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Asst. Prof. Özge Sezgin Alp
Accounting and Financial Management, Başkent University
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ABSTRACT

ENERGY CONSUMPTION IN DATA CENTERS WITH DETERMINISTIC SETUP
TIMES

Kara, Aytaç

M.S., Department of Financial Mathematics

Supervisor : Assoc. Prof. Dr. Ali Devin Sezer

Co-Supervisor : Asst. Prof. Tuan Phung-Duc

September 2017, 44 pages

Data centers, which are networks consisting of thousands of computers, are central
objects in the global computation infrastructure. Typical data centers today may con-
sume as much electricity as a small town. Thus, it is of interest to build models of these
centers that allow one to study / optimize their energy usage. One of the models for
the energy usage based on queueng theory is the one developed in “Exact Solutions for
M/M/c/Setup Queues” by Tuan Phung-Duc. The same work carries out a stationary
analysis of the developed model to compute the long term average energy cost per unit
time. The model of Phung-Duc assumes that the data center consists of c servers and
that the servers are in one of the following three modes: running, stopped or in setup.
The setup mode is assumed to last a random exponentially distributed time. We mod-
ify this model as follows: we replace exponentially distributed setup times with a fixed
deterministic setup time. We call the resulting model M/M/c/dSetup. We approx-
imate the long term average cost per unit time via simulation and compare this cost
with that of the M/M/c/Setup system. Our main finding are as follows: the average
energy cost of these systems provide good approximations of one another. Secondly,
the average energy cost of the M/M/c/Setup system provides a lower bound for that
of the M/M/c/dSetup system.

Keywords : queueing theory, energy consumption, average cost of energy per unit time,
data centers, deterministic setup time, electricity markets
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ÖZ

SABİT KURULUM SÜRELİ VERİ MERKEZLERİNDE ENERJİ TÜKETİMİ

Kara, Aytaç

Yüksek Lisans, Finansal Matematik Bölümü

Tez Yöneticisi : Doç. Dr. Ali Devin Sezer

Ortak Tez Yöneticisi : Yardımcı Prof. Tuan Phung-Duc

Ağustos 2017, 44 sayfa

Binlerce bilgisayardan oluşan veri merkezleri, küresel hesaplama alt yapısının temel
yapıtaşlarından birisini oluşturmaktadır. Bugünkü tipik veri merkezleri küçük bir kasaba
kadar elektrik tüketebilir. Bunlar veri merkezlerinin modellenmesini ve bunların enerji
kullanamının analizini önemli araştırma konuları yapmaktadır. Bu yönde geliştirilmiş
ve kuyruk teorisi üzerine kurulu modellerden biri Tuan Phung-Duc’un “Exact solu-
tions for M/M/c/Setup” makalesinde verilmiştir. Bu makale önerdiği modelin durağan
analizini yapmış, bu analizi kullanarak modelin birim zaman başına ortalama enerji
maliyetini hesaplamış ve bu maliyetin model parametrelerine nasıl bağlı olduğunun bir
analizini vermiştir. M/M/c/Setup modeli c veri sunucusundan oluşur ve bu sunucu-
ların “açık,” “kapalı” ve “açılıyor” (setup) hallerinden birinde olduğunu varsayar.
M/M/c/Setup modelinde, her sunucu için, açılma zamanının üssel dağılıma sahip
bir rassal değişken olduğu varsayılır. Bu çalışmamızda M/M/c/Setup modelini şu
şekilde değiştiriyoruz: açılma süresini rassal bir değişken almak yerine sabit bir za-
man alıyoruz; bu modele M/M/c/dSetup diyelim. Bu varsayım altında sistemin
birim zaman başına ortalama enerji maliyetini simülasyon kullaranak yaklaşık olarak
hesaplıyoruz veM/M/c/Setup sisteminin ortalama enerji maliyetiyle karşılaştırıyoruz.
Analizimizin temel sonucu şudur: M/M/c/Setup sisteminin ortalama birim zaman
enerji maliyeti M/M/c/dSetup sisteminin ortalama birim zaman enerji maliyetinin
altında kalmakla beraber bu iki sistemin ortalama birim zaman enerji maliyetleri bir-
birlerine çok yakın çıkmaktadır.
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CHAPTER 1

Introduction

Cloud computing is a service where a company earns money by allowing its users
to run programs on its data centers, which are networks of thousands of computers
suitable for processing data traffic. Typical data centers today may consume as much
electricity as a small town. These servers spend a huge amount of energy to process
data and to keep cool. Minimization of power consumption provides savings of a
considerable amount of money on behalf of the company and reduce its environmental
impact. Thus, it is of interest to study and optimize energy usage of these centers.

As of now, an idle server still uses about 60 % of its peak energy usage [3]. Therefore, a
potential way to save power is by turning off idle servers. Nonetheless, off servers need
setup time to be an active server; the setup process also consumes power and servers
in setup mode cannot process jobs. Thus, there is a nontrivial question of comparison
between the two regimes 1) keeping servers always on and 2) turning off idle servers.

To answer questions of this sort, queueing theory provides a natural framework; Chap-
ter 2 of this thesis gives a very brief review of the queueing theory framework. Maccio
and Down [14] model a multiple server system with setup times for optimal control of
energy aware queueing systems. They use Markov decision process (MDP) and ana-
lyze the model to obtain main properties of optimal and suboptimal policies. Gandhi et
al. [10] determine a few closed form approximations for the ON-OFF policy in which
in a large number of servers can be in setup mode at once. There is a wide litera-
ture on queueing systems with setup time both with applications to data centers and
other manufacturing processes, the works see [4, 5, 6, 20] for single system servers
and [1, 8, 9, 10, 12, 14, 15] treat multi server systems. See [17] for a review of many
of these works.

A well known model of data centers that allow servers to be in setup mode is the
M/M/c/Setup model. This model is reviewed in Chapter 3 of this thesis. [8, 9] ana-
lyze the M/M/c/Setup model with ON-OFF policy using a recursive renewal reward
approach (RRR). Phung-Duc [17] derives exact solutions of the stationary measure
of M/M/c/Setup sytem using the generating function approach and matrix analytic
method. The generating function approach gives closed form expressions for the joint
stationary queue length distribution and the conditional decomposition formula. On
the other hand, the matrix analytic approach gives to a recursive algorithm to obtain
the joint stationary distribution and performance measures. Chapter 3 gives a summary
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of how [17] applies these approaches to the M/M/c/Setup system.

From a finance point of view, [17] and other works taking the queueing theory approach
to the cost analysis of data centers, use the concept of “average cost post unit time”
or equivalently “Long-run average cost” as their financial measure. This is one of the
basic quantities that one can use to analyze the costs of any business. Average cost per
unit time is reviewed below. We will also be using this quantity to measure the energy
costs of data centers.

The processes that a computer goes through as it turns on, i.e., the whole setup process,
are usually constant and one expects that, at least approximately, the setup process uses
the same time and energy each time it is repeated. Therefore, it makes sense to take
the duration of this process as a constant, as opposed to the exponentially distributed
random assumption made for this time in the M/M/c/Setup model. Motivated by
this observation, the goal of this thesis is to study the M/M/c/dSetup model, which
differs from the M/M/c/Setup model only as follows: in M/M/c/Setup the setup
time for a server is exponentially distributed with mean 1/α; in the M/M/c/dSetup
model, the setup time is deterministic and it equals 1/α. TheM/M/c/dSetupmodel is
introduced in Chapter 4. The parameters of the M/M/c/dSetup model are as follows:
1/α: the deterministic setup time, λ: the rate of the arrival of jobs to the data center; the
arrival process is assumed to be Poisson, c: the number of servers in the data center, µ:
the rate at which a server finishes serving a job, the duration of this service is assumed
to be exponentially distributed. The M/M/c/Setup has the same set of parameters;
only the interpretation of α is different: in M/M/c/Setup, 1/α is the mean time that
it takes a server to finish its setup, the duration of the setup is assumed exponentially
distributed. We will denote the average cost per unit time of theM/M/c/Setup system
by E∞ and that of the M/M/c/dSetup by Ed

∞. These will be functions of the system
parameters. Chapter 5 approximate E∞ and Ed

∞ using simulation and compares these
costs as the system parameters vary. Our main finding are as follows: the average
energy cost of these systems provide good approximations of one another. Secondly,
the average energy cost of the M/M/c/Setup system provides a lower bound for that
of the M/M/c/dSetup system. We list some directions for future research in the
Conclusion, which is our Chapter 6.

