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ABSTRACT

GOOD FEATURES TO CORRELATE FOR VISUAL TRACKING

Gündoğdu, Erhan

Ph.D., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. A. Aydın Alatan

September 2017, 148 pages

Estimating object motion is one of the key components of video processing and the

first step in applications which require video representation. Visual object tracking

is one way of extracting this component, and it is one of the major problems in the

field of computer vision. Numerous discriminative and generative machine learning

approaches have been employed to solve this problem. Recently, correlation filter

based (CFB) approaches have been popular due to their computational efficiency and

notable performances on benchmark datasets. The ultimate goal of CFB approaches

is to find a filter (i.e., template) which can produce high correlation outputs around

the actual object location and low correlation outputs around the locations that are

far from the object. Nevertheless, CFB visual tracking methods suffer from many

challenges, such as occlusion, abrupt appearance changes, fast motion and object

deformation. The main reasons of these sufferings are forgetting the past poses of the

objects due to the simple update stages of CFB methods, non-optimal model update

rate and features that are not invariant to appearance changes of the target object.

v



In order to address the aforementioned disadvantages of CFB visual tracking meth-

ods, this thesis includes three major contributions. First, a spatial window learning

method is proposed to improve the correlation quality. For this purpose, a window

that is to be element-wise multiplied by the object observation (or the correlation fil-

ter) is learned by a novel gradient descent procedure. The learned window is capable

of suppressing/highlighting the necessary regions of the object, and can improve the

tracking performance in the case of occlusions and object deformation. As the sec-

ond contribution, an ensemble of trackers algorithm is proposed to handle the issues

of non-optimal learning rate and forgetting the past poses of the object. The trackers

in the ensemble are organized in a binary tree, which stores individual expert trackers

at its nodes. During the course of tracking, the relevant expert trackers to the most re-

cent object appearance are activated and utilized in the localization and update stages.

The proposed ensemble method significantly improves the tracking accuracy, espe-

cially when the expert trackers are selected as the CFB trackers utilizing the proposed

window learning method. The final contribution of the thesis addresses the feature

learning problem specifically focused on the CFB visual tracking loss function. For

this loss function, a novel backpropagation algorithm is developed to train any fully

deep convolutional neural network. The proposed gradient calculation, which is re-

quired for backpropagation, is performed efficiently in both frequency and image

domain, and has a linear complexity with the number of feature maps. The training

of the network model is fulfilled on carefully curated datasets including well-known

difficulties of visual tracking, e.g., occlusion, object deformation and fast motion.

When the learned features are integrated to the state-of-the-art CFB visual trackers,

favorable tracking performance is obtained on benchmark datasets against the CFB

methods that employ hand-crafted features or deep features extracted from the pre-

trained classification models.

Keywords: visual object tracking, mixture of experts, correlation filters, convolutional

neural networks
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ÖZ

KORELASYON İLE GÖRSEL TAKİP İÇİN İYİ ÖZNİTELİKLER

Gündoğdu, Erhan

Doktora, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. A. Aydın Alatan

Eylül 2017 , 148 sayfa

Nesne hareketi tahmin etme, video işlemenin temel bileşenlerinden biridir ve video

temsiline ihtiyaç duyan uygulamalardaki ilk adımdır. Görsel nesne takibi, bu bileşe-

nin çıkarılma yollarından birisi olup, bilgisayarla görme alanındaki önemli bir prob-

lemdir. Bu sorunu çözmek için geçmişte birçok ayırımcı ve üretken makine öğrenme

yaklaşımları kullanılmıştır. Son zamanlarda, korelasyon süzgeci tabanlı (KST) yak-

laşımlar, hesaplama verimliliği ve karşılaştırma amaçlı kullanılan veri kümeleri üze-

rinde dikkate değer performansları nedeniyle popüler olmuştur. KST yaklaşımlarının

nihai amacı, gerçek nesne konumu etrafında yüksek korelasyon çıktıları üretebilen

ve nesneden uzaktaki yerler çevresinde düşük korelasyon çıktıları üretebilen bir süz-

geci (diğer bir deyişle şablon) hesaplamaktır. Bununla birlikte, KST görsel takip yön-

temleri; kapanma, ani görünüm değişiklikleri, hızlı hareket ve nesne deformasyonu

gibi birçok durumda zorlanmaktadır. KST yöntemlerinin basit güncelleme aşamaları,

en iyi olmayan model güncelleme oranı ve hedef nesnenin görünüm değişikliklerine

karşı sağlam olamaması KST yöntemlerinin takip ve konumlandırma performansla-
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rındaki azalmaların sebepleri olarak gösterilebilir.

KST görsel takip yöntemlerinin yukarıda belirtilen dezavantajlarını gidermek için bu

tez üç önemli katkı içermektedir. İlk olarak, korelasyon kalitesini arttırmak için me-

kânsal pencere öğrenme yöntemi önerilmiştir. Bu amaçla, nesne görüntüsü (veya ko-

relasyon filtresi) ile çarpılacak bir pencere, yeni bir gradyan iniş prosedürüyle öğre-

nilir. Öğrenilen pencere, nesnenin gerekli bölgelerini bastırma/vurgulama yeteneğine

sahiptir ve kapanma ve nesne deformasyonu durumunda takip performansını artırabi-

lir. İkinci bir katkı olarak, en iyi olmayan öğrenme hızı ve nesnenin geçmiş pozlarını

unutma zorlukları ile baş edebilmek için birden çok takipçiyi (hedef takip yöntemi)

içeren bir takip grubu yöntemi önerilmiştir. Gruptaki takipçiler, ikili bir ağaçta dü-

zenlenir, ve her takipçi ağacın düğümlerinde saklanır. Takip sırasında, en son nesne

görünümüne ilişkin uzman takipçiler etkinleştirilir ve konumlandırma ve güncelleme

aşamalarında kullanılır. Önerilen takipçiler grubu yönteminin, uzman takipçilerin bu

tezde önerilen pencere öğrenme yöntemiyle birleştirilmesi ile konumlandırma doğru-

luğunu önemli ölçüde geliştirdiği gözlenmiştir. Tezin son katkısı, KST görsel takip

kayıp fonksiyonu üzerine odaklanan öznitelik öğrenme problemini ele alır. Bu ka-

yıp fonksiyonu için, tamamen evrişimsel derin sinir ağını eğitmek için yeni bir geri

yayılım algoritması geliştirilmiştir. Geri yayılım için gerekli olan gradyan hesapla-

ması, frekans ve görüntü uzaylarında etkin bir şekilde gerçekleştirilir ve öznitelik ha-

ritalarının sayısı ile doğrusal bir karmaşıklığa sahiptir. Ağ modelinin eğitimi, görsel

izlemenin iyi bilinen zorluklarını (örneğin kapanma, nesne deformasyonu ve hızlı ha-

reket) da dâhil ederek hazırlanmış veri kümeleri üzerinde gerçekleştirilir. Öğrenilen

öznitelikler, en gelişmiş KST görsel takipçilere entegre edildiğinde - manuel olarak

tasarlanmış öznitelikleri veya önceden eğitim görmüş sınıflandırma modellerinden

çıkarılan derin öznitelikleri kullanan KST yöntemlerine kıyasla - karşılaştırma veri

kümelerinde olumlu takip performansı sağlamıştır.

Anahtar Kelimeler: görsel nesne takibi, uzmanların karışımı, korelasyon süzgeci, ev-

rişimsel sinir ağları
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CHAPTER 1

INTRODUCTION

Modern visual surveillance and weapon-oriented defense systems require automated

visual analysis and such systems aim to interpret the outputs of electro-optic imag-

ing sensors. There exist numerous sub-tasks of these systems, such as motion-based

recognition, anomaly action detection, human-computer interaction, traffic monitor-

ing, vehicle navigation and high-level video representation [117]. Most of these tasks

should typically be fed by the output which is mostly provided by a visual tracking

subsystem due to numerous reasons; for instance, the trajectory information extracted

from the tracked objects can be exploited to analyze the state of a junction in a traffic

monitoring system. Furthermore, individual motions of the human body parts might

help to identify the type of the performed action. Activity recognition methods may

utilize the trajectories of the subjects involved in the activity. Hence, visual tracking

modules are inevitable parts of such systems.

Due to the requirements of the aforementioned systems, visual object tracking is a

popular problem in computer vision and it has been studied diligently. The problem

of visual object tracking mainly aims to estimate the state of a target object through-

out the frames of a video sequence by the help of the visual appearance model of the

object. In this thesis, the state of the object carries the information about the center

location and the size of the object patch in a video frame, and the visual appearance

model is obtained by utilizing a cost function that considers the available training

image patches of the target object as well as their locations. The previous state of

the object is assumed to be available, estimated by the visual tracking method itself

or provided by an oracle or a previous task, such as automatic object detection. The
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state estimation is fulfilled either in an offline or online manner. Moreover, the prop-

erties of the visual systems, such as the number of tracked objects and the type of the

object state, play a critical role in the problem definition. For instance, the require-

ment of a multiple object tracking task significantly differs from the single object

visual tracking scenario. This thesis considers the latter one and addresses the main

problems of visual tracking for only a single object in such scenes.

During the last two decades, visual tracking of objects have become popular and

differentiated from the radar target tracking concept [6, 79, 44], which utilizes the

observations (i.e., raw measurements) provided by the radar or any other appropriate

sensor for the target environment. However, in visual tracking, there is no information

related to the object observation except for the raw pixels of the video frames. Hence,

the major difficulty of visual tracking is obtaining robust and relevant candidates for

the state of the object by only utilizing the available visual information.

In the literature, the state-of-the-art computer vision and machine learning tools are

both employed to obtain good candidates for the object state. The mostly preferred

input for these tools is obviously the image region or the region of interest for the

target object. Concretely, the pixel values of the rectangular image patches surround-

ing or containing the objects are treated as the raw patterns. Then, computer vision

algorithms try to represent these patterns in a high-dimensional feature space, and ma-

chine learning algorithms can select relevant patterns to obtain the “best” candidate

for the object state during the course of tracking. In this thesis, single object tracking

problem is the major consideration; in the following section, the generic flow of a

single object tracking framework is explained.

1.1 The General Flow of Visual Tracking

The generic flow of a tracking methodology is demonstrated in Figure 1.1 with a rep-

resentative loop repeating over the frames of a video sequence. As described above,

the initial state is utilized to extract a representation (i.e., initial visual model) of the

object. Following this, an appearance model or a classifier is trained. In Figure 1.1,

it is represented by the model fθ(.) with model parameters θ. When the next frame

2



arrives, a set of candidate states are evaluated around the region of interest and the

best candidate is claimed to be the state of the object. In its simplest form, the Carte-

sian coordinates of the object is a frequently utilized state vector. Once the object is

localized, an instantaneous object representation is extracted to update the model, if

necessary. The green part in the figure illustrates this loop, which will continuously

repeat during the time steps. Although the structure of the flow diagram is represen-

tative and might vary according to the complexity of a particular algorithm, most of

such techniques can be reduced to this flow.

Figure 1.1: The general flow of a tracking loop.

It is possible to analyze in detail any block of the framework in Figure 1.1 and the

overall algorithm could be improved by proposing novel object initializations, ro-

bust object representations, smart policies for model update and so forth. Among

all these enhancements, object representation is an anchor point to discuss, since the

performances of the tracking algorithms are significantly affected by the quality of

this representation. The desired property of the object representation is its invariance

to appearance changes of the objects due to various challenges, e.g., illumination

change, deformation etc. Moreover, this representation should disentangle subtle dif-

ferences between the target object and the background. Numerous efforts have been

devoted for feature selection process to serve for improving the representation qual-

ity. Recently, the advances in machine learning research have evolved to exploit deep

networks for learning to recognize [60], detect [74] and segment [94] objects. The

main reason of this evolution is due to the fact that deep learning techniques provide

hierarchical and task or domain specific representation learning either in a supervised

or unsupervised manner; hence, closing the gap between representation design and

the object model.

The other important component of visual tracking is the state estimation stage, which
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can also be denoted as localization. Discriminative and generative models are adopted

in visual tracking to differentiate the object from the background. On the other hand,

deep learning based approaches are also proposed for tracking problem [9, 65, 84].

The important nuance between the utilization of these two models for visual object

tracking in video sequences (and other computer vision tasks related to still images)

is as follows: An online version is required in the discriminative techniques; in other

words, an online extension of the adopted method is necessary due to the appear-

ance changes of the object, although the model might also be trained offline in the

beginning before tracking starts. This necessity arises from the fact that the designed

representation model is not invariant to all kinds of appearance changes of the ob-

ject. For instance, a classifier is trained in discriminative tracking methods; as the

time goes on, the classifier should be updated with the newly observed object appear-

ances to become robust to any challenge. Thus, online classification methods should

be developed to update the object models. For example, for visual tracking, online

structured-output Support Vector Machines (SVM) are proposed in [45], whereas on-

line AdaBoost is studied in [3]. More recent methods and their detailed taxonomies

are discussed in Chapter 2 .

1.2 The Challenges of the Visual Object Tracking

It is notable that many challenges should be considered while designing a visual track-

ing algorithm. Appearance change, which is mentioned above, is one of the major

challenges. It can be defined as any difference of the object appearance between a test

frame and a reference frame. Object deformation and scale variation are examples of

this challenge. The desirable property of a tracking method is maintaining the object

tracking accurately in such conditions. If the object is moving towards the camera,

it is quite likely that the search range will not be adequate to represent the object,

whereas the visual information is significantly lost as the object moves away from the

camera, and it deteriorates the object representation quality. Thus, the tracker should

be able to operate in multiple scales in order to estimate the size of the object as well.

In some tracking algorithms that make use of hand-crafted features, object is assumed

to be rigid. Yet, many objects vary their form in such a way that the object parts are
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displaced due to the motion type. This scenario can be named as object deformation,

which is indeed an example of appearance change, yet requires a special attention.

For instance, the fingers of a hand change their relative location. Hence, a part-based

model can be employed or features that are invariant to particular deformations could

be utilized.

Another crucial problem of visual tracking is the abrupt motion of the object or the

camera, resulting in a tracking failure, if the search region of the object in the next

frame is limited. If the localization is so erroneous that the update of the model is

performed with the non-localized object examples, an undesirable drift from the true

location occurs. If this drift insists, then the failure of the tracker becomes inevitable.

For this reason, model update mechanisms should be carefully designed to prevent

such a drift. A potential reason of this undesirable update also occurs in the case

of full or partial occlusions of the object. If the model is updated with an occluded

object, the model could localize the object at the undesired region of the occlusion

even after the object moves away from there. Following this challenge, the search

range and the update rate should be carefully designed. The size of the search range

is a compromise, which suffers from the large search range due to the jump of the

tracker to a similar object, whereas it should not be small to handle fast motion of the

object relative to the image coordinates.

Motion blur is another critical factor in visual tracking, since a non-stationary cam-

era could output blurred frames due to the fast motion of the object or the focusing

problems of the camera in some time intervals of the tracking. In these cases, the

appearance of the object might vary quite significantly such that the localization per-

formance degrades. Similar to the motion blur problem, the object can be exposed

to illumination change due to the hardware limitations or the nature of the environ-

ment. In most cases, the illumination condition changes suddenly, e.g., the object

could enter a shaded area. Thus, the utilized features should be designed to handle

illumination changes.

The challenges discussed above are the major issues of the state-of-the-art tracking al-

gorithms that are evaluated in the state-of-the-art benchmarks. Although there might

be some other critical issues to be addressed in some particular tracking scenarios,
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the main aim of most of the published visual tracking research efforts is to enhance

the capabilities of the trackers in terms of handling the aforementioned problems. To

this end, these challenges have been addressed in this thesis by proposing three ma-

jor contributions: (1) improving the robustness of a correlation filter-based tracking

algorithm against occlusions and deformations, (2) proposing an ensemble of track-

ers method to mitigate the tracking failures resulting from appearance changes of the

target objects, and (3) learning features that are robust to various appearances of the

same object and designed for ‘good’ correlation operation.

1.3 Benchmark Datasets

Every year, hundreds of visual tracking studies are reported and published in various

organizations, including conferences, journals and symposiums. About a decade ago,

the proposed studies were assessed in terms of the manually designed performance

metrics in the videos recorded by the authors of the study or in a subset of the publicly

available videos. Hence, it was not easy to fairly compare the methods and to show

the validity of a tracking approach.

In order to build a fair comparison basis and avoid subjective evaluations, visual

tracking benchmarks, such as OTB-2013 [111], OTB-2015 [112], VOT2013 [58],

VOT2014 [59], VOT2015 [35], VOT2016 [36], have been introduced. OTB-2013 and

OTB-2015 are the most frequently employed datasets to assess the performance of a

visual tracking method. These datasets include video sequences with the aforemen-

tioned challenges in Section 1.2. Moreover, Visual Object Tracking (VOT) Challenge

Workshops [58, 59, 35, 36] have also been organized since 2013 to evaluate the novel

tracking methodologies. These efforts make it possible to compare and contrast the

tracking algorithms in terms of the performance metrics peculiar to the individual

datasets. For instance, VOT challenge [59] proposes to measure the performance of

the trackers from many different aspects that are complementary to each other. Accu-

racy is the fundamental measure that deals with how accurately the trackers estimate

the state of the object. On the other hand, robustness measures the number of failures

which is defined as the case, when the accuracy of the tracker is below a fixed thresh-

old. In order to gather a statistical meaning from these datasets, VOT challenges
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report the average ranking of the competing trackers in terms of these two metrics by

statistical significance analysis.

In this thesis, in order to assess the tracking performance of the proposed methods,

OTB-2013 [111], OTB-2015 [112], VOT2015 [35] and VOT2016 [36] datasets are

employed as the most recent state-of-the-art studies have been evaluated in those

datasets. The detailed information about the performance evaluation criteria is pre-

sented in the experimental sections of the proposed methods in the manuscript.

1.4 Short Summary of the State of the Art

Visual tracking has long been studied by many researchers. Eventually, various meth-

ods are proposed with a variety of approaches from different disciplines. The type of

the approach within a particular era is significantly determined by the popular trend

of computer vision and machine learning during that time interval. Today, deep learn-

ing is by far the most popular concept in the computer vision and machine learning

communities. Thus, top performing trackers are expected to be based on deep neural

networks. Although such an expectation is acceptable to a limited extend, the con-

tribution of the correlation filter based trackers are too good to be underestimated for

the success of the state-of-the-art trackers. Notably, methods that employ a correla-

tion filter based approach along with the features extracted from a deep convolutional

neural network perform favorably against their counterparts in the benchmark datasets

[76, 27, 30].

In Table 1.1, top three winners of VOT challenges are demonstrated from 2013 to

2016. As it is pointed out, deep learning based discriminative methods, such as MD-

Net [84] and TCNN [83], are effective for 2016 challenge. Nevertheless, correlation

filter based methods have a dominant effect for the top trackers over the last three

years. For instance, VOT2014 winners belong to this family of trackers. Moreover,

the 2016 winner is also a correlation filter based approach. Although the top perform-

ing methods might not be the unique indicator for the success of tracking research

direction, the computation speeds of correlation filter based methods are favorable

against the discriminative track-by-classification trackers due to the efficient dense
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Table1.1: The VOT challenge winners and their categories. Disc. and Gen. means
discriminative track-by-classification and generative methods, respectively. Comb.
represents the combination of trackers. CFB stands for correlation filter based track-
ers. These categories and the remaining ones are explained in Chapter 2.

Ranking VOT2013 [58] VOT2014 [59] VOT2015 [35] V0T2016 [36]
1st PLT [58] (Disc.) DSST [26] (CFB) MDNet [84] (Disc.) CCOT [30] (CFB)
2nd FoT [107] (Comb.) SAMF [69] (CFB) DeepSRDCF [27] (CFB) T-CNN (Disc. + Comb.) [83]
3rd EDFT [39] (Gen.) KCF [48] (CFB) EBT [129] (Disc.) SSAT [36] (Disc.)

matching advantage in the discrete frequency domain. Moreover, the correlation con-

cept is much more simpler than many others due to the simple update equations, ef-

ficient formulations in the frequency domain and visual interpretation opportunities.

Hence, the major concentration of the thesis is devoted to the correlation filter based

trackers. On the other hand, influence of deep neural networks are also exploited in

the proposed feature learning framework.

1.5 Problem Statement and Contributions of the Thesis

In this thesis, single object visual tracking problem is embraced. The major concern

of this problem is estimating the state of a target object throughout the frames of a

video sequence, when the first state information is provided by an oracle.

In the utilized framework, the state of the object is defined as the four-dimensional

vector containing the horizontal and vertical Cartesian coordinates of the object as

well as its width and height, since the benchmark datasets and state-of-the-art track-

ers favor this type of state. Moreover, the problem includes tracking of arbitrary

objects without any constraints, such as rigid body assumption or color constancy.

The designed trackers should be able to track a single object without the help of any

secondary object or environment as opposed to the multiple object tracking problem.

Specifically, the dealt family of trackers in this study is correlation filter based visual

tracking methods, since correlation filters have shown spectacular performances in

the discussed benchmark datasets. Thus, it is aimed to increase the accuracy of the

visual tracking performance by proposing novel methods designed for correlation

filter based trackers.
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In order to improve the state-of-the-art correlation filter based trackers, three major

contributions have been achieved:

1) A novel window learning methodology is proposed to enhance the quality of

the correlation and to increase the localization accuracy. For this purpose, a

window that is to be element-wise multiplied by the object observation (or the

correlation filter) is learned by a gradient descent procedure which has an effi-

cient formulation. The resulting tracking algorithm is able to suppress or high-

light the (ir)relevant regions for the correlation operation in the image domain.

2) An ensemble of trackers algorithm is proposed to handle the appearance changes

of the object by a tree-structured ensemble tracker. The presented tree stores

different models at the nodes for a variety of appearance types. The designed

framework is capable of providing the optimum combination decision, if the

correlation quality (or the tracking quality) is assumed to be the ground truth

quality of the decision made by the individual nodes of the tree. Moreover,

extensive experiments in benchmark datasets with different performance met-

rics validate the effectiveness of these two proposed methods. When the pro-

posed window learning algorithm is adopted in the tree-structured ensemble

method, a further increase in the tracking performance is obtained. Thus, these

approaches carry complementary and beneficial properties for visual tracking

task.

3) The final contribution of this thesis is a feature learning framework to obtain

robust features for correlation task. In other words, a deep and fully convolu-

tional neural network model is learned with respect to the proposed loss func-

tion. Moreover, an efficient backpropagation procedure is formulated in the

frequency domain to handle the nonlinear relationships between the correlation

filter and the object observations. The learned features by the presented model

is shown to outperform the hand-crafted features as well as the pre-trained net-

works that are obtained by the help of object recognition loss functions.
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1.6 Outline of the Thesis

In Chapter 2, state-of-the-art tracking approaches are discussed in detail by a novel

taxonomy which is appropriate for the recently proposed tracking methods when

compared to the previous visual tracking surveys, such as [117] and [97]. The key

difference between the presented taxonomy and the previous ones is the exhaustive

categorization of correlation filter based tracking methods while explaining the re-

maining family of trackers as recent and comprehensive as the past surveys.

In Chapter 3, the utilized correlation filter based tracking approaches are summarized.

The main focus of this thesis is to provide proposals specifically customized for cor-

relation filter based trackers. Thus, the single channel linear correlation filter formu-

lation of [14] is explained. Then, the method in [26], the multi-channel extension

of [14] with a multi-scale search support, is described, since this tracking approach,

which is also the winner of VOT2014 challenge [59], is employed as the baseline in

the development of the proposed window learning approach and the tree-structured

ensemble method. In order to obtain top tracking success, the winner of VOT2016

challenge [36] is exploited in the proposed feature learning methodology. Hence, this

approach is expounded in the subsequent section of Chapter 3.

