
SUBSPACE BASED RADAR SIGNAL PROCESSING METHODS FOR
ARRAY TAPERING AND SIDELOBE BLANKING

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

DOĞANCAN DİNLER

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

SEPTEMBER 2017





Approval of the thesis:

SUBSPACE BASED RADAR SIGNAL PROCESSING METHODS
FOR ARRAY TAPERING AND SIDELOBE BLANKING

submitted by DOĞANCAN DİNLER in partial fulfillment of the require-
ments for the degree of Master of Science in Electrical and Electronics
Engineering Department, Middle East Technical University by,

Prof. Dr. Gülbin Dural Ünver
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Tolga Çiloğlu
Head of Department, Electrical and Electronics Engineering

Prof. Dr. Çağatay Candan
Supervisor, Electrical and Electronics Eng., METU

Prof. Dr. Sencer Koç
Co-supervisor, Electrical and Electronics Eng., METU

Examining Committee Members:

Prof. Dr. Ali Özgür Yılmaz
Electrical and Electronics Engineering Dept., METU

Prof. Dr. Çağatay Candan
Electrical and Electronics Engineering Dept., METU

Prof. Dr. Sencer Koç
Electrical and Electronics Engineering Dept., METU

Prof. Dr. Orhan Arıkan
Electrical and Electronics Engineering Dept., BILKENT

Assist. Prof. Dr. M. Gökhan Güvensen
Electrical and Electronics Engineering Dept., METU

Date:



I hereby declare that all information in this document has been ob-
tained and presented in accordance with academic rules and ethical
conduct. I also declare that, as required by these rules and conduct,
I have fully cited and referenced all material and results that are not
original to this work.

Name, Last Name: DOĞANCAN DİNLER

Signature :

iv



ABSTRACT

SUBSPACE BASED RADAR SIGNAL PROCESSING METHODS FOR
ARRAY TAPERING AND SIDELOBE BLANKING

DİNLER, DOĞANCAN
M.S., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Çağatay Candan

Co-Supervisor : Prof. Dr. Sencer Koç

September 2017, 85 pages

The discretization of the signal impinging on several hundreds, even thousands,
of receiving elements has become a common problem in modern phased array
radar systems along with the developments in the digital signal processing. The
spatial and temporal processing of such large dimensional data is too challenging
for all steps of signal processing. This thesis is focused on the subspace meth-
ods that making the processing of the full dimensional data feasible at reduced
dimensions. The first objective of the thesis is to develop a proper subspace
such that the essence of the signal coming from a predefined sector is captured
at reduced dimensions. To realize that aim, eigenvector and Fourier bases of
the sector are studied and evaluation of these bases are performed considering
the detection and parameter estimation performances. The second objective is
to apply some conventional radar signal processing methods, namely array ta-
pering and sidelobe blanking, at reduced dimensions. The main contributions
are subspace construction and reduced dimensional implementations of array
tapering and sidelobe blanking. Numerical results are provided to evaluate the
performance of suggested methods in different scenarios.

Keywords: Radar Signal Processing, Dimension Reduction, Beamforming, Sub-
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space Based Detection and Parameter Estimation, Array Tapering, Sidelobe
Blanking
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ÖZ

DİZİ PENCERELEME VE YAN HÜZME KARARTMA İÇİN ALT UZAY
TABANLI RADAR SİNYAL İŞLEME METOTLARI

DİNLER, DOĞANCAN
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Çağatay Candan

Ortak Tez Yöneticisi : Prof. Dr. Sencer Koç

Eylül 2017 , 85 sayfa

Sayısal sinyal işleme alanındaki gelişmelerle birlikte, yüzlerce hatta binlerce
elemanlı modern radar sistemlerinin aldığı sinyalin ayrıklaştırılması yaygın bir
problem haline gelmiştir. Bu kadar büyük boyutlu verilerin uzamsal ve zamansal
olarak işlenmesi çok zorlayıcıdır. Bu tezde, tüm elemanlardaki verilerin işlenme-
sini azaltılmış boyutlarda mümkün kılan alt uzay metotları üzerine odaklanıl-
mıştır. Tezin ilk amacı, önceden tanımlanmış bir sektörden gelen sinyalin özünün
azaltılmış boyutlarda yakalanacağı bir alt uzay geliştirmektir. Bu amacı gerçek-
leştirmek için, sektörün özvektör ve Fourier bazlarına çalışılmış, tespit ve para-
metre kestirim performansları dikkate alınarak bu metotların değerlendirilmesi
gerçekleştirilmiştir. Tezin ikinci amacı, dizi pencereleme ve yan hüzme karartma
gibi bazı radar sinyal işleme yöntemlerinin indirilmiş boyutlarda uygulanmasıdır.
Tezin sağladığı katkılar alt uzay oluşturma ve alt uzayda dizi pencereleme ve yan
hüzme karartma uygulamalarını gerçekleştirmektir. Yöntemlerin performansları
farklı senaryolar altında sayısal sonuçlar sağlanarak değerlendirilmiştir.

Anahtar Kelimeler: Radar Sinyal İşleme, Boyut Azaltma, Hüzme Oluşturma,
Alt Uzayda Tespit ve Parametre Kestirimi, Dizi Pencereleme, Yan Hüzme Ka-
rartma
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Until the mid-1960s, the digital signal processing methods had been used for

data simulation and offline analysis of recorded data since the digital processors

of time had limited potentials. Indeed, analog systems had typically been pre-

ferred to implement the signal processing algorithms in real time applications.

Fortunately, the rapid evolution of digital computing has made it possible to

use digital signal processing in real time applications. Radar was one of the

applications that has taken advantage of the digital signal processing and its

knowledge base has grown rapidly by employing more sophisticated signal pro-

cessing algorithms.

Recent technological developments have enabled radar systems having several

hundreds of elements to sample the continuous time signals impinging on the

array. Unfortunately, further processing of large amount of data collected at ev-

ery second is very challenging even with the today’s technology. Therefore, the

sampled data needs a dimension reduction pre-processing stage before further

processing. With the evolution of the digital systems, the concept of dimension

reduction has become a common topic in several fields. However, very few of the

studies under the title of reduced dimension beamspace processing, exist in the

literature. The reduced dimension beamspace processing is defined as creating

a set of non-adaptive beams to enable further processing of the signal at the

elements of a very large array in [1]. Hence, it is preferred to use the phrase
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‘beamspace processing’, compatible with its analog counterpart, (for compact-

ness, the phrase ‘reduced dimension’ is removed from the expression) as a short

hand title for dimension reduction operation in the scope of this thesis.

The motivation of the thesis is to transform the original signal to the reduced

dimensions and then apply radar signal processing methods on the reduced

dimensional signal. The concept of beamspace processing is considered with

the specifications of a phased array radar having hundreds of elements. More-

over, implementation of spatial domain operations, namely tapering and sidelobe

blanking, into beamspace processing is not present in the radar literature, to the

best of our knowledge. Therefore, it is intended to fill this gap by examining the

applicability of these methods in beamspace.

In this thesis, a digital phased array radar is used to study spatial signal pro-

cessing techniques. As in a typical radar scenario, a predefined region of the

space, also referred as the sector, is assumed to be illuminated by a transmitter.

The main objective is to design a practical receiver that is able to capture the

essence of the information in the predefined region and present a way to apply

some required spatial operations, namely tapering and sidelobe blanking on the

reduced dimensional signal.

1.2 Literature Review

In this section of the thesis, the studies in the literature regarding with the

subspace based array processing, array tapering, and sidelobe blanking are pre-

sented, in the given order.

In [2], the large dimensional data was mapped into lower dimensional space to

reduce the computational burden. The detection performance of the subspace

was considered as a design criterion and the average signal to noise ratio (SNR)

was aimed to be maximized. It was found that transformation matrix that con-

structs the subspace consists of the significant eigenvectors of the covariance

matrix belonging to a desired region of the space. Besides, subspace versions of

some direction finding algorithms, namely Multiple Signal Classification (MU-
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SIC) and Min Norm, were presented. It was shown that due to the decrease in

noise power, dimension reduction improves the performance of both parameter

estimation algorithms.

In [3], sensitivity of eigenvector source localization method on errors, which is

caused by modelling the noise space with insufficient precision, was aimed to be

decreased by employing discrete prolate spheroidal sequences (DPSS) as spatial

filters to reduce dimensions. DPSS was introduced in [4] and power maximizing

property of DPSS was demonstrated on band-limited time series. In fact, DPSS

was achieved by maximizing the energy confined within the bandwidth of the

signal. This power maximization property of DPSS was used in [3] and it was

shown that DPSS corresponds to the eigenvectors of the sector covariance matrix

with the largest eigenvalues.

In [1], various topics on the dimension reduction were brought together and

beamspace processing was discussed in detail. The parameter estimation, i.e.

direction finding, performances of subspace methods were evaluated. Both adap-

tive and non-adaptive subspace methods were introduced. Adaptive methods

were investigated under the eigenspace concept. It was explained that eigenspace

is constructed by eigendecomposing the data covariance matrix calculated us-

ing received data at the array elements. In other words, on the fly calculated

eigenvectors were used to map the received data into the eigenspace. Another

work on the adaptive subspace construction was also conducted in [5]. Some di-

rection finding algorithms, namely deterministic maximum likelihood, ESPRIT,

and multidimensional signal subspace method, were formulated in a subspace

that was created by the eigenvectors of the data covariance matrix. In a typical

radar scenario, however, the receiver pattern is steered towards the sector illu-

minated by the transmitter pattern. In other words, sector (the region of the

space that is to be interested in) is given as a priori information as in this thesis.

Therefore, non-adaptive methods, which assume that the sector is completely

known, are employed instead of the adaptive methods.

A similar work to this thesis was conducted in [6]. In order to reduce computa-

tional requirements, dimension reduction was performed as a preliminary process

3



in the element space. Design of the subspace was performed by maximizing the

parameter estimation performance of the array. In addition, the number of the

reduced space dimensions was determined considering the parameter estimation

performance as well. It was stated that there is not a certain rule to decide the

number of subspace dimensions. It can be chosen according to the maximum

possible computational burden that can be handled. In this thesis, the detection

ability of the subspace is considered to be more important than the parameter

estimation accuracy because the direction finding cannot be performed without

detecting the target in typical radars. Therefore, the number of subspace di-

mension is determined based on the achievable SNR instead of the parameter

estimation accuracy, which is in contrast to [6].

The Cramer Rao Lower Bound (CRB) derivation of random signals for param-

eter estimation problem was presented in [7]. In this thesis, a subspace CRB

formulation is achieved using the derivation in [7]. CRB analyses of beamspace

methods were also performed in [1]. However, they were compared with element

space performance for a limited number of scenarios. Furthermore, a certain

rule was not defined to determine the number of reduced space dimension. As

expected, analyses indicate that an increase in subspace dimension results in

better estimation accuracy. It was also quantitatively illustrated that a proper

subspace operation can provide almost the same parameter estimation perfor-

mance with the element space performance in [1].

In [8], minimizing the average error between true covariance matrix and the

implied structured covariance model was taken as the criterion for subspace

construction. It was found that the transformation matrix, which projects data

onto the subspace, is formed by the eigenvectors corresponding to the largest

eigenvalues of the sector covariance matrix. Additionally, under the name of

partially adaptive beamforming, derivation of adaptive beamforming weights,

which are used to eliminate interferers, were examined for reduced dimensions.

A similar work was also conducted in [1]. Element space interference suppres-

sion methods, namely Minimum Power Distortionless Response (MPDR), Lin-

ear Constrained Minimum Variance (LCMV) and Linear Constrained Minimum

Power (LCMP) beamformers were implemented in subspace. Results demon-
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strate that interference cancellation can be realized in reduced dimensions with

an appropriate selection of beamspace matrices. Another subspace design that

takes interference cancellation into consideration was recently studied in [9].

Generalized eigenvector subspace was found as the optimum solution for several

criteria such as mutual information preserving, reconstruction error minimizing,

and detection probability maximizing. It is worthy of note that when there are

no interferers, generalized eigenvector weights equal to the eigenvectors of the

sector covariance matrix. Therefore, the detection performance of this method

can be considered as similar to the methods derived in [3],[2], [1], and [8] in the

absence of interferers. Besides, it can be computationally complex to implement

generalized eigenvector method for large dimensional arrays. Therefore, it is not

studied in the scope of this thesis.

It has to be underlined that described works from literature are closely related

to each other and there is not a variety of sources on the comparison of dif-

ferent subspace performances. Moreover, there have not been any guideline for

how much dimension have to be reduced in order to provide a predetermined

detection loss in subspace.

Besides the optimum eigenvector beamformer, which has been widely used in the

literature, detection and parameter estimation performance of another subspace

construction method, namely conventional Discrete Fourier Transform (DFT)

beamformer, is studied in this thesis. An analogous work that investigate the re-

lation between eigenvector and DFT bases on time signals were presented in [10]

under the name of Discrete Karhuenen Loeve Transform and Discrete Fourier

Transform. It was shown that DKLT is the most efficient representation when

the dimension is reduced. It was also noted that DKLT is practically equivalent

to DFT if the correlation function becomes smaller in magnitude within a short

interval or observation interval is long with respect to the reciprocal of process

bandwidth (assuming a low pass process with well defined bandwidth). This

fact can be interpreted as DFT and eigenvector beamformers are expected to

achieve similar performance results if the magnitude of the sector covariance

matrix’s off-diagonal elements decay rapidly enough.
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As very well appreciated, the low sidelobe patterns provide better performance

in case of high clutter and interferer scearios and can be provided by array taper-

ing which has been studied by a number of authors, [11], [1], [12], [13], and [14].