1.1 Long-run average cost / Average cost per unit time

Let C(t) denote the rate of spending of the business at time t, the “long-run average
cost”, or “average cost per unit time” of the business will then equal

AC = lim
T→∞

1

T

∫ T

0

C(t)dt.

IfC is a stable process, it will have a stationary measure µ and by the Ergodic Theorem
the above limit will equal

AC =

∫ T

0

xµ(dx).

2



The greatest cost associated with running a data center is the cost of energy to run
it. Running a data center is a complex task involving many considerations other than
energy costs. But given the importance of energy costs, this thesis will only focus
on the energy costs. Let us now talk about the the average energy cost unit time for
the M/M/c/Setup and /M/M/c/dSetup models. In these models we will have the
following processes: Rt: the number of servers running at time t, i.e., in ON mode,
and St: the number of servers in setup mode in time t. We will assume that a server in
ON [Setup] mode consumes energy at a constant rate Ca [Cs]. Then the total energy
spent at time t will be ∫ T

0

(RtCa + StCs)dt.

We will further assume that the cost of unit energy is constant at all times. For this
reason it suffices to focus on the total energy consumption which is represented by the
above integral. The long time unit energy consumption rate is

lim
T→∞

1

T

∫ T

0

(RtCa + StCs)dt.

If the underlying system is stable and has a stationary measure µ, the Ergodic Theorem
quoted above implies

lim
T→∞

1

T

∫ T

0

(RtCa + StCs)dt = Eµ[Rt]Ca + Eµ[St]Cs. (1.1)

We will denote this last expression by EMMC
∞ for the M/M/c model reviewed in

Chapter 2, E∞ for the M/M/c/Setup model reviewed in Chapter 3 and Ed
∞ for the

M/M/c/dSetupmodel given in Chapter 4. To compute these quantitites we only have
to compute the expectations appearing in (1.1). Very simple explicit formulas exist for
them for the M/M/c case (in this case St is always zero, so we have to only compute
the first expectation), which are reviewed in Chapter 2. The approximation of them
given in [17] for the M/M/c/Setup case is reviewed in Chapter 3. Finally, in Chap-
ter 5 we approximate the same expecatation via simulation for the M/M/c/dSetup
model.

3
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CHAPTER 2

Basic Queueing Systems

In this chapter, queueing systems (or queueing theory) and models are presented with
their many feautures. We begin by an introduction. Afterwards, classification of queue-
ing systems are given and performance parameters are explained. Then, one of the
basic models of queueing systems, M/M/c Queue is described.

2.1 Queueing theory / Queueing systems

Queueing systems is the mathematical study of waiting lines [19]. The primary quanti-
ties of interest in a queueing model are lengths and waiting times. In current literature
queueing systems often appears as a subfield of operations research, which is the gen-
eral field concerned with businesss / industrial decision making.

Queueing systems dates back to the beginning of the 20th century and the research
conducted by A. K. Erlang (1878–1929), who worked for the telecom company in
Copenhagen and studied telephone traffic [13]. Telecominications remain an active
area of application of queueing theory [13]. The early works of A.K. Erlang already
included the main elements of queueing theory [13]: arrival process, service process,
departure process and waiting of customers, servers, etc. The next section explains
some of the terminology of queueing systems.

2.1.1 Mathematical Description of Queueing Systems

Here are some of the main concepts that appear in queueing theory:

• Arrival process: The stochastic definition of customer arrivals. It may depend
on the current state of the system, including the number of customers in the
system. In basic queueing models where the arrival times are independent, the
arrival process is described by the interarrival time distribution.

• Service process: The stochastic definition of customer service. Customer ser-
vice may also depend on the current state of the system; the simplest and most
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commonly used assumption on service times is that of independent and identi-
cally distributed (iid) service times.

• System structure: The resources of the queueing system, which includes the
number of servers and the size of the waiting room, and their interconnection.

• Service discipline: A set of rules that assigns the service order and service mode
of customers. The most known service orders are FCFS (first come, first served),
FIFO (first in, first out), and LIFO (last in, first out). All customers can be served
in parallel. This service discipline is known as Processor Sharing (PS). Service
order has a significant role when different types of customers reach to the system.

• Performance parameters: One should take into consideration and compute
some performance parameters to construct a detailed model of a queueing sys-
tem. The most known performance parameters are system utilization, mean and
distribution of waiting time, loss probability, etc.

2.2 Classification of Basic Queueing Systems

In 1953, D. G. Kendall introduced a classification and a standard notation of basic
queueing systems. The current version of this set of notations consists of six elements
– A/B/c/d/e-x, where [13]

• A is the type of arrival process,

• B is the type of service process,

• c is the number of servers,

• d is the maximum number of customers in the system,

• e is the population of of customers,

• x describes the service discipline.

In basic queueing systems, A and B take one of these options:

1. M – memoryless, attributes to exponentially distributed arrival or service time,

2. D – constant arrival or service time,

3. Er – order r Erlang distributed arrival or service time,

4. Hr – order r hyperexponentially distributed arrival or service time,

5. G or GI – i.i.d. random arrival or service time with any general distribution;

d, e, and x are omitted if they receive their default values: d = ∞ an infinite system
capacity, e = ∞ an infinite customer population, and x = FCFS (first come first
served) service discipline.

6



2.3 Queueing System Performance Parameters

The optimal operation of queueing systems can be investigated by numerous perfor-
mance parameters. Some important of them are as follows: [13]. Customer loss prob-
ability, Waiting time distribution, Mean waiting time, Distribution of a server’s busy
period and Queue length distribution. We refer the reader to [13] for definitions and in
depth analysis of these measures for a broad range of queueing systems. In the present
thesis, only the last one of these will be used, what follows is a review of the queue
length distribution.

2.3.1 Queue length distibution and expected queue length

Let L(t), t ≥ 0, be the number of customers in the system which includes customers
in the servers taking service and also waiting customers in the buffer at the time t. Let
L̄k(t) be the period of time in (0, t) so that there are k customers in the system:

L̄k(t) =
1

t

t∫
0

I{L(s)=k} ds. (2.1)

If
pk = lim

t→∞
L̄k(t), k ≥ 0, (2.2)

exists, then pk, k ≥ 0 is the time average queue length distribution. If L has a station-
ary distribution µ and it is stable, the Ergodic Theorem (see, e.g., [2, Theorem 1.6.4,
page 50]) implies

pk = Pπ(Lt = k).

A very important function of the queue length distribution is the expected queue length:

Eπ[Lt] =
∞∑
k=1

kpk;

the average unit cost per unit time measure that will be used in the current work is a
direct function of this quantity.

2.4 M/M/c queue

The most classical queueing systems models are the M/M/1, M/M/c, M/G/1 and
G/M/1 queues, all of which are thoroughy treated in many references, including [13].
Of these, the most relevant to the data center models studied in this thesis is theM/M/c
model; the M/M/c/Setup and M/M/c/dSetup models of the next two chapters can
be seen as natural extensions of this model. The present section reviews this model.
TheM/M/cmodel corresponds to the following data center: c servers, jobs arriving to
the data center following a constant rate λ; the service times are iid and exponentitally

7



λ λ λ λ λ λ

µ cµcµ(c− 1)µ2µ

Figure 2.1: The dynamics of the M/M/c queue.

distributed with rate µ. TheM/M/c model of data centers assumes that the servers are
always kept on, so there is no setup mode.

If none of the servers in the system is available at an arrival, then the new customer
rests in the buffer. When i (1 ≤ i ≤ c) servers are not available, service processes
of these servers happens at the same time. Thanks to the memoryless property of the
service time distribution, other service times are independent exponentially distributed
random variables as well. The minimum of i independent exponentially distributed
random variables with iµ.

The stationary distribution and the energy consumption rate for this system can be
computed explicitly. The formulas for the stationary distribution of the M/M/c queue
system are well known, see, e.g., [13, Chapter 6]. For sake of completeness and ease
of reference, we give a derivation of these formulas in this chapter. We will use these
results in our comparison in Chapter 5.

The state space for this model is N = {0, 1, 2, 3, ...}; the state process represents the
number of customers in the system. To compute the stationary distribution it suffices to
consider this system at service completions and arrrivals. Let Xn denote this random
walk, and let Fn = σ(X1, X2, ..., Xn); its dynamics are as follows:

Xn+1 = Xn + In

with
P (In+1 = v|Fn) = P (In+1 = v|Xn) = p(Xn, v),

where

p(x, v) =


λ

cµ+λ
, v = 1,

min(c,x)
cµ+λ

, v = −1,
c−min(x,x)

cµλ
, v = 0,

x ∈ N.

