + 261 − 234 − 233 + 24 + 23

P5 = (5(229 − 1))(228 − 1)6

= 261 + 260 + 259 + 258 − 234 − 232 − 231 − 229 + 24 + 23 + 22 + 2

P6 = (6(229 − 1))(229 − 1)6

= 263 + 260 − 235 − 232 + 25 + 22

At level-1, the resultant vector of P2, P3 and P4 will be [228, . . . , 228], [0, . . . , 0] and

[−228, . . . ,−228], respectively. So, the result of P3 will be zero and the computation

of P2 and P4 at level-2 are shown below

P2,1 = 0

P2,2 = P2,3 = (2(229 − 1))(228)3 = 259 + 258 − 230 − 229

P4,1 = 0

P4,2 = P4,3 = (2(230 − 2))(−228)3 = −(260 + 259 − 231 − 230)

Finally, we have to compute

P3 + P4 + P6 = 263 − 258 − 235 − 231 + 229 + 25 + 22

P2 − P4 + P5 = 263 + 260 + 259 − 235 − 231 + 24 + 23 + 22 + 2

P1 − P2 − P3 = 262 + 261 − 259 − 258 − 234 − 233 + 230 + 229 + 24 + 23

Here, none of the result is more than 64-bit unsigned. Thus, overflow is avoided in

double-word by taking the summation as 64-bit unsigned integer.

Case-3:

Y0 =



228 − 1

228 − 1

228 − 1

228 − 1

228 − 1

228 − 1


, Y1 =



229 − 1

229 − 1

229 − 1

229 − 1

229 − 1

229 − 1


, Y2 =



229 − 1

229 − 1

229 − 1

229 − 1

229 − 1

229 − 1


62

This time, the computation of P1, P5 and P6 result in the following values

P1 = (22(229 − 1))(228 − 1)6 = 261 + 260 − 234 − 231 + 24 + 23

P5 = (5(229 − 1))(229 − 1)6

= 262 + 261 + 260 + 259 − 234 − 233 − 232 − 231 + 24 + 23 + 22 + 2

P6 = (6(229 − 1))(229 − 1)6

= 263 + 260 − 235 − 232 + 25 + 22

At level-1, the resultant vector of P2, P3 and P4 will be [−228, . . . ,−228], [−228, . . . ,−228]
and [0, . . . , 0], respectively. This time, the result of P4 will be zero. For the sake of

simplicity and the worst-case analysis, we further assume that all the matrix entries

of P3 are 230 − 2. So, the computation of P2 and P3 at level-2 are shown below

P2,1 = 0

P2,2 = P2,3 = (2(229 − 1))(−228)3 = −(259 + 258 − 230 − 229)

P3,1 = 0

P3,2 = P3,3 = (2(230 − 2))(−228)3 = −(260 + 259 − 231 − 230)

Finally, we have to compute

P3 + P4 + P6 = 263 − 259 − 235 − 230 + 25 + 22

P2 − P4 + P5 = 261 + 260 − 234 − 232 − 230 + 24 + 23 + 22 + 2

P1 − P2 − P3 = 262 + 260 + 258 − 234 − 232 − 231 − 229 + 24 + 23

So, none of the result is more than 63-bit unsigned. Thus, there is no overflow in

double-word.

63

64

CHAPTER 5

SCALAR MULTIPLICATION

In this chapter we discuss the vital elliptic curve operation of scalar/point multipli-

cation kP where k is an integer and P is a point on elliptic curve defined over a

prime field. Actually, the efficiency of elliptic curve cryptography (ECC) is directly

proportional to the efficiency of scalar multiplication. The single-scalar multipli-

cation kP is used in: public-key generation, singing messages, and shared-secret

computation/Diffie-Hellman. The base point P is a standard/fixed point in the opera-

tions of public-key generation and singing messages. If P is fixed/known, then kP is

called fixed-base scalar multiplication. On the other hand, the point P is unknown in

the shared-secret computation. So, if P is unknown, then kP is called variable-base

scalar multiplication. The scalar both in fixed- and variable-base is secret and must

be protected from any kind of leakage in computation. For signature verification in

ECC, one needs to compute kP + lQ, called double-scalar multiplication, where l is

an integer and Q is a point. Note that our work is focused on the public-key generation

and shared-secret computation.

In fixed-base scalar multiplication, one can perform precomputations using P to

speedup the scalar multiplication kP . On the other hand, no computations can be per-

formed in advance using P in variable-base scalar multiplication. Which implies that

the computation of variable-base scalar multiplication takes longer than fixed-base

scalar multiplication. That’s why the efficient computation of variable-base scalar

multiplication has received more attention. In Section 5.1, we briefly present some of

the different techniques to compute the variable-base scalar multiplication. In Section

5.2, we discuss our first implementation of the constant-time variable-base scalar mul-

65

tiplication using our 64-bit residue multiplication modulo p and 2p where p = 2521−1.

Next, we discuss some of the algorithms to compute fixed-base scalar multiplication

in Section 5.3. Finally, we discuss our implementation — both constant-time fixed-

and variable-base scalar multiplication — in detail using state-of-the-art algorithms

proposed by Bos et al. [14] in Section 5.4.

5.1 Variable-base Scalar Multiplication

Recall that E(Fp) is the set of points on elliptic curve E defined over prime field

Fp. Now, let’s assume that the order of E(Fp) is nh where n is prime and h is a

small integer. Furthermore, P,Q ∈ E(Fp) where both have order n and the secret

integer k is selected randomly from the interval [2, n − 1]. Also, suppose that the

bitlength of the integer k is m where m = dlog2ne so, the binary representation of k

is (km−1, . . . , k1, k0)2.

The most basic technique of computing kP is the use of repeated-double-and-add

method which corresponds to the repeated-square-and-multiply method for exponen-

tiation. To make things more clear, let’s do a simple example, 21 · P = (((((P ·
2 + 0)2 + P)2 + 0)2) + P . The Algorithm 13 represents the left-to-right repeated-

double-and-add method for scalar multiplication. The expected running time of the

Algorithm 13 Left-to-right repeated-double-and-add method for scalar multiplication
Input: k = (km−1, . . . , k1, k0) and P ∈ E(Fp)

Output: kP

1: Q←∞
2: for i from m− 1 downto 0 do

3: Q← 2Q

4: if ki = 1 then

5: Q← Q+ P

6: Return Q

Algorithm 13 is approximately

m ·D + (m/2) · A

66

where D and A stands for point doubling and point addition, respectively. Clearly,

the number of point doubling cannot be altered but the number of relatively expensive

point addition. For that purpose, we introduce a signed digit representation called

width-w Non-Adjacent Form (NAF). Actually, the width-w NAF is the extension of

NAF.

Definition For a positive integer w ≥ 2, a width-w NAF of a positive integer k is an

expression k =
∑l−1

i=0 2
iki where each nonzero coefficient ki is odd, |ki| < 2w−1 and

kl−1 6= 0. For any w consecutive digits, at most one of them is nonzero and l is called

the length of the width-w NAF.

For a positive integer k, the properties of width-w NAF are given below:

• k has a unique width-w NAF representation and denoted by NAFw(k).

• The length of NAFw(k) is at most one more than the bitlength of k.

• Among all width-w NAFs of length l, the average density of nonzero digits is

approximately 1/(w + 1).

