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ABSTRACT

GENETIC RELATEDNESS ESTIMATION USING ANCIENT GENOMIC
DATA

Ghalichi, Ayshin

M.S., Department of Biology

Supervisor : Assoc. Prof. Dr. Mehmet Somel

September 2017, 89 pages

One distinct feature of the early Neolithic settlements in the Near East was their

burial customs. Both in the Levant and in Anatolia, people dug graves inside

their houses, and multiple individuals were buried in these intramural graves; a

custom that reached its climax in Çatalhöyük. Archaeological evidence suggests

that individuals buried in a house were socially related, which has motivated

anthropologists to estimate biological relatedness among individuals who share

the same grave. Such information, which could be obtained from ancient DNA

data, could shed light on the social structure of these ancient communities, and

be valuable for archaeological studies. The challenge of working with ancient

DNA is that it is highly degraded and usually in minute amounts, which results

in limited DNA data availability. Importantly, in ancient DNA datasets usually

only one allele can be detected per individual. There exist a number of meth-

ods to estimate genetic relatedness designed for modern high coverage genomic

data, but their performance on ancient DNA data has not been tested. Here we
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apply two of these methods, KING and PLINK, on low coverage whole genome

data from real family pedigrees, as well as ancient DNA data from simulated

pedigrees. We further propose a new approach to calculate relatedness between

ancient individuals, which would require minimal coverage and SNP numbers

to accurately estimate relatedness. We show that our approach can more effi-

ciently estimate the relatedness coefficients compared to the KING and PLINK

software. Our approach is expected to promote the application of ancient DNA

to address new archaeological questions.

Keywords: Relatedness, Kinship coefficient, Coancestry, Ancient DNA, Identical

by descent (IBD)
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ÖZ

ANTİK GENOM DİZİLEME VERİSİ İLE GENETİK AKRABALIK
İLİŞKİSİNİN BELİRLENMESİ

Ghalichi, Ayshin

Yüksek Lisans, Biyoloji Bölümü

Tez Yöneticisi : Doç. Dr. Mehmet Somel

Eylül 2017 , 89 sayfa

Yakın Doğu’da yer alan Neolitik yerleşim yerlerinin en belirgin özelliklerinden

biri ölü gömme gelenekleridir. Hem Levant’ta hem de Anadolu’da, ölülerin ev-

lerin içine gömüldüğü bilinmektedir. Ev içinde bulunan mezarlara birden fazla

ölünün gömülmesi şeklinde görülen bu gelenek, Çatalhöyük’te çok yaygındır. Ar-

keolojik bulgular, aynı evin içine gömülen bireylerin sosyal olarak birbirleri ile

ilişkili olabileceklerini göstermektedir. Bu doğrultuda, aynı mezarda bulunan bi-

reyler arasındaki biyolojik akrabalık derecesinin bilinmesi de antropologlar için

ilgi çekici sorulardan biridir. Antik DNA’dan elde edilmesi mümkün olan bu

bilgi, arkeolojik araştırmalar için de çok önemli olan antik yerleşim yerlerindeki

toplulukların sosyal yapıları ile ilgili önemli bilgiler sağlayabilir. Antik DNA ile

çalışmanın en önemli zorluğu ise yüksek oranda parçalanmış olması ve çok az

miktarda elde edilebiliyor olması sebebiyle sınırlı DNA dizi bilgisi sağlamasıdır.

Antik DNA ile üretilen dizileme verilerinde, dizilenen pozisyonlar için her bireyde
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yalnızca bir alelin bilgisi elde edilebilmektedir. Günümüzde, modern genom dizi-

leme verisi ile biyolojik akrabalık derecesini belirlemeye olanak sağlayan metot-

lar olmasına rağmen, bu metotların antik DNA verisi ile etkin şekilde kullanılıp

kullanılamayacağı henüz test edilmemiştir. Bu çalışmada, modern genomlar için

dizayn edilmiş bu yöntemlerden ikisini, KING ve PLINK’i, gerçek ve simüle edil-

miş aile ağaçlarında, düşük kapsamda (derinlikte) üretilmiş tüm genom dizileme

verisi kullanarak test ettik. Ayrıca, minimum sayıda tekil nukleotid polimorfizmi

(TNP) ve antik DNA dizileme derinliğine sahip veri ile doğru akrabalık katsayısı

hesaplamak için farklı bir yöntem geliştirdik. Yönteminizin KING ve PLINK’ten

daha verimli sonuç verdiğini belirledik. Bulgularımız, antik DNA dizileme verile-

rinin yeni arkeolojik soruların cevaplanmasındaki kullanımını kolaylaştıracaktır.

Anahtar Kelimeler: Akrabalık, Akrabalık katsayısı, Ortak atadan gelme, Antik

DNA, Türeme yoluyla özdeş
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CHAPTER 1

INTRODUCTION

1.1 Genetic relatedness estimation

One of the first fields to use information about family history and their lineages

was genealogy. The information gathered about relatedness, or more precisely

the degree by which people are related to each other was used to regulate laws

about marriage and inheritance (Bishop, 2008; Weir, Anderson, & Hepler, 2006).

Throughout the years, the genetic relatedness concept was used in fields such

as agriculture, forensics, human genetics, conservation programs, and most re-

cently, archaeology (Monroy Kuhn, Jakobsson, & Günther, 2017; Weir et al.,

2006).

Although relatedness analysis is a primary concept in medical genetics, defining

it has not been an easy task (Speed & Balding, 2014). In general, members of

a family or a population are said to be related because they share a common

ancestor (Weir et al., 2006). These related individuals share segments of their

DNA that are identical by descent (IBD), meaning that they were inherited from

a common ancestor (Figure 1.1). Actually each individual is a mix of many

of these segments that come from different ancestors that shape human genome

into a mosaic (Monroy Kuhn et al., 2017). However IBD is a quantity that

cannot be measured directly from data, what is done is using the property of

being “identical by state” to make an inference about IBD (Theunert, Racimo,

& Slatkin, 2017).
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Figure 1.1: IBD segments. Adapted from the Wikimedia Commons file “Pedi-
gree, recombination and resulting IBD segments, schematic representation.png”

There are two types of relatedness measures: i) pedigree-based, ii) marker

based.

1.1.1 Pedigree-based relatedness

Traditionally, pedigrees have been used in the formation and explanation of

joint frequencies and covariance of genetic markers between relatives (Cocker-

ham, 1971; Harris, 1964; Wright, 1921). Pedigrees and their lineage paths, the

shortest number of (parent-child) steps that would take to link two individuals

together in a pedigree, had been used to calculate theoretical pairwise related-

ness and inbreeding coefficient (Wang, 2016; Weir et al., 2006).

As Figure 1.2 shows, the half-siblings B and C are connected together via their

most recent common ancestor, which is A. The kinship coefficient (coancestry

coefficient) Θ between two individuals (here between B and C), probability of a

randomly chosen allele from individual B and individual C being IBD, meaning

coming from their most recent common ancestor individual A. One way that the

pairwise kinship coefficient can be calculated is by,

Θ(B,C) =
∑
A

1 + fA
2gA+1

(1.1)

Where fA represents the inbreeding coefficient for individual A and gA is the
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number of lineage path that connects B and C through individual A. This is

summed over all possible most recent common ancestors between B and C (e.g.

there would be two such individuals for cousins).

As Harris (1964) described there are 15 possible patterns of IBD, if a single locus

with two alleles is considered for each individual B and C. With the assumptions

of unrelated ancestors (fB=fC=0) and unordered alleles, the patterns could be

reduced to three (IBD = 0, 1 or 2). When a single locus is compared between two

individuals, they can share two alleles that came from their common ancestor(s)

(IBD=2), or only one allele (IBD=1) or none (IBD=0).

Considering these, the formula can be revised to,

Θ =
E[IBD]

4
=
φ

4
+

∆

2
(1.2)

Where φ = P [IBD = 1] and ∆ = P [IBD = 2]. This is because, if there is

one IBD allele between B and C, the chance of randomly choosing that allele in

both B and C is 1
2
, and zero for the case of two IBD alleles between B and C.

Although using pedigrees are crucial for calculations of expected kinship degrees,

they don’t always represent real-life situations completely. Most of the time, it is

impossible to reconstruct the whole pedigree. In addition, the assumption that

the founders of the pedigree are unrelated (f=0) is almost never valid for real-life

models because there is always some level of above-random relationship among

members of a population. Besides, addition of extra ancestors to the original

pedigree would increase the coancestry value to the point that it converges to one

and make the whole pedigree redundant in practice (Speed & Balding, 2014).
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Figure 1.2: Using pedigree to define and calculate relatedness. Adapted from
(Speed & Balding, 2014).

1.1.2 Marker-based relatedness

In addition to the problems listed above (Section 1.1.1), obtaining pedigrees

in real-life is very difficult, time consuming, laborious and for most cases impos-

sible. For this reason, many researchers use molecular markers.

One of the first forms of relatedness studies was paternity tests that became ac-

cessible in the 1920s. Formerly, these studies used blood-group antigens (ABO,

Rh and MNS) to determine whether there was a parental relationship between

two individuals. However, these markers only represent very small number of al-

leles and their dominance characteristics over other alleles made the relatedness

estimations inconclusive. Although a breakthrough occurred with the discovery

of minisatellites by Jeffreys et al. in 1985, technical problems such as selection of

gel systems, insufficient lab control and ambiguity in interpretation of matches

between electrophoretic bands, made the implementation of this method in legal

context debatable (Ramel, 1997; Weir et al., 2006).

Today, using microsatellites and single nucleotide polymorphisms (SNPs) as

markers for analysis of relatedness generates more detailed and accurate results

than using the aforementioned markers, because microsatellites are well-studied,

and advances in next generation sequencing (NGS) technologies has made high-

density SNP data readily available.
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1.1.2.1 Microsatellites

Microsatellites are a class of VNTR (variable number of tandem repeats) that

consists of repetitive DNA segments of 2-5 nucleotides, which are common in

multicellular organisms. The number of times these segments are repeated along

the genome is highly variable within a population. Since 1990s, microsatellites

replaced minisatellites as molecular markers used in fields of forensic science and

paternity testing.

Using microsatellites as molecular markers is advantageous because they are

multiallelic, locus-specific and codominant, meaning alleles do not mask each

other. Microsatellites are very abundant (around 32,000 microsatellite markers

were identified for all members of CEPH families) and show noticeable differ-

ence among and within populations, which is why they have been used in many

linkage studies and demographic analyses (Chistiakov, Hellemans, & Volckaert,

2006; Ramel, 1997; Weir et al., 2006). Meanwhile, some features of microsatel-

lites, such as their high mutation rate and instability makes their use in some

genetic analysis problematic. Because of their high mutation rate, a reliable

conclusion cannot be made about IBS (identical by state) alleles being IBD

(identical by descent) or not. As a consequence of these limitations, many asso-

ciation studies and population genetic analysis uses SNPs as their genetic marker

that are much more common (Weir et al., 2006).

1.1.2.2 Biallelic SNPs

Through the recent developments in Next Generation Sequencing (NGS) tech-

niques, it is possible to sequence several samples cheaply in a very short time.

The reduction in time and cost enables sequencing of thousands of individuals

for studies of evolutionary biology, clinical genetics, forensics and metagenomics

(Behjati & Tarpey, 2013). Even if in comparisons individual SNPs are much less

informative than individual microsatellites, the profound abundance, greater ge-

netic stability (in mammals), straightforward terminology and convenient data

analysis tools available for SNPs make them a more efficient and reliable data

source than microsatellites (Fernández et al., 2013; Pemberton, 2008).
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SNP data has been successfully adapted to many individual identification and

parentage analysis in animal breeds and conservation programs (Heaton et al.,

2002; Rohrer, Freking, & Nonneman, 2007; Tokarska et al., 2009), as well as in

forensic science (Phillips et al., 2007) and inferring kinship degrees in humans

(Lipatov, Sanjeev, Patro, & Veeramah, 2015; Manichaikul et al., 2010; Purcell

et al., 2007; Speed & Balding, 2014; Weir et al., 2006).

Several equations, methods and software have been developed for relatedness

estimations in human genetics, plant and animal breeding which take into ac-

count different sets of assumptions for each case. One way of estimating pairwise

relatedness is to use genetic relatedness matrices (GRM) or as Speed and Bald-

ing (2014) suggests, genetic similarity matrices (GSM) to avoid confusion with

pedigree-based relatedness methods (Speed & Balding, 2014). Using GSM meth-

ods makes the relatedness estimation computations more efficient (Dodds et al.,

2015). The softwares developed by Patterson et al. 2006 (PCA) and Pickrell

and Pritchard 2012 (TreeMix) use a similar approach.

In order to generate the similarity matrix, the biallelic SNPs between two in-

dividuals are coded as 0, 1 and 2 according to the state of minor allele in a

population. If the individual’s alleles are homozygous for minor allele they are

coded as 2, heterozygotes are coded as 1 and homozygous for major allele are

coded as 0 (Speed & Balding, 2014).

Speed and Balding (2014) describe four different SNP-based measures to esti-

mate kinship coefficient Θ which are Kas, kas′, Kc0 and Kc−1. These are all

based on counting the number of IBS SNPs but differ in how they weight each

SNP. Generally the Kc−1 is used in the field of human genetics while the Kc0

is mostly favored in plant and animal breeding. The former assumes that the

phenotypic variance is explained equally by all SNPs and therefore as the minor

allele frequency (MAF) decreases, their effect size would increase, whereas the

latter assumes all SNPs have similar effect size (Speed & Balding, 2014). Nev-

ertheless it is better to use the most informative set of SNPs in regards to the

traits in question which requires a well contemplated SNP filtering process.
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1.2 Ancient DNA

Although archeogenomics enables study of archaic individuals and events, strict

criteria is required for obtaining reliable results. Fragmented DNA, contamina-

tion and other post-mortem DNA decay are some of the technical drawbacks of

working with ancient DNA (aDNA). However, many advances in the fields of

NGS and accompanying bioinformatics allow using this technique to study his-

toric human migration and biological structure (Hofreiter, Serre, Poinar, Kuch,

& Pääbo, 2001; Monroy Kuhn et al., 2017; Shapiro & Hofreiter, 2014).

After the death of an organism, the DNA degradation process begins with ac-

tivity of enzymes such as endogenous nucleases. Other environmental factors

contributing to DNA degradation are temperature, humidity, degree of micro-

bial attack, salt and pH concentration (Allentoft et al., 2012; Hofreiter et al.,

2001). Allentoft et al. (2012) estimated the half life of DNA to be 521 years

for a 242 bp mtDNA sequence. DNA degradation and high content of micro-

bial DNA results in extracting low percentage of authentic (endogenous) ancient

DNA. Even with advances in experimental aDNA techniques, in most cases only

0.1%-0.01% of the extracted DNA belongs to the targeted ancient DNA (Figure

1.3) (Shapiro & Hofreiter, 2014).

Figure 1.3: Challenges of sequencing ancient DNA. Modified from (Stoneking &
Krause, 2011).
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One distinct feature of aDNA is the pattern of cytosine to thymine substitution

at the 5’ end of fragmented sequence reads (Figure 1.4). This pattern is ac-

companied by a complementary substitution from G to A in the 3’ end of the

sequence that accumulates overtime (Skoglund et al., 2014).

Figure 1.4: Patterns of post-mortem decay in ancient DNA (Kılınç et al.,
2016).Plots of the positions’ specific substitutions from the 5’ (left) and the
3’ end (right). The blue line shows the C to T substitutions while the red line
shows the G to A substitutions.

Over the years many special experimental techniques and bioinformatic tools

were generated to overcome these drawbacks in aDNA studies. These develop-

ments included the whole-genome in-solution capture (WISC) or SNP capture

methods to increase the yield of endogenous aDNA extraction (Carpenter et al.,

2013; Haak et al., 2015), methods for identification and removal of DNA con-

tamination in ancient samples (Green et al., 2010; Skoglund et al., 2014) and

computational tools for population genetic analysis of aDNA data (Excoffier,

Dupanloup, Huerta-Sánchez, Sousa, & Foll, 2013; Green et al., 2010; Pickrell &

Pritchard, 2012).

1.3 Ancient DNA studies of the Neolithic period

The Neolithic Era is one of the most important turning points in human history
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that started for the first time in the Fertile Crescent (including parts of Taurus-

Zagros, Levant and Central Anatolia) around 12,000-11,000 years ago (Figure

1.5) (Belfer-Cohen & Goring-Morris, 2011; Byrd, 2005). The transition from

mobile foraging to sedentary farming during this revolutionary period had dra-

matic consequences for human health, workloads, population growth rate, labor

division and overall social structure (Bar-Yosef, 2001; Byrd, 2005; Larsen, 1995).

Figure 1.5: Centers of origin and expansion of agriculture across the world.
Modified from (Diamond & Bellwood, 2003)

Another peculiar change was burial custom of these ancient cultures. The new

sedentary communities had begun to bury their dead in organized fashion (Byrd,

2005). Even a more specialized version of these customs was practiced in the

Levant and Central Anatolia, and particularly intensely in Çatalhöyük, where

the dead were buried together beneath the floor of settlement (Hodder, 2007).