These dynamics are shown in Figure 2.1

Then, the stationary distribution πON is the solution of the following equation:

πON(x) =
∑

v∈{−1,0,1}

πON(x− v)p(x, v), x ∈ N. (2.3)

8



Proposition 2.1. The stationary distribution πON of the always-ON system is

πON(x) =

{
πON(0) λx

x!µx
, if x ≤ c,

πON(0) λx

c!cx−cµx
, if x > c .

(2.4)

Proof. For x = 0, (2.3) reads

πON(0) =
µ

cµ+ λ
πON(1) +

cµ

cµ+ λ
πON(0),

which implies

πON(1) =
λ

µ
πON(0); (2.5)

this gives πON(1) in terms of πON(0). Now summing both sides of (2.3) for x = 0, 1
gives

πON(0) + πON(1) = πON(0) + πON(1)
cµ

cµ+ λ
+

2µ

cµ+ λ
πON(2),

2µ

cµ+ λ
πON(2) =

λ

cµ+ λ
πON(1),

πON(2) =
λ

2µ
πON(1).

Repeating the same argument with x = 0, 1, 2, ..., k,

πON(k) =
λ

kµ
πON(k − 1), (2.6)

for k < c and

πON(k) =
λ

cµ
(2.7)

for k ≥ c. This completes the proof.

The explicit formula (2.4) gives the following formula for πON(0), the probability of
an empty system:

Proposition 2.2. The stationary probability that the M/M/c system is empty equals

πON(0) =
1∑c−1

x=0
rx

x!
+ rc

c!
1

1−ρ

. (2.8)

Proof. By definition πON(N) = 1, i.e.,

∞∑
x=0

πON(x) = 1.

9



Substituting (2.4) in the above equation gives

πON(0)

(
c−1∑
x=0

rx

x!
+
rc

c!

∞∑
x=c

ρx−c

)
= 1,

πON(0)

(
c−1∑
x=0

rx

x!
+
rc

c!

1

1− ρ

)
= 1,

which yields (2.8).

Let Bn denote the number of busy servers in the M/M/c system, i.e.

Bn = min c,Xn.

For the computation of the energy consumption rate of an M/M/c (see (1.1)) system
we need to know the expected number EπON [B0] of busy servers under the stationary
distribution. Most remarkably, although the computation of πON(0) requires a sum of
c terms, EπON [B0] has a very simple formula:

Proposition 2.3. The expected number of busy servers under the stationary distribu-
tion equals

EπON [B0] = r. (2.9)

Proof. By definition

EπON [B0] = EπON [min c,X0] =
∞∑
x=1

min c, xπON(x). (2.10)

For 1 ≤ x < c, (2.6) gives

min c, xπON(x) = xπON(x) = x
λ

µx
πON(x− 1) = rπON(x− 1).

For x ≥ c, (2.7) gives

min c, xπON(x) = cπON(x) = c
λ

cµ
πON(x− 1) = rπON(x− 1).

Substituting these in (2.10) gives

EπON [B0] =
∞∑
x=1

min(c, x)πON(x).
∞∑
x=1

rπON(x− 1) = r,

which proves (2.9).

In the M/M/c model, the servers are assumed to be always in ON mode; if a server
is ON but not serving, i.e., it is idle, it is assumed to consume energy at a constant
rate Ci, Therefore, deviating slightly from (1.1) to take into account the difference
between idle and running ON servers, we get the following formula for the average
energy consumption rate of the M/M/c system per unit time:

EMMC
∞ = cρCa + c(1− ρ)Ci.

Following [17] we will assume Ci = 0.6Ca.
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CHAPTER 3

Exact Solutions for M/M/c/Setup Queues

Phung-Duc [17] analyzes the same M/M/c/Setup model with ON-OFF policy and,
the main purpose of the paper is computing exact solutions of the joint stationary queue
length distribution.

To achieve this goal, the author first presents the model and uses two methods which are
generating function approach and matrix analytic method. Furthermore, comparison of
methods including renewal reward approach, presentation of some variant models such
as M/M/c/Setup/Sleep and M/M/c/Setup/Delayoff and performance measures
are also included in the paper. In this chapter, we will summarize his work in detail.

3.1 M/M/c/Setup Model and Notations

• Arrival: Jobs arrive at the system based on Poisson process with rate λ.

• Service: Service time has the exponential distribution with mean
1

µ
.

After the service is completed, if there are still waiting jobs in the queue then a
server takes to serve. Otherwise, server is turned off. After the arrival of a job,
if there is an OFF server then it is turned on and that job is placed in the buffer.
But a server needs time to setup and be active to serve jobs.

• Setup: Setup time also has the exponential distribution with mean
1

α
.

Consider there are two jobs in the system. If the service of one job is finished
before the setup of a server, then the waiting job goes to an active server and the
server in setup process is turned off.

Let j stands for the number of customers and i stands for the number of active
servers in the system.

The number of servers in setup process is min j − i; c− i and a server is in either
BUSY or OFF or SETUP situation. The number of active servers is smaller than
or equal to the number of jobs in the system (i ≤ j).

11



We will denote the continuous time M/M/c/Setup system by Xt; Xt(1) will denote
the total number of customers in the system at time t, andXt(2) will denote the number
of running servers. X is a piecewise constant process. Let Tn denote the nth jump time
of this system. That all times (interarrival, service and setup times) are exponentially
distributed and iid and the PASTA (”Poisson arrivals see time averages”) property [11,
page 264] of the system implies that the discrete time process embedded random walk
Xn = XTn is a constrained random walk on Z2

+ with the following dynamics:

Xn+1 = Xn + Yn (3.1)

where Yn’s distribution depends on Xn as follows; here we set S = c(α+ µ) + λ. The
increments Yn, n = 1, 2, 3, ..., take values in

Y = {(0, 1), (1, 0), (−1, 0), (−1,−1), (0, 0)}

with probabilities:

P (Yn = (0, 1)|Xn = x) =
minx1 − x2, c− x2α

S
,

P (Yn = (1, 0)|Xn = x) =
λ

S
,

P (Yn = (−1, 0)|Xn = x) = 1(0,∞)(x1 − x2)
x2µ

S
,

P (Yn = (−1,−1)|Xn = x) = 1{0}(x1 − x2)
x2µ

S
,

and
r(x)

.
= P (Yn = (0, 0)|Xn = x)

is set so that
∑

y∈Y P (Yn = y|Xn = x) = 1. The increment (0, 0) corresponds to a
”null-event.”

Null events are added to the system so that the process that counts the number of events
in the system is a Poisson process with constant rate S.

As with X , the first component Xn(1) of X denotes the total number of jobs in the
system and the second componentXn(2) ofX denotes the number of servers currently
handling a job. Thus Xn(1) − Xn(2) is the number of jobs waiting for service and
min c−Xn(2), Xn(1)−Xn(2) is the number of servers in setup mode.

We assume that the initial position X0 = x satisfies x1 ≥ x2; i.e., initially the total
number of jobs int the system is greater than or equal to the total number of servers
handling a job. This and the dynamics of X imply

Xn ∈ D
.
= {x : x1 ≥ x2, x1, x2 ≥ 0}.

These dynamics are depicted in Figure 3.1 (this illustration shows only the nonzero
increments and the numerators of the jump probabilities).
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λx2µ

(x1 − x2)α
(c− x2)α

x2µ λ

x1 = c

x2µ λ

x1 = x2

Figure 3.1: The dynamics of X .

3.2 Average power consumption and total energy cost for the
M/M/c/Setup system

For the energy consumption of the data center, [17] makes the following assumptions:
an active server [a server in setup mode] consumes energy at a constant rate Ca > 0
[Cs > 0].

Remember thatXt(1) denotes the number of customers in the system andXt(2) denotes
the number of active servers in the system at time t ∈ [0,∞) (i.e., in continuous time).
Then the number of servers St in setup mode at time t is

St = minXt(1)−Xt(2),Xt(2)).