In these sources, tapered array patterns were illustrated for different tapering

classes yet there have not been any guideline for application of tapering in the

subspace. In [1], tapered beamspace matrix was suggested to achieve subspace

with low sidelobes; however, the concept was not covered in detail. To clarify,

the effect of tapering on the number of dimension or detection performance of

such system was not examined. The concept of tapering and dimension reduc-

tion were discussed recently in [15]. A novel tapering method, tapering after

dimension reduction, was suggested and detection performance of the proposed

method was analyzed. It was seen that tapering can be performed in reduced di-

mensions contrary to the conventional approach that is to apply tapering to the

full dimensional array. Nevertheless, the relation between tapering and number

of dimensions were not investigated in [15].

In order to prevent the acquisition of targets and pulsed interference originating

in the antenna sidelobe, a sidelobe blanker system is typically aplied, [16]. The

basic sidelobe blanker system was introduced for a conventional two channel

system, namely main and auxiliary channel, and probability of detection for-

mula was derived according to the proposed structure. It was stated that the

trade-off between detecting targets in the mainlobe and in the sidelobe can be

handled with a high gain sidelobe suppression antenna. This challenge was also

expressed in [17]. In this thesis, a novel auxiliary pattern design which is easily

implemented after beamspace processing is proposed to overcome this trade-off.

In [16], the nonfluctuating target model was used to evaluate the SLB perfor-

mance. In [18], the performance evaluations of SLB structure was extended to

the fluctuating targets. In [12], the SLB system was investigated in detail and

various sources on SLB system were gathered. Furthermore, the probability of

blanking the target in the mainlobe and the probability of blanking the inter-

ferer in a sidelobe were derived for Swerling-0 model. Performance of the SLB

structure was evaluated for different scenarios. In [19], previous work in [12] was

improved by deriving the closed-form expression of the probability of blanking
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the interferer in a sidelobe for Swerling-1 model.

A more recent work on SLB was presented in [20]. In this study, an optimal SLB

detector was developed. The performance of the proposed detector was com-

pared with the conventional SLB structure for Swerling-1 and Swerling-0 models.

This study showed that the conventional SLB structure results in a similar per-

formance with the optimal detector. In this thesis, a practically implementable

conventional SLB structure is to be investigated. Moreover, application of SLB

structure in reduced dimensions is to be presented that is perceived as a gap in

the literature.

1.3 Organization

The remaining part of the thesis is organized as follows:

Chapter 2 introduces signal models that is used throughout the thesis. The

matrices are represented in bold and uppercase letters whereas vectors are rep-

resented in bold and lowercase letters.

The working principle of the beamspace processing is explained in Chapter 3.

Here, two beamspace construction methods, namely eigenvector and DFT beam-

formers are introduced. Moreover, the detection and parameter estimation, i.e.

direction finding, performances of the methods are compared. Besides, deter-

mining the number of reduced dimensions is studied in Chapter 3.

In Chapter 4, implementation of dimension reduction with tapering is studied in

detail. Two methods, namely tapering before dimension reduction and tapering

after dimension reduction, are examined. In addition, a brief comparison of

these methods is given considering their detection performances.

In Chapter 5, a well-known operation, sidelobe blanking, is studied. A novel

approach to the design of the auxiliary antenna pattern is presented. The ad-

vantages of the approach are demonstrated. Besides, the design of the sidelobe

blanker in the beamspace is performed.
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In Chapter 6, concluding remarks on the design of a properly functioning sub-

space for the spatial operations mentioned in Chapters 4 and 5 are presented.
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CHAPTER 2

ARRAY SIGNAL MODEL

Arrays are used to filter the signals in the spatial domain in order to suppress

the interfering signals and reduce the background noise. The design of arrays

depends on the geometry and placement of the elements. The geometry of the

array is classified in [1] as follows:

• Linear

• Planar

• Volumetric

In this thesis, linear arrays are utilized. The placement of the elements in linear

arrays can be classified as follows:

• Uniform

• Non-Uniform

• Random

A uniform linear array (ULA) consisting of equally spaced elements is used for

this thesis work. A sample array geometry for a ULA of N elements is shown

in Figure 2.1.

Array elements are placed with an equal distance, d, as shown in Figure 2.1. In

this thesis, the coordinate system of interest is taken as spherical coordinates as

visualized in Figure 2.2.
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Figure 2.1: ULA with N elements.

The signal model is established considering the case of a single target whose

echo impinges upon an array of N elements. Received signals at the output of

each array elements are denoted by y(t), where t refers the time at which the

received signals are sampled. Array output, for narrowband impinging signals,

can be expressed as

y(t) = a(φ)s(t) + n(t) (2.1)

where y(t) =

[
y1 y2 y3 . . . yN

]T
∈ CN×1, a(φ) ∈ CN×1 is the response of the

array for the source coming from φ, s(t) ∈ C1×1 is the complex amplitude of

the echo signal at time t and n(t) is the additive white gaussian noise. Array

steering vector, a(φ), can be modeled as

a(φ) =



e−j2πfτ1

e−j2πfτ2

...

e−j2πfτN


(2.2)

where f is the carrier frequency, τi is the time delay corresponding to the time

of arrival at the ith sensor. With the far field assumption, τi can be expressed
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Figure 2.2: Representation of spherical coordinates.

as follows:

τi = − xi sin θ cosφ + yi sin θ sinφ + zi cos θ

c
. (2.3)

where c refers to the speed of light, xi, yi, and zi denote the positions of the

elements in the array, θ and φ represent the elevation and the azimuth angles

given in Figure 2.2.

In this thesis, the array is placed on the x-y plane. This means that θ in Figure

2.2 is taken as 90◦. The elements of the array are placed on y-axis as shown in

Figure 2.3.

Considering Figure 2.3 and inserting (2.3) into (2.2), a(φ) can be rewritten as

a(φ) =



ej
2π
λ

(
−N−1

2

)
d sinφ

ej
2π
λ

(
−N−3

2

)
d sinφ

...

ej
2π
λ

(
N−1

2

)
d sinφ


(2.4)

where λ = f / c. Array steering vector, a, can also be represented by defining
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Figure 2.3: Array placed on y-axis.

the cosine terms with respect to each axis as

ux = sin θ cosφ,

uy = sin θ sinφ,

uz = cos θ,

(2.5)

and employing the wavenumber which is defined as

k = −2π

λ


sin θ cosφ

sin θ sinφ

cos θ

 = −2π

λ


ux

uy

uz

 = −2π

λ
u. (2.6)

The resultant array steering vector, a, as a function of wavenumber, k, can be

written as

a(k) =



e−jk
Tp1

e−jk
Tp2

...

e−jk
Tp3


, (2.7)
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where p refers to the positions of the elements.

pi =


xi

yi

zi

 . (2.8)

Considering the fact that the array is placed on the y-axis as indicated in Figure

2.3, array steering vector, a can be rewritten as a function of the wavenumber

as follows:

a(ky) =



e−jky

(
−N−1

2

)
d

e−jky

(
−N−3

2

)
d

...

e−jky

(
N−1

2

)
d


, (2.9)

where ky is the resultant wavenumber shown as

ky = −2π

λ
sinφ. (2.10)

In order to further simplify the array steering vector, a, it is useful to define

ψ = −ky d. (2.11)

Inserting (2.11) into (2.9), a can be rewritten as

a(ψ) =



ejψ
(
−N−1

2

)
ejψ
(
−N−3

2

)
...

ejψ
(
N−1

2

)


. (2.12)

In this thesis, assumptions that the signal model is based on are defined as

follows:

1. The targets are assumed to be located in the far field of the array. Under

the far field assumption, signal impinging on the array propagates as a

plane wave as shown in Figure 2.1.
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2. The narrowband assumption is defined in [21] as the time variations in the

amplitude and phase modulations of the signal being larger than the time

delay between any two sensors. Under the narrowband assumption, signal

impinging on the array can be written as

s(t− τk) ≈ s(t) e−jωcτk , (2.13)

where ωc denotes the center frequency.

3. The center frequency of the signal, ωc, is assumed to be known.

4. The number of elements in the array is taken as 100.

5. The array and the targets are placed on the x-y plane. This means that

θ = 90◦.

6. Interelement spacing between the elements of the array is defined as d =

λ / 2.

7. Noise is assumed to be independent identically distributed circularly sym-

metric complex zero mean Gaussian distributed.
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CHAPTER 3

REDUCED DIMENSION BEAMSPACE PROCESSING

Reduced dimension beamspace processing decreases the rank of the processor,

which is necessary in systems with the large number of antenna elements in

order to detect and estimate the signal of interest. In other words, beamspace

processing is used to construct a subspace in reduced dimension which is spanned

by columns of the beamspace matrix (range space of the matrix). In [2], the

beamspace processing is defined as a linear transformation from element space

into a lower dimensional space. In this thesis, beamspace is formed by projecting

the received array signal onto the beamspace matrix generated using presumed

steering vectors .

Figure 3.1: Beamspace processing chain.

In Figure 3.1, beamspace processing is illustrated, where U is the beamspace
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matrix of size N × D, N is the number of elements in the array, D is the

dimension of the reduced space, s(t) is the echo signal impinging on the array,

(i− 1)τ is the time delay of the received signal at ith array element, ni(t) is the

additive white gaussian noise (AWGN) at the ith array element, yi(t) is the ith

element’s noisy signal and ysi(t) is the ith beamspace signal.

The columns of U are assumed to be orthonormal, if not they can be orthonor-

malized with the operation of

U ← U (UH U)−1/2. (3.1)

In (3.2), y(t) and ys(t) correspond to the received signal impinging on the array

under AWGN and the beamspace signal achieved after beamspace processing,

respectively

ys(t) = UH y(t). (3.2)

Presumed steering vectors are utilized to generate the projection matrix, U.

They are chosen according to the sector that is, in the scope of this thesis work,

defined as the region in space where all the signals of interest are contained.

Figure 3.2: Illustration of a 2D sector of interest (Despite the use of one dimen-

sional sector throughout the thesis, 2D sector is preferred to be shown in terms

of the intelligibility of the sector concept).

The main advantages of beamspace processing are listed in [22] as: reduc-

ing data, increasing computational efficiency and reducing noise. However, if
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beamspace processing is not performed properly, detection and estimation per-

formance of the array might become poorer. For clarity, information related

with the signal of interest might be lost after dimension reduction.

In this chapter, dimension reduction methods, which are referred as eigenvector

beamformer and DFT beamformer, are presented. To evaluate the detection per-

formance of these methods, SNR is considered as a beamspace design objective.

Moreover, in order to demonstrate that whether the proposed methods provide

good statistics for the parameter estimation, i.e. direction finding, problem or

not, Cramer Rao Lower Bounds (CRB) of beamspace methods are compared

with the element space ones. Depending on these two objectives, the impor-

tance of choosing a proper beamspace matrix and criteria for determining the

number of beamspace dimensions are discussed.

3.1 Eigenvector Beamformer

The beamspace matrix, U of size N ×D, is used to form a beamspace for sector

angles from φmin to φmax

U = [ u1 u2... uD ] (3.3)

where, ui is the ith column of U, the beamspace matrix. Then, the ratio of the

energy represented in the ith beam in the sector to the energy of the ith beam

in space is defined as

ci =

∫ φmax
φmin

|uH
i a(φ)|2dφ∫ π/2

−π/2 |u
H
i a(φ)|2dφ

,

=
uH
i

∫ φmax
φmin

a(φ)aH(φ)dφ ui

uH
i

∫ π/2
−π/2 a(φ)a

H(φ)dφ ui
.

(3.4)

To simplify the integral calculations, ψ-space, which was explained in Chapter

2, is used for the representation of the steering vectors. Therefore, (3.4) can be

rewritten as

ci =
uH
i

∫ ψmax
ψmin

a(ψ)aH(ψ)dψ ui
uH
i

∫ π
−π a(ψ)a

H(ψ)dψ ui
. (3.5)
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The integral in the numerator of (3.5) can be expressed as

R =
1

ψmax − ψmin

∫ ψmax

ψmin

a(ψ)aH(ψ)dψ. (3.6)

where R is the covariance matrix of the sector. The element corresponding the

mth row and nth column of the covariance matrix can be found as

Rmn =
1

ψmax − ψmin

∫ ψmax

ψmin

ejψme−jψndψ

=
1

ψmax − ψmin

∫ ψmax

ψmin

ejψ(m−n)dψ

=
1

ψmax − ψmin
ejψmax(m−n) − ejψmin(m−n)

j(m− n)

=
1

ψmax − ψmin
ejψmax(m−n)

1− e−j(ψmax−ψmin)(m−n)

j(m− n)

=
1

ψmax − ψmin
e
j(ψmax+ψmin)(m−n)

2

2 sin
[
(ψmax−ψmin)

2
(m− n)

]
m− n

.