The Algorithm 14 represents the left-to-right repeated-double-and-add method for

scalar multiplication using NAF2(k). Note that the NAF2(k) is also called NAF and

denoted by NAF(k). From the properties of the NAF(k), one can expect the running

Algorithm 14 NAF(k) method for scalar multiplication

Input: k =
∑l−1

i=0 2
iki where ki ∈ {0,±1} and P ∈ E(Fp)

Output: kP

1: Q←∞
2: for i from l − 1 downto 0 do

3: Q← 2Q

4: if ki = 1 then Q← Q+ P

5: if ki = −1 then Q← Q− P

6: Return Q

time of the Algorithm 14 to be approximately

m ·D + (m/3) · A.

67

Remember that l at most one more than m, therefore, we have expressed the expected

running time in terms of m.

From Algorithm 13, Algorithm 14 and width-w NAF, one can deduce that instead of

process one digit of k, why not to process w digits of k at a time and this technique is

called window method. Definitely, the window method requires some extra memory

to store the possible points iP for i = 1, 3, . . . 2w−1 − 1 where the odd values are

due to the definition of width-w NAF. The Algorithm 15 represents the width-w NAF

method for scalar multiplication. So, the expected running time of the Algorithm 15

Algorithm 15 NAFw(k) method for scalar multiplication

Input: P ∈ E(Fp), NAFw(k) =
∑l−1

i=0 2
iki and widow width w

Output: kP

1: Compute Pi = iP for i = 1, 3, . . . , 2w−1 − 1

2: Q←∞
3: for i from l − 1 downto 0 do

4: Q← 2Q

5: if ki 6= 0 then

6: if ki > 0 then Q← Q+ Pi

7: else Q← Q− Pi

8: Return Q

is approximately

1 ·D +
(
2w−2 − 1

)
· A︸ ︷︷ ︸

Picomputation

+m ·D +

(
m

w + 1

)
· A︸ ︷︷ ︸

loop computation

.

The next algorithm is based on the idea of skipping the consecutive zero entries rather

than processing them one at a time. The technique is called Sliding Window and the

Algorithm 16 represents the sliding window method for scalar multiplication using

NAF(k). The digits of NAF(k) are processed from left-to-right for window of width

w such that the value obtained in the window is odd. So, the length of consecutive ze-

ros between windows in sliding window method affects the running time. On average,

the length of a run of zeros between windows is given below.

v(w) =
4

3
− (−1)w

3 · 2w−2

68

Algorithm 16 Sliding window method for scalar multiplication using NAF(k)

Input: P ∈ E(Fp), NAF(k) =
∑l−1

i=0 2
iki and widow width w

Output: kP

1: Compute Pi = iP for i = 1, 3, . . . ,
(
2(2w − (−1)w)/3

)
− 1

2: Q←∞
3: i = l − 1

4: while i ≥ 0 do

5: if ki = 0 then

6: t← 1, u← 0

7: else find the largest t ≤ w such that u← (ki, . . . , ki−t+1) is odd

8: Q← 2tQ

9: if u > 0 then

10: Q← Q+ Pu

11: else if u < 0 then

12: Q← Q− Pu

13: i← i− t

14: Return Q

69

Therefore, the running time of Algorithm 16 is expected to be

1 ·D +

(
2w − (−1)w

3
− 1

)
· A︸ ︷︷ ︸

Picomputation

+m ·D +

(
m

w + v(w)

)
· A︸ ︷︷ ︸

loop computation

.

The differences between Algorithm 15 and Algorithm 16 are the number and storage

of Pi, and the cost of loop computation. Clearly, for a window width w, the Algorithm

15 computes lesser number of Pi to store than Algorithm 16. But the cost of the loop

computation in Algorithm 15 is more than the Algorithm 16.

From implementation point of view, the selection of window width w is tricky. The

larger value of w implies larger computer memory requirement and access to large

memory can lead to different problems. The first and foremost is the leakage of

information in the side-channel attacks when large memory is used involving the

secret integer k. Moreover, access to large memory is slow and can significantly

affect the efficiency. Therefore, in practice we find w ∈ {4, 5, 6}. Note that among

the other factors the selection of coordinates for point representation is very important

for the efficient computation of scalar multiplication.

5.2 Our First implementation

This implementation is part of our initial work focused on 64-bit platforms. After

finishing our work on 64-bit residue multiplication, we implemented constant-time

variable-base scalar multiplication for the standard NIST curve P-521 and Edwards

curve E-521 using the public codes of [23] available at http://indigo.ie/

~mscott/ws521.cpp and http://indigo.ie/~mscott/ed521.cpp. Un-

like the codes of [23], the clock cycles are counted using the proposed technique of

Paoloni [32] i.e. using rdtsc() and rdtscp(). Note that the testing environment is same

as that of the different versions of our 64-bit residue multiplication and for further

details see Section 3.2.2.

The C++ codes of [23] are for modulus 2p and in our timing tests we have used both

modulus 2p and p. For modulus 2p, we have only replaced the modular multiplication

of [23] by the different versions of our residue multiplication. On the other hand,

70

http://indigo.ie/~mscott/ws521.cpp
http://indigo.ie/~mscott/ws521.cpp
http://indigo.ie/~mscott/ed521.cpp

we have amended the functions scr(), gsqr(), gsqr2(), and gmuli() according to the

requirements of modulus p. To obtain consistent clock cycles counts, we execute the

cycle counting loop with different number of iterations and among those values we

find 40-iteration as the most consistent. Hence, in this part of our work the cycles

counts for constant-time variable-base scalar multiplication codes are provided in 40-

iteration loop.

From the results of the clock cycles count of the different versions of our algorithm

with respect to the multiplication algorithm in [23], one would also expect higher

number of clock cycles for scalar multiplication using our residue multiplication.

While measuring the clock cycles and playing with the GCC compiler we observed

a strange behavior that when either the multiplication algorithm in [23] or our algo-

rithm (Hybrid version) is called consecutively more than 2 times in a loop then our

algorithm starts to take less and less number of cycles. Therefore, we find the cy-

cles counts for scalar multiplication using each version of our algorithm to be less

than the Granger-Scott algorithm. Since compiler optimization/behavior is not our

domain so, we don’t know why GCC compiler behaves like this. For each version

of our multiplication algorithm we have used the optimal implementation on our ma-

chine. But we report the cycles counts using the Hybrid version of our algorithm 1

because it has the least number of clock cycles among the different versions. Us-

ing the command openssl speed ecdh on our machine where the installed version is

1.0.2g. For the NIST P-521 it reports 1745.1 operations per second which is approx-

imately 1, 604, 493 cycles count. The clock cycles counts are given in Table 5.1 and

each program was executed at optimization level-3 i.e. −O3. Although the num-

ber of clock cycles counts with CACHE_SAFE (defined for cache safety) is more

than without CACHE_SAFE option but we prefer the former choice to ensure the

constant-time implementation requirement. So, through testing with CACHE_SAFE

on our machine we find the fixed window of width 4 as the optimal choice both for

Granger-Scott and our algorithm. Hence, the cycles counts are for windows of width

4 with CACHE_SAFE. We have executed the scalar multiplication programs both for

P-521 and E-521 multiple times in order to obtain the least cycles counts. In case of