The average unit time energy consumption rate of the data center is

E∞
.
= Eπ[Xt(2)Ca +RtCs] (3.2)
.
= Eπ[Xt(2)Ca + minXt(1)−Xt(2), cCs] (3.3)
= CaEπ[Xt(2)] + CsEπ minXt(1)−Xt(2), c−Xt(2)]

As we have already noted, the PASTA (”Poisson arrivals see time averages”) property
[11, page 264] of the system implies that to compute the stationary measure of the
continuous time system Xt it suffices to compute that of the discrete random walk X
defined above. (The Poisson ”arrival” process in this case is the process that jumps each
time an event (including null ones) occurs in the system). The explicit computation of
this invariant distribution is reviewed in the next section.
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3.3 Stationary distribution

The stability condition for X is given in [17] is λ < cµ. Under this stability condition
X has a stationary distribution π which satisfies the following set of equations:

S(1− r(x)π(x1, x2)) (3.4)
= λπ(x1 − 1, x2) + x2µπ(x1 + 1, x2)

+ min(c− x2 + 1, x1 − x2 + 1)απ(x1, x2 − 1), x1 > x2,

S(1− r(x))π(x2, x2)

= π(x2 + 1, x2 + 1)µ(x2 + 1) + π(x2 + 1, x2)x2µ,

0 ≤ x2 ≤ c.
The mathematical goal of [17] is the analytic solution of these equations; [17] uses two
different methods for this purpose, the generating function approach and the matrix
analytic method. The analysis in [17] based on these methods are reviewed in sections
below.

Remember that we will useE∞ of (3.2) to approximate the energy consumption rate of
the data center. To computeE∞ we only needEπ[Xt(2)] and Eπ maxXt(2)−Xt(1), c].
The PASTA property of the system implies that these expectations equal

Eπ[X1(2)],Eπ maxX1(1)−X1(2), c]

where X is the random walk (3.1) and π is its stationary distribution. Because X is
a simple two dimensional constrained random walk, one can easily approximate the
above expectations using simulation and the law of large numbers:

Eπ[X1(2)] ≈ 1

K

K∑
k=1

Xk(2), (3.5)

Eπ[maxX1(1)−X1(2), c] ≈ 1

K

K∑
k=1

maxXk(1)−Xk(2), c. (3.6)

In Chapter 5 below we will use this approximation in the comparison of the energy
consumptions of the M/M/c/Setup and the M/D/c/Setup systems.

Note that the number of waiting jobs is j − i in the state (i; j).

3.4 Generating Function Approach (Section 3 in [17])

Generating function approach introduces exact closed form expressions for the joint
stationary queue length distribution and the conditional decomposition formula. Ex-
plicit expressions for the joint stationary queue length distribution, generating func-
tions and factorial moments of any order are derived.
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3.4.1 Explicit Expressions

In the matter of explicit expressions, balance equations for cases including i = 0,
i = 1, the general case i = 2, 3, ..., c− 1, and i = c are considered.

Denote Πi(z) for the partial generating functions of the number of waiting jobs, i.e.,

Πi(z) =
∞∑
j=1

πi,jz
j−i, i = 0, 1, . . . , c.

• Case i = 0

The balance equations for the case as follows:

λπ0,0 = µπ1,1, j = 0, (3.7)

(λ+ jα)π0,j = λπ0,j−1, j = 1, 2, ..., c− 1, (3.8)

(λ+ cα)π0,j = λπ0,j−1, j ≥ c. (3.9)

Let Π̂(z) =
∞∑
j=c

π0,jz
j . Multiplying (3.9) by zj and summming over j ≥ c, then we

have

Π̂0(z) =
λπ0,c−1z

c

λ+ cα− λz
= zc

A0,0

ẑ0 − z
, Π0(z) =

c−1∑
j=0

π0,jz
j + Π̂0(z) (3.10)

where
A0,0 = π0,c−1, ẑ0 =

λ+ cα

λ
.

Equation 3.8 gives

π0,j = π0,0

j∏
i=0

λ

λ+ jα
, j = 1, 2, . . . , c− 1.

First equation of 3.10 gives

π0,j =
λπ0,c−1
λ+ cα

(
λ

λ+ cα

)j−c
, j ≥ c.

For the factorial moments, differentiate (3.10) n times and then

Π̂
(n)
0 (1) =

λ

cα
Π̂

(n−1)
0 (1) +

λ

cα
π0,c−1(c− n)n,
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Π̂
(n)
0 (1) =

c−1∑
j=0

π0,j(j − n+ 1)n + Π̂
(n)
0 (1),

for n ∈ N. Note that (φ)n is called as the Pochhammer symbol and see Appendix for
more information.

• Case i = 1

The balance equations for the case are

(λ+ µ)π1,1 = απ0,1 + µπ1,2 + 2µπ2,2,, (3.11)

(λ+ µ+ (j − 1)α)π1,j = jαπ0,j + λπ1,j−1 + µπ1,j+1, 2 ≤ j ≤ c− 1, (3.12)

(λ+ µ+ (c− 1)α)π1,j = cαπ0,j + λπ1,j−1 + µπ1,j+1, j ≥ c. (3.13)

Let Π̂1(z) =
∞∑
j=c

π1,jz
j−1 and then we have Π1(z) =

c−1∑
j=1

π1,jz
j−1 + Π̂1(z). Multiply

(3.13) by zj−1, sum over j ≥ c, and rearrange the equation

[(λ+ µ+ (c− 1)α)z − λz2 − µ]Π̂1(z) = cαΠ̂0(z) + λπ1,c−1z
c − µπ1,czc−1. (3.14)

Define f1(z) = (λ+ µ+ (c− 1)α)z − λz2 − µ. Then, f1(z) has two roots which are

z1 =
λ+ µ+ (c− 1)α−

√
(λ+ µ+ (c− 1)α)2 − 4λµ

2λ
,

ẑ1 =
λ+ µ+ (c− 1)α +

√
(λ+ µ+ (c− 1)α)2 − 4λµ

2λ
.

Substitute z = z1 into (3.14), then we find

π1,c =
cαΠ̂0(z1) + λπ1,c−1z

c
1

µzc−11

.

Use mathematical induction to derive a recursive formula for the case i = 1.

Lemma 3.1.
π1,j = a

(1)
j + b

(1)
j π1,j−1, 2 ≤ j ≤ c, (3.15)

where

a
(1)
j =

jαπ0,j

λ+ µ+ (j − 1)α− µb(1)j+1

, b
(1)
j =

λ

λ+ µ+ (j − 1)α− µb(1)j+1

,

for j = c− 1, c− 2, . . . , 2, 1. Moreover,

0 < a
(1)
j , 0 < b

(1)
j <

λ

µ
, j = 1, 2 . . . , c.
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The generating function Π̂1(z) is shown as below:

Π̂1(z) = zc−1
(

A1,0

ẑ0 − z
+

A1,1

ẑ1 − z

)
, (3.16)

where
A1,0 =

A0,0ẑ0
f1(ẑ0)

, A1,1 = −A0,0ẑ0
f1(ẑ0)

+ π1,c−1.

To find the partial factorial moments, take the derivative of (3.14) and then put z = 1
into that equation. Hence, we have a recursive formula which is

Π̂
(n)
1 (1) =

c

c− 1
Π̂

(n)
0 (1) +

n(λ− µ− (c− 1)α)Π̂
(n−1)
1 (1) + λn(n− 1)Π̂

(n−2)
1 (1)

(c− 1)α

+
λπ1,c−1(c− n+ 1)n − µπ1,c(c− n)n

(c− 1)α
.

(3.17)

• General Case, where i = 2, 3, . . . , c-1

The balance equations for the case are

(λ+ iµ)πi,i = απi−1,i + iµπi,i+1 + (i+ 1)µπi+1,i+1, j = i, (3.18)

(λ+iµ+(j−i)α)πi,j = λπi,j−1+(j−i+1)απi−1,j+iµπi,j+1, i+1 ≤ j ≤ c−1, (3.19)

(λ+ iµ+ (c− i)α)πi,j = λπi,j−1 + (c− i+ 1)απi−1,j + iµπi,j+1, j ≥ c. (3.20)

Let Π̂i(z) =
∞∑
j=c

πi,jz
j−i and then we have Πi(z) =

c−1∑
j=i

πi,jz
j−i + Π̂i(z). The rest of

the process is similar to the case i = 1:

[(λ+ iµ+ (c− i)α)z − λz2 − iµ] Π̂i(z) = (c− i+ 1)αΠ̂i−1(z)

+λπi,c−1z
c−i+1 − iµπi,czc−i.

(3.21)

Define fi(z) = (λ+ iµ+ (c− i)α)z − λz2 − iµ. Its two roots are

zi =
λ+ iµ+ (c− i)α−

√
(λ+ iµ+ (c− i)α)2 − 4iλµ

2λ
,

ẑi =
λ+ iµ+ (c− i)α +

√
(λ+ iµ+ (c− i)α)2 − 4iλµ

2λ
.