(3.7)

Assuming a symmetric sector of interest, implying that ψmax = −ψmin, the

sector covariance matrix can be further simplified as,

Rmn =


1

2ψmax

2 sin

[
ψmax(m−n)

]
m−n , if m 6= n,

1, if m = n.

(3.8)

Using (3.8), the integral in the denominator of (3.5) results in∫ π

−π
a(ψ)aH(ψ)dψ = 2πI. (3.9)

Considering (3.9), the denominator of (3.5) is calculated as 2πuH
i ui. Combining

(3.9) and (3.6), (3.5) can be rewritten as

ci =

(
ψmax − ψmin

)
uH
i Rui

2πuH
i ui

. (3.10)

ci is desired to be maximized subject to the orthonormality condition:

maximize
ui

ci subject to uH
i ui = 1. (3.11)

Equation (3.11), a well known optimization problem, results in ui being the

eigenvector of R corresponding to the ith largest eigenvalue.
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This approach was first encountered in [4] under the name of discrete prolate

spheroidal functions (DPSS). Mathematical properties of DPSS was discussed

in detail and utilized to represent time series with a finite index set in [4]. In [3],

DPSS was applied to array processing for the first time [1] and used in order to

form beamspace as shown in this section.

The same beamspace matrix, U, can also be achieved by maximizing the SNR

of an angular sector at the output of a spatial filter.

Assume that the sources are taken as uniformly distributed throughout the sector

with the probability density function (pdf) given in Figure 3.3.

Figure 3.3: Probability density function of the sources in space

The beamformer operation can be defined as in Figure 3.4.

Figure 3.4: The spatial filtering operation

The beamforming process shown in Figure 3.4 can be formulated as

y(t) = a(φ)s(t) + n(t),

z(t) = uH y(t),

= uHa(φ)s(t) + uHn(t),

(3.12)

where s(t) is the received echo signal, a(φ) is the steering vector of the source,

n(t) is the additive white gaussian noise (AWGN) at the antenna elements, y(t)
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is the received signal at the antenna elements under AWGN, u is the spatial

filter, and z(t) is the output of the beamformer.

The SNR at the output of the beamformer can be written as

SNR(φ) =
E
{(

uH a(φ) s(t)
) (

uH a(φ) s(t)
)H}

E
{(

uH n(t)
) (

uH n(t)
)H} ,

=
uH a(φ) E

{
s(t) s(t)H

}
a(φ)H u

uH E
{
n(t) n(t)H

}
u

,

=
σ2
s

σ2
n

uH a(φ) a(φ)H u
uH u

,

(3.13)

where expectation, E{.}, is taken over the time, t, σ2
s and σ2

n are the variances

of the signal and noise, respectively. The SNR value in (3.13) is calculated for

a specific angular point, φ, in space. In order to design a spatial filter for the

sector, the pdf of the sources, given in Figure 3.4, is needed to be considered.

Taking expectation of the point SNR expression over φ yields the concept of

average signal to noise ratio, SNRavg, of the sector,

SNRavg = E
{σ2

s

σ2
n

uH a(φ) a(φ)H u
uH u

}
,

=
σ2
s

σ2
n

uH E
{
a(φ) a(φ)H

}
u

uH u
,

(3.14)

where,

E
{
a(φ) a(φ)H

}
=

∫ π/2

−π/2
a(φ)aH(φ)fφ(φ)dφ,

=
1

φmax − φmin

∫ φmax

φmin

a(φ)aH(φ)dφ.

(3.15)

The expectation of the steering vectors over φ results in the sector covariance

matrix, R, as found in (3.6). Inserting (3.15) into (3.14), SNRavg can be rewrit-

ten as

SNRavg =
σ2
s

σ2
n

uH R u
uH u

. (3.16)

In order to find the appropriate spatial weights, u, SNRavg value is to be maxi-

mized as

maximize
u

SNRavg subject to uH u = 1. (3.17)
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Equation (3.17) is the same constrained maximization problem with the one

derived in (3.11). The solution of this problem is the eigenvector of the sector

covariance matrix corresponding to the largest eigenvalue. If more than one

beamformer, ui, are to be used, then they will be equal to the eigenvectors of

the sector covariance matrix corresponding to the ith maximum eigenvalues.

Thus far, the same beamspace matrix is found by maximizing the ratio of the

energy of the sector to the energy in the space and maximizing the average SNR

of a sector at the output of a beamformer. Now, the beamspace matrix will

be calculated by applying the optimal representation property of the Discrete

Karhuenen Loeve Transform (DKLT), [10], into the array signal processing.

Assume that an orthonormal set of functions is generated to form a beamspace

a(φ) =
N−1∑
i=0

κiui, (3.18)

where a(φ) is the true steering vector involved in the sector, κi is the ith coeffi-

cient in the expansion and ui is the ith basis function.

Due to the practical concerns, D out of N many basis vectors are used to repre-

sent the subspace

ã(φ) =
D−1∑
i=0

κiui, (3.19)

where ã(φ) refers to the approximate steering vector. The error, due to ap-

proximating an N dimensional space with D basis functions, can be defined as,

e(φ) = a(φ) − ã(φ) =
N−1∑
i=D

κiui, (3.20)

where e(φ) is the error vector. In order to find an appropriate set of basis

functions, mean square error (MSE) is to be minimized

ε = E
{
e(φ)H e(φ)

}
,

= E

{( N−1∑
i=D

κiui

)H (N−1∑
j=D

κjuj

) }
,

(3.21)
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where ε is the MSE. It is worth to underline that the basis functions to be

obtained by means of minimizing MSE can also be achieved by minimizing the

average energy of the error in the sector. Using the orthonormality property of

the basis functions, expression in (3.21) can be simplified as

ε =
N−1∑
i=D

E
{
|κi|2

}
, (3.22)

where

κi = uH
i a(φ). (3.23)

In (3.23), orthonormality property of the basis functions is used. Inserting (3.23)

into (3.22), MSE can be rewritten as

ε =
N−1∑
i=D

E
{ (

uH
i a(φ)

) (
uH
i a(φ)

)H }
,

=
N−1∑
i=D

uH
i E

{
a(φ) a(φ)H

}
ui,

=
N−1∑
i=D

uH
i R ui,

(3.24)

The expectation operation over φ gives the sector covariance matrix, R, as found

in (3.15). Instead of minimizing MSE, ε, 1 − ε expression can be maximized.

Therefore, the expression to be maximized will be

1 − ε =
D−1∑
i=0

uH
i R ui. (3.25)

The maximization of (3.25) is a well known constrained maximization prob-

lem and results in ui being the eigenvector of R corresponding to the ith largest

eigenvalue. Thus, the basis functions of the beamspace corresponds to the eigen-

vectors of the sector covariance matrix with D largest eigenvalues.

The algorithm steps of constructing a beamspace matrix are as follows:

1. Define a sector in space.

2. Calculate sector covariance matrix,R.
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3. Eigendecompose R.

4. Choose D many eigenvectors corresponding the largest eigenvalues.

5. Construct beamspace matrix of size N ×D by defining these eigenvectors

as the columns of that matrix.

3.2 DFT Beamformer

DFT beams, also known as the conventional beams, are the most commonly

used spatial filters in array signal proccessing. DFT beams correspond to the

array steering vectors defined in (2.4). These beams provide a channel steered

towards a desired point in space to maximize SNR [22].

The algorithm steps of constructing a beamspace matrix are as follows:

1. Define a sector in space.

2. Choose D many angles in the sector with equal intervals.

3. Construct D many DFT beams steered towards the selected angles.

4. Construct beamspace matrix of size N ×D by defining these DFT beams

as the columns of that matrix.

5. Orthonormalize the beamspace matrix using (3.1).

3.3 On the Relation Between Eigenvector and DFT Beamformers

For a proper illustration of the behaviour and a better understanding on the

characteristics of the eigenvector beamformer, the following case is studied.

Assume that only a single point in space is taken as the signal of interest; and

therefore, sector is defined as that point. Then, the covariance matrix of the

sector is calculated as

R = a(φ0) aH(φ0). (3.26)
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IfD is choosen as 1,U has only one column and the resultant pattern is shown in

Figure 3.5. The resultant pattern exactly corresponds to the pattern of the array

Figure 3.5: The first beamspace beam pattern of the array.

steered towards that direction. This phenomenon can also be seen from Mercer’s

theorem. According to the Mercer’s theorem, a symmetric, non-negative definite

matrix can be expanded as:

R =
∞∑
k=1

λk ζk ζH
k (3.27)

where λk and ζk refer the kth eigenvalue and corresponding eigenfunction, re-

spectively. In fact, ζ represents an orthonormal basis including eigenfunctions

whose eigenvalues are non-zero and positive. Karhunen Loeve Transform of the

sector covariance matrix shows that there is only a single eigenvalue, λk, whose

value is nonzero and statistic for that sector thus can be achieved with the eigen-

function corresponding to that eigenvalue. Indeed, that eigenfunction gives the

conventional sum beamformer as expected.

IfD is chosen as 2, the beamspace pattern of the second column ofU will become

as in Figure 3.6. Since the first column of the beamspace matrix corresponds
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Figure 3.6: Beamspace beam pattern for the 2nd column of beamspace matrix.

to the desired statistics, second and the other columns of the beamspace matrix

are orthogonal to the signal of interest and have a null at that point.

In a single point case, it is shown that the optimal statistic can be achieved with

the first eigenvector of the sector covariance matrix or with the conventional

sum beamformer steering at that point. The relation between the eigenvector

and the conventional beamformer is analogous to that of the Discrete Karhunen

Loeve Transform and the Discrete Fourier Transform. In [23], it was stated that

the eigenfunctions of any circulant matrix, a special type of Toeplitz matrix

where each row is a circularly rotated version of the preceding row vector as in

(3.28), consist of complex exponentials

R =



r0 r−1 r−2 . . . r1−N
r1−N r0 r−1 . . . r2−N
r2−N r1−N r0 . . . r3−N
...

...
... . . . ...

r−1 r−2 r−3 . . . r0


. (3.28)

In other words, the Fourier basis functions and the eigenfunctions of such matri-
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ces turn out to be identical. Consequently, it is inevitable to achieve the exactly

same subspace with both beamspace construction methods for a circulant co-

variance matrix.

The foregoing relation between the DFT and the DKLT was proven in [10] for a

covariance matrix comprised of real coefficients: ui is the eigenvector consisting

of complex exponentials

ui =
1√
N



1

ej
2π
N
i

ej
2π
N

2i

...

ej
2π
N

(N−1)i


, (3.29)

where N is the number of array elements. The eigenvalue equation can be

written as

R ui = S[i] ui, (3.30)

where S[i] refers to the resultant eigenvalue which is also assumed to correspond

to the power density at frequency 2π
N
i. Conjugating both sides of (3.30) yields

r0 r1 r2 . . . rN−1
rN−1 r0 r1 . . . rN−2
rN−2 rN−1 r0 . . . rN−3
...

...
... . . . ...

r1 r2 r3 . . . r0





1

e−j
2π
N
i

e−j
2π
N

2i

...

e−j
2π
N

(N−1)i


= S[i]



1

e−j
2π
N
i

e−j
2π
N

2i

...

e−j
2π
N

(N−1)i


(3.31)

where conjugate symmetric property, r[l] = r∗[−l], of the autocorrelation func-

tion is utilized. In fact, as its name indicates, power spectral density -PSD-, S[i]

takes only the real values due to that property.

The equation (3.31) points out N linear equations and the first equation is given

as

S[i] =
N−1∑
k=0

rk e−j
2π
N
ki. (3.32)

The other equations are the circularly shifted versions of the first equation,
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(3.32), and thereby multiplied by ej
2π
N
ξi, where ξ represents the integer amount

of shifts.

In this way, the equations are satisfied for all values of i and this illustrates that

the complex exponentials, ui, are the eigenvectors of the covariance matrix given

in (3.28).

The foregoing discussion points out that if the sector has a circulant covariance

matrix, both beamspace construction methods will give the same basis func-

tions. However, such circulant sector covariance matrices is only possible for the

periodic processes, i.e. process with line spectra. In [23], it was explained that,

the asymptotic properties of the Toeplitz matrices having off diagonal terms

approaching to zero are asymptotically equivalent to the circular matrices. In

fact, the DKLT and the DFT basis of a covariance matrix having decaying terms

with further lags can be considered as similar, [10]. This means that, it is not

surprising to observe similar but not exactly the same performance results while

evaluating eigenvector and DFT beamformers with increasing dimensions.

3.4 Computational Cost

In this part of the thesis, several algorithms for implementing the eigenvector

and the DFT beamformers are discussed. In addition, complexity and efficiency

of these implementations are compared. It has to be underlined that there are

many ways to measure efficiency and complexity; however, in the scope of this

thesis, the number of arithmetic multiplications and additions are used as a

measure of computational cost.

Matrix multiplication, which is given in (3.2), can be used to implement the

eigenvector and the DFT beamformers. It can be considered as a direct form

of constructing the beamspace. For D subspace dimensions, it would cost 4DN

operations.