P-521 for Granger-Scott algorithm we find 1, 332, 165 as the minimum mean cycles

1 https://github.com/Shoukat-Ali/521-bit-Mersenne-Prime/blob/master/ed521.cpp
https://github.com/Shoukat-Ali/521-bit-Mersenne-Prime/blob/master/ws521.cpp

71

https://github.com/Shoukat-Ali/521-bit-Mersenne-Prime/blob/master/ed521.cpp
https://github.com/Shoukat-Ali/521-bit-Mersenne-Prime/blob/master/ws521.cpp

Table 5.1: Clock Cycles counts of constant-time variable-base scalar multiplication;
GS stands for Granger-Scott algorithm, p and 2p stand for modulus p and 2p imple-
mentation of the Hybrid version of our residue multiplication, respectively

openSSL P-521 E-521

≈ 1, 604, 493

GS = 1, 332, 165 GS = 1, 148, 871

2p = 1, 270, 130 2p = 1, 073, 127

p = 1, 251, 502 p = 1, 055, 105

count. While for both modulus 2p and p of the Hybrid version of our algorithm we

find 1, 270, 130 and 1, 251, 502 cycles, respectively. Similarly, in E-521 for Granger-

Scott algorithm we find 1, 148, 871 as the minimum mean cycles count. However, for

the modulus 2p and p of the Hybrid version of our algorithm we find 1, 073, 127 and

1, 055, 105 cycles respectively. Hence, the experimental results support our observa-

tion and intuition for multiple calls (in thousands or more) and modulus choice.

In our new timing test, not recommended for code benchmarking on eBACS web site

[8], we use Intel Core i7 − 2670QM CPU @ 2.20GHz with Turbo Boost and Hyper-

Threading enabled. We compile and execute the same earlier codes of constant-time

variable-base scalar multiplication with the same command. Like before, we find the

timing results of constant-time variable-base scalar multiplication using the Hybrid

version of our algorithm to be better than the Granger-Scott algorithm [23]. Still the

minimum cycles counts are found for modulus p. For the curve E-521, the new tests

show the minimum cycles counts as GS = 893, 371 and p = 847, 145 for the window

width of size 4. On the other hand, for the curve P-521, we find the minimum cycles

counts as GS = 1, 063, 370 and p = 1, 001, 180 for window width of size 5 and 4,

respectively.

5.3 Fixed-base Scalar Multiplication

By now, we know that in fixed-base scalar multiplication the base-point P is public.

Therefore, in order to speed up the computation of kP , both the communicating en-

tities can perform computation based on P in advance. Indeed, anyone can perform

computation based on P including the malicious attacker. The most basic way of

72

speeding up the computation of kP is to compute all the point doubling D in advance

so that only point addition A is left to be performed.

In practice, large prime numbers are used and in our case it is 521-bit. Let’s assume

that m = 521, the points 2iP for i = 0, . . . , 520 are represented in affine coordinates

(x, y) and the underlying platform is 64-bit. In our case, we have 9-limb coordinates

where each limb is stored in a 64-bit word which implies that for storing all the points

2iP , one needs approximately 9 · 64 · 2 · 2521-bit or 9 · 8 · 2 · 2521-byte of memory.

Which is insanely very very large amount of memory.

A practical way of precomputing the points 2iP in order to accelerate the compu-

tation of kP is presented in Algorithm 17. For a window width w we have k =

(Kd−1, . . . , K1, K0)2w where d = dm/we and P ∈ E(Fp). First we compute and

store Pi = 2wiP for i = 0, . . . , d − 1 in advance. Clearly, the memory required for

the storage of the points 2wiP is realistic.

Algorithm 17 Windowing method for scalar multiplication
Input: Window width w, k = (Kd−1, . . . , K1, K0)2w , Pi = 2wiP for i = 0, . . . , d−1

Output: kP

1: Q←∞
2: R←∞
3: for j from 2w − 1 downto 1 do

4: for each i such that Ki = j do

5: R← R + Pi

6: Q← Q+R

7: Return Q

Next, we discuss another algorithm called the comb method. In this method, the

binary representation of k is first padded with dw−m 0s as the most significant bits.

Then the binary representation is divided into w bit strings such that each string is

of the same length d so, we have k = Kw−1|| · · · ||K1||K0 where || represents the

73

concatenation of bit strings. Actually, the bit strings Kj are written follows:
K0

K1

...

Kw−1

 =


K0

d−1 · · · K0
0

K1
d−1 · · · K1

0

...
...

...

Kw−1
d−1 · · · Kw−1

0

 =


kd−1 · · · k0

k2d−1 · · · kd
...

...
...

kwd−1 · · · k(w−1)d


Each column is processed one at a time such that for all the possible bit strings

(aw−1, . . . , a1, a0), the following points are computed and stored in advance.

[aw−1, . . . , a1, a0]P = aw−12
(w−1)dP + · · ·+ a12

dP + a0P

The use of comb method to compute the scalar multiplication is shown as Algorithm

18.

Algorithm 18 Comb method for scalar multiplication
Input: Window width w, d = dm/we, [aw−1, . . . , a1, a0]P
Output: kP

1: Q←∞
2: for i from d− 1 downto 0 do

3: Q← 2Q

4: Q← Q+ [Kw−1
i , . . . , K1

i , K
0
i]P

5: Return Q

5.4 Our Second implementation

The efficiency ECC is determined by the efficiency of scalar multiplication, therefore,

one finds different techniques in literature to efficiently compute the operation. Our

work is focused on faster residue multiplication in 521-bit Mersenne prime modulus

to improve the efficiency of constant-time single-scalar multiplication. In literature, it

is well-known that the computation of the scalar multiplication should be independent

of the secret scalar. So that, an attacker cannot easily derive the scalar by (simple)

side-channel attacks. Therefore, there should not be any conditional branching on the

secret scalar and similarly, the lookups in the precomputed table should not reveal

74

the secret indexes. Using our 64- and 32-bit residue multiplication, we have imple-

mented the constant-time fixed- and variable-base (single) scalar multiplication. We

have tested our software using fixed-window of width 4, 5 and 6. The efficiency

of ECC is directly proportional to the efficiency of variable-base scalar multiplica-

tion and that is why, it has received more attention. To show the efficiency of our

residue multiplication techniques, we have implemented the scalar multiplication for

the standard NIST curve P-521 and Edwards curve E-521. We use the same testing

environment that we did for our 32-bit residue multiplication techniques. For further

details see Section 4.5.

For constant-time variable-base scalar multiplication using fixed-window w, we have

implemented the “Algorithm 1" [14] and instead of 2w−2, the size of our pre-computed

table is 2w−1. Similarly, the constant-time fixed-base scalar multiplication is imple-

mented using the modified LSB-set comb method i.e. “Algorithm 7" [14]. Note that,

for the sake of efficiency we have selected the point addition and doubling formulas

from the Explicit Formulas Database (EFD) [9], managed by Daniel J. Bernstein and

Tanja Lange, instead of the given formulas in [14].

The constant-time inversion is computed by powering a field element x by p − 2 =

2521 − 3 (Fermat’s Little Theorem) and it’s the same method used in [1, 23, 34].