Substitute z = zi into (3.21), then

πi,c =
(c− i+ 1)αΠ̂i−1(zi) + λπi,c−iz

c−i+1
i

iµzc−ii

. (3.22)

17



Equations (3.19) and (3.22) together bring πi,j (i+ 1 ≤ j ≤ c).

Lemma 3.2.
πi,j = a

(i)
j + b

(i)
j πi,j−1, i+ 1, i+ 2, . . . , c, (3.23)

where

a(i)c =
(c− i+ 1)αΠ̂i−1(zi)

iµzc−ii

, b
(i)
j =

λzi
iµ

and

a
(i)
j =

(j − i+ 1)απi−1,j + iµa
(i)
j+1

λ+ iµ+ (j − i)α− iµb(i)j+1

, b
(i)
j =

λ

λ+ iµ+ (j − i)α− iµb(i)j+1

for j = c− 1, . . . , i+ 1. Moreover,

0 < a
(i)
j , 0 < b

(i)
j <

λ

iµ
.

Also, the generating function Π̂i(z) is shown as below:

Π̂i(z) = zc−i

(
i∑

j=0

Ai,j
ẑj − z

)
, (3.24)

where

Ai,j =
Ai−1,j ẑj
fi(ẑj)

, Ai,i = −(c− i+ 1)α
i−1∑
j=0

Ai−1,j ẑj
fi(ẑj)

+ πi,c−1.

To find the partial factorial moments, take the derivative of (3.21) n times and then put
z = 1 into that equation. Hence, we have a recursive formula which is

Π̂
(n)
i (1) =

c− i+ 1

c− i
Π̂

(n)
i−1(1) +

n(λ− µ− (c− i)α)Π̂
(n−1)
i (1) + λn(n− 1)Π̂

(n−2)
i (1)

(c− i)α
+
λπi,c−1(c−−i+ 2− n)n − iµπi,c(c−−i+ 1− n)n

(c− i)α
.

(3.25)

• Case i = c

The last case is a little bit different than the others. The balance equations for the case
are

(λ+ cµ)πc,c = απc−1,i + cµπc,c+1, j = c, (3.26)

(λ+ cµ)πc,j = λπc,j−1 + απc−1,j + cµπc,j+1, j ≤ c+ 1, (3.27)
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Let Π̂c(z) =
∞∑
j=c

πc,jz
j−c and we have Πc(z) = Π̂c(z). After the multiplication of 3.27

and summation over j ≤ c, we find

(λ+ cµ)Π̂c(z) =
α

z
Π̂c−1(z) + λzΠ̂c(z) +

cµ

z
(Π̂c(z)− πc,c) (3.28)

Then we have

Π̂c(z) =
αΠ̂c−1(z)− cµπc,c

z − 1

1

cµ− λz
=
α
(

Π̂c−1(z)− Π̂c−1(1)
)

z − 1

1

cµ− λz
, (3.29)

where αΠ̂c−1(1) = cµπc,c is used in (3.29).

Define fc(z) = (λ + cµ)z − λz2 − cµ, substitute Π̂c−1(z) in terms of (3.24) with
i = c− 1 and then

Π̂c(z) =

(
c∑
j=0

Ac,j
ẑj − z

)
(3.30)

where ẑc =
cµ

λ
, Ac,j =

Ac−1,j
ẑc − 1

, Ac,c = −
c−1∑
j=0

Ac−1,j ẑj
fc(ẑj)

.

To find the partial factorial moments, take the derivative of (3.28) n times, rearrange
the result with using l’Hopital’s Rule and then put z = 1 into the equation. Hence, we
have a recursive formula which is

Π̂
(n)
c (1) =

αΠ̂
(n+1)
c−1 (1) + λn(n− 1)Π̂

(n−2)
c (1) + 2λΠ̂

(n−1)
c (1)

(n+ 1)(cµ− λ)
. (3.31)

Note that π0,0 is computed with the normalization condition such that Π0(1)+Π1(1)+
. . .Πc(1) = 1.

Now, we can determine explicit result for the factorial moments and joint stationary
distribution, because explicit expressions for the generating functions are known.

Furthermore, the generationg function for the number of waiting jobs Π(z) is

Π(z) =
c∑
i=0

Πi(z).

3.4.2 Conditional Stochastic Decomposition

We have known that

Πc(z) =
α(Πc−1(z)− πc−1,c−1)− cµπc,c

(z − 1)(cµ− λz)
,
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Πc(1) =
αΠ

′
c−1(1)

cµ− λz
.

Denote Q(c) as the conditional queue length with the condition that c servers are busy.
Then we have

P(Q(c) = i) = P(N(t) = i+ c | C(t) = c).

Denote Pc(z) as the generating function of Q(c). It can be derived such that

Pc(z) =
Πc(z)

Πc(1)
=
α(Πc−1(z)− πc−1,c−1)− cµαΠ

′
c−1(1)πc,c

(z − 1)

1− ρ
1− ρz

=

∑∞
i=0

(∑∞
j=i+1 πc−1,c−1+j

)
zi

Π
′
c−1(1)

1− ρ
1− ρz

,

where cµπc,c = α(Πc−1(1)− πc−1,c−1) is used in the second equality.

Note that (1− ρ)/(1− ρz) is the generating function of the number of waiting jobs in
the M/M/c system without setup times (i.e., Q(c)

ON−IDLE).

Define

pc−1,i =

∑∞
j=i+1 πc−1,c−1+j

Π
′
c−1(1)

, i ∈ Z+.

Then we have
∞∑

j=i+1

πc−1,c−1+j = P(N(t)− C(t) > i | C(t) = c− 1) P(C(t) = c− 1),

and
Π
′

c−1(1) = E[(N(t)− C(t) | C(t) = c− 1)] P(C(t) = c− 1)

Hence,

pc−1,i =
P(N(t)− C(t) > i | C(t) = c− 1) P(C(t) = c− 1)

E[(N(t)− C(t) | C(t) = c− 1)]
.

Note that N(t)− C(t) is the number of waiting jobs for the last server in setup mode.

Thus, pc−1,i (i = 0, 1, 2, . . .) stands for distribution of the number of waiting customers
in front of a random waiting customer provided that c − 1 servers are active and the
last server is in setup mode. Therefore, our decomposition result is

Q(c) = Q
(c)
ON−IDLE +QRes

where QRes stands for the number of extra jobs because of the setup time.
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3.5 Matrix Analytic Method (Section 4 in [17] )

The matrix analytic approach is based on quasi-birth-and-death process (QBD) and is
used to find a recursive algorithm for the stationary distribution.

3.5.1 QBD Formulation

The infinitesimal of X(t) is shown by

Q =


Q

(0)
0 Q

(0)
1 O O ...

Q
(1)
−1 Q

(1)
0 Q

(1)
0 O ...

O Q
(2)
−1 Q

(2)
0 Q

(2)
1 ...

O O Q
(3)
−1 Q

(3)
0 ...

... ... ... ...
. . .

,

where O is the zero matrix with an appropriate dimension. A Markov chain with this
type of matrix is named as a level dependent quasi-birth-and-death process. Note that
Q

(i)
−1(i ≥ c+ 1), Q

(i)
0 (i ≥ c) and Q(i)

1 (i ≥ c) are not dependent to i and we have

Q
(i)
−1 = Q−1 = diag(0, µ, . . . , cµ), Q

(i)
1 = Q1 = λI,

Q
(i)
0 = Q0 =


−q0 cα 0 ... ... 0

0 −q1 (c− 1)α
. . . . . . ...

0 0 −q2
. . . . . . ...

... . . . . . . −qc−1 α
0 ... ... 0 0 −qc

,

where qj = λ+ (c− j)α + jµ.

Moreover, Q(i)
−1 (i ≤ c), Q

(i)
0 (i ≤ c − 1) and Q(i)

1 (i ≤ c) are (i + 1) x i, (i + 1) x
(i+ 1) and (i+ 1) x (i+ 2) matrices, respectively. We have

Q
(i)
1 =


λ 0 ... ... 0

0 λ
. . . ...

...
... . . . . . . 0 0

0
. . . 0 λ 0

, Q
(i)
−1 =



0 0 ... ... 0

0 µ
. . . . . . ...

0 0
. . . ...

... . . . . . . . . . 0

... . . . . . . (i− 1)µ

0
. . . . . . 0 ıµ


,
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Q
(i)
0 =


−q(i)0 iα 0 ... ... 0

0 −q(i)1 (i− 1)α
. . . . . . ...