Besides the matrix multiplication, the DFT beamformer can also be applied by

more efficient algorithms. In fact, there is a set of algorithms to evaluate the
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DFT beamformer. Briefly, these algorithms reformulate the Fourier transform

in terms of a convolution in order to achieve efficiency [24]. As examples of such

methods, Goertzel and chirp-z transform algorithms are studied to evaluate the

DFT beamformer.

In [25], the computational cost of Goertzel algorithm, which is used to calculate

any desired set of samples of the DTFT of a finite-length sequence, was given by

3ND. Moreover, the computational cost of chirp-z transform algorithm, which

is widely used to compute a limited range of spectral frequencies [26], was also

given by 4
[
αN log2(N)+N(α+6)

]
, where N refers to the number of elements in

full dimensions. It is worthy of note that these computations were presented for

real input data in [25] and the same assumption is also followed in this section.

With the analysis in [27], the cost was reduced to 4αN log2(D)+N(4α+25)−D,

where D refers to the number of elements in reduced dimensions. In [25], it was

stated that the value for α ranges from 4 to 5, depending on the implementation.

Figure 3.7: Computational complexity for DFT and eigenvector beamformers.

In Figure 3.7, computational costs of the methods are plotted as a function of

reduced space dimensions for N = 100 and α = 4.5.
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Figure 3.7 shows that the implementation of DFT beamformer can be efficiently

performed by using Goertzel algorithm for D < 48. For D > 48, implementation

of dimension reduction operation with the chirp-z transform algorithm achieves

more efficient results in terms of computational complexity.

As very well appreciated, these methods may not provide orthogonal beams

at the output. Considering the criterion given in (3.1), orthogonality can be

provided by multiplying the data with a DxD Gram-Schmidt matrix after

beamspace processing. Orthogonalization process applied to the subspace data

increases the computational cost with the addition of 4D2 operations. The re-

vised computational costs are plotted as a function of reduced space dimensions

in Figure 3.8.

Figure 3.8: Computational complexity for DFT and eigenvector beamformers

with orthogonalization process in beamspace.

Figure 3.8 indicates that the addition of the orthogonalization operation in-

creases the computational complexity of the studied methods. For D < 25,

the Goertzel algorithm gives the best performance concerning operational load.

However, the costs are very similar to the ones achieved by straightforward im-

plementation of the beamspace processing. In fact, the lowest results for all
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other values of D are achieved by the matrix multiplication method as observed

in Figure 3.8.

It has to be underlined that a final assessment for computational load depends

on the implementation technology and the application. These analyses are per-

formed in order to develop an insight about the computational complexities of

the beamspace operations. According to the analysis, it can be inferred that the

DFT beamformer implemented with the Goertzel and the chirp-z transform can

be advantageous regarding the operational load against eigenvector beamformer

when orthogonality is not needed. However, when the orthogonality is required

between channels, matrix multiplication method achieves the lowest computa-

tional cost for D > 25. Moreover, it performs similar to the Goertzel algorithm

for D < 25.

3.5 On the Choice for the Reduced Space Dimension

In a case where the sector includes only a single point in space, determining the

number of subspace dimension is straightforward as shown in Section 3.3; how-

ever, this is not the case in general. To establish a relationship between subspace

dimension and the sector, eigenvalues belonging to that sector can be used. In

fact, the relation between eigenvalues of the sector and the average power loss

of the sector is presented and the number of the reduced space dimension is

determined in this part of the thesis.

Average power of the sector can be calculated as

Pavg =
1

φmax − φmin

∫ φmax

φmin

‖a(φ)‖2 dφ.

=
1

φmax − φmin

∫ φmax

φmin

a(φ)Ha(φ)dφ.
(3.33)

Using the well known property, tHt = tr
{
ttH
}
where t is of size N × 1, (3.33)

can also be written as

Pavg = tr
{

1

φmax − φmin

∫ φmax

φmin

a(φ)a(φ)Hdφ
}
. (3.34)
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The expression given in the curly brackets in (3.34) is the covariance matrix of

the sector found in (3.15). The average power of the sector can be calculated by

the trace of the sector covariance matrix

Pavg = tr
{
R
}
. (3.35)

Covariance matrix, R, is known to be a Hermitian matrix and any Hermitian

matrix can be expanded as

R = V Λ VH. (3.36)

where V includes the eigenvectors as columns in order and Λ consists of corre-

sponding eigenvalues in its diagonal terms. In facts, (3.36) indicates the eigen-

decomposion of the matrix R. The columns of V in (3.36) are orthonormal.

The trace of the covariance matrix can be calculated as

tr
{
R
}
= tr

{
V Λ VH},

= tr
{
Λ VH V

}
.

(3.37)

In the second line of (3.37) cyclic property of the trace is used. Considering the

orthonormality property of V matrix, (3.37) can be simplified as

tr
{
R
}
= tr

{
Λ
}
,

=
N∑
k=1

λk,
(3.38)

where λk is the kth eigenvalue of the covariance matrix. (3.38) represents the

average power in the sector when full dimension is used. If the number of

channels is reduced by beamspace operation, the average power of the sector

can then be calculated as

PavgD =
D∑
k=1

λk, (3.39)

where D is the number of the reduced space dimension. Dividing the average

power achieved with the reduced space dimension, (3.39), by the average power

in full dimension, (3.38), the normalized average power in the sector is calculated

as

Pavgnorm
=

∑D
k=1 λk∑N
k=1 λk

. (3.40)
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Figure 3.9: Average power for different sector widths and reduced space dimen-

sions.

Using (3.40), the normalized average power in the sector is shown for various

sector widths and reduced space dimensions in Figure 3.9.

In Figure 3.9 the sector widths are taken as 5◦, 10◦, 15◦, 20◦; and the dimensions

of the reduced space are varied from 5 to 20. Average power loss increases

with enlarging sector width for any reduced space dimension. It is an expected

result to lose energy with increasing sector widths and decreasing the number

of dimensions. Furthermore, increasing subspace dimension can retain wider

sector’s energy.

The main advantage of beamspace processing was stated as the reduction of

data. Figure 3.9 indicates that beamspace processing exposes a certain loss

with reduced space dimensions. In this part of the thesis, average power loss

of the beamspace processing is taken as %1. In other words, reduced space

dimension is determined to provide an average power loss of at most %1. In

order to calculate the reduced space dimension, a threshold is assigned and sum
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of the eigenvalues are compared with it.

η =

∑D
k=1 λk∑N
l=1 λl

(3.41)

where η is the threshold value, λk is the kth eigenvalue of the sector covariance

matrix, D is the subspace dimension and N is the number of elements in the

array. An average loss of %1 makes threshold, η, in (3.41) be equal to −0.0436
dB.

For the rest of this chapter, the sector is taken as in Table 3.1, which contains

angles from −5◦ to 5◦. Considering the array specifications defined in Chapter

2, and the sector having 10◦ angular width, (3.41) results in 10 reduced space

channels. Thus, analyses in the following sections are made for the sector with

10◦ angular width and 10 reduced space dimensions.

Table 3.1: Sector parameters
Value Explanation

100 Number of elements in the array

10◦ Angular width of the sector

0◦ Center of the sector

10 Reduced space dimension

3.6 Beamspace Signal to Noise Ratio

Beamspace beamformer processing is illustrated in Figure 3.10.

Figure 3.10: Processing chain of the beamspace beamforming.

The vector w refers to the spatial weights to form the beam in the beamspace.

In fact, it enables the generation of the beam anywhere within the sector. The
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signal model given in (3.2) is revised for beamspace beamformer processing as

y(t) = a(φ)s(t) + n(t),

ys(t) = UH y(t)

= UH a(φ)s(t) + UH n(t),

z(t) = wH ys(t),

= wH UH a(φ)s(t) + wH UH n(t).

(3.42)

The SNR of a point source at the end of the beamspace processing can then be

calculated as

SNR(φ) =
E
{
wH UH a(φ) s(t) sH(t)aH(φ) U w

}
E
{
wH UH n(t) nH(t) U w

} ,

=
wH UH a(φ) E

{
s(t) sH(t)

}
aH(φ) U w

wH UH E
{
n(t) nH(t)

}
U w

,

=
σ2
s

σ2
n

|wH UH a(φ)|2∥∥wH UH∥∥2 ,

(3.43)

where σ2
n and σ2

s refers to the noise and signal variances, respectively. In addition,

the first fractional expression in the last line of (3.43) corresponds to the SNR

at each array element. To maximize SNR value at φ, w is taken as

w = UH a(φ). (3.44)

Inserting (3.44) into (3.43), SNR formula under AWGN reduces into

SNR(φ) =
σ2
s

σ2
n

|aH(φ) U UH a(φ)|2∥∥aH(φ) U UH∥∥2 ,

=
σ2
s

σ2
n

|aH(φ) U UH a(φ)|2

‖aH(φ) U ‖2
,

=
σ2
s

σ2
n

|aH(φ) U UH a(φ)|,

=
σ2
s

σ2
n

∥∥aH(φ) U
∥∥2 .

(3.45)

In the second line of (3.45), the orthonormality of the columns of U matrix,

(3.1), is used.
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The equation (3.45) points out that SNR depends on the relation between

beamspace matrix and the signal impinging on the array. SNR can be pro-

vided in a lossless manner, if the signal succesfully projects on the beamspace.

Since the sector contains infinitely many points in space, and the rank of the

processor is limited to a finite number, D, it is inevitable to encounter with SNR

loss after dimension reduction. However, considering the sector width, a proper

selection of beamspace matrix size can keep that loss negligibly small. That was

studied in Section 3.3 and threshold, η, given in (3.41), was assigned as −0.0436
dB.

In this part of the thesis, SNR performances of the dimension reduction methods

are examined qualitatively. Table 3.1 depicts the sector parameters used to

compare SNR performances of the methods.

SNR performances of the beamspace construction methods are given in Figure

3.11. According to Figure 3.11, eigenvector beamformer gives the best perfor-

mance, considering the minimum average SNR loss in the sector, which can also

be related with the minimization of L1-norm of the point SNR at the output of

the beamspace beamformer. However, the performance of the eigenvector beam-

former is decreasing at the edges of the sector. In fact, performance degradation

is observed at the edges of the sector for all methods. The best performance at

the edges of the sector is achieved by the DFT beamformer with 0.95◦ intervals

succeeding in minimax criteria which can also be considered as the minimization

of L∞-norm of the point SNR in the sector. The DFT beamformer with 1.05◦

intervals exhibits a visible performance difference compared to the other meth-

ods because it enlarges out of the sector by 0.5◦. Therefore, it can be inferred

even a small enlargement can cause such visible performance degradation in the

sector.

Figure 3.11 also exhibits the performance of the methods in the center of the

sector. The closely sampled DFT method having an interval of 0.9◦ achieves the

best performance. On the other hand, the worst performance at the edges of

the sector also belongs to that DFT method.

In summary, SNR performances of eigenvector and DFT beamformers having
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Figure 3.11: SNR performances of beamspace methods versus direction of ar-

rival.

different intervals are investigated. It is qualitatively observed that different

methods are able to perform successfully for different design criteria. Due to

the close theoretical results, it can be inferred that SNR performance of the

eigenvector beamformer and a properly selected DFT beamformer cannot be

distinguished from each other in practice.

3.7 Beamspace Cramer Rao Lower Bound

In this part of thesis, the CRB of the beamspace parameter estimation problem

is derived and the beamspace CRBs are compared with the element space CRB,
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which is the CRB for the full size array.

CRB =
σ2
n

2 K

{
Re
[
(DH P⊥a D) � (Rs AH R-1

y A Rs)
T
]}−1

, (3.46)

The expression given in (3.46), is obtained from [7], where σ2
n is the noise vari-

ance, K is the number of snapshot, Rs is the covariance matrix of the signal

coming from the source(s),Ry is the covariance matrix of the received signal on

the array, A is the transfer matrix consisting of steering vectors and D is the

derivative matrix of steering vectors in A,

D = [d1 d2 · · · dL],

di =
∂a(φi)
∂φ

.
(3.47)

The second term in brackets can be simplified by using the matrix inversion

lemma

R-1
y =

1

σ2
n

[
I − A (AH A + σ2

n R
−1
s )AH

]
. (3.48)

Employing the matrix inversion lemma, the CRB expression in (3.46) can be

rewritten in a well known form [1]

CRB =

σ2
n

2 K

{
Re
{[

(DH P⊥a D) � Rs

[
(I +AH A

Rs

σ2
n

)−1 (AH A
Rs

σ2
n

)
]]}}−1

.

(3.49)

The equation (3.46) is first derived in [7] assuming the complex amplitudes to

be random. In this thesis, rank-one target assumption is made. Thus, (3.49)

turns into

CRB =
σ2
n

2

{
Re
{
dH (1 − a aH) d σ2

s

[
(1 + aH a

σ2
s

σ2
n

)−1 aH a
σ2
s

σ2
n

]}}−1
.

(3.50)

where σ2
s is the variance of the signal. Moreover, only single snapshot is uti-

lized while estimating the direction of arrival; therefore, K can be taken as 1.