Proposed spatial window learning methodology is formulated in Chapter 4 with two

different algorithm options. The first one selects to learn a spatial window for the

object observation while the second one opts to learn the window for the correlation

filter. Both of the windows are learned to multiply the particular signal in the spatial

domain element-wise. The experimental results with deep analysis are provided in

the following chapter.

In Chapter 5, the tree-structured ensemble approach is introduced with extensive ex-

periments in the final sections. Moreover, the experimental results section covers

the performance evaluation of the spatial windowing method. Remarkably, the inte-

gration of the spatial windowing approach to the ensemble tracker is also tested and

reported in this section.

The feature learning framework for correlation filters is explained in detail in Chapter

6. Firstly, the preliminaries to clarify the utilized signal processing and computer
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vision tools are presented. Then, the single channel feature learning methodology

is proposed. Finally, the multiple channel extension is formulated for the efficient

backpropagation formulation. In the last section, the experimental results are reported

for the evaluated benchmarks as it is fulfilled in the previous chapters for the spatial

windowing and ensemble tracking proposals.

In Chapter 7, an overall qualitative assessment of the thesis is provided with a brief

summary of the thesis. Moreover, the conclusive and remarkable points are empha-

sized. Since the goal of the thesis is to take place among the state-of-the-art visual

tracking techniques, the proposed approaches contain particular novelties that should

be explored and exploited further more. Hence, promising feature directions are dis-

cussed.
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CHAPTER 2

LITERATURE SURVEY ON VISUAL OBJECT TRACKING

In this chapter, state-of-the-art visual tracking methods are discussed in detail. Al-

though this problem has been the subject of numerous studies for single or multiple

targets, the aim of this research is limited to single object visual tracking, since this

study targets at designing algorithms to mitigate the weaknesses of existing methods

for tracking a single object. Due to the variety of the requirements of the systems,

visual tracking algorithms could specialize for a specific scenario, such as traffic sys-

tems or an electro-optic imaging system with an intelligent gimbal platform led by the

tracking algorithm. The variety of systems and developed tracking methods cause the

researchers to classify them based on different aspects [117, 111]. In [117], Yilmaz

et.al. classify the trackers into the categories based on different anchor tools, such as

point detectors, segmentation, background modeling, supervised classifiers. On the

other hand, evaluation studies [97] and tracking benchmarks [111] attempt to catego-

rize the methods regarding some other aspects including the use of template matching

and/or classifiers (which are also called as track-by-classification). Appearance mod-

els are investigated and analyzed in the context of single object tracking problem in

[68], while [19] only deals with a specific family of trackers, i.e., correlation filter

based trackers, which is our main concentration in this study.

As it can be deduced from the past surveys of visual object tracking, it is possible

to categorize visual tracking methods according to more than one aspect. A family

of four categorizations has been demonstrated in Figure 2.1, where the trackers are

categorized in various ways. Although the focused problem of the thesis is single

object tracking, the tracking problem is divided into two as: (1) single target and (2)
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Figure 2.1: A family of visual tracking taxonomy.

multiple target tracking. Moreover, some tracking methods combine the results of

multiple trackers while most methods prefer to rely on a single visual tracker. It is

also possible to divide the tracking approaches into two classes as: (1) search-based

trackers and (2) association-based trackers. Concretely, the search-based trackers are

based on a search algorithm that aims at finding the object within the current frame

by using template matching, optical flow or correlation filter based approaches. On

the other hand, association based trackers generally gather candidate object patches

and associate them with the visual appearance model of the object. Finally, it is

also possible to classify a visual tracker according to the usage of a motion model.

For instance, most of the correlation filter based methods do not exploit any motion

model. However, a considerable amount of discriminative trackers in the literature

utilize a motion model, such as particle filtering.

Visual object tracking is a rapidly developing research topic. For instance, the best

performing tracker of two years ago does not even rank among the current top-thirty

trackers. Since visual appearance modeling is an important aspect of visual tracking

methods and one of the key factors to increase the tracking accuracy, in this thesis,

the methods in the literature are categorized according to the way they design visual

appearance model. For this purpose, the single object tracking methods are divided
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Figure 2.2: A detailed categorization of visual appearance models in visual tracking.

into four categories: (1) Discriminative Methods, (2) Generative Methods, (3) Hybrid

Methods and (4) Ensemble of Visual Trackers. This categorization is obtained as a

result of the recent advances in the tracking literature, where correlation filter based

methods perform favorably against its contemporaries, and it is demonstrated in Fig-

ure 2.2. Moreover, there exist custom algorithms specifically designed for tracking,

such as the ones based on Recurrent Neural Networks or Siamese Networks. Com-

plementary advantages of the tracking methods have also been studied and multiple

trackers are concurrently run and merged in particular studies.

As it has already been defined in Chapter 1, visual tracking of objects is described

as estimating the position of the object in the consecutive frames of a video, when

the state of the object is predefined in the first frame. For the sake of efficiency

and simplicity on representing the objects from a particular video frame, its state is

mostly defined by a rectangular region of interest, although there exist a few methods

which utilize more fine-grained state information, such as the pixels or super pixels of

the target object. Once the state information is provided to the visual tracking algo-

rithm, a tracker is responsible for tracking the object (i.e., estimating the object state)

throughout the video frames without obtaining further information. The methods dif-

ferentiate from each other in terms of the way they distinguish the target object from

the background. In the following, the tracking methodologies are discussed according

to the way their object appearance being discriminated from the background.
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Figure 2.3: A representative illustration of a discriminative visual tracking frame-
work. Any of the building blocks of this framework might change as well as their
order according to the algorithm design.

2.1 Discriminative Methods

Discriminative methods aim to estimate the conditional probability density of a can-

didate sample to be the object given the representation of its appearance. In order

to achieve this, they generally utilize a classifier model, which is responsible for the

classification of a visual sample as either the object or background. The confidence

of the classifier for a particular instance is assumed to be the conditional probability

of the described discrimination above. In order to fulfill the classification task, an

appearance description is required. Concretely, the object of interest is represented in

the high dimensional feature space. Features are extracted from the object patches.

Histogram of Oriented Gradients (HOG) [24] and Scale Invariant Feature Transform

(SIFT) [75] are typical examples from the hand-crafted feature types. Model training

is performed by collecting positive, hard negative and negative samples (extracted

features) from the region of interest that is provided at the beginning of the track-

ing by the oracle. The object localization is generally performed by looking for the

candidate location with the highest objectness score. Figure 2.3 presents a generic

discriminative track-by-classification algorithm.

Pioneering studies are Online AdaBoost Tracker [43] and ensemble tracking [2]. In

[2], Avidan proposes an ensemble method consisting of weak classifiers to label each

pixel in the region of interest as object or background. In that work, the object position
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is determined by the mean shift algorithm, and theK best weak classifiers are selected

out of T and updated throughout the frames while the remaining weak classifiers are

trained in the next frame. Such a methodology provides an online update process

which is explicitly required by any tracking algorithm. A similar online learning

strategy is employed in [43], where an updated strong classifier is available at each

frame and these classifiers are operated on the specific dimensions of the feature

describing the samples. In order to achieve real-time computational efficiency, [2]

utilizes HOG features and color channels obtained for each pixel. On the other hand,

[43] exploits HOG features, Local Binary Patterns [86] and Haar-like features [106],

all of which can be efficiently calculated using integral images.

After these two pioneering efforts, many variations and improvements over them have

been proposed. For instance, another similar approach [72] extends ensemble track-

ing to the semi-supervised training to make use of more training samples including

unlabeled ones. In [4], the weight vector which combines the weak classifiers is

treated as a random vector and the posterior distribution of this vector is computed in

a Bayesian framework. A scale adaptive version of ensemble tracking [2] is proposed

in [63] to become robust to scale variation of the target objects.

It should be noted that the inaccurate labeling of the training samples is a potential

reason for the tracking failure which gradually occurs as the number of wrong labels

grows. This issue is called drift in the tracking literature. The tracking algorithms

discussed above and even some of the recently proposed trackers accept the region

surrounding the object as the positive instance, while the remaining ones as nega-

tive or background. This kind of labeling might trigger a tracking drift due to the

insufficient number of positive examples. Hence, multiple instance learning (MIL)

framework is adopted in visual tracking [3], where the main idea is to utilize a bag

of positive samples containing at least one positive instance. Further extensions to

this idea have been considered in [128] and [62]. This kind of learning strategy helps

the tracker to remain robust with respect to the slight inaccuracies; thus, results in

better localization. Unlike the use of bags in the MIL framework [3], Online Dis-

criminative Feature Selection (ODFS) [122] directly selects features on the instance

level by using a supervised method which is superior over MIL [3], and it keeps the

computational efficiency significantly below the MIL-based method in [3]. In order
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to increase the efficiency, Fast Compressive Tracker (FCT) [123] employs compres-

sive sensing theory to project the high dimensional features to a randomly chosen low

dimensional space. This enables efficient computation without sacrificing much from

performance. The studies MIL, ODFS and FCT rely on Haar-like features, since they

can be computed efficiently and robust to appearance changes, such as rotation and

motion blur up to a certain degree. The pre-trained deep features, which are recently

involved in many computer vision problems, could also be exploited in the feature

selection frameworks, i.e., MIL, due to their robust nature in comparison to the hand-

crafted features (i.e. Haar-like, HOG etc.). Nevertheless, no comprehensive research

has been performed yet for this purpose.

Although the combination of weak classifiers, their proper update and looking for the

most confident classifier response sound appropriate for any tracking task, the loca-

tion information provided at the beginning of the tracking might be further utilized

in the context of structured-output learning. Moreover, a model with a unique strong

classifier could be beneficial, since it could avoid selecting the so-called best weak

classifiers. Margin maximizing classifiers, such as Support Vector Machines (SVM)

[22], are good candidates for this kind of task, since it has already been proven to

be effective in many computer vision problems including object detection and vi-

sual object classification. In [45], the structured-output SVM has been adopted to

the tracking problem, and the designed discriminant function explicitly includes the

motion of the object. Moreover, a budget mechanism is incorporated to their online

SVM formulation for memory efficiency. Following this work, many variants have

been proposed, such as [95], which mainly designs a generic framework for structured

learning to combine weak classifiers. Furthermore, a part-based and latent structured

SVM model is proposed in [116], and they achieve favorable results against [45],

since the drift problem is alleviated by the proposed part-based model. Moreover, a

dual linear SVM model is presented in [85] to improve the tracking and to achieve the

near real-time computation while high dimensional features are efficiently handled in

their SVM framework.

In the last decade, representation learning methodologies have changed their direction

to deep learning as initiative studies [32, 18, 96] show the power of deeply learned

representations during the classification task. Following the same line of research,
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other computer vision tasks, such as object segmentation, tracking and detection,

has started to employ deep neural networks due to their hierarchical representation

learning power in supervised and unsupervised ways.

In DLT [65], an unsupervised learning is carried out by using stacked denoising au-

toencoders (SDAE). For the tracking phase, a classification layer is added to the

SDAE architecture and tracking is accomplished using a particle filter framework.

A selective update strategy is applied and the whole network is updated when neces-

sary. In [55], 2-layer CNN and an RBF classifier are used, and the object is tracked

by utilizing a single example. In [7], simultaneous object tracking and recognition is

achieved by motivating theories of perception. Their model includes two interacting

pathways, identity and control, whereas object appearance is modeled by using Deep

Boltzman Machines and the motion is estimated using particle filtering. The study in

[33] improves the idea of [7] with an additional gaze-control strategy.

In [38], a CNN architecture is trained by setting the input as the current and the

previous region of interest of the object. The desired output is a Gaussian-shaped

mask centered on the accurate spatial translational shift of the object. In this way,

tracking is achieved giving the current and the previous frame around the region of

interest as input to the architecture and resulting shift is accepted as the motion of the

object. In [64], a CNN architecture is used and learned purely online to accomplish

the tracking task and achieve the-state-of-the-art performance. Moreover, the same

idea with a single CNN layer is proposed in [66] by the help of more image cues.

In [51], a pre-trained CNN model is utilized as the input feature to the SVM and a

discriminative saliency map is obtained by the target-specific gradient of the saliency

map with respect to the input image. Finally, target localization is performed by the

extracted saliency map.

Although correlation filter based methods have recently dominated the benchmark

challenges such as [59, 35, 36], the recently proposed deep CNN-based method Multi-

Domain Network (MDNet) [84] has achieved the best results and become the winner

on VOT2015 challenge [35]. The main idea is to train a special CNN network con-

sisting of convolutional layers as well as three fully-connected layers. The last convo-

lutional layer is separately learned for each training video. In the tracking phase, the
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positive and negative samples are gathered around the target object, and the network

is fine-tuned by initializing the last layer randomly. The most probable target location

is estimated as the one which has the highest classification score among the densely

sampled candidates around the previously estimated object location. Although the

method has impressive tracking results in many benchmarks, it suffers from the com-

putational complexity, since the evaluation of each candidate sample on the network

is required to obtain corresponding confidence scores.

2.2 Generative Tracking Methods

Unlike the discriminative tracking approaches, generative methods are intended to

calculate the joint probability of the instance and the label. In other words, an ap-

pearance model is described for the object and optionally for the background. The

object location is estimated as the one which contains the test instance with the most

similarity to the appearance model. The test instances can be picked in a particle

filter framework or densely sampled from the instantaneous region of interest. The

similarity calculation may differ according to the obtained model. Once the object lo-

cation is estimated, the model could be updated or stop updating if certain conditions

are satisfied, such as significant appearance change or occlusion detection. Although

the generative tracking algorithms differ considerably in many respects, Figure 2.4

attempts to provide a conceptual overview with a reference to the method in [5].

A representation for the object is required for the appearance model construction for

all of the generative methods. The representation can be raw image intensities or any

hand-crafted or learned features for the defined object at the beginning of the track-

ing, and hence all of the object instances with different appearance variations span

a subspace in the high dimensional feature space. At this point, the problem can be

reduced to the online subspace learning. For instance, the study in [91] proposes

an online subspace learning method for visual tracking based on incremental update

for the principal component analysis (PCA). This technique provides to update the

learned subspace throughout the video frames as the target appearance changes. On

the other hand, it is also possible to represent the object appearance in terms of the

statistics of the feature dimensions, such as the probability density functions [21]. In
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Figure 2.4: A representative illustration of a generative visual tracking framework,
which is drawn by getting an inspiration from the framework of L1APG [5] tracker.
Many other designs might differentiate from the depicted figure. However, the general
indication of a presence of the object is the closeness of the reconstruction error to
zero.

that study, the localization is performed by the mean-shift algorithm, which is care-

fully customized for the tracking problem. Since the statistics of the appearance are

not affected by the rotation and non-rigid motion (when compared to the object rep-

resentations which are not invariant to the severe non-rigid motion and rotation, such

as HOG and Haar-like features), the tracking accuracy is increased when compared

to the normalized correlation based template matching algorithms. Visual Tracking

Decomposition (VTD) tracker [61] makes use of more than one basic appearance

model as well as multiple motion models. VTD employs sparse PCA technique [31]

to activate the appearance model which is claimed to be effective in summarizing the

object appearance.

Sparsity constraint has been shown to improve certain problems, such as face recog-

nition [110]. Hence, a more detailed investigation of its usage in the visual tracking

problem is performed in [81]. In that work, an L1 regularized least squares problem

is solved and the object candidate with the least projection error is estimated as the

object for the next frame. The sparsity constraint, which is satisfied by the L1 regular-

ization, serves for finding a low dimensional subspace of the object appearance which

is represented by high dimensional features. Moreover, the non-negativity constraint

on the sparse reconstruction coefficients helps avoiding the clutter on the background.

The template dictionary is updated by removing the template with the smallest sparse
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coefficient and adding new templates extracted from the current frame.

Since aforementioned method [81] is computationally infeasible for high dimensional

data, a more sophisticated approach [71] improves this method [81] by proposing a

two stage sparse optimization technique in order to jointly minimize the reconstruc-

tion error and maximize the discriminative power. On the other hand, a minimum

error bound efficient sparse tracker is proposed in [82] by effectively selecting the

samples in the particle filter framework. Furthermore, [82] has also an occlusion de-

tection mechanism and do not update the tracker in a possible occlusion scenario.

In order to further increase the efficiency of the optimization procedure, proximal

gradient optimization method [5] is adopted in the sparse visual tracking problem

and it achieves better results than the tracker in [82], while operating at higher frame

rates. This study [82] is the first approach among other sparse trackers to obtain

real-time speed on a standard desktop computer, since the approximate proximal gra-

dient method generally has good convergence behavior for the objective functions,

which are the summations of one smooth and one non-differential function and di-

rectly matches the sparse reconstruction problem. For the L1 norm-based trackers,

the update is performed by removing the oldest or the unlikely templates and adding

the new ones from the current frame. Nevertheless, one update pace might not be

enough to represent the dynamic changes of the object appearance. In order to handle

this problem, some authors [114] propose utilization of three dictionaries with differ-

ent lifespans: short, medium and long. The short one represents the current object

appearance, whereas the long one ensures the robustness of the model. Three dictio-

naries are utilized to learn the sparse coefficients for the current observation and all

of the dictionaries are properly updated according to separate sampling policies. This

strategy brings substantial improvements in the tracking accuracy.

Similar to the sparsity constrained discussion here, another useful idea might be the

non-negativity of the coefficients to reconstruct the target sample as well as the non-

negativity of the values of the templates in the dictionary, since this property is in-

herent to the video frames. If one can find a set of templates and coefficients to

reconstruct the dictionary with the non-negativity constraints, it is very likely that the

resulting dictionary elements will hopefully highlight the parts of the object. This

approach is called Non-negative Matrix Factorization (NMF), and applied to the vi-
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sual tracking problem in [113] by proposing an online NMF framework. Although

there exist further efforts to improve this idea, such as [119] with additional sparsity

constraints, the online NMF algorithm effectively performing for visual tracking is

still unexplored.

Another sparsity-based solution to the visual tracking problem is multi-task learning

framework [125]. In [125], a joint sparsity constraint is forced in such a way that the

resulting sparse coefficients will not only be sparse themselves but also their usage

for different samples will be sparse as well. Concretely, a few dictionary templates

should be enough to represent all the templates of the object. Hence, the misaligned

cropping of the object template, which is a potential reason for a tracking failure, is

avoided due to its inconsistent sparse representation relative to the majority of the

object templates. Following this work, a less restricted version of the method in [125]

is presented in [126] to cover the outlier object appearances, while additional regular-

ization terms are incorporated to the optimization problem. The detailed explanations

and the reasoning behind the importance of low rank representations can be examined

in the aforementioned studies.

Deep convolutional neural networks (CNN) have also been applied to the visual track-

ing problem in the context of sparse optimization in [108]. In that study, a feature

selection process is performed on particular convolutional layers. The foreground

object mask is reconstructed by the standard L1 regularized cost function similar to

[5], where the foreground mask reconstruction is performed by looking for the coeffi-

cients corresponding to the selected convolutional feature maps. These feature maps

can be considered as the dictionary for the foreground object mask.

2.3 Hybrid Methods

Hybrid methods that utilize both a set of discriminative and generative appearance

models are also proposed in the literature. Moreover, custom neural network archi-

tectures are trained for visual tracking purposes. This section discusses the extensions

of the generative and discriminative methods since they cannot be solely categorized

as either discriminative or generative.
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2.3.1 Correlation Filter Based Visual Tracking Methods

Correlation filter based (CFB) visual tracking methods are mainly based on the tem-

plate matching idea which has a basis on the matched filter theory and they are fre-

quently employed in radar applications [103]. Its arrival to the visual tracking com-

munity and practical usage in real world video sequences occurred quite lately after

2010, although many studies have been performed to identify the objects in simplified

scenarios. The main goal is to find a “good" template, which is called as correlation

filter in such a way that the correlation (or equivalently the convolution) of this fil-

ter and the candidate object instance should output a good correlation plane. The

goodness of this correlation is measured with respect to its closeness to a peaky-

shaped signal. The peaky-shaped signal is also known as the desired response. If

the candidate object instance is shifted from the actual center of the object, then the

filter should produce a response plane with the same shift amount on the peak loca-

tion. An illustration of CFB tracking framework is presented in Figure 2.5 and 2.6.

Since correlation filter is designed with respect to a desired correlation plane, it is

also perceived as a discriminative regressor model. The difference between the naive

correlation operation and the computed correlation filter can be visualized in Figure

2.6. As Figure 2.6 demonstrates, the correlation filter H , which is calculated by min-

imizing a cost function that considers a desired optimal correlation response, outputs

a clear response when H is correlated with the object patch Y . On the other hand,

the naive correlation of the object by itself produces multiple local maximums, and

the correlation response has higher values in the background parts of the object patch

when compared to the calculated correlation filter.

It should be noted that the correlation operation requires O(N2) multiplications (N

is the signal length) and might be problematic for long signals or large images. Thus,

instead of (linear) correlation, circular correlation is mostly preferred for both find-

ing the correlation filter and operating the correlation operations due to two reasons:

(1) One can perform this operation in frequency domain with element-wise multi-

plications according to the Convolution Theorem, and Fast Fourier Transform has

O(Nlog(N)) complexity [87], (2) If the operations are reduced to the element-wise

multiplications, the filter learning problem becomes trivial for most learning-based

24



Figure 2.5: A representative illustration of a correlation filter based visual tracking
framework. The aim is to find a correlation filter such that the resulting correlation
response of this filter and the unlocalized object observation will have a peak around
the true center of the object.

methods. Due to these two reasons, although typical object motions are not circular

in their translation, convolution operation is performed circularly while sacrificing

from performance at the boundary locations.

2.3.1.1 Fundamental Correlation Filters

There exist preliminary efforts on designing and learning a correlation filter by using a

set of training examples, such as Minimum Average Correlation Energy (MACE) fil-

ters [78], Optimal Tradeoff Filters (OTF) [89] and Unconstrained MACE (UMACE)

[93]. Nevertheless, all of these methods have some major disadvantages. For in-

stance, OTF and MACE require single desired correlation result, the centered filter

and training examples. In UMACE, the lack of the constraints (or the supervision)

is handled by removing the constraint on the desired correlation response to be a a

particular value, instead by making it as high as possible. Obviously, those limited

supervision makes them highly sensitive to noise, since there is no constraint or uti-

lization of a prior information regarding the correlation response at other locations

of the training examples. Hence, these family of correlation filter based approaches
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Figure 2.6: Illustrating the effectiveness of using a desired correlation response.

are not discriminative. In the following subsections, discriminative correlation filter

based methods are discussed.

2.3.1.2 Discriminative Correlation Filters

In order to overcome the previous correlation filter designs, a simple yet effective

method, Average of Synthetic Exact Filters (ASEF) [15], exploits convolution theo-

rem such that individual exact filters are obtained by dividing the desired response

to the training images in the frequency domain. Then, the exact filters are averaged

to extract a generalizing unique filter. Although the resulting correlation filter is not

optimal for any cost function, the authors [15] present promising results for handling

eye localization task, while they base their design on aggregation theory. For proper

operation, there should be enough number of training examples. However, this might

be a trouble for the tracking problem, since the correlation filter should have been

designed in the very first frame.

A seminal work on discriminative correlation filters is proposed in [14] for visual

tracking by Bolme et.al., named as Minimum Output Sum of Squared Error (MOSSE).

In MOSSE, a correlation filter is computed by the cost function to minimize the sum

of squared errors between the desired correlation response and the correlation of the

filter to be estimated and each training example. Since the circular correlation and

the Convolution Theorem allow to operate in frequency domain, there exists a closed
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form expression for the correlation filter. If we look from the perspective of the pre-

vious studies on correlation filters, such as MACE and UMACE [78, 93], as a set of

linear constraints, MOSSE [14] has intensive amount of constraints, i.e. the value of

the correlation responses at all possible circular translations of each training exam-

ple. Thus, the foreground and the background are learned discriminatively. Due to

this property, it implicitly performs dense and circular template matching. Moreover,

the closed form solution can be computed efficiently in the frequency domain and

amenable to the simple moving average based updates. The aforementioned proper-

ties make MOSSE attractive. As a result, any researcher working on visual tracking

problem should address this issue first in order to further develop or apply the machine

learning and signal processing tools.