0 0 −q(i)2
. . . . . . ...

... . . . . . . −q(i)i−1 α

0 ... ... 0 0 −q(i)i

,

where q(i)j = (i− j)α + jµ (j = 0, 1, . . . , i).

To find the stationary distribution let

πi = (π0,i, π0,i, . . . ,πmin(i,c),i), i ∈ Z+, π = (π0,π1, . . .).

Then π is the unique solution of

πQ = 0, πe = 1,

where 0 and e are a row vector of zeros and a column vector of ones with an appropriate
size. By the matrix analytic method [16, 18],

π1 = πi−1R
i, i ∈ N,

and π0 is the solution of the boundary equation such that

π0(Q
(0)
0 +R(1)Q

(1)
−1) = 0, π0(I +R(1) +R1R(2) + . . .) e = 1.

R(i), i ∈ N, is the minimal nonnegative solution of

Q
(i−1)
1 +RiQ0(i) +RiRi+1Q−1(i+ 1) = O. (3.32)

3.5.2 Rate Matrix

• Homogeneous Part

Notice that Q(i−1)
1 = Q1 (i ≥ c), Q

(i)
0 = Q0 (i ≥ c) and Q(i)

−1 = Q−1 (i ≥ c+ 1). Then
we have R(i) = R for i ≥ c+ 1 and R is the minimal nonnegative solution of

Q1 +RQ0 +R2Q−1 = O.

Here, R is an upper diagonal matrix such that R(i, j) = ri,j if j ≥ i and R(i, j) = 0
when j < i since Q−1, Q0 and Q1 are upper diagonal matrix. This kind of QBD is
examined in more general way in [21].

Consider the diagonal part of this quadratic equation, then we can determine

λ− (λ+ iµ+ (c− i)α)ri,i + iµr2i,i = 0, i = 0, 1, . . . , c− 1, c.
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Since R is the minimal nonnegative solution of the quadratic equation, we need to use
the smaller root of ri,i. Then we have

ri,i =
λ+ iµ+ (c− i)α−

√
(λ+ iµ+ (c− i)α)2 − 4iλµ

2iλ
, i = 1, 2, . . . , c− 1,

(3.33)

and

r0,0 =
λ

λ+ cα
,

λ

cµ
< 1.

For the nondiagonal part ri,j (j > i), compare the (i, j) element in the quadratic
equation. Then we have

(c− j + 1)αri,j−1 − (α + (c− j)α + jµ)ri,j + jµ

j∑
k=i

= 0.

For j = i+ 1, we have

ri,i+1 =
(c− i)αri,i

λ+ (c− i− 1)α + (i+ 1)µ− (i+ 1)µ(ri,i + ri+1,i+1)
, i = 0, 1, . . . , c− 1.

For j = i+ 2, we have

ri,i+2 =
(c− i− 1)αri,i+1 + (i+ 2)µri,i+1ri+1,i+2

λ+ (c− i− 2)α + (i+ 2)µ− (i+ 2)µ(ri,i + ri+2,i+2)
, i = 0, 1, . . . , c− 2.

Hence, for the general case we have

ri,j =
(c− j + 1)αri,j−1 + jµ

∑j−1
k=i+1 ri,krk,j

λ+ (c− j)α + jµ− jµ(ri,i + rj,j)
, j > i.

The rate matrix can be found from the diagonal part and then the upper diagonal parts
using these recursive formulae.

• Nonhomogeneous Part

To find R(i) = (i = c, c− 1, . . . , 1), use

R(i) = −Q(i−1)
i

(
Q

(i)
0 +R(i+1)Q

(i+1)
−1

)−1
, i = c, c− 1, . . . , 1. (3.34)

which is similar to (3.32). Since the rate matrices are upper diagonal, we need to focus
on

XA = −Q(i−1)
0 (3.35)
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where A = Q
(i)
0 + R(i+1)Q

(i+1)
−1 and X are upper diagonal matrices of sizes (i + 1)

x (i + 1) and i x (i + 1), respectively. Let xj = (0, 0, . . . , xj,j, xj,j+1, . . . , xj,i) (j =
0, 1, . . . , i− 1) be the j-th row vector of X . Then we have

xjA = (0, 0, . . . ,−λ, 0, . . . , 0), j = 0, 1, . . . , i− 1,

where −λ is the (j + 1)-th entry of the vector. Hence, the solution is

xi,j = − λ

ai,j
, xj,l = −

∑l−1
k=j xj,kak,l

al,l
, l = j + 1, j + 2, . . . , i, (3.36)

where ai,j is the (i, j) entry of A.

3.5.3 G-matrix

TheG-matrix gives the first passage probabilities from one position to the next position
in the left hand side.

• Homogeneous Part

The G-matrix is also the minimal and nonnegative solution of

Q1 +GQ0 +G2Q−1 = O, (3.37)

and it is an upper diagonal matrix. Therefore, the method used for R-matrix can be
used to find G-matrix. Let gi,j (i, j = 0, 1, . . . , c) be the (i, j) element of the matrix.

Compare (0,0) in the both sides (3.37) and we have

−(λ+ cα)g0,0 + λg20,0 = 0.

Then g0,0 = 0, because 0 ≤ g0,0 ≤ 1. In the case of gi,i, compare (i, i) elements of the
equation. Then we find

iµ− (λ+ (c− i)α + iµ)gi,i + λg2i,i = 0 (i, j = 0, 1, . . . , c− 1).

Remember 0 ≤ gi,i ≤ 1 and

gi,i =
λ+ iµ+ (c− i)α−

√
(λ+ iµ+ (c− i)α)2 − 4iλµ

2iλ
, i = 1, 2, . . . , c− 1,

which is same with zi we defined before.

Now, compare (c, c) elements and since we need to choose the minimal root, we have
gc,c = λ/(cµ) instead of 1.

To find the upper diagonal elements of the matrix, we can still use the same method of
R-matrix and find in a recursive way.
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Consider gi,i+1 (i = 1, 2, . . . , c− 1) and compare (i, i+ 1) elements, then we have

gi,i+1 =
(c− i)αgi+1,i+1

λ+ (c− i)α + iµ− λ(gi,i + gi+1,i+1)
, i = 0, 1, . . . , c− 1.

Finally, compare (i, j) elements and then we find

gi,j =
(c− i)α + λ

∑j−1
k=i+1 gi,kgk,j

λ+ (c− i) + iµ− λ(gi,i + gj,j)
, i+ 1 < j ≤ c.

• Nonhomogeneous Part

The first passage probabilities depend on the level in the nonhomogeneous part. Let
G(n) become the probability from level n to level n− 1. It is the minimal nonnegative
solution of

Q−1 +GnQ0 +Q1G
nGn+1 = O, n = 1, 2, . . . , c,

where Gc+1 = G. Then we can use the similar nonhomogeneous method in the rate
matrix and define G(n) for n = 1, 2, . . . , c.

3.6 Other Parts of the Paper

• Comparison of the Methods

When our two methods are compared, we can conclude that the homogeneous part of
the QBD formulation corresponds to Π̂i(z) (i = 0, 1, . . . , c) of the generating function
approach. Also, the nonhomogeneous part of the matrix analytic method corresponds
to (i, j); j = i = 0, 1, . . . , c, i ≤ j ≤ c of the generating function approach. The ma-
trix analytic method gives a recursive formula for computing the rate matrix.

The matrix analytic method and recursive renewal approach are also equivalent in some
way. The quantity pLi→d in [8, 9] is identical to gi,d in the matrix analytic method. Notice
that matrix R can be found from matrix G. However, recursive renewal approach gives
the generating function of the queue length and matrix analityc method is interested of
direct computation of the queue length computation.

• Variant Models

As variant models, M/M/c/Setup/Sleep and M/M/c/Setup/Delayoff , which are
also mentioned in [8], are introduced.

In M/M/c/Setup/Sleep model, when a set of s ≤ c servers is idle, then it is set to
sleep. While c− s servers are idle, then they are turned off. Note that sleep state have
a shorter setup time than the off state.
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In M/M/c/Setup/Delayoff model, when a server completes its service however
does not have a job, then it stays idle for a while.