The stable isotope analysis revealed the correlation between differentiated social

activities (such as diet) and burial practices (Pearson, Grove, Özbek, & Hongo,

2013). Archaeological and anthropological studies indicate that these individ-

uals buried in the same house were socially related. However, whether or not

these individuals were also biologically related has remained a largely open ques-

tion. There have been some studies attempting to answer this by using indirect

methodologies such as comparison of dental morphology between individuals of

a settlement (Pilloud & Larsen, 2011). Anthropological studies suggest a struc-

tured social organization due to the difference in dental phenotype and diet of

9



these ancient individuals. Nevertheless, these limited studies are not sufficient

to derive a definite conclusion about the biological kinship and social structure

of ancient populations.

Most ancient DNA studies focus on the Neolithization process and its spread

through Eurasia. Other ancient studies focus on human migration and how each

culture influence other populations. Not many genetic studies have yet focused

on in-depth analysis of social organization in each settlement in itself. Com-

bining archaeological studies with genetic analysis of social relations of these

Neolithic (and other ancient) cultures could help us better understand the ef-

fects of cultural shifts to human populations and their demographic dynamics.

1.4 Research objectives

The aim of this study is to propose a new approach to infer kinship relations

among ancient individuals. Ancient samples are degraded and have low cov-

erage, hence the published software cannot accurately or efficiently estimate

kinship degrees. Knowing kinship degrees between ancient individuals could

help answer the long-lasting questions about the social organization of ancient

human cultures. Archeological and anthropological studies can identify ancient

human individuals who were socially related. However, whether or not these

individuals were biologically related remains a mystery.

To examine the performance of our approach in different conditions, I used an

ancient dataset for construction of a simple four-generation pedigree and also a

modern family dataset because of its realistic error structure.

The objectives are:

• To test a different approach in estimation of kinship coefficients among

ancient individuals which is not currently used in relatedness estimation

software,

• To accurately estimate first and second degree (grandparent-grandchild,

half-siblings) relatives that construct a core family,
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• To characterize the lowest possible SNP number required for precise esti-

mation of relatedness,

• To identify the potential error factors that decrease the accuracy and pre-

cision of our kinship coefficient estimations.
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CHAPTER 2

MATERIALS AND METHODS

2.1 Study samples

Three different genomic datasets were used in this study. These datasets include

i) Whole genome sequence data of CEPH Family 1463 (Eberle et al., 2017), ii)

Genotype data for 594,924 autosomal SNPs of a total of 2,730 individuals from

203 modern populations from the Human Origins genotype dataset (Lazaridis et

al., 2016; Patterson et al., 2012) and, iii) Genotype data for 1,240,000 autosomal

SNPs captured in 230 ancient individuals (Mathieson et al., 2015).

2.1.1 Whole genome sequence data from CEPH Family 1463

Whole genome sequence data of the CEPH Family 1463 (Eberle et al., 2017) con-

sisting of 17 individuals’ full genome sequences were used in this study (Figure

2.1). Centre d’Etude du Polymorphisme Humain (Human polymorphism study

center) CEPH, is a Paris based international genetic research center that has

sequenced 61 reference families thus far. The family collection includes samples

from France, Utah (North & Central European descent), Venezuela, and the

Amish populations. One of these family sets is the CEPH pedigree 1463 that is

sequenced to 50X depth.

Genome sequences of the five individuals from CEPH Family 1463 (NA12877,

NA12883, NA12885, NA12889 and NA12890) that are mapped to the human ref-

erence genome (version hg19) and available as BAM (Binary sequence Alignment

Map) files were downloaded from the European Nucleotide Archive (https://
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www.ebi.ac.uk/ena ENA accession: PRJEB3381), which is also currently avail-

able in the NCBI dbGAP (database of Genotypes and Phenotypes; https://

www.ncbi.nlm.nih.gov/gap; Study Accession: phs001224.v1.p1). These se-

lected individuals represent a pair of unrelated individuals, five pairs of first-

degree relatives and four pairs of second-degree relatives (Figure 2.1) (Table

2.1).

Figure 2.1: Complete pedigree of CEPH family 1463. The samples with blue
color (five) are the individuals used for this study.

Table 2.1: Summary of CEPH family 1463 data

Sample Coverage Relation to Proband Gender
NA12877 50 father male
NA12883 50 son male
NA12885 50 daughter female
NA12889 50 Paternal grandfather male
NA12890 50 Paternal grandmother female

2.1.2 Genotype data of modern-day individuals from Human Origins

dataset

The latest version of Human Origins (HO) SNP Array dataset, which contains

594,924 autosomal SNPs’ genotype calls for 203 different populations (Figure
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2.2) with 2,730 present-day individuals, was used in this study. I only used 50

West Eurasian populations for the PCA analysis in Section 2.2.3. This dataset

was generated by the David Reich group (Lazaridis et al., 2016; Patterson et

al., 2012) with the objective of facilitating human population history analysis.

I downloaded the data from http://genetics.med.harvard.edu/reichlab/

Reich_Lab/Datasets_files/NearEastPublic.tar.gz in EIGENSTRAT for-

mat and converted them to PED file format via EIGENSOFT.

Figure 2.2: Geographic location of populations in HO dataset. This map shows
the location of all the 203 populations available in Human Origins (HO) dataset.
The red color represents the 50 West Eurasian population used in PCA analysis.

2.1.3 Genotype data of ancient individuals

The genome-wide data of 163 West Eurasian ancient individuals published by

Mathieson et al. (2015) were used for studying relatedness in ancient pop-

ulations in this thesis. The reason for selecting these samples is their high

SNP coverage that is crucial for our analysis. The samples represent indi-

viduals from six material cultures and 19 distinct populations (Table 2.2,

Mathieson et al. 2015), spanning a time period of 6500 to 300 BCE. The
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full dataset has 1,237,207 SNPs. I downloaded the EIGENSTRAT format

of the data from http://genetics.med.harvard.edu/reichlab/Reich_Lab/

Datasets_files/MathiesonEtAl_genotypes_April2016.tar.gz and converted

the files to PED format using EIGENSOFT.

Table 2.2: Brief description of 163 ancient individuals used in this study.Subset
of Extended Data Table 1 from (Mathieson et al., 2015). N, represents the total
number of samples for each populations. Out: the outliers determined by PCA
by the authors. Rel: the individuals estimated to be related and removed from
the analysis by the authors.

Population N Out Rel Date range
Anatolia_Neolithic 26 1 1 8.4-8.3 kya
Bell_Beaker_LN 10 0 1 4.5-4.5 kya
Central_LNBA 26 0 2 4.9-4.6 kya
Central_MN 6 0 0 5.9-5.8 kya
EHG 3 0 0 7.7-7.6 kya
Hungary_BA 2 0 0 4.2-4.1 kya
Hungary_EN 10 0 0 7.7-7.7 kya
Iberia_Chalcolithic 14 1 2 4.8-4.2 kya
Iberia_EN 5 0 1 7.3-7.2 kya
Iberia_MN 4 0 0 5.9-5.6 kya
LBK_EN 14 1 0 7.5-7.1 kya
Motala_HG 6 0 0 7.9-7.5 kya
Poltavka 5 1 0 4.9-4.7 kya
Potapovka 3 0 0 4.2-4.1 kya
Samara_Eneolithic 3 0 0 7.2-6.0 kya
Scythian 1 0 0 2.4-2.2 kya
Srubnaya 14 1 1 3.9-3.6 kya
WHG 2 0 0 8.2-8.0 kya
Yamnaya_Samara 9 0 0 5.4-4.9 kya

In their paper Mathieson et al. (2015) had excluded five population genetic out-

liers (I0056, I0354, I0432, I0581 and I0725) based on their divergence patterns

identified by principal components analysis (PCA) (Table 2.2). There were

also excluded from further analysis in my work.

From this ancient polymorphism dataset, eight individuals (I0054, I0100, I0108,

I0112, I0172, I0408, I0412 and I1549) from West Eurasian Neolithic period pop-

ulations (Table 2.3) were selected to generate an in-silico pedigree. The relat-
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edness estimation process (described in Sections 2.2.3, 2.2.4 and 2.4 for SNP

filtering, reference population selection and relatedness estimation respectively)

was performed on the whole ancient dataset. These eight individuals selected

represent unrelated samples (see Appendix A) from a similar time period.

Here, I only report the calculations and results based on analysis of these eight

individuals.

Table 2.3: Archaeological background of eight ancient individuals used in relat-
edness estimation analysis (Mathieson et al., 2015)

Sample
ID

Archaeological
Culture

Date Location Country

I0054 LBK_EN 5,122 *BCE Unterwiederstedt Germany
I0100 Anatolia_NE 6,350 BCE Barcın Turkey
I0108 Bell_Beaker_LN 2,437 *BCE Rothenschirmbach Germany
I0112 Bell_Beaker_LN 2,300 *BCE Quedlinburg XII Germany
I0172 Central_MN 3,223 *BCE Esperstedt Germany
I0408 Iberia_MN 3,750 BCE La Mina Spain
I0412 Iberia_EN 5,194 *BCE Els Trocs Spain

I1549 Bell_Beaker_LN 2,275 BCE
Benzingerode
-Heimburg

Germany

2.2 Data processing

2.2.1 Sequence data processing

2.2.1.1 Down-sampling the sequence data of modern genomes

The modern sequence data (Section 2.1.1) was down-sampled at coverage and

SNP levels to mimic the features of degraded ancient DNA samples.

The depth of coverage or shortly the coverage of a genome sequencing dataset

is the average number of reads aligned to an individual base from the reference

genome. The coverage level of a dataset is a determinant of accurate variant

discovery at specific base positions. At higher sequence coverages, the degree

of confidence increases because each base is covered by more sequenced reads.

High coverage data could account for some of the inevitable sequencing errors
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of Next Generation Sequencing (NGS) methods (Liu et al., 2012; Nielsen, Paul,

Albrechtsen, & Song, 2011). Ancient DNA samples generally have low sequence

coverages that would generate low confidence SNP calls.

To reduce the coverage of modern BAM files, I used the samtools software’s

“view” algorithm that subsamples the file by choosing a fraction of read pairs

randomly. I down-sampled the BAM files from 50X coverage to 10X, 2X, 1X

and 0.1X coverages. The fractions used for down-sampling of each sample is

summarized in Table 2.4.

Table 2.4: Fraction of read pairs for down-sampling process

Sample
Fraction
for 0.1X

Fraction
for 1X

Fraction
for 2X

Fraction
for 10X

NA12877 0.0021 0.021 0.042 0.21
NA12883 0.0022 0.022 0.044 0.22
NA12885 0.0023 0.023 0.046 0.23
NA12889 0.0019 0.019 0.038 0.19
NA12890 0.0024 0.024 0.048 0.24

I also checked the quality of the original and downsampled BAM files using

FastQC software (Andrews, 2010). The next part was sub-sampling of SNPs

in modern sequence data, again to mimic low quantity ancient DNA datasets.

For all coverages except 0.1X, I randomly decreased the SNP numbers to 100K,

50K, 20K, 10K, 5K and 1K. For 0.1X coverage the SNP number was reduced to

40K, 30K, 20K, 10K, 5K and 1K due to total available SNP number.

2.2.1.2 Checking accuracy of down-sampling

The success of down-sampling was confirmed by calculating the coverage of sub-

sampled BAM files. Using samtools, first I computed the number of mapped

reads with the “flagstat” algorithm, and then multiplied it with read lengths

obtained with the “view” parameter. Dividing this number by the genome size

gives the coverage for the file (Figure 2.3). This step verifies the accuracy of

down-sampling.
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2.2.2 SNP discovery

Variant calling is one of the steps in NGS (next generation sequencing) data

analysis that reveals nucleotide differences (variants) between an individual and

a reference genome.

There are different software packages for variant calling of sequenced genomes.

Samtools (Li et al., 2009) "mpileup" is one of these algorithms that calls variants

from reads aligned to the reference genome. Although GATK is a more sophis-

ticated SNP calling algorithm, many ancient DNA studies use the pipeline of

samtools for variant calling. According to Hwang et al. (2015) samtools is a

better pipeline for SNP calling while GATK is more efficient in calling indels.

However, most aDNA data have low sequencing coverage and indel calling is not

possible, that is why we used samtools (Li et al., 2009) version 1.1 instead of

GATK.

The variant calling process with the samtools software’s “mpileup” command re-

quires a BAM file, a reference genome (in accordance with the reference genome

used in the mapping process) and an optional SNP list in BED format as input

data. The BED file functions as a list of positions to be called. The Human

Origins dataset (Section 2.1.2) was used as a list of positions to be called.

We do not call de novo SNPs because aDNA samples have short read length

(very fragmented) and low coverage. To solve this problem in modern samples:

i) high amount of DNA is sequenced, ii) paired-end and mate-pair sequencing

techniques are used on longer DNA fragments. However, these methods can-

not be incorporated into aDNA sequencing. De novo assembly of low coverage,

fragmented aDNA would result in erroneous base calling. Most of these errors

could be detected by using reference based approaches (Seitz & Nieselt, 2017).

The “mpileup” parameters -q and -Q represent the minimum mapping quality

and minimum base quality used for SNP calling respectively. Performing map-

ping and base quality filters during variant calling helps to rule out false positive

SNP calls. The next step of variant calling is to convert the generated BCF file

to VCF file format while removing indels using bcftools (Li et al., 2009) version

1.4.1. Presence of indels near mismatches could lead to false variant calling (Li

& Homer, 2010).
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The VCF file is a text file format that stores called variants along with the

reference genome. This is a more efficient way of representing large number

of genotype data compared to other file formats like General Feature Format

(GFF) that stores all genetic data. In order to simplify and make files compat-

ible with other software used in this analysis, the VCF files were converted to

PLINK PED/MAP format using vcftools (Danecek et al., 2011) version v0.1.12b

with parameter (“-cV indels”). This pipeline is used for SNP discovery of both

ancient and modern genome sequences.

2.2.2.1 SNP discovery from ancient genome sequences

For the ancient SNP discovery, 163 ancient samples (see Section 2.1.3) from

Mathieson et. al. (2015) were selected for the analysis. The human reference

genome (version hs37d5), the Human Origins dataset SNPs (Section 2.1.2)

and minimum mapping (-q) and base (-Q) quality 30 were used in SNP call-

ing process. This quality threshold is commonly used for ancient DNA samples

(Kılınç et al., 2016). After removing indels, the files were converted to PLINK

PED/MAP format. All the heterozygous sites were haplodized by random se-

lection of one of the alleles to avoid post-mortem nucleotide changes (Skoglund

et al., 2012).

2.2.2.2 SNP discovery from modern genome sequences

The genotype calling of modern sequence data (five sets from Section 2.2.1.1)

were performed with the pipeline in Section 2.2.2. In agreement with the

mapping step, human reference genome version hg19 was used. The HO dataset

(Section 2.1.2) was utilized to specify regions of genome for variant calling.

For consistency with ancient samples, the minimum mapping and base quality

was set to 30. The indels were removed and the files were converted to PLINK

PED/MAP format.
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2.2.3 Principal Component Analysis (PCA)

Principle Component Analysis (PCA) is a well-established mathematical tech-

nique that is used in analysis of high-throughput biological data. This method

is used as a data quality check in many biological studies to visualize variation

among many samples. By using PCA the biological signal of interest is compared

against the signals coming from experimental conditions and bias. By using or-

thogonal transformation, PCA reduces the dimensions and noise but retains the

original variation of the data. It is a way of compressing data into uncorrelated,

orthogonal dimensions (components) with the highest data variation (Ringnér,

2008; Yao, Coquery, & Lê Cao, 2012).

In aDNA studies PCA is used to describe the genetic structure of ancient sam-

ples compared to modern-day populations. I performed PCA to investigate the

genetic relationship of study samples: i) modern (CEPH 1463 Section 2.1.1),

ii) ancient (Section 2.1.3) to modern-day individuals of the Human Origins

Dataset. The populations that are closest (genetically) to our study samples (i

& ii) were selected as reference populations. These two reference population sets

were later used for minor allele frequency (Section 2.2.4.4) and linkage dise-

quilibrium (Section 2.2.4.3) calculations. The smartpca program of EIGEN-

SOFT (Patterson, Price, & Reich, 2006) software was used for PCA calculations

of modern and ancient datasets. For both case, 50 modern West Eurasian pop-

ulations were selected from HO dataset.

For CEPH 1463 PCA, the five samples of the family were merged with 50 West

Eurasian populations from HO dataset. The eigenvector (principal components)

calculations were done among the merged 51 populations. The first two compo-

nents were used for plotting.

A total of eight ancient individuals (Section 2.1.3) and 50 West Eurasian

populations from HO dataset were used for ancient PCA calculations. First

the transition sites were removed from the ancient samples (Section 2.2.4.1).