Hence, the multiplicative inverse of x is computed with 520S + 13M where S stands

for single-word squaring. Like [1, 23], multiplication by curve parameter — curve

E-521 — is performed component-wise and reduced in-place for 32- and 64-bit im-

plementation of the scalar multiplication. To ensure the limbs satisfy our residue

representation such that overflow doesn’t occur, we have used the same idea of Short

Coefficient Reduction (SCR) function as in [1, 23]. In case of 64-bit implementation,

field addition, subtraction and multiplication by small (fixed) constant(s) — other

than curve parameter — are computed component-wise and don’t require to be re-

duced in order to use as input to multiplication and squaring function. Because there

is enough free bit space both in single- and double-word to easily avoid overflow. Un-

fortunately, things are more challenging for 32-bit scalar multiplication due to small

free bit space. So, field addition, subtraction and multiplication by small (fixed) con-

stant(s) — other than curve parameter — can easily cause overflow. Therefore, we

perform in-place reduction where necessary, for efficiency purpose.

75

5.4.1 Point Arithmetic Formulas

We have selected the fastest point doubling and addition formulas for short Weier-

strass curve P-521 — with curve parameter a = −3 and b = 10938490380737342

74511112390766805569936207598951683748994586394495953116150735016013708

737573759623248592132296706313309438452531591012912142327488478985984 —

from the EFD site [9] and the curve is defined in [27]. Suppose P1 = (X1, Y1, Z1) is

a Jacobian point then 2P1 = (X3, Y3, Z3) is computed as follows:

R0 = Z2
1 , R1 = Y 2

1 , R2 = X1 ·R1, R3 = 3(X1 +R0) · (X1 −R0),

X3 = R2
3 − 8R2, Z3 = (Y1 + Z1)

2 −R0 −R1,

Y3 = R3 · (4R2 −X3)− 8R2
1.

Suppose P2 = (X2, Y2, 1) is an affine point and not equal to P1. Then 2P2 =

(X3, Y3, Z3) is computed as follows:

R0 = X2
2 , R1 = Y 2

2 , R2 = R2
1, R3 = 2((X2 +R1)

2 −R0 −R2),

R4 = 3(R0 − 1), X3 = R2
4 − 2R3, Y3 = R4 · (R3 −X3)− 8R2,

Z3 = 2Y2.

The mixed addition of Jacobian-affine coordinate P3 = P1 + P2 = (X3, Y3, Z3) is

computed as follows:

R0 = Z2
1 , R1 = X2 ·R0, R2 = Y2 · Z1 ·R0, R3 = R1 −X1,

R4 = R2
3, R5 = 4R4, R6 = R3 ·R5, R7 = 2(R2 − Y1),

R8 = X1 ·R5, X3 = R2
7 −R6 − 2R8,

Y3 = R7 · (R8 −X3)− 2Y1 ·R6, Z3 = (Z1 +R3)
2 −R0 −R4.

Suppose P2 = (X2, Y2, Z2) and P1 are both Jacobian points. Then we compute P3 =

(X3, Y3, Z3) = P1 + P2 as follows:

R0 = Z2
1 , R1 = Z2

2 , R2 = X1 ·R1, R3 = X2 ·R0,

R4 = Y1 · Z2 ·R1, R5 = Y2 · Z1 ·R0, R6 = R3 −R2,

R7 = (2R6)
2, R8 = R6 ·R7, R9 = 2(R5 −R4), R10 = R2 ·R7,

X3 = R2
9 −R8 − 2R10, Y3 = R9 · (R10 −X3)− 2R4 ·R8,

Z3 =
(
(Z1 + Z2)

2 −R0 −R1

)
·R6.

76

We have selected the fastest point doubling and addition formulas for the Edwards

curves E-521 — with curve paramter a = 1 and d = −376014 — from the EFD

site [9] and the curve is defined on site [10]. Suppose P1 = (X1, Y1, Z1, T1) is an

extended projective point then 2P1 = (X3, Y3, Z3, T3) is computed as follows:

R0 = X2
1 , R1 = Y 2

1 , R2 = 2Z2
1 , R3 = (X1 + Y1)

2 −R0 −R1,

R4 = R0 +R1, R5 = R4 −R2, R6 = R0 −R1, X3 = R3 ·R5,

Y3 = R4 ·R6, Z3 = R4 ·R5, T3 = R3 ·R6.

As pointed out in [5], one multiplication operation is saved by using the same dou-

bling formula for those cases where T coordinate is not required. Suppose P2 =

(X2, Y2, 1, T2) is an extended projective point then 2P2 = (X3, Y3, Z3, T3) is com-

puted as shown below. Note that this formula is taken from the Appendix A of [5]

because it is efficient and we couldn’t find it on EFD site [9].

R0 = X2
1 , R1 = Y 2

1 , R2 = 2T1, R3 = R0 +R1, R4 = R3 − 2,

R5 = R0 −R1, X3 = R2 ·R5, Y3 = R3 ·R5, Z3 = R2
3 − 2R3,

T3 = R2 ·R5.

Now, we compute P3 = (X3, Y3, Z3, T3) = P1+P2 as shown below and d is the curve

parameter.

R0 = X1 ·X2, R1 = Y1 · Y2, R2 = T1 · dT2,

R3 = (X1 + Y1) · (X2 + Y2)−R0 −R1, R4 = Z1 −R2,

R5 = Z1 +R2, R6 = R1 −R0, X3 = R3 ·R4, Y3 = R5 ·R6,

Z3 = R4 ·R5, T3 = R3 ·R6.

Suppose P2 = (X2, Y2, Z2, T2) then P3 = (X3, Y3, Z3) = P1 + P2 is computed as

shown below. Again, note that this formula is taken from the Appendix A of [5]

because it is an efficient approach.

R0 = X1 ·X2, R1 = Y1 · Y2, R2 = T1 · dT2, R3 = Z1 · Z2,

R4 = (X1 + Y1) · (X2 + Y2)−R0 −R1, R5 = R3 −R2,

R6 = R3 +R2, R7 = R1 −R0, X3 = R4 ·R5, Y3 = R6 ·R7,

Z3 = R5 ·R6.

77

Now, we compute P3 = (X3, Y3, Z3, T3) = P1 + P2 as follows:

R0 = X1 ·X2, R1 = Y1 · Y2, R2 = T1 · dT2, R3 = Z1 · Z2,

R4 = (X1 + Y1) · (X2 + Y2)−R0 −R1, R5 = R3 −R2,

R6 = R3 +R2, R7 = R1 −R0, X3 = R4 ·R5, Y3 = R6 ·R7,

Z3 = R5 ·R6, T3 = R4 ·R7.

5.4.2 NIST Curve P-521

The 521-bit short Weierstrass NIST curve P-521 is standardized and defined in [27].

For this curve, we have implemented the constant-time variable- and fixed-base scalar

multiplication algorithm proposed by J.W. Bos et al. in [14]. Jacobian and affine co-

ordinates were chosen by [1, 23] for their constant-time variable-base scalar multipli-

cation. Similarly, our choice is also Jacboian and affine coordinates and the formulas

for point arithmetic are selected from EFD [9]. The point arithmetic formulas are

provided in Appendix B.

In case of constant-time variable-base scalar multiplication, two point doublings and

two point additions are selected from EFD [9]. In our implementation, one Jacobian

and one affine (point) doubling are used. The affine doubling is used only once at

the ”precomputation stage" of ”Algorithm 1". Out of the two point additions, one

is mixed and one is Jacobian. For efficiency purpose, the mixed addition formula

is used in two ways such that they differ by the destination/accumulator only. The

Jacobian and a mixed addition are performed at the “precomputation stage". Lastly,

the Jacobian doubling and mixed addition are used at the ”Evaluation stage".