Considering aHa = N , the expression in (3.50) can be further simplified to

CRB =
1

2

σ2
n

σ2
s

( σ2
n

N σ2
s

+ 1
) 1∥∥d2

∥∥ , (3.51)
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where N is the number of elements in the array. Equation (3.51) gives the

element space CRB formula. In the following part, the beamspace CRB formula

is to be derived. Since the beamspace matrix is assumed to have orthonormality

property (3.1), the expression can be revised for beamspace processing as

CRB =
σ2
n

2

{
Re
{
H σ2

s

[
(1 + aH U UH a

σ2
s

σ2
n

)−1 aH U UH a
σ2
s

σ2
n

]}}−1
,

H = dH U (I − UH a (aH U UH a)−1 aH U) UH d.
(3.52)

If the beamspace matrix is chosen as identity, CRB expression in (3.52) yields

the expression in (3.50). Furthermore, if a proper beamspace matrix is used,

(3.50) and (3.52) are expected to give approximate results for the parameter

estimation problem in the sector. For the rest of this part, two different types of

beamspace method and the element space methods are compared qualitatively.

The same scenario as in the SNR analysis, which is given in Table 3.1, is studied

for parameter estimation problem.

The CRBs of the dimension reduction methods are compared with the CRB of

the full size array, i.e. the element space, in Figure 3.12. They exhibit simi-

lar characteristics with the SNR performances shown in Figure 3.11. The DFT

beamformer with 1.05◦ intervals experiences oscillations due to the expansion of

the sector by 0.5◦. At the edges of the sector, the direction estimation perfor-

mance of all methods decreases as observed in the SNR performances. Contrary

to the SNR case, the best performance at the edges of the sector is achieved by

DFT beamformer with 1.05◦ intervals. Other methods present similar perfor-

mances to each other. Figure 3.12 also indicates the CRB results of the methods

around the center of the sector. In that scenario, closely sampled DFT method

having interval of 0.9◦ shows the best performance as in the SNR case.

To sum up, derivations of the CRB for the dimension reduction methods are

studied in this part of the thesis and results are qualitatively compared with the

CRB of the full size array. It is inferred that the eigenvector beamformer and a

properly selected DFT beamformer show similar theoretical results and thereby

may not be easily distinguished from each other in practice.

38



Figure 3.12: CRB analyses of the beamspace methods versus direction of arrival

for SNR = 20 dB.
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CHAPTER 4

ARRAY TAPERING

It is important for radar systems to be equipped with the low sidelobe antenna

pattern to deal with the high clutter and jammer scenarios [28]. In [12], it was

stated radars having low sidelobe receiver patterns are exposed to less clutter,

chaff, and jamming power. Since adjusting the spatial distribution of the electric

field across the antenna provides the control over the sidelobe structure of an

antenna’s radiation pattern [13], radiation patterns with low sidelobe levels can

be achieved by an additional amplitude taper to array elements.

This phenomenon, tapering, has been studied in detail in the literature by a

number of authors [11], [1], [12], [13], and [14]. Therefore, the aim of this

chapter is not to compare different tapering classes or to discuss the advantages

of tapering, but to describe the concept of tapering in subspace and to present

the implementation methods of this phenomenon in reduced dimensions.

The organization of this chapter is as follows: First, the conventional tapering

method is introduced. Then, a novel method, tapering after dimension reduc-

tion, is presented. Finally, the performances of both implementation methods

are compared in various scenarios.

4.1 Conventional Tapering: Tapering Before Dimension Reduction

In this method, tapering is applied to the antenna elements in a conventional

manner. To clarify, any antenna element is included an additional amplitude

taper in the element space. Tapering before dimension reduction is applied in
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[1] to reduce the sidelobe levels of radiation pattern. In Figure 4.1, the block

diagram of this method is illustrated where T is a diagonal matrix consisting of

the tapering coefficients in its diagonal terms, U is the beamspace matrix and

w(φs) is the beamspace beamformer looking towards φs direction.

Figure 4.1: Processing chain for tapering before dimension reduction

Beamspace beamformer weights, w(φs), are chosen to maximize SNR at φs under

AWGN

w(φs) = UH a(φs). (4.1)

Beamspace signal model given in (3.2) is revised as

ỹ(t) = T y(t),

ỹs(t) = UH ỹ(t),

z̃(t) = wH(φs) ỹs(t),

(4.2)

where ỹ(t) is the tapered received signal at the antenna elements, ỹs(t) is the ta-

pered reduced dimensional signal vector, and z̃(t) is the beamspace beamformer

output. SNR of a rank-one target at the output of the beamspace beamformer

under AWGN is given as

SNRφs(φ) =
wH(φs) UH T a(φ) σ2

s aH(φ) T U w(φs)

wH(φs) UH T Rn T U w(φs)
,

=
| aH(φs) U UH T a(φ) |2 σ2

s∥∥ aH(φs) UUH T
∥∥2 σ2

n

,

(4.3)

where Rn is the noise covariance matrix, and φ is the direction of the point

target. In the second line of (4.3), SNR formula is shortened in a more compact

form considering the AWGN. By simply extracting the σ2
s and σ2

n terms from

(4.3), the normalized pattern of the beamspace beamformer steered towards φs
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can be calculated as

Pφs(φ) =
| aH(φs) U UH T a(φ) |2∥∥ aH(φs) UUH T

∥∥2 . (4.4)

4.2 Tapering After Dimension Reduction

Employing tapering in the element space, that is before dimension reduction,

results in a tapered beamspace as expected. However, the dimension reduc-

tion is not a reversible operation; and therefore, any spatial filter applied in

a tapered beamspace will not be able to reflect the characteristics of the non-

tapered beams. That may lead to a deficiency and may not be desired in some

applications. To overcome this drawback of the conventional method, a novel

method of tapering after beamspace construction is studied in this chapter.

In this method, beamspace is constructed as in Chapter 3 without any tapering

information. Then, in the reduced space, tapered beamspace weights are used

to obtain the desired receiver pattern. Figure 4.2 shows the block diagram of

tapering after dimension reduction method.

Figure 4.2: Processing chain of the tapering after dimension reduction method

w̃ refers to the beamspace beamformer including taper characteristics

w̃(φs) = UH T a(φs), (4.5)

where φs is the direction that the beamformer is steered towards. In this section,

beamspace signal is remodelled as follows:

ys(t) = UH y(t),

ż(t) = w̃H(φs) ys(t),
(4.6)
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where ż(t) is the tapered beamspace beamformer output. The SNR expression

for a rank-one target coming from the φ direction under AWGN is calculated as

SNRφs(φ) =
w̃H(φs) UH a(φ) σ2

s aH(φ) U w̃(φs)

w̃H(φs) UH R2
n U w̃(φs)

,

=
| aH(φs) T U UH a(φ) |2 σ2

s∥∥ aH(φs) T U UH ∥∥2 σ2
n

,

(4.7)

where φs refers to the steering direction of the beamspace beamformer and Rn

corresponds to the noise covariance matrix. Then, the pattern of the beamspace

beamformer can be written as

Pφs(φ) =
| aH(φs) T U UH a(φ) |2∥∥ aH(φs) T U UH ∥∥2 . (4.8)

4.3 Performance Comparison of Tapering Methods

In this section of the thesis, performance comparisons of tapering before di-

mension reduction and tapering after dimension reduction methıds are made for

different reduced space dimensions. Note that the eigenvector beamformer is

employed to form the beamspace throughout the study. Taylor weights are used

to achieve patterns having low sidelobes. Table 4.1 describes the first case to be

studied:

Table 4.1: Scenario for comparing the performances of the beamspace tapering
methods

Value Explanation

10 Reduced space dimension

0◦ φs, steering direction

30 Sidelobe suppression level (dB)

In Figure 4.3, it is shown that the receiver patterns of tapering before and after

dimension reduction methods which are drawn by employing (4.4) and (4.8),

respectively. Additionally, element space - full dimension- tapering pattern is

presented in Figure 4.3 and calculated using (4.4), where beamspace matrix -U-

is taken as the identity matrix of size N ×N .

44



Figure 4.3: Receiver patterns of the tapering methods, φs is taken as 0◦.

Figure 4.3 points out that both beamspace tapering methods steered towards

0◦, φs = 0, generate almost the same pattern with the element space one within

the sector. In contrast, at the edges of the sector, a spiky behaviour is observed

for the beamspace methods.

In Chapter 3, it was observed that Eigenvector beamformer has better perfor-

mance around the center of the sector in the SNR sense. Thus, in the following

case, φs is chosen as −5◦ to observe the pattern performance of the beamspace

methods at the edge of the sector.

Figure 4.4: Receiver patterns of tapering methods, φs is taken as −5◦.

In Figure 4.4, the decrease in the performance is observed not only outside
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the sector but also within the sector. This means that the beamspace dimension

chosen considering the criteria in Section 3.5 is insufficient for tapering operation.

In other words, tapering with beamspace processing needs additional reduced

space dimensions.

Thus far, %99 threshold criterion has been suitable for non-tapered beams; how-

ever, Figure 4.3 and 4.4 clarify that if an additional process is applied to the

beamspace beams, then the numerical value of the reduced dimensional space

is required to be increased. Considering this requirement, both beamspace ta-

pering methods are investigated with increased dimensions. Patterns of the

tapering before dimension reduction method for various dimensions are plotted

in Figure 4.5. Since the performance of the beamspace methods degrade at the

edges of the sector, φs is chosen as −5◦.

Figure 4.5: Receiver patterns of the tapering before dimension reduction

method, φs is taken as −5◦.

According to Figure 4.5, the main lobe pattern almost match the element space

pattern with only one additional dimension; however, sidelobe pattern is still

higher than the desired element space pattern. When an additional reduce

space dimension is also utilized, both mainlobe and sidelobe patterns almost

match but a spiky behaviour is observed around the other edge of the sector.

Finally, beamspace with 3 additional dimensions, which makes the number of

the total reduced space dimension 13, achieves the generation of the desired

tapered beamspace pattern.
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Figure 4.6: Receiver pattern of the tapering after dimension reduction method,

φs is taken as −5◦.

In Figure 4.6, patterns of the tapering after dimension reduction method are

plotted for various beamspace dimensions. Since tapering in beamspace method

uses reduced dimensions for tapering, it requires more dimensions than the ta-

pering in element space. This fact can also be seen from the Figure 4.6. Mainlobe

of the beamspace pattern is almost identical to the element space one after 5

additional dimensions; on the other hand, the sidelobe pattern of the beamspace

method still does not match the desired one and the spiky behaviour is observed

outside the sector. Beamspace with 17 dimensions produces a similar pattern

to the desired one. In contrast, small differences can be spotted outside the

sector when compared to the actual -full dimension- pattern. Beamspace with

8 additional dimensions finally succeeds in generation of the desired pattern.

Until now, the beamspace tapering methods are evaluated qualitatively by indi-

cating their pattern construction performance. In order to develop a feeling for

the importance of a proper tapering, SNR analysis is performed considering the

case in Table 4.2.

Signal to interference ratios (SINR) in Figure 4.7 are plotted employing equa-

tions (4.3) and (4.7). When Rn is taken as the summation of both interference

covariance and the noise covariance as in (4.9), the first lines in (4.3) and (4.7)
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Table 4.2: Scenario for comparing the performances of the beamspace tapering
methods.

Value Explanation

15 dB SNR

−7◦ φj1 , Angular placement of the first interference source

30 dB JNR of the first interference source

2◦ φj2 , Angular placement of the second interference source

30 dB JNR of the second interference source

define the SINR formula.

Rn = Rj + σ2
nI,

Rj = σ2
j1
a(φj1)a(φj1)

H + σ2
j2
a(φj2)a(φj2)

H,
(4.9)

where, σ2
j refers to the interference power, φj1 and φj2 corresponds to the angular

placements of the interference sources, respectively.

Figure 4.7 identifies that even if the additional dimensions are not used, ta-

pered beamspace processing performs better than the non-tapered one. When

the reduced space dimension is increased, SINR performance of both tapered

beamspace methods improves. 3 additional dimensions seem sufficient for ta-

pering before dimension reduction method to achieve the performance of the

element space tapering method; however, the tapering after dimension reduc-

tion method experiences performance deficiency at the edges. The tapering after

beamspace processing reaches to the desired performance with an addition of 7

dimensions. Increasing the dimension further does not make any change in the

performance of the methods for that case.

Thus far, array signal model is accepted as flawless; but, it is inevitable to

confront with imperfections in practice. The reason of these imperfections can

be listed as follows [12]:

1. Phase and amplitude errors due to the feed network and the phase shifters;

2. Deflections in the element placement;

3. Mutual coupling effects and failed elements.
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Figure 4.7: SINR performances of the tapering methods within the sector. X is

taken as 10, 11, 13, 15, 17 and 18 respectively.
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In [29], it was stated that these random errors restrict the sidelobe level and

hence average sidelobe performance of the antenna. In order to develop an in-

sight about the robustness of the referred beamspace methods, both pattern and

the SINR analysis are repeated considering the array imperfections. Random

phase errors are evaluated for the array imperfections in the scope of this thesis.