Also, all the multiallelic variants were excluded from the HO dataset. Then us-

ing PLINK’s “–merge” parameter the two datasets were merged together. All the

heterozygous sites were haploidized by selecting one of the alleles randomly to

generate a completely homozygous dataset using a custom Python code. This
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step is performed for consistency, because low coverage aDNA creates a non-

diploid dataset. The eigenvector calculation was performed on modern popula-

tions. Then the ancient individuals were projected onto first two components

using the “lsqproject: YES” option of smartpca.

2.2.4 Filtering the SNPs

2.2.4.1 Filtering the transitions

As mentioned before, one property of aDNA is cytosine to uracil/thymine tran-

sitions that accumulate gradually overtime. To avoid post-mortem degradation

effects, the analyses are limited to transversion sites in the HO dataset (Skoglund

et al., 2014). All the positions that had transitions ( C ↔ T or G↔ A ) in the

HO dataset were excluded from the next steps of analysis using custom Bash

code (see Appendix B for workflow of SNP filtering steps).

2.2.4.2 Filtering the positions based on missingness

The next step after removal of transitions is to look for genotyping (missingness)

rates among ancient samples. Due to the technical reasons (e.g. biochemistry

of the in-solution SNP capture procedure) it is possible that some SNPs sys-

tematically tend not to be called and are reported as missing. In our group’s

future work using in-solution SNP capture, we will prefer not to use these SNPs.

I therefore decided to remove any such SNPs from my analysis here as well. I

note that missing SNPs are not included in my related calculation. I calculated

missingness frequencies (rates) for each SNP (locus) of ancient samples using

PLINK’s “–missing” parameter. This calculates missingness frequencies for each

SNP. I removed SNPs that had missingness frequency higher than 0.5, meaning

that these SNPs were not genotyped in more than half of the samples.
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2.2.4.3 Filtering the SNPs based on Linkage Disequilibrium (LD)

The other step of filtering is LD-based SNP pruning. The situation where alleles

from distinct loci have a non-random association is called linkage disequilibrium

(LD) (Slatkin, 2008). It is better for our calculations to use SNPs that are

independent from each other. This way we could avoid over- or underestimation

of relatedness estimates our measurements. PLINK’s calculations depend on

pairwise genotypic correlation.

The linkage disequilibrium coefficient D, is one of the measures to estimate LD

which is defined as

DAB = pAB − pApB (2.1)

where, pA is the frequency of allele A at one locus. In another locus, pB is the

frequency of allele B. In the same manner, pAB epresents the AB haplotype fre-

quency, that is the situation where A and B occur together in the same gamete.

However, D measurements are hard to interpret because their range are depen-

dent on the frequency of alleles. This makes the comparison of pairs of mark-

ers based on D difficult (Ardlie, Kruglyak, & Seielstad, 2002; Devlin & Risch,

1995). Another way of estimating LD is Pearson’s coefficient of correlation (r);

the square of r is often used to avoid the introduced arbitrary sign. The r2 value

is measured as

r2 =
D2

pA(1− pA)pB(1− pB)
(2.2)

The range of r2 extends from 0 to 1. Zero indicates a situation where two loci

are in complete linkage equilibrium where 1 means that they are in complete

linkage disequilibrium (Ardlie et al., 2002; Devlin & Risch, 1995; Lewontin, 1964;

Slatkin, 2008).

The LD-based SNP pruning was performed using modern reference populations

selected from PCA analysis (10 West Eurasian population for ancient dataset as

described in Section 3.1.2 and six Northern European populations for modern

dataset described in Section 3.2.2). Loci in the modern reference popula-

tion dataset with LD of 0.4 and higher were removed using PLINK’s “–indep-

pairwise” parameter. I set the program to take a window size of 200 SNPs,

shift it 25 SNPs each time and calculate pairwise SNP LD. If the pairwise LD

was higher than 0.4, one of the SNP pairs was removed recursively from both
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the reference (Section 2.2.3) and test (Section 2.1.3) datasets (Purcell et al.,

2007).

2.2.4.4 Filtering the SNPs based on Minor Allele Frequency (MAF)

Allele frequency per locus is determined as the proportion of a particular allele

type to total number of measured alleles at that locus in a population. The mea-

sured allelic frequency can be polarized to minor/major, reference/alternative

or ancestral/derived states. At that precise locus, the least frequent allele in the

population is designated as the minor allele (Gillespie, 2004).

Using the PLINK “–freq” parameter, I calculated MAF (minor allele frequency)

for each position by determining minor and major alleles in filtered reference

populations. In order to use SNPs with accurate genotype calling, the positions

with MAF lower than 0.1 were removed from analysis. Because of the features

of aDNA data (Skoglund et al., 2014), I used a higher cutoff for MAF values

than the usual 0.01.

2.3 Generation of in-silico pedigrees

In order to test the performance of our method, I simulated a four generation

pedigree that included relatives up to third-degree relatives. For this I used the

genomes of eight real ancient individuals (Section 2.1.3) that belong to the

Anatolian, Central European and Iberian population of the Neolithic period. I

used three criteria for selecting these individuals, which I call “founders”: i) the

founders should belong to the same time period, ii) the founders should have

the highest number of SNPs possible, iii) the founders should be unrelated.

A pedigree was simulated using these founders, and using the remaining SNPs

after the pruning process in Section 2.2.3. First, I generated four trios from

the founders. The formation of each trio is summarized in the Figure 2.4.

Each pedigree trio is composed of two founder individuals and a simulated off-

spring. From each founder genome, I randomly selected one of the biallelic SNPs

at each locus. By combining these two haploid sets, I created a diploid offspring
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that is the random mixture of its parents’ genomes.

The first set of simulated offspring (Child1, Child2, Child3 and Child4) was

created in this fashion from four founder pairs. This set of simulated offspring

genomes was used recursively to create a third-degree family pedigree in the

same manner as shown in the Figure 2.5.

Figure 2.4: Schematic representation of Child simulation, modified from
http://www.natera.com/science-informatics.

Figure 2.5: Example of pedigree simulation
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2.4 Estimation of relatedness

2.4.1 Evaluation of published methods

2.4.1.1 PLINK

PLINK is a free, open-source platform for whole-genome association analysis

(Purcell et al., 2007). The tool set performs a wide range of genotype/phenotype

data analyses. One feature of the program is to calculate pairwise identity by

descent (IBD). For this purpose, the program uses shared rare variants between

two individuals. The algorithm searches through common SNPs to identify the

regions of extended sharing. These regions are assumed to be inherited via IBD,

and identifying these regions enables us to estimate IBD. PLINK assumes ho-

mogeneous population structure (random mating) for IBD estimation among

apparently unrelated pairs. This feature of the program is mainly designed for

quality-control purposes like identifying contamination, duplication, sample mix

up, pedigree errors and undiscovered relatedness (Mathieson & McVean, 2014;

Purcell et al., 2007).

To estimate pairwise relatedness as a measure of relatedness, I used PLINK’s

(Purcell et al., 2007) “–genome” parameter that calculates the relatedness coef-

ficient r from the IBS information with formula

PIHAT = P (IBD = 2) + 0.5× P (IBD = 1) (2.3)

where P stands for probability. The IBD probabilities are calculated based on

the observed IBS proportions.

2.4.1.2 KING

KING (Manichaikul et al., 2010) is one of the software generated to calculate

relatedness among individual pairs using genome-wide polymorphism data. Ac-

cording to Manichaikul et al. (2010), KING’s algorithm could calculate kinship

up to third-degree among thousands of related pairs of a high-throughput data,

even in the presence of unknown population substructure (Manichaikul et al.,

27



2010). I conducted pair-wise relationship inference analysis using KING’s “–

kinship” parameter that calculates Θ, the kinship coefficient.

2.5 Method development for estimating the relatedness

Two main approaches to relatedness analysis, are pedigree-based (Section 1.1.1)

and SNP-based measurements (Section 1.1.2.2) (Speed & Balding, 2014). Here

our aim is to estimate relatedness from ancient DNA data therefore we use a

SNP-based approach of relatedness.

Our kinship coefficient estimations are based on Genetic Similarity Matrices

(GSMs) as described by Speed and Balding (2014). The calculations are based

on the unbiased estimation of allelic correlation coefficient with the equation,

Kc−1(B,C) =
1

m
XBX

T
C where XBj =

SBj − 2pj√
2pj(1− pj))

(2.4)

Kc−1 is one of the pairwise measures of genome similarity, that estimates 2Θ

(allelic correlation coefficient) averaged over SNPs. 1
m
XXT is the genetic simi-

larity matrix where the genotype scores are centered and standardized. SBj is

the genotype of B at the jth dialleleic SNP, with the genotypes coding system

of 0,1,2. The total SNP number is indicated by m and the population MAF at

the jth SNP is denoted by pj.

Subtracting the population frequency of minor alleles (MAF) from genotype

scores accounts for the level of background relatedness in a population. Individ-

uals of a finite population have some degree of genetic similarity due to ancestral

relatedness (sharing a common ancestor in the past) (Weir et al., 2006). In this

way, we could differentiate the familial relatedness from ancestral relatedness.

This rescaling puts more weight on rare shared alleles. Frequency of an allele

could be used to estimate its age. Rare alleles are typically newly arisen variants

compared to common variants. Sharing rare alleles could be the indicator of a

recent common ancestor among individuals (Mathieson & McVean, 2014).

The relatedness calculations were performed in the R programming environ-

ment with the SNPs remaining from the filtering process (Section 2.2.4). The

genotypes of test individuals were transformed to the 0,1,2 coding system after
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comparison to that of reference population set. If the test allele genotype is the

same as the minor allele, it is coded as 2. If it shares the same genotype with the

major allele, it is coded as 0. When there is a missing data or a different geno-

type than both minor and major alleles, the allele information is transformed to

NA and removed from analysis. The pairwise relatedness was calculated with

the equation (2.4). Table 2.5 describes the expected kinship coefficient (Θ) val-

ues for each relationship degree, and their corresponding 95% credible interval

(CI).

Table 2.5: Theoretical criteria of kinship coefficient (Θ) estimation (Speed &
Balding, 2014)

Relationship Θ 95% CI of Θ

first degree
(parent-offspring)
(full-siblings)

0.25 (0.204, 0.296)

second degree
(grandparent-grandchild)

0.125 (0.092, 0.158)

third degree
(first cousins)

0.0625 (0.038, 0.089)

unrelated 0 (0.000, 0.000)

2.6 Statistical analysis

One of the crucial factors in determining validity of a test is knowing its accuracy.

In order to evaluate the performance of our method in estimation of kinship

degrees, five statistical measures were calculated. The true positive (TP) rate

measures the amount of related individuals that were correctly inferred as related

(in the correct kinship degree) by our approach. The proportion of unrelated

pairs which were estimated as related individuals constitute the false positive

(FP) rate. In contrast, the false negative (FN) rate represents the proportion

of related individuals that were mistakenly identified as unrelated pairs with

our approach. The category of incorrectly related (IR) pairs were composed of

related pairs assigned to the wrong kinship degree. And finally the undecided
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(UN) proportion represents estimates that were in between the expected range

of relatedness degrees.

These statistical measures were calculated separately for the first, second and

third degree individual pairs in the in-silico pedigree simulated from ancient

samples and first and second degree relatives of real-life modern data of 50X

and 10X coverages.

For the individuals in the datasets, the SNP numbers were randomly reduced to

25K, 20K, 15K, 10K, 5K and 1K to observe how the efficiency of our approach

vary as the SNP number diminishes. Each set of SNPs were sampled 1000

times, then the kinship estimation method was performed on all of them. Every

statistical measure was in percentages and calculated by dividing the number of

true positives to total number of truly related pairs for TP, dividing the number

of false positives to the total number of pairs that were unrelated for FP, dividing

the false negatives to all the pairs that were truly related for FN, dividing the

number of pairs that were categorized to an incorrect kinship degree to total

number of pairs in accurate kinship degree for IR and lastly by dividing the

undecided pairs to the total number of true related pairs.
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CHAPTER 3

RESULTS

3.1 Simulated ancient data

3.1.1 Sequencing data summary and statistics for ancient data

Our method’s performance was tested on a four generation in-silico pedigree

simulated from real ancient data (Section 2.1.3). The eight founder individ-

ual (ancient samples I0054, I0100, I0112, I0172, I0408, I0412 and I1549) were

selected because they had the highest number of SNPs among unrelated indi-

viduals of European Neolithic period.

The pipeline in Section 2.2.2 and 2.2.2.1 were used for SNP discovery of an-

cient samples. An ancient sample’s DNA usually is in low amount and highly

fragmented. It is better to use reference-based approaches (conditioning on

confidently identified SNPs) to avoid incorrect base calling. The SNPs that

overlapped with the Human Origins dataset were used for the analysis. This

is a SNP array that represents genetic variation in human populations from all

around the world and was designed by the David Reich group (Lazaridis et al.,

2016; Patterson et al., 2012) for studying human population genetics and his-

tory. The number of SNPs from the chosen ancient genomes overlapping with

the HO dataset is shown in Table 3.1.
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Table 3.1: Summary statistics of eight ancient individuals

Sample ID
N. SNPs overlapping
with HO dataset

Genome coverage

I0054 561,535 0.82
I0100 545,367 0.56
I0108 399,902 0.12
I0112 533,394 0.23
I0172 580,157 0.98
I0408 537,636 0.59
I0412 553,669 1.13
I1549 415,223 0.12

3.1.2 Reference population selection for ancient individuals

Principle Component Analysis (PCA) of the eight ancient study samples (Section

2.1.3) was performed for determination of the reference populations set. The

allele frequencies in reference populations are important for discovery of back-

ground relatedness in study samples. Considering a finite population and a sin-

gle locus, any two individuals share some degree of relatedness because at some

point in time they had a common ancestor. Therefore, any observed relatedness

among individuals should be measured against this background relatedness in

the population (Weir et al., 2006). Accurate detection of reference populations

is crucial for our relatedness calculations.

The selection of reference populations were based on their genetic affinities to

study samples. I chose 50 West Eurasian populations from the HO dataset to

test this relationship. The selected ancient samples belong to Anatolian, Cen-

tral European and Iberian populations of the Neolithic period. As described in

previous studies (Haak et al., 2015; Kılınç et al., 2016; Lazaridis et al., 2016;

Mathieson et al., 2015) Neolithic samples from Europe usually cluster together

with modern-day West and South European populations. For this reason, the

other populations of HO dataset (African, American and East Asian) was not

included in PCA.

One of the most prominent post-mortem damages of ancient samples, is the

cytosine deamination at the end of DNA fragments (Briggs et al., 2007). This
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translates into high amount of C to T substitution in ancient DNA especially at

molecule ends (up to 30-40%) and could lead to inaccurate base calling (Seitz &

Nieselt, 2017; Skoglund et al., 2014). Hence all the transition sites were removed

from ancient samples data, leaving only transversion SNPs (Section 2.2.4.1).

A total of 108,535 SNPs remained. Table 3.2 illustrates the detailed result of

transition filtering.

Table 3.2: Remaining SNPs after transition filtering for ancient samples. N.
missing indicates the number of SNPs that are not identified for that individual
(among all transversion SNPs).

Sample ID N. of SNPs N.missing
I0054 102,986 5,549
I0100 99,819 8,716
I0108 73,005 35,530
I0112 97,685 10,850
I0172 106,498 2,037
I0408 98,095 10,440
I0412 101,186 7,349
I1549 75,235 33,300

In addition, I haploidized the whole merged data by randomly selecting one of

the alleles at each heterozygous position. Due to low coverage of ancient samples,

haploidized version of the data is used for analysis (Green et al., 2010; Skoglund

et al., 2012). The eigenvectors were calculated from 50 modern populations,

ancient samples were later projected onto the first two calculated principal com-

ponents (PCs) using the “lsqproject: YES” option of smartpca (Patterson et al.,

2006). This option uses least squares equations instead of orthogonal projection

which is appropriate for situations where some of the samples have a high pro-

portion of missing data. Using modern data (few missing genotype) to calculate

PCs and then projecting ancient data (many missing genotype) onto it would

minimize the error and increase power (Patterson et al., 2012). The PCA result

is shown in Figure 3.1.
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Figure 3.1: Genetic structure and population affinities of ancient samples. The
principle component analysis (PCA) of 50 modern West Eurasian population on
which eight ancient samples were projected.

The positioning of modern populations in the PCA is similar to their geographic

distribution. As the genetic affinity between population increases, they form

tighter clusters in the PCA. Consistent with previously reports (Lazaridis et

al., 2014; Omrak et al., 2016), the Neolithic individuals are mostly (five out of

eight) grouped with populations from Southern Europe. Considering the results

of previous studies (Günther & Jakobsson, 2016; Kılınç et al., 2016) and this

PCA, I chose Albanian, Bergamo, Greek, Italian_South, Maltese, Sicilian, Tus-

can, Spanish, Canary Islanders and Sardinians as reference populations for the

relatedness calculations. The reference population set for ancient data includes

153 individuals from 10 South European populations.
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3.1.3 SNP filtering for ancient data

The next step after selection of reference populations, was to calculate missing

genotype frequency in ancient samples. Ancient samples have a high propor-

tion of missing data due to their low coverage and some level of SNP filtering

is required to decrease their effect on our calculations. I removed all the SNPs

that are systematically missing in more than half of the individuals (>50%). A

total of 60,663 SNPs pass this filter. This step would still allow for some level

of missing data in the samples. If all SNPs with any missing genotypes were

removed completely, the few remaining SNPs would not be sufficient for relat-

edness estimations. The result of filtering missing SNPs is presented in Table

3.3.