In [50], the correlation filter design in MOSSE [14] is perceived as a linear ridge

regression problem. This perception is utilized to extend this idea to the ridge kernel

regression in [50], where the kernel matrix is confined to be circulant by selection of

appropriate kernels. Their proposed method has also a closed form solution in the

frequency domain and consists of element-wise multiplications and divisions. Their

tracking localization results are significantly better than the linear version in MOSSE.

2.3.1.3 Correlation Filters with Multiple Channels

Until now, a single correlation filter design is discussed, since the only information

provided is the raw image intensities. However, there are alternative and robust ver-

sions of the raw image intensities including edges, oriented gradients and color chan-

nels. The kernelized correlation filter (KCF) based tracking is proposed in [48] by

multi-channel extension of the tracker in [50]. Moreover, results on extensive amount

of tracking sequences have shown impressive performance due to the use of multiple

channels. In their study, HOG feature channels are employed by representing each

pixels or a set of pixels with many orientation gradients. Apart from this study, the

multiple channel correlation filters are applied to the object detection and alignment

problems in three simultaneous studies [49, 40, 13], although these three works re-

quire expensive matrix inversions. It should be noted that the closed form solution

dealing with both multiple channels and multiple training examples either in the dual
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or primal form of the kernel based formulation require intensive amount of computa-

tions and there is no efficient closed form solution in the frequency domain. Thus, the

weighted averages are taken throughout the frames to compute a generalizing correla-

tion filter model. Unlike the incorporation of maximum margin loss to the correlation

filters in [90] with tedious and time-consuming computations, the study in [130] in-

corporate the SVM framework as support correlation filters with an increase in the

efficiency even for multiple channels.

2.3.1.4 Scale Adaptability

The computation of multiple channel correlation filters with more than one template

is formulated in [10] by an iterative optimization method. Moreover, [10] provides

a scale adaptability by the posterior probability of a scale value according to a base

scale. Discriminative Scale Space Tracker (DSST) [26], the winner of VOT2014

Challenge [59], has also a scale estimation stage in the context of correlation filters

where the multiple scale search is efficiently fulfilled in the frequency domain by fol-

lowing the same idea in the correlation filter response calculation. In addition, DSST

employs the multiple HOG channels as in [48] with an heuristic moving average based

update stage. In [53], object detection proposals helps to improve the scale and aspect

ratio of the target object unlike the search of single aspect ratio within multiple scales

in most works. In [98], an adjustable Gaussian window operates spatial windowing

to suppress the boundaries of the object patch instead of the cosine window utilized

in most of the CFB studies, and the standard deviation of the window provides a scale

estimation. Another scale adaptive kernelized method [69] also estimates the scale of

the object by a multi-scale search and the optimum scale is decided according to the

scale at which the correlation response is the best.

2.3.1.5 Other Extensions of Correlation Filters

There exist also methods which are either a combination of more than one concept

including correlation filters or other tracking approaches. For instance, [41] attacks to

one of the weak aspects of correlation filters, which is the boundary problem. In other
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words, imperfect training examples are inherently generated, since circular transla-

tion and the actual translation are assumed to be the same operations in the context

of correlation filter based methods. To handle this issue, the study in [41] avoids the

imperfect training examples by the help of a novel cost function containing a masking

matrix. On the other hand, [28] proposes to penalize the boundaries of the correlation

filters by a function in the spatial domain and the filter is obtained in the frequency do-

main by an iterative optimization process. [28] performs significantly better than [41]

and achieves the best results with the use of pre-trained convolutional feature maps

[27]. Following this work, an adaptive decontamination framework [25] is presented

to discard the inappropriate training samples by learning the weights of these samples

and the correlation filter model simultaneously. As a result, significant performance

increase is achieved [25] .

Continuous convolutional operators tracker CCOT [30] is presented for the design

of correlation filters in the continuous domain in order to cope with multiple feature

sizes. Their formulation effectively employs the use of more than one convolutional

layer with different size rather than naively resizing the feature maps to a reference

size. This continuous formulation helps to obtain satisfactory results and makes this

tracker the winner of VOT2016 Challenge [36]. [99] proposes different sparsity re-

lated loss functions unlike the conventional L2 loss utilized by the CFB tracking

methods. Their proposed method relatively improves the results compared to the

baselines while computationally more efficient than its state-of-the-art counterparts.

Although the sparse dictionary related trackers have become obsolete after the rise

of CFB trackers, the study in [124] formulates the sparse dictionary learning by col-

lecting circulant target templates and solves the problem efficiently in the frequency

domain as in the case of CFB methods. Another drawback of the correlation filter

based methods is due to the assumption that the desired correlation response is a

peaky-shaped Gaussian. However, any other response with a peaky behaviour could

be desirable. To address this issue, [11] proposes to learn both the correlation fil-

ter and the target response, concurrently. This simultaneous learning improves the

tracking localization in benchmark sequences.
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2.3.1.6 Learned Representations for Correlation Filters

As the impact of deep learning methods has increased in the recent years, such learned

features trained for object classification tasks have been employed in many other tasks

as it is stated earlier in Section 2.1, especially for the discriminative trackers. These

pre-trained deep features have also been utilized by the correlation filters, except for

their fully-connected layers, since fully-connected layers corrupt the shift invariance

property, existence of which is an obligation for correlation filters. Hence, convolu-

tional layers of the pre-trained networks are exploited in [27]. In that work, the convo-

lutional feature maps are employed as the multiple channels of the correlation filters

and they empirically try to determine the layers that are useful for correlation filter

based visual tracking. The shallow layers are found out to be effective for improving

the results. [77] merges the information in multiple convolutional layers, whereas in

[76], multiple convolutional layers are hierarchically exploited to estimate the object

location in a coarse-to-fine manner. Multiple channels are also wisely merged in [30]

in the continuous domain. The main conclusion for the selection of layers is superi-

ority of the combination of lower and higher layers, since shallow layers encode the

low level features such as edges or small parts of the object, while the higher levels

contain more holistic information about the object.

2.3.2 Methods based on neural networks

Recently, various deep architectures with customized layers or objective functions

have been proposed. Among them, Siamese networks [20] have been popular in or-

der to learn feature embeddings for a specific task with a contrastive loss. The main

objective of a Siamese network is to learn a model which will output a feature em-

bedding such that the instances belonging to the same class should have a proximity

in the learned space, whereas the instances of different classes should be as far as

possible from each other. An application of this concept to the visual object tracking

is proposed in [101] where the network learns to output similar features for various

appearances of the target object and dissimilar ones for the target and non-target sam-

ples. Once the model is learned, the feature vector of the first object appearance is

compared to the candidates to find the best match without any update mechanism.

30



Nevertheless, evaluating many candidates are quite expensive. Hence, a CNN model

is introduced in [47], which directly learns to output the relative location of the object

with respect to a reference object instance and avoids the expensive candidate eval-

uations and the feature matching phase. Unlike the model in [47] employing fully

connected layers, a fully-convolutional neural network is presented in [9]. In [9], the

object template and the test frame are passed through the same convolutional layers,

and their correlation is obtained by the sliding window approach. The sliding window

stage is operated in the convolutional layer format, since the standard deep learning

libraries are efficiently exploited in order not to sacrifice much from the computation

time.

Another popular neural architecture that is worth to mention is Recurrent Neural Net-

works (RNNs) [34], which is a useful neural network model, especially in natural

language processing. Recently, it has been started to be used for particular computer

vision tasks, including visual tracking. For instance, RNNs are employed in [23] in

order to estimate the confidence map of the target object by modeling the spatial re-

lationships between the object and the background. Another spatial perspective is to

spatially model the object structure. The study in [37] successfully applies this idea

to the visual tracking problem in order to assist the CNN layers. Unlike the use of

RNNs for the spatial relationships, two concurrent works, [56] and [42], propose to

learn an RNN model to directly estimate the motion of the object by modeling their

RNNs to learn the relationships between the frames sequentially. Nevertheless, the

visual tracking experiments are conducted on the simulation data, and they lack the

performance on the standard benchmarks, such as VOT challenges [59, 35, 36] or

Online Tracking Benchmarks [111, 112].

2.4 Ensemble of Trackers

Combination of multiple online trackers is another line of research. For instance,

multiple correlation trackers are executed at different parts of the object in [73]. A

part-based version of MOSSE [14] has been proposed in [102] to accomplish object

detection task. Reliable patches are tracked in [70] using KCF [48] as the base tracker.

The work in MEEM [120] selects the best SVM-based discriminative tracker accord-
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ing to an entropy minimization criterion. Markov Chain Monte Carlo sampling is also

used to sample trackers and combine them [54]. Various trackers with mixed feature

types are combined in [100]. Hybrid methods combining generative and discrimina-

tive approaches are also proposed in [127, 118]. Improving the CNN-based method

MDNet [84] described in Section 2.1, in [83], a tree-structure stores the different ap-

pearances in the nodes of the tree as CNN models. This provides a robustness to

significant appearance changes of the target. The object state estimation is performed

by combining the trackers in the nodes with the help of a specially designed policy.

In this chapter, the state-of-the-art visual object tracking methods are discussed in

detail with a novel taxonomy taking the recent advances in the literature into account.

The presented efforts typically handle the well-known challenges of visual tracking

up to a certain level in specific scenarios. Throughout this chapter, the crucial issues

related to the advantages and disadvantages of all of the mentioned methods are dis-

cussed while considering these challenges. In this thesis, the aim is to find solutions

for the problems of the existing methods by utilizing correlation filter based track-

ing formulation. Firstly, the inefficient localization step of discriminative track-by-

classification methods (they generally evaluate a classifier in all candidate locations)

is avoided due to the choice of correlation filter based trackers. Unlike the genera-

tive methods, the discrimination of foreground and background regions exists in the

adopted studies for this thesis. Moreover, the proposed ensemble tracking method

that is described in Chapter 5 addresses the non-optimal learning rate problem of cor-

relation filter based trackers, while handling to track objects with various appearance

changes. The proposed spatial window learning method that is described in Chapter

4 improves the correlation quality in the case of occlusion and object deformations.

Finally, the feature learning framework presented in Chapter 6 address the challenges

of abrupt appearance changes, object deformations and the utilization of imperfect

training examples by learning robust features to these challenges.

In brief, in this thesis, the proposed methods exploits the correlation filter based meth-

ods, obtains favorable tracking performance against the existing counterparts as well

as other family of trackers, such as discriminative track-by-classification methods,

while maintaining the computational complexity of the proposed trackers as low as

possible for their use in practical applications.
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CHAPTER 3

CORRELATION FILTER BASED TRACKING

The main focus of the thesis is to provide state-of-the-art improvements over single

object tracking algorithms by the help of correlation filter theory. In order to achieve

this goal, a popular correlation filter based tracking formulation is followed in this

study, namely linear multiple channel correlation filters, since linear formulation [14,

26] facilitates its further development and performs favorably against the kernelized

version [48, 50] in terms of accuracy and efficiency. In our proposals, we mainly

follow two frameworks: (1) Discriminative Scale Space Tracker (DSST for short) [26]

and (2) Continuous Convolution Operators Tracker (CCOT for short) [30]. Hence, the

formulations and necessary derivations will be included here after the introductory

basics about the single channel linear correlation filters.

3.1 Single Channel Correlation Filters for Visual Tracking

Following the correlation filter taxonomy presented in Section 2.3.1, the pioneering

method is the single channel linear correlation filter formulation, which minimizes the

sum of squared error (MOSSE) [14] of the correlation response, and its convenient

formulation is summarized here.

Beforehand, the correlation and convolution theorem will be reminded, since they

will be often utilized throughout the derivations.

c[n] =
∑
m

a[m]b[n−m] = F−1{A�B} (3.1)
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c[n] =
∑
m

a[m]b[n+m] = F−1{A∗ �B} (3.2)

Equations (3.1) and (3.2) are convolution and correlation theorem for two one-dimensional

discrete signals, a[.] and b[.] with the equal length, respectively. The signal a[n−m]

is assumed to be the circularly translated version of a[n] by an integer amount m to

the right unless stated otherwise. The superscript ∗ denotes the element-wise com-

plex conjugate. (3.1) and (3.2) are obviously corollary of each other. The symbol �
denotes element-wise multiplication, whereas F and F−1 are Discrete Fourier Trans-

form (DFT) and inverse DFT, respectively. All capital letters denote the signals in the

frequency domain, while the lower case letters represent the signals in the spatial do-

main. The extension of the theorem to two-dimensional case is straightforward, since

the DFT operation has a separable 2-dimensional definition. Henceforth, it is assumed

that any derivation for 1-dimensional signals can be extended to 2-dimensional sig-

nals, if one can split the operations into two dimensions.

3.1.1 Correlation Filter Computation

At the beginning of the tracking, a set of training examples, {xi}Ni=1, are assumed to

exist, where N denotes the number of examples. Each xi represents an M ×M two-

dimensional object patch. Moreover, {gi}Ni=1 are the desired correlation responses

for a filter h and the training examples. Concretely, if the object x is centered with

respect to the bounding box, the desired response g is also centered, while g should

be shifted from the center by the amount which x is shifted from the center. When

the correlation filter and the training examples are circularly correlated, the resulting

responses should resemble the desired responses, {gi}Ni=1, as much as possible. This

resemblance is enforced by the following loss function [14]:

hopt = argmin
h

N∑
i=1

‖h~ xi − gi‖2, (3.3)

where ~ is the circular correlation operation, and hopt is the resulting correlation filter.

According to the correlation theorem, (3.3) can be written in the frequency domain as

34



follows:

Hopt = argmin
H

N∑
i=1

‖H∗ �Xi −Gi‖2. (3.4)

Since the operations are element-wise multiplications (denoted by �), the optimiza-

tion of each element of the signal H can be performed separately. The term inside the

argmax in the above equation can be rewritten as:

L =
N∑
i=1

H∗ �H �X∗i �Xi +G∗i �Gi −H∗ �Xi �G∗i −H �X∗i �Gi. (3.5)

If the derivative of the function in (3.5) is taken with respect to H∗ for all of its

elements, we obtain1

∂L
∂H∗

=
N∑
i=1

H �X∗i �Xi −Xi �G∗i . (3.6)

When (3.6) is equated to zero, H is obtained as follows:

H =

N∑
i=1

Xi �G∗i
N∑
i=1

X∗i �Xi

. (3.7)

In (3.7), H is the correlation filter which minimizes the cost in (3.3) in the frequency

domain. It is notable that the calculation of H has complexity of O(M2log(M)) due

to the Fast Fourier Transform algorithm with O(Mlog(M)) complexity. If the op-

erations were performed in the image domain, M2 × M2 matrix operations would

be required, i.e., matrix inversion and matrix multiplications due to the need for lin-

ear least square solution. This efficiency provides the correlation filter usage in the

tracking problem with a real-time operation opportunity.

3.1.2 Object Localization

Once the filter Ht is obtained at the tth frame, the unlocalized object patch Zt+1 is

element-wise multiplied by Ht, and the estimated response gestt+1 is obtained simply

by taking its inverse DFT:

gestt+1 = F−1{H∗t � Zt+1} (3.8)
1 H and H∗ are regarded as independent from each other [14] and ∂H

∂H∗ is equal to zero.
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In (3.8), it is obvious that the correlation response gestt+1 would be exactly gi, if Zt+1 =

Xi and there exist one training example. For localization, the pixel location which

gives the highest value of gestt+1 is determined as the shift from the center.

3.1.3 Model Update

As it can be observed from (3.7), the optimum filter is computed by only adding

some terms to the numerator and denominator of (3.7). Hence, the following update

is performed throughout the frames with a learning/update rate γ conveniently:

At+1 = (1− γ)At + γ(Xt+1 �G∗t+1),

Bt+1 = (1− γ)Bt + γ(Xt+1 �X∗t+1),
(3.9)

where Ht+1 at the t+ 1th frame is:

Ht+1 =
At+1

Bt+1

, (3.10)

and Xt+1 is the object patch cropped after the localization and Gt+1 is the desired

response in the frequency domain with a centered Gaussian since the object patch is

already localized.

The computations of the model update and the localization steps can be operated so

efficiently that the visual tracking algorithm relying on MOSSE is able to run be-

yond real-time. Nevertheless, a single feature map (e.g. raw image intensities) is not

enough to maintain accurate tracking of a target object when the appearance changes

significantly degrade the representation power of the correlation filter. Furthermore,

MOSSE framework is not appropriate for significant scale changes of the object. Due

to these challenges, tracking methods that support multiple feature maps and include

multi-scale search steps [69, 26] are proposed. In the following section, a state-of-

the-art correlation filter based tracking method with the aforementioned capabilities

is explained and employed in the proposed tracking algorithms.

3.2 Discriminative Scale Space Tracker (DSST)

DSST is an extension of MOSSE [14] in which only the first term of the cost function

in (3.11) is minimized with one feature map (i.e. image intensity) as it is formulated
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in the previous section. Here, the feature maps {x1, ..., xd} correspond to the training

example x, which consists of particular feature maps, such as HOG orientation maps

or deep feature maps with the same dimension as the object patch. The desired cor-

relation mask of the training example x is denoted by g. The desired cost function to

be minimized is given below to cover all of the training examples until time t:

L(ht) =
t∑
i=1

∥∥∥∥∥(
d∑
l=1

hlt ~ xli)− gi

∥∥∥∥∥
2

+ λε

d∑
l=1

‖hlt‖2 (3.11)

Here, λε is the control parameter for L2 regularization term of the filter. As (3.11)

suggests, a set of filters {hlt}dl=1 should be estimated such that the correlation oper-

ation between hlt’s and xlt’s are summed and the error between the desired response

gi’s and the summed correlation results
d∑
l=1

hlt~ xli should be minimized under the L2

regularization of the correlation filters. Although there exist a closed form solution

for the correlation filters in (3.11), it is not as efficient as the one for the single channel

case in the frequency domain. Fortunately, there exists a closed form solution in the

frequency domain for one training example, i.e. t = 1. In order to obtain the efficient

solution, (3.11) can be rewritten in the frequency domain using Parseval’s relation by

assuming one training example2:

L(H) =

∥∥∥∥∥
d∑
l=1

H l∗ �X l −G

∥∥∥∥∥
2

+ λε

d∑
l=1

∥∥H l
∥∥2. (3.12)

Remark: During the derivations, the complex terms have the following interpreta-

tions: X l and H l are M ×M complex signals, X l[w] and H l[w] are complex scalar

values at the wth discrete frequency index of the signal X l and H l, and X[w] and

H[w] are d−dimensional complex vectors at the discrete frequency index w. Yet, the

desired correlation response, G, is a single feature map in the frequency domain and

G[w] is a complex scalar for each frequency index, w.

If (3.12) is explicitly written by summing over all the frequency components to obtain

its norm,

L(H) =
∑
w

∣∣∣∣∣
d∑
l=1

H l∗[w]X l[w]−G[w]

∣∣∣∣∣
2

+ λε

d∑
l=1

∣∣H l[w]
∣∣2 (3.13)

2 The time subscript is dropped for clarity.
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is obtained. Since each frequency component w has a d-dimensional complex vector

for X and H , (3.13) can be converted to:

L(H) =
∑
w

∣∣X[w]HH[w]−G[w]∗
∣∣2 + λε‖H[w]‖2, (3.14)

where Y H is the Hermitian transpose of the complex vector Y . All the terms in (3.14)

depends on one frequency index. Hence, the minimization can be evaluated for each

frequency independently, and separate quadratic minimization terms are obtained for

each frequency w as:

L(H[w]) = H[w]HX[w]X[w]HH[w] +G[w]G[w]∗ −G[w]∗H[w]HX[w]− (3.15)

G[w]X[w]HH[w] + λεH[w]HH[w]. (3.16)

If the gradient with respect to HH is taken and equated to zero,

(X[w]X[w]H + λεId)H = X[w]G[w]∗ (3.17)

is obtained for each frequency component, where Id is the d × d identity matrix. By

exploiting the matrix inversion lemma and dropping the frequency index within the

square brackets, the final correlation filters are obtained as:

H l =
X l �G∗

d∑
k=1

Xk �Xk∗ + λε

=
Al

B + λε
, ∀l ∈ 1, ..., d (3.18)

At each time instant, the filter H l is updated by applying moving average to the nu-

merator and denominator of (3.18) separately via:

Alt = (1− γ)Alt−1 + γ(G∗t �X l
t),

Bt = (1− γ)Bt−1 + γ

d∑
k=1

Xk
t �Xk∗

t ,
(3.19)

where γ is the model update rate. The correlation of an object patch zt+1 and the

model H l is calculated using the updated numerator Alt and denominator Bt of H l in

the frequency domain using:

c = F−1


d∑
l=1

Al∗t � Z l
t+1

Bt + λε

 , (3.20)
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where the spatial domain correlation mask is obtained by taking the inverse Fourier

transform. The new location of the object in the next frame is estimated as the location

giving the maximum value at c in (3.20).

For scale estimation, DSST extracts d̃-dimensional HOG features for S scale factors.

In order to achieve this aim, the base size of the target is multiplied by the scale factor.

The corresponding region is cropped and described by the d̃-dimensional features

similar to the location estimation procedure. Then, the scale correlation filter hscale is

calculated for the scale samples xs ∈ Rd̃×S . The optimal scale is determined as the

scale index giving the highest value on the correlation response of the test instance

zscale and hscale. The moving average based update is again employed for the scale

filter as well.

It should be pointed out that the location and scale estimation have the complexity of

O(dM2log(M)) and O(d̃Slog(S)), respectively, if the object is M ×M , the number

of feature channels is d, the scale range is S and the scale feature dimension is d̃. The

same complexity is also valid for the model update stage. Hence, this method can

be operated in real-time in a single CPU, when those feature dimensions and the size

of the object patch are kept within practical bounds. Nevertheless, its performance

can be further increased at the expense of the computation time. One of the recently

proposed trackers which aims to boost the performance of DSST-like [26] trackers is

explained in the next section.

3.3 Continuous Convolution Operators for Visual Tracking

In order to achieve the state-of-the-art results, the most recent developments on the

correlation filter based tracking literature should be examined. As it will be described

in the following chapters, deep convolutional networks are learned specifically tar-

geting at the correlation filter loss function. In the employment of the deep features

or any other feature such as HOG, the feature maps are interpolated to a reference

scale or an aspect ratio to operate the correlation filter formulations. For instance,

the deep features extracted from different layers of a convolutional network have dif-

ferent dimensions. However, all of them should have the same spatial dimensions to
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calculate the filters and to operate the localization step efficiently in the frequency

domain. This goal is fulfilled by explicitly resampling all feature maps to a common

resolution. Yet, the resampling adds redundant data and introduces artifacts. To over-

come this problem, a continuous domain formulation is proposed in [30] and obtains

promising results on many benchmark datasets. The detailed explanation for Con-

tinuous Convolution Operator Tracker (CCOT) [30] is summarized in this section,

since CCOT is utilized to evaluate the effectiveness of our learned features, i.e., deep

convolutional feature maps.

In order to operate in the continuous domain, L2(T ) space of complex-valued peri-

odic functions g : R → C with period T > 0 are the signals under consideration.

Moreover, L2(T ) is a space consisting of square Lebesgue integrable functions. The

inner product and the circular convolution are defined as follows [30]:

< g, h >=
1

T

∫ T

0

g(t)h∗(t)dt,

g ∗ h(t) = 1

T

∫ T

0

g(t− s)h(s)ds.
(3.21)

In the above equation, ∗ is the circular convolution operator in the continuous domain.