In the analysis, true steering vectors are used to design spatial filters, including

the beamspace matrix and the beamspace beamformer. Imperfections are added

to the received echo signal at the receiver and thereby to the steering vectors of

the signal and interferences. Uniformly drawn phases from the interval [-5◦,5◦]

are used to make random phase errors.

The pattern performances of the tapering before and after dimension reduction

methods with the increasing number of reduced space dimensions are shown in

Figures 4.8 and 4.9, respectively.

Figure 4.8: Receiver pattern of the tapering before dimension reduction method

with random phase errors, φs is taken as −5◦.

Considering the challenges occurred in previous cases, φs is selected from the

edge of the sector again. The pattern performances of the beamspace methods

with the phase mismatches reduce by the same amount with the performance

of the corresponding beamformer in element space. This means that the mis-

matches do not necessitate an additional dimension in beamspace.
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Figure 4.9: Receiver pattern of the tapering after dimension reduction method

with random phase errors, φs is taken as −5◦.

This can also be inferred from the SINR analysis in Figure 4.10. The SINR

performances of the beamspace methods follow the same characteristics with

increasing dimensions as in 4.7.

In summary, the tapering phenomenon has been examined in this chapter with

the beamspace concept. The performances of tapering before and after beamspace

processing have been evaluated. It was seen that tapering requires additional di-

mensions for the beamspace domain operations. Indeed, the dimension demand

depends on the processing chain of tapering in beamspace. For clarity, taper-

ing in element space combined with the beamspace processing gives the same

performance compared to the tapering after beamspace processing by using less

number of reduced space dimensions. Contrary to the dimension disadvantage,

the advantage of the tapering after dimension reduction is to apply tapering

coefficients in the beamspace. By doing so, beamspace can be constructed with

non-tapered beams and tapering can only be used to form a detection channel

after beamspace processing.
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Figure 4.10: SINR performances of the tapering methods within the sector con-

sidering random phase errors. X is taken as 10, 11, 13, 15, 17 and 18 respectively.
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CHAPTER 5

SIDELOBE BLANKER

In radar receivers, detected signals are assumed to belong to a target in the main

beam of the antenna. However, a strong echo might enter from the sidelobe

region of the antenna pattern and it might also be perceived as a target located

in the main beam. This phenomenon causes major direction finding errors [12].

One way to deal with this problem is to have low sidelobe antenna patterns;

but, this may be an insufficient solution against stronger echos. In [16], it was

stated that sidelobe blanking (SLB) systems can prevent detections captured by

sidelobes. In order to realize that a two-channel receiver system was proposed

[16]: main channel and auxiliary channel in which the pattern of the auxiliary

channel is larger than the sidelobes of the main channel as in Figure 5.1.

Figure 5.1: Ideal main and auxiliary pattern proposed by Maisel.

The working principle of the proposed system depends on the relation between
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samples of the main and auxiliary channels downstream from the detector block

as in Figure 5.2 [16]. If the magnitude square of the sample under test in the

auxiliary channel is larger than that in the main channel, it will be gated. On the

other hand, if the magnitude square of the sample in the main channel is larger

than that in the auxiliary channel, the sample will be processed with detection

algorithms.

Figure 5.2: Basic sidelobe blanking system.

This system seems extremely simple for the noise free case. However, when it is

realized in noisy channels, the probability of detection and thereby the system

performance might be reduced. To clarify, even if a target appears in the main

beam, the magnitude square of the sample in the auxiliary channel can be larger

than that in the main channel due to the system noise. This undesired effect

of SLB system is called as target blanking. In order to decrease the probability

of target blanking, a threshold, F , is assigned while comparing the main and

auxiliary channels.

It is worthy of note that some authors prefer to use the phrase ‘jammer’ as

the signal entering from sidelobe of the antenna. This is also acceptable, be-

cause some electronic countermeasure (ECM) systems can delay and transmit

the signal coming from the radar. This type of interference is known as coherent

repeated interference (CRI) [30]. SLB systems can be employed as a precaution

to this type of ECM techniques. However, it should be noted that SLB systems

cannot handle with the noise-like interferences (NLI) where all the received sam-

ples are affected [31]. To deal with these type of interferences, sidelobe canceller

(SLC) systems have been suggested in the literature. The ‘jammer’ phrase used
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here only refers to the CRI type jammers. To clarify, SLB systems cope with

the targets and CRI type jammers interfering from the sidelobe. In order not to

cause any confusion, sidelobe targets and jammers are referred as interferers in

the following parts of this chapter.

The main aim of the SLB structure is to increase the probability of blanking, PB,

and to decrease the probability of target blanking, PTB. Considering the main

and auxiliary channel patterns in Figure 5.1 and assuming a fixed main channel

pattern, improvement on PB can be achieved by increasing the auxiliary antenna

pattern level; on the other hand, reducing PTB can be handled with decreasing

auxiliary antenna pattern level. Coupling between PB and PTB makes the SLB

structure complicated. In other words, the trade-off between PB and PTB may

degrade the system performance. In the next section of this chapter, it is aimed

to present a way to decouple PB and PTB. Besides, implementation of the SLB

systems in subspace will be examined in this chapter.

5.1 Proposed Auxiliary Antenna Pattern for Sidelobe Blanking

In order to decouple PB and PTB, a new auxiliary pattern is proposed as shown

in Figure 5.3.

Figure 5.3: Proposed auxiliary channel pattern and main channel pattern.

In Figure 5.3, auxiliary pattern is divided into two parts, namely the main and
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sidelobe part. Contrary to the classical patterns, proposed auxiliary pattern has

nulls, ωm, in its main part and peaks, ωs, in its sidelobe part which is analogous

to a bandstop filter in space. Note that the aim of the auxiliary antenna is

to provide information for sidelobe targets or jammers. In addition, the desired

response of the auxiliary channel against main lobe targets is to give small values

compared to the main channel. In fact, if an ideal mechanism is to be designed,

auxiliary pattern should include zeros in its main part and the maximum gain

in its sidelobe part. To realize that, the sidelobe part of the auxiliary pattern is

kept higher while keeping the pattern of the main part lower.

When the SLB structure was first proposed in [16] in 1968, the design of the

suggested pattern was probably too challenging. However, such an auxiliary

antenna pattern can be designed, relatively easily, with today’s modern phased

array radar systems having hundreds of elements.

5.2 Calculation of Performance Criteria

The performance of the SLB system can be evaluated by means of the prob-

ability of blanking an interference, PB, and blanking a mainlobe target, PTB.

Probability calculation for SLB systems was examined in detail in [12] and [19].

In this part of the thesis, evaluation of SLB systems is revised for proposed aux-

iliary pattern design. The performance is analyzed for Swerling 1 target model

which assumes the amplitude is Rayleigh distributed and phase is uniformly dis-

tributed over (0, 2π) [32]. Probability of blanking, PB, and probability of target

blanking, PTB, are derived following [19].

The performance of the system is evaluated by testing three hypotheses:

• H0: Null hypothesis corresponding to the noise in the channels.

• H1: Target in the main lobe and no interference, i.e. no target or jammer

in sidelobe.

• H2: Interference in the sidelobe and no target in the main lobe.
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In Figure 5.2, complex valued samples of the main and auxiliary channel signals

upstream from the square-law detector are denoted by S and R. Considering

the three hypothesis, S and R can be written as

H0 :

S = Ws

R = Wr

H1 :

S = AejφA +Ws

R = ωmAe
jφA +Wr

H2 :

S = CejφC +Ws

R = ωs
δ
CejφC +Wr

(5.1)

whereWs andWr refer to the circular complex white Gaussian distributed noise

samples with zero mean and σ2
s and σ2

r variance, respectively. φA and φC are the

phases of the target in the mainlobe and target or jammer in the sidelobe. Both

φA and φC are uniformly distributed over (0, 2π). A and C are the magnitude of

the target in the mainlobe and interference in the sidelobe, respectively. Both

A and C are Rayleigh distributed,

pC(c) =
c

σ2
C

exp
(
−c2

2σ2
C

)
, c > 0,

pA(a) =
a

σ2
A

exp
(
−a2

2σ2
A

)
, a > 0,

(5.2)

where σ2
A and σ2

C are the average power of the target in the main lobe and inter-

ference in the sidelobe, respectively. U and V denote the samples downstream

from the square-law detector of the main and auxiliary channels, respectively.

The distributions of U and V can be given as

pU(u|H0) =
1

2σ2
exp
(
−u
2σ2

)
,

pU(u|H1, A) =
1

2σ2
exp
(
− u+ a2

2σ2

)
I0

(
a
√
u

σ2

)
,

pU(u|H2, C) =
1

2σ2
exp
(
− u+ c2

2σ2

)
I0

(
c
√
u

σ2

)
,

(5.3)
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pV (v|H0) =
1

2σ2
exp
(
−v
2σ2

)
,

pV (v|H1, A) =
1

2σ2
exp
(
− u+ (ωma)

2

2σ2

)
I0

(
ωma
√
v

σ2

)
,

pV (v|H2, C) =
1

2σ2
exp
(
− v + ((ωs/δ)c)

2

2σ2

)
I0

(
(ωs/δ)c

√
v

σ2

)
,

(5.4)

where, noise variance in the main and auxiliary channels, σ2
s and σ2

r , are taken

as 2σ2. Considering the SLB structure given in 5.2, PB as a function of C, which

is the amplitude of the interference signal in sidelobe, can be written as

PB(c) = Prob
{
V

U
> F |H2, C

}
=

∫ ∞
0

∫ v/F

0

pU,V (u, v|H2, C)dudv.

(5.5)

Equation (5.5) indicates that PB(c) depends on the joint probability distribution

function of U and V , pU,V (u, v), conditioned on H2 hypothesis. Following to the

results given in [19], PB is derived as a function of C. Then, pdf of C is employed

and PB(c) is averaged with respect to C to derive PB as follows

PB =

∫ ∞
0

PB(c)pC(c)dc. (5.6)

PB(c) can be calculated as

PB(c) =

∫ ∞
0

∫ v/F

0

pU,V (u, v|H2, C)dudv,

=

∫ ∞
0

pV (v|H2, C)dv

∫ v/F

0

pU(u|H2, C)du,

=

∫ ∞
0

pV (v|H2, C)dv

[
1−

∫ ∞
v/F

pU(u|H2)du

]
.

(5.7)

In the second line of (5.7) independence of U and V are used since the noise in

main and auxiliary channels, namely Ws and Wr are independent. The integral

in the last line of the (5.7) can be written as∫ ∞
v/F

pU(u|H2)du =

∫ ∞
v/F

1

2σ2
exp
(
− u+ c2

2σ2

)
I0

(
c
√
u

σ2

)
, (5.8)
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Using the definition of Marqum Q-function given in [33],

Q(a, b) =

∫ ∞
b2

1

2
exp
(
− x+ a2

2

)
I0
(
a
√
x
)
dx, (5.9)

(5.8) can be written as∫ ∞
v/F

pU(u|H2)du = Q

(
c

σ
,

√
v

Fσ2

)
. (5.10)

Inserting (5.10) into (5.5), PB(c) can be expressed as

PB(c) =

1−
∫ ∞
0

Q

(
c

σ
,

√
v

Fσ2

)
1

2σ2
exp
(
− v + ((ωs/δ)c)

2

2σ2

)
I0

(
(ωs/δ)c

√
v

σ2

)
dv.

(5.11)

Then, using the following equation given in [33],∫ ∞
0

1

2σ2
1

exp
(
− x+ α2

1

2σ2
1

)
I0

(
α1

√
x

σ2
1

)
Q

(
α2

σ2
,

√
x

σ2
2

)
dx =

σ2
1

σ2
1 + σ2

2

[
1−Q

(√
α2
1

σ2
1 + σ2

2

,

√
α2
2

σ2
1 + σ2

2

)]
+

σ2
2

σ2
1 + σ2

2

[
1−Q

(√
α2
2

σ2
1 + σ2

2

,

√
α2
1

σ2
1 + σ2

2

)]
,

(5.12)

where σ1 = σ, σ2 = σ
√
F , α1 = ωs

δ
c, α2 = c

√
F and x = v; (5.11) can be

simplified as

PB(c) =
F

1 + F

[
1−Q

(√
2F INR0

1 + F
,
ωs
δ

√
2 INR0

1 + F

)]
+

1

1 + F
Q

(
ωs
δ

√
2 INR0

1 + F
,

√
2F INR0

1 + F

)
.

(5.13)

The interference to noise ratio, INR0, given in (5.13) is defined as

INR0 =
c2

2σ2
. (5.14)

To derive PB for Swerling 1 target model, (5.6) is employed,

PB =

∫ ∞
0

F

1 + F

[
1−Q

(√
2F INR0

1 + F
,
ωs
δ

√
2 INR0

1 + F

)]
+

1

1 + F
Q

(
ωs
δ

√
2 INR0

1 + F
,

√
2F INR0

1 + F

)
c

σ2
C

exp
(
−c2

2σ2
C

)
dc.

(5.15)
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Result of (5.15) can be turned into a closed form expression, as proven in [30],

PB =
1

2

[
1− 1

1 + F

INR(F − (ωs/δ)
2)− (F + 1)√[

INR(F − (ωs/δ)2) + F + 1
]2

+ 4 INR(F + 1)F
−

F

1 + F

INR(F − (ωs/δ)
2) + F + 1√[

INR(F − (ωs/δ)2)− (F + 1)
]2

+ 4 INR(F + 1)F

]
.