Table 3.3: Remaining SNPs after missingness filtering for ancient samples

Sample ID N. of SNPs N.missing
I0054 60,476 187
I0100 60,306 357
I0108 48,310 12,353
I0112 59,586 1,077
I0172 60,638 25
I0408 60,489 174
I0412 60,542 121
I1549 53,891 6,772

The same set of SNPs were also removed from the reference population set. The

SNP filtering process is executed in parallel between ancient data and reference

population set.

The following two steps of SNP filtering (LD and MAF filtering) was performed

on reference population set and not the ancient samples. This is because LD

and MAF calculations are usually performed at the population level and we have

few samples recovered from each ancient location. Their number is not enough

for population level analysis, so for now, we have to use the genetically closest

modern populations instead. We chose the 10 South European populations from

the PCA as a reference for allele frequencies of ancient samples.

Because of replicated signals, variants in high LD would generate noisy related-
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ness estimations. A common solution is pruning of SNPs to reduce correlation

effect (Speed, Hemani, Johnson, & Balding, 2012). I used the PLINK (Purcell et

al., 2007) program for LD pruning, which takes 200 bp size windows, calculates

pairwise r2 between SNPs and removes one of them if the r2 value is larger than

0.4 (described in detail Section 2.2.4.3). The parameters used in LD calcu-

lations (200-window size, 25-size of sliding window and 0.4-r2 threshold) were

selected according to Kilinc et al. (2016). After pruning a total of 37,577 SNPs

remains (details in Table 3.4).

Table 3.4: Remaining SNPs after LD filtering for ancient samples. N. missing
indicates the number of SNPs that are not identified for that individual.

Sample ID N. of SNPs N.missing
I0054 37,459 118
I0100 37,339 238
I0108 29,871 7,706
I0112 36,867 710
I0172 37,559 18
I0408 37,458 119
I0412 37,498 79
I1549 33,456 4,121

The final step of SNP filtering based on MAF was performed using MAF es-

timations from the reference population set. Knowing the minor allele and its

frequency in the population, is crucial for our approach in relatedness estima-

tions. The HapMap (Frazer et al., 2007) and 1000 Genomes (Auton et al.,

2015) projects demonstrate that accurate identification of rare variants (with

1% MAF) requires sequencing of thousands of individuals (Nielsen et al., 2011).

However, there are few ancient samples available and these have low coverage

data and damaged DNA. Therefore, I used a higher MAF threshold than the

usual 1% to obtain more accurate results. All the SNPs that had a frequency

lower than 0.1 were excluded from the reference population set. A total of 25,990

SNPs pass the filtering. The same group of SNPs were removed from ancient

data as well. The detailed result of MAF SNP filtering is summarized in Table

3.5.
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Table 3.5: Remaining SNPs after MAF filtering for ancient samples. N. missing
indicates the number of SNPs that are not identified for that individual.

Sample ID N. of SNPs N. missing
I0054 25,905 85
I0100 25,824 166
I0108 20,644 5,346
I0112 25,489 501
I0172 25,977 13
I0408 25,905 85
I0412 25,938 52
I1549 23,110 2,880

3.1.4 Pedigree simulation and relatedness estimation

Following the SNP filtering, a total of 25,990 SNPs remained. These same

group of SNPs was selected in both ancient data and reference population set.

The 25,990 SNPs in the ancient individuals were used in simulation of a four

generation pedigree according to the pipeline in Section 2.3. Randomly selected

haploid alleles from a pair of founders were combined to generate each diploid

Child. Figure 3.2 shows the four trios constructed from the selected eight

ancient individuals. The four simulated Children were used to create the four

generation pedigree displayed in Figure 3.2.
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Figure 3.2: Topology of simulated pedigree from eight ancient individuals

After the pedigree was created, a haploid file of each sample was generated for

relatedness calculations. For every sample, one of the alleles in each position

is randomly selected. The genotype data of simulated individuals were merged

with that of the reference population set (10 West Eurasian populations Section

3.1.2). For every individual, the genotype of each allele was compared with the

genotype of minor allele in the population. If they had the same genotype with

the minor allele, they were coded as 2. Whenever, they had the major allele,

they were coded as 0. By this way, we would give more weight to shared rare

alleles between individuals. When there was a missing allele or any other geno-

type than the minor or major alleles, the allele was removed from analysis. The

pairwise relatedness between simulated individuals of the pedigree in Figure

3.2 was calculated with the equation (2.4) in the Section 2.5. In addition,

relatedness between simulated children was calculated with the software KING

and PLINK. In the simulated pedigree, there are six pairs of first-degree rel-

atives, four pairs of second-degree relatives, two pairs of third-degree relatives

and nine pairs of unrelated individuals (Table 3.6).
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Table 3.6: Relatedness degree of simulated pairs

Sim. pairs Rel. degree Sim. pairs Rel. degree
Child1-ChildX First-degree Child2-ChildZ Third-degree

Child2-ChildX First-degree Child1-Child2 Unrelated

Child3-ChildY First-degree Child1-Child3 Unrelated

ChildX-ChildY First-degree Child1-Child4 Unrelated

ChildY-ChildZ First-degree Child2-Child3 Unrelated

Child4-ChildZ First-degree Child2-Child4 Unrelated

Child1-ChildY Second-degree Child3-Child4 Unrelated

Child2-ChildY Second-degree Child4-ChildX Unrelated

ChildX-ChildZ Second-degree Child4-ChildY Unrelated

Child3-ChildZ Second-degree Child3-ChildX Unrelated

Child1-ChildZ Third-degree

I used three methods (described in Section 2.4.1.1, 2.4.1.2 and 2.5) for relat-

edness estimation among related and unrelated pairs in the Neolithic pedigree,

as well as the 8 unrelated Neolithic individuals (see Appendix A):

• GSM-based allelic correlation coefficient (GACO), or Kc-1,

• PLINK,

• KING.
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As the plot in Figure 3.3 show, we were able to correctly infer the relatedness

degree of all the simulated pairs with our approach. The gray shaded areas are

the theoretical 95% credible intervals (CI) for each degree of relatedness as cal-

culated by Speed and Balding (2015) (Table 2.5). The error bars at each point

represents the 95% CI determined by bootstrapping. For each pairwise com-

parison, 5,000 SNPs were randomly sampled and the kinship coefficients were

calculated. This process was repeated for 1,000 times. The estimates which

were outside of the 95% two-sided confidence bounds were excluded.

If the reference population allele frequencies were different from those of the

original ancient Neolithic population, we might find a general bias toward over-

estimating relatedness in this pedigree. We do observe a modest overestimation

of relatedness in five of the unrelated individuals, but the accuracy in general

appears high.

The KING software could not produce any informative results about the rela-

tionship degree of simulated individuals. Although the PLINK program per-

formed the calculations, the obtained result was zero degree of relatedness for

every pair, which is not accurate.
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3.1.5 Statistical analysis of kinship estimation method performance

using the ancient simulated dataset

The seven members of the in-silico pedigree simulated from the ancient samples

were used to test the performance of our approach. These seven members gen-

erate 21 pairwise comparisons that include six pairs of first-degree, four pairs

of second-degree, two pairs of third-degree and nine unrelated pairs. We had

six different SNP sets (25K, 20K, 15K, 10K, 5K and 1K), each of them were

randomly subsampled 1000 times with replacement to yield a total of 126,000

pairwise comparisons (see Appendix C).

The Figure 3.4 illustrates in detail the result of these statistical test for first,

second and third-degree comparisons. Overall our approach could accurately in-

fer kinship degrees in the simulated pedigree. As the SNP number decreases the

precision of the results decline as well. Another factor affecting the estimation

of kinship coefficient, is the degree by which individuals are related. Just as the

degree of kinship increases, the level of shared genomic regions inherited from a

common ancestor decreases and starts to overlap with each other (Table 2.5).

For the six 1st degree pairs, all the SNP sets except the 1000 SNP one, showed

perfect results (Figure 3.4). The FP, FN and IR rates were zero for the first-

degree pairs. Only in the 1000 SNP set, some estimates were above the expected

range of the first-degree pairs (> 0.296) and some estimates were in between the

expected range of first-degree and second-degree relatives, yielding an UN rate

of 15.4%. For the second and third-degree pairs, the high number SNP sets

produced largely true result. However, for the 1000 SNP set, among the second-

degree pairs, the IR rate increased to 8.8% and UN rate to 22.3% while in

third-degree pairs, the FP rate was 16.4%, IR 26.4% and UN 14.7%. Therefore,

only a 1000 SNPs (of MAF>0.1) may not be enough to make decisive estimations

about kinship degrees. In summary, our approach could successfully estimate

up to third degree kinship degrees with a minimum of 5000 SNPs.
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Figure 3.4: Error rates for ancient simulated data. All three plots demonstrate
error rates for different SNP numbers. The x-axis shows the five different sta-
tistical measures, true positive (TP), false positive (FP), false negative (FN),
incorrectly related (IR) and undecided (UN). Pairs assigned to the wrong re-
latedness degree “incorrectly related”, the pairs in between expected relatedness
degrees “undecided”. (A) For first-degree relatives only, (B) second-degree rela-
tives only and (C) third-degree relatives only.
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3.2 Real-life modern data with known relationship

3.2.1 Sequencing data summary and statistics for modern data

To test the performance of our approach on real-world data, I used five individ-

uals from CEPH 1463 family of North/West European descent from Utah, USA

(Section 2.2.1) who were sequenced to 50X coverage. These modern samples

were processed (down-sampling and transition removal) to resemble properties

of ancient DNA. Moreover, KING and PLINK software were used to estimate

kinship degrees of these processed real-life data. The coverage of modern se-

quence data (Section 2.1.1) was gradually reduced (from 50X to 10X, 2X, 1X

and 0.1X) to mimic the low coverage features of aDNA. The performance of

down-sampling was tested by calculating coverage of each file using the formula

in Section 2.2.1.2. This step verifies the accuracy of down-sampling (details

in Table 3.7).
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The SNP discovery of all modern samples at five different coverages were per-

formed according to the pipelines in textbfSection 2.2.2 and Section 2.2.2.2.

The total number of SNPs for each sample that overlapped with the HO dataset

(Section 2.1.2) is summarized in Table 3.8.

Table 3.8: Number of SNPs of CEPH family 1463 used in this study

N. of SNPs Overlapping with HO Array
Sample ID 0.1X 1X 2X 10X 50X
NA12877 55,059 367,847 506,126 592,023 592,122
NA12883 55,112 367,119 505,425 592,027 592,118
NA12885 55,858 370,363 507,664 592,012 592,120
NA12889 53,591 361,254 500,820 592,006 592,121
NA12890 56,138 372,842 510,150 592,041 592,117

3.2.2 Reference population selection for modern data

I performed PCA to determine the reference populations set of CEPH family

1463 (with the pipeline in Section 2.2.3). The 50 West Eurasian populations

(Section 2.1.2) from the HO array were merged with the five individuals of

CEPH family. The eigenvector calculations were performed on the whole merged

(51 populations) dataset. Figure 3.5 displays the PCA result from the first two

components.
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Figure 3.5: Genetic structure and population affinities of CEPH family 1463.
PCA of 50 contemporary West Eurasian populations with the five members of
CEPH family.

According to the PCA result, the individuals from CEPH family 1463 mostly

group with populations from Northern Europe. CEPH 1463 is a family from

Utah with European ancestry and belonging to the Mormon community (Zhang

et al., 2004), so this is expected. However, why CEPH 1463 form a slightly

distinct group at the edge of PCA is not so obvious and could be related to the

consanguineous marriage practices and consequent genetic homogeneity of Mor-

mons (Jorde, 2001). I chose the closest populations (English, French, Icelandic,

Norwegian, Orcadian and Scottish) to be the reference populations set for the

CEPH 1463 family.

3.2.3 SNP filtering for modern data

Because of post-mortem decay of aDNA, the analysis of ancient samples is usu-

ally restricted to transversion sites only (Skoglund et al., 2014). The modern
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data (down-sampled to resemble the features of ancient DNA) was used as a

model to investigate the performance of software estimating kinship coefficient.

Therefore, after SNP calling, all the transition sites were removed from modern

data as well (Section 2.2.4.1). However, I did not remove the transition sites

from the data for 0.1X coverage, because the reduction in SNP numbers made

the calculations in the subsequent steps impossible. Table 3.9 shows the num-

ber of remaining SNPs for each coverage after filtering.

Table 3.9: Remaining SNPs after transition filtering for modern data

Sample ID 1X 2X 10X 50X
NA12877 68,137 93,836 110,078 110,097
NA12883 68,228 93,999 110,083 110,098
NA12885 68,888 94,397 110,083 110,100
NA12889 67,214 93,148 110,078 110,100
NA12890 69,103 94,788 110,079 110,097

For consistency with the ancient pipeline, all the SNP filtering steps in Section

2.2.4 was also applied to all coverages of the modern data. Genotype frequency

was calculated, then all the SNPs that were missing in more than half of the

samples (>50%) were excluded from analysis. The result of missingness filtering

is reported in Table 3.10.

Table 3.10: Remaining SNPs after missingness filtering for modern data

Sample 0.1X 1X 2X 10X 50X
NA12877 55,059 57,505 92,744 110,077 110,094
NA12883 55,112 57,706 92,898 110,083 110,094
NA12885 55,858 58,026 93,240 110,083 110,094
NA12889 53,591 56,836 92,064 110,076 110,094
NA12890 56,138 58,164 93,607 110,078 110,094

The next step was LD SNP pruning according to the pipeline described in Sec-

tion 2.2.4.3. If the calculated pairwise LD in the reference population set was

greater than 0.4, one of the SNPs were removed from both of the reference and

study data (details in Table 3.11).

The last step was filtering SNPs according to their MAF values. The allele fre-
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quencies were calculated in the reference population set and one of the alleles at

each position was determined as minor allele. The SNPs with minor allele fre-

quency (MAF) of 0.1 and lower were excluded from the analysis. The remaining

SNPs is shown in Table 3.12.

Table 3.11: Remaining SNPs after LD filtering for modern data

Sample 0.1X 1X 2X 10X 50X
NA12877 22,104 31,957 47,934 56,615 56,625
NA12883 22,111 32,088 48,010 56,618 56,625
NA12885 22,595 32,236 48,121 56,618 56,625
NA12889 21,549 31,539 47,488 56,613 56,625
NA12890 22,726 32,442 48,420 56,616 56,625

Table 3.12: Remaining SNPs after MAF filtering for modern data

Sample 0.1X 1X 2X 10X 50X
NA12877 15,291 22,961 34,353 40,678 40,685
NA12883 15,380 23,149 34,482 40,678 40,685
NA12885 15,552 23,157 34,479 40,678 40,685
NA12889 14,971 22,729 34,057 40,678 40,685
NA12890 15,718 23,338 34,697 40,678 40,685

3.2.4 Relatedness estimation for modern pedigree data

The relatedness calculations were carried out with the SNPs that remained after

the filtering process (Section 2.5). One of the alleles were selected randomly

for each individual to simulate ancient DNA. After comparison with the minor

allele in the reference populations set, the alleles were coded as 2 if they had the

same genotype as minor allele or 0 when they were carrying the major allele.

The SNPs that were missing or carrying other genotypes were excluded from the

data. The pairwise kinship coefficient was calculated with the equation (2.4) in

Section 2.5 in R environment.

I also used PLINK and KING software for relatedness calculations in another

set of processed modern data. In addition to down-sampling of coverages, the

SNP numbers were reduced randomly to observe the effect of low coverage and
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SNP number on accuracy of relatedness estimations. After transition removal,

the SNP numbers were randomly reduced to 100K, 50K, 25K, 10K, 5K and 1K

for all the coverages except for 0.1X. After the SNP calling and transition re-

moval, a total of 45,440 SNPs remained for modern samples of 0.1X coverage.

Therefore, its SNP number was randomly decreased to 40K, 30K, 20K, 10K, 5K

and 1K.

The Figures 3.6–3.10 show all the plots for kinship estimation of CEPH fam-

ily 1463 by three methods: our approach, PLINK and KING. The PLINK soft-

ware could not infer relatedness accurately in any of the five coverages. Our

approach and KING were able to estimate kinship degrees for 50X and 10X

coverages within the expected range. The 50X coverage data was the origi-

nal version of CEPH family 1463 data. As the Figure 3.6 shows both our

approach and KING software could correctly estimate the kinship relations be-

tween first-degree, second-degree and unrelated members of the CEPH family.

In our approach, first-degree pairs are correctly inferred and their 95% CI is

within the expected range of (0.204-0.296) for 1st degree relatives.