For constant-time fixed-base scalar multiplication [14], we use one Jacobian dou-

bling, one Jacobian addition and one mixed addition. The formulas are same as ones

that we used in variable-base. We perform the “Offline computation" by computing

the lookup table points in Jacobian coordinate at first and then using Montgomery’s

trick of single inversion to convert all points to affine form. Hence, the lookup table

points are in affine form and the addition in “Online computation" is performed using

affine-Jacboian coordinate. We have used the table parameter v = 3 so, the size of the

precomputed table is 3456, 6912 and 13824-byte for window width of 4, 5 and 6, re-

78

spectively. Although, using v = 4 will decrease the value of e = dt/(wv)e where t is

the bitlength of the base point (521-bit) it increases both the size of the precomputed

table and the number of (relatively) expensive addition operation at the “Evaluation

Stage". For example, for w = 5 and v = 3, we have e = 35, lookup table of 6912-

byte and 105 additions. Then for w = 5 and v = 4, we have e = 27, lookup table

of 9216-byte and 108 additions. By performing similar computation we observe that

v = 4 is not useful for both w = 4 and w = 6. Similarly, things are not encouraging

with other parameters too. Therefore, we didn’t implement the case v ≥ 3.

We have used C programming language to implement the constant-time variable- and

fixed-base scalar multiplication for 64-bit platforms2. Unlike the 64-bit implementa-

tion, the 32-bit implementation is tricky because of the 2-bit space in single-word to

hold the carries at the worst case. Therefore, it is expected to lose some efficiency in

order to perform reduction on single-word. On the other hand, the point arithmetic

formulas of P-521 also adds to inefficiency in our 32-bit implementation. So, to min-

imize the effect of these inefficient factors, we have used in-place reduction in (most

of the) field operations. Like the 64-bit implementation, the constant-time variable-

and fixed-base scalar multiplication for 32-bit platforms3 are also implemented in C

language.

5.4.3 Edwards curve E-521

The curve E-521 is taken from the SafeCurves site [10] where it is mentioned that the

curve is independently recommended by Bernstein and Lange, Aranha et al. [2] and

Hamburg [25]. As pointed in [5], faster point addition formulas for Edwards curve

are in extended projective coordinate, therefore, we use the extended coordinate for

variable- and fixed-base scalar multiplication. The point arithmetic formulas are pro-

vided in Appendix B. The advantage of the Edwards curves is that it is faster than

NIST curves because the point arithmetic formulas are simpler. Moreover, due to the

complete addition formulas, it is easier to securely implement the Edwards curves and

there are no exceptional cases. Definitely, a few bits of security is sacrificed in select-
2 https://github.com/Shoukat-Ali/Faster-Residue-Multiplication/tree/

master/64-bit/P-521
3 https://github.com/Shoukat-Ali/Faster-Residue-Multiplication/tree/

master/32-bit/P-521

79

https://github.com/Shoukat-Ali/Faster-Residue-Multiplication/tree/master/64-bit/P-521
https://github.com/Shoukat-Ali/Faster-Residue-Multiplication/tree/master/64-bit/P-521
https://github.com/Shoukat-Ali/Faster-Residue-Multiplication/tree/master/32-bit/P-521
https://github.com/Shoukat-Ali/Faster-Residue-Multiplication/tree/master/32-bit/P-521

ing Edwards curve. Hence, unlike the implementation of the scalar multiplication of

P-521, the scalar multiplication implementation of E-521 is efficient, constant-time

and exceptional-less.

For constant-time variable-base scalar multiplication, we have used the same strategy

and point arithmetic formulas that were used in [1, 5, 23] for efficiency. So, there are

three versions of point doubling and two versions of point additon formulas based on

the coordinates “Z" and “T ". Unlike [14], where odd scalars are recoded only, we

have used the same (secret) even scalar in the public code of [1, 23].

For the constant-time fixed-base scalar multiplication, we use two point doubling and

two point addition formulas. Only, one of the point addition formulas is different

from those that were used in variable-base while, the remaining formulas are same.

To achieve efficient Online computation, all the points are in extended coordinate in-

cluding the points in the precomputed table. Like the fixed-base scalar multiplication

of P-521, we have taken the table parameter v = 3. So, the size of the precomputed

table is 6912, 13824 and 27648-byte for window width of 4, 5 and 6, respectively. Al-

though, using v = 4 will decrease the value of e = dt/(wv)e where t is the bitlength

of the base point (519-bit) it increases both the size of the precomputed table and

the number of (relatively) expensive addition operation at the Evaluation Stage. For

example, for w = 6 and v = 3, we have e = 29, lookup table 27648-byte and 87

additions. Then for w = 6 and v = 4, we have e = 22, lookup table 36864-byte and

88 additions. By performing similar computation we didn’t find v = 4 useful for both

w = 4 and w = 5. Similarly, the value of other parameters is also not encouraging.

Therefore, we didn’t implement the case v ≥ 3.

Like the curve P-521, the C language is used to implement the constant-time variable-

and fixed-base scalar multiplication for 64-bit platforms4. Although, the 32-bit im-

plementation faces the same issues as in the case of P-521 the (simple) point arith-

metic formulas of E-521 cause less overhead than P-521 in order to handle overflow

in single-word. In this case, every field operation is implemented using in-place re-

duction. The constant-time variable- and fixed-base scalar multiplication for 32-bit

4 https://github.com/Shoukat-Ali/Faster-Residue-Multiplication/tree/
master/64-bit/E-521

80

https://github.com/Shoukat-Ali/Faster-Residue-Multiplication/tree/master/64-bit/E-521
https://github.com/Shoukat-Ali/Faster-Residue-Multiplication/tree/master/64-bit/E-521

Table 5.2: Clock Cycles count of the scalar multiplication for NIST curve P-521 and

Edwards curve E-521 obtained at optimization level-3 of the GCC 5.4.0 compiler on

Ubuntu 16.04 LTS. The timing tests were performed on Intel(R) Core i5 − 6402P

CPU @ 2.80GHz with Turbo Boost disabled, Hyper-threading not supported and the

machine was running on one core

Operation Window width
64-bit 32-bit

E-521 P-521 E-521 P-521

Va
ri

ab
le

-

ba
se

w=4 802, 110 936, 160 3, 078, 998 3, 754, 095

w=5 814, 085 939, 956 3, 068, 761 3, 750, 483

w=6 872, 790 1, 008, 740 3, 203, 760 3, 913, 668

Fi
xe

d-
ba

se w=4 366, 590 347, 800 1, 299, 507 1, 342, 525

w=5 335, 027 317, 652 1, 214, 847 1, 183, 615

w=6 368, 516 319, 855 1, 169, 799 1, 130, 007

platforms5 are implemented in C language too.