In theory, a family of exponential functions with infinite quantity, i.e. {ej 2πktT }∞−∞, are

required as the orthonormal basis for L2(T ). Fourier coefficients of g ∈ L2(T ) are

ĝ[k] =< g, ej
2πkt
T > ∀k such that g =

∞∑
k=−∞

ĝ[k]ej
2πkt
T . Moreover, Parseval’s formula

and the convolution theorem are also satisfied as follows:

‖g‖2 = ‖ĝ‖2, where ‖g‖2 =< g, g > and ‖ĝ‖2 =
∞∑

k=−∞

|ĝ[k]|2,

ĝ ∗ h = ĝĥ, and ĝh = ĝ ∗ ĥ, where ĝ ∗ ĥ[k] =
∞∑

l=−∞

ĝ[k − l]ĥ[l]
(3.22)

Unlike the constant dimension assumption for all of the feature maps in the previous

section, each training sample xj is here allowed to have the feature maps with differ-

ent dimensions as xdj ∈ RNd ,∀d ∈ {1, 2, · · · , D}. To implicitly model the signals in

the continuous domain, the interval [0, T ) is assumed to be the support interval. For

each feature map d, the interpolation function is expressed as:

Jd{xd}(t) =
Nd−1∑
n=0

xd[n]bd

(
t− T

Nd

n

)
, (3.23)
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where bd ∈ L2(T ) is the interpolation function. With the above equation, the discrete

feature map xd[n] is mapped to the continuous domain as Jd{xd}(t) by the help of

an interpolation function. The ultimate goal here is to find a linear convolution (or

a correlation) operator Sh such that a sample x is mapped to a target confidence

response s(t) = Sh{x}(t). Since there exist D feature maps, the correlation filters

h = (h1, h2, ...hD) ∈ L2(T ) are intended to be estimated. Here, hd is the continuous

filter for feature channel d. The convolution operator in the continuous domain is

described as:

Sh{x} =
D∑
d=1

hd ∗ Jd{xd}. (3.24)

Although the initially given signals are discrete, they are first converted to the con-

tinuous domain using the operation Jd{xd}. Moreover, there should be continuous

desired values gj for each training example xj . The correlation filter cost function for

m training examples is defined in the continuous domain by:

E(h) =
m∑
j=1

αj‖Sh{xj} − gj‖2 +
D∑
d=1

‖w � hd‖2. (3.25)

Here, αj represents the importance of the sample xj , and w is a spatial penalty func-

tion to regularize the correlation filter in the spatial domain. This penalty function is

selected as the one which has high values around the boundary of the region of in-

terest while it gets lower values near the center similar to the idea in SRDCF tracker

(c.f. [28] for details).

In order to learn the filter set h minimizing the cost in (3.25), the frequency domain

is mostly utilized. By the previously given properties of the Fourier coefficients,

Ĵd{xd}[k] = Xd[k]b̂d[k] are Fourier coefficients of the interpolated feature maps

where Xd[k] =
Nd−1∑
n=0

xd[n]e−
2πnk

Nd , k ∈ Z is DFT of xd. The confidence function

has the Fourier coefficients as:

Ŝh{x}[k] =
D∑
d=1

ĥd[k]Xd[k]b̂d[k]. (3.26)

Thus, the cost function in (3.25) becomes:

E(h) =
m∑
j=1

αj‖
D∑
d=1

ĥdXd
j b̂d − ĝj‖2 +

D∑
d=1

‖ŵ ∗ ĥd‖2 (3.27)
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by applying Parsevals relation and using (3.26). Although the above formulations are

in the continuous domain and require infinitely many number of Fourier coefficients,

h is approximated by a finite amount of Fourier coefficients {ĥd[k]}Kd−Kd for the fil-

ter of the feature map hd by assuming that ĥd[k] = 0 for |k| > Kd. The Kd value

is set to Nd
2

. After this point, the terms in (3.27) are converted to the linear matrix,

and vector multiplications and a set of normal equations are obtained. Since these

equations are in so high dimensional space that the matrix inversion is infeasible, the

Conjugate Gradient Descent is utilized to iteratively optimize the cost. For the other

implementation details, the reader should refer to [30]. Once the object is localized, a

multi-scale search is adopted to find the best matching scale by looking at the corre-

lation responses at every scale. The best scale is selected as the one with the highest

correlation response. If the best scale is different than the current one, the region of

interest is cropped with the estimated scale and the same localization operations are

performed for the next frame.

Thus far, the correlation filters that will be dealt are summarized: single channel lin-

ear correlation filter, multiple channel correlation filters and continuous convolution

operators, all of which will be utilized in the proposed frameworks to further extend

these methods for better tracking performance.
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CHAPTER 4

LEARNING SPATIAL WINDOWS FOR CORRELATION

FILTER BASED TRACKING

Correlation filters have recently attracted the visual tracking community due to mostly

its efficiency and the simplicity of their update equations as explained in Section 3.2.

Nevertheless, correlation filter based methods suffer from the following drawback:

At each frame, a template filter is correlated with the region of interest in the current

frame; although, there is an update strategy, the filter and the current region of interest

might have significant dissimilarities due to the partial occlusion of the object, motion

model mismatches or abrupt appearance changes of the target (e.g., appearance of a

rolling ball, a walking person, a partially occluded face). One alternative to cope with

this situation is to increase the learning rate of the model. Yet, such a strategy has two

major drawbacks: (1) Overfitting to the latest object appearance and (2) inappropriate

nature of the features for the additive model update.

In the ideal case, the ultimate goal is obviously to have both an object description

invariant to any kind of changes and zero update process. In the current line of re-

search, there exists no such feature type which is invariant to all kinds of appearance

changes. Thus, improvements to handle the appearance changes are often studied by

proposing further extensions to a base framework. To this end, we opt to selectively

permeate the extracted features. Numerous efforts have attempted to design feature

selection algorithms. The pioneering examples for the tracking problem are MIL [3]

and ODFS [122], where a subset of the features are to be selected according to their

discrimination capabilities between the background and object.

In the context of the correlation filters, each component of the multiple feature maps

43



are two-dimensional discrete signals. Moreover, the correlation response is mostly

effected by the spatial arrangement of the pixel values. In order to avoid the described

challenges, we propose a new spatial windowing method by reducing a cost function

which penalizes the dissemblance of the correlation output to a peaky shaped signal.

In other words, the differences between the template filter and object appearance at

the current frame are suppressed by the estimated masking values in such a way that

correlating the remaining (robust) appearances of the object and the correlation filter

is able to yield a sharply peaked output. Although hard assignments for the window

to be learned could be a nice choice (e.g., multiplying the value at each location with

1 or 0), the problem statement is relaxed to the continuous valued outputs in order to

efficiently formulate the window learning problem.

Concretely, we deal with the problem of estimating a spatial window for the object

observation such that element-wise multiplication of the object observation (or filter)

and the extracted spatial window improves the tracking performance by suppressing

the irrelevant regions of the object (e.g., occlusions or motion model mismatch) and

highlighting the parts of the object which supports the similarity with the utilized

correlation filter for the tracking task. Likewise, it is possible to design the window

learning framework for the correlation filter as well. Hence, the spatial window learn-

ing on the correlation filter is also proposed and compared with respect to the case for

the windowing on the object observation.

The efficacy of the proposed approach can be visualized by a typical example in Fig-

ure 4.1. In this figure, a rolling ball with hexagons is to be tracked. As the ball rolls,

the locations of the rotating hexagons change rapidly. Hence, a significant mismatch

in the location of the hexagons between two consecutive frames occurs. As it is il-

lustrated in Figure 4.1, the highest location of the correlation output is shifted from

the center when the conventional correlation filtering [26] is applied, whereas the cor-

relation output gives an accurate highest location by using the proposed windowing

strategy. The inferior localization of the conventional approach is due to the abrupt

appearance changes of the ball, since rolling causes the location of the hexagons on

the ball to move abruptly. The proposed window suppresses the hexagons (cf. bottom

left in Figure 4.1), which are moving faster than the ball itself.
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Figure 4.1: Ball sequence, frame # 87. Top-left: The object patch. Top-right: Cor-
relation result using the conventional Hanning window. Bottom-left The estimated
window by the proposed method. Bottom-right: Correlation result after the proposed
method. (Dark values indicate low values for window function and the correlation re-
sults.) The correlation score is much sharper and located at a better position (i.e.
non-translation)

In the following sections, windowing applied to the instantaneous object observation

and to the correlation filter are explained, respectively.
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4.1 Spatial Windowing Applied to the Object Observation

Windowing is an element-wise multiplication operation with the signal under concern

before DFT calculation to reduce the frequency leakage [87]. Moreover, it is also

used in correlation filter based trackers to suppress the boundaries due to the circular

correlation operation [48, 26]. For a localized object patch xt, the correlation output

ĝ = ht ~ xt should give the desired response g as in (3.3) for the currently available

correlation filer ht. Nevertheless, ĝ might have multi-peaks or an undesired maximum

location due to the challenges, such as partial occlusion, appearance changes of the

object and motion model mismatches, which will cause a drift of the tracking result

from the actual location in the next frame.

To this end, we propose an online window estimation method to alleviate the adverse

effects mentioned above by reducing the cost below in order to increase the similarity

between ĝ and g:

ε(w) = ‖ht ~ (w � xt)− g‖2, (4.1)

wherew is the unknown window that should reduce this cost function. In other words,

we try to estimate a window, which will be multiplied by the signal xt element-wise

as ft = xt � w, instead of other (constant) windowing functions (e.g., Gaussian or

Hanning) such that the resulting correlation ĝ = ht~ (xt�w) has more resemblance

to the peaky shaped signal g than the other fixed windowing functions will cause.

Here, ht = F−1{A1
t/(Bt+λε)} is the P ×P correlation filter for the image intensity

features (the first feature channel in Eq. (3.18)). For reducing (4.1), gradient descent

with a step size of γSW can be utilized as:

w[i]← w[i]− γSW
∂ε

∂w[i]
, (4.2)

where each entry of the discrete signal w is perceived as an unknown parameter. The

number of parameters to be optimized are as many as the number of the pixels in the

window patch.1 We propose a method for computing the gradient of the cost function

with respect to the elements of the spatial window w. During the derivation of the

gradient computation, the signals will be considered as 1-dimensional and the corre-

lation output z[n] of two signals x[n] and y[n] will be denoted as z[n] =
∑
i

x[i]y[i+n]

1 Throughout this chapter, w denotes the signal as vector whereas w[i] denotes the ith element of the signal
w and we drop the time dependency subscript t for the clarity of the derivation.
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as it has already been defined in Section 3.1 2. The cost function can be rewritten as:

ε(w) =
∑
n

(∑
i

h[i]w[i+ n]x[i+ n]− g[n]

)2

(4.3)

by summing the squared values of the elements of the difference signal between the

correlation output function and the desired response g.

Taking the partial derivative of ε(w) with respect to w[m] gives:

∂ε(w)

∂w[m]
=
∑
n

(
∑
i

h[i]w[i+ n]x[i+ n]− g[n])h[m− n]x[m], (4.4)

(
∑
n

k[n]h[m− n])x[m] = s[m]x[m], (4.5)

if we define the following intermediate signals, s[m] and k[n] :

s[m] ,
∑
n

k[n]h[m− n],

k[n] ,
∑
i

h[i]w[i+ n]x[i+ n]− g[n].
(4.6)

Since both of the intermediate signals s and k are calculated by correlating two sig-

nals, they can be evaluated efficiently in the frequency domain using Convolution

Theorem as follows:

k = F−1 {F {w � x} �H∗ −G} , (4.7)

s = F−1 {K �H} . (4.8)

Using k[m] and s[m], partial derivatives are quite efficiently calculated by element-

wise multiplication in the image domain as:

∂ε(w)

∂w[m]
= s[m]x[m] (4.9)

Thus far, the derivation of the gradient calculation is obtained for the window signal,

which will be searched by the gradient descent procedure described in (4.2) due to

the fact that other optimization methods, such as Conjugate Gradient, requires to
2 The proofs can be extended to 2-dimensional signals by adding the second subscript as the second dimen-

sion, and valid for 2-dimensional case as well since the corresponding Fourier and inverse Fourier operations are
separable for two dimensions.
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reformulate our cost function as a linear system and to perform high-dimensional

matrix and vector multiplications, where dimensions of the matrices and vectors are

proportional to the number of pixels in the object patch. A discussion about our

selection of optimization as gradient descent is included in Section 4.6.

4.2 Object Localization Algorithm for Windowing on the Object Observation

In the implementation of correlation filters to the visual tracking problem, at each

frame, the translational object motion is determined as the difference between the

center of the rectangular region of interest and the location giving the highest cor-

relation score in that region. To calculate this correlation, the object observation is

windowed by Hanning window to suppress the object boundaries. In our windowing

algorithm, a pre-alignment procedure is applied to the window estimated in the pre-

vious frame, since Hanning window is more smooth than the estimated window and

can handle small motions.

The overall flow of the proposed method with this pre-alignment procedure is de-

scribed in Algorithm 1, where φ(It, δ, w) extracts the object bounding box xt from

the frame It at the location δ by using the estimated object size of [26] and outputs

xt � w, and T (I, η) circularly translates the image I by η vector. Since the object

is not localized at frame t, the extracted object patch xt and previously calculated

window wt−1 might be substantially misaligned due to the motion of the object. To

approximately align the object xt and wt−1, the object is localized beforehand as δ̃t

by extracting the object patch using the Hanning window wh. The motion vector

δ̃t − δt−1 is utilized for adjusting the previously learned spatial window wt−1, i.e.,

it is circularly translated by this shift. At this point, wt−1 is ready to be utilized for

the actual location estimation. After finding the final object location δt by using the

aligned window, the raw object patch xt is extracted; this patch is used for obtaining

the new spatial window.
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Algorithm 1 Windowing on the object observation
Input: Start a tracker with the position δ1 and initial size.

Frames of a video sequence: I1, ..., IN

Hanning and rectangular windows: wh and wr

Initialize the correlation filter H1 at the first frame.

Output: Bounding boxes {δ2, ..., δN} ∀t ∈ {2, 3, · · · , N}
Perform localization and update the correlation filter:

1: for t from 2 to N do

2: Crop ft with δt−1: ft = φ(It, δt−1, w
h)

Extract d features maps {f 1
t , ..., f

d
t }

3: Localize the object using:

c = F−1
{
(
d∑
l=1

(Alt−1)
∗ � F l

t )/(Bt−1 + λε)

}
δ̃t = [i∗j∗] = argmax

i,j
c(i, j)

4: Translate the window wt−1 ← T (wt−1, δ̃t − δt−1)
5: Crop f t with δt−1: ft = φ(It, δt−1, wt−1)

6: Repeat step 3 and find the final location as δt

7: Crop xt with δt: xt = φ(It, δt, w
r)

Extract d features maps {x1t , ..., xdt }
8: Update the model as in (3.19):

Alt = (1− γ)Alt−1 + γ(Gt)
∗ �X l

t ,

Bt = (1− γ)Bt−1 + γ
d∑

k=1

Xk
t � (Xk

t )
∗, (γ : 0.025 as in [26])

9: Reduce ε(w) of Eq.(4.1) using the gradient of w in Eq.(4.2) and assign w to

wt: wt ← w

10: end for

4.3 Spatial Windowing Applied to the Filter

Windowing operation can be applied to the correlation filter model ht instead of its

use for the object observation xt as in (4.1). Similar to (4.1), we also propose learning

a window for the correlation filter model as below:

ε(w) = ‖(w � ht)~ xt − g‖2, (4.10)
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The gradient of this cost can be derived analogously with minimal changes in the final

gradient formulation.

The cost function in (4.10) can be rewritten as ε(w) =
∑
n

(∑
i

h[i]w[i]x[i+ n]− g[n]
)2

by summing the squared values of the elements of the difference signal between the

correlation output function and the desired response g.

Taking the partial derivative of ε(w) with respect to w[m] gives:

∂ε(w)

∂w[m]
=
∑
n

(
∑
i

h[i]w[i]x[i+ n]− g[n])h[m]x[m+ n], (4.11)

(
∑
n

k[n]x[m+ n])h[m] = s[m]h[m], (4.12)

if the intermediate signals k and s are defined as follows:

s[m] ,
∑
n

k[n]x[m+ n]

k[n] ,
∑
i

h[i]w[i]x[i+ n]− g[n].
(4.13)

Since both of the intermediate signals s and k are calculated by correlating two sig-

nals, they can be evaluated efficiently in the frequency domain using Convolution

Theorem as follows:

k = F−1 {X �F {w � h}∗ −G} (4.14)

s = F−1 {K∗ �X} (4.15)

Using k[m] and s[m], partial derivatives are quite efficiently calculated operating

element-wise multiplication in the image domain as:

∂ε(w)

∂w[m]
= s[m]h[m]. (4.16)

Although the two costs, (4.1) and (4.10), seem to influence the tracker in the same

manner, windowing on the filter as in (4.10) causes the tracker to adapt to the most

recent observation xt without increasing the learning rate of the model. To be more

precise, w� ht (the model which is more appropriate for the most recent observation

xt) determines the location of the object, while ht is slowly updated as in the standard

correlation filter based trackers [26, 48] and not directly used for the localization.

50



This is due to the fact that w � ht outputs a more similar correlation plane to g when

correlated with xt and more appropriate for the most recent object appearance, while

ht represents all of the object observations until the tth frame. Moreover, we can also

expand the search range of the tracker (the size of the cropped object patch), since

ht can be perceived as the localized object template in the spatial domain. Thus, we

increase the search space to three times as the object size3.

4.4 Object Localization Algorithm for Windowing on the Filter

Although windowing operation on the object observation in Algorithm 1 requires an

alignment stage for the previously learned window, there is no need for such a process

in windowing operation on the filter, since the filter is already an aligned template of

the object appearance. Hence, there are only two additional steps to be performed

compared to the standard correlation filter based tracking algorithms. One of them is

the windowing operation on the filter and the other one is the window learning step

which reduces the cost in (4.10). All of the necessary steps are given in Algorithm 2.

4.5 Implementation Details

Since the linear correlation filter based trackers [14, 26] are compatible with our

cost function, we modified DSST [26] and use it due to its superior performance

on VOT2014 [59]. DSST exploits both the image intensities and HOG features and

uses an efficient scale search (please refer to [26] or Section 3.2 for details) to esti-

mate the object size. The windowing is performed only for the image intensities. wh,

which is the starting point of the gradient descent, is Hanning window. The number

of maximum iterations and the learning rate γSW are set to 100 and 0.1, respectively.

The iterations are stopped when the cost function does not decrease more than 0.001

of the cost value at the previous iteration.

3 In the works [26, 48], the search space is selected as two times larger than the object size.
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4.6 Computational Complexity of the Window Learning

Window learning has a computational complexity of O(P 2log(P ) × N) (N is the

number of iterations, and P is the side length of a square object patch). The major

overhead is FFT operation throughout the gradient calculation. In our MATLAB

implementation, the execution speed is 5 fps in a 3.2 GHz desktop computer.

It should be noted that (4.1) can be rewritten as ‖Aw − b‖2, where the matrix A =

Cdiag(xt). Here, C is the circulant matrix generated from ht and diag(xt) is the

diagonal matrix with diagonal entries consisting of xt. There might be infinitely

many solutions due to the possible rank deficiency of A (e.g., if xt or DFT of ht has at

least one zero element.). Yet, an exact solution to the minimization of (4.1) can cause

overfitting to the most recent observation. On the other hand, rank deficiency can be

avoided by using an L2 regularization on w; in this case, the calculation of the closed

form solution with that regularization term is costly (leading to prohibitively slow

running times) due to the operations on high dimensional matrices. An alternative

cost function to (4.1) with a regularizing term can also be formulated as ‖Aw − b‖2+
λreg||w − wh||2, where wh is the Hanning window.

Based on preliminary experiments, no significant performance difference is observed

between the reduction of the proposed cost in (4.1) with fixed number of iterations and

the minimization of the cost with the aforementioned regularizing term. Therefore,

we prefer reducing the proposed cost in (4.1) by a pre-defined fixed number of gra-

dient descent iterations, and mitigate overfitting while achieving high computational

efficiency without losing much from performance.

4.7 Experimental Analysis on the Learned Spatial Windows

To demonstrate the effect of the proposed windowing, we compare the proposed win-

dow against Hanning window, which is used in the baseline tracker, in terms of PSR

(Peak to Sidelobe Ratio) and localization error per frame for Skating sequence in Fig-

ure 4.2. PSR is computed as PSR = Cmax−µC
σC

whereCmax, µC and σC are maximum,

mean and standard deviation of correlation output C, respectively. In almost all of the
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Figure 4.2: Comparison of Peak to Sidelobe Ratio and localization error (Euclidean
dist. btw. ground truth and the predicted locations) between the proposed and Han-
ning windowing. (Skating sequence)

frames, the proposed window outperforms Hanning window in terms of PSR values

and localization error. This is an experimental evidence that indicates the reduction

of the cost function in (4.1) improves the tracking quality (PSR), which also enhances

the tracking performance and will be extensively analyzed later in the next chapter.

In Figure 4.3, example observations and their corresponding windows are presented.

With a closer look at these observations and their estimated windows, it can be seen

that the most valuable parts of the toy tiger are found to be its cheeks and the black

part on its nose. In almost all of the frames shown in Figure 4.3, these parts are

consistently highlighted by having relatively higher values than the remaining parts.

Moreover, the black region on its nose has lower values when it is occluded by the

leaves.

Figure 4.4 shows further sample windows extracted by the proposed method. Al-

though the main goal of the proposed windowing technique is to increase the corre-

lation quality, the windows extracted by the proposed algorithm are intuitively mean-

ingful in most cases. In the 1st column, the face is partially occluded by the magazine

and the window forms a fictitious eye in the occluded eye region in order to be able

to improve a sharp peak. In the 2nd column, the car undergoes an occlusion due to the

branches of the tree, where we observe relatively dark values in some parts of these
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Figure 4.3: Visual examples from Tiger sequence. The first and the third rows present
the observations, and the second and the fourth rows illustrate the calculated spatial
windows.

occluded regions in the window, indicating a suppression of the occluded parts. The

window in the 3rd column has higher values in the pants of the woman which prob-

ably holds more similarity than the other regions to the corresponding filter and the

appearance of this part does not change significantly. The window of the torus hold

by the man (the 4th column) has relatively higher values in the object regions of the

bounding box, since it is probably the most resembling part to the correlation filter of

the object.
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Figure 4.4: Visual examples from the sequences Face Occluded 1, Car, Jogging,
Torus). 1st row: spatial windows extracted by the proposed method. 2nd row: corre-
sponding objects.

4.8 Discussions

In this chapter, a novel window learning method is presented to increase the accuracy

of a correlation filter based tracking approach. For this purpose, an efficient gradient

formulation is provided and applied to visual tracking to suppress or highlight the

irrelevant or useful regions of the target object patch. When the utilized features are

not invariant enough to the encountered appearance changes of the object, the pro-

posed method is able to increase the correlation quality and the tracking performance

due to some important issues. For instance, the features that are not robust against

the appearance changes deteriorate the object localization. The learned window is

able to suppress those harmful features at the relevant locations. Moreover, the back-

ground regions similar to the object patch can also be eliminated due to the proposed

cost function that penalizes the degeneration of the correlation response especially in

the case of high corelation values in the regions other than the center of the object

location. The same argument can also be valid for the case of object occlusion.

Based on the aforementioned discussions and the observed increase in the track-

ing performance, the proposed method significantly alleviates the adverse effects of
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some challenges (e.g. occlusion, object deformation and background clutter) of vi-

sual tracking. In our experiments on VOT2015 dataset, the number of failures are

decreased by 6% when the spatial windowing is applied to the object observation.

Furthermore, the overlap precision of OTB-2015 dataset (this performance metric

will be explained in Section 5.3.4) is improved by 2.5% if the spatial windowing is

applied to the correlation filter.