If we compare our models, it can be affirmed that the boundary part of ”Sleep” model
has the same structure withM/M/c/Setupmodel, but different with ”Delayoff” model.
The QBD formulation works to find the rate matrix of the homogeneous part for both
models. Moreover, the generating function approach can be used forM/M/c/Setup/Sleep
easier than M/M/c/Setup/Delayoff which needs some arrangements.
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CHAPTER 4

M/M/c/Setup with Deterministic Setup Times

The main model to be studied in this thesis is the following modification of the
M/M/c/Setup model reviewed in the previous section: we replace the setup time
distribution with a deterministic time, i.e., each server that is put in setup mode, com-
pletes its setup and becomes fully on in a fixed deterministic amount of time. We will
refer to this system as M/M/c/dSetup. Given that the setup of a computer is a fixed
operation at all times and all machines to take the setup time deterministic is a more
realistic assumption.

Let us begin with specifying the dynamics of this model: as in the previous section,
let c denote the number of server. Let 1/α, α > 0, denote the constant setup time.
We will denote by Rt the number of servers working on a job at time t, and Wt will
represent the number of customers in the system waiting for service. As opposed to the
M/M/c/Setup, we explicitly represent these two quantities with separate processes
(in theM/M/c/Setup, Rt andWt was represented together asXt(1), the total number
of customers in the system). A second difference from the M/M/c/Setup is that
to have a Markovian model for the M/M/c/dSetup system, we have to keep track
of the remaining setup times for the servers in Setup mode; the process St ∈ Rc

+

servers this purpose. For fixed t, St ∈ Rc
+ is assumed to have decreasing components,

i.e., St(i) > St(j) if i > j; this means that, by convention, the newer a server is
put in setup mode, its index in the vector St is smaller. Furthermore, St(i) = 0 for
i > Ct; i.e., only the nonzero components of St represent the remaining setup time of
a server in setup mode. Then the process representing the M/M/c/dSetup model is
X d
t = (Rt,Wt,St). One can represent the total number of servers in setup mode by

St =
c∑
j=1

1{St(j)>0};

the dynamics explained below will always imply Wt ≥ St, i.e., the number of cus-
tomers waiting for service always exceeds the number of servers being setup.

Here, X d is a piecewise deterministic Markov process: R and W components are
constant between the jumps of X d. The S component satisfies the ordinary differential
equation (ODE)

dS(j)

dt
= −1{St(j)>0}, j = 1, 2, 3, ..., c, (4.1)
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in between the jumps of X d. The dynamics (4.1) mean that the remaining setup times
diminish uniformly in time until they hit 0. There are three sources of jumps of X d:
arrivals to the system, service completions, and setup completions. At any given time
t, we know the time of the next setup time completion (let us denote it by τ st , this is
given by the last nonzero element of St):

τ st = inf{St(j) : j = 1, 2, 3, .., St} = St(St),

if St > 0; if Ct = 0, there are no servers in setup mode and the dynamics described
below can easily modified to handle this case. In what follows we describe the dynam-
ics only for the case when St > 0; in particular we are assuming τ st < ∞. In the time
interval (t, τ st ), the jumps can only arise from arrivals and service completions. The
arrivals occur at a constant Poisson rate λ, the service completions occur at a rate µRt.
Therefore, the total jump rate of X d in the time interval (t, τ st ) is λ+µRt < λc+Rt; in
particular, with probability 1, X d will jump at most finitely many times. Let us denote
τt be the first jump of X d, after t; as we have just discussed, if τt < τ st , τt is either an
arrival or a service completion. With probability

λ

λ+ µRτt−

the jump is an arrival, and with probability

1− λ

λ+ µRτt−

it is a service completion. In the first case, the position X d
τt of the process right after

the jump will be

Wτt = Wτt− + 1{c=Cτt−+Rτt−},

Sτt = Sτt−1{Sτt−+Rτt−=c} + (α+R(Sτt−))1{Sτt−+Rτt−<c},

Rτt = Rτt−, (4.2)

where α ∈ Rc
+ is the vector

α(j) =

{
1/α, j = 1

0, otherwise,

and L,R : Rc → Rc are left and right shift operators; e.g., for c = 3, L([1 2 3]) =
[2 3 0]. The first and the second lines of (4.2) mean that if all servers are busy (i.e.,
either in setup mode or in service mode) the arriving customer is added to the waiting
customers queue; if there is a server available, an off server is put in setup mode with
new setup time c. In the second case (i.e., the jump is a service completion) the position
X d
τt will be

Wτt = Wτt− − 1{Wτt−>0},

Sτt = L(Sτt−)1{Sτt−≥Wτt−} + Sτt−1{Sτt−<Wτt−},

Rτt = Rτt− − 1,
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where we are using the fact that St > 0. The first line means: if there are waiting
customers when one of the servers completes service, the server starts serving one
of the waiting customers. The second line means: if after this operation there are
more servers being setup than customers waiting for service, then turn off the server
whose setup time is the longest. If there are waiting customers for each server in setup
mode, then continue setting up these servers. Here we see another difference from the
M/M/c/Setupmodel: in theM/M/c/Setupmodel an arbitrary server in setup mode
is turned off as soon as the number of servers in setup mode exceeds the number of
waiting customers. In the M/M/c/dSetup, we choose the least setup server when we
need to turn of a server in setup mode. Note that a service completion may lead to
Cτt = 0, i.e., no servers in setup mode. In that case, the dynamics restart with C = 0;
as we noted above, the above specification can easily be modified to handle that case.

It remains to specify at τ dt , i.e., when one of the servers in setup mode completes setup:

Wτdt
= Wτt− − 1,

Sτdt = Sτt−,

Rτdt
= Rτt− + 1,

where the first line means the number of waiting customers is reduced by 1 and the
third line means that the number of running servers increase by 1 (because, the server
is setup and starts one of the waiting customers). The second line simply means,
that the remaining servers in setup mode continue with being setup. With this we
have completely specified the dynamics of X d. An alternative way of specifying these
dynamics is to use the piecewise Markov process notation of [7], which also can be
used to give an explicit construction of the Markov process X d.

4.1 Comments on the balance equation

Because of deterministic setup times (represented by the S component of X d), the pro-
cess X d doesn’t have a simple embedded Markov chain whose stationary distribution
can be used to compute that of X d. Therefore, for the M/M/c/dSetup model, one
must directly study the stationary measure of the continuous time process X d. The sta-
tionary measure µ of X d will be a measure on the state space S = N× N× [0, 1/α]c.
The measure µ can be represented by densities f(i, j, s1, s2, ..., sk, k) and the proba-
bilities f(i, j, 0) for i, j ∈ N × N and k = 1, 2, .., c; f(i, j, s1, s2, .., sk) denotes the
probability that in steady state at any time, there are i servers running and k customers
waiting and k servers in setup with the setup times s1, s2, ..., sk; f(i, j, 0) represents the
probability, in steady state, that there are i servers running and j customers waiting. By
the definition of the process, f(i, j, 0) can be nonzero only when j = 0. One can now
proceed to write down a setup of coupled infinite system of linear ordinary differential
equations for f and expects to find a unique solution to this system when the system is
stable, i.e., when ρ = λ/cµ < 1; i.e, the stability condition remains unchanged when
setup times are assumed deterministic. We are not aware of an explicit solution or an
approximate solution of the balance equation for this process; these can be subject of
study in future works. For the purposes estimating average energy cost, we do not need
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the whole stationary measure but only the expectations

E∞[Rt],E∞[St]

under it. An alternative way to approximate these is through Monte-Carlo simulation.
This is the approach used in this thesis. The next chapter explains the simulation
approach, gives the results of our simulations and our interpretation of them.

30



CHAPTER 5

Simulation of M/M/c/dSetup and Comparison to M/M/c/Setup

Recall that the power cost per unit time for the M/M/c/Setup model is:

E∞ = CaEπ[Rt] + CsEπ[St],

where Eπ denotes expectation under the stationary measure. To compute E∞, we only
have to compute the expectations Eπ[Rt] and Eπ[St]. For the M/M/c/Setup model,
the corresponding expecations are computed by developing explicit formulas for the
stationary measure π. In this section, we will use simulation to approximate these
probabilities. The simulation approach is based on Ergodic Thereom which says

lim
T→∞

1

T

∫ T

0

Rsds = Eπ[Rt], (5.1)

lim
T→∞

1

T

∫ T

0

Ssds = Eπ[St],

almost surely. The simulation idea consist of generating random sample paths of R
and S on a computer. Given that R and S are piecewise constant functions of t with
finitely many jumps, the above integrals become finite sums for any simulated sample
path of R and S; therefore, they are simple to compute. If we take T large enough,
the almost sure convergence implies that the computed integrals must be close to the
expecations that we intend to compute.