5.4.4 Timings

In this section, we present our timing results — clock cycles count — of the variable-

and fixed-base scalar multiplication for 64- and 32-bit platforms using our residue

multiplication algorithms. We executed our 64- and 32-bit C programs using the com-

mand gcc -Wall -O3 program.c -o program.exe and gcc -Wall -m32 -O3 program.c -o

program.exe, respectively. Similarly, each program is tested for window width 4, 5

and 6 and in order to obtain the minimum cycle count, we performed 104 scalar multi-

plications for 10 iterations using one (secret) scalar. Note that the testing environment

is same as aforementioned in Section 4.5 and the timing results are provided in Table

5.2. In case of fixed-base scalar multiplication, the results represent the timing of the

Evaluation Stage of the “Algorithm 7" [14].

To obtain the timing result of OpenSSL 1.0.2g for curve P-521, we ran the com-

mand openssl speed ecdhp521 which reports 2, 298 operations per second. Which

5 https://github.com/Shoukat-Ali/Faster-Residue-Multiplication/tree/
master/32-bit/E-521

81

https://github.com/Shoukat-Ali/Faster-Residue-Multiplication/tree/master/32-bit/E-521
https://github.com/Shoukat-Ali/Faster-Residue-Multiplication/tree/master/32-bit/E-521

implies approximately 1, 218, 451 clock cycles for one variable-base scalar multipli-

cation. Then we tested the public code of Scott available at http://indigo.ie/

~mscott/ws521.cpp and http://indigo.ie/~mscott/ed521.cpp and

find the minimum clock cycles of 1, 056, 544 and 895, 372, respectively, for win-

dow width-4. While the results of window width 5 and 6 are worse. Interestingly,

the cycle counts of Scott’s codes on our machine are less than what is reported in

[23]. Note that Scott implemented the constant-time variable-base scalar multiplica-

tion only. Hamburg [25] has implemented E-521 on 64-bit Haswell processor using

C with intrinsics and exploiting the tuned AVX2. He reports 803k and 234k cycles

for constant-time variable- and fixed-base scalar multiplication, respectively. Even

though 512-bit curves in Weierstrass and twisted Edwards form were used with dif-

ferent primes in [14], the timing results of variable- and fixed-base scalar multipli-

cation are no match to Hamburg’s results of E-521 in [25]. As shown in Table 5.2,

window width 4 yields the optimal result for variable-base scalar multiplication using

fixed-window for both P-521 and E-521. So, we have 936, 160 and 802, 110 cycles

for P-521 and E-521, respectively. Hence, our 64-bit residue multiplication yields

the best result — to the best of our knowledge — for variable-base scalar multipli-

cation for P-521 and E-521. In Table 5.2, window width 5 has the optimal result

for constant-time fixed-base scalar multiplication using the modified LSB-set comb

method for P-521 and E-521. So, we have 317, 652 and 335, 027 cycles for P-521

and E-521, respectively. Note that our software are purely implemented in C without

any use of intrinsics and SIMD/assembly instructions. Therefore, our software are

independent of the platforms.

Clearly, the window width 4 has the largest (finite field) arithmetic cost among the

width 4, 5 and 6 but the smallest constant-time table-lookup cost. The 64-bit im-

plementation result of constant-time variable-base scalar multiplication in Table 5.2

shows that for 9-limb reside multiplication the cost of constant-time table-lookup out-

weighs the lesser arithmetic cost for window width 5 and 6. On the other hand, in the

case of constant-time fixed-base scalar multiplication, window width 5 balances well

the trade-off between constant-time table-lookup and the arithmetic cost. That’s why

the optimal result of P-521 and E-521 is with width 5.

Now, we discuss the results of constant-time variable- and fixed-base scalar multi-

82

http://indigo.ie/~mscott/ws521.cpp
http://indigo.ie/~mscott/ws521.cpp
http://indigo.ie/~mscott/ed521.cpp

plication using our 32-bit residue multiplication. The optimal result of variable-base

scalar multiplication is obtained with window width 5 for both P-521 and E-521 as

shown in Table 5.2. The results are 3, 750, 483 and 3, 068, 761 cycles for P-521 and

E-521, respectively. In case of fixed-base scalar multiplication, the optimal result of

P-521 and E-521 are obtained with window width 6. The Table 5.2 shows the re-

sults are 1, 130, 007 and 1, 169, 799 cycles for P-521 and E-521, respectively. Using

low-level programming language implementation for their parallel multiplication and

squaring algorithm on Cortex-A15 of the curve P-521, with curve parameter a 6= −3,

Seo et al. [34] has reported 2, 970, 976 and 1, 056, 902 cycles using window width-

6 for constant-time variable- and fixed-base scalar multiplication, respectively. On

the other hand, like 64-bit implementation, all our 32-bit software are purely writ-

ten in C programming language. Therefore, it is not a fair comparison between our

32-bit results and the results of [34]. Note that the timing results of E-521 is better

(less clock cycles) than P-521 and the difference is prominent in variable-base scalar

multiplication.

Now, in the case of 32-bit implementation (18-limb), window width 5 yields the opti-

mal result for constant-time variable-base scalar multiplication for P-521 and E-521.

Clearly, the cost of constant-time table-lookup outweighs the less (finite field) arith-

metic cost using window width 6. However, the result of constant-time fixed-base

scalar multiplication shows that it is not always the case. So, this time the arithmetic

cost is more significant than the cost of constant-time table-lookup. That’s why the

number of clock cycles are decreasing from width 4 to 6 for both P-521 and E-521.

83

84

CHAPTER 6

CONCLUSION

We have presented a novel way to perform residue multiplication modulo 521-bit

Mersenne prime p on 32- and 64-bit platforms such that, to the best of our knowledge,

the total arithmetic cost is lower than the existing well-known algorithms. The total

arithmetic cost is computed by evaluating the arithmetic cost such that the cost of one

single-word multiplication is equal to three single-word additions and one double-

word addition is equal to two single-word additions. Our idea is based on Toeplitz

Matrix-Vector Product (TMVP) and efficiency is achieved by exploiting the common

expressions using the properties of TMVP. The two- and three-way TMVP decom-

position are the cornerstones of our work. The reduced-radix representation is used

to represent the elements of the field on the underlying computers. We have used our

residue multiplication algorithms in the vital operation of single-scalar multiplication

for the standard NIST curve P-521 and Edwards curve E-521.

In 64-bit residue multiplication, the field elements are 9-limb long such that each limb

is at most 58-bit. The free bit spaces in 64-bit single-word and 128-bit double-word

give the advantage of procrastinating the carry propagation, which in turn improves

the efficiency especially in the computation of single-scalar multiplication. We have

found the total arithmetic cost of our 64-bit residue multiplication to be less than the

previously known best algorithm of Granger and Scott [23]. We have also presented

three versions of our residue multiplication and found the total arithmetic cost of each

version of our residue multiplication to be less than its counterparts. For implemen-

tation purpose, we have used both modulus p = 2521 − 1 and 2p. We have found the

timing results of p better than 2p and the difference is more evident especially in the

85

case of constant-time variable-base scalar multiplication. In the first part of our work,

the different versions of our residue multiplication and constant-time variable-base

scalar multiplication were implemented in C and C++ programming languages, re-

spectively. In our first testing environment, we couldn’t find better timing result than

the modular multiplication algorithm in [23] but our scalar multiplication results were

better. So, in the second part of our work using a different testing environment, we use

the most efficient version — least timing result i.e. Hybrid version — of our 64-bit

residue multiplication. In our new timing tests we find 136-cycle which is clearly bet-

ter than the best timing result of 155-cycle in [23] for the sequential implementation

of residue multiplication modulo 521-bit Mersenne prime.