In this chapter, the proposed algorithms serve for improving the individual tracking

quality. In the next chapter, an ensemble of trackers framework is presented. More-

over, the improved tracker of this chapter is also integrated into the proposed ensem-

ble tracker. Hence, the tracking performance analysis and the experimental results in

the benchmark sequences are explained in detail in Chapter 5.
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Algorithm 2 Windowing on the filter
Input: Start a tracker with the position δ1 and initial size.

Frames of a video sequence: I1, ..., IN

Initialize Hanning and rectangular windows: wh and wr

Initialize the correlation filter H1 at the first frame.

Output: Bounding boxes {δ2, ..., δN} ∀t ∈ {2, 3, · · · , N}
Perform localization and update the correlation filter:

1: for t from 2 to N do

2: Crop ft with δt−1: ft = φ(It, δt−1, w
h)

Extract d features maps {f 1
t , ..., f

d
t }

3: Apply the previously learned window on the filter:
ˆH l
t−1 = F{F−1{Alt−1/(Bt−1 + λε)} � wt−1}

(if wt−1 does not exist, use wt−1 = wh)

4: Localize the object using:

c = F−1
{
(
d∑
l=1

( ˆH l
t−1)

∗ � F l
t )

}
δt = [i∗j∗] = argmax

i,j
c(i, j)

5: Crop xt with δt: xt = φ(It, δt, w
r)

Extract d features maps {x1t , ..., xdt }
6: Update the model as in (3.19):

Alt = (1− γ)Alt−1 + γ(Gt)
∗ �X l

t ,

Bt = (1− γ)Bt−1 + γ
d∑

k=1

Xk
t � (Xk

t )
∗, (γ : 0.025 as in [26])

7: Reduce ε(w) of Eq.(4.10) using the gradient of w and assign w to wt: wt ← w

8: end for
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CHAPTER 5

TREE-STRUCTURED ENSEMBLE OF TRACKERS

This chapter presents a tree-structured ensemble of trackers framework, which is a

novel combination tracker, and capable of frequently switching in an ensemble of

correlation filters. This frequent switching allows the tracker to quickly adapt to var-

ious target object appearances, and hence, becoming less prone to drift and occlusion

without sacrificing much from the computational efficiency. To be more precise, the

proposed technique partitions the space of target object appearances (or equivalently

the feature space) by using a binary tree as in [104, 88], where at each node, a separate

expert tracker (i.e., a correlation filter based tracker in this study) is employed. Each

newly received target instance is propagated from the root to the leaves of this tree by

applying a binary search and run only those “relevant” expert trackers independently,

and combine their decisions for a final decision. Here, the collection of all of the

expert trackers yields the aforementioned ensemble of cardinality 2D+1 − 1 (D is the

tree depth) and our algorithm combines only D + 1 many ensemble trackers to pro-

duce the final tracking decision, which only results in a linear complexity O(D ×E)
(E is the complexity for correlation), i.e., it is not O((2D+1 − 1)× E).

Notably, the expert trackers of the ensemble are hierarchically represented over the

partitioning tree (from the root to the leaves), each of which is specialized in a certain

union of appearance subspaces growing from leaves to the root, i.e., in a certain clus-

ter of appearances. Hence, since each target instance is coupled with certain (D + 1

many) tree nodes as well as the corresponding certain expert trackers, we obtain a fre-

quent switching mechanism in the ensemble of correlation filter based trackers during

video stream. This switching follows a check over the tree determining which subset
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of the ensemble is the most specialized to the observed target instance. Then, the final

decision is obtained through the combination of only those specialized expert track-

ers. The result is an indirect, but a quick (almost sudden) and non-linear adaptation

to the target with controllable and low computational complexity. In this sense, the

learning rate in the proposed tracking scheme is varying (not fixed) that is tuned to

the object appearance. This approach addresses the trade-off, where a slow model

update causes the model to become quickly outdated, whereas faster updates result in

over-learning; unfortunately, one observes a drift in both cases. We emphasize that

our strategy is rather radical, since it significantly differs from the literature, where

the most popular techniques often attempt to learn appearance changes by iterating

the most recently learned single model that is maintained during the sequence. Al-

though combination of trackers idea has been previously exploited in certain studies

[120, 54, 100, 118, 127], our tree-structured method is applicable to any kind of visual

tracking method without requiring a discriminative or a generative model [118, 127],

a training phase [100, 120] or a tracker sampling routine [54].

5.1 Proposed Tree-structured Ensemble Tracking Framework

The proposed ensemble tracking method partitions the target appearance space into

subspaces by a binary tree, whose nodes store individual expert trackers specialized

in certain target appearances. Each expert tracker is activated when its correspond-

ing subspace contains the most recent observation. In our framework, for only the

purpose of determination of the subset of expert trackers to combine at frame t + 1,

the vectorized object patch xt (cropped by the object location δt from frame t) is se-

quentially propagated from the root node to the leaves by checking their alignments

with the corresponding separator functions (details of separator function will be ex-

plained next) at the nodes. Therefore, similar xt’s get clustered over time at the nodes

in finer details as the depth increases. Since we have a separate expert tracker at

each node that is trained by only those xt’s who visited that node, expert trackers

then get specialized to target appearances (hence the name “expert”). As a result of

this propagation of instances over the tree via separator functions, the complete high

dimensional space of target appearances is partitioned in a data adaptive manner.
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Figure 5.1: Visualization of the complete (no-pruning) tree with depth 2. At each
frame; an object appearance xt is processed through the tree by applying the separator
function ηSλ at each visited node S. Each row of the image matrix shows the object
patches dropped to the leaves of the tree ({R1, R2, R3, R4}). Note that object poses
with similar lightening conditions and appearances are clustered at the same nodes as
desired. (Skating sequence from VOT2014 dataset [59]).

During initialization of tracking for each sequence, (i) a binary tree of depth D is

constructed, (ii) a separate expert tracker T init for each node is initialized. For this

purpose, the first observation x1 (the initial bounding box with raw image intensities)

is utilized to extract P × P feature maps {x11, ..., xd1}. Then, the correlation filters

{hl1}dl=1 are calculated by using (3.18). This is the initial model for T init, and it is

set to all expert trackers Tm1 = T init where m ranges the nodes of the tree from 1 to

2D+1 − 1 at the first frame.

After the initialization, we locate which nodes are visited by an object patch xt as de-

scribed above by checking its alignments with the corresponding node-specific sepa-
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Algorithm 3 Proposed Ensemble Tracker

Input: A tracker T init in the first frame using the ground-truth bounding box, δ1, a

tree with a depth of D.

Initialize trackers: T i1 ← T init ∀i ∈ {1, · · ·, 2D+1 − 1}
Output: Bounding boxes {δ2, ..., δN} ∀t ∈ {2, 3, · · · , N}

Perform localization and update the trackers:

1: for t from 1 to N − 1 do

2: Process xt (cropped by δt from frame t) through the tree by using the separator

functions of the nodes, ηukt ’s ∀k ∈ {0, ..., D} and obtain the visited node index

set Wt = {u0, u1, ..., uD}
3: for k from u0 to uD do

4: Update the separators ηukt+1 by changing the value of τukt+1 to obtain equal

sized subspaces using (5.4).

5: Run the tracker T ukt of the node uk for the observation xt+1 (cropped by δt

from frame t+ 1) with (3.18), and obtain the location estimation.

6: end for

7: Generate weight vector w using (5.8)

8: Combine the results using (5.3)

9: Update the expert trackers {T ukt+1}Dk=0 in Wt as in (3.19)

10: Final tracking decision δt+1 at each frame

11: end for

rator functions via

ηukt (xt) , I{vTukxt < τukt }, (5.1)

where uk denotes the selected node index at level k, vuk is the normal vector to the

separating hyperplane (which defines a separator function and it is randomly initial-

ized in the beginning from a normal distribution) at the node uk of level k, τukt is

an adaptive threshold (this will be explained in Section 5.2.1) initialized to zero, and

I{.} is the indicator function, which outputs 1 when its argument is true, 0 otherwise.

If ηukt (xt) = 1, then the instance xt travels through the right child of the node uk;

and through the left child, otherwise.1 Serial application of these separator functions

1 uk+1, which is the next node index in the decision path, is assigned as the selected child according to the
output of ηuk

t (xt).
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Figure 5.2: All possible partitions {P1, ..., P5} are illustrated for a depth-2 tree in a
2-dimensional space. The union of the blue regions is the complete space.

to the observation xt yields the index set of the visited nodes Wt = {u0, u1, ..., uD}.
Hence, the appearance space is partitioned into subspaces, and each of these sub-

spaces corresponds to realizations of a different target appearance. A visualization of

this tree with depth two and the resulting subspaces are illustrated in Figure 5.1 as a

2-dimensional space, and the flow of the proposed method is given in Algorithm 3.

For each newly observed object appearance xt+1, an expert tracker is utilized during

localization and updated only if it is at one of the nodes visited by xt. As a result,

each expert tracker is specialized for only those target appearances that are aligned

with its vuk vector as well as the vectors in the corresponding branch. The general

approach in a single model tracking methodology [26, 48] is to keep record of one

tracker and update it at an appropriate pace to stay tuned to the most recent target

appearance. On the contrary, our approach is different and novel in the sense that we

exploit a dynamic switching mechanism among small subsets of (only D + 1 many)

expert trackers with respect to the most recent target appearance and combine only

those active expert trackers in the selected subset at each time. By this switching, we

achieve superior adaptation to the target that is robust to sudden appearance changes

and also able to recall the past appearances. Hence, the selection of learning rate is

also implicitly performed by the introduced switching.

5.2 Combination of the Expert Tracker Outputs

We now introduce a specific combination over the expert trackers at the visited nodes

at each time to produce a final boosted tracking decision. To this end, we first note
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that a combination over such expert trackers is mathematically and exactly equivalent

to another combination over certain “partition trackers”. As it will be clear in this

section, each partition tracker is essentially a union of expert trackers and can be

accepted as a higher level of specialization for a specific set of target appearances.

Our intuition is to learn these appearances during the course of the tracking, register

them as partition trackers over our binary partitioning tree and combine them. Hence,

the resulting ensemble tracker learns the target appearances in a data adaptive manner

starting from simple models to more sophisticated ones. We emphasize that although

the number of such partition trackers is doubly exponential (a very large class), since

the same exact combination can be obtained over only D + 1 many visited expert

trackers, our implementation will be computationally highly efficient, i.e., an only

linear complexity with the depth of the tree.

We start with observing that each pruning of our tree yields a specific partition of the

observation space consisting of the regions at the corresponding leaf nodes (after the

pruning). For instance, the complete tree (null-pruning or no-pruning) yields the finest

partition with 2D regions or the root node itself (the complete pruning) yields the

complete space as another partition with a single region. Note that the total number

of such prunings/partitions is doubly exponential, i.e., NP = O((1.5)2
D
) [88].

Let P = {Pi}NPi=1 be the set of all possible partitions. A partition Pi ∈ P consists of

disjoint regions, i.e., Pi = {Ri1, Ri2, · · · , RiNPi
}, where the regions Rik’s correspond

to the leaf nodes of the subtree obtained after the pruning which generates the partition

Pi. For example, {R1, R2, R3, R4} and {R1∪R2, R3, R4} are two partitions (out of

5 possibilities) from the depth-2 tree in Figure 5.1. In Figure 5.2, all of the partitions

for depth-2 tree is pictured. For any partition at time t, a partition tracker is defined as

the tracker that is the union of the expert trackers at the leaf nodes of the subtree that

generates the partition we are considering. For instance, if the observation xt is in R1

in Figure 5.2, then the partition tracker P2 matches the output of the expert tracker

at the leaf child in the subtree generating the partition P2 in Figure 5.2, since the left

child is responsible for the region R1 ∪ R3 that includes R1. As a result, for every

partition Pi, a partition tracker fPi
2 is obtained as fPi(xt+1) = T ikt (xt+1), if xt ∈ Rik,

2 Tracker decisions are denoted by bounding boxes that are generated by the expert trackers. T ikt (xt+1) is
the bounding box decision of the expert tracker T ikt at the node which is responsible for the region Rik for the
unlocalized object observation xt+1.
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where Pi = {Ri1, ..., RiNPi
}. The observation xt can belong to only one region from

a partition by definition.

Based on this formulation, we introduce our ensemble tracker as a specific linear

combination of partition trackers as [88]

f(xt+1) =

NP=O((1.5)2
D
)∑

i=1

µifPi(xt+1). (5.2)

In this definition, µi is the time varying weight3 of the partition tracker Pi, and defined

as µi = α(i) exp(
∑N i

L
k=1Q

ik
t ). Q

ik
t ’s are the qualities of the leaf trackers within the

partition Pi (defined in (5.5)), N i
L is the number of leaves in Pi, and α(i), which is

an implicit consequence of the weighting strategy (in Section 5.2.3), represents the

prior probability of the partition Pi4. The proposed ensemble tracker is actually a

mixture of experts (MOE) [80] algorithm, where the set P acts as an ensemble of

experts and therefore, our proposed tracker satisfies the convergence, robustness and

optimality MOE-results, if the ground-truth tracked locations were provided after

observing every frame as in online learning scenario (cf. [17, 104, 57]). Moreover,

the time varying weight values, µi, are designed in such a way that by definition, we

first favor the simpler partition trackers due to the scarcity of the data in the beginning,

but then learn the most sophisticated ones as more data is observed. This is a desired

property because the partition trackers are of various complexities, i.e., each of them

has different number of parameters to be learned.

The computation of (5.2) requires to runNP = O((1.5)2
D
) partition trackers in paral-

lel which is computationally infeasible even for moderate depth values. However we

perform an efficient implementation with linear complexity in depth D, i.e. requiring

to run onlyD+1 expert trackers [104], [88]. First, we note that although there areNP

expert trackers in the combination (5.2), there are only D + 1 = |{fPi(xt+1)}NPi=1| 5

unique possible decisions, which are readily accessible from the tree nodes, since the

number of visited nodes isD+1 at each time. Therefore, for each newly received ob-

servation, this efficient implementation is based on combining only the expert tracker

decisions from the root to the leaf on the corresponding branch achieving complexity
3 The dependency on time is dropped in the notation for simplicity
4 α(i) = 2−(Ni

L+nPi
−1), where nPi is the total number of the leaves in Pi that have depth less than the depth

of the complete tree (c.f. [57]).
5 | · | denotes the cardinality of a set.
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O(D×E) instead ofO((1.5)2D×E) (E is the expert tracker complexity). Therefore,

the same exact combination in (5.2) can be effectively written as

f(xt+1) =
D∑
k=0

wkT
uk
t (xt+1), (5.3)

where Wt = {u0, u1, ..., uD} is the set of the visited node indices by the instance xt,

T ukt (xt+1) is the decision of the expert tracker at the corresponding region which is

represented by the node uk. The weight wk is collected out of the weights µi’s as

wk =
∑NP

i=1 µiI{fPi(xt+1) = T ukt (xt+1)}. Since each region partitioned by the tree

is represented by a particular node, wk corresponds to the sum of the weights of the

partition trackers (this summation is also of complexity O(D)), where uk is a leaf out

of NP = O((1.5)2
D
) different partitions. In Section 5.2.3, we explain the details of

the O(D) implementation of the efficient combination in (5.3), i.e., the calculation of

the weights wk’s.

Thus, we achieve the linear complexity O(D×E) by using the combination in (5.3),

instead of naively using the initial definition in (5.2), where both of the definitions

generate exactly the same tracking decision for any instance of the target object. From

the perspective of (5.3), our technique frequently switches among the subsets of the

ensemble of expert trackers depending on which subset is the most specialized in the

target appearance; and combines the decisions of the expert trackers in the selected

subset to produce the final tracking decision.

5.2.1 Tree Balancing

The goal of the proposed tree-structured ensemble tracking is to represent different

object appearances at the nodes of the tree. Hence, we need a balanced partitioning of

the object appearances. In order to achieve a balanced partitioning in the observation

space, we update the threshold τukt value of all of the visited separator functions ηukt (·)
at the nodes uk by using

τukt+1 ← (τukt Nuk
t + vTukxt)/(N

uk
t + 1), (5.4)

where Nuk
t corresponds to the number of visits to the node uk until the tth frame.

Namely, the update in Eq. (5.4) is the cumulative moving average, which approxi-
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mately causes half of the observations {xt}
Nlength
t=1 to produce vTukxt < τukt , and the

other half to produce vTukxt > τukt at the node uk.

5.2.2 Quality Metric of Expert Trackers

In order to measure the tracker quality, Peak-to-Sidelobe-Ratio (PSR) is computed

as PSR = Cmax−µC
σC

where Cmax, µC and σC are maximum, mean and standard

deviation of correlation output C, respectively. The PSR values of the trackers are

modified for the qualities of the expert trackers. This metric represents the confidence

of the estimated location, i.e., sharper response is more confident. To control the

tracking quality and prevent overflow, a quality decay parameter is added to PSR

metric; and also an effective aging value is employed to speed up the convergence

towards the leaves to obtain

Quk
t =

PSRuk
t

κ
exp

(
−N

uk
t

λ

)
. (5.5)

In this equation, Quk
t is the proposed tracker quality metric of the node uk at time

t, and λ and κ are the effective aging threshold and quality decay parameters. This

metric controls the tracking quality of the expert trackers, and emphasizes the closer

nodes to the leaves as time passes.

5.2.3 Calculation of the Weights wk’s

The efficient way of calculating the weights wk’s is described below.6 For the related

proof, one should refer to the prediction study in [57] and modify the node probabili-

ties with the tracking quality exp(Quk). For this purpose, the global qualities (gk’s) of

the expert trackers are first calculated at each node, uk, in W = {u0, ..., uD} through

the back-recursion (from the leaves to the root)

gk =
1

2
exp(Quk) +

1

2
gleftk grightk , (5.6)

where Quk is the local tracking quality of the node uk in W , gleftk and grightk are

the global qualities of the left and right children of the node uk. By the following
6 For clarity, the time subscript is dropped in this subsection.
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recursion, auxiliary qualities σk’s are first calculated for each node uk [57]

σk =
1

2
gsiblingk σk−1, (5.7)

where gsiblingk refers to the previously calculated global quality of the sibling of the

node uk. Finally, we obtain the combination weights as:

wk = exp(Quk)σk. (5.8)

We here presented a recursion to efficiently obtain the weight wk and this recursion

calculates wk =
∑NP

i=1 µiI{fPi(xt+1) = T ukt (xt+1)}, proven in [57] to be the efficient

way of calculating the final combination result in (5.2).

5.3 Performance Evaluation of the Proposed Spatial Windowing and Ensemble

of Trackers

In this section, extensive experiments on benchmark datasets are reported for both

the proposed spatial windowing method and the proposed ensemble tracker. First,

implementation details of the proposed ensemble tracker is explained. Second, ex-

perimental results of the ensemble tracker is presented for VOT2014 [59] dataset.

Then, the tracking performances of the proposed tracker based on spatial windowing

and the ensemble tracker along with their combination are analyzed for VOT2015

[35] dataset. Finally, the experimental results of OTB-2015 [112] dataset are pre-

sented for all of the proposed tracker configurations, which are compared against the

state-of-the-art visual trackers.

5.3.1 Implementation Details and Computational Complexity

For the proposed tree-structured ensemble tracker, DSST [26] is used as the expert

tracker, and the parameters are set as in [26], except for the learning rate7. Since the

number of visits to a node decreases exponentially with the depth level l with 2−l, we

set the learning rate of the tracker at the level-l as γ × 2l. In the quality calculation

7 Note that the proposed framework can work with any tracker of the literature as the expert tracker.
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of an expert tracker, κ value is set to the average qualities of all the expert trackers at

each frame for stability. Aging parameter λ is set to 100. The initial patch size is twice

as large as the initial ground truth object size as in [26]. For the proposed ensemble

tracker, we use a constant tree depth of 3 throughout the evaluation on VOT2014 and

VOT2015 datasets, since the performance saturates at higher depth levels and lower

depth levels leave an improvement gap for the moving objects in the tested sequences.

We study varying depth values on OTB-2015, cf. Section 5.3.4.

Implementation details of the proposed spatial windowing method are presented in

the previous chapter. The performance evaluation of the spatial windowing method

(both on the object observation and the correlation filter) are reported in this chap-

ter, because the proposed ensemble tracker and spatial windowing method have been

combined and the tracking performance of this combined tracker is analyzed here.

Notably, the windowing applied to the correlation filter is analogous to the one ap-

plied to the object observation. Yet, the latter one enables the search range to be

larger, since the correlation filter can be perceived as the localized object template

and it is restricted by the proposed windowing operation. Namely, the tracker jumps

can be avoided in the case of a larger search range in the object observation and a cor-

relation filter regularized by the learned window. Thus, windowing on the correlation

filter has favorable performance against windowing on the object observation. In our

preliminary experiments, the tracking accuracy of the integration of the tracker that

operates windowing on the correlation filter into the proposed ensemble method was

not observed to be much different from the one for the object observation. Hence,

only the integration of the windowing on the object observation into the proposed

ensemble tracker is tested for the combination of those two approaches.

5.3.2 Experimental Results of the Proposed Ensemble Tracker on VOT2014

Dataset

5.3.2.1 Quantitative Results

In our comparisons, we use the performance metrics of VOT 2014 [59], i.e., the av-

erage accuracy and robustness scores. For a predicted object region and its ground
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Table5.1: Average accuracy results per sequence. *, ** and *** indicate first, sec-

ond and the third rankings of the methods. Red means the proposed method has an

accuracy better than or equal to the baseline tracker DSST.

Proposed DSST [26] CT [121] DGT [16] FRT [1] IVT [91] KCF [48] MIL [3] SAMF [69] Struck [45]

ball 0,51 0,45 0,39 0,81* 0,69 0,33 0,76*** 0,46 0,78** 0,57

basketball 0,64** 0,58 0,54 0,5 0,43 0,43 0,64** 0,61*** 0,75* 0,61***

bicycle 0,63** 0,61 0,56 0,63** 0,5 0,72* 0,63** 0,54 0,62*** 0,42

bolt 0,56* 0,54** 0,42 0,49 0,43 0,4 0,49 0,51 0,56* 0,53***

car 0,76* 0,74** 0,37 0,57 0,42 0,65 0,71*** 0,42 0,51 0,43

david 0,8*** 0,81** 0,4 0,53 0,46 0,69 0,82* 0,5 0,82* 0,6

diving 0,41** 0,44* 0,24 0,34*** 0,3 0,23 0,25 0,24 0,25 0,28

drunk 0,59** 0,55 0,48 0,67* 0,44 0,51 0,54 0,45 0,57** 0,5

fernando 0,4 0,38 0,39 0,61* 0,34 0,39 0,41*** 0,46** 0,39 0,38

fish1 0,45*** 0,35 0,36 0,56* 0,41 0,26 0,42 0,4 0,5** 0,35

fish2 0,31** 0,31** 0,21 0,48* 0,28 0,2 0,27 0,22 0,3*** 0,21

gymnastics 0,64* 0,56*** 0,48 0,58** 0,52 0,56 0,54 0,26 0,54 0,49

hand1 0,27 0,5 0,32 0,63* 0,41 0,29 0,56** 0,43 0,55*** 0,35

hand2 0,44 0,52* 0,2 0,52* 0,39 0,34 0,5** 0,4 0,46*** 0,3

jogging 0,79*** 0,79*** 0,77 0,66 0,64 0,72 0,8** 0,2 0,82* 0,77

motocross 0,45** 0,36 0,22 0,49* 0,18 0,25 0,37 0,22 0,4*** 0,26

polarbear 0,47 0,51 0,6 0,81* 0,63 0,45 0,78** 0,46 0,71*** 0,62

skating 0,61** 0,59*** 0,51 0,39 0,52 0,56 0,68* 0,25 0,45 0,52

sphere 0,92* 0,92* 0,61 0,85 0,66 0,38 0,9** 0,57 0,88*** 0,7

sunshade 0,78* 0,77** 0,41 0,52 0,47 0,76 0,76*** 0,43 0,76*** 0,78*

surfing 0,82** 0,82** 0,66 0,64 0,78 0,69 0,8*** 0,38 0,8*** 0,91*

torus 0,85** 0,82 0,55 0,83 0,58 0,7 0,86* 0,43 0,84*** 0,51

trellis 0,82** 0,81*** 0,33 0,48 0,53 0,54 0,8 0,42 0,83* 0,53

tunnel 0,75** 0,79* 0,2 0,44 0,41 0,3 0,69*** 0,33 0,55 0,32

woman 0,8* 0,77** 0,57 0,54 0,68 0,47 0,74 0,26 0,76** 0,75

# of top three ranks 20 15 0 12 0 0 16 2 20 4

# of failures 32*** 29** 78 25* 83 69 33 57 32 54

truth at frame t, accuracy is defined as st = area(RP∩RG)
area(RP∪RG)

, where RP and RG are

the predicted and groundtruth object regions, respectively. Average accuracy per se-

quence is calculated by averaging these accuracy scores over time. If a tracker fails,

i.e., accuracy score decreases to zero, then the tracker is re-initialized (please refer to

VOT2014 challenge paper [59] for further details). The other metric, i.e., robustness,

measures the number of failures per frame. Once the tracking results are obtained,

they are ranked according to one of these two performance metrics; and the trackers

with statistically insignificant results are merged. This case is denoted as ranking

measure. We report the total number of failures at the last row of the Table 5.1 for

each method.