There is a slight overestimation in the measured kinship coefficient of NA12883-

NA12889 (second-degree) pair with our approach. The other three 2nd degree

pairs’ estimated kinship coefficients are in the expected range although some

of the 95% CIs are noisy: overestimated for the NA12885-NA12889 pair and

underestimated for the NA12883-NA12890 pair. The NA12889-NA12890 pair

was correctly assigned as unrelated.

KING software could also infer kinship degrees of 50X coverage data correctly.

However, as the SNP numbers is reduced randomly for each pair (lighter colors),

the estimated Θ’s get distorted for 2nd degree and unrelated pairs (Figure 3.6).

Even with the original 50X data, PLINK overestimated kinship degrees to such

an extent that unrelated individuals were inferred as first degree relatives.

The results for 10X coverage data (Figure 3.7) were similar to that of 50X cov-

erage, our approach and KING could determine kinship degrees properly while

PLINK’s results were highly overestimated.

The PLINK program estimations became more inconsistent as the coverage of

the data declined. Interestingly, for 2X (Figure 3.8) and 1X (Figure 3.9)

coverages KING underestimated all the kinship degrees, while our approach and
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PLINK overestimated the results. KING Kinship values estimated by KING at

2X coverage were negative. Across all methods, the estimations for 2X, 1X and

0.1X (Figure 3.10) coverages were not accurate, which was surprising. In a

typical 2X coverage genomic data, there has to be enough information for ac-

curate relatedness calculations. In the ancient samples, I was able to measure

kinship degrees by using individuals that had much lower coverages.

For both our approach and KING, the accuracy of first-degree estimations was

higher than that of second-degree relatives.
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Figure 3.6: Kinship coefficient (Θ) estimation for 50X coverage data. Kinship
estimation using three different methods: (A) our approach, (B) PLINk and
(C) KING. Dashed lines illustrate the theoretical Θ value for 1st, 2nd, 3rd
degree and unrelated individuals. The gray shaded areas are the 95% CI for Θ

(Table 2.5).The x-axis for (A) is the 10 possible pairwise comparisons for the
five member of CEPH family, for (B) and (C) is the probability of IBD=0. (B)
and (C) the red circles shows the 1st degree relatives, green triangles show 2nd
degree and the blue rectangles represents the unrelated individuals. As the SNP
number decreases the color intensity of the dots decrease as well.

52



Figure 3.7: Kinship coefficient (Θ) estimation for 10X coverage data. Kinship
estimation using three different methods: (A) our approach, (B) PLINk and
(C) KING. Dashed lines illustrate the theoretical Θ value for 1st, 2nd, 3rd
degree and unrelated individuals. The gray shaded areas are the 95% CI for Θ

(Table 2.5).The x-axis for (A) is the 10 possible pairwise comparisons for the
five member of CEPH family, for (B) and (C) is the probability of IBD=0. (B)
and (C) the red circles shows the 1st degree relatives, green triangles show 2nd
degree and the blue rectangles represents the unrelated individuals. As the SNP
number decreases the color intensity of the dots decrease as well.
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Figure 3.8: Kinship coefficient (Θ) estimation for 2X coverage data. Kinship
estimation using three different methods: (A) our approach, (B) PLINk and
(C) KING. Dashed lines illustrate the theoretical Θ value for 1st, 2nd, 3rd
degree and unrelated individuals. The gray shaded areas are the 95% CI for Θ

(Table 2.5).The x-axis for (A) is the 10 possible pairwise comparisons for the
five member of CEPH family, for (B) and (C) is the probability of IBD=0. (B)
and (C) the red circles shows the 1st degree relatives, green triangles show 2nd
degree and the blue rectangles represents the unrelated individuals. As the SNP
number decreases the color intensity of the dots decrease as well.
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Figure 3.9: Kinship coefficient (Θ) estimation for 1X coverage data. Kinship
estimation using three different methods: (A) our approach, (B) PLINk and
(C) KING. Dashed lines illustrate the theoretical Θ value for 1st, 2nd, 3rd
degree and unrelated individuals. The gray shaded areas are the 95% CI for Θ

(Table 2.5).The x-axis for (A) is the 10 possible pairwise comparisons for the
five member of CEPH family, for (B) and (C) is the probability of IBD=0. (B)
and (C) the red circles shows the 1st degree relatives, green triangles show 2nd
degree and the blue rectangles represents the unrelated individuals. As the SNP
number decreases the color intensity of the dots decrease as well.
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Figure 3.10: Kinship coefficient (Θ) estimation for 0.1X coverage data. Kinship
estimation using three different methods: (A) our approach, (B) PLINk and
(C) KING. Dashed lines illustrate the theoretical Θ value for 1st, 2nd, 3rd
degree and unrelated individuals. The gray shaded areas are the 95% CI for Θ

(Table 2.5).The x-axis for (A) is the 10 possible pairwise comparisons for the
five member of CEPH family, for (B) and (C) is the probability of IBD=0. (B)
and (C) the red circles shows the 1st degree relatives, green triangles show 2nd
degree and the blue rectangles represents the unrelated individuals. As the SNP
number decreases the color intensity of the dots decrease as well.
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3.2.5 Statistical analysis of kinship estimation method performance

using modern-day genomic data with a known pedigree

We tested the performance of our approach based on kinship estimations on a

real-life family genomic data with a known pedigree. The family consisted of

five first-degree related pairs, four second-degree pairs and one pair of unrelated

individuals. For the statistical measures, I only used the 50X (original) and 10X

(down-sampled) data (seeAppendix D, E). The rest of the down-sampled data

(2X, 1X and 0.1X) showed high overestimation in inferred kinship degrees and

therefore they were not used in this analysis.

For each coverage a total of 60,000 pairwise comparisons were examined. The

results are summarized in Figure 3.11 and 3.12 for 50X coverage and 10X

coverage data, respectively. Both 50X and 10X coverage data show similar

outcomes. We can accurately infer kinship for first-degree pairs, while for the

second-degree the rates of IR and UN increases to around 17% and 25% re-

spectively. It became obvious that 1000 SNPs (with MAF > 0.1) are too few

to make a reliable estimation about the kinship relations of individuals in this

setting. In both datasets the rate of undecided (UN) pairs increase substantially

for second-degree pairs across all six different SNP number sets. Therefore, we

should develop a strategy to assign some of these pairs, that are mostly in the

area between the expected range of first-degree and second-degree ( 0.158 < Θ

< 0.204) to their correct kinship degree.
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Figure 3.11: Error rates for 50X modren data. Plots demonstrate error rates for
different SNP numbers. The x-axis shows the five different statistical measures,
true positive (TP), false positive (FP), false negative (FN), incorrectly related
(IR) and undecided (UN). Pairs assigned to the wrong relatedness degree “incor-
rectly related”, the pairs in between expected relatedness degrees “undecided”.
(A) For first-degree relatives only and (B) second-degree relatives only.
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Figure 3.12: Error rates for 10X modern data. Plots demonstrate error rates for
different SNP numbers. The x-axis shows the five different statistical measures,
true positive (TP), false positive (FP), false negative (FN), incorrectly related
(IR) and undecided (UN). Pairs assigned to the wrong relatedness degree “incor-
rectly related”, the pairs in between expected relatedness degrees “undecided”.
(A) For first-degree relatives only and (B) second-degree relatives only.
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CHAPTER 4

DISCUSSION

Relatedness and the degree by which people are related to each other is a fun-

damental concept for various disciplines such as forensics, medical genetics and

conservation programs. Thus, numerous distinct methods and software had been

developed to answer these questions. Generally these methods were developed

to infer relatedness in high-throughput sequencing data with the assumption

of homogenous population structure. One example of these methods, is the

ERSA 2.0 developed by Li et al. (2014) that could detect kinships up to 11th

degree using perfect (diploid data that without errors) whole-genome sequence

data. Others like Manichaikul et al. (2010) and Thornton et al. (2012) have

developed methods for relationship estimations in structured and admixed pop-

ulations. Most recently, the focus is on the kinship coefficient estimators that

use low coverage (as low as 2X) data (Korneliussen & Moltke, 2015; Lipatov et

al., 2015).

However, low coverage is not the only problem facing the ancient DNA stud-

ies. Ancient DNA is usually in trace amounts and degraded, for this reason

special experimental and computational techniques are required for its analysis

(Skoglund et al., 2014).

Estimation of kinship degrees among ancient individuals could shed light on

culture and social structure of prehistoric human societies. For a long time, ar-

chaeologists and anthropologists have attempted to answer this question using

indirect methods. I propose a new approach to estimate kinship patterns in low

coverage ancient data.

For this study, I used one of the kinship coefficient estimation methods suggested
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by Speed and Balding (2014), based on genetic similarity matrix calculation that

is centered and scaled for population minor allele frequency, and tested it on an-

cient samples. To achieve this, I used a series of methods and SNP filtering

processes to select the lowest possible informative set of SNPs to be used in

kinship coefficient estimations.

I applied our approach to both a simulated pedigree created using ancient

genome data (Mathieson et al., 2015) and a modern genome dataset with known

relationship (Eberle et al., 2017), to test its performance. In the first case, eight

ancient individuals were used to simulate a four generation in-silico pedigree.

Simulations are beneficial for investigation of distinct real-life processes in a

controlled manner, however they cannot completely represent the real-life situa-

tions. Therefore, I used real ancient samples and only simulated the relationships

between them to preserve the authenticity of aDNA features. The modern data

with known relationships was used to test the performance of our approach on

empirical data that would have more realistic error structure. In addition, I

down-sampled the original data (50X coverage) to 10X, 2X, 1X and 0.1X to

make them mirror the low coverage nature of aDNA samples.

The overall performance of our approach, for both the ancient in-silico pedigree

and modern data was better compared to results obtained from published soft-

ware such as KING and PLINK. I could accurately infer third-degree relatives

in simulated ancient pedigree with as little as 5,000 overlapping SNPs. The

accuracy of the estimation dropped to 60% with the 1,000 SNP set, hence, its

results should be used with caution. For this SNP set, the IR rate increased to

26.4%, FP to 16.4% and UN to 14.7%. However the biggest problem was the

rise in FP rate, that made its usage unfeasible. In many settings, the cost of

classifying unrelated individuals as related may be much higher than assigning

related individuals incorrectly to the third degree relatives class. For this reason,

it is preferable to use higher number of SNPs to avoid false positives.

Considering the 50X and 10X coverages of modern data, our approach performed

better than KING and PLINK in kinship relation estimations. Even for the sec-

ond degree relatives, the FP or FN rate were zero. The decline in accuracy of

estimated second-degree pairs was due to the increase in undecided (UN) rate.

When the coverages of the samples were down-sampled to 2X and below, all
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three methods produced inaccurate results. Our approach and the PLINK soft-

ware overestimated the kinship coefficient values for all the pairwise comparisons

while KING underestimated them.

The most critical step of our approach is the selection of a reference popula-

tion set, which were modern populations that operated as surrogates for ancient

samples to estimate their population level features. The reference population

set was used in SNP filtering steps and in MAF calculations. The equation (2.4)

implemented for kinship coefficient estimation uses MAF to resolve the level of

background relatedness in the population. Moreover, it would give extra weight

for the rare shared alleles, as they are more informative. The choice of reference

population is critical for the estimation of kinship coefficient with our approach.

Selection of genetically distant populations compared to the test individuals as

the reference should result in overestimation of kinship degrees.

However, I do not think the observed overestimation in pairwise kinship coeffi-

cients was due to incorrect reference population selection, because the same set

of populations were also used for calculation of 50X and 10X data and in this

case we did not observe any bias. I used samtools for down-sampling process

that randomly extracts a fraction of the reads from original data. One possible

explanation to this observed pattern could be that samtools down-sampling pro-

cess was not random. I down-sampled the modern data to mimic limited ancient

data. However, the artificially down-sampled data could be different than the

low coverage ancient data possibly due to a bug in my code or the software.

4.1 Limitations and possible improvements

1. In the analysis of this study, I used haploidized ancient data. Because

ancient DNA data is usually at low coverage, it is common to randomly

haploidize all the heterozygous/diploid SNP calls, which I repeated here.

For allele frequency-based analysis (such as PCA and f -statistics), the

modern data is haploidized as well to make the data comparable. Many

population genetics analyses that require complete genotypes or haplo-

types cannot be used because of this loss in data content. For our method,
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this means that we would never have comparison pairs with IBD=1. There

are two possible approaches to overcome this problem. First, is to modify

these methods in a way to accommodate the uncertainties. Second, im-

putation could be used to improve the content of the data and increase

overlapping SNP numbers. Using genotype likelihoods (Korneliussen, Al-

brechtsen, & Nielsen, 2014) could be yet another alternative.

2. I used PCA analysis and modern samples to determine the reference popu-

lations which had the closest genetic affinity to the ancient samples. These

modern populations were used as a reference to predict the population level

allele frequencies of ancient samples. However the composition of human

populations changes overtime because of migration, drift and selection.

For example, the ancient hunter-gatherers’ genetic variation is different

than any modern population so that they form a separate cluster in PCA

analysis. Modern populations’ genetic variation might not always accu-

rately represent ancient samples’ genetic composition. With the increase

in aDNA studies and publications, it would be possible to use ancient pop-

ulations as the reference which improve the accuracy of the calculations.

3. In this study, I used a simple four-generation simulated pedigree for kin-

ship estimation calculations. However, the real-life scenarios are much

more complicated than my simulated pedigree. It would be better to con-

struct different, complex pedigrees with inbreeding to better assess the

performance of our approach in real-life situations.

4. The next step after using different simulated pedigrees for kinship calcula-

tions, would be to test our approach’s performance on the inferred related

ancient samples as reported by Mathieson et al. (2015).

5. Despite the efforts to improve our approach’s kinship estimations, there

is a limit to this progress due to the distinctive properties of aDNA. For

some cases, it might be difficult to accurately identify the incorrectly as-

signed relate pairs. Another factor contributing to this problem is that

the proportion of overlapping expected kinship coefficient values increase

for more distant relatives. As Monroy Kuhn et al. (2017) suggests, it
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might be useful to combine genetic data with radiocarbon dating of an-

cient samples and their uniparental markers such as mitochondrial and

Y-chromosome haplogroups to eliminate some of the possible inaccurate

relatedness patterns.

6. Likewise, the rate of undecided pairs increased in the second and third-

degree relatives which decreases the sensitivity of our estimations. It would

be essential to establish a plan to accurately incorporate these pairs into

their correct relatedness degree.

7. The observed overestimation of kinship values for down-sampled modern

data (2X, 1X and 0.1X coverages) should be investigated to identify the

underlying causes.

8. Also, the effect of MAF filtering should be examined in detail using differ-

ent cut offs.
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CHAPTER 5

CONCLUSION

Traditional methods for estimating kinship patterns are ineffective against de-

graded, low quality characteristics of aDNA. Identifying familial relations among

ancient individuals are essential to understand the complex social organization

of prehistoric civilizations.

To achieve this, I based the methodology of our approach on a SNP-based

measure of relatedness suggested by Speed and Balding (2014). I performed

additional SNP filtering steps to adjust it for features of aDNA. I tested the

performance of our approach on a four-generation in-silico pedigree simulated

from ancient samples and a modern three-generation family pedigree with vary-

ing genomic coverages. The primary findings of this study are:

• The overall performance of our approach is better than that of published

software KING and PLINK.

• By using 5,000 SNPs our approach could successfully detect the first-

degree, second-degree and third-degree relatives with accuracy of 99.8%,

97.2% and 92.2% respectively.

• For the empirical modern data, the accuracy of estimation is 99.2% for

first-degree pairs and around 70% for second-degree pairs.

Overall, the initial results demonstrated that our approach could successfully

infer the second-degree relatives in both the simulated and real data. The

second-degree relatives which are grandparent-grandchild and half-siblings, are
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sufficient to characterize members of a core family who shared the same burial

site. This knowledge could help us better understand the social dynamics of

ancient populations.

68



REFERENCES

Allentoft, M. E., Collins, M., Harker, D., Haile, J., Oskam, C. L., Hale,

M. L., . . . Bunce, M. (2012, dec). The half-life of DNA in bone:

measuring decay kinetics in 158 dated fossils. Proceedings of the

Royal Society B: Biological Sciences , 279 (1748), 4724–4733. Retrieved

from http://rspb.royalsocietypublishing.org/content/279/1748/

4724http://rspb.royalsocietypublishing.org/cgi/doi/10.1098/

rspb.2012.1745 doi: 10.1098/rspb.2012.1745

Andrews, S. (2010). FastQC A Quality Control tool for High Throughput

Sequence Data. Retrieved from https://www.bioinformatics.babraham

.ac.uk/projects/fastqc/

Ardlie, K. G., Kruglyak, L., & Seielstad, M. (2002, apr). Patterns of linkage

disequilibrium in the human genome. Nature Reviews Genetics , 3 (4),

299–309. Retrieved from http://www.nature.com/doifinder/10.1038/

nrg777 doi: 10.1038/nrg777

Auton, A., Abecasis, G. R., Altshuler, D. M., Durbin, R. M., Abecasis,

G. R., Bentley, D. R., . . . Abecasis, G. R. (2015, sep). A global ref-

erence for human genetic variation. Nature, 526 (7571), 68–74. Retrieved

from http://www.nature.com/doifinder/10.1038/nature15393 doi:

10.1038/nature15393

Bar-Yosef, O. (2001). From sedentary foragers to village hier- archies: the

emergence of social institutions. Proceedings of the British Academy , 101 ,

1–38.