The second part of our work is mainly focused on 32-bit residue multiplication and

following our 64-bit residue multiplication, we get TMVP of size 18 on 32-bit plat-

forms where the Toeplitz matrix entries above the diagonal are at most 30-bit. We

have proposed three techniques to compute the residue multiplication on 32-bit plat-

forms such the total arithmetic cost is less than the other well-known algorithms.

Using the reduced-radix approach for limbs, 64-bit implementation is straigtforward

but different challenges arise for 32-bit implementation. Above all, overflow is the

main challenge which affects both correctness and efficiency. Therefore, we have

shown that our most efficient technique — least timing result i.e. technique-1 —

never causes overflow and the compromise on efficiency is kept minimal. In this test-

ing environment, we have found size 6 as the cross-over point between the schoolbook

and a variant of TMVP which is required to achieve efficient timing result. Our best

timing result for 32-bit residue multiplication is 550-cycle while Seo et al. [34] have

reported 350- and 708-cycle on Cortex-A15 and Cortex-A9, respectively, for their

parallel multiplication modulo 521-bit Mersenne prime.

Note that all our codes, residue multiplications and single-scalar multiplication, are

purely implemented in C programming language without any use of compiler in-

trinsics and SIMD/assembly instructions in the second part of our work. Using our

residue multiplication for 32- and 64-bit platforms, we have implemented constant-

time variable- and fixed-base scalar multiplication for the curve P-521 and E-521. To

the best of our knowledge, for 64-bit platforms, we have the best timing result for

variable-base scalar multiplication for both the curves. The timing results of both the

86

residue multiplication and the scalar multiplication can further be improved by us-

ing SIMD/assembly instructions on 32- and 64-bit platforms. Moreover, in terms of

efficiency, we find E-521 to be a better choice than P-521 using our residue multipli-

cation.

87

88

REFERENCES

[1] S. Ali and M. Cenk, A new algorithm for residue multiplication modulo 2521 −
1, in S. Hong and J. H. Park, editors, Information Security and Cryptology -
ICISC 2016 - 19th International Conference, Seoul, South Korea, November 30
- December 2, 2016, Revised Selected Papers, pp. 181–193, 2016.

[2] D. F. Aranha, P. S. L. M. Barreto, C. C. F. P. Geovandro, and J. E. Ricardini, A
note on high-security general-purpose elliptic curves, IACR Cryptology ePrint
Archive, 2013, p. 647, 2013.

[3] D. J. Bernstein, Curve25519: New diffie-hellman speed records, in M. Yung,
Y. Dodis, A. Kiayias, and T. Malkin, editors, Public Key Cryptography - PKC
2006, 9th International Conference on Theory and Practice of Public-Key Cryp-
tography, New York, NY, USA, April 24-26, 2006, Proceedings, pp. 207–228,
2006.

[4] D. J. Bernstein, Batch binary edwards, in S. Halevi, editor, Advances in Cryptol-
ogy - CRYPTO 2009, 29th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 16-20, 2009. Proceedings, pp. 317–336, 2009.

[5] D. J. Bernstein, C. Chuengsatiansup, and T. Lange, Curve41417: Karatsuba
revisited, in L. Batina and M. Robshaw, editors, Cryptographic Hardware and
Embedded Systems - CHES 2014 - 16th International Workshop, Busan, South
Korea, September 23-26, 2014. Proceedings, pp. 316–334, 2014.

[6] D. J. Bernstein, C. Chuengsatiansup, T. Lange, and P. Schwabe, Kummer strikes
back: New DH speed records, in P. Sarkar and T. Iwata, editors, Advances in
Cryptology - ASIACRYPT 2014 - 20th International Conference on the Theory
and Application of Cryptology and Information Security, Kaoshiung, Taiwan,
R.O.C., December 7-11, 2014. Proceedings, Part I, pp. 317–337, 2014.

[7] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B. Yang, High-speed high-
security signatures, J. Cryptographic Engineering, 2(2), pp. 77–89, 2012.

[8] D. J. Bernstein and T. L. (editors), ebacs: Ecrypt benchmarking of cryptographic
systems, accessed: 5 July 2016.

[9] D. J. Bernstein and T. Lange, Explicit formulas database, accessed: 10 March
2017.

89

[10] D. J. Bernstein and T. Lange, Safecurves: choosing safe curves for elliptic-curve
cryptography, accessed: 10 March 2017.

[11] D. J. Bernstein and P. Schwabe, NEON crypto, in E. Prouff and P. Schaumont,
editors, Cryptographic Hardware and Embedded Systems - CHES 2012 - 14th
International Workshop, Leuven, Belgium, September 9-12, 2012. Proceedings,
pp. 320–339, 2012.

[12] M. Bodrato, Towards optimal toom-cook multiplication for univariate and mul-
tivariate polynomials in characteristic 2 and 0, in Arithmetic of Finite Fields,
First International Workshop, WAIFI 2007, Madrid, Spain, June 21-22, 2007,
Proceedings, pp. 116–133, 2007.

[13] J. W. Bos, C. Costello, H. Hisil, and K. E. Lauter, Fast cryptography in genus
2, in T. Johansson and P. Q. Nguyen, editors, Advances in Cryptology - EURO-
CRYPT 2013, 32nd Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, Athens, Greece, May 26-30, 2013. Pro-
ceedings, pp. 194–210, 2013.

[14] J. W. Bos, C. Costello, P. Longa, and M. Naehrig, Selecting elliptic curves for
cryptography: an efficiency and security analysis, J. Cryptographic Engineering,
6(4), pp. 259–286, 2016.

[15] D. R. L. Brown, Sec 2: Recommended elliptic curve domain parameters, certi-
com research, version 2.0, 27 January 2010.

[16] T. Chou, Sandy2x: New curve25519 speed records, in O. Dunkelman and L. Ke-
liher, editors, Selected Areas in Cryptography - SAC 2015 - 22nd International
Conference, Sackville, NB, Canada, August 12-14, 2015, Revised Selected Pa-
pers, pp. 145–160, 2015.

[17] C. Costello, H. Hisil, and B. Smith, Faster compact diffie-hellman: Endomor-
phisms on the x-line, in P. Q. Nguyen and E. Oswald, editors, Advances in
Cryptology - EUROCRYPT 2014 - 33rd Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Copenhagen, Denmark,
May 11-15, 2014. Proceedings, pp. 183–200, 2014.

[18] R. E. Crandall, Method and apparatus for public key exchange in a crypto-
graphic system, October 27 1992, uS Patent 5,159,632.

[19] S. V. Darrel Hankerson, Alfred Menezes, Guide to Elliptic Curve Cryptography,
Springer New York, 2004, ISBN 978-0-387-95273-4.

[20] W. Diffie and M. E. Hellman, New directions in cryptography, IEEE Trans.
Information Theory, 22(6), pp. 644–654, 1976.

[21] H. Fan and M. A. Hasan, A new approach to subquadratic space complexity
parallel multipliers for extended binary fields, IEEE Trans. Computers, 56(2),
pp. 224–233, 2007.