Table 5.1 reports the average accuracies of the top performing trackers on VOT2014
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challenge per sequence, which first demonstrate that our ensemble tracker is com-

petitive with respect to other methods while often being (in 20 out of 25 sequences)

superior. Moreover, the proposed method outperforms the single DSST in most of

the sequences when DSST does not fail, which proves the efficacy of the introduced

model switching approach. Hence, we indeed boost the performance of DSST [26],

which is a winner of VOT 2014. On the other hand, in terms of the number of failures,

the proposed ensemble tracker and the DSST perform similarly, which is intuitive,

since DSST is employed as an expert tracker in this thesis (cf. the last row in Table

5.1).

In order to better illustrate the significance of the proposed weighting strategy de-

scribed in Section 5.2.3, we also run the proposed ensemble tracker by using equal

weights for active trackers at each frame, i.e., wi = 1/(D + 1). In this setting, this

naive weighting performs significantly worse than the proposed weighting method.

The average accuracies per sequence are shown in Table 5.2.
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Figure 5.3: Example frames showing the tracking of the correlation filter based algo-
rithms. Red: Ground truth, White: DSST [26], Black: SAMF [69], Blue: KCF [48],
Green: Proposed Method. The name of each sequence is on the bottom left corner of
the example patches.
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Table 5.3 reports the average performances of the compared trackers per attribute.

These attributes are camera motion, illumination change, occlusion, size change and

motion change. Among the compared methods, we achieve the best accuracy rank-

ing. The proposed ensemble tracker again outperforms the baseline tracker DSST in

average per attribute. Table 5.4 shows the comparison of correlation filter based track-

ers in terms of average accuracy calculated by weighting all the frames equally. The

proposed ensemble maintains its superior performance against DSST. Figure 5.4 vi-

sualize the success rate plot of the proposed method and other correlation filter based

tracking methods. Success rate indicates the ratio of number of successfully tracked

frames over the total number of frames. Successfully tracking is defined as having an

accuracy score below a certain threshold, which is varied to plot these performance

curves.
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Table5.4: Average accuracy of the proposed and compared correlation filter based

methods over successfully tracked frames.

Methods Proposed DSST [26] SAMF [69] KCF [48]

Accuracy % 64.3 62.8 64.7 65.5

The proposed ensemble method performs better than the baseline algorithm in terms

of accuracy in 75% of the sequences (please see Table 5.1). In the rest of the se-

quences, the drawback is the relatively too short sequence lengths and the resulting

slow rate of convergence. Note that we combine many expert trackers and learning

the combination weights naturally need more frames, which we aim to avoid by us-

ing a more sophisticated clustering in the leaves of the tree in a future study. Such

a clustering idea will also reduce the number of failures. Since especially the se-

quences diving, hand1, hand2 are short sequences (∼250 frames), the convergence is

not well achieved. The relation between the performance of the proposed method and

the sequence length is illustrated in Figure 5.5. As the sequence length increases, the

proposed method gains more robustness than the expert tracker. When the accuracy

of the baseline algorithm is greater than half percent, we achieve greater or equal per-

formance compared to the baseline as expected. Hence, the superior performance of

the ensemble of trackers is achieved when the baseline tracker performs moderately

well.

5.3.2.2 Qualitative Results

A clear visual result is demonstrated in Figure 5.1 to indicate different appearances

of the target. To create the object patches, the tree depth is set to 2 and the proposed

ensemble tracker is run for skating sequence. Each target object is saved to the leaves

of the tree throughout the frames and it is observed that similar patches corresponding

to similar appearance of the object are sent to the same leaves of the tree as expected.

This helps individual tracker specialize better for particular sets of appearances.

Some visual tracking results are illustrated in Figure 5.3 to compare the proposed
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Figure 5.4: Average success rate plot of the proposed and the compared correlation
filter based method. X-axis shows the accuracy threshold and Y-axis indicates the
ratio of # of successfully tracked frames over the total # of frames.

method and the correlation filter based trackers in the VOT2014 sequences. As clearly

demonstrated, objects are localized better compared to the expert tracker DSST as

well as the others. For instance, the appearance of the car changes drastically through-

out the video frames in the drunk sequence (the second row and the third column in

Figure 5.3). Hence, a tracking algorithm which continuously update its model tends

to fail in such a case. Nevertheless, since the proposed ensemble method registers

various object poses and appearances in the tree nodes and accordingly partition the

appearance space, better localization is obtained through the specialized expert track-

ers.

In the basketball sequence, there are many different poses of the basketball player

and he makes movements like out-of-plane rotation, which contradicts the abilities of

correlation based trackers. Nevertheless, our method localizes the player better than

the other correlation filter based methods. Finally, the sequence fernando includes
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Figure 5.5: For green circles, y-axis: the average accuracy difference between the
proposed method and the baseline tracker and x-axis: the length of the sequences
on VOT2014 dataset. Blue and red markers indicate the performance of the base-
line tracker and the proposed method respectively. Horizontal red line separates the
sequences as below or above 50% of average accuracy.

severe occlusion, where the proposed technique achieve superior tracking.

5.3.3 Experimental Results of the Proposed Ensemble Tracker and Spatial Win-

dowing Based Tracker on VOT2015 Dataset

We test the performance of the proposed tracker combinations and their state-of-the-

art counterparts on VOT2015 [35] dataset including 60 video sequences with various

attributes, such as illumination change, motion change, occlusion, size change. The

utilized performance metrics are the same as the metrics of VOT2014 dataset.
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5.3.3.1 Performance Evaluation

We evaluate our four different trackers; namely SW_Filter, SW_Obs, Ensemble and

Ensemble_SW_Obs. Among these trackers, SW_Filter (described in Section 4.3 and

in Algorithm 2) is the tracker with spatial windowing applied to the correlation filter

while SW_Obs (described in Section 4.1 and in Algorithm 1) performs windowing on

the object observation. Ensemble (described in Section 5.1 and in Algorithm 3) is our

tree-structured ensemble tracker, which integrates DSST [26] as the expert tracker.

Finally, Ensemble_SW_Obs is again our ensemble tracker, yet the expert tracker is

SW_Obs.

We compare our tracker combinations with the following state-of-the-art methods:

KCF2 [48], KCFDP [53], MTSA-KCF [10], sKCF [98], DSST [26], MEEM [120],

MUSTER [52], SME [67], TRIC [109]. Among the compared correlation filter based

trackers with a single expert; KCF-MTSA is a multi-template and scale adaptive ex-

tension of the original KCF work in [48], KCF2 is the Visual Object Tracking Com-

mittee implementation of KCF with improved scale support as well as sub-cell peak

estimation. KCFDP helps to detect better aspect ratios for different scales. sKCF

improves KCF by allowing an adjustable Gaussian window. DSST is the best per-

forming algorithm in the VOT2014 challenge [59]. Among the compared trackers

with multiple experts, TRIC is a part-based tracker; where each part location is de-

termined by a regressor model, MUSTER exploits a short-term tracker (a correlation

filter based tracker) and a long term tracker (based on key-point matching), SME and

MEEM are the trackers with multiple experts, where each expert is a correlation filter

based tracker and an SVM based tracker, respectively.

5.3.3.2 Evaluation with respect to the baseline

Table 5.5 shows the per-sequence average of the results. According to these results,

Ensemble_SW_Obs has the first ranking in terms of the sum of average accuracy and

robustness rankings, while achieving less number of failures without sacrificing the

tracking accuracy. Moreover, our remaining tracker configurations outperform DSST.

Table 5.6 reports the per-attribute analysis of our compared trackers where the aver-
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Table5.5: VOT2015 [35] per sequence experimental results for our proposed tracker
configurations and DSST [26]. Acc., Rob. and Rank. mean accuracy, robustness and
ranking, respectively. The definitions of these metrics are included in Section 5.3.2.1.

Methods Acc. Failures Acc. Rank. Rob. Rank. Avg. Rank.
Ensemble_SW_Obs .52 1.97 1.58 1.55 1.57

SW_Filter .50 2.53 1.70 2.0 1.85
SW_Obs .53 2.41 1.23 2.02 1.63
Ensemble .51 2.56 1.82 2.03 1.93
DSST [26] .54 2.56 1.35 2.32 1.83

Table5.6: VOT2015 [35] per attribute experimental results for our proposed tracker
configurations and DSST [26].

Acc. Rank. Rob. Rank. Avg. Rank.
Ensemble_SW_Obs 1.00 1.00 1.00

SW_Filter 1.00 1.33 1.17
SW_Obs 1.00 1.33 1.17
Ensemble 1.00 1.67 1.33

DSST 1.17 2.17 1.67

aging is applied per-attribute. Our proposed trackers also perform favorably against

DSST for this evaluation. Analyzing this table, VOT Toolkit finds no significant dif-

ference between our trackers in terms of accuracy while discriminating them clearly

in terms of robustness ranking. This result helps to make comparisons between the

configuration of trackers conveniently by only looking at the robustness values.

When total number of failures is concerned (the last column of Table 5.8), applying

the spatial windowing on the correlation filter causes to have less number of failures

than applying the window on the object observation (5.4% robustness increase) since

applying the window on the filter allows us to increase the search space. This situation

can also be observed from Figure 5.6, where SW_Filter is closer to the top right corner

than SW_Obs.
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5.3.3.3 Comparisons to the-state-of-the-art trackers

We also compare our proposed trackers against the state-of-the-art counterparts, de-

scribed in Section 5.3.3.1. In Table 5.7 and 5.8, the trackers are compared in terms

of the average accuracy and robustness rankings. In the last six columns, different

averaging methodologies are presented. Mean and Weighted mean are averages

of attributes either according to the weights of the attributes or equal weighting to

each attribute, while Pooled corresponds to averaging per-frame results of the super-

sequence obtained by concatenating all of the sequences.

Among the compared trackers, our best configuration (Ensemble_SW_Obs) shares

the first ranking in terms of the average accuracy with SME and KCFDP. Neverthe-

less, average number of failures for KCFDP is significantly larger than our algorithm

and SME. In robustness ranking, our Ensemble_SW_Obs tracker has the second best

ranking after SME and MEEM in the weighted mean, while the first ranking is shared

among MEEM, SME and Ensemble_SW_Obs in terms of the pooled average robust-

ness. MEEM has an accuracy ranking of 3.67, significantly below the best rank-

ing trackers, in spite of having the least number of failures. Furthermore, SME and

MEEM trackers run every tracker in the ensemble and remove the oldest expert in

a predefined period. On the contrary, the proposed ensemble tracker runs and up-

dates only relevant trackers to the instantaneous object appearance, hence it does not

require an expert removal procedure.

Although accuracy and robustness are complementary measures, our best perform-

ing tracker achieves a good trade-off between these two measures in this diverse

dataset with 60 sequences. This trade-off can be visually observed from the Accuracy-

Robustness plot in Figure 5.6. In this figure, the two axes serve for visualizing the

accuracy and robustness in the descending order. Hence, closeness to the top right

corner indicates better performance among the compared trackers. In this plot, our

ensemble tracker with spatial windowing, SME and KCFDP trackers are closer than

the remaining ones. Notably, SME requires trajectory consistency for each tracker

in the expert quality calculation in the ensemble, while such a consideration is not

necessary in the proposed ensemble.
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Figure 5.6: Accuracy-robustness ranking plot for the-state-of-the-art comparison.

5.3.4 Performance Evaluation on OTB-2015 Dataset

We evaluate the performance of the proposed tracker configurations on OTB-2015

[112] dataset consisting of 100 video sequences. For OTB, success curve is computed

by the ratio of successfully tracked frames according to a threshold on the overlap

ratio, and defined as the intersection over union of the predicted and ground-truth

bounding boxes. The trackers are ranked according to the Area-Under-Curve (AUC)

score of the success curve. Overlap precision (OP) orders the trackers according to

the value of the average success for the threshold 0.5. Distance precision (DP) is

calculated by the percentage of frames with a center localization error smaller than

20 pixels.

Table 5.9 shows the performance comparison for different configurations of our pro-
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Table5.9: OTB-2015 results for different configurations of the proposed method. Red,
blue and green indicate 1st, 2nd and 3rd rankings, respectively.

OP DP AUC
Ensemble_SW_Obs (D=4) 63.9 71.0 54.2

Ensemble (D=4) 63.9 69.0 53.6
Ensemble_SW_Obs (D=3) 62.1 69.5 53.1

Ensemble (D=3) 62.4 69.7 52.9
Ensemble_SW_Obs (D=2) 62.8 70.5 52.8

Ensemble (D=2) 61.0 68.6 51.9
SW_Filter 62.2 69.0 51.7
SW_Obs 60.8 69.1 51.5

DSST [26] 60.6 67.7 51.1

posed trackers in terms of OP, DP and AUC. In terms of AUC, the tracking perfor-

mance improves as the number of depth (D) increases from 2 to 4. In our preliminary

experiments on VOT2015 dataset, the tracking performance saturated after D = 3,

while the performance saturates after D = 4 on OTB-2015. This is probably due to

two factors: (1) VOT2015 has a measure technique that re-initiates the trackers after

a failure while OTB-2015 does not, and (2) the average sequence length of OTB-

2015 is significantly greater than VOT2015 has. Remarkably, our spatial windowing

method enhances the tracking performance of the proposed ensemble tracker with dif-

ferent tree depths. Moreover, application of window learning on the correlation filter

(SW_Filter) improves the OP values of the baseline tracker DSST, and has superiority

over the application of window learning on the object observation (SW_Obs).

Our proposed tracker Ensemble_SW_Obs with D = 4 is compared against 3 trackers

SRDCF [28], deepSRDCF [27] and the tracker proposed in [12]. SRDCF is a corre-

lation filter based method which penalizes the boundaries of the correlation filter with

a spatial mask in the training stage and employs HOG feature maps. deepSRDCF ex-

tends SRDCF and utilizes deep convolutional features. The work in [12] jointly learns

correlation filters and the target correlation response. It has tree different configura-

tions as DCF_AT, KCF_AT and SAMF_AT. Figure 5.7 reports the success curves

for the compared trackers. We achieve competitive or superior performance against
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Figure 5.7: Success curves of the proposed method with the tree depth 4 and the
compared trackers for OTB-2015 dataset.

DCF_AT, KCF_AT and SAMF_AT. Figure 5.7 also lists running speeds of the track-

ers extracted from the result files that are released by the corresponding authors. The

proposed tracker is run on Intel Xeon E5-2623 @3.00GHz, and has a good trade-off

between accuracy and speed among the compared methods. Moreover, the proposed

method has a comparable average running speed against its counterparts.
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CHAPTER 6

LEARNING DEEP CONVOLUTION FEATURES FOR

CORRELATION FILTERS

Recent works on correlation filters mainly concentrate on either improving the cor-

relation technique or exploiting the most appropriate hand-crafted or deep features

which are provided by the pre-trained networks for object recognition tasks. How-

ever, a general deep feature learning strategy dedicated to correlation filter based

tracking frameworks is still unexplored.

To this end, we carry out training a fully-convolutional neural network (CNN) which

is based on a loss function by exclusively taking care of the correlation filter based

tracking formulation. By integrating the learned feature maps into the-state-of-the-

art correlation filter based trackers, a considerable amount of performance increase

has been observed in contrast to the hand-crafted features. Moreover, the proposed

network, which produces few feature maps, has a comparable performance against

the large number of deep feature maps of object recognition networks. It should also

be emphasized that when the proposed learning framework is adopted in fine-tuning

the convolutional layers of VGG-M network [18], the performance of the state-of-

the-art tracker CCOT [30] is substantially boosted by a large margin in terms of the

expected average overlap metric of VOT2016 [36].

The goals of this work are threefold: (1) to derive the necessary formulations of the

convolutional features for correlation filters, which will be abbreviated as CFCF fol-

lowing the initials of this phrase, (2) to implement our algorithm by presenting a

CNN model and train this model with an appropriately generated dataset, and (3)

finally to integrate the learned features to correlation filter based trackers which sup-
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port multiple feature maps. Before going into the details of our formulations and

the tracking implementation, convolutional layers will be summarized for the readers

who are unfamiliar with this concept, because fully convolutional layers are exploited

and learned by considering the correlation response quality.

6.1 Convolutional Layers

It is notable that a feature generation function fθ(.) of the image patch I , which is

typically integrated into the CFB trackers, should carry the shift invariance property,

i.e., if Iθ[x, y] = f(I[x, y]) and Yθ[x, y] = fθ(I[x − kδx, y − kδy]), then Yθ[x, y] ≈
Iθ[x − δx, y − δy] should be satisfied, where I[., .] is a 2-dimensional discrete signal

and k is the scale factor of the transformation function fθ(.). Hence, in the pro-

posed feature learning framework, fully-convolutional networks are trained. This

kind of network is composed of various layer types including convolutional layers,

non-linearities, batch normalization, local response normalization and pooling layers.

All these layers do not violate this property. The reader should refer to the documen-

tation of [105] for the layer types and their implementations.

A convolution layer is composed of the following tensors [105]:

x ∈ RH×W×D, f ∈ RH′×W ′×D×D′′ , y ∈ RH′′×W ′′×D′′ , and b ∈ RD′′ (6.1)

where x is the input to the layer, y is the output of the layer, and f is the filter tensor

of the convolutional layer and b is the bias vector.

The relation between x, y, f and b is defined as:

y[i′′j′′d′′] = bd′′ +
H′∑
i′=1

W ′∑
j′=1

D′∑
d′=1

fi′j′dxi′′+i′−1,j′′+j′−1,d′,d′′ . (6.2)

In (6.2), the convolutional layer has a stride 1 and no padding. The formulations with

the stride more than 1 and non-zero padding can be found in [105]. In the proposed

custom model, there is no pooling between the convolutional layers and an appro-

priate padding is provided not to change the dimension of the signal. Nevertheless,

the VGG-M model [18] with pooling and no padding is also trained with the pro-

posed cost function as it will be explained in Section 6.7.3, although the sizes of the
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input and output are significantly different. This situation is handled by resizing the

templates to a common size in order to implement the necessary multiplications and

additions in the same image domain.

6.2 Convolutional Features for Correlation Filters

Utilization of both hand-crafted features or convolutional features extracted from pre-

trained convolutional neural network architectures are specifically tuned for obtaining

a sufficient summary of the object appearance. Such an efficient representation is ex-

pected to handle the trade-off between intra-class and inter-class invariance for clas-

sification purposes. Unfortunately, such representations of the object appearance are

not designed for obtaining object features which will improve the correlation quality

of a correlation filter based task for object tracking and detection. This observation

has motivated learning convolutional features dedicated to serve for obtaining better

correlation results. The representation that is aimed to be learned can be designed in

such a way that they could become robust to visual appearance changes of the object

of interest. Moreover, the learned model could partially handle the imperfect training

example phenomenon of the correlation filter based trackers [26, 14], where actual

translation is assumed to be identical to the circular translation in order to exploit the

FFT algorithm along with the Convolution Theorem. These two improvements are

possible, if the model is trained on a carefully generated dataset which contains the

challenges of visual tracking.

By considering aforementioned issues, our aim is to minimize the following cost in

(6.3) for all of the training examples. Yet, the cost in (6.3) is defined for a single

training example for the sake of simplicity.

L(θ) = ‖hθ ~ xθ − g‖2 (6.3)

In the above equation, xθ and hθ are the extracted features of the object appearance

and the corresponding correlation filter, which is expected to represent the model of

the object appearance. In addition, g is the desired correlation plane, and ~ is the

correlation operator to be defined in (6.6). The overall flow of the proposed network

is given in Figure 6.1. It is also obvious that xθ and hθ are functions of θ. Here,
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θ stands for the parameters of the feature generation function fθ(.). In other words,

xθ , fθ(xraw) and yθ , fθ(yraw), where xraw and yraw are the raw object appearance,

i.e., raw image intensities. Moreover, the correlation filter hθ is a function of yθ.

The relation between yθ and hθ for both the single and multiple feature channels are

discussed in Chapter 3 and reminded here if necessary.

6.3 Backpropagation of the Loss for a Single Feature Map

It should be noted that although the two images of the running man in Figure 6.1

have almost the same appearance, their circular correlation output, denoted as gc, is

so imperfect that it may cause a drift, if the estimated motion at each frame is grad-

ually shifted from the actual target location. Since correlation filters are learned by

the circularly translated training examples, the correlation filter generated from yraw

might not be able to handle an abrupt motion change and an appearance change of

the target object xraw. Yet, a representation transformation on the object observation

could be beneficial to mitigate the considered problems. Thus, we propose learning a

model which extracts deep fully convolutional representations and deal with the cost

in (6.3). In order to train the proposed architecture, we require the partial derivatives

of the loss function with respect to every element of the parameter vector θ, i.e., the

gradient of the loss as∇θL. It is explicitly given below1:

∇θL =
∂L
∂xθ

∂xθ
∂θ

+
∂L
∂hθ

∂hθ
∂yθ

∂yθ
∂θ

(6.4)

In the above equation, ∂xθ
∂θ

and ∂yθ
∂θ

can be calculated by publicly available deep learn-

ing libraries which exploit backpropagation algorithm to dynamically calculate θ for

every layer of the network. The partial derivatives, ∂L
∂xθ

and ∂L
∂hθ

, Jacobian matrix ∂hθ
∂yθ

are required to be derived to find the gradient of the loss,∇θL.

Before calculating the required terms, the correlation and convolution theorem will

be reminded, since they will be utilized throughout the derivations.

c[n] =
∑
i

a[i]b[n− i] = F−1{A�B} (6.5)

1 Although ∂(.)
∂(.)

denotes partial derivative, we also use ∂(.)
∂(.)

to magnify the independent variables and unify
element-wise differentiation, partial derivative, gradient, Jacobian operations into one notation.
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Figure 6.1: Block diagram of the proposed architecture. ~ indicates the circular
correlation.

c[n] =
∑
i

a[i]b[n+ i] = F−1{A∗ �B} (6.6)

Equations (6.5) and (6.6) are convolution and correlation theorem for two one-dimensional

signals, respectively. Equations (6.5) and (6.6) are obviously corollary of each other.

� is element-wise multiplication, F and F−1 are Discrete Fourier Transform (DFT)

and inverse DFT, respectively. All capital letters denote the signals in Fourier do-

main. It should also be noted that any variable is assumed to be one-dimensional

unless specified explicitly.

The cost function in (6.3) can be rewritten as below:

L =
∑
n

(∑
i

h[i]x[i+ n]− g[n]

)2

(6.7)

In the above equation, we drop θ term from both of the signals x and h for conve-

nience. With some effort, derivative of (6.3) with respect to an arbitrary mth element

of the signal x, which we denote as h[m], can be written as in the below equations

(6.8) and (6.9).