Behjati, S., & Tarpey, P. S. (2013, dec). What is next generation sequencing?

Archives of disease in childhood - Education & practice edition, 98 (6),

236–238. Retrieved from http://ep.bmj.com/lookup/doi/10.1136/

archdischild-2013-304340 doi: 10.1136/archdischild-2013-304340

Belfer-Cohen, A., & Goring-Morris, A. N. (2011, oct). Becom-

ing Farmers: The Inside Story. Current anthropology , 52 (S4),

69

http://rspb.royalsocietypublishing.org/content/279/1748/4724http://rspb.royalsocietypublishing.org/cgi/doi/10.1098/rspb.2012.1745
http://rspb.royalsocietypublishing.org/content/279/1748/4724http://rspb.royalsocietypublishing.org/cgi/doi/10.1098/rspb.2012.1745
http://rspb.royalsocietypublishing.org/content/279/1748/4724http://rspb.royalsocietypublishing.org/cgi/doi/10.1098/rspb.2012.1745
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.nature.com/doifinder/10.1038/nrg777
http://www.nature.com/doifinder/10.1038/nrg777
http://www.nature.com/doifinder/10.1038/nature15393
http://ep.bmj.com/lookup/doi/10.1136/archdischild-2013-304340
http://ep.bmj.com/lookup/doi/10.1136/archdischild-2013-304340


S209–S220. Retrieved from http://www.jstor.org/stable/

10.1086/658861http://www.journals.uchicago.edu/doi/10.1086/

658861http://www.jstor.org/stable/10.1086/658861?ref=no

-x-route:7fb4e350474ebacfbd0172f47c9d236c{%}5Cnpapers://

d2952c50-9509-4ba2-9a03-22fbc04267d4/Paper/p33326 doi:

10.1086/658861

Bishop, R. (2008, jun). In the Grand Scheme of Things: An Exploration of the

Meaning of Genealogical Research. The Journal of Popular Culture, 41 (3),

393–412. Retrieved from http://doi.wiley.com/10.1111/j.1540-5931

.2008.00527.x doi: 10.1111/j.1540-5931.2008.00527.x

Briggs, A. W., Stenzel, U., Johnson, P. L. F., Green, R. E., Kelso, J.,

Prufer, K., . . . Paabo, S. (2007, sep). Patterns of damage in

genomic DNA sequences from a Neandertal. Proceedings of the

National Academy of Sciences , 104 (37), 14616–14621. Retrieved

from http://www.pubmedcentral.nih.gov/articlerender.fcgi

?artid=1976210{&}tool=pmcentrez{&}rendertype=abstracthttp://

www.pnas.org/cgi/doi/10.1073/pnas.0704665104 doi: 10.1073/

pnas.0704665104

Byrd, B. F. (2005, sep). Reassessing the Emergence of Village Life in the

Near East. Journal of Archaeological Research, 13 (3), 231–290. Retrieved

from http://link.springer.com/10.1007/s10814-005-3107-2 doi: 10

.1007/s10814-005-3107-2

Carpenter, M. L., Buenrostro, J. D., Valdiosera, C., Schroeder, H., Allentoft,

M. E., Sikora, M., . . . Bustamante, C. D. (2013, nov). Pulling out the

1%: Whole-Genome Capture for the Targeted Enrichment of Ancient DNA

Sequencing Libraries. The American Journal of Human Genetics , 93 (5),

852–864. Retrieved from http://linkinghub.elsevier.com/retrieve/

pii/S000292971300459X doi: 10.1016/j.ajhg.2013.10.002

Chistiakov, D. A., Hellemans, B., & Volckaert, F. A. (2006, may). Microsatellites

and their genomic distribution, evolution, function and applications: A

review with special reference to fish genetics. Aquaculture, 255 (1-4), 1–

29. Retrieved from http://linkinghub.elsevier.com/retrieve/pii/

S0044848605007313 doi: 10.1016/j.aquaculture.2005.11.031

70

http://www.jstor.org/stable/10.1086/658861http://www.journals.uchicago.edu/doi/10.1086/658861http://www.jstor.org/stable/10.1086/658861?ref=no-x-route:7fb4e350474ebacfbd0172f47c9d236c{%}5Cnpapers://d2952c50-9509-4ba2-9a03-22fbc04267d4/Paper/p33326
http://www.jstor.org/stable/10.1086/658861http://www.journals.uchicago.edu/doi/10.1086/658861http://www.jstor.org/stable/10.1086/658861?ref=no-x-route:7fb4e350474ebacfbd0172f47c9d236c{%}5Cnpapers://d2952c50-9509-4ba2-9a03-22fbc04267d4/Paper/p33326
http://www.jstor.org/stable/10.1086/658861http://www.journals.uchicago.edu/doi/10.1086/658861http://www.jstor.org/stable/10.1086/658861?ref=no-x-route:7fb4e350474ebacfbd0172f47c9d236c{%}5Cnpapers://d2952c50-9509-4ba2-9a03-22fbc04267d4/Paper/p33326
http://www.jstor.org/stable/10.1086/658861http://www.journals.uchicago.edu/doi/10.1086/658861http://www.jstor.org/stable/10.1086/658861?ref=no-x-route:7fb4e350474ebacfbd0172f47c9d236c{%}5Cnpapers://d2952c50-9509-4ba2-9a03-22fbc04267d4/Paper/p33326
http://www.jstor.org/stable/10.1086/658861http://www.journals.uchicago.edu/doi/10.1086/658861http://www.jstor.org/stable/10.1086/658861?ref=no-x-route:7fb4e350474ebacfbd0172f47c9d236c{%}5Cnpapers://d2952c50-9509-4ba2-9a03-22fbc04267d4/Paper/p33326
http://doi.wiley.com/10.1111/j.1540-5931.2008.00527.x
http://doi.wiley.com/10.1111/j.1540-5931.2008.00527.x
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1976210{&}tool=pmcentrez{&}rendertype=abstracthttp://www.pnas.org/cgi/doi/10.1073/pnas.0704665104
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1976210{&}tool=pmcentrez{&}rendertype=abstracthttp://www.pnas.org/cgi/doi/10.1073/pnas.0704665104
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1976210{&}tool=pmcentrez{&}rendertype=abstracthttp://www.pnas.org/cgi/doi/10.1073/pnas.0704665104
http://link.springer.com/10.1007/s10814-005-3107-2
http://linkinghub.elsevier.com/retrieve/pii/S000292971300459X
http://linkinghub.elsevier.com/retrieve/pii/S000292971300459X
http://linkinghub.elsevier.com/retrieve/pii/S0044848605007313
http://linkinghub.elsevier.com/retrieve/pii/S0044848605007313


Cockerham, C. C. (1971, oct). Higher order probability functions

of identity of allelles by descent. Genetics , 69 (2), 235–46. Re-

trieved from http://www.ncbi.nlm.nih.gov/pubmed/5135830http://

www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC1212700

doi: Article

Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E.,

DePristo, M. A., . . . Durbin, R. (2011, aug). The vari-

ant call format and VCFtools. Bioinformatics , 27 (15), 2156–

2158. Retrieved from https://academic.oup.com/bioinformatics/

article-lookup/doi/10.1093/bioinformatics/btr330 doi: 10.1093/

bioinformatics/btr330

Devlin, B., & Risch, N. (1995, sep). A Comparison of Linkage Dise-

quilibrium Measures for Fine-Scale Mapping. Genomics , 29 (2), 311–

322. Retrieved from http://linkinghub.elsevier.com/retrieve/pii/

S0888754385790039 doi: 10.1006/geno.1995.9003

Diamond, J., & Bellwood, P. (2003, apr). Farmers and their languages: the

first expansions. Science (New York, N.Y.), 300 (5619), 597–603. Re-

trieved from http://www.sciencemag.org/cgi/doi/10.1126/science

.1078208http://www.ncbi.nlm.nih.gov/pubmed/12714734 doi: 10

.1126/science.1078208

Dodds, K. G., McEwan, J. C., Brauning, R., Anderson, R. M., van Stijn, T. C.,

Kristjánsson, T., & Clarke, S. M. (2015, dec). Construction of relatedness

matrices using genotyping-by-sequencing data. BMC Genomics , 16 (1),

1047. Retrieved from http://biorxiv.org/content/early/2015/08/

24/025379.abstracthttp://www.biomedcentral.com/1471-2164/16/

1047 doi: 10.1186/s12864-015-2252-3

Eberle, M. A., Fritzilas, E., Krusche, P., Källberg, M., Moore, B. L., Bekritsky,

M. A., . . . Bentley, D. R. (2017). A reference data set of 5.4 million

phased human variants validated by genetic inheritance from sequencing a

three-generation 17-member pedigree. Genome Research, 27 (1), 157–164.

doi: 10.1101/gr.210500.116

Excoffier, L., Dupanloup, I., Huerta-Sánchez, E., Sousa, V. C., & Foll, M.

(2013, oct). Robust Demographic Inference from Genomic and SNP Data.

71

http://www.ncbi.nlm.nih.gov/pubmed/5135830http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC1212700
http://www.ncbi.nlm.nih.gov/pubmed/5135830http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC1212700
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btr330
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btr330
http://linkinghub.elsevier.com/retrieve/pii/S0888754385790039
http://linkinghub.elsevier.com/retrieve/pii/S0888754385790039
http://www.sciencemag.org/cgi/doi/10.1126/science.1078208http://www.ncbi.nlm.nih.gov/pubmed/12714734
http://www.sciencemag.org/cgi/doi/10.1126/science.1078208http://www.ncbi.nlm.nih.gov/pubmed/12714734
http://biorxiv.org/content/early/2015/08/24/025379.abstracthttp://www.biomedcentral.com/1471-2164/16/1047
http://biorxiv.org/content/early/2015/08/24/025379.abstracthttp://www.biomedcentral.com/1471-2164/16/1047
http://biorxiv.org/content/early/2015/08/24/025379.abstracthttp://www.biomedcentral.com/1471-2164/16/1047


PLoS Genetics , 9 (10), e1003905. Retrieved from http://dx.plos.org/

10.1371/journal.pgen.1003905 doi: 10.1371/journal.pgen.1003905

Fernández, M. E., Goszczynski, D. E., Lirón, J. P., Villegas-Castagnasso, E. E.,

Carino, M. H., Ripoli, M. V., . . . Giovambattista, G. (2013). Comparison

of the effectiveness of microsatellites and SNP panels for genetic iden-

tification, traceability and assessment of parentage in an inbred Angus

herd. Genetics and Molecular Biology , 36 (2), 185–191. Retrieved from

http://www.scielo.br/scielo.php?script=sci{_}arttext{&}pid=

S1415-47572013000200008{&}lng=en{&}tlng=en doi: 10.1590/

S1415-47572013000200008

Frazer, K. A., Ballinger, D. G., Cox, D. R., Hinds, D. A., Stuve, L. L., Gibbs,

R. A., . . . Stewart, J. (2007, oct). A second generation human haplotype

map of over 3.1 million SNPs. Nature, 449 (7164), 851–861. Retrieved

from http://www.nature.com/doifinder/10.1038/nature06258 doi:

10.1038/nature06258

Gillespie, J. H. (2004). Population genetics : a concise guide. Baltimore, Md.:

Johns Hopkins University Press.

Green, R. E., Krause, J., Briggs, A. W., Maricic, T., Stenzel, U., Kircher, M., . . .

Paabo, S. (2010, may). A Draft Sequence of the Neandertal Genome. Sci-

ence, 328 (5979), 710–722. Retrieved from http://www.sciencemag.org/

content/328/5979/710.abstracthttp://www.sciencemag.org/cgi/

doi/10.1126/science.1188021 doi: 10.1126/science.1188021

Günther, T., & Jakobsson, M. (2016, dec). Genes mirror migrations and cultures

in prehistoric Europe — a population genomic perspective. Current Opin-

ion in Genetics & Development , 41 , 115–123. Retrieved from http://

linkinghub.elsevier.com/retrieve/pii/S0959437X16301150 doi: 10

.1016/j.gde.2016.09.004

Haak, W., Lazaridis, I., Patterson, N., Rohland, N., Mallick, S., Llamas, B.,

. . . Reich, D. (2015, mar). Massive migration from the steppe was

a source for Indo-European languages in Europe. Nature, 522 (7555),

207–211. Retrieved from http://www.nature.com/doifinder/10.1038/

nature14317 doi: 10.1038/nature14317

Harris, D. L. (1964, dec). Genotypic Covariances between Inbred Relatives. Ge-

72

http://dx.plos.org/10.1371/journal.pgen.1003905
http://dx.plos.org/10.1371/journal.pgen.1003905
http://www.scielo.br/scielo.php?script=sci{_}arttext{&}pid=S1415-47572013000200008{&}lng=en{&}tlng=en
http://www.scielo.br/scielo.php?script=sci{_}arttext{&}pid=S1415-47572013000200008{&}lng=en{&}tlng=en
http://www.nature.com/doifinder/10.1038/nature06258
http://www.sciencemag.org/content/328/5979/710.abstracthttp://www.sciencemag.org/cgi/doi/10.1126/science.1188021
http://www.sciencemag.org/content/328/5979/710.abstracthttp://www.sciencemag.org/cgi/doi/10.1126/science.1188021
http://www.sciencemag.org/content/328/5979/710.abstracthttp://www.sciencemag.org/cgi/doi/10.1126/science.1188021
http://linkinghub.elsevier.com/retrieve/pii/S0959437X16301150
http://linkinghub.elsevier.com/retrieve/pii/S0959437X16301150
http://www.nature.com/doifinder/10.1038/nature14317
http://www.nature.com/doifinder/10.1038/nature14317


netics , 50 (5), 1319–48. Retrieved from http://www.ncbi.nlm.nih.gov/

pubmed/14239792http://www.pubmedcentral.nih.gov/articlerender

.fcgi?artid=PMC1210738

Heaton, M. P., Harhay, G. P., Bennett, G. L., Stone, R. T., Grosse, W. M.,

Casas, E., . . . Laegreid, W. W. (2002, may). Selection and use of

SNP markers for animal identification and paternity analysis in U.S. beef

cattle. Mammalian Genome, 13 (5), 272–281. Retrieved from http://

link.springer.com/10.1007/s00335-001-2146-3 doi: 10.1007/s00335

-001-2146-3

Hodder, I. (2007, sep). Çatalhöyük in the Context of the Middle

Eastern Neolithic. Annual Review of Anthropology , 36 (1), 105–120.

Retrieved from http://www.annualreviews.org/doi/10.1146/annurev

.anthro.36.081406.094308 doi: 10.1146/annurev.anthro.36.081406

.094308

Hofreiter, M., Serre, D., Poinar, H. N., Kuch, M., & Pääbo, S. (2001, may).

Ancient DNA. Nature Reviews Genetics , 2 (5), 353–359. Retrieved from

http://www.nature.com/nrg/journal/v2/n5/full/nrg0501{_}353a

.html{%}5Cnpapers://d2952c50-9509-4ba2-9a03-22fbc04267d4/

Paper/p30060http://www.nature.com/doifinder/10.1038/35072071

doi: 10.1038/35072071

Jorde, L. (2001, jul). Consanguinity and Prereproductive Mortality in the

Utah Mormon Population. Human Heredity , 52 (2), 61–65. Retrieved

from http://www.karger.com/?doi=10.1159/000053356 doi: 10.1159/

000053356

Korneliussen, T. S., Albrechtsen, A., & Nielsen, R. (2014, dec). ANGSD: Anal-

ysis of Next Generation Sequencing Data. BMC Bioinformatics , 15 (1),

356. Retrieved from http://bmcbioinformatics.biomedcentral.com/

articles/10.1186/s12859-014-0356-4 doi: 10.1186/s12859-014-0356

-4

Korneliussen, T. S., & Moltke, I. (2015, aug). NgsRelate: a software

tool for estimating pairwise relatedness from next-generation se-

quencing data. Bioinformatics , 31 (24), btv509. Retrieved from

https://academic.oup.com/bioinformatics/article-lookup/doi/

73

http://www.ncbi.nlm.nih.gov/pubmed/14239792http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC1210738
http://www.ncbi.nlm.nih.gov/pubmed/14239792http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC1210738
http://www.ncbi.nlm.nih.gov/pubmed/14239792http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC1210738
http://link.springer.com/10.1007/s00335-001-2146-3
http://link.springer.com/10.1007/s00335-001-2146-3
http://www.annualreviews.org/doi/10.1146/annurev.anthro.36.081406.094308
http://www.annualreviews.org/doi/10.1146/annurev.anthro.36.081406.094308
http://www.nature.com/nrg/journal/v2/n5/full/nrg0501{_}353a.html{%}5Cnpapers://d2952c50-9509-4ba2-9a03-22fbc04267d4/Paper/p30060http://www.nature.com/doifinder/10.1038/35072071
http://www.nature.com/nrg/journal/v2/n5/full/nrg0501{_}353a.html{%}5Cnpapers://d2952c50-9509-4ba2-9a03-22fbc04267d4/Paper/p30060http://www.nature.com/doifinder/10.1038/35072071
http://www.nature.com/nrg/journal/v2/n5/full/nrg0501{_}353a.html{%}5Cnpapers://d2952c50-9509-4ba2-9a03-22fbc04267d4/Paper/p30060http://www.nature.com/doifinder/10.1038/35072071
http://www.karger.com/?doi=10.1159/000053356
http://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-014-0356-4
http://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-014-0356-4
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btv509
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btv509


10.1093/bioinformatics/btv509 doi: 10.1093/bioinformatics/btv509

Kılınç, G. M., Omrak, A., Özer, F., Günther, T., Büyükkarakaya, A. M.,

Bıçakçı, E., . . . Götherström, A. (2016, oct). The Demographic Develop-

ment of the First Farmers in Anatolia. Current Biology , 26 (19), 2659–

2666. Retrieved from http://linkinghub.elsevier.com/retrieve/

pii/S0960982216308508 doi: 10.1016/j.cub.2016.07.057

Larsen, C. S. (1995, jan). Biological Changes in Human Populations

with Agriculture. Annual Review of Anthropology , 24 (1), 185–213.