90

[22] A. Faz-Hernández, P. Longa, and A. H. Sánchez, Efficient and secure algo-
rithms for glv-based scalar multiplication and their implementation on GLV-
GLS curves, in J. Benaloh, editor, Topics in Cryptology - CT-RSA 2014 - The
Cryptographer’s Track at the RSA Conference 2014, San Francisco, CA, USA,
February 25-28, 2014. Proceedings, pp. 1–27, 2014.

[23] R. Granger and M. Scott, Faster ECC over F2521−1, in J. Katz, editor, Public-Key
Cryptography - PKC 2015 - 18th IACR International Conference on Practice
and Theory in Public-Key Cryptography, Gaithersburg, MD, USA, March 30 -
April 1, 2015, Proceedings, pp. 539–553, 2015.

[24] M. Hamburg, Fast and compact elliptic-curve cryptography, IACR Cryptology
ePrint Archive, 2012, p. 309, 2012.

[25] M. Hamburg, Ed448-goldilocks, a new elliptic curve, IACR Cryptology ePrint
Archive, 2015, p. 625, 2015.

[26] H. Hisil, K. K. Wong, G. Carter, and E. Dawson, Twisted edwards curves re-
visited, in J. Pieprzyk, editor, Advances in Cryptology - ASIACRYPT 2008, 14th
International Conference on the Theory and Application of Cryptology and In-
formation Security, Melbourne, Australia, December 7-11, 2008. Proceedings,
pp. 326–343, 2008.

[27] N. I. o. S. Information Technology Laboratory and T. (NIST), Federal informa-
tion processing standards publication (fips), digital signature standard (dss), july
2013.

[28] A. Karatsuba and Y. Ofman, Multiplication of multidigit numbers on automata,
Soviet Physics Doklady, 7, pp. 595–596, January 1963.

[29] N. Koblitz, Elliptic curve cryptosystems, 48, pp. 203–209, 1987.

[30] P. Longa and F. Sica, Four-dimensional gallant-lambert-vanstone scalar mul-
tiplication, in X. Wang and K. Sako, editors, Advances in Cryptology - ASI-
ACRYPT 2012 - 18th International Conference on the Theory and Application
of Cryptology and Information Security, Beijing, China, December 2-6, 2012.
Proceedings, pp. 718–739, 2012.

[31] V. S. Miller, Use of elliptic curves in cryptography, in H. C. Williams, editor,
Advances in Cryptology - CRYPTO ’85, Santa Barbara, California, USA, Au-
gust 18-22, 1985, Proceedings, pp. 417–426, 1985.

[32] G. Paoloni, How to benchmark code execution times on intel R© ia-32 and ia-64
instruction set architectures, september 2010.

[33] M. Scott, Missing a trick: Karatsuba variations, Cryptology ePrint Archive, Re-
port 2015/1247, 2015, http://eprint.iacr.org/2015/1247.

91

http://eprint.iacr.org/2015/1247

[34] H. Seo, Z. Liu, Y. Nogami, T. Park, J. Choi, L. Zhou, and H. Kim, Faster ECC
over F2521−1 (feat. NEON), in S. Kwon and A. Yun, editors, Information Security
and Cryptology - ICISC 2015 - 18th International Conference, Seoul, South
Korea, November 25-27, 2015, Revised Selected Papers, pp. 169–181, 2015.

[35] J. A. Solinas, Generalized mersenne number (gmn), 1999, technical Report,
National Security Agency, Ft. Meade, MD, USA.

[36] A. Weimerskirch and C. Paar, Generalizations of the karatsuba algorithm for
efficient implementations, Cryptology ePrint Archive, Report 2006/224, 2006.

92

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Ali, Shoukat

Nationality: Pakistani

Date and Place of Birth: 20 June 1983, Quetta

Marital Status: Single

Phone: 0090 507 831 5617

EDUCATION

Degree Institution Year of Graduation

M.S. University of Management and Technology (UMT), Lahore 2011

B.S. National University of Computer and Emerging Sciences (NUCES), Karachi 2006

High School Tameer-e-Nau Public College, Quetta 2001

PROFESSIONAL EXPERIENCE

Year Place Enrollment

05/2011-09/2012 University of Lahore Lecturer

05/2007-07/2008 National Database and Registration Authority (NADRA) Assistant Manager

08/2008-02/2009 Ministry of Quality Education, Government of Balochistan Database Administrator

INVITED TALKS

20th Workshop on Elliptic Curve Cryptography (ECC 2016), September 5–7, Yasar University, Izmir, Turkey.

93

PUBLICATIONS

International Journal Publications

Shoukat Ali and Murat Cenk, “Faster Residue Multiplication Modulo 521-bit Mersenne Prime and an Application

to ECC,” submitted to Journal.

International Conference Publications

Shoukat Ali and Murat Cenk, “A new algorithm for residue multiplication modulo 2521 − 1,” in Information

Security and Cryptology - ICISC 2016 - 19th International Conference, Seoul, South Korea, November 30 -

December 2, 2016, Revised Selected Papers, S. Hong and J. H. Park, Eds., 2016, pp. 181–193.

94

	 ABSTRACT
	 ÖZ
	 ACKNOWLEDGMENTS
	 TABLE OF CONTENTS
	 LIST OF TABLES
	 LIST OF FIGURES
	 LIST OF ABBREVIATIONS
	1 INTRODUCTION
	2 PRELIMINARIES
	2.1 Finite Field
	2.2 Prime Field Arithmetic
	2.2.1 Addition and Subtraction
	2.2.2 Multiplication
	2.2.3 Squaring
	2.2.4 Reduction
	2.2.5 Inversion

	2.3 Toeplitz Matrix-Vector Product (TMVP) using integers
	2.3.1 Two-way Decomposition
	2.3.2 Three-way Decomposition

	2.4 Prime shapes
	2.5 Elliptic Curve over Prime Field
	2.6 Elliptic Curve Cryptosystem
	2.7 Point representation

	3 64-bit RESIDUE MULTIPLICATION
	3.1 Residue multiplication using TMVP
	3.1.1 Proposed Technique

	3.2 Algorithms and Comparison
	3.2.1 Residue Representation
	3.2.2 Implementation Results
	3.2.2.1 Hybrid version
	3.2.2.2 Mixed version
	3.2.2.3 Recursive version

	3.2.3 Arithmetic Cost Comparison

	4 32-bit RESIDUE MULTIPLICATION
	4.1 Residue multiplication using TMVP
	4.2 Technique-1
	4.2.1 Level-1
	4.2.2 Level-2
	4.2.3 Overall Cost

	4.3 Technique-2 and Technique-3
	4.3.1 Technique-2
	4.3.1.1 Overall Cost

	4.3.2 Technique-3
	4.3.2.1 Overall Cost

	4.4 Residue Representation
	4.5 Comparisons, Implementation and Testing Environment
	4.5.1 Schoolbook vs. TMVP variants of size 6
	4.5.2 Residue Multiplication and Squaring

	4.6 Worst-case bitlength analysis of Technique-1

	5 SCALAR MULTIPLICATION
	5.1 Variable-base Scalar Multiplication
	5.2 Our First implementation
	5.3 Fixed-base Scalar Multiplication
	5.4 Our Second implementation
	5.4.1 Point Arithmetic Formulas
	5.4.2 NIST Curve P-521
	5.4.3 Edwards curve E-521
	5.4.4 Timings

	6 Conclusion
	 REFERENCES
	 APPENDICES
	 CURRICULUM VITAE