∂L
∂h[m]

=
∑
n

(
∑
i

h[i]x[i+ n]− g[n])∂
∑

i h[i]x[i+ n]

∂h[m]
(6.8)
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∂L
∂h[m]

=
∑
n

(
∑
i

h[i]x[i+ n]− g[n])x[m+ n] (6.9)

If we define the error signal as:

e[n] =
∑
i

h[i]x[i+ n]− g[n], (6.10)

the derivatives will have better interpretation for the sake of both the time and fre-

quency domain. By substituting this error signal into (6.9), the resulting derivative

signal will have an efficient calculation in the frequency domain as follows by using

(6.6):
∂L

∂h[m]
=
∑
n

e[n]x[m+ n] = [F−1{E∗ �X}][m] (6.11)

By similar efforts and utilizing the equation (6.5), ∂L
∂x[m]

relation can be obtained as

follows:
∂L
∂x[m]

=
∑
n

e[n]h[m− n] = [F−1{E �H}][m] (6.12)

Until this point, we derived the partial derivatives of the cost function with respect to

any element of the intermediate signals (which can be treated as vectors in general);

hence, some important gradients are required for backpropagation. The derived gra-

dients have computational complexity of O(Plog(P )) (P is the signal length), since

we utilize some DFT properties. However, the most cumbersome term of ∇θL is the

Jacobian matrix ∂h
∂y

which has the following definition:

∂h

∂y
=


∂h[1]
∂y[1]

∂h[1]
∂y[2]

... ∂h[1]
∂y[N ]

∂h[2]
∂y[1]

∂h[2]
∂y[2]

... ∂h[2]
∂y[N ]

...
∂h[N ]
∂y[1]

∂h[N ]
∂y[2]

... ∂h[N ]
∂y[N ]

 (6.13)

Hence, we require the individual partial derivatives of each element of h with respect

to each element of y. Although this well-known definition of the Jacobian matrix is

simple, the tedious point is that the relation between h and y are in the frequency

domain, bringing a complicated burden since they have a non-linear and non-analytic

relation as follows:

h = F−1
{

Ĝ∗ � Y
Y � Y ∗ + λ

}
, (6.14)
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which is the correlation filter for the single scale version of (3.18). In the above

equation, Ĝ is the DFT of ĝ. The above filter is nothing but the correlation filter

which minimizes the following cost:

ε = ‖h~ y − ĝ‖2 + λ||h||2 (6.15)

where ĝ is the desired Gaussian-shaped correlation response with a sharp peak at its

center, since the object template y is the localized object patch, and is used in the

literature for most state-of-the-art correlation filter based tracking algorithms such as

[14, 48, 26].

As the relation between h and y are in the frequency domain that includes complex
numbers, the derivatives of complex variables are required. For some functions which
are non-analytic (this is what we have), the derivative definitions do not apply. More-
over, chain rule of real functions does not apply properly. However, fortunately, we
have real signals in hand and could approach the complex derivative issue from a
different perspective. Hence, the conjugation operation in the frequency domain will
reflect to the time domain as the time reversed version of the corresponding signal.
The time reversal is circular due to DFT definition derived from Discrete Fourier Se-
ries (DFS). In the following equations, if a time reverse of the signal is given, it means
that it is the circular time reverse, although it is not specified in the notation. In the
following, we present an efficient property of the real signals that will be extremelly
useful in our backpropagation derivation: The conjugated signal in the frequency do-
main has a relation to the signal itself as:



X[1]∗

X[2]∗

X[3]∗

...

X[N ]∗


=



X[1]

X[N ]

X[N − 1]
...

X[2]


=



1 0 ... ... ... 0

0 ... ... ... 0 1

...

0 ... ... 1 ... 0

0 0 1 ... ... 0

0 1 ... ... ... 0





X[1]

X[2]

X[3]
...

X[N ]


=M



X[1]

X[2]

X[3]
...

X[N ]


(6.16)

if the signal x is real and X is its DFT. Here, the matrix M is an operator which

simply converts the signal X to its circular time reversal. By using (6.16), we will

replace the conjugate of the independent variable (derivative of which will be taken).

This replacement allows us to use the standard chain rule and obtain an analytic form

of the function under concern.
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Equation (6.14) and its Jacobian can be written as follows:

h = FHK(Y ), where K(Y ) =
Ĝ∗ � Y (w)

Y (w)� Y (−w) + λ
(6.17)

∂h

∂y
=

∂h

∂K(Y )

∂K(Y )

∂Y

∂Y

∂y
= FH ∂K(Y )

∂Y
F (6.18)

In the above equation, F and FH are the DFT and inverse DFT matrices. The signal

Y (−w) represents the circular time reversal of the signal Y (w) and it is equivalent to

the conjugate of Y . We can write down the Jacobian matrix of K(Y ) with respect to

Y (w) by using the derivative of the division rule in an element-wise product manner

since the multiplications are element-wise in K(Y ) function.

∂K(Y )

∂Y
= diag

(
λĜ∗ − Ĝ∗ � Y (w)� Y (w)� Ẏ (−w)

(Y (w)� Y (−w) + λ)2

)
(6.19)

Here, Ẏ (−w) denotes the derivative of Y (−w) with respect to Y (w). We know from

the property in (6.16) that Y (−w) = MY (w). Thus, we can explicitly write (6.19)

as follows:

∂K(Y )

∂Y
= diag

(
λĜ∗

(Y (w)� Y (−w) + λ)2

)
− diag

(
Ĝ∗ � Y (w)2

(Y (w)� Y (−w) + λ)2

)
M

(6.20)

Finally, we arrive at the derivation of the overall Jacobian as:

∂h

∂y
= FH

(
diag

(
λĜ∗

(Y (w)� Y (−w) + λ)2

)
− diag

(
Ĝ∗ � Y (w)2

(Y (w)� Y (−w) + λ)2

)
M

)
F

(6.21)
The main problem with the equation (6.21) is that the dimensions of the matrices
are proportional to the signal length P , hence making the computational complexity
propotional to the P 2 even for one-dimensional case due to the matrix multiplica-
tion. Fortunately, this matrix is not directly used. In other words, the Jacobian ∂h

∂y
is

multiplied from left by ∂L
∂h

as follows:

∂L
∂h

∂h

∂y
=
∂L
∂h

FH

(
diag

(
λĜ∗

(Y (w)� Y (−w) + λ)2

)
− diag

(
Ĝ∗ � Y (w)2

(Y (w)� Y (−w) + λ)2

)
M

)
F

(6.22)

The term ∂L
∂h
FH can be written as

(
F
(
∂L
∂h

)H)H . Moreover, if c , ∂L
∂h

,A , λĜ∗

(Y (w)�Y (−w)+λ)2 ,

and B , ( Ĝ∗�Y (w)2

(Y (w)�Y (−w)+λ)2 ) are defined, then (6.22) reduces to:

∂L
∂h

∂h

∂y
= cHFH(diag(A)− diag(B)M)F (6.23)
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∂L
∂h

∂h

∂y
= (FH(diag(A)H −Mdiag(B)H)Fc)H (6.24)

by knowing the fact that c is a real signal. Notably, all of the operations conducted

here should become real in time domain due to the fact that the conjugation and/or

element-wise multiplication and/or circular time reversal operations over the real sig-

nal in the frequency domain will not produce an imaginary part in the time domain.

Due to this fact the Hermitian notation can be dropped from (6.24), and the gradient

of loss with respect to y can be written as:

∂L
∂h

∂h

∂y
= F−1{A∗ �F{c} −M(B∗ �F{c})} (6.25)

Due to the fact that the M matrix makes the signal circularly time-reversed and that

DFT of real signals are circularly conjugate symmetric, multiplying the DFT of a real

signal with M from the left corresponds to the conjugation operation, the equation

(6.25) can be written as follows:

∇yL =
∂L
∂h

∂h

∂y
= F−1{A∗ �F{c} − (B �F{c}∗)} (6.26)

The equation (6.26) is the final analytic expression for the gradient of the loss with

respect to y for single feature map case. In the following section, the backpropagation

derivation for the multiple feature maps will be presented.

6.4 Backpropagation of the Loss for Multiple Feature Maps

In the previous section, the backpropagation of the proposed loss function is presented

for single feature map case. In this section, the required gradients in the case of

multiple feature maps is derived. The correlation filter cost function for multiple

feature maps is given as:

ε =

∥∥∥∥∥
d∑
l=1

hl ~ yl − g

∥∥∥∥∥
2

+ λ

d∑
l=1

||hl||2 (6.27)
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The minimizing set of filters are [26]:

hl = F−1


Ĝ∗ � Y l

d∑
m=1

Y m � Y m∗ + λ

 (6.28)

In the multiple feature channels case, we can define our backprobable cost function

as follows:

L(θ) =

∥∥∥∥∥
d∑
l=1

hlθ ~ xlθ − g

∥∥∥∥∥
2

(6.29)

Since most parts of the gradient calculations are analogous to the one channel case,

only the Jacobian part will be focused here. Similar to the previous part, we can

define:

H l =
Ĝ∗ � Y l

d∑
m=1

Y m � Y m∗ + λ

(6.30)

The Jacobian term dhl

dyk
is given as follows:

dhl

dyk
=

dhl

dH l

dH l

dY k

dY k

dyk
= FH dH

l

dY k
F, (6.31)

where the Jacobian term ∂Hl

∂Y k
can be calculated in the frequency domain as:

∂H l

∂Y k
= I(l == k)diag

 Ĝ∗

d∑
m=1

Y m � Y m∗ + λ

− (6.32)

diag

 Ĝ∗ � Y l � Y k∗

(
d∑

m=1
Y m � Y m∗ + λ)2

− diag
 Ĝ∗ � Y l � Y k

(
d∑

m=1
Y m � Y m∗ + λ)2

M (6.33)

where I(.) is the indicator function and outputs 1 if the argument is true and 0

otherwise. For simplicity, if K lk
1 = I(l == k)diag

 Ĝ∗

d∑
m=1

Ym�Ym∗+λ

, K lk
2 =

diag

 Ĝ∗�Y l�Y k∗

(
d∑

m=1
Ym�Ym∗+λ)2

 and K lk
3 = diag

 Ĝ∗�Y l�Y k

(
d∑

m=1
Ym�Ym∗+λ)2

 are defined, then

(6.32) can be rewritten as follows:

∂H l

∂Y k
= K lk

1 −K lk
2 −K lk

3 M (6.34)

Following the same methodology in the previous section, al = ∂L
∂hl

and Al = F{a}
are the gradient of the cost with respect to the correlation filter for the lth channel and
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its DFT, respectively. The gradient of the cost L is also given as:

∂L
∂yk

=
d∑
l=1

∂L
∂hl

∂hl

∂yk
(6.35)

Replacing (6.34) and (6.31) to (6.35) yields:

∇ykL =
∂L
∂yk

=
d∑
l=1

F−1{(K lk
1 −K lk

2 )∗ � Al −K lk
3 � Al

∗} (6.36)

by the similar derivation in the previous section. The gradient of the loss with respect

to xl and hl are

∂L
∂hl

= F−1{E∗ �X l}, (6.37)

∂L
∂xl

= F−1{E �H l} (6.38)

where E = F
{

d∑
l=1

hl ~ xl − g
}

. The final gradient of the loss with respect to the

parameters θ of the network is2:

∇θL =
∑
l

∂L
∂xlθ

∂xlθ
∂θ

+
∑
l

∂L
∂ylθ

∂ylθ
∂θ

. (6.39)

Thus far, we derived the necessary gradient terms required to backpropagate our sig-

nal under concern. By the derived formulations, we make the feature design of the

well-known correlation filter based trackers become amenable to train a deep network

model. In the next section, the proposed custom architecture design is detailed with

the employed training and testing setups.

6.5 Dataset Generation from VOT2015 Dataset

In order to train a fully CNN model, 200K training examples are generated by uti-

lizing the VOT2015 dataset [35], consisting of 60 sequences with different attributes.

The bounding boxes of each object are provided for each frame. We crop approxi-

mately two times larger area of the object size and resize the images to the appropriate

size of the network (101×101 in our experiments). To keep the aspect ratio of the ob-

jects, we crop the squares from the region of interests of the object, where the side
2 Please note that xl is replaced with xlθ to underscore the dependency of xl on the network fθ(.).
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length of the square is 2∗
√
W ×H (W and H are the width and height of the object,

respectively.). Generated yraw’s center the object since these patches are indeed tem-

plates for us. However, xraw’s are obtained by shifting the center of the object since

our aim is to break the influence of the circular translation over the actual translation.

The shift amount is determined by a random variable which is uniformly distributed

in [−0.3 ×W, 0.3 ×W ] and [−0.3 × H, 0.3 × H] for horizontal and vertical trans-

lations. The frame difference between yraw and xraw is a Gaussian random variable

with standard deviation of 5 frames.

6.6 Proposed Custom architecture and Implementation Details

Since a medium scale dataset is generated, we prefer designing relatively small archi-

tecture with respect to the state-of-the-art networks of classification such as [18]. For

this purpose, the input to our network is 3 channel input image in 101 × 101 dimen-

sions. The architecture consists of 4 convolutional layers. All of these layers have a

batch normalization layer after the convolutional layer part. The first three of them

have a rectified linear unit (ReLU) [60] layer with a leak of 0.1 [115, 46]. To keep the

spatial size of the feature maps constant, convolutional layers have the appropriate

padding (e.g., padding value is 1 for the 3 × 3 kernel sizes). The number of feature

maps are shown in Figure 6.2. The final layer outputs the map which will be utilized

for the correlation task (x(θ) and y(θ) of Figure 6.1).

Figure 6.2: Architecture dimensions.

The aforementioned network is trained in the generated dataset with a batch size of

128, learning rate is decreased from 10−9 to 10−10 for 400 epochs. Momentum is set

to 0.9, and a weight decay of 0.0005.
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Figure 6.3: Visual illustrations from our trained network for single feature map. MSE
scores of the correlation filter of the feature map extracted by our network after the
first epoch, 400th epoch and the correlation filter of the gray-level image intensities.
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As it can be observed from Figure 6.3, we have a significant amount of decrease

in the MSE cost with respect to both time (comparison between the first and 400th

epoch) and the gray level image intensity feature. This indicates that useful features

are learned and they are targeting at reducing the vagueness of the correlation planes.

Figure 6.4: Cost function decrease during the training.

For the multiple feature maps design, we set 4 hidden layers where each hidden layer

has 16 feature maps, ReLU units and batch normalization layers. Kernel sizes are

selected as 9×9, 7×7, 5×5 and 3×3 in the increasing order of the layers. The final

layer has 8 feature maps. Moreover, Figure 6.4 displays the loss function through the

epochs during training.

Figures 6.5, 6.6, 6.7 and 6.8 illustrate the extracted features by the proposed model. It

is notable that MSEs (i.e., the loss value) between the desired and estimated response

have less value for the proposed features than the HOG features even though there

exist 8 features for the proposed model, while the number of features is 28 for HOG

representation. As one can notice from these figures, the obtained features highlight

edges in different orientations.

6.7 Tracking Application and Experimental Results on Benchmark Datasets

In this section, the experimental results on benchmark datasets are presented to show

the representation power of the learned features. Moreover, the learned features are
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Figure 6.5: Visual illustrations for multiple feature maps. 1st and 2nd rows: extracted
features. 3rd and 4th rows: MSE scores of the features extracted by the network after
the 1st epoch, 90th epoch, desired response and the response by HOG features.
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Figure 6.6: Visual illustrations for multiple feature maps. 1st and 2nd rows: extracted
features. 3rd and 4th rows: MSE scores of the features extracted by the network after
the 1st epoch, 90th epoch, desired response and the response by HOG features.
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Figure 6.7: Visual illustrations for multiple feature maps. 1st and 2nd rows: extracted
features. 3rd and 4th rows: MSE scores of the features extracted by the network after
the 1st epoch, 90th epoch, desired response and the response by HOG features.
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Figure 6.8: Visual illustrations for multiple feature maps. 1st and 2nd rows: extracted
features. 3rd and 4th rows: MSE scores of the features extracted by the network after
the 1st epoch, 90th epoch, desired response and the response by HOG features.
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integrated into the state-of-the-art trackers, and compared against top performing

trackers on the utilized datasets.

6.7.1 Experimental Results on OTB-2013 Benchmark in Comparison to the

Hand-Crafted Features

We conducted tracking experiments on 40 sequences from [111] with 11 different

attributes including illumination variation, out-of-plane rotation, scale variation, oc-

clusion, deformation, motion blur, fast motion, in-plane rotation, out of view, back-

ground clutter and low resolution. It should be noted that the selected sequences do

not exist on VOT2015 [35]. The trackers are evaluated in terms of the overlap and

distance precision scores. Overlap score is the intersection-over-union of the ground

truth bounding box and the predicted one. Distance precision is the Euclidean dis-

tance between the center of the ground truth and predicted bounding boxes. The plots

are drawn for different thresholds and determined as the percentage of frames in a

sequence where the overlap or distance precision is larger than a threshold.

In order to analyze the effects of feature maps on the tracking performance, DSST

[26] is adopted as the baseline tracker. Different feature type configurations are

tested as follows: Proposed CFCF (learned single feature map + gray level inten-

sity + horizontal gradient + vertical gradient), proposed MCFCF (learned multi-

ple feature maps + gray level intensity + horizontal gradient + vertical gradient),

DSST (28 HOG feature maps), DSST_GRAY (only gray-level image intensities) and

DSST_GRAY_GRADS (gray-level image intensities + the horizontal + vertical gra-

dients). All the parameters of DSST are fixed including the scale estimation. The

number of feature maps for these configurations are summarized in Table 6.1. Figure

6.9 demonstrates the overall results in terms of overlap success and distance precision.

Figure 6.10 and 6.11 illustrate overlap success and distance threshold performances

for different thresholds on 6 attributes from the utilized sequences, respectively.

When we analyze the overall results from Figure 6.9, it can be stated that a favorable

performance against DSST algorithm with 28 feature maps is achieved by reducing

the number of feature maps 7 times fewer. Moreover, we also have a significant per-

formance increase with respect to the gray-level image intensity usage as well as the
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Figure 6.9: Overall results on 40 sequences from [111]. MCFCF_IS is MCFCF with
an intelligent search algorithm that performs an object search in a region with a size 4
times larger than the object size, when the tracking quality (Peak-to-Sidelobe-Ratio)
is below 10. MCFCF_SW is MCFCF with windowing algorithm of Chapter 4.

gray-level and gradient features. This is the experimental evidence that our network

embed most of the necessary information to the intermediate layers and utilize this

abstract information when necessary, thus avoiding the redundant use of gradients in

all directions as in the case of DSST [26].

Figure 6.9 and the subsequent figures illustrating the per-attribute analysis in Figures

6.10 and 6.11 also demonstrate two extensions of our MCFCF framework. The first

extension is our spatial windowing algorithm from Chapter 4, where a spatial win-

dow is learned from gray-level image intensities and applied to all feature maps. The

details about this tracking methodology and the necessary derivation are already dis-

cussed in Chapter 4. The MCFCF tracker with spatial windowing is here called as

MCFCF_SW. On the other hand, the second attempt to improve the tracking perfor-

mance on MCFCF is called as MCFCF_IS which basically stops updating the cor-

relation filter, if the correlation plane quality is below a certain threshold and search

the object in a relatively larger area during this particular frame. Hence, it is possible

to maintain tracking under different challenging conditions. These improvements are

observable from Figures 6.9, 6.10 and 6.11.

Another frequently utilized interpretation of the OTB [111] dataset is mean distance

precision (DP) and mean overlap precision (OP). Mean distance precision is the frac-

tion of the frames with a center location error 20 pixels, and mean overlap precision
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Figure 6.10: Success plots of 40 sequences from [111] for 6 attributes.
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Figure 6.11: Precision plots of 40 sequences from [111] for 6 attributes.
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Table6.1: Mean distance precision and mean overlap precision comparison for 40
sequences from OTB [111] for different features.

DSST_GRAY DSST_GRAY_GRADS DSST CFCF MCFCF

Mean OP% 62.2 67.4 67.3 70.4 70.9

Mead DP% 69.2 70.0 75.0 74.8 74.6

# of feature maps 1 3 28 4 11

is the percentage of the frames exceeding the PASCAL criterion threshold of 0.5. In

terms of these metrics (Table 6.1), proposed method achieves the same performance

as DSST with 28 feature maps, while significantly outperforming DSST with only

gray-level features and gray-level and gradient features.

6.7.2 Comparison with Respect to the State-of-the-Art Deep Features

For comparing the proposed learned features against recently proposed trackers, CCOT

[30] (winner of VOT2016) method, which allows the use of multi-resolution feature

maps, is adopted. For this purpose, the last layer features are integrated to the zeroth

and first layers after the ReLU part, resulting in 27 feature maps compared to 611 fea-

ture maps of CCOT [30]. This configuration is also compared against deepSRDCF

[27] (the 2nd best of VOT2015 challenge) utilizing 96 feature maps of [18]. A recent

work SiamFC [9], where a fully-convolutional model is trained for sliding window

matching, is also compared with the proposed method.

Figure 6.12 presents OPE results on 40 sequences of [111]. Regarding average OP

values (the left of Figure 6.12), the proposed 27 feature maps yield a close perfor-

mance to CCOT with 611 features. Meanwhile, it outperforms deepSRDCF, which

utilizes 96 feature maps. On the other hand, the proposed method performs favorably

against deepSRDCF and SiamFC in terms of CLE values (the right of Figure 6.12).

In Table 6.2, AUC values of OP are presented for 11 attributes. Although CCOT

performs favorably against CCOT_CFCF, the feature maps utilized by CCOT_CFCF

are significantly less than CCOT (The second column of Table 6.2). It is also notable

that the proposed custom architecture is significantly smaller than VGG, employed

by CCOT. Moreover, the proposed features perform close to CCOT, such as in the se-
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Figure 6.12: One-Pass-Evaluation (OPE) curves. Left: Overlap precision (OP) and
right: center localization error (CLE). Avg. OPs are ordered according to Area-
Under-Curve (AUC) while avg. CLEs are in the order of 20 pixel threshold.

Table6.2: AUC values for 11 attributes of the 40 test sequences [111]. FM means
feature maps.

# of FM IV SV OCC DEF MB FM IPR OPR OV BC LR Avg.

CCOT_MCFCF (ours) 27 0.63 0.66 0.63 0.70 0.69 0.63 0.64 0.64 0.58 0.65 0.62 0.67

CCOT [30] 611 0.70 0.70 0.70 0.70 0.76 0.71 0.69 0.69 0.76 0.68 0.75 0.71

deepSRDCF [27] 96 0.62 0.64 0.63 0.68 0.69 0.64 0.65 0.65 0.64 0.65 0.44 0.67

SiamFC [9] 128 0.57 0.61 0.63 0.60 0.60 0.60 0.65 0.63 0.65 0.60 0.63 0.65

HOG_CCOT 31 0.55 0.58 0.61 0.65 0.64 0.57 0.59 0.59 0.53 0.61 0.53 0.63

DSST_MCFCF (ours) 11 0.56 0.56 0.55 0.58 0.53 0.50 0.57 0.55 0.47 0.55 0.56 0.58

DSST_CFCF (ours) 4 0.56 0.56 0.54 0.55 0.50 0.47 0.56 0.54 0.50 0.52 0.50 0.56

DSST [26] 28 0.56 0.56 0.53 0.52 0.52 0.49 0.58 0.53 0.47 0.52 0.51 0.56
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quences with scale variation (SV), deformation (DEF) and background clutter (BC)

attributes.