(5.16)

Note that interference to noise ratio is now taken as

INR =
E{c2}
2σ2

=
σ2
C

2σ2
, (5.17)

where σ2
C is the average power of the fluctuating interference in the sidelobe as

shown in (5.2).

To evaluate the performance of the SLB structure, PTB is also to be derived.

Considering the SLB structure, PTB as a function of A, which is the amplitude

of the target in the mainlobe, can be written as

PTB(a) = Prob
{
V

U
> F |H1, A

}
=

∫ ∞
0

∫ v/F

0

pU,V (u, v|H1, A)dudv.

(5.18)

Following the same steps with the derivation of PB, a closed form expression for

PTB can be found as ,[30]

PTB =
1

2

[
1− 1

1 + F

SNR(F − ω2
m)− (F + 1)√[

SNR(F − ω2
m) + F + 1

]2
+ 4 SNR(F + 1)F

−

F

1 + F

SNR(F − ω2
m) + F + 1√[

SNR(F − ω2
m)− (F + 1)

]2
+ 4 SNR(F + 1)F

]
.

(5.19)

SNR denotes the signal to noise ratio and it can be written as

SNR =
E{a2}
2σ2

=
σ2
A

2σ2
, (5.20)

where σ2
A is the average power of the fluctuating target in the mainlobe.
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5.3 Numerical Results

In this part of the thesis, performance of the proposed auxiliary antenna pattern

is presented quantitatively for various cases. To examine the efficiency of the

proposed pattern, a new parameter, x (shown in Figure 5.3), is employed. This

parameter denotes the ratio between the sidelobe and the mainlobe level of the

auxiliary pattern

x =
ω2
s

ω2
m

. (5.21)

When x = 1, the results correspond to the conventional SLB performance, and

the proposed SLB performance will be observed when x > 1.

During the analyses, main antenna gain is kept at 0 dB. The effect of x on the

system performance is investigated for varying SNR, INR, δ2 and ω2
s .

The first example demonstrates the probability of blanking, PB, against the

parameter x by setting the probability of target blanking, PTB at a desired

value for the Swerling-1 target model which is given in (5.16). In fact, having

the probability of target blanking, PTB, constant and INR as a parameter, the

probability of blanking, PB, is plotted as a function of x for different cases. The

desired value for the probability of target blanking, PTB, is obtained considering

the value of the minimum detectable target SNR and applying (5.18).

In the first case to be evaluated, the minimum detectable target SNR is assumed

to be 20 dB. The probability of target blanking, PTB, is calculated as a function

of threshold, F , for that SNR value and for the antenna parameters given in

Table 5.1 in a conventional SLB structure, i.e. when x = 0 dB.

Table 5.1: Antenna parameters
Value Explanation

−20 dB δ2s

−10 dB ω2
s

It is desired to have the minimum target blanking probability. Considering

Figure 5.4, that can be realized when the threshold, F , is at its maximum.

Note that the maximum value of the threshold is limited to β2, i.e. Fmax = β2.
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Otherwise, blanking performance of the SLB degrades in a considerable manner

[12].

Figure 5.4: Probability of target blanking, PTB, as a function of threshold, F .

In the first case, the performance of the proposed SLB is studied with an antenna

having a poor peak to sidelobe (PSL) ratio as defined in Table 5.1. The minimum

value of the probability of target blanking, PTB, is found as 0.001 at F = β2 for

20 dB SNR.

In Figure 5.5, SNR is increased while keeping the probability of target blanking,

PTB, constant at 0.001. This causes SLB structure to be over-designed as SNR

is increased over 20 dB.

Figure 5.5 also indicates that the larger the parameter x is, the higher the prob-

ability of blanking, PB is to be reached. Especially for the value of the minimum

detectable SNR, the effect of the parameter x on the blanking performance of

the system can be observed clearly. This effect is decreasing with increasing

SNR for a constant PTB.

INR values given in Figure 5.5 refer to the interference to noise ratio of the

interfering source in the main channel. It is also observed from Figure 5.5 that
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(a) PB vs x at SNR = 20 dB (b) PB vs x at SNR = 21 dB

(c) PB vs x at SNR = 25 dB (d) PB vs x at SNR = 30 dB

Figure 5.5: Probability of blanking, PB, as a function of x for various INR. Left

y-axes denotes the probability of blanking, PB, and the right y-axes indicates

the threshold values for the same x-axes.

the blanking probability, PB, increases as INR gets larger. This is quite expected

since the presence of an interference is more obvious with increasing INR in a

noisy channel. Another result that can be drawn from the Figure 5.5 is that

improving the value of x over 20 dB does not change the performance in a

significant manner.

Figure 5.5c and Figure 5.5d show over-designed SLB structures because more

appropriate values for probability of target blanking, PTB, could be selected for

that values of SNR. In a real scenario, the threshold, F , is set to a fixed value.

Therefore, to show the blanking performance for a fixed threshold, F , Figure

5.6 is plotted.
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(a) PB vs x at SNR = 20 dB (b) PB vs x at SNR = 30 dB

Figure 5.6: Probability of blanking, PB, as a function of x for various INR. Left

y-axes denotes the probability of blanking, PB, and the right y-axes indicates

the threshold values for the same x-axes.

Figure 5.6 points out that the increment in SNR causes a decrease in PTB due

to the constant threshold values. The only parameter changing threshold, F , is

the ratio between the sidelobe and the mainlobe level of the auxiliary antenna,

x.

It is observed from Figure 5.6 that if the threshold is selected as F = β2, the

effect of the proposed method will be dramatic. In addition, this effect does not

depend on the target SNR when the threshold, F , is fixed.

In Figure 5.6, the threshold is selected as the maximum possible value, F = β2,

when x = 0 dB. Hereby, that value of the threshold, F , is lowered and Figure

5.7 is plotted.

In Figure 5.7, the improvement in blanking probability is not as drastic as in

Figure 5.6. Hence, it can be inferred that the performance of the SLB is sensitive

to the value of the parameter x when the threshold, F , is selected close to β2.

Another way to investigate the effect of x on the system performance when the

threshold, F , is taken as constant is to plot the probability of target blanking,

PTB, as a function of SNR for different values of x. In Figure 5.8, the probability

of target blanking, PTB, is drawn for the antenna parameters given in Table 5.1.
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(a) PB vs x at SNR = 20 dB (b) PB vs x at SNR = 30 dB

Figure 5.7: Probability of blanking, PB, as a function of x for various INR.Left

y-axes denotes the probability of blanking, PB, and the right y-axes indicates

the threshold values for the same x-axes.

In Figure 5.8, it can be observed that increasing the value of the parameter

x creates a performance gap. This gap is decreasing for improved values of

SNR. The effect of x can be seen more clearly in Figure 5.8b which is more

detailed version of Figure 5.8a around 20 dB SNR. According to Figure 5.8b,

5 dB increment on x, will improve the performance 0.35 dB, i.e. the same

probability of target blanking, PTB, can be provided with targets having 0.35 dB

smaller SNR. In addition, 10 dB increase on x, will improve the target blanking

performance approximately by 0.45 dB. The improvement on x over 20 dB does

not contribute to the system performance beyond 0.5 dB.

It is worthy of note that the foregoing results belong to an antenna having a

poor PSL ratio. Now, the antenna parameters are improved to a typical radar

example that are given in Table 5.2. Note that β2 is still kept at 10 dB.

Table 5.2: Antenna parameters
Value Explanation

−30 dB δ2s

−20 dB ω2
s

In Figure 5.9, the probability of target blanking performance of the antenna is

plotted as a function of threshold. The maximum threshold, F , gives the value
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(a) PTB vs SNR for various x (b) PTB vs SNR for various x

Figure 5.8: Probability of target blanking, PTB, as a function of SNR, F .

of minimum probability of target, PTB. PTB is found as 0.001 for 20 dB SNR

and F = β2.

Figure 5.9: Probability of target blanking, PTB, as a function of threshold, F .

In Figure 5.10, the probability of target blanking, PTB is kept constant at 0.001

for various SNR values. This makes the threshold, F , decrease as SNR is in-

creased. As in 5.5, the system becomes overdesigned when SNR is improved.

In Figure 5.10a improvement on blanking performance is apparent. However, it
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(a) PB vs x at SNR = 20 dB (b) PB vs x at SNR = 21 dB

(c) PB vs x at SNR = 25 dB (d) PB vs x at SNR = 30 dB

Figure 5.10: Probability of blanking, PB, as a function of x for various INR. Left

y-axes denotes the probability of blanking, PB, and the right y-axes indicates

the threshold values for the same x-axes.

is degraded when compared to Figure 5.5a. Since the antenna parameters are

improved, the effect of x on the system performance is substantially reduced

for high SNR values. Especially in Figure 5.10b, 5.10c and 5.10d, amelioration

provided by the parameter x is almost negligible.

It is also observed that the probability of blanking, PB, is increased when com-

pared to Figure 5.5 at x = 0 dB. It is an expected result due to the development

on the antenna PSL. This result shows that the parameter x is more functional

when the PSL is low and the threshold, F , is set close to β2.

Note that the effect of constant threshold on blanking performance for various
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SNR was studied and it was shown that the probability of blanking, PB, depends

on the threshold, F , rather than the SNR. Therefore, in Figure 5.6 and 5.7, the

same probability of blanking, PB, performances were observed against different

SNR values. The effect of x when the threshold, F , is kept constant is shown

by means of drawing the probability of target blanking, PTB, performance as a

function of SNR in Figure 5.11.

(a) PTB vs SNR for various x (b) PTB vs SNR for various x

Figure 5.11: Probability of target blanking, PTB, as a function of SNR, F .

In Figure 5.11, performance gap induced by parameter x is very small compared

to the Figure 5.8. It can be observed that there is no contribution of improving

the parameter x beyond 10 dB to the probability of target blanking, PTB. The

advantage provided by 10 dB improvement on x is 0.05 dB. This result shows

that the contribution of x on the system performance is negligible for antennas

having good PSLs.

In summary, the proposed auxiliary pattern better the performance of the SLB in

terms of the probability of blanking, PB, and the probability of target blanking,

PTB, when antenna sidelobe levels are poor. However, its gain is reduced in a

significant manner when antenna sidelobe levels are improved. It is also observed

that if the threshold, F , is not kept at the maximum level, the effect of the

parameter x on the system performance will be small.
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5.4 Implementation of SLB in Subspace

This section deals with the SLB design in beamspace which is formed by eigen-

vector beamformer studied in Chapter 3. The conventional Maisel’s SLB struc-

ture is to be implemented in the beamspace. However, the design of an auxiliary

antenna pattern is the main problem. Using an auxiliary antenna may not be

feasible due to complexity in practice. Another solution could be the imple-

mentation of the auxiliary antenna using the full dimension. In fact, auxiliary

pattern can be assigned to one of the beamspace channels having the minimum

eigenvalue. This means that the column of the beamspace matrix with the min-

imum eigenvalue can be used for the generation of the auxiliary pattern. In

contrast, losing dimensions, even only one, might degrade the performance of

detection as discussed in Chapter 3 and 4. In order to avoid such performance

degradations, an extra column can be added to beamspace matrix instead of

removing a detection channel. In fact, that channel is used to represent SLB

auxiliary pattern. In this way, computational work is increased and that might

cause problems in practical systems.

Taking the foregoing discussion into account, design of the auxiliary pattern in

beamspace will be studied in this part of the thesis. This approach reduces

computational work because an extra channel is not assigned to SLB during

dimension reduction and SLB channel is synthesized digitally after beamspace

construction.

The implementation of the SLB structure in beamspace is presented in Figure

5.12.

Figure 5.12: Sidelobe blanking structure in beamspace.
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As explained in the previous part, outputs of the square-law detectors are eval-

uated considering the working principle of SLB. In order to provide a proper

assessment, the beamspace SLB coefficients, wSLB, have to be chosen carefully.

The auxiliary pattern in beamspace can be formulated considering the previously

derived equations (4.4) and (4.8) as follows

PSLB(φ) =
| wH

SLB UH a(φ) |2∥∥ wH
SLB UH ∥∥2 . (5.22)

where wSLB refers to the beamspace auxiliary beamformer, U is the beamspace

matrix and a(φ) is the steering vector belonging to the echos coming from φ.

Considering the beamspace width given in Table 3.1, the desired SLB pattern

to be achieved is given in Figure 5.13.

Figure 5.13: Desired sidelobe blanker pattern, Pdesired(φ)

wSLB can be found by minimizing the difference between the desired and the

calculated SLB pattern

min
wSLB

max
φ

Gφ(wSLB)

Gφ(wSLB) = | Pdesired(φ)− PSLB(φ,wSLB) |
(5.23)

where PSLB(φ,wSLB) means SLB pattern evaluated at wSLB and φ. To real-

ize that MATLAB-fminimax optimization tool is used. Figure 5.14 shows the

resulting optimized pattern for various dimensions.
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Figure 5.14: Designed auxiliary pattern in beamspace for various dimensions.