The simulation of X d = (R,C,S) is straightforward, because these processes are
piecewise deterministic with simple dynamics between jumps. Therefore, the descrip-
tion of the process given in the previous chapter serves also as a simulation algorithm.
We have conducted the simulations in the Octave computing environment. Figure 5.1
shows the trajectory of the last component of the S process, i.e., this is the graph of
shortest remaining setup time; Figure 5.2 shows the joint sample path of the (R, S)
process.

An important issue in the approximation suggested by (5.1) is how to choose T so that
the prelimit quantity on the left provides a good approximation of the expectation on
the right. In all of the simulations below we have chosen T by gradually increasing it
until we observed convergence.

The average unit cost of power E∞ is a function of the system parameters, µ, λ, c and
α. The goal of this chapter is a comparison of Ed

∞ and E∞ as these parameters vary.
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Figure 5.1: The evolution of the shortest setup time in a simulation.
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Figure 5.2: A sample path of the (R, S) process in a simulation; the bold point shows
the latest position of the process.
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To do the comparison we also have to compute E∞; in [17] this is done by developing
formulas for the stationary measure of the underlying process. For the purposes of
this thesis we have approximated E∞ with simulation using the approximations given
of (3.5) in Chapter 3. For the simulation of the M/M/c/Setup system it suffices to
simulate the two dimensional constrained random walk X given in (3.1) of Chapter 3.

Similar to the M/M/c/Setup system, if the system receives a burst of heavy traffic
pushing it away from the empty state, all servers will be ON in the M/M/c/dSetup
system; when that is the case the total service rate of the system will be cµ, therefore,
when X d is sufficiently away from the empty state, M/M/c/dSetup will behave like
the M/M/c system. Therefore, a natural stability condition for M/M/c/dSetup is
λ < cµ, under which one expects that a unique stationary measure exists. We will
assume λ < cµ throughout the simulation study. The ratio

ρ
.
=

λ

cµ

is the utilization rate of the system.

In [17] the M/M/c/Setup system is compared to the M/M/c system, i.e., c servers
that always remain on. A review of the stationary analysis of this system is given in
Section 2.4 in Chapter 2 above. The average unit cost of energy for that system is

EMMC
∞ = cρCa + c(1− ρ)Ci

, where Ci is the energy consumption rate of an idle server; following [17] we take
it to be Ci = 0.6. In our comparison study below we will also give EMMC

∞ ; to ease
relating our results to those of [17]. In all of the simulations below we take µ = 1 and
Ca = Cs = 1, again following [17].

The first three sections below compare E∞ and Ed
∞ as α and c and ρ varies. The last

section looks at the structural properties of Ed
∞ as a function of the system paramaters.

Our main conclusion from these sections is the following: E∞ provides a very good
approximation of Ed

∞ for the range of parameters under consideration.

5.1 Varying α

In this section we present four graphs of E∞ as a function of α when ρ and c variables
are fixed; the ρ and c parameter values for the graphs are: c = 15, c = 25, and ρ = 0.5
and ρ = 0.7, respectively.

The relative error made in approximating in Ed
∞ by E∞ is shown by

Re =
|Ed
∞ − E∞|
Ed
∞

;

the relative errors for theE values represented in Figures 5.3, 5.4, 5.5 and 5.6 are given
in Figure 5.7
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Figure 5.3: E∞ as a function of α, ρ = 0.5, c = 15.
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Figure 5.4: E∞ as a function of α, ρ = 0.5, c = 25.
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Figure 5.5: E∞ as a function of α, ρ = 0.7, c = 15.
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Figure 5.6: E∞ as a function of α, ρ = 0.7, c = 25.
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Figure 5.7: Re as a function of α when ρ and c is fixed as in Figures 5.3, 5.4, 5.5 and
5.6.

Our main observations about these results are as follows:

1. In all of the graphs Ed
∞ and E∞ are very close to each other or all values of α;

the average relative errors (the average of |Ed
∞ − E∞|/Ed

∞ over the parameter
values used in the respective simulations) are: 0.045 for Figure 5.3, 0.048 for
Figure 5.4, 0.022 for Figure 5.5 and 0.0.24 for Figure 5.6. This suggests that one
can use E∞ as a first approximation for Ed

∞.

2. In all of the graphs Ed
∞ lies above E∞; it would be interesting to try to prove

this rigorously; if correct, therefore, one can use E∞ always as a lower bound
for Ed

∞.

3. The average relative error changes slowly with c for both values of ρ;

4. The average relative error decreases quickly with ρ; this is also clear from Figure
5.7.

5. Because E∞ and Ed
∞ are very similar, the relation of Ed

∞ to EMMC
∞ is similar to

that of E∞ to the same, as studied in [17].

The next section further studies the function E∞ as we vary the c parameter.
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Figure 5.8: E∞ as a function of c, ρ = 0.7, α = 0.1.

5.2 Varying number of servers c

The next Figures give graph ofE∞ as a function of c for the following parameter values
α = 0.1, α = 1 and ρ = 0.7.

Figure 5.10 shows the Ed
∞ as c varies for both α = 1 and α = 0.1; as observed in

the previous section, as α increases, the setup time 1/α decreases and the Ed
∞ also

decreases with it:

Our observations on these results are as follows:

1. As we have already observed above, E∞ and Ed
∞ are close to each other and

provide good approximations of one another,

2. E∞ lies below Ed
∞,

3. The average relative error decreases with α.

The next section looks further into the effect of varying the ρ parameter.
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Figure 5.9: E∞ as a function of c, ρ = 0.7, α = 1.
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Figure 5.10: E∞ as a function of c, α = 0.1 and c = 1; for both plots ρ = 0.7.
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5.3 Varying ρ

Figure 5.11 shows the graphs of E∞, Ed
∞ and EMMC

∞ as a function of ρ for α = 0.5
and c = 15.

Our observations are as follows:

1. Once again, E∞ and Ed
∞ provide close approximations of one another, with

E∞ < Ed
∞,

2. Similar to [17] we see that Ed
∞ is increasing in ρ and converges to EMMC

∞ as
ρ↗ 1.

39



40



CHAPTER 6

Conclusion and Outlook

Energy management has now became an important problem for servers and data cen-
ters, focusing on the reduction of all energy-related costs, including capital, operating
expenses, and environmental impacts.

Essentially, even an energy efficient server still consumes about half its full power
while doing no work. Servers designed with less attention to energy efficiency usually
idle at even higher power levels. It is of interest to study and optimize energy usage of
these centers. One of the main theoretical tools in the study of this problem is queueing
theory. Within queueing theory two models that are of direct interest to the problem
are M/M/c/Setup queues and M/M/c queues. The main financial measure used in
this approach is the average energy cost per unit time. Ergodic theorem tells us that this
measure can be computed via the stationary measure of the process. The paper [17]
develops efficient computational methods based on the generating function approach
and matrix analytic approach for the computation of the stationary measure and uses
these methods for a study of the average energy cost per unit time for M/M/c/Setup
systems. We have reviewed the approach of this paper in Chapter 3.

Setup of a server is usually a constant process, hence a more reasonable assumption
for it is that it is deterministic, rather than random, as assumed in M/M/c/Setup. The
main goal of the present thesis was to understand what happens to the average energy
cost per unit time of the system when one modifies random setup times to deterministic
setup times (we denoted the modified system by M/M/c/dSetup). This problem has
been considered in Chapters 4 and 5. Our main tool was simulation which is made pos-
sible by the piecewise deterministic dynamics of the underlying processes. Our main
finding is that the average energy cost per unit time measures of the M/M/c/dSetup
and M/M/c/Setup systems are very close (around 2% to 4% relative error for the
parameter values studied in Chapter 5), at least for the parameter values studied in this
thesis.

Let us now note three problems for future research:

1. We think that it would be interesting to try to generalize the computations given
in [17] to the M/M/c/dSetup framework.
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2. Our main financial measure of cost was average unit cost per unit time:

P. lim
T→∞

1

T

∫ T

0

ctdt

, where ct is the energy consumption rate at time t and P is the constant price of
energy per unit time. In all of the works using the queueing theory framework
P is taken a constant. But as is well known, P is usually a stochastic process. It
may be of interest to develop models that take this into consideration.

3. Another possibility is to consider discounted costs of the form

E
[∫ ∞

0

e−
∫ t
0 rsdsPtctdt

]
,

where rs is the instantaneous interest rate at time s; this model would also take
into account the stochasticity of interest rates.
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