6.7.3 Fine-tuning the Pre-trained Networks

In the previous two sections, a comprehensive performance analysis has been carried

out to show the efficacy of the features learned by the custom network. Nevertheless,

the learned model has been trained on a dataset generated by using VOT2015 dataset

including 60 video sequences. 11 of the sequences on VOT2015 also exist on OTB-

2013 Benchmark dataset [111]. Thus, it prevents the evaluation to be fulfilled on

the full OTB-2013 sequences. Moreover, VOT2015 is not a large-scale dataset even

though the generated samples are over 200K. This situation discourages to train or

fine-tune the state-of-the-art convolutional networks such as [18, 96]. In order to han-

dle this situation, a new dataset is generated from the large-scale video sequences of

ILSVRC challenge dataset [92]. In the 2015 challenge organized by ILSVRC, a new

dataset is presented for the challenge called “Object Detection from Video”, which

has around 4000 videos. In each video, an object from 30 different classes acts and

the bounding boxes for each frame is provided. This rich amount of annotated data is

utilized to generate our 200K triplet samples (the desired response, the localized and

unlocalized patches) as it is achieved for VOT2015.

Similar to the training protocol in Section 6.5, the proposed cost specifically targeting

the correlation filter based tracking error is minimized by using the backpropagation.

Unlike the network described in Section 6.6, VGG-M network proposed in [18] is

exploited in such a way that this network is cut from the first fully-connected layer

(fc6), since the built framework only accepts the convolutional layers due to their shift

invariance property. Although any other network model could be selected, VGG-M is

fine-tuned to fairly compare against the CCOT tracker [30], which utilizes the zeroth,

the first and the fifth convolutional layers of VGG-M. In order to train convolutional

layers of VGG-M, an auxiliary layer with 32 feature maps is added as the layer to be

optimized by the CFCF cost function. This augmentation is necessary because the fi-

nal convolutional layer of VGG-M has 512 feature maps and the training with respect

to the proposed loss becomes infeasible. By the auxiliary layer with 32 layers, the
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Figure 6.13: Average precision and success plots of 51 sequences in [111].

complexity is significantly reduced. The major assumption that is worth discussing

here is the claim that the reduction of the cost in the top layer also helps to decrease

the cost in the lower layers at least by the same amount. In Appendix A, this issue is

addressed by showing the approximate equivalence of the correlation response error

for the two consecutive layers.

The fine-tuned VGG-M network is integrated into the CCOT tracker by using its

default hyper-parameters except for the number of iterations to find the filter. The

default iteration number of CCOT is 5, whereas only 1 conjugate gradient iteration

is performed except for the first frame (which has 100 iterations in both our case

and the baseline CCOT configuration). Our preliminary experiments have shown that

more than 1 iteration deteriorates the performance of the learned features due to the

fact that the trained network becomes more robust to appearance and pose changes of

the object and invariant to the changing conditions, such as illumination. Hence, the

learned features help to double the computation speed, as the fps values are reported

in Figure 6.21 for 100 videos of OTB-2015. The fps is measured in Intel Xeon E5

2623 3.0 GHz except for the CNN feature extraction which is performed by Nvidia

Tesla K40 in MatConvNet [105].

The fine-tuned VGG-M network is tested on the full 51 sequences of OTB-2013 [111]

and on the full 100 sequences of OTB-2015 [112], which is a superset of OTB-2013.

The Figures 6.13 and 6.17 present the success and precision plots.

Moreover, Figures 6.14, 6.15, 6.16 and 6.18, 6.19, 6.20 compare the features by fine
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Figure 6.14: Precision and success plots of 51 sequences in [111] for 4 attributes: fast
motion, background clutter, motion blur and deformation.

113



Figure 6.15: Precision and success plots of 51 sequences in [111] for 4 attributes:
illumination variation, in-plane rotation, low resolution and occlusion.
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Figure 6.16: Precision and success plots of 51 sequences in [111] for 3 attributes:
out-of-plane rotation, out-of-view and scale variation.
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Figure 6.17: Average precision and success plots of 100 sequences in [112].

tuning VGG-M network with the proposed feature learning framework. For this pur-

pose, the pre-trained VGG and the fine-tuned VGG networks (short for CFCF) are

integrated into two state-of-the-art trackers. The first one is CCOT [30]. The baseline

tracker [30] and the tracker with the fine-tuned features are named as CCOT_VGG

and CCOT_CFCF, respectively. Secondly, SAMF [69] is utilized to integrate our

learned features and named as SAMF_CFCF. SAMF [69] is the multi-scale exten-

sion of KCF [48] tracker that originally utilizes HOG orientations. The zeroth, first

and fifth convolutional layer outputs are utilized after the ReLU layer as in CCOT

[30]. Moreover, the pre-trained VGG network [18] trained on ImageNet [32] ob-

ject recognition dataset for classification task is also integrated into SAMF, and this

configuration is named SAMF_VGG.

Among the remaining state-of-the-art trackers, SRDCF [28] utilizes HOG orienta-

tions maps, and deepSRDCF [27] integrates deep VGG features into SRDCF tracker.

DSST [26] is the winner tracker of VOT2014 challenge with an efficient scale search

technique and it utilizes HOG orientation maps. Moreover, SiamFC [9] is a fully con-

volutional Siamese architecture that learns to estimate the object location when the

two inputs to the network are an image template and a test frame. HCF [76] exploits

convolutional layers of a CNN architecture by hierarchically utilizing the correlation

filters designed for each layer.

The results implies that a considerable performance increase is obtained with the pro-

posed features compared to CCOT and SAMF, which takes the features extracted
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Figure 6.18: Precision and success plots of 100 sequences in [112] for 4 attributes:
fast motion, background clutter, motion blur and deformation.
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Figure 6.19: Precision and success plots of 100 sequences in [112] for 4 attributes:
illumination variation, in-plane rotation, low resolution and occlusion.
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Figure 6.20: Precision and success plots of 100 sequences in [112] for 3 attributes:
out-of-plane rotation, out-of-view and scale variation.
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Figure 6.21: Speed comparison between CCOT_VGG (baseline) and the proposed
tracker CCOT_CFCF on OTB-2015 sequences.

from the pre-trained network of VGG-M. CCOT is the winner tracking method of

VOT2016 challenge, SAMF is the top second tracker of VOT2014 challenge and

SRDCF with deep features is the top second tracker of VOT2015 challenge. Inte-

grating only our features into the winners, SAMF and CCOT, and putting no further

effort, the tracking performance is leveraged by a significant amount.

6.7.4 VOT2016 Performance Analysis of the Fine-tuned VGG-M

The proposed features integrated to CCOT has also been tested on VOT2016 chal-

lenge dataset including 60 videos.

The VOT2016 has quite a different tracking assessment technique including three

major metrics. 1) Accuracy is the mean intersection over union of the frames in

a sequence. 2) Failure is the mean number of failures per sequence. These two

metrics are the raw metrics. The ranking of a particular metric (failure or accuracy)

is measured by ordering the compared trackers with respect to that metric, and the

statistically significant tracker rankings are merged. 3) Expected average overlap

(EAO) is estimated for a selected range of sequence lengths. Concretely, a specific

expected average overlap φNs is estimated by averaging the accuracy values in the

segments that are longer than Ns while discarding the segments shorter than Ns with

no failure termination. The segments shorter than Ns with a failure are zero-padded,

hence penalizing the failure case for that particular Ns length. These φNs values are

determined for the set {φNs}
Nhi
Nlo

and the final score is the mean of these expected
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Table6.3: VOT2016 performance results

Trackers EAO Acc. Rank Rob. Rank Acc. Raw Fail. Raw

CFCF 0.3903 1.98 2.27 0.54 0.63

CCOT [30] 0.3310 2.55 2.95 0.52 0.85

TCNN [83] 0.3249 1.97 3.92 0.54 0.96

SSAT [84, 36] 0.3207 1.62 3.80 0.57 1.04

MLDF [36] 0.3106 3.70 2.82 0.48 0.83

Staple [8] 0.2952 2.57 4.83 0.54 1.35

DDC [36] 0.2929 2.27 4.62 0.53 1.23

EBT [129] 0.2913 5.07 2.88 0.4 0.90

SRBT [36] 0.2904 3.73 4.47 0.50 0.125

STAPLEp [36] 0.2862 2.03 4.42 0.55 1.32

DNT [36] 0.2783 3.03 4.47 0.50 1.18

values in the set. Selection of Nlo and Nhi are performed according to the sequence

length histogram of the dataset.

In order to make a fair comparison between the fine-tuned VGG features for our loss

function and the VGG features utilized by CCOT, VOT2016 challenge configuration

of CCOT is utilized. In that configuration, the zeroth, first and fifth convolutional

layers of VGG are employed as well as the color names of [29] with 11 features and

31 HOG gradient maps in [28]. To keep the legends simple in the figures and tables,

the proposed tracker configuration CCOT_CFCF is abbreviated as CFCF.

Table 6.3 reports the performance results of VOT2016 challenge. Among 71 partic-

ipants of this challenge, we only show the top ten trackers and the proposed tracker

CFCF ordered by the EAO metric, which unifies the robustness and accuracy of the

trackers.

In Figure 6.22, the ranking results in Table 6.3 is pictured within a 2-dimensional plot.

As the figure shows, the proposed tracker significantly outperforms all of the existing

participants. Moreover, the proposed features improves the top tracker CCOT by
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Figure 6.22: Accuracy-Robustness Ranking plot. Closeness to the top right indicates
good tracking performance.

18.7% in terms of EAO. On the other hand, the number of optimization iterations is

reduced to 1 from 5, bringing a significant decrease in the computation time. It is also

attractive that the number of failures is decreased by 25% with respect to the CCOT.

The raw accuracy performance is also improved by at least 3.5%.

122



CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Summary of the Thesis

This thesis addresses the problem of single object visual tracking, which mainly aims

to estimate the state of a target object at each frame of a video when the first state

is provided by the oracle. In particular, correlation filter based tracking methods are

focused due to their notable performances in benchmark datasets, their efficient com-

putational complexity for localization and simple model update. In order to leverage

the tracking performance, three major frameworks have been proposed.

In the first proposal, the object patches are perceived as signals. The goal is to increase

the correlation quality of the model filter and the object patch. This requirement re-

sults from the assumption that particular regions of the object are not appropriate to

correlate, while some other regions are invariant to appearance changes of the ob-

ject, hence they have the potential to increase the correlation quality. That said, a

spatial window which suppresses or highlights the parts of the object patch or the

correlation filter in the image domain is learned at each frame. For this purpose, an

efficient gradient formulation for the spatial window is proposed with respect to the

correlation quality of the signal. If the estimated spatial window by the gradient de-

scent reduction is element-wise multiplied by the object patch or the correlation filter

model in the image domain, a considerable increase is observed in the tracking ac-

curacy and robustness. The conducted experiments are important evidences of the

aforementioned assumptions. Moreover, the obtained windows have qualitative in-

terpretations; concretely, the occluded part of the object patches have low values in
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these masks, whereas the salient regions such as edges or blobs typically have high

values.

In the second proposal, a machine learning perspective is adopted by treating the

object patches as points in the high dimensional feature space. Most correlation fil-

ter based tracking approaches, especially the pioneering studies MOSSE [14] and

DSST [26], occupy a single model, i.e. a single correlation filter, which is updated

by weighted averaging the individual correlation filters throughout the video frames.

Nevertheless, the averaging of the correlation filters at every frame might have disad-

vantages. For instance, the correlation filter for the object patch of a woman dancing

with her hands on her side and the correlation filter of the same woman leaned over

the knees are averaged. Such an averaged correlation filter most likely deteriorates

the performance of the localization in both poses of the woman, if they are encoun-

tered again during the video stream. A promising alternative is to keep record of

separate models in an ensemble. Yet, the number of models, their inclusion and re-

moval to the ensemble are cumbersome and prone to the hyper-parameters of such a

framework as in [120]. To handle this situation, we organize the ensemble of trackers

in a tree-structure such that the individual correlation filter models are stored in the

tree nodes. Moreover, an effective combination algorithm that considers all of the

possible combinations in a tree is proposed.

The presented ensemble of trackers method is able to handle the accurate localization

of the target objects especially in challenging conditions, such as object deformations

and occlusions, since only the relevant and most similar models to the instantaneous

object appearances are activated by the proposed combination algorithm. The ex-

tensive evaluations in benchmark sequences have validated the effectiveness of the

proposed framework. In addition, the spatial windowing methodology of the first pro-

posal is also integrated into the ensemble tracking framework. The combined method

performs significantly better than both of the proposals. Thus, one can experimen-

tally state that the two frameworks have uncommon advantages and complementary

to each other.

Both of the proposed methods that are summarized above are designed to increase

the capabilities of the correlation filter based tracking techniques while further im-
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provements are concurrently proposed in various studies, such as in [73] [10], [52],

[28], [27], [30] and so on. Nevertheless, none of them explicitly takes care of benefi-

cial features for the particular task, i.e., the correlation filter based tracking, although

few attempts [76, 27] have been proposed in the past to make full use of the features

extracted from the pre-trained deep network model of the object recognition task.

Hence, in this thesis, a third novel technique is proposed in order to train a deep fully

convolutional CNN network for the correlation filter based tracking loss function.

An efficient backpropagation algorithm is presented to train the deep model by using

the stochastic gradient descent exploiting the Convolution Theorem for the circular

convolution operation of the discrete signals. The reported results demonstrate that

the learned features are much more amenable for the correlation operation than the

pre-trained networks utilized by the state-of-the-art methods, such as [27] and [30].

7.2 Conclusions

The major success of the correlation filters for the localization of the object is due

to the fact that dense samples are inherently learned. In other words, the correlation

filter based tracking formulation regresses a desired correlation response for every

possible shift of the training examples. At this point, a disadvantage arises: Existence

of imperfect training samples. In order to generate training samples for every shift of

the signal, the circular translation of the object patches are assumed to be the actual

translations of the object. Training examples especially in the boundaries become

far from being the actual ones. Hence, the boundaries of the object patches should be

carefully considered. To handle the above issue, the studies in [41] and [28] cope with

the boundaries by proposing the regularization of the boundaries. On the other hand,

this issue is addressed by the proposed window learning method which is also a good

candidate to suppress the boundaries of the object patch as well as to increase the

correlation quality. It can be concluded that such a window-based approach improves

the tracking quality of the conventional techniques. The experiments conducted on

VOT2015 dataset have demonstrated that the proposed windowing method decreases

the number of failures by 6%. Moreover, it improves the tracking accuracy over 2.5%

on the OTB-2015 dataset.
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Another important point that should be taken into account is the search range trade-

off. If an object patch is cropped S times larger than the actual size of the object, and

S is sufficiently large, then the tracker failures might be decreased in abrupt motion

scenarios. Yet, the possibility of the tracker to jump to a similar object increases. This

problem is also handled by the boundary regularization or window learning up to a

certain degree. Nonetheless, as the appearance of the target significantly changes in

the cases of severe object deformation, a single model is no longer adequate. Thus,

one can wisely store multiple models similar to the proposed tree-structured ensemble

tracking method. The reported results reveal that the presented ensemble tracker and

its combination with the proposed window learning method significantly decreases

the average number of failures by 23% without sacrificing from the accuracy of the

tracker on VOT2015 dataset.

Although the utilization of multiple models is a powerful selection to handle the ap-

pearance change of the object, it is not a desirable alternative due to the practical

issues, such as memory requirements and computational complexity, even though the

proposed ensemble tracking method efficiently registers the models in the nodes of

the tree. The proposed ensemble framework requires to run multiple trackers inde-

pendently. Hence, it is possible to design an implementation to operate individual

active expert trackers of the ensemble in multiple threads. By this way, it could be

possible to avoid the slow computation time that depends on the depth of the tree.

The existing challenges includes the followings: abrupt motion, illumination change,

scale variation, motion blur, partial occlusion, out-of-plane rotation, in-plane-rotation

and deformation. Abrupt motion and deformation are partially handled with the pro-

posed methods in this thesis as well as the state-of-the-art studies. However, the

failure is inevitable in the cases where multiple difficulties exist in a sequence. Thus,

a tracker should be able to solve a subset of these challenges to a great extend. For

instance, if the designed tracker is convincing in terms of its robustness to severe

deformations, then it could be much easier to handle the abrupt motion or scale vari-

ation. Thus, the proposed feature learning method targets at making the tracker as

invariant as possible to the appearance changes of the object such as deformation and

out of plane rotation. In such a case, it would be possible to consistently increase the

tracking accuracy in most of the video sequences of the benchmark datasets.
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It is notable that the integration of the learned convolutional feature maps to the state-

of-the-art trackers DSST [26], SAMF [69] and CCOT [30] significantly increases the

tracking accuracy by 3.4% (in OTB-2013 dataset), 1.4% (in OTB-2015 dataset) and

5.6% (in OTB-2015 dataset), respectively, in terms of the area-under-curve of the

success plots. Remarkably, the learned features increase the tracking performance in

Visual Object Tacking 2016 challenge dataset by over 18% in comparison to the pre-

trained object classification network utilized by the winner of this challenge. This is

the best result reported so far in tracking literature in terms of the VOT2016 Expected

Average Overlap metric, which ranks the participating trackers in that challenge.

7.3 Future Work

In order to compete with the existing state-of-the-art trackers, the computational effi-

ciency is somewhat sacrificed. If the tracking speed were concentrated, the quantita-

tive performance values would be almost halved, such as the pioneering work of [14].

As the cutting edge performance gains are being obtained, the experience gathered

from these gains should be transferred to the real-time or near real-time trackers. Our

convolutional feature formulation can be considered as an example of transferring

the deep convolutional networks to the real-time trackers, since our light weight and

custom design leverages the tracking accuracy and it is convenient to utilize these

features in a multiple channel correlation filter based tracker with few feature maps

learned in a specific domain for the correlation task.

The proposed feature learning methodology is scalable to simpler or complex net-

works. Hence, any custom design is possible in other domains. For instance, deep

fully convolutional networks can be trained in infrared images for the correlation task

without confining the tracker to use pre-trained features of the object recognition task

for the RGB cameras. It is also notable that a surveillance system requires more than

one task including visual tracking, mid- and high-level action representations, object

detection and recognition. For such a requirement, a deep network can be trained in

a multi-task learning framework, where the fully convolutional parts are trained for

both the correlation task and the object detection.
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When the computational resources of a system are so limited that no time-consuming

feature calculation is possible, the proposed tree-structured ensemble tracking method

can be employed with limited number of tree nodes to model the existing poses of the

object. Moreover, the tree pruning could be performed if the system is sure about

the incorrect model in a tree node. As it has been demonstrated in the experiments,

the depth of the tree is able to increase the tracking performance to a certain degree.

The depth value at which the performance saturates is affected by the difficulty of

the sequences and their lengths. Hence, the depth of the constructed tree is a control-

lable hyper-parameter, and it can be adjusted according to the performance and speed

requirements.

The proposed window learning method can be combined with other existing corre-

lation filter based tracking formulations to further increase the performance. One

potential use of the window learning approach is that a surveillance system can learn

windows offline or online for specific target object types. For instance, it is possi-

ble to suppress the propellers of a helicopter by the proposed windowing technique,

since the propeller locations rapidly change and inappropriate for the correlation task.

Another alternative is to design application specific hardware implementations of the

correlation filter based tracking with the proposed windowing approach. Through

such implementation, it is possible to select significantly fewer pixels than the total

number of pixels in the object patch during the correlation operation to obtain more

computational efficiency.

Finally, this thesis includes three major contributions to improve the tracking per-

formance by concentrating on the correlation filter based trackers. Although the in-

troduced frameworks are designed for correlation filters, they can be extended to be

employed in other types of visual trackers or in other computer vision tasks. Namely,

deep fully convolutional networks can be trained for object detection problem which

is based on correlation filters. Moreover, the introduced ensemble tracking method

can adopt any state-of-the-art visual tracker at the expense of computational complex-

ity that increases linearly with the depth of the tree.
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APPENDIX A

THE EFFECT OF A LAYER ON THE CORRELATION

QUALITY OF THE PREVIOUS LAYER

In this part, it is analyzed that the correlation quality of a layer behaves analogous to

the layer above it if some assumptions on the additive appearance noise hold. This

noise can be perceived as the appearance difference between the template x and the

test patch z. Convolutional layers have a set of 2-dimensional feature maps. In order

to obtain another convolutional layer on top of the previous one, they are summed

with a set of weight parameters.

For this purpose, X is two-dimensional DFT of a single feature map obtained from

a network in a certain layer, e.g., lth layer, for the training example x. Similarly, z is

the test patch with non-centered object. The single channel correlation filter for this

training example is given as:

H =
X � Ĝ∗

X∗ �X + γ
, (A.1)

where γ is the regularization parameter, and Ĝ is the DFT of the desired response ĝ

for the template x with a peak in its center location.

If the localized test sample z has the feature map in DFT domain as Z = X + µ

with µ being the additive noise due to the appearance change of the object, then the

resulting correlation error turns out to be:

Esingle = H∗ � Z − Ĝ

=

(
X∗ � Ĝ

X∗ �X + γ
� (X + µ)− Ĝ

)
≈ µX∗ � Ĝ
X∗ �X + γ

(A.2)

If the convolutional kernel at level l− 1 is assumed to be 1× 1 with their values fixed
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to 1 and there exists only two feature maps, then we can split X as X = X1 + X2

by ignoring the bias terms. In this case, the feature map of the test example Z will be

split as Z = Z1 +Z2, where Z1 = X1 +µ1 and Z2 = X2 +µ2. The µ1 and µ2 are the

individual additive noises of the feature maps. Repeating the formulation in Section

3.2, the two correlation filters are:

H1 =
X1 � Ĝ∗

X∗1 �X1 +X∗2 �X2 + γ

H2 =
X2 � Ĝ∗

X∗1 �X1 +X∗2 �X2 + γ

(A.3)

Hence, the correlation of the test sample z and the correlation filters yield:

Emulti = H∗1Z1 +H∗2Z2 − Ĝ

=
X∗1 � Ĝ

X∗1 �X1 +X∗2 �X2 + γ
� (X1 + µ1)+

X∗2 � Ĝ
X∗1 �X1 +X∗2 �X2 + γ

� (X2 + µ2)− Ĝ

(A.4)

By rearranging the terms and neglecting the effect of γ value, the error is reduced to:

Emulti =
µ1X

∗
1 � Ĝ+ µ2X

∗
2 � Ĝ

X∗1 �X1 +X∗2 �X2 + γ
(A.5)

In order to make a similarity between the (A.2) and (A.5),X is replaced withX1+X2

and µ = µ1 + µ2 in (A.2). Moreover, all of the terms are copied in (A.5). Finally, we
obtain the following error for single and multiple channels:

Emulti =
µ1X

∗
1 � Ĝ+ µ2X

∗
2 � Ĝ+ µ1X

∗
1 � Ĝ+ µ2X

∗
2 � Ĝ

X∗1 �X1 +X∗2 �X2 + γ +X∗1 �X1 +X∗2 �X2 + γ

Esingle =
µ1X

∗
1 � Ĝ+ µ2X

∗
2 � Ĝ+ µ1X

∗
2 � Ĝ+ µ2X

∗
1 � Ĝ

X∗1 �X1 +X∗2 �X2 +X∗1 �X2 +X∗2 �X1 + γ

(A.6)

As it can be observed from the errors of single and multiple channels, both of them are

proportional to µ1 and µ2. Hence, if the sum of these two variables (i.e., µ) decreases,

µ1 and µ2 have also tendency to decrease.

The above derivation can be extended to more than two feature maps, where the same

assumption would hold. If the two correlation response errors in two consecutive

layers are almost the same, one can argue that the mitigation of the appearance noise

in one of the layers is quite likely to reduce the correlation response error in the other

one. Hence, training a fully convolutional model to reduce its correlation error with

respect to the top layer will eventually increase the correlation quality in the lower
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layers. The experimental evaluation of the learned feature maps on the correlation

filter based trackers has clearly shown that this analysis is practically valid in most of

the tracking scenarios.
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