Retrieved from http://anthro.annualreviews.org/cgi/doi/10.1146/

annurev.anthro.24.1.185 doi: 10.1146/annurev.anthro.24.1.185

Lazaridis, I., Nadel, D., Rollefson, G., Merrett, D. C., Rohland, N., Mallick,

S., . . . Reich, D. (2016, jul). Genomic insights into the origin of farm-

ing in the ancient Near East. Nature, 536 (7617), 419–424. Retrieved

from http://www.nature.com/doifinder/10.1038/nature19310 doi:

10.1038/nature19310

Lazaridis, I., Patterson, N., Mittnik, A., Renaud, G., Mallick, S., Kirsanow, K.,

. . . Krause, J. (2014, sep). Ancient human genomes suggest three ancestral

populations for present-day Europeans. Nature, 513 (7518), 409–13. Re-

trieved from http://biorxiv.org/content/early/2013/12/23/001552

.abstracthttp://www.ncbi.nlm.nih.gov/pubmed/25230663http://

www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4170574

doi: 10.1038/nature13673

Lewontin, R. C. (1964, jan). The Interaction of Selection and Linkage. I. Gen-

eral Considerations; Heterotic Models. Genetics , 49 (1), 49–67. Retrieved

from http://www.ncbi.nlm.nih.gov/pubmed/17248194http://www

.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC1210557

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer,

N., . . . Durbin, R. (2009, aug). The Sequence Align-

ment/Map format and SAMtools. Bioinformatics , 25 (16), 2078–

2079. Retrieved from https://academic.oup.com/bioinformatics/

article-lookup/doi/10.1093/bioinformatics/btp352 doi: 10.1093/

bioinformatics/btp352

Li, H., & Homer, N. (2010, sep). A survey of sequence alignment algorithms for

74

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btv509
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btv509
http://linkinghub.elsevier.com/retrieve/pii/S0960982216308508
http://linkinghub.elsevier.com/retrieve/pii/S0960982216308508
http://anthro.annualreviews.org/cgi/doi/10.1146/annurev.anthro.24.1.185
http://anthro.annualreviews.org/cgi/doi/10.1146/annurev.anthro.24.1.185
http://www.nature.com/doifinder/10.1038/nature19310
http://biorxiv.org/content/early/2013/12/23/001552.abstracthttp://www.ncbi.nlm.nih.gov/pubmed/25230663http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4170574
http://biorxiv.org/content/early/2013/12/23/001552.abstracthttp://www.ncbi.nlm.nih.gov/pubmed/25230663http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4170574
http://biorxiv.org/content/early/2013/12/23/001552.abstracthttp://www.ncbi.nlm.nih.gov/pubmed/25230663http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4170574
http://www.ncbi.nlm.nih.gov/pubmed/17248194http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC1210557
http://www.ncbi.nlm.nih.gov/pubmed/17248194http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC1210557
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btp352
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btp352


next-generation sequencing. Briefings in Bioinformatics , 11 (5), 473–483.

Retrieved from https://academic.oup.com/bib/article-lookup/doi/

10.1093/bib/bbq015 doi: 10.1093/bib/bbq015

Lipatov, M., Sanjeev, K., Patro, R., & Veeramah, K. (2015). Maximum

Likelihood Estimation of Biological Relatedness from Low Coverage Se-

quencing Data. bioRxiv , 023374. Retrieved from http://biorxiv.org/

content/early/2015/07/29/023374.abstract doi: https://doi.org/

10.1101/023374

Liu, Q., Guo, Y., Li, J., Long, J., Zhang, B., & Shyr, Y. (2012).

Steps to ensure accuracy in genotype and SNP calling from

Illumina sequencing data. BMC genomics , 13 (8), S8. Re-

trieved from http://www.biomedcentral.com/1471-2164/13/S8/

S8http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=

3535703{&}tool=pmcentrez{&}rendertype=abstracthttp://www.ncbi

.nlm.nih.gov/pubmed/23281772http://www.pubmedcentral.nih.gov/

articlerender.fcgi?artid=PMC3 doi: 10.1186/1471-2164-13-S8-S8

Manichaikul, A., Mychaleckyj, J. C., Rich, S. S., Daly, K., Sale, M.,

& Chen, W.-M. (2010, nov). Robust relationship inference

in genome-wide association studies. Bioinformatics , 26 (22), 2867–

2873. Retrieved from https://academic.oup.com/bioinformatics/

article-lookup/doi/10.1093/bioinformatics/btq559 doi: 10.1093/

bioinformatics/btq559

Mathieson, I., Lazaridis, I., Rohland, N., Mallick, S., Patterson, N., Rood-

enberg, S. A., . . . Reich, D. (2015, nov). Genome-wide pat-

terns of selection in 230 ancient Eurasians. Nature, 528 (7583), 499–

503. Retrieved from http://dx.doi.org/10.1038/nature16152http://

www.nature.com/doifinder/10.1038/nature16152 doi: 10.1038/

nature16152

Mathieson, I., & McVean, G. (2014, aug). Demography and the Age of Rare

Variants. PLoS Genetics , 10 (8), e1004528. Retrieved from http://dx

.plos.org/10.1371/journal.pgen.1004528 doi: 10.1371/journal.pgen

.1004528

Monroy Kuhn, J. M., Jakobsson, M., & Günther, T. (2017). Estimating ge-

75

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbq015
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbq015
http://biorxiv.org/content/early/2015/07/29/023374.abstract
http://biorxiv.org/content/early/2015/07/29/023374.abstract
http://www.biomedcentral.com/1471-2164/13/S8/S8http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3535703{&}tool=pmcentrez{&}rendertype=abstracthttp://www.ncbi.nlm.nih.gov/pubmed/23281772http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3
http://www.biomedcentral.com/1471-2164/13/S8/S8http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3535703{&}tool=pmcentrez{&}rendertype=abstracthttp://www.ncbi.nlm.nih.gov/pubmed/23281772http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3
http://www.biomedcentral.com/1471-2164/13/S8/S8http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3535703{&}tool=pmcentrez{&}rendertype=abstracthttp://www.ncbi.nlm.nih.gov/pubmed/23281772http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3
http://www.biomedcentral.com/1471-2164/13/S8/S8http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3535703{&}tool=pmcentrez{&}rendertype=abstracthttp://www.ncbi.nlm.nih.gov/pubmed/23281772http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3
http://www.biomedcentral.com/1471-2164/13/S8/S8http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3535703{&}tool=pmcentrez{&}rendertype=abstracthttp://www.ncbi.nlm.nih.gov/pubmed/23281772http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btq559
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btq559
http://dx.doi.org/10.1038/nature16152http://www.nature.com/doifinder/10.1038/nature16152
http://dx.doi.org/10.1038/nature16152http://www.nature.com/doifinder/10.1038/nature16152
http://dx.plos.org/10.1371/journal.pgen.1004528
http://dx.plos.org/10.1371/journal.pgen.1004528


netic kin relationships in prehistoric populations. bioRxiv . Retrieved from

http://www.biorxiv.org/content/early/2017/06/23/100297

Nielsen, R., Paul, J. S., Albrechtsen, A., & Song, Y. S. (2011, jun). Geno-

type and SNP calling from next-generation sequencing data. Nature Re-

views Genetics , 12 (6), 443–451. Retrieved from http://www.nature.com/

doifinder/10.1038/nrg2986 doi: 10.1038/nrg2986

Omrak, A., Günther, T., Valdiosera, C., Svensson, E. M., Malmström, H.,

Kiesewetter, H., . . . Götherström, A. (2016, jan). Genomic Evidence Es-

tablishes Anatolia as the Source of the European Neolithic Gene Pool.

Current Biology , 26 (2), 270–275. Retrieved from http://linkinghub

.elsevier.com/retrieve/pii/S096098221501516X doi: 10.1016/j.cub

.2015.12.019

Patterson, N., Moorjani, P., Luo, Y., Mallick, S., Rohland, N., Zhan, Y., . . .

Reich, D. (2012). Ancient admixture in human history. Genetics , 192 (3),

1065–1093. doi: 10.1534/genetics.112.145037

Patterson, N., Price, A. L., & Reich, D. (2006, dec). Population Struc-

ture and Eigenanalysis. PLoS Genetics , 2 (12), e190. Retrieved

from http://www.ncbi.nlm.nih.gov/pubmed/17194218http://

www.pubmedcentral.nih.gov/articlerender.fcgi?artid=

PMC1713260http://dx.plos.org/10.1371/journal.pgen.0020190

doi: 10.1371/journal.pgen.0020190

Pearson, J., Grove, M., Özbek, M., & Hongo, H. (2013, jun). Food

and social complexity at Çayönü Tepesi, southeastern Anato-

lia: Stable isotope evidence of differentiation in diet accord-

ing to burial practice and sex in the early Neolithic. Jour-

nal of Anthropological Archaeology , 32 (2), 180–189. Retrieved

from http://dx.doi.org/10.1016/j.jaa.2013.01.002http://

linkinghub.elsevier.com/retrieve/pii/S0278416513000044 doi:

10.1016/j.jaa.2013.01.002

Pemberton, J. (2008, mar). Wild pedigrees: the way forward. Proceed-

ings of the Royal Society B: Biological Sciences , 275 (1635), 613–621.

Retrieved from http://rspb.royalsocietypublishing.org/cgi/doi/

10.1098/rspb.2007.1531 doi: 10.1098/rspb.2007.1531

76

http://www.biorxiv.org/content/early/2017/06/23/100297
http://www.nature.com/doifinder/10.1038/nrg2986
http://www.nature.com/doifinder/10.1038/nrg2986
http://linkinghub.elsevier.com/retrieve/pii/S096098221501516X
http://linkinghub.elsevier.com/retrieve/pii/S096098221501516X
http://www.ncbi.nlm.nih.gov/pubmed/17194218http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC1713260http://dx.plos.org/10.1371/journal.pgen.0020190
http://www.ncbi.nlm.nih.gov/pubmed/17194218http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC1713260http://dx.plos.org/10.1371/journal.pgen.0020190
http://www.ncbi.nlm.nih.gov/pubmed/17194218http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC1713260http://dx.plos.org/10.1371/journal.pgen.0020190
http://dx.doi.org/10.1016/j.jaa.2013.01.002http://linkinghub.elsevier.com/retrieve/pii/S0278416513000044
http://dx.doi.org/10.1016/j.jaa.2013.01.002http://linkinghub.elsevier.com/retrieve/pii/S0278416513000044
http://rspb.royalsocietypublishing.org/cgi/doi/10.1098/rspb.2007.1531
http://rspb.royalsocietypublishing.org/cgi/doi/10.1098/rspb.2007.1531


Phillips, C., Fang, R., Ballard, D., Fondevila, M., Harrison, C., Hyland, F.,

. . . Schneider, P. (2007, jun). Evaluation of the Genplex SNP typing

system and a 49plex forensic marker panel. Forensic Science International:

Genetics , 1 (2), 180–185. Retrieved from http://linkinghub.elsevier

.com/retrieve/pii/S1872497307000610 doi: 10.1016/j.fsigen.2007.02

.007

Pickrell, J. K., & Pritchard, J. K. (2012, nov). Inference of Population Splits

and Mixtures from Genome-Wide Allele Frequency Data. PLoS Genetics ,

8 (11), e1002967. Retrieved from http://dx.plos.org/10.1371/journal

.pgen.1002967 doi: 10.1371/journal.pgen.1002967

Pilloud, M. A., & Larsen, C. S. (2011, aug). “Official” and “practical” kin: Infer-

ring social and community structure from dental phenotype at Neolithic

Çatalhöyük, Turkey. American Journal of Physical Anthropology , 145 (4),

519–530. Retrieved from http://doi.wiley.com/10.1002/ajpa.21520

doi: 10.1002/ajpa.21520

Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R.,

Bender, D., . . . Sham, P. C. (2007, sep). PLINK: a tool

set for whole-genome association and population-based linkage

analyses. American journal of human genetics , 81 (3), 559–75.

Retrieved from http://linkinghub.elsevier.com/retrieve/

pii/S0002929707613524http://www.ncbi.nlm.nih.gov/pubmed/

17701901http://www.pubmedcentral.nih.gov/articlerender.fcgi

?artid=PMC1950838 doi: 10.1086/519795

Ramel, C. (1997, jun). Mini- and Microsatellites. Environmental Health Per-

spectives , 105 (SUPPL. 4), 781. Retrieved from http://www.jstor.org/

stable/3433284?origin=crossref doi: 10.2307/3433284

Ringnér, M. (2008, mar). What is principal component analy-

sis? Nature biotechnology , 26 (3), 303–4. Retrieved from

http://www.nature.com/doifinder/10.1038/nbt0308-303http://

www.ncbi.nlm.nih.gov/pubmed/18327243 doi: 10.1038/nbt0308-303

Rohrer, G. A., Freking, B. A., & Nonneman, D. (2007, jun). Single nucleotide

polymorphisms for pig identification and parentage exclusion. Animal Ge-

netics , 38 (3), 253–258. Retrieved from http://doi.wiley.com/10.1111/

77

http://linkinghub.elsevier.com/retrieve/pii/S1872497307000610
http://linkinghub.elsevier.com/retrieve/pii/S1872497307000610
http://dx.plos.org/10.1371/journal.pgen.1002967
http://dx.plos.org/10.1371/journal.pgen.1002967
http://doi.wiley.com/10.1002/ajpa.21520
http://linkinghub.elsevier.com/retrieve/pii/S0002929707613524http://www.ncbi.nlm.nih.gov/pubmed/17701901http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC1950838
http://linkinghub.elsevier.com/retrieve/pii/S0002929707613524http://www.ncbi.nlm.nih.gov/pubmed/17701901http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC1950838
http://linkinghub.elsevier.com/retrieve/pii/S0002929707613524http://www.ncbi.nlm.nih.gov/pubmed/17701901http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC1950838
http://linkinghub.elsevier.com/retrieve/pii/S0002929707613524http://www.ncbi.nlm.nih.gov/pubmed/17701901http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC1950838
http://www.jstor.org/stable/3433284?origin=crossref
http://www.jstor.org/stable/3433284?origin=crossref
http://www.nature.com/doifinder/10.1038/nbt0308-303http://www.ncbi.nlm.nih.gov/pubmed/18327243
http://www.nature.com/doifinder/10.1038/nbt0308-303http://www.ncbi.nlm.nih.gov/pubmed/18327243
http://doi.wiley.com/10.1111/j.1365-2052.2007.01593.x
http://doi.wiley.com/10.1111/j.1365-2052.2007.01593.x


j.1365-2052.2007.01593.x doi: 10.1111/j.1365-2052.2007.01593.x

Seitz, A., & Nieselt, K. (2017, apr). Improving ancient DNA genome assem-

bly. PeerJ , 5 , e3126. Retrieved from https://doi.org/10.7287/peerj

.preprints.2383v1https://peerj.com/articles/3126 doi: 10.7717/

peerj.3126

Shapiro, B., & Hofreiter, M. (2014, jan). A Paleogenomic Per-

spective on Evolution and Gene Function: New Insights from

Ancient DNA. Science, 343 (6169), 1236573–1236573. Re-

trieved from http://www.ncbi.nlm.nih.gov/pubmed/24458647http://

www.sciencemag.org/cgi/doi/10.1126/science.1236573 doi: 10

.1126/science.1236573

Skoglund, P., Malmstrom, H., Raghavan, M., Stora, J., Hall, P., Willerslev,

E., . . . Jakobsson, M. (2012, apr). Origins and Genetic Legacy of Ne-

olithic Farmers and Hunter-Gatherers in Europe. Science, 336 (6080), 466–

469. Retrieved from http://www.sciencemag.org/cgi/doi/10.1126/

science.1216304 doi: 10.1126/science.1216304

Skoglund, P., Northoff, B. H., Shunkov, M. V., Derevianko, A. P., Pääbo,

S., Krause, J., & Jakobsson, M. (2014, feb). Separating endogenous

ancient DNA from modern day contamination in a Siberian Nean-

dertal. Proceedings of the National Academy of Sciences , 111 (6),

2229–2234. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/

24469802http://www.pubmedcentral.nih.gov/articlerender.fcgi

?artid=PMC3926038http://www.pnas.org/lookup/doi/10.1073/

pnas.1318934111 doi: 10.1073/pnas.1318934111

Slatkin, M. (2008, jun). Linkage disequilibrium — understanding the evolution-

ary past and mapping the medical future. Nature Reviews Genetics , 9 (6),

477–485. Retrieved from http://www.nature.com/doifinder/10.1038/

nrg2361 doi: 10.1038/nrg2361

Speed, D., & Balding, D. J. (2014, nov). Relatedness in the post-genomic

era: is it still useful? Nature Reviews Genetics , 16 (1), 33–44. Re-

trieved from http://dx.doi.org/10.1038/nrg3821http://www.nature

.com/doifinder/10.1038/nrg3821 doi: 10.1038/nrg3821

Speed, D., Hemani, G., Johnson, M. R., & Balding, D. J. (2012, dec).