Notice that since the array has 100 elements, normalized omnidirectional pattern

can only be provided at −20 dB. Due to the reduced number of channels, the

optimization cannot provide a smooth pattern as the desired one. As the number

of reduced dimensions increases, optimized beamspace SLB pattern begins to

converge to the desired one.

In the foregoing part, a proper auxiliary pattern is generated to be used in SLB

system. Now, the idea of constructing SLB pattern in beamspace is extended

to a more realizable case where tapering is applied. Tapering was discussed in

Chapter 4. It was stated that tapering is the underlying remedy to deal with

the interferers. However, it was also noted that applying only tapering might

be inadequate in the presence strong interferers and thereby SLB process was

proposed.

In Chapter 4, tapering was examined in two ways, namely tapering before di-

mension reduction and tapering after dimension reduction. Tapering before

dimension reduction refers to the conventional tapering in the element space.
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Figure 5.15: Sidelobe blanking structure in tapered beamspace.

Then, tapered data is used to form the reduced dimensional space. Therefore,

this method provides tapered channels in beamspace and the auxiliary pattern

design is to be realized via these tapered channels. Tapering after dimension

reduction method, on the other hand, utilizes beamspace channels constructed

with no tapering information. That allows forming the auxiliary pattern from

non-tapered channels, contrary to tapering before dimension reduction method.

In other words, since tapering is performed in beamspace, the auxiliary pattern

is not affected by the tapering operation. Hence, the formulation of the auxiliary

pattern can be taken as in (5.22). However, when the method of tapering before

dimension reduction is employed, the pattern of the auxiliary channel changes

and can be formulated as

PTSLB(φ) =
| wH

TSLB UH TH a(φ) |2∥∥ wH
TSLB UH TH ∥∥2 , (5.24)

where, PTSLB refers to the pattern of the auxiliary channel generated using

tapered subspace. (5.24) differs from (5.22) by a diagonal tapering matrix, T.

Since an additional diagonal tapering matrix appeared in the formula, optimiza-

tion routine is revised as follows:

min
wSLB

max
φ

Gφ(wTSLB)

Gφ(wTSLB) = | Pdesired(φ)− PTSLB(φ,wTSLB) |.
(5.25)

Figure 5.16 demonstrates the effect of tapering by comparing the auxiliary pat-

terns of the tapered and non-tapered beamspaces for various number of dimen-

sions.

In Figure 5.16, it is indicated that the resultant auxiliary pattern obtained us-

ing the conventional tapering, i.e. tapering before dimension reduction, has
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(a) Beamspace auxiliary patterns vs angles

when D = 10

(b) Beamspace auxiliary patterns vs angles

when D = 12

(c) Beamspace auxiliary patterns vs angles

when D = 14

(d) Beamspace auxiliary patterns vs angles

when D = 16

(e) Beamspace auxiliary patterns vs angles

when D = 18

(f) Beamspace auxiliary patterns vs angles

when D = 20

Figure 5.16: Auxiliary patterns designed in tapered and nontapered beamspaces

for various number of dimensions.
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lower sidelobes and higher main lobe compared to the non-tapered one, i.e.

tapering after dimension reduction. That is an expected result since tapering

phenomenon causes information loss outside the sector by minimizing the side-

lobes of the beamspace vectors. However, it can also be observed that as the

number of dimensions increases, the offset between the auxiliary pattern levels

of both tapered and nontapered beamspaces reduces and they both converge to

the desired pattern.

In order to observe the effect of beamspace dimension on the pattern of the

auxiliary channel in tapered beamspace clearly, Figure 5.17 is provided. It is

Figure 5.17: Designed auxiliary patterns in tapered beamspace for various num-

ber of dimensions.

inferred from Figure 5.17 that even though tapering is employed before forming

the beamspace, the desired auxiliary pattern can be achieved if the number of

reduced beampsace channels is increased towards the full dimension. However,

comparing Figure 5.14 and 5.17, it can also be seen that even if the beamspace

dimension is increased too much, nontapered beamspace auxiliary pattern con-
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verges to the desired pattern better than the tapered one.

In order to give an insight into the SLB performance, the main beam and the

auxiliary beam should be evaluated jointly. Therefore, Figure 5.18 and 5.19 are

plotted to demonstrate the detection and the auxiliary patterns for both taper-

ing after dimension reduction and tapering before dimension reduction methods.

To develop a feeling about the importance of the beamspace dimension, detec-

tion beam is steered towards the edge of the sector as in Chapter 4. Figure

5.18 indicates that employing 10 channels is not enough to implement SLB in

beamspace for the case where the angular width is taken as 10 degree. 12

or higher number of reduced dimensions seems quite enough for SLB to work

properly. In Figure 5.19, on the other hand, at least 16 beamspace dimen-

sions are required for the SLB to function in beamspace. In fact, tapering after

beamspace dimension requires more dimension than tapering before beamspace

operation. That requirement was also mentioned in Chapter 4. In Figure 4.6,

it was observed that beamspace after dimension reduction method needs exces-

sive number of additional channels to construct detection beams properly. It

is worthy of note that as stated in Chapter 4, at least 13 dimensions are nec-

essary for tapering before dimension reduction. In this analysis, this requisite

is preserved and shown that axuiliary pattern can be designed with 13 number

of channels. Besides, the dimension requirement for tapering after dimension

reduction method was declared as 17 in Chapter 4. Although the auxiliary pat-

tern can be well designed in smaller dimensions with tapering after dimension

reduction, 17 dimensions are required to implement SLB since detection beam

cannot be formed otherwise.

In summary, the aim of implementing SLB in beamspace and the generation

of the auxiliary pattern using the reduced number of dimensions is achieved.

Moreover, the effect of tapering on the SLB processing in beamspace is evaluated.

It has been inferred that even if there is a performance gap when compared to the

full dimension, employing SLB in beamspace and designing the axuiliary pattern

using beamspace channels can work properly in many cases and be preferred for

many practical purposes.
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(a) Beamspace main and auxiliary patterns vs

angles when D = 10

(b) Beamspace main and auxiliary patterns vs

angles when D = 12

(c) Beamspace main and auxiliary patterns vs

angles when D = 14

(d) Beamspace main and auxiliary patterns vs

angles when D = 16

(e) Beamspace main and auxiliary patterns vs

angles when D = 18

(f) Beamspace main and auxiliary patterns vs

angles when D = 20

Figure 5.18: Main and auxiliary patterns designed in tapered (tapering in ele-

ment space) beamspace for various number of dimensions.
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(a) Beamspace main and auxiliary patterns vs

angles when D = 10

(b) Beamspace main and auxiliary patterns vs

angles when D = 12

(c) Beamspace main and auxiliary patterns vs

angles when D = 14

(d) Beamspace main and auxiliary patterns vs

angles when D = 16

(e) Beamspace main and auxiliary patterns vs

angles when D = 18

(f) Beamspace main and auxiliary patterns vs

angles when D = 20

Figure 5.19: Main and auxiliary patterns designed in tapered (tapering in

beamspace) beamspace for various number of dimensions.
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CHAPTER 6

CONCLUSIONS

6.1 Thesis Summary

In this thesis, the subspace based phased array radar system enabling the pro-

cessing of large dimensional arrays’ data is studied and its performance is an-

alyzed in terms of detection and parameter estimation criteria. In addition,

several radar signal processing methods have been developed for array tapering

and sidelobe blanking in accordance with the subspace reduction operation. The

main objective of this thesis is to find a set of basis that can capture the essence

of the information in a predefined sector by investigating the eigenvector and

Fourier basis of that region of space. The second objective is to apply to the

well-known spatial operations, namely array tapering and sidelobe blanking, in

the reduced dimensional subspace.

Research on dimension reduction for large arrays shows that mapping the full

dimensional data to the subspace can be performed by linear combinations of

array elements with non-adaptive weights. This process is named as the reduced

dimension beamspace processing which can be performed by projecting the large

arrays’ data via the beamspace matrix consisting of basis vectors of the subspace.

In the scope of this thesis, two different bases, namely eigenvector and Fourier

bases, have been investigated. It is seen that there is no conventional way to de-

cide the number of reduced dimensions. Hence, a rule is proposed to determine

the number of reduced dimensions which calculates the average energy in the

sector and assigns a threshold. The number of beams satisfying that threshold
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is taken as subspace dimension. Then, the eigenvector beamformer and DFT

beamformer are implemented regarding to this rule and qualitative comparison

between them is presented considering their detection and parameter estimation

performances. The results indicate that eigenvector beamformers achieve the

optimum criterion in the MSE sense, i.e. the minimum average SNR loss in the

sector can be attained by eigenvector beamformer. It is proved that eigenvector

beamformer can provide the optimum subspace in the MSE sense, while it is

illustrated that DFT beamformer can achieve better results in minimax sense.

In other words, the maximum SNR loss in the sector can be minimized by DFT

beams. It is worth to underline that minimax performance of DFT beamformer

can only be achieved when DFT beams are chosen properly. It is observed

that when the beams do not cover the whole sector, the ability of the DFT

beamformer to detect targets situated in some angular regions of the sector de-

creases. Even if they attain different optimality criteria, simulations performed

in 3.6 illustrate that both eigenvector beamformer and DFT beamformer exhibit

quite similar detection performances. In order to evaluate parameter estimation

performances of each beamformers, the Cramer Rao Lower Bound analysis is

performed. It is seen that both beamformers provide similar results especially

when DFT beams are placed with the appropriate angular intervals as in de-

tection case. Hence, it can be inferred that for non-adaptive operations, both

beamspace methods give close results to each other in terms of detection and

parameter estimation criteria.

High clutter, chaff and jamming powers can degrade detection performance of

the array and it is found out that low sidelobe pattern can eliminate these haz-

ardous factors in a considerable manner. Hence, a well known spatial operation,

array tapering, is employed together with subspace operation to handle with

them. It is seen that conventional array tapering can be applied with subspace

operation by weighting the data at the elements of the array and projecting

them onto the beamspace matrix. However, in order to overcome with the

non-reversible effect of conventional array tapering, which can be explained as

deficiency in detection and parameter estimation performance, a new tapering

method is developed to be employed in subspace. Tapering operations realized
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in element space and beamspace are called as tapering before and after dimen-

sion reduction, respectively. Pattern performance of these methods are analyzed

and results show that tapering operation requires additional dimensions to be

implemented properly. Besides, analysis performed in Section 4.3 demonstrated

that both subspace tapering methods have different dimension requirements. It

is observed that tapering before dimension reduction method needs less addi-

tional dimension than tapering after dimension reduction method. As expected,

beam patterns with tapering before dimension reduction method converge to

the desired tapered pattern rapidly since it uses full dimensional array informa-

tion. In contrast, the pattern generated using tapering after dimension reduction

method achieves the desired pattern after addition of several dimensions to the

subspace basis. It is worthy of note that even though tapering before and after

dimension reduction methods require additional channels to operate accurately,

when the simulations are performed for a challenging scenario, it is shown that

their detection success is better than non tapered beamspace method even if ad-

ditional dimensions are not used. Moreover, in order to examine the robustness

of the proposed methods, phase errors are applied to the array elements and it

is observed that both tapering methods are robust against imperfections that

can be experienced in practice. Overall, it is inferred that array tapering can be

successfully applied with the dimension reduction operation.

Strong interferers entering from the sidelobes of the beam can cause major direc-

tion finding errors and tapering operation can be insufficient against such cases.

Sidelobe blanker, which is a well-known spatial operation, is examined to deal

with these type of interferences. Firstly, a new auxiliary antenna pattern con-

figuration is proposed to overcome with the coupling between the probability of

blanking and probablility of target blanking in conventional Maisel’s structure.

Moreover, the performance of conventional Maisel’s sidelobe blanker method is

evaluated with the suggested auxiliary pattern. It is seen that there is a dras-

tic improvement for arrays having poor sidelobe to mainlobe ratios. Especially,

when the threshold parameter is taken at its maximum, the performance im-

proved in a considerable manner. However, it is noted that the contribution of

the new auxiliary pattern to the performance of the sidelobe blanker becomes
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negligible with increasing peak to sidelobe ratio of the array pattern.

Secondly, the subspace implementation of sidelobe blanker is investigated and

it is seen that the conventional sidelobe blanker method needs an additional

auxiliary antenna to identify the interferers entering from the sidelobe. However,

it is shown that auxiliary antenna pattern can also be designed in subspace

by optimizing the combinations of the subspace basis vectors in a convenient

manner.

Finally, implementation of both tapering and sidelobe blanking together with

dimension reduction is studied and it is seen that both operations can be per-

formed in subspace without any need for and additional channel. It is inferred

that the dimensions required for tapering operation is sufficient to design prop-

erly functioning tapering and sidelobe blanking structures in subspace.

6.2 Future Work

Some research topics that could not be investigated within the scope of this

thesis are listed as follows:

1. Effect of multipath on subspace based detection and estimation perfor-

mance.

2. Implementation of adaptive beamforming methods (such as MVDR and

Capon) in reduced dimensions together with array tapering and sidelobe

blanking methods.

3. Evaluation of the detection and estimation performance of subspace after

employing the adaptive beamforming methods.
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