78

http://doi.wiley.com/10.1111/j.1365-2052.2007.01593.x
http://doi.wiley.com/10.1111/j.1365-2052.2007.01593.x
https://doi.org/10.7287/peerj.preprints.2383v1https://peerj.com/articles/3126
https://doi.org/10.7287/peerj.preprints.2383v1https://peerj.com/articles/3126
http://www.ncbi.nlm.nih.gov/pubmed/24458647http://www.sciencemag.org/cgi/doi/10.1126/science.1236573
http://www.ncbi.nlm.nih.gov/pubmed/24458647http://www.sciencemag.org/cgi/doi/10.1126/science.1236573
http://www.sciencemag.org/cgi/doi/10.1126/science.1216304
http://www.sciencemag.org/cgi/doi/10.1126/science.1216304
http://www.ncbi.nlm.nih.gov/pubmed/24469802http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3926038http://www.pnas.org/lookup/doi/10.1073/pnas.1318934111
http://www.ncbi.nlm.nih.gov/pubmed/24469802http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3926038http://www.pnas.org/lookup/doi/10.1073/pnas.1318934111
http://www.ncbi.nlm.nih.gov/pubmed/24469802http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3926038http://www.pnas.org/lookup/doi/10.1073/pnas.1318934111
http://www.ncbi.nlm.nih.gov/pubmed/24469802http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3926038http://www.pnas.org/lookup/doi/10.1073/pnas.1318934111
http://www.nature.com/doifinder/10.1038/nrg2361
http://www.nature.com/doifinder/10.1038/nrg2361
http://dx.doi.org/10.1038/nrg3821http://www.nature.com/doifinder/10.1038/nrg3821
http://dx.doi.org/10.1038/nrg3821http://www.nature.com/doifinder/10.1038/nrg3821


Improved Heritability Estimation from Genome-wide SNPs. The

American Journal of Human Genetics , 91 (6), 1011–1021. Retrieved

from http://dx.doi.org/10.1016/j.ajhg.2012.10.010http://

linkinghub.elsevier.com/retrieve/pii/S0002929712005332 doi:

10.1016/j.ajhg.2012.10.010

Stoneking, M., & Krause, J. (2011, aug). Learning about human population

history from ancient and modern genomes. Nature Reviews Genet-

ics , 12 (9), 603–614. Retrieved from http://www.nature.com/nrg/

journal/v12/n9/full/nrg3029.html{%}5Cnhttp://www.nature.com/

nrg/journal/v12/n9/pdf/nrg3029.pdfhttp://www.nature.com/

doifinder/10.1038/nrg3029 doi: 10.1038/nrg3029

Theunert, C., Racimo, F., & Slatkin, M. (2017). Joint Estimation of Relat-

edness Coefficients and Allele Frequencies from Ancient Samples. Genet-

ics , 206 (2). Retrieved from http://www.genetics.org/content/206/2/

1025.article-info

Tokarska, M., Marshall, T., Kowalczyk, R., Wójcik, J. M., Pertoldi, C., Kris-

tensen, T. N., . . . Bendixen, C. (2009, oct). Effectiveness of microsatellite

and SNP markers for parentage and identity analysis in species with low ge-

netic diversity: the case of European bison. Heredity , 103 (4), 326–332. Re-

trieved from http://www.ncbi.nlm.nih.gov/pubmed/19623210http://

www.nature.com/doifinder/10.1038/hdy.2009.73 doi: 10.1038/hdy

.2009.73

Wang, J. (2016, feb). Pedigrees or markers: Which are better in estimating

relatedness and inbreeding coefficient? Theoretical Population Biol-

ogy , 107 (xxxx), 4–13. Retrieved from http://dx.doi.org/10.1016/

j.tpb.2015.08.006http://linkinghub.elsevier.com/retrieve/pii/

S0040580915000842 doi: 10.1016/j.tpb.2015.08.006

Weir, B. S., Anderson, A. D., & Hepler, A. B. (2006, oct). Genetic related-

ness analysis: modern data and new challenges. Nature Reviews Genetics ,

7 (10), 771–780. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/

16983373http://www.nature.com/doifinder/10.1038/nrg1960 doi:

10.1038/nrg1960

Wright, S. (1921). Correlation and Causation. Journal of Agricultural Research,

79

http://dx.doi.org/10.1016/j.ajhg.2012.10.010http://linkinghub.elsevier.com/retrieve/pii/S0002929712005332
http://dx.doi.org/10.1016/j.ajhg.2012.10.010http://linkinghub.elsevier.com/retrieve/pii/S0002929712005332
http://www.nature.com/nrg/journal/v12/n9/full/nrg3029.html{%}5Cnhttp://www.nature.com/nrg/journal/v12/n9/pdf/nrg3029.pdfhttp://www.nature.com/doifinder/10.1038/nrg3029
http://www.nature.com/nrg/journal/v12/n9/full/nrg3029.html{%}5Cnhttp://www.nature.com/nrg/journal/v12/n9/pdf/nrg3029.pdfhttp://www.nature.com/doifinder/10.1038/nrg3029
http://www.nature.com/nrg/journal/v12/n9/full/nrg3029.html{%}5Cnhttp://www.nature.com/nrg/journal/v12/n9/pdf/nrg3029.pdfhttp://www.nature.com/doifinder/10.1038/nrg3029
http://www.nature.com/nrg/journal/v12/n9/full/nrg3029.html{%}5Cnhttp://www.nature.com/nrg/journal/v12/n9/pdf/nrg3029.pdfhttp://www.nature.com/doifinder/10.1038/nrg3029
http://www.genetics.org/content/206/2/1025.article-info
http://www.genetics.org/content/206/2/1025.article-info
http://www.ncbi.nlm.nih.gov/pubmed/19623210http://www.nature.com/doifinder/10.1038/hdy.2009.73
http://www.ncbi.nlm.nih.gov/pubmed/19623210http://www.nature.com/doifinder/10.1038/hdy.2009.73
http://dx.doi.org/10.1016/j.tpb.2015.08.006http://linkinghub.elsevier.com/retrieve/pii/S0040580915000842
http://dx.doi.org/10.1016/j.tpb.2015.08.006http://linkinghub.elsevier.com/retrieve/pii/S0040580915000842
http://dx.doi.org/10.1016/j.tpb.2015.08.006http://linkinghub.elsevier.com/retrieve/pii/S0040580915000842
http://www.ncbi.nlm.nih.gov/pubmed/16983373http://www.nature.com/doifinder/10.1038/nrg1960
http://www.ncbi.nlm.nih.gov/pubmed/16983373http://www.nature.com/doifinder/10.1038/nrg1960


20 , 557–585.

Yao, F., Coquery, J., & Lê Cao, K.-A. (2012). Independent Principal

Component Analysis for biologically meaningful dimension reduc-

tion of large biological data sets. BMC Bioinformatics , 13 (1),

24. Retrieved from http://www.biomedcentral.com/1471-2105/

13/24http://bmcbioinformatics.biomedcentral.com/articles/

10.1186/1471-2105-13-24 doi: 10.1186/1471-2105-13-24

Zhang, W., Collins, A., Gibson, J., Tapper, W. J., Hunt, S., De-

loukas, P., . . . Morton, N. E. (2004, dec). Impact of popu-

lation structure, effective bottleneck time, and allele frequency

on linkage disequilibrium maps. Proceedings of the National

Academy of Sciences , 101 (52), 18075–18080. Retrieved from

http://www.pnas.org/content/101/52/18075.long{%}5Cnpapers2://

publication/doi/10.1073/pnas.0408251102http://www.pnas.org/

cgi/doi/10.1073/pnas.0408251102 doi: 10.1073/pnas.0408251102

80

http://www.biomedcentral.com/1471-2105/13/24http://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-13-24
http://www.biomedcentral.com/1471-2105/13/24http://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-13-24
http://www.biomedcentral.com/1471-2105/13/24http://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-13-24
http://www.pnas.org/content/101/52/18075.long{%}5Cnpapers2://publication/doi/10.1073/pnas.0408251102http://www.pnas.org/cgi/doi/10.1073/pnas.0408251102
http://www.pnas.org/content/101/52/18075.long{%}5Cnpapers2://publication/doi/10.1073/pnas.0408251102http://www.pnas.org/cgi/doi/10.1073/pnas.0408251102
http://www.pnas.org/content/101/52/18075.long{%}5Cnpapers2://publication/doi/10.1073/pnas.0408251102http://www.pnas.org/cgi/doi/10.1073/pnas.0408251102


APPENDIX A

SELECTION OF UNRELATED ANCIENT

INDIVIDUALS

Figure A.1: Kinship coefficient (Θ) estimation for real ancient samples. Dashed
lines illustrate the theoretical Θ value for 1st, 2nd, 3rd degree and unrelated
individuals. The red boxes show the four pairs (8 individuals) that were selected
for in-silico pedigree formation.
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APPENDIX B

WORKFLOW OF SNP FILTERING STEPS

Figure B.1: Both the test (ancient) and the reference populations (modern)
datasets are used for SNP filtering. The transition removal and missingness (>
50%) filters are performed on test (ancient) dataset while LD (> 0.4) and MAF
(< 0.1) filters are preformed on reference population dataset. After each filtering
step, the same set of SNPs are filtered in the other dataset.
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APPENDIX C

STATISTICAL ANALYSIS AND ERROR RATES FOR

ANCIENT SAMPLES

Figure C.1: Standard error calculations of kinship coefficient (Θ) for ancient
samples. Dashed lines illustrate the theoretical Θ value for 1st, 2nd, 3rd degree
and unrelated individuals. The gray shaded areas are the 95% CI for Θ (Table
2.5). The x-axis is the six different SNP numbers (25K, 20K, 15K,10K, 5K and
1K) used for Θ calculations. (A) For first-degree relatives only, (B) second-degree
relatives only, (C) for third-degree relatives and (D) for unrelated individual
pairs.
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Table C.1: Error rates for first, second and third-degree related pairs. The five
different statistical measures are true positive (TP), false positive (FP), false
negative (FN), incorrectly related (IR) and undecided (UN). Pairs assigned to
the wrong relatedness degree “incorrectly related”, the pairs in between expected
relatedness degrees “undecided”.

Statistical
Measures

First Degree SecondDegree ThirdDegree

TP_25K 100.0 100.0 99.7
TP_20K 100.0 99.9 99.5
TP_15K 100.0 99.8 98.3
TP_10K 100.0 99.5 97.1
TP_5K 99.8 97.2 92.2
TP_1K 84.6 68.9 58.8
FP_25K 0.0 0.0 0.0
FP_20K 0.0 0.0 0.1
FP_15K 0.0 0.0 0.2
FP_10K 0.0 0.0 0.3
FP_5K 0.0 0.0 1.8
FP_1K 0.0 0.0 16.4
FN_25K 0.0 0.0 0.0
FN_20K 0.0 0.0 0.0
FN_15K 0.0 0.0 0.0
FN_10K 0.0 0.0 0.0
FN_5K 0.0 0.0 0.0
FN_1K 0.0 0.0 0.0
IR_25K 0.0 0.0 0.1
IR_20K 0.0 0.0 0.1
IR_15K 0.0 0.0 0.2
IR_10K 0.0 0.0 1.2
IR_5K 0.0 0.0 4.8
IR_1K 0.0 8.8 26.4
UN_25K 0.0 0.0 0.2
UN_20K 0.0 0.1 0.4
UN_15K 0.0 0.2 1.5
UN_10K 0.0 0.5 1.7
UN_5K 0.2 2.7 2.9
UN_1K 15.4 22.3 14.7
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APPENDIX D

STATISTICAL ANALYSIS AND ERROR RATES FOR

50X COVERAGE MODERN DATA

Figure D.1: Standard error calculations of kinship coefficient (Θ) for 50X cover-
age modern data. Dashed lines illustrate the theoretical Θ value for 1st, 2nd, 3rd
degree and unrelated individuals. The gray shaded areas are the 95% CI for Θ

(Table 2.5). The x-axis is the six different SNP numbers (25K, 20K, 15K,10K,
5K and 1K) used for Θ calculations. (A) For first-degree relatives only, (B)
second-degree relatives only and (C) for unrelated individual pairs.
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Table D.1: Error rates for first and second-degree related pairs. The five differ-
ent statistical measures are true positive (TP), false positive (FP), false negative
(FN), incorrectly related (IR) and undecided (UN). Pairs assigned to the wrong
relatedness degree “incorrectly related”, the pairs in between expected related-
ness degrees “undecided”.

Statistical
Measures

First Degree Second Degree

TP_25K 100.0 70.5
TP_20K 100.0 70.6
TP_15K 100.0 69.9
TP_10K 100.0 68.7
TP_5K 99.6 66.9
TP_1K 81.7 56.5
FP_25K 0.0 0.0
FP_20K 0.0 0.0
FP_15K 0.0 0.0
FP_10K 0.0 0.0
FP_5K 0.0 0.0
FP_1K 0.0 0.0
FN_25K 0.0 0.0
FN_20K 0.0 0.0
FN_15K 0.0 0.0
FN_10K 0.0 0.0
FN_5K 0.0 0.0
FN_1K 0.0 0.0
IR_25K 0.0 2.6
IR_20K 0.0 2.7
IR_15K 0.0 4.0
IR_10K 0.0 5.1
IR_5K 0.0 7.0
IR_1K 0.0 17.7
UN_25K 0.0 26.9
UN_20K 0.0 26.6
UN_15K 0.0 26.1
UN_10K 0.0 26.2
UN_5K 0.4 26.0
UN_1K 18.3 25.8
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APPENDIX E

STATISTICAL ANALYSIS AND ERROR RATES FOR

10X COVERAGE MODERN DATA

Figure E.1: Standard error calculations of kinship coefficient (Θ) for 10X cover-
age modern data. Dashed lines illustrate the theoretical Θ value for 1st, 2nd, 3rd
degree and unrelated individuals. The gray shaded areas are the 95% CI for Θ

(Table 2.5). The x-axis is the six different SNP numbers (25K, 20K, 15K,10K,
5K and 1K) used for Θ calculations. (A) For first-degree relatives only, (B)
second-degree relatives only and (C) for unrelated individual pairs.

89



Table E.1: Error rates for first and second-degree related pairs. The five differ-
ent statistical measures are true positive (TP), false positive (FP), false negative
(FN), incorrectly related (IR) and undecided (UN). Pairs assigned to the wrong
relatedness degree “incorrectly related”, the pairs in between expected related-
ness degrees “undecided”.

Statistical
Measures

First Degree Second Degree

TP_25K 100.0 68.5
TP_20K 100.0 67.7
TP_15K 100.0 68.9
TP_10K 100.0 68.5
TP_5K 99.3 66.2
TP_1K 80.3 56.4
FP_25K 0.0 0.0
FP_20K 0.0 0.0
FP_15K 0.0 0.0
FP_10K 0.0 0.0
FP_5K 0.0 0.0
FP_1K 0.0 0.0
FN_25K 0.0 0.0
FN_20K 0.0 0.0
FN_15K 0.0 0.0
FN_10K 0.0 0.0
FN_5K 0.0 0.0
FN_1K 0.0 0.0
IR_25K 0.0 2.5
IR_20K 0.0 3.0
IR_15K 0.0 2.9
IR_10K 0.0 4.1
IR_5K 0.0 5.7
IR_1K 0.0 16.6
UN_25K 0.0 29.0
UN_20K 0.0 29.3
UN_15K 0.0 28.2
UN_10K 0.0 27.4
UN_5K 0.7 28.1
UN_1K 19.7 26.9
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